
Shortest Unique Queries on Strings

Xiaocheng Hu1, Jian Pei2, and Yufei Tao1

1 Chinese University of Hong Kong, New Territories, Hong Kong
2 Simon Fraser University, Burnaby, Canada

{xchu,taoyf}@cse.cuhk.edu.hk, jpei@cs.sfu.ca

Abstract. Let D be a long input string of n characters (from an alphabet of size
up to 2w , where w is the number of bits in a machine word). Given a substring q of
D, a shortest unique query returns a shortest unique substring of D that contains
q. We present an optimal structure that consumes O(n) space, can be built in
O(n) time, and answers a query in O(1) time. We also extend our techniques to
solve several variants of the problem optimally.

1 Introduction

Let D be a (long) string. Define n = |D| where |D| represents the length of D. Denote
by D[i] (1 ≤ i ≤ n) the i-th character of D, and by D[i : j] (1 ≤ i ≤ j ≤ n) the
substring of D starting at D[i] and ending at D[j]. A string is unique if it has only one
occurrence in D; otherwise, it is repeating. A substring D[i1 : j1] contains another
D[i2 : j2] if i1 ≤ i2 and j1 ≥ j2 hold at the same time.

In this paper, we study data structures on D that can efficiently answer the following
query, which was recently proposed in [9], motivated by its fundamental nature in
numerous applications in text retrieval and bioinformatics:

Shortest Unique Query: Given a substring q = D[x : y], such a query returns
a substring of D with the minimum length among all the unique substrings of D
containing q.

If x = y, we say that the query is a point query; otherwise, it is an interval query.

a b ab b a a b a b

1 2 43 5 6 7 8 9 10position

character

q

shortest unique

.

Fig. 1. An Example

Figure 1 shows a string D of length 10. Given q = D[4 : 5] = ab, a shortest unique
query may return D[3 : 6] = baba because its length 4 is the smallest among all the
unique substrings containing q. To verify this, notice that (i) baba is unique because it

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 161–172, 2014.
c© Springer International Publishing Switzerland 2014

162 X. Hu, J. Pei, and Y. Tao

has only one occurrence in D, whereas (ii) D[3 : 5] = bab is repeating (it occurs also
at d[8 : 10]), and so is D[4 : 6] = aba (see D[7 : 9]). This implies no unique string of
length at most 3 contains q. Note that, in general, a query result can be output with only
2 integers, which specify its starting and ending positions in D, respectively.

We make the standard assumption that each character of D fits in a machine word. If
w is the number of bits in a word, this assumption implies that the alphabet where the
characters of D are drawn can have a size up to 2w. Unless otherwise stated, the default
model of computation is RAM.

Existing Results. Previous research has focused exclusively on point queries. In their
initial study [9], Pei et al. showed how to construct in O(n2) time an index of O(n)
size that answers a query in O(1) time. Soon after that, Ileri et al. [6] and Tsuruta et al.
[10] independently improved the construction time to O(n). It is worth mentioning that
O(n) size is considered optimal in the sense that D itself requires Ω(n) words to store
when the alphabet is large.

Our Results. We present the first study on interval queries. Our main result is a new
structure of O(n) space that can be built in O(n) time, and answers a query in O(1)
time. In other words, we achieve the optimal efficiency as with the previous work, but
on more general queries.

At this point, it seems fair to delve a bit into a crucial difference between designing
a structure for point and interval queries. What makes point queries easy to handle is
that there are only n of them! Therefore, the problem of indexing is more of a one-off
computation problem: how to quickly compute the answers for all those n queries. Once
this is done, one can simply store these answers in an array to allow constant query time.
This idea, however, no longer works for interval queries because now we have Θ(n2)
of them. Therefore, there needs to be a major shift in the indexing strategy, calling for
novel ideas.

The rest of the paper is organized as follows. In Section 2, we will clarify some basic
facts relevant to this study. Then, Section 3 will present our structure for interval queries.
Section 4 further demonstrates the usefulness of the proposed techniques by extending
them (i) to answer queries with additional constraints, and (ii) to support interval queries
in external memory optimally.

2 Basic Definitions and Properties

In this section, we pave the way for our subsequent discussion by defining several
concepts related to minimal unique substrings and explaining some of their fundamental
properties.

Definition 1. Each integer p ∈ [1, n] defines a left-fixed minimal unique substring
MUSleftfix (p) as follows:

– MUS leftfix (p) = nil , if D[p : n] is repeating;
– otherwise, MUS leftfix (p) = D[p : z], where z is the smallest integer in [p, n] such

that D[p : z] is unique.

Shortest Unique Queries on Strings 163

p 1 2 3 4 5 6 7 8 9 10

MUS leftfix (p) D[1:3] D[2:3] D[3:6] D[4:7] D[5:7] D[6:7] D[7:10] nil nil nil
=abb =bb =baba =abaa =baa =aa =abab

MUS rightfix (p) nil nil D[2:3] D[2:4] D[2:5] D[3:6] D[6:7] D[6:8] D[6:9] D[7:10]
=bb =bba =bbab =baba =aa =aab =aaba =abab

Fig. 2. The left-fixed and right-fixed minimal unique substrings in Figure 1

In other words, MUS leftfix (p) is the shortest unique substring of D starting at D[p].
In the example of Figure 1, MUS leftfix (4), for instance, is D[4 : 7] = abaa. Notice
that D[4 : 6] is repeating; and thus, D[4 : 7] cannot be shortened on the right while still
being unique. Viewed in another way, D[4 : 7], D[4 : 8] ..., D[4 : 10] are all the unique
substrings starting at D[4]; among them, MUS leftfix (4) is the shortest. See Figure 2 for
the MUS leftfix (p) of all p ∈ [1, 10].

The next definition is symmetric:

Definition 2. Each integer p ∈ [1, n] defines a right-fixed minimal unique substring
MUSrightfix (p) as follows:

– MUS rightfix (p) = nil , if D[1 : p] is repeating;
– otherwise, MUS rightfix (p) = D[z : p], where z is the largest integer in [1, p] such

that D[z : p] is unique.

The last row of Figure 2 shows the MUS rightfix (p) of all p ∈ [1, 10] for our running
example. Now we are ready to define the most important concept:

Definition 3. A substring D[i : j] is a minimal unique substring (MUS) if

MUS leftfix (i) = D[i : j] and MUS rightfix (j) = D[i : j].

In other words, D[i : j] is an MUS if (i) it is unique, and (ii) it can be shortened on
neither side while still being unique. We will use M to denote the set of MUS’s in D.
From Figure 2, one can verify easily that the M in our example is:

M =
{
D[2 : 3] = bb, D[3 : 6] = baba, D[6 : 7] = aa, D[7 : 10] = abab

}
. (1)

D[2 : 4] = bba, for example, is not an MUS because it can be shortened on the right
into bb which is still unique.

Lemma 1. The strings in M have distinct left endpoints, and distinct right endpoints.

Proof. Suppose D[i1 : j1] and D[i2 : j2] are two different strings in M but i1 = i2.
This means that they are bothMUS leftfix (i1). But only one string can be MUS leftfix (i1),
thus giving a contradiction. Similarly, it must hold that j1 �= j2.

It has been shown [10] that all the substrings defined earlier can be computed
efficiently:

Lemma 2 ([10]). All the left-fixed MUS’s, right-fixed MUS’s, and MUS’s can be
computed from D in O(n) time.

164 X. Hu, J. Pei, and Y. Tao

In general, a substring D[i : j] requires only two integers to represent: integers i and
j. Therefore, all the left-fixed MUS’s, right-fixed MUS’s, and MUS’s can be stored in
O(n) words. This leads to the following useful fact:

Corollary 1. In O(n) time, we can compute a structure of O(n) size that, given any
substring D[i : j], we can check whether it is unique in D in O(1) time.

Proof. Simply compute all the left-fixed MUS’s using Lemma 2. Then, given a
substring D[i : j], declare that it is unique if and only if j ≥ z, where z is such
that MUS leftfix (i) = D[i : z].

3 A Data Structure for Interval Queries

This section serves as a proof for our main result:

Theorem 1. Given a data string of length n, we can pre-compute in O(n) time an index
structure that consumes O(n) space, and answers any shortest unique query in O(1)
time.

3.1 A 4-Candidate Lemma

Lemma 3. The answer of the shortest unique query with substring q = D[x : y] must
be the shortest of the following 4 candidates:

1. D[x : y] if it is unique
2. MUS leftfix (x)
3. MUS rightfix (y)
4. the shortest MUS containing q (breaking length ties arbitrarily). No such candidate

exists if no MUS contains q.

Proof. First of all, if D[x : y] is unique, then clearly D[x : y] is the answer because no
string containing q can be any shorter. The following discussion focuses on the scenario
where D[x : y] is repeating.

Let D[x′ : y′] be an answer to the query. If x′ = x, then it must hold that
MUS leftfix (x) = D[x′ : y′]; otherwise, either MUS leftfix (x) or D[x′ : y′] can be
shortened on the right end while still being unique, which contradicts their definitions.
Likewise, if y′ = y, then MUS rightfix (y) = D[x′ : y′].

In the remaining scenario, x′ < x and y′ > y. Suppose that D[x′ : y′] was not an
MUS, namely, it can be still be shortened either on the left or right while still being
unique. However, as both D[x′ + 1 : y′] and D[x′ : y′ − 1] contain q, we have found
a unique string containing q that is even shorter than D[x′ : y′], which contradicts the
definition of D[x′ : y′].

Whether Candidate 1—namely D[x : y]—is unique can be checked in constant
time using an O(n)-space structure (see Corollary 1). Also, Candidates 2 and 3 can be
obtained in constant time using an O(n)-space structure (see Lemma 2). It thus remains
to give a structure for finding Candidate 4.

Shortest Unique Queries on Strings 165

As before, let M be the set of MUS’s of D. For each MUS D[i : j] in M, create an
interval [i, j]. Denote by I the set of all the intervals created this way. For the example
of Figure 1, we know from Equation 1 that

I = {[2, 3], [3, 6], [6, 7], [7, 10]} (2)

Lemma 4. No two intervals in I can contain each other.

Proof. Suppose, on the contrary, that [i1, j1] and [i2, j2] are two different intervals in I
such that [i1, j1] contains [i2, j2]. Recall that D[i1 : j1] and D[i2 : j2] are both MUS’s
of D. However, that [i1, j1] contains [i2, j2] indicates that we can shorten D[i1 : j1] to
D[i2 : j2] which is still unique. This violates the definition of MUS.

It is not hard to see that the problem ahead of us can be restated as:

Containment Min. Let I be a set of at most n intervals in the domain [1, n] such
that no two intervals contain each other (a requirement inherited from Lemma 4).
Given an interval [x, y] in the domain [1, n], a containment min query returns the
shortest one (breaking ties arbitrarily) among all the intervals in I containing [x, y].
We want to store I in a data structure to answer such queries efficiently.

3.2 The Proposed Structure

In this subsection, we will present a structure of O(n) space that answers a containment
min query in O(1) time, which will complete our proof of Theorem 1.

Idea. Let m = |I|. From now on, we will view I as an ordered set

{I1 = [i1, j1], I2 = [i2, j2], ..., Im = [im, jm]}

where i1 < i2 < ... < im, and therefore j1 < j2 < ... < jm
1. For any a < b, we say

that Ia is on the left of Ib, and conversely, Ib is on the right of Ia. Given a subset S ⊆ I,
we say that it is a consecutive subset if S = {Ia, Ia+1, ...Ib} for some a, b satisfying
1 ≤ a ≤ b ≤ m. We also regard the empty set ∅ as a consecutive subset.

For example, given the I in Equation 2, we have:

{I1 = [2, 3], I2 = [3, 6], I3 = [6, 7], I4 = [7, 10]}. (3)

{I3} and {I2, I3, I4} are consecutive subsets, while {I2, I4} is not. We observe:

Lemma 5. For any [x, y] in the domain [1, n], the set of intervals of I containing [x, y]
must be a consecutive subset.

Proof. Let a be the smallest integer such that [ia, ja] contains [x, y], and b be the largest
integer such that [ib, jb] contains [x, y]. For any integer c ∈ [a, b], it holds that ic ≤ ib ≤
x and y ≤ ja ≤ jc. In other words, [ic, jc] contains [x, y] as well.

1 Otherwise, there must be an interval containing another, which violates Lemma 4.

166 X. Hu, J. Pei, and Y. Tao

y 1 2 3 4 5 6 7 8 9 10
α(y) 1 1 1 2 2 2 3 4 4 4

x 1 2 3 4 5 6 7 8 9 10
β(x) nil 1 2 2 2 3 4 4 4 4

Fig. 3. Arrays α and β on the I in Equation 3

Algorithm 1. COMPUTING-α-ARRAY

Input: A set I of m intervals I1 = [i1, j1], ..., Im = [im, jm], sorted in ascending order
of left point. The domain is [1, n].

Output: Array α.
1 z ← 1
2 for y = 1 to n do
3 while jz < y and z ≤ m do
4 z ← z + 1

5 if z ≤ m then
6 α(y) = z
7 else
8 α(y) = nil

9 return α

The above lemma motivates the following strategy for solving the containment min
query. Given a query interval [x, y], we will find the leftmost interval Ia in I containing
[x, y], and the rightmost interval Ib in I containing [x, y]. Then, the remaining task
is to find the shortest interval among the consecutive subset {Ia, Ia+1, ..., Ib}, which
is nothing but a standard range min query (RMQ)! We can index I using an RMQ
structure [4,5] which uses O(m) = O(n) space, can be constructed in O(m) time, and
answers an RMQ in O(1) time.

Structure. It remains to explain how to design an index so that, given any [x, y], we can
derive the corresponding a and b in constant time. We resolve this issue with another
key observation: a depends only on y! Formally, given a value y ∈ [1, n], let us define
α(y) as

– the smallest integer z ∈ [1,m] such that jz ≥ y, if such a z exists;
– nil , otherwise.

In other words, Iz is the leftmost interval in I whose right endpoint is at least y. If such
an interval exists, then α(y) = z; otherwise, α(y) = nil . The next lemma states the
aforementioned observation formally:

Lemma 6. Fix an integer y ∈ [1, n]. For any x ∈ [1, y], all the following are true:

1. If α(y) = nil , then I has no interval containing [x, y].
2. If Iα(y) does not contain [x, y], then I has no interval containing [x, y].
3. If Iα(y) contains [x, y], then it is the leftmost interval in I containing [x, y].

Proof. Statement 1 holds because when α(y) = nil , all the intervals of I end strictly
to the left of y.

Shortest Unique Queries on Strings 167

Algorithm 2. CONTAINMENT-MIN

Input: A query interval [x, y].
Output: The shortest interval in I containing [x, y].

1 a ← α(y)
2 b ← β(x)
3 if a = nil or b = nil then
4 return nil

5 if Ia does not contain [x, y] then
6 return nil

7 perform an RMQ to retrieve the shortest interval among Ia, Ia+1, ..., Ib
8 return the above interval

To prove Statement 2, suppose on the contrary that there was an interval [xc, yc] in
I that contains [x, y]. It follows from the definition of α(y) that c > α(y). This means
that xα(y) < xc ≤ x. On the other hand, from how α(y) is defined we know that
yα(y) ≥ y. Therefore, [xα(y), yα(y)] contains [x, y], which contradicts the if-condition
of the statement.

To prove Statement 3, suppose on the contrary that there was an interval [xc, yc] in
I containing [x, y], and that this interval is on the left of [xα(y), yα(y)]. Then, it follows
that y ≤ yc < yα(y), which contradicts the definition of α(y).

A similar observation holds on b—it depends only on x. Formally, given a value
x ∈ [1, n], define β(x) as:

– the largest integer z ∈ [1,m] such that iz ≤ x, if such a z exists;
– nil , otherwise.

In other words, Iβ(x) (if exists) is the rightmost interval in I whose left endpoint is at
most x. Then, we have:

Lemma 7. Fix an integer x ∈ [1, n]. For any y ∈ [x, n], all the following are true:

1. If β(x) = nil , then I has no interval containing [x, y].
2. If Iβ(x) does not contain [x, y], then I has no interval containing [x, y].
3. If Iβ(x) contains [x, y], then it is the rightmost interval in I containing [x, y].

Proof. Symmetric to the proof of Lemma 6.

Figure 3 demonstrates all the α(y) and β(x) values for the I of our running example
shown in Equation 3. Using the two arrays, we can figure out in O(1) time the values of
a and b for any [x, y] (recall that Ia and Ib are the leftmost and rightmost intervals of I
containing [x, y], respectively) using the previous two lemmas. Consider, for example,
x = 4 and y = 5. Probing the α array gives us α(y) = 2. Since I2 = [3, 6] contains
[x, y], we conclude from Lemma 6 that a = 2. Probing the β array gives us β(x) = 2.
We thus conclude from Lemma 7 that b = 2.

Arrays α and β are all we need to complete our structure. Their space consumption
is clearly O(n). Furthermore, it is fundamental to compute them in O(n) time.
Algorithm 1 elaborates on the computation of α, whereas we omit the algorithm for
β due to symmetry.

168 X. Hu, J. Pei, and Y. Tao

The above discussion results in our final query algorithm as shown in Algorithm 2.
It is easy to see that the query time is O(1).

4 Extensions

In this section, we discuss several extensional issues. First, in Sections 4.1 and 4.2, we
will explain how to use the structure of Theorem 1 (without any modification) to answer
two other useful queries, thus further demonstrating the power of our techniques. Then,
Section 4.3 will present the I/O-efficient counterpart of Theorem 1.

4.1 Position Constrained Queries

In our current definition, the result of a shortest unique query can start and end anywhere
in the data string D. Next, we formulate a variant where a query can specify the
permissible ranges for the endpoints of its result:

Position Constrained Query. Such a query specifies (i) a substring q = D[x : y],
and (ii) two ranges rstart = [s1, s2] and rend = [e1, e2] both in the domain [1, n].
It returns (if exists) a substring D[i : j] with the minimum length such that
• D[i : j] is unique
• D[i : j] contains q
• i ∈ [s1, s2] and j ∈ [e1, e2].

Since i ≤ x and j ≥ y must always hold, it suffices to consider that s2 ≤ x and e1 ≥ y.
For example, in Figure 1, consider a query with q = D[4 : 5] (as shown) and rstart =

[3, 4] and rend = [8, 9]. Then, D[3 : 6] is no longer a legal answer because its right
endpoint is not in rend . Instead, the query should return D[4 : 8] = abaab.

Queries with s2 = x and e1 = y. Let us first consider a special class of position
constrained queries, where s2 and e1 always equal x and y, respectively. Interestingly,
any query outside the class actually has the same result as a query inside the class, as
explained later. Thus, solving this class of queries is the key.

Lemma 8. Consider a position constrained query with q = D[x : y], rstart = [s, x],
and rend = [y, e]. Then:

– If D[s : e] is repeating, the query has no result.
– Otherwise, the result is the shortest of the following 4 candidates:

1. D[x : y] if it is unique;
2. MUS leftfix (x) if its right endpoint is in rend ;
3. MUS rightfix (y) if its left endpoint is in rstart ;
4. The shortest MUS (breaking ties arbitrarily) that (i) contains q, (ii) has its left

endpoint in rstart , and (iii) has its right endpoint in rend . No such candidate
exists if no MUS satisfies these conditions.

Proof. The lemma’s correctness follows from an argument almost identical to the one
we used to prove Lemma 3.

Shortest Unique Queries on Strings 169

With our experience with Lemma 3, it should be quite clear that we only need to
clarify how to find Candidate 4, because all the other candidates and the necessary
uniqueness checking can be done in O(1) time under the O(n) space budget.
Furthermore, it is easy to see that the task of finding Candidate 4 boils down to the
following problem:

Position Constrained Containment Min (PCCM). Let I be a set of m ≤ n
intervals in the domain [1, n] such that no two intervals contain each other (a
requirement inherited from Lemma 4). Given intervals [x, y], [s, x], [y, e] all in
the domain [1, n], a PCCM query returns the shortest interval in I (breaking ties
arbitrarily) that (i) contains [x, y], (ii) has its left endpoint in [s, x], and (iii) has
its right endpoint in [y, e]. We want to store I in a data structure to answer such
queries efficiently.

The structure we need is exactly the one described in Section 3.2 for solving the
containment min query, namely, the α and β arrays, and an RMQ index. A PCCM
query is also answered by a single RMQ, which fetches the shortest interval in
{Ia, Ia+1, ..., Ib} for a pair of a and b carefully chosen as follows2:

a =⎧
⎨

⎩

α(y) if s = 1 or β(s− 1) = nil
nil if β(s− 1) = m
max{β(s− 1) + 1, α(y)} otherwise

b =⎧
⎨

⎩

β(x) if e = n or α(e + 1) = nil
nil if α(e + 1) = 1
min{α(e+ 1)− 1, β(x)} otherwise

These values ensure that

– if a = nil or Ia does not cover [x, y], then the PCCM query has no answer;
– otherwise, {Ia, Ia+1, ..., Ib} includes all and only the intervals of I containing
[x, y] whose left and right endpoints fall in [s, x] and [y, e], respectively.

The PCCM query algorithm is exactly the same as Algorithm 2 except that, at Lines 1
and 2, we should replace a and b with the ones given above.

General Queries. Now we consider position constrained queries with arbitrary q =
D[x : y], rstart = [s1, s2], and rend = [e1, e2]. As promised, each such query can be
converted to one in the special class we have discussed:

Lemma 9. To answer a positioned constrained query with q = D[x : y], rstart =
[s1, s2], and rend = [e1, e2], we can simply return the result of the position constrained
query with q′ = D[s2 : e1], r′start = [s1, s2], and r′end = [e1, e2].

2 We follow the convention that max{v, nil} = nil and min{v,nil} = nil for any integer v.

170 X. Hu, J. Pei, and Y. Tao

Proof. The lemma follows from the fact that the answer for the first query must contain
D[s2 : e1].

We thus conclude with:

Theorem 2. Given a data string of length n, we can pre-compute in O(n) time an
index structure that consumes O(n) space, and answers any position constrained query
in O(1) time.

4.2 Find-All Queries

A shortest unique query may have more than one answer. For example, consider again
q = D[4 : 5] = ab in Figure 1. Besides D[3 : 6], both D[2 : 5] = bbab and
D[4 : 7] = abaa can be returned as a query result. Motivated by this, we define a new
operation to retrieve all these possible results:

Find-All Query. Given a substring q = D[x : y], such a query returns all the
substrings of D whose lengths are the minimum among the unique substrings of D
containing q.

We will denote by k the number of substrings returned by a query (e.g., a find-all query
with q = D[4 : 5] returns k = 3 substrings). Next, we describe an algorithm that
answers such a query in O(k) time.

We achieve the purpose using position constrained queries. First, run a (normal)
shortest unique query to get an answer string D[i : j]. Let � = j − i + 1 be the length
of this string. The value i breaks the interval [1, x] into two disjoint parts: [1, i− 1] and
[i+ 1, x]. Now we can use two position constrained queries to find the next answers, if
any. Due to symmetry, it suffices to explain how to do so for [1, i−1]. We run a position
constrained query with q′ = D[x : y], rstart = [1, i − 1], and rend = [y, n]. A crucial
observation is that, if this query returns a string—say D[i′ : j′]—of length greater than
�, then we can assert that the original find-all query has no result substring that starts
within D[1 : i − 1]. On the other hand, if D[i′ : j′] indeed has length � (note that its
length cannot be shorter than �), we have found another answer for the find-all query,
after which we use i′ to break [1, i− 1] into even smaller intervals for recursion.

Algorithm 3 describes the above strategy in detail. To answer a find-all query, simply
call FIND-ALL(D[x : y], [1, x], �).

Lemma 10. Our algorithm answers a find-all query in O(k) time.

Proof. Suppose that the j-th (1 ≤ j ≤ k) answer of the final-all query starts at position
ij , such that 1 ≤ i1 < i2 < ... < ik ≤ x. Clearly, these k positions break [1, x]
into at most 2k + 1 disjoint parts: [1, i1 − 1], i1, [i1 + 1, i2 − 1], ..., ik, [ik + 1, x]. Our
algorithm issues a position constrained query for each part. The query time then follows
from Theorem 2.

Thus we have proved:

Theorem 3. Given a data string of length n, we can pre-compute in O(n) time an
index structure that consumes O(n) space, and answers any find-all query in O(k)
time, where k is the number of substrings reported.

Shortest Unique Queries on Strings 171

Algorithm 3. FIND-ALL (D[x : y], [s1, s2], �)

Input: D[x : y] is a query substring, [s1, s2] is an interval in the domain [1, n], and � is
the length of the shortest unique substrings containing D[x : y].

Output: All the shortest unique substrings containing q whose left endpoints are in
[s1, s2].

1 run a position constrained query with q = D[x : y], rstart = [s1, s2], and rend = [y, n]
2 if the query returns nil then
3 return ∅
4 D[i : j] ← the string returned by the query
5 if the length of D[i : j] > � then
6 return ∅
7 S1 ← FIND-ALL(D[x : y], [s1, i− 1], �)
8 S2 ← FIND-ALL(D[x : y], [i+ 1, s2], �)
9 return {D[i : j]} ∪ S1 ∪ S2

4.3 External Memory

The previous discussion has concentrated on the RAM model. In this section, we
consider shortest unique queries in the standard external memory (EM) model [1].
Under this model, the machine is equipped with a disk that is formated into blocks
of size B words, and with internal memory of M ≥ 2B words. An I/O exchanges a
block of data between the disk and memory. The space of a structure is measured by
the number of disk blocks it occupies, and the time of an algorithm is measured by the
number of I/Os it performs.

The structure of Theorem 1 works directly in external memory. This means that one
can simply store the structure by treating the disk as virtual memory. Given that the
structure uses O(n) words, the number of blocks it occupies is O(n/B), where B is
the number of words in a block. To answer a shortest unique query, one can simply
apply the algorithm of Theorem 1 by again treating the disk as virtual memory. As the
algorithm performs only O(1) CPU calculation and probes O(1) memory locations, its
I/O cost is definitely bounded by O(1).

Our structure can also be constructed efficiently. Remember that it has the following
components:

– The MUS leftfix and MUS rightfix arrays (see Figure 2)
– The α and β arrays (Figure 3)
– An RMQ structure.

Both the MUS leftfix andMUS rightfix arrays can be built using the algorithm of [7] in
O(SORT (n)) I/Os, provided that a suffix array [8] is given, where O(SORT (n)) is the
number of I/Os needed to sort n elements. The suffix array itself can also be computed
in O(SORT (n)) I/Os [3]. After the MUS leftfix and MUS rightfix arrays are ready, we
can then obtain the set M of MUS’s, sorted by left endpoint, in O(SORT (n)) I/Os.
Then, the α and β arrays can be built using Algorithm 1 in O(n/B) I/Os. An RMQ
structure can also be created from M in O(n/B) I/Os [2].

172 X. Hu, J. Pei, and Y. Tao

We now conclude with the last main result of this paper:

Theorem 4. Given a data string of length n, we can pre-compute in O(SORT (n)) I/Os
an index structure in external memory that occupies O(n/B) blocks, and answers any
shortest unique query in O(1) I/Os.

Acknowledgements. Xiaocheng and Yufei Tao were supported in part by projects GRF
4165/11, 4164/12, and 4168/13 from HKRGC. Jian Pei was supported by an NSERC
Discovery grant and a BCIC NRAS Team project.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
CACM 31(9), 1116–1127 (1988)

2. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

3. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory suffix array
construction. ACM Journal of Experimental Algorithmics, 12 (2008)

4. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem, with
applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

5. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. of
Comp. 13(2), 338–355 (1984)

6. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In: Kulikov,
A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 172–181. Springer,
Heidelberg (2014)

7. Ilie, L., Smyth, W.F.: Minimum unique substrings and maximum repeats. Fundam.
Inform. 110(1-4), 183–195 (2011)

8. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J.
of Comp. 22(5), 935–948 (1993)

9. Pei, J., Wu, W.C.-H., Yeh, M.-Y.: On shortest unique substring queries. In: ICDE,
pp. 937–948 (2013)

10. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings queries in
optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM
2014. LNCS, vol. 8327, pp. 503–513. Springer, Heidelberg (2014)

	Shortest Unique Queries on Strings
	1Introduction
	2Basic Definitions and Properties
	3A Data Structure for Interval Queries
	3.1A 4-Candidate Lemma
	3.2The Proposed Structure

	4Extensions
	4.1Position Constrained Queries
	4.2Find-All Queries
	4.3External Memory

