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Abstract. The Spliced Alignment Problem is a well-known problem in
Bioinformatics with application to the gene prediction task. This prob-
lem consists in finding an ordered subset of non-overlapping substrings
of a subject sequence g that best fits a target sequence t. In this work we
present an approximation algorithm for a variant of the Spliced Align-
ment Problem, called Multiple Spliced Alignment Problem, that involves
more than one target sequence. Under a metric, this algorithm is proved
to be a 3-approximation for the problem and its good practical results
compare to those obtained by four heuristics already developed for the
Multiple Spliced Alignment Problem.

Keywords: Approximation algorithm, gene prediction, multiple spliced
alignment problem.

1 Introduction

The term Bioinformatics has been used since 1970, when Hogeweg and Hesper
defined it as “the study of informatic process in biotic systems” [4]. Since then,
Biology and its branches have been a valuable source of new and interesting com-
putational tasks involving long strings (genomic DNAs, cDNAs, RNAs, proteins,
etc). As such, they require robust and efficient algorithms that work well in both
theory and practice. A well-known task in this scenario is that of identifying the
genes encoded in a genomic DNA of interest.

Given the practical importance and the difficulties associated with the gene
prediction task, a number of computational methods has been developed to deal
with it. By considering sequence conservation and the large quantity of entire
genomes from many species already annotated, similarity based approaches are
promising techniques that allow the identification of genes by comparing ge-
nomic sequences with related transcript sequences. In this context, Gelfand et
al. proposed in [3] a theoretical/computational problem, called Spliced Alignment
Problem, that models the gene prediction task as a combinatorial optimization
problem involving (substrings of) a subject sequence (genomic DNA) and a tar-
get sequence (cDNA).
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In this work we propose an approximation algorithm for a variant of the
Spliced Alignment Problem, called Multiple Spliced Alignment Problem, where
more than one target sequence is involved. This problem was proved to be NP-
complete by Kishi and Adi in [5], where they also proposed some heuristics for
it. To the best of our knowledge, there are no approximation algorithms for the
Multiple Spliced Alignment Problem in the literature, and it is exactly this gap
that the present work wants to narrow.

This paper is organized as follows. In the next section we introduce the Spliced
and Multiple Spliced Alignment Problem, and relate both with the gene predic-
tion task. A 3−approximation algorithm for the Multiple Spliced Alignment
Problem, that constitutes the main result of this work, is shown in Section 3.
In Section 4 we give the details about the experimental results obtained by our
approach over real-world instances of the gene prediction task. Finally, in the
last section we summarize this work and consider future research directions.

2 The Multiple Spliced Alignment Problem

Among the several regions that comprise a genomic DNA, the protein coding
regions, or genes, are of main interest for biologists. In eukaryotes, these regions
are separated by long stretches of intergenic DNA and their coding fragments,
called exons, are interrupted by non-coding ones, called introns. Given a ge-
nomic DNA, the gene prediction task consists in finding the correct exon-intron
structure of its genes. In computational terms, this task has as input a genomic
DNA sequence g and as output the start and end positions of each exon that
constitutes the genes of g.

Given the undeniable practical importance of the gene prediction task, since
1980 many different methods have been proposed to address it. These methods
can be roughly classified into extrinsic methods, that make use of information
concerning fully annotated transcript sequences related to the target gene, and
intrinsic methods, that rely basically on statistical information about the gene
being searched for (see [7, 8] for surveys on this topic).

Among the different extrinsic approaches suggested for the gene prediction
task, the one proposed by Gelfand et al. in [3] is of particular interest to the string
processing field since it lies on a combinatorial optimization problem involving
sequences, namely the Spliced Alignment Problem. To a better understanding of
this problem consider the following definitions.

Let s = s1s2 . . . sn be a finite string over an alphabet Σ. We denote the length
of s by |s|. A substring b = si . . . sj of s is an ordered sequence of consecutive
symbols of s. We denote by first(b) = i the position of the first symbol of
b in s and by last(b) = j the position of the last symbol of b in s. Let B =
{b1, b2, . . . , bk} be a set of k substrings of s. We say that B is an ordered set
of substrings if: 1) first(bi) < first(bi+1) or 2) first(bi) = first(bi+1) and
last(bi) < last(bi+1), for 1 ≤ i ≤ k−1. We also say that a substring b′ = so . . . sp
of s overlaps another substring b′′ = sq . . . sr of s if q ≤ o ≤ r, or q ≤ p ≤ r, or
o ≤ q ≤ p, or o ≤ r ≤ p. Moreover, we say that a substring b′ = so . . . sp of s
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precedes another substring b′′ = sq . . . sr of s if p < q, and we denote this relation
by b′ ≺ b′′. A subset Γ = {bi, bj , . . . , bp} of B is a chain if bi ≺ bj ≺ ... ≺ bp
and we denote the string resulting of the concatenation of the elements of a
chain Γ by Γ •. That is, Γ • = bi • bj • . . .• bp, where • is the string concatenation
operator. Finally, given two strings s and t, we denote by simω(s, t) the similarity
(or the score of an optimal alignment) between s and t under a scoring function
ω : Σ ×Σ → R [9].

With the previous definitions in mind, the SAP is defined as follows [3]:

Spliced Alignment Problem (SAP): Given a subject sequence g, a target
sequence t and an ordered set of substrings B = {b1, b2, ..., bk} of g, find a
chain Γ of B such that simω(Γ

•, t) is maximum among all chains of B.

An instance of the SAP and its solution can be seen in Figure 1.

AA

b1︷ ︸︸ ︷
CCCACATTCCCCTC

b2︷ ︸︸ ︷
TCCATTTTAAT

b3︷ ︸︸ ︷
TTTAA

b4︷ ︸︸ ︷
CCTGTGCCC

b5︷ ︸︸ ︷
CTTCAAGTg

CCCACATT-CCCCTGTCTTCAAG

-CCACATTTCCCCTGTCTTCCAG
||||||| |||||||||||.||

Γ•

t

B

Fig. 1. An instance of the SAP and its solution. The symbols of g that compose each
substring b ∈ B are disposed below its corresponding horizontal brace. The scoring
function used in this instance is ω(a, b) = {1, if a = b;−1, if a �= b;−2 if a = − or b =
−} and its solution is Γ = {b1, b4, b5}. Figure adapted from [5].

Looking at the SAP in the context of the gene prediction task, g could be
interpreted as a (fragment of a) genomic sequence encoding a gene of interest, t
as a transcript sequence related to this gene and B = {b1, b2, ..., bk} as a set of
potential exons of g. With these relations in mind, and given the fact that the
coding regions of a gene are less susceptible to mutations than the non-coding
ones, it is very likely that a solution for the SAP will include the exons of the
gene being searched for.

In [3], Gelfand et al. propose a polynomial time dynamic programming algo-
rithm for the SAP. To understand the main recurrence of this algorithm, consider
the following definitions taken from [3]. Let bk = gl . . . gi . . . gm be a substring
of g containing a position i. The i-prefix of bk is defined as bk(i) = gl . . . gi.
Let Γ = {b1, b2, . . . , bk, . . . , bt} be a chain such that some substring bk contains
position i and let Γ •(i) = b1 • b2 • . . . • bk(i). The algorithm presented in [3]
efficiently calculates a three-dimensional matrix S such that
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S[i][j][k] = max
all chains Γ containing substring bk

simω(Γ
•(i), t[1..j]).

After computing S, the value of the optimal solution can be found as

max
1≤k′≤k

S[last(bk′)][|t|][k′].

Finally, it is possible to build the optimal solution itself considering the choices
the algorithm made to compute its value. Using the dynamic programming tech-
nique, this algorithm for the SAP runs in time O(mnc+mk2) and space O(mnc),
with m = |t|, n = |g|, k = |B| and c = 1

n

∑
bi∈B |bi|.

As we can see, the SAP was originally proposed as a maximization problem.
However, we can address it as a minimization problem as well. For this matter,
we need to make use of the concept of distance between two strings, instead
of similarity. To calculate the distance between two strings, we assign costs to
the basic edit operations (insertion, deletion and substitution) and find the least
costly series of such operations that transforms one string into the other.

The similarity, as being by definition the score of an optimal alignment, usually
assumes a scoring function that rewards matches and penalizes mismatches and
spaces in an alignment. The distance measure, on the other hand, requires a
specific class of scoring functions, namely metrics. If ω : Σ×Σ → R is a metric,
then the following three properties hold:

1. ω(x, x) = 0 for all x ∈ Σ and ω(x, y) > 0 for x �= y;
2. ω(x, y) = ω(y, x) for all x, y ∈ Σ;
3. ω(x, y) ≤ ω(x, z) + ω(z, y) for all x, y, z ∈ Σ.

In summary, the first property assures that the costs of the basic edit oper-
ations are positive. The second property establishes that ω is symmetric. The
last and most important property is called triangle inequality. It assures that the
cost of transforming a symbol x into another symbol y is not greater than the
cost of transforming x into z and then z into y. This property can be extended
to sequences as a whole.

Given a metric ω and two sequences s and t, we denote by distω(s, t) the
cost, regarding ω, of the least expensive series of edit operations that transforms
s into t. We can now reformulate the SAP as follows, noticing that we will refer
to this version from now on:

Spliced Alignment Problem (SAP): Given a subject sequence g, a target
sequence t, an ordered set of substrings B = {b1, b2, ..., bk} of g and a metric
ω, find a chain Γ of B such that distω(Γ

•, t) is minimum among all chains
of B.

Kishi and Adi started exploring in [5] a variant of the SAP called Multiple
Spliced Alignment Problem. In this variant, instead of only one target sequence
t, we have a set of target sequences T = {t1, t2, ..., tu} and the objective is
to find a chain Γ of B such that

∑u
i=1 distω(Γ

•, ti) is minimum among all
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chains of B. Back to the gene prediction task, the Multiple Spliced Alignment
Problem is also of practical interest since now the prediction is obtained by
taking more evidences into consideration, which tends to give better practical
results. A formal definition of the Multiple Spliced Alignment Problem can be
found below:

Multiple Spliced Alignment Problem (MSAP): Given a subject sequence
g, a set of target sequences T = {t1, t2, ..., tu}, an ordered set of substrings
B = {b1, b2, ..., bk} of g and a metric ω, find a chain Γ of B such that∑u

i=1 distω(Γ
•, ti) is minimum among all chains of B.

An instance of the MSAP and its solution can be seen in Figure 2.

GA

b1︷ ︸︸ ︷
ACTCGACCTC

b2︷ ︸︸ ︷
AGGTTATC

b3︷ ︸︸ ︷
TGCCTGCCTCGGCCT

b4︷ ︸︸ ︷
CCCAAAGT

b5︷ ︸︸ ︷
GCTGg

ACTCGACCTTGCCTGCCTCGCTG

ACTCGACCTTGCCTGCCTCGCTG ACTCGACCTTGCCTGCC-TCGCTG

ACTCGACCT-TGCCTGCCTCGCTG ACTCGACCTTGCCTGCCTCGCTG

A-TCGACCTTGC--GCCTCGCTG ---CGACCTTGCCTGCCGTCG-TG

ACT---CCTGTGCCTG-CTCTCTG ACTCGACCTTGCCTGCCTCGCTG

|d||||||||||dd||||||||| ddd||||||||||||||i|||d||

|||ddd|||i||||||d|||s||| |||||||||||||||||||||||

Γ•

Γ•

Γ•

Γ•

Γ•

t1 t2

t3 t4

B

Fig. 2. An instance of the MSAP and its solution. The symbols of g that compose
each substring b ∈ B are disposed below its corresponding horizontal brace and the
set T is composed by the sequences t1, t2, t3 and t4. The metric used in this instance
is the Levenshtein distance, where d indicates a delete operation, i indicates an insert
operation and s indicates a substitution operation. The solution of this instance is
Γ = {b1, b3, b5}. Figure adapted from [5].

The MSAP was proved to be NP-complete even for binary sequences by Kishi
and Adi in [5]. As a direct result of this fact, two approaches come to mind to
deal with such hard problem: heuristics and approximation algorithms. As some
heuristics for the MSAP were already developed in [5,6], we present in this work
an approximation algorithm for it that deals in a satisfactory way with both
theoretical and practical aspects of the problem.

3 A 3-Approximation Algorithm for the MSAP

The approximation algorithm developed in this work is a natural extension of
the solution proposed by Gelfand et al. in [3] for the Spliced Alignment Problem.
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It consists in finding u solutions for the SAP, one for each target sequence ti, for
1 ≤ i ≤ u, and choosing as final solution for the MSAP that chain less distant
to all sequences in T .

Algorithm 1, called MSAP-3-app, details the idea of our approximation. In
this algorithm, Γi is a chain of B returned by Gelfand’s algorithm taking ti as
target sequence, and Γ corresponds to a Γi such that

∑u
j=1 distω(Γ

•
i , tj) is

minimum among all Γi, for 1 ≤ i ≤ u.

Algorithm 1. MSAP-3-app(g, T , B, ω)
Require: Subject sequence g, a set of target sequences T = {t1, t2, ..., tu}, a set B =

{b1, b2, ..., bk} of ordered substrings of g and a metric ω.
Ensure: A chain Γ of B.
1. Γ ← ∅;
2. lower ← +∞;
3. for i ← 1 until u do
4. Γi ← Gelfand(g, ti,B, ω); //a call to Gelfand’s algorithm
5. sum ← 0;
6. for j ← 1 until u do
7. sum ← sum+ distω(Γ

•
i , tj);

8. end for
9. if sum < lower then
10. lower ← sum;
11. Γ ← Γi;
12. end if
13. end for
14. return Γ ;

As obtaining a solution for SAP by Gelfand’s algorithm (line 4 of Algorithm
1) and calculating the distance between two sequences under some metric ω (line
7 of Algorithm 1) are known tasks that can be done in polynomial time, it is easy
to see that Algorithm 1 also has polynomial time complexity. More specifically,
algorithm MSAP-3-app runs in time O(um(nc + k2 + un)), with u, n, c and k
as previously defined, and m = max1≤j≤u{|tj|}.

Now, we will show that Algorithm 1 is a 3−approximation for the MSAP. To
this end, let Γ ∗ be an optimal solution for an instance I = (g, T ,B, ω) of the
problem, i.e.

∑u
i=1 distω(Γ

∗•, ti) = opt is minimum, and consider the following
lemma:

Lemma 1.
∑u

i=1 distω(Γ
•
i , ti) ≤

∑u
i=1 distω(Γ

∗•, ti)

Proof. Suppose, by contradiction, that
∑u

i=1 distω(Γ
•
i , ti)>

∑u
i=1 distω(Γ

∗•, ti).
Then, there is some i such that distω(Γ

•
i , ti) > distω(Γ

∗•, ti). But this fact con-
tradicts our hypothesis that distω(Γ

•
i , ti) is minimum as assured by Gelfand’s

algorithm. �
The relation between the value of a solution Γ computed by our algorithm,

equals to
∑u

i=1 distω(Γ
•, ti), and the value of an optimal solution Γ ∗ for MSAP,

equals to
∑u

i=1 distω(Γ
∗•, ti), is given by Theorem 1.
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Theorem 1. MSAP-3-app is a 3-approximation for MSAP.

Proof. Firstly, consider the following inequality, that can be verified by the def-
initions of Γ and Γi:

u∑
j=1

u∑
i=1

distω(Γ
•, ti) ≤

u∑
j=1

u∑
i=1

distω(Γ
•
j , ti) (1)

Given the triangular inequality property of ω, we have that distω(Γ
•
j , ti) ≤

distω(Γ
•
j , Γ

∗•) + distω(Γ
∗•, ti). Replacing the right side of Inequation 1 with

this inequality, we get:

u∑
j=1

u∑
i=1

distω(Γ
•, ti) ≤

u∑
j=1

u∑
i=1

(distω(Γ
•
j , Γ

∗•) + distω(Γ
∗•, ti))

u

u∑
i=1

distω(Γ
•, ti) ≤ u

u∑
j=1

distω(Γ
•
j , Γ

∗•) + u

u∑
i=1

distω(Γ
∗•, ti) (2)

Replacing j by i in Inequation 2, dividing its both sides by u, and making use
of the equality

∑u
i=1 distω(Γ

∗•, ti) = opt, we get:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , Γ

∗•) + opt (3)

Using again the triangular inequality property of ω, we have that distω
(Γ •

i , Γ
∗•) ≤ distω(Γ

•
i , ti) + distω(ti, Γ

∗•). So, we can expand the term∑u
i=1 distω(Γ

•
i , Γ

∗•) in Inequation 3 as shown below:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , ti) +

u∑
i=1

distω(ti, Γ
∗•) + opt

Now the equality
∑u

i=1 distω(Γ
∗•, ti) = opt can be applied again:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , ti) + opt+ opt (4)

By Lemma 1, we can replace
∑u

i=1 distω(Γ
•
i , ti) by

∑u
i=1 distω(Γ

∗•, ti) in
Inequation 4:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
∗•, ti) + opt+ opt

Finally, applying again the equality
∑u

i=1 distω(Γ
∗•, ti) = opt, we get:

u∑
i=1

distω(Γ
•, ti) ≤ 3 ∗ opt (5)

Therefore, the value of the solution computed by algorithm MSAP-3-app is
no worse than 3 times the value of an optimal solution for the MSAP.

�
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4 Experimental Results

In order to assess the practical accuracy of our approximation, algorithmMSAP-
3-app was implemented in ANSI C++ and tested on real-world instances of
the gene prediction task.

The benchmark taken to evaluate our program was the same one used by
Kishi and Adi in [5], so we could compare our approach with the heuristics
proposed by them. This benchmark consists of 240 fragment sequences of human
DNA, obtained from the chromosomes analyzed by the ENCODE project [10].
All these fragments include only one gene and the corresponding targets were
obtained by a search in the HomoloGene [11] database for cDNAs sequences
evolutionarily related to the genes being searched for. Finally, the ordered set of
substrings for each instance was obtained by means of a HMM-based algorithm
implemented by a gene prediction tool called GenScan [1].

To assess the accuracy of the programs, we made use of the following measures,
introduced by Burset and Guigó in [2] and commonly used in the evaluation of
gene prediction tools:

(1) Specificity at the nucleotide level (Spn = TP
TP+FP ): proportion of nucleotides

predicted as coding that are really coding;
(2) Sensitivity at the nucleotide level (Snn = TP

TP+FN ): proportion of really
coding nucleotides correctly predicted as coding;

(3) Specificity at the exon level (Spe = NCE
NPE ): proportion of predicted exons

that match an annotated exon;
(4) Sensitivity at the exon level (Sne = NCE

NAE ): proportion of annotated exons
that were correctly predicted.

The approximate correlation, AC, defined as

AC =
1

2
(

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN
)− 1

has been introduced to summarize sensitivity and specificity in a single measure.
At the exon level, the average Ave = (Spe + Sne)/2 is used instead.

In the previous definitions, TP (true positives) is the number of really cod-
ing nucleotides correctly predicted as coding, TN (true negatives) represents
the number of really non-coding nucleotides correctly predicted as non-coding,
FP (false positives) is the number of really non-coding nucleotides incorrectly
predicted as coding and FN (false negatives) is the number of really coding
nucleotides incorrectly predicted as non-coding. On the level of complete exons,
NCE is defined as the number of correctly predicted exons, NPE as the number
of predicted exons and NAE as the number of annotated exons. Here, a predict
exon is considered as correctly predicted when its start and end positions match
the start and end positions of an annotated exon of the input sequence.

Table 1 summarizes the results obtained by our approach and by the heuristics
proposed in [5, 6] on the detailed benchmark. In this table, each column stores
the average values of Sn, Sp, AC and Ave.
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Table 1. Results obtained on 240 real-world instances of the gene prediction task

Approach Nucleotide Exon

Snn Spn AC Sne Spe Ave

MSAP-3-app 0.95 0.96 0.95 0.85 0.81 0.83

Heuristic H1 0.96 0.96 0.95 0.86 0.81 0.83

Heuristic H2 0.96 0.91 0.93 0.83 0.73 0.78

Heuristic H3 0.93 0.96 0.94 0.86 0.84 0.85

Heuristic H4 0.77 0.80 0.77 0.54 0.51 0.53

The values in Table 1 show that our approach presented a good level of sensi-
tivity and specificity on both nucleotide and exon levels. From all the nucleotides
predicted as coding by our approximation, 96% are in fact coding. Furthermore,
our approach correctly identified 95% of the coding nucleotides. At the exon
level, 81% of the predicted exons match an annotated exon, and 85% of the
annotated exons were correctly identified by our program.

Obviously, the accuracy of our approach in identifying the correct exon-intron
structure of a gene is strongly dependent on the input set B. If this set includes
all the annotated exons of the target gene, it is very likely that all of them will
be included in the chain returned by our approximation. From a total of 1677
annotated exons, 1550 were included in the sets of candidate exons and only 67
of them were missed by our approach. On the other hand, if an annotated exon
is not included in the input set B, it will be missed by our approach. From a
total of 1677 annotated exons, 127 were missed by our approach since they could
not be found in B.

In comparison with the four heuristics developed so far for the MSAP, our 3-
approximation algorithm achieved results comparable to all of them. It outper-
formed heuristic H4 in all measures, and performed very close to the other three
heuristics. At the nucleotide level, for example, our approximationwas slightly less
sensitive than heuristics H1 and H2, but its value of specificity compares with that
obtained by H1 and H3. In summary, looking at the AC column, our algorithm
and Heuristic H1 were the approaches with the best values. At the exon level,
our approximation outperformed H2, achieved results comparable to H1 and was
overwhelmed only by H3. Anyway, in this last case, H3 outperformed our approach
with only 1% and 3% of improvement in sensitivity and specificity, respectively.

5 Discussion

In this work we presented a 3-approximation algorithm for the Multiple Spliced
Alignment Problem, a combinatorial optimization problem directly related with
to gene prediction task. We also compared our approach with 4 previously pro-
posed heuristics for the MSAP, achieving results comparable to the best one.
This fact is very encouraging since it shows that our approach can perform as
good as previously proposed heuristics for the MSAP when applied to the gene
prediction task, beside ensuring its results are not worse than 3 times the optimal
solution, no matter which instance is considered.
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In a more detailed observation, and taking into account the measures AC and
Ave that summarize the experimental results at the nucleotide and exon levels
respectively, our algorithm showed the same accuracy of Heuristic H1, being the
best on nucleotide level and the second best in exon level. As Heuristic H1 is
based on the idea of choosing a central sequence of T , applying it to obtain a SAP
solution with Gelfand’s algorithm and extending it to the MSAP in question,
it becomes clear that both approaches share similar aspects and therefore such
close results are expected.

In further studies, we intend to handle the MSAP by proposing a linear pro-
gramming model in order to attack it from a third perspective. We already have
a preliminary integer linear programming formulation, and experimental tests
with it are in course.
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tion, Their Strengths and Weaknesses. Nucleic Acids Research 30(19), 4103–4117
(2002)

9. Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular
Biology 48, 443–453 (1970)

10. TheENCODEProjectConsortium:TheENCODE(EncyclopediaofDNAElements)
Project. Science 306(5696), 636–640 (2004)

11. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K.,
Chetvernin, V., Church, D.M., DiCuccio, M., Federhen, S., Feolo, M., Fingerman,
I.M., Geer, L.Y., Helmberg, W., Kapustin, Y., Krasnov, S., Landsman, D., Lipman,
D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-Bauer, A., Miller,
V., Karsch-Mizrachi, I., Ostell, J., Panchenko, A., Phan, L., Pruitt, K.D., Schuler,
G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Slotta, D., Souvorov,
A., Starchenko, G., Tatusova, T.A.,Wagner, L.,Wang, Y.,Wilbur,W.J., Yaschenko,
E., Ye, J.: Database resources of the National Center for Biotechnology Information.
Nucleic Acids Research 40 (D1), D13–D25 (2012)


	A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem and Its Application to the Gene Prediction Task
	1Introduction
	2The Multiple Spliced Alignment Problem
	3A 3-Approximation Algorithm for the MSAP
	5Experimental Results
	6Discussion




