
Edleno Moura
Maxime Crochemore (Eds.)

 123

LN
CS

 8
79

9

21st International Symposium, SPIRE 2014
Ouro Preto, Brazil, October 20–22, 2014
Proceedings

String Processing
and Information Retrieval

Lecture Notes in Computer Science 8799
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Edleno Moura Maxime Crochemore (Eds.)

String Processing
and Information Retrieval

21st International Symposium, SPIRE 2014
Ouro Preto, Brazil, October 20-22, 2014
Proceedings

13

Volume Editors

Edleno Moura
Universidade Federal do Amazonas
Instituto de Computação
Manaus, Brazil
E-mail: edleno@icomp.ufam.edu.br

Maxime Crochemore
King’s College London
London, UK
E-mail: maxime.crochemore@kcl.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11917-5 e-ISBN 978-3-319-11918-2
DOI 10.1007/978-3-319-11918-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014949633

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at SPIRE 2014, 21st International
Symposium on String Processing and Information Retrieval, held on October
20–22, 2014 in Ouro Preto (Brazil). There were 45 submissions and 3 Program
Committee members reviewed each submission. The committee decided to accept
20 full papers and 6 short papers. The program also includes 3 invited talks
that do not appear in the proceedings, delivered by Professors Gonzalo Navarro
(University of Chile), Paolo Boldi (University of Milano) and Berthier Ribeiro-
Neto (Google Inc.).

Following the scope of SPIRE, the articles in this edition include not only
fundamental algorithms in string processing and information retrieval, but also
application areas such as computational biology, Web mining and recommender
systems. Given its interdisciplinary nature, SPIRE offers a unique opportunity
for researchers from these different areas to meet and to network. Further, the
conference was held in conjunction with the 9th Latin American Web Congress
(LA-WEB 2014), which addresses current research in topics of interest to the
SPIRE audience.

On behalf of SPIRE’s Steering Committee and as chairs we thank the Pro-
gram Committee members for their valuable contribution in the selection of ar-
ticles, the local organizing chairs Alvaro R. Pereira Jr. and Fabricio Benevenuto
for the support they provided, and all the authors and attendees for this year
symposium. We adopted EasyChair as our conference management system and
we also thank the EasyChair team for the nice and extremely helpful system.

August 2014 Edleno Silva De Moura
Maxime Crochemore

Organization

Program Committee Chairs

Maxime Crochemore King’s College London, UK and Université
Paris-Est, France

Edleno Silva De Moura Universidade Federal do Amazonas, Brazil

Steering Committee

Nivio Ziviani Federal University of Minas Gerais, Brazil
Ricardo Baeza-Yates Yahoo! Research, Spain
Berthier Ribeiro-Neto Google Inc., and Federal University

of Minas Gerais, Brazil
Oren Kurland Faculty of Industrial Engineering and

Management, Technion, Israel
Moshe Lewenstein Bar-Ilan University, Israel
Ely Porat Bar-Ilan University, Israel

Conference Local Chairs

Álvaro R. Pereira Jr. Universidade Federal de Ouro Preto, Brazil
Fabricio Benevenuto Universidade Federal de Minas Gerais, Brazil

Program Committee

Giambattista Amati Fondazione Ugo Bordoni, Italy
Amihood Amir Bar-Ilan University, Israel and Johns Hopkins

University, USA
Alberto Apostolico University of Padoa, Italy and Georgia

Tech., USA
Ricardo Baeza-Yates Yahoo! Research, Spain
Hideo Bannai Kyushu University, Japan
Nieves R. Brisaboa Universidade da Corua, Spain
Ayelet Butman Holon Institute of Technology, Israel
Carlos Castillo Qatar Computing Research Institute, Israel,

Qatar
Edgar Chavez Universidad Michoacana, Mexico
Ferdinando Cicalese University of Salerno, Italy

VIII Organization

Raphael Clifford University of Bristol, UK
Maxime Crochemore King’s College London, UK and Université

Paris-Est, France
Edleno Silva De Moura Universidade Federal do Amazonas, Brazil
Carsten Eickhoff ETH Zurich, Switzerland
David Fernandes Universidade Federal do Amazonas, Brazil
Johannes Fischer TU Dortmund, Germany
Raffaele Giancarlo Dipartimento di Matematica Università

di Palermo, Italy
Marcos Goncalves Federal University of Minas Gerais, Brazil
Roberto Grossi Università di Pisa, Italy
Inge Li Gørtz Technical University of Denmark, Denmark
Shunsuke Inenaga Kyushu University, Japan
Markus Jalsenius University of Bristol, UK
Gareth Jones Dublin City University, Ireland
Jaap Kamps University of Amsterdam, The Netherlands
Tsvi Kopelowitz University of Michigan, USA
Gregory Kucherov CNRS/LIGM, France
Juha Kärkkäinen University of Helsinki, Finland
Gad M. Landau University of Haifa, Israel and

NYU-Polytechnic, USA
Thierry Lecroq University of Rouen, France
Chia-Jung Lee CIIR, University of Massachusetts Amherst,

USA
Avivit Levy Shenkar College, Israel
Mauricio Marin Yahoo! Research, Chile
Andrew McGregor University of Massachusetts Amherst, USA
Alistair Moffat The University of Melbourne, Australia
Viviane P. Moreira Instituto de Informatica - UFRGS, Brazil
Ian Munro University of Waterloo, Canada
Gonzalo Navarro University of Chile, Chile
Yakov Nekrich University of Waterloo, Canada
Alexandros Ntoulas Zynga Inc., USA
Ely Porat Bar-Ilan University, Israel
Simon Puglisi University of Helsinki, Finland
Berthier Ribeiro-Neto Google Inc., USA and Federal University

of Minas Gerais, Brazil
Benjamin Sach University of Warwick, UK
Kunihiko Sadakane National Institute of Informatics, Japan
Rodrygo L.T. Santos University of Glasgow, UK
Srinivasa Rao Satti Seoul National University, South Korea

Organization IX

Rahul Shah Louisiana State Univeristy, USA
Fabrizio Silvestri ISTI - CNR, Italy
Torsten Suel Polytechnic Institute of NYU, USA
Chris Thachuk University of Oxford, UK
Dekel Tsur Ben Gurion University, Israel
Oren Weimann University of Haifa, Israel
David Woodruff IBM Almaden, USA
Nivio Ziviani Federal University of Minas Gerais, Brazil
Guido Zuccon Queensland University of Technology, Australia

Table of Contents

Compression

Strategic Pattern Search in Factor-Compressed Text 1
Simon Gog, Alistair Moffat, and Matthias Petri

Relative Lempel-Ziv with Constant-Time Random Access 13
Héctor Ferrada, Travis Gagie, Simon Gog, and Simon J. Puglisi

Efficient Compressed Indexing for Approximate Top-k String
Retrieval . 18

Héctor Ferrada and Gonzalo Navarro

Grammar Compressed Sequences with Rank/Select Support 31
Gonzalo Navarro and Alberto Ordóñez

Indexing

Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square
on Run-Length Encoded Strings . 45

Amihood Amir, Alberto Apostolico, Tirza Hirst, Gad M. Landau,
Noa Lewenstein, and Liat Rozenberg

Relative FM-Indexes . 52
Djamal Belazzougui, Travis Gagie, Simon Gog,
Giovanni Manzini, and Jouni Sirén

Efficient Indexing and Representation of Web Access Logs 65
Francisco Claude, Roberto Konow, and Gonzalo Navarro

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 77
Nieves R. Brisaboa, Diego Caro, Antonio Fariña, and
M. Andrea Rodŕıguez

Succinct Indexes for Reporting Discriminating and Generic Words 89
Sudip Biswas, Manish Patil, Rahul Shah, and
Sharma V. Thankachan

Fast Construction of Wavelet Trees . 101
J. Ian Munro, Yakov Nekrich, and Jeffrey S. Vitter

Order Preserving Prefix Tables . 111
Md. Mahbubul Hasan, A.S.M. Shohidull Islam,
Mohammad Saifur Rahman, and M. Sohel Rahman

XII Table of Contents

Genome and Related Topics

Alphabet-Independent Algorithms for Finding Context-Sensitive
Repeats in Linear Time . 117

Enno Ohlebusch and Timo Beller

A 3-Approximation Algorithm for the Multiple Spliced Alignment
Problem and Its Application to the Gene Prediction Task 129

Regina Beretta Mazaro, Leandro Ishi Soares de Lima, and
Said Sadique Adi

Improved Filters for the Approximate Suffix-Prefix Overlap Problem . . . 139
Gregory Kucherov and Dekel Tsur

Sequences and Strings

Sequence Decision Diagrams . 149
Hind Alhakami, Gianfranco Ciardo, and Marek Chrobak

Shortest Unique Queries on Strings . 161
Xiaocheng Hu, Jian Pei, and Yufei Tao

Online Multiple Palindrome Pattern Matching . 173
Hwee Kim and Yo-Sub Han

Indexed Matching Statistics and Shortest Unique Substrings 179
Djamal Belazzougui and Fabio Cunial

Search

I/O-Efficient Dictionary Search with One Edit Error 191
Chin-Wan Chung, Yufei Tao, and Wei Wang

Online Pattern Matching for String Edit Distance with Moves 203
Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto

K2-Treaps: Range Top-k Queries in Compact Space 215
Nieves R. Brisaboa, Guillermo de Bernardo, Roberto Konow, and
Gonzalo Navarro

Performance Improvements for Search Systems Using an Integrated
Cache of Lists+Intersections . 227

Gabriel Tolosa, Luca Becchetti, Esteban Feuerstein, and
Alberto Marchetti-Spaccamela

Table of Contents XIII

Mining and Recommending

Information-Theoretic Term Selection for New Item
Recommendation . 236

Thales F. Costa, Anisio Lacerda, Rodrygo L.T. Santos, and
Nivio Ziviani

On the String Consensus Problem and the Manhattan Sequence
Consensus Problem . 244

Tomasz Kociumaka, Jakub W. Pachocki, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń

Context-Aware Deal Size Prediction . 256
Anisio Lacerda, Adriano Veloso, Rodrygo L.T. Santos, and
Nivio Ziviani

Simple and Efficient String Algorithms for Query Suggestion Metrics
Computation . 268

Alexander Loptev, Anna Selugina, and Tatiana Starikovskaya

Author Index . 279

Strategic Pattern Search in Factor-Compressed Text

Simon Gog1,2, Alistair Moffat1, and Matthias Petri1

1 Department of Computing and Information Systems,
The University of Melbourne, Australia 3010

2 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Germany

Abstract. We consider the problem of pattern-search in compressed text in a
context in which: (a) the text is stored as a sequence of factors against a static
phrase-book; (b) decoding of factors is from right-to-left; and (c) extraction of
each symbol in each factor requires Θ(logσ) time, where σ is the size of the
original alphabet. To determine possible alignments given information about de-
coded characters we introduce two Boyer-Moore-like searching mechanisms, in-
cluding one that makes use of a suffix array constructed over the pattern. The new
mechanisms decode fewer than half the symbols that are required by a sequential
left-to-right search such as the Knuth-Morris-Pratt approach, a saving that trans-
lates directly into improved execution time. Experiments with a two-level suffix
array index structure for 4 GB of English text demonstrate the usefulness of the
new techniques.

Keywords: string search, pattern matching, suffix array, Burrows-Wheeler trans-
form, succinct data structure, disk-based algorithm, experimental evaluation.

1 Introduction and Background

String search, or pattern search, is a classic problem in computing. Given a sequence
T of n symbols and a pattern P of m symbols, both over an alphabet Σ of size σ , the
requirement is to identify all locations in T at which P appears as a substring. Two
paradigms for tackling this problem have emerged – if both T and P vary with every
problem instance, the best that can be hoped for is linear Θ(n+m) time processing. But
if T is regarded as being fixed, and only P varies with each instance, then the cost of
pre-processing T to build an index can be regarded as being amortized down to zero.
Large numbers of algorithms and data structures have been developed for both types of
pattern search, as well as for variants of the basic problem; see, for example, Navarro
and Raffinot [11]. Our work in this paper fits in the second “static T” category, but also
requires application of techniques suited to the first “dynamic T” paradigm.

Sequential Pattern Search. The Knuth-Morris-Pratt (KMP) [10] and Boyer-Moore (BM)
[1] methods remain significant more than 35 years after they were first developed. The
KMP approach scans T from left to right, extending a prefix of P known to be in align-
ment with T; if a non-matching symbol is encountered, the pattern is shifted right by
the amount indicated in a pre-computed table that is based on P (and not on T). In the
BM method, the checking is from right-to-left in P. Two shift tables are used, the “good

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 S. Gog, A. Moffat, and M. Petri

suffix” table that has a similar function to the KMP table; and a “bad symbol” table,
which, for each symbol in Σ , records the rightmost occurrence of it in P.

Horspool [9] noted that use of the bad symbol shift associated with the symbol in T
tentatively matched against P[m− 1] was sufficient for fast execution on average, since
it never results in negative shifts, and is likely to create long shifts on average. The
combination of right-to-left processing and a bad-symbol shift array is referred to as
the BMH mechanism. Sunday [16] noted that the symbol in T after the last one of the
current alignment could also be used for the same purpose, since it too must be part of
the next alignment after the shift of P has taken place. Together, these two approaches
then lead to Smith’s [15] proposal to make use of the larger of the Horspool bad-shift
and the Sunday bad-shift. We make use of these ideas in the development below. A
1997 web site1 developed by Christian Charras and Thierry Lecroq gives details and
examples of all of these methods, plus many more, as does the book of Navarro and
Raffinot [11] and a survey of recent results by Faro and Lecroq [3].

Index-Based Pattern Search. There is again a myriad of methods in this category. Best-
known are the suffix array, the suffix tree, and compressed/succinct variants thereof.
The FM-INDEX of Ferragina and Manzini [5] represents T in compressed form (that
is, in fewer than n logσ bits) yet still provides pattern search in O(m logσ) time. The
combination of compact space and fast access make the FM-INDEX highly applicable
for in-memory searching applications. On the other hand, the access pattern within the
FM-INDEX is highly non-sequential, and it is not suitable for use on secondary storage
devices such as mechanical disk and SSD memory.

The RoSA. In recent work, Gog et al. [8] introduce an indexed data structure for pat-
tern search called the ROSA, or reduced space on-disk suffix array, as a mechanism
to support exact pattern search. As with the previous LOF-SA structure of Sinha et
al. [14], the ROSA supports efficient pattern search over very large static sequences
by constructing a suffix array, and partitioning it into on-disk blocks. Each suffix block
contains at most b pointers, and is formed so that every string addressed by the block has
a unique common prefix, known as the block prefix string. The value of b is fixed at the
time the index is constructed; Gog et al. [8] make use of b = 4,096 in their experiments.
The first innovative feature of the ROSA is that the in-memory index is structured as a
condensed BWT, that contains all of the block prefix strings, so that the suffix block a
given pattern falls in to (if it exists at all) can be efficiently determined. The use of the
condensed BWT, and careful engineering in regard to storage of bitvectors and point-
ers, mean that the in-memory index can be as small as just a few percent of the original
string. In experiments using multi-gigabyte files of English text, Gog et al. [8] show that
the ROSA’s in-memory index requires as little as 2% of the original text, with count
queries – in which the objective is to determine how many occurrences there are of the
pattern P, but not their exact locations – requiring at most two accesses to secondary
storage: one to fetch a suffix block of at most b pointers, and a second to fetch a section
of the original text T. The second access is required to verify that the pattern does in-
deed exist, and is not a false-positive arising from the use of a bit-blind tree [4] during
the within-block search [8].

1 http://www-igm.univ-mlv.fr/~lecroq/string/

http://www-igm.univ-mlv.fr/~lecroq/string/

Strategic Pattern Search in Factor-Compressed Text 3

Suffix blocks have common prefix strings allowing for block reductions to be identi-
fied which map blocks of the suffix array to subsections of other blocks, allowing disk
space to also be reduced. For the same test file, the space required by the suffix array is
less than 2n bytes. Including the text as well, the total storage cost of the ROSA struc-
ture is less than 3n bytes when representing English text [8], substantially better than
the 5n or 9n required by uncompressed suffix array structures.

In a followup paper, Gog and Moffat [7] further reduce the ROSA’s space cost in
two key ways. First, they re-use the block prefix strings as a static phrase-book for
greedy-dictionary compression, and show that the condensed BWT index can be used
to decode factors with only a small amount of overhead space. Second, Gog and Moffat
approximate each of the stored suffix pointers (which, because of the compression of T,
is a factor address rather than a byte address), truncating it to a multiple of R, a second
parameter selected at the time the index is constructed. The first change reduces both
the space required for T and the space required by each suffix pointer, since there are
fewer factors in T than there are bytes; the second change saves a further approximately
log2 R bits from each suffix pointer. Using both techniques, a complete two-level ROSA
structure for the same 62.5 GB file of English text requires less than 2n bytes when
R= 64, with searching time approximately doubled compared to the R= 1 situation [7].

Our Contribution. We further enhance the ROSA by exploring alternative sequential
pattern matching options, improving querying costs dramatically for large values of R,
exactly the ones that give rise to the most compact index. In particular, we introduce
two Boyer-Moore-like searching mechanisms: one that makes use of a suffix array con-
structed over the pattern; and one that makes use of a shift matrix covering a total of
σ × (m+ 1) different position/symbol combinations. Both mechanisms decode fewer
than half the symbols that are required by the previous KMP approach, a saving that
translates directly into improved execution time. We give detailed experiments with a
two-level suffix array index structure for 4 GB of English text demonstrate the useful-
ness of the new techniques.

2 Search in Factorized Text

Each suffix block in the ROSA is structured as a bit-blind tree (see Gog et al. [8] for a
description and an example) so that it can be quickly queried after it has been read from
disk. The drawback of the bit-blind tree is that once the potential location in T for the
pattern P has been identified via the index, it must be checked to ensure that it is not
a false match. In the original ROSA the suffix pointers indicate byte offsets in T, and
checking is easy. For a pattern of m symbols, a second disk access fetches a block of T,
and then m character comparisons are required.

But when the suffix pointers address “div R” approximated factor numbers, the check-
ing process is more costly. Now a sequence of R+m− 1 factor identifiers is supplied,
and P must be searched for in the variable-length string that those factors represent.
Table 1 lists the low-level operations that apply to compressed factors, and the cost of
each such operation when the factors are represented via the condensed BWT structure.
To decode a single factor identified by the reference f , function length of factor(f) is

4 S. Gog, A. Moffat, and M. Petri

Table 1. Operations used during factor decoding, where f is a reference to a factor and is assumed
to include the necessary state variables. See Figure 4 of Gog and Moffat [7] for details.

Operation Returns. . . Time

length of factor(f) the length in symbols of the factor O(1)
final symbol(f) the rightmost symbol of the factor O(1)
next symbol(f) the next (from the right) symbol of the factor O(logσ)

called to initialize the state variables and determine the length len(f) of that factor (in
terms of decoded symbols); then the rightmost symbol is accessed using final symbol(f);
and finally a loop iterates len(f)−1 times, calling next symbol(f) to fill in the remain-
ing symbols of that factor, from right to left. Each call to the latter function requires
O(1) rank and O(logσ) select operations, where σ is the cardinality of the alphabet
– for example, σ = 256 for byte streams, and perhaps σ ≈ 106 or more for streams
of word tokens. The final symbol(f) is a much faster operation than next symbol(f);
indeed, it is the final component of all calls to next symbol(f). In our implementation
final symbol(f) (and the equivalent in each call to next symbol(f)) is implemented as a
local O(logσ) binary search, to determine the current symbol. We note that the binary
search could be replaced with an O(1)-time bitvector operation [13] for a slight further
speed advantage, and this is what is presumed in Table 1.

That is, we face the set of constraints outlined in the abstract: (a) the text is stored
as a sequence of factors against a static phrase-book; (b) decoding of factors is from
right-to-left; and (c) extraction of each symbol in each factor requires H0(T) time on
average, where H0(T) is the zeroth order entropy of the original text.

In their presentation, Gog and Moffat [7] describe the use of the KMP pattern search
algorithm, with factors expanded on-demand as required in a left-to-right manner, start-
ing with the first one. If f [i] is the i th factor in the fragment of T that is being searched,
0 ≤ i ≤ R+m− 1, then cum[i] = ∑i−1

j=0 len(f [j]) is the relative starting point in T of
the i th factor. With this arrangement, the last valid offset at which pattern alignment is
possible is given by F = cum[R+1]−1; that is, at the final symbol of the first R factors.
The other m−1 factors that are passed to the search function are a worst-case allowance
to ensure that the entirety of the pattern is covered.

If it is assumed that P appears in the fragment of T at an alignment that is equally
likely to be any value between 0 and F , then the expected number of symbols decoded
by the KMP-based approach is given by

F
2
+(m− 1)+

F/R
2

,

where F/2 is the cost of reaching the starting point of the matching alignment; m−1 is
the number of further symbols that must be checked to confirm the alignment; and F/R
is the average number of symbols per factor.

Gog and Moffat [7] explored a range of values of R in their experiments, working
with English text and a ROSA stored on SSD secondary memory. They demonstrated
that when R = 16, around half a millisecond is required by the KMP sequential search
phase, with overall search times (for count queries) under two milliseconds; but that

Strategic Pattern Search in Factor-Compressed Text 5

when R is increased to 256, more than 80% of query computation was spent on the
pattern-search phase, more than 4 milliseconds out of a total query time a little over
5 milliseconds. Our goal is to reduce that ratio by replacing the KMP search module by
methods specifically targeted for the constraints listed above.

3 Strategic Search

Searching in the factorized text representation follows a restricted access model, and
it is no longer appropriate to assume a random-access machine model of computation.
For example, if i corresponds to the first symbol of a new factor of length p, the cost of
accessing T[i] is O(p logσ). However, after accessing i, positions T[i+ 1 . . . i+ p− 1]
can be referenced without incurring additional decoding costs.

On the other hand, the search pattern is still represented in plain text. Thus, com-
pared to accessing T, operations on P are relatively inexpensive. This imbalance in
costs opens up two aspects of the pattern matching process as being potential targets for
investigation: (1) text access strategies during pattern alignment which are aware of the
underlying factor representation and focus towards the end of factors whenever possi-
ble; and (2) more complex pattern pre-processing steps – including the construction of
larger shift tables – which enable longer shifts during the matching process.

Maintaining a Rightward Focus. Both KMP and BMH align P at a certain position
i in the text T, and compare symbols in T[i..i+m− 1] against their tentative equiva-
lents in P[0..m− 1]. The KMP approach starts with T[i] and seeks to build matching
prefixes, whereas BMH starts with T[i+m− 1] and seeks to builds matching suffixes.
But starting at the ends of factorized pattern can be expensive. Instead, we suggest that
the rightmost factor fully contained within the current alignment of P be identified, and
then decoded from the right. As each symbol is extracted from the factor, the pattern
is checked at the equivalent position; if a mismatch is identified, the pattern is shifted
as far to the right as is consistent with the characters that have been decoded. Figure 1
shows an example of the rightward focused alignment process, searching for the string
ACTTTGCCGTATAAGACG for which m = 18. Presuming that the shifts can be calculated
as shown, only three different alignments are explored before the match is found, and
just 23 symbols are decoded while that is taking place.

Determining Shifts Using A Suffix Array. Each time a mismatch occurs, the alignment
position is shifted. Algorithms such as KMP or BMH analyze P at the beginning of the
search process to pre-compute the possible shifts. The rightward focus requires that for
a given pattern P and a short fragment F drawn from the text T, that the fragment be
shifted as far leftward over P as is consistent with the currently-decoded symbols. That
is, the problem is now flipped – the objective is to determine locations in P at which F
occurs, in order to determine possible pattern alignments.

For example, consider Figure 1, in which the substring TG is decoded during the first
alignment of P. Determining the rightmost occurrence in P to the left of the current
alignment of the longest suffix of the substring TG gives rise to the second alignment.
Because two further factors are now within the span of P in its proposed alignment, the

6 S. Gog, A. Moffat, and M. Petri

factor 0 factor 1 factor 2 factor 3 factor 4 factor 5

A

A

GAT G CA GA C T T C C G T A T A

GAT G CA GA C T T C C G T A T

Pattern

A. T G ..

Third alignment

GAT G CA GA C T T C C G T A T A

Second alignment

GAT G CA GA C T T C C G T A T

234 56 17810121416 192201

Fig. 1. Search process with partial factor decoding and rightward focus. Numbers show the order
in which symbols are decoded. Grayed-out symbols in T are neither decoded nor accessed.

focus shifts to the right. Two symbols (labeled 2 and 3) are decoded from the fourth
factor, and match P. But when a third symbol is decoded, the resulting fragment AAC is
in conflict with the corresponding positions in P. Indeed, substring F = AAC does not
occur in P at all. However, the suffix AC of F is a prefix of P, and so a complete shift
is still not possible. In general, if F is not found in P, the pattern is re-aligned to match
the longest suffix of F that matches a prefix of P, including the empty suffix if there are
none longer. If the empty suffix is detected, the result is a complete shift of P past all
currently-decoded characters.

To carry out the required search, we pre-process P to compute a suffix array SA for
it – in effect, constructing a one-off index for the pattern that can be used to locate
occurrences of text fragments F. Index construction might be prohibitively expensive
for regular pattern search, but the high costs associated with accessing T mean that it
can be considered in this context. Algorithm 1 describes how each shift is computed,
given the inputs F, P, the current alignment fpos of F in P, and a suffix array SA over P.

There are two stages. In the first stage (steps 3–9), backwards search is carried out
using SA. That is, F is processed from right to left (as symbols are decoded from the
factor) to determine ranges (sp,ep) within SA that always match the currently-decoded
fragment F. For each range (sp,ep) it is determined if the current suffix of F is a prefix
of P (head overlap) by determining if 0 ∈ SA[sp . . .ep]. The first stage of the algorithm
terminates once F is completely processed, or if the range (sp,ep) becomes empty. The
second stage (steps 10–18) determines the correct shift amount. If F occurs in P, the
rightmost occurrence to the left of fpos corresponds to the next alignment. If no such
occurrence exists, a check is made as to whether a suffix of F has matched a prefix of
P (recorded by variable head overlap) at any stage. If not, P is moved completely past
the occurrence of F. Figure 1 does not illustrate an instance of this step.

Algorithm 1 is a high-level description, and several details have been omitted. The
actual implementation uses the usual technique of building SA over the reverse Pr of P,
similar to the suffix automaton of the reverse pattern of the BDM algorithm, allowing
iterative determination of ranges for suffixes of F; and also makes use of an inverse
suffix array for Pr, in order to expedite step 5.

Strategic Pattern Search in Factor-Compressed Text 7

Algorithm 1. Searching for a fragment F in a restricted section of string P.
0: Decide whether factor F[0. . .p− 1] has an alignment with P[0. . .m− 1] to the left of offset

fpos. Array SA is a suffix array for P. Returns the shift such that P can be aligned to F, the
rightmost matching prefix of F in P or past F if no matching prefix is found. Symbols in F
are decoded on demand using the functions shown in Table 1.

1: function fragment shift(P[0. . .m−1], F[0. . .p−1], fpos)
2: (sp,ep)← (0,m−1), i ← p, head overlap ← 0, shift ← 0
3: while |(sp,ep)|> 0 and i �= 0 do � Search for F in P
4: (sp,ep)← refine interval(SA,P,(sp,ep),F[i−1])
5: if 0 ∈ SA[sp . . .ep] then � Suffix of F matches prefix of P
6: head overlap ← head overlap+1
7: end if
8: i ← i−1
9: end while

10: if |(sp,ep)|> 0 then � Found F in P
11: candidate ← max(SA[i] ∈ SA[sp . . .ep] | SA[i]< fpos)
12: if candidate �= /0 then � Found to the right of fpos?
13: shift ← fpos−candidate
14: end if
15: end if
16: if shift = 0 then � No full match to the left of fpos
17: shift ← fpos+ p−head overlap � Compute prefix match, if any
18: end if
19: return shift
20: end function

Determining Shifts Using A BMH Matrix. The suffix-array based approach has two
potential disadvantages: the time taken to build the suffix array for Pr may dominate
the matching time; and it is unable to fully exploit non-contiguous fragments. To see
the issue posed by the latter concern, consider Figure 1 again, and suppose that the “C”
decoded at label 2 had in fact been an “A”. Working solely with the right-focused factor,
in this case the suffix array would generate a shift of one, ignoring the additional (and
conflicting) information provided by the “TG” fragment that is also available in factor 1.

To address these concerns, we have explored a second mechanism, based even more
closely on the Boyer-Moore-Horspool pattern search algorithm. The BMH mechanism
uses the last position within the alignment to determine the shift, regardless of where
in the pattern a mismatch occurs, based on a “bad symbol” table S. For each symbol
s ∈ Σ , S[s] stores the value m− 1− �s, where �s is the index of the last occurrence
of s in P[0 . . .m− 2], �s = max{0 ≤ k < m− 1 | P[k] = s}, or S[s] = m if s does not
appear in P[0 . . .m− 2]. When shifting on from an explored alignment i, BMH sets
i ← i+ S[T[i+m− 1]], using the symbol in T currently placed against P[m− 1] as a
single reference point against which the proposed next alignment is located.

In the ROSA context T[i+m−1] may not be known. On the other hand, the prepro-
cessing on P is not required to be O(m). The solution is to extend the shift table S, and
make it two dimensional, setting

8 S. Gog, A. Moffat, and M. Petri

Table 2. Example of BMH shift matrix S for P= ACTTTGCCGTATAAGACG

A C T T T G C C G T A T A A G A C G –
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 1 1 2 3 4 5 6 7 8 9 10 1 2 1 1 2 1 2 3
C 1 2 1 2 3 4 5 1 1 2 3 4 5 6 7 8 9 1 2
G 1 2 3 4 5 6 1 2 3 1 2 3 4 5 6 1 2 3 1
T 1 2 3 1 1 1 2 3 4 5 1 2 1 2 3 4 5 6 7

S[s, p]← p−
{−1 if s �∈ P[0 . . . p− 1]

max{0 ≤ k < p | P[k] = s} otherwise ,

where s ∈ Σ is a symbol in the alphabet; p is the length of a prefix of the pattern,
0 ≤ p ≤ m; and S[s, p] records the interval in P between offset p and the rightmost
previous occurrence of symbol s. This shift table is similar to the δ1 table of Colussi [2]
which uses it as part of a more complex string matching algorithm. An example is
shown in Table 2 for the same pattern as is used in Figure 1; clearly, the table requires
O(mσ) time to construct. Note also that the shift for the character aligned one past the
end of the pattern can also be computed, as was first proposed by Sunday [16].

To apply the table S, every decoded character in T that overlaps the current alignment
i (including T[i+m], if it has been decoded) is used as an index into S, together with
the corresponding offset in P. Each of those indicated values in S represents a minimum
shift amount; hence, the largest of them also represents a minimum shift. Resuming the
previous example, if the symbol labeled 2 in Figure 1 was an “A” rather than a “C”, three
elements of S would be considered: S[“A”,16], S[“G”,5], and S[“T”,4]. The correspond-
ing shifts (Table 2) are 1, 6, and 1; the maximum of these, 6, is used as the overall shift
amount. More generally, if the current proposed alignment of P commencing at T[i] is
to be shifted, then the update performed is given by:

i ← i+max{S[T[i+ j], j] | 0 ≤ j ≤ m and T[i+ j] has been decoded} .

Smith [15] also proposed the use of a “max” shift amount, based on the two shift vectors
S[∗][m− 1] and S[∗][m], shown as the last two columns in Table 2; and that Raita [12]
explored the notion of checking non-sequential symbols from P, with his proposal to
compare T against P[m− 1], P[0], and P[m/2] before looking at any other symbols.

4 Experiments

Methodology and Implementation. Our experimental study extends the original ROSA
implementation, adding four further factor matching algorithms. Including the origi-
nal KMP implementation of Gog and Moffat [7], we are able to explore: Exhaustive
left-to-right matching (denoted EXH); KMP; Boyer-Moore-Horspool (BMH); the new
suffix array based approach (SA); and the two-dimensional multiple-BMH technique

Strategic Pattern Search in Factor-Compressed Text 9

(MBMH). We measure the execution time cost of the factor matching process, together
with the relative percentage of decoded symbols for different sample rates R, and dif-
ferent pattern lengths m, in all cases using the same block parameter b = 4,096 as was
employed by Gog and Moffat [7]. We do not measure the other steps in the ROSA query
process; they were explored in detail in the two previous studies [7,8], and those com-
ponents of the implementation are reused here without alteration. All algorithms are
implemented in C++11 and compiled using GCC 4.8.1 with optimizations. The suffix
array for Pr was created using Yuta Mori’s LIBDIVSUFSORT library2 version 2.0.1.

Data Sets, Queries and Test Environment. We use the WEB-4G prefix of the data set
used in the experimental evaluation of Gog and Moffat [7], and generate 1000 patterns
for each length m ∈ {4,10,20,40,100}, with each pattern occurring 10–100 times in
the collection. We built two ROSA indexes with b = 4,096, and factor approximation
rates R = 16 and R = 256. Our machine was equipped with 148 GB RAM and we used
one Intel Xeon core (E5640) running at 2.67 Ghz, approximately 1.6 times the clock
speed of the 1.7 GHz Macbook Air used by Gog and Moffat. We report only the times
required to perform the factor matching step, which does not include the use of the
condensed BWT, does not include the access of a suffix block, does not include the use
of the bit-blind tree within the block, and does not include fetching the set of factor
identifiers. For the relative runtimes of these phases see Figure 5 of Gog and Moffat [7].

Symbols Decoded. In uncompressed text, the number of comparisons performed by
an algorithm is generally a good indicator of run time performance. However, decod-
ing symbols is the dominant cost when matching in factor compressed text. Figure 2
(top) shows the number of decoded symbol per query, for different sample rates and
pattern lengths. When R = 16, the number of decoded symbols is roughly one order
of magnitude smaller than for R = 256, as there are 16 times more factors which can
contain the pattern. The relative performance of each algorithm remains similar. The
two algorithms which employ left-to-right processing – EXH and KMP – decode the
most symbols. The classic BMH approach is more efficient, as alignment is performed
right-to-left, and so some factors are only partially decoded. As the pattern length in-
creases, this effect is more visible, since the percentage of symbols that can be skipped
per alignment increases. The two advanced methods – SA and MBMH – perform much
better than the classical pattern matching algorithms. For R = 16 and m = 4, the new
methods decode roughly half as many symbols as BMH, and decode a third of the sym-
bols of EXH and KMP. For larger patterns and larger match regions, the difference is
even more marked. For R = 256 and m = 100, both SA and MBMH on average decode
20% of the symbols of BMH, and one eighth of the symbols required by KMP and
EXH.

The fraction of “possible” symbols decoded is shown in the bottom half of Fig-
ure 2, calculated as the percentage of symbols decoded compared to a “blind search”
algorithm which aligns P to all positions amongst the first R factors. That is, the de-
nominator is the count of symbols in all of the first R factors, plus the whole of the
further factors required to span a further m− 1 symbols. If the occurrence of P is uni-
formly distributed over the positions within the first R factors, as was assumed earlier,

2 Available at https://code.google.com/p/libdivsufsort

https://code.google.com/p/libdivsufsort

10 S. Gog, A. Moffat, and M. Petri

R: 16 R: 256

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●
●●●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●
●
●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

10

100

1000

10000

D
ec

od
ed

 S
ym

bo
ls

EXH
KMP
BMH
SA
MBMH

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

0%

25%

50%

75%

100%

4 10 20 40 100 4 10 20 40 100

Pattern Length

P
er

ce
nt

ag
e

of
 S

ym
bo

ls
 d

ec
od

ed

Fig. 2. Total symbols decoded (top) and percentage of decoded symbols (bottom) per query for
queries of length m ∈ {4,10,20,40,100}, using b = 4096 and R ∈ {16,256} over WEB-4G. The
boxes represent the median and quartiles of the measured distributions, and the whiskers depict
elements within 1.5 times of the corresponding inter-quartile ranges.

then algorithms that access all symbols in each alignment should on average decode a
little over 50% of that total number of symbols. For R = 256, both exhaustive decoding
algorithms (EXH and KMP) do indeed decode close to 50% of the available symbols.
For R = 16 the total number of positions covered by the first R factors is much smaller
relative to the pattern; hence, for EXH and KMP, the percentage of decoded symbols is
over 60% when R = 16.

Regular BMH decodes a smaller fraction of the symbols than the two exhaustive
schemes. For R = 256 and large patterns, around 25% of all symbols are decoded. The
SA and MBMH approaches significantly outperform the other three. The relative dif-
ference between the different methods increases as the pattern size increases, because
longer patterns allow larger shifts to be performed. For R = 256 the percentages of de-
coded symbols for BMH, SA and MBMH decreases as the pattern length increases. For
the small sample rate (R = 16), this is not the case as the number of decoded symbols

Strategic Pattern Search in Factor-Compressed Text 11

R: 16 R: 256

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●
●
●●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●
●
●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●●●

●
●

●

●
●●

●
●

●
●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●●●

●
●

●

●
●●

●
●

●
●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●
●
●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

10

100

1000

10000

4 10 20 40 100 4 10 20 40 100

Pattern Length

T
im

e
[µ

s]

EXH
KMP
BMH
SA
MBMH

Fig. 3. Time in microseconds per query for queries of length m ∈ {4,10,20,40,100}, using b =
4096 and R ∈ {16,256} over WEB-4G

for large patterns (roughly 100, as shown in the top graph) is close to the length of the
pattern. As a match always occurs in our experiments, at least m symbols have to be
decoded by all methods. The two new approaches – SA and MBMH – require similar
numbers of characters to be decoded, across all of the configurations tested.

Factor Matching Runtime Performance. As already noted, factor matching time can be
a dominant component of overall ROSA search time, especially for large values of R.
Replacing left-to-right search methods by right-to-left ones (BMH, SA, MBMH) sub-
stantially decreases the number of symbols decoded. Figure 3 shows how these savings
translate into reduced execution times, showing the cost of the matching phase in mi-
croseconds for each of the different matching algorithms. When R = 256, the speed dif-
ferentials match the arrangement shown in Figure 2. For shorter patterns the relativities
are similar, but BMH outperforms both EXH and KMP for larger patterns. The original
BMH approach is three times slower than SA, and five times slower than MBMH, val-
idating the decision to search for more complex shift mechanisms. For R = 16, the SA
method is slower than all other methods, whereas MBMH remains fast. This is caused
by the additional time spent to construct the suffix array – small values of R don’t al-
low the pre-processing investment to be sufficiently recouped. Suffix array construction
takes between 150 to 350 microseconds in these experiments, and the SA method is
only viable for large R and m ≥ 10, whereas MBMH remains fast in all instances.

5 Conclusion

We have described enhanced string searching mechanisms that provide accelerated pat-
tern matching when a particular combination of constraints applies, most notably, when
access to elements of the text T is not O(1) per operation. The particular application for
the new methods is in the ROSA large-scale suffix array data structure, which provides
indexed pattern search over large texts for which it is not possible to hold a compressed

12 S. Gog, A. Moffat, and M. Petri

index, such as an FM-INDEX, in memory. The two mechanisms we describe expend
additional pre-processing time on building multi-faceted shift structures, to reduce the
number of alignments that must be checked, and hence reduce the number of characters
of T that are accessed. Our experimental results show that the new methods provide
a two-fold speed improvement for patterns of length m = 20, and a six-fold improve-
ment for patterns of length m = 100. Reducing the cost of the pattern-matching phase
in ROSA searching gives rise to an equivalent saving in overall querying costs. Other
pattern search mechanisms beyond the two canvassed here may also be applicable. In
particular, because the pattern pre-processing cost can be allowed to be super-linear in
m, many further options are available [3].

Acknowledgment. This work was supported under Australian Research Council’s Dis-
covery Projects funding scheme (project number DP110101743).

Software. The ROSA software is available at https://github.com/mpetri/RoSA;
it is based on the Succinct Data Structure Library (SDSL) [6].

References

1. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. C. ACM 20, 1075–1091 (1977)
2. Colussi, L.: Fastest pattern matching in strings. J. Alg. 16, 163–189 (1994)
3. Faro, S., Lecroq, T.: The exact online string matching problem: A review of the most recent

results. ACM Comput. Surv. 45(2), 13:1–13:42 (2013)
4. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for search in external mem-

ory and its applications. J. ACM 46(2), 236–280 (1999)
5. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581 (2005)
6. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct

data structures. In: Proc. Symp. Experimental Algorithms, pp. 326–337 (2014)
7. Gog, S., Moffat, A.: Adding compression and blended search to a compact two-level suffix

array. In: Proc. Symp. String Processing and Inf. Retrieval, pp. 141–152 (2013)
8. Gog, S., Moffat, A., Culpepper, J.S., Turpin, A., Wirth, A.: Large-scale pattern search using

reduced-space on-disk suffix arrays. IEEE Trans. Knowledge and Data Engineering 26(8), 1
(2014)

9. Horspool, R.N.: Practical fast searching in strings. Soft. Prac. & Exp. 10(6), 501–506 (1980)
10. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comp. 6(1),

323–350 (1977)
11. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings: Practical On-Line Search

Algorithms for Texts and Biological Sequences. Cambridge University Press (2002)
12. Raita, T.: Tuning the Boyer-Moore-Horspool string searching algorithms. Soft. Prac. &

Exp. 22(10), 879–884 (1992)
13. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encod-

ing k-ary trees and multisets. In: Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 233–242
(2002)

14. Sinha, R., Puglisi, S.J., Moffat, A., Turpin, A.: Improving suffix array locality for fast pattern
matching on disk. In: Proc. ACM SIGMOD Int. Conf. Management of Data, pp. 661–672
(2008)

15. Smith, P.D.: Experiments with a very fast substring search algorithm. Soft. Prac. &
Exp. 21(10), 1065–1074 (1991)

16. Sunday, D.M.: A very fast substring search algorithm. C. ACM 33(8), 132–142 (1990)

https://github.com/mpetri/RoSA

Relative Lempel-Ziv

with Constant-Time Random Access

Héctor Ferrada1,�, Travis Gagie2,��,
Simon Gog3,� � �, and Simon J. Puglisi2,†

1 Department of Computer Science
University of Chile, Chile

2 Department of Computer Science
University of Helsinki, Finland

3 Institute of Theoretical Informatics
Karlsruhe Institute of Technology, Germany

Abstract. Relative Lempel-Ziv (RLZ) is a variant of LZ77 that can
compress well collections of similar genomes while still allowing fast ran-
dom access to them. In theory, at the cost of using sublinear extra space,
accessing an arbitrary character takes constant time. We show that even
in practice this works quite well: e.g., we can compress 36 S. cerevisiae
genomes from a total of 464 MB to 11 MB and still support random
access to them in under 50 nanoseconds per character, even when the
accessed substrings are short. Our theoretical contribution is an opti-
mized representation of RLZ’s pointers.

1 Introduction

Advances in DNA sequencing have led to the creation of massive genomic
databases. In many cases these databases hold collections of genomes from in-
dividuals of the same species or closely related species. Such genomes tend to
be very similar, so referential compression schemes such as Ziv and Lempel’s
LZ77 [14] perform very well on them (see, e.g., [1,13]). Supporting fast ran-
dom access to LZ77-compressed texts is problematic [12] but several authors
have proposed variants of LZ77 on which random access is easier: e.g., Kreft
and Navarro’s LZ-End [7], Kuruppu, Puglisi and Zobel’s Relative Lempel-Ziv
(RLZ) [8,9] and Deorowicz and Grabowski’s GDC [2].

In theory RLZ implemented with compressed bitvectors offers constant-time
random access, which is faster than LZ-End, GDC or schemes such as block
graphs [4] or FOLCA [10] that are not based on LZ77. The main disadvantage of
using compressed bitvectors is their redundancy, which is nevertheless sublinear

� Supported by Fondecyt 1-140796, Chile.
�� Supported by Academy of Finland grant 268324.

� � � This work was carried out while the third author was employed at the University
of Melbourne, supported by ARC Grant DP110101743.

† Supported by Academy of Finland grant 258308.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 13–17, 2014.
c© Springer International Publishing Switzerland 2014

14 H. Ferrada et al.

in the length of the original file. As far as we are aware, such an implementation
has never been tried in practice. In this paper we describe an implementation
with which we can, e.g., compress 36 S. cerevisiae genomes from 464 MB to 11
MB and still support random access to them in under 50 nanoseconds per char-
acter, even when the accessed substrings are short. Our theoretical contribution
is a compressed representation of RLZ’s pointers that is optimized for genomic
databases.

2 Relative Lempel-Ziv

Given a collection of similar genomes, RLZ works by selecting or generating a
reference genome R, which it leaves uncompressed (or only entropy-compressed),
then compressing each of the remaining genomes relative to R. To compress
another genome S[0..n − 1] relative to R, our implementation of RLZ greedily
parses S into phrases such that each phrase consists of a substring of R followed
by a single character, called a mismatch character. When the alphabet size is
constant this can be done in O(n) time using, e.g., an FM-index [3] for R (see,
e.g., [6]).

Kuruppu et al. originally defined RLZ such that each phrase is either a sub-
string of R or a single character. Deorowicz and Grabowski pointed out, however,
that with this definition, single-nucleotide polymorphisms (SNPs) — the most
common kind of differences between individuals’ genomes — tend to cause two
phrase breaks each, instead of only one.

If we want only to compress S, we need only store a sequence (�0, p0, c0), . . . ,
(�z−1, pz−1, cz−1) of triples,where z is the number of phrases. Each triple (�r, pr, cr)
indicates that the corresponding phrase is R[pr..pr + �r − 1] cr, or just cr if �r = 0
(in which case pr is irrelevant). To decompressS later, we simply replace each triple
by its phrase.

2.1 Compressed Bitvectors

A bitvector B is a binary string that supports access, rank and select queries:
B.access(i) returns B[i] (and is often written simply B[i]); B.rank(i) returns
the number of 1s in B[0..i]; and B.select(i) returns the position of the ith 1
in B. The best theoretical bound is due to Pǎtraşcu [11], who showed how B
can be stored in |B|H0(B)+O(|B|/ loga |B|) bits, where H0(B) is the 0th-order
empirical entropy of B and a is any constant, such that all three kinds of queries
can be answered in O(1) time.

2.2 Absolute Pointers

If we want to support random access, then we can store a bitvector B1[0..n]
with 1s marking where phrases start in S; an array P [0..z − 1] = [p0, . . . , pz−1];
and an array C[0..z − 1] = [c0, . . . , cz−1]. We set B1[0] = 0 so that B1.rank(i)
is the index of the phrase containing S[i], and we set B1[n] = 1 so that S[i]

Relative Lempel-Ziv with Constant-Time Random Access 15

ACCTGA. . .

ACCTGA. . .

. . . ATA. AC AAT. . .

. . . AG AAT. . .

pr

hr i

pr + i− hr

. . . ATA. . .

Compressed:

Reference:

SNP

Fig. 1. We can use the relative pointer P ′[r] = pr − hr instead of the absolute pointer
P [r] = pr because P ′[r] + i = pr + i− hr = P [r] + i− hr

is a mismatch character if and only if B1[i + 1] = 1. For simplicity, we assume
B1.select(0) = 0.

To access S[i], we

1. find the index r = B1.rank(i) of the phrase containing S[i];
2. check whether B1[i + 1] = 1, to see if S[i] is a mismatch character;
3. if so, return C[r];
4. if not, find the starting position hr = B1.select(r) of the rth phrase;
5. return R[P [r] + i− hr].

We say this approach uses absolute pointers because each cell of P contains a
direct pointer to the starting position of the appropriate substring of R.

2.3 Relative Pointers

We can simplify our access procedure somewhat if we store relative pointers
instead of absolute pointers. That is, we store an array P ′[0..z − 1] = [p0 −
h0, . . . , pz−1 − hz−1], where hr is again the starting position in S of phrase r.
Notice that P ′[r] + i = pr + i− hr = P [r] + i − hr for any i — see Figure 1 —
so we no longer need select to access S. Specifically, to access S[i] we now

1. find the index r = B1.rank(i) of the phrase containing S[i];
2. check whether B1[i + 1] = 1, to see if S[i] is a mismatch character;
3. if so, return C[r];
4. if not, return R[P ′[r] + i].

2.4 Compressed Pointers

Another benefit of relative pointers is that we can compress P ′ more easily
than P . For example, Kuruppu et al. noted that the difference between phrases’
absolute pointers is often the total length of the phrases between them, and used

16 H. Ferrada et al.

Table 1. Random access time (for extraction lengths m = 8, 64, 512, 4096 characters)
for RLZ and GDC for a collection of 36 S. cerevisiae genomes, totalling 464 MB before
compression. The two GDC rows correspond to different settings for the R-block size
and D-block size (see [2]). Times are given in nanoseconds per extracted character
averaged over 10 million extractions.

Method Size (MB) m = 8 m = 64 m = 512 m = 4096

RLZ 11 50 7 3 2

GDC-ra-28-28 14 500 68 15 8
GDC-ra-212-212 10 750 102 19 8

that observation to achieve better compression by discarding pointers that can
be computed from earlier pointers and phrases’ lengths. They did not support
fast random access with that implementation, but they pointed out that it could
be reintroduced by sampling the missing pointers, creating a tradeoff between
compression and access time.

The most likely explanation for Kuruppu et al.’s observation is that, if phrase
r breaks because of an SNP, then usually pr+1 = pr + �r + 1, in which case
P ′[r + 1] = P ′[r]. To take advantage of this, we run-length compress P ′ as
follows: we store a bitvector B2[0..z − 1] with 1s marking the relevant pointers
in P ′ that differ from the preceding relevant pointers; we store an array P ′′

containing the pointers in B2; and then we discard P ′. (Recall that a pointer is
irrelevant if its phrase is only a mismatch character, and relevant otherwise.)

We set P ′′[0] to be the first relevant pointer in P ′ but we do not mark it
in B2, so that B2.rank(r) is the index of the run in P containing the pointer
for phrase r. The last step in our access procedure now becomes “if not, return
R[P ′′[B2.rank(r)] + i]”.

3 Experiments

We implemented the above scheme in C++ using the Succinct Data Structure Li-
brary (SDSL) [5] version 2.0.1 (available at https://github.com/simongog/

sdsl-lite) for the bitvectors. As a baseline we also tested Deorowicz and
Grabowski’s GDC data structure, which is the best RLZ variant supporting
random access of which we are aware.

Setup. We performed experiments on a machine equipped with a 3.16GHz In-
tel Core 2 Duo CPU with 6144KiB L2 cache and 4GiB of main memory. The
machine had no other significant CPU tasks running and only a single thread
of execution was used. The OS was Linux (Ubuntu 12.04, 64bit) running ker-
nel 3.2.0. All programs were compiled using g++ version 4.8 with -O3 -static

-DNDEBUG options. All reported runtimes are recorded with the C clock function.

Data. We tested our implementation on a collection of 36 S. cerevisiae (yeast)
genomes, each about 12 MB long, and 464 MB in total.

https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite

Relative Lempel-Ziv with Constant-Time Random Access 17

Mismatch Characters. The genomes were over the alphabet {A,C,G,T,N} but
there were relatively few Ns in the array C of mismatch characters. Because of
this, we stored in a hash table the positions of all the Ns in C; replaced the Ns
by As; and packed the mismatch characters into two bits each. We considered C
blocks of 20 mismatch characters and stored a binary string in which the ith bit
indicated whether the ith block originally contained any Ns. Whenever we read
an A from C, we checked the binary string to see if the block containing that
A originally contained any Ns and, if so, checked the hash table to see if that
particular A was originally an N.

Results. Sizes and times for random access are shown in Table 1. Our implemen-
tation of RLZ had very fast extraction times for short substrings. For example,
it was over 10 times faster than GDC for substrings of length 8. For longer sub-
strings the gap between the speed of the two approaches narrowed, but even for
4KB substrings RLZ was still more than 4 times faster than GDC.

References

1. Deorowicz, S., Danek, A., Grabowski, S.: Genome compression: A novel approach
for large collections. Bioinformatics 29(20), 2572–2578 (2013)

2. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979–2986 (2011)

3. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM52(4), 552–581 (2005)
4. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern matching in

compressed repetitive texts. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653–662. Springer, Heidelberg (2011)

5. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

6. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In:
Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS,
vol. 7933, pp. 139–150. Springer, Heidelberg (2013)

7. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comp. Sci. 483, 115–133 (2013)

8. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

9. Kuruppu, S., Puglisi, S.J., Zobel, J.: Optimized relative Lempel-Ziv compression
of genomes. In: Proc. ACSC, pp. 91–98 (2011)

10. Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar com-
pression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 218–229. Springer, Heidelberg (2013)

11. Pǎtraşcu, M.: Succincter. In: Proc. FOCS, pp. 305–313 (2008)
12. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-

compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 247–258. Springer, Heidelberg (2013)

13. Wandelt, S., Leser, U.: FRESCO: Referential compression of highly-similar se-
quences. IEEE Trans. Comp. Bio. Bioinf. 10(5), 1275–1288 (2013)

14. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

Efficient Compressed Indexing

for Approximate Top-k String Retrieval�

Héctor Ferrada and Gonzalo Navarro

Department of Computer Science, University of Chile, Chile
{hferrada,gnavarro}@dcc.uchile.cl

Abstract. Given a collection of strings (called documents), the top-k
document retrieval problem is that of, given a string pattern p, finding
the k documents where p appears most often. This is a basic task in
most information retrieval scenarios. The best current implementations
require 20–30 bits per character (bpc) and k to 4k microseconds per
query, or 12–24 bpc and 1–10 milliseconds per query. We introduce a
Lempel-Ziv compressed data structure that occupies 5–10 bpc to answer
queries in around k microseconds. The drawback is that the answer is
approximate, but we show that its quality improves asymptotically with
the size of the collection, reaching over 85% of the accumulated term
frequency of the real answer already for patterns of length 4–6 on rather
small collections, and improving for larger ones.

1 Introduction

Finding the k documents most relevant to a search query is the most basic
information retrieval problem. Originally defined on natural language text col-
lections, its generalization to collections of arbitrary strings turns out to be a
problem arising naturally in areas like bioinformatics, multimedia databases,
software repositories, and so on [11]. For example, one might want to find the
genes where a certain motif appears most often (as they may deserve further
biological analysis), modules where a function is called most often (to spot co-
hesion issues in software design), songs containing most occurrences of a certain
sequence (to hint plagiarism), and so on. On East Asian languages like Chinese
and Korean, classical solutions for Western natural languages are not applicable,
and they are usually handled as generic string collections as well.

Our collection will contain D documents, which are strings d1, . . . , dD, over
an alphabet [1, σ], of total length n =

∑ |di|. We preprocess them to build
an index. Later, given a pattern string p[1,m] and a threshold k, we must list
the k documents where p appears most often. In natural language searching
the measure of relevance can be more sophisticated than just the number of
occurrences of p, but frequency is still a key component. Usually even more
complex measures are used in a second step, where the top-k documents are
further filtered to obtain the final result [14].

� Partially funded by Fondecyt grant 1-140796, Chile.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 18–30, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Compressed Indexing for Approximate Top-k String Retrieval 19

Hon et al. [4] proposed a first index for this problem, but its space usage is
superlinear, O(n log n) words; their implementation also uses too much space.
Later, Hon et al. [6] presented a structure using linear space, that is, O(n) words
or O(n logn) bits. They solved queries in O(m + k log k) time. Navarro and
Nekrich [12] reduced the time to the optimal O(m+ k). Konow and Navarro [7]
implemented this index, obtaining an index that uses 20–30 bits per character
(bpc)1 and answers top-k queries in k to 4k microseconds (μsec). Their time
complexity is O(m + (k + log log n) log logn) with high probability, on statisti-
cally typical texts [15]. Shah et al. [5] proposed another index that is not yet
implemented, but it is likely to perform similarly, and has a time complexity
of O(m + (log logn)6 + k(log σ log logn)1+ε) for any constant ε > 0. Navarro
and Valenzuela [13] aimed at using less space, reaching 12–24 bpc depending
on the compressibility of the collections, but retrieval times are an order of
magnitude higher, 1 to 10 milliseconds (the time complexity is upper-bounded
by O(m + k log4+ε n)). There are several other theoretical proposals [11] that
promise to use much less space than current implementations, but that are most
likely to be even slower in practice (as already hinted in current studies [13]).

In this paper we introduce an index that uses much less space and time
than current alternatives. It is based on Lempel-Ziv compression, precisely LZ78
[16], which compresses texts by building a dictionary of frequent strings (called
phrases) and then parsing the text as a sequence of n′ phrases. It holds n′ ≤
n/ lgσ n for any text, and moreover n′ lgn = nHk+O(n(k log σ+log logn)/ logσ n)
for any k, where Hk is the k-th order empirical entropy of the text [8]. This is
n′ lgn = nHk + o(n log σ) for any k = o(logσ n). Our structure builds on pre-
vious LZ78-compressed indexes called LZ-indexes, developed for finding all the
occurrences of p [10,2] and for listing all the documents where p occurs [3].
Like these indexes, our structure uses, in practice, (2 + ε)n′ lgn+O(n′ log σ) =
(2 + ε)nHk + o(n log σ) bits, and it solves top-k queries in time O(m+ k logD).
In practice, the space is around 5–10 bpc to achieve a query time around k μsec.
This time/space tradeoff is well below that of previous implementations.

In exchange, our top-k answer is approximate, as we consider only the oc-
currences of p within phrases. If the text is generated by a stationary source,
the occurrences of any pattern p appear regularly, every d positions on aver-
age (e.g., d = σm if the symbols are generated uniformly and independently).
On the other hand, since n′ ≤ n/ lgσ n, only (n/d)m(n′/n) ≤ (n/d)m/ lgσ n of
those occurrences hit a phrase boundary on average. This means that a fraction
of 1 −m/ lgσ n of the occurrences are within phrases (the fraction improves to
1 −mHk/ lgn on compressible texts). Thus, we are considering asymptotically
all of the occurrences of p when building the approximate top-k answers for short
enough patterns, m = o(logσ n). Note that, if m ≥ lgσ n, then it occurs O(1)
times on average in the collection, and then a plain listing of all the documents
where it appears [3] is an appropriate tool to find its top-k documents.

We show that, already on moderate collections of n = 25–130 MB, the quality
of the answer (measured as the number of occurrences of p on the k retrieved

1 The space results they report [7] are somewhat underestimated, as we show here.

20 H. Ferrada and G. Navarro

documents as a percentage of the number of occurrences on the actual top-k
documents) is always over 85% for short patterns (m = 4–6), improving as the
collection size grows and as the collection becomes more compressible with LZ78.

2 The LZ-Index

Assume we concatenate the documents d1 · · · dD (each terminated with a special
symbol $, which always marks the end of a phrase) into a text T [1, n] over
alphabet [1, σ]. The LZ78 compression algorithm cuts the text into n′ distinct
phrases, each of which is equal to the longest possible previous phrase plus the
following new symbol. Each phrase is then replaced by the id of the previous
corresponding phrase and the extra symbol. The number of bits output by the
compressor is |LZ78| = n′(lg n′+lg σ), which converges to the statistical entropy
of T [8], and it always holds n′ ≤ n/ lgσ n. The LZ-index [10] is a text index built
on the LZ78 parsing of the text, and it supports locating the occurrences of a
pattern p[1,m] in T . The index is formed by the following components (among
others not relevant for this paper).

1. LZTrie: a trie composed of all the phrases produced by the LZ78 parsing.
Note that the set of phrases is prefix-closed (every prefix of a phrase is also a
phrase), so LZTrie has n′ nodes. It stores the phrase identifier of each node.

2. RevTrie: a trie storing the reversed phrases. It is not prefix-closed, so there
are empty nodes not associated with phrases. It contains originally trev nodes.
We contract unary paths of empty nodes to a single edge, after which the
trie has nrev = n′ + ne ≤ 2n′ nodes, where ne empty nodes remain after
contracting. The phrase numbers of the n′ nonempty nodes are stored.

3. Node: an array mapping from phrase numbers to their preorder in LZTrie.

The modern version [2] of the LZ-index uses (2+ε)|LZ78|(1+o(1)) bits, for any
ε>0. The occurrences of pattern p are divided into type 1 (those completely inside
a phrase), and types 2 and 3 (those spanning two or more phrases, respectively).
Those are found separately at search time. In this paper we are only interested in
finding occurrences of type 1. For those, we search for pr (the reversed pattern)
in RevTrie, arriving at node vr. Each node ur descending from vr (including vr)
corresponds to an occurrence of type 1 where p appears at the end of the phrase.
The other occurrences of type 1 are the nodes u′ that descend from u in LZTrie,
where u corresponds to ur. Thus, for each node ur that is nonempty, we read
the phrase id fu of ur, compute u = Node(fu), and report all the phrase ids in
the subtree of u. It takes O(m+ occ) time to report the occ type-1 occurrences.

3 An LZ-Index for Approximate Top-k Retrieval

Our top-k retrieval LZ-Index is a modification of the original LZ-Index. The
parsing into phrases is changed so as to force phrases to finish when the document
terminator $ is seen, so that no phrase crosses a document border. The LZ-Index
is then represented with the following structures, inspired in previous work [3]:

Efficient Compressed Indexing for Approximate Top-k String Retrieval 21

LZTrie: We store only the topology and the documents where the phrases lie,
using in total n′ lgD +O(n′) bits.
Plz: The LZTrie topology represented with parentheses in a preorder traver-

sal, and made navigable in O(1) time using 2n′ + o(n′) bits (FF [1]).

Dlz: An array storing, for each node v of LZTrie in preorder, the document
identifier (using �lgD� bits) where its corresponding phrase lies.

Revtrie: We store the structures needed to carry out searches directly on it,
without the help of the LZTrie, using in total trev lg σ+O(trev) bits. In theory
trev can be as large as n but in practice it is much closer to nrev ≤ 2n′.
Prev: The tree topology using parentheses and made constant-time naviga-

ble, using 2trev + o(trev) bits (FF [1]).

Erev: A bitmap marking empty nodes, in preorder, using trev bits.

Urev: A bitmap marking empty unary nodes (i.e., contracted), from those
that are marked empty in Erev, using trev − n′ bits.

Lrev: A sequence of the nrev letters that label the non-contracted edges lead-
ing to the nodes, in preorder. Used to find the child nodes at searching.

Mrev: A sequence of the trev − nrev letters that label the contracted edges
leading to the nodes, in preorder. Used to check that the characters in
the contracted edge match the search pattern.

All the bitmaps are stored with sublinear extra data structures that solve
rank/select operations in constant time [9]. This allows, for example, finding
the jth 0 or 1 in the bitmap in constant time, or count the number of 0s or
1s in any bitmap interval.

Node: This is recast as a mapping from nonempty RevTrie nodes to their
LZTrie preorder numbers, using n′ lg n′ +O(n′) bits.

Top: To solve top-k document retrieval for any k ≤ k∗, where k∗ is a parameter
defined at construction time, we will store the top-k∗ answers, in decreasing
frequency order, for some RevTrie nodes. We use a parameter g to define the
RevTrie nodes that will store their top-k∗ answer: These will be the (empty
or nonempty) nodes representing a string with at least gk∗ occurrences of
type 1 in T . Empty unary nodes will not store their answer set, as this is the
same of its child. The marking will be node for all the k∗ values in [1..D] that
are a power of 2. Nodes v will store their top-k∗ answers for the maximum
k∗ value for which they are marked. This is implemented with the following
additional structures:

Btop: A bitmap of size nrev marking which RevTrie nodes have top-k∗ an-
swers precomputed, in preorder.

Ktop: The sequences of k∗ most frequent documents where each node marked
in Btop appears, concatenated in the same order of Btop. The identifiers
are stored using �lgD� bits, in decreasing frequency order.

LKtop: A bitmap marking the starting positions of the sequences in Ktop.

Atop: Since there may be less than k∗ distinct documents where the marked
node appears, this bitmap indicates whether a node marked in Btop

already lists all of the possible documents.

22 H. Ferrada and G. Navarro

The larger g, the fewer RevTrie nodes store their top-k∗ documents: While in
theory we might store up to nrev k

∗ lgD bits, in practice this is much closer
to (nrev/(gk

∗)) k∗ lgD = (nrev lgD)/g, which added over the lgD values for
k∗ gives (nrev lg

2 D)/g bits. The other bitmaps use O(nrev) bits.

Figure 1 illustrates the main components of our index. The overall space is, in
practice, upper bounded by n′(lg n′+lgD+2 lg σ+2(lg2 D)/g+O(1)) bits. Thus
a value like g = Θ(lgD) obtains space similar to the original pattern-matching
LZ-index, (2 + ε)n′ lg n+O(n′ log σ) bits [2].

Since phrases are cut at the end of documents, there may appear a few re-
peated phrases across the collection. Therefore, at construction time, we have to
consider the special case when two or more documents end with the same phrase.
This is handled by storing a short linked list, both in RevTrie and LZTrie, at-
tached to the nodes representing phrases that appear more than once.

Querying. At query time, we find the RevTrie node corresponding to pr, move
to its highest descendant not marked in Urev, v

r, and check if it is marked in
Btop. If marked and either (1) Atop indicates it stores all the possible documents,
or (2) LKtop indicates that it stores k′ ≥ k top documents, then we return the
first k documents stored for vr inKtop and finish. Otherwise, we need to solve the
answer by brute force, by traversing all its type-1 occurrences. By construction,
this takes place only if vr has k′ < k answers stored (including the case k′ = 0).
If k∗ is the power of 2 next to k, then vr does not store its top-k∗ answers,
thus by construction it has less than gk∗ occurrences of type 1. Therefore the
brute-force process must traverse O(gk) occurrences.

In order to solve vr by brute force, we use Prev to compute its preorder iv
and its subtree size sv. Thus all the subtree of vr has the preorder interval
[iv, iv + sv − 1]. Then we use rank on Erev to map it to the interval [i1, i2] of
nonempty preorder values. For each i in this interval, we compute iu = Node(i),
which is the preorder of the corresponding node in LZTrie, and then use Plz to
obtain the corresponding node u in LZTrie. Then we compute the size su of u
and obtain the interval [iu, iu+ su− 1] of all the descendants of u in LZTrie. We
process all the document identifiers in Dlz[iu, iu + su − 1], for all the nodes u in
LZTrie that correspond to all the RevTrie descendants ur of vr, accumulating
their frequencies and then choosing the k highest ones. The whole process takes
O(m+ gk + k log k) = O(m+ k logD) time.

4 Experimental Results

We use various document collections, following previous work [13,7] and explor-
ing different aspects of statistical compressibility, size, number of documents, and
repetitiveness: ClueWiki (English, few large documents), DNA (synthetic, mildly
repetitive with 5% mutations among documents), KGS (Go game records), Wiki
(more and shorter documents), Proteins (many more documents, almost incom-
pressible), and TodoCL (a snapshot of the Chilean Web, with real queries, used to

Efficient Compressed Indexing for Approximate Top-k String Retrieval 23

Fig. 1. The main data structures of our index. The search for the pattern qr reaches
node W r in the RevTrie, which is marked in Btop, therefore the answer is retrieved
from the vector Ktop using the marks in the bit array LKtop. The search for pr, instead,
reaches node V r in the RevTrie. Since this is an unmarked node, the answer is computed
online by accumulating frequencies from the document array of phases, Dlz.

measure quality). Table 1 shows their main characteristics (column “compress”
shows how the LZ78-based Unix Compress program compresses them).

Our machine is an Intel Xeon with 8 processors of 2.4GHz and 12MB cache,
with 96GB RAM. It runs Linux 2.6.32-46-server, and we use gcc with full opti-
mization and no multithreading. We chose 40,000 patterns of lengths m = 3 and
m = 8 extracted randomly from the collection.

4.1 Time and Space

Table 1 shows the size of our structure with g = 512, where it uses almost its
minimum possible space, and with g = 128, where it achieves around k μsec to
solve queries, as we will see. The minimum space ranges from 1.2 to 2.8 times
the space of Unix Compress. For this value of g our analysis predicts a factor
around 2. On the other hand, our index uses around 5–10 bpc with g = 128.

Fig. 2 gives the breakdown of the space obtained by our index on those collec-
tions, for increasing values of g. The components are LZTrie (the tree topology
and the document identifiers, which dominate), RevTrie (the tree topology and
the letters), array Node, and Top (the storage of the best documents for some
precomputed nodes). We show the breakdown as cumulative space curves. As g
increases, the Top component is reduced and the structure becomes slower.

Now we compare our structure with previous work. We consider search pat-
terns of lengths m = 3 in Fig. 3 and m = 8 in Fig. 4, and measure the cost to
compute the top-10 and top-100 documents, for g = 512, 256, 128, We denote
DCC’13 the existing fast and large structure [7] and denote SEA’12 a choice of
relevant space/time tradeoffs of the existing small and slow structure [13]. In
most texts, our structure uses 5–7 bpc to solve top-k queries in around k μsec.

24 H. Ferrada and G. Navarro

Table 1. Main measures related to the space usage of our index. We refer here to the
first 200MB of TodoCL.

Collection n D n/n′ compress g = 512 g = 128
(MB) (bpc) (bpc) (bpc)

ClueWiki 131 3,334 17.24 3.63 4.50 6.31
DNA 95 10,000 11.50 2.68 4.86 5.30
KGS 25 18,838 14.97 1.85 5.13 6.23
Wiki 80 40,000 9.58 3.34 6.73 7.43
Proteins 56 143,244 6.43 4.61 9.58 10.10
TodoCL.200 200 48,186 9.86 3.91 7.32 6.65

The exception is Proteins, where it uses around 10 bpc due to its incompress-
ibility. Except on Proteins, where it uses over 20 bpc, structure SEA’12 can use
similar or less space than ours, but at the cost of being 4–5 orders of magnitude
slower. Even if using much more space, SEA’12 is at least 10 times slower than
ours. Structure DCC’13, on the other hand, is 4–50 times slower than ours, and
uses 2.5–7 times our space.

4.2 Quality

The drawback is that our structure delivers approximate top-k answers. We
present in Fig. 5 two measures of the quality of the answer. On the left we show
traditional recall, measured in the following way: for each value k′ ∈ [1, k], we
measure how many of the (correct) top-k′ documents are reported within the
(approximate) top-k results. For example, the point at k′ = 1 indicates how
many times the most relevant document is contained in our top-k answer. The
point at k′ = k indicates how many of the correct top-k documents are actually
returned. This measure is interesting in applications where the top-k answer is
postprocessed with a more sophisticated relevance function in order to deliver
a final answer of k′ � k results. The figure shows that, in this scenario, the k′

most relevant candidates are frequently in the approximate top-k answer set, for
small k′. However, when k′ becomes closer to k, the recall degrades, more or less
depending on the collection, and faster for m = 8 than for m = 3. On the other
hand, there are no significant differences between the results for k = 10 and for
k = 100. Results are particularly bad for DNA, KGS, and Proteins.

If our index fails to return a top-k document but returns another one with
the same frequency, we take it as a hit, as both are equally good. In this sense,
recall is a too strict measure of relevance: if the system returns a document with
only slightly fewer occurrences than the correct one, it counts as zero. As the
frequency is only a rough measure of relevance, a much more precise measure of
quality is the sum of the frequencies of the documents in the approximate top-k
answer as a fraction of the sum in the correct top-k answer.

Fig. 5 (right) shows the results under this measure of quality. All collections
perform very well for k = 3, reaching 90%–100% of quality even for k′ = k.
For k = 8, collections ClueWiki and KGS still achieve a reasonable quality over

Efficient Compressed Indexing for Approximate Top-k String Retrieval 25

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

ClueWiki

LZTrie
RevTrie

Node
Top

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

DNA

LZTrie
RevTrie

Node
Top

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

KGS

LZTrie
RevTrie

Node
Top

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

Wiki

LZTrie
RevTrie

Node
Top

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

Proteins

LZTrie
RevTrie

Node
Top

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500

sp
ac

e
(b

pc
)

TodoCL.200

LZTrie
RevTrie

Node
Top

Fig. 2. Space breakdown of our structures for different g values (g is the x-axis)

80%, DNA over 60%, Wiki over 50%, and Proteins only 10%. These differences
in quality can be predicted with Table 1: the less compressible the collection,
the smaller n/n′, and the worse quality obtained for a given pattern length m.

On the other hand, the fact that better quality is obtained for shorter patterns
coincides with our probabilistic analysis. Fig. 6 illustrates this effect more closely,
for increasing pattern lengths. It can be seen that, for the moderate collection
sizes of 25–130 MB we considered, we obtain quality well above 85% for m =
4–6, depending on the text type and its n/n′ value. Fig. 7 shows the case of real
query words (of length > 3 to exclude most stopwords, average length 7.2) and 2-
word phrases (average length 8.0), on increasing prefixes of TodoCL converted to
lowercase (as case is generally ignored in natural language queries). As predicted,
the quality improves with n, from 33%–46% on 200 MB (n/n′ = 10.1) up to
59%–72% on 1.6 GB (n/n′ = 12.5).

26 H. Ferrada and G. Navarro

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

ClueWiki, k = 10, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

ClueWiki, k = 100, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

DNA, k = 10, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

DNA, k = 100, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

tim
e

(m
ic

ro
se

c)

KGS, k = 10, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

tim
e

(m
ic

ro
se

c)

KGS, k = 100, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

Wiki, k = 10, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

Wiki, k = 100, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

tim
e

(m
ic

ro
se

c)

Proteins, k = 10, m = 3

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

tim
e

(m
ic

ro
se

c)

Proteins, k = 100, m = 3

LZ-Index
DCC’13
SEA’12

Fig. 3. Space/time comparison for pattern length m = 3. Space (bpc) is the x-axis.

Efficient Compressed Indexing for Approximate Top-k String Retrieval 27

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

ClueWiki, k = 10, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

ClueWiki, k = 100, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

DNA, k = 10, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

DNA, k = 100, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

tim
e

(m
ic

ro
se

c)

KGS, k = 10, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20

tim
e

(m
ic

ro
se

c)

KGS, k = 100, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

Wiki, k = 10, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

tim
e

(m
ic

ro
se

c)

Wiki, k = 100, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

tim
e

(m
ic

ro
se

c)

Proteins, k = 10, m = 8

LZ-Index
DCC’13
SEA’12

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

tim
e

(m
ic

ro
se

c)

Proteins, k = 100, m = 8

LZ-Index
DCC’13
SEA’12

Fig. 4. Space/time comparison for pattern length m = 8. Space (bpc) is the x-axis.

28 H. Ferrada and G. Navarro

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

ClueWiki

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 fr

eq
ue

nc
y

ClueWiki

m = 3, k = 10
m = 3, k = 100

m = 8, k = 10
m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

DNA

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 fr

eq
ue

nc
y

DNA

m = 3, k = 10
m = 3, k = 100

m = 8, k = 10
m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

KGS

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 fr

eq
ue

nc
y

KGS

m = 3, k = 10
m = 3, k = 100

m = 8, k = 10
m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

Wiki

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 fr

eq
ue

nc
y

Wiki

m = 3, k = 10
m = 3, k = 100

m = 8, k = 10
m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

re
ca

ll

Prot

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
ac

tio
n

of
 fr

eq
ue

nc
y

Prot

m = 3, k = 10
m = 3, k = 100
m = 8, k = 10

m = 8, k = 100

Fig. 5. Recall (left) and quality (right) of our approximate top-k solution, as a function
of the fraction of the answer (x-axis)

Efficient Compressed Indexing for Approximate Top-k String Retrieval 29

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14

fr
ac

tio
n

of
 fr

eq
ue

nc
y

k = 10

ClueWiki
DNA
KGS
Wiki

Proteins

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12 14

fr
ac

tio
n

of
 fr

eq
ue

nc
y

k = 100

ClueWiki
DNA
KGS
Wiki

Proteins

Fig. 6. Quality of our approximate top-k solution, as a function of the pattern length,
for top-10 (left) and top-100 (right)

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 200 400 600 800 1000 1200 1400 1600

fr
ac

tio
n

of
 fr

eq
ue

nc
y

MB

TodoCL - 1-word queries

k=10
k=100

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 200 400 600 800 1000 1200 1400 1600

fr
ac

tio
n

of
 fr

eq
ue

nc
y

MB

TodoCL - 2-word queries

k=10
k=100

Fig. 7. Quality of our approximate top-k solution, as a function of the prefix size of
TodoCL in MB, for words (left) and phrases of 2 words (right)

5 Conclusions

We have introduced a top-k retrieval index for general string collections, based
on Lempel-Ziv compression. The index is orders of magnitude faster, and uses
much less space, than previous work. In exchange, it delivers approximate top-k
answers, which is acceptable in most applications. We analytically show that,
under reasonable assumptions on the text distribution, the answers tend to ex-
actness asymptotically, when the collection is large enough compared to the
pattern length. Our experiments also show that the quality of the answer is
good enough for short patterns already on our moderate-size text collections.
The larger the text collection, or the more compressible it is with LZ78, the
longer the patterns that can be searched with high quality. In this sense, the
index is a very promising alternative to handle the large text collections one
aims at in real life.

We obtain good-quality results for real word queries on a moderately large text
collection. Our next step is to use our index to find top-k candidate documents
for the individual words of multiword queries and then postprocessing the result
into weighted conjunctive or disjunctive queries [14].

30 H. Ferrada and G. Navarro

In natural language, retrieving approximate top-k answers to improve effi-
ciency is a common practice. This avenue has not been explored much for general
string collections. Our work shows that this idea is promising, as large space and
time reductions are possible while still returning answers of good quality.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX, pp. 84–97 (2010)

2. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1), 54–101 (2012)

3. Ferrada, H., Navarro, G.: A Lempel-Ziv compressed structure for document listing.
In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214,
pp. 116–128. Springer, Heidelberg (2013)

4. Hon, W.-K., Patil, M., Shah, R., Wu, S.-B.: Efficient index for retrieving top-k
most frequent documents. J. Discr. Alg. 8(4), 402–417 (2010)

5. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-
time index for top-k document retrieval. In: Kärkkäinen, J., Stoye, J. (eds.) CPM
2012. LNCS, vol. 7354, pp. 173–184. Springer, Heidelberg (2012)

6. Hon, W.-K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval
problems. In: Proc. FOCS, pp. 713–722 (2009)

7. Konow, R., Navarro, G.: Faster compact top-k document retrieval. In: Proc. DCC,
pp. 351–360 (2013)

8. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM J. Comp. 29(3), 893–911 (1999)

9. Munro, I.: Tables. In: Proc. FSTTCS, pp. 37–42 (1996)
10. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discr. Alg. 2(1), 87–114

(2004)
11. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-

trieval on sequences. ACM Comp. Surv. 46(4), article 52 (2014)
12. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear

space. In: Proc. SODA, pp. 1066–1077 (2012)
13. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing,

R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)
14. Clarke, C., Büttcher, S., Cormack, G.: Information Retrieval: Implementing and

Evaluating Search Engines. MIT Press (2010)
15. Szpankowski, W.: A generalized suffix tree and its (un)expected asymptotic be-

haviors. SIAM J. Comp. 22(6), 1176–1198 (1993)
16. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.

IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

Grammar Compressed Sequences

with Rank/Select Support�

Gonzalo Navarro1 and Alberto Ordóñez2

1 Dept. of Computer Science, Univ. of Chile, Chile
gnavarro@dcc.uchile.cl

2 Lab. de Bases de Datos, Univ. da Coruña, Spain
alberto.ordonez@udc.es

Abstract. Sequence representations supporting not only direct access
to their symbols, but also rank/select operations, are a fundamental
building block in many compressed data structures. In several recent ap-
plications, the need to represent highly repetitive sequences arises, where
statistical compression is ineffective. We introduce grammar-based rep-
resentations for repetitive sequences, which use up to 10% of the space
needed by representations based on statistical compression, and support
direct access and rank/select operations within tens of microseconds.

1 Introduction

Given a sequence S[1, n] drawn over an alphabet Σ = [1, σ], an intensively
studied problem in the past few years has been how to represent S space-
efficiently while solving operations rankb(S, i) (number of occurrences of b in
S[1, i]), selectb(S, i) (i-th occurrence of b in S), and access(S, i) = S[i]. The
motivation comes from a wide number of applications involving these function-
alities: text indexes, document retrieval, data grids, and many others [25].

The most well-known data structure to solve rank/select/access (rsa)
queries is the wavelet tree (WT) [18] (with several recent improvements for large
alphabets [3,12]). These data structures are able to statistically compress the
input sequence while efficiently solving rsa queries. However, they are unable to
compress S beyond its statistical entropy.

Although statistical compression is appropriate in many contexts, it is un-
suitable in various other domains. This is the case of an increasing number
of applications that deal with highly repetitive sequences: compressed software
repositories, versioned document collections, DNA datasets of individuals of the
same species, and so on, which contain many near-copies of the same source
code, document, or genome [24]. In this scenario, statistical compressors, or a

� Funded in part by Fondecyt Grant 1-140796, Chile, CDTI EXP 000645663/ITC-
20133062 (CDTI, MEC, and AGI), Xunta de Galicia (PGE and FEDER) ref.
GRC2013/053, and by MICINN (PGE and FEDER) refs. TIN2009-14560-C03-
02, TIN2010-21246-C02-01, TIN2013-46238-C4-3-R and TIN2013-47090-C3-3-P and
AP2010-6038 (FPU Program).

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 31–44, 2014.
c© Springer International Publishing Switzerland 2014

32 G. Navarro and A. Ordóñez

compressed WT, do not take a proper advantage of the repetitiveness [20], which is
crucial to reduce the size of those usually huge datasets by orders of magnitude.

Grammar- and Lempel-Ziv-based compressors are very efficient at handling
repetitive sequences. However, even supporting operation access is difficult on
them. Let S[1, n] be compressible into a grammar of size r, so that a grammar-
based compressor uses r lg(r + σ) bits. Bille et al. [5] show how to represent S
using O(r logn) bits so that access(S, i) is solved in O(log n) time. Let z be the
number of phrases into which a Lempel-Ziv parser factors S. Then a Lempel-Ziv
compressor achieves z(lgn + lg σ) bits. Gagie et al. [14] show how to represent
S using O(z log n log(n/z)) bits so that access(S, i) can be supported in time
O(log n). Verbin and Yi [32] show that both times are essentially optimal. Note,
however, that the spaces are at best proportional to the size of the compressed
string, and that operations rank and select are not supported. This is to be
contrasted with, for example, alphabet partitioning techniques [3,4] which ob-
tain asymptotically the same space of a kth-order statistical compression of S,
support access in O(1) time, select in almost-constant time (or vice versa),
and rank in the optimal O(log log σ

logw) time on a RAM machine of w bits.
Various scenarios require rsa support on repetitive sequences. Some exam-

ples are: document retrieval on repetitive sequence collections, to represent the
so-called “document array” [28]; XPath queries on versioned XML data, to repre-
sent the sequence of tags [2]; simulating positional inverted indexes on repetitive
natural language text collections, by representing the sequence of words [6,15];
and bidirectional navigation of Web graphs, to represent adjacency lists [10].

The only current solution to provide rsa support on repetitive sequences is
of practical nature [28]. The key idea is that repetitions in the input sequence
S should also induce repetitions in the bitmaps of a WT built on it. This is
true at least for the first few levels of the WT, since the WT construction algo-
rithm splits such repetitions as we move downward in the tree. Therefore, if S
is grammar-compressible, so are the first bitmaps of the WT. These first levels
are compressed with an enhanced Re-Pair (a grammar compressor [21]) rep-
resentation for bitmaps (RPB [28]) that supports rsa queries in O(log n) time.
The remaining levels, which are not grammar-compressible, are compressed with
statistical techniques for bitmaps (RRR [29]) or even not compressed at all (CM
[9,23]). Thus, the rsa operations are supported in O(log n logσ) worst-case time.

This solution, dubbed WTRP, has two main drawbacks: (a) Re-Pair compressed
bitmaps RPB [28] are in practice orders of magnitude slower than RRR or CM to
support rsa operations (O(log n) vs O(1) time, in theory), what makes the WTRP
significantly slower than a regular WT; (b) the WT construction quickly destroys
the repetitiveness of S, and thus the size of the WT can be many times larger
than the Re-Pair compressed sequence (there is no theoretical guarantee here).

In this paper we propose two new solutions for rsa queries over grammar
compressed sequences. The first one, tailored to sequences over small alphabets,
is obtained by enhancing and improving the RPB representation for bitmaps [28].
We dub this solution GCC (Grammar Compression with Counters). This may
directly apply, for example, to sequences of XML tags. Our second structure

Grammar Compressed Sequences with Rank/Select Support 33

combines GCC with alphabet partitioning (AP) [3] and is aimed to sequences
with large alphabets. AP splits the sequence S into subsequences over smaller
alphabets, what lets us apply GCC on them (or a simpler and faster representation
on the subsequences that are not grammar-compressible).

Our experiments on various real-life repetitive sequences show that our new
representations use significantly less space, and are an order of magnitude faster,
than WTRP, the only current solution [28]. They are still an order of magnitude
slower than statistically compressed representations, but they also use an order
of magnitude less space on repetitive sequences. We show, as a concrete appli-
cation, the improvement obtained by plugging our structure to represent the
sequence of tags within SXSI, a system that supports XPath queries on com-
pactly represented XML data, when the collections are repetitive.

2 Basic Concepts and Related Work

2.1 Grammar compression of Sequences and Re-Pair

Grammar-compressing a sequence S means to find a context-free grammar that
generates (only) S. Finding the smallest grammar that generates a given se-
quence S is NP-complete [8], but heuristics like Re-Pair [21] perform very well
in practice, in linear time and space. This will be our compressor of choice.

Re-Pair finds the most frequent pair of symbols ab in S, adds a rule X → ab
to a dictionary R, and replaces each occurrence of ab in S by X . This process
is repeated (X can be involved in future pairs) until the most frequent pair
appears only once. The result is a tuple (R,C), where the dictionary R contains
r = |R| rules and C, of length c = |C|, is the final reduction of S after all the
replacements carried out. Note that C is drawn from an alphabet of size σ + r,
not only σ. Thus, the total output size is (2r+c) lg r bits. By using the technique
of Tabei et al. [31], we represent the dictionary in r log r+O(r) bits, reducing the
total space to (r+c) log r+O(r) bits. Finally, it is possible to force the grammar
to be balanced, that is, that the grammar tree is of height O(log n) [30].

2.2 Bitmap Representations and RPB

Several classical solutions represent a binary sequence B[1, n] with rsa support.
Clark and Munro [9,23] (CM) use o(n) bits on top of B and solve all the queries in
O(1) time. Raman et al. [29] (RRR) also support the operations in O(1) time, but
they statistically compressB to nH0(B)+o(n) bits, whereH0(B) is the empirical
zero-order entropy of B: if B has m 1s, then H0(B) = m

n lg n
m + n−m

n lg n
n−m .

The only solution that exploits the repetitiveness of the bitmap was pro-
posed by Navarro et al. [28] (RPB). They Re-Pair compress B with a balanced
grammar and enhance the output (R,C) with extra information to solve rsa

queries: Let exp(X) be the string of terminals X expands to; then they store,
for each rule X → Y Z, �(X) = |exp(X)|, the length of exp(X), and z(X) =
rank0(exp(X), �(X)), the number of 0s in exp(X).

34 G. Navarro and A. Ordóñez

Note that both values can be recursively computed as �(X) = �(Y) + �(Z),
with �(0) = �(1) = 1; and z(X) = z(Y) + z(Z), with z(0) = 1, z(1) = 0. To save
space, they store �(·) and z(·) only for a subset of nonterminals, and compute the
others recursively by partially expanding the nonterminal. Given a parameter δ,
they guarantee that, to compute any �(X) or z(X), we have to expand at most 2δ
rules. The sampled rules are marked in a bitmap Bd[1, r] and the sampled values
are stored in two vectors, S� and Sz, of length rank1(Bd, r). To obtain �(X) we
check whether Bd[X] = 1. If so, then �(X) = S�[rank1(Bd, X)]. Otherwise �(X)
is obtained recursively as �(Y) + �(Z). The process for z(X) is analogous.

Finally, every sth position of B is sampled, for a parameter s. An array
Sn[0, n/s] stores a tuple (p, o, rnk) at Sn[i], where the expansion of C[p] contains

B[i · s], that is, p = max{j, L(j) ≤ i · s}, where L(j) = 1 +
∑j−1

k=1 �(C[k]);
o = i · s− L(p) is the offset within that symbol; and rnk = rank0(B,L(p)− 1).
Let S[0] = (0, 0, 0).

To solve rank0(B, i), let Sn[�i/s�] = (p, o, rnk) and set l = s · �i/s�− o. Then
we move forward from C[p], updating l = l+ �(C[p]), rnk = rnk + z(C[p]), and
p = p+ 1, as long as l + �(C[p]) ≤ i. When l ≤ i < l + �(C[p]), we have reached
the rule C[p] = X → Y Z whose expansion contains B[i]. Then, we recursively
traverse X as follows. If l + �(Y) > i, we recursively traverse Y . Otherwise we
update l = l + �(Y) and rnk = rnk + z(Y), and recursively traverse Z. This is
repeated until l = i and we reach a terminal symbol in the grammar. Finally,
we return rnk. Obviously, we can also compute rank1(B, i) = i − rank0(B, i).
Solving access(B, i) is completely equivalent, but instead of returning rnk we
return the terminal symbol we reach when l = i.

To solve select0(B, j), we binary search Sn to find Sn[i] = (p, o, rnk) and
Sn[i + 1] = (p′, o′, rnk′) such that rnk < j ≤ rnk′. Then we proceed as for
rank0, but iterating as long as z+ z(C[p]) ≤ j, and then traversing by going left
(to Y) when z + z(Y) > j, and going right (to Z) otherwise. The process for
select1(B, j) is analogous (note X contains �(X)− z(X) 1s).

On a balanced grammar, a rule is traversed in O(log n) time. The time to
iterate over C between samples is O(s). Therefore, the total time for rsa is
O(s+ log n) and the total space is O(r logn+(n/s) logn)+ c lg(σ+ r) bits. The
time is multiplied by δ if we use sampling.

2.3 Sequence Representations

The wavelet tree [18] (WT) is a complete balanced binary tree that represents
a sequence S on Σ = [1, σ]. It is able to statistically compress the sequence
and solves rsa queries in O(log σ) time. For large alphabets, a variant called
wavelet matrix (WM) [12] performs better in practice. Assume we use a plain
encoding of symbols in �lg σ� bits, where a〈j〉 the jth most significant bit of
a ∈ Σ. The WM construction algorithm starts with Sl = S at level l = 1 and
proceeds as follows: (1) build a single bitmap Bl[1, n] where Bl[i] = Sl[i]〈l〉; 2)
compute z̃l+1 = rank0(Bl, n); (3) build sequence Sl+1 such that, for k ≤ z̃l+1,
Sl+1[k] = Sl[select0(Bl, k)], and for k > z̃l+1, Sl+1[k] = Sl[select1(Bl, k− z̃l+1)];
(4) repeat the process until l = �log σ�. This is actually a reshuffling of the bits

Grammar Compressed Sequences with Rank/Select Support 35

of S[i]〈j〉 for all i and j (akin to radix sorting the symbols of S), with n�lg σ�
bits in total (plus lgn lg σ for the z̃l). The rsa operations are carried out with
one binary rsa operation per level of the WM.

By representing the bitmaps Bl with CM [9,23], the total space is n lg σ(1+o(1))
bits and the rsa time is O(log σ). By using RRR bitmap representation [29],
the time complexity is retained but the space reduces to nH0(S) + O(σ logn)
bits, although the times are higher in practice. Zero-order compression is also
obtained, with faster time in practice, by retaining the CM representation but
using a tree with Huffman [19] shape instead of a balanced one, which gives
n(H0(S) + 1)(1 + o(1)) + O(σ logn) bits. The results are called WTH (Huffman-
shaped WT) or WMH (Huffman-shaped WM [13]).

An alternative solution for rsa queries over large alphabets is alphabet par-
titioning (AP) [3], which obtains nH0(B) + o(n(H0(B) + 1)) bits and solves rsa
in O(log log σ) time. The main idea is to partition Σ into several subalphabets
Σj , and S into the corresponding subsequences Sj over Σj . A string K[1, n]
indicates the sequence each symbol of S belongs. Then rsa operations on S are
translated into rsa operations on K and on some subsequence Sj . Furthermore,
the symbols in each Σj are of roughly the same frequency, so that using a fast
compact (but not compressed) representation of Sj (GMR) [16] yields O(log log σ)
time and does not ruin the statistical compression of S. The actual implementa-
tion defines Σj as the set of the 2j−1th to the (2j − 1)th most frequent symbols,
and uses WT when this alphabet is small, and GMR when it is large.

Themapping to subalphabets is represented ina sequenceM [1, σ],whereM [a] =
j iff a ∈ Σj . In each subsequence Sj , each a ∈ Σj is rewritten as rankj(M,a),
so the local alphabet is [1, 2j−1]. Now, to find S[i] we compute j = K[i], v =
Sj [rankj(K, i)], and S[i] = selectj(M, v). To find ranka(S, i), we compute j =
M [a], v = rankj(M,a), r = rankj(K, i), and ranka(S, i) = rankv(Sj , r). Finally,
to find selecta(S, i), we compute j = M [a], v = rankj(M,a), s = selectv(Sj , i),
and selecta(S, i) = selectj(K, s).

2.4 Re-Pair Compressed WT

As far as we know, WTRP [28] (or WMRP if implemented on a WM) is the only solution
to support rsa on grammar-compressed sequences. The structure is a WT where
all the bitmaps at each level l are concatenated, and then the bitmap Bl of each
level l is compressed with RPB [28]. The rationale is that the repetitiveness of S
is reflected in the bitmaps of the WT, at least for the first levels. That is because
the WT construction splits the alphabet at each level, which potentially blurs the
repeated substrings into many shorter repetitions.

Therefore, the bitmaps of the first few WT levels are likely to be compressible
with Re-Pair, while the remaining ones are not. The authors [28] use at each level
l the technique to represent Bl that yields the least space, RPB, RRR, or CM. In
case of a highly compressible sequence, the space can be drastically reduced, but
the search performance degrades by one or more orders of magnitude compared
to using CM or RRR: If all the levels use RPB, the rsa time complexities become

36 G. Navarro and A. Ordóñez

O(log σ(s+ logn)). On the other hand, as repetitiveness is destroyed at deeper
levels, the total space is far from that of a plain Re-Pair compression of S.

3 Efficient rsa for Sequences on Small Alphabets

Our first proposal, dubbed GCC (Grammar Compression with Counters) is aimed
at solving rsa queries on grammar-compressed sequences with small alphabets.
We generalize the existing solution for bitmaps (RPB, Section 2.2), to sequences
with σ > 2. Besides, we introduce several enhancements that improve its space
usage.

Let (R,C) be the result of a balanced Re-Pair grammar compression of S. We
store S�[X] = �(X) for each grammar rule X ∈ R. In addition, we store a se-
quence of counters Sa[X] for each symbol a ∈ Σ: Sa[X] = ranka(exp(X), �(X))
is the number of occurrences of a in exp(X).

The input sequence S is also sampled according to the new scenario: each ele-
ment (p, o, rnk) of Sn[1, n/s] is now replaced by (p, o, lrnk[1, σ]), where lrnk[a] =
ranka(S,L(p)− 1) for all a ∈ Σ, s being the sampling period.

The rsa algorithms stay practically the same as for RPB; now we use the
symbol counter of a for ranka and selecta. The resulting data structure solves
rsa in time O(s+ logn) and takes O(rσ logn+ σ(n/s) logn) + c lg(σ + r) bits.

The extra space incurred by σ can be reduced by using the same δ-sampling
of RPB, which increases the time by a factor δ. In this case we also use the
bitmap Bd[1, r] that marks which rules store counters. We further reduce the
space by noting that many rules are short, and therefore the values in S� and
Sa are usually small. We represent them using direct access codes (DACs [7]),
which store variable-length numbers while retaining direct access to them. The
o components of Sn are also represented with DACs for the same reason.

On the other hand, the p and lrnk[1, σ] values are not small but increas-
ing. We reduce their space using a two-layer strategy: we sample Sn at reg-
ular intervals of length ss. We store SSn[j] = Sn[j · ss], and then represent
the values of Sn[i] = (p, o, lrnk[1, σ]) in differential form, in array S′

n[i] =
(p′, o, lrnk′[1, σ]), where p′ = p − p∗ and lrnk′[a] = lrnk[a] − lrnk∗[a], with
SSn[�i/ss�] = (p∗, o∗, lrnk∗[1, σ]). The total space for the p and lrnk[1, σ] com-
ponents is O(σ(n/s) log(s · ss) + (n/(s · ss)) logn) bits. For example, if we use

ss = lg n and s = logO(1) n (a larger value would imply an excessively high query
time), the space becomes O(rσ logn + σ(n/s) log logn) + c lg(σ + r) bits. This
can be reduced to O((rσ + c) logn) bits by sampling regularly C instead of S
and using s = Θ(log n), but the described sampling works better in practice.

When σ is small, this data srtucture is very space- and time-efficient. It com-
press better than WTRP [28] since it does not destroy the repetitiveness of S when
building the wavelet tree. Besides, it runs faster compared to the O(log σ logn)
time obtained by WTRP: we need just one operation on GCC, not log σ operations
on RPB. However, this solution becomes prohibitive when the alphabet becomes
large since it has a σ multiplicative term in the space.

Grammar Compressed Sequences with Rank/Select Support 37

4 Efficient rsa for Sequences on Large Alphabets

For large alphabets, our idea is to combine GCC with AP [3] (Section 2.3), which
splits S[1, n] into a sequence K[1, lgσ] of classes and lg σ subsequences S[1,log σ].
That is, AP partitions the original sequence into subsequences over smaller al-
phabets, which is the scenario GCC handles well.

Note that, if S is grammar-compressible, then K is grammar-compressible
as well, as K consists of a (non-injective) mapping of the symbols of S. It is
also reasonable to expect that the subsequences Sj grammar-compress well, at
least for the first levels (i.e., the most frequent symbols): If ab is a frequent
pair in S, then it is expected that they are frequent individually as well. As a
consequence, it is likely that a and b belong to the same first classes. Even for the
less frequent symbols, if they appear frequently together, then their individual
frequencies are likely to be similar, and thus they have a good chance to be
assigned to the same class. If the most frequent pairs of symbols ab are assigned
to the same subsequence Sj , then all the space saved by the rule X → ab is also
saved if choosing the same rule when grammar-compressing Sj .

We apply GCC to K and to the first sequences Sj , since they have a small al-
phabet. For the remaining subsequences we have two choices: (a) represent them
using GMR (APRep, recall that subsequences Sj are not statistically compressible
[3]); or (b) attempt to grammar-compress them using WMRP (APRep-WMRP). Which
is better depends on whether the subsequences on large alphabets (which con-
tain less frequent symbols) are still repetitive or not. While the choice (b) yields
higher times than (a), we note that, if queries have the same statistical distribu-
tion of the symbols in S, then most queries will refer to more frequent symbols,
which will be handled with the fast GCC representation.

5 Experimental Results and Discussion

We used an Intel(R) Xeon(R) E5620 at 2.40GHz with 96GB of RAM mem-
ory, running GNU/Linux, Ubuntu 10.04, with kernel 2.6.32-33-server.x86 64.
All our implementations use a single thread and are coded in C++. The compiler
is g++ version 4.6.3, with -O9 optimization. We implemented our solutions in-
side Libcds (github.com/fclaude/libcds) and use Navarro’s implementation
of Re-Pair (www.dcc.uchile.cl/gnavarro/software/repair.tgz).

Table 1 shows statistics of interest about the datasets used and their compress-
ibility: length (n), alphabet size (σ), zero-order entropy (H0), bits per symbol
(bps) obtained by Re-Pair (RP, assuming (2r + c)�lg(σ + r)� bits), and bps
obtained by p7zip (LZ, www.7-zip.org), a Lempel-Ziv compressor.

5.1 Results for Small Alphabets

To test our structure on small alphabets, we use some DNA datasets (para and
escherichia) from PizzaChili Repetitive Corpus (pizzachili.dcc.uchile.cl/
repcorpus), and influenza from the SuDS Project (www.cs.helsinki.fi/
group/suds/rlcsa/data/fiwiki.bz2).From SuDSwe also extract fiwikitags,
the sequence of opening and closing tags from a subset of the Finnish Wikipedia.

38 G. Navarro and A. Ordóñez

Table 1. Statistics of the datasets. Length n is measured in millions (and rounded).

dataset n σ H0 RP LZ

para 429 5 1.12 0.37 0.19
influenza 322 16 1.98 0.23 0.15
escherichia 113 15 2.00 1.04 0.52
fiwikitags 49 24 3.36 0.11 0.32

dataset n σ H0 RP LZ

software 37 48 3.23 0.08 0.47
einstein 17 8,046 9.91 0.08 0.04
fiwiki 84 99,797 11.04 0.24 0.16
indochina 50 685,100 13.94 0.88 0.32

We show results for GCC, using sampling steps s = 2{10,12,14} and supersteps
ss = 2{4,6,8} for C, and δ = {0, 2, 4, 8} for R. We also compare WMRP [28],
which takes, for the bitmap of each level, the representation using least space
between RPB, RRR (with sampling value 32), and CM (a simple implementation [17]
with sampling value 32). We also include in the comparison the WTH (Huffman-
compressed WT), as a good statistically compressed solution for rsa. For the WTH
bitmaps we use RRR with sampling steps in {32, 64, 128}.

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, rank

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, rank

WMRP
GCC
WTH

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, select

WMRP
GCC
WTH

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, select

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

influenza, access

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

para, access

WMRP
GCC
WTH

Fig. 1. Space-time tradeoffs for rsa queries over small alphabets: collections influenza
and para (note logscale in time)

Grammar Compressed Sequences with Rank/Select Support 39

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, rank

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, rank

WMRP
GCC
WTH

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, select

WMRP
GCC
WTH

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, select

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 0 0.5 1 1.5 2 2.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

escherichia, access

WMRP
GCC
WTH

 0.1

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwikitags, access

WMRP
GCC
WTH

Fig. 2. Space-time tradeoffs for rsa queries over small alphabets: collections
escherichia and fiwikitags (note logscale in time)

Figures 1 and 2 show the results for all the operations and collections. Our
GCC dominates WMRP both in space and in rsa time. The difference in space with
WMRP is larger as the sequence is more grammar-compressible (see Table 1). This
is because GCC preserves all the repetitiveness of S, while paying a price only
in terms of the alphabet size. Instead, WMRP destroys the repetitiveness after a
few wavelet tree levels. In terms of rsa performance, GCC is up to two orders of
magnitude faster than WMRP for the same space usage. Note that the collection
in which GCC and WMRP are closest is escherichia, the least repetitive one.

On the other hand, the representation that compresses statistically, WTH, is
about an order of magnitude faster than GCC, but it also takes many times more
space (up to 10 times in case of fiwikitags).

5.2 Results for Large Alphabets

For large alphabets, we use collection einstein (also from PizzaChili), which
contains Wikipedia versions of the article about Einstein in German, and fiwiki

40 G. Navarro and A. Ordóñez

(also from SuDS), a 400MB prefix of the Finnish Wikipedia. We regard both
texts as sequences of words. A third collection is indochina, a subset with the
first 50 million elements of the adajacency lists of the Web graph Indochina2004

(available from the WebGraph Project, http://law.dsi.unimi.it).
We study our two solutions, APRep and APRep-WMRP. These use GCC and WMRP

internally, for which we use the same configurations as for the case of small
alphabets. Besides, we introduce two new parameters: β ∈ {2, . . . , 10}, so that
the β most frequent symbols are directly stored in K [3], and f ∈ {2, . . . , 7},
so that we use GCC on the first f subsequences, S1, . . . , Sf . We compare these
solutions with WMRP, parameterized as before, and with WMH and AP, two good
statistically-compressing representations for large alphabets. We use RRR [29]
for the the WMH bitmaps with samplings {32, 64, 128}. The K sequence of AP is
represented with a WT and each Sj with GMR.

Figures 3 and 4 show the results. APRep-WMRP obtains the best space, dom-
inating WMRP in both space and time by a significant margin. APRep takes over
when more space is used, being up to twice as fast as APRep-WMRP (yet using
twice the space). The statistical representations are, as before, up to an order
of magnitude faster than our fastest representations, but use much more space,
especially on the most repetitive collections. In those, they are two orders of mag-
nitude faster, but use up to 10 times more space, than our most space-efficient
representations.

5.3 Application: XPath Queries on Highly Repetitive Collections

We show the impact of our new representations in the indexing of repetitive
XML collections. SXSI [2] is a recent system that represents XML datasets in
compact form and solves XPath queries on them. Its query processing strategy
uses a tree automaton that traverses the XML data, using several queries on the
content and structure to speed up navigation towards the points of interest. SXSI
represents the XML data using three separate components: (1) a text index that
represents and carries out pattern searches over the text nodes (any compressed
full-text index [26] can be used); (2) a balanced parentheses representation of
the XML topology that supports navigation using 2+o(1) bits per node (various
alternatives exist [1]); and (3) an rsa-capable representation of the sequence of
the XML opening and closing tags, using some sequence representation.

When the XML collection is repetitive (e.g., versioned collections like Wiki-
pedia, versioned software repositories, etc.), one can use the RLCSA [22], a full-
text index that performs well on a repetitive collection of text nodes, for (1).
Components (2) and (3), which are usually less relevant in terms of space, may
become dominant if they are represented without exploiting repetitiveness. For
(2), we compare GCT, a tree representation aimed at repetitive topologies [27],
with a classical representation (FF [1]). For (3), we will use our new repetition-
aware sequence representations, comparing them with the alternative proposed
in SXSI (MATRIX, using one compressed bitmap per tag) and a WTH representation.
All variants will use the RLCSA with no text sampling as their text index.

Grammar Compressed Sequences with Rank/Select Support 41

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, rank

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwiki, rank

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, select

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwiki, select

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 0 2 4 6 8 10 12

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

einstein, access

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

fiwiki, access

WMRP
AP

APRep
APRep-WMRP

WMH

Fig. 3. Space-time tradeoffs for rsa queries over large alphabets: collections einstein

and fiwiki (note logscale in time)

We use a repetitive data-centric XML collection of 200MB from a real software
repository. Its sequence of XML tags, called software, is described in Table 1.
We run two XPath queries that make intensive use of the sequence of tags and
the tree topology: XQ1=//class[//methods], and XQ2=//class[methods].

Table 2 shows the space in bpe (bits per element) of components (2) and (3).
An element here is an opening or a closing tag, so there are two elements per
XML tree node. The space of the RLCSA is always 2.3 bits per character of the
XML document. The table also shows the impact of each component in the total
size of the index. Finally, the table shows the time to solve both queries.

The original SXSI (MATRIX+FF) is very fast but needs almost 14 bpe, which
amounts to over 75% of the index space in this repetitive scenario (in non-
repetitive text-centric XML, this space is negligible). By replacing the MATRIX

by a WTH, the space drops significantly, to slightly over 4 bpe, yet times degrade
by a factor of 3–6. By using our GCC for the tags, a new significant space reduction
is obtained, to 2.65 bpe, and the times increase by a factor of 4–5, becoming 13–
28 times slower than the original SXSI. Finally, changing FF by GCT [27], we can

42 G. Navarro and A. Ordóñez

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

indochina, rank

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

indochina, select

WMRP
AP

APRep
APRep-WMRP

WMH

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
pe

r o
pe

ra
tio

n
(m

ic
ro

se
co

nd
s)

bps

indochina, access

WMRP
AP

APRep
APRep-WMRP

WMH

Fig. 4. Space-time tradeoffs for rsa queries over large alphabets: collection indochina

(note logscale in time)

Table 2. Results on XML. Columns tags and tree are in bpe. Columns XQ1 and
XQ2 show query time in microseconds.

dataset tags tree %tags %tree %text XQ1 XQ2

MATRIX+FF 12.40 1.27 69.00 7.19 23.90 16 35
WTH+FF 2.88 1.27 34.07 15.09 50.84 92 113
GCC+FF 0.37 1.27 6.26 21.45 72.29 442 462
GCC+GCT 0.37 0.19 7.66 3.93 88.42 1,032 3,302

reach as low as 0.56 bpe, 24 times less than the original SXSI, and using less
than 12% of the total space. Once again, the price is the time, which becomes
65–95 times slower than the basic SXSI. The price of using the slower GCT is
more noticeable on XQ2, which requires more operations on the tree.

While the time penalty is 1–2 orders of magnitude, we note that the gain in
space can make the difference between running the index in memory or on disk;
in the latter case we can expect it to be up to 6 orders of magnitude slower.
On the other hand, the time differences will blur on queries that do not only
access the tags and the tree, but also involve the text, as these cost the same
in all the representations. Finally, we note that the RLCSA becomes the space
bottleneck in GCC+GCT. It is worthwhile to consider even more compressed text
representations, for example based on grammars [11] or on LZ77 [20].

Grammar Compressed Sequences with Rank/Select Support 43

6 Final Remarks

Our new ideas permit much more exploration. We have used the same partition-
ing into sequences given in the alphabet partitioning work [3], with alphabets of
doubling sizes. However, other partitionings may be more suitable to our needs,
for example building all the subsequences with the same alphabet size ρ, so
that alphabet [1, ρ] can be comfortably handled with our basic method for small
alphabets. This may induce a hierarchy of classes, instead of two levels as in
alphabet partitioning [3]. The result would be indeed a ρ-ary version of the cur-
rent (2-ary) wavelet-tree based solution [28], which may reduce space and time
by increasing the arity. Furthermore, we plan to study heuristics for grouping
symbols into classes, aiming to avoid separating symbols that form long repeated
substrings, so that fewer repetitions are destroyed when forming the classes.

A more far-fetched goal is to achieve Lempel-Ziv compressed representations
that support these operations. Lempel-Ziv is more powerful than grammar com-
pression, but thought to be harder to handle even for supporting direct access.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. ALENEX, pp. 84–97 (2010)

2. D. Arroyuelo, F. Claude, S. Maneth, V. Mäkinen, G. Navarro, K. Nguy˜̂en, J. Sirén,
and N. Välimäki. Fast in-memory xpath search over compressed text and tree
indexes. In: Proc. 26th ICDE, pp. 417–428 (2010)

3. Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica 69(1), 232–268 (2014)

4. Belazzougui, D., Navarro, G.: New lower and upper bounds for representing se-
quences. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 181–192.
Springer, Heidelberg (2012)

5. Bille, P., Landau, G., Raman, R., Sadakane, K., Rao Satti, S., Weimann, O.: Ran-
dom access to grammar-compressed strings. In: Proc. 22nd SODA, pp. 373–389
(2011)

6. Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Implicit indexing of natural lan-
guage text by reorganizing bytecodes. Inf. Retr. 15(6), 527–557 (2012)

7. Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-
length codes. Inf. Proc. Manag. 49(1), 392–404 (2013)

8. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai,
A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theor. 51(7),
2554–2576 (2005)

9. Clark, D.: Compact Pat trees. PhD thesis, Univ. of Waterloo, Canada (1998)
10. Claude, F., Navarro, G.: Extended compact web graph representations. In: Elomaa,

T., Mannila, H., Orponen, P. (eds.) Ukkonen Festschrift 2010. LNCS, vol. 6060,
pp. 77–91. Springer, Heidelberg (2010)

11. F. Claude and G. Navarro. Improved grammar-based compressed indexes. In Proc.
19th SPIRE, LNCS 7608, pages 180–192, 2012.

12. Claude, F., Navarro, G.: The wavelet matrix. In: Calderón-Benavides, L., González-
Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 167–179.
Springer, Heidelberg (2012)

44 G. Navarro and A. Ordóñez

13. Claude, F., Navarro, G., Ordóñez, A.: The wavelet matrix: An efficient wavelet tree
for large alphabets. Information Systems (to appear, 2014)

14. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014)

15. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comp. Sci. 426-427, 25–41 (2012)

16. Golynski, A., Munro, I., Rao, S.: Rank/select operations on large alphabets: a tool
for text indexing. In: Proc. 17th SODA, pp. 368–373 (2006)

17. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Poster Proc. 4th WEA, pp. 27–38 (2005)

18. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

19. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proceedings of the I.R.E. 40(9), 1098–1101 (1952)

20. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comp. Sci. 483, 115–133 (2013)

21. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. of the
IEEE 88(11), 1722–1732 (2000)

22. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)

23. Munro, I.: Tables. In: Proc. 16th FSTTCS, pp. 37–42 (1996)
24. Navarro, G.: Indexing highly repetitive collections. In: Smyth, B. (ed.) IWOCA

2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012)
25. Navarro, G.: Wavelet trees for all. J. Discr. Alg. 25, 2–20 (2014)
26. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1),

article 2 (2007)
27. Navarro, G., Ordóñez, A.: Faster compressed suffix trees for repetitive text col-

lections. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504,
pp. 424–435. Springer, Heidelberg (2014)

28. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

29. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions
on Algorithms 3(4), article 43 (2007)

30. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discr. Alg. 3(2-4), 416–430 (2005)

31. Tabei, Y., Takabatake, Y., Sakamoto, H.: A succinct grammar compression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 235–246. Springer,
Heidelberg (2013)

32. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-
compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 247–258. Springer, Heidelberg (2013)

Algorithms for Jumbled Indexing, Jumbled Border
and Jumbled Square on Run-Length Encoded Strings

Amihood Amir1,�, Alberto Apostolico2, Tirza Hirst3, Gad M. Landau4,��,
Noa Lewenstein5, and Liat Rozenberg6

1 Bar-Ilan University and Johns Hopkins University
2 Georgia Tech and IASI, CNR

3 Machon Tal
4 University of Haifa and NYU

5 Netanya College
6 University of Haifa

Abstract. Jumbled Indexing, the problem of indexing a text for histogram queries,
has been of much interest lately. In this paper we consider jumbled indexing for
run-length encoded texts. We refute a former conjecture and show an algorithm
for general sized alphabets. We also consider Jumbled Borders, the extension of
borders to jumbled strings. Borders are the basis for various algorithms. Finally,
we consider Jumbled Squares, strings which are of the form xx̄, where x̄ is a
jumbling of x. We show efficient algorithms for these problems.

1 Introduction

In this paper we investigate jumbled (abelian) versions of three classical strings prob-
lems: pattern matching, string borders and string squares.

Jumbled Pattern Matching and Jumbled Indexing: The Jumbled Pattern Matching
problem is an important extension of the standard pattern matching problem. The prob-
lem asks to decide whether any permutation of a pattern P occurs in a string S. In other
words, whether there is a substring of size |P | in S, where each alphabet letter appears
the same number of times as in P . This problem has many applications in computa-
tional biology, such as interpretation of mass spectrometry data [6], alignment [4], SNP
discovery [5], repeated pattern discovery [13] and metabolic network analysis [19].

While the case of a single query can be easily and efficiently solved using a sliding
window approach, the indexed version of the problem, where the string S is fixed and
we need to answer many queries on S, is much more difficult, even for a binary alphabet.

In the last few years many papers have focused on the indexed version of the problem
on binary alphabet strings. In [10], the authors proposed an algorithm that constructs
a data structure of size O(n) in O(n2)-time, where n is the size of S, and answer
queries in O(1) time. Later, Moosa and Rahman [20] and Burcsi et al. [6] indepen-
dently improved the construction time to O(n2/ logn) (see also [7,8]). Then, Moosa

� Partly supported by NSF grant CCR-09-04581, ISF grant 347/09, and BSF grant 2008217.
�� Partially supported by the National Science Foundation Award 0904246, Israel Science Foun-

dation grants 347/09 and 571/14,Yahoo, Grant No. 2008217 from the United States-Israel
Binational Science Foundation (BSF) and DFG.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 45–51, 2014.
c© Springer International Publishing Switzerland 2014

46 A. Amir et al.

and Rahman [21] further improved it to O(n2/(logn)2)-time in the RAM model. Re-

cently, Hermelin et al. [17] gave an n2/2Ω(logn/ log logn)1/2 time solution. Badkobeh et
al. [3] used the run-length encoded string of S (see Section 2) to construct a data struc-
ture L of size min(n, r2), where r is the number of runs in S, in time O(r2 log r), and
query time O(log |L|). Recently, Giaquinta and Grabowski [16] proposed some time
and space tradeoffs based on Badkobeh et al. data structure and Cicalese et al. [11]
proposed an O(n)-space index with O(log n) query time. In [14] a grammar-based
construction has been proposed. In [11,15] the binary jumbled pattern matching was
investigated on trees and tree-like structures.

Lately, there has been some progress also for non-binary alphabets. Kociumaka
et al. [18] presented a solution for jumbled indexing for any constant-sized alpha-

bet Σ that uses O(n
2 log2 logn

log n) preprocessing time and space and answers queries in

O((logn
log logn)

2|Σ|−1) time. Amir et al. [1] proposed a solution for constant-sized alpha-

bets that preprocesses in O(n1+ε) time and answers queries in Õ(m
1
ε) time, where m

is the sum of the Parikh vector elements. In an even newer paper, Durocher et al. [12]
considered alphabet size |Σ| = o((logn

log logn)
2) and showed how to construct an index

in O(|Σ|(n
log|Σ| n

)2) time and answer queries in O(nε + |Σ|) time, where ε > 0 is an

arbitrary small constant.
This still leaves us in a sad state of affairs. In all the (exact) solutions mentioned for

|Σ| ≥ 3 the time complexity of preprocessing or the time complexity of querying is
always within polylogarithmic factors of one of the above two naive algorithms.

The question that has troubled the community in these last few years is whether
jumbled indexing could be solved with O(n2−ε) preprocessing time and O(n1−δ) for
some constants ε, δ > 0. In a recent result [2] it was shown that for alphabets of ω(1)
size this is impossible under a 3SUM-hardness assumption. They further show that for
any constant alphabet size r ≥ 3 there exist describable fixed constants εr and δr such
that jumbled indexing requires Ω(n2−εr) preprocessing time or Ω(n1−δr) query time
under a stronger 3SUM-hardness assumption.

In this paper we propose an algorithm for the general alphabet case (as opposed to
the binary case of Badkobeh et al. [3]) that uses the run-length encoded string of S
to construct a data structure of size O(r2|Σ|) in time O(r2(log r + |Σ| log |Σ|), and
answer queries in O(|Σ|3 log r)-time. Note that, as opposed to former algorithms, we
can support queries that return all matches rather than only answering an existential
query. We do so in O(|Σ|3 log r+occ)-time where occ is the number of answers. In the
full version of this paper, we will outline a solution which works without the |Σ| log |Σ|
overhead as well.

We also refute a conjecture that was left open in [3].
In addition to the Jumbled Indexing problem, we also studied the Jumbled Borders

and Jumbled Squares problems. Due to a lack of space, the discussion of these prob-
lems is left to the full journal version.

2 Definitions and Notations

Let S[1..n] be a string of length n over alphabet Σ, and S[i..j] substring of S[1..n] that
starts at index i and ends at index j. We denote by |S[i..j]|σ the number of occurrences

Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square 47

of the letter σ ∈ Σ in substring S[i..j]. An alphabet histogram of S is a |Σ|-length
array < a1, a2, . . . , a|Σ| > such that ai = |S|σi . Two strings S and T are said to
jumble match if they have the same alphabet histogram.

Let S′[1..r] be the run-length encoded string of S[1..n]. S′ is a sequence of ordered
pairs (σ, i), denoted also as a symbol σi, where σ is an alphabet letter and i is a pos-
itive integer. Each symbol σi corresponds to a run in S consisting of i consecutive
occurrences of the letter σ. For example, if S = aaabbaacbbbcc, its run-length encoded
string S′ =< (a, 3), (b, 2), (a, 2), (c, 1), (b, 3), (c, 2) >. For simplicity of reading, for
the examples we will use compressed notation, e.g. S = a3b2a2c1b3c2. Note that r, the
size of the run-length encoded string, can be significantly shorter than the size of the
original string.

The definition of |S[i..j]|σ is not as useful for run-length encoded strings. We specif-
ically give alternative definitions for run-length encoded strings. We start with a defini-
tion for a run k. Then we generalize it to contiguous runs (k to l).

C [k](σ) =

{
q if S′[k] = (σ, q)

0 o/w, (i.e. σ /∈ run k)

C [k,�](σ) = Σ�
i=kC

[i](σ)

3 The Jumbled Indexing Problem

The jumbled indexing problem is defined as follows.

Input: A string S[1..n] in run-length format S′[1..r] to be indexed.
Query input: A patternP [1..m], represented by its histogram array< a1, a2, . . . , a|Σ| >
Query output: All substrings S[i, j] of S such that S[i, j] and P jumble-match.

We will show a couple of results in this section. First of all, in [3] an algorithm for
the binary alphabet was given and it was suggested that this may be optimal. We show
a counterexample to this conjecture. Secondly, we propose an algorithm for a general
alphabet.

3.1 Counterexample to Conjecture of [3]

In [3] a data structure was constructed for a binary string that is represented in run-
length encoding. The data structure is based upon a function defining a collection of
points, which we describe now.

Let S be a string of length n over binary alphabet {a, b}. Consider S′[1 . . . r], the
run length representation of S. Let max-b(i) denote the maximal number of b’s over all
substrings of S that contain exactly i a’s.

Example 1. Let S = aabbabbaabbbab. In this case:

48 A. Amir et al.

max-b(0) = 3
max-b(1) = 4
max-b(2) = 5
max-b(3) = 7
max-b(4) = 8
max-b(5) = 8
max-b(6) = 8

It can easily be seen that the function max-b is a non-decreasing function.
In [3] the authors defined 2D points, based upon the minimal max-b values. That

is in our example we have 2D points (0, 3), (1, 4), (2, 5), (3, 7), (4, 8). In [3] an algo-
rithm was presented that runs as a near-linear function of the number of these points.
The number of points is easily shown to be O(min(n, r2)). The authors point out in
the introduction that ”preliminary investigations have indicated that |L| (the number of
points) may often be close to r”. We show a counterexample to this conjecture, showing
a lower bound matching the upper bounds, i.e. Ω(min(n, r2)).

Claim. The image of max-b (i.e. all the possible answers) can be of size Ω(r2) (and
can be Ω(|S|)).
Proof. Let S = (ba)n(bnan)n. It is straightforward to verify that max-b(i) = n + i.
This happens because the image of max-b is: {k | n ≤ k ≤ n2 +n} which is of size n2

whereas the text is of size |S| = 2n2 + 2n and the number of runs is r = 4n. ��

3.2 Background for the Algorithm

Say we are examining the matches starting in run k and ending in run �. Then for any
character σ the number of σ’s is (obviously) upper-bounded by C [k,�](σ) and lower-
bounded by C [k+1,�−1](σ). This yields the following range.

R[k,�](σ) = [C [k+1,�−1](σ), C [k,�](σ)]

The following vectors array contains the ranges for all σ.

V [k,�] =< R[k,�](σ1), R
[k,�](σ2), · · · , R[k,�](σ|Σ|) >.

Observe that if C [k](σ) = 0 and C [�](σ) = 0 then C [k,�] = C [k+1,�−1] and, in turn,
R[k,�](σ) is a singleton. Hence, for every k and l such that k ≤ �, there are either one
or two ranges in V [k,�] that are not singletons (specifically, the letters of runs k and �).
Lets define V ′[k,�] to be the vector V [k,�] with the non-singleton ranges replaced with
the value −1.

For example consider S = a3c2b2a5d8b4e7c2b3c2a1c2b4. Now consider runs k = 2
and � = 11, emphasized by S = a3 c2 b2a5d8b4e7c2b3c2 a1 c2b4. Now
V [2,11] =< [5, 6], [9, 9], [4, 6], [8, 8], [7, 7] > which can be shorthanded to V [2,11] =<
[5, 6], 9, [4, 6], 8, 7 >. Therefore, V ′[2,11] =< −1, 9,−1, 8, 7 >.

3.3 Algorithm Outline

A jumbled indexing query P is given as a histogram array, < a1, . . . , a|Σ| >. P and a
substring starting within run k and ending within run � can jumble-match if each aj , the

Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square 49

number of σj ’s in P , satisfies aj = R[k,�](σj), for singleton values, or aj ∈ R[k,�](σj),
for non-singleton ranges.

If we adapt the histogram array of P by replacing the two ranges that correspond to
the letters of runs k and � with −1, then a comparison between the adapted histogram
array and V ′[k,�] checks all the singleton values.

For the two non-singleton ranges, assume σj is the letter of run k and σj′ is the letter
of run �, then we need to verify whether aj ∈ R[k,�](σj) and aj′ ∈ R[k,�](σj′). This
is equivalent to a classical computational geometry problem of planar point location,
which is defined as: given a set of rectangles in the plane and a 2D point q, find all
rectangles that contain q. This kind of queries are also known as point enclosure, or
stabbing queries. Chazelle [9] proposed a data structure for this problem that requires
O(n) space (for n rectangles) and supports queries in time O(log n+ t), where t is the
size of the output. See Figure 1 for an example of this data structure.

Fig. 1. (a) A collection of rectangles, (b) and (c) rectangles stabbed (at two example points)

In our case, we can ask whether the 2D point (aj , aj′) lies within the rectangle
R[k,�](σj) × R[k,�](σj′). Note that in the case of one non-singleton range we get a
line, which is a special case of a rectangle.

Therefore, our algorithm consists of constructing an index that supports efficient
comparison of singleton values and answering stabbing queries. We now detail the in-
dex construction and then detail the query.

3.4 Vectors Index

In a preprocessing stage we first compute all vectors V [k,�] and V ′[k,�] for all pairs of
runs k and � (k ≤ � ≤ r). Note that two or more pairs of runs will share the same V ′

vector, if (a) the non-singleton ranges are on the same letters, and (b) all other letters
have the same singleton values. For example, consider S = a3c2b2a5b4a1c2b3, then
V [1,5] =< [5, 8], [2, 6], 2 >, V [4,7] =< [1, 6], [4, 7], 2 >, and V ′[1,5] = V ′[4,7] =<
−1,−1, 2 >.

This leads to the following index idea. Generate a trie, which we call the vectors
index of all V ′ vectors, where each vector is represented by one string of length |Σ| from
root to leaf. Then, generate a data structure to represent all V vectors that share the same
path in the trie, or more specifically represent the two non-singleton ranges of these
vectors. That means that each data structure includes a set of vectors that share exactly

50 A. Amir et al.

the same values for the same |Σ| − 2 letters, and may differ only in the non-singleton
ranges of the other two letters. Assume the two non-singleton ranges are on letters σj

and σ′
j , we define for each vector in the set, V [k,�], a rectangle R[k,�](σj)×R[k,�](σj′).

Then we generate a data structure of these rectangles for stabbing queries as the one
proposed by Chazelle [9]. Finally, we connect each leaf in the trie to the corresponding
rectangles data structure.

3.5 Answering the Query

For a query P , we perform three steps. First, we adapt for each pair of letters (σj , σj′)

in P , a new histogram h′(j,j′). This histogram is identical to the input histogram h =<
a1, . . . , a|Σ| >, except of the values (aj , aj′), which are set to −1. For example, for
query P = aabbabc and input histogram h =< 3, 3, 1 > we get the following three
adapted histograms: h′(1,2) =< −1,−1, 1 >, h′(1,3) =< 3,−1,−1 > and h′(2,3) =<
3,−1,−1 >.

Secondly, we search the trie to find the path corresponds to each adapted histogram
h′(j,j′), if such exists.

Finally, we follow the pointer from the leaf to the rectangles data structure and per-
form a stabbing query to find all rectangles that include the 2D point (aj , a′j).

3.6 Time and Space

Computing the O(r2) V and V ′ vectors in the preprocessing stage, takes O(r2) time.
The vectors index maintains a trie over the vectors which are ”strings” of length |Σ|
each. Moreover, there are O(r2) vectors in the index. The stabbing query data struc-
tures are bounded by O(r2), because each vector appears in only one data structure.
Generating the stabbing query data structures for each set of vectors that share the same
V ′ vector, will require O(k log k) time and O(k) space if there are k vectors in the
set. Hence, the preprocessing and index constructing time is O(r2 log r). Note that the
time to generate the trie is O(r2|Σ| log |Σ|). Hence, the space of the data structure is
O(r2|Σ|) and the total time is O(r2(log r+ |Σ| log |Σ|)). The query time is dominated
by the stabbing queries data structure and, hence, is O(|Σ|3 log r + occ), where occ is
the number of answers.

We note that in the full version of this paper we will show how to remove the |Σ|
factor in the space by maintaining a data structure without the trie. That is we carefully
generate hashing codes on the vectors directly to the set of vectors that share the same
V ′ vector (and the stabbing structure). The |Σ| log |Σ| factor of time will also be spared.
Hence, we will be able to achieve O(r2 log r) preprocessing time, O(r2) preprocessing
space, and O(|Σ|3 log r + occ) query time.

References

1. Amir, A., Butman, A., Porat, E.: On the relationship between histogram indexing and block-
mass indexing. Philosophical Transactions A (to appear)

2. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled indexing.
In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS,
vol. 8572, pp. 114–125. Springer, Heidelberg (2014)

Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square 51

3. Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for highly
run-length compressible texts. Information Processing Letters 113(17), 604–608 (2013)

4. Benson, G.: Composition alignment. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS
(LNBI), vol. 2812, pp. 447–461. Springer, Heidelberg (2003)

5. Böcker, S.: Simulating multiplexed snp discovery rates using base-specific cleavage and mass
spectrometry. Bioinformatics 23(2), 5–12 (2007)

6. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On table arrangements, scrabble freaks, and jum-
bled pattern matching. In: Boldi, P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 89–101. Springer,
Heidelberg (2010)

7. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in
strings. International Journal of Foundations of Computer Science 23(02), 357–374 (2012)

8. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On approximate jumbled pattern matching in
strings. Theory of Computing Systems 50(1), 35–51 (2012)

9. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM Journal on Com-
puting 15(3), 703–724 (1986)

10. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In: Proceedings
of the Prague Stringology Conference, pp. 105–117 (2009)

11. Cicalese, F., Gagie, T., Giaquinta, E., Laber, E.S., Lipták, Z., Rizzi, R., Tomescu, A.I.: In-
dexes for jumbled pattern matching in strings, trees and graphs. In: Kurland, O., Lewenstein,
M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 56–63. Springer, Heidelberg (2013)

12. Durocher, S., Munro, J.I., Mondal, D., Thankachan, S.V.: Jumbled pattern matching over
large alphabets. Manuscript, Personal Communication (2014)

13. Eres, R., Landau, M.G., Parida, L.: Permutation pattern discovery in biosequences. Journal
of Computational Biology 11(6), 1050–1060 (2004)

14. Gagie, T.: Grammar-based construction of indexes for binary jumbled pattern matching.
CoRR, abs/1210.8386 (2012)

15. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern matching on
trees and tree-like structures. CoRR, abs/1301.6127 (2013)

16. Giaquinta, E., Grabowski, S.: New algorithms for binary jumbled pattern matching. Infor-
mation Processing Letters 113(14-16), 538–542 (2013)

17. Hermelin, D., Landau, G.M., Rabinovich, Y., Weimann, O.: Binary jumbled pattern matching
via all-pairs shortest paths. CoRR, abs/1401.2065 (2014)

18. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern matching
with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS,
vol. 8125, pp. 625–636. Springer, Heidelberg (2013)

19. Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: Application to metabolic
networks. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 360–368 (2006)

20. Moosa, T.M.: Rahman M. S. Indexing permutations for binary strings. Information Process-
ing Letters 110(18-19), 795–798 (2010)

21. Moosa, T.M., Rahman, M.S.: Sub-quadratic time and linear space data structures for permu-
tation matching in binary strings. Journal of Discrete Algorithms 10, 5–9 (2012)

Relative FM-Indexes

Djamal Belazzougui1,2,�, Travis Gagie1,2,��, Simon Gog3,� � �,
Giovanni Manzini4, and Jouni Sirén5,†

1 University of Helsinki
2 Helsinki Institute for Information Technology

3 Karlsruhe Institute of Technology
4 University of Eastern Piedmont

5 University of Chile

Abstract. Intuitively, if two strings S1 and S2 are sufficiently similar
and we already have an FM-index for S1 then, by storing a little ex-
tra information, we should be able to reuse parts of that index in an
FM-index for S2. We formalize this intuition and show that it can lead
to significant space savings in practice, as well as to some interesting
theoretical problems.

1 Introduction

FM-indexes [4] are core components in most modern DNA aligners (e.g., [8–10])
and have thus played an important role in the genomics revolution. Medical
researchers are now producing databases of hundreds or even thousands of hu-
man genomes, so bioinformatics researchers are working to improve FM-indexes’
compression of sets of nearly duplicate strings. As far as we know, however, the
solutions proposed so far (e.g., [3, 11]) index the concatenation of the genomes,
so we can search the whole database easily but searching only in one specified
genome is more difficult. In this paper we consider how to index each of the
genomes individually while still using reasonable space and query time.

Our intuition is that if two strings S1 and S2 are sufficiently similar and we
already have an FM-index for S1 then, by storing a little extra information,
we should be able to reuse parts of that index in an FM-index for S2. More
specifically, it seems S1’s and S2’s Burrows-Wheelers Transforms [2] (BWTs)
should also be fairly similar. Since BWTs are the main component of FM-indexes,
it is natural to try to take advantage of such similarity to build an index for S2

that “reuses” information already available in S1’s FM-index.
Among the many possible similarities one can find and exploit in the BWTs, in

this paper we consider the longest common subsequence (LCS). The BWT sorts

� Partially supported by Academy of Finland under grant 250345 (CoECGR).
�� Funded by Academy of Finland grant 268324.

� � � This work was carried out while the third author was employed at the University
of Melbourne, supported by ARC Grant DP110101743.

† Funded by the Jenny and Antti Wihuri Foundation, Finland, and Fondecyt Grant
1-140796, Chile.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 52–64, 2014.
c© Springer International Publishing Switzerland 2014

Relative FM-Indexes 53

the characters of a string into the lexicographic order of the suffixes following
those characters. For example, if

S1 = GCACTTAGAGGTCAGT, S2 = GCACTAGACGTCAGT;

then

BWT(S1) = TCTGCGTAAAAGGTGC, BWT(S2) = TGCTCGTAAAACGCG;

whose LCS TCTCGTAAAAGG is nearly as long as either BWT.
We introduce the concept of BW-distance BWD(S1, S2) between S1 and S2

defined as |S1| + |S2| − 2|LCS(BWT(S1),BWT(S2))|. Note that this coincides
with the edit distance between BWT(S1) and BWT(S2) when only insertions and
deletions are allowed. We prove that, if we are willing to tolerate a slight increase
in query times, we can build an index for S2 using an unmodified FM-index for
S1 and additional data structures whose total space in words is asymptotically
bounded by BWD(S1, S2) (Theorem 1).

This first result is the starting point for our investigation as it generates many
challenging issues. First, since we are interested in indexing whole genomes, we
observe that finding the LCS of strings whose length is of the order of billions
is outside the capabilities of most computers. Thus, in Section 3.1 we show how
to approximate the LCS of two BWTs, using combinatorial properties of the
BWT to align the sequences. In the same section we also discuss and test several
practical alternatives for building the index for S2 given the one for S1 and we
analyze their time/space trade-offs.

If we need an index not only for counting queries but also for locating and ex-
tracting, we must enrich it with suffix array (SA) samples. Such samples usually
take significantly less space than the main index. However, we may still want
to take advantage of the similarities between S1 and S2 to “reuse” SA samples
from S1 for S2’s index. In Section 4 we show that this is indeed possible if, in-
stead of considering the LCS between the BWTs, we use a common subsequence
with the additional constraint of being BWT-invariant (Theorem 2). This re-
sult motivates the problem of finding the longest BWT-invariant subsequence,
which unfortunately turns out to be NP-hard (Theorem 3). We therefore devise
a heuristic to find a “long” BWT-invariant subsequence in O(|S1| log |S1|) time.

We have tested our approach in practice by building an FM-index for the
genomes of two human individuals, “reusing” an FM-index of the human ref-
erence genome. The reference genome is 3096 million base pairs, the individual
genomes are 3002 million and 3036 million base pairs, and we found common
subsequences of 2935 million and 2992 million base pairs, respectively. Our index
is 3.8–5.0 times or 2.2–2.9 times smaller than a standard implementation of a
stand-alone FM-index, depending on the encoding of the stand-alone index. On
the other hand, queries to our index take about 11 times or 1.9 times longer,
respectively. Since our index is compressed relative to the underlying index for
the reference, we call it a relative FM-index.

54 D. Belazzougui et al.

2 Review of the FM-Index Structure

The core component of an FM-index for a string S[1..n] is a data structure
supporting rank queries on the Burrows-Wheeler Transform BWT(S) of S. This
transform permutes the characters in S such that S[i] comes before S[j] in
BWT(S) if S[i+ 1..n] is lexicographically less than S[j + 1..n].

If the lexicographic range of suffixes of S starting with β is [i..j], then the
range of suffixes starting with aβ is

[
BWT(S).ranka(i− 1) + 1 +

∑
a′≺a

S.ranka′(n)..

BWT(S).ranka(j) +
∑
a′≺a

S.ranka′(n)

]

It follows that, if we have precomputed an array storing
∑

a′≺a S.ranka′(n) for
each distinct character a (i.e., the number of characters in S less than a), then
we can find the range of suffixes starting with a pattern P [1..m] — and, thus,
count its occurrences — using O(m) rank queries.

If the position of S[i] in BWT(S) is j, then the position of S[i− 1] is

BWT(S).rankS[i](j) +
∑

a≺S[i]

BWT(S).ranka(n) .

It follows that, if we have also precomputed a dictionary storing the position of
every rth character of S in BWT(S) with its position in S as satellite information,
then we can find a character’s position in S from its position in BWT(S) using
O(r) rank and membership queries. Therefore, once we know the lexicographic
range of suffixes starting with P , we can locate each of its occurrences using
O(r) rank queries.

Finally, if we have also precomputed an array storing the position of every
rth character of S in BWT(S), in order of appearance in S, then given i and j,
we can extract S[i..j] using O(r + j − i) rank queries.

3 BW-Distance and Relative FM-Indices

Given two strings S1[1..n1] and S2[1..n2] we define the BW-distance BWD(S1, S2)
between S1 and S2 as

BWD(S1, S2) = n1 + n2 − 2|LCS(BWT(S1),BWT(S2))|. (1)

Note that the BW-distance is nothing but the edit distance between BWT(S1)
and BWT(S2) when only insertions and deletions are allowed [13] (also known
as the shortest edit script or indel distance), and is thus at most twice their
normal edit distance. We now show how to support counting queries on S2 using
an FM-index for S1 and some auxiliary data structures taking O(BWD(S1, S2))

Relative FM-Indexes 55

words of space. Specifically, we consider how we can support rank queries on
BWT(S2) and partial-sum queries on the distinct characters’ frequencies.

Let C denote a LCS of BWT(S1) and BWT(S2) with |C| = m. Let C =
c1 · · · cm, and for i = 1, . . . ,m, let αi (resp. βi) be the position of ci in BWT(S1)
(resp. BWT(Ss)) with α1 < · · · < αm (resp. β1 < · · · < βm). Define

– bitvector B1[1..n1] with 0s in positions α1, . . . , αm,
– bitvector B2[1..n2] with 0s in positions of β1, . . . , βm,
– subsequence D1 of BWT(S1) marked by 1s in B1; D1 is the complement of

C in BWT(S1),
– subsequence D2 of BWT(S2) marked by 1s in B2; D2 is the complement of

C in BWT(S2).

We claim that if we can support fast rank queries on BWT(S1), B1, B2, D1

and D2 and fast select0 queries on B1, then we can support fast rank queries on
BWT(S2). To see why, notice that

BWT(S2).rankX(i) = C.rankX(B2.rank0(i))

+D2.rankX(B2.rank1(i))

and, by the same reasoning,

C.rankX(j) = BWT(S1).rankX(B1.select0(j))

−D1.rankX(B1.rank1(B1.select0(j))) .

Therefore,

BWT(S2).rankX(i) = BWT(S1).rankX(k)

−D1.rankX(B1.rank1(k))

+D2.rankX(B2.rank1(i))

where k = B1.select0(B2.rank0(i)).
For example, for the strings

S1 = GCACTTAGAGGTCAGT, S2 = GCACTAGACGTCAGT

given as an example in Section 1,

BWT(S1) = TCTGCGTAAAAGGTGC, BWT(S2) = TGCTCGTAAAACGCG;

and LCS(BWT(S1),BWT(S2)) = TCTCGTAAAAGG so

B1 = 0001000000000111 D1 = GTGC

B2 = 010000000001010 D2 = GCC .

Suppose we want to compute BWT(S2).rankC(13). Since
B1.select0(B2.rank0(13)) = 12,

56 D. Belazzougui et al.

BWT(S2).rankC(13) = BWT(S1).rankC(12) − D1.rankC(B1.rank1(12))

+D2.rankC(B2.rank1(13)) = 3.

Observing that the number of 1s in B1 and B2 is O(max(n1, n2)−m) =
O(BWD(S1, S2)), we can store data structures for B1, B2, D1 and D2

in O(BWD(S1, S2)) space such that the desired rank/select queries take
O(logBWD(S1, S2)) time.

The only other component required for an FM-index for S2 for counting, is
a data structure for computing

∑
a′≺a S2.ranka′(n) for each character a. Notice

that BWD(S1, S2) is at least the number of distinct characters whose frequencies
in S1 and S2 differ. It follows that in O(BWD(S1, S2)) space we can store

– a O(logBWD(S1, S2))-time predecessor data structure storing those distinct
characters,

– an array storing
∑

a′≺a S2.ranka′(n2) for each such distinct character a.

For any distinct character b, we can find the preceding distinct character a whose
frequencies in S1 and S2 differ and compute

∑
a′≺b

S2.ranka′(n2) =
∑
a′≺b

S1.ranka′(n1)−
∑
a′≺a

S1.ranka′(n1) +
∑
a′≺a

S2.ranka′(n2)

using O(logBWD(S1, S2)) time. Summing up:

Theorem 1. If we have an FM-index for S1, we can store a relative FM-index
for S2 using O(BWD(S1, S2)) words of extra space. Counting queries on the
relative FM-index take time an O(logBWD(S1, S2)) factor larger than on S1.

3.1 A Practical Implementation

A longest common sequence of BWT(S1) and BWT(S2) can be computed in
O(n1n2/w) time, where w is the word size [12]. Since we are mainly interested in
strings with a small BW-distance, a better alternative could be the algorithms
whose running times are bounded by the number of differences between the
input sequences (see eg [7, 13]). Unfortunately none of these algorithms is really
practical when working with such very large files as the complete genomes we
considered in our tests. Hence, to make the construction of a relative FM-index
practical, we approximate the LCS of the two Burrows-Wheeler transforms, using
the combinatorial properties of the BWT to align the sequences.

Let S1 be a random string of length n over alphabet Σ of size σ, and let string
S2 differ from it by s insertions, deletions, and substitutions. In the expected
case, the lexicographic rank of each suffix of S1 is determined by a prefix of
length O(logσ n) of that suffix. Thus, the s edit operations are expected to affect
the relative lexicographic order of O(s logσ n) suffixes [11], possibly causing the
characters immediately preceding those suffixes to appear in different positions

Relative FM-Indexes 57

in BWT(S1) and BWT(S2). The edits can also change the characters immediately
preceding at most s suffixes. If we remove the characters preceding the affected
suffixes from BWT(S1) and BWT(S2), we have a common subsequence of length
n−O(s logσ n) in the expected case.

Assume that we have partitioned the BWTs according to the first k characters
of the suffixes, for k ≥ 0. For all x ∈ Σk, let BWTx(S1) and BWTx(S2) be the
substrings of the BWTs corresponding to the suffixes starting with x. If we
remove the suffixes affected by the edit operations, as well as the suffixes where
string x covers an edit, we have a common subsequence BWT′

x of BWTx(S1) and
BWTx(S2). If we concatenate the sequences BWT′

x for all x, we get a common
subsequence of BWT(S1) and BWT(S2) of length n − O(s(k + logσ n)) in the
expected case. This suggests that we can find a long common subsequence of
BWT(S1) and BWT(S2) by partitioning the BWTs, finding an LCS for each
partition, and concatenating the results.

In practice, we partition the BWTs by variable-length strings. We use back-
ward searching on the BWTs to traverse the suffix trees of S1 and S2, selecting
a partition when either the length of BWTx(S1) or BWTx(S2) is at most 1024,
or the length of the pattern x reaches 32. For each partition, we use the greedy
LCS algorithm [13] to find the longest common subsequence of that partition.
To avoid hard cases, we stop the greedy algorithm if it would need diagonals
beyond ±50000, and match only the most common characters for that partition.
We also predict in advance the common cases where this happens (the difference
of the lengths of BWTx(S1) and BWTx(S2) is over 50000, or x = N32 for DNA
sequences, where N is the “any base” symbol), and match the most common
characters in that partition directly.

We implemented the counting structure of the relative FM-index using the
SDSL library [5], and compared its performance to a regular FM-index.1 To
encode the BWTs and sequences D1 and D2, we used Huffman-shaped wavelet
trees with either plain or entropy-compressed (RRR) [15] bitvectors. For marking
the positions of the LCS in BWT(S1) and BWT(S2), we used either entropy-
compressed or sparse [14] bitvectors.

The implementation was written in C++ and compiled on g++ version 4.7.3.
We used a system with 32 gigabyes of memory and two quad-core 2.53 GHz Intel
Xeon E5540 processors, running Ubuntu 12.04 with Linux kernel 3.2.0. Only one
CPU core was used in the experiments.

For our experiments, we used the 1000 Genomes Project assembly of the
human reference genome as sequence S1.

2 As sequence S2, we used the genome
of a Han Chinese male from the YanHuang project3, and the genome of the 1000
Genomes Project individual NA12878 (Utah female, maternal haplotype) [16].
The properties of the datasets can be seen in Table 1. As our pattern set, we

1 The implementation is available at http://jltsiren.kapsi.fi/relative-fm
2 GRCh37, ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/
reference/

3 ftp://public.genomics.org.cn/BGI/yanhuang/fa/

http://jltsiren.kapsi.fi/relative-fm
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
ftp://public.genomics.org.cn/BGI/yanhuang/fa/

58 D. Belazzougui et al.

Table 1. Properties of the datasets. The length of the sequence and the common
subsequence of the BWTs; the number of matching patterns and the total number of
occurrences for those patterns.

Dataset Length LCS Matches Occurrences

Reference 3096M – – –
YanHuang 3002M 2935M 1.14M 5.49M
NA12878 3036M 2992M 1.21M 5.67M

Table 2. Experiments with human genomes. Dataset, bitvector used in the wavelet
trees (WT) and for the LCS; time and space requirements for building the relative
FM-index; time required for counting queries and index size for a regular FM-index
and a relative FM-index. The query times are averages over five runs.

Construction Regular Relative
Dataset WT LCS Time Space Time Size Time Size

[s] [MB] [s] [MB] [s] [MB]

YanHuang Plain RRR 708 9124 56.45 1090 621.47 288
YanHuang Plain Sparse 711 9124 56.45 1090 1162.47 290
YanHuang RRR RRR 5898 7823 328.86 628 1637.44 256
YanHuang RRR Sparse 5882 7823 328.86 628 1994.89 257

NA12878 Plain RRR 589 9124 57.31 1090 619.81 218
NA12878 Plain Sparse 575 9124 57.31 1090 1058.75 199
NA12878 RRR RRR 5454 7823 325.49 636 1614.56 192
NA12878 RRR Sparse 5412 7823 325.49 636 1921.92 173

used 3.68 million reads of length 108 from the 1000 Genomes Project individual
HG00122 (British female). The results of the experiments can be seen in Table 2.

The fastest variant of the relative FM-index uses plain bitvectors in the
wavelet trees and RRR bitvectors for the LCS. It is 3.8–5.0 times smaller and 11
times slower than a regular FM-index using plain bitvectors, and 2.2–2.9 times
smaller and 1.9 times slower than a regular index using RRR bitvectors. Switch-
ing to compressed bitvectors in the wavelet trees does not yield a good trade-off.
Using sparse bitvectors for the LCS is a slightly better option on the NA12878
dataset, making the relative index 1.1 times smaller and 1.7 times slower. On the
YanHuang dataset, sparse bitvectors require more space than RRR bitvectors,
because the sequence is too different from the reference.

Bitvectors B1 and B2 take 70% to 85% of the total size of the relative index,
so improving their compression may be the best way to make the index smaller.
Hybrid bitvectors using different encodings for different parts of the bitvector [6]
could be one option, but the existing implementation does not work with vectors
longer than 231 bits. It should be noted that the size difference between NA12878
and the reference is mostly due to the inclusion of chromosome Y (59 million
base pairs) in the reference. Therefore we can expect the relative FM-index to
work significantly better with male genomes than female genomes.

Relative FM-Indexes 59

Building a relative FM-index out of regular FM-indexes for two human
genomes takes 10–12 minutes. Using RRR bitvectors for the wavelet trees in-
creases this to 90–98 minutes, as extracting substrings from the wavelet trees
becomes the bottleneck. Decompressing the regular FM-index of S2 from the
regular index of S1 and the relative index of S2 should be even faster. As a
comparison, building BWT for a human genome takes 19–20 minutes and 25–26
gigabytes of memory using libdivsufsort 2.0.14, depending on the sequence. The
space usage of relative FM-index construction has not been optimized, and it
can probably be improved significantly.

4 Relative FM-Indices Supporting Locating and
Extracting

As mentioned in Section 2, an FM-index for S1 usually has an SA sample that
takes an only slightly sublinear number of bits. This sample has two parts: the
first consists of a bitvector R with 1s marking the positions in BWT(S1) of every
rth character in S1, and an array A storing a mapping from the ranks of those
characters’ positions in BWT(S1) to their positions in S1; the second is an array
storing a mapping from the ranks of those characters’ positions in S to their
positions in BWT(S1). With these, given the position of a sampled character in
BWT(S1), we can find its position in S1, and vice versa.

These parts are used for locating and extracting queries, respectively, and the
worst-case query times are proportional to r. On the other hand, the size of the
sample in words is proportional to the length of S divided by r. For details on how
the sample works, we direct the reader to the full description of FM-indexes [4].
We note only that if we sample irregularly, then the worst-case query times for
locating and extracting are proportional to the maximum distance in S between
two consecutive sampled characters. We leave consideration of extracting for the
full version of the paper — it is nearly symmetric to locating — so we do not
discuss the second part of the sample here.

Let G = S1[i1] · · · , S1[i�] denote a length-� common subsequence of S1

and S2 (not their BWTs). That is, we have i1 < · · · < i� and there exists
j1 < · · · < j� such that

S1[i1] = S2[j1], . . . , S1[i�] = S2[j�].

Since there is a one-to-one correspondence between the characters in a text and
in its BWT, we can define the indexes v1, . . . , v� (resp. w1, . . . , w�) such that
for k = 1, . . . , �, BWT(S1)[vk] is the character corresponding to S1[ik] (resp.
BWT(S2)[wk] is the character corresponding to S2[jk]). We say that the common
subsequence G is BWT-invariant if there exists a permutation π : {1, . . . , �} →
{1, . . . , �} such that we have simultaneously

vπ(1) < vπ(2) < · · · < vπ(�), and wπ(1) < wπ(2) < · · · < wπ(�). (2)

4 https://code.google.com/p/libdivsufsort/

https://code.google.com/p/libdivsufsort/

60 D. Belazzougui et al.

In other words, when we go from the texts to the BWTs the elements of G are
permuted in the same way in S1 and S2.

An immediate consequence of (2) is that the sequence

G′ = BWT(S1)[vπ(1)]BWT(S1)[vπ(2)] · · · BWT(S1)[vπ(�)]

is a common subsequence of BWT(S1) and BWT(S2). We can therefore general-
ize (1) and define

BWDG(S1, S2) = max(n1, n2)− |G|
and repeat the construction of Theorem 1 with BWD replaced by BWDG. How-
ever, since G is BWT-invariant it is now possible to reuse the the SA samples
from S1 relative to positions in G for the string S2 provided that we have

– bitvectorM1[1..n1] with 0s in positions i1, . . . , i�, supporting fast rank queries,
– bitvector M2[1..n2] with 0s in positions j1, . . . , j�, supporting fast select0

queries.

Summing up, we have (proof idea in the appendix):

Theorem 2. For any BWT-invariant subsequence G, if we already have an FM-
index for S1, then we can store O(BWDG(S1, S2)) extra words such that the time
bounds for locating and extracting queries on S2 are an O(logBWDG(S1, S2))
factor larger than on S1.

In view of the above theorem, it is certainly desirable to find the longest
common subsequence of S1 and S2 which is BWT-invariant. Unfortunately, this
problem is NP-hard as shown by the following result.

Theorem 3. It is NP-complete to determine whether there is an LCS of S1 and
S2 which is BWT-invariant, even when the strings are over a ternary alphabet.

Proof. Clearly we can check in polynomial time whether a given subsequence
of S1 and S2 has this property, so the problem is in NP. To show that it is
NP-complete, we reduce from the NP-complete problem of permutation pattern
matching [1], for which we are given two permutations π1 and π2 over n and m ≤
n elements, respectively, and asked to determine whether there is a subsequence
of π1 of length m such that the relative order of the elements in that subsequence
is the same as the relative order of the elements in π2. For example, if π1 =
6, 3, 2, 1, 4, 5 and π2 = 4, 2, 1, 3, then 6, 2, 1, 4 is such a subsequence. Specifically,
we set

S1 = ABπ1[1]ABπ1[2] · · ·ABπ1[n], S2 = ACπ2[1]ACπ2[2] · · ·ACπ2[m] ,

so the unique LCS of S1 and S2 is Am. For our example,

S1 = AB6AB3AB2ABAB5 = ABBBBBBABBBABBABABBBBB

S2 = AC4AC2ACAC3 = ACCCCACCACACCC .

Relative FM-Indexes 61

The BWT sorts the m copies of A in S2 according to π2 and sorts any subse-
quence of m copies of A in S1 according to the corresponding subsequence of
π1. Therefore, there is an LCS of S1 and S2 such that the relative order of its
characters is BWT(S1) and BWT(S2) is the same, if and only if there is a sub-
sequence of π1 of length m such that the relative order of the elements in that
subsequence is the same as the relative order of the elements in π2. ��

In view of the above result, for large inputs we cannot expect to find the
longest possible BWT-invariant subsequence, so, as for the LCS, we have devised
the following fast heuristic for computing a “long” BWT-invariant subsequence.

We first compute the suffix array SA12 for the concatenation S1#S2 and we
use it to define the array A of size n1 × 2 as follows

– A[i][1] = j iff S1[i] = S2[j] and suffix S2[j + 1, n2] immediately follows
suffix S1[i+ 1, n1] in SA12. If no such j exists A[i][1] is undefined.

– A[i][2] = j iff S1[i] = S2[j] and suffix S2[j + 1, n2] is the lexicographically
largest suffix of S2 preceding suffix S1[i+ 1, n1] in SA12. If no such j exists
A[i][2] is undefined.

Next, we compute the longest subsequence 1 ≤ i1 < i2 < · · · < i� ≤ n1 such
that there exist b1, . . . , b�, with bk ∈ {1, 2} and the sequence

A[i1][b1] < A[i2][b2] < · · · < A[i�][b�]

is the longest possible (every A[ik][bk] must be defined). The values i1, . . . , i�
and b1, . . . , b� can be computed in O(n1 logn1) time using a straightforward
modification of the dynamic programming algorithm for the longest increasing
subsequence. Setting, for k = 1, . . . , �, jk = A[ik][bk] we get that

G = S1[i1]S1[i2] · · ·S1[i�] = S2[j1]S2[j2] · · ·S2[j�]

is a common subsequence of S1 and S2.

Lemma 1. The subsequence G is BWT-invariant.

Proof. Let v1, . . . , v� (resp. w1, . . . , w�) such that for k = 1, . . . , �, BWT(S1)[vk] is
the character corresponding to S1[ik] (resp. BWT(S2)[wk] corresponds to S2[jk]).
It suffices to prove that for any pair h, k, with 1 ≤ h, k ≤ �, the inequality vh < vk
implies wh < wk. Let ≺ denote the lexicographic order. By construction, and
by the properties of the BWT, we have vh < vk iff the suffix S1[ih + 1, n1] ≺
S1[ik +1, n1] and we must prove that this implies S2[jh +1, n2] ≺ S2[jk +1, n2].

Since jh = A[ih][bh] and jk = A[ik][bk], the proof follows considering the four
possible cases: bh, bk ∈ {1, 2}. We consider the case bh = 1, bk = 2 leaving
the others to the reader. If jh = A[ih][1] and jk = A[ik][2] then S2[jh + 1, n2]
immediately follows S1[ih +1, n1] in SA12. At same time S2[jk +1, n2] precedes
S1[ik+1, n1] but there are no other suffixes from S2 between them. Since jh 	= jk
the only possible ordering of the suffixes in SA12 is

S1[ih + 1, n1] ≺ S2[jh + 1, n2] ≺ S2[jk + 1, n2] ≺ S1[ik + 1, n1]

implying S2[jh + 1, n2] ≺ S2[jk + 1, n2] as claimed. ��

62 D. Belazzougui et al.

Table 3. Comparison between |G| and |LCS|. The normalizing factor n is the length
of sequence 273614N.

322134S 378604X BC187 DBVPG1106

|LCS|/n 0.9341 0.9669 0.9521 0.9590

|G|/n 0.8694 0.8655 0.8798 0.8800

To evaluate whether the subsequence G derived from the above procedure
is still able to capture the similarity between S1 and S2, we have compared
the length of G with the LCS length for pairs of S.cerevisiae genomes from the
Saccharomyces Genome Resequencing Project.5 In particular we compared the
273614N sequence with sequences 322134S, 378604X, BC187, and DBVPG1106.
For each sequence we report in Table 3 the ratio between the length of G and
LCS(BWT(S1),BWT(S2)) and the length of sequence 273614N (roughly 11.9
MB). We see that in all cases more than 85% of BWT positions are in G which
roughly indicates that more than 85% of the SA samples from 273614N could
be reused as SA samples for the other sequences.

5 Conclusions

In this paper we have considered the problem of building an index for a string
S2 given an FM-index for a similar string S1. We have shown how to build such
a “relative” index using space bounded by the BW-distance between S1 and S2.
The BW-distance is simply the edit distance between BWT(S1) and BWT(S2)
when only insertions and deletions are allowed. We have also introduced the no-
tion of BWT-invariant subsequence and shown that it can be used to determine
a set of S1 suffix array samples that can be easily “reused” for an index for S2.

We have tested our approach by building a relative index for a Han Chinese
individual and a 1000 Genomes Project individual with respect to an FM-index
of the human reference genome. We leave as a future work the development of
these ideas and the complete implementation of a relative FM-index supporting
locating and extracting. We also leave as future work proving bounds on the
BW-distance and the length of the longest BWT-invariant subsequence in terms
of the edit distance of the strings.

References

1. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process.
Lett. 65(5), 277–283 (1998)

2. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation (1994)

3. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Phil. Trans. Royal Society A 372, 2014 (2016)

5 https://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html

https://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html

Relative FM-Indexes 63

4. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

5. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

6. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proc. 2014 IEEE Data Compression Conference, DCC 2014, pp.
302–311 (2014)

7. Landau, G.M., Vishkin, U., Nussinov, R.: An efficient string matching algorithm
with k differences for nucleotide and amino acid sequences. Nucleic Acids Re-
search 14(1), 31–46 (1986)

8. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10:R25
(2009)

9. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

10. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2:
An improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–
1967 (2009)

11. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. Journal of Computational Biology 17(3), 281–308
(2010)

12. Myers, E.W.: A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the ACM 46(3), 395–415 (1999)

13. Myers, E.W.: An O(ND) difference algorithm and its variations. Algorithmica 1(2),
251–266 (1986)

14. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: Proc. Ninth Workshop on Algorithm Engineering and Experiments (ALENEX
2007), pp. 60–70. SIAM (2007)

15. Raman, R., Raman, V., Rao Satti, S.: Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007)

16. Rozowsky, J., Abyzov, A., Wang, J., Alves, P., Raha, D., Harmanci, A., Leng,
J., Bjornson, R., Kong, Y., Kitabayashi, N., Bhardwaj, N., Rubin, M., Snyder,
M., Gerstein, M.: AlleleSeq: Analysis of allelespecific expression and binding in a
network framework. Molecular Systems Biology 7, 522 (2011)

Appendix: Reusing an SA Sample

Consider the strings S1, S2 used as example in Section 3, and the corresponding
LCS C = LCS(BWT(S1),BWT(S2)) and bitvectors B1 and B2. The characters of
BWT(S1)[1..16] and BWT(S2)[1..15] are mapped to their positions by the BWT
from

S1[16, 2, 6, 8, 13, 1, 12, 3, 7, 9, 14, 10, 15, 5, 11, 4]

S2[15, 7, 2, 5, 12, 1, 11, 8, 3, 6, 13, 9, 14, 4, 10]

respectively. Notice the lists of indices are just the SAs of S1$ and S2$ with each
value decremented by one. Therefore, if r = 3 then

64 D. Belazzougui et al.

R = 1000110010010001, A[1..6] = [16, 13, 1, 7, 10, 4]

(see beginning of Section 4 for the definition of R and A).
Comparing R and B1 = 0001000000000111 we see that the sampled charac-

ters BWT(S1)[1, 5, 6, 9, 12] that are in C, are C’s 1st, 4th, 5th, 8th and 11th
characters. From B2 = 010000000001010 we see that the 1st, 4th, 5th, 8th and
11th characters in C in BWT(S2) are BWT(S2)[1, 5, 6, 9, 13], which are mapped
to their positions by the BWT from S2[15, 12, 1, 3, 14].

The relative order 5, 3, 1, 2, 4 of the positions 15, 12, 1, 3, 14 in S2 of these
characters, is almost the same as the relative order 5, 4, 1, 2, 3 of the positions
16, 13, 1, 7, 10 in S1 of the sampled characters in BWT(S1) that are in C.

We can get rid of the “almost” if instead of C we consider a subsequence G′

derived from a BWT-invariant sequence G. For example, we can choose

G′ = TCTCGTAAAGG

B′
1 = 0001000001010101 B′

2 = 010000010001010

D′
1 = GAGTC D′

2 = GACC

Clearly G′ is not an LCS of BWT(S1) and BWT(S2) and, thus, our data struc-
tures for supporting rank in BWT(S2) are slightly larger. However, now the char-
acters in BWT(S1) and BWT(S2) that are in G′, are mapped to their positions
by the BWT from

S1[16, 2, 6, 13, 1, 12, 3, 7, 14, 15, 11], S2[15, 2, 5, 12, 1, 11, 3, 6, 13, 14, 10]

and the relative order 11, 2, 4, 8, 1, 7, 3, 5, 9, 10, 6 of the indices in those two lists
is exactly the same. Now suppose we store yet another pair of bitvectors

M1 = 0001100111000000, M2 = 000100111000000

with 1s marking the positions in S1 and S2 of characters that are not mapped
into G′ in BWT(S1) and BWT(S2) (that is, the characters that are not in the
BWT-invariant subsequenceG). We claim that if we can support fast rank queries
on B′

2, R and M1, fast access to A and fast select0 queries on B′
1 and M2, then

we can support fast access to a (possibly irregular) SA sample for S2 with as
many sampled characters as there are in G′ in BWT(S1). More specifically, if
BWT(S2)[i] is in G′ and R[B′

1.select0(B
′
2.rank0(i))] = 1 — meaning the corre-

sponding character in G′ in BWT(S1) is sampled — then BWT(S2)[i] is mapped
to its position by the BWT from

S2

[
M2.select0

(
M1.rank0

(
A
[
R.rank1

(
B′

1.select0 (B
′
2.rank0(i))

)]))]
.

We leave a detailed explanation to the full version of this paper. We note, how-
ever, that this approach works for any sample rate r, and even if the SA sample
for S1 is irregular itself.

In our example, since BWT(S2)[10] is in G′, B′
1.select0(B

′
2.rank0(10)) = 9 and

R[9] = 1, we know BWT(S2)[10] is mapped to its position by the BWT from
position M2.select0

(
M1.rank0

(
A[R.rank1(9)]

))
= 6 in S2.

Efficient Indexing and Representation of Web

Access Logs�

Francisco Claude1, Roberto Konow1,2, and Gonzalo Navarro2

1 Escuela de Informática y Telecomunicaciones, Universidad Diego Portales
fclaude@recoded.cl

2 Department of Computer Science, University of Chile
{rkonow,gnavarro}@dcc.uchile.cl

Abstract. We present a space-efficient data structure, based on the
Burrows-Wheeler Transform, especially designed to handle web sequence
logs, which are needed by web usage mining processes. Our index is
able to process a set of operations efficiently, while at the same time
maintains the original information in compressed form. Results show
that web access logs can be represented using 0.85 to 1.03 times their
original (plain) size, while executing most of the operations within a few
tens of microseconds.

1 Introduction

Web Usage Mining (WUM) [14] is the process of extracting useful information
from web server access logs, which allows web site administrators, designers and
engineers to understand the users’ interaction with their web site. This process
is used to improve the layout of the web site to better suit their users, or to
analyze the performance of their systems in order to apply smart prefetching
techniques for faster response, among other applications.

One particular WUM task is to predict the path of web pages that the user
is going to traverse within a website. Accurately predicting the web user access
behavior can minimize the user perception of latency, which is an important
measure of the website quality of service [5,6,28]. This is achieved by fetching the
web page before the user requests it. Another application is as a recommendation
technique [19, 29]: the prediction can be displayed to the user, giving an insight
of what the user might be looking for, therefore improving the user’s experience.
Other relevant mining operations include determining how frequently the path
has been followed, which users have followed the path, and so on.

The prediction problem can be formalized as follows. Access logs obtained
from web servers are used to extract the user’s web site visit path as an ordered
sequence of web pages Su = 〈v1, v2, v3, . . . , vm〉 (several sessions of the same
user u might be concatenated into Su). Therefore the system records the set

� This work was partially supported by the Conicyt PhD Scholarship, by Fondecyt Ini-
ciación Grant 11130104, and by Millennium Nucleus Information and Coordination
in Networks ICM/FIC P10-024F.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 65–76, 2014.
c© Springer International Publishing Switzerland 2014

66 F. Claude, R. Konow, and G. Navarro

S = {S1, S2, . . . , Sn} of the accesses of each user. Given a new visit sequence
(or path) P that is currently being performed by a user, the predicting task has
to predict which page will be visited next. One näive approach to this problem
is to first return the k web pages that have been visited most commonly by
users after following the same path P , that is, we consider each time P appears
as a substring of some Su, and pick the most common symbols following those
occurrences of P . After this process is done, more complex recommendation
or machine learning algorithms [16] can be employed to accurately predict the
next web page that is going to be visited. One particular challenge is that this
operation needs to be done in an on-line manner, that is, we have to efficiently
update our results as new requests are appended at the end of P . The system
will eventually add those requests S′ to the corresponding Su sequences in S,
via periodic updates. At query time, the set S can be taken as static. The other
mining operations are defined analogously.

Another interesting operation coming from WUM and general data mining is
to retrieve the top-k most frequent sequences [12,22] of a certain length. These
are commonly used in retailing, add-on sales, customer satisfaction and in many
other fields.

A typical WUM system faces two challenges: On the one hand, it has to
manage huge amounts of data, that comes directly from the web access logs that
store the records of all the interactions between the web server and the users.
With the increasing amount of users and content on the Internet, handling this
amount of data is a non-trivial task. On the other hand it has to provide accurate
results. This is usually performed via a two stage process [16]: The first stage is
a fast and simple filtration procedure that returns few hundreds or thousands of
candidates from possibly millions of alternatives. During the second stage, more
complex data mining techniques are performed to reduce the preliminary results
to just a few high-quality results. In this paper we focus on improving the space
consumption and time to perform queries on the web access sequences obtained
from the web server logs used during the first step, thus freeing resources for the
second stage and therefore increasing the performance of the process.

We present a space-efficient data structure in the Word-RAM model for rep-
resenting web access logs, based on the Burrows-Wheeler Transform (BWT) [2].
Our index is able to efficiently process various queries of interest, while repre-
senting the data in compressed form. In this paper we focus on the following key
operations; others are described in the Conclusions.

– Access(u, i) : Access the i-th web page visited by user u.
– UserPath(u) : Return the complete path done by user u.
– Count(P) : Count how many times path P has been performed in the col-

lection.
– MostCommonNextPage(P, k) : Return the k most common web pages visited

after path P .
– ListUsers(P, k) : Return k distinct users that have followed path P .
– MostFrequentPath(k, q) : Return the k most frequent paths of length q done

by the users.

Efficient Indexing and Representation of Web Access Logs 67

Our experimental results show that our index is able to represent the web ac-
cess logs using 0.85–1.03 of their plain representations, thereby replacing them
by a representation that uses about the same space but efficiently answers vari-
ous queries, within microseconds in most cases. Our index can be easily deployed
in other types of applications that handle ordered sequences, such as GPS tra-
jectories, stock price series, customer buying history, and so on.

To our knowledge, this is the first compressed representation of logs that
answers queries specific of WUM applications.

2 Basic Concepts

2.1 Rank and Select

Two basic operations used as building blocks for space-efficient data structures
are rank and select. Given a bitmap B of length n, rankb(i) computes the
number of bits b up to position i. The operation selectb(j) retrieves the position
where the j-th bit b appears. Munro [17] and Clark [3] obtained constant-time
solutions for both operations while using o(n) bits of space on top of B. Raman
et al. [23] managed to compress the space to nH0(B) + o(n) bits1 while still
supporting both operations in constant time.

The wavelet tree [11] of a sequence S of length n over an alphabet of size σ
extends the results for rank and select to general sequences, by decomposing
the sequence hierarchically alphabet-wise in the form of a balanced tree. Internal
nodes Tv store a binary string Bv. The root contains n bits, one per symbol in
the sequence, and they are set to 0 or 1, depending on whether the corresponding
symbol of S belongs to the lower or higher half of the alphabet. The left/right
subtree is built for the subsequence of elements that have a 0/1 on the root.
This decomposition continues, halving the alphabet, until the leaves, which cor-
respond to a single symbol. All bitvectors are processed to handle binary rank
and select queries in O(1) time. This data structure accesses any S[x] and solves
rankb(S, x) and selectb(S, x) in O(lg σ) time, using n lg σ(1 + o(1)) bits (which
is close to the space a plain representation of S would require).

2.2 Range Minimum Queries

A range minimum query asks for the position of the minimum element in a
given range (i, j) of an integer array A of length n, that is, RMQA(i, j) =
argmini≤k≤jA[k]. This query can be solved in constant time [8], after building
a Cartesian tree over the array, convert it into a general tree using the usual
bijection, and representing the general tree with a compact tree representation
[27] that answers lowest common ancestor (lca) and other queries in constant
time. This data structure requires 2n+ o(n) bits.

The Cartesian tree of array A[1, n] is a binary tree whose root corresponds to
the minimum position i in A, its left child is the Cartesian tree of A[1, i − 1],
and its right child is the Cartesian tree of A[i + 1, n].

1 H0(B) is the zero-order entropy of the bitmap B.

68 F. Claude, R. Konow, and G. Navarro

2.3 Burrows-Wheeler Transform and the SSA Index

The Succinct Suffix Array (SSA) [20] is a compressed index that builds on the
Burrows-Wheeler transform (BWT) of a text [2]. The main idea is to represent
the BWT of a text T in compressed space and support pattern matching.

Given a text T of length N , ending with a unique symbol $ smaller than
the rest, the BWT corresponds to a permutation of the symbols in T that is
reversible. A simple way to describe the transformation is to imagine the N ×N
matrix of the N cyclic rotations of the text T , sort the rows lexicographically,
and then keep the last column of the matrix, L[1, N] = BWT (T). The first
column, formed by all the characters of T in order, is called F [1, N]. Note that
any F [i] is preceded by L[i] in T .

It has been shown [15] that local compressors tend to handle the BWT of
a text much better than the text itself, since the transformation tends to clus-
ter together occurrences of the same symbol. This is not surprising, since the
symbols are actually arranged according to their context (symbols appearing
after it). An interesting operation that allows to support the ones we are in-
terested in is known as the LF -mapping. LF (i) tells where does L[i] appear in
F [i], this way allowing us to retrieve the text that precedes it in T in back-
ward form: L[i], L[L[i]], and so on. The LF operation can be computed as
LF (i) = rankc(BWT (T), i) + occ[c], where occ[c] corresponds to the number of
symbols lexicographically smaller than c in T . By representing BWT (T) with
a wavelet tree [11], the LF operation takes O(lg σ) time, the same as accessing
any position in BWT (T).

The backward search operation [7] returns in O(m lg σ) time the range L[sp, ep]
from where all the occurrences of a given pattern P of lengthm can be located. It
is called backward search since its procedure seeks the pattern in reverse order.
Backward search is sufficient to compute the number of occurrences of P , as
ep− sp+ 1; this procedure is called count.

A Succinct Suffix Array (SSA) enhances the BWT representation with a sam-
pling of some suffix array entries. This sampling is used to locate the actual
positions where P occurs in T from the range L[sp, ep]. Given a sampling fac-
tor sa, which requires O((N/sa) lgN) further bits of space, the SSA locates the
position in T of any of the ep − sp + 1 occurrences of P in O(sa lg σ) time.
With a similar sampling, the SSA can also extract any desired substring T [l, r]
in O((sa + r − l) lg σ) time. By choosing any sa = ω(lgσ N), the SSA index can
be represented using NHk(T) + o(N lg σ) bits of space, where NHk(T) is the
k-th order entropy of the text T .

3 Indexing Web Access Sequences

3.1 Construction

We start by concatenating all ordered web access sequences S = {S1, S2, . . . , Sn}
from all users into a sequence T (S) of size N =

∑n
i=1 |Si| over an alphabet of

size σ, where σ is the amount of distinct web pages visited by any user in the

Efficient Indexing and Representation of Web Access Logs 69

log file. Instead of building the BWT to index T (S), we construct the index
over T (S)R , that is, T (S) has each Si reversed. This simple trick allows us to
maintain a range of elements that match the sequence of requests so far, while
performing backward search, and thus allowing us to add new arriving requests
by just performing one more step. Having the BWT of T (S)R is not enough to
reconstruct the information from the log. We also need to store the user identifier
associated with each position in the sequence. To do so without spending N lg n
bits to associate a user id to each position in the BWT of T (S)R, we construct
a bitmap B of length N and mark with a 1 the positions where each Si ends
in T (S)R. We later index B to solve rank and select queries in constant time
using compressed space [23]. This is enough to obtain the user associated to a
location in the BWT of the sequence, by locating its original position p in the
sequence and then performing rank1(B, p).

For listing the distinct users (strings) where path P occurs, we implement
Muthukrishnan’s document listing algorithm [18], as compressed by Sadakane
[26]. We construct a temporary array U [i] = rank1(B, i), for 1 ≤ i ≤ N , that
stores the user ids and then permute the values so that the ids are aligned to
the BWT (T (S)R) sequence. Another integer array C is constructed by setting
C[i] = selectU [i](U, rankU [i](U, i)− 1)2 for all 0 ≤ i ≤ N , and then build a RMQ
data structure on C. We keep this structure and discard C and U .

The RMQ data structure requires 2N + o(N) bits. The SSA index requires
NHk(T (S)) + o(N lg σ) bits. The representation of bitmap B takes H0(B) +
o(N) ≤ N + o(N) bits. Note that we do not store the users, nor the frequencies
in an explicit way.

3.2 Queries

Access(u, i). To obtain the i-th web page visited by user u within the sequence,
we need to locate the position in the original sequence T (S)R where the user’s
session begins. We can do this by computing p = select1(B, u + 1) − 1 − i and
then applying extract T (S)R[p, p] on the SSA index, in O(sa lg σ) time.

UserPath(u). To obtain the path done by user u, we compute p1 = select1(B, u)
and p2 = select1(B, u+ 1)− 1 and then extract T (S)R[p1, p2] using the SSA in-
dex. This takes O((� + sa) lg σ) time, where � = p2 − p1 is the length of the
extracted path.

Count(P). Given a path P of length m we can count its occurrences, by just
performing Count(P) on the SSA index in O(m lg σ) time.

MostCommonNextPage(P,k). We describe this operation incrementally.
Assume we have already processed the sequence of requests P = r1, r2, . . . , rm−1.
Our invariant is that we know the interval [sp, ep] corresponding to path P , and

2 To avoid corner cases, we define selectU [i](U, 0) = −1.

70 F. Claude, R. Konow, and G. Navarro

a a a b c a d $ a b c d a $ a a a b c d a $ a a a $ 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1

T (S)R
B

$ a a a d a d d a $ 0 $ a a a a $ c a a a b b b a c c
4 4 3 2 1 4 3 2 4 3 2 1 3 1 3 1 1 1 3 2 1 3 2 1 3 2
-1 0 -2 -3 -4 1 2 3 5 6 7 4 9 12 13 14 16 17 15 11 18 19 20 21 22 23

BWT

U
C

RMQ

Fig. 1. Layout of our index organization using example sequences: S1 = dacbaaa, S2 =
adcba, S3 = adcbaaa and S4 = aaa. The dollar ($) symbol is used to represent the end
of each sequence and the zero symbol is used to mark the end of the concatenation of
the sequences T (S)R. At the bottom we show the topology of the Cartesian tree built
over the C array representing the RMQ data structure. Recall that arrays U and C
are not represented and are only shown for guidance.

this is sufficient to answer query MostCommonNextPage(P, k). Now a new re-
quest rm arrives at the end of P . Then we proceed as follows:

1. Update the range [sp, ep] in BWT (T (S)) using rm, in O(lg σ) time [7].
2. Retrieve the k most frequent symbols in BWT [sp, ep], which are precisely

those preceding the occurrences of PR in T (S)R, or following P in T (S).
The second step is done with the heuristic proposed by Culpepper et al. [4] to
retrieve the k most frequent symbols in a range of a sequence represented with
a wavelet tree. It is a greedy algorithm that starts at the wavelet tree root and
maps the range (in constant time, using rank on the bitmap of the wavelet tree
node) to its children, until reaching the leaves. The traversal is prioritized by
visiting the longest ranges first, and reporting the symbols corresponding to the
first k leaves found in the process. The worst-case performance of this algorithm
is bounded by the number of different symbols present in the string range. This
is smaller than both σ and the size of the range. By using more sophisticated
data structures (that nevertheless do not add much space) [13,21], a worst case
of O(k + polylogn) time can be guaranteed. Note that, if we want to list all
the request that have followed P , we can use an optimal algorithm based on
depth-first traversal of the wavelet tree [9].

ListUsers(P, k). To list k (or all) distinct users that have followed path P we
first locate the starting and ending points [sp, ep] for the given path, using the

Efficient Indexing and Representation of Web Access Logs 71

SSA index in O(m lg σ) time (we can also proceed incrementally as in operation
MostCommonNextPage). Then we apply the optimal document listing algorihtm
[18, 26]. Each value C[p] < sp, for sp ≤ p ≤ ep, signals a distinct value of U [p]
in U [sp, ep]. Recall that we do not have C or U anymore, but the procedure for
extracting the list of users can be emulated with the RMQ data structure over
array C and the bitmap B. The procedure for extracting the list of all users
works as shown in Algorithm 1. Function locate takes a position in the BWT
and maps it to the corresponding position in the original T (S)R, in O(sa lg σ)
time. Listing k distinct users for path P takes O((k · sa + p) lg σ) time.

Fig. 1 shows an example of listing users. The framed region represents the
range sp, ep. Red nodes in the RMQ tree represent the position of the retrieved
users, while the blue node represents the last visited node before returning.

Algorithm 1. – UserListing(sp, ep,users = ∅)
p ← RMQC(sp, ep)
if ep < sp then

return users
end if
u ← rank1(B, locate(p))
if u �∈ users then

users ← users ∪ u
UserListing(sp, p− 1, users)
UserListing(p+ 1, ep, users)

end if

MostFrequentPath(k, q). We want to retrieve the k most frequent paths of
a certain length q done by the users in the system. We start by pushing into a
priority queue all ranges obtained by performing a backward-search of paths of
length 1 for each possible symbol (σ at most). Now, we extract the biggest range
from the priority queue as well as the path that created that range. We execute
the same procedure again, creating new paths by appending to the extracted
path one further symbol (trying the σ possible ones in the worst case) and we
push the ranges obtained by performing the backward search on these new paths
into the priority queue. When we extract a path of length q, we report it and
remove it from the priority queue. The procedure ends when k paths are reported
or when the priority queue is empty. In the worst case, this operation can take
O(σq).

This method may perform poorly when the alphabet σ is large. An optimiza-
tion is to avoid trying out all the σ characters to extend the current path, but
just those symbols that do appear in the current range. Those are found by
traversing the wavelet tree from the root towards all the leaves that contain
some symbol in the current range [9].

4 Experiments and Results

Setup and Implementations. We used dedicated server with 16 processors
Intel Xeon E5-2609 at 2.4GHz, with 256 GB of RAM and 10 MB of cache.

72 F. Claude, R. Konow, and G. Navarro

Table 1. Space usage, in bytes, of the data structures used in our index. Plain corre-
sponds to the sum of the space usage of plain representations of the sequence and users.
Ratio corresponds to the total index size divided by the plain representation size.

Data Structure Msnbc Kosarak Spanish

SSA 3,175,504 12,500,964 75,667,016

RMQ 1,770,690 2,807,570 39,538,238

Users Bitmap 608,044 777,804 9,413,732

Total 5,554,246 16,086,346 124,618,994

Plain 5,782,495 18,884,286 120,613,202

Ratio 0,96 0,85 1,03

The operating system is Linux with kernel 3.11.0-15 64 bits. We used g++
compiler version 4.8.1 with full optimizations (-O3) flags.

We implemented the SSA index using the public available wavelet tree im-
plementation obtained from libcds (http://www.github.com/fclaude/libcds)
and developed the heuristic proposed by Culpepper et al. [4] on top of that
implementation. The wavelet tree needed for the SSA index uses a RRR [23]
compressed bitmap representation. The bitmap B needed to retrieve the users
is used in plain form [10]. We implemented the RMQ data structure based on
compact tree representations [1], which in practice requires 2.38n bits. Our im-
plementation is available at https://gitlab.com/fclaude/wum-index/.

Experimental Data. We used web access sequences from the public available
Msnbc, Kosarak, and Spanish datasets. The Msnbc dataset comes from Internet
Information Services log files of msnbc.com for a complete day of September, 28
of 1999. It contains web access sequences from 989, 818 users with an average
of 5.7 web page categories visits per sequence, the alphabet size of this dataset
is σ = 17. The Kosarak dataset contains the click-stream data obtained from a
Hungarian on-line news portal. It contains sequences of 990, 000 users with an
average of 8.1 web page visits per sequence and an alphabet size σ = 41, 270.
Finally, the Spanish dataset contains the visitors’ click-stream obtained from
a Spanish on-line news portal during September 2012. This dataset consists of
9, 606, 228 sequences of news-categories that were visited, with an average of 12.3
categories visited per sequence and an alphabet size of σ = 42.

Space Usage. Table 1 shows the space usage of each data structure for each
dataset. Row “Plain” shows the space required to represent the original sequence
T (S)R using an array of N lg σ bits plus an array to represent the users using
n lgN bits. The table shows that our index is able to compress the sequence
by up to 15%, on the Kosarak dataset, while requiring only 3% extra space at
most, on the Spanish dataset. Within this space, we are able to support the
aforementioned operations, while at the same time can reconstruct the original
sequence and the users information.

http://www.github.com/fclaude/libcds
https://gitlab.com/fclaude/wum-index/

Efficient Indexing and Representation of Web Access Logs 73

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

A
vg

. M
ic

ro
se

co
nd

s

Sequence length

Access User Sequence

Msnbc
Kosarak
Spanish

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

A
vg

. M
ic

ro
se

co
nd

s
pe

r
E

xt
ra

ct
ed

 S
ym

bo
l

Sequence length

Extract User Path

Msnbc
Kosarak
Spanish

Fig. 2. On the left, average microseconds to perform Access(u, i); on the right, average
microseconds per extracted symbol for the operation UserPath(u)

We evaluated alternatives to the SSA, such as the Compressed Suffix Array
(CSA) [24] and the Compressed Suffix Tree (CST) [25], using the ones provided
by the sdsl-lite library (https://github.com/simongog/sdsl-lite). Table 2
compares their space usage to our SSA at representing the sequence. The SSA is
a better choice in this case, using up to 33% less space than the others. The CST
could be used to compute some of the operations, since it is naturally a faster
alternative. In fact, we evaluated this alternative for counting the occurrences
of a sequence, and it is in practice four to twenty times faster than the SSA.
We discarded it since the space requirement makes it unpractical for massive
datasets. In fact, the CST needs to be augmented in order to support all the
operations presented in this paper, which would increase its memory usage.

Time Performance. To evaluate the main operations using our proposed data
structure, we generate query paths by choosing uniformly at random a position
in the original sequences, and then extracting a path of the desired length.

Fig. 2 (left) shows the time to access positions chosen uniformly at random
from users whose traversal log has length 1 to 100. The time does not depend
on the length, but directly on sa lg σ. Fig. 2 (right) shows the time per symbol
extracted, when we access the whole sequence associated with a user. We can see
that for users with short interactions the SSA sampling has a greater effect, and
this is amortized when accessing longer sequences, that is, the term O(sa lg σ)
is spread among more extracted symbols and the time converges to lg σ.

Table 2. Comparison of the space consumption of the SSA, CSA, and CST for repre-
senting sequence T (S)R. We show the ratio of each index space over the plain repre-
sentation of the sequence without the user’s information by using N lg σ bits.

Data Structure Msnbc Kosarak Spanish

SSA 1,08 0,77 0,85

CSA 1,61 0,87 1,13

CST 3,82 1,43 2,96

https://github.com/simongog/sdsl-lite

74 F. Claude, R. Konow, and G. Navarro

 0

 50

 100

 150

 200

 250

 4 8 12 16 20 24 28 32 36 40

A
vg

. M
ic

ro
se

co
nd

s

Sequence length

Count Path Occurrences

Msnbc
Kosarak
Spanish

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512 1024

A
vg

. M
ic

ro
se

co
nd

s

k

Most Common Next Visit, varying k, p=5

Msnbc
Kosarak
Spanish

Fig. 3. On the left, average microseconds to perform Count(P); on the right, average
microseconds for theMostFrequentPath operation with varying k using patterns of fixed
length p = 5

 0

 200

 400

 600

 800

 1000

 4 8 12 16 20 24 28 32 36 40

A
vg

. M
ic

ro
se

co
nd

s

Sequence length

List Distinct Users

Msnbc
Kosarak
Spanish

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 8 12 16 20 24 28 32 36 40

M
ill

is
ec

on
ds

 p
er

 Q
ue

ry

q

Top-10 Most Common Path of Length q

Msnbc
Kosarak
Spanish

Fig. 4. On the left, average microseconds to list distinct users that traversed paths
with varying lengths. On the right, the time required to perform top-10 most common
path operation for varying pattern lengths.

We then measured the time to count the number of times a certain path
appears in the access sequence. Fig. 3 (left) shows the time per query. As ex-
pected, it grows linearly with the length of the path being counted, and the lg σ
term determines the slope of the line. On Fig. 3 (right) we show the results for
the MostCommonNextPage operation. The x-axis and y-axis are in log scale.
For datasets containing small alphabets such as Msnbc (σ = 17) and Spanish
(σ = 42) this operation is performed in under 30 microseconds for all possi-
ble values of k (note it is impossible to obtain more than σ distinct symbols),
and shows a logarithmic behavior. We also note that the slope of the logarithm
depends on the value of σ, as shown in the Kosarak dataset. The operation,
however, is still reasonably fast, taking less than 1 millisecond for k = 1024.

Fig. 4 (left) shows the time for retrieving the set of users that followed a given
access pattern in the system. For shorter sequences, the index has to retrieve a
bigger set of users, as these sequences are more likely to appear. As the sequences
grow in length, the time decreases, since the resulting set is also smaller. The
behavior for Kosarak, which after a certain point starts increasing in time per
query, can be explained by the fact that determining the range [sp, ep] grows

Efficient Indexing and Representation of Web Access Logs 75

linearly with the length of the pattern, and at some point it dominates the
query time. This is also expected, at a later point, for Msnbc and Spanish.

Finally, Fig. 4 (right) shows the query time for operation
MostFrequentPath(k, q). Our first implementation tried following all symbols at
every step of the algorithm. This worked quite well for small alphabets but had
a very bad performance on the Kosarak dataset. This plot shows the implemen-
tation traversing the wavelet tree at each step to only follow symbols that do
appear in the range. This gives a slightly worse performance for small alphabets,
but a considerable speedup (1–2 orders of magnitude) for larger ones.

5 Discussion and Future Work

We introduced a new data structure for handling web access sequences in com-
pressed form that fully replaces the original dataset and also supports useful
operations for typical WUM processes. Our experiments show that our index
uses about the same size of the plain representation of the data, and within this
space supports various relevant operations within tens of microseconds. This is
competitive; consider that in most common scenarios the systems have to reply
over a network, which have considerable latency and transfer time. Ours is the
first compressed representation tailored for this scenario.

We have not yet fully explored other possible operations of interest in log
mining that can be supported with our arrangements. For example, we can count
the number of users that followed some path in constant time using 2n + o(n)
bits using document counting [26], compute the k users that have followed a
path most frequently using top-k document retrieval [13], and others.

Our index can be easily adapted to custom scenarios by adding satellite infor-
mation, such as duration of the visit, actions (buy, login/logout, comment, etc.),
browser information, location, and others, to each event in the log and include
the information by mapping it to the BWT transform for later processing. This
enables our index to be applied in other scenarios involving ordered sequences,
such as GPS trajectories, stock price series, customer buying history, and so on.

References

1. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Proc. 11th ALENEX, pp. 84–97 (2010)

2. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Tech. rep., Digital Equipment Corporation (1994)

3. Clark, D.: Compact Pat Trees. Ph.D. thesis, Univ. of Waterloo, Canada (1996)
4. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document

search in general text databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part
II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

5. Domènech, J., Gil, J.A., Sahuquillo, J., Pont, A.: Web prefetching performance
metrics: A survey. Perform. Eval. 63(9), 988–1004 (2006)

6. Dongshan, X., Junyi, S.: A new markov model for web access prediction. Comput-
ing in Science and Eng. 4(6), 34–39 (2002)

76 F. Claude, R. Konow, and G. Navarro

7. Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581
(2005)

8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comp. 40(2), 465–492 (2011)

9. Gagie, T., Navarro, G., Puglisi, S.: New algorithms on wavelet trees and applica-
tions to information retrieval. Theor. Comp. Sci. 426-427, 25–41 (2012)

10. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation
of rank and select queries. In: Proc. Posters 4th WEA, pp. 27–38 (2005)

11. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. 14th SODA, pp. 841–850 (2003)

12. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining Knowl. Disc. 15(1), 55–86 (2007)

13. Hon, W.K., Shah, R., Vitter, J.: Space-efficient framework for top-k string retrieval
problems. In: Proc. 50th FOCS, pp. 713–722 (2009)

14. Hussain, T., Asghar, S., Masood, N.: Web usage mining: A survey on preprocessing
of web log file. In: Proc. ICIET, pp. 1–6 (2010)

15. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3),
407–430 (2001)

16. Mobasher, B.: Data mining for web personalization. In: Brusilovsky, P., Kobsa,
A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 90–135. Springer,
Heidelberg (2007)

17. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

18. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
13th SODA, pp. 657–666 (2002)

19. Nadi, S., Saraee, M., Davarpanah-Jazi, M.: A fuzzy recommender system for dy-
namic prediction of user’s behavior. In: Proc. ICITST, pp. 1–5 (2010)

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
(2007)

21. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)

22. Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H.: Mining access patterns efficiently
from web logs. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS,
vol. 1805, pp. 396–407. Springer, Heidelberg (2000)

23. Raman, R., Raman, V., Rao, S.: Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4), art. 43
(2007)

24. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Alg. 48(2), 294–313 (2003)

25. Sadakane, K.: Compressed suffix trees with full functionality. Theor. Comp.
Sys. 41(4), 589–607 (2007)

26. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discr.
Alg. 5(1), 12–22 (2007)

27. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. 21st SODA,
pp. 134–149 (2010)

28. Su, Z., Yang, Q., Lu, Y., Zhang, H.: Whatnext: A prediction system for web re-
quests using n-gram sequence models. In: Proc. 1st WISE, pp. 214–224 (2000)

29. Sumathi, C., Valli, R.P., Santhanam, T.: Automatic recommendation of web pages
in web usage mining. Intl. J. Comp. Sci. Eng. 2, 3046–3052 (2010)

A Compressed Suffix-Array Strategy

for Temporal-Graph Indexing�

Nieves R. Brisaboa2, Diego Caro1, Antonio Fariña2, and M. Andrea Rodŕıguez1

1 Dept. Comp. Sci., University of Concepción, Chile
{diegocaro,andrea}@udec.cl

2 Database Lab., University of A Coruña, Spain
{brisaboa,fari}@udc.es

Abstract. Temporal graphs represent vertexes and binary relations that
change over time. In this paper we consider a temporal graph as a set
of 4-tuples (vs, ve, ts, te) indicating that an edge from a vertex vs to a
vertex ve is active during the time interval [ts, te). Representing those
tuples involves the challenge of not only saving space but also of efficient
query processing. Queries of interest for these graphs are both direct
and reverse neighbors constrained by a time instant or a time interval.
We show how to adapt a Compressed Suffix Array (CSA) to represent
temporal graphs. The proposed structure, called Temporal Graph CSA
(TGCSA), was experimentally compared with a compact data structure
based on compressed inverted lists, which can be considered as a fair
baseline in the state of the art. Our experimental results are promising.
TGCSA obtains a good space-time trade-off, owns wider expressive ca-
pabilities than other alternatives, obtains reasonable space usage, and it
is efficient even when performing the most complex temporal queries.

1 Introduction

There is an increasing need to handle large graphs that change over time and
where not only the current state but also the past state is of interest. For exam-
ple, consider the evolution of friendship relations when a user adds or removes
friends in online social networks, how the citation network grows when new sci-
entific articles are published, how connectivity between mobile devices evolves
through time when their base station changes, or how links appear and disap-
pear on the Web graph. The compact representation of temporal graphs is then
a relevant problem since direct/reverse-neighboring queries constrained by time
instant/interval could benefit from keeping as much data as possible in main
memory.

� Founded in part by Fondef [D09I1185], Fondecyt [1140428] and a CONICYT doc-
toral fellowship (for the Chilean group); and, for the Spanish group, by MINECO
(PGE and FEDER) [TIN2013-46238-C4-3-R, TIN2013-47090-C3-3-P]; CDTI, AGI,
MINECO [CDTI-00064563/ITC-20133062]; ICT COST Action IC1302; and by
Xunta de Galicia (co-founded with FEDER) [GRC2013/053].

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 77–88, 2014.
c© Springer International Publishing Switzerland 2014

78 N.R. Brisaboa et al.

A temporal graph can be seen as a set of 4-tuples of the form (vs, ve, ts, te),
indicating that an edge from a vertex vs to a vertex ve is active during the
interval [ts, te). A compact representation for this set of 4-tuples, called EdgeLog
uses an adjacency list to represent edges and lists of time points indicating when
each edge is turned on and off. EdgeLog can use existing compact representations
for inverted lists [16], d-gaps, or k2-trees [3].

This paper proposes Temporal Graph CSA (TGCSA), a novel compact data
structure based on the Compressed Suffix Array (CSA) [14]. We discuss how
TGCSA opens new opportunities for the application of suffix arrays that are
worth exploring both for temporal and general graphs.

Previous work in this area is still incipient. In [7], they represented a tem-
poral graph as several static graphs (or snapshots), storing the active edges for
each time point in the lifetime of the graph. Its main drawback is the amount
of space used even if the state of an edge (active or not) does not vary for a
long time. Storing differences between some snapshots (carefully chosen) saves
space but requires processing them at query time [13,9]. This has the advantage
of storing only what changes between consecutive time points and of answering
queries about the active direct and reverse neighbors of a vertex. Data structures
for temporal graphs based on adjacency lists [4] and on distributed environ-
ments [8,10] exist; however, they have focused on improving time performance
neglecting space cost. Recently, we found a preliminary effort to define efficient
compact structures for temporal graphs [2]. However, their results apply only to
medium size graphs and show that there is much work to do in this area.

The structure of this paper is as follows. Section 2 presents preliminary con-
cepts and the EdgeLog as a baseline to compare with the proposed structure.
Section 3 describes TGCSA, which is followed in Section 4 by the experimen-
tal evaluation using real and synthetic data. Conclusions and future research
directions are given in Section 5.

2 Preliminary Concepts

Temporal Graph Definition. Formally, a temporal graph is a set C of con-
tacts between a set of vertexes V during a set of time points T representing the
lifetime of the graph. A contact of an edge (u, v) ∈ E ⊆ V × V is a 4-tuple
c = (u, v, t, t′), where [t, t′) ∈ T × T is the time interval when the edge (u, v) is
active [11]. We say that an edge (u, v) is active at time t if there exists a contact
(u, v, ts, te) ∈ C such that t ∈ [ts, te). We refer to an aggregated graph as the
static graph composed by all edges that have been active during the lifetime of
the temporal graph.

For the purpose of this paper, we define four operations on the temporal
graph for a given time point t: (1) Edge existence at t checks if an edge is
active at t. (2) Direct neighbors at t returns the adjacent active neighbors at a
given time point t. (3) Reverse neighbors at t gives the active reverse adjacent
vertexes at time t. (4) Snapshot at t returns all active edges at a time point t.
For example, given Figure 1a, the snapshot at t = 5 corresponds to the edges
{(b, c), (b, e), (d, b), (e, d)}.

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 79

a b

a d

b c

b e

d b

e d
0 1 2 3 4 5 6 7

(a) Set of contacts

b d /
1 4 / 3 4 6 7 /

c e /
4 7 / 4 6 /

Time Interval
b /

0 7 /
d /

4 6 /

a

b

c /

d

e

(b) EdgeLog representation

Fig. 1. A temporal graph of 5 vertexes. The dashed line corresponds to the time point
t = 5. Reverse aggregated graph is omitted in (b). (Figure adapted from [11]).

EdgeLog: Baseline Representation. A simple temporal graph representa-
tion [4] stores the aggregated graph as |V | adjacency lists, one per vertex, with
a sorted list of time intervals attached to each neighbor indicating when that
edge is active. Figure 1b shows a conceptual example.

To check if an edge (u, v) is active at time t, we first check if v appears within
the adjacency list of vertex u. If the edge is found, then we need to check if t
falls into one of the time intervals related to (u, v) that are represented in the
time-point list of that edge. Direct neighbors of vertex u at time t are recovered
similarly. For each neighbor v in the adjacency list of u, we check if t is within
the time intervals of the edge (u, v).

This simple representation has two main drawbacks: (1) it uses much space;
and (2) reverse neighbors operation requires traversing all adjacency lists. Both
issues are overcome in what we call EdgeLog. (1) Since both the adjacency lists
and the time-interval lists are sorted (i.e., they are of the form 〈t1, t2, t3, ..., tl〉,
with ti < ti+1), they can be represented as d-gaps 〈t1, t2 − t1, t3 − t2, ..., tl −
tl−1〉 and compressed using variable-length encoding for the differences (e.g.,
PForDelta [17], S16 [15]). Also, (2) to avoid traversing all adjacency lists in
reverse-neighbor queries, EdgeLog stores the reverse aggregated graph containing
an adjacency list with the reverse neighbors of each vertex. Therefore, to get the
reverse neighbors of vertex v at time t, we first use the reverse adjacency list
to obtain the candidate reverse neighbors of v. Then, for each candidate reverse
neighbor u, we move to v in its adjacency list and finally check if the edge (u, v)
is active at time t (using the time-interval list of the edge).

Strong and Weak Points in EdgeLog. Although EdgeLog is a simple struc-
ture using well-known technology, it is expected to be extremely space-efficient
when the temporal graph has a low number of edges per vertex and a large
number of contacts per edge. In the opposite way, a low number of contacts per
edge will have a negative impact on the compression achieved by EdgeLog (as
d-gaps become large). Note also that, even with the reverse aggregated graph to
find reverse neighbors, the performance is expected to be poor if the number of
edges per vertex is high because all their adjacency lists will have to be checked.

80 N.R. Brisaboa et al.

EdgeLog is designed to be efficient for queries of the type edge existence at t
and direct and reverse neighbors at time t, but it could not answer efficiently
queries such as: “Find all the edges that have active contacts at time t” or “Find
all the edges that have been only active once”. Finally, it must be pointed out
that the applicability of the EdgeLog is limited to temporal graphs where edges
can not have overlapping contacts in time; that is, it assumes that a contact of
an edge ends before another one starts.

3 CSA for Temporal Graphs (TGCSA)

Our Temporal Graph CSA (TGCSA) is an adaptation of Sadakane’s Compressed
Suffix Array (CSA)[14]. More precisely, it is based on the integer-based CSA
(iCSA) that allows CSA to deal with large (integer-based) alphabets (see [6] for
details). Recall that CSA consists of three main elements to support searches:
i) The symbols of the source alphabet S; ii) a bitmap D of size n to mark the
positions of the suffix array A where the first symbol of the suffixes pointed to
changes; and iii) an array Ψ such that Ψ [i] indicates, for each position i in A,
the position z = Ψ [i] such that A[z] points to the position A[i] + 1.

There is an important difference between the standard CSA and our imple-
mentation that we conceptually describe here. Let us assume that all the terms
in a contact are made up from four disjoint alphabets Σ1, Σ2, Σ3, and Σ4 such
that Σ1 ≺ Σ2 ≺ Σ3 ≺ Σ4 (≺ indicates lexicographic order). Note that alphabets
Σ1 and Σ2 represent the set of nodes V , while Σ3 and Σ4 represent the set of
time points T . Our procedure starts by creating an ordered list of n contacts,
so that the contacts are sorted by their first term, then (if they have the same
first term) by the second component, and so on. Now, those sorted contacts are
regarded as a sequence of integers with 4n elements, and a suffix array A[1, 4n] is
built over it. Since the values in the four disjoint alphabets are ordered (Σi ≺ Σj

∀i < j), the first 25% entries in A (A[1, n]) will point to the first terms of all the
contacts, the next n entries (A[n+ 1, 2n]) to the second terms, and so on. Con-
sequently, the first 25% entries of Ψ (Ψ [1, n]) will point to positions in the range
[n+ 1, 2n], because, in the indexed sequence, each symbol u ∈ Σ1 is followed by
a symbol v ∈ Σ2, and so on.

Note that, in the standard CSA, if A[i], (i ∈ [3n + 1, 4n]) points to the last
term of the jth contact, then Ψ [i] would store the position in A pointing to the
first term of the following (j+1)th contact in the ordered list (A[i]+1 = A[Ψ [i]]),
which would be in the range [1, n]. However, we modified those pointers in the last
25% of Ψ , because we want that, instead of pointing to the position x = A[Ψ [i]]
corresponding to the first term of the following contact, we want them to point to
the first term of the same contact. This implies modify Ψ such that A[Ψ [i]] = x−1
for x �= 1, and A[Ψ [i]] = n otherwise.

By starting at any entry i in Ψ and following the pointers Ψ [Ψ [Ψ [Ψ [i]]]], all the
elements of the current contact can be retrieved, but no entry from any other
tuple will be reached. With our modification, it is not possible to traverse the
whole CSA just using Ψ because consecutive applications of Ψ will cyclically
obtain the four elements of the same contact.

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 81

3.1 Detailed Construction of the TGCSA

As indicated above, the first step to build a TGCSA is to create a sequence S
with the ordered n contacts from C. Hence we obtain, S[1, 4n] = 〈u1, v1, t1s, t

1
e,

u2, v2, t2s, t
2
e, . . . , u

n, vn, tns , t
n
e 〉.1

Let us assume we have ν = |V | different vertexes and τ = |T | periods of time.
It is possible to define a reversible mapping function that maps the terms of any
original contact c = (u, v, ts, te) into c′ = (u, v+ν, ts+2ν, te+2ν+τ). To achieve
this, we define an array gaps[1, 4] ← [0, ν, 2ν, 2ν+τ] and c′[i] ← c[i]+gaps[i] ∀i =
1 . . . 4. This mapping defines four ranges of entries in an alphabet Σ′ for both
vertexes and times such that |Σ′| = 2ν + 2τ . Note that vertex i is mapped
to either the integer i + gaps[1] or i + gaps[2] depending on whether it is the
source or target vertex of an edge. Similarly, the time instant t is mapped to
either t + gaps[3] or t + gaps[4]. This will permit us to distinguish between
starting/ending vertexes/times by simply checking the range where their value
falls in.

Note that even though vertex i always exists in the temporal graph, either
source vertex u′ = i + gaps[1] = i or target vertex v′ = i + gaps[2] may not
actually be used. Similarly a time t′ could not occur as an initial or as an ending
time of a contact, yet we could be interested in retrieving all the edges that are
active at that time t′.

To overcome the existence of holes in the alphabetΣ′, a bitmap B[1, 2ν+2τ] is
used. We set B[i] ← 1 if the symbol i from Σ′ occurs in a contact, and B[i] ← 0
otherwise. Therefore, each of the four terms within a contact (u, v, ts, te) will
correspond to a 1 in B. Now an alphabet Σ of size σ = rank1(B, 4n)2 is created
containing the positions in B where the bits set to 1 occurs. For each symbol
i ∈ Σ′ a mapID(i) function assigns an integer id ∈ Σ to i, so that id ← mapID(i)
= rank1(B, i) if B[i] = 1, and 0 ←mapID(i) if B[i] = 0. The reverse mapping is
provided via a unmapID(id) = select1(B, id) function3.

At this point, a sequence of ids Sid[1, 4n] can be created by setting Sid[i] ←
mapID (S[i] + gaps[((i− 1) mod 4) + 1])∀i = 1 . . . 4n.

Indeed, being type = 1, 2, 3, 4, respectively, the types of source vertex, target
vertex, starting time and ending time from the source sequence S, any source
symbol i from S can be mapped into Sid as id =getmap(i, type) ←rank1(B, i+
gaps[type]). Similarly, the reverse mapping obtains i = getunmap (id, type)
←select1(B, id)− gaps[type].

Finally, an iCSA is built over Sid.4 Note that since the vocabularies of the
ids associated with the four terms of any contact are disjoint, the corresponding
suffix array A will have four ranges of length n so that A[(j − 1)n + 1, jn], j =
1..4. Pointers in each range point to suffixes starting with a source vertex, a

1 Note that the ordering is not relevant as we have a set of contacts. Therefore, we
will assume contacts are sorted by the first term, then by the second one, and so on.

2 rank1(B, i) returns the number of 1s in B[1, i].
3 select1(B, i) computes the position of the ith 1 in B.
4 We actually added four integers set to zero that make up a dummy contact (0,0,0,0)
at the beginning of Sid. This is required to avoid limit-checks at query time.

82 N.R. Brisaboa et al.

target vertex, a starting time, or an ending time, respectively. Similarly, values
in Ψ [1, n] in the range of source vertexes, will point to the range of target vertexes
[n+1, 2n]. Values in Ψ [n+1, 2n] will point to the range of initial times [2n+1, 3n].
Those in Ψ [2n+ 1, 3n] will point to the range of ending times [3n+ 1, 4n]. And
finally, those in Ψ [3n + 1, 4n] will point to the range of source vertexes [1, n].
Indeed, if A[3n+1] points to the ending time of the kth contact of the collection,
z ← Ψ [3n+1] will indicate the position such that A[z] points to the source vertex
(first term) of the (k + 1)th contact. This is how Ψ works in a regular iCSA.

16

0

1 3 1 8 1 4 5 8 2 1 1 5 4 3 7 8 4 5 5 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 vertexes 1 2 3 4 5 6 7 8 times 0 5 10 18
1 2 3 4

gaps

1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

B

+gaps[0] +gaps[1] +gaps[2] +gaps[3]

shaded symbols do
not actually occur in

a contact

Target vertexesSource vertexes ending timesstarting times

Sid 1 5 8 13 1 6 9 13 2 4 8 11 3 5 10 13 3 7 9 12

A 1 5 9 13 17 10 2 14 6 18 11 3 19 7 15 12 20 4 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 4 1 2 3 5

7 9 6 8 10 11 12 15 14 13 16 18 17 19 20 3 5 1 2 4

reg

Original sequence

original alphabets for
vertexes and times

new alphabet
(after gaps)

bitmap to avoid holes

indexable sequence

iCSA is
build on Sid

Fig. 2. Structures involved in the creation of a TGCSA for the graph in Example 1

As discussed above, we modified the Ψ array in our TGCSA to allow Ψ to
move circularly from one term to the next one within the same contact. To
do this, we simply have to modify the values in the regular Ψ so that, ∀i =
3n + 1 . . . 4n, Ψ [i] ← ((Ψ [i] − 2) mod n) + 1. This small change brings the
interesting property of enabling to perform a query for any term of a contact
in the same way. We use the iCSA to binary search for any term of a contact
obtaining a range A[l, r], and then by circularly applying Ψ up to three times,
we can retrieve the other terms of each contact pointed in A[l, r].

Example 1. Let us assume we have a temporal graph with |ν| = 5 vertexes num-
bered 1 . . . 5 and |τ | = 8 time instants numbered 1 . . . 8. The graph contains the
following five contacts: (1, 3, 1, 8), (1, 4, 5, 8),(2, 1, 1, 5), (4, 3, 7, 8), and (4, 5, 5, 7).
Figure 2 depicts all the structures involved in the creation of a TGCSA that rep-
resents the temporal graph.
�

To sum up, the TGCSA representation consists of a bitmap B, and the struc-
tures D and Ψ from the iCSA. B is compressed with Raman et al. strategy [12].
For D we used a faster bitmap from [6] using 1.375|D| bits.

3.2 Performing Queries in TGCSA

We can take advantage of the iCSA capabilities at search time to solve all the
typical queries in a temporal graph regarding direct and reverse vertexes from

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 83

contacts that are active at a given time point t. Basically, we binary search
the range in A[l, r] for the given source or target vertex, and for each position
i ∈ [l, r], we apply Ψ circularly up to the third or fourth term where we can check
if the starting-time and ending-time constraints either hold or not. In Figure 3
we show the pseudocode of the algorithm to obtain direct neighbors.

DirectNeighbors (vrtx, t) //neighbors of vrtx in contact (vrtx,v,t1,t2) s.t. t1 ≤ t < t2
(1) u ← getmap(vrtx, typeV ertex = 1); // map into final alphabet without holes
(2) if u = 0 then return ∅; // vertex does not appear as a source vertex
(3) neighbors ← ∅;
(4) ts ← getmap(t, typeStartT ime = 3); te ← getmap(t, typeEndT ime = 4);
(5) [lu, ru] ← CSA binSearch(u); // range A[lu, ru] for vertex u
(6) [lts, rts] ← CSA binSearch(ts); // range A[lts, rts] for starting time ts
(7) [lte, rte] ← CSA binSearch(te); // range A[lte, rte] for ending time te
(8) for i ← lu to ru // checks time intervals for each occurrence of u
(9) x ← Ψ [i]; y ← Ψ [x];
(10) if (y ≤ rts) then
(11) z ← Ψ [y];
(12) if (z > rtf) then
(13) neighbors ← neighbors ∪ {getunmap(x, typeRevV ertex = 2)};
(14) return neighbors;

Fig. 3. Obtaining the direct neighbors of a vertex in a contact that is active at time t

Edge operations consisting in checking if an edge (u, v) is active at time t
are expected to be faster than direct neighbor queries as we can binary search
for a phrase u· v rather than by a unique vertex u, hence returning a much
shorter initial range. Finally, to solve snapshot queries returning the set of active
contacts (u, v, t1, t2) such that t1 ≤ t < t2, we can binary search [lts, rts] ←
CSA binSearch(getmap(t, 3)) and [ltf , rtf] ← CSA binSearch(getmap(t, 4)). All
the contacts pointed by A[2n + 1, rti] hold ts ≤ t, and those in A[rtf + 1, 4n]
hold t2 > t. Therefore, ∀i ∈ [2n+ 1, rts], if Ψ [i] > rtf we recover the source and
target vertexes as Ψ [Ψ [i]] and Ψ [Ψ [Ψ [i]]]. The original values are obtained via
getunmap().

3.3 Strengths and Weak Points in TGCSA

One advantage of TGCSA with respect to other representations such as those
in [2], or our baseline EdgeLog is that it actually represents the whole set of 4-
tuples. Therefore, it has the same (strong) expressive power as if the set is stored
in a relational database. Note that TGCSA can represent temporally overlapping
contacts for one edge with no limitations.

Another important property is that TGCSA can answer queries over any
component of a contact with the same mechanism. That is, searching for the
contacts of a source vertex u is done in the same way as searching for the
contacts starting at a specific time t. First, a binary search is performed over
one of the four sectors of A depending on the term of the contact that is searched

84 N.R. Brisaboa et al.

for (bounded in the query) to locate the range A[l, r] associated with that value.
Then, for each of the entries in that range, Ψ is applied three times to recover
the other of terms of each contact. Note that other data structures are designed
to answer efficiently some types of queries but they are not efficient at others,
whereas TGCSA has a more regular behavior.

Note also that inside the section devoted to any given symbol, in any of the
four sectors of Ψ , all the pointers are always growing, which is a good property
to allow compression. Unfortunately, this becomes a weakness of TGCSA when
the vocabularies are huge and symbols occur few times. In this case, Ψ will
not be highly compressible. As shown in our experiments, compression in some
synthetic datasets we created is poor when the relative number of contacts per
time instant is low, or when the number of edges per vertex is low. In those
cases, the increasing areas of Ψ are small and the gaps between pointers are
compressed poorly.

4 Experimental Evaluation

We evaluated TGCSA5 on real and synthetic datasets. We compared its space
needs with gzip compressor and with the baseline EdgeLog.6 We also included a
comparison in both space and time for some query types. Table 1 describes the
experimental datasets. The “base size” is the size of all the uncompressed graphs,
representing terms in the contacts with 32-bit integers (128 bits/contact).

The real Flickr-Days and Flickr-Seconds datasets are well-known temporal
graphs where contacts indicate the time-points when two people become friends.
Note that each edge has only one contact that ends at the end of the lifetime
of the temporal graph. Flickr-Days [5] has a granularity of time in days, with a
lifetime of 135 days. Flickr-Seconds captures time in seconds.

For the synthetic datasets we created an aggregated graph with a uniform
degree distribution (following Erdõs-Rényi model [1]), and then assigned a fixed
number of contacts to each edge. We used different combinations of the param-
eters (number of edges per vertex and number of contacts per edge and per
instant time) to understand how they affected the compression and behavior of
both TGCSA and EdgeLog. We present a summary of our results.

The tests were run on a machine with processors Intel(R) Core(TM) i7-3820
CPU @ 3.60GHz, quad-core, and 64GB DDR3 RAM. The operating system was
Ubuntu 12.04 and the compiler gcc 4.6.3 (option -O3).

4.1 Space Comparison

In Table 2, we show three configurations of TGCSA (Ψ16 corresponds to a dense
sampling and Ψ256 to a sparser one) and compare them with gzip as a baseline
to show the compressibility of the source dataset. Even tough an iCSA-based
self-index built on English text typically reached the compression of gzip [6], the

5 We used three different settings of TGCSA that differ in the sample-rate for Ψ .
6 EdgeLog was configured to use PForDelta with b = {32, 128}.

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 85

Table 1. Temporal graph datasets

Dataset Vertexes Edges Lifetime Contacts average edges/ contacts/ Base size
(×1000) (×1000) (×1000) (×1000) contacts/ vertex edge (MB)

vertex

Flickr-Secs 6,204 71,346 167,944 71,346 12 12 1 1,089
Flickr-Days 2,586 33,140 0.135 33,140 13 13 1 506

Erdos1 1,000 10,002 1,000 10,002 10 10 1 153
Erdos5 1,000 10,002 1,000 50,008 50 10 5 763
Erdos50 1,000 10,002 1,000 500,079 500 10 50 7,631
Erdos50R10 1,000 50,001 1 500,079 500 50 10 7,631

Table 2. Comparison on space usage. Space in bits per contact.

Dataset gzip Edgelog Edgelog TGCSA TGCSA TGCSA
default Pfor32 Pfor128 Ψ16 Ψ64 Ψ256

FlickrSecs 61.51 161.57 161.53 96.30 87.65 85.48
FlickrDays 30.19 102.06 101.13 60.34 51.06 48.71

Erdos1 83.43 185.91 187.63 105.29 99.07 97.51
Erdos5 63.02 70.32 82.09 94.09 86.52 84.63
Erdos50 53.71 36.76 35.67 89.87 80.93 78.65
Erdos50R10 38.37 24.69 24.10 72.62 62.67 60.19

compressibility of temporal graphs is not so good. Actually, the large number of
1-runs that appeared in Ψ when dealing with text is now much smaller in the
TGCSA, and we are not able to reach the compression levels of gzip.

Focusing on EdgeLog, we see that it is completely unsuccessful when the num-
ber of contacts per edge is very small. However, when there are few edges and the
number of contacts per edge grows, it becomes very successful as its inverted lists
become highly compressible. TGCSA shows a more regular behavior, and rea-
sonable space needs in most cases. It does not require as much space as EdgeLog
when the number of contacts per edge is small, but it cannot cope with many
contacts per edge because Ψ is irregular, as discussed above.

4.2 Performing Queries

We chose the real Flickr-Secs and the synthetic Erdos50R10 datasets to show the
main features of TGCSA when answering typical temporal-graph queries such
as retrieving the active direct and reverse neighbors at a given time t, checking
if an edge is active at time t,7 and recovering all the source contacts that are
active at a given time instant.

Results in Table 3 show that TGCSA is very fast at retrieving direct-neighbors,
and the time to recover a contact is close to 1 μsec when using a dense sampling

7 We used average times for 2000 queries with random values of t.

86 N.R. Brisaboa et al.

Table 3. Comparison on query performance. CPU-user times in μsec/contact reported.

Dataset Edgelog Edgelog TGCSA TGCSA TGCSA
Pfor32 Pfor128 Ψ16 Ψ64 Ψ256 contactsReported

FlickrSecs.DirNei 0.02 0.02 1.48 4.26 9.44 960,364
FlickrSecs.RevNei 9.03 8.50 0.91 1.35 3.35 799,273
FlickrSecs.Edge 5.43 5.17 8.12 13.49 43.20 2,000
FlickrSecs.Snapshot 0.02 0.02 1.22 1.63 3.64 71,345,977

Erdos50R.DirNei 0.61 0.57 49.76 112.23 350.18 10,973
Erdos50R.RevNei 21.61 19.24 23.41 43.47 126.22 9,847
Erdos50R.Edge 4.24 4.12 3.48 5.32 14.48 2,000
Erdos50R.Snapshot 0.45 0.41 3.67 4.53 7.90 5,437,058

in Ψ (Ψ16) and many contacts are retrieved. Yet, the performance of the snap-
shot operation degrades if many contacts (to check) start before the last time
but only a few of them are active at the query time. Note that EdgeLog is much
faster when answering direct-neighbors as it is designed for these queries. It is
also very fast at the snapshot operation. However, its advantage is reduced dras-
tically on edge operations (where the TGCSA is able to binary search directly
the range where the time intervals of the queried edge occurs in A).

As expected, reverse neighbors is the worst case for EdgeLog. In particular,
its performance degrades when many reverse neighbors need to be checked. Yet,
even for this type of queries, in the synthetic collection with less that 50 edges
per node, EdgeLog was still faster than TGCSA.

It is interesting to point out that TGCSA is faster when performing reverse
neighbor queries than the direct neighbors. For reverse queries, we binary search
A for a target vertex v (the second term of the contact), and a single application
of Ψ permits us to reach the corresponding starting time of that contact (the
third term of the contact). With an additional access to Ψ , we can also obtain
the ending time. However, when we perform direct-neighbor queries, we start at
the first term of the contact, and we need to access Ψ twice and three times to
reach the starting and ending time of the contact respectively.

Flexibility to Support Special Queries. TGCSA can give support to other
query types that could be interesting in some domains. In particular, queries
about exact time-instants or edges can benefit from searching more than one
term in the initial binary search in the TGCSA. For example, in a temporal
graph representing phone calls from a given user to another, starting and ending
at a given time, it could be interesting to perform queries such as: i) “who phoned
user A exactly at time ts?”, or ii) “who received a phone call from B that started
at time ts and ended at te?”. They could be implemented in the TGCSA as an
initial binary search for (A · ts) and (ts · te ·B), respectively. Then, for the entries
in the returned ranges A[l, r], two or one accesses to Ψ , respectively, would be
needed to retrieve the caller for the first query, and the receiver in the latter

A Compressed Suffix-Array Strategy for Temporal-Graph Indexing 87

one. Note also that, in the second query, the initial binary search would report
a unique entry in A, hence the query is answered almost instantaneously.

5 Conclusions and Future Work

The experimental results showed that TGCSA has reasonable space usage, and
succeeds when performing queries that filter out many contacts from the dataset
with a single binary search in the TGCSA. This avoids the need for sequentially
checking a large number of contacts. In particular, our best trade-off between
space and query performance was obtained in the real Flicker-Days dataset. In
general, space needs are between 50-100 bits per contact, and most queries are
solved in less than 1 millisecond per contact reported.

As future work, we want to try more Ψ compression alternatives to those in
[6]. Since Ψ represents around 80-90% of the size of TGCSA, it is almost the only
way to reduce space needs. We are also interested in studying the applicability
of other self-indexes to the scope of this paper.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern
Physics 74, 47–97 (2002)

2. Bernardo, G.D., Brisaboa, N.R., Caro, D., Rodriguez, M.A.: Compact Data Struc-
tures for Temporal Graphs. In: Proc. DCC 2013, p. 477 (2013)

3. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Systems 39(1), 152–174 (2014)

4. Buin-Xuan, B.M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost
journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

5. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of infor-
mation propagation in flickr social network. In: Proc. WWW 2009, pp. 721–730
(2009)

6. Fariña, A., Brisaboa, N., Navarro, G., Claude, F., Places, A., Rodŕıguez, E.: Word-
based self-indexes for natural language text. ACM TOIS 30(1), article 1 (2012)

7. Ferreira, A., Viennot, L.: A Note on Models, Algorithms, and Data Structures
for Dynamic Communication Networks. Tech. rep., MASCOTTE - INRIA Sophia
Antipolis / Laboratoire I3S, HIPERCOM - INRIA Rocquencourt (2002)

8. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: Proc. ICDE 2013, pp. 997–1008 (2013)

9. Labouseur, A.G., Birnbaum, J., Olsen, P.W., Spillane, S.R., Vijayan, J., Hwang,
J.H., Han, W.S.: The G* graph database: efficiently managing large distributed
dynamic graphs. Distributed and Parallel Databases (2014)

10. Labouseur, A.G., Olsen, J.P.W., Hwang, J.H.: Scalable and Robust Management
of Dynamic Graph Data. The VLDB Journal, 1–6 (2013)

11. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph
metrics for temporal networks. In: Temporal Networks, pp. 15–40. Springer (2013)

12. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proc. SODA 2012, pp. 233–242 (2002)

88 N.R. Brisaboa et al.

13. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. PVLDB 4(11), 726–737 (2011)

14. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003)

15. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proc. WWW 2008, pp. 387–396 (2008)

16. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Sur-
veys 38(2) (July 2006)

17. Zukowski, M., Héman, S., Nes, N., Boncz, P.A.: Super-scalar ram-cpu cache com-
pression. In: Proc. ICDE 2006, p. 59 (2006)

Succinct Indexes for Reporting

Discriminating and Generic Words�

Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan

Louisiana State University, USA
{sbiswas,mpatil,rahul,thanks}@csc.lsu.edu

Abstract. We consider the problem of indexing a collection D of D
strings (documents) of total n characters from an alphabet set of size σ,
such that whenever a pattern P (of p characters) and an integer τ ∈ [1, D]
comes as a query, we can efficiently report all (i) maximal generic words
and (ii) minimal discriminating words as defined below:

– maximal generic word is a maximal extension of P occurring in at
least τ documents..

– minimal discriminating word is a minimal extension of P occurring
in at most τ documents.

These problems were introduced by Kucherov et al. [8], and they pro-
posed linear space indexes occupying O(n log n) bits with query times
O(p+output) and O(p+log log n+output) for Problem (i) and Problem
(ii) respectively. In this paper, we describe succinct indexes of n log σ +
o(n log σ) + O(n) bits space with near optimal query times i.e., O(p +
log log n+ output) for both these problems.

1 Introduction and Related Work

Let D={d1, d2, d3, ..., dD} be a collection of D strings (which we call as docu-
ments) of total n characters from an alphabet set Σ of size σ. For simplicity
we assume, that every document ends with a special character $ which does not
appear any where else in the documents. Our task is to index D in order to
compute all (i) maximal generic words and (ii) minimal discriminating words
corresponding to the given query pattern P (of length p) and threshold τ . The
document frequency df(.) of a pattern P is defined as the number of distinct
documents in D containing P . Then, a generic word is an extension P̄ of P with
df(P̄) ≥ τ , and is maximal if df(P ′) < τ for all extensions P ′ of P̄ . Similarly,
a discriminating word is an extension P̄ of P with df(P̄) ≤ τ , and is called a
minimal discriminating word if df(P ′) > τ for any proper prefix P ′ of P̄ (i.e.,
P ′ �= P̄). These problems were introduced by Kucherov et al. [8], and they pro-
posed indexes of size O(n logn) bits or O(n) words. The query processing time
is optimal O(p + output) for reporting all maximal generic words, and is near
optimal O(p+log logn+output) for reporting all minimal discriminating words.

� This work is supported in part by National Science Foundation (NSF) Grants CCF–
1017623 and CCF–1218904.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 89–100, 2014.
c© Springer International Publishing Switzerland 2014

90 S. Biswas et al.

Later on Gawrychowski et al. [6] gave O(n) words space with optimal query time
index for minimal discriminating words problem. In this paper, we describe suc-
cinct indexes of n log σ+o(n logσ)+O(n) bits space with O(p+log logn+output)
query times for both these problems.

These problems are motivated from applications in computational biology.
For example, it is an interesting problem to identify words that are exclusive to
the genomic sequences of one species or family of species [3]. Such patterns that
appear in a small set of biologically related DNA sequences but do not appear
in other sequences the collection often carries a biological significance. Discrim-
inating and generic words also find applications in text mining and automated
text classification.

2 Preliminaries

2.1 Suffix Trees and Generalized Suffix Trees

For a text S[1...n], a substring S[i...n] with i ∈ [1, n] is called a suffix of T .
The suffix tree [13,9] of S is a lexicographic arrangement of all these n suffixes
in a compact trie structure of O(n) words space, where the i-th leftmost leaf
represents the i-th lexicographically smallest suffix of S. For a node i (i.e., node
with pre-order rank i), path(i) represents the text obtained by concatenating all
edge labels on the path from root to node i in a suffix tree. The locus node iP of
a pattern P is the node closest to the root such that the P is a prefix of path(iP).
The suffix range of a pattern P is given by the maximal range [sp, ep] such that
for sp ≤ j ≤ ep, P is a prefix of (lexicographically) j-th suffix of S. Therefore,
iP is the lowest common ancestor of sp-th and ep-th leaves. Using suffix tree,
the locus node as well as the suffix range of P can be computed in O(p) time,
where p denotes the length of P . Let T = d1d2...dD be the text obtained by
concatenating all documents in D. Recall that each document is assumed to end
with a special character $. The suffix tree of T is called the generalized suffix
tree (GST) of D.

Encoding of GST with the goal of supporting navigation and other tree oper-
ations has been extensively studied in the literature. We use the data structure
by Sadakane and Navarro [12] with focus on following operations:

– lca(i, j): the lowest common ancestor of two nodes i, j
– child(i, k): k-th child of node i
– level-ancestor(i, d): ancestor j of i such that depth(j)=depth(i)-d
– subtree-size(i): number of nodes in the subtree of node i

Lemma 1. [12] An ordinal tree with m nodes can be encoded by 2m+O(m
polylog(m))

bits supporting lca, k-th child, level-ancestor, and subtree-size queries in constant
time.

Define count(i) = df(path(i)). Using the data structure by Sadakane [11] we
can answer count(i) query efficiently for any input node i. Following lemma
summarizes the result in [11].

Succinct Indexes for Reporting Discriminating and Generic Words 91

Lemma 2. [11] Generalized suffix tree (GST) with n leaves can be encoded by
2n+ o(n) bits, supporting count(i) query in constant time.

2.2 Marking Scheme in GST

Here we briefly explain the marking scheme introduced by Hon et al. [7] which
will be used later in the proposed succinct index. We identify certain nodes in the
GST as marked nodes and prime nodes with respect to a parameter g called the
grouping factor. The procedure starts by combining every g consecutive leaves
(from left to right) together as a group, and marking the lowest common ancestor
(LCA) of first and last leaf in each group. Further, we mark the LCA of all pairs
of marked nodes recursively. We also ensure that the root is always marked. At
the end of this procedure, the number of marked nodes in GST will be not more
than 2n/g. Hon et al. [7] showed that, given any node u with u∗ being its highest
marked descendent (if exists), number of leaves in GST (u\u∗) i.e., the number
of leaves in the subtree of u, but not in the subtree of u∗ is at most 2g.

Prime nodes are the children of marked nodes (illustrated in figure 1). Corre-
sponding to any marked node u∗ (except the root node), there is a unique prime
node u′, which is its closest prime ancestor. In case u∗’s parent is marked then
u′ = u∗. For every prime node u′, the corresponding closest marked descendant
u∗ (if it exists) is unique.

2.3 Segment Intersection Problem

In [8] authors have shown how the problem of identifying minimal discriminating
words can be reduced to orthogonal segment intersection problem. In this article,
we rely on this key insight for both the problems under consideration and use
the result summarized in lemma below for segment intersection.

Lemma 3. [2] A given set I of n vertical segments of the form (xi, [yi, y
′
i]),

where xi, yi, y
′
i ∈ [1, n] can be indexed in O(n)-word space (in Word RAM model),

such that whenever a horizontal segment sq = ([xq , x
′
q], yq) comes as a query, all

those vertical segments in I that intersect with sq can be reported in O(log logn+
output) time.

2.4 Range Maximum Query

Let A be an array of length n, a range maximum query (RMQ) asks for the
position of the maximum value between two specified array indices [i, j]. i.e., the
RMQ should return an index k such that i ≤ k ≤ j and A[k] ≥ A[x] for all
i ≤ x ≤ j. We use the result captured in following lemma for our purpose.

Lemma 4. [4,5] By maintaining a 2n + o(n) bits structure, range maximum
query (RMQ) can be answered in O(1) time (without accessing the array).

92 S. Biswas et al.

3 Computing Maximal Generic Words

In this section, we first review a linear space index, which is based on the ideas
from the previous results [8]. Later we show how to employ sampling techniques
to achieve a space efficient solution.

3.1 Linear Space Index

Let iP be the locus node of the query pattern P . Then, our task is to return all
those nodes j in the subtree of iP such that count(j) ≥ τ and count(.) of every
child node of j is less than τ . Note that corresponding to each such output j,
path(j) represents a maximal generic word with respect to the query (P, τ). The
mentioned task can be performed efficiently by reducing the original problem to
a segment intersection problem as follows. Each node i in GST is mapped to
a vertical segment (i, [count(imax) + 1, count(i)]), where imax is the child of i
with the highest count(.) value. If i is a leaf node, then we set count(imax) = 0.
Moreover, if count(i) = count(imax) we do not maintain such a segment as it
can not possibly lead to a generic word. The set I of these segments is then
indexed using a linear space structure as described in Section 2.3. Additionally
we maintain the GST of D as well.

The maximal generic words corresponding to a query (P, τ) can be computed
by issuing an orthogonal segment intersection query on I with sq = ([iP , i

′
P], τ)

as the input, where iP is the locus node of pattern P and i′P represents the
rightmost leaf in the subtree of iP . It can be easily verified than path(j) corre-
sponding to each retrieved interval (j, [count(jmax) + 1, count(j)]) is a maximal
generic word. In conclusion, we have a linear space index of O(n) words with
O(log logn + output) query time. By combining with the space for GST , and
the initial O(p) time for pattern search where p is the size of pattern, we have
the following lemma.

Lemma 5. There exists an O(n) word data structure for reporting maximal
generic word queries in O(p+ log logn+ output) time. ��

3.2 Succinct Space Index

Our succinct space index for computing maximal generic words has the following
key components:

– For finding maximal generic words corresponding to the marked nodes, we
store a data structure similar to the one in [8] described above only for the
marked nodes, which takes space linear to the number of marked nodes.

– To capture the outputs falling in the path between two marked nodes, we
store a segment intersection index along with encoding of the path between
a marked node and its unique lowest prime ancestor.

– The remaining output fall in small subtrees which can be efficiently found
using bit encodings of subtrees and table structure.

Succinct Indexes for Reporting Discriminating and Generic Words 93

At first,, we begin by extending the marking scheme (illustrated in figure 1)
of Hon et al. [7] described earlier in Section 2.2 and then discuss our succinct
space index. We introduce the notion of orphan and maximal orphan nodes in
GST based on the marking scheme of Hon et al. [7] as follows:

1. Orphan node is a node with no marked node in its subtree. Note that the
number of leaves in the subtree of an orphan node is at most g.

2. maximal orphan is an orphan node with non-orphan parent. Therefore, every
orphan node has a unique maximal orphan ancestor. The number of leaves
in the subtree of any maximal orphan node is at most g and the number of
maximal orphan nodes can be ω(n/g).

Marked Nodes

Prime Nodes

Orphan Nodes

Maximal Orphan Nodes

Regular Nodes

g

Fig. 1. Marking Scheme

We now describe a structure to solve a variant of computing maximal generic
words summarized in lemma below that forms the basis of our final space-efficient
index. We choose g = � 1

8 logn	 as a grouping parameter in the marking scheme
of Hon et al. [7] and nodes in GST are identified by their pre-order rank.

Lemma 6. The collection D={d1, d2, d3, ..., dD} of strings of total n characters
can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), we can
identify all marked nodes j∗ satisfying either of the following condition in O(p+
log logn+ output) time.

– path(j∗) is a maximal generic word for input (P, τ)
– there is at least one node in N(j∗) = GST (j′/j∗) that corresponds to desired

maximal generic word, where j′ is a unique lowest prime ancestor of j∗

– j∗ is a highest marked descendant of locus node for pattern P

Proof. It can be noted that, N(j∗) is essentially a set of all nodes in the subtree
of j′ but not in the subtree of j∗ (N(j∗) does not include node j∗). To be
able to retrieve the required marked nodes in succinct space, we maintain index
consisting of following components:

94 S. Biswas et al.

– Instead of GST, we use its space efficient version i.e., a compressed suffix
array (CSA) of T . There are many versions of CSA’s available in litera-
ture, however for our purpose we use the one in [1] that occupies n log σ +
o(n log σ) + O(n) bits space and retrieves the suffix range of pattern P in
O(p) time.

– A 4n + o(n) bits encoding of GST structure (Lemma 1) to support the
(required) tree navigational operations in constant time.

– We keep a bit vector Bmark[1...2n], where Bmark[i] = 1 iff node i is a marked
node, with constant time rank-select supporting structures over it in O(n)
bits space [10]. This bit vector enables us to retrieve the unique highest
marked descendant of any given node in GST in constant time.

– We map each marked node i∗ to a vertical segment (i∗, [count(i∗max) +
1, count(i∗)]), where i∗max is the child of i∗ with the highest count(.) value.
The number of such segments can be bounded by O(n/g). The set I1 of
these segments is then indexed using a linear space structure as before in
O(n/g) = O(n/ logn) words or O(n) bits space. We note that segments
with count(i∗max) = count(i∗) are not included in set I1, as marked nodes
corresponding to those segments can not possibly lead to a generic word.

– We also maintain O(n) bit structure for set I2 of segments of the form
(i′, [count(i∗)+ 1, count(i′)]), where i∗ is a marked node and i′ is the unique
lowest prime ancestor of i∗. Once again the segments with count(i∗) =
count(i′) are not maintained.

Given an input (P, τ), we first retrieve the suffix range in O(p) time using
CSA and the locus node iP in another O(1) time using GST structure encoding.
Then we issue an orthogonal segment intersection query on I1 and I2 with
sq = ([iP , i

′
P], τ) as the input, i′P being the rightmost leaf in the subtree of iP .

Any marked node that corresponds to a maximal generic word for query (P, τ)
is thus retrieved by querying set I1. Instead of retrieving non-marked nodes
corresponding to the maximal generic word, the structure just described returns
their representative marked nodes instead.

For a segment in I2 that is reported as an answer, corresponding to a marked
node j∗ with j′ being its lowest prime ancestor, we have count(j′) ≥ τ and
count(j∗) < τ . Therefore, there must exist a parent-child node pair (u, v), on
the path from j′ to j∗ such that count(u) ≥ τ and count(v) < τ . As before,
let umax be the child of node u with the highest count(.) value. It can be easily
seen that if (v = umax) or (v �= umax with count(umax) < τ), then path(u) is
a maximal generic word with respect to (P, τ). Otherwise, consider the subtree
rooted at node umax. For this subtree count(umax) ≥ τ and count(.) = 1 for all
the leaves and hence it is guaranteed to contain at least one maximal generic
word for query (P, τ).

We highlight that the segment intersection query on set I2 will be able to
capture the node pairs (j∗, j′) where both j∗ and j′ are in the subtree of locus
node iP as the segments in I2 use (pre-order rank of) prime node as their
x coordinate. The case when both j∗, j′ are outside the subtree of iP can be
ignored as in this case none of the nodes in N(j∗) will be in the subtree of iP and

Succinct Indexes for Reporting Discriminating and Generic Words 95

hence can not lead to a desired output. Further we observe that for the remaining
scenario when locus node iP is on the path from j′ to j∗ (both exclusive), there
can be at-most one such pair (j∗, j′). This is true due to the way nodes are
marked in GST and moreover j∗ will be the highest marked descendant of iP (if
exists). Such j∗ can be obtained in constant time by first obtaining the marked
node using query select1(rank1(iP)+ 1) on Bmark and then evaluating if it is in
the subtree of iP . We note that in this case N(j∗) (j∗ being the highest marked
descendant of iP) may or may not result in a maximal generic word for query
(P, τ), however we can afford to verify it irrespective of the output due to its
uniqueness. ��

If a marked node j∗ reported by the data structure just described is retrieved
from set I1 then path(j∗) can be returned as an maximal generic word for query
(P, τ) directly. However, every other marked node retrieved needs to be decoded
to obtain the actual maximal generic word corresponding to one or more non-
marked nodes it represents. Before we describe the additional data structures
that enable such decoding, we classify the non-marked answers as orphan and
non-orphan outputs based on whether or not it has any marked node in its
subtree as defined earlier. Let j∗ be a marked node and j′ be its lowest prime
ancestor. A non-marked node that is an output is termed as orphan if it is not
on the path from j′ to j∗. Due to Lemma 6, every marked node retrieved from
I2 leads to either a orphan output or non-orphan outputs or both. Below, we
describe how to report all orphan and non-orphan outputs for a given query
(P, τ) and a marked node j∗. We first append the index in Lemma 6 by data
structure by Sadakane (Lemma 2) without affecting its space complexity to
answer count(.) query in constant time for any GST node.

Retrieving Non-orphan Outputs: To be able to report a non-orphan output of
query (P, τ) for a given marked node (if it exists), we maintain a collection of
bit vectors as follows:

– We associate a bit vector to each marked node i∗ that encodes count(.)
information of the nodes on the (top-down) path from i′ to i∗, i′ being
the (unique) lowest prime ancestor of i∗. Let x1, x2, ..., xr be the nodes on
this path inclusive of both i′ and i∗. Note that r ≤ g, δi = count(xi−1) −
count(xi) ≥ 0, and count(x1) − count(xr) ≤ 2g from the properties of
the marking scheme. Now we maintain a bit vector Bi∗ = 10δ110δ2 ...10δr

along with constant time rank-select supporting structures at marked node
i∗. Number of 0 in the bit-vector is count(x1) − count(x2) + count(x2) −
count(x3) + ... + count(xr−1) − count(xr) = count(x1) − count(xr). As
length of the bit vector is bounded by O(2g) and number of marked nodes
is bounded by O(n/g), total space required for these structures is O(n) bits.

– Given a node i we would like to retrieve the node imax i.e., child of node i
with the highest count(.) value in constant time. To enable such a lookup
we maintain a bit vector B = 10δ110δ2 ...10δn , where child(i, δi) = imax. If i
is leaf then we assume δi = 0. As each node contributes exactly one bit with

96 S. Biswas et al.

value 1 and at most one bit with value 0, length of the bit vector B is also
bounded by 2g and subsequently occupies O(n) bits.

Given a marked node j∗ and a query (P, τ), we need to retrieve a parent-
child node pair (u, v) on the path from j′ to j∗ such that count(u) ≥ τ and
count(v) < τ . We can obtain the lowest prime ancestor j′ of j∗ in constant time
to begin with [7]. Then to obtain a node u, we probe bit vector Bj∗ by issuing a
query rank1(select0(count(j

′) − τ)). We note that these rank-select operations
only returns the distance of the node u from j∗ which can be then used along with
level-ancestor query on j∗ to obtain u. To verify if path(u) indeed corresponds to
a maximal generic word, we need to check if count(.) ≤ τ for all the child nodes of
u. To achieve this, we retrieve the jmax = child(u, select1(u+1)−select1(u)−1)
and obtain its count value count(jmax) using a data structure by Sadakane
(Lemma 2) in constant time. Finally, if count(jmax) < τ then u can be reported
as an maximal generic word for (P, τ) query. If the input node j∗ is highest
marked descendant of locus node iP then we need to verify if node u is within
the subtree of iP before it can be reported as an maximal generic word. Thus
overall time spent per marked node to output the associated maximal generic
word (if any) is O(1). We note that unsuccessfully querying the marked node
for non-orphan output does not hurt the overall objective of optimal query time
since, such a marked node is guaranteed to generate orphan outputs (possibly
except the highest marked ancestor of locus node iP).

Retrieving Orphan Outputs: In this part we take advantage of the smaller size
of the subtrees rooted at any maximal orphan node. We use bit encodings for
every possible combination of the subtrees rooted at any maximal orphan node
and table for storing all the answers for each possible subtree. Query procedure
follows efficiently finding the encoding of the subtree and retrieving the answers
from the table.

Instead of retrieving orphan outputs of the query based on the marked nodes
as we did for non-orphan outputs, we retrieve them based on maximal orphan
nodes by following two step query algorithm: (i) identify all maximal orphan
nodes i in the subtree of the locus node iP of P , with count(i) ≥ τ and (ii)
explore the subtree of each such i to find out the actual (orphan) outputs. If
count(i) ≥ τ , then there exists at least on output in the subtree of i, otherwise
there will not be any output in the subtree of i.

Since an exhaustive search in the subtree of a maximal orphan node is pro-
hibitively expensive, we rely on the following insight to achieve the optimal
query time. For a node i in the GST, let subtree-size(i), leaves-size(i) repre-
sents the number of nodes and number of leaves in the subtree rooted at node i
respectively. The subtree of i can be then encoded (simple balanced parenthesis
encoding) in 2subtree-size(i) bits. Also the count(.) values of all nodes in the
subtree of i in GST can be encoded in 2leaves-size(i) bits using the encoding
scheme by Sadakane [11]. Therefore 2subtree-size(i) + 2leaves-size(i) bits are
sufficient to encode the subtree of any node i along with the count(.) informa-
tion. Since subtree-size(i) < 2leaves-size(i) and there are less than g leaves in

Succinct Indexes for Reporting Discriminating and Generic Words 97

the subtree of a maximal orphan node, for a maximal orphan node i we have
2subtree-size(i) + 2leaves-size(i) < 6g = 3

4 logn. This implies the number of
distinct maximal orphan nodes possible with respect to the above encoding is

bounded by
∑ 3

4 log n

k=1 2k = Θ(n3/4).
To be able to efficiently execute the two step algorithm to retrieve all orphan

outputs we maintain following components:

– A bit vector Borph[1...2n], where Borph[i] = 1 iff node i is a maximal orphan
node, along with constant time rank-select supporting structures over it
occupying O(n) bits space.

– Define an array E[1...], where E[i] = count(select1(i)) with select operation
applied to a bit vector Borph (i.e., the count of i-th maximal orphan node).
Array E is not maintained explicitly, instead a 2n+o(n) bits RMQ structure
over it is maintained.

– For each distinct encoding of a maximal orphan node out of total Θ(n3/4)
of them, we shall maintain the list of top-g answers for τ = 1, 2, 3, ..., g.
Note that for each τ , number of answers is bounded by g. Overall space is
therefore O(n3/4g2) = o(n) bits.

– The total n3/4 distinct encodings of maximal orphan nodes can be thought
to be categorized into groups of size 2k for k = 1, ..., 34 logn. Encodings for
all possible distinct maximal orphan nodes i having k = 2subtree-size(i) +
2leaves-size(i) are grouped together and let Lk be this set. Then for a given
maximal orphan node i in GST with k = 2subtree-size(i) + count(i), we
maintain a pointer so as to enable the lookup of all answers (at most g)
corresponding to the encoding of subtree of i among all the encoding in
set Lk. With number of bits required to represent such a pointer being
proportional to the number leaves in the subtree of a maximal orphan node
i i.e. 2subtree-size(i)+ count(i), overall space can be bounded by O(n) bits.

Query processing can now be handled as follows. Begin by identifying the x-th
and y-th maximal orphan nodes, which are the first and last maximal orphan
nodes in the subtree of the locus node iP in O(1) time as x = 1+ rank1(iP − 1)
and y = rank1(i

′
P) using bit vector Borph, where i′P is the rightmost leaf of

the subtree rooted at iP . Then, all those z ∈ [x, y] where E[z] ≥ τ can be
obtained in constant time per z using recursive range maximum queries on E
as follows: obtain z = RMQE(x, y), and if E[z] < τ , then stop recursion, else
recurse the queries on intervals [x, z − 1] and [z + 1, y]. Recall that even if E[z]
is not maintained explicitly, it can be obtained in constant time using Borph

as E[z] = count(select1(z)). Further, the maximal orphan node corresponding
to each z can be obtained in constant time as select1(z). In conclusion, step
(i) of query algorithm can be performed in optimal time. Finally, for each of
these maximal orphan nodes we can find the list of pre-computed answers based
on given τ and report them in optimal time. It can be noted that, for a given
maximal orphan node i, we first obtain subtree-size(i) and count(i) in constant
time using Lemma 1 and 2 respectively and than use the pointer stored as in
index in the set Lk, with k = subtree-size(i) + count(i).

98 S. Biswas et al.

Combining all pieces together we achieve the result summarized in following
theorem.

Theorem 1. The collection D={d1, d2, d3, ..., dD} of strings of total n charac-
ters can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), all
maximal generic words can be reported in O(p+ log logn+ output) time.

4 Computing Minimal Discriminating Words

In the case of minimal discriminating words, given a query pattern P and a
threshold τ , the objective is to find all nodes i in the subtree of locus node iP
such that count(i) ≤ τ and count(iparent) > τ , where iparent is the parent of
a node i. Then each of these nodes represent a minimal discriminating word
given by path(iparent) concatenated with the first leading character on the edge
connecting nodes iparent and i. A linear space index with same query bounds
as summarized in Lemma 5 can be obtained for minimal discriminating word
queries by following the description in Section 3.1, except in this scenario, we
map each node i in GST to a vertical segment (i, [count(i), count(iparent) + 1]).
Similarly, the succinct space solution can be obtained by following the same
index framework as that of maximal generic words. Below we briefly describe
the changes required in the index and query algorithm described in Section 3.2
so as to retrieve minimal discriminating words instead of maximal generic words.

We need to maintain all the components of index listed in the proof
for Lemma 6 with a single modification. The set I1 consists of seg-
ments obtained by mapping each marked node i∗ to a vertical segment
(i∗, [count(i∗), count(i∗parent) + 1]). By following the same arguments as before,
we can rewrite the Lemma 6 as follows:

Lemma 7. The collection D={d1, d2, d3, ..., dD} of strings of total n characters
can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), we can
identify all marked nodes j∗ satisfying either of the following condition in O(p+
log logn+ output) time.

– path(j∗parent) appended with leading character on edge j∗parent-j∗ is a minimal
discriminating word for input (P, τ)

– there is at least one node in N(j∗) = GST (j′/j∗) that corresponds to desired
minimal discriminating word, j′ being the unique lowest prime ancestor of
marked node j∗

– j∗ is a highest marked descendant of iP

We append the components required in the above lemma by data structure
by Sadakane (Lemma 2) to answer count(.) query in constant time for any GST
node and retrieve the non-orphan, orphan outputs separately as before.

Though we maintain same collection of bit vectors as required for maximal
generic words to retrieve non-orphan outputs, query processing differs slightly
in this case. Let i∗ be the input marked node and i′ be its lowest prime ancestor.

Succinct Indexes for Reporting Discriminating and Generic Words 99

Then we can obtain parent-child node pair (u, v) on the path from i′ to i∗ such
that count(u) > τ and count(v) ≤ τ in constant time. Node v can now be
returned as an answer since concatenation of path(u) with first character on
edge u-v will correspond to a minimal discriminating word. Thus, every marked
node obtained by segment intersection query on set I2 produces a non-orphan
output in this case as opposed to the case of maximal generating words where
it may or may not produce a non-orphan output. Also if the input node i∗ is
highest marked descendant of locus node iP then we need to verify if node v is
within the subtree of iP before it can be reported as an output.

Data structures and query algorithm to retrieve the orphan outputs remain
the same described earlier in Section 3.2. It is to be noted that top-g answers
to be stored for τ = 1, 2, 3, ..., g corresponding to each of the distinct maximal
orphan node encoding now corresponds to the minimal discriminating word.

Based on the above description, following theorem can be easily obtained.

Theorem 2. The collection D={d1, d2, d3, ..., dD} of strings of total n charac-
ters can be indexed in (n log σ + O(n)) bits, such that given a query (P, τ), all
minimal discriminating words can be reported in O(p+ log logn+ output) time.

5 Concluding Remarks

In this paper, we revisited the maximal generic word and minimal discriminating
word problem and proposed a first succinct index for both the problems. It
would be interesting to see if succinct index can be obtained for these problems
achieving optimum query time.

References

1. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 748–759.
Springer, Heidelberg (2011)

2. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. In: SODA, pp. 1131–1145 (2011)

3. Fadiel, A., Lithwick, S., Ganji, G., Scherer, S.W.: Remarkable sequence signatures
in archaeal genomes. Archaea 1(3), 185–190 (2003)

4. Fischer, J., Heun, V.: A New Succinct Representation of RMQ-Information and
Improvements in the Enhanced Suffix Array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

5. Fischer, J., Heun, V., Stühler, H.M.: Practical Entropy-Bounded Schemes for O(1)-
Range Minimum Queries. In: IEEE DCC, pp. 272–281 (2008)

6. Gawrychowski, P., Kucherov, G., Nekrich, Y., Starikovskaya, T.: Minimal discrim-
inating words problem revisited. In: Kurland, O., Lewenstein, M., Porat, E. (eds.)
SPIRE 2013. LNCS, vol. 8214, pp. 129–140. Springer, Heidelberg (2013)

7. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string
retrieval problems. In: FOCS, pp. 713–722 (2009)

100 S. Biswas et al.

8. Kucherov, G., Nekrich, Y., Starikovskaya, T.: Computing discriminating and
generic words. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 307–317. Springer, Heidelberg (2012)

9. McCreight, E.M.: A space-economical suffix tree construction algorithm. J.
ACM 23(2), 262–272 (1976)

10. Raman, R., Raman, V., Rao, S.S.: Succinct Indexable Dictionaries with Applica-
tions to Encoding k-ary Trees and Multisets. In: ACM-SIAM SODA, pp. 233–242
(2002)

11. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms 5(1), 12–22 (2007)

12. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA, pp. 134–149
(2010)

13. Weiner, P.: Linear pattern matching algorithms. In: SWAT (FOCS), pp. 1–11
(1973)

Fast Construction of Wavelet Trees

J. Ian Munro1, Yakov Nekrich1, and Jeffrey S. Vitter2

1 David R. Cheriton School of Computer Science, University of Waterloo
2 Department of Electrical Engineering & Computer Science, University of Kansas

Abstract. In this paper we describe a fast algorithm that creates a
wavelet tree for a sequence of symbols. We show that a wavelet tree can
be constructed in O(n� log σ√

log n
�) time where n is the number of symbols

and σ is the alphabet size.

1 Introduction

Wavelet tree, introduced in [5], is one of the most extensively studied succinct
data structures. It is used in succinct representations of graphs, strings, points
and other geometric objects on a grid, indexes, data structures for document
retrieval, XML documents, and binary relations. We refer to an extensive survey
of Navarro [7] for a description of these and other applications of wavelet trees.
In this paper we describe the first algorithm that constructs a wavelet tree in
o(n log σ) time.

Let X be a sequence of length n over an alphabet of size σ. We can assume w.
l. o. g. that the i-th element X [i] of X is an integer in the range [1, σ]. Essentially
constructing a wavelet tree for a sequence X requires re-grouping the bits of X
into a bit sequence of total length n log σ. Since different bits of an element
X [i] are stored in different parts of the bit sequence, it appears that we need
Ω(n log σ) time to construct a wavelet tree. In this paper we show that the cost
of the straightforward solution can be reduced by an O(

√
logn) factor. The main

idea of our method is usage of bit parallelism, i.e. we use bit operations to keep
Ω(1) elements of X in one word and perform certain operations on elements
packed into one word in constant time. Suppose that we can pack L symbols
of a sequence X into one machine word. Then we can generate the wavelet tree
for the resulting sequence of symbols in O(n(log σ/L)) time by processing O(L)
symbols in constant time.

Previous and Related Work. Since wavelet trees were introduced in 2003 [5],
a large number of papers that use this data structure appeared in the literature.
We refrain from listing previous works due to space reasons; an interested reader
is referred to e.g., the recent survey [7]. In spite of a significant number of
previous papers, no results for constructing a wavelet tree in o(n log σ) time
were previously described. Algorithms that generate a wavelet tree and use little
additional workspace were considered by Claude et al. [4] and Tischler [9].

Chazelle [3] described a linear space (O(n log n)-bit) geometric data struc-
ture that answers certain kinds of two-dimensional range searching queries.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 101–110, 2014.
c© Springer International Publishing Switzerland 2014

102 J.I. Munro, Y. Nekrich, and J.S. Vitter

Data organization in [3] is quite similar to the approach of wavelet trees. We
remark, however, that the general concept and the usage of the wavelet tree are
different; in particular, the data structure of Chazelle [3] is not succinct. Some
other linear-space geometric data structures also use similar ways of structuring
data. By the same argument, we need O(n log n) time to construct these data
structures. Chan and Pǎtraşcu [2] showed that bit parallelism can be used to
obtain linear-space data structures with faster construction time. In [2] they de-
scribe data structures that use linear space and can be constructed in O(n

√
logn)

time. Their approach is based on recursively reducing the original problem to
several problems of smaller size. When point coordinates are sufficiently small,
we can pack L points into one machine word and process data associated to L
points in constant time.

In this paper we show how bit parallelism can be applied to speed-up the
construction of the standard wavelet tree data structure. Our simple two-stage
approach improves the construction time of the wavelet tree by O(

√
logn). After

recalling the basic concepts in Section 2, we describe the main algorithm and
its variants in Section 3. In Section 4 we show how we can construct secondary
data structures stored in the wavelet tree nodes.

2 Wavelet Tree

Let X denote a sequence over alphabet Σ = { 1, . . . , σ }. The standard wavelet
tree for X is a balanced binary tree with bit sequences stored in each internal
node. These bit sequences can be obtained as follows: we start by dividing the
alphabet symbols into two subsets Σ0 and Σ1 of equal size, Σ0 = { 1, . . . , σ/2 }
andΣ1 = { σ/2+1, . . . , σ }. LetX0 andX2 denote the subsequences ofX induced
by symbols from Σ0 and Σ1 respectively. The bit sequence X(vR) stored in the
root vR of the wavelet tree indicates for each symbol X [i] whether it belongs to
X0 or X1: X(vR)[i] = 0 if X [i] is in X0 and X(vR)[i] = 1 if X [i] is in X1. The
left child of vR is the wavelet tree for X0 and the right child of vR is the wavelet
tree for X1.

A symbol from an alphabet Σ can be represented as a bit sequence of length
�log σ� or � log σ �. Bit sequences X(u) in the nodes of the wavelet tree consist
of the same bits as the symbols in X , but the bits are ordered in a different way.
The sequence X(vR) contains the first bit from each symbol X [i] in the same
order as symbols appear in X . Let vl and vr be the left and the right children
of vR. The sequence X(vl) contains the second bit of every symbol in X0. That
is, X(vl) contains the second bit of every symbol X [i], such that the first bit of
X [i] is 0. X(vr) contains the second bit of every X [i] such that the first bit of
X [i] is 1, etc.

Some generalizations of the wavelet tree often lead to improved results. We
can consider t-ary wavelet tree for t = logε n and a small constant ε > 0. In
this case the original alphabet Σ is divided into t parts Σ0, . . ., Σt−1. The
sequence X(vR) in the root node is a sequence over an alphabet { 0, . . . , t− 1 }
such that X(vR)[i] = j iff X [i] is a symbol from Σj for 1 ≤ j ≤ t. Let Xj be the

Fast Construction of Wavelet Trees 103

subsequence of X induced by symbols from Σj . The j-th child vj of vR is the
root of the wavelet tree for Xj . The advantage of the t-ary wavelet tree is that
the tree height is reduced from O(log σ) to O(log σ/ log logn). Another useful
improvement is to modify the shape of the tree so that the average leaf depth
is (almost) minimized. Finally we can also keep the binary or t-ary sequences
X(u), stored in the nodes, in compressed form. Two latter improvements enable
us to store a sequence X in asymptotically optimal space.

3 Constructing a Wavelet Tree

In this section we describe our algorithm for constructing a wavelet tree. Our
method uses bit parallelism in a way that is similar to [2]. However a recursive
algorithm employed in [2] to reduce the problem size is not necessary. Our algo-
rithm consists of two stages. During the first stage we construct an L-ary wavelet
tree T g for L = 2

√
logn. That is, each internal node u ∈ T g has L children. To

avoid tedious details, we assume that L is an integer that divides σ. An L-ary
wavelet tree can be defined in the same way as in Section 2. We partition the
alphabet Σ = { 1, . . . , σ } into L parts Σ1, Σ2, . . ., ΣL. Each Σi for 1 ≤ i ≤ L−1
contains σ/L alphabet symbols; the last part ΣL contains at most σ/L symbols.
The root node uR of T g contains a sequenceXg(uR). Every element of Xg(uR) is
a positive integer that does not exceed L. Xg(uR)[i] = j if X [i] is a symbol from
Σj . The child ui of u is the root node of the wavelet tree for the subsequence Xi,
where Xi is the subsequence of X induced by symbols from Σi. An L-ary tree
can be constructed in O(log σ/L) time. During the second stage, we transform
an L-ary tree into a binary tree. We replace each internal node u of T g with a
subtree T (u) of height � = logL. T (u) has at most L − 1 internal nodes; leaves
of T (u) correspond to children of u in T g. If the sequence Xg(u) contains m
elements, then all binary sequences X(v) in the nodes v ∈ T (u) contain m� nits.
Since we can pack � elements of Xg(u) into one word, T (u) can be constructed in
O(m) time. A more technical description is provided below. We start by showing
in Lemma 1 how the wavelet tree can be constructed in linear time when ele-
ments are bounded by L. Then we show in Theorem 1 how a binary wavelet tree
for any sequence X can be constructed following the method outlined above.
The result for a balanced binary wavelet tree can be easily extended to a t-ary
tree of an arbitrary shape. Finally we can also obtain the original sequence X
from its wavelet tree by reversing the algorithm that constructs the wavelet tree.

Lemma 1. Let X be a sequence of L positive integers such that L ≤ 2
√
log n

and X [i] ≤ 2
√
logn for all i, 1 ≤ i ≤ L. A binary balanced wavelet tree for X

can be constructed in O(L) time using workspace O(L). The algorithm employs
a universal look-up table of o(n) bits.

Proof : We start by constructing a packed sequenceX ;X consists of �L/� � words
and every word contains � =

√
logn elements of X . We initialize X(uR) = X

for the root node uR and visit all nodes in the depth-first order. When a node u
is visited, we traverse X(u) and construct the bit sequence X(u) that must be

104 J.I. Munro, Y. Nekrich, and J.S. Vitter

stored in the root u of the wavelet tree. We extract the first bit from each X[i]
and append it to the end of X(u). We also produce two sequences X(ul) and
X(ur) unless u is a leaf node. If the first bit in X(u)[i] is 0, we append the value
v to the end of X(ul), where v is X(u)[i] without the first bit; if the first bit in
X(u)[i] is 1, we append v to the end of X(ur). Sequences X(ul) and X(ur) are
also stored in packed form. When X(u), X(ul) and X(ur) are generated, we can
discard X(u).

The key observation is that each X(u) can be processed in O(� |X(u)|/� �)
time using universal look-up tables T and T1. For any sequence of �/4 elements
Y [1] . . . Y [�/4] of p ≤ � bits each, T can output (i) the bit sequence Y [1] . . . Y [�/4],
where Y [i] is the first bit of Y [i] (ii) sequences Y l and Y r defined below. The
sequence Y l contains elements Y [i] whose first bit is 0 in the same order as in
Y ; the sequence Y r contains elements Y [i] whose first bit is 1 in the same order
as in Y . Another look-up table, T1 can produce for any sequence Y [1] . . . Y [�/4]
a sequence Z[1] . . . Z[�/4], where Z[i] equals to Y [i] without the first bit. Using
these two look-up tables, we can read �/4 elements of X(u) and produce the next
�/4 elements of X(u), X(ul), and X(ur) in O(1) time. T and T1 contain one
entry for each p, 1 ≤ p ≤ �, and for each sequence of �/4 integers of p bits each.
Hence both tables have O(n1/4) entries and use o(n1/2) bits. Since we spend
O(� |X(u)|/� �) time in each node u and the total length of all X(u) is O(L�),
we can construct the binary wavelet tree for X in O(L) time. �

Theorem 1. Let X be a sequence of n positive integers such that 1 ≤ X [i] ≤ σ
for 1 ≤ i ≤ n. A binary balanced wavelet tree for X can be constructed in
O(n� log σ√

logn
�) time.

Proof : We employ the two-stage procedure described at the beginning of this
section. During the first stage we construct a wavelet tree with node degree
L = 2

√
logn. We will consider elements of X as binary sequences of length σ. For

an integer v, we denote by v.bits(a..b) the bit sequence obtained by extracting
bits at positions a, a+1, . . ., b from v (bit positions are in the left-to-right order
so that the most significant bit is at position 1). The process of recursive alphabet
division can be re-formulated as recursive division of symbols according to their
prefixes. That is, elements ofX are distributed among 2� subsequences according
to their prefixes of length � =

√
logn. Each subsequence is further divided into 2�

subsequences, etc. Let � =
√
logn. We process the sequence X and generate se-

quencesXα. Initially allXα are empty. For every j = 0, 1, . . . , � log σ/√logn �−1
we append X [i].bits(j�+1..j(�+1)) to the sequence Xα for α = X [i].bits(1..j�).
Sequences Xα are stored in an L-ary wavelet tree T g. First � bits of each X [i] are
kept in a sequence Xε for an empty string ε. Xε is stored in the root node that
has 2� children labeled with bit sequences of length �. The child that is labeled
with α contains the sequence Xα. Every internal node also has 2� children that
are labeled by bit sequences of length �. Thus there are �i nodes of depth i. A
node u of depth i contains the sequence Xα where α is the concatenation of node
labels on the path from the root to u. We spend O(n� log σ√

logn
�) time to produce

T g.

Fast Construction of Wavelet Trees 105

It remains to show how to construct a binary wavelet tree for each Xα. We
divide Xα into subsequences Xα,i for i = 1, . . . , � |Xα|/2

√
logn �, where |Xα,i| =

2
√
logn for 1 ≤ i ≤ �|Xα|/2

√
logn� and |Xα,i| ≤ 2

√
log n for i = � |Xα|/2

√
logn �.

Then we apply Lemma 1 to each Xα,i. �

The result of Theorem 1 can be easily extended to the case when the wavelet
tree has an arbitrary shape.

Theorem 2. Let X be a sequence of n positive integers such that 1 ≤ X [i] ≤
σ for 1 ≤ i ≤ n. Any binary wavelet tree for X can be constructed in time
O(n� h√

logn
�+ σ) where h is the average leaf depth.

Proof : We assume in this theorem that the shape of the wavelet tree is already
known. Let the codeword for a symbol a ∈ Σ denote the bit string α obtained
by following the path from the root to the leaf that contains a; we start with an
empty string α and append 0 (1) to α every time when the left (respectively, the
right) edge is taken. We start by replacing each element X [i] with its codeword.
Then we proceed exactly as in Theorem 1. If the codeword for a symbol X [i]
is of length l[i], then the bits of X [i] will be stored at � l[i]/√logn � nodes of
the L-ary wavelet tree. Hence the first stage takes O(n� h√

log n
�) time and the

total number of symbols in all sequences Xα is also O(n� h√
logn

�). We showed in

Theorem 1 that a wavelet tree for each Xα is constructed in linear time. Hence
node u of an L-ary wavelet tree is transformed into a binary tree in O(|X(u)|)
time, where |X(u)| denotes the number of symbols in X(u). Hence the total time
to construct the wavelet tree is O(n� h√

log n
�).

�

Besides our algorithm can be also modified for the case when the wavelet tree
has arity logα n for a small constant α.

Theorem 3. Let X be a sequence of n positive integers such that 1 ≤ X [i] ≤ σ
for 1 ≤ i ≤ n. A wavelet tree with node degree logα n for the sequence X can be
constructed in time O(n� hα log logn√

logn
�+ σ) where h is the average leaf depth.

Proof : Let T denote the wavelet tree to be constructed. We extend T to a binary
tree T E by inserting some dummy nodes. Each node u ∈ T with descendants
u1, . . . , ud is extended to a full binary tree1 of height α log logn with root u and
leaves u1, . . . , ud. The nodes of the original tree will be called data nodes ; all other
nodes will be called auxiliary nodes. Our procedure constructs wavelet tree T E

in the same way as in Theorem 2, but we generate sequences X(u) only for the
data nodes u. Suppose that we visit a node and generate sequencesX(ul), X(ur).
If ul and ur are auxiliary nodes, then X(ul) and X(ur) contain the elements of
X(u); unlike Theorem 2, the leftmost bits of X(u) are not removed. We simply
assign the elements of X(u) to X(ul) and X(ur) according to the t-th bit of
X(u) where t is the distance from ul to its lowest ancestor that is a data node. If

1 To simplify the description we assume that logα n is a power of 2.

106 J.I. Munro, Y. Nekrich, and J.S. Vitter

ul and ur are data nodes, we generate X(ul) and X(ur) according to the value of
the d-th bit in X(u) for d = α log logn; depending on the value of the d-th bit in
X(u) we append lshift(X(u)[i]) to X(ul) or X(ur), where lshift(v) denotes the
value of v with α log logn leftmost bits removed. If a data node u is visited, we
also generate a sequence X(u) such that X(u)[i] = X(u)[i].bits(1..α log logn).
That is, we retrieve the α log logn leftmost bits from each X(u)[i] and store
them in X(u); we note that X(u)[i] do not change when u is visited. �

Finally we can also restore the original sequence X from its wavelet tree.

Theorem 4. We can obtain a sequence X from its binary wavelet tree T in
O(n h√

logn
+σ) time, where h is the average leaf depth. We can obtain a sequence

X from its wavelet tree T with node degree logα n in O(nhα log log n√
log n

+ σ) time.

Proof : We say that a node u ∈ T is special, if its depth is divisible by � =
√
logn.

Our algorithm consists of two stages. First, we create sequences X(u) stored in
special nodes u, so that each X(u)[i] is an integer of at most � bits. That is, we
turn T into a wavelet tree Tb such that each internal node of Tb has up to 2�

children. The total bit length of all sequences stored in the nodes of Tb equals
the total bit length of all sequences stored in the nodes of T . Thus the total space
usage does not increase. The procedure for converting T into Tb works as follows.
For every node u, such that both its children are special nodes, we assume that
X(u) = X(u). Then we work up the tree and produce X(v) for ancestors v of
u until a special node is reached. Suppose that sequences X(ul) and X(ur) for
children of a node w are already produced. We generate X(w) according to the
following rule: if X(w)[i] = 0, then X(w)[i] = 0X(ul)[i]; if X(w)[i] = 1, then
X(w)[i] = 1X(ur)[i]. The total time to construct Tb is O(n h√

logn
+ σ).

Finally we collect the values of X(u)[i] in special nodes u and obtain the se-
quence of integers X by concatenating those values. The procedure starts in the
root node uR of Tb. Depending on the value of X(uR)[i] we visit the correspond-

ing child u of uR in Tb (we observe that uR can have up to 2
√
logn children)

and retrieve the next element eu in X(u). Then we replace X(uR)[i] with the
concatenation of X(uR)[i] and eu. Proceeding in the same way for nodes of Tb
on all levels, we obtain the values of the original sequence X in X(uR). �

4 Rank and Select Queries in Wavelet Trees

In this section we consider the problem of storing a sequence S = s1s2 . . . sn over
an alphabet σ that supports the following queries:
-access(i, S) returns S[i]
-ranka(i, S) computes the number of times a occurs in S[1..i] = s1 . . . si
-selecta(i, S) finds the position j of the i-th occurrence of a, i.e., selecta(i, S) = j
such that access(j, S) = a and ranka(j, S) = i.

Wavelet trees support rank, select, and access queries in O(log σ) time. This
is achieved by augmenting sequences X(u), stored in the nodes, with data struc-
tures that answer rank and select queries. If queries on sequences X(u) are an-
swered in constant time, then queries on the original sequence X are answered

Fast Construction of Wavelet Trees 107

in O(log σ) time. The sequence X(u) stored in a node of a binary wavelet tree is
a sequence of bits. In the case of a t-ary wavelet tree, sequences X(u) are over
an alphabet of size t. Thus a wavelet tree reduces rank, select, access queries on
a sequence X to O(log σ) queries on binary sequences or O(log σ/ log t) queries
on t-ary sequences. For details we refer to e.g., [7]. It remains to show how data
structures for X(u) can be constructed quickly.

Rank and Select on Binary and t-ary Sequences. We will describe below
several results on constructing rank-select data structures for sequences over
a small alphabet. We remark that the data structures are not new and are
based on standard techniques. However, we show that these data structures can
be constructed in less than linear time, provided that the original sequence is
available in packed form.

We show in the following Theorem that the data structure of Jacobson [6] can
be constructed in O(m/ logn) time.

Theorem 5. A bit sequence B of length m can be stored in data structure that
answers rank, select, and access queries in constant time. This data structure
uses m+ O(m log logn/ logn) bits and can be constructed in O(m/ logn) time.
The construction algorithm relies on a universal table of size o(n).

Proof : B is divided into blocks of d1 = log2 n bits. We compute and store the
number of 0’s and the number of 1’s in the first i blocks for i = 1, . . . ,m/ log2 n.
Since the number of blocks is O(m/ log2 n), this information takes O(m/ log n)
bits. We assume that B is kept in packed form, so that this information can be
computed in O(m/ log n) time. Each block is divided into sub-blocks of size d2 =
logn/2. We compute and store the number of 0’s and the number of 1’s in the
first j sub-blocks of a block for each block and for j = 1, . . . , 2 logn. The number
of 0’s or 1’s in a block is at most log2 n. Hence, we can keep information about 0
and 1’s in the first j sub-blocks of a block inO(log logn) bits. The total number of
sub-blocks is O(m/ logn). Hence, all sub-block counts take O(m log logn/ logn)
bits.

Using a pre-computed universal table of size O(n1/2 logn) we can find the
number of 0’s and the number of 1’s within the first t positions of a sub-block
for t = 1, 2, . . . , logn/2 in O(1) time. A rank query rank0(i, B) is answered by
finding the block j1 that contains the i-th bit and the sub-block j2 within the
j1-th block that contains the i-th bit. We also find the position j3 of the i-th bit
within that sub-block. Now rank0(i, B) = c1 + c2 + c3 where c1 is the number of
0’s in the first j1 − 1 blocks, c2 is the number of 0’s in the first j2 − 1 sub-blocks
of the j1-th block, and c3 is the number of 0’s among the first j3 bits in the j2-nd
sub-block of the j1-th block. Queries rank1(i, B) are answered in the same way.

The data structure for rank queries can be created in O(m/ logn) time. Using
the same universal table, we can compute the number of 0’s and the number
of 1’s in each sub-block in O(1) time. Using this information, we count the
number of 0’s in the first t sub-blocks of each block for t = 1, . . . , log2 n. Then
we count the number of 0’s in the first i blocks for i = 1, 2, . . . ,m/ log2 n. The
total number of sub-blocks in all blocks is O(m/ logn) and the total number of

108 J.I. Munro, Y. Nekrich, and J.S. Vitter

blocks is O(m/ log2 n). Since we spend O(1) time in every sub-block, auxiliary
data structures for rank queries can be computed in O(m/ logn) time.

The data structure for select queries is based on a similar approach. Suppose
that we want to answer queries select0(i, B). We divide B into chunks, so that
each chunk contains log2 n 0-bits. If the size of a chunk exceeds, log4 n, we say
that this chunk is sparse; otherwise a chunk is dense. We keep left boundaries
of each chunk in an array. If a chunk is sparse, we also keep the position of
the t-th 0-bit in that chunk for t = 1, . . . , logn. A dense chunk is divided into
words, so that each word consists of logn/2 bits. We keep the number of 0-bits
in every word in a data structure M . The number of 0-bits in every word is at
most logn/2, the number of words in a chunk is O(log3 n). We can implement
M so that it uses O(log logn) bits per word; moreover we can find the word that
contains the t-th 0-bit in a block and the number of 0-bits in the first d words
for any t, d in time O(1).

A query select0(i, B) is answered by finding the starting position of the i0-th
chunk for i0 = �i/ logn�. Let i1 = i− i0 · logn. Clearly select0(i, S) = j where j
is the position of the i1-th 0 in the i0-th chunk. If this chunk is sparse, then the
position of the i1-th 0 is stored. Otherwise we find the word Wj that contains
the i1-th 0-bit using M . We can find the position of the i1-th bit in Wj using a
universal look-up table.

There are O(n/ log2 n) chunks and O(n/ log4 n) sparse chunks. The number
of 0-bits in sparse chunks is O(n/ log2 n); hence, we can store positions of all
0-bits in O(n/ logn) bits. We can create the array that contains left boundaries
of all chunks and positions of 0-bits in all chunks in O(m/ logn) time. The time
needed to create data structures M for all dense chunks is proportional to the
number of words in all dense chunks. Hence all M are created in O(m/ log n)
time.

Data structures that support rank1 and select1 on B are implemented in the
same way. �

Theorem 6. A bit sequence B of length m can be stored in data structure that
answers rank, select, and access queries in constant time. This data structure
uses mH0(B) +O(m log logn/ logn) bits and can be constructed in O(m/ log n)
time, where H0(B) is the zero-order entropy of B. The construction algorithm
relies on a universal table of size o(n).

Proof : The only difference is that the bit sequenceB itself is stored in compressed
form. We employ the method of Raman et al. [8] that splits the sequence into
pieces of size Θ(log n) and keeps all pieces in mH0(B) + O(m log logn/ logn)
bits. �

Theorem 7. A sequence B of length m over an alphabet { 1, 2, logε n }, where
ε > 0 is a constant, can be stored in data structure that answers rank,
select, and access queries in constant time. This data structure uses mH0(B) +
O(m logε n log logn/ logn) bits and can be constructed in O(m/ log1−ε n) time,
where H0(B) is the zero-order entropy of B. The construction algorithm relies
on a universal table of size o(n).

Fast Construction of Wavelet Trees 109

Proof : We keep auxiliary structures that answer ranka and selecta for every a
such that 1 ≤ a ≤ logε n. These data structures are implemented as in Theo-
rems 5 and 6 and need O(m(log logn/ logn)) bits. All auxiliary data structures
use O(m(log logn/ log1−ε n)) bits. Since data structures for a fixed symbol a can
be constructed in O(m/ log n) time, all auxiliary structures are constructed in
O(m/ log1−ε n) time. �

Wavelet Trees. In Section 3 we showed how bit sequences X(u) stored in the
nodes of the wavelet tree of a sequence X can be obtained. Using Theorems 5, 6,
and 7, we can augment X(u) with secondary data structures that enable us to
answer rank, access, and select queries on X .

Corollary 1. Let X be a sequence of n positive integers such that 1 ≤ X [i] ≤
σ for 1 ≤ i ≤ n. We can construct a binary balanced wavelet tree T for a
sequence X, such that T uses nH0(X) + o(n log σ) bits and answers queries
rank, select, and access in O(log σ) time. The wavelet tree T can be constructed
in O(n� log σ√

logn
�) time.

Proof : We construct a balanced binary wavelet tree as in Theorem 1. Sequences
X(u) are stored in compressed form. It can be shown that the total space usage
of all X(u) is n log σ + o(n log σ) bits; see e.g., [7], Section 3.1. �

We can further improve the construction time if a wavelet tree of special shape
is used.

Corollary 2. Let X be a sequence of n positive integers such that 1 ≤ X [i] ≤ σ
for 1 ≤ i ≤ n. We can construct a wavelet tree T for a sequence X, such that T
uses n(H0(X)+ 2)+ o(n logσ) bits and answers queries rank, select, and access

in O(log σ) time. The wavelet tree T can be constructed in O(n� H0(X)√
logn

�) time.

Proof : Barbay and Navarro [1] describe a wavelet tree T , such that the average
leaf depth in T is O(H0(X)) and the maximum leaf depth is O(log σ). Further-
more the total number of bits in all sequences X(u) stored in nodes of T is
bounded by n(H0(X) + 2). We construct T using Theorem 2. Data structures
for sequences X(u) are constructed as in Theorem 5. �
We also remark that we can construct wavelet trees for X with node degree
logε n where ε is a small positive constant. In this case the space usage and
construction times are the same as in Corollaries 1 and 2, but queries are
supported in O(log σ/ log logn) time.

5 Conclusions

In this paper we described fast algorithms for constructing a wavelet tree. We
showed that this important data structure can be constructed in O(n� log σ√

logn
�)

time. If the wavelet tree with a special shape is used, then construction cost can
be further reduced.

The problem of designing faster algorithms (e.g., algorithms that work in O(n)
or O(n log logn) time for an alphabet { 1, . . . , n }) remains open.

110 J.I. Munro, Y. Nekrich, and J.S. Vitter

References

1. Barbay, J., Navarro, G.: Compressed representations of permutations, and applica-
tiqons. In: Proc. 26th International Symposium on Theoretical Aspects of Computer
Science (STACS 2009), pp. 111–122 (2009)

2. Chan, T.M., Patrascu, M.: Counting inversions, offline orthogonal range counting,
and related problems. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2010), pp. 161–173 (2010)

3. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17(3), 427–462 (1988)

4. Claude, F., Nicholson, P.K., Seco, D.: Space efficient wavelet tree construction.
In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024,
pp. 185–196. Springer, Heidelberg (2011)

5. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003),
pp. 841–850 (2003)

6. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Sympo-
sium on Foundations of Computer Science (FOCS 1989), pp. 549–554 (1989)

7. Navarro, G.: Wavelet trees for all. J. Discrete Algorithms 25, 2–20 (2014)
8. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications

to encoding k-ary trees and multisets. In: Proc. 13th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2002), pp. 233–242 (2002)

9. Tischler, G.: On wavelet tree construction. In: Proc. 22nd Annual Symposium on
Combinatorial Pattern Matching (CPM 2011), pp. 208–218 (2011)

Order Preserving Prefix Tables

Md. Mahbubul Hasan1,�, A.S.M. Sohidull Islam2,4,
Mohammad Saifur Rahman1,5, and M. Sohel Rahman1,5

1 A�EDA Group, Department of CSE, BUET, Dhaka 1000, Bangladesh
2 Department of Computational Engineering and Science

McMaster University, Hamilton, Ontario, Canada
3 shanto86@gmail.com,
4 sohanas@mcmaster.ca,

5 {mrahman,msrahman}@cse.buet.ac.bd

Abstract. In the Order Preserving Pattern Matching (OPPM) prob-
lem, we have a text T and a pattern P on an integer alphabet as input.
And the goal is to locate a fragment which is order-isomorphic with the
pattern. Two sequences over integer alphabet are order-isomorphic if the
relative order between any two elements at the same positions in both
sequences is the same. In this paper we present an efficient algorithm to
construct an interesting and useful data structure, namely, prefix table,
from the order preserving point of view.

1 Introduction

In the Order Preserving Pattern Matching (OPPM) problem, we have a text T
and a pattern P on an integer alphabet as input. And, instead of looking for a
substring of the text which is identical to the given pattern, we are interested in
locating a fragment which is order-isomorphic with the pattern. Two sequences
over integer alphabet are order-isomorphic if the relative order between any two
elements at the same positions in both sequences is the same. Very recently
OPPM has received much attention [6,7,4,3,2,5].

In this paper, our main focus is an interesting data structure known as the
prefix table (also prefix array)1 [8,9]. Briefly speaking, at each position i, the
prefix table π of a string S[1..n] keeps track of the length of the longest substring
of S that starts at position i and matches a prefix of S. Here, we present the first
efficient algorithm for constructing a prefix table from Order Preserving Point
of view. In what follows we will conveniently refer to this as the order preserving
prefix table.

2 Preliminaries

Let Σ denote the set of numbers such that a comparison of two numbers can be
done in constant time, and let Σ∗ denote the set of strings over the alphabet Σ.

� Currently working at Google Zürich.
1 We prefer “table” because of the possible confusion with “suffix array”, a completely
different data structure.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 111–116, 2014.
c© Springer International Publishing Switzerland 2014

112 M.M. Hasan et al.

Let |S| = n denote the length of a string S, which is described by a sequence
of numbers as (S[1], S[2], ..., S[n]). For n = 0, S = ε, the empty string. If S =
UVW , then U is said to be a prefix, V a substring (also called a factor) and
W a suffix of S; if VW �= ε, UW �= ε, UV �= ε, respectively, then U, V,W is,
respectively, a proper prefix, proper substring, proper suffix of S. A substring
(S[i], S[i+1], . . . , S[j]) of S is denoted by S[i, j], the ith prefix S[1, i] by prefixi(S)
and the ith suffix S[i, |S|] by suffixi(S).

The rank of a number c in string S is defined as rankS(c) = 1 + |{i :
S[i] < c for 1 ≤ i ≤ |S|}|. For simplicity, we assume that all the numbers
in a string are distinct. However, this does not lose generality because when
a number occurs more than once in a string, we can extend our number def-
inition to a pair of number and index in the string so that the numbers in
the string become distinct. For comparing two such pairs, we first compare
the numbers in the pair and if they are equal, we compare the two indexes.
The order preserving representation (OPR) σ(S) of a string S can be defined
as σ(S) = rankS(S[1]), rankS(S[2]), . . . , rankS(S[|S|]). In what follows, if two
strings S1 and S2 have identical OPR, i.e., σ(S1) = σ(S2), then we say that the
two strings are OPR-equal.

3 Order Preserving Prefix Tables

We start with the following formal definition of the order preserving prefix table.

Definition 1. Given a string S, the order preserving prefix table π, 1 ≤ i ≤ |S|
is the length of the longest prefix P of suffixi(S) such that σ(P) = σ(S[1, |P |]).
In other words, πS [i] is the length of the longest substring of S that starts at
position i and its OPR is same as the OPR of some prefix of S. An example of
an order preserving prefix table is given below:

S = (11, 18, 24, 20, 25, 29)
π = 6 2 1 3 2 1

In Algorithm 1, we formally present the construction procedure. To discuss
the correctness of algorithm, we start with the following lemma which will be
useful shortly.

Lemma 1. Let S and T be two strings such that σ(S) �= σ(T). Now assume
that s and t are any numbers. Then we must also have σ(Ss) �= σ(T t).

Proof. We prove it by contradiction. Assume for the sake of contradiction that
σ(Ss) = σ(T t). So the rank of s in S is same as the rank of t in T . If we remove
s and t from the corresponding strings, the ranks of the numbers greater than
s and t will reduce by 1; ranks of the numbers less than those will remain the
same. Hence we must have σ(S) = σ(T), a contradiction. ��
It is very easy to extend Lemma 1 to get the following lemma.

Order Preserving Prefix Tables 113

Algorithm 1. High Level overview of order preserving prefix table Construction
1: procedure OPPTab(S)
2: π[1] := |S|
3: L := R := 1
4: for i := 2 to |S| do
5: π[i] := 0
6: if i ≤ R then
7: π[i] := min(R − i+ 1, π[i − L+ 1])
8: end if
9: while i+ π[i] ≤ |S| and σ(S[i, i+ π[i]]) = σ(S[1, π[i] + 1]) do
10: π[i] := π[i] + 1
11: end while
12: if i + π[i] − 1 > R then
13: L := i
14: R := i+ π[i] − 1
15: end if
16: end for
17: return π
18: end procedure

Lemma 2. Let S and T are two strings such that |S| = |T | and σ(S) �= σ(T).
Now let U and V are any two strings. Then σ(SU) �= σ(TV).

Now we discuss the correctness of our algorithm. In this algorithm we maintain
two pointers L and R such that σ(S[L,R]) = σ(S[1, R−L+1]) and R is as large
as possible for any particular L. The algorithm always maintain S the invariant
that L ≤ i. This is ensured because the value of L is updated only in Line 13 to
i under some condition. Now as we proceed from i = 2 to |S|, for each i we check
whether i ≤ R and if so we can safely say that π[i] is at least the minimum of
R−i+1 and π[i−L+1]; otherwise π[i] is set to 0. The reason for such bound of π[i]
is the invariant that we always have σ(S[L,R]) = σ(S[1, R−L+1]). Additionally,
we in fact have a stronger invariant: OPR of any substring of S[L,R] is same as
the OPR for the corresponding substring of S[1, R− L+ 1]. So, OPR of S[i, R]
will be same as the OPR of S[i−L+1, R−L+1]. Since i is increasing, we have
already calculated the length of the largest prefix of suffixi−L+1 which has the
same OPR as some prefix of the main string S and that length is π[i − L + 1].
Therefore S[i, R] has the same OPR as S[i−L+1, R−L+1] and we also know
S[i−L+1, i−L+π(i−L+1)] has the same OPR as S[1, π[i−L+1]]. Hence we
can say that, σ(S[i, i+M−1]) = σ(S[1,M]) for M = min(R−i+1, π[i−L+1]).
So M is set as the lower bound in Line 7. But as we said, this is a lower bound;
the real π[i] may be larger. So in the while loop at Line 9, we check whether
π[i] can be incremented by 1. When we reach the string boundary or π[i] can
not be incremented more maintaining the invariant, we break the loop.

Now, according to lemma 1, if σ(S[i, i + π[i]]) �= σ(S[1, π[i] + 1]) then for all
the values j > π[i] we can say that σ(S[i, i + j − 1]) �= σ(S[1, j]). So we will
have the correct value in π[i] as soon as execution of the while loop of Line 9
is complete. For the efficiency of the algorithm we try to update the value of L
and R in the if block of Line 12 which will be discussed shortly.

114 M.M. Hasan et al.

3.1 OPR Matching

In the condition of the while loop at Line 9 of Algorithm 1, we compare OPR of
two strings S[i, i+π(i)] and S[1, π(i)+1]. In a naive approach, it takes O(n log n)
time to compute OPR of a string S of length n. For this we can use a balanced
binary search tree T that would support the first two operations in Table 1. Note
that, all the operations in the table 1 can be implemented in logarithmic time
complexity. Using first two operations, OPR of a string S can be computed in
O(n log n) time (Algorithm 2). So it will take O(n log n) time in the worst case
to compute the OPRs in Line 9 of Algorithm 1 and an additional O(n) time to
check the equality.

Table 1. Operations of tree T

Function Description

Insert(x, i) Inserts a (key, value) pair (x, i) in the tree T
Rank(x) Calculates the rank of the number x among the keys

present in T . In other words, it returns number of the
keys in T that are at least x

PreviousIndex(x) Finds the value of the pair having largest key less than
x.

NextIndex(x) Finds the value of the pair having smallest key greater
than x.

Algorithm 2. Calculation of OPR ofastring S
1: procedure ComputerOPR(S)
2: T := Empty Tree
3: for i := 1 to |S| do
4: T .Insert(S[i], i)
5: end for
6: for i := 1 to |S| do
7: OPR(i) := T .Rank(S[i])
8: end for
9: return OPR
10: end procedure

However, we can implement this checking in constant time with an additional
O(n log n) preprocessing. Later, we will see that it will significantly improve the
time complexity of our algorithm. However to achieve this improvement, we have
to use tree T which can perform all the operations of Table 1. The preprocessing
phase processes the initial string S and computes two arrays named Prev and
Next. Here, Prev(i) is equal to some j such that j < i and S[j] is the largest
value that is less than S[i]. Similarly, Next(i) is equal to some j such that
j < i and S[j] is the smallest value that is greater than S[i]. This preprocessing
algorithm is formally presented in Algorithm 3.

Order Preserving Prefix Tables 115

Algorithm 3. Preprocessing Phase
1: procedure Preprocess(S)
2: T := Empty Tree
3: T .Insert(−∞,−infty)
4: T .Insert(∞, infty)
5: for i := 1 to |S| do
6: T .Insert(S[i], i)
7: Prev(i) := T .PreviousIndex(S[i])
8: Next(i) := T .NextIndex(S[i])
9: end for
10: return (Prev,Next)
11: end procedure

With the help of Prev and Next arrays we now can check the equality of
two OPRs in constant time. In Line 9 of Algorithm 1, we know that σ(S[i, i +
π(i) − 1]) = σ(S[1, π(i)]) and we would like to increase the value of π(i) by
one. Instead of appending the next number to the strings and evaluating the
entire OPRs, we proceed as follows. We simply find the position of the next
number in the already calculated OPRs of the strings S[i, i + π(i) − 1] and
S[1, π(i)]. This is where our preprocessing comes handy. From the precalculated
Prev and Next arrays we know that immediate smaller and larger values of
S[π(i)+1] in S[1, π(i)] are at Prev[π(i)+1] and Next[π(i)+1] respectively. So if
the immediate smaller and larger values of S[i + π(i)] are at the corresponding
places of S[i, i+ π(i)] that is at Prev[π(i) + 1] + i− 1 and Next[π(i) + 1] + i− 1
respectively, we can say that the OPRs of the new strings will also be same. Since
σ(S[i, i+ π(i)− 1]) = σ(S[1, π(i)]), it would be enough to check if S[Prev[π(i)+
1]+ i− 1]< S[i+ π(i)] < S[Next[π(i)+ 1]+ i− 1]. This follows readily following
a similar line of arguments as discussed in the proof of Lemma 1. Our improved
algorithm is presented in Algorithm 4.

Algorithm 4. Improved algorithm for order preserving prefix table Construc-
tion
1: procedure OPPTab(S)
2: (Prev,Next) = Preprocess(S)
3: π(1) := |S|
4: L := R := 1
5: for i := 2 to |S| do
6: π(i) := 0
7: if i ≤ R then
8: π(i) := min(R − i + 1, π(i− L + 1))
9: end if
10: while i+π(i) ≤ |S| and S[Prev[π(i)+1]+ i− 1] < S[i+π(i)] < S[Next[π(i)+1]+ i− 1]

do
11: π(i) := π(i) + 1
12: end while
13: if i + π(i) − 1 > R then
14: L := i
15: R := i+ π(i) − 1
16: end if
17: end for
18: return π
19: end procedure

116 M.M. Hasan et al.

The time complexity analysis of Algorithm 4 is a bit tricky. Firstly, the pre-
processing phase takes O(n logn) time. Now observe carefully that, if π(i) is set
to the value of R− i+ 1 in Line 8, then, there is a chance that the value of π(i)
may increase in the following while loop and that results in the same amount of
increase in the value of R in Line 15. However, if π(i) is not set to R− i+1 then
π(i) will not increase. Condition checking inside the if blocks or while takes
constant time. We can say that the number of iterations of the while loop is
equal to R + O(n). But R ≤ |S|. Hence the total running time of Algorithm 4
is O(n log n). Space complexity is quite straight forward to analyze as follows.
The space complexity of the tree T is O(n) and also for the arrays π, Prev and
Next we need O(n) memory. So the space complexity of the algorithm is O(n).

References

1. Bland, W., Kucherov, G., Smyth, W.F.: Prefix table construction and conversion.
In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 41–53.
Springer, Heidelberg (2013)

2. Cho, S., Na, J.C., Park, K., Sim, J.S.: Fast order-preserving pattern matching. In:
Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 295–305.
Springer, Heidelberg (2013)

3. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Waleń, T.: Order-preserving incomplete suffix
trees and order-preserving indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds.)
SPIRE 2013. LNCS, vol. 8214, pp. 84–95. Springer, Heidelberg (2013)

4. Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Langiu, A., Pissis,
S.P., Radoszewski, J., Rytter, W., Walen, T.: Order-preserving suffix trees and their
algorithmic applications. CoRR, abs/1303.6872 (2013)

5. Gawrychowski, P., Uznanski, P.: Order-preserving pattern matching with k mis-
matches. CoRR, abs/1309.6453 (2013)

6. Kim, J., Eades, P., Fleischer, R., Hong, S.-H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order preserving matching. CoRR, abs/1302.4064 (2013)

7. Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear time
algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12),
430–433 (2013)

8. Main, M.G., Lorentz, R.J.: An o(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

9. Smyth, W.F.: Computing patterns in strings. Pearson Addison-Wesley (2003)

Alphabet-Independent Algorithms for Finding
Context-Sensitive Repeats in Linear Time

Enno Ohlebusch and Timo Beller

Institute of Theoretical Computer Science, University of Ulm, D-89069 Ulm
{Enno.Ohlebusch,Timo.Beller}@uni-ulm.de

Abstract. The identification of repetitive sequences (repeats) is an es-
sential component of genome sequence analysis, and there are dozens of
algorithms that search for exact or approximate repeats. The notions
of maximal and supermaximal (exact) repeats have received special at-
tention, and it is possible to simultaneously compute them on index
data structures like the suffix tree or the enhanced suffix array. Very
recently, this research has been extended in two directions. Gallé and
Tealdi devised an alphabet-independent linear-time algorithm that finds
all context-diverse repeats (which subsume maximal and supermaximal
repeats as special cases), while Taillefer and Miller gave a quadratic-
time algorithm that simultaneously computes and classifies maximal,
near-supermaximal, and supermaximal repeats. In this paper, we pro-
vide new alphabet-independent linear-time algorithms for both tasks.

1 Introduction

In the analysis of a genome, a basic task is to locate and characterize the repet-
itive sequences (repeats). While bacterial genomes usually do not contain large
amounts of repetitive sequences, a considerable portion of the genomes of higher
organisms is composed of repeats. For example, more than half of the 3 billion
basepairs of the haploid human genome consists of repeats.

In order to avoid redundant output, the search for exact repeats is usually
restricted to so-called maximal and supermaximal repeats. Let us briefly recall
these notions. A substring ω of a (long) string S is an exact repeat if it occurs at
least twice in S. A repeat ω of S is a maximal repeat if any extension of ω occurs
fewer times in S than ω. A supermaximal repeat is a maximal repeat that is not
a proper substring of another repeat. Section 3 discusses articles that describe
how maximal and supermaximal repeats can be computed efficiently.

This paper is inspired by two papers published recently. In the first paper,
Gallé and Tealdi [10] introduced context-diverse repeats, which subsume maxi-
mal and supermaximal repeats as special cases. They provided three algorithms
for finding all context-diverse repeats:

1. An O(nσ) time algorithm based on the enhanced suffix array of S (using a
variant of the bottom-up traversal of the lcp-interval tree [1], a method of
simulating a bottom-up traversal of the suffix tree), where σ is the size of
the underlying alphabet Σ.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 117–128, 2014.
c© Springer International Publishing Switzerland 2014

118 E. Ohlebusch and T. Beller

2. An O(n log n) time algorithm based on Fenwick trees (a Fenwick tree permits
to calculate a prefix sum of an array of values in O(log n) time; it is dynamic
because the table can be modified in O(log n) time).

3. An O(n) time algorithm that (a) computes right-diverse repeats based on
the enhanced suffix array of S, (b) computes left-diverse repeats based on
the enhanced suffix array of the reverse string of S, and (c) merges them.

Here, we provide a simpler O(n) time algorithm. In essence, we replace the
Fenwick tree with the correction terms devised by Hui [13].

The second paper that inspired our work is [24]. In that paper, Taillefer and
Miller study length distributions of repeats in genome sequences. To that end,
they used a simple algorithm that simultaneously computes and classifies maxi-
mal, near-supermaximal, and supermaximal repeats. The worst-case time com-
plexity of the simple algorithm is O(n2), but it improves to O(nσ) if, in the
bottom-up traversal of the lcp-interval tree, information at child intervals is
propagated to their parent interval. The real challenge is to devise an O(n) time
algorithm for this task. Note that the result on context-diverse repeats does
not apply because context-diverse repeats do not comprise near-supermaximal
repeats. In this paper, we give the first alphabet-independent linear-time algo-
rithm that simultaneously finds and classifies maximal, near-supermaximal, and
supermaximal repeats.

Experimental results show that our algorithms are not only of theoretical
interest: both have implementations that are faster in practice than all known
algorithms. For space reasons, proofs and experimental results had to be omitted.

2 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the so-called
sentinel character $. In the following, S is a string of length n on Σ having the
sentinel character at the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the
character at position i in S. For i ≤ j, S[i..j] denotes the substring of S starting
with the character at position i and ending with the character at position j.
Furthermore, Si denotes the i-th suffix S[i..n] of S. The suffix array SA of the
string S is an array of integers in the range 1 to n specifying the lexicographic
ordering of the n suffixes of S, that is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n];
see Fig. 1 for an example. We refer to the overview article [21] for suffix array
construction algorithms (some of which have linear runtime).

The Burrows and Wheeler transform [6] converts a string S into the string
BWT[1..n] defined by BWT[i] = S[SA[i]−1] for all i with SA[i] �= 1 and BWT[i] =
$ otherwise; see Fig. 1.

The suffix array SA is often enhanced with the so-called LCP-array containing
the lengths of longest common prefixes between consecutive suffixes in SA; see
Fig. 1. Formally, the LCP-array is an array so that LCP[1] = −1 = LCP[n + 1]
and LCP[i] = |lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the
longest common prefix between two strings u and v. Kasai et al. [15] showed
that the LCP-array can be computed in linear time from the suffix array and its

Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats 119

i SA LCP BWT SSA[i] lcp-intervals
1 12 −1 i $

0

2 11 0 p i$

1
3 8 1 s ippi$
4 5 1 s issippi$ 4
5 2 4 m ississippi$
6 1 0 $ mississippi$
7 10 0 p pi$ 1
8 9 1 i ppi$
9 7 0 s sippi$

1
2

10 4 2 s sissippi$
11 6 1 i ssippi$ 3
12 3 3 i ssissippi$

Fig. 1. Suffix array, LCP-array, BWT and lcp-intervals of the string S = mississippi$.
The entry LCP[13] = −1 is not shown in the table.

inverse. Abouelhoda et al. [1] introduced the concept of lcp-intervals; see Fig. 1.
An interval [i..j], where 1 ≤ i < j ≤ n, in the LCP-array is called an lcp-interval
of lcp-value � (denoted by �-[i..j]) if

1. LCP[i] < �,
2. LCP[k] ≥ � for all k with i+ 1 ≤ k ≤ j,
3. LCP[k] = � for at least one k with i+ 1 ≤ k ≤ j,
4. LCP[j + 1] < �.

Every index k, i + 1 ≤ k ≤ j, with LCP[k] = � is called �-index or lcp-index.
Note that each lcp-interval has at least one and at most σ − 1 many �-indices.
Abouelhoda et al. [1] showed that there is a one-to-one correspondence between
the set of all lcp-intervals and the set of all internal nodes of the suffix tree of S
(we assume a basic knowledge of suffix trees). Consequently, there are at most
n− 1 lcp-intervals for a string of length n.

A substring ω of S is a repeat if it occurs at least twice in S. Let ω be a repeat
of length � and let [i..j] be the ω-interval in the suffix array SA of S (i.e., ω is a
prefix of SSA[k] for all i ≤ k ≤ j, but ω is not a prefix of any other suffix of S).
Clearly, the number occ(ω) of occurrences of ω in S is j − i + 1. The left and
right contexts of ω in S are defined by

lc(ω) = {S[SA[k]− 1] | i ≤ k ≤ j} = {BWT[k] | i ≤ k ≤ j}
rc(ω) = {S[SA[k] + �] | i ≤ k ≤ j}

So the left (right) context is the set of characters that appear to the left (right)
of the occurrences of ω in S; see Fig. 2 for an example.

A repeat ω of S is left-maximal (right-maximal, respectively) if and only if
|lc(ω)| ≥ 2 (|rc(ω)| ≥ 2, respectively). A left and right maximal repeat is said

120 E. Ohlebusch and T. Beller

ω lc(ω) rc(ω) maximal near supermaximal supermaximal

i {p, s,m} {$, p, s} � � −
issi {s,m} {p, s} � � �
p {p, i} {i, p} � � �
s {s, i} {i, s} � − −
si {s} {p, s} − − −
ssi {i} {p, s} − − −

Fig. 2. Classification of the repeats of the string S = mississippi$

to be a maximal repeat. A repeat ω of S is a supermaximal repeat if and only if
|lc(ω)| = |rc(ω)| = occ(ω).

We call the occurrence of a maximal repeat ω that starts at position SA[k]
in S the occurrence at index k (in the suffix array). The occurrence at index k,
where i ≤ k ≤ j, has a unique left context if and only if BWT[k] = a is the only
occurrence of the character a in BWT[i..j], where [i..j] is the ω-interval. It has
a unique right context if and only if S[SA[k] + �] = b is the only occurrence of
the character b in the list [S[SA[k] + �] | i ≤ k ≤ j]. We say that an occurrence
has a unique context if it has a unique left and a unique right context.

A maximal repeat ω of S is a near-supermaximal repeat if and only if it has
an occurrence with a unique context. Such an occurrence of ω is said to witness
the near-supermaximality of ω. With this terminology, a supermaximal repeat
ω is a maximal repeat in which every occurrence of ω is a witness to its near-
supermaximality.

Given two natural numbers p and q, a repeat ω of S is said to be 〈p, q〉-
context-diverse if and only if |lc(ω)| ≥ p and |rc(ω)| ≥ q. With this terminology,
ω is a maximal repeat if and only if it is 〈2, 2〉-context-diverse and it is a su-
permaximal repeat if and only if it is 〈occ(ω), occ(ω)〉-context-diverse. Note that
near-supermaximal repeats cannot be characterized in terms of 〈p, q〉-context-
diversity. In the following, we tacitly assume that the threshold values p and q
are strictly greater than 1 because we are not interested in non-maximal repeats.

3 Related Work

Gusfield [11, 7.12.1] describes an O(n) time algorithm to find all maximal repeats
in S, using the suffix tree of S. Subsequently, several other authors provided
algorithms for the same task, using different data structures: Raffinot [23] uses
a compact suffix automaton of S, Franek et al. [9] use the suffix arrays of both
S and its reversed string, Narisawa et al. [18] use the suffix array, the inverse
suffix array, and the LCP-array of S, Prieur and Lecroq [20] use a compact suffix
vector of S, and Puglisi et al. [22] use the suffix array and the LCP-array of S.
Many of these algorithms (implicitly or explicitly) use the fact that there is a
one-to-one correspondence between the set of lcp-intervals and the set of all right
maximal repeats. More recently, three software tools have been developed with

Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats 121

the purpose to find maximal repeats in whole genomes. Becher et al. [2] presented
an algorithm that accesses LCP-values in increasing order to identify lcp-intervals
in increasing order of their lcp-values by using a dynamic data structure: a
balanced binary tree of height logn that is queried and updated in O(log n) time.
Consequently, their repeat finding algorithm has a worst-case time complexity of
O(n log n). The test whether a candidate repeat is left-maximal is done with the
aid of the suffix array and the inverse suffix array of S. The algorithm of Külekci
et al. [16] shares the same high level idea and the O(n log n) time complexity
with that of Becher et al., but their implementation uses succinct data structures.
By further developing the techniques introduced in [4], Beller et al. [3] showed
that lcp-intervals can be computed space-efficiently on the wavelet tree of the
Burrows-Wheeler transform of S. Their algorithm to find all maximal repeats
runs in O(n log σ) time.

Gusfield [11, 7.12.2] also presented an O(nσ) time algorithm to find all near-
supermaximal and supermaximal repeats in S, again using the suffix tree of S.
Abouelhoda et al. [1] sketched an algorithm for finding supermaximal repeats
that is based on the suffix array and the LCP-array of S, and Puglisi et al.
[22] improved that algorithm. Lian et al. [17] derived an auxiliary data structure
from the suffix tree of S and computed supermaximal repeats based on that data
structure. The classification of repeats is not only interesting in bioinformatics
[19] but it is also important in other areas: e.g. it was used to cluster process
instances in the field of process mining [5].

4 An Algorithm for Finding 〈p, q〉-Context-Diverse
Repeats in Linear Time

We start with the following characterization of 〈p, q〉-context-diverse repeats.1

Lemma 1. A substring ω of S is a 〈p, q〉-context-diverse repeat if and only if (a)
the ω-interval [i..j] is an lcp-interval of lcp-value � = |ω|, (b) |{BWT[i],BWT[i+
1], . . . ,BWT[j]}| ≥ p, and (c) the number of �-indices in the lcp-interval [i..j] is
greater than or equal to q − 1.

Abouelhoda et al. [1] have shown how the lcp-interval tree can be traversed
in a bottom-up fashion. Algorithm 1 is a slight variation of their algorithm that
simply enumerates all lcp-intervals (i.e., it neglects the parent-child relationship
between lcp-intervals). For later purposes, Algorithm 1 also computes all lcp-
indices of an lcp-interval. According to Lemma 1, Algorithm 1 can be used as the
basis of the computation of all 〈p, q〉-context-diverse repeats: For each lcp-interval
[i..j] encountered, test in constant time whether the number of lcp-indices in
[i..j] is greater than or equal to q − 1.2 If so, one must check whether condition
(b) is satisfied. Because there are at most n − 1 lcp-intervals, we will obtain
1 Recall that we assume p > 1 and q > 1.
2 Therefore, in this context it suffices to compute the number of lcp-indices of an

lcp-interval; it is not necessary to compute the lcp-indices themselves.

122 E. Ohlebusch and T. Beller

Algorithm 1. Enumeration of lcp-intervals (in a bottom-up fashion)
push(〈0, 1, []〉)
for k ← 2 to n+ 1 do

lb ← k − 1
while LCP[k] < top().lcp do

〈�, lb, lcpIndices〉 ← pop()
rb ← k − 1
process(〈�, lb, rb, lcpIndices〉)

if LCP[k] > top().lcp then
push(〈LCP[k], lb, [k]〉)

else /* LCP[k] = top().lcp */
top().lcpIndices ← add(top().lcpIndices, k)

an alphabet-independent linear-time algorithm if this test can be performed in
constant time. The latter is indeed possible by solving the color set size problem,
defined as follows: Given a rooted tree with n leaves colored from 1 to σ, for
each node v find the number of different leaf colors in the subtree rooted at
v. In our problem, the tree is the suffix tree of S and each character in Σ is
a color. The number of distinct colors in a subtree of an internal node v can
be obtained by subtracting the number of duplicate colors, called the correction
term CT (v), from the number of leaves in that subtree. The key idea of Hui’s
algorithm is to use constant-time lowest common ancestor (LCA) queries [12].
His algorithm does a depth-first traversal of the tree. For each color c, it keeps
track of the last leaf (seen so far) colored c. To this end, it uses an array last[1..σ],
whose entries are initially undefined. If the algorithm encounters a leaf i with
color c and last[c] = j, then it computes the LCA v of i and j in the tree and
increments the counter count(v) by one because the color c is duplicated once in
the subtree rooted at v (initially count(v) = 0). Moreover, it updates last[c] by
last[c] ← i. After the depth-first traversal, the correction terms are calculated
by a bottom-up traversal of the tree as follows:

CT (v) =
∑

u∈subtree(v)

count(u) = count(v) +
∑

w∈children(v)

CT (w)

where subtree(v) is the subtree rooted at v and children(v) is the set of child
nodes of v; see [13] and [11, 9.7.1] for more details.

Since we do not want to work with an explicit tree structure, we replace
constant-time LCA queries with constant-time range minimum queries (RMQs)
on the LCP-array; see [8,7]. Moreover, we use an array of counters counter[1..n],
whose entries are initially set to zero. We scan the BWT from left to right and,
for each “color” c = BWT[i], we keep track of the last index last[c] (seen so
far) colored c. If we find an index i with c = BWT[i] and last[c] = j, then—in
terms of the suffix tree—this means that we encountered two leaves (with suffix
numbers SA[j] and SA[i]) for which the counter count(v) of their LCA v in the
suffix tree must be incremented by one. The longest common prefix ω of the

Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats 123

Algorithm 2. Computation of CT

prepare the LCP-array for constant-time range minimum queries
for c ← 1 to σ do /* initialize the array last[1..σ] */

last[c] ← 0
for i ← 1 to n do /* initialize the counter array CT [1..n] */

CT [i] ← 0
for i ← 1 to n do /* increment counters */

c ← BWT[i]
if last[c] �= 0 then

k ← RMQLCP(last[c] + 1, i)
CT [k] ← CT [k] + 1

last[c] ← i
for i ← 2 to n do /* compute prefix sums of counter values */

CT [i] ← CT [i− 1] + CT [i]

suffixes SSA[j] and SSA[i] can be obtained by concatenating the edge labels on
the path from the root of the suffix tree to node v. As mentioned in Section 2,
there is a one-to-one correspondence between the set of all lcp-intervals and the
set of all internal nodes of the suffix tree of S; see [1]. Let [lb..rb] be the lcp-
interval that corresponds to v. Note that [lb..rb] is the ω-interval and the length
� of ω is the lcp-value of [lb..rb]. To simulate Hui’s method, we must increment
a counter at an index k with lb ≤ k ≤ rb. This index k should belong to the
lcp-interval [lb..rb] but not to one of its child intervals. In other words, it should
be an �-index of [lb..rb]. Recall that LCP[m] ≥ � for all m with lb+ 1 ≤ m ≤ rb
by the definition of lcp-intervals. Moreover, there must exist an index k with
j + 1 ≤ k ≤ i and LCP[k] = � because ω is the longest common prefix of the
suffixes SSA[j] and SSA[i]. Thus, the �-index we are searching for can be found by
the range minimum query RMQLCP(j + 1, i).

Algorithm 2 gives pseudo-code for the computation of the correction terms. In
the penultimate for-loop the counters are incremented as explained above. Then
we can compute the correction term of an lcp-interval [lb..rb] as follows (by the
definition of lcp-intervals we have LCP[lb] < �, so the counter of lb must not be
taken into accout):

rb∑
k=lb+1

count(k) =

rb∑
k=1

count(k)−
lb∑

k=1

count(k)

In other words, we need the prefix sums of the counter values. These are cal-
culated in the last for-loop of Algorithm 2. Now we have all the ingredients to
calculate the number of distinct colors in an lcp-interval [lb..rb]. We simply have
to subtract the correction term

CT [rb]− CT [lb] =
rb∑
k=1

count(k)−
lb∑

k=1

count(k)

from the size rb − lb+ 1 of the interval [lb..rb].

124 E. Ohlebusch and T. Beller

Algorithm 3. This implementation of the procedure process decides whether
an lcp-interval 〈�, lb, rb, lcpIndices〉 induces a repeat ω = S[SA[lb]..SA[lb]+ �−1]
of length ≥ �min with lc(ω) ≥ p and rc(ω) ≥ q

process(〈�, lb, rb, lcpIndices〉)
if � ≥ �min then /* �min ≥ 1 */

if (rb− lb+ 1)− (CT [rb]− CT [lb]) ≥ p and |lcpIndices| ≥ q − 1 then
output 〈�, lb, rb〉

In combination with Algorithm 1, Algorithm 3 computes all 〈p, q〉-context-
diverse repeats of length ≥ �min in O(n) time. That is, the worst-case time
complexity does not dependent on the alphabet size.

Our algorithm has the following advantage over the O(n) time algorithm
of Gallé and Tealdi [10]. Suppose one wants to calculate 〈p, q〉-context-diverse
repeats for different values of the parameters p and q. In our method, once the
correction terms are precomputed, they can be stored along with the enhanced
suffix array. So in subsequent computations of context-diverse repeats, a renewed
computation of the correction terms is unnecessary. By contrast, all three steps
in the linear time algorithm presented in [10] (these steps are decribed in Section
1) must be performed for every choice of p and q.

5 Finding Maximal, Near-SuperMaximal,
and Supermaximal Repeats in Linear Time

As already mentioned, context-diverse repeats subsume maximal and supermaxi-
mal repeats, but they do not subsume near-supermaximal repeats. Our next goal
is to simultaneously compute and classify all three kinds of repeats. As we have
seen in the previous section, maximal and supermaximal repeats can be detected
with the help of correction terms. The linear-time precomputation of the correc-
tion terms, however, needs constant-time RMQs, which are slow in practice. As
we shall see next, we can solve the problem without them.

Recall that every supermaximal repeat is a near-supermaximal repeat and ev-
ery near-supermaximal repeat is a maximal repeat. Thus, the first task is to find
all maximal repeats. We use Algorithm 1 to enumerate all lcp-intervals and test
for each lcp-interval [lb..rb] whether |{BWT[lb],BWT[lb+1], . . . ,BWT[rb]}| ≥ 2.
This test can be done by keeping track of the largest index lastdiff < k at
which BWT[lastdiff − 1] and BWT[lastdiff] differ (initially lastdiff = 1). Since
lastdiff ≤ rb, the characters BWT[lb],BWT[lb + 1], . . . ,BWT[rb] are not all the
same if and only if lastdiff > lb. Pseudo-code for the computation of maximal
repeats by this approach can be found in Algorithms 4 and 5 (apart from the
first five and the last five lines of code, Algorithm 4 is identical with Algorithm
1). In Algorithm 5, the procedure process first tests whether an lcp-interval �-
[lb..rb] induces a maximal repeat ω = S[SA[lb]..SA[lb]+ �− 1] of length � ≥ �min.
If so, it further checks whether this maximal repeat ω is near-supermaximal or

Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats 125

Algorithm 4. O(n) time computation
lastdiff ← 1
for c ← 1 to σ do

penultimate[c] ← 0
last[c] ← 0

last[BWT[1]] ← 1
push(〈0, 1, []〉)
for k ← 2 to n+ 1 do

lb ← k − 1
while LCP[k] < top().lcp do

〈�, lb, lcpIndices〉 ← pop()
rb ← k − 1
process(〈�, lb, rb, lcpIndices, lastdiff , penultimate, last〉)

if LCP[k] > top().lcp then
push(〈LCP[k], lb, [k]〉)

else /* LCP[k] = top().lcp */
top().lcpIndices ← add(top().lcpIndices, k)

c ← BWT[k]
penultimate[c] ← last[c]
last[c] ← k
if BWT[k − 1] �= c then

lastdiff ← k

even supermaximal. In the following, we explain how this is done. By definition,
ω is near-supermaximal if it has an occurrence with a unique context.

Lemma 2. Let �-[lb..rb] be an lcp-interval and consider the induced repeat ω =
S[SA[lb]..SA[lb] + � − 1]. The occurrence of ω at index

– j, where lb < j < rb, has a unique right context if and only if both j and
j + 1 are �-indices,

– lb has a unique right context if and only if lb+ 1 is an �-index,
– rb has a unique right context if and only if rb is an �-index.

Based on Lemma 2 and the �-indices of the lcp-interval �-[lb..rb], Algorithm
6 computes all indices at which the occurrence of the repeat ω has a unique
right context.3 The final task is to find out which of these occurrences also have
a unique left context. To this end, we use two arrays penultimate and last of
size σ. Algorithm 4 maintains the following invariant: Before the body of its
second for-loop is executed for value k, last[c] is the index at which the last
occurrence of c ∈ Σ in BWT[1..k− 1] can be found and penultimate[c] points to
the penultimate occurrence of c in BWT[1..k − 1].

3 In the terminology of Abouelhoda et al. [1], each of these indices corresponds to
a singleton child interval of [lb..rb]. That is why the set of these indices is called
singletons.

126 E. Ohlebusch and T. Beller

Algorithm 5. This implementation of the procedure process decides whether
an lcp-interval 〈�, lb, rb, lcpIndices〉 induces a repeat ω = S[SA[lb]..SA[lb]+ �−1]
of length ≥ �min that is maximal, near-supermaximal or supermaximal
process(〈�, lb, rb, lcpIndices, lastdiff , penultimate, last〉)

if � ≥ �min and lastdiff > lb then
/* �-[lb..rb] induces a maximal repeat of length � ≥ �min */

witnesses ← ∅
singletons ← computeSingletons(lb, rb, lcpIndices)
for each j ∈ singletons do

c ← BWT[j]
if j = last[c] and penultimate[c] < lb then

witnesses ← witnesses ∪ {j}
if |witnesses| = rb− lb+ 1 then

output �-[lb..rb] induces a supermaximal repeat
else if witnesses �= ∅ then

output �-[lb..rb] induces a near-supermaximal repeat and the
occurrences starting at SA[j], j ∈ witnesses, have a unique context

else
output �-[lb..rb] induces a maximal repeat

Lemma 3. Let �-[lb..rb] be an lcp-interval and consider the induced repeat ω =
S[SA[lb]..SA[lb]+�−1]. The occurrence of ω at index j, lb ≤ j ≤ rb, has a unique
left context if and only if j = last[c] and penultimate[c] < lb.

Based on the preceding lemma, we can now show that Algorithms 4, 5, and
6 correctly compute and classify maximal repeats in O(n) time. As already
mentioned, there is a one-to-one correspondence between the set of lcp-intervals
and the set of all repeats ω with rc(ω) ≥ 2. Algorithm 4 finds all these repeats in
O(n) time because it enumerates all lcp-intervals in O(n) time. We next discuss
what happens when the procedure process (Algorithm 5) is applied to the lcp-
interval �-[lb..rb] and the parameters lcpIndices, lastdiff , penultimate, and last.
As already mentioned, the lcp-interval [lb..rb] induces a maximal repeat if and
only if lastdiff > lb. If this test fails, Algorithm 5 terminates. Otherwise, a
maximal repeat ω = S[SA[lb]..SA[lb] + � − 1] is detected. Algorithm 5 calls the
procedure computeSingletons with the parameters lb, rb, and the set lcpIndices
of all �-indices of the lcp-interval �-[lb..rb]. The procedure computeSingletons
returns the set singletons, the set of all indices at which the occurrence of the
repeat ω has a unique right context. Note that the overall time spent for all calls
to the procedure computeSingletons is O(n) because each index is an lcp-index
of exactly one lcp-interval. For each j ∈ singletons, Algorithm 5 checks whether
the occurrence of the maximal repeat ω at index j has a unique left context; cf.
Lemma 3. If so, it adds j to the set witnesses. In total, the for-loop in Algorithm
5 is executed at most n times because the overall number of indices at which
an occurrence of a maximal repeat has a unique right context is bounded by
n. When the for-loop in Algorithm 5 terminates, the set witnesses contains all

Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats 127

Algorithm 6. Given the list [i1, . . . , im] of all �-indices of an lcp-interval �-
[lb..rb], this procedure returns the set of all indices j so that the occurrence of
ω = S[SA[lb]..SA[lb] + �− 1] at index j has a unique right context
computeSingletons(lb, rb, [i1, . . . , im])

singletons ← ∅
if lb = i1 − 1 then

singletons ← singletons ∪ {lb}
for k ← 2 to m do

if ik−1 = ik − 1 then
singletons ← singletons ∪ {ik−1}

if im = rb then
singletons ← singletons ∪ {im}

return singletons

indices at which the maximal repeat ω has a unique context. Now the size of this
set is used to classify the maximal repeat ω. If |witnesses| = rb − lb + 1, then
every occurrence of ω has a unique context and ω is reported as a supermaximal
repeat. Otherwise, Algorithm 5 tests whether witnesses �= ∅. If this is the case,
there is at least one index at which the maximal repeat ω has a unique context
and ω is reported as a near-supermaximal repeat. If this is not the case, ω
is reported as a maximal repeat. In summary, Algorithm 5 correctly classifies
maximal repeats. The worst-case time complexity of Algorithms 4, 5, and 6 is
O(n) as argued above.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2, 53–86 (2004)

2. Becher, V., Deymonnaz, A., Heiber, P.: Efficient computation of all perfect repeats
in genomic sequences of up to half a gigabyte, with a case study on the human
genome. Bioinformatics 25(14), 1746–1753 (2009)

3. Beller, T., Berger, K., Ohlebusch, E.: Space-efficient computation of maximal and
supermaximal repeats in genome sequences. In: Calderón-Benavides, L., González-
Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 99–110.
Springer, Heidelberg (2012)

4. Beller, T., Gog, S., Ohlebusch, E., Schnattinger, T.: Computing the longest com-
mon prefix array based on the Burrows-Wheeler transform. In: Grossi, R., Sebas-
tiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 197–208. Springer,
Heidelberg (2011)

5. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010)

6. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Research Report 124, Digital Systems Research Center (1994)

128 E. Ohlebusch and T. Beller

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

8. Fischer, J., Heun, V., Kramer, S.: Optimal string mining under frequency con-
straints. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 139–150. Springer, Heidelberg (2006)

9. Franěk, F., Smyth, W.F., Tang, Y.: Computing all repeats using suffix arrays.
Journal of Automata, Languages and Combinatorics 8(4), 579–591 (2003)

10. Gallé, M., Tealdi, M.: On context-diverse repeats and their incremental computa-
tion. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.)
LATA 2014. LNCS, vol. 8370, pp. 384–395. Springer, Heidelberg (2014)

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

12. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13, 338–355 (1984)

13. Hui, L.C.K.: Color set size problem with applications to string matching. In:
Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS,
vol. 644, pp. 230–243. Springer, Heidelberg (1992)

14. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009)

15. Kasai, T., Lee, G.H., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir,
A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer,
Heidelberg (2001)

16. Külekci, M.O., Vitter, J.S., Xu, B.: Efficient maximal repeat finding using the
Burrows-Wheeler transform and wavelet tree. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 9(2), 421–429 (2012)

17. Lian, C.N., Halachev, M., Shiri, N.: Searching for supermaximal repeats in large
DNA sequences. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider,
K., Toma, C. (eds.) BIRD 2008. CCIS, vol. 13, pp. 87–101. Springer, Heidelberg
(2008)

18. Narisawa, K., Inenaga, S., Bannai, H., Takeda, M.: Efficient computation of sub-
string equivalence classes with suffix arrays. In: Ma, B., Zhang, K. (eds.) CPM
2007. LNCS, vol. 4580, pp. 340–351. Springer, Heidelberg (2007)

19. Ohlebusch, E.: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrange-
ments, and Phylogenetic Reconstruction. Oldenbusch-Verlag (2013)

20. Prieur, E., Lecroq, T.: On-line construction of compact suffix vectors and maximal
repeats. Theoretical Computer Science 407(1-3), 290–301 (2008)

21. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), article 4 (2007)

22. Puglisi, S.J., Smyth, W.F., Yusufu, M.: Fast, practical algorithms for computing
all the repeats in a string. Mathematics in Computer Science 3(4), 373–389 (2010)

23. Raffinot, M.: On maximal repeats in strings. Information Processing Letters 80(3),
165–169 (2001)

24. Taillefer, E., Miller, J.: Exhaustive computation of exact duplications via super and
non-nested local maximal repeats. Journal of Bioinformatics and Computational
Biology 12(1), article 1350018 (2014)

A 3-Approximation Algorithm for the Multiple

Spliced Alignment Problem and Its Application
to the Gene Prediction Task

Regina Beretta Mazaro, Leandro Ishi Soares de Lima, and Said Sadique Adi

Universidade Federal de Mato Grosso do Sul, Faculdade de Computação
Av. Costa e Silva, s/n, CP 549,

79070-900, Campo Grande, MS, Brazil
regina.beretta@ufms.br, leandro.ishi.lima@gmail.com, said@facom.ufms.br

Abstract. The Spliced Alignment Problem is a well-known problem in
Bioinformatics with application to the gene prediction task. This prob-
lem consists in finding an ordered subset of non-overlapping substrings
of a subject sequence g that best fits a target sequence t. In this work we
present an approximation algorithm for a variant of the Spliced Align-
ment Problem, called Multiple Spliced Alignment Problem, that involves
more than one target sequence. Under a metric, this algorithm is proved
to be a 3-approximation for the problem and its good practical results
compare to those obtained by four heuristics already developed for the
Multiple Spliced Alignment Problem.

Keywords: Approximation algorithm, gene prediction, multiple spliced
alignment problem.

1 Introduction

The term Bioinformatics has been used since 1970, when Hogeweg and Hesper
defined it as “the study of informatic process in biotic systems” [4]. Since then,
Biology and its branches have been a valuable source of new and interesting com-
putational tasks involving long strings (genomic DNAs, cDNAs, RNAs, proteins,
etc). As such, they require robust and efficient algorithms that work well in both
theory and practice. A well-known task in this scenario is that of identifying the
genes encoded in a genomic DNA of interest.

Given the practical importance and the difficulties associated with the gene
prediction task, a number of computational methods has been developed to deal
with it. By considering sequence conservation and the large quantity of entire
genomes from many species already annotated, similarity based approaches are
promising techniques that allow the identification of genes by comparing ge-
nomic sequences with related transcript sequences. In this context, Gelfand et
al. proposed in [3] a theoretical/computational problem, called Spliced Alignment
Problem, that models the gene prediction task as a combinatorial optimization
problem involving (substrings of) a subject sequence (genomic DNA) and a tar-
get sequence (cDNA).

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 129–138, 2014.
c© Springer International Publishing Switzerland 2014

130 R.B. Mazaro, L.I.S. de Lima, and S.S. Adi

In this work we propose an approximation algorithm for a variant of the
Spliced Alignment Problem, called Multiple Spliced Alignment Problem, where
more than one target sequence is involved. This problem was proved to be NP-
complete by Kishi and Adi in [5], where they also proposed some heuristics for
it. To the best of our knowledge, there are no approximation algorithms for the
Multiple Spliced Alignment Problem in the literature, and it is exactly this gap
that the present work wants to narrow.

This paper is organized as follows. In the next section we introduce the Spliced
and Multiple Spliced Alignment Problem, and relate both with the gene predic-
tion task. A 3−approximation algorithm for the Multiple Spliced Alignment
Problem, that constitutes the main result of this work, is shown in Section 3.
In Section 4 we give the details about the experimental results obtained by our
approach over real-world instances of the gene prediction task. Finally, in the
last section we summarize this work and consider future research directions.

2 The Multiple Spliced Alignment Problem

Among the several regions that comprise a genomic DNA, the protein coding
regions, or genes, are of main interest for biologists. In eukaryotes, these regions
are separated by long stretches of intergenic DNA and their coding fragments,
called exons, are interrupted by non-coding ones, called introns. Given a ge-
nomic DNA, the gene prediction task consists in finding the correct exon-intron
structure of its genes. In computational terms, this task has as input a genomic
DNA sequence g and as output the start and end positions of each exon that
constitutes the genes of g.

Given the undeniable practical importance of the gene prediction task, since
1980 many different methods have been proposed to address it. These methods
can be roughly classified into extrinsic methods, that make use of information
concerning fully annotated transcript sequences related to the target gene, and
intrinsic methods, that rely basically on statistical information about the gene
being searched for (see [7, 8] for surveys on this topic).

Among the different extrinsic approaches suggested for the gene prediction
task, the one proposed by Gelfand et al. in [3] is of particular interest to the string
processing field since it lies on a combinatorial optimization problem involving
sequences, namely the Spliced Alignment Problem. To a better understanding of
this problem consider the following definitions.

Let s = s1s2 . . . sn be a finite string over an alphabet Σ. We denote the length
of s by |s|. A substring b = si . . . sj of s is an ordered sequence of consecutive
symbols of s. We denote by first(b) = i the position of the first symbol of
b in s and by last(b) = j the position of the last symbol of b in s. Let B =
{b1, b2, . . . , bk} be a set of k substrings of s. We say that B is an ordered set
of substrings if: 1) first(bi) < first(bi+1) or 2) first(bi) = first(bi+1) and
last(bi) < last(bi+1), for 1 ≤ i ≤ k−1. We also say that a substring b′ = so . . . sp
of s overlaps another substring b′′ = sq . . . sr of s if q ≤ o ≤ r, or q ≤ p ≤ r, or
o ≤ q ≤ p, or o ≤ r ≤ p. Moreover, we say that a substring b′ = so . . . sp of s

A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem 131

precedes another substring b′′ = sq . . . sr of s if p < q, and we denote this relation
by b′ ≺ b′′. A subset Γ = {bi, bj , . . . , bp} of B is a chain if bi ≺ bj ≺ ... ≺ bp
and we denote the string resulting of the concatenation of the elements of a
chain Γ by Γ •. That is, Γ • = bi • bj • . . .• bp, where • is the string concatenation
operator. Finally, given two strings s and t, we denote by simω(s, t) the similarity
(or the score of an optimal alignment) between s and t under a scoring function
ω : Σ ×Σ → R [9].

With the previous definitions in mind, the SAP is defined as follows [3]:

Spliced Alignment Problem (SAP): Given a subject sequence g, a target
sequence t and an ordered set of substrings B = {b1, b2, ..., bk} of g, find a
chain Γ of B such that simω(Γ

•, t) is maximum among all chains of B.

An instance of the SAP and its solution can be seen in Figure 1.

AA

b1︷ ︸︸ ︷
CCCACATTCCCCTC

b2︷ ︸︸ ︷
TCCATTTTAAT

b3︷ ︸︸ ︷
TTTAA

b4︷ ︸︸ ︷
CCTGTGCCC

b5︷ ︸︸ ︷
CTTCAAGTg

CCCACATT-CCCCTGTCTTCAAG

-CCACATTTCCCCTGTCTTCCAG
||||||| |||||||||||.||

Γ•

t

B

Fig. 1. An instance of the SAP and its solution. The symbols of g that compose each
substring b ∈ B are disposed below its corresponding horizontal brace. The scoring
function used in this instance is ω(a, b) = {1, if a = b;−1, if a �= b;−2 if a = − or b =
−} and its solution is Γ = {b1, b4, b5}. Figure adapted from [5].

Looking at the SAP in the context of the gene prediction task, g could be
interpreted as a (fragment of a) genomic sequence encoding a gene of interest, t
as a transcript sequence related to this gene and B = {b1, b2, ..., bk} as a set of
potential exons of g. With these relations in mind, and given the fact that the
coding regions of a gene are less susceptible to mutations than the non-coding
ones, it is very likely that a solution for the SAP will include the exons of the
gene being searched for.

In [3], Gelfand et al. propose a polynomial time dynamic programming algo-
rithm for the SAP. To understand the main recurrence of this algorithm, consider
the following definitions taken from [3]. Let bk = gl . . . gi . . . gm be a substring
of g containing a position i. The i-prefix of bk is defined as bk(i) = gl . . . gi.
Let Γ = {b1, b2, . . . , bk, . . . , bt} be a chain such that some substring bk contains
position i and let Γ •(i) = b1 • b2 • . . . • bk(i). The algorithm presented in [3]
efficiently calculates a three-dimensional matrix S such that

132 R.B. Mazaro, L.I.S. de Lima, and S.S. Adi

S[i][j][k] = max
all chains Γ containing substring bk

simω(Γ
•(i), t[1..j]).

After computing S, the value of the optimal solution can be found as

max
1≤k′≤k

S[last(bk′)][|t|][k′].

Finally, it is possible to build the optimal solution itself considering the choices
the algorithm made to compute its value. Using the dynamic programming tech-
nique, this algorithm for the SAP runs in time O(mnc+mk2) and space O(mnc),
with m = |t|, n = |g|, k = |B| and c = 1

n

∑
bi∈B |bi|.

As we can see, the SAP was originally proposed as a maximization problem.
However, we can address it as a minimization problem as well. For this matter,
we need to make use of the concept of distance between two strings, instead
of similarity. To calculate the distance between two strings, we assign costs to
the basic edit operations (insertion, deletion and substitution) and find the least
costly series of such operations that transforms one string into the other.

The similarity, as being by definition the score of an optimal alignment, usually
assumes a scoring function that rewards matches and penalizes mismatches and
spaces in an alignment. The distance measure, on the other hand, requires a
specific class of scoring functions, namely metrics. If ω : Σ×Σ → R is a metric,
then the following three properties hold:

1. ω(x, x) = 0 for all x ∈ Σ and ω(x, y) > 0 for x �= y;
2. ω(x, y) = ω(y, x) for all x, y ∈ Σ;
3. ω(x, y) ≤ ω(x, z) + ω(z, y) for all x, y, z ∈ Σ.

In summary, the first property assures that the costs of the basic edit oper-
ations are positive. The second property establishes that ω is symmetric. The
last and most important property is called triangle inequality. It assures that the
cost of transforming a symbol x into another symbol y is not greater than the
cost of transforming x into z and then z into y. This property can be extended
to sequences as a whole.

Given a metric ω and two sequences s and t, we denote by distω(s, t) the
cost, regarding ω, of the least expensive series of edit operations that transforms
s into t. We can now reformulate the SAP as follows, noticing that we will refer
to this version from now on:

Spliced Alignment Problem (SAP): Given a subject sequence g, a target
sequence t, an ordered set of substrings B = {b1, b2, ..., bk} of g and a metric
ω, find a chain Γ of B such that distω(Γ

•, t) is minimum among all chains
of B.

Kishi and Adi started exploring in [5] a variant of the SAP called Multiple
Spliced Alignment Problem. In this variant, instead of only one target sequence
t, we have a set of target sequences T = {t1, t2, ..., tu} and the objective is
to find a chain Γ of B such that

∑u
i=1 distω(Γ

•, ti) is minimum among all

A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem 133

chains of B. Back to the gene prediction task, the Multiple Spliced Alignment
Problem is also of practical interest since now the prediction is obtained by
taking more evidences into consideration, which tends to give better practical
results. A formal definition of the Multiple Spliced Alignment Problem can be
found below:

Multiple Spliced Alignment Problem (MSAP): Given a subject sequence
g, a set of target sequences T = {t1, t2, ..., tu}, an ordered set of substrings
B = {b1, b2, ..., bk} of g and a metric ω, find a chain Γ of B such that∑u

i=1 distω(Γ
•, ti) is minimum among all chains of B.

An instance of the MSAP and its solution can be seen in Figure 2.

GA

b1︷ ︸︸ ︷
ACTCGACCTC

b2︷ ︸︸ ︷
AGGTTATC

b3︷ ︸︸ ︷
TGCCTGCCTCGGCCT

b4︷ ︸︸ ︷
CCCAAAGT

b5︷ ︸︸ ︷
GCTGg

ACTCGACCTTGCCTGCCTCGCTG

ACTCGACCTTGCCTGCCTCGCTG ACTCGACCTTGCCTGCC-TCGCTG

ACTCGACCT-TGCCTGCCTCGCTG ACTCGACCTTGCCTGCCTCGCTG

A-TCGACCTTGC--GCCTCGCTG ---CGACCTTGCCTGCCGTCG-TG

ACT---CCTGTGCCTG-CTCTCTG ACTCGACCTTGCCTGCCTCGCTG

|d||||||||||dd||||||||| ddd||||||||||||||i|||d||

|||ddd|||i||||||d|||s||| |||||||||||||||||||||||

Γ•

Γ•

Γ•

Γ•

Γ•

t1 t2

t3 t4

B

Fig. 2. An instance of the MSAP and its solution. The symbols of g that compose
each substring b ∈ B are disposed below its corresponding horizontal brace and the
set T is composed by the sequences t1, t2, t3 and t4. The metric used in this instance
is the Levenshtein distance, where d indicates a delete operation, i indicates an insert
operation and s indicates a substitution operation. The solution of this instance is
Γ = {b1, b3, b5}. Figure adapted from [5].

The MSAP was proved to be NP-complete even for binary sequences by Kishi
and Adi in [5]. As a direct result of this fact, two approaches come to mind to
deal with such hard problem: heuristics and approximation algorithms. As some
heuristics for the MSAP were already developed in [5,6], we present in this work
an approximation algorithm for it that deals in a satisfactory way with both
theoretical and practical aspects of the problem.

3 A 3-Approximation Algorithm for the MSAP

The approximation algorithm developed in this work is a natural extension of
the solution proposed by Gelfand et al. in [3] for the Spliced Alignment Problem.

134 R.B. Mazaro, L.I.S. de Lima, and S.S. Adi

It consists in finding u solutions for the SAP, one for each target sequence ti, for
1 ≤ i ≤ u, and choosing as final solution for the MSAP that chain less distant
to all sequences in T .

Algorithm 1, called MSAP-3-app, details the idea of our approximation. In
this algorithm, Γi is a chain of B returned by Gelfand’s algorithm taking ti as
target sequence, and Γ corresponds to a Γi such that

∑u
j=1 distω(Γ

•
i , tj) is

minimum among all Γi, for 1 ≤ i ≤ u.

Algorithm 1. MSAP-3-app(g, T , B, ω)
Require: Subject sequence g, a set of target sequences T = {t1, t2, ..., tu}, a set B =

{b1, b2, ..., bk} of ordered substrings of g and a metric ω.
Ensure: A chain Γ of B.
1. Γ ← ∅;
2. lower ← +∞;
3. for i ← 1 until u do
4. Γi ← Gelfand(g, ti,B, ω); //a call to Gelfand’s algorithm
5. sum ← 0;
6. for j ← 1 until u do
7. sum ← sum+ distω(Γ

•
i , tj);

8. end for
9. if sum < lower then
10. lower ← sum;
11. Γ ← Γi;
12. end if
13. end for
14. return Γ ;

As obtaining a solution for SAP by Gelfand’s algorithm (line 4 of Algorithm
1) and calculating the distance between two sequences under some metric ω (line
7 of Algorithm 1) are known tasks that can be done in polynomial time, it is easy
to see that Algorithm 1 also has polynomial time complexity. More specifically,
algorithm MSAP-3-app runs in time O(um(nc + k2 + un)), with u, n, c and k
as previously defined, and m = max1≤j≤u{|tj|}.

Now, we will show that Algorithm 1 is a 3−approximation for the MSAP. To
this end, let Γ ∗ be an optimal solution for an instance I = (g, T ,B, ω) of the
problem, i.e.

∑u
i=1 distω(Γ

∗•, ti) = opt is minimum, and consider the following
lemma:

Lemma 1.
∑u

i=1 distω(Γ
•
i , ti) ≤

∑u
i=1 distω(Γ

∗•, ti)

Proof. Suppose, by contradiction, that
∑u

i=1 distω(Γ
•
i , ti)>

∑u
i=1 distω(Γ

∗•, ti).
Then, there is some i such that distω(Γ

•
i , ti) > distω(Γ

∗•, ti). But this fact con-
tradicts our hypothesis that distω(Γ

•
i , ti) is minimum as assured by Gelfand’s

algorithm. �
The relation between the value of a solution Γ computed by our algorithm,

equals to
∑u

i=1 distω(Γ
•, ti), and the value of an optimal solution Γ ∗ for MSAP,

equals to
∑u

i=1 distω(Γ
∗•, ti), is given by Theorem 1.

A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem 135

Theorem 1. MSAP-3-app is a 3-approximation for MSAP.

Proof. Firstly, consider the following inequality, that can be verified by the def-
initions of Γ and Γi:

u∑
j=1

u∑
i=1

distω(Γ
•, ti) ≤

u∑
j=1

u∑
i=1

distω(Γ
•
j , ti) (1)

Given the triangular inequality property of ω, we have that distω(Γ
•
j , ti) ≤

distω(Γ
•
j , Γ

∗•) + distω(Γ
∗•, ti). Replacing the right side of Inequation 1 with

this inequality, we get:

u∑
j=1

u∑
i=1

distω(Γ
•, ti) ≤

u∑
j=1

u∑
i=1

(distω(Γ
•
j , Γ

∗•) + distω(Γ
∗•, ti))

u

u∑
i=1

distω(Γ
•, ti) ≤ u

u∑
j=1

distω(Γ
•
j , Γ

∗•) + u

u∑
i=1

distω(Γ
∗•, ti) (2)

Replacing j by i in Inequation 2, dividing its both sides by u, and making use
of the equality

∑u
i=1 distω(Γ

∗•, ti) = opt, we get:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , Γ

∗•) + opt (3)

Using again the triangular inequality property of ω, we have that distω
(Γ •

i , Γ
∗•) ≤ distω(Γ

•
i , ti) + distω(ti, Γ

∗•). So, we can expand the term∑u
i=1 distω(Γ

•
i , Γ

∗•) in Inequation 3 as shown below:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , ti) +

u∑
i=1

distω(ti, Γ
∗•) + opt

Now the equality
∑u

i=1 distω(Γ
∗•, ti) = opt can be applied again:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
•
i , ti) + opt+ opt (4)

By Lemma 1, we can replace
∑u

i=1 distω(Γ
•
i , ti) by

∑u
i=1 distω(Γ

∗•, ti) in
Inequation 4:

u∑
i=1

distω(Γ
•, ti) ≤

u∑
i=1

distω(Γ
∗•, ti) + opt+ opt

Finally, applying again the equality
∑u

i=1 distω(Γ
∗•, ti) = opt, we get:

u∑
i=1

distω(Γ
•, ti) ≤ 3 ∗ opt (5)

Therefore, the value of the solution computed by algorithm MSAP-3-app is
no worse than 3 times the value of an optimal solution for the MSAP.

�

136 R.B. Mazaro, L.I.S. de Lima, and S.S. Adi

4 Experimental Results

In order to assess the practical accuracy of our approximation, algorithmMSAP-
3-app was implemented in ANSI C++ and tested on real-world instances of
the gene prediction task.

The benchmark taken to evaluate our program was the same one used by
Kishi and Adi in [5], so we could compare our approach with the heuristics
proposed by them. This benchmark consists of 240 fragment sequences of human
DNA, obtained from the chromosomes analyzed by the ENCODE project [10].
All these fragments include only one gene and the corresponding targets were
obtained by a search in the HomoloGene [11] database for cDNAs sequences
evolutionarily related to the genes being searched for. Finally, the ordered set of
substrings for each instance was obtained by means of a HMM-based algorithm
implemented by a gene prediction tool called GenScan [1].

To assess the accuracy of the programs, we made use of the following measures,
introduced by Burset and Guigó in [2] and commonly used in the evaluation of
gene prediction tools:

(1) Specificity at the nucleotide level (Spn = TP
TP+FP): proportion of nucleotides

predicted as coding that are really coding;
(2) Sensitivity at the nucleotide level (Snn = TP

TP+FN): proportion of really
coding nucleotides correctly predicted as coding;

(3) Specificity at the exon level (Spe = NCE
NPE): proportion of predicted exons

that match an annotated exon;
(4) Sensitivity at the exon level (Sne = NCE

NAE): proportion of annotated exons
that were correctly predicted.

The approximate correlation, AC, defined as

AC =
1

2
(

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN
)− 1

has been introduced to summarize sensitivity and specificity in a single measure.
At the exon level, the average Ave = (Spe + Sne)/2 is used instead.

In the previous definitions, TP (true positives) is the number of really cod-
ing nucleotides correctly predicted as coding, TN (true negatives) represents
the number of really non-coding nucleotides correctly predicted as non-coding,
FP (false positives) is the number of really non-coding nucleotides incorrectly
predicted as coding and FN (false negatives) is the number of really coding
nucleotides incorrectly predicted as non-coding. On the level of complete exons,
NCE is defined as the number of correctly predicted exons, NPE as the number
of predicted exons and NAE as the number of annotated exons. Here, a predict
exon is considered as correctly predicted when its start and end positions match
the start and end positions of an annotated exon of the input sequence.

Table 1 summarizes the results obtained by our approach and by the heuristics
proposed in [5, 6] on the detailed benchmark. In this table, each column stores
the average values of Sn, Sp, AC and Ave.

A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem 137

Table 1. Results obtained on 240 real-world instances of the gene prediction task

Approach Nucleotide Exon

Snn Spn AC Sne Spe Ave

MSAP-3-app 0.95 0.96 0.95 0.85 0.81 0.83

Heuristic H1 0.96 0.96 0.95 0.86 0.81 0.83

Heuristic H2 0.96 0.91 0.93 0.83 0.73 0.78

Heuristic H3 0.93 0.96 0.94 0.86 0.84 0.85

Heuristic H4 0.77 0.80 0.77 0.54 0.51 0.53

The values in Table 1 show that our approach presented a good level of sensi-
tivity and specificity on both nucleotide and exon levels. From all the nucleotides
predicted as coding by our approximation, 96% are in fact coding. Furthermore,
our approach correctly identified 95% of the coding nucleotides. At the exon
level, 81% of the predicted exons match an annotated exon, and 85% of the
annotated exons were correctly identified by our program.

Obviously, the accuracy of our approach in identifying the correct exon-intron
structure of a gene is strongly dependent on the input set B. If this set includes
all the annotated exons of the target gene, it is very likely that all of them will
be included in the chain returned by our approximation. From a total of 1677
annotated exons, 1550 were included in the sets of candidate exons and only 67
of them were missed by our approach. On the other hand, if an annotated exon
is not included in the input set B, it will be missed by our approach. From a
total of 1677 annotated exons, 127 were missed by our approach since they could
not be found in B.

In comparison with the four heuristics developed so far for the MSAP, our 3-
approximation algorithm achieved results comparable to all of them. It outper-
formed heuristic H4 in all measures, and performed very close to the other three
heuristics. At the nucleotide level, for example, our approximationwas slightly less
sensitive than heuristics H1 and H2, but its value of specificity compares with that
obtained by H1 and H3. In summary, looking at the AC column, our algorithm
and Heuristic H1 were the approaches with the best values. At the exon level,
our approximation outperformed H2, achieved results comparable to H1 and was
overwhelmed only by H3. Anyway, in this last case, H3 outperformed our approach
with only 1% and 3% of improvement in sensitivity and specificity, respectively.

5 Discussion

In this work we presented a 3-approximation algorithm for the Multiple Spliced
Alignment Problem, a combinatorial optimization problem directly related with
to gene prediction task. We also compared our approach with 4 previously pro-
posed heuristics for the MSAP, achieving results comparable to the best one.
This fact is very encouraging since it shows that our approach can perform as
good as previously proposed heuristics for the MSAP when applied to the gene
prediction task, beside ensuring its results are not worse than 3 times the optimal
solution, no matter which instance is considered.

138 R.B. Mazaro, L.I.S. de Lima, and S.S. Adi

In a more detailed observation, and taking into account the measures AC and
Ave that summarize the experimental results at the nucleotide and exon levels
respectively, our algorithm showed the same accuracy of Heuristic H1, being the
best on nucleotide level and the second best in exon level. As Heuristic H1 is
based on the idea of choosing a central sequence of T , applying it to obtain a SAP
solution with Gelfand’s algorithm and extending it to the MSAP in question,
it becomes clear that both approaches share similar aspects and therefore such
close results are expected.

In further studies, we intend to handle the MSAP by proposing a linear pro-
gramming model in order to attack it from a third perspective. We already have
a preliminary integer linear programming formulation, and experimental tests
with it are in course.

References

1. Burge, C., Karlin, S.: Prediction of Complete Gene Structures in Human Genomic
DNA. Journal of Molecular Biology 268(1), 78–94 (1997)

2. Burset, M., Guigo, R.: Evaluation of Gene Structure Prediction Programs.
Genomics 34(298), 353–367 (1996)

3. Gelfand, M.S., Mironov, A.A., Pevzner, P.A.: Gene Recognition Via Spliced Se-
quence Alignment. Proceedings of the National Academy of Sciences of the United
States of America 93, 9061–9066 (1996)

4. Hogeweg, P.: The Roots of Bioinformatics in Theoretical Biology. PLoS Computa-
tional Biology 7(3), 1–5 (2011)

5. Kishi, R.M., dos Santos, R.F., Adi, S.S.: Gene Prediction by Multiple Spliced
Alignment. In: Norberto de Souza, O., Telles, G.P., Palakal, M. (eds.) BSB 2011.
LNCS, vol. 6832, pp. 26–33. Springer, Heidelberg (2011)

6. Kishi, R.M., dos Santos, R.F., Montera, L., Adi, S.S.: A Similarity-based Genetic
Algorithm for the Gene Prediction Problem. In: BSB & EBB Digital Proceedings,
Campo Grande, pp. 84–89 (2012)

7. Majoros, W.H.: Methods for Computational Gene Prediction, 1st edn. Cambridge
University Press (2007)

8. Mathé, C., Sagot, M.-F., Schiex, T., Rouzé, P.: Current Methods of Gene Predic-
tion, Their Strengths and Weaknesses. Nucleic Acids Research 30(19), 4103–4117
(2002)

9. Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for
Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular
Biology 48, 443–453 (1970)

10. TheENCODEProjectConsortium:TheENCODE(EncyclopediaofDNAElements)
Project. Science 306(5696), 636–640 (2004)

11. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K.,
Chetvernin, V., Church, D.M., DiCuccio, M., Federhen, S., Feolo, M., Fingerman,
I.M., Geer, L.Y., Helmberg, W., Kapustin, Y., Krasnov, S., Landsman, D., Lipman,
D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-Bauer, A., Miller,
V., Karsch-Mizrachi, I., Ostell, J., Panchenko, A., Phan, L., Pruitt, K.D., Schuler,
G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Slotta, D., Souvorov,
A., Starchenko, G., Tatusova, T.A.,Wagner, L.,Wang, Y.,Wilbur,W.J., Yaschenko,
E., Ye, J.: Database resources of the National Center for Biotechnology Information.
Nucleic Acids Research 40 (D1), D13–D25 (2012)

Improved Filters for the Approximate

Suffix-Prefix Overlap Problem

Gregory Kucherov12 and Dekel Tsur2

1 CNRS/LIGM, Université Paris-Est Marne-la-Vallée, France
2 Department of Computer Science, Ben-Gurion University of the Negev, Israel

Abstract. Computing suffix-prefix overlaps for a large collection of
strings is a fundamental building block for the analysis of genomic next-
generation sequencing data. The approximate suffix-prefix overlap prob-
lem is to find all pairs of strings from a given set such that a prefix of
one string is similar to a suffix of the other. Välimäki et al. (Information
and Computation, 2012) gave a solution to this problem based on suf-
fix filters. In this work, we propose two improvements to the method of
Välimäki et al. that reduce the running time of the computation.

1 Introduction

Genomic sequences are deciphered by reading short overlapping fragments. Mod-
ern next-generation sequencing technologies, can produce, in a single run, tens
or hundreds of millions of such fragments, called reads, each of the order of a
hundred of letters. Dealing with these gigabytes of sequence data raises a number
of algorithmic challenges.

A basic operation on a collection of genomic reads is the computation of over-
laps: we need to be able to quickly retrieve reads which have a significant overlap
with a given read. This operation is a prerequisite for many algorithms dealing
with reads, and most prominently for genome assembly algorithms which follow
the so-called overlap-layout-consensus paradigm [6]. These algorithms are based
on overlap graphs (also called string graphs or assembly graphs) that represent
all significant overlaps between reads. A recent example is provided by SGA
assembler [12]. Earlier, this approach was taken by several “first-generation”
methods of genome assembly, such as Celera assembler [8] used to assemble one
of the first versions of the human genome.

The goal of this work is to propose an efficient way of computing significant
approximate suffix-prefix overlaps of a set of strings. Previously, several solu-
tions have been proposed to compute all exact suffix-prefix overlaps [2, 11, 12].
However, in practice, we are interested in the approximate case when strings can
overlap within a certain number of errors.

Most practical methods for computing approximate string similarities are
based on the filtering approach, when the search is done in two steps: at the
first step, candidate regions are identified that potentially correspond to sought
matches, and at the second step, those candidates are checked to actually verify

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 139–148, 2014.
c© Springer International Publishing Switzerland 2014

140 G. Kucherov and D. Tsur

the desired matching condition. Filtering algorithms usually do not yield inter-
esting theoretical time bounds but are often very efficient in practice. As an
example, spaced seeds [1, 7] constitute one of the filtering techniques that has
been successfully used for DNA sequence comparison, e.g. [7, 10].

To compute approximate suffix-prefix overlap, the above-mentioned SGA as-
sembler [12] uses a basic substring filtering. Välimäki et al. [13] proposed to
apply a modified version of suffix filters earlier proposed by Kärkkäinen and
Na [3]. Suffix filter provide a more selective filtering criterion and therefore a
more efficient algorithm.

In this paper, we show how the method of [13] can be further improved. We
propose two improvements that reduce the search space and therefore the run-
ning time of the algorithm: a new family of suffix filters and a new partitioning
scheme. We report on estimations on random datasets that support the superi-
ority of our schemes.

Throughout the paper, we present our method for the Hamming distance
between strings, although it can be generalized to the edit distance, similar
to [3, 13]. This, however, would entail additional technical details and a more
involved presentation that we wanted to avoid.

2 Preliminaries

2.1 Notation

For a sequence of integers A, let PrefixSum(A) be a sequence of integers of the

same length as A in which PrefixSum(A)[i] =
∑i

j=1 A[j]. For two sequences of
integers A and B of the same length, we define A ≤ B iff A[i] ≤ B[i] for all i.

The Hamming distance between strings A and B of the same length, denoted
Ham(A,B), is the number of indices i for which A[i] �= B[i]. If Ham(A,B) ≤ k,
we say that A and B k-match.

Let A be a string that has a partition A = A1A2 · · ·Ak into k disjoint parts.
Let B be a string with the same length as A. The partition of A induces a
partition B = B1B2 · · ·Bk of B in which |Bi| = |Ai| for all i. The partition
distance between A and B, denoted pd(A,B), is a sequence of integers of length
k in which pd(A,B)[i] = Ham(Ai, Bi). The accumulated partition distance be-
tween A and B, denoted apd(A,B), is the sequence PrefixSum(pd(A,B)). That
is, apd(A,B)[i] is the total number of mismatches between the first i parts of A
and B.

2.2 Suffix Filters

For the problem of approximate pattern matching with q errors, the most basic
filtering method, called PEX in [9], consists in splitting the pattern into k = q+1
parts and searching for those parts independently. Once one of the parts is found, it
provides a candidate location for the whole pattern. Kärkkäinen and Na [3] pro-
posed an interesting extension of this principle called suffix filters. Suffix filters

Improved Filters for the Approximate Suffix-Prefix Overlap Problem 141

have been shown to generate many fewer candidates than substring filters, and
therefore to be much more efficient. Since the present work builds on this idea, we
briefly explain it here.

We still split pattern P into k = q + 1 parts P = P1P2 · · ·Pk, but instead
of searching for substrings Pi, we will be searching for suffixes PiPi+1 · · ·Pk for
i = 1, . . . , k allowing errors distributed according to a specific pattern

filterk,i = 01 · · · (k − i).

Thismeans that for every i,we are searching for stringsB such thatapd(Pi · · ·Pk, B)
≤ filterk,i. The key observation of [3] is that this scheme detects all possible occur-
rences of P within q errors.

For example, let q = 2, namely, we want to find the substrings of the text
that 2-match to P = P1P2P3. All such substrings are detected using three filters,
denoted by sequences 012, 01, and 0. Filter 012 detects substrings B such that
apd(P1P2P3, B) ≤ 012. That is, B = B1B2B3, such that |Bi| = |Pi| for all
i, B1 = P1, Ham(B2, P2) ≤ 1, and Ham(B2B3, P2P3) ≤ 2. By a slight abuse of
language, the set of all such strings B will be said to be enumerated by the filter.
Similarly, filter 01 detects substrings B = B2B3 such that B2 = P2 and B3 is
within one error from P3. Each such string is a suffix of a candidate approximate
occurrence of P . Finally, filter 0 detects substrings B3 with B3 = P3, which
provides again a suffix of a candidate occurrence of P .

Observe that there are 9 cases for the partition distance between P and B —
011, 101, 110, 002, 020, 200, 100, 010, and 001 — which are all covered by suffix
filters 012, 01 and 0. Indeed, filter 012 covers cases 011, 002, 010, and 001, filter
01 covers cases 101, 200 and 100, and filter 0 covers cases 020 and 110.

The set of strings enumerated by a filter can be naturally represented by a
trie (see Figure 1), where branching nodes correspond to positions where the
filter allows a possible mismatch to occur. The number of nodes in the tries of
all the filters is a crucial parameter for the efficiency of a filtering scheme.

2.3 Suffix Filters and Full-Text Indexes

One of the advantages of suffix filters (as opposed e.g. to spaced seeds) is that
they can be naturally implemented using full-text indexes that support incre-
mental string matching. Those indexes include classical indexes such as suffix
trees, but also succinct indexes such as FM-index and its variants [14]. These
indexes allow reading a pattern left-to-right1 and quickly updating the index
point after each letter, so that all occurrences of the prefix read so far can be
retrieved efficiently.

Implementing suffix filters on a full-text index can be done simply by enumer-
ating all “approximate suffixes” of the pattern detected by a filter, and reporting
the occurrences of all these strings in the text, thus generating the candidate set.

1 For some indexes, such as FM-index, matching is performed right-to-left, in which
case we can just assume that the indexed sequences are reversed. On the other hand,
FM-index can also be modified to perform matching left-to-right, see [5].

142 G. Kucherov and D. Tsur

0

0

0

1

1

0 1 0 1

0

0

1

0 1

1 0

0 0 1

1 0

0

1

(a) 012

0

1

1

0
1

0

0

(b) 01

1

0

(c) 0

Fig. 1. The tries of the filters 012, 01, and 0 applied on the pattern P = 000110,
for binary alphabet and q = 2 errors. The pattern P is partitioned into 3 parts P =
P1P2P3 where P1 = 00, P2 = 01, and P3 = 10. The filter 012 enumerates the strings
corresponding to the leaves of the tries in Figure (a), namely 000110, 000111, . . . ,
001100. The filter 01 enumerates the strings 0110, 0111, and 0100, and the filter 0
enumerates the string 10.

More precisely, for each of the tries that correspond to the filters, the algorithm
traverses the trie in depth-first search order, and updates the index point after
each descend in the trie. When reaching a node in the trie whose corresponding
string does not appear in the index, the search does not continue to the descen-
dants of this node in the trie. When reaching a leaf of the trie, all occurrences of
the string corresponding to the leaf are retrieved from the index, and are added
to the set of candidates.

2.4 Suffix Filters Applied to Suffix-Prefix Overlap Problem

Given a set S of strings, the approximate suffix-prefix overlap problem is to
compute all significant approximate overlaps between pairs of strings of S. “Sig-
nificance” is defined by a lower threshold lmin on the overlap size. Since the
overlap size is variable, imposing a fixed number of errors is not reasonable, and
a relative error rate is specified instead. Formally, given an integer lmin, and
ε > 0, we have to find all pairs of strings S, S′ ∈ S such that there is an integer
l ≥ lmin for which the prefix of S of length l and the suffix of S′ of length l
�εl�-match.

In this Section, we explain how suffix filters can be used to solve the ap-
proximate suffix-prefix overlap problem. We proceed by enumerating all strings
S ∈ S. For each S ∈ S and for each l ≥ lmin, we want to identify all strings
S′ ∈ S whose suffix of length l �εl�-match the prefix S[1..l]. We want to do it
by applying suffix filters designed for patterns of length l and �εl� mismatches.
If such a filter applies, then a candidate overlap is generated, which is a triplet
(S, S′, l). At the verification stage, the actual Hamming distance between the
prefix of S of length l and the suffix of S′ of length l is computed, and the
overlap is reported if this distance is no more than �εl�.

Let us now explain how the filtering algorithm works with the filters of Sec-
tion 2.2. Fix S and a partition S = S1S2 · · · of S into disjoint parts. Fix l ≥ lmin

Improved Filters for the Approximate Suffix-Prefix Overlap Problem 143

and let P = S[1..l]. The partition of S induces a partition P = P1 · · ·Pk of P ,
where Pi = Si for i < k and Pk is a prefix of Sk. Suppose that the partition of
S was chosen a way to ensure that k ≥ �εl�+ 1. This allows us to apply suffix
filters of Section 2.2.

Consider the above filters filterk,1, . . . , filterk,k, where filterk,i = 01 · · · (k − i).
Each filter filterk,i enumerates all strings B such that apd(Pi · · ·Pk, B) ≤ F ,
and B appears as a substring of some string in S. For each such string B, the
algorithm further selects all the strings S′ ∈ S that end with B and adds the
triplets (S, S′, l) to the list of candidates.

The main difficulty in applying suffix filters to the approximate suffix-prefix
overlap problem is that the length l and, consequently, the number of errors are
not fixed. Once the partition of S is defined, our goal is to deal with all values
of l in one left-to-right traversal of S. For each l ≥ lmin, we should be able to
efficiently identify appropriate filters that apply to the corresponding partition
of S[1..l]. We now describe how it is done for the filters of Section 2.2.

A key point here is that the enumeration processes for different values of l
are connected. Let kl denote the number of parts in the partition of S[1..l] that
is induced by the partition of S. Let BS,i,l be the set of strings enumerated
by the filter filterkl,i when it is applied to S[1..l]. That is, BS,i,l are the strings
enumerated by filterkl,i when considering the filtering scheme for the fixed value
of l. Let trieS,i be the trie representing the set BS,i,|S|. We have the following
property: For every l, where lmin ≤ l < |S|, and every i ≤ kl, the prefix of
filterk|S|,i of length kl + 1 − i is equal to filterkl,i. It follows that the set BS,i,l

is equal to the set of strings that correspond to the nodes of trieS,i at depth
l − ∑

j<i |Sj |. Therefore, generation of candidates can be done for all values
of l by the following algorithm. For i = 1, 2, . . . , kS , traverse trieS,i. When the
traversal is at a node that corresponds to a string B, if B ∈ BS,i,l for some
l ≥ lmin, find all the strings S′ ∈ S that ends with B, and for each such S′ add
the triplet (S, S′, |B|+∑

j<i |Sj |) to the list of candidates.
Checking whether B ∈ BS,i,l is done with the following candidate generation

condition.

Condition 1. B ∈ BS,i,l if and only if

|B|+
∑
j<i

|Sj | ≥ lmin (C1)

2.5 The Filtering Scheme of Välimäki et al. [13]

Välimäki et al. [13] observed that the filtering procedure of Section 2.4 is very
inefficient. The inefficiency is caused by the filters filterk,k = 0 that has to be
applied, during the search, to short strings including those consisting of a single
letter. Formally, when traversing the trie trieS,i, a node of the trie at depth 1,
whose corresponding single-letter string is B = S[1 +

∑
j<i |Sj |], can generate

candidates if Condition (C1) is satisfied. Since B has length 1, there can be
many strings S′ ∈ S that ends with B, generating many spurious candidates.

144 G. Kucherov and D. Tsur

More generally, assuming the strings of S are sampled randomly from an i.i.d.
source, the expected number of candidates generated by a stringB corresponding
to some node in a trie is m/σ|B|, where m is the number of strings in S, and σ is
the size of the alphabet. Therefore, the total number of candidates is dominated
by the number of candidates generated by nodes of small depth.

The solution of Välimäki et al. to this problem is to drop the filters filterk,k
from the filtering scheme. In order to handle the cases of partition distances that
were covered by this filter, filters filterk,1 = 01 · · ·k are modified to filterk,1 =
12 · · · (k + 1). It is shown [13] that with this modification, all combinations of
partition distance are still covered.

Due to the dropping of filters filterk,k, Condition 1 should be modified for the
new filtering scheme. The modified candidate generating condition will now be
as follows.

Condition 2. B ∈ BS,i,l if and only if Condition (C1) is satisfied and

|B| > |Si| (C2)

Clearly, the additional condition (C2) reduces the number of generated candidates.

3 New Filtering Scheme

In the filtering scheme of Välimäki et al., the filters filterk,1 start with 1 whereas
the other filters start with 0. This has the consequence that the number of nodes
in the trie trieS,1 is much larger than the number of nodes in the tries trieS,i for
i > 1. We now present a new filtering scheme without this property. Our filtering
scheme consists of filters filterk,1, . . . , filterk,k−1, where filterk,i is a sequence of
length k − i + 1 whose first k − i elements are 0, 1, . . . , (k − i − 1), and the
last element is k − i − 1. For example, for k = 4 the filters are filter4,1 = 0122,
filter4,2 = 011, and filter4,3 = 00. Our filtering scheme requires a difference of at
least 2 between the number of parts in the partition of S[1..l] and �εl� (recall
that in the scheme of Välimäki et al., the required difference is at least 1). We
show the correctness of this scheme in the following lemma.

Lemma 1. For every k ≥ 2 and every sequence of integers M of length k whose
sum is at most k−2, there is an integer i such that PrefixSum(M [i..k]) ≤ filterk,i.

Proof. The proof is by induction of k. The base of the induction k = 2 is trivial
since in this case M = 00 and therefore PrefixSum(M) ≤ filterk,k−1. Now con-
sider k > 2. Let M be a sequence of length k whose sum is at most k − 2. If
PrefixSum(M) ≤ filterk,1 we are done. Otherwise, there is an index i such that
PrefixSum(M)[i] > filterk,1[i]. Since PrefixSum(M)[i] ≤ k − 2 and filterk,1[j] =
k − 2 for j > k − 2, it follows that i ≤ k − 2. Therefore filterk,1[i] = i − 1 and
PrefixSum(M)[i] ≥ i. LetM ′ = M [i+1..k]. The length ofM ′ is k− i and the sum
ofM ′ is at most k−2−PrefixSum(M)[i] ≤ k−2− i. By the induction hypothesis,
there is an index i′ such that PrefixSum(M ′[i′..k − i]) ≤ filterk−i,i′ . The lemma
follows since M ′[i′..k − i] = M [i+ i′..k] and filterk−i,i′ = filterk,i+i′ . �	

Improved Filters for the Approximate Suffix-Prefix Overlap Problem 145

To illustrate Lemma 1, observe that the three above-mentioned filters filter4,i,
i = 1, 2, 3 cover all possible partition distances for the case of 4 parts and 2
errors. Indeed, filter 0122 cover cases 0020, 0002, 0101 and 0110, filter 011 cover
cases 0011, 1001 and 1010, and finally filter 00 covers cases 2000, 0200 and 1100.

In addition to reducing the number of nodes in the tries, our filtering scheme
also reduces the number of generated candidates. In the filtering scheme of
Välimäki et al., filterk,i is a prefix of filterk′,i for all k < k′ and i. Our filter-
ing scheme does not have this property. Therefore, we need a new condition for
checking whether B ∈ BS,i,l.

Condition 3. B ∈ BS,i,l if and only if conditions (C1) and (C2) are satisfied
and

apd(S′, B) ≤ filterk,i (C3)

where S′ is the prefix of SiSi+1 · · · of length |B| and k is the number of parts in
the partition of S′ induced by the partition of S.

Observe that in the filtering scheme of Välimäki et al., every node of trieS,i with
depth |Si|+1 generated candidates. However, in our new scheme, only the node
whose corresponding string B is equal to S′ generates candidates among the
nodes of depth |Si| + 1 (for every other node, apd(S′, B) = 01 and therefore
Condition (C3) is not satisfied). The same is true for depths |Si|+ 2, . . . , |Si|+
|Si+1|.

Our scheme can be generalized by introducing a parameter s ≥ 2. The filters
for a given value of s are filterk,i = 01 · · · (k − i − s)(k − i − s + 1)s for i =
1, . . . , k − s + 1. This scheme requires a difference of at least s between the
number of parts in the partition of S[1..l] and �εl�.

4 Partition Schemes

The efficiency of the algorithm of the previous section depends on the sizes of the
parts in the partition of S: having larger parts reduces the number of trie nodes
and the number of candidates. For correctness of the algorithm, the partitioning
of a string S must satisfy the following property.

(P1) For every l ≥ lmin, the number of parts in the partition of S[1..l] induced
by the partition of S is at least �εl�+s, where s = 1 for the filtering scheme
of Välimäki et al. and s = 2 for our new scheme (or some fixed value of s
for our extended scheme).

Välimäki et al. used a partition of S into equal sized parts of size p, except for
the last part whose size is at most p. The value of p is chosen to be the maximum
integer for which Property (P1) is satisfied.

We propose a partitioning scheme in which most parts are larger than those of
the equal sized parts partitioning. Since the efficiency of the filtering approach
depends on the sizes of the parts, the new partitioning scheme gives better
performance.

146 G. Kucherov and D. Tsur

Let S be a string to be partitioned. Let l0 < l1 < · · · < lq be all the indices
in the range lmin, . . . , |S| for which �ε(l − 1)� < �εl�, and let lq+1 = |S|+ 1. Let
k = �εl0� + s − 1. We partition S as follows. The sizes of the first k parts are
chosen in order to satisfy the following properties.

1. The total length of the first k parts is l0 − 1.
2. The length of the k-th part is at least l0 − lmin.

We can set for example the length of the k-th part to be L = max(�(l0 −
1)/k�, l0 − lmin), and set the lengths of the first k − 1 parts to be p or p +
1, where p =
(l0 − 1 − L)/(k − 1)�. The lengths of the remaining parts in
the partition are l1 − l0, l2 − l1, . . . , lq+1 − lq. We now show that this partition
satisfies Property (P1). Moreover, the partitioning is optimal in the sense that
the inequalities of Property (P1) are satisfied with equality.

Lemma 2. For every l ≥ lmin, the number of parts in the partition of S[1..l]
induced by the partition of S is �εl�+ s.

Proof. For lmin ≤ l < l0 (assuming l0 > lmin) we have by construction that the
number of parts in the partition of S[1..l] is k = �εl0�+ s− 1. By the definition
of l0, �εl� = �εl0� − 1, so the equality of the lemma is satisfied. Similarly, if
li ≤ l < li+1 then the number of parts in the partition of S[1..l] is k + 1 + i.
Moreover, �εl� = �εl0�+ i. Therefore, the lemma follows. �	

As an example, consider partitioning a string of length 200 with the parame-
ters lmin = 40 and ε = 0.1. If s = 1, the equal sized partition uses parts of size 8.
In our new partitioning scheme, the first 5 parts have size 8, and the remaining
parts have size 10.

5 Experimental Results

In this Section, we compare the performance of 4 filtering schemes:

(1) the filtering scheme of Välimäki et al. [13] using partitioning into equal parts,
(2) the filtering scheme of Välimäki et al. combined with our new partitioning

scheme (Section 4),
(3) our new filtering scheme (Sections 3-4), and
(4) our extended filtering scheme (see end of Section 3), with s = 3.

For our filtering scheme (3), string partitioning is done with our new partition-
ing scheme. The comparisons have been done using the technique described in
Kucherov et al. [4]. In this analysis, we assume that characters of the strings of S
are randomly chosen uniformly and independently from the alphabet. Under this
assumption, we analytically estimate the expected number of nodes in the tries
trieS,i and the expected number of generated candidates, following the method
developed in [4]. The results are summarized in Table 1. Columns 2 to 5 of the
Table correspond to schemes (1) to (4) above, respectively.

Improved Filters for the Approximate Suffix-Prefix Overlap Problem 147

Table 1. Expected performance of the filtering scheme of Välimäki et al. [13] and our
filtering schemes. It is assumed that S contains m random strings of length 300 over
an alphabet of size 4. For each scheme, the first column shows the expected number
of nodes in the tries trieS,i for all i (for a single S ∈ S), and the second column is the
expected number of candidates generated for S.

m lmin ε method of [13] [13] with un-
equal parts

our scheme our scheme ex-
tended for s = 3

106 20 0.1 31257 18950 11782 144 8582 341 20026 95
107 20 0.1 64201 189506 22161 1449 13219 3412 46662 952
106 40 0.1 10416 839 8260 65 6912 28 8868 0.5
107 40 0.1 14391 8391 11138 651 8921 280 12916 4
107 40 0.15 207504 857318 71271 82559 40671 18842 82164 116

Note that for different parameters, the bottleneck of the computation can be
either the size of traversed tries, or the number of generated candidates. In all
cases, we observe a significant decrease of both these measures compared to the
original method of Välimäki et al. [13]. When the threshold lmin is small (in our
experiments, 20 for the sequence length 300), the filters of [13] combined with our
partitioning scheme presents a trade-off with our filtering scheme: our scheme
yields a smaller number of traversed trie nodes but a larger number of generated
candidates. However, when lmin is large enough (in our experiments, 40 for the
sequence length 300), our scheme outperforms the one of Välimäki et al. in both
the number of nodes in the tries and the number of generated candidates. The
extended scheme with s = 3 yields a smaller number of candidates, but at the
cost of increased number of traversed trie nodes.

6 Conclusions

In this paper, we proposed an improved filtering scheme for the approximate
suffix-prefix overlap problem directly raised by bioinformatics applications. Two
improvements are proposed: we provide a more efficient filtering scheme as well
as new way of partitioning the query string. We show, through analytical estima-
tions, the superiority of our scheme in terms of the size of the search space (size
of traversed tries) as well as the selectivity (number of generated candidates).

Several directions for future work can be envisaged.We did not compare the ac-
tual performance of the different filtering schemes on real data. However, previous
work [4] provides strong grounds to assume that the better performance will be
supported by real data too. This, however, remains to be verified experimentally.
Another direction, already mentioned in Introduction, concerns the generaliza-
tion of our results to the case of edit distance. While we don’t expect significant
obstacles in this generalization, it does bring an additional technical difficulty.

Acknowledgements. GK has been supported by the ABS2NGS grant of the
French government (program Investissement d’Avenir) as well as by a EUMarie-
Curie Intra-European Fellowship for Carrier Development. DT has been sup-
ported by ISF grant 981/11.

148 G. Kucherov and D. Tsur

References

1. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. Fundamenta
Informaticae 56(1,2), 51–70 (2003)

2. Gusfield, D., Landau, G., Schieber, B.: An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett. 41(4), 181–185 (1992)

3. Kärkkäinen, J., Na, J.C.: Faster filters for approximate string matching. In: Proc.
9th Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 84–90
(2007)

4. Kucherov, G., Salikhov, K., Tsur, D.: Approximate string matching using a bidi-
rectional index. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM
2014. LNCS, vol. 8486, pp. 222–231. Springer, Heidelberg (2014), Full version at
http://arxiv.org/abs/1310.1440

5. Lam, T.W., Li, R., Tam, A., Wong, S.C.K., Wu, E., Yiu, S.-M.: High through-
put short read alignment via bi-directional BWT. In: Proc. IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 31–36 (2009)

6. Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu,
B., Yang, B., Fan, W.: Comparison of the two major classes of assembly algorithms:
overlap-layout-consensus and de-Bruijn-graph. Brief Funct. Genomics 11(1), 25–37
(2012)

7. Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and more sensitive homology
search. Bioinformatics 18(3), 440–445 (2002)

8. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan,
M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., Anson, E.L.,
Bolanos, R.A., Chou, H.H., Jordan, C.M., Halpern, A.L., Lonardi, S., Beasley,
E.M., Brandon, R.C., Chen, L., Dunn, P.J., Lai, Z., Liang, Y., Nusskern, D.R.,
Zhan, M., Zhang, Q., Zheng, X., Rubin, G.M., Adams, M.D., Venter, J.C.: A
whole-genome assembly of Drosophila. Science 287(5461), 2196–2204 (2000)

9. Navarro, G., Raffinot, M.: Flexible Pattern Matching in Strings – Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press
(2002)

10. Noé, L., Kucherov, G.: YASS: Enhancing the sensitivity of DNA similarity search.
Nucleic Acid Research 33, W540–W543 (2005)

11. Ohlebusch, E., Gog, S.: Efficient algorithms for the all-pairs suffix-prefix problem
and the all-pairs substring-prefix problem. Information Processing Letters 110(3),
123–128 (2010)

12. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Res. 22(3), 549–556 (2012)

13. Välimäki, N., Ladra, S., Mäkinen, V.: Approximate all-pairs suffix/prefix overlaps.
Information and Computation 213, 49–58 (2012)

14. Vyverman, M., De Baets, B., Fack, V., Dawyndt, P.: Prospects and limitations of
full-text index structures in genome analysis. Nucleic Acids Res. 40(15), 6993–7015
(2012)

http://arxiv.org/abs/1310.1440

Sequence Decision Diagrams∗

Hind Alhakami1, Gianfranco Ciardo2, and Marek Chrobak1

1 Dept. of Computer Science and Engineering, University of California, Riverside
2 Dept. of Computer Science, Iowa State University

Abstract. Compact encoding of finite sets of strings is a classic problem.
Themanipulation of large sets requires compact data structures that allow
for efficient set operations.Wedefine sequence decision diagrams (SeqDDs),
which can encode arbitrary finite sets of strings over an alphabet. SeqDDs
can be seen as a variant of classic decision diagrams such as BDDs and
MDDswhere, instead of a fixed number of levels, we simply require that the
number of paths and the lengths of these paths be finite. However, themain
difference between the two is the target application: whileMDDs are suited
to store and manipulate large sets of constant-length tuples, SeqDDs can
store arbitrary finite languages and, as such, should be studied in relation
to finite automata. We do so, examining in particular the size of equivalent
representations.

1 Introduction

Many data structures have been introduced to compactly encode finite sets of
finite strings. Substring indices data structures, such as tries, suffix trees, suffix
arrays, and DAWGs, exploit prefix sharing, suffix sharing, or both to achieve
efficient storage of large sets. Beside compactness, the main purpose of substring
indices data structures is to solve substring matching problem for multiple pat-
terns in a given text with a time complexity proportional to the pattern size, not
the whole text. These data structures allow for efficient matching, but updating
them to add or delete strings is hard [1]. Additionally, the lack of efficient set
manipulation algorithms for such data structures motivates work that leverages
the benefits of substring indices while enabling efficient set manipulation.

In 2009, Loekito [7] introduced a new data structure, sequence BDD, SeqBDD,
for short, that offers compact storage of finite languages. SeqBDDs are a half-
relaxed variation of ZBDDs [8] where variables along one-paths may appear
multiple times in any order. SeqBDDs inherit ZBDDs’ efficient set manipulations,
and also support algorithms to solve the substring matching problem.

Size complexity is crucial to decision diagrams, including SeqBDDs, due to
two factors: first, decision diagrams are used to store efficiently an enormous
amount of data; second, the time complexity of decision diagram algorithms is
proportional to the size of the arguments, which is in turn sensitive to vari-
able ordering. Since optimal variable ordering is an NP-complete problem [3],
heuristics can only achieve a “good ”variable ordering. Moreover, while sharing

∗ This work is supported in part by Ministry of Higher Education - Saudi Arabia, and
National Science Foundation under grants CCF-1217314 and CCF-1442586.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 149–160, 2014.
c© Springer International Publishing Switzerland 2014

150 H. Alhakami, G. Ciardo, and M. Chrobak

common suffixes as well as common prefixes contributes to the compactness of
SeqBDDs, embracing a binary representation degrades compactness [9].

We define sequence decision diagrams (SeqDDs) to encode arbitrary finite
languages. SeqDDs are somewhat analogous to a multi-valued variation of Se-
qBDDs, but are insensitive to variable ordering; in fact, they do not even asso-
ciate variables or levels to nodes. Instead, they simply require that the number
of paths and the lengths of these paths be finite. We introduce two canonical
SeqDD definitions and discuss their compactness in relation to finite automata.
Canonical SeqDD promotes efficient algorithms for set manipulations and sub-
string manipulations by exploiting node sharing and memoization. The rest of
the paper is organized as follows: Section 2 provides preliminaries. Section 3 in-
troduces non-canonical and canonical SeqDDs. Section 4 discusses the relative
compactness of canonical SeqDDs. Section 5 introduces set and string manipula-
tion algorithms. Section 6 provides preliminary applications of SeqDDs. Section
7 presents conclusions and future work.

2 Preliminaries

Finite automata are a well known data structure to describe regular languages.
While finite automata are memory efficient, their manipulation algorithms are
not guaranteed to provide minimized outputs even if their inputs are minimized.
On the other hand, decision diagrams have efficient manipulation algorithms but
most, for example BDDs [4] and MDDs [6], only target fixed-length languages.

2.1 Finite Automata

A finite automaton (FA) is a 5-tuple (Q,Σ, δ, q0, F), with a finite set of states, a
finite alphabet, a transition function, a start state, and a set of accepting states.
Depending on the transition function, the FA is a deterministic FA (DFA, with
δ : Q ×Σ → Q) or a non-deterministic FA (NFA, with δ : Q × Σ ∪ {ε} → 2Q).
We also consider a partial DFA [2], a minimized DFA with partial transition
function δ : Q×Σ → Q∪{∅}, obtained from the equivalent DFA by deleting all
states with no path to accepting states, as well as their incoming transitions.

2.2 Decision Diagrams

Binary decision diagrams (BDDs) are directed acyclic graph where each node is
associated with a boolean variable and encodes boolean functions over a struc-
tured boolean domain. Multi-valued decision diagrams (MDDs) generalize BDDs
by allowing nodes to have more than two outgoing edges, and provide a canon-
ical representation of boolean functions over structured finite domains (we use
“MDDs” from now on, since BDDs are just a special case).

An ordering rule is enforced: assuming k domain variables {x1, ..., xk}, all
paths respect the order xk ≺ xk−1 ≺ · · · ≺ x1 ≺ x0, where x0 is the range
variable associated with terminal nodes. Then, canonicity requires choosing a

Sequence Decision Diagrams 151

a b c

cba a b c

1 0

a b c

cba

1 0

a

b c

1

(a) (b) (c)

Fig. 1. Quasi (a), fully (b), and sparsely (c) reduced MDDs encoding Y = {ab, ac}

reduction: quasi-reduced, only merge duplicate (i.e., isomorphic) nodes; fully-
reduced, merge duplicate nodes and skip redundant (i.e., with identical children)
nodes; or sparsely-reduced, merge duplicate nodes and omit nodes not reaching
the 1-terminal, and any edge pointing to them (Fig.1).

Decision diagrams excel at encoding sets that share many subsets, and their
recursive structure enables effective use of dynamic programming through an
operation cache, which virtually eliminates the need to recompute subproblems.

2.3 Notation

Given alphabet Σ = {s1, · · · , sm}, with m ∈ N, let Σ∗ be the set of strings
over Σ, i.e., Σ∗ = {a1 · · · ak : k ≥ 0, ∀h, 1 ≤ h ≤ k, ah ∈ Σ}. We introduce the
following notation to discuss SeqDDs encoding a finite language Y ⊂ Σ∗:

– If Y = ∅, then height(Y) = ⊥, “undefined”. Otherwise, the height of Y is
the length of the longest string in it, height(Y) = max{|σ| : σ ∈ Y}.

– lengths(Y) = {k∈N : ∃σ∈Y, |σ| = k}, the set of all string lengths in Y.
– For k ∈ lengths(Y), Yk = {σ ∈ Y : |σ| = k}, the strings of length k in Y,

and Y<k = {σ ∈ Y : |σ| < k}, the strings of length less than k in Y.
– For a ∈ Σ, Y/a = {σ ∈ Σ∗ : a · σ ∈ Y}, the strings that, preceded by a,

form a string in Y.
– For k ∈ lengths(Y) and a ∈ Σ, Yk/a = {σ ∈ Σk−1 : a · σ ∈ Yk}, the strings

that, preceded by a, form a string of length k in Y.
– ||Y|| = ∑

σ∈Y |σ|, the total number of symbols in Y, not to be confused with
|Y|, the number of strings in Y.

3 Definition of Sequence Decision Diagrams

We now define a class of decision diagrams to encode any finite subset of Σ∗.

Definition 1. A sequence decision diagram (SeqDD) is a directed acyclic finite
graph with two terminal nodes, 0 and 1, and such that each nonterminal node
p has m+ 1 outgoing edges, each labeled with a different element from Σ ∪ {ε};
we write p[a] = q to indicate that the outgoing edge labeled with a ∈ Σ ∪ {ε}
points to node q, which can be a terminal or nonterminal node. ��
Definition 2. The set of strings X (p) encoded by a SeqDD node p is:

X (p) =

⎧⎪⎨
⎪⎩

∅, the empty set if p = 0,

{ε}, the set containing only the empty string if p = 1,⋃
a∈Σ∪{ε}{a · σ : σ ∈ X (p[a])} otherwise. ��

152 H. Alhakami, G. Ciardo, and M. Chrobak

a b c εAB

a b c ε

a b c ε

a b c ε

a b c ε

1

a b c εAT

a b c ε

a b c ε

a b c ε

a b c ε

a b c ε

a b c ε

a b c ε

1

5 3 2 1 0AN

a b c

a b c

a b c

a b c

a b c

a b c

a b c

1

Fig. 2. A SeqDDB, a SeqDDT, and a SeqDDN encoding Y = {aa, aaa, aabaa, baa, c, ε}.
Indices in gray point to terminal 0 (not represented for clarity).

Theorem 1. Given a finite set of strings Y ⊂ Σ∗, there exists a SeqDD with a
root (i.e., a node with no incoming edges) p satisfying X (p) = Y.
Proof. The proof is trivial and left to the reader. �

As defined, SeqDDs are general non-canonical encoding of finite languages. Any
set Y ⊂ Σ∗ can be encoded by infinitely many SeqDDs because, if a node r
encodes Y, any node r′ with r′[a] = 0 for each a ∈ Σ and r′[ε] = r also encodes
Y, and the “insertion” of such “useless nodes” can be repeated at will (indeed,
not just above the root, but anywhere along any path in the SeqDD). Thus, we
now describe possible sets of restrictions to ensure canonicity. In any case:

– No duplicate nodes are allowed: the SeqDD cannot contain two nonterminal
nodes p and q such that p[a] = q[a] for every a ∈ Σ ∪ {ε}.

– No empty nodes are allowed: the SeqDD cannot contain a nonterminal node
p such that p[a] = 0 for every a ∈ Σ ∪ {ε}.

– No ε-nodes are allowed: the SeqDD cannot contain a nonterminal node p
such that p[a] = 0 iff a ∈ Σ.

Then, informally, canonicity is achieved by additionally “pushing” ε-edges (not
pointing to 0) toward the bottom, or toward the top, of the diagram (Fig. 2).

3.1 Definition of Canonical SeqDDs with ε at the Bottom

Definition 3. A SeqDDB is a SeqDD with no duplicate, empty, or ε-nodes
where, for any nonterminal node p, either p[ε] = 0 or p[ε] = 1. ��
Theorem 2. Given a finite set of strings Y ⊂ Σ∗, there exists a unique single-
root SeqDDB whose root p satisfies X (p) = Y.
Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply that
p = 0 is the only SeqDDB node encoding Y. If height(Y) = 0, then Y = {ε}, and
the same restrictions imply that p = 1 is the only SeqDDB node encoding Y. If
height(Y) = k > 0, assume the theorem holds for any Y ′ with height(Y ′) < k.
Clearly, height(Y/a) < k and, if ε ∈ Y, then Y = {ε} ∪⋃

a∈Σ a · Y/a, otherwise
Y =

⋃
a∈Σ a · Y/a. Then, if ε ∈ Y, we can define node p, with p[ε] = 1 and,

Sequence Decision Diagrams 153

for each a ∈ Σ, p[a] = qa, where qa is the unique node encoding Y/a (by
induction, qa exist since height(Y/a) < k). Note that we might have Y/a = Y/b
for a �= b, this simply means that the two corresponding edges in p point to the
same SeqDDB node (indeed nodes are shared across any of the descendants of p,
to avoid duplicates). No other node q encoding Y can exist because it would have
to differ from p in at least one index a ∈ Σ, while we must have p[ε] = q[ε] = 1.
By inductive assumption, SeqDDB’s p[a] and q[a] cannot encode the same set,
that is, X (p[a]) = Y/a �= X (q[a]), thus there is a string a · σ′ in X (p) and not in
X (q), or vice versa. The case where ε �∈ Y is analogous, except that p[ε] = 0. �

3.2 Definition of Canonical SeqDDs with ε at the Top

For the alternative definition where we allow “ε at the top”, it is easier to recast
the definition of quasi-reduced MDDs [5] as a special case of SeqDDs.

Definition 4. A k-level MDD is the terminal node 1, if k = 0, or, if k > 0, it
is a single-root SeqDD without duplicate, empty, or ε-nodes where the root p is
such that p[ε] = 0 and, for a ∈ Σ, p[a] is a (k − 1)-level MDD or 0. ��
Thus, the root of a k-level MDD encodes a nonempty set of strings of length k.

Definition 5. A k-level SeqDDT is a SeqDD without duplicate, empty, or ε-
nodes whose root node p is such that, for a ∈ Σ, p[a] is 0 or the root of a
(k−1)-level MDD, while p[ε] is 0 or the root of an h-level SeqDDT, h < k. ��
Thus, it is easy to prove by induction that the root p of a k-level SeqDDT encodes
a nonempty set of strings of length k,

⋃
a∈Σ X (q[a]), plus a possibly empty set

of strings of length less than k, X (q[ε]).

Theorem 3. Given a finite language Y ⊂ Σ∗, there exists a unique single-root
SeqDDT with root p such that X (p) = Y.
Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply
that p = 0 is the only SeqDDT encoding Y. If height(Y) = 0, then Y = {ε},
and the same restrictions imply that p = 1 is the only SeqDDT encoding Y. If
instead height(Y) = k > 0, assume that the theorem holds for any set Y ′ with
height(Y ′) < k. Since Y = Y<k ∪

⋃
a∈Σ a · Yk/a, we can define node p such that,

for a ∈ Σ, p[a] = qa with X (qa) = Yk/a, while p[ε] = qε with X (qε) = Y<k.
By inductive hypothesis, nodes qa and qε are unique, as they all encode sets of
height less than k and, since Yk/a contains only strings of length k − 1, qa is in
particular the root of an MDD, i.e., qa[ε] = 0. Then, node p is also the only node
encoding Y since any other node p′ would have to differ from p in at least one
child. If p[ε] �= p′[ε], there must exists a string σ of length less than k in X (p[ε]),
thus X (p), and not in X (p′[ε]), thus X (p′), or vice versa. If there is an a ∈ Σ
with p[a] �= p′[a], there must exists a string σ in X (p[a]) and not in X (p′[a]), so
that a · σ is in X (p) and not in X (p′), or vice versa (a · σ cannot possibly be in
X (p′[ε]) as it is of length k). Either way, p′ cannot encode the same set as p. �

A SeqDDT relies on some concept of level for the nodes of the decision diagram.
More specifically, a SeqDDT node encodes all the maximum-length strings in

154 H. Alhakami, G. Ciardo, and M. Chrobak

its children corresponding to elements of Σ and delegates the encoding of the
shorter strings to its ε-child. A similar encoding for set Y partitions its strings
according to their length, and uses a top node to make a decision based on the
length of the string σ being searched, not on the first symbol of σ (Fig. 2). This
leads us to a third, different in spirit but essentially equivalent, definition.

Definition 6. A SeqDDN is a set of “sparse” root nodes, each root r having a
finite set R of outgoing edges labeled with different elements k ∈ N, such that
r[k] points to a k-level MDD. The set encoded by r is

⋃
k∈R X (r[k]). ��

4 Compactness of Canonical SeqDD Definitions

We now discuss the size of our SeqDDs, where the size of a SeqDD A is the
number of edges it contains, edges(A), rather than the number of nodes. Given
the structural differences between a SeqDDB and a SeqDDT, we compare them
by thinking of them as finite automata. A closer look at a SeqDDB shows that it
can be easily converted into a DFA (Theorem 4). On the other hand, a SeqDDT

can be converted into a restricted type of NFA.

4.1 DFA Representation of SeqDDB

Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, we can build an equiva-
lent DFAM = (Q,Σ, δ, q0, F). If AB = 0 thenM = ({q0}, Σ, δ, q0, ∅). Otherwise,
we first define the states Q in terms of the nodes in AB: every nonterminal node
q in AB corresponds to a state q ∈ Q, while node 1 in AB corresponds to new
state f ∈ Q and node 0 corresponds to a new trap state t ∈ Q.

The initial state q0 corresponds to AB’s root while the transition function
δ : Q×Σ → Q is such that, for every a ∈ Σ and edge q[a] = p in AB, there is a
corresponding transition δ(q, a) = p and, if q[ε] = 1, no transition is added, but
q is added to the accepting states F . Lastly, state f is also added to F .

Theorem 4. Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, building
an equivalent minimized DFA M requires linear time in the size of AB .
Proof. The proof is direct from the translation algorithm above. �

For memory efficiency, decision diagrams can be stored in a sparse form. In the
case of a sparse SeqDDB, this corresponds to a partial DFA, and the translation
is analogous to the non-sparse version just discussed. From now on, we consider
sparse representations for all canonical forms of SeqDD and for partial DFAs.

4.2 NFA Representation of SeqDDT

To discuss the translation of a SeqDDT into an equivalent NFA, we first define
RNFAs, a restricted version of NFAs, keeping in mind that our goal is to fa-
cilitate size comparisons between a SeqDDB and a SeqDDT. To that end, our
RNFA definition resembles the structure of SeqDDT while respecting the key
characteristics of ordinary NFAs when encoding a finite language.

Sequence Decision Diagrams 155

Definition 7. A restrictedNFA (RNFA) is an acyclicNFAN=(Q,Σ, δ,QI, QF),
where both QI and QF are singletons sets and, for each state q ∈ Q, the fol-
lowing condition holds: at most one outgoing ε-transition is allowed, and if k =
max(lengths(L(q))) then all strings in

⋃
a∈Σ L(δ(q, a)) have length equal k − 1

and all strings in L(δ(q, ε)) have length at most k − 1. This value k is called the
level of q. ��
A minimized RNFA enforces the following restriction rules.

– No duplicate states are allowed: An RNFA cannot contains q and p such that
L(q) = L(p).

– No empty states are allowed: An RNFA cannot contain a state q ∈ Q \ QI

such that L(q) = ∅.
– No ε-states are allowed: An RNFA cannot contain a state q ∈ Q \QF such

that L(q) = {ε}.
Any RNFA can be converted to an equivalent minimized RNFA by adapting the
bucket-sort based OBDD reduction algorithm proposed in [10]. The minimized
RNFA for a given language is unique, the proof is omitted due to lack of space.

The following lemma affirms that RNFAs, like DFAs, can recognize any finite
language (unlike DFAs, they obviously cannot accept any infinite language).

Lemma 1. If Y ⊂ Σ∗ is a finite language, there exists an RNFA N to accept Y.
Proof. The proof of existence is analogous to the one of Theorem 3. �

If SeqDDT AT with a single root node r encodes a finite language Y ⊂ Σ∗,
the equivalent RNFA T =(Q,Σ, δ,QI, QF) is built as follows. Each nonterminal
node q of AT corresponds to a state q∈Q; terminal node 1 of AT corresponds to
a new state 1∈Q, and F = {1}; finally, QI = {r} (note that, if r = 0, we also
must add r to Q). The transition function δ : Q×Σ ∪ {ε} → Q is such that, for
every edge q[a] = p in AT with a ∈ Σ ∪ {ε}, there is a corresponding transition
δ(q, a) = p. Thus, in particular, if r=0, then T =({0}, Σ, ∅, {0}, {1}), and the
encoded language is Y = ∅, while, if AT =1, then T =({1}, Σ, ∅, {1}, {1}) and
the encoded language is Y = {ε}.

From the conversion process, it is easy to conclude that a canonical SeqDD size
is bounded by the size of the corresponding FA in terms of number of transitions,
plus the number of accepting states.

4.3 SeqDD Compactness Comparison by Means of Finite Automata

To study the relative compactness of canonical SeqDDs, we first discussed bounds
on the number of states for equivalent DFAs and RNFAs; these are trivially re-
flected in similar bounds for SeqDDB’s and SeqDDT’s. To obtain bounds on the
number of transitions, one could just multiply the state bounds by the alphabet
size, but we are really interested in the actual number of edges for equivalent
SeqDDs, thus partial FAs. This section shows that bounds similar to those for
states hold also for edges.

156 H. Alhakami, G. Ciardo, and M. Chrobak

a

a

a

a

b ε

b ε

b ε

1

k

k

a

a

a

a

ε

b

b

b

a ε

a

a

a

a ε

a

a

a

a

a

a

a

1

Ak
B Ak

T

Fig. 3. Example of quadratic growth when translating SeqDDB into SeqDDT

Theorem 5. Given a DFA M = (Q,Σ, δD, q0, F) with n states encoding a finite
language Y ⊂ Σ∗, an equivalent minimized RNFA N has O(n2) states.
Proof. For each state q ∈ Q and k = 0, . . . , height(Y), let L(q, k) = L(q) ∩Σk.
Then, we build an equivalent RNFA N with states organized by level:

– Level 0 of the RNFA contains a single accepting state f .
– Level k contains a state 〈q,k〉 for each nonempty L(q, k).
– The initial state of N is 〈q0,max lengths(Y)〉.
– The transition function δN of N satisfies

• For each state 〈q,k〉 with k > 0 in N and for each a ∈ Σ:
〈p,k − 1〉 ∈ δN (〈q,k〉, a) iff δD(q, a) = p.

• For each state 〈q,k〉 in N , let h be the largest integer less than k such
that state 〈q,h〉 exists in N ; if such state exists, then 〈q,h〉 ∈ δN (〈q,k〉, ε).

Note that the resulting RNFA might not be minimized, in the sense that it
is possible that 〈q,k〉 and 〈p,k〉 encode the same language, in which case they
should be merged. In any case, however, the number of states of the RNFA is
at most equal to the number of states of the DFA times the maximum length of
a string in Y, which, again, is at most equal to the number of states. Thus the
number of RNFA states is at most quadratic the number of DFA states. As the
two automata obviously accept the same language Y, the proof is complete. �

To show that the growth of of Theorem 5 is indeed possible, consider the family
of languages G = {Gk : k ∈ N} over {a, b}. Let Gk = {akbk, akbk−1, · · · , akb, ak},
so that ||Gk|| = 3(k+1)k/2. Then, the SeqDDT Ak

T encoding Gk contains k2+3k
edges, while the SeqDDB Ak

B encoding Gk contains 3k edges (see Fig. 3).

Theorem 6. Given a minimized RNFA N with n states encoding a finite lan-
guage Y ⊂ Σ∗, an equivalent minimized DFA has at most O(2n) states.
Proof. The proof is immediate given the well known fact that an NFA-to-DFA
conversion may result in an exponential increase in the number of states. �

Since RNFAs are a restricted form of NFAs, however, one may wonder whether an
exponential growth can actually occur. To show that this is the case, consider the

Sequence Decision Diagrams 157

a bA2
B

F2

a b

a b

a b ε

a b ε

a b

a b

a b

a

a b

a b

1

a b εA2
T

a b a b ε

a

a b

a b

1

a bA3
B

F3

a b

a b

a b

a b ε

a b ε

a b ε

a b

a b

a b ε

a b

a b

a b

a b

a b

a

a b

a b

a b

a b

a b

a b

a b

1

a b εA3
T

a b a b ε

a b εa b

a

a b

a b

a b

1

Fig. 4. Example of exponential growth when translating SeqDDT into SeqDDB

family of languages {Fk : k ∈ N} with Fk={xay : x, y∈{a, b}∗, |x|≤k, |y|=k}.
Then, the SeqDDT Ak

T encoding Gk contains 7k−1 edges while the SeqDDB Ak
B

encoding Gk contains Ω(2k) edges (see Fig. 4). This is similar to the well-known
construction that demonstrates the proof of Theorem 6.

5 Manipulation Algorithms for SeqDDs

We now consider two types of algorithms: set manipulation algorithms and sub-
string manipulation algorithms. Those of the first type take two or more canon-
ical SeqDDs with the same canonicity rule and perform set operations such as
union or intersection. Those of the second type input a canonical SeqDD and a
string, and select strings satisfying a criterion for matching a substring, changing
a substring into another, or shorten or lengthen a string.

As with all decision diagram algorithms, we adopt a recursive style. SeqDD
nodes are stored in a unique table to ensure canonicity. An operation cache en-
sures efficiency by virtually eliminating repeated computations. Each of the fol-
lowing set manipulation algorithms has been developed for SeqDDB and SeqDDN

representations: union, intersection, set difference, symmetric set difference, and
concatenation. For instance, the Intersection algorithm for two SeqDDB’s tra-
verses them top-down and builds the resulting SeqDDB bottom-up (see the
pseudo-code in Fig. 5). SeqDDN set manipulation algorithms can be consid-
ered as shared MDD algorithms, since a SeqDDN is organized by the length of
the strings encoded.

Various stringmanipulations can be performed. For example, the classicalmem-
bership problem can be solved by a single trace, no longer than the query size+1,
starting from the root and ending in either terminal 1 or 0. Set manipulation algo-
rithms can also become handy in performing string manipulations; for instance,
the membership problem is solved by a set intersection, and string replacement
can be solved using a combination of set difference, intersection, and union. How-
ever, if we want to perform substring manipulations, the use of set manipulation
algorithms becomes inefficient, hence we developed specific substring manipula-
tion algorithms.

158 H. Alhakami, G. Ciardo, and M. Chrobak

SeqDDB Intersection(SeqDDB p, SeqDDB q) • returns X (r) = X (p) ∩ X (q)

1 declare local SeqDDB r;

2 declare local int count;

3 if p=0 or q=0 then return 0; • base case: empty set

4 if p=q then return p; • base case: Intersection of two equivalent sets

5 if p=1 then if q[ε]=1 then return 1; else return 0; • base case: ε

6 if q=1 then if p[ε]=1 then return 1; else return 0; • base case: ε

7 if Cache contains 〈Intersection,{p, q}:r〉 then return r; • check if already
computed

8 count ← 0; • initialize counter

9 foreach a ∈ Σ do • if not, recursively call Intersection for each a ∈ Σ

10 r[a] ← Intersection(p[a], q[a]);

11 if r[a]=0 then count ← count + 1; • count edges pointing to terminal-0

12 if count= |Σ| then r ← 0; • potential empty-node or ε-node

13 if p[ε]=1 and q[ε]=1 then • deal with ε case

14 if r=0 or r=1 then r ← 1;

15 else r[ε] ← 1;

16 UniqueTableInsert(r); • insert to unique table to ensure canonicity

17 Cache ← 〈Intersection,{p, q}:r〉; • record result in cache to avoid recomputation

18 return r;

Fig. 5. SeqDDB Intersection operation

The main advantage of using SeqDDs for substring manipulation lies in the
ability to search or modify a set of strings at once, thanks to node sharing
and memoization. For example, in a SeqDDB, replacing the first occurrence of
a substring t with t′ is done once for all strings sharing a prefix that contains
t. Moreover, a shared suffix is processed the first time we explore it; for other
strings sharing that suffix the algorithm simply checks the operation cache for
the result. A universal algorithm replace can replace, insert, or delete a specific
substring: replacing ε by a string t �= ε performs an insertion, while replacing t
by ε performs a deletion. Of course, this can be refined by additionally providing
to the algorithm specific substrings that must be found before and after the
replacement location.

6 Applications of Sequence Decision Diagrams

Advancements in genome sequencing techniques along with their affordability
have resulted in an increasing number of sequenced genomes. As a consequence,
a concise representation that allows for efficient data manipulation is required
to query, analyze, and retrieve this information. These processes are essential in
various molecular biology problems.

SeqDDB and SeqDDN provide simple indexing data structures. Their com-
pactness in regards to sequence indexing is summarized in Table 1. Given a
string w of size x, it is well known that the size of a DAWG that encodes the

Sequence Decision Diagrams 159

Table 1. Summary of the upper bound size of a SeqDDB or SeqDDN encodingthe set
of all prefixes, suffixes, or subwords of a certain string of size x

Encoded set DAWG size SeqDDB size SeqDDN size

Suffixes 3x− 4 3x− 4 2x+ 1
Subwords 3x− 4 3x− 4 (5x2 + 3x+ 6)/4
Prefixes x x x2 + 1

set of suffixes / subwords of w is at most 3x − 4 transitions, for x > 2 [2]. The
size of a SeqDDB encoding w’s suffixes (subwords) is bounded by 4x−3 (5x−6)
transitions. Technically, while a SeqDDB ε-transitions are shown in the figures
as edges, in reality they can be encoded by a single bit, since an ε-transition can
only point to the terminal state. Thus, the size of a SeqDDB is actually bounded
by 3x− 4 transition plus x+ 1 bits when encoding the set of suffixes or 2x − 2
bits when encoding the set of subwords given that all states are accepting. On
the other hand, the size of a SeqDDN encoding subwords of w is bounded by
2x+

∑x
j=1 j + 3/2

∑x−2
j=2 j, which simplifies to (5x2 + 3x+ 6)/4 transitions.

Using SeqDDB or SeqDDN for indexing sequences allows for efficient manipu-
lations. For instance, the membership problem requires time linear in the size of
the query when handled one sequence at a time. Querying a large set of sequences
at once could lead to substantial improvement in time complexity because deci-
sion diagrams exploit node sharing and memoization, if we build a SeqDD that
encodes the query set and perform a simple intersection.

The longest common substring can be retrieved by intersecting the SeqDDs
encoding the set of subwords of each sequence. Using SeqDDN’s allows early
pruning, but consumes space. To achieve better space efficiency, SeqDDs encod-
ing the set of suffixes can be used along with a non-commutative variation of the
intersection algorithm in Fig. 5, so that, when p = 1, the algorithm returns q. In
this case, the longest common substring for more than two sequences is solved
incrementally, thus SeqDDN’s lose the advantages of early pruning. Note that
both SeqDD intersection and its variation have time complexity proportional to
the size of the smallest argument. A generalization of this problem is the DNA
contamination problem.

The all-pairs suffix-prefix matching problem can be solved with multi-terminal
SeqDD, a simple tweak to our original definition. Let G = {s1, s2, · · · , sk} be a
set of strings, all pairs with matching prefix-suffix can be obtained by performing
a prefix intersection betweenQ and p, whereQ is a shared SeqDD with k handles,
each pointing to a SeqDD qi encoding the set of suffixes of si and p is a multi-
terminal SeqDD encoding G with k + 1 terminal nodes corresponding to the
0-terminal and the k strings.

7 Conclusion

We introduced SeqDDs, multi-valued sequence decision diagrams, which can be
seen as MDDs with no variable ordering but are nevertheless canonical. In fact,

160 H. Alhakami, G. Ciardo, and M. Chrobak

our SeqDDs do not have a notion of variables, hence any “size explosion” ex-
clusively depends on the specific set to be encoded and on the canonization
rule (we introduce two possibilities, SeqDDB and SeqDDT). More importantly,
SeqDDs are ideal for encoding finite sets of strings of arbitrary finite (but possi-
bly different) lengths, that is, finite languages. SeqDDT’s are analogous to shared
MDDs, and may be best implemented by adding special nodes at the top level
that makes a choice based on the string length; we call this version SeqDDN.
We study the compactness of our representations in terms of finite automata
and show that there is no winner between the two versions: a SeqDDT/SeqDDN

can be quadratically larger than a SeqDDB for certain languages, but exponen-
tially more compact for others; therefore, we are implementing algorithms for
both versions. SeqDDs are useful for applications requiring compact storage and
efficient manipulation of large sets of strings with high sharing rate. As future
work, an edge-valued variation is a must for many applications, such as symbolic
generation of probabilistic witnesses in CSL model checking.

References

1. Aoki, H., Yamashita, S., Minato, S.: An efficient algorithm for constructing a se-
quence binary decision diagram representing a set of reversed sequences. In: 2011
IEEE International Conference on Granular Computing (GrC), pp. 54–59 (2011)

2. Blumer, A., Blumer, J., Ehrenfeucht, A., Haussler, D., McConnell, R.: Building
the minimal DFA for the set of all subwords of a word on-line in linear time. In:
Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 109–118. Springer, Heidelberg
(1984)

3. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput., 993–1002 (1996)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 677–691 (1986)

5. Ciardo, G., Lüttgen, G., Siminiceanu, R.I.: Saturation: An efficient iteration strat-
egy for symbolic state space generation. In: Margaria, T., Yi, W. (eds.) TACAS
2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001)

6. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.: Multi-valued deci-
sion diagrams: Theory and applications. Multiple-Valued Logic, 9–62 (1998)

7. Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining
frequent subsequences. Knowledge and Information Systems, 235–268 (2010)

8. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: 30th Conference on Design Automation, pp. 272–277 (1993)

9. Requeno, J.I., Colom, J.M.: Compact representation of biological sequences us-
ing set decision diagrams. In: Rocha, M.P., Luscombe, N., Fdez-Riverola, F.,
Rodŕıguez, J.M.C. (eds.) 6th International Conference on PACBB. AISC, vol. 154,
pp. 231–240. Springer, Heidelberg (2012)

10. Sieling, D., Wegener, I.: Reduction of OBDDs in linear time. Information Process-
ing Letters, 139–144 (1993)

Shortest Unique Queries on Strings

Xiaocheng Hu1, Jian Pei2, and Yufei Tao1

1 Chinese University of Hong Kong, New Territories, Hong Kong
2 Simon Fraser University, Burnaby, Canada

{xchu,taoyf}@cse.cuhk.edu.hk, jpei@cs.sfu.ca

Abstract. Let D be a long input string of n characters (from an alphabet of size
up to 2w , where w is the number of bits in a machine word). Given a substring q of
D, a shortest unique query returns a shortest unique substring of D that contains
q. We present an optimal structure that consumes O(n) space, can be built in
O(n) time, and answers a query in O(1) time. We also extend our techniques to
solve several variants of the problem optimally.

1 Introduction

Let D be a (long) string. Define n = |D| where |D| represents the length of D. Denote
by D[i] (1 ≤ i ≤ n) the i-th character of D, and by D[i : j] (1 ≤ i ≤ j ≤ n) the
substring of D starting at D[i] and ending at D[j]. A string is unique if it has only one
occurrence in D; otherwise, it is repeating. A substring D[i1 : j1] contains another
D[i2 : j2] if i1 ≤ i2 and j1 ≥ j2 hold at the same time.

In this paper, we study data structures on D that can efficiently answer the following
query, which was recently proposed in [9], motivated by its fundamental nature in
numerous applications in text retrieval and bioinformatics:

Shortest Unique Query: Given a substring q = D[x : y], such a query returns
a substring of D with the minimum length among all the unique substrings of D
containing q.

If x = y, we say that the query is a point query; otherwise, it is an interval query.

a b ab b a a b a b

1 2 43 5 6 7 8 9 10position

character

q

shortest unique

.

Fig. 1. An Example

Figure 1 shows a string D of length 10. Given q = D[4 : 5] = ab, a shortest unique
query may return D[3 : 6] = baba because its length 4 is the smallest among all the
unique substrings containing q. To verify this, notice that (i) baba is unique because it

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 161–172, 2014.
c© Springer International Publishing Switzerland 2014

162 X. Hu, J. Pei, and Y. Tao

has only one occurrence in D, whereas (ii) D[3 : 5] = bab is repeating (it occurs also
at d[8 : 10]), and so is D[4 : 6] = aba (see D[7 : 9]). This implies no unique string of
length at most 3 contains q. Note that, in general, a query result can be output with only
2 integers, which specify its starting and ending positions in D, respectively.

We make the standard assumption that each character of D fits in a machine word. If
w is the number of bits in a word, this assumption implies that the alphabet where the
characters of D are drawn can have a size up to 2w. Unless otherwise stated, the default
model of computation is RAM.

Existing Results. Previous research has focused exclusively on point queries. In their
initial study [9], Pei et al. showed how to construct in O(n2) time an index of O(n)
size that answers a query in O(1) time. Soon after that, Ileri et al. [6] and Tsuruta et al.
[10] independently improved the construction time to O(n). It is worth mentioning that
O(n) size is considered optimal in the sense that D itself requires Ω(n) words to store
when the alphabet is large.

Our Results. We present the first study on interval queries. Our main result is a new
structure of O(n) space that can be built in O(n) time, and answers a query in O(1)
time. In other words, we achieve the optimal efficiency as with the previous work, but
on more general queries.

At this point, it seems fair to delve a bit into a crucial difference between designing
a structure for point and interval queries. What makes point queries easy to handle is
that there are only n of them! Therefore, the problem of indexing is more of a one-off
computation problem: how to quickly compute the answers for all those n queries. Once
this is done, one can simply store these answers in an array to allow constant query time.
This idea, however, no longer works for interval queries because now we have Θ(n2)
of them. Therefore, there needs to be a major shift in the indexing strategy, calling for
novel ideas.

The rest of the paper is organized as follows. In Section 2, we will clarify some basic
facts relevant to this study. Then, Section 3 will present our structure for interval queries.
Section 4 further demonstrates the usefulness of the proposed techniques by extending
them (i) to answer queries with additional constraints, and (ii) to support interval queries
in external memory optimally.

2 Basic Definitions and Properties

In this section, we pave the way for our subsequent discussion by defining several
concepts related to minimal unique substrings and explaining some of their fundamental
properties.

Definition 1. Each integer p ∈ [1, n] defines a left-fixed minimal unique substring
MUSleftfix (p) as follows:

– MUS leftfix (p) = nil , if D[p : n] is repeating;
– otherwise, MUS leftfix (p) = D[p : z], where z is the smallest integer in [p, n] such

that D[p : z] is unique.

Shortest Unique Queries on Strings 163

p 1 2 3 4 5 6 7 8 9 10

MUS leftfix (p) D[1:3] D[2:3] D[3:6] D[4:7] D[5:7] D[6:7] D[7:10] nil nil nil
=abb =bb =baba =abaa =baa =aa =abab

MUS rightfix (p) nil nil D[2:3] D[2:4] D[2:5] D[3:6] D[6:7] D[6:8] D[6:9] D[7:10]
=bb =bba =bbab =baba =aa =aab =aaba =abab

Fig. 2. The left-fixed and right-fixed minimal unique substrings in Figure 1

In other words, MUS leftfix (p) is the shortest unique substring of D starting at D[p].
In the example of Figure 1, MUS leftfix (4), for instance, is D[4 : 7] = abaa. Notice
that D[4 : 6] is repeating; and thus, D[4 : 7] cannot be shortened on the right while still
being unique. Viewed in another way, D[4 : 7], D[4 : 8] ..., D[4 : 10] are all the unique
substrings starting at D[4]; among them, MUS leftfix (4) is the shortest. See Figure 2 for
the MUS leftfix (p) of all p ∈ [1, 10].

The next definition is symmetric:

Definition 2. Each integer p ∈ [1, n] defines a right-fixed minimal unique substring
MUSrightfix (p) as follows:

– MUS rightfix (p) = nil , if D[1 : p] is repeating;
– otherwise, MUS rightfix (p) = D[z : p], where z is the largest integer in [1, p] such

that D[z : p] is unique.

The last row of Figure 2 shows the MUS rightfix (p) of all p ∈ [1, 10] for our running
example. Now we are ready to define the most important concept:

Definition 3. A substring D[i : j] is a minimal unique substring (MUS) if

MUS leftfix (i) = D[i : j] and MUS rightfix (j) = D[i : j].

In other words, D[i : j] is an MUS if (i) it is unique, and (ii) it can be shortened on
neither side while still being unique. We will use M to denote the set of MUS’s in D.
From Figure 2, one can verify easily that the M in our example is:

M =
{
D[2 : 3] = bb, D[3 : 6] = baba, D[6 : 7] = aa, D[7 : 10] = abab

}
. (1)

D[2 : 4] = bba, for example, is not an MUS because it can be shortened on the right
into bb which is still unique.

Lemma 1. The strings in M have distinct left endpoints, and distinct right endpoints.

Proof. Suppose D[i1 : j1] and D[i2 : j2] are two different strings in M but i1 = i2.
This means that they are bothMUS leftfix (i1). But only one string can be MUS leftfix (i1),
thus giving a contradiction. Similarly, it must hold that j1 �= j2.

It has been shown [10] that all the substrings defined earlier can be computed
efficiently:

Lemma 2 ([10]). All the left-fixed MUS’s, right-fixed MUS’s, and MUS’s can be
computed from D in O(n) time.

164 X. Hu, J. Pei, and Y. Tao

In general, a substring D[i : j] requires only two integers to represent: integers i and
j. Therefore, all the left-fixed MUS’s, right-fixed MUS’s, and MUS’s can be stored in
O(n) words. This leads to the following useful fact:

Corollary 1. In O(n) time, we can compute a structure of O(n) size that, given any
substring D[i : j], we can check whether it is unique in D in O(1) time.

Proof. Simply compute all the left-fixed MUS’s using Lemma 2. Then, given a
substring D[i : j], declare that it is unique if and only if j ≥ z, where z is such
that MUS leftfix (i) = D[i : z].

3 A Data Structure for Interval Queries

This section serves as a proof for our main result:

Theorem 1. Given a data string of length n, we can pre-compute in O(n) time an index
structure that consumes O(n) space, and answers any shortest unique query in O(1)
time.

3.1 A 4-Candidate Lemma

Lemma 3. The answer of the shortest unique query with substring q = D[x : y] must
be the shortest of the following 4 candidates:

1. D[x : y] if it is unique
2. MUS leftfix (x)
3. MUS rightfix (y)
4. the shortest MUS containing q (breaking length ties arbitrarily). No such candidate

exists if no MUS contains q.

Proof. First of all, if D[x : y] is unique, then clearly D[x : y] is the answer because no
string containing q can be any shorter. The following discussion focuses on the scenario
where D[x : y] is repeating.

Let D[x′ : y′] be an answer to the query. If x′ = x, then it must hold that
MUS leftfix (x) = D[x′ : y′]; otherwise, either MUS leftfix (x) or D[x′ : y′] can be
shortened on the right end while still being unique, which contradicts their definitions.
Likewise, if y′ = y, then MUS rightfix (y) = D[x′ : y′].

In the remaining scenario, x′ < x and y′ > y. Suppose that D[x′ : y′] was not an
MUS, namely, it can be still be shortened either on the left or right while still being
unique. However, as both D[x′ + 1 : y′] and D[x′ : y′ − 1] contain q, we have found
a unique string containing q that is even shorter than D[x′ : y′], which contradicts the
definition of D[x′ : y′].

Whether Candidate 1—namely D[x : y]—is unique can be checked in constant
time using an O(n)-space structure (see Corollary 1). Also, Candidates 2 and 3 can be
obtained in constant time using an O(n)-space structure (see Lemma 2). It thus remains
to give a structure for finding Candidate 4.

Shortest Unique Queries on Strings 165

As before, let M be the set of MUS’s of D. For each MUS D[i : j] in M, create an
interval [i, j]. Denote by I the set of all the intervals created this way. For the example
of Figure 1, we know from Equation 1 that

I = {[2, 3], [3, 6], [6, 7], [7, 10]} (2)

Lemma 4. No two intervals in I can contain each other.

Proof. Suppose, on the contrary, that [i1, j1] and [i2, j2] are two different intervals in I
such that [i1, j1] contains [i2, j2]. Recall that D[i1 : j1] and D[i2 : j2] are both MUS’s
of D. However, that [i1, j1] contains [i2, j2] indicates that we can shorten D[i1 : j1] to
D[i2 : j2] which is still unique. This violates the definition of MUS.

It is not hard to see that the problem ahead of us can be restated as:

Containment Min. Let I be a set of at most n intervals in the domain [1, n] such
that no two intervals contain each other (a requirement inherited from Lemma 4).
Given an interval [x, y] in the domain [1, n], a containment min query returns the
shortest one (breaking ties arbitrarily) among all the intervals in I containing [x, y].
We want to store I in a data structure to answer such queries efficiently.

3.2 The Proposed Structure

In this subsection, we will present a structure of O(n) space that answers a containment
min query in O(1) time, which will complete our proof of Theorem 1.

Idea. Let m = |I|. From now on, we will view I as an ordered set

{I1 = [i1, j1], I2 = [i2, j2], ..., Im = [im, jm]}

where i1 < i2 < ... < im, and therefore j1 < j2 < ... < jm
1. For any a < b, we say

that Ia is on the left of Ib, and conversely, Ib is on the right of Ia. Given a subset S ⊆ I,
we say that it is a consecutive subset if S = {Ia, Ia+1, ...Ib} for some a, b satisfying
1 ≤ a ≤ b ≤ m. We also regard the empty set ∅ as a consecutive subset.

For example, given the I in Equation 2, we have:

{I1 = [2, 3], I2 = [3, 6], I3 = [6, 7], I4 = [7, 10]}. (3)

{I3} and {I2, I3, I4} are consecutive subsets, while {I2, I4} is not. We observe:

Lemma 5. For any [x, y] in the domain [1, n], the set of intervals of I containing [x, y]
must be a consecutive subset.

Proof. Let a be the smallest integer such that [ia, ja] contains [x, y], and b be the largest
integer such that [ib, jb] contains [x, y]. For any integer c ∈ [a, b], it holds that ic ≤ ib ≤
x and y ≤ ja ≤ jc. In other words, [ic, jc] contains [x, y] as well.

1 Otherwise, there must be an interval containing another, which violates Lemma 4.

166 X. Hu, J. Pei, and Y. Tao

y 1 2 3 4 5 6 7 8 9 10
α(y) 1 1 1 2 2 2 3 4 4 4

x 1 2 3 4 5 6 7 8 9 10
β(x) nil 1 2 2 2 3 4 4 4 4

Fig. 3. Arrays α and β on the I in Equation 3

Algorithm 1. COMPUTING-α-ARRAY

Input: A set I of m intervals I1 = [i1, j1], ..., Im = [im, jm], sorted in ascending order
of left point. The domain is [1, n].

Output: Array α.
1 z ← 1
2 for y = 1 to n do
3 while jz < y and z ≤ m do
4 z ← z + 1

5 if z ≤ m then
6 α(y) = z
7 else
8 α(y) = nil

9 return α

The above lemma motivates the following strategy for solving the containment min
query. Given a query interval [x, y], we will find the leftmost interval Ia in I containing
[x, y], and the rightmost interval Ib in I containing [x, y]. Then, the remaining task
is to find the shortest interval among the consecutive subset {Ia, Ia+1, ..., Ib}, which
is nothing but a standard range min query (RMQ)! We can index I using an RMQ
structure [4,5] which uses O(m) = O(n) space, can be constructed in O(m) time, and
answers an RMQ in O(1) time.

Structure. It remains to explain how to design an index so that, given any [x, y], we can
derive the corresponding a and b in constant time. We resolve this issue with another
key observation: a depends only on y! Formally, given a value y ∈ [1, n], let us define
α(y) as

– the smallest integer z ∈ [1,m] such that jz ≥ y, if such a z exists;
– nil , otherwise.

In other words, Iz is the leftmost interval in I whose right endpoint is at least y. If such
an interval exists, then α(y) = z; otherwise, α(y) = nil . The next lemma states the
aforementioned observation formally:

Lemma 6. Fix an integer y ∈ [1, n]. For any x ∈ [1, y], all the following are true:

1. If α(y) = nil , then I has no interval containing [x, y].
2. If Iα(y) does not contain [x, y], then I has no interval containing [x, y].
3. If Iα(y) contains [x, y], then it is the leftmost interval in I containing [x, y].

Proof. Statement 1 holds because when α(y) = nil , all the intervals of I end strictly
to the left of y.

Shortest Unique Queries on Strings 167

Algorithm 2. CONTAINMENT-MIN

Input: A query interval [x, y].
Output: The shortest interval in I containing [x, y].

1 a ← α(y)
2 b ← β(x)
3 if a = nil or b = nil then
4 return nil

5 if Ia does not contain [x, y] then
6 return nil

7 perform an RMQ to retrieve the shortest interval among Ia, Ia+1, ..., Ib
8 return the above interval

To prove Statement 2, suppose on the contrary that there was an interval [xc, yc] in
I that contains [x, y]. It follows from the definition of α(y) that c > α(y). This means
that xα(y) < xc ≤ x. On the other hand, from how α(y) is defined we know that
yα(y) ≥ y. Therefore, [xα(y), yα(y)] contains [x, y], which contradicts the if-condition
of the statement.

To prove Statement 3, suppose on the contrary that there was an interval [xc, yc] in
I containing [x, y], and that this interval is on the left of [xα(y), yα(y)]. Then, it follows
that y ≤ yc < yα(y), which contradicts the definition of α(y).

A similar observation holds on b—it depends only on x. Formally, given a value
x ∈ [1, n], define β(x) as:

– the largest integer z ∈ [1,m] such that iz ≤ x, if such a z exists;
– nil , otherwise.

In other words, Iβ(x) (if exists) is the rightmost interval in I whose left endpoint is at
most x. Then, we have:

Lemma 7. Fix an integer x ∈ [1, n]. For any y ∈ [x, n], all the following are true:

1. If β(x) = nil , then I has no interval containing [x, y].
2. If Iβ(x) does not contain [x, y], then I has no interval containing [x, y].
3. If Iβ(x) contains [x, y], then it is the rightmost interval in I containing [x, y].

Proof. Symmetric to the proof of Lemma 6.

Figure 3 demonstrates all the α(y) and β(x) values for the I of our running example
shown in Equation 3. Using the two arrays, we can figure out in O(1) time the values of
a and b for any [x, y] (recall that Ia and Ib are the leftmost and rightmost intervals of I
containing [x, y], respectively) using the previous two lemmas. Consider, for example,
x = 4 and y = 5. Probing the α array gives us α(y) = 2. Since I2 = [3, 6] contains
[x, y], we conclude from Lemma 6 that a = 2. Probing the β array gives us β(x) = 2.
We thus conclude from Lemma 7 that b = 2.

Arrays α and β are all we need to complete our structure. Their space consumption
is clearly O(n). Furthermore, it is fundamental to compute them in O(n) time.
Algorithm 1 elaborates on the computation of α, whereas we omit the algorithm for
β due to symmetry.

168 X. Hu, J. Pei, and Y. Tao

The above discussion results in our final query algorithm as shown in Algorithm 2.
It is easy to see that the query time is O(1).

4 Extensions

In this section, we discuss several extensional issues. First, in Sections 4.1 and 4.2, we
will explain how to use the structure of Theorem 1 (without any modification) to answer
two other useful queries, thus further demonstrating the power of our techniques. Then,
Section 4.3 will present the I/O-efficient counterpart of Theorem 1.

4.1 Position Constrained Queries

In our current definition, the result of a shortest unique query can start and end anywhere
in the data string D. Next, we formulate a variant where a query can specify the
permissible ranges for the endpoints of its result:

Position Constrained Query. Such a query specifies (i) a substring q = D[x : y],
and (ii) two ranges rstart = [s1, s2] and rend = [e1, e2] both in the domain [1, n].
It returns (if exists) a substring D[i : j] with the minimum length such that
• D[i : j] is unique
• D[i : j] contains q
• i ∈ [s1, s2] and j ∈ [e1, e2].

Since i ≤ x and j ≥ y must always hold, it suffices to consider that s2 ≤ x and e1 ≥ y.
For example, in Figure 1, consider a query with q = D[4 : 5] (as shown) and rstart =

[3, 4] and rend = [8, 9]. Then, D[3 : 6] is no longer a legal answer because its right
endpoint is not in rend . Instead, the query should return D[4 : 8] = abaab.

Queries with s2 = x and e1 = y. Let us first consider a special class of position
constrained queries, where s2 and e1 always equal x and y, respectively. Interestingly,
any query outside the class actually has the same result as a query inside the class, as
explained later. Thus, solving this class of queries is the key.

Lemma 8. Consider a position constrained query with q = D[x : y], rstart = [s, x],
and rend = [y, e]. Then:

– If D[s : e] is repeating, the query has no result.
– Otherwise, the result is the shortest of the following 4 candidates:

1. D[x : y] if it is unique;
2. MUS leftfix (x) if its right endpoint is in rend ;
3. MUS rightfix (y) if its left endpoint is in rstart ;
4. The shortest MUS (breaking ties arbitrarily) that (i) contains q, (ii) has its left

endpoint in rstart , and (iii) has its right endpoint in rend . No such candidate
exists if no MUS satisfies these conditions.

Proof. The lemma’s correctness follows from an argument almost identical to the one
we used to prove Lemma 3.

Shortest Unique Queries on Strings 169

With our experience with Lemma 3, it should be quite clear that we only need to
clarify how to find Candidate 4, because all the other candidates and the necessary
uniqueness checking can be done in O(1) time under the O(n) space budget.
Furthermore, it is easy to see that the task of finding Candidate 4 boils down to the
following problem:

Position Constrained Containment Min (PCCM). Let I be a set of m ≤ n
intervals in the domain [1, n] such that no two intervals contain each other (a
requirement inherited from Lemma 4). Given intervals [x, y], [s, x], [y, e] all in
the domain [1, n], a PCCM query returns the shortest interval in I (breaking ties
arbitrarily) that (i) contains [x, y], (ii) has its left endpoint in [s, x], and (iii) has
its right endpoint in [y, e]. We want to store I in a data structure to answer such
queries efficiently.

The structure we need is exactly the one described in Section 3.2 for solving the
containment min query, namely, the α and β arrays, and an RMQ index. A PCCM
query is also answered by a single RMQ, which fetches the shortest interval in
{Ia, Ia+1, ..., Ib} for a pair of a and b carefully chosen as follows2:

a =⎧⎨
⎩

α(y) if s = 1 or β(s− 1) = nil
nil if β(s− 1) = m
max{β(s− 1) + 1, α(y)} otherwise

b =⎧⎨
⎩

β(x) if e = n or α(e + 1) = nil
nil if α(e + 1) = 1
min{α(e+ 1)− 1, β(x)} otherwise

These values ensure that

– if a = nil or Ia does not cover [x, y], then the PCCM query has no answer;
– otherwise, {Ia, Ia+1, ..., Ib} includes all and only the intervals of I containing
[x, y] whose left and right endpoints fall in [s, x] and [y, e], respectively.

The PCCM query algorithm is exactly the same as Algorithm 2 except that, at Lines 1
and 2, we should replace a and b with the ones given above.

General Queries. Now we consider position constrained queries with arbitrary q =
D[x : y], rstart = [s1, s2], and rend = [e1, e2]. As promised, each such query can be
converted to one in the special class we have discussed:

Lemma 9. To answer a positioned constrained query with q = D[x : y], rstart =
[s1, s2], and rend = [e1, e2], we can simply return the result of the position constrained
query with q′ = D[s2 : e1], r′start = [s1, s2], and r′end = [e1, e2].

2 We follow the convention that max{v, nil} = nil and min{v,nil} = nil for any integer v.

170 X. Hu, J. Pei, and Y. Tao

Proof. The lemma follows from the fact that the answer for the first query must contain
D[s2 : e1].

We thus conclude with:

Theorem 2. Given a data string of length n, we can pre-compute in O(n) time an
index structure that consumes O(n) space, and answers any position constrained query
in O(1) time.

4.2 Find-All Queries

A shortest unique query may have more than one answer. For example, consider again
q = D[4 : 5] = ab in Figure 1. Besides D[3 : 6], both D[2 : 5] = bbab and
D[4 : 7] = abaa can be returned as a query result. Motivated by this, we define a new
operation to retrieve all these possible results:

Find-All Query. Given a substring q = D[x : y], such a query returns all the
substrings of D whose lengths are the minimum among the unique substrings of D
containing q.

We will denote by k the number of substrings returned by a query (e.g., a find-all query
with q = D[4 : 5] returns k = 3 substrings). Next, we describe an algorithm that
answers such a query in O(k) time.

We achieve the purpose using position constrained queries. First, run a (normal)
shortest unique query to get an answer string D[i : j]. Let � = j − i + 1 be the length
of this string. The value i breaks the interval [1, x] into two disjoint parts: [1, i− 1] and
[i+ 1, x]. Now we can use two position constrained queries to find the next answers, if
any. Due to symmetry, it suffices to explain how to do so for [1, i−1]. We run a position
constrained query with q′ = D[x : y], rstart = [1, i − 1], and rend = [y, n]. A crucial
observation is that, if this query returns a string—say D[i′ : j′]—of length greater than
�, then we can assert that the original find-all query has no result substring that starts
within D[1 : i − 1]. On the other hand, if D[i′ : j′] indeed has length � (note that its
length cannot be shorter than �), we have found another answer for the find-all query,
after which we use i′ to break [1, i− 1] into even smaller intervals for recursion.

Algorithm 3 describes the above strategy in detail. To answer a find-all query, simply
call FIND-ALL(D[x : y], [1, x], �).

Lemma 10. Our algorithm answers a find-all query in O(k) time.

Proof. Suppose that the j-th (1 ≤ j ≤ k) answer of the final-all query starts at position
ij , such that 1 ≤ i1 < i2 < ... < ik ≤ x. Clearly, these k positions break [1, x]
into at most 2k + 1 disjoint parts: [1, i1 − 1], i1, [i1 + 1, i2 − 1], ..., ik, [ik + 1, x]. Our
algorithm issues a position constrained query for each part. The query time then follows
from Theorem 2.

Thus we have proved:

Theorem 3. Given a data string of length n, we can pre-compute in O(n) time an
index structure that consumes O(n) space, and answers any find-all query in O(k)
time, where k is the number of substrings reported.

Shortest Unique Queries on Strings 171

Algorithm 3. FIND-ALL (D[x : y], [s1, s2], �)

Input: D[x : y] is a query substring, [s1, s2] is an interval in the domain [1, n], and � is
the length of the shortest unique substrings containing D[x : y].

Output: All the shortest unique substrings containing q whose left endpoints are in
[s1, s2].

1 run a position constrained query with q = D[x : y], rstart = [s1, s2], and rend = [y, n]
2 if the query returns nil then
3 return ∅
4 D[i : j] ← the string returned by the query
5 if the length of D[i : j] > � then
6 return ∅
7 S1 ← FIND-ALL(D[x : y], [s1, i− 1], �)
8 S2 ← FIND-ALL(D[x : y], [i+ 1, s2], �)
9 return {D[i : j]} ∪ S1 ∪ S2

4.3 External Memory

The previous discussion has concentrated on the RAM model. In this section, we
consider shortest unique queries in the standard external memory (EM) model [1].
Under this model, the machine is equipped with a disk that is formated into blocks
of size B words, and with internal memory of M ≥ 2B words. An I/O exchanges a
block of data between the disk and memory. The space of a structure is measured by
the number of disk blocks it occupies, and the time of an algorithm is measured by the
number of I/Os it performs.

The structure of Theorem 1 works directly in external memory. This means that one
can simply store the structure by treating the disk as virtual memory. Given that the
structure uses O(n) words, the number of blocks it occupies is O(n/B), where B is
the number of words in a block. To answer a shortest unique query, one can simply
apply the algorithm of Theorem 1 by again treating the disk as virtual memory. As the
algorithm performs only O(1) CPU calculation and probes O(1) memory locations, its
I/O cost is definitely bounded by O(1).

Our structure can also be constructed efficiently. Remember that it has the following
components:

– The MUS leftfix and MUS rightfix arrays (see Figure 2)
– The α and β arrays (Figure 3)
– An RMQ structure.

Both the MUS leftfix andMUS rightfix arrays can be built using the algorithm of [7] in
O(SORT (n)) I/Os, provided that a suffix array [8] is given, where O(SORT (n)) is the
number of I/Os needed to sort n elements. The suffix array itself can also be computed
in O(SORT (n)) I/Os [3]. After the MUS leftfix and MUS rightfix arrays are ready, we
can then obtain the set M of MUS’s, sorted by left endpoint, in O(SORT (n)) I/Os.
Then, the α and β arrays can be built using Algorithm 1 in O(n/B) I/Os. An RMQ
structure can also be created from M in O(n/B) I/Os [2].

172 X. Hu, J. Pei, and Y. Tao

We now conclude with the last main result of this paper:

Theorem 4. Given a data string of length n, we can pre-compute in O(SORT (n)) I/Os
an index structure in external memory that occupies O(n/B) blocks, and answers any
shortest unique query in O(1) I/Os.

Acknowledgements. Xiaocheng and Yufei Tao were supported in part by projects GRF
4165/11, 4164/12, and 4168/13 from HKRGC. Jian Pei was supported by an NSERC
Discovery grant and a BCIC NRAS Team project.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
CACM 31(9), 1116–1127 (1988)

2. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

3. Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory suffix array
construction. ACM Journal of Experimental Algorithmics, 12 (2008)

4. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-problem, with
applications to LCA and LCE. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

5. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. of
Comp. 13(2), 338–355 (1984)

6. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In: Kulikov,
A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 172–181. Springer,
Heidelberg (2014)

7. Ilie, L., Smyth, W.F.: Minimum unique substrings and maximum repeats. Fundam.
Inform. 110(1-4), 183–195 (2011)

8. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J.
of Comp. 22(5), 935–948 (1993)

9. Pei, J., Wu, W.C.-H., Yeh, M.-Y.: On shortest unique substring queries. In: ICDE,
pp. 937–948 (2013)

10. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings queries in
optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM
2014. LNCS, vol. 8327, pp. 503–513. Springer, Heidelberg (2014)

Online Multiple Palindrome Pattern Matching�,��

Hwee Kim and Yo-Sub Han

Department of Computer Science, Yonsei University
50, Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, Republic of Korea

{kimhwee,emmous}@cs.yonsei.ac.kr

Abstract. A palindrome is a string that reads the same forward and
backward. We say that two strings of the same length are pal-equivalent
if for each possible center they have the same length of the maximal
palindrome. Given a text T of length n and a set of patterns P1, . . . , Pk,
we study the online multiple palindrome pattern matching problem that
finds all pairs of an index i and a pattern Pj such that T [i−|Pj |+1 : i] and
Pj are pal-equivalent. We solve the problem in O(mkM) preprocessing
time and O(mkn) query time using O(mkM) space, where M is the sum
of all pattern lengths and mk is the longest pattern length.

1 Introduction

A palindrome is a string that reads the same forward and backward. If a substring
of a string is a palindrome, we say that the string has a palindromic substring
or palindromic structure. It is crucial to find palindromes and identify similar
palindromic structures in bio sequence analysis [8]. Many researchers examined
the properties of palindromic structures in strings [2–6] and proposed efficient
algorithms on palindromic structures [7, 10, 12]. We focus on the palindrome
pattern matching problem introduced by I et al. [11]—they define two strings
of the same length to be pal-equivalent if for each possible center they have
the same length of the maximal palindrome. Given a text T of length n and a
pattern P of length m, the palindrome pattern matching problem is to find all
indices i such that T [i−m+1 : i] and P are pal-equivalent. I et al. [11] presented
two algorithms that solve the palindrome pattern matching for an arbitrary size
alphabet: One solves the problem in O(n + m) time and the other solves the
problem in O((n +m) log σ + r) time, where σ is the alphabet size and r is the
number of matching occurrences.

We notice that both algorithms by I et al. [11] require a preprocessing step of
T , which makes algorithms unsuitable for an extremely large text or a stream
text. This motivates us to consider the online pattern matching, where we should
report the matching for each index i while reading T online. We tackle the

� This research was supported by the Basic Science Research Program through NRF
funded by MEST (2012R1A1A2044562).

�� Kim was supported by NRF (National Research Foundation of Korea) Grant funded
by the Korean Government (NRF-2013-Global Ph.D. Fellowship Program).

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 173–178, 2014.
c© Springer International Publishing Switzerland 2014

174 H. Kim and Y.-S. Han

online multiple palindrome pattern matching based on a modification of the
Aho-Corasick automaton [1]. For multiple patterns P1, . . . , Pk, our algorithm
requires O(mkM) preprocessing time and runs in O(mkn) query time using

O(mkM) space, where M =

k∑
i=1

|Pi| and mk = max(|Pi|).

2 Preliminaries

Given a finite set Σ of characters and a string w over Σ, let |w| be the length
of w and w[i] be the symbol of w at position i, for 1 ≤ i ≤ |w|. We de-
fine the empty string λ as a string of length 0. We use w[i : j] to denote
a substring w[i]w[i+1] · · ·w[j], where 1 ≤ i ≤ j ≤ |w|. A language over Σ
is a set of strings over Σ. A finite-state automaton (FA) A is specified by
A = (Q,Σ, δ, s, F), where Q is a set of states, Σ is an alphabet, δ ⊆ Q×Σ ×Q
is a set of transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states.
A string w is accepted by A if there is a labeled path from s to a state in F
such that the path spells out w. The language L(A) of an FA A is the set of all
strings accepted by A. For more background knowledge in automata theory, the
reader may refer to textbooks [9, 13].

For a string w, let wR denote the reversed string of w. A string w is called

a palindrome if w = wR. The radius of a palindrome w is |w|
2 . The center of a

palindromic substring w[i : j] of a string w is i+j
2 . We call a palindromic substring

w[i : j] the maximal palindrome at the center i+j
2 if no other palindromes at the

center i+j
2 have a larger radius than w[i : j]. Let Pals(w) be the set of pairs of

the center and the radius of all center-distinct maximal palindromes [10]. For
two strings w and z of the same length, we say that w and z are pal-equivalent
if Pals(w) = Pals(z).

Definition 1 (Online Multiple Palindrome Pattern Matching). Given a
text T of length n and patterns P1, . . . , Pk of lengthm1, . . . ,mk, find all pairs of an
index i and a corresponding pattern Pj such that Pals(Pj) = Pals(T [i−mj+1 : i])
after reading each character T [i].

For the online pattern matching, we call the time to preprocess the patterns
preprocessing time, and the time to read the text to find matchings query time.

3 The Algorithm

The basic idea of the algorithm is to process multiple patterns at once with a
single automaton based on the idea of the Aho-Corasick automaton [1]. Assume
that given patterns P1, . . . , Pk of length m1, . . . ,mk are sorted by ascending
order with respect to the length of the pattern and M is the sum of all pattern
lengths. Before we design an algorithm, we have the following observation:

Online Multiple Palindrome Pattern Matching, 175

Observation 1. For strings w, z and an index i, if there exists (c, r) ∈ Pals(w)
where c ≤ i and c+r−0.5 ≥ i, then z[i] = z[2r−i]. If there is no (c, r) satisfying
the condition, then z[i] /∈ {z[2r−i] | (c, r) ∈ Pals(w) and c+ r − 0.5 = i− 1}.

Note that z[i] is computed based on z[l]’s for l < i, instead of characters in w.
Based on Observation 1, we define a variable pattern of a pattern P as follows:

Definition 2. For a pattern P of length m over Σ of size t, a variable pat-
tern P ′ is defined by an array A[m] of variables and an array B[m] of unequal
conditions satisfying the following conditions:

1. P ′[i] = A[li] for 1 ≤ i, li ≤ m.
2. If there exists (c, r) ∈ Pals(P) where c ≤ i and c+r−0.5 ≥ i, then li = l2r−i,

and thus, P ′[i] = P ′[2r−i].
3. Otherwise, for all j ∈ {2r − i | (c, r) ∈ Pals(P) and c + r − 0.5 = i − 1},

B[i] = j and B[j] = i, and thus, P ′[i] �= P ′[j].

Now we construct P ′
1, . . . , P

′
k simultaneously by Algorithm 1. All variable

patterns share A while each variable pattern P ′
j has a distinct array B[j][m] of

unequal conditions in the algorithm. Fig. 1 shows an example of P ′ and B.

A[1]A[2]A[3]A[2]A[4]A[5]P ′ =

A G C G T AP = B

1

2

3

4

5

1, 3, 4, 5

1, 2, 4

1, 2, 3, 5

2, 4

A[4] �= A[1],A[2],A[3],A[5] ⇒

2, 3, 4

Fig. 1. A variable pattern P ′ and an array B of unequal conditions for P = AGCGTA

Based on Observation 1 and Definition 2, we establish the following result:

Lemma 1. After running Algorithm 1, if there is a surjection of A to Σ where
A[i] �= A[j] holds for all i, j such that j ∈ B[l][i], then Pals(P ′

l) = Pals(Pl).
Moreover, given a string w such that Pals(w) = Pals(Pl), there exists a surjec-
tion of A to Σ such that P ′

l = w.

Once we have P ′
1, . . . , P

′
k, we can construct a special automaton B = (Q,A ∪

{#}, δ : Q × A → Q, s, F,Σ,B, δf : Q → Q,H : Q → 2A×(A∪{#}), δp : Q → Q).
Note that five parameters—Σ,B, δf ,H, δp—are added to the definition of a tra-
ditional FA. The automaton B simulates the Aho-Corasick algorithm [1], using
P ′
1, . . . , P

′
k as patterns. In the Aho-Corasick algorithm, when there occurs a mis-

match, the algorithm checks the longest suffix of the prefix of T read so far. The
automaton B simulates the process by δf , and additionally, changes surjection
of A to Σ according to H. The suffix transition function δp contains transitions
to find multiple matching occurrences on a single state. Algorithm 2 constructs

176 H. Kim and Y.-S. Han

B. We use a supplementary function StateForVP to return the state denoting
the end of a given variable pattern. Fig. 2 shows an example of B.

Algorithm 1. ConstructMultiVariablePattern

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: P ′

1, . . . , P
′
k,A[mk],B[k][mk]

1 for j ← 1 to k do
2 compute Pals(Pj) // we insert (0.5, 0) to Pals(Pj) for convenience

3 c ← 0.5, d ← 0, s ← 0
4 for i ← 1 to mj do
5 find r such that (c, r) ∈ Pals(Pj)
6 if d ≥ i then P ′

j [i] ← P ′
j [2r−i] else

7 s ← s+ 1, P ′
j [i] ← A[s]

8 for each (c′, r′) ∈ Pals(Pj) do
9 if c′ + r′ − 0.5 = i− 1 then

10 add 2r′ − i to B[j][i], add i to B[j][2r′−i]

11 find r1, r2 such that (c+ 0.5, r1), (c+ 1, r2) ∈ Pals(Pj)
12 d ← max(d, c+ r1, c+ r2 + 0.5), r ← r + 1

13 return P ′
1, . . . , P

′
k,A,B

Algorithm 2. ConstructMultiAutomaton

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: B = (Q,A ∪ {#}, δ, s, F,Σ,B, δf ,H, δp)

1 ConsturctMultiVariablePattern(P1, . . . , Pk)
2 add qλ to Q and let p1, . . . , pk ← qλ
3 for i ← 1 to mk + 1 do
4 for each P ′

j where i ≤ mj + 1 do
5 let P ′

j [i] = A[l] and pj = qs
6 if i �= mj + 1 then δ(qs,A[l]) ← qs·l, add qs·l to Q if i = 2 then

δf (qs) ← qλ, add (A[1] ← #) to H(qs) else if i > 2 then
7 find the smallest i′ and corresponding j′ such that

Pals(P ′
j′ [1 : i−i′]) = Pals(P ′

j [i
′ : i−1])

8 δf (qs) ←StateForVP(P ′
j′ [1 : i−i′])

9 for g ← 1 to i− i′ do
10 add (A[h] ← A[h′]) to H(qs) for P ′

j′ [g] = A[h] and

P ′
j [g+i′−1] = A[h′]

11 for each A[h] in P ′
j [1 : i−1] without injective function in H(qs) do

add (A[h] ← #) to H(qs)

12 if i = mj then add qs·l to F find the largest i′ and corresponding j′

such that Pals(P ′
j′ [1 : i′]) = Pals(P ′

j [i−i′+1 : i])

13 if i′ = mj′ then δp(pj) ←StateForVP(P ′
j′) pj ← qs·l

14 return (Q,A ∪ {#}, δ, qλ, F,Σ,B, δf ,H, δp)

Online Multiple Palindrome Pattern Matching, 177

[
A1←A2
A2←#

]
A1 A2 A1 A3 A4

[
A1←A2
A2←A1

]

A3
[
A1←A2
A2←A3
A3←#

]

A4

⎡
⎣A1←A2
A2←A3
A3←A4
A4←#

⎤
⎦

A2

⎡
⎣A1←A2
A2←A1
A3←#
A4←#

⎤
⎦

[
A1←#

] [
A1←A2
A2←A1

] [
A1←A2
A2←A1

]

Fig. 2. An automaton B for P1 = AGA,P2 = ACTG,P3 = ATAT,P4 = TCTGC.
Variables A[i] are written as Ai for better readability. Dashed transitions are failure
transitions and dotted transitions are suffix transitions.

Algorithm 3. FindMultiPalindromeMatching

Input: Patterns P1, . . . , Pk of length m1, . . . ,mk over Σ of size t
Output: (i, Pj) such that Pals(Pj) = Pals(T [i−mj+1 : i])

1 ConstructMultiAutomaton(P1, . . . , Pk)
2 for i ← 1 to mk do A[i] ← # ql ← qλ // current state

3 for i ← 1 to n do
4 while one of the following conditions holds for all A[j] such that

δ(ql,A[j]) �= ∅
1. ql ∈ F
2. A[j] �= T [i],#
3. A[j] = # and there exists j′ ∈ B[j][g] such that A[j′] = T [i] and

δ(ql,A[j]) =StateForVP(P ′
g [1 : |l|+1])

5 do
6 for each (A[h] ← A[h′]) ∈ H(ql) do A[h] ← A[h′] ql ← δf (ql)

7 if A[j] = # then A[j] ← T [i] ql ← δ(ql,A[j])
8 if ql ∈ F then return (i, Pj′) where StateForVP(P ′

j′) = ql pl ← ql
9 while δp(pl) �= ∅ do

10 pl ← δp(pl)
11 return (i, Pj′) where StateForVP(P ′

j′) = pl

Now we are ready to design an algorithm that solves the problem using B.
Algorithm 3 processes T in B and reports all matching end-indices and the
corresponding matching patterns.

Lemma 2. Algorithm 3 returns all pairs of an index i and a pattern Pj such
that Pals(Pj) = Pals(T [i−mj+1 : i]).

178 H. Kim and Y.-S. Han

Theorem 2. Given a text T of length n and a pattern P of length m, we can
solve the online multiple palindrome pattern matching problem with O(mkM) pre-
processing time and O(mkn) query time using O(mkM) space.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Communications of the ACM 18(6), 333–340 (1975)

2. Allouche, J.-P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoretical Computer Science 292(1), 9–31 (2003)

3. Anisiu, M.-C., Anisiu, V., Kása, Z.: Total palindrome complexity of finite words.
Discrete Mathematics 310(1), 109–114 (2010)

4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity
of infinite words. International Journal of Foundations of Computer Science 15(2),
293–306 (2004)

5. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de luca and rauzy. Theoretical Computer Science 255(1-2), 539–553 (2001)

6. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. European
Journal of Combinatorics 30(2), 510–531 (2009)

7. Groult, R., Prieur, É., Richomme, G.: Counting distinct palindromes in a word in
linear time. Information Processing Letters 110(20), 908–912 (2010)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

9. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison–Wesley (1979)

10. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Counting and verifying maximal
palindromes. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 135–146. Springer, Heidelberg (2010)

11. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Palindrome pattern matching.
Theoretical Computer Science 483, 162–170 (2013)

12. Manacher, G.: A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM 22(3), 346–351 (1975)

13. Wood, D.: Theory of Computation. Harper & Row (1986)

Indexed Matching Statistics

and Shortest Unique Substrings

Djamal Belazzougui and Fabio Cunial

Helsinki Institute for Information Technology (hiit)
Department of Computer Science, University of Helsinki, Finland�

name.surname@helsinki.fi

Abstract. The unidirectional and bidirectional matching statistics
between two strings s and t on alphabet Σ, and the shortest unique
substrings of a single string t, are the cornerstone of a number of large-
scale genome analysis applications, and they encode nontrivial structural
properties of s and t. In this paper we compute for the first time the
matching statistics between s and t in O((|s| + |t|) log |Σ|) time and in
O(|s| log |Σ|) bits of space, circumventing the need for computing the
depths of suffix tree nodes that characterized previous approaches. Sym-
metrically, we compute for the first time the shortest unique substrings
of a string t in O(|t| log |Σ|) time and in O(|t| log |Σ|) bits of space. A
key component of our methods is an encoding of both the unidirectional
and the bidirectional statistics that takes 2|t| + o(|t|) bits of space and
that allows constant-time access to every position.

1 Introduction and Motivation

Let s and t be nonempty strings on alphabet Σ = 1..σ, let s and t be their
reverse, and let $ = 0 be a character not in Σ that is smaller than any character
in Σ. In this paper we study the following concepts:

Definition 1. Given two strings s and t and a threshold τ > 0, the unidirec-
tional matching statistics MSt,s,τ of t with respect to s is a vector of length |t|
that stores at index i ∈ [0..|t| − 1] the length of the longest prefix of t[i..|t| − 1]
that occurs at least τ times in s.

Definition 2. Given a string t and a threshold τ > 0, the unidirectional dis-
tinguishing statistics DSt,τ of t is a vector of length |t| that stores at index
i ∈ [0..|t| − 1] the length of the shortest prefix of t[i..|t| − 1]$ that occurs at most
τ times in t.

We drop any subscript fromMSt,s,τ and DSt,τ whenever s, t or τ are clear from
the context. Note that DSt,τ [i] = MSt,t,τ+1[i] + 1 for every i and τ .1 MSt,s,1 has

� This work was partially supported by Academy of Finland under grant 250345 (Cen-
ter of Excellence in Cancer Genetics Research).

1 MS and DS have often been regarded as different problems in the literature: we
thank an anonymous reviewer for making this connection explicit.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 179–190, 2014.
c© Springer International Publishing Switzerland 2014

180 D. Belazzougui and F. Cunial

also been called external matching [23], and DSt,1 has been called distinguishing
prefix or shortest unique substring elsewhere [10]. By extension, RSt = DSt,1− 1
can be dubbed the unidirectional repeating statistics of t, since RSt[i] is the
length of the longest substring that starts at position i and that occurs at least
twice in t. RSt has also been called internal matching elsewhere [23]. MSt,s,1 and
DSt,1 are almost as old as the suffix tree itself [23], with first applications to
file transmission [22]. We are also interested in the bidirectional versions of such
concepts:

Definition 3. Given two strings s and t and a threshold τ , the bidirectional
matching statistics BMSt,s,τ of t with respect to s is a vector of length |t| that
stores at index i ∈ [0..|t| − 1] the length of the longest substring t[x..y] with
x ≤ i ≤ y that occurs at least τ times in s.

Bidirectional distinguishing and repeating statistics, denoted respectively by
BDSt,τ and BRSt,τ , can be defined in the same way. Computing MSt,s,1 is a
classical problem in string processing: the textbook solution scans t from left to
right while navigating suffix links and child links in the suffix tree of s. Symmet-
rically, t can be scanned from right to left, while taking Weiner links and parent
links in the (compressed) suffix tree of s [13]. Computing the depths of suffix
tree nodes is the bottleneck of both approaches: such depths can be encoded
either explicitly in Θ(|s| log |s|) bits of space, and decoded in constant time [13],
or implicitly on top of a compressed index, and decoded in O(logε |s|) time [18].
In this paper we completely circumvent the need for computing the depths of
suffix trees nodes, by indexing both s and s and by performing both a forward
and a backward pass over t. This allows to compute MSt,s,τ in O((|s|+ |t|) log σ)
time and O(|s| log σ) bits of space for the first time, for any τ .

DSt,1 has been previously computed either in quadratic time using suffix trees
[14], or in linear time using O(|t| log |t|) bits of space [10,20]. We adapt our MS
algorithm to compute DSt,τ for the first time in O(|t| log σ) bits of space and in
O(|t| log σ) time, for any τ .

A key component of our methods is an efficient encoding of MSt,s and of
DSt, that takes 2|t| + o(|t|) bits of space and that allows to retrieve MS[i] and
DS[i] in constant time for any i. This scheme uses ideas that have been previously
applied to encode depths in compressed suffix trees [18]. Our index can represent
BMSt,s and BDSt using just o(|t|) bits of additional space, while still supporting
constant-time access to the statistics at any position. Note that BMSt,s has
already been computed from MSt,s in the past [19], but it has been encoded in
O(|t| log |t|) bits of space.

Before proceeding, we note that fast and succinct representations of MS and
DS enable a number of large-scale applications. For example, the profiles of
MS and DS can be used to discriminate between sequencing errors and single-
nucleotide variations in large read collections [15], and DS has applications in
primer design for PCR, in comparative genomics [8], and in summarizing the
context of the occurrences of a pattern in a large text collection [14]. More
interestingly, MS and DS encode a number of structural properties of s and t.
For example, recall that a repeat of t is any string w that occurs at least twice in t.

Indexed Matching Statistics 181

A repeat w is maximal if both awb and cwd occur in s, with {a, b, c, d} ⊆ Σ,
a �= c and b �= d. An occurrence i of a repeat w in t is said to be exposed if t[i..i+
|w|−1] = w and if no substring t[i′..j′] repeats in t, where i′ ≤ i, j′ ≥ i+ |w|−1,
and (i′, j′) �= (i, i + |w| − 1). A near-supermaximal repeat of t is a repeat with
at least one exposed occurrence. Clearly there is a near-supermaximal repeat
exposed at position i in t if and only if DSt,1[i] = DSt,1[|t|− i−DSt,1[i]+ 1], and
its length is DSt,1[i]− 1.

Symmetrically, recall that a minimal absent word of s is a string awb with
w ∈ Σ∗ and {a, b} ⊆ Σ, such that both aw and wb occur in s, but awb does not
occur in s. Clearly t[j..j+MSt,s,1[j]] is a minimal absent word of s if and only if
MSt,s,1[j + 1] ≥ MSt,s,1[j], in which case t[j + 1..j +MSt,s,1[j]− 1] is a maximal
repeat of s.

Recall also that a maximal exact match (MEM) between s and t is a triple
(i, j, �) where 0 ≤ i < |s|, 0 ≤ j < |t|, and 1 ≤ � ≤ min{|s|, |t|}, such that
s[i..i+ �− 1] = t[j..j+ �− 1], s[i− 1] �= t[j− 1] and s[i+ �] �= t[j+ �] (we assume
that s[−1] �= t[−1] and that s[|s|] �= t[|t|]). A maximal unique match (MUM)
between s and t is a MEM (i, j, �) such that string s[i..i+ � − 1] occurs exactly
once in s and in t. MEMs, MUMs and their variants are used routinely in whole-
genome alignment [11]. If MSt,s,1[j] = MSt,s,1[|t| − j −MSt,s,1[j]], then there is
a MEM (i, j,MSt,s,1[j]) at position j in t, and this is the longest MEM starting
at j. This MEM is unique in t iff MSt,s,1[j] ≥ DSt,1[j], and it is unique in s iff
DSt,s,1[j] is defined, where DSt,s,τ is a binary version of distinguishing statistics.
Note that DSt,s,1 can be implemented using MSt,s,2 and a bitvector flag such
that flag[i] = 1 iff t[i..i + MSt,s,1 − 1] occurs exactly once in s: DSt,s,1[i] is
defined if and only if flag[i] = 1, in which case DSt,s,1[i] = MSt,s,2[i] + 1. We
can thus decide in constant time whether a MUM starts at any position in t,
and compute the length of such MUM.

Finally, given two positions j > i in t, MSt,s,1 allows to compute the aver-
age common substring dissimilarity measure [21] between t[i..j] and the whole
s in O(j − i) time, as well as the number k of factors in the relative LZ77 fac-
torization of t[i..j] with respect to s in O(k) time. Besides having connections
to Kolmogorov complexity and to the cross-entropy of finite-memory random
sources [5], these measures are now the cornerstone of popular whole-genome
comparison tools used in phylogenetics [21].

2 Computing and Indexing MS and DS

We denote by SAs and BWTs the suffix array and the Burrows-Wheeler trans-
form of a string s, respectively. Recall that the suffix array SAs[0, |s|] of s is
the vector of indices such that s[SAs[i], |s|]$ is the i-th smallest suffix of s$
in lexicographical order, and the Burrows-Wheeler transform of s is the string
BWTs[0, |s|] satisfying BWTs[i] = s[SAs[i] − 1] if SAs[i] > 0, and BWTs[i] =
$ otherwise. We define the suffix array range, or identically the BWT range
(iw, jw)s of a substring w in string s, as the maximal interval [iw..jw] in SAs

such that all the suffixes s[SAs[i]..|s| − 1] for iw ≤ i ≤ jw are prefixed by w.

182 D. Belazzougui and F. Cunial

We drop the subscript s from a range whenever the reference string is implied
by the context. Incidentally, note that RSt[i] = max{LCPt[j], LCPt[j+1]}, where
SA[j] = i and LCPt is the longest common prefix array of string t, i.e. LCPt[j]
is the longest prefix shared by suffixes t[SAt[j]..|t|]$ and t[SAt[j − 1]..|t|]$ for all
j ∈ [1..|t|]. Finally, we denote by ¬s the complement of a bitstring s, i.e. ¬s is
the string t that satisfies t[i] = 1− s[i] for 0 ≤ i < |s|.

It is clear that MSt,s,τ [i] ≥ 0, DSt,τ [i] ≥ 1 and RSt[i] ≥ 0 for all i and τ . The
key additional property on which most of this paper rests is that MSt,s,τ , DSt,τ
and RSt are δ-monotone sequences [17]:

Definition 4. Let a = a0a1 . . . an and δ = δ1δ2 . . . δn be two sequences of non-
negative integers. Sequence a is said to be δ-monotone if ai − ai−1 ≥ −δi for all
i ∈ [1..n].

In particular, MSt,s,τ [i] − MSt,s,τ [i − 1] ≥ −1, DSt,τ [i] − DSt,τ [i − 1] ≥ −1
and RSt[i] − RSt[i − 1] ≥ −1 for all i ∈ [1..|t| − 1]. Other popular examples
of δ-monotone sequences in string processing are the permuted LCP array [18],
and the longest previous factor array used in the LZ77 factorization of a string
t, with δi = 1 for all i ∈ [1..|t| − 1], and the lengths of the partial matches when
searching a text t for a string w with the KMP algorithm2.

It is natural to representMSt,s,τ in succinct space by encoding the consecutive
offsets MSt,s,τ [i]−MSt,s,τ [i − 1]. It turns out that the same data structure can
answer queries on MSt,s,τ [i] as well.

Lemma 1. There is a data structure that takes 2|t| + o(|t|) bits of space and
that answers queries on MSt,s,τ [i] and on MSt,s,τ [i] for any i in constant time.

Proof. We follow the approach described in [18]. Specifically, we build a sequence
mst,s,τ of 2|t| bits by appending, for each i ∈ [0, |t| − 1] in increasing order, the
binary string:

00 · · · · · · · · · · · ·0︸ ︷︷ ︸
MSt,s,τ [i]−MSt,s,τ [i−1]+1

times

1

where we set MSt,s,τ [−1] = 1 for convenience. The resulting array contains either
2|t| or 2|t|−1 bits: in the latter case, we append a final zero. Note that the number
of zeros before the ith one in ms equals i + MS[i]. Then, index ms to support
select operations3 in constant time using 2|t|+o(|t|) bits. We can thus compute
MS[i] for any i ∈ [0, |t| − 1] by using the formula select(ms, 1, i)− 2i.

For a position i ∈ [0, |t|−1], consider now the longest prefix of t̄[i..|t|−1] that
occurs in s, and assume that i+MSt,s,τ [i] = |t|− j. Then substring t[j..|t|− i−1]
occurs in s, but substring t[j−1..|t|−i−1] does not occur in s. Since the number
of zeros before the (j − 1)th one in ms is j − 1 +MSt,s,τ [j − 1] < |t| − i and the

2 Let ix and ix+1 be the starting positions in t of two consecutive partial matches
determined by KMP. In particular, let t[ix..ix+ax−1] = w[0..ax−1] and t[ix+1..ix+1+
ax+1−1] = w[0..ax+1−1] for some positive maximal ax and ax+1. Then, ax+1−ax ≥
−δx+1, where δx+1 is the shortest period of w[0..ax − 1].

3 select(A, 1, i) is the position of the ith one in bitvector A, where i starts from zero.

Indexed Matching Statistics 183

number of zeros before the jth one in ms is j+MSt,s,τ [j] ≥ |t|− i, it follows that
the ith zero from the right in ms is preceded by exactly j = |t| − i −MSt,s,τ [i]
ones, therefore MSt,s,τ [i] = 2(|t| − i)− 1− select(ms, 0, |t| − i− 1). ��
Corollary 1. mst,s,τ = ¬mst,s,τ
Proof. Since MSt,s,τ [i] = 2(|t| − i)− 1− select(mst,s,τ , 0, |t| − i− 1) and at the
same time MSt,s,τ [i] = select(mst,s,τ , 1, i)− 2i, the position of the ith one from
the left in mst,s,τ equals the position of the ith zero from the right in mst,s,τ for
all i. ��

We can encode DSt,τ in a similar bitvector dst,τ with 2|t| + 1 + o(|t|) bits,
by appending DS[i] − DS[i − 1] + 1 zeros and a one for every i ∈ [1..|t| − 1].
We assume again DS[−1] = 1, and we append a final zero if ds contains just
2|t| bits. As before DS[i] = select(ds, 1, i) − 2i, but now DSt[i] = 2(|t| − i) +
1 − select(ds, 0, |t| − i). This implies that 2|t| + 1 − select(ds, 0, |t| − i) =
select(dst, 1, i), or in other words that dst = 0 · (¬dst[1..2|t|]).

More generally, the encoding described in Lemma 1 can be used to index any
δ-monotone sequence a0 . . . an−1 in n + an−1 +

∑n−1
i=1 δi bits, by concatenating

ai − ai−1 + δi zeros followed by a one for every i. The number of zeros before
the ith one in this bitvector is ai +

∑i
j=1 δj , thus it is necessary to keep all the

prefix sums of δ to answer queries on ai.
We are interested in applications where the reference string s is fixed, and we

have to output either dss,τ , or mst,s,τ in reply to a query containing t. It turns
out that both bitvectors can be derived from the Burrows-Wheeler transform of
s and of s̄, augmented with the corresponding suffix tree topologies.

Theorem 1. Let BWTs and BWTs be the Burrows-Wheeler transform of a
string s and of its reverse s, indexed to support a backward step in α time.
Assume that we have a representation of the suffix tree topology of s and of s
that supports parent operations in β time. Given a string t and a threshold τ ,
we can compute mst,s,τ in O(|t|(α + β)) time, and in O(log |s| + log |t|) bits of
space in addition to the input and the output.

Proof. We apply twice the algorithm described in [13]. First, we scan t from
right to left, using BWTs and the suffix tree topology of s to determine the runs
of consecutive ones in ms. Specifically, we build a bitvector runs[1..|t|− 1] where
runs[i] = 1 iff MS[i] = MS[i− 1]− 1, i.e. iff there is no zero between the ith and
the (i−1)th ones in ms. Assume that we have the interval (iw, jw)s in BWTs that
corresponds to substring w = t[k..k + MS[k] − 1] (the single-character interval
for k = |t| − 1 can be directly derived from the table C[1..σ] used in backward
search). We try to perform a backward step using symbol a = t[k − 1]: if the
step leads to an interval of size at least τ , we set runs[k] = 1 and we update
the BWT interval to (iaw, jaw)s. Otherwise, we set runs[i] = 0, we update the
BWT interval to the interval of the parent of the proper locus of w in the suffix
tree of s, and we try another backward step with character a. We repeat these
operations until a backward step leads to an interval of size at least τ . Note that,

184 D. Belazzougui and F. Cunial

since we are not using the string depth operation, we don’t know MS[k] for any
k < k∗, where k∗ +MS[k∗] = |t|.

In the second phase we symmetrically scan t from left to right, using BWTs,
the suffix tree topology of s, and vector runs, to build ms. Assume that we have
the interval (iw, jw)s in BWTs that corresponds to substring w = t[k..h−1] such
thatMS[k] ≥ h−k andMS[k−1] = h−k (again, we can derive the interval for t[0]
from the table C[1..σ] used in backward search). We try to perform a backward
step with symbol t[h]: if the step leads to an interval of size at least τ , we continue
issuing backward steps with the following symbols of t, until we reach a position
h∗ in t such that a backward step with character t[h∗] from the interval (iw, jw)s
of substring w = t[k..h∗−1] leads to an interval of size less than τ . We thus know
that MS[k] = h∗−k, so we append h∗−k−MS[k− 1]+1 = h∗−h+1 zeros and
a one to ms. Then, we iteratively replace (iw, jw)s with the interval of the parent
of the proper locus of w in the suffix tree of s, and we try another backward step
with symbol t[h∗], until we reach an interval (iw′ , jw′)s for which such backward
step leads to an interval of size at least τ . Let this interval correspond to substring
w′ = t[k′..h∗ − 1]. Note that MS[k′] > MS[k′ − 1]− 1 and MS[x] = MS[x− 1]− 1
for all x ∈ [k + 1..k′ − 1], therefore runs[x] must be one for x ∈ [k + 1..k′ − 1]
and runs[k′] must be zero, i.e. k′ is the index of the first zero to the right of
position k in runs. We can thus append k′ − k − 1 ones to ms and repeat the
process from substring t[k′..h∗] and its interval in BWTs.

If we store vector runs in the last |t|−1 bits of ms, each iteration of the second
phase of the algorithm overwrites only parts of runs that will not be used in
following iterations. This is easy to see, and is left to the reader. ��

The two-pass approach of Theorem 1 completely avoids string-depth opera-
tions. Recall that computing the depth of a suffix tree node ultimately requires
to decompress a position in the underlying compressed suffix array: if such array
is encoded in O(|s| log σ) bits, the best known time complexity for this operation
is O(logε |s|). Complexity increases when the compressed suffix array is encoded
in |s| log σ+ o(|s|) bits or in |s| log σ(1 + o(1)) bits. Note also that the algorithm
in Theorem 1 uses either BWTs or BWTs at every step, i.e. it does not need to
keep their intervals synchronized. A similar result holds for dss,τ :

Theorem 2. Let BWTs and BWTs be the Burrows-Wheeler transform of a
string s and of its reverse s, indexed to support a backward step in α time.
Assume that we have a representation of the suffix tree topology of s and of s
that supports parent operations in β time. We can compute dss,τ in O(|s|(α+β))
time, and in O(log |s|) bits of space in addition to the input and the output.

Proof. By applying almost verbatim the two-phase approach of Theorem 1. In the
first phasewe build vector runsby trying a backward stepwith character a = s[k−
1] from the interval in BWTs of the longest string that starts at position k and that
occurs more than τ times, i.e. from the interval of stringw = s[k..k+DSs,τ [k]−2].
If this step leads to an interval of size greater than τ , we set runs[k] = 1 and we
repeat from the BWT interval of aw. Otherwise, we set runs[k] = 0, we move to
the interval of the parent of the proper locus of w in the suffix tree of s, and we

Indexed Matching Statistics 185

try another backward step with character a. We repeat these operations until a
backward step leads to an interval of size at most τ .

In the second phase, assume again that we know the interval in BWTs of the
longest string that starts at position k and that occurs more than τ times, i.e.
the interval of string w = s[k..h − 1] with h = k + DSt,τ [k] − 1. We iteratively
move to the interval of the parent of the proper locus of w in the suffix tree of s
and we try a backward step with character a = s[h], until such a step leads to an
interval of size greater than τ . Thanks to runs, we know that the interval from
which the last backward step was taken corresponds to string s[k′..h− 1], where
k′ is the position of the first zero to the right of k in runs. We can thus append
k′ − k − 1 ones to ds and move to string s[k′..h]. We then try backward steps
with the characters at position h+1, h+2, . . . until a backward step reaches an
interval of size at most τ : this gives DS[k′]. ��
Corollary 2. Given a string s, there is a data structure that allows to compute:
(1) dss,τ in O(|s| log σ) time and in O(log |s|) bits of space in addition to the
input and the output; (2) mst,s,τ for any string t, in O(|t| log σ) time and in
O(log |s|+log |t|) bits of space in addition to the input and the output. This data
structure takes 2|s| log σ + O(|s|) bits of space and can be built in O(|s| log σ)
time using O(|s| log σ) bits of space.

Proof. BWTs and BWTs can be built in O(|s| log log σ) time and O(|s| log σ)
bits of space using the algorithm described in [9]. The wavelet trees on BWTs

and BWTs can then be built in O(|s| log σ) time. The suffix tree topologies of
s and s can be built in O(|s| log σ) time using just the corresponding wavelet
trees, using the approach described in [1,2]. ��
Corollary 3. Given a string s, there is a data structure that allows to compute:
(1) dss,τ in O(|s|) time and in O(log |s|) bits of space in addition to the input and
the output; (2) mst,s,τ for any string t, in O(|t|) time and in O(log |s| + log |t|)
bits of space in addition to the input and the output. This data structure takes
2|s| logσ + o(|s| log σ) bits of space and can be built in randomized O(|s|) time
using O(|s| log σ) bits of space.

Proof. Given a bitvector of length n, we can build in O(n) time a data structure
that supports constant-time select queries and that takes 2n+ o(n) bits of space
[4,12]. We achieve the claimed time complexity by plugging in Theorem 1 the
index described in [3], which supports constant-time backward steps and takes
2|s| logσ+o(|s| log σ) bits of space. The latter is built in randomized O(|s|) time
and O(|s| log σ) bits of space, using the algorithm described in [1,2]. The suffix
tree topologies are then built in O(|s|) time from the indexes of [3]. ��

3 Computing and Indexing BMS and BDS

We start by generalizing the algorithm for computing BMS from MS described
in [19], in order to make it work on user-defined blocks, rather than on positions,

186 D. Belazzougui and F. Cunial

of the input string. We say that a pair (i, j) is a matching statistics interval of
string t if i ∈ [0..|t| − 1] and j = i + MSt,s,τ [i] − 1. We say that an interval is
maximal if it is not contained into any other interval, and we denote the list of
all maximal intervals by I. The following properties are immediate, and will be
used extensively in the sequel.

Property 1. There is at most one interval in I that ends at any given position
j in t. Given an interval (i, j), the maximal interval that contains (i, j) is (j −
MSt,s,τ [|t| − j − 1] + 1, j).

Property 2. Let (i0, j0), (i1, j1), . . . , (im, jm) be a subset of I sorted by increasing
starting position. Then

∑m
h=1 ih − ih−1 ≤ |t| and ∑m

h=1 jh − jh−1 ≤ |t|.
It is natural to compute BMSt,s,τ by scanning t and MSt,s,τ while keeping in

memory the active subset of I, i.e. the set of intervals in I that cover the current
position in t. The following algorithm is an alternative to [19]:

Lemma 2 ([19]). BMSt,s,τ can be computed from MSt,s,τ in O(|t|) time and
O(|t| log |t|) bits of space.

Proof. Assume that we are at position k in t, and let I be the subset of I that
contains all the intervals that start before position k and that cover position k,
i.e. all intervals (i, j) ∈ I with j = i+MS[i]−1 and i < k ≤ j. We implement I as
a doubly-linked list, with a node for every distinct length of an interval in I. The
node associated with length � stores all the intervals of length � in I as a doubly-
linked list. We assume that I is sorted by decreasing length, and we keep it sorted
during the algorithm using insertion sort. Moreover, we use array ends[0..|t|−1]
to store in ends[j] a pointer to the only interval in I that ends at j, if any. Let
prev be a pointer to the previous interval (iprev, jprev) = (k−1, k−2+MS[k−1])
if it belongs to I (prev is null if such interval does not belong to I), and let last
be a pointer to the node of I that contains the interval (i, j) ∈ I with maximum
i. Let δk = MS[k]−MS[k − 1].

If δk = −1, then BMS[k] is the length of the first node in I, list I does not
change, and we set prev to null. Similarly, if MS[k] = 1, then BMS[k] is the
length of the first node in I, or one if I is empty, list I does not change, and we
set prev to null. Otherwise, we proceed as follows. If prev �= ∅, we remove from
I the interval pointed by prev and we set ends[jprev] to null. Then, we add to
I the current interval (k, k +MS[k]− 1), as follows.

Let � be the length of node last. If MS[k] = � we add the new interval to
last, otherwise we scan I linearly starting from the node associated with length
�, until we find the node associated with length MS[k] (we create a new node if
no such node exists). This linear scan visits at most |MS[k]− �| = |jh − jh−1 −
ih + ih−1| nodes of I for every maximal interval (ih, jh) ∈ I, thus it visits in
total

∑m
h=1 |jh − jh−1 − ih + ih−1| ≤

∑m
h=1 jh − jh−1 + ih − ih−1 ≤ 2|t| nodes of

I. Note that this corresponds to charging the moves along I to the bits of ms.
After having added (k, k+MS[k]−1) to I, we update prev, last and ends[k+

MS[k] − 1] to point to the newly inserted interval. Once again, BMS[k] equals

Indexed Matching Statistics 187

the length of the first node in I. Before moving to position k + 1, we remove
from I the interval pointed by ends[k], if any. ��

Lemma 3. BDSt,τ can be computed from DSt,τ in O(|t|) time and O(|t| log |t|)
bits of space.

Proof. By applying the algorithm in Lemma 2 almost verbatim. Now, for every
position k in t, I stores all the minimal intervals that start before k and cover
k, i.e. all the intervals that start before k, cover k, and do not contain any other
interval. I is sorted by increasing length. We insert interval (k, k + DS[k] − 1)
in I for every position k in t, but if DS[k] − DS[k − 1] = −1 we first remove
the interval (iprev, jprev) pointed by prev, since it is not minimal, and we set
ends[jprev] to null. We thus have the guarantee that there is at most one interval
in I that ends at every position j of t. It is easy to see that the moves along I
can still be charged to the bits of ds. ��

Note that the notion of interval holds for any δ-monotone sequence a =
a0a1 . . . an, and the algorithms in Lemma 2 and 3 allow to compute, respec-
tively, the length of a longest and of a shortest interval of a that covers every
position i ∈ [0..n] in the sequence, in time linear in the size of the index of the
sequence. In particular, the algorithm in Lemma 2 can be applied to compute
BRSt, the bidirectional version of the repeating statistics, from the unidirectional
RSt.

Assume now that string t is the concatenation of m nonempty substrings, i.e.
that t = t0 · t1 · · · tm−1 with ti ∈ Σ+ for all i ∈ [0..m−1]. We call such substrings
blocks in what follows, and we denote with β(j) the block that contains position
j in t. We assume that block boundaries are marked in a bitvector of size |t|,
indexed to support rank operations4. We say that an interval spans block i if
it starts before block i and if it ends after block i. The algorithm described in
Lemma 2 can be adapted to compute the length of a longest matching statistics
interval (or, symmetrically, of a shortest distinguishing statistics interval) that
spans every block i ∈ [1..m− 2].

Lemma 4. The length of a longest matching statistics interval that starts before
block i and ends after block i, for every i ∈ [1..m − 2], can be computed from
MSt,s,τ in O(|t|) time.

Proof. We apply again the algorithm in Lemma 2 almost verbatim. Now array
ends has one position per block, and ends[k] points to the longest interval in I
that starts before block k and ends inside block k.

Assume that we are processing block k. Let r = max{β(i+MS[i]−1) : β(i) =
k} be the rightmost block that contains the ending position of an interval that
starts inside block k. Similarly, let � = max{MS[i] : β(i) = k} be the length
of a longest interval that starts inside block k. We call any interval that starts
inside block k and that ends inside block r a farthest interval, and any interval

4 rank(A, 1, i) is the number of ones in bitvector A up to position i, included.

188 D. Belazzougui and F. Cunial

of maximum length � a longest interval5. Let (ir, jr) be a farthest interval of
maximum possible length, i.e. jr − ir = max{MS[i] : β(i) = k, β(i+MS[i]− 1) =
r}. This interval spans every block h ∈ [k+1..r− 1], and no interval that starts
inside block k and spans the same blocks is longer, thus (ir, jr) will be active in
the following iterations. Similarly, if jr − ir < �, let (i�, j�) be a longest interval.
Clearly no interval that starts inside block k and that spans the same blocks as
(i�, j�) is longer, thus (i�, j�) will be active in the following iterations.

When we process block k, we first remove from I the interval that ends inside
block k, by following the pointer in ends[k], and we assign to block k the length
of the first node in I. Then, we insert in I the interval (i�, j�) (if it exists), and
then the interval (ir, jr). If pointer ends[β(j�)] is null, we store in ends[β(j�)] a
pointer to (i�, j�). Otherwise, if the length of interval ends[β(j�)] is smaller than
�, we remove interval ends[β(j�)] from I and we store in ends[β(j�)] a pointer
to (i�, j�). This is because the old interval spans the same blocks as the new
interval, but it is shorter. We do the same for (ir, jr).

Insertions in I work in the same way as before, with last pointing to the
interval (i, j) ∈ I with maximum i. The total number of movements in I can be
still bounded by 2|t|, since we are inserting a subset of I. ��
Lemma 5. The length of a shortest distinguishing statistics interval that starts
before block i and ends after block i, for every i ∈ [1..m − 2], can be computed
from DSt,τ in O(|t|) time.

Proof. By adapting the algorithm in Lemma 4. Assume that we are at block k,
and let L be the list of all tuples (i, j, j − i, β(j)) where j = i + DS[i] − 1, and
β(i) = k. We sort L by increasing third component of each tuple (length), and
then we stable-sort L by the last component of each tuple (ending block). Then,
we scan the sorted L and we insert in I the first interval that we find associated
with every block h, updating the corresponding pointers in ends if the previous
interval is longer than the new interval. The total number of movements in I
after insertions can be still bounded by 2|t|, since we are inserting a subset of
the minimal intervals we inserted in Lemma 3. ��

Once again, these blocked variants of BMS and BDS can be applied to any
δ-monotone sequence (thus in particular to BRS) in time linear in the size of the
index for such sequence.

As done with MS and DS, we would like to build succinct indexes that support
bidirectional queries in constant time. To this end, we augment ms and ds by
exploiting the following property, whose immediate proof is left to the reader:

Property 3. Given a position j ∈ [0..|t|− 1], the position i∗ = min{i ∈ [0..j− 1] :
j ≤ i+MS[i]− 1} can be computed by select(ms, 0, j)− j + 1.

Note that the same property holds for DS, for RS, and for every δ-monotone
sequence a0a1 . . . an with δi = 1 for all i ∈ [1..n]. However, the property does not
generalize to δ-monotone sequences where δi is not constantly one for all i ∈ [1..n].

5 If all blocks have the same length, a longest interval spans every block in [k+1..r−2].

Indexed Matching Statistics 189

Indeed, in such cases position j is covered by position i < j iff the ith one in the
index of the sequence is preceded by at least j + 1 +

∑i
k=1(δk − 1) zeros.

Theorem 3. There is a data structure that takes 2|t|+ o(|t|) bits of space and
that answers queries on BMSt,s,τ [i] for any i in constant time.

Proof. We store ms in 2|t| bits, and we augment it with an index that takes
O(|t| log log |t|/ log |t|) ∈ o(|t|) bits, and that supports rank and select queries
in constant time [7,16]. We assume that we can read any block of Θ(log |t|)
consecutive bits of ms in constant time. Moreover, we partition ms into B =

2|t|/ log |t|� blocks of size log |t| each. We use again the notation β(i) to identify
the block that contains position i in ms. For every block k, let (ik, jk) be a
longest matching statistics interval of t such that β(select(ms, 1, ik)) = k. We
store the position of select(ms, 1, ik) inside each block in array start[0..B− 1],
using 2|t| log log |t|/ log |t| bits. Then, we build a range-maximum data structure
RMQ on the pairs (k, jk − ik) for k ∈ [0..B − 1], using 2(2|t|/ log |t|) + o(|t|) =
4|t|/ log |t|+ o(|t|/ log |t|) bits of space [6].

Given a position j in t, we use Property 3 to compute i∗, the smallest i < j
with j ≤ i+MS[i]−1. Let p = β

(
select(ms, 1, i∗)

)
and q = β

(
select(ms, 1, j)

)
.

Since all the matching statistics intervals that cover position j must start between
i∗ and j, we query RMQ with the pair (p+1, q−1) to get the block k ∈ [p+1..q−1]
with longest interval in constant time, and we compute the length �1 of such
interval by �1 = h− 2 · rank(ms, 1, h) where h = k log |t|+ start[k]. Finally, we
load in constant time blocks p and q and we use the Four Russians technique to
compute in constant time the lengths �2 and �3 of the longest matching statistics
intervals that starts inside block p and q, respectively, using a precomputed table
of size o(|t|) bits. We finally return max{�1, �2, �3}. ��
Corollary 4. There is a data structure that takes 2|t|+ o(|t|) bits of space and
that answers queries on BDSt[i] for any i in constant time.

Proof. By applying the approach in Theorem 3 verbatim, using ds instead of ms
and a range-minimum rather than a range-maximum data structure. ��

References

1. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. In: Proceedings of the 46th ACM Symposium on Theory of Computing.
ACM (2014)

2. Belazzougui, D.: Linear time construction of compressed text indices in compact
space. ArXiv preprint ArXiv:1401.0936 (2014)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms 10(4) (2014)

4. Clark, D.: Compact Pat Trees. PhD thesis, University of Waterloo, Canada (1996)
5. Farach, M., Noordewier, M., Savari, S., Shepp, L., Wyner, A., Ziv, J.: On the

entropy of DNA: Algorithms and measurements based on memory and rapid con-
vergence. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 48–57 (1995)

190 D. Belazzougui and F. Cunial

6. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

7. Golynski, A.: Optimal lower bounds for rank and select indexes. Theoretical Com-
puter Science 387(3), 348–359 (2007)

8. Haubold, B., Pierstorff, N., Möller, F., Wiehe, T.: Genome comparison without
alignment using shortest unique substrings. BMC Bioinformatics 6(1), 123 (2005)

9. Hon, W.-K., Sadakane, K., Sung, W.-K.: Breaking a time-and-space barrier in
constructing full-text indices. SIAM J. Comput. 38(6), 2162–2178 (2009)

10. İleri, A.M., Külekci, M.O., Xu, B.: Shortest unique substring query revisited. In:
Kulikov, A.S., Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486,
pp. 172–181. Springer, Heidelberg (2014)

11. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biology 5(2), R12 (2004)

12. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

13. Ohlebusch, E., Gog, S., Kügel, A.: Computing matching statistics and maximal
exact matches on compressed full-text indexes. In: Chavez, E., Lonardi, S. (eds.)
SPIRE 2010. LNCS, vol. 6393, pp. 347–358. Springer, Heidelberg (2010)

14. Pei, J., Wu, W.-H., Yeh, M.-Y.: On shortest unique substring queries. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE), pp. 937–948.
IEEE (2013)

15. Philippe, N., Salson, M., Commes, T., Rivals, E.: CRAC: An integrated approach
to the analysis of RNA-seq reads. Genome Biology 14(3), R30 (2013)

16. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms (TALG) 3(4), 43 (2007)

17. Robertson, M.M.: A generalization of quasi-monotone sequences. Proceedings of
the Edinburgh Mathematical Society (Series 2) 16(01), 37–41 (1968)

18. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

19. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inf. Comput. 213, 13–22 (2012)

20. Tsuruta, K., Inenaga, S., Bannai, H., Takeda, M.: Shortest unique substrings
queries in optimal time. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 503–513. Springer, Heidelberg
(2014)

21. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring ap-
proach to phylogenomic reconstruction. Journal of Computational Biology 13(2),
336–350 (2006)

22. Weiner, P.: The file transmission problem. In: Proceedings of the National Com-
puter Conference and Exposition, June 4-8, pp. 453–453. ACM (1973)

23. Weiner, P.: Linear pattern matching algorithms. In: Switching and Automata The-
ory, pp. 1–11. IEEE (1973)

I/O-Efficient Dictionary Search with One Edit Error

Chin-Wan Chung1, Yufei Tao2, and Wei Wang3

1 Korean Advanced Institute of Science and Technology, Daejeon, Korea
2 Chinese University of Hong Kong, New Territories, Hong Kong

3 University of New South Wales, Sydney, Australia
chungcw@kaist.edu, taoyf@cse.cuhk.edu.hk,

weiw@cse.unsw.edu.au

Abstract. This paper studies the 1-error dictionary search problem in external
memory. The input is a set D of strings whose characters are drawn from a
constant-size alphabet. Given a string q, a query reports the ids of all strings in
D that are within 1 edit distance from q. We give a structure occupying O(n/B)
blocks that answers a query in O(1 + m

wB
+ k

B
) I/Os, where n is the total length

of all strings in D, m is the length of q, k is the number of ids reported, w is the
size of a machine word, and B is the number of words in a block.

1 Introduction

In this paper, we consider the 1-error dictionary search problem defined as follows. The
inputD—the dictionary—is a set of strings whose characters are drawn from a constant-
size alphabetΣ. Each string is associated with a distinct integer as its id. Given a string q
with characters in Σ, a query reports the ids of those strings s ∈ D with dist(s, q) ≤ 1,
where dist(s, q) is the edit distance between s and q (a.k.a. the Levenshtein distance).1

The problem is fundamental to search engines that aim to tolerate typos in the key-
words entered by users. It is well known [12,13] that between 80%-95% of the typos in
practice are 1-edit-distance errors, thus providing a strong motivation to support 1-error
dictionary search efficiently.

Computation Model. We study the problem in the standard external memory (EM)
model [1]. Under this model, a machine has a disk that is an infinite sequence of blocks,
each of which contains B words. Computation takes place only in (internal) memory,
whose size M (in number of words) is at least 2B. An I/O exchanges a block of data be-
tween the disk and memory. The time of an algorithm is the number of I/Os performed.
The space of a structure is the number of blocks in the shortest prefix of the disk con-
taining all the bits of the structure. Denote by w the number of bits in a machine word.
We make the standard assumption that w = Ω(lgB) (otherwise, the machine cannot
even encode the address space of all the words in memory).

We will also make frequent use of the following notations:

1 Specifically, dist(s, q) is the smallest number of the following edit operations needed to convert
s to q: (i-ii) inserting or deleting a character, and (iii) replacing a character with another one.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 191–202, 2014.
c© Springer International Publishing Switzerland 2014

192 C.-W. Chung, Y. Tao, and W. Wang

Table 1. Comparison of our and previous results in external memory

space query update source remarks
O(n/B) O(m+ k) O(l) amortized [5] assume that data and query

(ins. only) strings are equally long
O(t

B
+ n

wB
) O(m+ k) - [3]

O(n
B
lg n) O(m

B
+ k

B
+ lgn lg lgB n) - [11] designed for the more general

“full-text indexing” problem
O(n/B) O(1 + m

wB
+ k

B
) O(l) expected New

− n: the total length of all the strings in D;
− t: the number of strings in D;
− m: the length of a query string;
− k: the number of qualifying strings for a query.

We define lgb x = max{1, logb x} with b = 2 if omitted.

Previous Results. The 1-error dictionary search problem was first studied in internal
memory. Belazzougui [3] presented a static structure of O(t+n/w) space that answers
a query in O(m + k) time. Belazzougui and Venturini [4] showed that the space can
be reduced if the dictionary has small entropy, but their result does not improve that of
[3] in general. Brodal and Gasieniec [5] considered a special instance of the problem,
where all the data and query strings have the same length m (i.e., a query with string q
essentially retrieves the strings whose hamming distances are within 1 from q). For this
instance, they gave a structure of space O(n) that answers a query in O(m + k) time;
in addition, their structure is semi-dynamic: it supports the insertion of a length-l data
string in O(l) amortized time.

The above structures, when applied in external memory, incur O(m + k) I/Os an-
swering a query. This, unfortunately, is at least a factor of B away from what we would
like to achieve. Currently, the most I/O-efficient structure is due to Hon et al. [11]. Their
structure, which is intended for a more general problem called full-text indexing, uses
O(n

B lgn) blocks, and answers a query in O(mB + k
B + lgn · lg lgB n) I/Os. It does not

support updates efficiently.
It is worth mentioning that, while in this paper we focus on queries with 1-edit-

distance errors, progress has also been made in the past decade towards tolerating a
larger number of errors. Interested readers may refer to [6,7,15] for entry points into the
literature.

Our Results. We give a new structure for 1-error dictionary search that uses O(n/B)
space, answers a query in O(1+ m

wB + k
B) I/Os, and supports the insertion and deletion

of a length-l string in O(l) expected I/Os (see Table 1 for a comparison). With B set
to 1, our structure also works in the RAM model directly, and provides a new tradeoff
between space and query time there.

Remarks. Henceforth, we will focus on a binary alphabet Σ = {0, 1}. Our techniques
can be extended to any constant-size alphabet, without affecting the claimed complexi-
ties. Clarification will be duly made when this is not straightforward.

I/O-Efficient Dictionary Search with One Edit Error 193

2 Exact Matching

In this section, we revisit the (precise) dictionary search problem, whose solution will
be useful later. Specifically, the input is the same dictionary D as in 1-error dictionary
search. Given a string q, we want to report its id in D if q ∈ D, or declare its absence
otherwise. This problem is also commonly known as exact matching.

Given a string s, we denote by |s| the length of s. For an i ∈ [1, |s|], let si be the i-th
character of s. Given i, j with 1 ≤ i ≤ j ≤ |s|, let si..j be the substring of s starting
and ending at si and sj , respectively. Specially, if i > j, si..j is an empty string.

2.1 Preliminaries

Let us first review a result on perfect hashing. Given an integer x > 0, [x] represents the
set {0, 1, ..., x − 1}. Consider a set S ⊆ [U] for some positive integer U . Set n = |S|.
Let f be a function from [U] to [2n]. We say that f is perfect on S if it is injective
with respect to S, namely, for any two different integers x1, x2 of S, f(x1) �= f(x2).
Furthermore, f is stable if, for each x ∈ S, f(x) remains the same until x is deleted
from S.

Lemma 1 ([8]). Let U be a positive integer at most 2wB−1. For any S ⊆ [U], we can
store a stable perfect function f of S using O(1 + n

wB lg lg U
n) blocks, where n = |S|.

For any x ∈ [U], f(x) can be computed in constant I/Os. If an integer is inserted or
deleted in S, the representation of f can be updated in constant I/Os expected.

We will also need the next fact about the string B-tree:

Lemma 2 ([10]). Let D be a set of t strings (each with an integer id), and n be their
total length. We can store D in a string B-tree of O(1+ t

B + n
wB) space such that, given

a string q of length m, using O(lgB t + m
wB) I/Os, we can report the id of q in D or

declare the absence of q in D. A string of length l can be inserted and deleted in D with
O(lgB t+ l

wB) I/Os.

2.2 A New Structure

We consider a slightly more general version of exact matching. Suppose that each string
s ∈ D carries an arbitrary information field that occupies O(1) words. We want to
support a probe operation: given a string q, decide whether q ∈ D and if so, return the
information field of q. The rest of the subsection serves as a proof for:

Theorem 1. A set D of strings (each with an integer id) can be stored in a structure
of O(1 + t

B + n
wB) blocks, where t is the number of strings in D and n is their total

length, such that a probe operation can be performed in O(1 + m
wB) I/Os, where m is

the length of the query string. To insert/delete a string with length l in D, the structure
can be updated in O(1 + l

wB) expected I/Os.

We say that a string is short if its length is at most wB− 2; otherwise, it is long. The
two types of strings are processed separately.

194 C.-W. Chung, Y. Tao, and W. Wang

Short Strings. Suppose that D has only short strings. We maintain a stable perfect
function f on D by interpreting each string in D as an integer in [2wB−2]. By Lemma 1,
this demands O(1 + t

wB lg(wB)) space, which is O(1 + t
B) because w = Ω(lgB).

Let I be an array of size 2t for storing information fields. For each string s ∈ D, its
information field is stored in I[f(s)].

To store the strings of D, we divide [2t] into �2t/B� disjoint intervals of length
B except possibly the last one. Refer to each interval as a chunk. All the at most B
strings of D mapped to the same chunk by f are managed by a string B-tree, each of
which occupies O(1 + n′

wB) space where n′ is the total length of the strings it manages
(Lemma 2). All the string B-trees use O(1 + t

B + n
wB) space in total.

To perform a probe with a short string q, we search the string B-tree of chunk f(q)

in O(lgB B + |q|
wB) = O(1) I/Os (Lemma 2). If found, we return I[f(q)] with another

O(1) I/Os; otherwise, q is not in D.
To insert a short string s in D, we first calculate f(s) and update I(f(s)) in O(1)

expected I/Os (Lemma 1). Then, insert s in the string B-tree responsible for the chunk
covering I(f(s)). By Lemma 2, the insertion cost is O(lgB B + wB

wB) = O(1) I/Os.
Using standard rebuilding techniques [14], we can resize I in O(1) worst-case time per
insertion. A deletion can be handled similarly.

Long Strings. Now, consider that D has only long strings. We sometimes regard a long
string s of length l as a blocked string s̃ of length �l/(wB − 2)�, where each character
of s̃ comes from an alphabet Σ̃ of size 2wB−2. Specifically, if we chop s into blocks
of size wB − 2 (possibly except the last block), character s̃j corresponds to the j-th
block, where 1 ≤ j ≤ �l/(wB − 2)�. Denote by D̃ the set of blocked strings obtained
from D.

Let T be a trie built on D̃. For an internal node u in T , let child(u) be the set of
its child nodes (note that |child(u)| can be up to 2wB−2). As each node in child(u) is
a character in Σ̃, it can be regarded as a short string. To allow efficient navigation, we
create an aforementioned structure (for short strings) on child(u) such that given any
character σ̃ ∈ Σ̃, we can tell in constant time whether σ̃ ∈ child(u) and if so, also the
address of the child σ̃. For each string s ∈ D, its information field is stored at the node
of T whose root-to-leaf path corresponds to s̃.

The short-string structure on an internal node u of T consumes O(1 + |child(u)|
B +

|child(u)|wB
wB) = O(|child(u)|) space, i.e., O(1) blocks per child. Hence, the entire

space usage of T is asymptotically the number of nodes in T . Since each s ∈ D neces-
sitates O(|s|/(wB)) nodes, T has O(n/(wB)) nodes. It thus follows that our structure
occupies O(n/(wB)) space overall.

To perform a probe, we simply search T with q̃. The cost is clearly O(|q̃|) =
O(|q|/(wB)). To insert a long string s of length l, we first obtain its blocked string
s̃ in O(l/(wB)) = O(|s̃|) I/Os. Then, insert s̃ in T using O(|s̃|) I/Os. Specifically, at
the node of s̃i (i ≥ 1) in T , we can identify the node of s̃i+1 in constant time (by ex-
ploiting the short-string structure on s̃i), or create it in constant time if it does not exist.
The deletion algorithm is analogous.

I/O-Efficient Dictionary Search with One Edit Error 195

3 One-Error Dictionary Search

This section serves as a proof for our main result:

Theorem 2. A set D of strings (each with an integer id) can be stored in a structure of
O(n/B) blocks, where n is the total length of all the strings in D, such that a 1-error
dictionary search query can be answered in O(1+ m

wB + k
B) I/Os, where m is the length

of the query string, and k is the number of qualifying strings. To insert/delete a string
with length l in D, the structure can be updated in O(l) expected I/Os.

We will focus on finding those strings s ∈ d with 1 edit distance from a query string
q (the string with 0 edit distance, if exists, can be found by exact matching). There are
only 3 possibilities: an insertion, deletion, or a replacement of a character turns s to q—
in these cases s is said to be an insertion, deletion and replacement match, respectively.
We will concentrate on insertion matches in Section 3.1-3.3. The other types of matches
can be reported using similar techniques, which are omitted from this extended abstract
due to the space limit.

3.1 Signature Edits

We define an insertion match s to be an appending match if we can add a character
at the end of s to turn it into q. Otherwise, s is a non-appending match. For instance,
given q = 11110, s = 1111 is an appending match, while s = 1110 is a non-appending
match. We will focus on reporting non-appending matches, because there is at most one
appending match, as can be found by exact matching after trimming the last character
of q.

Consider an insertion that turns a non-appending match s to q. Denote the insertion
as (s, i, c) if it adds character c before si for some i ∈ [1, |s|]. Recall that there can be
multiple such insertions. We define (s, i, c) to be a signature insertion if c �= si. It turns
out that only one insertion can be signature:

Lemma 3. Every non-appending match s has a unique signature insertion that turns s
into q.

Proof. We first prove that s can be turned into q by a signature insertion. Since s is
a non-appending match, there exists an i ∈ [1, |s|] such that (s, i, c) turns s into q. If
c �= si, then this insertion is signature. Otherwise, let j > i be the smallest integer such
that sj−1 �= sj . Such j definitely exists; otherwise, we can append c to s to turn it into
q, contradicting the fact that s is non-appending. Thus, (s, j, c) is a signature insertion.

We now prove that there is only one signature insertion. Assume that s has two:
(s, i1, c1) and (s, i2, c2) with i1 < i2, both of which convert s to q. From (s, i1, c1), we
know qi1 = c1 �= si1 . However, from (s, i2, c2), we know that q1..(i2−1) = s1..(i2−1),
implying that qi1 = si1 , giving a contradiction.

3.2 Short Strings

In this subsection, we describe a structure for a dictionary D that has only short strings
(i.e., length at most wB − 2). Consider a string s ∈ D. Obviously, s has |s| signature

196 C.-W. Chung, Y. Tao, and W. Wang

insertions: for each i ∈ [1, |s|], the i-th signature insertion adds the opposite of si before
si. Let N+(s) be the set of strings obtained by applying those signature insertions on
s, respectively. We have:

Lemma 4. |N+(s)| = |s| and N+(s) is exactly the set of strings for which s is a
non-appending match.

Proof. |N+(s)| = |s| is because any two signature insertions turn s into different
strings. It is obvious that s is a non-appending match of every string in N+(s). Fi-
nally, by Lemma 3, every string of which s is non-appending match belongs to N+(s).

Structure. Let us first make a disjoint-neighbor assumption: for any two s �= s′ in
D, N+(s) and N+(s′) are disjoint. Let D+ be the union of N+(s) of all s ∈ D. By
Lemma 4, D+ can have at most

∑
s∈D |s| = n strings. Clearly, a query string q has

a non-appending match in D if and only if q ∈ D+. Next we utilize this fact to find
the non-appending match of q efficiently (there is only one match under the disjoint-
neighbor assumption).

We maintain a stable perfect function h+ on D+ using Lemma 1 (notice that
all strings of D+ have length at most wB − 1). The representation of h+ occupies
O(1 + n

wB lg(wB)) = O(n/B) space. Recall that h+ maps each string s+ ∈ D+ to a
distinct integer in [2n]. We create an array Δ+ of size 2n to record signature insertions.
Specifically, for each s+ ∈ D+, Δ+[h+(s+)] stores a pair (id(s), i) if (s, i, c) is the
signature insertion generating s+, where id(s) gives the id of s. Each cell of Δ+ can
be stored in a word. Overall, Δ+ uses O(n/B) blocks. Finally, we build a structure of
Theorem 1 on D so that exact matching in D can be done efficiently. The total space of
our structure is therefore O(n/B).

Given a string q, we search for its non-appending match as follows. First, locate cell
Δ+[h+(q)] in constant I/Os. If nothing exists in the cell, q /∈ D+ and hence, has no
non-appending match. Instead, suppose that Δ+[h+(q)] contains a pair (id(s), i). We
obtain a string q′ from q by deleting qi, and perform exact matching with q′ in D using
constant I/Os. If s is found, we return its id; otherwise, q has no non-appending match.2

The total query time is O(1).

Update. We discuss only insertions because a reverse procedure supports deletions. To
insert a (short) string s, we first insert it in the exact matching structure (on D) using
O(1) expected I/Os (Theorem 1). Then, keeping s memory-resident, we can generate
each string s+ ∈ N+(s) in memory. For each s+ with signature insertion (s, i, c), cal-
culate h+(s+) and store (id(s), i) at Δ+[h+(s+)] in constant expected I/Os (Lemma 1).
Therefore, the total insertion cost is O(|N+(s)|) = O(l) I/Os expected.

Eliminating the Disjoint-Neighbor Assumption. We first need to solve a related
problem we call find-all-any. Let r be an integer satisfying 0 ≤ r ≤ w, and define
φ = lg(wB) + r. Let g ≤ CwB/φ for any constant C > 0, and S1, ..., Sg be g sets
of integers in [wB]. Each integer in any Si (1 ≤ i ≤ g) is associated with an arbitrary
information field of r bits. We want to maintain a structure to support the following
operations efficiently:

2 The exact matching with q′ is for detecting the scenario where q �= s+ but h+(q) = h+(s+).

I/O-Efficient Dictionary Search with One Edit Error 197

– given an i ∈ [1, g], insert/delete an integer in Si, as well as its information field.
– find -all (i): given an i ∈ [1, g], return the information fields of all the integers in
Si.

– find -any(i): given an i ∈ [1, g], return an arbitrary integer in Si and its information
field.

Lemma 5. Let L =
∑g

i=1 |Si|. There is a structure of O(1 + φL
wB) space supporting

an insertion/deletion in O(1) expected I/Os, find -any in O(1) I/Os, and find -all in
O(1 + φ|Si|

wB) I/Os.

Proof. We say that Si is small if |Si| ≤ wB/(2φ), and big if |Si| ≥ wB/φ. Si is
neither small nor big when wB/(2φ) < |Si| < wB/φ. We follow the invariant that
all small sets are together managed by a B-tree U . In U , the integers (of the small sets)
are first sorted by the sets they come from, and then by their values. In other words,
each integer corresponds to a composite key (set-id, value), which fits in O(lg(wB))
bits. The information field of an integer is stored in the same leaf node with the inte-
ger. Each leaf node contains Θ(wB/φ) integers. It will be guaranteed that U manages

O((wB/φ)2) integers, and thus occupies O((wB/φ)2

wB/φ) = O(wB) blocks. Hence, each
block pointer within U can be stored in O(lg(wB)) bits. We therefore can set the fanout
of U to Θ(wB/ lg(wB)) so that U has only constant levels.

Each big set Si is stored in a big structure, which consists of a hash structure (e.g.,
[9]) and a linked list. The hash structure is created on the integers of Si, whereas the
linked list contains these integers (i.e., each integer has two copies: in the hash structure
and linked list, respectively) as well as their information fields. The ordering in the
linked list is not important, as long as each block accommodates Θ(wB/φ) integers
and their information fields. At all times, for each integer, we let its copies in the hash
structure and the linked list keep pointers to each other. This allows us to reach the copy
in the linked list in constant I/Os.

When Si is neither big nor small, it can be stored either in U or a big structure. Hence,
U can index O(g(wB/φ)) = O((wB/φ)2) integers.

Next, we explain how to insert/delete an integer x in Si. First, if Si is currently stored
in U , we insert/delete x in U using O(1) I/Os. Otherwise, update the hash structure and
linked list on Si in O(1) expected I/Os. In the linked list, we sometimes need to split
a block or merge two blocks to ensure Θ(wB/φ) integers per block. Each split/merge
incurs O(wB/φ) I/Os to correct the pointers between the hash structure and linked list.
By standard techniques (e.g., as in updating a B-tree), this happens only after Ω(wB/φ)
updates, so that each update is charged only constant I/Os for the split/merge. Si may
become big when it is in U , or conversely, become small when it is in a big structure.
In either case, we perform an overhaul to move the entire Si into a big structure or U
respectively using O(wB/φ) I/Os. As at least wB/(2φ) updates must have occurred be-
tween two overhauls, each update is charged only constant I/Os for an overhaul. There-
fore, overall an update requires constant expected I/Os amortized. The amortization can
be easily removed using lazy rebuilding techniques of [14] (see also [2]).

The other two operations can be supported efficiently. To perform find -all (i), we
simply search U or scan the linked list on Si, depending on where Si is stored. In either
case, the cost is O(1 + φ|Si|

wB), recalling that U has O(1) levels. Finally, to perform

198 C.-W. Chung, Y. Tao, and W. Wang

find -any(i), we simply return the first integer of Si in U or its linked list. The cost is
clearly O(1).

Next, we remove the disjoint-neighbor assumption. Define D+ again as the union of
N+(s), i.e., having discarded all duplicates. Divide [2n] into �2n/B� intervals (a.k.a.
chunks) of size B. Consider a string s+ ∈ D+, which may now belong to the N+(s)
of several s ∈ D. In other words, multiple signature insertions may have generated s+.
Let E+(s+) be the set of those signature insertions.

Recall that every signature insertion has the form (s, i, c). A crucial observation is
that all signature insertions in E+(s+) differ in their values of i. To prove this, first
notice that no two signature insertions in E+(s+) can have come from the same s,
according to Lemma 3. Next, assume that E+(s+) had signature insertions (s1, i, c1)
and (s2, i, c2) with s1 �= s2. Notice that c1 must be identical to c2, because both of
them were equal to (s+)i. It thus follows that s1 had to be the same as s2, giving a
contradiction.

Because of the previous observation, we will sometimes regard E+(s+) as a set of
integers: {i | (s, i, c) ∈ E+(s+)}. Further, we associate i with an information field
id(s) where s is the unique string such that (s, i, c) ∈ E+(s+). Clearly, i and id(s) can
be stored in lg(wB) and w bits, respectively.

For each chunk, we store at most B sets of integers, namely, a set E+(s+) for every
s+ whose h+(s+) is covered by the chunk. We index these sets with a find-all-any
structure of Lemma 5. To see that this is possible, set r = w and hence φ = lg(wB)+w,
in which case a find-all-any structure can manage up to g = CwB/φ = C wB

lg(wB)+w

sets where C > 0 can be any constant. In other words, it can indeed be used to manage
B sets because B = O(wB

lg(wB)+w) (applying w = Ω(lgB)).

Therefore, by Lemma 5, the find-all-any structure of a chunk uses O(1 + L
B) space

where L is the total size of those sets. As there are O(n/B) chunks, the structures
of all chunks require O(n/B) space altogether. We also build all the structures as were
necessary when the disjoint-neighbor assumption was made. The only difference is that,
at each cell Δ+[h+(s+)], we store an arbitrary pair (id(s), i) where (s, i, c) ∈ E+(s+).

A query is answered as before, except that after finding the match of q′ in D, we re-
port all the string ids in E+(h+(q)) using a find -all operation which performsO(1+ k

B)
I/Os by Lemma 5. This is correct because, by definition, all the signature insertions in
E+(h+(q)) generate exactly q. To insert a length-l string s, we proceed as before, but
also perform an insertion in the find-all-any structure of a relevant chunk for each sig-
nature insertion (s, i, c). The algorithm of deleting a string s is also the same as before,
except that if s happens to be the string whose id is in cell Δ+[h+(s+)], we perform
a find -any to extract another element from E+(s+) to fill in the cell. By Lemma 5,
the above changes incur only constant expected I/Os per signature insertion, and hence,
O(l) time in total.

Now we have arrived at:

Lemma 6. We can store D in a structure of O(n/B) blocks such that all insertion
matches of a short query string with length at most wB can be performed in O(1 + k

B)
I/Os, where k is the number of qualifying strings. To insert/delete a short string with
length l in D, the structure can be updated in O(l) expected I/Os.

I/O-Efficient Dictionary Search with One Edit Error 199

Remark. When Σ is not binary, the space consumption of our structure increases by a
factor linear to |Σ|, and hence, remains O(n/B) when |Σ| = O(1). The major change
is that, for each string s and each i ∈ [1, |s|], there are |Σ| − 1 signature insertions,
namely, (s, i, c) for every possible c �= si in Σ. Accordingly, N+(s) has size |s|(|Σ| −
1) = O(|s|). Furthermore, the length of a short string should be defined instead as
C · wB for some appropriate 0 < C < 1, making sure that a short string fits in one
block (each character of Σ is now encoded by log2 |Σ| = Θ(1) bits). The other changes
are obvious and therefore omitted.

3.3 Long Strings

This section explains the structure for long strings, each of which has length at least
wB. We divide these strings by their lengths, and manage each group of strings with
the same length separately. Our discussion below concentrates on a particular length l.
For convenience, let ρ = wB− 2, and we will assume that l = λρ− 1 for some integer
λ ≥ 2. If not, we pad enough (at most ρ − 1) 0’s at the end of each string to make
the property hold. The padding can increase the space, query, and update costs of our
structure by no more than a constant factor, as will be clear shortly.

Searching the Blocked Strings. Following the notation in Section 2.2, given a long
string s, we denote its corresponding blocked string as s̃. Recall that s̃ is obtained by
chopping s into blocks of size ρ. We may regard each character of s̃ as being in an
alphabet Σ̃ of size 2ρ, or equivalently, as a binary string of length at most ρ, whichever
is more convenient. When the second interpretation is adopted, si is a bit in s̃j where
i ∈ [1, |s|] and j = �i/ρ�.

We denote by s as the reverse string of s (e.g., if s = 10010 then s = 01001). Just
like s, s also has its blocked string s̃.

Consider a string q of length l + 1. Let s be a non-appending match of q. Note that
both s̃ and q̃ have length λ (as long as ρ ≥ 2). According to Lemma 3, there exists a
unique signature insertion (s, i, c) that converts s to q. Let j = �i/ρ�. Depending on
the value of j, we define a binary string q�(j):

– If j = λ, then q�(j) = q̃λ. In this case, |q�(j)| = ρ.
– Otherwise, q�(j) is the string obtained by appending the first character of q̃j+1 to
q̃j (viewing both q̃j and q̃j+1 in binary form). In this case, |q�(j)| = ρ+ 1.

For example, suppose ρ = 3 and q = 110100; thus, if j = 1, then q�(j) = 1101,
whereas if j = 2 then q�(j) = 100. The next lemma gives a crucial observation.

Lemma 7. Let s be a non-appending match of q with signature insertion (s, i, c). De-
fine j = �i/ρ�. All the following are true:

(i) s̃1..(j−1) = q̃1..(j−1)

(ii) s̃1..(λ−j) = q̃1..(λ−j)

(iii) s̃j is a non-appending match of q�(j).

Proof. By the definition of i, it holds that s1..(i−1) = q1..(i−1), and si..l = q(i+1)..(l+1).
The latter suggests s1..(l−i+1) = q1..(l−i+1).

200 C.-W. Chung, Y. Tao, and W. Wang

(i) Notice that ρ(j − 1) ≤ i − 1. Thus, s̃1..(j−1) = q̃1..(j−1) holds because they (in
binary form) are prefixes of the same length of s1..(i−1) and q1..(i−1), respectively.

(ii) First observe that ρ(λ − j) ≤ l − i + 1: since ρλ = l + 1, this is equivalent to
showing i ≤ jρ, which is true by the definition of j. Hence, s̃1..(λ−j) = q̃1..(λ−j) holds
because they are prefixes of the same length of s1..(l−i+1) and q1..(l−i+1), respectively.

(iii) We focus on j < λ because the case j = λ is obvious. We will abbreviate q�(j)
simply as q�. Since s̃j is clearly an insertion match of q�, what remains to prove is
that it is not an appending match. The remainder of the proof will regard s̃j as a binary
string. Let i′ = i− ρ(j − 1), namely, (s̃j)i′ is the same character as si.

Now assume that s̃j was an appending match of q�. Let c′ be the last character of q�.
It thus follows that s̃j : c′ = q� (where “:” means concatenation), implying (s̃j)i′ = q�i′ .
On the other hand, the fact that (s, i, c) turns s to q implies c = q�i′ . It thus follows that
c = (s̃j)i′ = si, violating the definition of (s, i, c).

Structure. Let D̃(l) be the set of blocked strings s̃ of all s ∈ D with length l. Likewise,

let D̃(l) be the set of blocked strings s̃ of all such s. Regarding each blocked string as
consisting of characters from Σ̃ (of size 2ρ), we build a trie T on D̃(l) and another trie

T on D̃(l).

Consider a blocked string s̃ ∈ D̃(l), and the corresponding s̃ ∈ D̃(l). Recall that
both s̃ and s̃ have length λ. For each j ∈ [1, λ], we do the following. First, identify the
node u in T corresponding to s̃1..(j−1), and the node u in T corresponding to s̃1..(λ−j).
Insert s̃j to a set S(u, u), which is therefore a set of short strings (when viewed in binary
form). We build a structure of Lemma 6 on S(u, u); let us represent this structure as
P+(u, u), referred to as a P+-structure.

Finally, we need a structure that, given any (u, u), returns the beginning address of
P+(u, u) in constant time. For this purpose, it suffices to maintain a standard dynamic
hash structure (e.g., [9]) on the pair of addresses of u and u; we will refer to it as the
P+-lookup structure.

Update. The algorithm for inserting a string of length l follows directly from the above
description. The cost is O(l

wB · wB) = O(l) expected by Lemma 6 and our earlier
discussion on maintaining a trie on blocked strings. Deletion is analogous.

Query. Given a string q of length l + 1, we find its non-appending matches as follows.
For each j ∈ [1, λ], we identify the node u in T corresponding to q̃1..(j−1), and the
node u in T corresponding to q̃1..(λ−j). Report all the non-appending matches of q�(j)
in S(u, u). The algorithm’s correctness is established by the next lemma.

Lemma 8. Every non-appending match of q is reported exactly once.

Proof. Lemma 7 shows that every non-appending match of q must be reported at least
once. Next we prove that no non-appending match s can be reported twice. For this
purpose, let (s, i, c) be the signature insertion that converts s to q, and let j� = �i/ρ�.
We will prove that, for any j′ �= j�, our algorithm does not report s when j = j′. In
other words, s is reported only when j = j�.

I/O-Efficient Dictionary Search with One Edit Error 201

Suppose on the contrary that s was reported at j′, i.e., s̃j′ is a non-appending match
of q�(j′). We can easily rule out the possibility of j′ < j�. This is because, by the
definition of i and j�, s̃j′ must be equivalent to q̃j′ for every j′ < j�, implying that s̃j′
is an appending match of q�(j′).

Consider j′ > j�. By the definition of (s, i, c), we know qi = c. Since s is reported
by our algorithm when j = j′, s̃j′−1 and q̃j′−1 must correspond to the same node in
trie T , implying that s1..(ρ(j′−1)) = q1..(ρ(j′−1)). As i ≤ ρj� ≤ ρ(j′ − 1), we have
si = qi, namely, si = c, thus violating the definition of (s, i, c).

Analysis. To bound the space of our structure, let t′ be the number of length-l strings in
D, and n′ = t′l be the total length of these strings. The analysis in Section 2.2 shows
that each of T and T̃ uses O(t

′
B + n′

wB) = O(n′
wB) space.

Next we discuss the space of the P+-structures. Consider a pair (u, u) whose S(u, u)
is non-empty. Note that there are at most O(n′/(wB)) such (u, u) because a string
s ∈ D of length l can necessitate O(l/(wB)) such pairs. Let t(u, u) be the number of
strings in S(u, u), and n(u, u) be their total length. By Lemma 6, P+(u, u) occupies
O(n(u, u)/B) blocks. Therefore, the space of all the P+-structures is at most

∑
(u, u) with non empty S(u, u)

O

(
1 +

n(u, u)

B

)

= O

(
n′

wB
+

n′

B

)
= O(n′/B).

Finally, the space of the P+-lookup structure is linear to the number of non-empty
sets S(u, u); as there are O(n′/(wB)) non-empty sets, the P+-lookup structure oc-
cupies O(n′/(wB2)) space. A query searches O(l/(wB)) P+-structures. Combining
Lemmas 6 and 8 proves that the query time is O(l

wB + k
B) overall.

We thus have established:

Lemma 9. We can store D in a structure of O(n/B) blocks such that all insertion
matches of a length-m query string can be found in O(1 + m

wB + k
B) I/Os, where k is

the number of qualifying strings. To insert/delete a long string with length l in D, the
structure can be updated in O(l) expected I/Os.

Remark. The double-trie idea is due to [5], but the challenge in our contexts is to make
the idea work on blocked strings. For this purpose, it is crucial to derive Lemmas 7 and 8,
both of which rely on the notion of signature edits and the separation of non-appending
matches. The two lemmas, notion, and separation are where our contributions lie.

Acknowledgements. Chin-Wan Chung was supported in part by Defense Acqui-
sition Program Administration and Agency for Defense Development under the
contract UD140022PD, Korea. Yufei Tao was supported in part by projects GRF
4165/11, 4164/12, and 4168/13 from HKRGC. Wei Wang was partly funded by ARC
DP130103401 and DP130103405.

202 C.-W. Chung, Y. Tao, and W. Wang

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems.
CACM 31(9), 1116–1127 (1988)

2. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM J. of
Comp. 32(6), 1488–1508 (2003)

3. Belazzougui, D.: Faster and space-optimal edit distance “1” dictionary. In: Annual Symp. on
Combinatorial Pattern Matching, pp. 154–167 (2009)

4. Belazzougui, D., Venturini, R.: Compressed string dictionary look-up with edit distance one.
In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 280–292. Springer,
Heidelberg (2012)

5. Brodal, G.S., Gasieniec, L.: Approximate dictionary queries. In: Hirschberg, D., Meyers, G.
(eds.) CPM 1996. LNCS, vol. 1075, pp. 65–74. Springer, Heidelberg (1996)

6. Chan, H.-L., Lam, T.-W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A linear size index for
approximate pattern matching. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS,
vol. 4009, pp. 49–59. Springer, Heidelberg (2006)

7. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with errors and
don’t cares. In: STOC, pp. 91–100 (2004)

8. Demaine, E.D., auf der Heide, F.M., Pagh, R., Pǎtraşcu, M.: De dictionariis dynamicis pauco
spatio utentibus (lat. on dynamic dictionaries using little space). In: Correa, J.R., Hevia, A.,
Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 349–361. Springer, Heidelberg (2006)

9. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert, H., Tarjan,
R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J. of Comp. 23(4), 738–761
(1994)

10. Ferragina, P., Grossi, R.: The string B-tree: A new data structure for string search in external
memory and its applications. JACM 46(2), 236–280 (1999)

11. Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Cache-oblivious index for approx-
imate string matching. Theoretical Computer Science 412(29), 3579–3588 (2011)

12. Kukich, K.: Techniques for automatically correcting words in text. ACM Comp. Surv. 24(4),
377–439 (1992)

13. Navarro, G.: A guided tour to approximate string matching. ACM Comp. Surv. 33(1), 31–88
(2001)

14. Overmars, M.H.: The Design of Dynamic Data Structures. Springer (1987)
15. Tsur, D.: Fast index for approximate string matching. Journal of Discrete Algorithms 8(4),

339–345 (2010)

Online Pattern Matching for String Edit

Distance with Moves�

Yoshimasa Takabatake1, Yasuo Tabei2, and Hiroshi Sakamoto1

1 Kyushu Institute of Technology
{takabatake,hiroshi}@donald.ai.kyutech.ac.jp
2 PRESTO, Japan Science and Technology Agency

tabei.y.aa@m.titech.ac.jp

Abstract. Edit distance with moves (EDM) is a string-to-string dis-
tance measure that includes substring moves in addition to ordinal edit-
ing operations to turn one string to the other. Although optimizing EDM
is intractable, it has many applications especially in error detections. Edit
sensitive parsing (ESP) is an efficient parsing algorithm that guarantees
an upper bound of parsing discrepancies between different appearances
of the same substrings in a string. ESP can be used for computing an ap-
proximate EDM as the L1 distance between characteristic vectors built
by node labels in parsing trees. However, ESP is not applicable to a
streaming text data where a whole text is unknown in advance. We
present an online ESP (OESP) that enables an online pattern matching
for EDM. OESP builds a parse tree for a streaming text and computes the
L1 distance between characteristic vectors in an online manner. For the
space-efficient computation of EDM, OESP directly encodes the parse
tree into a succinct representation by leveraging the idea behind recent
results of a dynamic succinct tree. We experimentally test OESP on the
ability to compute EDM in an online manner on benchmark datasets,
and we show OESP’s efficiency.

1 Introduction

Streaming text data appears in many application domains of information re-
trieval. Social data analysis faces a problem for analyzing continuously gener-
ated texts. In computational biology, recent sequencing technologies enable us
to sequence individual genomes in a short time, which resulted in generating a
large collection of genome data. There is therefore a strong incentive to develop
a powerful method for analyzing streaming texts on a large-scale.

Edit distance with moves (EDM) is a string-to-string distance measure that
includes substring moves in addition to insertions and deletions to turn one
string to the other in a series of editing operations. The distance measure is
motivated in error detections, e.g., insertions and deletions on lossy communi-
cation channels [9], typing errors in documents [4] and evolutionary changes in

� This work was supported by JSPS KAKENHI(24700140,26280088) and the JST
PRESTO program.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 203–214, 2014.
c© Springer International Publishing Switzerland 2014

204 Y. Takabatake, Y. Tabei, and H. Sakamoto

Table 1. Summary of recent pattern matching methods for EDM. The table summaries
upper bound for the approximation ratio of EDM, computation time and space for each
method. The space for ESP and OESP is presented in bits. N is the length of an input
string; σ is the alphabet size; n is the number of variables in CFG; α ∈ (0, 1] is a
parameter for a hash table; lg∗ is the iterated logarithm; lg stands for log2.

Appro. ratio Time Space Algorithm

SNN [12] O(lgN lg∗ N) O(NO(1) + Npolylog(N)) O(NO(1)) Offline
Shapira and Storer [16] O(lgN) O(N2) O(N lgN) Offline
ESP [3] O(lgN lg∗ N) O(N lg∗ N/α) N lg σ Offline

+n(α + 3) lg (n + σ)

OESP O(lg2 N) O(N lg N lg n
α lg lg n) n(α + 1) lg (n + σ) Online

+n lg (αn) + 5n + o(n)

biological sequences [5]. Computing an optimum solution of EDM is intractable,
since the problem is known to be NP-complete [12]. Therefore, researchers have
paid considerable efforts to develop efficient approximation algorithms that are
only applicable to an offline case where a whole text is given in advance (Ta-
ble 1). Early results include the reversal model [8,1] which takes a substring of
unrestricted size and replaces it by its reverse in one operation. Muthukrishnan
and Sahinalp [12] proposed an approximate nearest neighbor considered as a
sequence comparison with block operations. Recently, Shapira and Storer pro-
posed a polylog time algorithm with O(lgN lg∗ N) approximation ratio for the
length N of an input text.

Edit sensitive parsing (ESP) [3] is an efficient parsing algorithm developed
for approximately computing EDM between strings in an offline setting. ESP
builds from a given string a parse tree that guarantees upper bounds of parsing
discrepancies between different appearances of the same substring, and then it
represents the parse tree as a vector each dimension of which represents the fre-
quency of the corresponding node label in a parse tree. L1 distance between such
characteristic vectors for two strings can approximate the EDM. Although ESP
has an efficient approximation ratio O(lgN lg∗ N) and runs fast in O(N lg∗ N/α)
time for a parameter α ∈ (0, 1] for hash tables, its applicability is limited to an
offline case. For applications in web mining and Bioinformatics, computing an
EDM of massive streaming text data has ever been an important task. An open
challenge, which is receiving increased attention, is to develop a scalable online
pattern matching for EDM.

We present an online pattern matching for EDM. Our method is an online
version of ESP named online ESP (OESP) that (i) builds a parse tree for a
streaming text in an online manner, (ii) computes characteristic vectors for a
substring at each position of the streaming text and a query, and (iii) computes
the L1 distance between each pair of characteristic vectors. The working space
of our method does not depend on the length of text but the size of a parse tree.
To make the working space smaller, OESP builds a parse tree from a streaming
text and directly encodes it into a succinct representation by leveraging the idea
behind recent results of an online grammar compression [11,10] and a dynamic
succinct tree [14]. Our representation includes a novel succinct representation
of a tree named post-order unary degree sequence (POUDS) that is built by the
post-order traversal of a tree and a unary degree encoding. To guarantee the

Online Pattern Matching for String Edit Distance with Moves 205

approximate EDM computed by OESP, we also prove an upper bound of the
approximation ratio between our approximate EDM and the exact EDM.

Experiments using standard benchmark texts revealed OESP’s efficiencies.

2 Preliminaries

2.1 Basic Notation

Let Σ be a finite alphabet forming texts, and σ = |Σ|. Σ∗ denotes the set of
all texts over Σ, and Σ� denotes the set of all texts of length � over Σ, i.e.
Σ� = {S ∈ Σ∗||S| = �}. We assume a recursively enumerable set X of variables
such that Σ ∩ X = φ and all elements in Σ ∪ X are totally ordered. A sequence
of symbols from Σ ∪ X is called a string. The length of string S is denoted by
|S|, and the cardinality of a set C is similarly denoted by |C|. A pair and triple
of symbols from Σ ∪ X are called digram and trigram, respectively. Strings x
and z are said to be the prefix and suffix of the string S = xyz, respectively,
and x, y, z are called substrings of S. The i-th symbol of S is denoted by S[i]
(1 ≤ i ≤ |S|). For integers i and j with 1 ≤ i ≤ j ≤ |S|, the substring of S from
S[i] to S[j] is denoted by S[i, j]. N denotes the length of a text S and it can be
variable in an online setting.

2.2 Context-Free Grammar

A context-free grammar (CFG) is a quadruple G = (Σ, V,D,Zs) where V is a
finite subset of X , D is a finite subset of V × (V ∪ Σ)∗ of production rules,
and Zs ∈ V represents the start variable. D is also called a phrase dictionary.
Variables in V are called nonterminals. The set of strings in Σ∗ derived from
Zs by G is denoted by L(G). A CFG G is called admissible if for any Z ∈ X
there is exactly one production rule Z → γ ∈ D. We assume |γ| = 2 or 3 for any
production rule Z → γ.

The parse tree of G is represented as a rooted ordered tree with internal
nodes labeled by variables in V and leaves labeled by elements in Σ, and the
label sequence of its leaves are equal to an input string. Any internal node Z ∈ V
in a parse tree corresponds to a production rule in the form of Z → γ in D. The
height of Z is the height of the subtree whose root is Z.

2.3 Phrase and Reverse Dictionaries

For a set V of production rules, a phrase dictionary D is a data structure for
directly accessing the phrase S ∈ (Σ ∪ V)∗ for any given Z ∈ V if Z → S ∈ D.
A reverse dictionary D−1 : (Σ ∪ V)∗ → V is a mapping from a given sequence
of symbols to a variable. D−1 returns a variable Z associated with a string S
if Z → S ∈ D; otherwise, it creates a new variable Z ′ /∈ V and returns Z ′. For
example, if D = {Z1 → abc, Z2 → cd}, D−1(a, b, c) returns Z1, while D−1(b, c)
creates Z3 and returns it.

206 Y. Takabatake, Y. Tabei, and H. Sakamoto

2.4 Problem Definition

In order to describe our method we first review the notion of EDM. The EDM
d(S,Q) between two strings S and Q is the minimum number of edit operations
defined below to transform S into Q:

1. Insertion: A character a at position i in S is inserted, which generates S[1, i−
1]aS[i]S[i+ 1, N],

2. Deletion: A character a at position i in S is deleted, which generates S[1, i−
1]S[i+ 1, N],

3. Replacement: A character at position i is replaced by a, which generates
S[1, i− 1]aS[i+ 1, N],

4. Substring move: A substring S[i, j] is moved and inserted at the position k,
which generates S[1, i− 1]S[j + 1, k − 1]S[i, j]S[k,N].

Problem 1 (Online pattern matching for EDM). For a streaming text
S ∈ Σ∗, a query Q ∈ Σ∗, and a distance threshold k ≥ 0, find all i ∈ [1, |S|]
such that the EDM between a substring S[i, i + |Q|] and Q is at most k, i.e.
d(S[i, i+ |Q|], Q) ≤ k.

Cormode and Muthukrishnan [3] presented an offline algorithm for computing
EDM. In their algorithm, a special type of derivation tree called ESP is con-
structed for approximately computing EDM. We present an online variant of
ESP. Our algorithm approximately solves Problem 1 and is composed of two
parts: (i) an online construction of a parse tree space-efficiently and (ii) an ap-
proximate computation of EDM from the parse tree. Although our method is an
approximation algorithm, it guarantees an upper bound for the exact EDM. We
now discuss the two parts in the next section.

3 Online Algorithm

OESP builds a special form of CFG and directly encodes it into a succinct rep-
resentation in an online manner. Such a representation can be used as space-
efficient phrase/reverse dictionaries, which resulted in reducing the working
space. In this section, we first present a simple variant of ESP in order to intro-
duce the notion of alphabet reduction and landmark. We then detail OESP and
approximate computations of the EDM in an online manner. In the next section,
we present an upper bound of the approximate EDM for the exact EDM.

3.1 ESP

Given an input string S ∈ Σ∗, we decompose the current S into digrams WX
or trigrams WXY associated with variables as production rules, and iterate this
process while |S| > 1 for the resulting S.

In each iteration, ESP uniquely partitions S into maximal non-overlapping
substrings such that S = S1S2 · · ·S� and each Si is categorized into one of three

Online Pattern Matching for String Edit Distance with Moves 207

types, i.e., type1: a repetition of a symbol, type2: a substring not including a
type1 substring and of length at least �lg |S|	, and type3: a substring being
neither type1 nor type2 substrings.

At one iteration of parsing Si, ESP builds two kinds of subtrees from digram
WX and trigram WXY , respectively. The first type is a 2-tree corresponding
to a production rule in the form of Z → WX . The second type is a 3-tree
corresponding to Z → WXY .

ESP parses Si according to its type. In case Si is a type1 or type3 substring,
ESP performs the left aligned parsing where 2-trees are built from left to right
in Si and a 3-tree is built for the last three symbols if |Si| is odd, as follows:
– If |Si| is even, ESP builds Z → Si[2j − 1, 2j], j = 1, ..., |Si|/2,
– Otherwise, it builds Z → Si[2j−1, 2j] for j = 1, ..., (
|Si|/2�−1), and builds

Z → Si[2j − 1, 2j + 1] for j =
|Si|/2�.
In case Si is type2, ESP further partitions Si = s1s2...s� (2 ≤ |sj | ≤ 3) by the
alphabet reduction described below, and builds Z → sj for j = 1, ..., �.

After parsing all Si to S′
i, ESP continues this process for the resulted string

by concatenating all S′
i (i = 1, . . . , �) at the next level.

Alphabet Reduction: Alphabet reduction is a procedure for partitioning a
string of type2 into digrams and trigrams. Given S of type2, consider each S[i]
represented as binary integers. Let p be the position of the least significant bit
in which S[i] differs from S[i − 1], and let bit(p, S[i]) ∈ {0, 1} be the value of
S[i] at the p-th position, where p starts at 0. Then, L[i] = 2p + bit(p, S[i]) is
defined for any i ≥ 2. Since S contains no repetition (i.e., S is type2), the string
L defined by L = L[2]L[3] . . .L[|S|] is also type2. We note that if the number of
different symbols in S is m, denoted by [S] = m, clearly [L] ≤ 2 lgm. Then, S[i]
is called landmark if (i) L[i] is maximal such that L[i] > max{L[i− 1], L[i+ 1]}
or (ii) L[i] is minimal such that L[i] < min{L[i− 1], L[i+ 1]} and not adjacent
to any other maximal landmark.

Because L is type2 and [L] ≤ lg |S|, any substring of S longer than lg |S| must
contain at least one landmark. After deciding all landmarks, if S[i] is a landmark,
we replace S[i − 1, i] by a variable X and update the current dictionary with
X → S[i − 1, i]. After replacing all landmarks, the remaining substrings are
replaced by the left aligned parsing.

3.2 Post-order CFG

OESP builds a post-order partial parse tree (POPPT) and directly encodes it
into a succinct representation. A partial parse tree defined by Rytter [15] is
the ordered tree formed by traversing a parse tree in a depth-first manner and
pruning out all descendants under every node of nonterminal symbols appearing
no less than twice.

Definition 1 (POPPT and POCFG [11]). A post-order partial parse tree
(POPPT) is a partial parse tree whose internal nodes have post-order variables.
A post-order CFG (POCFG) is a CFG whose partial parse tree is a POPPT.

208 Y. Takabatake, Y. Tabei, and H. Sakamoto

i) POCFG ii) Parse tree for POCFG iii) POPPT

Fig. 1. Example of a POCFG, the parse tree of a POCFG, a post-order partial parse
tree (POPPT)

Note that the number of nodes in the POPPT is at most 3n for a POCFG of
n variables, because the right-hand sides consist of digrams or trigrams in the
production rules and the numbers of internal nodes and leaves are n and at most
2n, respectively.

Examples of a POCFG and POPPT are shown in Figure 1-i) and iii), re-
spectively. The POPPT is built by traversing the parse tree in Figure 1-ii) in
depth-first manner and pruning out all the descendants under the node having
the second X3. The resulted POPPT in Figure 1-iii) consists of internal nodes
having post-order variables.

A major advantage of POPPT is that we can directly encode it into a succinct
representation which can be used as a phrase dictionary. Such a representation
enables us to reduce the working space of OESP by using it in a combination
with a reverse dictionary.

3.3 Online construction of a POCFG

OESP builds from a given input string a POCFG that guarantees upper bounds
of parsing discrepancies between the same substrings in the string. The basic
idea of OESP is to (i) start from symbols in an input text, (ii) replace as many
as possible of the same digrams or trigrams in common substrings by the same
nonterminal symbols, and (iii) iterate this process in a bottom-up manner until
it generates a complete POCFG. The POCFG is built in an online manner and
the POPPT corresponding to it consists of nodes having two or three children.

OESP builds two types of subtrees in a POPPT from strings XY and WXY .
The first type is a 2-tree corresponding to a production rule in the form of
Z → XY . The second type is a 3-tree corresponding to a production rule in the
form of Z → WXY .

OESP builds a 2-tree or 3-tree from a substring of a limited length. Let u be
a string of length m. A function L : (Σ ∪ V)m × [m] → {0, 1} classifies whether
or not the i-th position of u has a landmark, i.e., the i-th position of u has a
landmark if L(u, i) = 1. L(u, i) is computed from a substring u[i − 1, i + 2] of
length four. OESP builds a 3-tree from a substring u[i+1, i+3] of length three
if the i-th position of u does not have a landmark; otherwise, it builds a 2-tree
from a substring u[i + 2, i + 3] of length two. The landmarks on a string are

Online Pattern Matching for String Edit Distance with Moves 209

Algorithm 1. Online construction of ESP.D is phrase dictionary,D−1 is reverse
dictionary, and qk is queue at level k.
1: function OESP
2: D := ∅; initialize queues qk
3: while reading a new character c from an input text do
4: ProcessSymbol(q1, c)
5: end while
6: end function
7: function ProcessSymbol(qk, X)
8: qk.enqueue(X)
9: if qk.size() = 4 then
10: if L(qk, 2) = 0 then � Build a 2-tree

11: Z := D−1(qk[3], qk[4]); D := D ∪ {Z → qk[3]qk[4]}
12: ProcessSymbol(qk+1, Z)
13: qk.dequeue(); qk.dequeue()
14: end if
15: else if qk.size() = 5 then � Build a 3-tree

16: Z := D−1(qk[3], qk[4], qk[5]); D := D ∪ {Z → qk[3]qk[4]qk[5]}
17: ProcessSymbol(qk+1, Z)
18: qk.dequeue(); qk.dequeue(); qk.dequeue()
19: end if
20: end function

decided such that they are synchronized in long common subsequences to make
the parsing discrepancies as small as possible.

The algorithm uses a set of queues, qk, k = 1, ...,m, where qk processes the
string at k-th level of a parse tree of a POCFG and builds 2-trees and 3-trees at
each k. Since OESP builds a balanced parse tree, the number m of these queues
is bounded by lgN . In addition, landmarks are decided on strings of length at
most four, and the length of each queue is also fixed to five. Algorithm 1 consists
of the functions OESP and ProcessSymbol.

The main function is OESP which reads new characters from an input text
and gives them to the function ProcessSymbol one by one. The function Pro-
cessSymbol builds a POCFG in a bottom-up manner. There are two cases
according to whether or not a queue qk has a landmark. For the first case of
L(qk, 2) = 0, i.e. qk does not have a landmark, the 2-tree corresponding to a
production rule Z → qk[3]qk[4] in a POCFG is built for the third and fourth
elements qk[3] and qk[4] of the k-th queue qk. For the other case, the 3-tree cor-
responding to a production rule Z → qk[3]qk[4]qk[5] is built for the third, fourth
and fifth elements qk[3], qk[4] and qk[5] of the k-th queue qk. In both cases, the
reverse dictionary D−1 returns a nonterminal symbol replacing a sequence of
symbols. The generated symbol Z is given to the higher qk+1, which enables the
bottom-up construction of a POCFG in an online manner.

The computation time and working space depend on implementations of
phrase and reverse dictionaries. The phrase dictionary for a POCFG of n vari-
ables can be implemented using a standard array of at most 3n lg (n+ σ) bits
of space and O(1) access time. In addition, the reverse dictionary can be imple-
mented using a chaining hash table and a phrase dictionary implemented as an
array. Thus, the working space of OESP using these data structures is at most
n(4 + α) lg (n+ σ) bits. In the following subsections, we present space-efficient
representations of phrase/reverse dictionaries.

210 Y. Takabatake, Y. Tabei, and H. Sakamoto

Succinct representation of
the POPPT

B:11100111100010011000
L:aabab
P:1101110010

POPPT

Fig. 2. Succinct representation of a POCFG for a phrase dictionary

3.4 Compressed Phrase Dictionary

OESP directly encodes a POCFG into a succinct representation that consists of
bit strings B, P and a label sequence L. A bit string B is built by traversing a
POPPT and putting c 0s and 1 for a node having c children in the post-order. The
final 0 in B represents the super node. We shall call the bit string representation
of a POPPT posterior order unary degree sequence (POUDS). To dynamically
build a tree and access any node in the POPPT, we index B by using the dynamic
range min/max tree [14]. Our POUDS supports two tree operations: child(B, i, j)
returns the j-th child of a node i; num child(B, i) returns the number of children
for a node i. They are computed in O(lgm/ lg lgm) time while using 2m+ o(1)
bits of space for a tree having m nodes.

A bit string P is built by traversing a POPPT and putting 1 for a leaf and
0 for an internal node in the post-order. P is indexed by the rank/select dictio-
nary [6,13]. The label sequence L stores symbols of leaves in a POPPT.

We can access any element in L as a child of a node i in the following. First, we
compute c = num child(B, i) and children nodes p = child(B, i, j) for j ∈ [1, c].
Then, we can compute the positions in L corresponding to the positions of these
children as q = rank1(P, p) that returns the number of occurrences of 1 in P [0, p]
in O(1) time. We obtain leaf labels as L[q]. For a POCFG of n nonterminal
symbols, we can access the right-hand side of symbols from the left-hand side
of a symbol of a production rule in O(lg n/ lg lgn) time while using at most
n lg (n+ σ) + 5n+ o(n) bits of space.

3.5 Compressed Reverse Dictionary

We implement a reverse dictionary using a chaining hash table that has a load
factor α ∈ (0, 1] in a combination with a phrase dictionary. The hash table has
αn entries and each entry stores a list of integers i representing the left-hand side
Xi of a rule. For the rule Xi → S, the hash value is computed from the right-
hand side S. Then, the list corresponding to the hash value is scanned to search
for Xi while checking elements referred to as S in a phrase dictionary. Thus, the
expected access time is O(1/α). The space for a POCFG with n nonterminal
symbols is αn lg(n+ σ) bits for the hash table and n lg(n+ σ) bits for the lists,
which resulted in n(α+ 1) lg(n+ σ) bits in total.

A crucial observation in OESP is that indexes i for nonterminal symbolsXi are
created in a strictly increasing order. Thus, we can organize each list in a hash
table as a strictly increasing sequence of the indexes of nonterminal symbols.

Online Pattern Matching for String Edit Distance with Moves 211

We insert a new index i into a list in the hash table, and we append it at the end
of the list. Each list in the hash table consists of a strictly increasing sequence of
indexes. To make each index smaller, we compute the difference between an index
i and the previous one j, and we encode it by the delta code, which resulted
in the difference i − j being encoded in 1 +
lg (i − j)� + 2
lg
1 + lg (i − j)��
bits. For all n nonterminal symbols, the space for the lists is upper bounded by
n(1 + lg (αn) + 2 lg lg (αn)). bits The space for the hash table is αn lg (n+ σ +
n(1+ lg (αn)+2 lg lg (αn)) bits in total, resulting in αn lg(n+σ)+n(1+ lg(αn))
bits by multiplying the original α by a constant.

Since the reverse dictionary is implemented using the chaining hash and the
phrase dictionary, its total space is at most n(α+1) lg (n+ σ)+n(5+ lg (αn))+
o(n) bits. We can obtain the following result.

Lemma 1. For a string length N , OESP builds a POCFG of n nonterminal
symbols and its phrase/reverse dictionaries in O(N lgn

α lg lgn) expected time using at

most n(α+ 1) lg (n+ σ) + n lg (αn) + 5n+ o(n) bits of space.

3.6 Online Pattern Matching with EDM

We approximately solve problem 1 by using OESP. First, the parse tree is com-
puted from a query Q by OESP. Let T (Q) be a set of node labels in the parse
tree for Q. We then compute a vector V (Q) each dimension V (Q)(e) of which
represents the frequency of the corresponding node label e in T (Q).

OESP builds another parse tree for a streaming text S in an online manner.
T (S)[i, i + |Q|] is a set of node labels included in the subtree corresponding
to a substring S[i, i + |Q|] from i to i + |Q| in T (S). V (S)[i, i + |Q|] can be
constructed for each i ∈ [1, |S| − |Q|] by adding the node labels corresponding
to S[i, i + |Q|] and subtracting the node labels not included in T (S)[i, i + |Q|]
from V (S)[i, i+ |Q]], which can be performed in lg |S| time.

L1-distance approximates the EDM between V (S)[i, i + |Q|] and V (Q), and
it is computed as ||V (S)[i, i+ |Q|]−V (Q)|| = ∑

e∈(T (S)[i,i+|Q|]∪T (Q)) |V (S)[i, i+

|Q|](e) − V (Q)(e)|. We obtain the results with respect to computational time
and space for computing the L1 distance from lemma 1 as follows.

Theorem 1. For a streaming text S of length N , OESP approximately solves
the problem 1 in O(N lgN lgn

α lg lgn) expected time using at most n(α+ 1) lg (n+ σ) +

n lg (αn) + 5n+ o(n) bits of space.

4 Upper Bound of Approximation

We present an upper bound of the approximate EDM in this section.

Theorem 2. ||V (S) − V (Q)|| = O(lg2 m)d(S,Q) for any S,Q ∈ Σ∗ and m =
max{|S|, |Q|}.
Proof. Let e1, e2, . . . , ed be a shortest series of editing operations such that
Sk+1 = Sk(ek) where S1 = S, Sd(ed) = Q, and d = d(S,Q). It is sufficient

212 Y. Takabatake, Y. Tabei, and H. Sakamoto

dna.200MB english.200MB

0

200

400

600

800

1000

1200

1.E+00 4.E+00 7.E+00 1.E+01 1.E+01 2.E+01 2.E+01

co
m

pu
ta

ti
on

 ti
m

e[
se

c]

length of text

0

200

400

600

800

1000

1200

1400

1.E+00 4.E+00 7.E+00 1.E+01 1.E+01 2.E+01 2.E+01

co
m

pu
ta

ti
on

 ti
m

e[
se

c]

length of text

Fig. 3. Computation time in seconds for the length of text

to prove the assumption: there exists a constant c such that ||V (S)− V (Q)|| ≤
c lg2 m for R(e) = S. S(i) denotes the string resulted by the i-th iteration of ESP
where S(0) = S. Let pi, qi be the smallest integers satisfying S(i)[pi] �= Q(i)[pi]
and S(i)[|S|(i) − qi] �= Q(i)[|Q(i)| − qi], respectively. We show that qi − pi ≤
lgm + 1 for each height i. This derives ||V (S) − V (Q)|| ≤ 2 lgm(lgm + 1) be-
cause i ≤ lgm.

We begin with the case that e is an insertion of a symbol. Clearly, it is true for
i = 0 since q0 − p0 ≤ 1. We assume the hypothesis on some height i. Let S(i)[p′]
be the closest landmark from S(i)[pi] with p′ < pi and S(i)[q′] be the closest
landmark from S(i)[qi] with qi < q′. For the next height, let S(i+ 1) = S1S2S3

such that the tail of S1 derives S(i)[pi] and the tail of S2 derives S(i)[qi], and
let Q(i + 1) = Q1Q2Q3 such that |Q1| = |S1| and |Q3| = |S3|. On any iteration
of ESP, the left aligned parsing is performed from a landmark to its closest
landmark. It follows that, for S1, S1[j] = Q1[j] except their tails, for S2, |S2| ≤

 1
2 (qi − pi)� ≤
 1

2 (lgm+ 1)�, and for S3, we can estimate S3[j] = Q3[j] for any
j >
 1

2 lgm�. Thus, qi+1 − pi+1 ≤ 1 +
 1
2 (lgm+1)�+
 1

2 lgm� ≤ lgm+ 1. Since
d(S,Q) = d(Q,S), this bound is true for the deletion of any symbol. The case
that e is a replacement is similar.

Moreover, the bound holds for the case of insertion or deletion of any string
of length at most lgm. Using this, we can reduce the case of move operation
of a substring u as follows. Without loss of generality, we assume u is a type2
substring and let u = xyz such that x/z are the shortest prefix/suffix of u
that contain a landmark, respectively. Then, we note that the y inside of u is
transformed to a same string for any occurrence of u. Therefore, the case of
moving u from S to obtain Q is reduced to the case of deleting x, z at some
positions and inserting them into other positions. Since |x|, |z| ≤ lgm, the case
of moving u is identical to the case of inserting two symbols and deleting two
symbols, i.e., ||V (S)− V (Q)|| ≤ 8 lgm(lgm+ 1).

From theorem 1 and 2, we obtain the following main theorem.

Theorem 3. EDM is O(lg2 N)-approximable by the proposed online algorithm
with O(N lgN lgn

α lg lg n) expected time and n(α + 1) lg (n+ σ) + n(5 + lg (αn)) + o(n)
bits of space.

Proof. By the theorem 2, we obtain the bound ||V (S[i, i + |Q|] − V (Q)|| =
O(lg2 |Q|)d(S[i, i + |Q|], Q) for any i ∈ [1, |S| − |Q|]. The time complexity is
proved by the theorem 1. Thus, for the strings S and Q with N = |S| ≥ |Q|, the
result is concluded.

Online Pattern Matching for String Edit Distance with Moves 213

dna.200MB english.200MB

0.E+00

5.E+01

1.E+02

2.E+02

2.E+02

3.E+02

3.E+02

4.E+02

4.E+02

0.E+00 3.E+07 6.E+07 9.E+07 1.E+08 2.E+08 2.E+08 2.E+08

sp
ac

e[
M

B
]

length of input

hash table

dictionary

0.E+00

5.E+01

1.E+02

2.E+02

2.E+02

3.E+02

3.E+02

4.E+02

4.E+02

5.E+02

0.E+00 3.E+07 6.E+07 9.E+07 1.E+08 2.E+08 2.E+08 2.E+08

sp
ac

e[
M

B
]

length of text

hash table

dictionary

Fig. 4. Working space of dictionary and hash table for the length of text

dna.200MB english.200MB

0.E+00

1.E+01

2.E+01

3.E+01

4.E+01

5.E+01

6.E+01

7.E+01

8.E+01

9.E+01

1.E+02

0.E+00 3.E+07 6.E+07 9.E+07 1.E+08 2.E+08 2.E+08 2.E+08

di
ct

io
na

ry
 s

iz
e[

M
B

]

length of input

L B P

0.E+00

2.E+01

4.E+01

6.E+01

8.E+01

1.E+02

1.E+02

0.E+00 3.E+07 6.E+07 9.E+07 1.E+08 2.E+08 2.E+08 2.E+08
di

ct
io

na
ry

 s
iz

e[
M

B
]

length of text

L B P

Fig. 5. Working space of a POUDS (B), a label sequence (L) and a bit string (P) which
organizes a dictionary

dna.200MB english.200MB

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 10 20 30 40 50 60 70 80 90 100110120130140150160

of

 s
ub

st
ri

ng
s

threshold k

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

0 10 20 30 40 50 60 70 80 90 100110120130140150160

of

 s
ub

st
ri

ng
s

threshold k

Fig. 6. The number of substrings whose EDM to a query is no more than each threshold

5 Experiments

We evaluated OESP on one core of an eight-core Intel Xeon CPU E7-8837
(2.67GHz) machine with 1024GB memory. We used two standard benchmark
texts dna.200MB and english.200MB downloadable from http://pizzachili.

dcc.uchile.cl/texts.html. We sampled texts of length 100 from these texts
as queries. We also used computation time and working space as evaluation
measures.

Figure 3 shows computation time for increasing the length of text. The com-
putation time increased linearly for the length of text.

Figure 4 shows working space for increasing the length of text. The space of
dictionary was much smaller than that of hash table. The dicionary used 115MB
for dna.200MB and 121MB for english.200MB, while the hash table used 368MB
for dna.200MB and 382MB for english.200MB.

Figure 5 shows space of a POUDS, a label sequence and a bit string organizing
a dictionary for increasing the length of text. The space of dictionary and bit
string was much smaller than that of the label sequence for dna.200MB and
english.200MB. Table 2 details those space.

http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html

214 Y. Takabatake, Y. Tabei, and H. Sakamoto

Table 2. Space for POUDS B, label sequence P and bit string P organizing a dictio-
nary on dna.200MB and english.200MB.

L[MB] B[MB] P[MB]
dna.200MB 89.95 17.62 7.73

english.200MB 95.72 14.99 8.22

Figure 6 shows the number of substring whose EDM to a query is at most a
threshold. There were thresholds where the number of substrings dramatically
increases. The results showed the applicability of OESP to streaming texts.

6 Conclusion

We have presented an online pattern maching for EDM. Our method named
OESP is an online version of ESP. A future work is to apply OESP to real world
streaming texts.

References

1. Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM
Jour. on Comp. 25, 272–289 (1996)

2. Clifford, R., Sach, B.: Pattern matching in pseudo real-time. JDA 9, 67–81 (2011)
3. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with

moves. TALG 3, 2:1–2:19 (2007)
4. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)
5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological sequence analysis: Prob-

abilistic models of proteins and nucleic acids. Cambridge University Press (1998)
6. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. of FOCS, pp. 549–554

(1989)
7. Jalsenius, M., Porat, B., Sach, B.: Parameterized matching in the streaming model.

In: STACS, pp. 400–411 (2013)
8. Kececioglu, J., Sankoff,D.: Exact and approximation algorithms for the inversion dis-

tance between two chromosomes. In: Apostolico, A., Crochemore, M., Galil, Z., Man-
ber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg (1993)

9. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707–710 (1996)

10. Maruyama, S., Tabei, Y.: Fully-online grammar compression in constant space. In:
Proc. of DCC, pp. 218–229 (2014)

11. Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar com-
pression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 218–229. Springer, Heidelberg (2013)

12. Muthukrishnan, S., Sahinalp, S.C.: Approximate nearest neighbors and sequence
comparison with block operations. In: Proc. of STOC, pp. 416–424 (2000)

13. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 295–306. Springer, Heidelberg (2012)

14. Navarro, G., Sadakane, K.: Fully-functional static and dynamic succinct trees.
TALG (2012) (accepted); A preliminary version appeared in SODA 2010 (2010)

15. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comp. Sci. 302(1-3), 211–222 (2003)

16. Shapira, D., Storer, J.A.: Edit distance withmove operations. JDA5, 380–392 (2007)

K2-Treaps: Range Top-k Queries

in Compact Space�

Nieves R. Brisaboa1, Guillermo de Bernardo1, Roberto Konow2,3,
and Gonzalo Navarro2

1 Databases Lab., Univ. of A. Coruña, Spain
{brisaboa,gdebernardo}@udc.es

2 Dept. of Computer Science, Univ. of Chile
{rkonow,gnavarro}@dcc.uchile.cl

3 Escuela de Informática y Telecomunicaciones, Univ. Diego Portales, Chile

Abstract. Efficient processing of top-k queries onmultidimensional grids
is a common requirement in information retrieval and data mining, for ex-
ample in OLAP cubes. We introduce a data structure, the K2-treap, that
represents grids in compact form and supports efficient prioritized range
queries. We compare the K2-treap with state-of-the-art solutions on syn-
thetic and real-world datasets, showing that it uses 30% of the space of
competing solutions while solving queries up to 10 times faster.

1 Introduction

Top-k queries on multidimensional weighted point sets ask for the k heaviest
points in a range. This type of query arises most prominently in data mining
and OLAP processing (e.g., find the sellers with most sales in a time period)
and in GIS applications (e.g., find the cheapest hotels in a city area), but also
in less obvious document retrieval applications [16]. In the example of sales, one
coordinate is the seller id, which are arranged hierarchically to allow queries
for sellers, stores, areas, cities, states, etc., and the other is time (in periods
of hours, days, weeks, etc.). Weights are the amounts of sales made by a seller
during a time slice. Thus the query asks for the k heaviest points in some range
Q = [x1, x2]× [y1, y2] of the grid.

Data mining and information systems such as those mentioned above usually
handle huge amounts of data and may have to serve millions of queries per
second. Representing this steadily increasing amount of data space-efficiently
can make the difference between maintaining the data in main memory or having
to resort to external memory, which is orders of magnitude slower.

We introduce a new compact data structure that performs fast range top-k
queries on multidimensional grids and is smaller than state-of-the-art compact

� Funded by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, by a Conicyt scholarship, by MICINN (PGE and FEDER)
TIN2009-14560-C03-02 and TIN2010-21246-C02-01, by CDTI, MEC and AGI EXP
00064563/ITC-20133062, and by Xunta de Galicia (with FEDER) GRC2013/053.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 215–226, 2014.
c© Springer International Publishing Switzerland 2014

216 N.R. Brisaboa et al.

data structures. Our new representation, called K2-treap, is inspired by two
previous data structures: the K2-tree [5] and the treap [18]. The K2-tree is a
compressed and self-indexed structure initially designed to represent Web graphs
and later used in other domains as an efficient and compact representation of
binary relations. The treap is a binary tree that satisfies the invariants of a
binary search tree and a heap at the same time, which is useful for prioritized
searches. Our results show that the K2-treap answers queries up to 10 times
faster, while using just 30% of the space, of state-of-the-art alternatives.

2 Basic Concepts

Rank and select on bitmaps. Let B[1, n] be a sequence of bits, or bitmap.
We define operations rankb(B, i) as the number of occurrences of b ∈ {0, 1} in
B[1, i], and selectb(B, j) as the position in S of the jth occurrence of b. B can
be represented using n + o(n) bits [15], so that both operations are solved in
constant time.

Wavelet trees and discrete grids. An n × m grid with n points, exactly
one per column (i.e., x values are unique), can be represented using a wavelet
tree [10, 12]. This is a perfect balanced binary tree of height �lgm� where each
node corresponds to a contiguous range of values y ∈ [1,m] and represents
the points falling in that y-range, sorted by increasing x-coordinate. The root
represents [1,m] and the two children of each node split its y-range in half, until
the leaves represent a single y-coordinate. Each internal node stores a bitmap,
which tells whether each point corresponds to its left or right child. Using rank
and select queries on the bitmaps, the wavelet tree uses n lgm+ o(n logm) bits,
and can count the number of points in a range in O(logm) time, because the
query is decomposed into bitmap ranges on at most 2 nodes per wavelet tree
level. Any point can be tracked up (to find its x-coordinate) or down (to find its
y-coordinate) in O(logm) time as well.

K2-trees. The K2-tree [5] is a data structure to compactly represent sparse
binary matrices (which can also be regarded as point grids). The K2 tree sub-
divides the matrix into K2 submatrices of equal size. The submatrices are con-
sidered left-to-right and top-to-bottom, and each is represented with a bit, set
to 1 if the submatrix contains at least one non-zero cell. Each node whose bit
is 1 is recursively decomposed, subdividing its submatrix into K2 children, and
so on. The subdivision ends when a fully-zero submatrix is found or when we
reach the individual cells. The K2-tree can answer range queries with multi-
branch top-down traversal of the tree, following only the branches that overlap
the query range. While it has no good worst-case time guarantees, in practice
times are competitive. The worst-case space, if t points are in an n × n ma-

trix, is K2 t logK2
n2

t (1 + o(1)) bits. This can be reduced to t lg n2

t (1 + o(1)) if
the bitmaps are compressed. This is similar to the wavelet tree space, but in
practice K2-trees use much less space when the points are clustered.

The K2-tree is stored in two bitmaps: T stores the bits of all the levels except
the last one, in a level-order traversal, and L stores the bits of the last level

K2-Treaps: Range Top-k Queries in Compact Space 217

(corresponding to individual cells). Given a node at position p in T , its children
are be located from position rank1(T, p) · K2 in T : L. This property enables
K2-tree traversals using just T and L.

Treaps and Priority Search Trees. A treap [18] is a binary search tree with
nodes having two attributes: key and priority. The treap maintains the binary
search tree invariants for the keys and the heap invariants for the priorities, that
is the key of a node is larger than those in its left subtree and smaller than
those in its right subtree, whereas its priority is not smaller than those in its
subtree. The treap does not guarantee logarithmic height, except on expectation
if priorities are independent of keys [13]. The priority search tree [14] is somewhat
similar, but it is balanced. In this case, a node is not the one with highest priority
in its subtree, but that element is stored in addition to the element at the node.
The element stored separately is also removed from the subtree. Priority search
trees can be used to solve 3-sided range queries on n-point grids, returning t
points in time O(t + logn).

3 Related Work

Navarro et al. [17] introduced compact data structures for various queries on
two-dimensional weighted points, including range top-k queries. They enhance
the bitmaps of each node as follows: Let x1, . . . , xr be the points represented at a
node, and w(x) be the weight of point x. Then a range maximum query (RMQ)
data structure built on w(x1), . . . , w(xr) is stored together with the bitmap. Such
a structure uses 2r + o(r) bits and finds the position of the maximum weight
in any range [w(xi), . . . , w(xj)] in constant time [8] and without accessing the
weights themselves. Therefore, the total space becomes 3n lgm+o(n logm) bits.

To solve top-k queries on a grid range Q = [x1, x2]× [y1, y2], we first traverse
the wavelet tree to identify the O(logm) bitmap intervals where the points in
Q lie (a counting query would, at this point, just add up all the bitmap interval
lengths). The heaviest point in Q in each bitmap interval is obtained with an
RMQ, but we need to obtain the actual priorities in order to find the heaviest
among the O(logm) candidates. The priorities are stored sorted by x- or y-
coordinate, so we obtain each one in O(logm) time by tracking the point with
maximum weight in each interval. Thus a top-1 query is solved in O(log2 m)
time. For a top-k query we must maintain a priority queue of the candidate
intervals, and each time the next heaviest element is found, we remove it from
its interval and reinsert in the queue the two resulting subintervals. The total
query time is O((k + logm) log(km)).

It is possible to reduce the time to O((k+logm) logε m) time and O(1εn logm)
bits, for any constant ε > 0 [16], but the space usage is much higher, even if linear.

4 The K2-treap

In one dimension, an RMQ structure using 2n+o(n) bits [8] is sufficient to answer
range top-k queries in O(k log k) or O(k log logn) time, using the algorithm just

218 N.R. Brisaboa et al.

described on a single interval. However, a similar RMQ structure for two or more
dimensions needs Ω(mn logm) bits [9] (on dense grids), and therefore it is better
to directly look for representations of the data points that can also answer range
top-k queries. The idea is to combine a K2-tree with a treap data structure. If
keys are [1, n], treaps can be stored in 2n + o(n) bits plus the priorities [11],
whereas priority search trees cannot. In two and more dimensions, however, this
advantage vanishes. Therefore, our data structure combines the K2-tree with a
priority search tree, which is more convenient for its balancing guarantees.

4.1 Data Structure

Consider a matrix M [n × n] where each cell can either be empty or contain a
weight in the range [0, d−1]. We consider a quadtree-like recursive partition ofM
into K2 submatrices, the same performed in the K2-tree with binary matrices.
We build a conceptual K2-ary tree similar to the K2-tree, as follows: the root
of the tree will store the coordinates of the cell with the maximum weight of the
matrix, and the corresponding weight. Then the cell just added to the tree is
marked as empty, deleting it from the matrix. If many cells share the maximum
weight, we pick anyone of them. Then, the matrix is conceptually decomposed
into K2 equal-sized submatrices, and we add K2 child nodes to the root of the
tree, each representing one of the submatrices. We repeat the assignment process
recursively for each child, assigning to each of them the coordinates and value of
the heaviest cell in the corresponding submatrix and removing the chosen points.
The procedure continues recursively for each branch until we find a completely
empty submatrix (either because the matrix did not contain any weights in
the region or because the cells with weights have been “emptied” during the
construction process) or we reach the cells of the original matrix.

Fig. 1 shows an example of K2-treap construction, for K = 2. At the top of
the image we show the state of the matrix at each level of decomposition. M0
represents the original matrix, where the maximum value is highlighted. The
coordinates and value of this cell are stored in the root of the tree. In the next
level of decomposition (matrix M1) we find the maximum values in each quad-
rant (notice that the cell assigned to the root has already been removed from the
matrix) and assign them to the children of the root node. The process continues
recursively, subdividing each matrix into K2 submatrices. The cells chosen as
local maxima are highlighted in the matrices corresponding to each level of de-
composition, except in the last level where all the cells are local maxima. Empty
submatrices are marked in the tree with the symbol “-”.

The data structure is represented in three parts: The location of local maxima,
the weights of the local maxima, and the tree topology.

Local maximum coordinates: The conceptual K2-treap is traversed level-
wise, reading the sequence of cell coordinates from left to right in each level.
The sequence of coordinates at each level � is stored in a different sequence
coord[�]. The coordinates at each level � of the tree are transformed into an
offset in the corresponding submatrix, transforming each ci into ci mod (n/K�)

K2-Treaps: Range Top-k Queries in Compact Space 219

Fig. 1. Example of K2-treap construction from a matrix

using �lg(n)− � lgK� bits. For example, in Fig. 2 (top) the coordinates of node
N1 have been transformed from the global value (4, 4) to a local offset (0, 0). In
the bottom of Fig. 2 we highlight the coordinates of nodes N0, N1 and N2 in
the corresponding coord arrays. In the last level all nodes represent single cells,
so there is no coord array in this level. With this representation, the worst-case

space for storing t points is
∑logK2 (t)

�=0 2K2� lg n
K� = t lg n2

t (1 + O(1/K2)), that
is, the same as if we stored the points using the K2-tree.

Local maximum values: The maximum value in each node is encoded dif-
ferentially with respect to the maximum of its parent node. The result of the
differential encoding is a new sequence of non-negative values, smaller than the
original. Now the K2-treap is traversed level-wise and the complete sequence of
values is stored in a single sequence named values. To exploit the small values
while allowing efficient direct access to the array, we represent values with Di-
rect Access Codes [4]. Following the example in Fig. 2, the value of node N1
has been transformed from 7 to 8− 7 = 1. In the bottom of the figure the com-
plete sequence values is depicted. We also store a small array first[0, lgK n] that
stores the offset in values where each level starts.

Tree structure: We separate the structure of the tree from the values stored
in the nodes. The tree structure of the K2-treap is stored in a K2-tree. Fig. 2
shows the K2-tree representation of the example tree, where only cells with
value are labeled with a 1. We will consider a K2-tree stored in a single bitmap
T with rank support, that contains the sequence of bits from all the levels of the
tree. Our representation differs from a classic K2-tree (that uses two bitmaps
T and L and only adds rank support to T) because we will need to perform
rank operations also in the last level of the tree. The other difference is that

220 N.R. Brisaboa et al.

Fig. 2. Storage of the conceptual tree in our data structures

points stored separately are removed from the grid. Thus, in a worst-case space
analysis, it turns out that the space used to represent those explicit coordinates is
subtracted from the space the K2-tree would use, therefore storing those explicit
coordinates is free in the worst case.

4.2 Query Algorithms

Basic navigation. To access a cell C = (x, y) in the K2-treap we start by
accessing the K2-tree root. The coordinates and weight of the element stored at
the root node are (x0, y0) = coord[0][0] and w0 = values[0]. If (x0, y0) = C, we
return w0 immediately. Otherwise, we find the quadrant where the cell would
be located and navigate to that node in the K2-tree. Let p be the position of
the node in T . If T [p] = 0 we know that the complete submatrix is empty and
return immediately. Otherwise, we need to find the coordinates and weight of
the new node. Since only nodes set to 1 in T have coordinates and weights, we
compute r = rank1(T, p). The value of the current node will be at values[r], and
its coordinates at coord[�][r − first[�]], where � is the current level. We rebuild
the absolute value and coordinates, w1 as w0− values[r] and (x1, y1) adding the
current submatrix offset to coord[�][r − first[�]]. If (x1, y1) = C we return w1,
otherwise we find again the appropriate quadrant in the current submatrix where
C would be located, and so on. The formula to find the children is identical to
that of the K2-tree. The process is repeated recursively until we find a 0 bit in
the target submatrix, we find a 1 in the last level of the K2-tree, or we find the
coordinates of the cell in an explicit point.

Top-k queries. The process to answer top-k queries starts at the root of the tree.
Given a rangeQ = [x1, x2]× [y1, y2], the process initializes an empty max-priority
queue and inserts the root of the K2-tree. The priority queue stores, in general,
K2-tree nodes sorted by their associated maximum weight. Now, we iteratively

K2-Treaps: Range Top-k Queries in Compact Space 221

extract the first priority queue element (the first time this is the root). If the coor-
dinates of its maximum element fall inside Q, we output it as the next answer. In
either case, we insert all the children of the extracted node whose submatrix in-
tersects with Q, and iterate. The process finishes when k results have been found
or when the priority queue becomes empty (in which case there are less than k
elements in Q).

Other supported queries. The K2-treap can also answer basic range queries
(i.e., report all the points that fall in Q). This is similar to the procedure on
a K2-tree, where the submatrices that intersect Q are explored in a depth-first
manner. The only difference is that we must also check whether the explicit
points associated to the nodes fall within Q, and in that case report those as
well. Finally, we can also answer interval queries, which ask for all the points
in Q whose weight is in a range [w1, w2]. To do this, we traverse the tree as
in a top-k range query, but we only output weights whose value is in [w1, w2].
Moreover, we discard submatrices whose maximum weight is below w1.

5 Experiments and Results

To test the efficiency of our proposal we use several synthetic datasets, as well
as some real datasets where top-k queries are of interest. Our synthetic datasets
are square matrices where only some of the cells have a value set. We build
different matrices varying the following parameters: the size s× s of the matrix
(s = 1024, 2048, 4096, 8192), the number of different weights d in the matrix
(16, 128, 1024) and the percentage p of cells that have a point (10, 30, 50, 70,
100%). The distribution of the weights in all the datasets is uniform, and the
spatial distribution of the cells with points is random. For example, the synthetic
dataset with (s = 2048, d = 128, p = 30) has size 2048 × 2048, 30% of its cells
have a value and their values are follow a uniform distribution in [0, 127].

We also test our representation using real datasets. We extracted two different
views from a real OLAP database storing information about sales achieved per
store/seller each hour over several months: salesDay stores the number of sales
per seller per day, and salesHour the number of sales per hour. Huge historical
logs are accumulated over time, and are subject to data mining processes for de-
cision making. In this case, finding the places (at various granularities) with most
sales in a time period is clearly relevant. Table 1 shows a summary with basic
information about the real datasets. For simplicity, in these datasets we ignore
the cost of mapping between real timestamps and seller ids to rows/columns in
the table, and assume that the queries are given in terms of rows and columns.

We compare the space requirements of theK2-treap against the solution based
on wavelet trees enhanced with RMQ structures [17] introduced in Section 3
(wtrmq). Since our matrices can contain none or multiple values per column,
we transform our datasets to store them using wavelet trees. The wavelet tree
will store a grid with as many columns as values we have in our matrix, in
column-major order. A bitmap is used to map the real columns with virtual

222 N.R. Brisaboa et al.

Table 1. Real datasets used, and space required to represent them

Dataset #Sellers Time instants Number of K2-treap mk2tree wtrmq
(rows) (columns) diff. values (bits/cell) (bits/cell) (bits/cell)

SalesDay 1314 471 297 2.48 3.75 9.08
SalesHour 1314 6028 158 1.06 0.99 3.90

ones: we append a 0 per new point and a 1 when the column changes. Hence,
range queries in the wtrmq require a mapping from real columns to virtual ones
(2 select1 operations per query), and the virtual column of each result must be
mapped back to the actual value (a rank1 operation per result).

We also compare our proposal with a representation based on constructing
multiple K2-trees, one per different value in the dataset. In this representation
(mk2tree), top-k queries are answered by querying consecutively the K2-tree
representations for the higher values. Each K2-tree representation in this pro-
posal is enhanced with multiple optimizations over the simple bitmap approach
we use, like the compression of the lower levels of the tree using DACs (see [5]
for a detailed explanation of this and other enhancements of the K2-tree).

All bitmaps that are employed use a bitmap representation that supports
rank and select using 5% of extra space. The wtmrq was implemented using
a pointer-less version of the wavelet tree [7] with a RMQ implementation that
requires 2.38 bits per value. For all experiments we use K = 2 for the K2-treap
and mk2tree.

We ran all our experiments on a dedicated server with 4 Intel(R) Xeon(R)
E5520 CPU cores at 2.27GHz 8MB cache and 72GB of RAM memory. The
machine runs Ubuntu GNU/Linux version 9.10 with kernel 2.6.31-19-server (64
bits) and gcc 4.4.1. All data structures were implemented in C/C++, compiled
with full optimizations.

5.1 Space Comparison

We start by comparing the compression achieved by the representations. As
shown in Table 1, the K2-treap overcomes the wtrmq in the real datasets stud-
ied by a factor over 3.5. The mk2tree representation is competitive with the
K2-treap and even obtains slightly less space in the dataset salesHour, taking
advantage of the relatively small number of different values in the matrix.

The K2-treap also obtains the best space results in most of the synthetic
datasets studied. Only in the datasets with a very small number of different
values (d = 16) the mk2tree uses less space than the K2-treap. Notice that, since
the distribution of values and cells is uniform, the synthetic datasets are close
to a worst-case scenario for the K2-treap and mk2tree. To provide additional
insight on the compression capabilities, Fig. 3 provides a summary of the space
results for some of the synthetic datasets used. The left plot shows the evolution
of compression with the size of the matrix. The K2-treap is almost unaffected by

K2-Treaps: Range Top-k Queries in Compact Space 223

 0

 2

 4

 6

 8

 10

 1024 2048 4096 8192

Size of the matrix (s)

Space usage varying s

k2treap (d=128,p=10)
k2treap (d=1024,p=10)
mk2tree (d=128,p=10)

mk2tree (d=1024,p=10)
wtrmq (d=128,p=10)

wtrmq (d=1024,p=10)

 0

 2

 4

 6

 8

 10

 16 128 1024

Number of different values (d)

Space usage varying d

k2treap (s=1024,p=10)
k2treap (s=2048,p=10)
mk2tree (s=1024,p=10)
mk2tree (s=2048,p=10)

wtrmq (s=1024,p=10)
wtrmq (s=2048,p=10)

Fig. 3. Evolution of the space usage with s and d in the synthetic datasets, in bits/cell
(in the right plot, the two results for the K2-treap are on top of each other)

the matrix size, as its space is around t lg s2

t = s2 p
100 lg

100
p bits, that is, constant

per cell as s grows. On the other hand, the wtrmq uses t lg s = s2 p
100 lg s bits, that

is, its space per cell grows logarithmically with s. Finally, the mk2tree obtains
poor results in the smaller datasets but is more competitive on larger ones (some
enhancements in the K2-tree representations behave worse in smaller matrices).
Nevertheless, notice that the improvements in the mk2tree compression stall
once the matrix reaches a certain size.

The right plot of Fig. 3 shows the space results when varying the number
of different weights d. The K2-treap and the wtrmq are affected only logarith-
mically by d. The mk2tree, instead, is sharply affected, since it must build a
different K2-tree for each different value: if d is very small the mk2tree repre-
sentation obtains the best space results also in the synthetic datasets, but for
large d its compression degrades significantly.

As the percentage of cells set p increases, the compression in terms of bits/cell
(i.e., total bits divided by s2) will be worse. However, if we measure the compres-
sion in bits per point (i.e., total bits divided by t), then the space of the wtrmq
is independent of p (lg s bits), whereas the K2-treap and mk2tree use less space
as p increases (lg 100

p). That is, the space usage of the wtrmq increases linearly

with p, while that of the K2-treap and mk2tree increases sublinearly. Over all
the synthetic datasets, the K2-treap uses from 1.3 to 13 bits/cell, the mk2tree
from 1.2 to 19, and the wtrmq from 4 to 50 bits/cell.

5.2 Query Times

In this section we analyze the efficiency of top-k queries, comparing our structure
with the mk2tree and the wtrmq. For each dataset, we build multiple sets of
top-k queries for different values of k and different spatial ranges (we ensure that
the spatial range is at least of size k). All query sets are generated for fixed k
and w (side of the spatial window). Each query set contains 1000 queries where
the spatial window is placed at a random position within the matrix.

224 N.R. Brisaboa et al.

 10

 100

 1000

 10000

 50000

 4 10 50 100 500 4096

Q
ue

ry
 ti

m
e

(m
ic

ro
se

cs
/q

ue
ry

)

Spatial window size

s=4096, d=128, p=100

 4 10 50 100 500 4096

Spatial window size

s=4096, d=1024, p=100

k2treap (k=10)
k2treap (k=1000)
mk2trees (k=10)

mk2trees (k=1000)
wt-rmq (k=10)

wt-rmq (k=1000)

Fig. 4. Times of top-k queries in synthetic datasets

Fig. 4 shows the time required to perform top-k queries in some of our syn-
thetic datasets, for different values of k and w. The K2-treap obtains better
query times than the wtrmq in all the queries, and both evolve similarly with
the size of the query window. On the other hand, the mk2tree representation
obtains poor results when the spatial window is small or large, but it is compet-
itive with the K2-treap for medium-sized ranges. This is due to the procedure
to query the multiple K2-tree representations: for small windows, we may need
to query many K2-trees until we find k results; for very large windows, the K2-
treap starts returning results in the upper levels of the conceptual tree, while
the mk2tree approach must reach the leaves; for some intermediate values of
the spatial window, the K2-treap still needs to perform several steps to start
returning results, and the mk2tree representation may find the required results
in a single K2-tree. Notice that the K2-treap is more efficient when no range
limitations are given (that is, when w = s), since it can return after exactly
K iterations. Fig. 4 only shows the results for two of the datasets, but similar
comparison results have been obtained in all the synthetic datasets studied, with
the K2-treap outperforming the alternative approaches in most of the cases, ex-
cept in some queries with medium-sized query windows, when the mk2tree can
obtain slightly better query times.

Next we perform a set of queries that would be interesting in our real datasets.
We start with the same w×w queries as before, which filter a range of rows (sell-
ers) and columns (days/hours). Fig. 5 shows the results of these range queries.
As we can see, the K2-treap outperforms both, the mk2tree and wtrmq, in all
cases. Similarly to the previous results, the mk2tree approach also obtains poor
query times for small ranges but is better in larger ranges.

We run two more specific sets of queries that may be interesting in many
datasets, and particularly in our examples: “column-oriented” and “row-oriented”
range queries, that only restrict one of the dimensions of the matrix. Row-
oriented queries ask for a single row (or a small range of rows) but do not restrict
the columns, and column-oriented ask for single columns. We build sets of 10,000
top-k queries for random rows/columns with different values of k. Fig. 6 (left)
shows that in column-oriented queries the wtrmq is faster than the K2-treap
for small values of k, but our proposal is still faster as k grows. The reason for
this difference is that in “square” range queries, the K2-treap only visits a small

K2-Treaps: Range Top-k Queries in Compact Space 225

 1

 10

 100

 4 10 50 100

Q
ue

ry
 ti

m
e

(m
ic

ro
se

cs
/q

ue
ry

)

Spatial window size

dataset salesDay

 4 10 50 100

Spatial window size

dataset salesHour

k2treap (k=1)
k2treap (k=5)

k2treap (k=50)
mk2tree (k=1)
mk2tree (k=5)

mk2tree (k=50)
wtrmq (k=1)
wtrmq (k=5)

wtrmq (k=50)

Fig. 5. Query times of top-k queries in real datasets

 10

 100

 1000

 1 5 10 50 100

Q
ue

ry
 ti

m
es

 (
m

ic
ro

se
co

nd
s/

qu
er

y)

k

Column-oriented queries

k2treap - salesDay
k2treap - salesHour
mk2tree - salesDay

mk2tree - salesHour
wtrmq - salesDay

wtrmq - salesHour

 100

 1000

 10000

 1 5 10 50 100

Q
ue

ry
 ti

m
es

 (
m

ic
ro

se
co

nd
s/

qu
er

y)

k

Row-oriented queries

k2treap - salesDay
k2treap - salesHour
mk2tree - salesDay

mk2tree - salesHour
wtrmq - salesDay

wtrmq - salesHour

Fig. 6. Query times of row-oriented and column-oriented top-k queries

set of submatrices that overlap the region; in row-oriented or column-oriented
queries, the K2-treap is forced to check many submatrices to find only a few re-
sults. The mk2tree suffers from the same problem of the K2-treap, being unable
to filter efficiently the matrix, and obtains the worst query times in all cases.

In row-oriented queries (Fig. 6, right) the wtrmq is even more competitive,
obtaining the best results in many queries. The reason for the differences found
between row-oriented and column-oriented queries in the wtrmq is the mapping
between real and virtual columns: column ranges are expanded to much longer
intervals in the wavelet tree, while row ranges are left unchanged. Notice anyway
that our proposal is still competitive in the cases where k is relatively large.

6 Conclusions and Future Work

We have introduced a new compact data structure that performs top-k range
queries on grids up to 10 times faster than current state-of-the-art solutions and
requires as little as 30% of the space, both in synthetic and real OLAP databases,
and including uniform distributions, which is the worst scenario for K2-treaps.

The K2-treap can be generalized to represent grids in higher dimensions, by
simply replacing our underlying K2-tree with its generalization to d dimensions,
the Kd-tree [3] (not to be confused with kd-trees [2]). The algorithms stay iden-
tical, but an empirical evaluation is left for future work. In the worst case, a grid

of t points on [n]d will require O(t lg nd

t) bits, which is of the same order of the
data, and much less space will be used on clustered data. Instead, an extension of

226 N.R. Brisaboa et al.

the wavelet tree will require O(n logd n) bits, which quickly becomes impractical.
Indeed, any structure able to report the points in a range in polylogarithmic time
requires Ω(n(log n/ log logn)d−1) words of space [6], and with polylogarithmic
space one needs time at least Ω(log n(logn/ log log n)�d/2�−2) [1]. As with top-k
queries one can report all the points in a range, there is no hope to obtain good
worst-case time and space bounds in high dimensions, and thus heuristics like
Kd-treaps are the only practical approaches (kd-trees do offer linear space, but
their time guarantee is rather loose, O(n1−1/d) for n points on [n]d).

References

1. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting
and rectangle stabbing in the pointer machine model. In: Proc. SCG, pp. 323–332
(2012)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Comm. ACM 18(9), 509–517 (1975)

3. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.: Com-
pact querieable representationsof rasterdata. In:Kurland,O.,Lewenstein,M.,Porat,
E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Heidelberg (2013)

4. Brisaboa, N., Ladra, S., Navarro, G.: DACs: Bringing direct access to variable-
length codes. Inf. Proc. Manag. 49(1), 392–404 (2013)

5. Brisaboa, N., Ladra, S., Navarro, G.: Compact representation of web graphs with
extended functionality. Inf. Sys. 39(1), 152–174 (2014)

6. Chazelle, B.: Lower bounds for orthogonal range searching I: The reporting case.
J. ACM 37(2), 200–212 (1990)

7. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In:
Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 176–187.
Springer, Heidelberg (2008)

8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comp. 40(2), 465–492 (2011)

9. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

10. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA, pp. 841–850 (2003)

11. Konow, R., Navarro, G., Clarke, C., López-Ort́ız, A.: Faster and smaller inverted
indices with treaps. In: Proc. 36th SIGIR, pp. 193–202 (2013)

12. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714. Springer,
Heidelberg (2006)

13. Mart́ınez, C., Roura, S.: Randomized binary search trees. J. ACM 45(2), 288–323
(1997)

14. McCreight, E.M.: Priority search trees. SIAM J. Comp. 14(2), 257–276 (1985)
15. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,

vol. 1180, pp. 37–42. Springer, Heidelberg (1996)
16. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear

space. In: Proc. 23rd SODA, pp. 1066–1078 (2012)
17. Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids.

Theor. Comp. Sci. 482, 60–72 (2013)
18. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16(4/5), 464–497

(1996)

Performance Improvements for Search Systems

Using an Integrated Cache of Lists+Intersections�

Gabriel Tolosa1,2, Luca Becchetti3,
Esteban Feuerstein1, and Alberto Marchetti-Spaccamela3

1 University of Buenos Aires, Argentina
2 National University of Luján, Argentina

3 Sapienza University of Rome, Italy

Abstract. Modern information retrieval systems use several levels of
caching to speedup computation by exploiting frequent, recent or costly
data used in the past. In this study we propose and evaluate a static
cache that works simultaneously as list and intersection cache, offering
a more efficient way of handling cache space. In addition, we propose
effective strategies to select the term pairs that should populate the
cache. Simulation using two datasets and a real query log reveal that
the proposed approach improves overall performance in terms of total
processing time, achieving savings of up to 40% in the best case.

1 Introduction

Modern high scale information retrieval systems such as Web Search Engines
(WSE) use sophisticated techniques for efficiency and scalability purposes. In
such scenarios, caching is an important and crucial tool to achieve fast response
times and to increase query throughput.

It is known that the total cost of a query is the sum of processing time
(Ccpu) and disk access times (Cdisk). Ccpu involves decompressing the posting
lists, computing the query-document similarity scores and determining the top-k
documents that form the final answer set. In most cases a conjunctive semantic is
considered because intersections produce shorter lists than unions, which leads
to smaller query latencies [3] and higher precision levels. On the other hand,
Cdisk involves fetching from hard disk the posting lists of all the query terms.

The main goal of a cache is to speedup computation by storing frequent, recent
or costly data. The typical architecture of a search engine involves different cache
levels: essentially, caching involves both query result pages (Result cache) at
the broker level and the posting lists of terms that appear in the queries (List
Cache) at search node level. The first level tries to minimize recomputation of
results for queries that appeared in the past, the latter attempts at reducing the

� This work was partially supported by EU-IRSES project EUSACOU 247574, by
EU FET project MULTIPLEX 317532 and by UBACyT Project 20020120100058
“Herramientas algoŕıtmicas avanzadas para aplicaciones de búsqueda en Internet -
Parte 2”.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 227–235, 2014.
c© Springer International Publishing Switzerland 2014

228 G. Tolosa et al.

amount of disk fetch operations, which are very expensive compared to CPU
processing times. A further approach involves caching portions of a query (i.e.,
pairs of terms), as initially proposed in [13] and extended in [6]. This approach
is named Intersection Caching and is implemented at search node level as well.
The idea in this case is to exploit term co-occurrence patterns, e.g., by keeping
the intersection of the postings lists of frequently co-occurring pairs of terms in
the memory of the search node, in order to not only save disk access time, but
CPU time too.

In the case of industry-scale search engines that store the entire index in
main memory [5] the List Cache becomes useless, but the intersection cache is
still useful [9] because it allows to save CPU time (i.e. the cost of intersecting
two posting lists). For more general cases such as medium-scale systems, only a
fraction of the index is maintained in cache. Here, lists and intersections caches
are both helpful to reduce disk access and processing time.

List and intersection caches are implemented at search node level and, usually,
they are independent and exploit different phenomena. While the List Cache
achieves higher hit rates because the frequency of individual terms is higher than
that of term pairs, each hit in the Intersection Cache entails a higher benefit
because the intersected lists of term pairs are shorter. Based on the observation
that many terms co-occur frequently in different queries, our goal is to build
a single cache that benefits from both approaches. To do this, we implement a
data structure previously proposed by Lam et al. [12]. The original idea is to
merge the entries of two frequently co-occurring terms to form a single, more
compact inverted list. We adapt this structure to a static cache in which the
selected term pairs strike a good balance between hit rate and cost benefits,
leading to an improvement in the total cost of solving a query. We investigate
different ways of choosing and combining terms.

Related Work. There is a large body of work devoted to caching in text search
systems, an active research area. Baeza et al. [1] analyze the problem of posting
list caching. They propose an algorithm that selects terms to put in cache ac-

cording to their frequency(t)
size(t) ratios. The most important observation is that this

static policy has a better hit rate than all dynamic counterparts. In [21] inverted
index compression algorithms and list caching policies are explored.

The work in [14] is the first approach on the problem of result caching. The
author proposes to consider both frequency and recency into the policy. More
recently, Fagni et al. [7] proposed SDC (Static/Dynamic Cache) to handle both
long term popular queries and shorter query bursts. Gan and Suel [10] study the
problem of weighted result caching. In [15], cost aware strategies are extensively
evaluated incorporating query costs into the caching policies.

Saraiva et al. [18] propose a two-level caching scheme that combines caching
of search results with the caching of frequently accessed postings lists. The first
proposal on intersection caching appears in [13], where the authors introduce a
three-level caching architecture for a web search engine. Further studies on cost
aware intersection caching are presented in [8] and [9]. In a more recent work,
Ozcan et al. [16] introduce a 5-level static caching architecture.

Performance Improvements for Search Systems 229

Our Contribution. In this work, we explore the possibility of reserving the
whole memory space allocated to caching at search nodes to an integrated cache,
in order to reduce query processing time. More precisely, as our main contribu-
tion we propose a static cache (named Integrated Cache) that replaces both list
and intersection caches using a data structure previously used for pairing terms
in disk inverted indexes. This data structure already makes an efficient use of
memory space, but we design a specific cache management strategy that avoids
the duplication of cached terms and we adopt a query resolution strategy (named
S4 in [9]) that tries to maximize the hit ratio.

We consider different strategies to populate the cache: a strong baseline,
greedy strategies that take into account both frequency of term co-occurrence
and postings list size and a new strategy, that relies on casting the problem of
selecting term pairs as a maximum weighted matching. We evaluate the proposal
against a competitive list caching policy using two real web crawls with pretty
different characteristics and a well-known query log over a simulation frame-
work. Rather than hit ratio, the overall time needed by the different strategies
to process all queries is our performance metric. Experimental evidence shows
that substantial savings are possible using the proposed approach.

Background. A query q = {t1, t2, t3, ..., tn} is a set of terms that represents
the user’s information need. The inverted index [22] stores the set of all unique
terms in the document collection (vocabulary) associated to a set of entries that
form a posting list. Each entry represents the occurrence of a term t within a
document d and it consists of a a document identifier (DocID) and a payload
that is used to store information about the occurrence of t within d. Each posting
list is sorted in an order that depends on the specific strategy [2, 20, 22].

In a distributed search system queries are usually answered as follows [3]: the
broker machine receives the query and searches the result in cache. If the result
is found the answer is returned to the user at no extra cost. Otherwise, the query
is sent to the search nodes in the cluster where an inverted index resides.

Each search node fetches the posting lists of the query terms (from disk or
cache), reorders these in ascending order of their lengths, executes the intersec-
tion of the lists and finally returns the top-k document identifiers in the ranked
result set. This requires use of the disks, a time-consuming task that is critical
for the scalability of the system.

Term-at-a-time (TAAT) and Document-at-a-time (DAAT) [19] are the two
main strategies to solve a query. In the TAAT approach, the posting lists of the
query terms are sequentially evaluated, starting from the shortest to the longest
one. This basically computes the result as R = ∩n

i=1ti = (((t1 ∩ t2) ∩ t3) . . . ∩
tn). On the other hand, in the DAAT approach the posting lists are traversed
in parallel for each document and only the current k-th best candidates are
maintained in memory. The Max Successor algorithm [4] is an efficient strategy
for DAAT processing. However, the presence of an Intersection Cache enables
other possibilities such as the S4 strategy introduced in [9], that achieves up to
30% performance improvements when combined with cost aware cache policies.

230 G. Tolosa et al.

2 Integrated Cache

Our proposal relies on the paired data representation presented in [12] to build
an integrated cache that works as list and intersection cache at the same time.
In that work, an index compression technique based on pairing posting lists
of frequently co-occurring terms was proposed. The idea is to merge the lists
of two frequently co-occurring terms to build a new paired list in the inverted
index. This is obviously a more compact representation that may reduce query
processing time. This data structure is introduced as a compression technique for
inverted indexes combined with Gamma Coding and Variable Byte Coding [2]
schemes. We extend this approach to an integrated cache of lists+intersections.

In our approach, we use the “Separated Union” [12] representation to main-
tain an in-memory data structure, that replaces both the list and intersection.
Regarding space savings, the main idea is to keep in cache those pairs of terms
that maximize the high hit ratio of the List Cache and the savings of the most
valuable precomputed intersections. We also avoid the repetition of single term
lists when these can be reconstructed using information held in previous entries.
This leads to extra space savings and a more efficient use of memory, at the
expense of some extra computational cost.

Keys (pairs of terms) Integrated Lists

1 t1, t2 → �1 − (�1
⋂

�2) �2 − (�1
⋂

�2) (�1
⋂

�2)

2 t3, t4 → �3 − (�3
⋂

�4) �4 − (�3
⋂

�4) (�3
⋂

�4)

3 t1, t5 → Θ �5 − (�1
⋂

�5) (�1
⋂

�5)

4 t3, t5 → Θ Θ (�3
⋂

�5)

Fig. 1. Data Structure used for the Integrated Cache

The idea is best illustrated with an example. In Fig. 1 we show the SU data
representation (entries 1 and 2) and the “extra” improvements we propose (lines
3 and 4) to get an even more efficient storage. In line 1, the entry for terms t1
and t2 is shown (Lets assume �i represents the inverted list of ti). This contains
the DocIDs for the first term only (�1−(�1

⋂
�2)), then the postings of the second

term only (�2 − (�1
⋂
�2)), and finally the last area with the postings common

to both terms (i.e. the intersection (�1
⋂
�2)). Entry in line 2 is similar to the

previous one. Although we incur in an extra cost to reconstruct the posting
list, this is cheaper than loading it from disk. In line 3, we show an entry that
contains a previously cached term, t1 (i.e. in the first intersection). To avoid the
repetition of part of the postings we propose to reconstruct the full posting list

Performance Improvements for Search Systems 231

of t1 from the first entry (with a computational cost overhead) and include in
the entry a redirection (Θ). In the case we want to cache a single term, lets say
t1, the list is completely stored in the first area and the remaining two are kept
empty (t1 → |�1|φ|φ|).

3 Selecting Term Pairs

We consider several strategies to select the “best” intersections (bigrams) to keep
in cache. To this aim, each postings list is weighted according to the f(ti)× |ti|
product, where f(ti) is the raw frequency of term ti in a query log training set and
|ti| is the length of the posting list of term ti in the reference collection. Hereafter,
we refer to this metric as FxS. We observed before that QtfDf algorithm [1] is
one of the best for maximizing hit rate. However, in our setup, experimental
evidence shows that FxS outperforms that approach when measuring cost.

Greedy Methods. We start with a naive approach that orders posting lists
according to their FxS products and then merges lists by pairing together con-
secutive term pairs as (1st, 2nd), (3rd, 4th), ..., ((n − 1)th, nth). We refer to this
method as PfBT-seq. This approach only groups good terms but doesn’t take
into account the size of their intersections (while if the size of the intersection is
larger, the space saving is larger too). The second approach (PfBT-cuad) com-
putes the intersection of each possible bigram (for all term lists) and then selects
the pairs that maximize (ti

⋂
tj) without repetitions of terms. This algorithm is

time consuming (O(n2)) so we run it considering only sub-groups of lists that we
estimate may fit in cache (according to its size). For example, 1GB cache holds
roughly 1000 lists for a given collection, so we compute the 500 best pairs and
then we fill the remaining space with pairs picked sequentially (as in PfBT-seq).
The third approach (named PfBT-win) is a particular case of the previous one
that tries to maximize the space saving among a group of posting lists. It sets a
window of w terms (instead of all terms) and computes the intersection of each
possible pair. Finally, it selects term pairs using the same criterion as before.

Term Pairing as a Matching Problem. Our last method considers the
term pairing as an optimization problem, reducing it to the Maximum Weighted
Matching (MWM). In graph theory, a matching is a subset of edges such that
none of the selected edges share a common vertex. This is similar to [12] but
we apply a different weighting criterion. We formalize the problem as follows:
Let G(T,E) be a graph with vertex set the set T of terms and such that, for
every ti, tj ∈ T , edge eij ∈ E exists if and only if |ti

⋂
tj | ≥ 0. Moreover, we

weight each edge eij by the size of the intersection |ti
⋂

tj|. The MWM is a
matching in G that maximizes the sum of the weights of the matched edges. In
our experiments we refer to this method as PfBT-mwm.

All above strategies select pairs of terms to fill the cache, so there will not be
cases similar to the ones depicted in lines 3 and 4 of Fig. 1. We plan to consider
other strategies in the future that will benefit from this idea.

232 G. Tolosa et al.

4 Experimental Setup and Results

We select two completely different document collections to evaluate our Inte-
grated Cache. Our goal is to simulate two scenarios whose behaviors may be
rather distinct. The first document corpus is a subset of a large crawl of the UK
web obtained by Yahoo! in 2005. It includes 1.479.139 documents, with 6.493.453
distinct index terms and requires 29 GB of disk space in HTML format (uncom-
pressed). We refer to this corpus as UK. The second collection is a crawl derived
from the Stanford WebBase Project1 [11]. We select a recent sample (march,
2013) that contains about 7.774.632 documents (241 GB of disk space).

To evaluate our proposal we use the AOL Query Log [17] that contains around
20 million queries. We select a subset of 6M queries to compute statistics and
around 2.7M queries as the test set (AOL-1). Then, we filter the file keeping only
unique queries. This allows to isolate the effect of the Result Cache simulating
that it captures all query repetitions (in the case of having a cache of infinite
size), thus giving a lower bound on the performance improvement due to our
cache. This second test file is about 800K queries (AOL-2).

We use Zettair2 to index the collections and to obtain real fetching times of the
posting lists. The size of the (compressed) index for the UK collection is about
1.8 GB, which grows up to 23 GB for WB. Zettair compresses posting lists using
a variable-byte scheme with a B+Tree structure to handle the vocabulary. Our
Integrated Cache implementation reserves eight bytes for each posting in the pure
terms area (DocID and frequency uses four bytes each) while the intersection
area requires twelve bytes because it stores the frequencies of both terms.

Cost Model. We use the cost estimation methodology introduced in [8]. The
cost of processing a query in a node is modeled in terms of disk fetch and CPU
times: Cq = Cdisk + Ccpu. Cdisk is calculated fetching all the terms from disk
using Zettair (we retrieve the whole posting list and measure the corresponding
fetching time). To calculate Ccpu we run a list intersection benchmark.

We provide a simulation-based evaluation of the proposal using both docu-
ment collections. The total amount of memory reserved for the cache ranges
from 100MB to 1GB for the UK collection, while we increase the size up to
16GB for the WB collection. This sizes allow to store about 60% and 70% of
the indexes respectively. For each query we log the total cost incurred using a
static version of the List Cache filled with the top-k most valuable posting lists
according to the FxS metric (baseline). Then, we evaluate the Integrated Cache
filling it with data from the proposed four approaches that are also based on the
FxS metric (to allow a fair comparison against the list cache). We set w = 10 for
the PfBT-win method. A deeper analysis of the optimal value of w will be part
of future work. Finally, we normalize the final costs to get a clearer comparison.

Results. For the sake of space, we show results for the second experiment only
(see Figure 2), using the dataset of unique queries (AOL-2). All evaluated strate-

1 http://dbpubs.stanford.edu:8091/testbed/doc2/WebBase/
2 http://www.seg.rmit.edu.au/zettair/

http://dbpubs.stanford.edu:8091/testbed/doc2/WebBase/
http://www.seg.rmit.edu.au/zettair/

Performance Improvements for Search Systems 233

gies outperform the baseline and the best strategy is PfBT-mwm. Improvements
range from 7% up to 22% for the UK collection. The behavior is again differ-
ent for the WB collection. For smaller cache sizes, the performance is worse (or
just slightly better) up to 1GB cache and it increases up to 30% in the best
case (16GB). This is because this collection has longer posting lists and only a
few are loaded in smaller caches. As expected, performance is even better if we
consider the first dataset (AOL-1), since it contains repeated queries.

100 200 300 400 500 600 700 800 900 1000

Cache Size (MB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o
s
t

(N
o
rm

a
li
z
e
d
)

UK Collection

Baseline-FxS

PfBT-mwm

0 2000 4000 6000 8000 10000 12000 14000 16000

Cache Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

C
o
s
t

(N
o
rm

a
li
z
e
d
)

WB Collection

Baseline-FxS

PfBT-mwm

Fig. 2. Performance of the PfBT-mwm approach using the the AOL-2 query set

5 Conclusions and Future Work

We proposed an integrated cache for lists+intersections and considered several
heuristics to populate the cache, including one based on casting the problem as
a maximum weighted matching one. We provided an evaluation using two doc-
ument collections and subsets of a real query log. We showed that the proposed
Integrated Cache outperforms the solely posting lists cache up to a 40%.

Several interesting open problems remain. First, we plan to extend this pro-
posal to consider trigrams or more complex combinations of terms. Another
interesting open question concerns the design and implementation of a dynamic
version of this cache. Here, the access and eviction policies should contemplate
not only the terms but also the pairs. It is not clear how to best apply standard
replacement algorithms in an online fashion.

References

[1] Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,
F.: The impact of caching on search engines. In: Proc. of the 30th Annual Int. Conf.
on Research and Development in Information Retrieval (2007)

[2] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology behind Search, 2nd edn. Addison-Wesley Prof., Inc. (2011)

234 G. Tolosa et al.

[3] Cambazoglu, B.B., Zaragoza, H., Chapelle, O., Chen, J., Liao, C., Zheng, Z.,
Degenhardt, J.: Early exit optimizations for additive machine learned ranking
systems. In: Proc. of the Third ACM Int. Conf. on Web Search and Data Mining
(2010)

[4] Culpepper, J.S., Moffat, A.: Compact set representation for information retrieval.
In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 137–148.
Springer, Heidelberg (2007)

[5] Dean, J.: Challenges in building large-scale information retrieval systems: Invited
talk. In: Proc. of the Second ACM International Conf. on Web Search and Data
Mining, WSDM 2009, p. 1. ACM, New York (2009)

[6] Ding, S., Attenberg, J., Baeza-Yates, R., Suel, T.: Batch query processing for web
search engines. In: Proc. of the Fourth ACM International Conf. on Web Search
and Data Mining, WSDM 2011, New York, NY, USA, pp. 137–146 (2011)

[7] Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historicalusage
data. ACM Trans. Inf. Syst. 24(1), 51–78 (2006)

[8] Feuerstein, E., Tolosa, G.: Analysis of cost-aware policies for intersection caching
in search nodes. In: Proc. of the XXXII Conf. of the Chilean Society of Computer
Science, SCCC 2013 (2013)

[9] Feuerstein, E., Tolosa, G.: Cost-aware intersection caching and processing strate-
gies for in-memory inverted indexes. In: Proc. of 11th Workshop on Large-scale and
Distributed Systems for Information Retrieval, LSDS-IR 2014, New York (2014)

[10] Gan, Q., Suel, T.: Improved techniques for result caching in web search engines.
In: Proc. of the 18th Int. Conf. on World Wide Web, WWW 2009, pp. 431–440
(2009)

[11] Hirai, J., Raghavan, S., Garcia-Molina, H., Paepcke, A.: Webbase: A repository of
web pages. In: Proc. of the 9th International World Wide Web Conf. on Computer
Networks. North-Holland Publishing Co. (2000)

[12] Lam, H.T., Perego, R., Quan, N.T.M., Silvestri, F.: Entry pairing in inverted file.
In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE 2009. LNCS, vol. 5802, pp.
511–522. Springer, Heidelberg (2009)

[13] Long, X., Suel, T.: Three-level caching for efficient query processing in large web
search engines. In: Proc. of the 14th Int. Conf. on World Wide Web, WWW 2005,
USA, pp. 257–266 (2005)

[14] Markatos, E.: On caching search engine query results. Comput. Commun. 24(2),
137–143 (2001)

[15] Ozcan, R., Altingovde, I.S., Ulusoy, O.: Cost-aware strategies for query result
caching in web search engines. ACM Trans. Web 5(2), 9:1–9:25 (2011)

[16] Ozcan, R., Sengor Altingovde, I., Barla Cambazoglu, B., Junqueira, F.P., Ulu-
soy, O.: A five-level static cache architecture for web search engines. Information
Processing & Management 48(5), 828–840 (2012)

[17] Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proc. of the 1st
International Conf. on Scalable Information Systems, InfoScale 2006. ACM (2006)

[18] Saraiva, P.C., Silva de Moura, E., Ziviani, N., Meira, W., Fonseca, R., Riberio-
Neto, B.: Rank-preserving two-level caching for scalable search engines. In: Proc. of
the 24th Annual Int. Conf. on Research and Development in Information Retrieval,
SIGIR 2001, USA, pp. 51–58 (2001)

[19] Turtle, H., Flood, J.: Query evaluation: Strategies and optimizations. Information
Processing and Management 31(6), 831–850 (1995)

Performance Improvements for Search Systems 235

[20] Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and In-
dexing Documents and Images, 2nd edn. Morgan Kaufmann Publishers Inc., San
Francisco (1999)

[21] Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proc. of the 17th Int. Conf. on World Wide Web, WWW 2008,
USA, pp. 387–396 (2008)

[22] Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2) (July 2006)

Information-Theoretic Term Selection

for New Item Recommendation

Thales F. Costa1, Anisio Lacerda1, Rodrygo L.T. Santos1, and Nivio Ziviani1,2

1 Department of Computer Science
Universidade Federal de Minas Gerais

Belo Horizonte, MG, Brazil
{thalesfc,anisio,rodrygo,nivio}@dcc.ufmg.br

2 Zunnit Technologies
Belo Horizonte, MG, Brazil

nivio@zunnit.com

Abstract. Recommender systems aim at predicting the preference of
a user towards a given item (e.g., a movie, a song). For systems that
must cope with continuously evolving item catalogs, there will be a con-
siderable rate of new items for which no past preference is known that
could otherwise inform preference-based recommendations. In contrast,
pure content-based recommendations may suffer from noisy item descrip-
tions. To overcome these problems, we propose an information-theoretic
approach that exploits a taxonomy of categories associated with the cat-
aloged items in order to select informative terms for an improved recom-
mendation. Our experiments using two publicly available datasets attest
the effectiveness of the proposed approach, which significantly outper-
forms state-of-the-art content-based recommenders from the literature.

1 Introduction

Recommender systems are information systems designed to recommend items
potentially relevant to users. With the continuous evolution of their item cata-
log, recommender systems are often faced with the problem of how to provide
recommendations of new items. This so-called cold-start problem, or new item
recommendation problem [10], may hamper the performance of such systems, as
they are unable to draw any inference of the preferences of a given user for a
particular item. Effectively tackling this problem is critical because it reduces
the item latency, which is the time between the release of a new item and its first
appearance within a recommendation list. At the same time, to sustain customer
loyalty, the new items included in a recommendation must also be relevant [4].

Collaborative filtering algorithms are generally reported to have the best accu-
racy in traditional recommendation scenarios [3]. However, these algorithms can-
not cope effectively with the new item recommendation problem [13], when there
are not enough ratings to model the users’ preferences towards new items. As an
alternative, existing content-based recommendation approaches [7,10] typically
leverage domain-specific features such as cast and director for movies, or author

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 236–243, 2014.
c© Springer International Publishing Switzerland 2014

Information-Theoretic Term Selection for New Item Recommendation 237

and publisher for books. Nonetheless, these approaches have a clear limitation
when generalizing to different domains. In order to overcome this limitation, we
propose an information-theoretic content-based recommendation approach, by
relying on content features generally available on any domain.

In this paper, we introduce Information-aware Content-based Recommender
(ICBR), a novel supervised recommendation approach, which exploits the taxon-
omy categories associated with each item to improve the matching between new
items and potentially interested users. To this end, we perform a systematic ex-
ploration of information-theoretic metrics for selecting effective item descriptors,
and of topic models as an alternative to an explicit taxonomy. Our experimen-
tal results attest the effectiveness of our approach across two publicly available
datasets for movie and book recommendations, with consistent and significant
gains compared to state-of-the-art baselines from the literature, for items with
various levels of difficulty, and even when no explicit taxonomy is available.

In the remainder of this paper, Section 2 describes related approaches for the
cold-start problem. Section 3 presents the ICBR model. Section 4 details the
experimental setup and the main research questions addressed in this paper.
Section 5 presents the results of our thorough experiments. Finally, Section 6
provides our concluding remarks and directions for future work.

2 Related Work

Several approaches have been proposed in recent years to tackle the new item rec-
ommendation problem. A traditional solution to this problem relies on the iden-
tification of users who have previously manifested an interest towards cataloged
items with content similar to that of the new item. While such content-based
approaches are generally effective in a cold-start scenario, they also have short-
comings [9]. In particular, word-level features may not capture the preferences
of a user towards an item as well as explicit ratings would. In addition, domain-
specific features (e.g., author and publisher for books) may not generalize well
across different domains. To overcome these limitations, an alternative approach
is latent semantic analysis (LSA), which represents the cataloged items in a
lower dimensional space of latent concepts [5]. In contrast to these approaches,
we exploit features derived from the categories underlying a taxonomy of items
under an information-theoretic recommendation model, as we will describe in
Section 3. In our investigations in Section 5, LSA is used as a baseline.

As an alternative to content-based approaches, traditional collaborative filter-
ing (CF) approaches address a slightly relaxed version of the problem, in which a
few ratings (as opposed to none) are available for a new item. In this context, sev-
eral CF approaches have been proposed to weigh content-based features: aspect
models [13], Boltzmann machines [7], association rules [8], item-based CF [3]
and linear transformation [11]. In contrast to these approaches, we tackle the
strict version of the problem, in which no ratings are available for the new item,
a crucial scenario where CF approaches cannot be applied [10].

238 T.F. Costa et al.

3 Selecting Informative Item Descriptors

Content-based recommenders based on raw textual features typically suffer with
non-informative item descriptors. For instance, consider the movie “Titanic”,
whose description includes the terms “crash” and “freezing”. While these terms
describe important elements of this movie, a user who likes the movie is arguably
more interested in love stories than in maritime collisions on freezing waters. To
achieve an improved content-based recommendation for new items, we introduce
Information-aware Content-based Recommender (ICBR). In particular, ICBR
represents a new item as a “query”, and each user as a virtual “document” that
is potentially “relevant” for this query. Formally, given a new item i and a user
u, ICBR estimates the relevance of u given i according to:

score(i, u) =
∑
t∈ı̂

(
1 + log(tft,û)

)
× log

(
n

nt
+ 1

)
, (1)

where ı̂ and û are term-based representations of the item i and the user u,
respectively, tft,û is the frequency of the term t in û, nt is the number of users
whose representation include t, and n is the total number of users in the system.

To ensure we have meaningful representations for the new item i and each user
u, we propose an information-theoretic term selection approach by exploiting a
taxonomy associated with the cataloged items. In particular, taxonomy-oriented
terms could better explain the interests of a user for a particular item. For
instance, the interests of a user who likes the movie “Titanic” are arguably
better represented by terms related to the category Drama than to ordinary
terms such as “crash”. Given an item i whose description comprises a set of
terms I, and a taxonomy C of classes defined over the entire item catalog, the
term-based representation ı̂ of the item i is defined according to:

ı̂ = argmax
T⊆I

∑
t∈T

∑
c∈C

w(t, c), s.t. |T | ≤ m, (6)

where T ⊆ I is a subset of the terms in I, m is the maximum number of terms
to be selected, and w(t, c) is the weight of the term t for each category c ∈ C.

Table 1 describes several information-theoretic metrics that are used as al-
ternative term-category weighting schemes in our experiments. In particular,

Table 1. Term weighting functions w(t, c) for a term t and category c

CHI2:

(
p(t|c)− p(t)

)2
p(t)

(2) DICE: 2× |Et,c|
|Et|+ |Ec|

(3)

KLD: p(t|c)× log

(
p(t|c)
p(t)

)
(4) MI: log

(
|Et,c|

|Et| × |Ec|

)
(5)

Information-Theoretic Term Selection for New Item Recommendation 239

Table 2. Statistics of Book-Crossing (BX) and MovieLens-1M (ML). The � symbol
denotes statistics affected by the augmentation step described in Section 4.

Elements BX ML Ratings BX ML

Items 5712� 3706 Full range 1 ∼ 10 1 ∼ 5
Users 3786� 6040 Non-relevant (0) 0 ∼ 6 0 ∼ 3
Ratings ≈ 206k� ≈ 1M Relevant (1) 7 ∼ 8 4
Categories 855� 18� Highly relevant (2) 9 ∼ 10 5

we hypothesize that these metrics provide a simple and sound mechanism for
selecting terms that better convey a user’s interest for a particular item. Lastly,
to represent a user u, we concatenate the representation of all the items i ∈ R+

u

that the user has positively rated in the past, according to û =
⋃

i∈R+
u
ı̂.

4 Experimental Setup

In this section, we detail the experimental setup that supports our investigations
in Section 5. In particular, we aim to answer the following research questions:

Q1. How effective is our approach for recommending new items to users?
Q2. How does our approach perform for items with various levels of difficulty?
Q3. How does our approach perform without a purposely built taxonomy?

In the following, we describe the datasets, the recommendation baselines, and
the training and evaluation procedures used in our investigations.

Recommendation datasets. We report our experimental results on two publicly
available datasets: Book-Crossing (BX), a book recommendation dataset, and
MovieLens-1M (ML), a movie recommendation dataset. Due to BX’s extreme
sparsity [6], we discard items with less than five ratings, as well as users who
have rated less than five items. In addition, we complement the BX dataset with
the description and category of each book, further discarding books with no
associated description. Likewise, we complement ML with the synopsis and genre
of each movie. Salient statistics from both datasets are presented in Table 2.

Recommendation baselines. We evaluate our ICBR model in comparison to
four effective baseline recommenders. Our first baseline is top popular user
(TPU), which scores users proportionally to their number of ratings. Formally,
score(i, u) = |R+

u |, where R+
u is the set of training items positively rated by the

user u. TPU is a baseline since previous results suggest that non-personalized
algorithms may perform well in extremely sparse scenarios [10].

Our second baseline is latent semantic analysis (LSA), a state-of-the-art
content-based approach, which projects both items as well as users into a lower
dimensional space obtained via singular value decomposition [1,4]. Using LSA,
the score of a user u for an item i is computed as score(i, u) = sim(̃ı, ũ), where ı̃

240 T.F. Costa et al.

and ũ are the vector representations of the item i and the user u in the resulting
space of latent factors, and sim(̃ı, ũ) is the cosine similarity between ı̃ and ũ. We
set the number of latent factors to 2,000 through cross-validation.

Our third baseline extends LSA to leverage taxonomy features [1]. In this
extension, named LSAtax , we augment the item-term matrix such that M = ωB,
where B is a binary matrix, indicating the membership of each cataloged item to
each taxonomy category, and ω is a weight assigned uniformly to all categories.
Through cross-validation, we set ω = 3 in our experiments.

Lastly, as a fourth baseline, we consider ICBRall , a variant of our model that
represents an item using its entire description, replacing Equation (6) with i = I.

Training and evaluation procedures. To tune the parameter m of ICBR as well
as the parameters of our baselines recommenders, we perform a k-fold cross-
validation, with k = 5 for BX [12] and k = 10 for ML [14]. Since we are simulating
an extreme occurrence of the new item recommendation problem, if an item is
in the test set, none of its ratings is used for training. In our investigations, each
considered recommendation approach is assessed regarding its ability to rank
users according to these users’ interest for a new item. Arguably, the interest
of a user for a particular item can be approximated by the rating that the user
gives to the item. Accordingly, for each item i, we label each user u as either
non-relevant (0), relevant (1), or highly relevant (2). Table 2 defines the mapping
between rating ranges and the aforementioned relevance levels in each of our
considered datasets. Based upon this definition, we report normalized-discounted
cumulative gain (nDCG) figures at different rank cutoffs, as an average across
all test folds, accompanied by a 95% confidence interval.

5 Experimental Evaluation

In this section, we assess the effectiveness of our approach for recommending
new items, in order to answer the research questions stated in Section 4.

Recommendation effectiveness (Q1). To assess the usefulness of a taxonomy
within our information-theoretic model, we compare multiple variants of ICBR,
each of which leveraging a different information-theoretic term selection scheme
among those described in Table 1, to ICBRall , a baseline ICBR variant that does
not perform any term selection. Table 3 shows the results of this assessment in
terms of nDCG at two rank cutoffs for both the BX and ML datasets.

Compared to the baseline variant ICBRall , we note that most variants of
ICBR improve, often significantly. Since CHI2 and KLD are consistently effective
across the two datasets, we combine them into ICBRcomb, a variant of ICBR that
estimates the relevance of a given new item to a user by uniformly interpolating
the KLD and CHI2 scores. This combination outperforms all individual metrics.

From Table 3, we can also contrast the effectiveness of our model to state-of-
the-art baselines from the literature, namely, TPU, LSA, and LSAtax . In partic-
ular, for the BX dataset, ICBRcomb significantly outperforms all baselines, with

Information-Theoretic Term Selection for New Item Recommendation 241

Table 3. Recommendation performance with various term selection schemes

Model nDCG@20 nDCG@100 nDCG@20 nDCG@100
B
X

TPU 0.1020 ± 0.003 0.1373 ± 0.002

M
L

0.2003 ± 0.010 0.1902 ± 0.007

LSA 0.1475 ± 0.009 0.2025 ± 0.008 0.1375 ± 0.008 0.1592 ± 0.007

LSAtax 0.1559 ± 0.008 0.2151 ± 0.007 0.1578 ± 0.008 0.1801 ± 0.007

ICBRall 0.1301 ± 0.003 0.1777 ± 0.004 0.2195 ± 0.008 0.2116 ± 0.006

ICBRmi 0.1383 ± 0.004 0.1889 ± 0.003 0.2215 ± 0.011 0.2185 ± 0.008

ICBRdice 0.1410 ± 0.004 0.1888 ± 0.004 0.2173 ± 0.011 0.2150 ± 0.007

ICBRkld 0.1672 ± 0.004 0.2213 ± 0.004 0.2372 ± 0.012 0.2376 ± 0.009

ICBRchi2 0.1725 ± 0.005 0.2259 ± 0.005 0.2395 ± 0.014 0.2394 ± 0.010

ICBRcomb 0.1733 ± 0.005 0.2286 ± 0.005 0.2438 ± 0.013 0.2448 ± 0.010

gains in nDCG as high as 69.90% over TPU, and 17.49% over LSA. For the ML
dataset, the gains over TPU are as high as 28.70%, while LSA is outperformed
by 77.30%. Finally, compared with LSAtax , which also exploits taxonomies to
improve upon the pure content-based LSA approach, ICBRcomb attains signif-
icant improvements of up to 11.16% for the BX dataset, and of up to 54.49%
for the ML dataset. Overall, these results answer question Q1, by attesting the
effectiveness of our ICBR model in contrast to state-of-the-art approaches from
the literature for the new item recommendation problem.

Recommendation difficulty (Q2). In our training and evaluation procedure, the
actual number of relevant users per item varies considerably. As a result, the
recommendation for items with fewer relevant users can be regarded as more
difficult than for those with many relevant users. Hence, we assess the effective-
ness of ICBR in contrast to the aforementioned baselines (TPU, LSA, LSAtax ,
and ICBRall) for input items with various levels of difficulty. Figures 1a and 1b
show the results of this investigation. In both figures, the available items are
grouped into five bins with roughly the same number of items, organized ac-
cording to the number of relevant users per item, as indicated in the x axis.

From Figures 1a and 1b, we first observe that all approaches generally im-
prove as the level of difficulty is reduced, i.e., when more relevant users can
be potentially recommended for a given new item. More importantly, for both
the BX and the ML datasets, we note that ICBRcomb outperforms all baseline
recommenders across all difficulty levels, with gains ranging between 3.59% and
9.72% for BX, and 8.62% and 28.58% for ML. These results answer question
Q2, by further attesting the effectiveness of our proposed approach as well as its
robustness for recommending new items with different levels of difficulty.

Effectiveness with latent topics (Q3). To assess the effectiveness of ICBR for
domains where an explicit taxonomy is not available, we deploy its best variant,
ICBRcomb, using either an explicit taxonomy or a latent one, with categories rep-
resented as topics identified using latent Dirichlet allocation (LDA) [2]. For the
sake of clarity, we refer to the latter as ICBRlda . In order to assess the effective-
ness of our approach, we compare our results with LSAlda , an extended version

242 T.F. Costa et al.

(a) Book-Crossing (BX) (b) MovieLens-1M (ML)

Fig. 1. Recommendation performance (nDCG@100) for various difficulty levels

Table 4. Recommendation performance using latent topics

Model nDCG@20 nDCG@100 nDCG@20 nDCG@100

B
X

ICBRall 0.1301 ± 0.003 0.1777 ± 0.004

M
L

0.2195 ± 0.008 0.2116 ± 0.006

ICBRcomb 0.1733 ± 0.005 0.2286 ± 0.005 0.2438 ± 0.013 0.2448 ± 0.010

LSAlda 0.1477 ± 0.009 0.2041 ± 0.008 0.1396 ± 0.008 0.1625 ± 0.007

ICBRlda 0.1608 ± 0.004 0.2121 ± 0.005 0.2227 ± 0.012 0.2209 ± 0.008

of the LSA algorithm which leverages latent topics in the same manner as how
LSAtax leverages explicit categories. In addition, we once again include ICBRall ,
the baseline variant of our model, which performs no term selection. Table 4
presents nDCG figures for the aforementioned recommendation approaches.

Compared to LSAlda , ICBRlda is superior in terms of nDCG. For BX, ICBRlda

improves by up to 8.86%. For ML, gains are as high as 59.52%. These results
further attest the effectiveness of ICBR even when no explicit taxonomy is avail-
able. Nonetheless, while categories automatically derived using LDA can be used
effectively by our model, the results in this section also show that the availability
of a manually curated taxonomy can provide further gains.

6 Conclusions and Future Work

In this paper, we introduced Information-aware Content-based Recommender
(ICBR), a novel supervised approach for new item recommendation, which mod-
els the terms that describe the new item as a “query”, and each candidate user
who could be recommended the item as a virtual “document”, comprising the
terms in the description of the items that the user has positively rated in the
past. In order to improve this content-based representation, we proposed a term
selection mechanism aimed to weigh the informativeness of each term with re-
spect to the taxonomy categories covered by each item.

Information-Theoretic Term Selection for New Item Recommendation 243

By contrasting our model with a variant that performs no term selection, we
demonstrated the usefulness of our information-theoretic term selection schemes
for improving the underlying content-based representation of items and users.
This improved representation outperformed state-of-the-art content-based rec-
ommenders from the literature. We also demonstrated the effectiveness of our
model across new items with different levels of difficulty and for domains where
an explicit taxonomy is not available. In the future, we plan to investigate su-
pervised approaches to combine multiple alternative representations for items.

Acknowledgements. We thank the partial support given by the Brazilian
National Institute of Science and Technology for the Web (grant MCT-CNPq
573871/2008-6) and authors’ individual grants and scholarships from CNPq and
CAPES.

References

1. Bambini, R., Cremonesi, P., Turrin, R.: A recommender system for an IPTV service
provider: A real large-scale production environment. In: Recommender Systems
Handbook, pp. 299–331. Springer (2011)

2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

3. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys, pp. 39–46 (2010)

4. Cremonesi, P., Turrin, R., Airoldi, F.: Hybrid algorithms for recommending new
items. In: HetRec, pp. 33–40 (2011)

5. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A.,
Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value de-
composition model of latent semantic structure. In: SIGIR, pp. 465–480 (1988)

6. Gedikli, F., Jannach, D.: Recommending based on rating frequencies. In: RecSys,
pp. 233–236 (2010)

7. Gunawardana, A., Meek, C.: Tied boltzmann machines for cold start recommen-
dations. In: RecSys, pp. 19–26 (2008)

8. Leung, C.W.-K., Chan, S.C.-F., Chung, F.-l.: An empirical study of a cross-level as-
sociation rule mining approach to cold-start recommendations. Know.-Based Syst.,
515–529 (2008)

9. Lops, P., Gemmis, M., Semeraro, G.: Content-based recommender systems: State
of the art and trends. In: Recommender Systems Handbook. Springer (2011)

10. Park, S.-T., Chu, W.: Pairwise preference regression for cold-start recommendation.
In: RecSys, pp. 21–28 (2009)

11. Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more
valuable than metadata. In: RecSys, pp. 93–100 (2009)

12. Qumsiyeh, R., Ng, Y.-K.: Predicting the ratings of multimedia items for making
personalized recommendations. In: SIGIR, pp. 475–484 (2012)

13. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for
cold-start recommendations. In: SIGIR, pp. 253–260 (2002)

14. Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: Mobhinter: epidemic collab-
orative filtering and self-organization in mobile ad-hoc networks. In: RecSys,
pp. 27–34 (2008)

On the String Consensus Problem
and the Manhattan Sequence Consensus Problem

Tomasz Kociumaka1,�, Jakub W. Pachocki2, Jakub Radoszewski1,��,
Wojciech Rytter1,3, and Tomasz Waleń1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

{kociumaka,jrad,rytter,walen}@mimuw.edu.pl
2 Carnegie Mellon University

pachocki@cs.cmu.edu
3 Faculty of Mathematics and Computer Science,

Copernicus University, Toruń, Poland

Abstract. In the Manhattan Sequence Consensus problem (MSC
problem) we are given k integer sequences, each of length �, and we are
to find an integer sequence x of length � (called a consensus sequence),
such that the maximum Manhattan distance of x from each of the input
sequences is minimized. For binary sequences Manhattan distance coin-
cides with Hamming distance, hence in this case the string consensus
problem (also called string center problem or closest string problem) is a
special case of MSC. Our main result is a practically efficient O(�)-time
algorithm solving MSC for k ≤ 5 sequences. Practicality of our algo-
rithms has been verified experimentally. It improves upon the quadratic
algorithm by Amir et al. (SPIRE 2012) for string consensus problem
for k = 5 binary strings. Similarly as in Amir’s algorithm we use a
column-based framework. We replace the implied general integer linear
programming by its easy special cases, due to combinatorial properties
of the MSC for k ≤ 5. We also show that for a general parameter k
any instance can be reduced in linear time to a kernel of size k!, so the
problem is fixed-parameter tractable. Nevertheless, for k ≥ 4 this is still
too much for any naive solution to be feasible in practice.

1 Introduction

In the sequence consensus problems, given a set of sequences of length � we are
searching for a new sequence of length � which minimizes the maximum distance
to all the given sequences in some particular metric. Finding the consensus se-
quence is a tool for many clustering algorithms and as such has applications
in unsupervised learning, classification, databases, spatial range searching, data
mining etc [4]. It is also one of popular methods for detecting data common-
alities of many strings (see [1]) and has a considerable number of applications
� Supported by Polish budget funds for science in 2013-2017 as a research project

under the ’Diamond Grant’ program.
�� The author receives financial support of Foundation for Polish Science.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 244–255, 2014.
c© Springer International Publishing Switzerland 2014

On the String Consensus Problem 245

in coding theory [6,8], data compression [11] and bioinformatics [12,16]. The
consensus problem has previously been studied mainly in R

� space with the Eu-
clidean distance and in Σ� (that is, the space of sequences over a finite alphabet
Σ) with the Hamming distance. Other metrics were considered in [2]. We study
the sequence consensus problem for Manhattan metric (�1 norm) in correlation
with the Hamming-metric variant of the problem.

The Euclidean variant of the sequence consensus problem is also known as
the bounding sphere, enclosing sphere or enclosing ball problem. It was initially
introduced in 2 dimensions (i.e., the smallest circle problem) by Sylvester in 1857
[22]. For an arbitrary number of dimensions, several approximation algorithms
[4,15,21] and practical exact algorithms [7,10] have been proposed.

The Hamming-distance variant of the sequence consensus problem is known
under the names of string consensus, center string or closest string problem. The
problem is known to be NP-complete even for binary alphabet [8]. The algorith-
mic study of Hamming string consensus (HSC) problem started in 1999 with the
first approximation algorithms [16]. Afterwards polynomial-time approximation
schemes (PTAS) with different running times were presented [3,19,20]. A number
of exact algorithms have also been proposed. Many of these consider a decision
version of the problem, in which we are to check if there is a solution to HSC
problem with distance at most d to the input sequences. Thus FPT algorithms
with time complexities O(k�+kdd+1) and O(k�+kd(16|Σ|)d) were presented in
[12] and [19], respectively.

An FPT algorithm parameterized only by k was given in [12]. It uses Lenstra’s
algorithm [17] for a solution of an integer linear program of size exponential in
k (which requires O(k!4.5k!�) operations on integers of magnitude O(k!2k!�), see
[1]) and due to extremely large constants is not feasible for k ≥ 4. This opened
a line of research with efficient algorithms for small constant k. A linear-time
algorithm for k = 3 was presented in [12], a linear-time algorithm for k = 4 and
binary alphabet was given in [5], and recently an O(�2)-time algorithm for k = 5
and also binary alphabet was developed in [1].

For two sequences x = (x1, . . . , x�) and y = (y1, . . . , y�) the Manhattan dis-
tance (also known as rectilinear or taxicab distance) between x and y is defined
as follows:

dist(x,y) =
�∑

j=1

|xj − yj |.

The Manhattan version of the consensus problem is formally defined as follows:
Manhattan Sequence Consensus problem

Input: A collection A of k integer sequences ai, each of length �;

Output: OPT(A) = minx max {dist(x, ai) : 1 ≤ i ≤ k},
and the corresponding integer consensus sequence x.

We assume that integers ai,j satisfy |ai,j | ≤ M , and all �, k,M fit in a machine
word, so that arithmetics on integers of magnitude O(�M) take constant time.

246 T. Kociumaka et al.

For simplicity in this version of the paper we concentrate on computing
OPT(A) and omit the details of recovering the corresponding consensus sequence
x. Nevertheless, this step is included in the implementation provided.

Example 1. Let A = ((120, 0, 80), (20, 40, 130), (0, 100, 0)). Then OPT(A) =
150 and a consensus sequence is x = (30, 40, 60), see also Fig. 1.

Our results are the following:

– We show that Manhattan Sequence Consensus problem has a kernel
with � ≤ k! and give an algorithm which works in linear time for any fixed k.

– We present a practical linear-time algorithm for the Manhattan Sequence
Consensus problem for k = 5 (which obviously can be used for any k ≤ 5).

Note that binary HSC problem is a special case of MSC problem. Hence, the
latter problem is NP-complete. Moreover, the efficient linear-time algorithm pre-
sented here for MSC problem for k = 5 yields an equally efficient linear-time
algorithm for the binary HSC problem and thus improves the result of [1].

Organization of the Paper. Our approach is based on a reduction of the MSC
problem to instances of integer linear programming (ILP). For general constant
k we obtain a constant, though a very large, number of instances with a constant
number of variables that we solve using Lenstra’s algorithm [17] which works in
constant time (the constant coefficient of this algorithm is also very large). This
idea is similar to the one used in the FPT algorithm for HSC problem [12],
however for MSC it requires an additional combinatorial observation. For k ≤ 5
we obtain a more efficient reduction of MSC to at most 20 instances of very
special ILP which we solve efficiently without applying a general ILP solver.

In Section 2 we show the first steps of the reduction of MSC to ILP. In
Section 3 we show a kernel for the problem of O(k!) size. In Section 4 we perform
a combinatorial analysis of the case k = 5 which leaves 20 simple types of the
sequence x to be considered. This analysis is used in Section 5 to obtain 20
special ILP instances with only 4 variables. They could be solved using Lenstra’s
ILP solver. However, there exists an efficient algorithm tailored for this type of
special instances. Due to space constraints, it is omitted in this version; it can
be found in [14]. Finally we analyze the performance of a C++ implementation
of our algorithm in the Conclusions (Section 6).

2 From MSC Problem to ILP

Let us fix a collection A = (a1, . . . , ak) of the input sequences. The elements of ai
are denoted by ai,j (for 1 ≤ j ≤ �). We also denote dist(x,A)=max {dist(x, ai) :
1 ≤ i ≤ k}.

For j ∈ {1, . . . , n} let πj be a permutation of {1, . . . , k} such that aπj(1),j ≤
. . . ≤ aπj(k),j , i.e. πj is the ordering permutation of elements a1,j , . . . , ak,j . We
also set si,j = aπj(i),j , see Example 2. For some j there might be several possi-
bilities for πj (if ai,j = ai′,j for some i �= i′), we fix a single choice for each j.

On the String Consensus Problem 247

Example 2. Consider the following three sequences ai and sequences si obtained
by sorting columns:

[ai,j] =

⎡
⎣120 0 80
20 40 130
0 100 0

⎤
⎦ , [si,j] =

⎡
⎣ 0 0 0
20 40 80
120 100 130

⎤
⎦ .

The Manhattan consensus sequence is x = (30, 40, 60), see Fig. 1. In the figure,
the circled numbers in j-th column are πj(1), πj(2), . . . , πj(k) (top-down).

3

2

1

1

2

3

3

1

2

0

20

120

0

40

100

0

80

130

x1 x2

x3

Fig. 1. Illustration of Example 2; π1 = (3, 2, 1), π2 = (1, 2, 3), π3 = (3, 1, 2)

Definition 3. A basic interval is an interval of the form [i, i + 1] (for i =
1, . . . , k − 1) or [i, i] (for i = 1, . . . , k). The former is called proper, and the
latter degenerate. An interval system is a sequence I = (I1, . . . , I�) of basic
intervals Ij .

For a basic interval Ij we say that a value xj is consistent with Ij if xj ∈
{si,j, . . . , si+1,j} when Ij = [i, i+ 1] is proper, and if xj = si,j when Ij = [i, i] is
degenerate. A sequence x is called consistent with an interval system I = (Ij)

�
j=1

if for each j the value xj is consistent with Ij .
For an interval system I we define OPT(A, I) as the minimum dist(x,A)

among all integer sequences x consistent with I. Due to the following trivial
observation, for every A there exists an interval system I such that OPT(A) =
OPT(A, I).
Observation 4. If x is a Manhattan consensus sequence then for each j, s1,j ≤
xj ≤ sk,j.

Transformation of the Input to an ILP. Note that for all sequences x
consistent with a fixed I, the Manhattan distances dist(x, ai) can be expressed
as di +

∑�
j=1 ei,jxj with ei,j = ±1. Thus, the problem of finding OPT(A, I)

can be formulated as an ILP, which we denote ILP(I). If Ij is a proper interval

248 T. Kociumaka et al.

[i, i+1], we introduce a variable xj ∈ {si,j , . . . , si+1,j}. Otherwise we do not need
a variable xj . The i-th constraint of ILP(I) algebraically represents dist(x, ai),
see Example 6.

Observation 5. The optimal value of ILP(I) is equal to OPT(A, I).
Example 6. Consider the following 5 sequences of length 7:

[ai,j] =

⎡
⎢⎢⎢⎢⎣

20 18 20 10 16 8 10
11 6 7 17 14 14 17
14 12 18 13 11 6 12
19 8 16 18 12 19 19
16 15 11 15 6 17 11

⎤
⎥⎥⎥⎥⎦

and an interval system I = ([2, 3], [2, 3], [2, 3], [3, 4], [3, 4], [3, 3], [3, 4]). An
illustration of both can be found in Fig. 2.

211

314

516

419
120

26

48

312

515

118

27

511

416

318

120

110

313

515

217
418

56

311
412

214

116

36

18

214

517

419

110
511
312

217

419

I1

I2

I3

I4

I5

I7
I6

Fig. 2. Illustration of Example 6: 5 sequences of length 7 together with an interval
system. Notice that I6 is a degenerate interval.

We obtain the following ILP(I), where x1 ∈ [14, 16], x2 ∈ [8, 12], x3 ∈ [11, 16],
x4 ∈ [15, 17], x5 ∈ [12, 14], x7 ∈ [12, 17] and the sequence x can be retrieved as
x = (x1, x2, x3, x4, x5, 14, x7):

min z
20− x1 + 18− x2 + 20− x3 + x4 − 10 + 16− x5 + 6 + x7 − 10 ≤ z
x1 − 11 + x2 − 6 + x3 − 7 + 17− x4 + 14− x5 + 0 + 17− x7 ≤ z
x1 − 14 + 12− x2 + 18− x3 + x4 − 13 + x5 − 11 + 8 + x7 − 12 ≤ z
19− x1 + x2 − 8 + 16− x3 + 18− x4 + x5 − 12 + 5 + 19− x7 ≤ z
16− x1 + 15− x2 + x3 − 11 + x4 − 15 + x5 − 6 + 3 + x7 − 11 ≤ z

On the String Consensus Problem 249

Note that P = ILP(I) has the following special form, which we call (±)ILP:

min z

di +
∑
j

xjei,j ≤ z

xj ∈ RP (xj)

where ei,j = ±1 and RP (xj) = {�j, . . . , rj} for integers �j ≤ rj . Whenever we
refer to variables, it does not apply to z, which is of auxiliary character. Also,
“xj ∈ RP (xj)” are called variable ranges rather than constraints. We say that
(e1,j , . . . , ek,j) is a coefficient vector of xj and denote it as EP (xj). If the program
P is apparent from the context, we omit the subscript.

Simplification of ILP. The following two facts are used to reduce the number
of variables of a (±)ILP. For A,B ⊆ Z we define −A = {−a : a ∈ A} and
A+B = {a+ b : a ∈ A, b ∈ B}.
Fact 7. Let P be a (±)ILP. Let P ′ be a program obtained from P by replacing a
variable xj with −xj, i.e. setting EP ′(xj) = −EP (xj) and RP ′(xj) = −RP (xj).
Then OPT(P) = OPT(P ′).

Fact 8. Let P be a (±)ILP. Assume EP (xj) = EP (xj′) for j �= j′. Let P ′ be
a program obtained from P by removing the variable xj′ and replacing xj with
xj + xj′ , i.e. setting RP ′(xj) = RP (xj) +RP (xj′). Then OPT(P) = OPT(P ′).

Proof. Let (z, x1, . . . , xn) be a feasible solution of P . Then setting xj := xj +xj′

and removing the variable xj′ we obtain a feasible solution of P ′. Therefore
OPT(P ′) ≤ OPT(P). For the proof of the other inequality, take a feasible
solution (z, x1, . . . , xn) (with xj′ missing) of P ′. Note that xj ∈ RP ′(xj) =
RP (xj) +RP (xj′). Therefore one can split xj into xj + xj′ so that xj ∈ RP (xj)
and xj′ ∈ RP (xj′). This way we obtain a feasible solution of P and thus prove
that OPT(P) ≤ OPT(P ′). ��
Corollary 9. For a (±)ILP with k constraints one can compute in linear time
an equivalent (±)ILP with k constraints and up to 2k−1 variables.

Proof. We apply Fact 7 to obtain e1,1 = e1,2 = . . . = e1,�, this leaves at most
2k−1 different coefficient vectors. Afterwards we apply Fact 8 as many times as
possible until there is exactly one variable with each coefficient vector. ��
Example 10. Consider the (±)ILP P from Example 6. Observe that EP (x4) =
EP (x7) = −EP (x2) and thus Facts 7 and 8 let us merge x2 and x7 into x4 with

RP ′(x4) = RP (x4)+RP (x7)−RP (x2) = [15, 17]+ [12, 17]+ [−12,−8] = [15, 26].

250 T. Kociumaka et al.

Simplifying the constant terms we obtain the following (±)ILP P ′:

min z
−x1 − x3 + x4 − x5 + 60 ≤ z
+x1 + x3 − x4 − x5 + 24 ≤ z
+x1 − x3 + x4 + x5 − 12 ≤ z
−x1 − x3 − x4 + x5 + 57 ≤ z
−x1 + x3 + x4 + x5 − 9 ≤ z

3 Kernel of MSC for Arbitrary k

In this section we give a kernel for the MSC problem parameterized with k, which
we then apply to develop a linear-time FPT algorithm. To obtain the kernel we
need a combinatorial observation that if πj = πj′ then the j-th and the j′-th
column in A can be merged. This is stated formally in the following lemma.

Lemma 11. Let A = (a1, . . . , ak) be a collection of sequences of length �. As-
sume that πj = πj′ for some 1 ≤ j < j′ ≤ �. Let A′ = (a′1, . . . , a′k) be a collection
of sequences of length � − 1 obtained from A by removing the j′-th column and
setting a′i,j = ai,j + ai,j′ . Then OPT(A) = OPT(A′).

Proof. First, let us show that OPT(A′) ≤ OPT(A). Let x be a Manhattan
consensus sequence for A and let x′ be obtained from x by removing the j′-
th entry and setting x′

j = xj + xj′ . We claim that dist(x′,A′) ≤ dist(x,A).
Note that it suffices to show that |x′

j − a′i,j | ≤ |xj − ai,j |+ |xj′ − ai,j′ | for all i.
However, with x′

j = xj + xj′ and a′i,j = ai,j + ai,j′ , this is a direct consequence
of the triangle inequality.

It remains to prove that OPT(A) ≤ OPT(A′). Let x′ be a Manhattan con-
sensus sequence for A′. By Observation 4, x′

j is consistent with some proper
basic interval [i, i + 1]. Let d′i,j = x′

j − s′i,j and D′
i,j = s′i+1,j − s′i,j . Also,

let Di,j = si+1,j − si,j and Di,j′ = si+1,j′ − si,j′ . Note that, since πj = πj′ ,
D′

i,j = Di,j + Di,j′ . Thus, one can partition d′i,j = di,j + di,j′ so that both
di,j and di,j′ are non-negative integers not exceeding Di,j and Di,j′ respectively.
We set xj = si,j + di,j and xj′ = si,j′ + di,j′ . The remaining components of
x correspond to components of x′. Note that x′

j = xj + xj′ and that both xj

and xj′ are consistent with [i, i+ 1]. Consequently for any sequence am it holds
that dist(x, am) = dist(x′, am) and therefore dist(x,A) = dist(x′,A′), which
concludes the proof.

Finally, note that the procedures given above can be used to efficiently convert
between the optimum solutions x and x′. ��
By Lemma 11, to obtain the desired kernel we need to sort the elements in
columns of A and afterwards group by the resulting permutations πj .

Theorem 12. In O(�k log k) time one can reduce any instance of MSC to an
instance with k sequences of length �′, with �′ ≤ k!.

On the String Consensus Problem 251

Remark 13. For binary instances, if permutations πj are chosen appropriately,
we can achieve �′ ≤ 2k.

Theorem 14. For any integer k, the Manhattan Sequence Consensus
problem can be solved in O(�k log k + 2k! log k+O(k2k) logM) time.

Proof. We solve the kernel from Theorem 12 by considering all possible interval
systems I composed of proper intervals. The sequences in the kernel have length
at most k!, which gives (k − 1)k! (±)ILPs of the form ILP(I) to solve.

Each of the (±)ILPs initially has k constraints on k! variables but, due to
Corollary 9, the number of variables can be reduced to 2k−1. Lenstra’s al-
gorithm with further improvements [13,9,18] solves ILP with p variables in
O(p2.5p+o(p) logL) time, where L is the bound on the scope of variables. In
our case L = O(�M), which gives the time complexity of:

O
(
(k − 1)k! · 2(k−1)(2.5·2k−1+o(2k−1)) logM

)
= O

(
2k! log k+O(k2k) logM

)
.

This concludes the proof of the theorem. ��

4 Combinatorial Characterization of Solutions for k = 5

In this section we characterize those Manhattan consensus sequences x which
additionally minimize

∑
i dist(x, ai) among all Manhattan consensus sequences.

Such sequences are called here sum-MSC sequences. We show that one can de-
termine a collection of 20 interval systems, so that any sum-MSC sequence is
guaranteed to be consistent with one of them. We also prove some structural
properties of these systems, which are then useful to efficiently solve the corre-
sponding (±)ILPs.

We say that xj is in the center if xj = s3,j , i.e. xj is equal to the column
median. Note that if xj �= s3,j, then moving xj by one towards the center
decreases by one dist(x, ai) for at least three sequences ai.

Definition 15. We say that ai governs xj if xj is in the center or moving xj

towards the center increases dist(x, ai). The set of indices i such that ai governs
xj is denoted as Gj(x).

Observe that if xj is in the center, then |Gj(x)| = 5, and otherwise |Gj(x)| ≤
2; see Fig. 3. For k = 5 we have 4 proper basic intervals: [1, 2], [2, 3], [3, 4]
and [4, 5]. We call [1, 2] and [4, 5] border intervals, and the other two middle
intervals. We define Gj([1, 2]) = {πj(1)}, Gj([2, 3]) = {πj(1), πj(2)}, Gj([3, 4]) =
{πj(4), πj(5)} and Gj([4, 5])={πj(5)}. Note that if we know Gj(x) and |Gj(x)| ≤
2, then we are guaranteed that xj is consistent with the basic interval Ij for which
Gj(Ij) = Gj(x).

Observe that if x is a Manhattan consensus sequence, then Gj(x) �= ∅ for any
j. If we additionally assume that x is a sum-MSC sequence, we obtain a stronger
property.

252 T. Kociumaka et al.

)))[[]](((
1 2 3 4 5

xj :

∅ {3} {1, 3} {2, 5} {5} ∅

{1, . . . , 5}

Gj(x):

Fig. 3. Assume a1,j = 2, a2,j = 4, a3,j = 1, a4,j = 3, a5,j = 5. Then Gj(x) depends on
the interval of xj as shown in the figure; e.g., if 1 ≤ xj < 2 then Gj(x) = {3}.

Lemma 16. Let x be a sum-MSC sequence. Then Gj(x) ∩ Gj′ (x) �= ∅ for any
j, j′.

Proof. For a proof by contradiction assume Gj(x) and Gj′ (x) are disjoint. This
implies that neither xj nor xj′ is in the center and thus |Gj(x)|, |Gj′ (x)| ≤ 2.
Let us move both xj and xj′ by one towards the center. Then dist(x, ai) remains
unchanged for i ∈ Gj(x)∪Gj′ (x) (by disjointness), and decreases by two for the
remaining sequences ai. There must be at least one such remaining sequence,
which contradicts our choice of x. ��
Additionally, if a sum-MSC sequence x has a position j with |Gj(x)| = 1, the
structure of x needs to be even more regular.

Definition 17. A sequence x is called an i-border sequence if for each j it holds
that xj = ai,j or Gj(x) = {i}.
Lemma 18. Let x be a sum-MSC sequence. If Gj(x) = {i} for some j, then x
is an i-border sequence.

Proof. For a proof by contradiction assume Gj′ (x) �= {i} and xj′ �= ai,j′ for some
j′. Let us move xj towards the center and xj′ towards ai,j′ both by one. Then for
any i′ it holds that dist(x, ai′) does not increase. By Lemma 16 i ∈ Gj′ (x), so xj′

is moved away from the center. Moreover, xj is moved towards some ai′,j with
i′ �= i, since Gj′ (x) �= {i}. Consequently, dist(x, ai′) decreases by two, which
contradicts our choice of x. ��
Definition 19. A sequence x is called an i-middle sequence if for each j it holds
that i ∈ Gj(x) and |Gj(x)| ≥ 2.

Definition 20. For a 3-element set Δ ⊆ {1, . . . , 5} a sequence x is called a
Δ-triangle sequence if for each j it holds that |Δ ∩Gj(x)| ≥ 2.

Lemma 21. Let x be a sum-MSC sequence. Then x is a border sequence, a
middle sequence or a triangle sequence.

Proof. Recall that Gj(x) �= ∅ for each j. By Lemma 18, if Gj(x) = {i} for
some j, then x is an i-border sequence. This lets us assume |Gj(x)| ≥ 2, i.e.
|Gj(x)| ∈ {2, 5}, for each j. Let F be the family of 2-element sets among Gj(x).
By Lemma 16 every two of them intersect, so we can apply the following easy
set-theoretical claim.

On the String Consensus Problem 253

Claim. Let G be a family of 2-element sets such that every two sets in G intersect.
Then sets in G share a common element or G contains exactly three sets with
three elements in total.

If all sets in F share an element i, then x is clearly an i-middle sequence.
Otherwise x is a Δ-triangle sequence for Δ =

⋃F . ��
Fact 22. There exist 20 interval systems Bi,Mi (for i ∈ {1, . . . , 5}) and TΔ
(for 3-element sets Δ ⊆ {1, . . . , 5}) such that:
(a) Bi is consistent with all i-border sequences, Gj(Bi,j) = {i} for proper Bi,j;
(b) Mi is consistent with all i-middle sequences and if Mi,j is proper then

|Gj(Mi,j)| = 2 and i ∈ Gj(Mi,j);
(c) TΔ is consistent with all Δ-triangle sequences and if TΔ,j is proper then

|Gj(TΔ,j)| = 2 and Gj(TΔ,j) ⊆ Δ.

Proof. (a) Let us fix a position j. For any i-border sequence x, we know that
xj = ai,j or Gj(x) = {i}. If either of the border intervals I satisfies Gj(I) = {i},
we set Bi,j := I (observe that ai,j is then consistent with I). Otherwise we choose
Bi,j so that it is degenerate and corresponds to xj = ai,j .
(b) Again fix j. For any i-middle sequence x, we know that xj is consistent with
at least one of the two middle intervals (both if xj is in the center). If either of
the middle intervals I satisfies i ∈ Gj(I), we choose Mi,j := I. (Note that this
condition cannot hold for both middle intervals). Otherwise we know that xj is
in the center and set Mi,j so that it is degenerate and corresponds to xj in the
center, i.e. Mi,j := [3, 3].
(c) We act as in (b), i.e. if either of the middle intervals I satisfies |Gj(I)∩Δ| = 2,
we choose TΔ,j := I (because sets Gj(I) are disjoint for both middle intervals,
this condition cannot hold for both of them). Otherwise, we set TΔ,j := [3, 3],
since xj is guaranteed to be in the center for any Δ-triangle sequence x. ��

5 Practical Algorithm for k ≤ 5

It suffices to consider k = 5. Using Fact 22 we reduce the number of interval
systems from (k−1)k! = 45! > 1072 to 20 compared to the algorithm of Section 3.
Moreover, for each of them ILP(I) admits structural properties, which lets us
compute OPT(A, I) much more efficiently than using a general ILP solver.

Definition 23. A (±)ILP is called easy if for each constraint the number of +1
coefficients is 0, 1 or n, where n is the number of variables.

Lemma 24. For each I being one of the 20 interval systems Bi,Mi and TΔ,
ILP(I) can be reduced to an equivalent easy (±)ILP with up to 4 variables.

Proof. Recall that for degenerate intervals Ij , we do not introduce variables. On
the other hand, if Ij is proper, possibly negating the variable xj (Fact 7), we
can make sure that the coefficient vector E(xj) has +1 entries corresponding to
i ∈ Gj(Ij) and −1 entries for the remaining i. Moreover, merging the variables

254 T. Kociumaka et al.

(Fact 8), we end up with a single variable per possible value Gj(Ij). Now we use
structural properties stated in Fact 22 to claim that the (±)ILP we obtain this
way, possibly after further variable negations, becomes easy.
Border Sequences. By Fact 22(a), if Bi,j is proper, then Gj(Bi,j) = {i} and
thus the (±)ILP has at most 1 variable and consequently is easy.
Middle Sequences. By Fact 22(b), if Mi,j is proper, then Gj(Mi,j) = {i, i′}
for some i′ �= i. Thus there are up to 4 variables, the constraint corresponding to
i has only +1 coefficients, and the remaining constraints have at most one +1.
Triangle Sequences. By Fact 22(c), if TΔ,j is proper, then Gj(TΔ,j) is a 2-
element subset of Δ, and thus there are up to three variables. Any (±)ILP with
up to two variables is easy, and if we obtain three variables, then the constraints
corresponding to i ∈ Δ have exactly two +1 coefficients, while the constraints
corresponding to i /∈ Δ have just −1 coefficients. Now, negating each variable
(Fact 7), we get one +1 coefficient in constraints corresponding to i ∈ Δ and all
+1 coefficients for i /∈ Δ. ��
The algorithm of Lenstra [17] with further improvements [13,9,18], which runs
in roughly n2.5n+o(n) time, could perform reasonably well for n = 4. However,
there is a simple O(n2)-time algorithm designed for easy (±)ILP. Due to space
constraints, it is omitted in this paper. It can be found in the full version [14].

In conclusion, the algorithm for MSC problem first proceeds as described
in Fact 22 to obtain the interval systems Bi,Mi and TΔ. For each of them it
computes ILP(I), as described in Section 2, and converts it to an equivalent easy
(±)ILP following Lemma 24. Finally, it uses the efficient algorithm to solve each
of these 20 (±)ILPs. The final result is the minimum of the optima obtained.

6 Conclusions

We have presented an O(�k log k)-time kernelization algorithm, which for any
instance of the MSC problem computes an equivalent instance with �′ ≤ k!.
Although for k ≤ 5 this gives an instance with �′ ≤ 120, i.e. the kernel size is
constant, solving it in a practically feasible time remains challenging. Therefore
for k ≤ 5 we have designed an efficient linear-time algorithm.

We have implemented the algorithm,1 including retrieving the optimum con-
sensus sequence (omitted in the description above). For random input data with
� = 106 and k = 5, the algorithm without kernelization achieved the running
time of 1.48015s, which is roughly twice the time required to read the input file
(0.73443s, not included in the former). The algorithm pipelined with the kernel-
ization achieved 0.33415s. The experiments were conducted on a MacBook Pro
notebook (2.3 Ghz Intel Core i7, 8 GB RAM).

References

1. Amir, A., Paryenty, H., Roditty, L.: Configurations and minority in the string con-
sensus problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani,
N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 42–53. Springer, Heidelberg (2012)

1 Source code is available at http://www.mimuw.edu.pl/~kociumaka/files/msc.cpp.

http://www.mimuw.edu.pl/~kociumaka/files/msc.cpp

On the String Consensus Problem 255

2. Amir, A., Paryenty, H., Roditty, L.: On the hardness of the consensus string prob-
lem. Inf. Process. Lett. 113(10-11), 371–374 (2013)

3. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality re-
duction method. In: FOCS, pp. 449–458. IEEE Computer Society (2006)

4. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Reif,
J.H. (ed.) STOC, pp. 250–257. ACM (2002)

5. Boucher, C., Brown, D.G., Durocher, S.: On the structure of small motif recognition
instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280,
pp. 269–281. Springer, Heidelberg (2008)

6. Cohen, G.D., Honkala, I.S., Litsyn, S., Solé, P.: Long packing and covering codes.
IEEE Transactions on Information Theory 43(5), 1617–1619 (1997)

7. Fischer, K., Gärtner, B., Kutz, M.: Fast smallest-enclosing-ball computation in
high dimensions. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832,
pp. 630–641. Springer, Heidelberg (2003)

8. Frances, M., Litman, A.: On covering problems of codes. Theory Comput.
Syst. 30(2), 113–119 (1997)

9. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

10. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming
solver for geometric optimization. In: Symposium on Computational Geometry, pp.
110–118 (2000)

11. Graham, R.L., Sloane, N.J.A.: On the covering radius of codes. IEEE Transactions
on Information Theory 31(3), 385–401 (1985)

12. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of Operations Reasearch 12, 415–440 (1987)

14. Kociumaka, T., Pachocki, J.W., Radoszewski, J., Rytter, W., Waleń, T.: On the
string consensus problem and the Manhattan sequence consensus problem (full
version). CoRR, abs/1407.6144 (2014)

15. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Computing core-sets and approximate
smallest enclosing hyperspheres in high dimensions. In: 5th Workshop on Algorithm
Engineering and Experiments (2003)

16. Lanctôt, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. In: Tarjan, R.E., Warnow, T. (eds.) SODA, pp. 633–642. ACM/SIAM
(1999)

17. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathe-
matics of Operations Research 8, 538–548 (1983)

18. Lokshtanov, D.: New Methods in Parameterized Algorithms and Complexity. PhD
thesis, University of Bergen (2009)

19. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

20. Mazumdar, A., Polyanskiy, Y., Saha, B.: On Chebyshev radius of a set in Hamming
space and the closest string problem. In: ISIT, pp. 1401–1405. IEEE (2013)

21. Ritter, J.: An efficient bounding sphere. In: Glassner, A.S. (ed.) Gems. Academic
Press, Boston (1990)

22. Sylvester, J.J.: A question in the geometry of situation. Quarterly Journal of Pure
and Applied Mathematics 1, 79 (1857)

Context-Aware Deal Size Prediction

Anisio Lacerda1, Adriano Veloso1, Rodrygo L.T. Santos1, and Nivio Ziviani1,2

1 Department of Computer Science
Universidade Federal de Minas Gerais

Belo Horizonte, MG, Brazil
{anisio,adrianov,rodrygo,nivio}@dcc.ufmg.br

2 Zunnit Technologies
Belo Horizonte, MG, Brazil

nivio@zunnit.com

Abstract. Daily deals sites, such as Groupon and LivingSocial, attract
millions of customers in the hunt for products and services at substan-
tially reduced prices (i.e., deals). An important aspect for the profitability
of these sites is the correct prediction of how many coupons will be sold
for each deal in their catalog—a task commonly referred to as deal size
prediction. Existing solutions for the deal size prediction problem focus
on one deal at a time, neglecting the existence of similar deals in the cat-
alog. In this paper, we propose to improve deal size prediction by taking
into account the context in which a given deal is offered. In particular,
we propose a topic modeling approach to identify markets with similar
deals and an expectation-maximization approach to model intra-market
competition while minimizing the prediction error. A systematic set of
experiments shows that our approach offers gains in precision ranging
from 8.18% to 17.67% when compared against existing solutions.

1 Introduction

In recent years, daily deals sites (or simply DDSs) such as Groupon1 and Living-
Social2 became an important group-buying alternative for both local merchants
and consumers. While local merchants are mainly interested in disseminating
their brand to increase revenue, potential consumers seek discounted prices for
products and services as diverse as restaurant meals, theater tickets, etc. In this
business model, the DDS operates as a mediator for local merchants (sellers) to
negotiate a deal (product or service) that is sold to consumers (buyers). In this
case, the profitability of the DDS depends directly on two factors: (i) the com-
mission associated with a deal, and (ii) the number of coupons that are actually
sold for the deal, a quantity commonly referred to as the deal size. Different from
commissions, which are governed by business decisions, the task of predicting
the deal size can be modeled as a machine learning regression problem [8].

While being of paramount importance for the success of DDSs, accurately
predicting deal sizes is surrounded by challenges. First, the catalog of deals is

1 http://www.groupon.com
2 http://www.livingsocial.com

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 256–267, 2014.
c© Springer International Publishing Switzerland 2014

http://www.groupon.com
http://www.livingsocial.com

Context-Aware Deal Size Prediction 257

Fig. 1. The deal size depends on the deal and the presented alternatives

usually available for only a limited time frame, which varies from 4 to 5 days on
average [8]. This may compromise the amount of historical data that is available
for learning predictors, harming the effectiveness of algorithms such as support
vector regression (SVR [3,11]). Second, deals may compete among themselves
for consumer preference. For instance, consider the example in Fig. 1, which
illustrates a commonly observed case in which a consumer is looking for discounts
in restaurants and has a limited budget of $50. In this case, she would arguably
prefer an Italian dinner over a Kebab, or vice-versa, but she is unlikely to increase
her budget in order to buy both deals. An even worse outcome may happen when
the similarity between the two services is so high that causes hesitation, leading
the consumer to abandon the DDS without buying any of the competing deals.

Existing solutions to deal size prediction [8,14] produce global predictors that
often neglect complex interactions between deals, such as competition for cus-
tomer preference. In contrast, we propose to model the attractiveness of a deal
relatively to other available deals from the same market. In particular, we pro-
pose a topic modeling approach to identify sets of deals that are likely to at-
tract the interest of similar consumers. Furthermore, we propose a context-aware
expectation-maximization approach to deal size prediction by considering (i) fea-
tures associated with the target deal, and (ii) contextual features associated with
the other deals in the same market of the target deal. To the best of our knowl-
edge, our proposed approach is the first learning model that takes into account
the whole catalog of deals when performing deal size prediction.

To assess the effectiveness of our proposed approach, we perform a systematic
evaluation involving real usage data obtained from major DDSs such as Groupon
and LivingSocial. In order to evaluate the extent to which our market segmen-
tation strategy is language-dependent, we perform additional experiments with
usage data obtained from Peixe Urbano,3 the largest Brazilian DDS. The results
attest the effectiveness of our proposed approach, with precision improvements
ranging from 8.18% to 17.67% when compared to existing deal size predictors.

3 http://www.peixeurbano.com.br

http://www.peixeurbano.com.br

258 A. Lacerda et al.

2 Related Work

DDSs have recently attracted the attention of researchers in multidisciplinary
fields. Regarding the economic aspect of DDSs, Byers et al. [7] presented evi-
dence that Groupon strategically optimizes their deal offerings, giving customers
incentives other than price to make a purchase, including deal scheduling and
duration, deal featuring, and limited inventory. Groupon’s business model was
further examined by Arabshahi [2]. An empirical analysis of the experience of
merchants that used Groupon was performed by Dholakia [10]. Several studies
addressed the propagation effect of daily deals in online social networks. More
specifically, they were interested in assessing the impact that a deal had on
a merchant’s subsequent ratings in social review sites such as Yelp. Different
from past research that observed a decrease in the ratings for merchants using
Groupon [9], Potamias [17] argued that this effect was overestimated. Finally,
Kumar and Rajan [13] analyzed, among other economic aspects, the profitability
of social coupons and concluded that they yield profits for merchants.

Another line of research addressed algorithmic problems in DDSs. In partic-
ular, these data-driven approaches focus on identifying and understanding the
main characteristics of DDSs by analyzing historical purchase data. Two main
interrelated problems arise in this scenario: (i) deal ordering, aimed at selecting
a set of deals that should be featured in the DDS catalog on a given day, and
(ii) deal size prediction, aimed at estimating the number of coupons that are ex-
pected to sell for a given deal. As previously discussed, the deal size prediction
problem is the focus of this paper. In this line of research, Ye et al. [22] modeled
the popularity of group deals as a function of time. Byers et al. [8] modeled
deal size prediction as a linear combination of deal features and used ordinary
least squares regression to fit their model. Instead of learning a single, global
predictor, Lappas and Terzi [14] proposed to learn multiple predictors, one for
each market identified using a hierarchical clustering algorithm.

Similarly to the prediction approach of Lappas and Terzi [14], we also seek to
identify multiple markets and learn market-targeted deal size predictors. How-
ever, in contrast to their approach, we leverage several weighting schemes and
structural properties of deals as discriminative features for market identifica-
tion. Moreover, we introduce a normalization factor learned via expectation-
maximization to account for competing interactions between deals from the
same market in order to produce context-aware predictions. In our investiga-
tions in Section 5, both the global prediction approach of Byers et al. [8] and the
segmented prediction approach of Lappas and Terzi [14] are used as baselines.

3 Context-Aware Deal Size Prediction

In this section, we introduce our context-aware deal size prediction approach.
Firstly, we present a topic identification strategy to group deals into markets,
which determine the context for each available deal. Then, we present a deal size
prediction strategy that employs multiple SVR predictors: there are as many

Context-Aware Deal Size Prediction 259

predictors as markets, and each predictor is specifically designed to one market.
Finally, we present a contextual expectation-maximization strategy that reduces
the prediction error by taking into account the competition between deals in the
same market and also the representativeness of different markets.

3.1 Identifying Markets

Discovering meaningful markets from textual features associated with the deals
is an important step for determining the context of competition among deals.
In the following, we detail our approach for representing deals as well as for
automatically identifying markets via latent topic modeling.

Representing deals. Our approach represents each deal d as a vector ds in an
n-dimensional space {t1, t2, . . . , tn}, where n is the number of unique terms in
a given feature space s. In particular, we consider four different features spaces,
comprising terms appearing on the merchant’s name, the title of the deal, the
description of the deal, or all of these fields concatenated in a single space.

In order to weigh the relative importance of each term t in a given deal
vector ds, we consider four alternative weighting schemes: the term frequency
TF, denoting the raw frequency of t in d; the term spread TS, denoting the
spread of t in d, as a measure of the descriptive power of t; and the products
TF×IFF and TS×IFF, with the inverse feature frequency IFF denoting the
rarity of t among all cataloged deals represented in the feature space s.

Identifying latent markets. Our proposed approach defines a market as a set of
deals that are likely to attract the interest of a similar group of customers. Under
the assumption that customers have a limited budget, our intuition is that deals
belonging to the same market are more likely to compete for customer preference.
A simple strategy to market identification would be to analyze the customers’
purchase history, in order to identify deals that were purchased by a similar set
of customers. Unfortunately, as discussed in Section 1, such historical purchase
data is very limited due to the scarceness of recurrent or regular customers. As an
alternative, we propose a content-based approach to market identification using
latent Dirichlet allocation (LDA [5]). LDA is a generative model used to identify
latent topics in textual documents, and has been largely used in a variety of
tasks, including matrix factorization [1], influential user identification [21], tag
recommendation [12], and word sense disambiguation [6]. In our particular case,
using LDA to identify latent markets overcomes the lack of historical purchase
data by instead leveraging the textual representation of each of the available
deals. As an illustrative example, Table 1 shows markets identified from one of
the DDS datasets used in our investigations in Section 5.

3.2 Predicting deal size

In order to predict the deal size, we learn multiple predictors, each one targeted to
a different market, identified according to the approach described in Section 3.1.

260 A. Lacerda et al.

Table 1. Top five terms from each of k = 5 markets in the Groupon dataset

“Gym” “Hair Salon” “Sports” “Dentistry” “Ice Cream”

class salon camping dental tour
fit hair week teeth chocolate

body look sport care cake
train services day value sweet

workout cut academia whitening ice

To account for the competition within each market, these initial predictions are
further adjusted through an iterative expectation-maximization procedure.

Specialized SVR. Support vector regression (SVR [11]) is an established non-
linear regression technique that has been applied successfully to a variety of
numeric prediction problems. In order to apply SVR to deal size prediction, we
represent deals as follows. Let D = {Dm1 , Dm2 , . . . ,Dmk

} be the collection of
all past deals, and each Dmi = {d1, d2, . . . , dq} be a partition of D composed of
all q deals that belong to market mi. Further, each deal dj is represented as a
feature vector, using features generally available from DDSs, such as the deal
face and discounted values, the day of the week when the deal is launched, etc.

The training set used to build an SVR predictor to market mi is composed
of (deal, size) pairs of the form {(d1, s1), (d2, s2), . . . , (dq, sq)}, that is, each pair
is composed of a deal dj ∈ Dmi and its corresponding size sj . For each deal
dp ∈ Dmi , a specialized SVR predictor takes the form f(dp) = 〈w,Φ(dp)〉 + b,
where w ⊂ �n, b ⊂ �, and Φ denotes a nonlinear transformation from �n to a
high-dimensional space. The SVR objective is to find the minimum value of w
and b by solving the following regularized optimization problem:

min
w

1

2
wTw + C

∑
ξε(w; dj , sj), (1)

ξε(w; dj , sj) = max(|wT dj − sj | − ε, 0)2, (2)

where C > 0 is the regularization parameter, and ξε is the ε-insensitive loss
associated with (dj , sj), with ε given so that the loss is zero when |wT dj − sj | ≥
ε [19]. We use a radial basis function (RBF) as the transformation function Φ,
and set all other parameters through cross-validation [15].

The CBMP model. The specialized SVR predictor does not take into account
complex interactions that may exist between deals in the catalog. For instance,
deals in the catalog of the day, denoted S, may compete with each other. As a
result, SVR predictions may be overestimated. In order to model competition,
we first partition the catalog into k markets, so that S = {Sm1 , Sm2 , . . . , Smk

}.
Every deal in S must be assigned to one of these markets, and we say that Sdj

is the market to which deal dj is assigned. Given the SVR prediction f(q) for
any deal q ∈ S, the estimated size of deal dj ∈ S is given as a combination of

Context-Aware Deal Size Prediction 261

two factors: the SVR prediction for dj , and an average factor that encompasses
all deals within the same market. In order to combine these two factors, we
introduce the following expectation-maximization (EM) formulation:

E : ρ(S) =

∑
q∈S σ(q)∑

dj∈C σ(dj)
, (3)

M : σ(dj) = α×
∑

q∈Sdj
f(q)× ρ(Sdj)

|Sdj |
+ (1− α)× f(dj), (4)

where α = 0.5 to weigh equally both factors, and ρ(Sdj) is an unknown parameter
which re-scales the representativeness of market Sdj . This EM procedure uses
the training set to find the value for ρ(Sdj) that minimizes the loss function:

eqn : rmse(y, ŷ) =

√
1

n

∑
(yi − ŷi)

2, (5)

where n is the number of predictions performed, and yi and ŷi are the actual and
the predicted deal sizes, respectively. Intuitively, this prediction model, named
Competitive Business Market Predictor (CBMP), accounts for intra-market com-
petition by re-scaling the predicted size of each deal relatively to the predicted
size of other deals from the same market. In the next sections, we assess the
effectiveness of the CBMP model compared to both a global as well as market-
targeted predictors which do not account for competing relationships.

4 Experimental Setup

This section details the experimental setup that supports the validation of our
proposed context-aware deal size prediction approach, including the datasets,
the baselines, and the evaluation procedure that we use.

Daily deals datasets. Our evaluation uses data collected from three commercial
DDSs: Groupon, LivingSocial, and Peixe Urbano. Groupon and LivingSocial
were crawled using as seeds the datasets used by Byers et al. [8]. In particular,
Groupon was crawled from Jan 3rd, 2011 to Jul 3rd, 2011, while LivingSocial was
crawled from Mar 21st, 2011 to Jul 3rd, 2011. In both cases, the collected data
includes English textual features used to group deals into markets, as described
in Section 3.1. For Groupon, we collected a total of 16,409 deals comprising
119,525 unique terms. For LivingSocial, we obtained 2,610 deals with 19,102
distinct terms. In addition, to enable our basic prediction model using SVR,
we collected a number of non-textual deal features, including (1) the price of
the deal, (2) the price after the discount, (3) the tipping point of the deal (i.e.,
minimum number of coupons that must be sold to enable the deal), (4) the day
of the week in which the deal was launched, (5) the category of the deal, (6)
the city in which the corresponding merchant is located, and boolean values
indicating (7) whether the deal is running for multiple days, (8) whether the

262 A. Lacerda et al.

deal is featured on the DDS website, and (9) whether the inventory is limited.
Finally, for Peixe Urbano, the same features were obtained directly through an
API made available to us. Textual features in Portuguese were obtained for 4,309
deals during the entire year of 2012, comprising a total of 31,163 unique terms.

Prediction baselines. We compare the effectiveness of CBMP, our context-aware
deal size prediction model, against the following baseline predictors:

– Global Predictor (GLPR) [8], learned using the whole training set, ignoring
the existence of markets. The size of an arbitrary deal q is given as:

σ(q) = 2β0+
∑

βi×fi , (6)

where features fi correspond to the ones described earlier in this section and
weights βi are determined using ordinary least squares [15].

– One Predictor per Business Market (OPBM) [14], learned using an SVM-
based regression method proposed by Shevade et al. [18]. In particular, they
introduced a two-layer clustering algorithm that is based on LDA [5] and a
flat clustering algorithm based on the Kullback-Liebler distance to separate
deals into markets [16]. Note that, in contrast to our proposed model, OPBM
does not exploit competing relationships between deals in a given market.

Evaluation procedure. Our evaluation uses the interleaved test-then-train meth-
odology [4], in which each deal in the catalog on day t is evaluated, and then is
included into the historical data that becomes available at day t+1. Our intention
is to mimic as close as possible the production system of a DDS, which predicts
the size of each available deal in the beginning of the day, and incorporates
the feedback received on these deals in the end of the day, to be used in the
predictions of the next day. We evaluate the effectiveness of all predictors using
the root mean squared error (RMSE) [15]. As shown in Equation (5), ŷi is the
predicted value of the i-th sample, while yi is the corresponding true value.
Finally, n is the number of instances in the dataset for which the prediction is
performed. The results to be reported correspond to an average over all days.
Statistical significance was verified using a paired t-test with p < 0.05.

5 Experimental Results

In this section, we empirically validate our proposed context-aware deal size
prediction model in contrast to existing deal size predictors from the literature.
In particular, we aim to answer the following research questions:

Q1. How effective is CBMP compared to existing deal size predictors?
Q2. How effective is our topic modeling approach to market identification?
Q3. How effective are our various strategies for deal representation?

To answer question Q1 and Q2, we contrast the effectiveness of our CBMP
model to GLPR as a global, market-agnostic predictor, as well as to OPBM as a

Context-Aware Deal Size Prediction 263

Table 2. RMSE figures for CBMP and the GLPR and OPBM baselines

GLPR OPBM CBMPl ΔGLPR ΔOPBM CBMPc ΔGLPR ΔOPBM

Groupon 1.3864 1.3544 1.1332 17.7% 16.3% 1.2563 8.7% 7.2%
LivingSocial 1.1287 1.1112 1.0203 9.6% 8.2% 1.0931 3.2% 1.6%
Peixe Urbano 1.2956 1.2575 1.1430 11.8% 9.1% 1.1841 8.6% 5.8%

Fig. 2. Market-specific prediction model vs. global model

local, market-aware predictor that does not exploit the competing nature of deals
in the context of an individual market. Table 2 shows the prediction performance
of these three models across the three considered DDS datasets (Groupon, Liv-
ingSocial, and Peixe Urbano) in terms of RMSE. Our CBMP model is deployed
using either latent topics (CBMPl) or explicit categories (CBMPc) for market
identification. The CBMPl variant identifies latent markets (50 for Groupon; 30
for LivingSocial and Peixe Urbano) with deals represented by a concatenation of
all their terms weighted using TF, which was the best performing setting iden-
tified during training.4 For each of the two variants of CBMP, namely, CBMPl

and CBMPc, the additional columns ΔGLPR and ΔOPBM show the percentage
RMSE improvement compared to GLPR and OPBM, respectively.

From Table 2, we first observe that both variants of our CBMP model outper-
form both deal size prediction baselines. In particular, CBMPc outperforms the
global GLPR predictor with significant improvements in RMSE ranging from
3.2% (LivingSocial) to 8.7% (Groupon). These gains are further illustrated by
the breakdown analysis shown in Fig. 2 for deals across multiple categories of
Groupon and LivingSocial.5 In the figure, a positive delta indicates an improve-
ment of CBMP against GLPR, whereas a negative delta indicates otherwise.
From the figure, we observe that most of the observed differences are positive,

4 A complete analysis of the impact of different deal representations for a varying
number of target markets is presented later in this section.

5 Results on Peixe Urbano show similar trends and are omitted for brevity.

264 A. Lacerda et al.

indicating that it is indeed better to use multiple market-specific predictors than
a single, global predictor for all markets. Notable exceptions can be observed
for categories such as “Retail” and “Entertainment”, when a global predictor
performs better. Such categories are arguably less cohesive, which may indi-
cate weaker intra-market competition relationships. Further exploiting such a
nuanced view of markets is a direction for future investigation.

A promising alternative to arbitrarily defined markets is the latent topic iden-
tification approach employed by CBMPl. Indeed, as shown in Table 2, CBMPl

further improves compared to CBMPc, which is based on explicit categories. In
particular, CBMPl significantly outperforms the global GLPR predictor by up to
17.7% (Groupon). Compared to the OPBM baseline, which also leverages topic
modeling to produce market-specific deal size predictions, our approaches are
also effective, with gains ranging from 8.2% (LivingSocial) to 16.3% (Groupon)
for CBMPl and 1.6% (LivingSocial) to 7.2% (Groupon) for CBMPl. Recalling
question Q1, these results attest the effectiveness of our proposed context-aware
deal size prediction model compared to both global as well as market-specific,
content-agnostic predictors. Moreover, recalling question Q2, the comparison
between the two variants of our model also attest the effectiveness of our topic
modeling approach to identify latent markets, which outperforms a hard parti-
tion of markets based on the category of each deal in the catalog.

To address question Q3, we further evaluate our topic modeling variant (hence-
forth referred to as CBMP) in light of different strategies for deal representa-
tion. To this end, we break down the performance of CBMP for different feature
spaces (merchant’s name, deal title, deal description, concatenation of all terms),
weighting schemes (TF, TS, TF×IFF, and TS×IFF), and target number of mar-
kets. In particular, Figs. 3, 4, and 5 show the results of this breakdown analysis
for the Groupon, LivingSocial, and Peixe Urbano datasets, respectively.

Regarding the impact of different feature spaces, we observe a generally supe-
rior performance of CBMP in denser spaces, such as those induced with terms
obtained from the description or the concatenation of all terms comprised by
each deal. In addition, of these two feature spaces, the concatenation of all terms
appears to be less sensitive to the variation in the number of chosen markets.
Considering the other two spaces, merchant’s name and deal title, both yield
generally similar prediction performances across the three datasets. Regarding
the different weighting schemes considered, TF and TS are consistently the best
performers across all datasets. Furthermore, we can also see that the weighting
schemes that are combined with IFF are more sensitive to the number of mar-
kets. For instance, when considering the deal description on Groupon (Fig. 3),
or the deal title on LivingSocial (Fig. 4) and Peixe Urbano (Fig. 5).

Recalling question Q3, the results in Figs. 3, 4, and 5 show that denser feature
spaces with pure frequency-based weighting functions are generally preferred for
representing deals within our latent market identification approach. The target
number of markets, on the other hand, is a key parameter that must be carefully
tuned when deploying our proposed context-aware deal size prediction model for

Context-Aware Deal Size Prediction 265

different datasets. Finally, it is also worth noting that our approach performs
effectively for datasets in different languages, as exemplified by the English and
Portuguese DDS datasets considered in our investigations.

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Merchant’s Name

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Title

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Description

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Concatenation

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

Fig. 3. RMSE on Groupon with varying number of markets

 1

 1.05

 1.1

 1.15

 1.2

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Merchant’s Name

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM 1

 1.05

 1.1

 1.15

 1.2

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Title

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.05

 1.1

 1.15

 1.2

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Description

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM 1

 1.05

 1.1

 1.15

 1.2

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Concatenation

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

Fig. 4. RMSE on LivingSocial with varying number of markets

266 A. Lacerda et al.

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Merchant’s Name

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Title

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100

R
M

S
E

markets

Description

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

 1

 1.1

 1.2

 1.3

 1.4

 10 20 30 40 50 60 70 80 90 100
R

M
S

E

markets

Concatenation

TS
TS x IFF

TF

TF x IFF
GLPR
OPBM

Fig. 5. RMSE on Peixe Urbano with varying number of markets

6 Conclusions and Future Work

We introduced CBMP, a novel context-aware deal size prediction model. Pre-
dicting the size of a deal (i.e., the number of coupons that will be sold for the
deal) is a crucial task for the profitability of DDSs. Our proposed model im-
proves upon previous approaches by exploiting competition relationships that
may arise among deals in the same target market (e.g., two restaurant deals).
In particular, we proposed a topic modeling approach to identify latent markets
based solely on the textual content of deals. Besides identifying more cohesive
markets, this content-based approach is particularly suitable for the dynamic
nature of DDSs, where the volatility of the available deals precludes an effective
use of historical purchase data. Based upon the identified markets, we proposed
an expectation-maximization formulation to re-scale the predicted size of a deal
in light of the predicted size of other competing deals from the same market. Ex-
periments on three large-scale datasets collected from commercial DDSs attested
the effectiveness of our proposed approach, with significant gains in prediction
accuracy ranging from 8.2% to 17.7% over previously proposed approaches.

We exploited the relationship among deals by using the concept of markets,
which is useful to model flips in consumer behavior. However, such behavior
presents many other aspects that have been studied in behavioral economics
and may be used in the context of DDSs for deal size prediction. For instance,
anchoring [20] states that the first product shown influences the buying decisions
for subsequently shown products, which are compared to the first one. Hence,
in the context of DDSs, the ordering of the products presented in the web page
may affect deal size, i.e., the top product may also have an anchoring effect.

Context-Aware Deal Size Prediction 267

Acknowledgements. We thank the partial support given by the Brazilian
National Institute of Science and Technology for the Web (grant MCT-CNPq
573871/2008-6) and authors’ individual grants and scholarships from CNPq and
CAPES.

References

1. Agarwal, D., Chen, B.-C.: fLDA: matrix factorization through latent dirichlet al-
location. In: ACM WSDM, pp. 91–100 (2010)

2. Arabshahi, A.: Undressing groupon: An analysis of the groupon business model
(2011), http://www.ahmadalia.com/blog/2011/01/undressing-groupon.html

3. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Information
Processing-Letters and Reviews 11(10), 203–224 (2007)

4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive online analysis.
The Journal of Machine Learning Research 11, 1601–1604 (2010)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

6. Boyd-Graber, J.L., Blei, D.M., Zhu, X.: A topic model for word sense disambigua-
tion. In: ACM ACL, pp. 1138–1147 (2010)

7. Byers, J., Mitzenmacher, M., Potamias, M., Zervas, G.: A month in the life of
groupon. CoRR, abs/1105.0903 (2011)

8. Byers, J., Mitzenmacher, M., Zervas, G.: Daily deals: Prediction, social diffusion,
and reputational ramifications. In: ACM WSDM, pp. 543–552 (2012)

9. Byers, J.W., Mitzenmacher, M., Zervas, G.: The groupon effect on yelp ratings: A
root cause analysis. In: ACM EC, pp. 248–265 (2012)

10. Dholakia, U.M.: How effective are groupon promotions for business (2010),
http://www.ruf.rice.edu/~dholakia

11. Drucker, H., Burges, C.J., Kaufman, L., Smola, A., Vapnik, V.: Support vector
regression machines. In: NIPS, pp. 155–161 (1997)

12. Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recom-
mendation. In: ACM RecSys, pp. 61–68 (2009)

13. Kumar, V., Rajan, B.: Social coupons as a marketing strategy: A multifaceted
perspective. Journal of the Academy of Marketing Science 40(1), 120–136 (2012)

14. Lappas, T., Terzi, E.: Daily-deal selection for revenue maximization. In: ACM
CIKM, pp. 565–574 (2012)

15. Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr Ridge (1997)
16. Pinto, D., Bened́ı, J.-M., Rosso, P.: Clustering narrow-domain short texts by using

the kullback-leibler distance. In: Gelbukh, A. (ed.) CICLing 2007. LNCS, vol. 4394,
pp. 611–622. Springer, Heidelberg (2007)

17. Potamias, M.: The warm-start bias of yelp ratings. CoRR (2012)
18. Shevade, S.K., Keerthi, S.S., Bhattacharyya, C., Murthy, K.R.K.: Improvements

to the SMO algorithm for svm regression. IEEE Transactions on Neural Net-
works 11(5), 1188–1193 (2000)

19. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14(3), 199–222 (2004)

20. Tversky, A., Simonson, I.: Context-dependent preferences. Management Sci-
ence 39(10), 1179–1189 (1993)

21. Weng, J., Lim, E.-P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influ-
ential twitterers. In: ACM WSDM, pp. 261–270 (2010)

22. Ye, M., Sandholm, T., Wang, C., Aperjis, C., Huberman, B.A.: Collective attention
and the dynamics of group deals. In: WWW, pp. 1205–1212 (2012)

http://www.ahmadalia.com/blog/2011/01/undressing-groupon.html
http://www.ruf.rice.edu/~dholakia

Simple and Efficient String Algorithms

for Query Suggestion Metrics Computation

Alexander Loptev1,2, Anna Selugina1, and Tatiana Starikovskaya1,�

1 National Research University Higher School of Economics (HSE), Russia
aoselyugina@edu.hse.ru,tstarikovskaya@hse.ru

2 Yandex, Russia
alonger@yandex-team.ru

Abstract. In order to make query suggestion mechanisms more effi-
cient, it is important to have metrics that will estimate query sugges-
tions quality well. Recently, Kharitonov et al. [7] proposed a family of
metrics that showed much better alignment with user satisfaction than
previously known metrics. However, they did not address the problem of
computing the proposed metrics. In this paper we show that the problem
can be reduced to one of the two string problems which we call Top-k
and Sorted-Top-k. Given an integer k and two sets of pairwise distinct
strings (queries) with weights, Q and Qtest, the Top-k problem is to find,
for each query q ∈ Qtest, its shortest prefix q[1..i] such that q belongs to
the list of k heaviest queries in Q starting with q[1..i]. The Sorted-Top-k
problem is to retrieve, for each q ∈ Qtest and 1 ≤ i ≤ |q|, a position of q
in the sorted list of the k heaviest queries in Q starting with q[1..i]. We
show several linear-time solutions to these problems and compare them
experimentally.

1 Introduction

Almost every big search engine has a build-in query suggestion mechanism — a
special feature that helps a user to type less when submitting a query. When a
user submits a new letter q[i] of her query q to a search engine, the mechanism
forms a list of queries starting with q[1..i]. If the user sees q in the list, she selects
it and sumbits it to the search engine. Otherwise, she types the next letter of
her query.

To improve quality of search suggestion mechanisms it is essential to have
metrics that reflect a user satisfaction level well. Recently, Kharitonov et al. [7]
introduced a model of interaction between a user and a query suggestion mech-
anism and proposed a family of associated metrics called Saved. (Prior to that,
no model existed.) Under this user model, they performed a thorough experi-
mental comparison of their metrics and the MRR [8], wMRR [1], and MKS [3]
metrics that had been known prior to their work. The experiments showed that
the Saved metrics family is aligned with a user satisfaction level much better
than the other metrics.
� Tatiana Starikovskaya was partly supported by Dynasty Foundation.

E. Moura and M. Crochemore (Eds.): SPIRE 2014, LNCS 8799, pp. 268–278, 2014.
c© Springer International Publishing Switzerland 2014

Simple and Efficient String Algorithms 269

Hence, usage of the Saved metrics family for evaluating quality of a query
suggestion mechanism is well-justified. However, in their work Kharitonov et al.
did not discuss the problem of computing the metrics. Here we address this gap.
In doing so, we reduce the problem of computing a metric of the Saved family
to one of the two string problems which we call Top-k and Sorted-Top-k. These
problems is a core difficulty, and once the answer for them is known, the metrics
can be computed by one linear-time pass through the answer.

In both problems we assume that two sets Q,Qtest of pairwise distinct strings
(queries) are given, and |Q| � |Qtest|. For each query we are given its weight.
The Top-k problem is to define, for each query q ∈ Qtest, its shortest prefix
q[1..i] such that q belongs to the list of k heaviest queries in Q starting with
q[1..i]. The Sorted-Top-k problem is to retrieve, for each q and 1 ≤ i ≤ |q|, a
position of q in the sorted list of k heaviest queries in Q starting with q[1..i].

For each of the problems we show two algorithms. Let n be the total length,
and m be the total number of queries in Q. For the Top-k problem we propose
algorithms with O(n) and O(n log σ) time, where σ is the size of the alphabet.
For the Sorted-Top-k problem we give algorithms with O(n log k) and O(n log σ)
time. Each of the four algorithms uses O(m) memory (not counting the memory
needed to store the input and the output). The algorithms we give are very
simple, which we consider as an advantage given that calculating the metrics is
supposed to be a basic tool in the area of research related to query suggestion
mechanisms.

The rest of the paper is organized as follows. In Section 2 we remind a reader
the definitions of the user model and the metrics of the Saved family. In Section 3
we show that the metrics can be calculated by reduction either to the Top-k or to
the Sorted-Top-k problem. In Section 4 we show four solutions to these problems.
We report the results of experimental analysis of the algorithms in Section 5.
Finally, we conclude in Section 6.

2 User Model

We briskly remind the user model introduced in [7]. It is supposed that a query
suggestion mechanism stores a set of pairwise distinct queries, Q. The set Q
contains all queries previously submitted, and for each query in Q the number
of times it has been submitted is known (weight). In the process of submitting a
query q to a search engine, a user types q letter by letter. After each letter, the
list of suggested queries is updated to contain k heaviest queries in Q starting
with the typed prefix of q. The queries in the list are sorted in the decreasing
order of their weights.1 The user inspects the list, and if she sees q in the list, she
selects it and that ends the interaction with the query suggestion mechanism.
Otherwise, the user types the next letter. It is assumed that the user’s behaviour

1 In general, the weights can be arbitrary. For instance, they can also depend on
the user’s geographical location. The algorithms we propose work for any choice of
weights.

270 A. Loptev, A. Selugina, and T. Starikovskaya

satisfies the Markovian assumption meaning that the behaviour of the user at
the current step does not depend on her earlier decisions.

Formally, the user model can be described as follows. Let qi,j be the jth

suggested query for a prefix q[1..i]. We introduce the following Boolean random
variables:

– Ni: was q[i] submitted;

– Ei,j : is qi,j examined by the user;

– Si,j : is the user satisfied with qi,j after submitting q[1..i].

Firstly, we define the order in which the letters of q are submitted and what
the user sees in response: (a) The first letter is always submitted; (b) Letters
are typed sequentially; and (c) If q[i] is not submitted, the user does not see
suggestions for q[1..i].

(a) N1 = 1

(b) Ni = 0 ⇒ ∀k ≥ i+ 1 : Nk = 0

(c) Ni = 0 ⇒ ∀j : Ei,j = 0

Secondly, the user is satisfied with qi,j , that is, she selects qi,j from the list and
stops the interaction with the query suggestion mechanism if and only if she
examined qi,j and qi,j = q:

(e) Si,j = 1 ⇔ Ei,j = 1, qi,j = q

Finally, we need a set of equations defining when the user stops typing: (f) If
the user is satisfied with qi,j , the interaction stops; (g) If the user is not satisfied
with suggestions for q[1..i] and i < |q|, she types q[i + 1]; (h) If the user typed
all letters of q, the interaction stops.

(f) ∃j : Si,j = 1 ⇒ Ni+1 = 0

(g) ∀j Si,j = 0, i < |q| ⇒ Ni+1 = 1

(h) N|q|+1 = 0

The probability of examining the query suggested at the jth position is a
function of the user’s state and defines the model. Kharitonov et al. [7] considered
five different probability functions, which can be classified as follows:

– The function is equal to one for any i, j, i.e. f1(i, j) = 1;

– Dependency on j only (frr(i, j) =
1

j+1 , flog(i, j) =
1

log2 j+2 , f
i
l (i, j) = Aj);

– Dependency on both i and j (fd
l (i, j) = Bi,j).

The function f1 corresponds to the case when the user always examines all
suggested queries. The parameters Aj and Bi,j are learned by a simple one-time
scan of the set Q. It can be assumed that these values are computed once for a
fixed language, a search engine, and a query suggestion mechanism.

Simple and Efficient String Algorithms 271

3 Metrics

Let Qtest be a set of distinct queries observed during some fixed period of time,
and w(q) be the number of times a query q was submitted during this time
(weight). To estimate the quality of query suggestions for this period of time,
Kharitonov et al. [7] proposed a family of metrics defined as the expectation of
a utility function at a position where the user is satisfied by a query suggestion
averaged over all queries in Qtest:

M =
1

W (q)

∑
q∈Qtest

w(q)

|q|∑
i=1

k∑
j=1

U(i, j)P (Si,j = 1) (1)

where W (q) =
∑

q∈Qtest
w(q). The first utility function is defined to be equal

to 1 if the user is satisfied by a query suggestion, and 0 otherwise. The resulting
metric is equal to the probability of using the query suggestion mechanism and
is denoted by pSaved.

pSaved =
1

W (q)

∑
q∈Qtest

w(q)

|q|∑
i=1

k∑
j=1

P (Si,j = 1) (2)

The second function is defined as U(i, j) = 1 − i
|q| to reflect the effort it

takes the user to find q in the suggestions. The resulting metrics is referred to
as eSaved.

eSaved =
1

W (q)

∑
q∈Qtest

w(q)

|q|∑
i=1

(
1− i

|q|
) k∑

j=1

P (Si,j = 1) (3)

Both proposed metrics, pSaved and eSaved are defined by the examination
probability function as Si,j = 1 if and only if Ei,j = 1 and qi,j = q. (See
Equation (e).)

Kharitonov et al. [7] showed experimentally that the proposed metrics are
aligned with the quality of a query suggestion mechanism much better than the
previously known MRR [8], wMRR [1], and MKS [3] metrics. However, for this
family of metrics to become widely used, it is essential to show that they can be
easily computed.

4 Reduction to Stringology

We distinguish between two cases: the examination probability function is de-
fined as f1 and the examination probability function is defined as frr, flog, f

i
l ,

or fd
l .

To compute the metrics in the first case, it is sufficient to know, for each
query, the minimal prefix length when the query first appears among suggestions.
Indeed, P (Si,j = 1) for a query q will be equal to one if q[1..i] is the shortest
prefix for which q belongs to the list of suggested queries, and to zero otherwise.

272 A. Loptev, A. Selugina, and T. Starikovskaya

More information is required in the second case: for each prefix q[1..i] of each
query q we need to know the position pi of the query among the suggested
queries. Then

P (Si,j = 1) =

⎧⎨
⎩
0 if j
= pi,

P (Ei,pi = 1)
∏

r∈[1,i−1]:
pr is defined

(1− P (Er,pr = 1)) otherwise. (4)

If P (Si,j = 1) is known, the metrics eSaved and pSaved can be computed in
a straightforward way: For each query in Qtest we iterate over its prefixes and
calculate the metrics according to Equation 1.

Hence, we restrain our attention to two string problems. In both problems
we assume that two sets Q,Qtest of pairwise distinct strings (queries) are given,
and |Q| � |Qtest|. For each query we are given its weight. The Top-k problem is
to define, for each query q ∈ Qtest, its shortest prefix q[1..i] such that q belongs
to the list of the k heaviest queries in Q starting with q[1..i]. The Sorted-Top-k
problem is to retrieve, for each q and 1 ≤ i ≤ |q|, a position of q in the sorted
list of the k heaviest queries in Q starting with q[1..i].

Algorithm 1. Computation of the metrics of the Saved family

1. Compute the examination probability function f
2. if f = f1 then
3. Solve the Top-k problem for Q and Qtest

4. Write the output into an array MinPref
5. Compute the metric using Equation 1
6. else
7. Solve the Sorted-Top-k problem for Q and Qtest

8. Write the output into an array Pos
9. Compute the metric using Equations 1 and 4
10. end if

The basis of the algorithms is a compacted trie T for the set Q. The compacted
trie T is a tree such that each of its edges corresponds to a non-empty string.
The concatenation of strings corresponding to the edges in a path is called a
label of this path. For each query q ∈ Q there must exist a root-to-node path
with the label equal to q, and the label of each root-to-leaf path must be equal
to one of the queries in Q. We also require the degree of each inner node not
corresponding to a query from Q to be at least two and the first letters on edges
outgoing from any node to be distinct. Strings corresponding to the edges of T
are not stored explicitly — as it follows from the definition, each of the strings
is a substring of a query from Q, and hence it is sufficient to store the starting
and the ending positions of the substring in the query. Under this assumption, T
can be constructed in O(n) time and O(m) space, where n is the total length
and m is the total number of queries in Q [5]. We assume that for every node

Simple and Efficient String Algorithms 273

of T the length of its label (string depth) is known, which can be achieved by a
linear-time post-processing.

Consider a prefix ρ = q[1..i] of a query q ∈ Qtest. If Q contains queries starting
with ρ, then there is a path in T that starts at the root of T and is labelled by ρ,
and all queries starting with ρ end in the subtree rooted at the lower end of this
path. Therefore, to determine whether q is in the list of suggested queries for ρ,
it is sufficient to retrieve the list of the k heaviest queries in the subtree. To
determine the position of q in the list of suggested queries for ρ, it is sufficient
to retrieve the sorted list of the k heaviest queries in the subtree. Note that the
lists of the k heaviest queries in a subtree do not change on edges, and we need
to examine only those prefixes of q that correspond to nodes of the trie.

The high-level idea of our solution of the Top-k problem is as follows. We
maintain an array MinPref of length |Qtest| with all values initialized by the
maximal length of a query in Qtest. For each node of the trie T corresponding to
a prefix of a query from Qtest we retrieve the k heaviest queries in its subtree.
If a retrieved query is in Qtest, we compare MinPref [q] and the string depth
of the current node. If MinPref [q] is bigger than the string depth, we update
it, otherwise we do nothing. For the Sorted-Top-k problem we do practically the
same, but retrieve sorted lists of the k queries and then, for each retrieved list,
iterate over queries in it and write the positions of the queries that belong to
Qtest into an array Pos.

We present two different techniques for retrieving the lists. The first one uses
binary heaps, while the second one uses sorted lists merge. Time complexities of
the proposed algorithms differ by logarithmic factors, and the space complexities
differ by a multiplication constant. We compare their behaviour experimentally
in Section 5.

4.1 Binary Heaps Algorithms

We start by traversing the trie T pre-order. When we see an end of a path
starting at the root of T and labelled by a query from Q, we write out the
weight of this query. The resulting array is denoted by W . Note that weights
written out while traversing a fixed subtree of T form a continuous fragment
of W . For each subtree we compute the endpoints �(v), r(v) of such fragment
and store them at the root v of the subtree. These two steps take O(m) time. We
also build a range maximum query data structure [6] on top of W using O(m)
time and space. The data structure allows to locate the maximal value in any
fragment of W in O(1) time.

After the preprocessing, we traverse the trie with each query q ∈ Qtest and
mark nodes in the path labelled by q. For each marked node v we are to retrieve
the list of the k heaviest queries in W [�(v), r(v)]. As noticed in [2], it can be
done in O(k) time. We lazily build the Cartesian tree [9] on W [�(v)],W [�(v) +
1], . . . ,W [r(v)] using the range maximum data structure. Since the Cartesian
tree is a binary heap, we can use Frederikson’s algorithm [4] to select the k
maximum values in the Cartesian tree in O(k) time. Hence, the k heaviest queries
for v can be retrieved in O(k) time (in unsorted order).

274 A. Loptev, A. Selugina, and T. Starikovskaya

Lemma 1. The Top-k problem can be solved in O(n+ |Qtest| ·k) time and O(m)
space.

We now perform a more careful analysis of the algorithm. Note that if a node’s
subtree contains k′ < k queries, then only k′ queries will be retrieved and it will
takeO(k′) time. Hence, the running time of the algorithm can be bounded by the
time required for construction of the trie and the range maximum data structure
plus the sum of the number of queries below each marked node. Consequently,
to estimate the running time of the algorithm it is sufficient to upper-bound the
sum of the number of queries below each marked node. We give even a stronger
bound:

Lemma 2. The sum of the number of nodes labelled by queries from Q in all
subtrees of T is at most n.

Proof. Consider all paths starting at the root of T and labelled by queries fromQ.
Let the total length of the paths be equal to �. The union of the paths contains
all nodes of the tree, moreover, nodes that have i queries in their subtrees are
counted i times. Hence, � equals the sum of the number of queries below each
node of T . At the same time, � does not exceed the total length of all queries
in Q, n. The claim follows. ��
Theorem 1. The Top-k problem can be solved in O(n) time and O(m) space.

We note that if we want to solve the Sorted-Top-k problem instead of the
Top-k problem, we can simply sort the retrieved weights at each node. This will
result in additional logarithmic factor in the time complexity. Consequently,

Theorem 2. The Sorted-Top-k problem can be solved in O(n + n log k) =
O(n log k) time and O(m) space.

4.2 Sorted Lists Algorithms

We will now show how to retrieve queries in the subtrees using sorted lists. As
before, we start by traversing the trie with each query q ∈ Qtest and marking
nodes in the path associated with q. The algorithms for the Top-k problem and
for the Sorted-Top-k problem retrieve sorted lists for every marked node, and
only the information they extract from the lists is different — for the Top-k
problem it is only whether a query is in the list of suggestions, and for the
Sorted-Top-k problem it is a position of the query in the list.

To retrieve the sorted lists we traverse the tree bottom-up, starting from the
leaves of T . For each node we maintain a list of queries sorted according to their
weights. The length of the list is the maximum of k and the number of queries
below the node. Suppose that the lists for a node’s children are already known.
If the node is labelled by a query from Q, we create a list containing a single
element q, otherwise we create an empty list. Then we merge the lists associated
with the children and the node into a single list in the following way.

Simple and Efficient String Algorithms 275

We maintain a binary search tree on the values stored in the heads of the
children’s lists. At each step we take the maximum value in the tree and move it
from its list to the resulting list. Then we update the tree and proceed. When the
size of the resulting list becomes equal to k or the merged lists become empty,
we delete the children’s lists and the node’s list and stop. If σ is the size of the
alphabet and k′ is the number of queries ending below a node v, the algorithm
needs O(k′ log σ) time to compile the list for v. From Lemma 2 it follows that

Theorem 3. The Top-k and the Sorted-Top-k problems can be solved in
O(n log σ) time and O(m) space.

5 Experiments

The metrics computation algorithms we proposed differ only in the way the
problems Top-k and Sorted-Top-k are solved. The time and the space needed to
compute the values of the examination probability functions, the probabilities
P (Si,j = 1), and the metrics are fixed for any user model. Hence, we restrict our
attention to the Top-k and Sorted-Top-k problems.

We start with a short description of the dataset we used. Sets Q and Qtest

were randomly sampled from the query log of a commercial search engine so
that |Q| ≈ 30|Qtest|. The log contained 47 M unique queries in two languages
submitted by users from a European country in March 2014. Misspelled queries
were filtered out in order to reduce noise in the evaluation. The average length
of a query in the log was 27.57 letters. The value of k was taken equal to 10. The
experiments were performed on a server equipped with 256 GB of RAM and one
Intel Xeon E5-2660 processor.

We performed four series of experiments — two for the Top-k problem and
two for the Sorted-Top-k problem. In the first series we compared the total time
(Fig. 1a) and the total space (Fig. 1b) required by the algorithms we proposed
for the Top-k problem. The binary heaps algorithm builds and stores a range
maximum query data structure and hence it can be suggested that it will be out-
performed by the sorted lists algorithm, which is confirmed by the experiments
(see Fig. 1).

In the second series (see Fig. 2) we did not count the time required for build-
ing the data structures, i.e. the trie and the range maximum data structure
as they can be constructed once and then used for evaluating the metrics for
different test sets. The space consumption does not change, but the situation
is different for the time — if the construction time is not included, the binary
heaps algorithm outperforms the sorted lists algorithm. This can be explained
in the following way: after the data structures are constructed, the binary heaps
algorithm inspects only the nodes labelled by prefixes of queries in Qtest, and
the sorted lists algorithm has to consider all nodes of T . Also, the sorted lists
algorithm does unnecessary job of sorting the retrieved queries.

For the Sorted-Top-k problem the situation is similar: the total time con-
sumption is higher for the binary heaps algorithm, but if we do not count the

276 A. Loptev, A. Selugina, and T. Starikovskaya

0 1 2 3 4 5 6 7 8
n, total length of queries in Q, 107

0

2

4

6

8

10

12

14
ti
m

e
(s

)

Heaps

Lists

(a)

0 5 10 15 20 25 30
m=|Q|, 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sp
a
ce

 (
G

b
)

Heaps

Lists

(b)

Fig. 1. Total time and space consumptions of the solutions to the Top-k problem. The
space is measured in terms of m = |Q| similar to the theoretical bound we gave before.

0 1 2 3 4 5 6 7 8
n, total length of queries in Q, 107

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
(s

)

Heaps

Lists

Fig. 2. Time consumptions of the solutions to the Top-k problem, construction time
is not included

construction time, the binary heaps algorithm outperforms the sorted lists algo-
rithm (Fig. 3). The space consumption is the same as for the Top-k problem, so
we do not give the figure.

Simple and Efficient String Algorithms 277

t

0 1 2 3 4 5 6 7 8
n, total length of queries in Q, 107

0

2

4

6

8

10

12

14
ti
m

e
(s

)

Heaps

Lists

(a)

0 1 2 3 4 5 6 7 8
n, total length of queries in Q, 107

0

0.5

1

1.5

2

2.5

3

3.5

4

ti
m

e
(s

)

Heaps

Lists

(b)

Fig. 3. Time consumption of the solutions to the Sorted-Top-k problem: (a) Total time
consumption, (b) Time consumption without construction time

6 Conclusions

In this paper we showed that the problem of computing the metrics of the
Saved family [7] estimating query suggestion mechanism quality can be reduced
to one of the two string problems: Top-k or Sorted-Top-k. For each of these two
problems we presented two solutions, one based on binary heaps and one — on
sorted lists merge. For each of the solutions we showed theoretical upper bounds
on their complexity. We also compared the solutions experimentally. The results
of the experimental evaluation showed that the binary heaps algorithm can be
used in the case when the database of queries is fixed and we use it to evaluate
the quality of the query suggestion mechanism for different periods of time. If
this is not the case, the sorted lists algorithm should be the choice.

References

1. Bar-Yossef, Z., Kraus, N.: Context-sensitive query auto-completion. In: Proceed-
ings of the 20th International Conference on World Wide Web, pp. 107–116. ACM,
New York (2011)

2. Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range re-
porting. In: Proceedings of the 20th International Symposium on Algorithms and
Computation, pp. 173–182 (2009)

3. Duan, H., Hsu, B.-J.P.: Online spelling correction for query completion. In: Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 117–126.
ACM, New York (2011)

4. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Com-
put. 104(2), 197–214 (1993)

5. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

278 A. Loptev, A. Selugina, and T. Starikovskaya

6. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

7. Kharitonov, E., Macdonald, C., Serdyukov, P., Ounis, I.: User model-based metrics
for offline query suggestion evaluation. In: Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 633–642. ACM, New York (2013)

8. Shokouhi, M., Radinsky, K.: Time-sensitive query auto-completion. In: Proceedings
of the 35th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 601–610. ACM, New York (2012)

9. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

Author Index

Adi, Said Sadique 129
Alhakami, Hind 149
Amir, Amihood 45
Apostolico, Alberto 45

Becchetti, Luca 227
Belazzougui, Djamal 52, 179
Beller, Timo 117
Biswas, Sudip 89
Brisaboa, Nieves R. 77, 215

Caro, Diego 77
Chrobak, Marek 149
Chung, Chin-Wan 191
Ciardo, Gianfranco 149
Claude, Francisco 65
Costa, Thales F. 236
Cunial, Fabio 179

de Bernardo, Guillermo 215
de Lima, Leandro Ishi Soares 129

Fariña, Antonio 77
Ferrada, Héctor 13, 18
Feuerstein, Esteban 227

Gagie, Travis 13, 52
Gog, Simon 1, 13, 52

Han, Yo-Sub 173
Hasan, Md. Mahbubul 111
Hirst, Tirza 45
Hu, Xiaocheng 161

Islam, A.S.M. Shohidull 111

Kim, Hwee 173
Kociumaka, Tomasz 244
Konow, Roberto 65, 215
Kucherov, Gregory 139

Lacerda, Anisio 236, 256
Landau, Gad M. 45
Lewenstein, Noa 45
Loptev, Alexander 268

Manzini, Giovanni 52
Marchetti-Spaccamela, Alberto 227
Mazaro, Regina Beretta 129
Moffat, Alistair 1
Munro, J. Ian 101

Navarro, Gonzalo 18, 31, 65, 215
Nekrich, Yakov 101

Ohlebusch, Enno 117
Ordóñez, Alberto 31

Pachocki, Jakub W. 244
Patil, Manish 89
Pei, Jian 161
Petri, Matthias 1
Puglisi, Simon J. 13

Radoszewski, Jakub 244
Rahman, Mohammad Saifur 111
Rahman, M. Sohel 111
Rodŕıguez, M. Andrea 77
Rozenberg, Liat 45
Rytter, Wojciech 244

Sakamoto, Hiroshi 203
Santos, Rodrygo L.T. 236, 256
Selugina, Anna 268
Shah, Rahul 89
Sirén, Jouni 52
Starikovskaya, Tatiana 268

Tabei, Yasuo 203
Takabatake, Yoshimasa 203
Tao, Yufei 161, 191
Thankachan, Sharma V. 89
Tolosa, Gabriel 227
Tsur, Dekel 139

Veloso, Adriano 256
Vitter, Jeffrey S. 101

Waleń, Tomasz 244
Wang, Wei 191

Ziviani, Nivio 236, 256

	Preface
	Organization
	Table of Contents
	Compression
	Strategic Pattern Search in Factor-Compressed Text
	1
Introduction and Background
	2
Search in Factorized Text
	3
Strategic Search
	4
Experiments
	5
Conclusion

	Relative Lempel-Ziv with Constant-Time Random Access

	1
Introduction
	2
Relative Lempel-Ziv
	2.1
Compressed Bitvectors
	2.2
Absolute Pointers
	2.3
Relative Pointers
	2.4
Compressed Pointers

	3
Experiments

	Efficient Compressed Indexing for Approximate Top-k String Retrieval
	1
Introduction
	2
The LZ-Index
	3
An LZ-Index for Approximate Top-k Retrieval
	4
Experimental Results
	4.1
Time and Space
	4.2
Quality

	5
Conclusions

	Grammar Compressed Sequences with Rank/Select Support
	1
Introduction
	2
Basic Concepts and Related Work
	2.1
Grammar compression of Sequences and Re-Pair
	2.2
Bitmap Representations and RPB
	2.3
Sequence Representations
	2.4
Re-Pair Compressed WT

	3
Efficient rsa for Sequences on Small Alphabets
	4
Efficient rsa for Sequences on Large Alphabets
	5
Experimental Results and Discussion
	5.1
Results for Small Alphabets
	5.2
Results for Large Alphabets
	5.3
Application: XPath Queries on Highly Repetitive Collections

	6
Final Remarks

	Indexing
	Algorithms for Jumbled Indexing, Jumbled Border and Jumbled Square on Run-Length Encoded Strings
	1
Introduction
	2
Definitions and Notations
	3
The Jumbled Indexing Problem
	3.1
Counterexample to Conjecture of Badkobeh2013binary
	3.2
Background for the Algorithm
	3.3
Algorithm Outline
	3.4
Vectors Index
	3.5 Answering the Query

	3.6
Time and Space

	Relative FM-Indexes
	1
Introduction
	2
Review of the FM-Index Structure
	3
BW-Distance and Relative FM-Indices
	3.1
A Practical Implementation

	4
Relative FM-Indices Supporting Locating and Extracting
	5
Conclusions

	Efficient Indexing and Representation of Web Access Logs
	1
Introduction
	2
Basic Concepts
	2.1
Rank and Select
	2.2
Range Minimum Queries
	2.3
Burrows-Wheeler Transform and the SSA Index

	3
Indexing Web Access Sequences
	3.1
Construction
	3.2
Queries

	4
Experiments and Results
	5
Discussion and Future Work

	A Compressed Suffix-Array Strategy for Temporal-Graph Indexing
	1
Introduction
	2
Preliminary Concepts
	3
CSA for Temporal Graphs (TGCSA)
	3.1
Detailed Construction of the TGCSA
	3.2
Performing Queries in TGCSA
	3.3
Strengths and Weak Points in TGCSA

	4
Experimental Evaluation
	4.1
Space Comparison
	4.2
Performing Queries

	5
Conclusions and Future Work

	Succinct Indexes for Reporting Discriminating and Generic Words
	1
Introduction and Related Work
	2
Preliminaries
	2.1
Suffix Trees and Generalized Suffix Trees
	2.2
Marking Scheme in GST
	2.3
Segment Intersection Problem
	2.4
Range Maximum Query

	3
Computing Maximal Generic Words
	3.1
Linear Space Index
	3.2
Succinct Space Index

	4
Computing Minimal Discriminating Words
	5
Concluding Remarks

	Fast Construction of Wavelet Trees
	1
Introduction
	2
Wavelet Tree
	3
Constructing a Wavelet Tree
	4
Rank and Select Queries in Wavelet Trees
	5
Conclusions

	Order Preserving Prefix Tables
	1
Introduction
	2
Preliminaries
	3
Order Preserving Prefix Tables
	3.1
OPR Matching

	Genome and Related Topics
	Alphabet-Independent Algorithms for Finding Context-Sensitive Repeats in Linear Time
	1
Introduction
	2
Preliminaries
	3
Related Work
	4
An Algorithm for Finding "426830A p,q "526930B -Context-Diverse Repeats in Linear Time
	5
Finding Maximal, Near-SuperMaximal, and Supermaximal Repeats in Linear Time

	A 3-Approximation Algorithm for the Multiple Spliced Alignment Problem and Its Application to the Gene Prediction Task
	1
Introduction
	2
The Multiple Spliced Alignment Problem
	3
A 3-Approximation Algorithm for the MSAP
	5
Experimental Results
	6
Discussion

	Improved Filters for the Approximate Suffix-Prefix Overlap Problem
	1
Introduction
	2
Preliminaries
	2.1
Notation
	2.2
Suffix Filters
	2.3
Suffix Filters and Full-Text Indexes
	2.4
Suffix Filters Applied to Suffix-Prefix Overlap Problem
	2.5
The Filtering Scheme of Välimäki et al. ValimakiLM12

	3
New Filtering Scheme
	4
Partition Schemes
	5
Experimental Results
	6
Conclusions

	Sequences and Strings
	 Sequence Decision Diagrams

	1
Introduction
	2
Preliminaries
	2.1
Finite Automata
	2.2
Decision Diagrams
	2.3
Notation

	3
Definition of Sequence Decision Diagrams
	3.1
Definition of Canonical SeqDDs with at the Bottom
	3.2
Definition of Canonical SeqDDs with at the Top

	3.3
Compactness of Canonical SeqDD Definitions
	4.1
DFA Representation of SeqDDB
	4.2
NFA Representation of SeqDDT
	4.3
SeqDD Compactness Comparison by Means of Finite Automata

	5
Manipulation Algorithms for SeqDDs
	6
Applications of Sequence Decision Diagrams
	7
Conclusion

	Shortest Unique Queries on Strings
	1
Introduction
	2
Basic Definitions and Properties
	3
A Data Structure for Interval Queries
	3.1
A 4-Candidate Lemma
	3.2
The Proposed Structure

	4
Extensions
	4.1
Position Constrained Queries
	4.2
Find-All Queries
	4.3
External Memory

	Online Multiple Palindrome Pattern Matching

	1
Introduction
	2
Preliminaries
	3
The Algorithm

	Indexed Matching Statistics and Shortest Unique Substrings
	1
Introduction and Motivation
	2
Computing and Indexing MS and DS
	3
Computing and Indexing BMS and BDS

	Search
	I/O-Efficient Dictionary Search with One Edit Error
	1
Introduction
	2
Exact Matching
	2.1
Preliminaries
	2.2
A New Structure

	3
One-Error Dictionary Search
	3.1
Signature Edits
	3.2
Short Strings
	3.3
Long Strings

	Online Pattern Matching for String Edit Distance with Moves
	1
Introduction
	2
Preliminaries
	2.1
Basic Notation
	2.2
Context-Free Grammar
	2.3
Phrase and Reverse Dictionaries
	2.4
Problem Definition

	3 Online Algorithm

	3.1
ESP
	3.2
Post-order CFG
	3.3
Online construction of a POCFG
	3.4
Compressed Phrase Dictionary
	3.5
Compressed Reverse Dictionary
	3.6 Online Pattern Matching with EDM

	4
Upper Bound of Approximation
	5
Experiments
	6
Conclusion

	K2-Treaps: Range Top-k Queries in Compact Space
	1
Introduction
	2
Basic Concepts
	3
Related Work
	4
The K2-treap
	4.1
Data Structure
	4.2
Query Algorithms

	5
Experiments and Results
	5.1
Space Comparison
	5.2
Query Times

	6
Conclusions and Future Work

	Performance Improvements for Search Systems Using an Integrated Cache of Lists+Intersections
	1
Introduction
	2
Integrated Cache
	3
Selecting Term Pairs
	4
Experimental Setup and Results
	5
Conclusions and Future Work

	Mining and Recommending
	Information-Theoretic Term Selectionfor New Item Recommendation
	1
Introduction
	2
Related Work
	3
Selecting Informative Item Descriptors
	4
Experimental Setup
	5
Experimental Evaluation
	6
Conclusions and Future Work

	On the String Consensus Problem and the Manhattan Sequence Consensus Problem
	1
Introduction
	2
From MSC Problem to ILP
	3
Kernel of MSC for Arbitrary k
	4
Combinatorial Characterization of Solutions for k = 5
	5
Practical Algorithm for k 5
	6
Conclusions

	Context-Aware Deal Size Prediction

	1
Introduction
	2
Related Work
	3
Context-Aware Deal Size Prediction
	3.1
Identifying Markets
	3.2
Predicting deal size

	4
Experimental Setup
	5
Experimental Results
	6
Conclusions and Future Work

	Simple and Efficient String Algorithms for Query Suggestion Metrics Computation
	1
Introduction
	2
User Model
	3
Metrics
	4
Reduction to Stringology
	4.1
Binary Heaps Algorithms
	4.2
Sorted Lists Algorithms

	5
Experiments
	6
Conclusions

	Author Index

