Indexed Matching Statistics
and Shortest Unique Substrings

Djamal Belazzougui and Fabio Cunial

Helsinki Institute for Information Technology (HIIT)
Department of Computer Science, University of Helsinki, Finland*
name.surname@helsinki.fi

Abstract. The unidirectional and bidirectional matching statistics
between two strings s and t on alphabet Y, and the shortest unique
substrings of a single string ¢, are the cornerstone of a number of large-
scale genome analysis applications, and they encode nontrivial structural
properties of s and t. In this paper we compute for the first time the
matching statistics between s and ¢ in O((|s| + |t|) log |X]) time and in
O(|s|log | X]) bits of space, circumventing the need for computing the
depths of suffix tree nodes that characterized previous approaches. Sym-
metrically, we compute for the first time the shortest unique substrings
of a string ¢ in O(|t|log|X|) time and in O(|t|log|X]|) bits of space. A
key component of our methods is an encoding of both the unidirectional
and the bidirectional statistics that takes 2|t| 4+ o(|t|) bits of space and
that allows constant-time access to every position.

1 Introduction and Motivation

Let s and ¢t be nonempty strings on alphabet Y = 1..0, let s and t be their
reverse, and let $ = 0 be a character not in X' that is smaller than any character
in Y. In this paper we study the following concepts:

Definition 1. Given two strings s and t and a threshold T > 0, the unidirec-
tional matching statistics MSy s - of ¢ with respect to s is a vector of length |t|
that stores at index i € [0..[t| — 1] the length of the longest prefiz of t[i..|t| — 1]
that occurs at least T times in s.

Definition 2. Given a string t and a threshold T > 0, the unidirectional dis-
tinguishing statistics DS; ., of t is a vector of length |t| that stores at index
i € [0..]t| — 1] the length of the shortest prefix of t[i..|t| — 1]$ that occurs at most
T times in t.

We drop any subscript from MS; 5 - and DS, ; whenever s, t or 7 are clear from
the context. Note that DS; ,[i] = MS; ; r+1[i] + 1 for every i and 7.1 MS; 5 1 has

* This work was partially supported by Academy of Finland under grant 250345 (Cen-
ter of Excellence in Cancer Genetics Research).

!'MS and DS have often been regarded as different problems in the literature: we
thank an anonymous reviewer for making this connection explicit.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 179-190, 2014.
© Springer International Publishing Switzerland 2014

180 D. Belazzougui and F. Cunial

also been called external matching (23], and DS, 1 has been called distinguishing
prefixz or shortest unique substring elsewhere [10]. By extension, RS; = DS; ;1 —1
can be dubbed the wunidirectional repeating statistics of t, since RS:[i] is the
length of the longest substring that starts at position ¢ and that occurs at least
twice in t. RS; has also been called internal matching elsewhere [23]. MS; s 1 and
DS;,1 are almost as old as the suffix tree itself [23], with first applications to
file transmission [22]. We are also interested in the bidirectional versions of such
concepts:

Definition 3. Given two strings s and t and a threshold T, the bidirectional
matching statistics BMS; s » of t with respect to s is a vector of length |t| that
stores at index i € [0..|t| — 1] the length of the longest substring t[x..y] with
x < i <y that occurs at least T times in s.

Bidirectional distinguishing and repeating statistics, denoted respectively by
BDS; r and BRS; ,, can be defined in the same way. Computing MS; ;1 is a
classical problem in string processing: the textbook solution scans ¢ from left to
right while navigating suffix links and child links in the suffix tree of s. Symmet-
rically, ¢ can be scanned from right to left, while taking Weiner links and parent
links in the (compressed) suffix tree of s [13]. Computing the depths of suffix
tree nodes is the bottleneck of both approaches: such depths can be encoded
either explicitly in ©(|s|log |s|) bits of space, and decoded in constant time [13],
or implicitly on top of a compressed index, and decoded in O(log®|s|) time [18].
In this paper we completely circumvent the need for computing the depths of
suffix trees nodes, by indexing both s and s and by performing both a forward
and a backward pass over ¢. This allows to compute MS, s - in O((|s| + |¢|) log o)
time and O(|s|log o) bits of space for the first time, for any 7.

DS; 1 has been previously computed either in quadratic time using suffix trees
[14], or in linear time using O(|¢|log|t|) bits of space [10,20]. We adapt our MS
algorithm to compute DS, ; for the first time in O(|¢|log o) bits of space and in
O(Jt|log o) time, for any .

A key component of our methods is an efficient encoding of MS; ; and of
DS;, that takes 2|t| + o(|t|) bits of space and that allows to retrieve MSJ[i] and
DS[i] in constant time for any i. This scheme uses ideas that have been previously
applied to encode depths in compressed suffix trees [18]. Our index can represent
BMS, s and BDS,; using just o(|t|) bits of additional space, while still supporting
constant-time access to the statistics at any position. Note that BMS; ; has
already been computed from MS; s in the past [19], but it has been encoded in
O(Jt|log |t]) bits of space.

Before proceeding, we note that fast and succinct representations of MS and
DS enable a number of large-scale applications. For example, the profiles of
MS and DS can be used to discriminate between sequencing errors and single-
nucleotide variations in large read collections [15], and DS has applications in
primer design for PCR, in comparative genomics [8], and in summarizing the
context of the occurrences of a pattern in a large text collection [14]. More
interestingly, MS and DS encode a number of structural properties of s and ¢.
For example, recall that a repeat of t is any string w that occurs at least twice in ¢.

Indexed Matching Statistics 181

A repeat w is mazimal if both awb and cwd occur in s, with {a,b,c,d} C X,
a # cand b # d. An occurrence ¢ of a repeat w in t is said to be exposed if ¢[i..i +
|w| —1] = w and if no substring t[i’..j] repeats in ¢, where i’ <4, j/ > i+ |w|—1,
and (/,7") # (4,7 + |w| — 1). A near-supermazimal repeat of t is a repeat with
at least one exposed occurrence. Clearly there is a near-supermaximal repeat
exposed at position i in ¢ if and only if DSy 1[i] = DS, ;[[t| —i — DSy 1[i] + 1], and
its length is DS; 1[i] — 1.

Symmetrically, recall that a minimal absent word of s is a string awb with
w € X* and {a,b} C X, such that both aw and wb occur in s, but awb does not
occur in s. Clearly ¢[j..7 + MS; 5 1[j]] is a minimal absent word of s if and only if
MS;¢ s1[j + 1] > MS; 5,1[7], in which case t[j 4+ 1..j + MS; 5,1[j] — 1] is a maximal
repeat of s.

Recall also that a mazimal exact match (MEM) between s and ¢ is a triple
(i,7,€) where 0 < i < |s|, 0 < j < |t|, and 1 < ¢ < min{]s|, |t|}, such that
slici+l—1]=t[j..j+€—1], s[i — 1] # t[j — 1] and s[i + €] # t[j + {] (we assume
that s[—1] # t[—1] and that s[|s|] # ¢[|t]]). A mazimal unigue match (MUM)
between s and t is a MEM (3, 7, ¢) such that string s[i..i + ¢ — 1] occurs exactly
once in s and in t. MEMs, MUMs and their variants are used routinely in whole-
genome alignment [11]. If MS; s 1[j] = MS, . [[t| — j — MS; 51[j]], then there is
a MEM (7, j, MS; 5,1[4]) at position j in ¢, and this is the longest MEM starting
at j. This MEM is unique in t iff MS; 5 1[j] > DS¢.1[j], and it is unique in s iff
DS s,1[j] is defined, where DS; ; - is a binary version of distinguishing statistics.
Note that DS; 1 can be implemented using MS; ;2 and a bitvector flag such
that flagfi] = 1 iff ¢[i..i + MS; 51 — 1] occurs exactly once in s: DS; ¢ 1[i] is
defined if and only if flag[i] = 1, in which case DS; 5 1[i] = MS; ;s 2[i] + 1. We
can thus decide in constant time whether a MUM starts at any position in ¢,
and compute the length of such MUM.

Finally, given two positions j > 4 in ¢, MS; ;1 allows to compute the aver-
age common substring dissimilarity measure [21] between ¢[i..j] and the whole
sin O(j — i) time, as well as the number k of factors in the relative LZ77 fac-
torization of ¢[i..j] with respect to s in O(k) time. Besides having connections
to Kolmogorov complexity and to the cross-entropy of finite-memory random
sources [5], these measures are now the cornerstone of popular whole-genome
comparison tools used in phylogenetics [21].

2 Computing and Indexing MS and DS

We denote by SA; and BWT; the suffix array and the Burrows-Wheeler trans-
form of a string s, respectively. Recall that the suffiz array SA4[0,|s|] of s is
the vector of indices such that s[SA[i],|s|]$ is the i-th smallest suffix of s$
in lexicographical order, and the Burrows-Wheeler transform of s is the string
BWT,0, |s|] satisfying BWT,[i] = s[SAs[i] — 1] if SA4[i] > 0, and BWT[i] =
$ otherwise. We define the suffiz array range, or identically the BWT range
(iw, jw)s of a substring w in string s, as the maximal interval [iy..j,] in SAg
such that all the suffixes s[SAs[i]..|s| — 1] for iy, < i < j,, are prefixed by w.

182 D. Belazzougui and F. Cunial

We drop the subscript s from a range whenever the reference string is implied
by the context. Incidentally, note that RS;[i] = max{LCP.[j], LCP:[j+1]}, where
SA[j] = i and LCP; is the longest common prefix array of string ¢, i.e. LCP;[j]
is the longest prefix shared by suffixes t[SA¢[j]..|t]]$ and ¢[SA:[j — 1]..|¢|]$ for all
J € [1..|t]]- Finally, we denote by —s the complement of a bitstring s, i.e. —s is
the string ¢ that satisfies ¢[i] = 1 — s[i] for 0 < i < |s|.

It is clear that MS, s ;[i] > 0, DS; -[i] > 1 and RS;[i] > 0 for all ¢ and 7. The
key additional property on which most of this paper rests is that MS; , -, DS; -
and RS; are J-monotone sequences [17]:

Definition 4. Let a = agay ...a, and § = 6102 ...0, be two sequences of non-
negative integers. Sequence a is said to be d-monotone if a; — a;—1 > —0&; for all
i€[l.n].

In particular, MS; s -[i] — MS; s -[i — 1] > —1, DS, ;[i] — DS -[i — 1] > —1
and RS.[i] — RS;[i — 1] > —1 for all ¢ € [1..]t| — 1]. Other popular examples
of d-monotone sequences in string processing are the permuted LCP array [18],
and the longest previous factor array used in the LZ77 factorization of a string
t, with §; = 1 for all ¢ € [1..]t| — 1], and the lengths of the partial matches when
searching a text ¢ for a string w with the KMP algorithm?.

It is natural to represent MS; s - in succinct space by encoding the consecutive
offsets MS¢ 5 - [i] — MSy 5 +[¢ — 1]. It turns out that the same data structure can
answer queries on MS, . _[i] as well.

Lemma 1. There is a data structure that takes 2|t| + o(|t|) bits of space and
that answers queries on MS; s -[i] and on MS, (_[i] for any i in constant time.

Proof. We follow the approach described in [18]. Specifically, we build a sequence
ms¢ s » of 2|t| bits by appending, for each i € [0, |¢| — 1] in increasing order, the
binary string:

00 -+ vvvevennn 0 1
~ ~ -
MSy s, 7 [i]=MSy g 7 [i—1]+1
times

where we set MS; 5 -[—1] = 1 for convenience. The resulting array contains either
2|t| or 2|t|—1 bits: in the latter case, we append a final zero. Note that the number
of zeros before the ith one in ms equals i + MS[i]. Then, index ms to support
select operations® in constant time using 2|t|+o(|¢|) bits. We can thus compute
MS[i] for any ¢ € [0, |¢t| — 1] by using the formula select(ms,1,7) — 2i.

For a position ¢ € [0, |¢t| — 1], consider now the longest prefix of ¢[¢..|t| — 1] that
occurs in s, and assume that i +MS, ; _[i] = [t| - j. Then substring ¢[j..|t| —i —1]
occurs in s, but substring ¢[j — 1..|¢| —¢— 1] does not occur in s. Since the number
of zeros before the (j — 1)th one inms is j — 1+ MS; ; - [j — 1] < |¢| — ¢ and the

2 Let 4, and iz+1 be the starting positions in ¢ of two consecutive partial matches
determined by KMP. In particular, let t[iz..iz+az—1] = w[0..az—1] and t[iz41..ta+1+
az+1—1] = w[0..az+1 — 1] for some positive maximal a, and az+1. Then, az+1—az >
—0z+1, where g1 is the shortest period of w[0..a; — 1].

3 select(A,1,14) is the position of the ith one in bitvector A, where i starts from zero.

Indexed Matching Statistics 183

number of zeros before the jth one in ms is j +MS, s ;- [j] > |t| — ¢, it follows that
the ith zero from the right in ms is preceded by exactly j = [t| —i — MS, , _[i]
ones, therefore MS, _[i] = 2(]t| — i) — 1 — select(ms,0, |t| — i — 1). |

t,s, T

Corollary 1. ms; ;. = —ms¢ s+

Proof. Since MS, , _[i] = 2(|t| —i) — 1 — select(ms; s +,0,[t| —i — 1) and at the
same time MS, _[i] = select(ms, ; ., 1,i) — 2i, the position of the ith one from
the left in ms, , . equals the position of the ith zero from the right in ms; s , for
all 4. 0

We can encode DS, ; in a similar bitvector ds; , with 2|t + 1 + o(|¢|) bits,
by appending DS[i] — DS[i — 1] + 1 zeros and a one for every i € [1..|t| — 1].
We assume again DS[—1] = 1, and we append a final zero if ds contains just
2|t| bits. As before DS[i] = select(ds,1,i) — 2i, but now DS,[i] = 2(|t| —¢) +
1 — select(ds,0,|t| —). This implies that 2|t| + 1 — select(ds,O0,|t| — i) =
select(ds,, 1,%), or in other words that ds, = 0 - (—ds;[1..2]¢[]).

More generally, the encoding described in Lemma 1 can be used to index any
d-monotone sequence ag...dp_1 N N+ Gp_1 + Z;L:_ll d; bits, by concatenating
a; — a;—1 + 0; zeros followed by a one for every ¢. The number of zeros before
the ith one in this bitvector is a; + Z;Zl d;, thus it is necessary to keep all the
prefix sums of § to answer queries on a;.

We are interested in applications where the reference string s is fixed, and we
have to output either ds, , or ms; , » in reply to a query containing ¢. It turns
out that both bitvectors can be derived from the Burrows-Wheeler transform of

s and of 3, augmented with the corresponding suffix tree topologies.

Theorem 1. Let BWT, and BWT, be the Burrows-Wheeler transform of a
string s and of its reverse s, indexed to support a backward step in « time.
Assume that we have a representation of the suffix tree topology of s and of s
that supports parent operations in 3 time. Given a string t and a threshold T,
we can compute msy s - in O([t[(c + B)) time, and in O(log|s| + log|t|) bits of
space in addition to the input and the output.

Proof. We apply twice the algorithm described in [13]. First, we scan ¢ from
right to left, using BWT, and the suffix tree topology of s to determine the runs
of consecutive ones in ms. Specifically, we build a bitvector runs[l1..|¢t| — 1] where
runsfi] = 1 iff MS[{] = MS[i — 1] — 1, i.e. iff there is no zero between the ith and
the (i —1)th ones in ms. Assume that we have the interval (i, j,)s in BWT that
corresponds to substring w = t[k..k + MS[k] — 1] (the single-character interval
for k = |t| — 1 can be directly derived from the table C[1..0] used in backward
search). We try to perform a backward step using symbol a = t[k — 1]: if the
step leads to an interval of size at least 7, we set runs[k] = 1 and we update
the BWT interval to (iqw, jaw)s. Otherwise, we set runs[i] = 0, we update the
BWT interval to the interval of the parent of the proper locus of w in the suffix
tree of s, and we try another backward step with character a. We repeat these
operations until a backward step leads to an interval of size at least 7. Note that,

184 D. Belazzougui and F. Cunial

since we are not using the string depth operation, we don’t know MS[k] for any
k < k*, where k* + MS[k*] = |¢].

In the second phase we symmetrically scan ¢ from left to right, using BWT,
the suffix tree topology of s, and vector runs, to build ms. Assume that we have
the interval (i, ju)s in BWT that corresponds to substring w = t[k..h —1] such
that MS[k] > h—Fk and MS[k—1] = h—k (again, we can derive the interval for ¢[0]
from the table C[1..0] used in backward search). We try to perform a backward
step with symbol ¢[h]: if the step leads to an interval of size at least 7, we continue
issuing backward steps with the following symbols of ¢, until we reach a position
h* in t such that a backward step with character ¢[h*] from the interval (i, juw)s
of substring w = t[k..h* —1] leads to an interval of size less than 7. We thus know
that MS[k] = h* —k, so we append h* —k —MS[k —1]+1 = h* — h+ 1 zeros and
a one to ms. Then, we iteratively replace (i, jw)s With the interval of the parent
of the proper locus of w in the suffix tree of s, and we try another backward step
with symbol ¢[h*], until we reach an interval (i, j.)s for which such backward
step leads to an interval of size at least 7. Let this interval correspond to substring
w' = t[k'..h* — 1]. Note that MS[k'] > MS[k’ — 1] — 1 and MS[z] = MS[z — 1] — 1
for all z € [k + 1..k" — 1], therefore runs[z] must be one for z € [k + 1..k" — 1]
and runs[k’] must be zero, i.e. k' is the index of the first zero to the right of
position k in runs. We can thus append &’ — k — 1 ones to ms and repeat the
process from substring ¢[k’..h*] and its interval in BWTj.

If we store vector runs in the last |¢| — 1 bits of ms, each iteration of the second
phase of the algorithm overwrites only parts of runs that will not be used in
following iterations. This is easy to see, and is left to the reader. O

The two-pass approach of Theorem 1 completely avoids string-depth opera-
tions. Recall that computing the depth of a suffix tree node ultimately requires
to decompress a position in the underlying compressed suffix array: if such array
is encoded in O(|s|log o) bits, the best known time complexity for this operation
is O(log® |s|). Complexity increases when the compressed suffix array is encoded
in |s|log o + o(]s|) bits or in |s|log o (1 4 0(1)) bits. Note also that the algorithm
in Theorem 1 uses either BWT or BWT, at every step, i.e. it does not need to
keep their intervals synchronized. A similar result holds for ds; ;:

Theorem 2. Let BWT, and BWT, be the Burrows-Wheeler transform of a
string s and of its reverse s, indexed to support a backward step in « time.
Assume that we have a representation of the suffix tree topology of s and of s
that supports parent operations in B time. We can compute dss - in O(|s|(a+5))
time, and in O(log|s|) bits of space in addition to the input and the output.

Proof. By applying almost verbatim the two-phase approach of Theorem 1. In the
first phase we build vector runs by trying a backward step with character a = s[k—
1] from the interval in BWT of the longest string that starts at position k and that
occurs more than 7 times, i.e. from the interval of string w = s[k..k+DS; - [k] —2].
If this step leads to an interval of size greater than 7, we set runs[k] = 1 and we
repeat from the BWT interval of aw. Otherwise, we set runs[k] = 0, we move to
the interval of the parent of the proper locus of w in the suffix tree of s, and we

Indexed Matching Statistics 185

try another backward step with character a. We repeat these operations until a
backward step leads to an interval of size at most 7.

In the second phase, assume again that we know the interval in BWT of the
longest string that starts at position k£ and that occurs more than 7 times, i.e.
the interval of string w = s[k..h — 1] with h = k + DS, ,[k] — 1. We iteratively
move to the interval of the parent of the proper locus of w in the suffix tree of s
and we try a backward step with character a = s[h], until such a step leads to an
interval of size greater than 7. Thanks to runs, we know that the interval from
which the last backward step was taken corresponds to string s[k’..h — 1], where
k' is the position of the first zero to the right of k in runs. We can thus append
k' — k — 1 ones to ds and move to string s[k’..h]. We then try backward steps
with the characters at position A +1,h+ 2, ... until a backward step reaches an
interval of size at most 7: this gives DS[k']. |

Corollary 2. Given a string s, there is a data structure that allows to compute:
(1) dss . in O(|s|logo) time and in O(log|s|) bits of space in addition to the
input and the output; (2) msys, for any string t, in O(|t|logo) time and in
O(log |s| +1og [t|) bits of space in addition to the input and the output. This data
structure takes 2|s|logo + O(|s]) bits of space and can be built in O(|s|log o)
time using O(|s|log o) bits of space.

Proof. BWT and BWT can be built in O(|s|loglogo) time and O(|s|log o)
bits of space using the algorithm described in [9]. The wavelet trees on BWT,
and BWT; can then be built in O(|s|logo) time. The suffix tree topologies of
s and s can be built in O(]s|logo) time using just the corresponding wavelet
trees, using the approach described in [1,2]. O

Corollary 3. Given a string s, there is a data structure that allows to compute:
(1) dss - in O(|s]) time and in O(log|s|) bits of space in addition to the input and
the output; (2) msy s for any string t, in O(|t]) time and in O(log |s| + log [t])
bits of space in addition to the input and the output. This data structure takes
2|s|log o + o(|s|log o) bits of space and can be built in randomized O(|s|) time
using O(|s|log o) bits of space.

Proof. Given a bitvector of length n, we can build in O(n) time a data structure
that supports constant-time select queries and that takes 2n+ o(n) bits of space
[4,12]. We achieve the claimed time complexity by plugging in Theorem 1 the
index described in [3], which supports constant-time backward steps and takes
2|s]log o+ o(|s|log o) bits of space. The latter is built in randomized O(|s|) time
and O(|s|log o) bits of space, using the algorithm described in [1,2]. The suffix
tree topologies are then built in O(|s|) time from the indexes of [3]. O

3 Computing and Indexing BMS and BDS

We start by generalizing the algorithm for computing BMS from MS described
in [19], in order to make it work on user-defined blocks, rather than on positions,

186 D. Belazzougui and F. Cunial

of the input string. We say that a pair (,7) is a matching statistics interval of
string ¢ if ¢ € [0..]¢| — 1] and j = i + MS; , - [i] — 1. We say that an interval is
maximal if it is not contained into any other interval, and we denote the list of
all maximal intervals by Z. The following properties are immediate, and will be
used extensively in the sequel.

Property 1. There is at most one interval in Z that ends at any given position
j in ¢t. Given an interval (7, j), the maximal interval that contains (i,7) is (j —
MSt,S,THt| _j - 1] + 1a])

Property 2. Let (io, jo), (¢1,71), - -+, (im, jm) be a subset of Z sorted by increasing
starting position. Then > " | i, — ip—1 < [t| and >_}" | jn — jn—1 < |t].

It is natural to compute BMS; s » by scanning ¢ and MS; , , while keeping in
memory the active subset of Z, i.e. the set of intervals in Z that cover the current
position in ¢. The following algorithm is an alternative to [19]:

Lemma 2 ([19]). BMS; s can be computed from MS; s in O(|t|) time and
O(|t|log |t]) bits of space.

Proof. Assume that we are at position k in ¢, and let I be the subset of Z that
contains all the intervals that start before position k& and that cover position k,
i.e. all intervals (i,7) € Z with j = i+MSJ[i]—1 and i < k < j. We implement I as
a doubly-linked list, with a node for every distinct length of an interval in I. The
node associated with length £ stores all the intervals of length £ in I as a doubly-
linked list. We assume that [is sorted by decreasing length, and we keep it sorted
during the algorithm using insertion sort. Moreover, we use array ends|0..|t| — 1]
to store in ends[j] a pointer to the only interval in I that ends at j, if any. Let
prev be a pointer to the previous interval (iprev, jprev) = (k—1,k—2+MS[k—1])
if it belongs to I (prev is null if such interval does not belong to I), and let last
be a pointer to the node of I that contains the interval (¢, j) € I with maximum
i. Let 6y = MS[k] — MS[k — 1].

If 6y = —1, then BMSJk] is the length of the first node in I, list I does not
change, and we set prev to null. Similarly, if MS[k] = 1, then BMSIk] is the
length of the first node in I, or one if I is empty, list I does not change, and we
set prev to null. Otherwise, we proceed as follows. If prev # (), we remove from
I the interval pointed by prev and we set ends[jpre,] to null. Then, we add to
I the current interval (k, k + MS[k] — 1), as follows.

Let £ be the length of node last. If MS[k] = ¢ we add the new interval to
last, otherwise we scan I linearly starting from the node associated with length
£, until we find the node associated with length MS[k| (we create a new node if
no such node exists). This linear scan visits at most |MS[k] — £ = |jn — Jjh—1 —
in + in—1| nodes of I for every maximal interval (ip,jn) € Z, thus it visits in
total 37" | dn — jh—1 — i +in—1| < Dpey dn — Ja—1 +in —in—1 < 2|t| nodes of
1. Note that this corresponds to charging the moves along I to the bits of ms.

After having added (k, k+MS[k] —1) to I, we update prev, last and ends[k+
MS[k] — 1] to point to the newly inserted interval. Once again, BMSI[k] equals

Indexed Matching Statistics 187

the length of the first node in I. Before moving to position k + 1, we remove
from I the interval pointed by endsl[k], if any. a

Lemma 3. BDS, ; can be computed from DS, . in O(|t]) time and O(|t|log [t])
bits of space.

Proof. By applying the algorithm in Lemma 2 almost verbatim. Now, for every
position k in ¢, I stores all the minimal intervals that start before k and cover
k, i.e. all the intervals that start before k, cover k, and do not contain any other
interval. I is sorted by increasing length. We insert interval (k,k + DS[k] — 1)
in I for every position k in ¢, but if DS[k] — DS[k — 1] = —1 we first remove
the interval (iprew, jprev) pointed by prev, since it is not minimal, and we set
ends|jprev] to null. We thus have the guarantee that there is at most one interval
in I that ends at every position j of £. It is easy to see that the moves along [
can still be charged to the bits of ds. a

Note that the notion of interval holds for any d-monotone sequence a =
aopaj . ..ay, and the algorithms in Lemma 2 and 3 allow to compute, respec-
tively, the length of a longest and of a shortest interval of a that covers every
position ¢ € [0..n] in the sequence, in time linear in the size of the index of the
sequence. In particular, the algorithm in Lemma 2 can be applied to compute
BRS;, the bidirectional version of the repeating statistics, from the unidirectional
RSt.

Assume now that string ¢ is the concatenation of m nonempty substrings, i.e.
that t = to-t1 - tm—1 with ¢; € X7 for all 7 € [0..m — 1]. We call such substrings
blocks in what follows, and we denote with 8(j) the block that contains position
j in t. We assume that block boundaries are marked in a bitvector of size |¢|,
indexed to support rank operations*. We say that an interval spans block i if
it starts before block ¢ and if it ends after block 7. The algorithm described in
Lemma 2 can be adapted to compute the length of a longest matching statistics
interval (or, symmetrically, of a shortest distinguishing statistics interval) that
spans every block ¢ € [1.m — 2].

Lemma 4. The length of a longest matching statistics interval that starts before
block i and ends after block i, for every i € [l.m — 2], can be computed from
MS; 5. in O(|t]) time.

Proof. We apply again the algorithm in Lemma 2 almost verbatim. Now array
ends has one position per block, and ends[k] points to the longest interval in I
that starts before block k£ and ends inside block k.

Assume that we are processing block k. Let r = max{S(i+MS[i] — 1) : 5(i) =
k} be the rightmost block that contains the ending position of an interval that
starts inside block k. Similarly, let ¢ = max{MSJ[i] : 8(i) = k} be the length
of a longest interval that starts inside block k. We call any interval that starts
inside block k and that ends inside block r a farthest interval, and any interval

4 rank(A,1,1) is the number of ones in bitvector A up to position i, included.

188 D. Belazzougui and F. Cunial

of maximum length ¢ a longest interval®. Let (i, j.) be a farthest interval of
maximum possible length, i.e. j, — i, = max{MS[i] : 8(:) = k, B(i + MS[i] — 1) =
r}. This interval spans every block h € [k + 1..r — 1], and no interval that starts
inside block k and spans the same blocks is longer, thus (i, j.) will be active in
the following iterations. Similarly, if j,. — i, < ¢, let (i¢, j¢) be a longest interval.
Clearly no interval that starts inside block k& and that spans the same blocks as
(g, j¢) is longer, thus (i¢, j;) will be active in the following iterations.

When we process block k, we first remove from I the interval that ends inside
block k, by following the pointer in ends[k], and we assign to block & the length
of the first node in I. Then, we insert in I the interval (is, jo) (if it exists), and
then the interval (i,, j.). If pointer ends[3(j¢)] is null, we store in ends[5(j/)] a
pointer to (i, j¢). Otherwise, if the length of interval ends[8(j,)] is smaller than
£, we remove interval ends[3(j,)] from I and we store in ends[3(j,)] a pointer
to (ig,j¢). This is because the old interval spans the same blocks as the new
interval, but it is shorter. We do the same for (i, j.).

Insertions in I work in the same way as before, with last pointing to the
interval (4,j) € I with maximum i. The total number of movements in I can be
still bounded by 2|¢|, since we are inserting a subset of Z. O

Lemma 5. The length of a shortest distinguishing statistics interval that starts
before block i and ends after block i, for every i € [1..m — 2], can be computed
from DSy, in O(|t]) time.

Proof. By adapting the algorithm in Lemma 4. Assume that we are at block k,
and let L be the list of all tuples (i,7,5 — i, 8(j)) where j = i + DS[i] — 1, and
B(i) = k. We sort L by increasing third component of each tuple (length), and
then we stable-sort L by the last component of each tuple (ending block). Then,
we scan the sorted L and we insert in I the first interval that we find associated
with every block h, updating the corresponding pointers in ends if the previous
interval is longer than the new interval. The total number of movements in I
after insertions can be still bounded by 2|t|, since we are inserting a subset of
the minimal intervals we inserted in Lemma 3. a

Once again, these blocked variants of BMS and BDS can be applied to any
d-monotone sequence (thus in particular to BRS) in time linear in the size of the
index for such sequence.

As done with MS and DS, we would like to build succinct indexes that support
bidirectional queries in constant time. To this end, we augment ms and ds by
exploiting the following property, whose immediate proof is left to the reader:

Property 3. Given a position j € [0..]t| — 1], the position i* = min{i € [0..j —1] :
Jj <i+ MS[i] — 1} can be computed by select(ms,0,5) —j+ 1.

Note that the same property holds for DS, for RS, and for every J-monotone
sequence apas . .. a, with §; = 1 for all i € [1..n]. However, the property does not
generalize to -monotone sequences where §; is not constantly one for alli € [1..n].

® If all blocks have the same length, a longest interval spans every block in [k+1..r—2].

Indexed Matching Statistics 189

Indeed, in such cases position j is covered by position ¢ < j iff the ith one in the
index of the sequence is preceded by at least j + 1+ Y, _, (65 — 1) zeros.

Theorem 3. There is a data structure that takes 2|t| + o(|t|) bits of space and
that answers queries on BMS, s . [i] for any i in constant time.

Proof. We store ms in 2|t| bits, and we augment it with an index that takes
O(Jt|loglog |t]/log|t]) € o(]t]) bits, and that supports rank and select queries
in constant time [7,16]. We assume that we can read any block of O(log|t|)
consecutive bits of ms in constant time. Moreover, we partition ms into B =
[2[t]/ log |t]] blocks of size log |t| each. We use again the notation 5(¢) to identify
the block that contains position ¢ in ms. For every block k, let (ix,jx) be a
longest matching statistics interval of ¢ such that S(select(ms,1,ix)) = k. We
store the position of select(ms, 1,i;) inside each block in array start[0..B — 1],
using 2|t|loglog |t|/ log|¢| bits. Then, we build a range-maximum data structure
RMQ on the pairs (k, jr — %) for k € [0..B — 1], using 2(2]t|/log|t|) + o(|t]) =
4|t/ log [t] + o(|t|/ log |t|) bits of space [6].

Given a position j in ¢, we use Property 3 to compute ¢*, the smallest i < j
with j <i+MS[i]—1. Let p = ﬁ(select(ms, 1, z*)) and g = ﬁ(select(ms, 1,j)).
Since all the matching statistics intervals that cover position j must start between
1* and j, we query RMQ with the pair (p+1, g—1) to get the block k € [p+1..q—1]
with longest interval in constant time, and we compute the length ¢; of such
interval by ¢; = h — 2 - rank(ms, 1, h) where h = klog|t| 4+ start[k]. Finally, we
load in constant time blocks p and ¢ and we use the Four Russians technique to
compute in constant time the lengths £5 and ¢35 of the longest matching statistics
intervals that starts inside block p and ¢, respectively, using a precomputed table
of size o(|t]) bits. We finally return max{¢y,¢2,¢s}. O

Corollary 4. There is a data structure that takes 2|t| + o(|t|) bits of space and
that answers queries on BDS;[i] for any i in constant time.

Proof. By applying the approach in Theorem 3 verbatim, using ds instead of ms
and a range-minimum rather than a range-maximum data structure. a

References

1. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In: Proceedings of the 46th ACM Symposium on Theory of Computing.
ACM (2014)

2. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. ArXiv preprint ArXiv:1401.0936 (2014)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms 10(4) (2014)

4. Clark, D.: Compact Pat Trees. PhD thesis, University of Waterloo, Canada (1996)

5. Farach, M., Noordewier, M., Savari, S., Shepp, L., Wyner, A., Ziv, J.: On the
entropy of DNA: Algorithms and measurements based on memory and rapid con-
vergence. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 48-57 (1995)

190

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Belazzougui and F. Cunial

Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. STAM Journal on Computing 40(2), 465-492 (2011)
Golynski, A.: Optimal lower bounds for rank and select indexes. Theoretical Com-
puter Science 387(3), 348-359 (2007)

Haubold, B., Pierstorff, N., Moller, F., Wiehe, T.: Genome comparison without
alignment using shortest unique substrings. BMC Bioinformatics 6(1), 123 (2005)
Hon, W.-K., Sadakane, K., Sung, W.-K.: Breaking a time-and-space barrier in
constructing full-text indices. SIAM J. Comput. 38(6), 2162-2178 (2009)

Tleri, A.M., Kiilekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486,
pp. 172-181. Springer, Heidelberg (2014)

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biology 5(2), R12 (2004)

Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37-42. Springer, Heidelberg (1996)

Ohlebusch, E., Gog, S., Kiigel, A.: Computing matching statistics and maximal
exact matches on compressed full-text indexes. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 347-358. Springer, Heidelberg (2010)

Pei, J., Wu, W.-H., Yeh, M.-Y.: On shortest unique substring queries. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE), pp. 937-948.
IEEE (2013)

Philippe, N., Salson, M., Commes, T., Rivals, E.: CRAC: An integrated approach
to the analysis of RNA-seq reads. Genome Biology 14(3), R30 (2013)

Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms (TALG) 3(4), 43 (2007)

Robertson, M.M.: A generalization of quasi-monotone sequences. Proceedings of
the Edinburgh Mathematical Society (Series 2) 16(01), 3741 (1968)

Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589-607 (2007)

Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inf. Comput. 213, 13-22 (2012)
Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Stuller, J., Tjoa,
A M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503-513. Springer, Heidelberg
(2014)

Ulitsky, 1., Burstein, D., Tuller, T., Chor, B.: The average common substring ap-
proach to phylogenomic reconstruction. Journal of Computational Biology 13(2),
336-350 (2006)

Weiner, P.: The file transmission problem. In: Proceedings of the National Com-
puter Conference and Exposition, June 4-8, pp. 453-453. ACM (1973)

Weiner, P.: Linear pattern matching algorithms. In: Switching and Automata The-
ory, pp. 1-11. IEEE (1973)

	Indexed Matching Statistics and Shortest Unique Substrings
	1
Introduction and Motivation
	2
Computing and Indexing MS and DS
	3
Computing and Indexing BMS and BDS

