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Abstract. Compact encoding of finite sets of strings is a classic problem.
Themanipulation of large sets requires compact data structures that allow
for efficient set operations.Wedefine sequence decision diagrams (SeqDDs),
which can encode arbitrary finite sets of strings over an alphabet. SeqDDs
can be seen as a variant of classic decision diagrams such as BDDs and
MDDswhere, instead of a fixed number of levels, we simply require that the
number of paths and the lengths of these paths be finite. However, themain
difference between the two is the target application: whileMDDs are suited
to store and manipulate large sets of constant-length tuples, SeqDDs can
store arbitrary finite languages and, as such, should be studied in relation
to finite automata. We do so, examining in particular the size of equivalent
representations.

1 Introduction

Many data structures have been introduced to compactly encode finite sets of
finite strings. Substring indices data structures, such as tries, suffix trees, suffix
arrays, and DAWGs, exploit prefix sharing, suffix sharing, or both to achieve
efficient storage of large sets. Beside compactness, the main purpose of substring
indices data structures is to solve substring matching problem for multiple pat-
terns in a given text with a time complexity proportional to the pattern size, not
the whole text. These data structures allow for efficient matching, but updating
them to add or delete strings is hard [1]. Additionally, the lack of efficient set
manipulation algorithms for such data structures motivates work that leverages
the benefits of substring indices while enabling efficient set manipulation.

In 2009, Loekito [7] introduced a new data structure, sequence BDD, SeqBDD,
for short, that offers compact storage of finite languages. SeqBDDs are a half-
relaxed variation of ZBDDs [8] where variables along one-paths may appear
multiple times in any order. SeqBDDs inherit ZBDDs’ efficient set manipulations,
and also support algorithms to solve the substring matching problem.

Size complexity is crucial to decision diagrams, including SeqBDDs, due to
two factors: first, decision diagrams are used to store efficiently an enormous
amount of data; second, the time complexity of decision diagram algorithms is
proportional to the size of the arguments, which is in turn sensitive to vari-
able ordering. Since optimal variable ordering is an NP-complete problem [3],
heuristics can only achieve a “good ”variable ordering. Moreover, while sharing
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common suffixes as well as common prefixes contributes to the compactness of
SeqBDDs, embracing a binary representation degrades compactness [9].

We define sequence decision diagrams (SeqDDs) to encode arbitrary finite
languages. SeqDDs are somewhat analogous to a multi-valued variation of Se-
qBDDs, but are insensitive to variable ordering; in fact, they do not even asso-
ciate variables or levels to nodes. Instead, they simply require that the number
of paths and the lengths of these paths be finite. We introduce two canonical
SeqDD definitions and discuss their compactness in relation to finite automata.
Canonical SeqDD promotes efficient algorithms for set manipulations and sub-
string manipulations by exploiting node sharing and memoization. The rest of
the paper is organized as follows: Section 2 provides preliminaries. Section 3 in-
troduces non-canonical and canonical SeqDDs. Section 4 discusses the relative
compactness of canonical SeqDDs. Section 5 introduces set and string manipula-
tion algorithms. Section 6 provides preliminary applications of SeqDDs. Section
7 presents conclusions and future work.

2 Preliminaries

Finite automata are a well known data structure to describe regular languages.
While finite automata are memory efficient, their manipulation algorithms are
not guaranteed to provide minimized outputs even if their inputs are minimized.
On the other hand, decision diagrams have efficient manipulation algorithms but
most, for example BDDs [4] and MDDs [6], only target fixed-length languages.

2.1 Finite Automata

A finite automaton (FA) is a 5-tuple (Q,Σ, δ, q0, F ), with a finite set of states, a
finite alphabet, a transition function, a start state, and a set of accepting states.
Depending on the transition function, the FA is a deterministic FA (DFA, with
δ : Q ×Σ → Q) or a non-deterministic FA (NFA, with δ : Q × Σ ∪ {ε} → 2Q).
We also consider a partial DFA [2], a minimized DFA with partial transition
function δ : Q×Σ → Q∪{∅}, obtained from the equivalent DFA by deleting all
states with no path to accepting states, as well as their incoming transitions.

2.2 Decision Diagrams

Binary decision diagrams (BDDs) are directed acyclic graph where each node is
associated with a boolean variable and encodes boolean functions over a struc-
tured boolean domain. Multi-valued decision diagrams (MDDs) generalize BDDs
by allowing nodes to have more than two outgoing edges, and provide a canon-
ical representation of boolean functions over structured finite domains (we use
“MDDs” from now on, since BDDs are just a special case).

An ordering rule is enforced: assuming k domain variables {x1, ..., xk}, all
paths respect the order xk ≺ xk−1 ≺ · · · ≺ x1 ≺ x0, where x0 is the range
variable associated with terminal nodes. Then, canonicity requires choosing a
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Fig. 1. Quasi (a), fully (b), and sparsely (c) reduced MDDs encoding Y = {ab, ac}

reduction: quasi-reduced, only merge duplicate (i.e., isomorphic) nodes; fully-
reduced, merge duplicate nodes and skip redundant (i.e., with identical children)
nodes; or sparsely-reduced, merge duplicate nodes and omit nodes not reaching
the 1-terminal, and any edge pointing to them (Fig.1).

Decision diagrams excel at encoding sets that share many subsets, and their
recursive structure enables effective use of dynamic programming through an
operation cache, which virtually eliminates the need to recompute subproblems.

2.3 Notation

Given alphabet Σ = {s1, · · · , sm}, with m ∈ N, let Σ∗ be the set of strings
over Σ, i.e., Σ∗ = {a1 · · · ak : k ≥ 0, ∀h, 1 ≤ h ≤ k, ah ∈ Σ}. We introduce the
following notation to discuss SeqDDs encoding a finite language Y ⊂ Σ∗:

– If Y = ∅, then height(Y) = ⊥, “undefined”. Otherwise, the height of Y is
the length of the longest string in it, height(Y) = max{|σ| : σ ∈ Y}.

– lengths(Y) = {k∈N : ∃σ∈Y, |σ| = k}, the set of all string lengths in Y.
– For k ∈ lengths(Y), Yk = {σ ∈ Y : |σ| = k}, the strings of length k in Y,

and Y<k = {σ ∈ Y : |σ| < k}, the strings of length less than k in Y.
– For a ∈ Σ, Y/a = {σ ∈ Σ∗ : a · σ ∈ Y}, the strings that, preceded by a,

form a string in Y.
– For k ∈ lengths(Y) and a ∈ Σ, Yk/a = {σ ∈ Σk−1 : a · σ ∈ Yk}, the strings

that, preceded by a, form a string of length k in Y.
– ||Y|| = ∑

σ∈Y |σ|, the total number of symbols in Y, not to be confused with
|Y|, the number of strings in Y.

3 Definition of Sequence Decision Diagrams

We now define a class of decision diagrams to encode any finite subset of Σ∗.

Definition 1. A sequence decision diagram (SeqDD) is a directed acyclic finite
graph with two terminal nodes, 0 and 1, and such that each nonterminal node
p has m+ 1 outgoing edges, each labeled with a different element from Σ ∪ {ε};
we write p[a] = q to indicate that the outgoing edge labeled with a ∈ Σ ∪ {ε}
points to node q, which can be a terminal or nonterminal node. ��
Definition 2. The set of strings X (p) encoded by a SeqDD node p is:

X (p) =

⎧
⎪⎨

⎪⎩

∅, the empty set if p = 0,

{ε}, the set containing only the empty string if p = 1,
⋃

a∈Σ∪{ε}{a · σ : σ ∈ X (p[a])} otherwise. ��
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Fig. 2. A SeqDDB, a SeqDDT, and a SeqDDN encoding Y = {aa, aaa, aabaa, baa, c, ε}.
Indices in gray point to terminal 0 (not represented for clarity).

Theorem 1. Given a finite set of strings Y ⊂ Σ∗, there exists a SeqDD with a
root (i.e., a node with no incoming edges) p satisfying X (p) = Y.
Proof. The proof is trivial and left to the reader. �

As defined, SeqDDs are general non-canonical encoding of finite languages. Any
set Y ⊂ Σ∗ can be encoded by infinitely many SeqDDs because, if a node r
encodes Y, any node r′ with r′[a] = 0 for each a ∈ Σ and r′[ε] = r also encodes
Y, and the “insertion” of such “useless nodes” can be repeated at will (indeed,
not just above the root, but anywhere along any path in the SeqDD). Thus, we
now describe possible sets of restrictions to ensure canonicity. In any case:

– No duplicate nodes are allowed: the SeqDD cannot contain two nonterminal
nodes p and q such that p[a] = q[a] for every a ∈ Σ ∪ {ε}.

– No empty nodes are allowed: the SeqDD cannot contain a nonterminal node
p such that p[a] = 0 for every a ∈ Σ ∪ {ε}.

– No ε-nodes are allowed: the SeqDD cannot contain a nonterminal node p
such that p[a] = 0 iff a ∈ Σ.

Then, informally, canonicity is achieved by additionally “pushing” ε-edges (not
pointing to 0) toward the bottom, or toward the top, of the diagram (Fig. 2).

3.1 Definition of Canonical SeqDDs with ε at the Bottom

Definition 3. A SeqDDB is a SeqDD with no duplicate, empty, or ε-nodes
where, for any nonterminal node p, either p[ε] = 0 or p[ε] = 1. ��
Theorem 2. Given a finite set of strings Y ⊂ Σ∗, there exists a unique single-
root SeqDDB whose root p satisfies X (p) = Y.
Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply that
p = 0 is the only SeqDDB node encoding Y. If height(Y) = 0, then Y = {ε}, and
the same restrictions imply that p = 1 is the only SeqDDB node encoding Y. If
height(Y) = k > 0, assume the theorem holds for any Y ′ with height(Y ′) < k.
Clearly, height(Y/a) < k and, if ε ∈ Y, then Y = {ε} ∪⋃

a∈Σ a · Y/a, otherwise
Y =

⋃
a∈Σ a · Y/a. Then, if ε ∈ Y, we can define node p, with p[ε] = 1 and,
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for each a ∈ Σ, p[a] = qa, where qa is the unique node encoding Y/a (by
induction, qa exist since height(Y/a) < k). Note that we might have Y/a = Y/b
for a �= b, this simply means that the two corresponding edges in p point to the
same SeqDDB node (indeed nodes are shared across any of the descendants of p,
to avoid duplicates). No other node q encoding Y can exist because it would have
to differ from p in at least one index a ∈ Σ, while we must have p[ε] = q[ε] = 1.
By inductive assumption, SeqDDB’s p[a] and q[a] cannot encode the same set,
that is, X (p[a]) = Y/a �= X (q[a]), thus there is a string a · σ′ in X (p) and not in
X (q), or vice versa. The case where ε �∈ Y is analogous, except that p[ε] = 0. �

3.2 Definition of Canonical SeqDDs with ε at the Top

For the alternative definition where we allow “ε at the top”, it is easier to recast
the definition of quasi-reduced MDDs [5] as a special case of SeqDDs.

Definition 4. A k-level MDD is the terminal node 1, if k = 0, or, if k > 0, it
is a single-root SeqDD without duplicate, empty, or ε-nodes where the root p is
such that p[ε] = 0 and, for a ∈ Σ, p[a] is a (k − 1)-level MDD or 0. ��
Thus, the root of a k-level MDD encodes a nonempty set of strings of length k.

Definition 5. A k-level SeqDDT is a SeqDD without duplicate, empty, or ε-
nodes whose root node p is such that, for a ∈ Σ, p[a] is 0 or the root of a
(k−1)-level MDD, while p[ε] is 0 or the root of an h-level SeqDDT, h < k. ��
Thus, it is easy to prove by induction that the root p of a k-level SeqDDT encodes
a nonempty set of strings of length k,

⋃
a∈Σ X (q[a]), plus a possibly empty set

of strings of length less than k, X (q[ε]).

Theorem 3. Given a finite language Y ⊂ Σ∗, there exists a unique single-root
SeqDDT with root p such that X (p) = Y.
Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply
that p = 0 is the only SeqDDT encoding Y. If height(Y) = 0, then Y = {ε},
and the same restrictions imply that p = 1 is the only SeqDDT encoding Y. If
instead height(Y) = k > 0, assume that the theorem holds for any set Y ′ with
height(Y ′) < k. Since Y = Y<k ∪

⋃
a∈Σ a · Yk/a, we can define node p such that,

for a ∈ Σ, p[a] = qa with X (qa) = Yk/a, while p[ε] = qε with X (qε) = Y<k.
By inductive hypothesis, nodes qa and qε are unique, as they all encode sets of
height less than k and, since Yk/a contains only strings of length k − 1, qa is in
particular the root of an MDD, i.e., qa[ε] = 0. Then, node p is also the only node
encoding Y since any other node p′ would have to differ from p in at least one
child. If p[ε] �= p′[ε], there must exists a string σ of length less than k in X (p[ε]),
thus X (p), and not in X (p′[ε]), thus X (p′), or vice versa. If there is an a ∈ Σ
with p[a] �= p′[a], there must exists a string σ in X (p[a]) and not in X (p′[a]), so
that a · σ is in X (p) and not in X (p′), or vice versa (a · σ cannot possibly be in
X (p′[ε]) as it is of length k). Either way, p′ cannot encode the same set as p. �

A SeqDDT relies on some concept of level for the nodes of the decision diagram.
More specifically, a SeqDDT node encodes all the maximum-length strings in
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its children corresponding to elements of Σ and delegates the encoding of the
shorter strings to its ε-child. A similar encoding for set Y partitions its strings
according to their length, and uses a top node to make a decision based on the
length of the string σ being searched, not on the first symbol of σ (Fig. 2). This
leads us to a third, different in spirit but essentially equivalent, definition.

Definition 6. A SeqDDN is a set of “sparse” root nodes, each root r having a
finite set R of outgoing edges labeled with different elements k ∈ N, such that
r[k] points to a k-level MDD. The set encoded by r is

⋃
k∈R X (r[k]). ��

4 Compactness of Canonical SeqDD Definitions

We now discuss the size of our SeqDDs, where the size of a SeqDD A is the
number of edges it contains, edges(A), rather than the number of nodes. Given
the structural differences between a SeqDDB and a SeqDDT, we compare them
by thinking of them as finite automata. A closer look at a SeqDDB shows that it
can be easily converted into a DFA (Theorem 4). On the other hand, a SeqDDT

can be converted into a restricted type of NFA.

4.1 DFA Representation of SeqDDB

Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, we can build an equiva-
lent DFAM = (Q,Σ, δ, q0, F ). If AB = 0 thenM = ({q0}, Σ, δ, q0, ∅). Otherwise,
we first define the states Q in terms of the nodes in AB: every nonterminal node
q in AB corresponds to a state q ∈ Q, while node 1 in AB corresponds to new
state f ∈ Q and node 0 corresponds to a new trap state t ∈ Q.

The initial state q0 corresponds to AB’s root while the transition function
δ : Q×Σ → Q is such that, for every a ∈ Σ and edge q[a] = p in AB, there is a
corresponding transition δ(q, a) = p and, if q[ε] = 1, no transition is added, but
q is added to the accepting states F . Lastly, state f is also added to F .

Theorem 4. Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, building
an equivalent minimized DFA M requires linear time in the size of AB .
Proof. The proof is direct from the translation algorithm above. �

For memory efficiency, decision diagrams can be stored in a sparse form. In the
case of a sparse SeqDDB, this corresponds to a partial DFA, and the translation
is analogous to the non-sparse version just discussed. From now on, we consider
sparse representations for all canonical forms of SeqDD and for partial DFAs.

4.2 NFA Representation of SeqDDT

To discuss the translation of a SeqDDT into an equivalent NFA, we first define
RNFAs, a restricted version of NFAs, keeping in mind that our goal is to fa-
cilitate size comparisons between a SeqDDB and a SeqDDT. To that end, our
RNFA definition resembles the structure of SeqDDT while respecting the key
characteristics of ordinary NFAs when encoding a finite language.
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Definition 7. A restrictedNFA (RNFA) is an acyclicNFAN=(Q,Σ, δ,QI, QF ),
where both QI and QF are singletons sets and, for each state q ∈ Q, the fol-
lowing condition holds: at most one outgoing ε-transition is allowed, and if k =
max(lengths(L(q))) then all strings in

⋃
a∈Σ L(δ(q, a)) have length equal k − 1

and all strings in L(δ(q, ε)) have length at most k − 1. This value k is called the
level of q. ��
A minimized RNFA enforces the following restriction rules.

– No duplicate states are allowed: An RNFA cannot contains q and p such that
L(q) = L(p).

– No empty states are allowed: An RNFA cannot contain a state q ∈ Q \ QI

such that L(q) = ∅.
– No ε-states are allowed: An RNFA cannot contain a state q ∈ Q \QF such

that L(q) = {ε}.
Any RNFA can be converted to an equivalent minimized RNFA by adapting the
bucket-sort based OBDD reduction algorithm proposed in [10]. The minimized
RNFA for a given language is unique, the proof is omitted due to lack of space.

The following lemma affirms that RNFAs, like DFAs, can recognize any finite
language (unlike DFAs, they obviously cannot accept any infinite language).

Lemma 1. If Y ⊂ Σ∗ is a finite language, there exists an RNFA N to accept Y.
Proof. The proof of existence is analogous to the one of Theorem 3. �

If SeqDDT AT with a single root node r encodes a finite language Y ⊂ Σ∗,
the equivalent RNFA T =(Q,Σ, δ,QI, QF ) is built as follows. Each nonterminal
node q of AT corresponds to a state q∈Q; terminal node 1 of AT corresponds to
a new state 1∈Q, and F = {1}; finally, QI = {r} (note that, if r = 0, we also
must add r to Q). The transition function δ : Q×Σ ∪ {ε} → Q is such that, for
every edge q[a] = p in AT with a ∈ Σ ∪ {ε}, there is a corresponding transition
δ(q, a) = p. Thus, in particular, if r=0, then T =({0}, Σ, ∅, {0}, {1}), and the
encoded language is Y = ∅, while, if AT =1, then T =({1}, Σ, ∅, {1}, {1}) and
the encoded language is Y = {ε}.

From the conversion process, it is easy to conclude that a canonical SeqDD size
is bounded by the size of the corresponding FA in terms of number of transitions,
plus the number of accepting states.

4.3 SeqDD Compactness Comparison by Means of Finite Automata

To study the relative compactness of canonical SeqDDs, we first discussed bounds
on the number of states for equivalent DFAs and RNFAs; these are trivially re-
flected in similar bounds for SeqDDB’s and SeqDDT’s. To obtain bounds on the
number of transitions, one could just multiply the state bounds by the alphabet
size, but we are really interested in the actual number of edges for equivalent
SeqDDs, thus partial FAs. This section shows that bounds similar to those for
states hold also for edges.
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Fig. 3. Example of quadratic growth when translating SeqDDB into SeqDDT

Theorem 5. Given a DFA M = (Q,Σ, δD, q0, F ) with n states encoding a finite
language Y ⊂ Σ∗, an equivalent minimized RNFA N has O(n2) states.
Proof. For each state q ∈ Q and k = 0, . . . , height(Y), let L(q, k) = L(q) ∩Σk.
Then, we build an equivalent RNFA N with states organized by level:

– Level 0 of the RNFA contains a single accepting state f .
– Level k contains a state 〈q,k〉 for each nonempty L(q, k).
– The initial state of N is 〈q0,max lengths(Y)〉.
– The transition function δN of N satisfies

• For each state 〈q,k〉 with k > 0 in N and for each a ∈ Σ:
〈p,k − 1〉 ∈ δN (〈q,k〉, a) iff δD(q, a) = p.

• For each state 〈q,k〉 in N , let h be the largest integer less than k such
that state 〈q,h〉 exists in N ; if such state exists, then 〈q,h〉 ∈ δN (〈q,k〉, ε).

Note that the resulting RNFA might not be minimized, in the sense that it
is possible that 〈q,k〉 and 〈p,k〉 encode the same language, in which case they
should be merged. In any case, however, the number of states of the RNFA is
at most equal to the number of states of the DFA times the maximum length of
a string in Y, which, again, is at most equal to the number of states. Thus the
number of RNFA states is at most quadratic the number of DFA states. As the
two automata obviously accept the same language Y, the proof is complete. �

To show that the growth of of Theorem 5 is indeed possible, consider the family
of languages G = {Gk : k ∈ N} over {a, b}. Let Gk = {akbk, akbk−1, · · · , akb, ak},
so that ||Gk|| = 3(k+1)k/2. Then, the SeqDDT Ak

T encoding Gk contains k2+3k
edges, while the SeqDDB Ak

B encoding Gk contains 3k edges (see Fig. 3).

Theorem 6. Given a minimized RNFA N with n states encoding a finite lan-
guage Y ⊂ Σ∗, an equivalent minimized DFA has at most O(2n) states.
Proof. The proof is immediate given the well known fact that an NFA-to-DFA
conversion may result in an exponential increase in the number of states. �

Since RNFAs are a restricted form of NFAs, however, one may wonder whether an
exponential growth can actually occur. To show that this is the case, consider the
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Fig. 4. Example of exponential growth when translating SeqDDT into SeqDDB

family of languages {Fk : k ∈ N} with Fk={xay : x, y∈{a, b}∗, |x|≤k, |y|=k}.
Then, the SeqDDT Ak

T encoding Gk contains 7k−1 edges while the SeqDDB Ak
B

encoding Gk contains Ω(2k) edges (see Fig. 4). This is similar to the well-known
construction that demonstrates the proof of Theorem 6.

5 Manipulation Algorithms for SeqDDs

We now consider two types of algorithms: set manipulation algorithms and sub-
string manipulation algorithms. Those of the first type take two or more canon-
ical SeqDDs with the same canonicity rule and perform set operations such as
union or intersection. Those of the second type input a canonical SeqDD and a
string, and select strings satisfying a criterion for matching a substring, changing
a substring into another, or shorten or lengthen a string.

As with all decision diagram algorithms, we adopt a recursive style. SeqDD
nodes are stored in a unique table to ensure canonicity. An operation cache en-
sures efficiency by virtually eliminating repeated computations. Each of the fol-
lowing set manipulation algorithms has been developed for SeqDDB and SeqDDN

representations: union, intersection, set difference, symmetric set difference, and
concatenation. For instance, the Intersection algorithm for two SeqDDB’s tra-
verses them top-down and builds the resulting SeqDDB bottom-up (see the
pseudo-code in Fig. 5). SeqDDN set manipulation algorithms can be consid-
ered as shared MDD algorithms, since a SeqDDN is organized by the length of
the strings encoded.

Various stringmanipulations can be performed. For example, the classicalmem-
bership problem can be solved by a single trace, no longer than the query size+1,
starting from the root and ending in either terminal 1 or 0. Set manipulation algo-
rithms can also become handy in performing string manipulations; for instance,
the membership problem is solved by a set intersection, and string replacement
can be solved using a combination of set difference, intersection, and union. How-
ever, if we want to perform substring manipulations, the use of set manipulation
algorithms becomes inefficient, hence we developed specific substring manipula-
tion algorithms.



158 H. Alhakami, G. Ciardo, and M. Chrobak

SeqDDB Intersection(SeqDDB p, SeqDDB q) • returns X (r) = X (p) ∩ X (q)

1 declare local SeqDDB r;

2 declare local int count;

3 if p=0 or q=0 then return 0; • base case: empty set

4 if p=q then return p; • base case: Intersection of two equivalent sets

5 if p=1 then if q[ε]=1 then return 1; else return 0; • base case: ε

6 if q=1 then if p[ε]=1 then return 1; else return 0; • base case: ε

7 if Cache contains 〈Intersection,{p, q}:r〉 then return r; • check if already
computed

8 count ← 0; • initialize counter

9 foreach a ∈ Σ do • if not, recursively call Intersection for each a ∈ Σ

10 r[a] ← Intersection(p[a], q[a]);

11 if r[a]=0 then count ← count + 1; • count edges pointing to terminal-0

12 if count= |Σ| then r ← 0; • potential empty-node or ε-node

13 if p[ε]=1 and q[ε]=1 then • deal with ε case

14 if r=0 or r=1 then r ← 1;

15 else r[ε] ← 1;

16 UniqueTableInsert(r); • insert to unique table to ensure canonicity

17 Cache ← 〈Intersection,{p, q}:r〉; • record result in cache to avoid recomputation

18 return r;

Fig. 5. SeqDDB Intersection operation

The main advantage of using SeqDDs for substring manipulation lies in the
ability to search or modify a set of strings at once, thanks to node sharing
and memoization. For example, in a SeqDDB, replacing the first occurrence of
a substring t with t′ is done once for all strings sharing a prefix that contains
t. Moreover, a shared suffix is processed the first time we explore it; for other
strings sharing that suffix the algorithm simply checks the operation cache for
the result. A universal algorithm replace can replace, insert, or delete a specific
substring: replacing ε by a string t �= ε performs an insertion, while replacing t
by ε performs a deletion. Of course, this can be refined by additionally providing
to the algorithm specific substrings that must be found before and after the
replacement location.

6 Applications of Sequence Decision Diagrams

Advancements in genome sequencing techniques along with their affordability
have resulted in an increasing number of sequenced genomes. As a consequence,
a concise representation that allows for efficient data manipulation is required
to query, analyze, and retrieve this information. These processes are essential in
various molecular biology problems.

SeqDDB and SeqDDN provide simple indexing data structures. Their com-
pactness in regards to sequence indexing is summarized in Table 1. Given a
string w of size x, it is well known that the size of a DAWG that encodes the
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Table 1. Summary of the upper bound size of a SeqDDB or SeqDDN encodingthe set
of all prefixes, suffixes, or subwords of a certain string of size x

Encoded set DAWG size SeqDDB size SeqDDN size

Suffixes 3x− 4 3x− 4 2x+ 1
Subwords 3x− 4 3x− 4 (5x2 + 3x+ 6)/4
Prefixes x x x2 + 1

set of suffixes / subwords of w is at most 3x − 4 transitions, for x > 2 [2]. The
size of a SeqDDB encoding w’s suffixes (subwords) is bounded by 4x−3 (5x−6)
transitions. Technically, while a SeqDDB ε-transitions are shown in the figures
as edges, in reality they can be encoded by a single bit, since an ε-transition can
only point to the terminal state. Thus, the size of a SeqDDB is actually bounded
by 3x− 4 transition plus x+ 1 bits when encoding the set of suffixes or 2x − 2
bits when encoding the set of subwords given that all states are accepting. On
the other hand, the size of a SeqDDN encoding subwords of w is bounded by
2x+

∑x
j=1 j + 3/2

∑x−2
j=2 j, which simplifies to (5x2 + 3x+ 6)/4 transitions.

Using SeqDDB or SeqDDN for indexing sequences allows for efficient manipu-
lations. For instance, the membership problem requires time linear in the size of
the query when handled one sequence at a time. Querying a large set of sequences
at once could lead to substantial improvement in time complexity because deci-
sion diagrams exploit node sharing and memoization, if we build a SeqDD that
encodes the query set and perform a simple intersection.

The longest common substring can be retrieved by intersecting the SeqDDs
encoding the set of subwords of each sequence. Using SeqDDN’s allows early
pruning, but consumes space. To achieve better space efficiency, SeqDDs encod-
ing the set of suffixes can be used along with a non-commutative variation of the
intersection algorithm in Fig. 5, so that, when p = 1, the algorithm returns q. In
this case, the longest common substring for more than two sequences is solved
incrementally, thus SeqDDN’s lose the advantages of early pruning. Note that
both SeqDD intersection and its variation have time complexity proportional to
the size of the smallest argument. A generalization of this problem is the DNA
contamination problem.

The all-pairs suffix-prefix matching problem can be solved with multi-terminal
SeqDD, a simple tweak to our original definition. Let G = {s1, s2, · · · , sk} be a
set of strings, all pairs with matching prefix-suffix can be obtained by performing
a prefix intersection betweenQ and p, whereQ is a shared SeqDD with k handles,
each pointing to a SeqDD qi encoding the set of suffixes of si and p is a multi-
terminal SeqDD encoding G with k + 1 terminal nodes corresponding to the
0-terminal and the k strings.

7 Conclusion

We introduced SeqDDs, multi-valued sequence decision diagrams, which can be
seen as MDDs with no variable ordering but are nevertheless canonical. In fact,
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our SeqDDs do not have a notion of variables, hence any “size explosion” ex-
clusively depends on the specific set to be encoded and on the canonization
rule (we introduce two possibilities, SeqDDB and SeqDDT). More importantly,
SeqDDs are ideal for encoding finite sets of strings of arbitrary finite (but possi-
bly different) lengths, that is, finite languages. SeqDDT’s are analogous to shared
MDDs, and may be best implemented by adding special nodes at the top level
that makes a choice based on the string length; we call this version SeqDDN.
We study the compactness of our representations in terms of finite automata
and show that there is no winner between the two versions: a SeqDDT/SeqDDN

can be quadratically larger than a SeqDDB for certain languages, but exponen-
tially more compact for others; therefore, we are implementing algorithms for
both versions. SeqDDs are useful for applications requiring compact storage and
efficient manipulation of large sets of strings with high sharing rate. As future
work, an edge-valued variation is a must for many applications, such as symbolic
generation of probabilistic witnesses in CSL model checking.
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