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Preface

The Semantic Web is now a maturing field with a significant and growing adop-
tion of semantic technologies in a variety of commercial, public sector, and sci-
entific fields. Linked Data is pervasive: from enabling government transparency,
to helping integrate data in life sciences and enterprises, to publishing data
about museums, and integrating bibliographic data. Significantly, major compa-
nies, such as Google, Yahoo, Microsoft, and Facebook, have created their own
“knowledge graphs” that power semantic searches and enable smarter processing
and delivery of data: The use of these knowledge graphs is now the norm rather
than the exception. The schema.org effort led by the major search companies
illustrates the industry interest and support of the Semantic Web. Commercial
players such as IBM, Siemens, BestBuy, and Walmart are seeing the value of
semantic technologies and are regular presenters at Semantic Web conferences.
The papers and the research topics covered in these proceedings follow directly
from the requirements of this large adoption, and contribute greatly to the con-
tinuing success of the field.

The International Semantic Web Conference is the premier forum for Se-
mantic Web research, where cutting-edge scientific results and technological in-
novations are presented, where problems and solutions are discussed, and where
the future of this vision is being developed. It brings together specialists in
fields such as artificial intelligence, databases, social networks, distributed com-
puting, Web engineering, information systems, human–computer interaction,
natural language processing, and the social sciences for tutorials, workshops,
presentations, keynotes, and ample time for detailed discussions.

This volume contains the main proceedings of the 13th International Seman-
tic Web Conference (ISWC 2014), which was held in Riva del Garda, Trentino,
Italy, in October 2014. We received tremendous response to our calls for papers
from a truly international community of researchers and practitioners. Indeed,
several tracks of the conference received a record number of submissions this
year. The careful nature of the review process, and the breadth and scope of
the papers finally selected for inclusion in this volume, speak to the quality of
the conference and to the contributions made by researchers whose work is pre-
sented in these proceedings. As such, we were all honored and proud that we
were invited to serve the community in the stewardship of this edition of ISWC.

The proceedings include papers from four different tracks: the Research Track,
the Semantic Web In-Use Track, the newly added Replication, Benchmark, Data
and Software (RBDS) Track, and a selection of Doctoral Consortium papers. For
the first time since we started publishing the LNCS proceedings, the papers are
organized by their topic rather than by their track and correspond closely to
the sessions in the conference schedule. The topics of the accepted papers reflect
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the broad coverage of the Semantic Web research and application: Linked Data,
its quality, link discovery, and application in the life sciences; data integration,
search and query answering, SPARQL, ontology-based data access and query
rewriting and reasoning; natural language processing and information extraction;
user interaction and personalization, and social media; ontology alignment and
modularization; and sensors and streams.

Creating the program for ISWC 2014 would not have been possible without
the tireless and fantastic work of the Senior Program Committees (SPC), the
Program Committees (PC), as well as of the many sub-reviewers in the different
tracks, several of whom volunteered to provide high-quality emergency reviews.
To acknowledge this work, the Research Track and the Semantic Web In-Use
Track each offered a best reviewer award. The decision on the awards was taken
with the input of the SPC members, of the fellow reviewers from the PC, of
the authors, and also using objective measures about the reviews provided by
EasyChair, the conference management system.

The Research Track of the conference attracted 180 submissions, 38 of which
were accepted, resulting in a 21% acceptance rate. Each paper received at least
three, and sometimes as many as five, reviews from members of the PC. After the
first round of reviews, authors had the opportunity to submit a rebuttal, leading
to further discussions among the reviewers, a metareview and a recommendation
from a member of the SPC. The SPC held a 10-hour virtual meeting in order
to select the final set of accepted papers, paying special attention to papers
that were borderline or had at least one recommendation for acceptance. In
many cases, additional last-minute reviews were sought out to better inform the
SPC’s decision.

The best paper nominations for the Research Track reflect the broad range
of topics that were submitted to this track:

Best paper nominations:

– AGDISTIS - “Graph-Based Disambiguation of Named Entities Using Linked
Data” by Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder,
Daniel Gerber, Sandro Athaide Coelho, Sören Auer and Andreas Both

– “Expressive and Scalable Query-based Faceted Search over SPARQL End-
points” by Sébastien Ferré

– “Explass: Exploring Associations Between Entities via Top-K Ontological
Patterns and Facets” by Gong Cheng, Yanan Zhang and Yuzhong Qu

– “Querying Factorized Probabilistic Triple Databases” by Denis Krompaß,
Maximilian Nickel and Volker Tresp

Best student paper nominations:

– “OBDA: Query Rewriting or Materialization? In Practice, Both!” by Juan
F. Sequeda, Marcelo Arenas and Daniel P. Miranker

– “SYRql: A Dataflow Language for Large Scale Processing of RDF Data” by
Fadi Maali, Padmashree Ravindra, Kemafor Anyanwu and Stefan Decker

– “Pushing the Boundaries of Tractable Ontology Reasoning” by David Carral,
Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler and Ian Horrocks
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The Semantic Web In-Use Track received 46 submissions. Fifteen papers were
accepted – a 33% acceptance rate. The papers demonstrated how semantic tech-
nologies are applied in a variety of domains, including: biomedicine and drug
discovery, smart cities, sensor streams, multimedia, visualization, link genera-
tion, and ontology development. The application papers demonstrated how se-
mantic technologies are applied in diverse ways, starting from using linked data
in mobile environments to employing fully fledged artificial intelligence meth-
ods in real-time use cases. At least three members of the In-Use PC provided
reviews for each paper. After the first round of reviews, authors had the oppor-
tunity to submit a rebuttal, leading to further discussions among the reviewers,
a metareview and a recommendation from a member of the SPC.

The best paper nominations for the Semantic Web In-Use Track are:

– “Web Browser Personalization with the Client Side Triplestore” by Hitoshi
Uchida, Ralph Swick and Andrei Sambra

– “Semantic Traffic Diagnosis with STAR-CITY: Architecture and Lessons
Learned from Deployment in Dublin, Bologna, Miami and Rio”, by Freddy
Lecue, Robert Tucker, Simone Tallevi-Diotallevi, Rahul Nair, Yiannis Gko-
ufas, Giuseppe Liguori, Mauro Borioni, Alexandre Rademaker and Luciano
Barbosa

– “Adapting Semantic Sensor Networks for Smart Building Analytics” by Jo-
ern Ploennigs, Anika Schumann and Freddy Lecue

This year we introduced the Replication, Benchmark, Data and Software
(RBDS) track that provides an outlet for papers of these four categories. It ex-
tended and transformed last year’s evaluations and experiments track to incor-
porate new categories of contributions. The four types of papers had very clearly
specified scope and reviewing criteria that were described in the Call for Papers:
(1) Replication papers focus on replicating a previously published approach in
order to shed light on some important, possibly overlooked aspect; (2) bench-
mark papers make available to the community a new class of resources, metrics
or software that can be used to measure the performance of systems in some
dimension; (3) data papers introduce an important data set to the community;
and (4) software framework papers advance science by sharing with the commu-
nity software that can easily be extended or adapted to support scientific study
and experimentation. The RBDS track received 39 submissions (18 benchmark
studies, eight data papers, eight software framework papers, and four replication
studies), and accepted 16 papers (five benchmark studies, five data papers, four
software framework papers, and two replication studies), corresponding to an
acceptance rate of 41%. Each paper was reviewed by at least three members
of the PC and discussed thoroughly. The papers address a range of areas, such
as linked stream data, federated query processing, tag recommendation, entity
summarization, and mobile semantic web.



VIII Preface

The Doctoral Consortium is a key event at the ISWC conference. PhD stu-
dents in the Semantic Web field get an opportunity to present their thesis pro-
posals and to interact with leading academic and industrial scientists in the field,
who act as their mentors. The Doctoral Consortium received 41 submissions, a
record number compared to previous years. Each paper received two reviews,
one from an SPC member, and one from a co-chair. Out of 41 submissions, six
were selected to be both included in these proceedings and for presentation at
the Doctoral Consortium, while an additional 11 were selected for presentation.
The Doctoral Consortium day is organized as a highly interactive event, in which
students present their proposals and receive extensive feedback and comments
from mentors as well as from their peers.

A unique aspect of the ISWC conference is the Semantic Web Challenge, now
in its 12th year, with the goal of demonstrating practical progress toward achiev-
ing the vision of the Semantic Web. The overall objective of the challenge is to
apply Semantic Web techniques in building online end-user applications that
integrate, combine, and deduce information needed to assist users in performing
tasks. Organized this year by Andreas Harth and Sean Bechhofer, the compe-
tition enables practitioners and scientists to showcase leading-edge real-world
applications of Semantic Web technology. The Semantic Web Challenge is ad-
vised by a board of experts working at universities and in industry. The advisory
board also acts as a jury and awards the best applications at the conference.

The keynote talks given by leading scientists or practitioners in their field
further enriched the ISWC program. Prabhakar Raghavan, Vice-President of
Engineering at Google, discussed “Web Search – From the Noun to the Verb.”
Paolo Traverso, Director of the Center for Information Technology at Fondazione
Bruno Kessler, talked about “To Be or to Do?: The Semantics for Smart Cities
and Communities.” Yolanda Gil, Associate Director of the Intelligent Systems
Division at ISI University of South California, discussed the “Semantic Chal-
lenges in Getting Work Done” addressing the application of semantics to sci-
entific tasks. The industry track featured a plenary keynote on “The Semantic
Web in an Age of Open Data” by Sir Nigel Shadbolt, Chairman and Co-Founder
of the UK’s Open Data Institute and Professor of Artificial Intelligence at the
University of Southampton.

As in previous ISWC editions, the conference included an extensive tuto-
rial and workshop program. Johanna Völker and Lora Aroyo, the chairs of this
track, created a stellar and diverse collection of eight tutorials and 23 workshops,
where the only problem that the participants faced was which of the many ex-
citing workshops and tutorials to attend. This year, we hosted for the first time
the Developers’ Workshop, a dedicated event for software developers discussing
implementations, methods, techniques, and solutions to practical problems of
Semantic Web and Linked Data. The main topic of the Developers’ Workshop
was “Semantic Web in a Browser.”
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We would like to thank Matthew Horridge, Marco Rospocher, and Jacco
van Ossenbruggen for organizing a lively poster and demo session. This year,
the track got a record 156 submissions, a 50% increase compared with previous
years. Moreover, 71 posters and 50 demos were introduced in a “minute madness
session,” where each presenter got 45 seconds to provide a teaser for their poster
or demo. Axel Polleres, Alexander Castro, and Richard Benjamins coordinated
an exciting Industry Track with presentations both from younger companies
focusing on semantic technologies and from large enterprises, such as British
Telecom, IBM, Oracle, and Siemens, just to name a few. With a record number
of 39 submissions (seven of which were selected for full presentations and 23 for
short lightning talks) in the industry track this year, the mix of presentations
demonstrated the success and maturity of semantic technologies in a variety of
industry- and business-relevant domains. The extended abstracts for posters,
demos, and industry talks will be published in separate companion volumes in
the CEUR workshop proceedings series.

We are indebted to Krzysztof Janowicz, our proceedings chair, who provided
invaluable support in compiling the volume that you now hold in your hands
(or see on your screen) and who put in many hours of additional work to cre-
ate a completely new structure for these proceedings based on the topic rather
than the tracks, as in previous years. Many thanks to Oscar Corcho and Miriam
Fernandez, the student coordinators, for securing and managing the distribution
of student travel grants and thus helping students who might not have other-
wise attended the conference to come to Riva. Roberta Cuel, Jens Lehmann,
and Vincenzo Maltese were tireless in their work as sponsorship chairs, knock-
ing on every conceivable virtual “door” and ensuring an unprecedented level of
sponsorship this year. We are especially grateful to all the sponsors for their
generosity.

As has been the case in the past, ISWC 2014 also contributed to the Linked
Data cloud by providing semantically annotated data about many aspects of the
conference. This contribution would not have been possible without the efforts
of Li Ding and Jie Bao, our metadata chairs.

Mauro Dragoni, our publicity chair, tirelessly tweeted, sent old-fashioned an-
nouncements on the mailing lists, and updated the website, creating more lively
“buzz” than ISWC has had before.

Our very special thanks go to the local organization team, led by Luciano
Serafini and Chiara Ghidini. They did a fantastic job of handling local arrange-
ments, thinking of every potential complication way before it arose, often doing
things when members of the Organizing Committee were only beginning to think
about asking for them. Many thanks to the Rivatour Agency for providing great
service for local arrangements.
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Finally, we would like to thank all members of the ISWC Organizing Com-
mittee not only for handling their tracks superbly, but also for their wider contri-
bution to the collaborative decision-making process in organizing the conference.

October 2014 Peter Mika
Tania Tudorache

Abraham Bernstein
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Krzysztof Janowicz
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Philippe Cudré-Mauroux University of Fribourg, Switzerland

Claudio Gutierrez Chile University, Chile
Jeff Heflin Lehigh University, USA
Ian Horrocks University of Oxford, UK
Lalana Kagal MIT, USA
David Karger MIT, USA
Spyros Kotoulas IBM Research, Ireland
Diana Maynard University of Sheffield, UK
Natasha Noy Google, USA
Jeff Pan University of Aberdeen, UK

Terry Payne University of Liverpool, UK
Marta Sabou MODUL University Vienna, Austria
Uli Sattler The University of Manchester, UK
Steffen Staab University of Koblenz-Landau, Germany
Hideaki Takeda National Institute of Informatics, Japan

Program Committee – Research

Karl Aberer
Sudhir Agarwal
Faisal Alkhateeb
Pramod Anantharam
Sofia Angeletou
Kemafor Anyanwu
Marcelo Arenas
Manuel Atencia
Medha Atre
Isabelle Augenstein
Nathalie Aussenac-Gilles
Jie Bao
Payam Barnaghi
Sean Bechhofer
Klaus Berberich
Christian Bizer
Roi Blanco
Eva Blomqvist
Kalina Bontcheva

Paolo Bouquet
Loris Bozzato
John Breslin
Christopher Brewster
Paul Buitelaar
Gregoire Burel
Andrea Cal̀ı
Diego Calvanese
Amparo E. Cano
Iván Cantador
Soumen Chakrabarti
Pierre-Antoine Champin
Gong Cheng
Key-Sun Choi
Smitashree Choudhury
Michael Compton
Isabel Cruz
Bernardo Cuenca Grau
Claudia D’Amato



XIV Conference Organization

Mathieu D’Aquin
Danica Damljanovic
Stefan Decker
Stefan Dietze
John Domingue
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Estefańıa Serral Asensio
Andrew Bate
Wouter Beek
Konstantina Bereta
David Berry
Nicola Bertolin
Leopoldo Bertossi
Dimitris Bilidas
Stefano Bortoli
Adrian Brasoveanu
Volha Bryl
Jean-Paul Calbimonte
Diego Calvanese

Delroy Cameron
Michele Catasta
Sam Coppens
Julien Corman
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Héctor Pérez-Urbina
Edoardo Pignotti
Yves Raimond
Marco Rospocher
Manuel Salvadores
Miel Vander Sande
Marc Schaaf
Michael Schmidt
Oshani Seneviratne
Juan F. Sequeda
Evren Sirin
William Smith
Milan Stankovic
Thomas Steiner
Nenad Stojanovic
Pedro Szekely
Ramine Tinati



XVIII Conference Organization

Nicolas Torzec
Giovanni Tummarello
Jacco van Ossenbruggen
Ruben Verborgh
Holger Wache
Jesse Jiaxin Wang
Kewen Wang

Zhe Wu
Fouad Zablith
Amrapali Zaveri
Qingpeng Zhang
Amal Zouaq

Additional Reviewers – Semantic Web In-Use

Ana Sasa Bastinos
Anila Sahar Butt
Charles Vardeman II

Gwendolin Wilke
Zhe Wang

Program Committee – Replication, Benchmark, Data and
Software
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Web Search - From the Noun to the Verb

(Keynote Talk)

Prabhakar Raghavan

Vice President Engineering

Google, USA

Abstract. This talk examines the evolution of web search experiences
over 20 years, and their impact on the underlying architecture. Early
web search represented the adaptation of methods from classic Infor-
mation Retrieval to the Web. Around the turn of this century, the focus
shifted to triaging the need behind a query - whether it was Navigational,
Informational or Transactional; engines began to customize their experi-
ences depending on the need. The next change arose from the recognition
that most queries embodied noun phrases, leading to the construction of
knowledge representations from which queries could extract and deliver
information regarding the noun in the query. Most recently, three trends
represent the next step beyond these “noun engines”: (1) “Queryless en-
gines” have begun surfacing information meeting a user’s need based on
the user’s context, without explicit querying; (2) Search engines have
actively begun assisting the user’s task at hand - the verb underlying
the noun query; (3) increasing use of speech recognition is changing the
distribution of queries.



“To Be or to DO?”: The Semantics for Smart

Cities and Communities
(Keynote Talk)

Paolo Traverso

Director
Center for Information Technology

Fondazione Bruno Kessler, Italy

Abstract. The major challenge for so-called smart cities and commu-
nities is to provide people with value added services that improve their
quality of life. Massive individual and territorial data sets – (open) public
and private data, as well as their semantics which allows us to transform
data into knowledge about the city and the community, are key enablers
to the development of such solutions. Something more however is needed.
A “smart” community needs “to do things” in a city, and the people need
to act within their own community. For instance, not only do we need to
know where we can find a parking spot, which cultural event is happen-
ing tonight, or when the next bus will arrive, but we also need to actually
pay for parking our car, buy a bus ticket, or reserve a seat in the the-
ater. All these activities (paying, booking, buying, etc.) need semantics
in the same way as data does, and such a semantics should describe all
the steps needed to perform such activities. Moreover, such a semantics
should allow us to define and deploy solutions that are general and ab-
stract enough to be “portable” across the details of the different ways
in which activities can be implemented, e.g., by different providers, or
for different customers, or for different cities. At the same time, in order
to actually “do things”, we need a semantics that links general and ab-
stract activities to the possibly different and specific ICT systems that
implement them. In my talk, I will present some of the main problems
for realizing the concept of smart city and community, and the need for
semantics for both understanding data and “doing things”. I will discuss
some alternative approaches, some lessons learned from applications we
have been working with in this field, and the still many related open
research challenges.



Semantic Challenges in Getting Work Done

(Keynote Talk)

Yolanda Gil

Associate Director
Information Sciences Institute and Department of Computer Science

University of Southern California, USA

Abstract. In the new millennium, work involves an increasing amount
of tasks that are knowledge-rich and collaborative. We are investigating
how semantics can help on both fronts. Our focus is scientific work, in
particular data analysis, where tremendous potential resides in combin-
ing the knowledge and resources of a highly fragmented science commu-
nity. We capture task knowledge in semantic workflows, and use skeletal
plan refinement algorithms to assist users when they specify high-level
tasks. But the formulation of workflows is in itself a collaborative ac-
tivity, a kind of meta-workflow composed of tasks such as finding the
data needed or designing a new algorithm to handle the data available.
We are investigating ”organic data science”, a new approach to collab-
oration that allows scientists to formulate and resolve scientific tasks
through an open framework that facilitates ad-hoc participation. With a
design based on social computing principles, our approach makes scien-
tific processes transparent and incorporates semantic representations of
tasks and their properties. The semantic challenges involved in this work
are numerous and have great potential to transform the Web to help us
do work in more productive and unanticipated ways.



The Semantic Web in an Age of Open Data

(Keynote Talk)

Nigel Shadbolt

Professor of Artificial Intelligence
The University of Southampton

and

Chairman of the Open Data Institute

Abstract. The last five years have seen increasing amounts of open
data being published on the Web. In particular, governments have made
data available across a wide range of sectors: spending, crime and jus-
tice, education, health, transport, geospatial, environmental and much
more. The data has been published in a variety of formats and has been
reused with varying degrees of success. Commercial organisations have
begun to exploit this resource and in some cases elected to release their
own open data. Only a relatively small amount of the data published has
been linked data. However, the methods and techniques of the semantic
web could significantly enhance the value and utility of open data. What
are the obstacles and challenges that prevent the routine publication of
these resources as semantically enriched open data? What can be done
to improve the situation? Where are the examples of the successful pub-
lication and exploitation of semantically enriched content? What lessons
should we draw for the future?
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Daniel Gerber, Sandro Athaide Coelho, Sören Auer, and
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Detecting and Correcting Conservativity Principle
Violations in Ontology-to-Ontology Mappings

Alessandro Solimando1, Ernesto Jiménez-Ruiz2, and Giovanna Guerrini1

1 Dipartimento di Informatica, Università di Genova, Italy
2 Department of Computer Science, University of Oxford, UK

Abstract. In order to enable interoperability between ontology-based systems,
ontology matching techniques have been proposed. However, when the gener-
ated mappings suffer from logical flaws, their usefulness may be diminished. In
this paper we present an approximate method to detect and correct violations to
the so-called conservativity principle where novel subsumption entailments be-
tween named concepts in one of the input ontologies are considered as unwanted.
We show that this is indeed the case in our application domain based on the EU
Optique project. Additionally, our extensive evaluation conducted with both the
Optique use case and the data sets from the Ontology Alignment Evaluation Ini-
tiative (OAEI) suggests that our method is both useful and feasible in practice.

1 Introduction

Ontologies play a key role in the development of the Semantic Web and are being used
in many diverse application domains, ranging from biomedicine to energy industry. An
application domain may have been modeled with different points of view and purposes.
This situation usually leads to the development of different ontologies that intuitively
overlap, but they use different naming and modeling conventions.

In particular, this is the case we are facing in the EU Optique project.1 Optique aims
at facilitating scalable end-user access to big data in the oil and gas industry. The project
is focused around two demanding use cases provided by Siemens and Statoil. Optique
advocates for an Ontology Based Data Access (OBDA) approach [24] so that end-users
formulate queries using the vocabulary of a domain ontology instead of composing
queries directly against the database. Ontology-based queries (e.g., SPARQL) are then
automatically rewritten to SQL and executed over the database.

In Optique two independently developed ontologies co-exist. The first ontology has
been directly bootstrapped from one of the relational databases in Optique and it is
linked to the database via direct ontology-to-database mappings;2 while the second
ontology is a domain ontology based on the Norwegian Petroleum Directorate (NPD)
FactPages3 [41] and it is currently preferred by Optique end-users to feed the visual
query formulation interface4 [42]. This setting requires the “query formulation” ontol-
ogy to be linked to the relational database. In Optique we follow two approaches that

1 http://www.optique-project.eu/
2 http://www.w3.org/TR/rdb-direct-mapping/
3 http://factpages.npd.no/factpages/
4 The query formulation interface has been evaluated with end-users at Statoil.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 1–16, 2014.
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will complement each other: (i) creation of ontology-to-database mappings between
the query formulation ontology and the database; (ii) creation of ontology-to-ontology
mappings between the bootstrapped ontology and the query formulation ontology. In
this paper we only deal with ontology-to-ontology mappings (or mappings for short).
The creation, analysis and evolution of ontology-to-database mappings are also key
research topics within Optique, however, they fall out of the scope of this paper.

The problem of (semi-)automatically computing mappings between independently
developed ontologies is usually referred to as the ontology matching problem. A num-
ber of sophisticated ontology matching systems have been developed in the last years
[11, 40]. Ontology matching systems, however, rely on lexical and structural heuristics
and the integration of the input ontologies and the mappings may lead to many un-
desired logical consequences. In [19] three principles were proposed to minimize the
number of potentially unintended consequences, namely: (i) consistency principle, the
mappings should not lead to unsatisfiable classes in the integrated ontology, (ii) locality
principle, the mappings should link entities that have similar neighbourhoods, (iii) con-
servativity principle, the mappings should not introduce new semantic relationships
between concepts from one of the input ontologies.

The occurrence of these violations is frequent, even in the reference mapping sets
of the Ontology Alignment Evaluation Initiative5 (OAEI). Also manually curated align-
ments, such as UMLS-Metathesaurus [3] (UMLS), a comprehensive effort for integrat-
ing biomedical knowledge bases, suffer from these violations. Violations to these prin-
ciples may hinder the usefulness of ontology mappings. In particular, in the Optique’s
scenario, violation of the consistency or conservativity principles will directly affect the
quality of the query results, since queries will be rewritten according to the ontology
axioms, the ontology-to-ontology mappings and the ontology-to-database mappings.

These principles has been actively investigated in the last years (e.g., [31, 30, 15, 19,
17, 29, 37]). In this paper we focus on the conservativity principle and we explore a
variant of violation of this principle which we consider appropriate for the application
domain in Optique. Furthermore, this variant of the conservativity principle allows us to
reduce the problem to a consistency principle problem. We have implemented a method
which relies on the projection of the input ontologies to Horn propositional logic. This
projection allows us to be efficient in both the reduction to the consistency principle and
the subsequent repair process. Our evaluation suggests that our method is feasible even
with the largest test cases of the OAEI campaign.

The remainder of the paper is organised as follows. Section 2 summarises the basics
concepts and definitions we will rely on along the paper. In Section 3 we introduce our
motivating scenario based on Optique. Section 4 describes our method. In Section 5 we
present the conducted evaluation. A comparison with relevant related work is provided
in Section 6. Finally, Section 7 gives some conclusions and future work lines.

2 Preliminaries

In this section, we present the formal representation of ontology mappings and the no-
tions of semantic difference, mapping coherence and conservativity principle violation.

5 http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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2.1 Representation of Ontology Mappings

Mappings are conceptualised as 5-tuples of the form 〈id, e1, e2, n, ρ〉, with id a unique
identifier, e1, e2 entities in the vocabulary or signature of the relevant input ontologies
(i.e., e1 ∈ Sig(O1) and e2 ∈ Sig(O2)), n a confidence measure between 0 and 1, and ρ
a relation between e1 and e2, typically subsumption, equivalence or disjointness [10].

RDF Alignment [8] is the main format used in the OAEI campaign to represent
mappings containing the aforementioned elements. Additionally, mappings are also rep-
resented as OWL 2 subclass, equivalence, and disjointness axioms [6]; mapping iden-
tifiers (id) and confidence values (n) are then represented as axiom annotations. Such
a representation enables the reuse of the extensive range of OWL 2 reasoning infras-
tructure that is currently available. Note that alternative formal semantics for ontology
mappings have been proposed in the literature (e.g., [4]).

2.2 Semantic Consequences of the Integration

The ontology resulting from the integration of two ontologies O1 and O2 via a set of
mappings M may entail axioms that do not follow from O1, O2, or M alone. These
new semantic consequences can be captured by the notion of deductive difference [25].

Intuitively, the deductive difference between O and O′ w.r.t. a signature Σ (i.e., set
of entities) is the set of entailments constructed over Σ that do not hold in O, but do
hold in O′. The notion of deductive difference, however, has several drawbacks in prac-
tice. First, there is no algorithm for computing the deductive difference in expressive
DLs [25]. Second, the number of entailments in the difference can be infinite.

Definition 1 (Approximation of the Deductive Difference). Let A,B be atomic con-
cepts (including �,⊥), Σ be a signature, O and O′ be two OWL 2 ontologies. We
define the approximation of the Σ-deductive difference between O and O′ (denoted
diff≈

Σ(O,O′) as the set of axioms of the form A � B satisfying: (i) A,B ∈ Σ,
(ii) O �|= A � B, and (iii) O′ |= A � B.

In order to avoid the drawbacks of the deductive difference, in this paper we rely on
the approximation given in Definition 1. This approximation only requires comparing
the classification hierarchies of O and O′ provided by an OWL 2 reasoner, and it has
successfully been used in the past in the context of ontology integration [18].

2.3 Mapping Coherence and Mapping Repair

The consistency principle requires that the vocabulary in OU = O1 ∪ O2 ∪ M be
satisfiable, assuming the union of input ontologies O1 ∪O2 (without the mappings M)
does not contain unsatisfiable concepts. Thus diff≈

Σ(O1 ∪ O2,OU ) should not contain
any axiom of the form A � ⊥, for any A ∈ Σ = Sig(O1 ∪ O2).

Definition 2 (Mapping Incoherence). A set of mappings M is incoherent with respect
to O1 and O2, if there exists a class A, in the signature of O1∪O2, such that O1∪O2 �|=
A � ⊥ and O1 ∪ O2 ∪M |= A � ⊥.

An incoherent set of mappingsM can be fixed by removing mappings fromM. This
process is referred to as mapping repair (or repair for short).
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Definition 3 (Mapping Repair). Let M be an incoherent set of mappings w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 iff
M\R is coherent w.r.t. O1 and O2.

A trivial repair is R = M, since an empty set of mappings is trivially coherent (ac-
cording to Definition 2). Nevertheless, the objective is to remove as few mappings as
possible. Minimal (mapping) repairs are typically referred to in the literature as map-
ping diagnoses [29] — a term coined by Reiter [36] and introduced to the field of on-
tology debugging in [39]. A repair or diagnosis can be computed by extracting the jus-
tifications for the unsatisfiable concepts (e.g., [38, 22, 43]), and selecting a hitting set of
mappings to be removed, following a minimality criteria (e.g., the number of removed
mappings). However, justification-based technologies do not scale when the number of
unsatisfiabilities is large (a typical scenario in mapping repair problems [16]). To ad-
dress this scalability issue, mapping repair systems usually compute an approximate
repair using incomplete reasoning techniques (e.g., [17, 29, 37]). An approximate re-
pairR≈ does not guarantee that M\R≈ is coherent, but it will (in general) significantly
reduce the number of unsatisfiabilities caused by the original set of mappings M.

2.4 Conservativity Principle

The conservativity principle (general notion) states that the integrated ontology OU =
O1 ∪ O2 ∪ M should not induce any change in the concept hierarchies of the input
ontologies O1 and O2. That is, the sets diff≈

Σ1
(O1,OU ) and diff≈

Σ2
(O2,OU) must be

empty for signatures Σ1 = Sig(O1) and Σ2 = Sig(O2), respectively.
In [19] a lighter variant of the conservativity principle was proposed. This variant re-

quired that the mappings M alone should not introduce new subsumption relationships
between concepts from one of the input ontologies. That is, the set diff≈

Σ(O1,O1 ∪M)
(resp. diff≈

Σ(O2,O2 ∪M)) must be empty for Σ = Sig(O1) (resp. Σ = Sig(O2)).
In this paper we propose a different variant of the conservativity principle where

we require that the integrated ontology OU does not introduce new subsumption rela-
tionships between concepts from one of the input ontologies, unless they were already
involved in a subsumption relationship or they shared a common descendant. Note that
we assume that the mappings M are coherent with respect to O1 and O2.

Definition 4 (Conservativity Principle Violations). Let A,B,C be atomic concepts
(not including �,⊥), let O be one of the input ontologies, let Sig(O) be its signature,
and let OU be the integrated ontology. We define the set of conservativity principle
violations of OU w.r.t. O (denoted consViol(O,OU )) as the set of axioms of the form
A � B satisfying: (i) A,B,C ∈ Sig(O), (ii) A � B ∈ diff≈

Sig(O)(O,OU ), (iii) O �|=
B � A, and (iv) there is no C s.t. O |= C � A, and O |= C � B.

This variant of the conservativity principle follows the assumption of disjointness
proposed in [38]. That is, if two atomic concepts A,B from one of the input ontolo-
gies are not involved in a subsumption relationship nor share a common subconcept
(excluding ⊥) they can be considered as disjoint. Hence, the conservativity principle
can be reduced to the consistency principle, if the input ontologies are extended with
sufficient disjointness axioms. This reduction will allow us to reuse the available infras-
tructure and techniques for mapping repair.
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Table 1. Fragments of the ontologies used in Optique

Ontology O1 Ontology O2

α1 WellBore � ∃belongsTo.Well β1 Exploration well � Well
α2 WellBore � ∃hasOperator.Operator β2 Explor borehole � Borehole
α3 WellBore � ∃locatedIn.Field β3 Appraisal exp borehole � Explor borehole
α4 AppraisalWellBore � WellBore β4 Appraisal well � Well
α5 ExplorationWellBore � WellBore β5 Field � ∃hasFieldOperator.Field operator
α6 Operator � Owner β6 Field operator � Owner � Field owner
α7 Operator � Company β7 Company � Field operator
α8 Field � ∃hasOperator.Company β8 Field owner � Owner
α9 Field � ∃hasOwner.Owner β9 Borehole � Continuant � Occurrent

Table 2. Ontology mappings for the vocabulary in O1 and O2

Mappings M
id e1 e2 n ρ

m1 O1:Well O2:Well 0.9 ≡
m2 O1:WellBore O2:Borehole 0.7 ≡
m3 O1:ExplorationWellBore O2:Exploration well 0.6 �
m4 O1:ExplorationWellBore O2:Explor borehole 0.8 ≡
m5 O1:AppraisalWellBore O2:Appraisal exp borehole 0.7 ≡
m6 O1:Field O2:Field 0.9 ≡
m7 O1:Operator O2:Field operator 0.7 	
m8 O1:Company O2:Company 0.9 ≡
m9 O1:hasOperator O2:hasFieldOperator 0.6 ≡
m10 O1:Owner O2:Owner 0.9 ≡

3 Conservativity Principle Violations in Practice

In this section, we show the problems led by the violation of the conservativity principle
when integrating ontologies via mappings in a real-world scenario. To this end, we
consider as motivating example a use case based on the Optique’s application domain.

Table 1 shows the fragments of two ontologies in the context of the oil and gas
industry. The ontology O1 has been directly bootstrapped from a relational database
in Optique, and it is linked to the data via direct ontology-to-database mappings. The
ontology O2, instead, is a domain ontology, based on the NPD FactPages, preferred by
Optique end-users to feed the visual query formulation interface.6

The integration via ontology matching of O1 and O2 is required since the vocabulary
in O2 is used to formulate queries, but only the vocabulary of O1 is connected to the
database.7 Consider the set of mappings M in Table 2 between O1 and O2 generated
by an off-the-shelf ontology alignment system. As described in Section 2.1, mappings
are represented as 5-tuples; for example the mapping m2 suggests an equivalence rela-
tionship between the entities O1:WellBore and O2:Borehole, with confidence 0.7.

The integrated ontology OU = O1 ∪ O2 ∪M, however, violates the conservativity
principle, according to Definition 4, and introduces non desired subsumption relation-
hips (see Table 3). Note that the entailments σ4 and σ5 are not included in our variant of
conservativity violation, since O1:Company and O1:Operator (resp. O2:Field operator
and O2:Company) are involved in a subsumption relationship in O1 (resp. O2).

6 In Optique we use OWL 2 QL ontologies for query rewriting, while the query formulation
may be based on much richer OWL 2 ontologies. The axioms that fall outside the OWL 2 QL
profile are either approximated or not considered for the rewriting.

7 As mentioned in Section 1, in this paper we only focus on ontology-to-ontology mappings.
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Table 3. Example of conservativity principle violations

σ Entailment: follows from: Violation?

σ1 O2:Explor borehole � O2:Exploration well m3,m4 YES
σ2 O1:AppraisalWellBore � O1:ExplorationWellBore β3,m4,m5 YES
σ3 O2:Field operator � O2:Field owner α6, β6,m7,m10 YES
σ4 O1:Company ≡ O1:Operator

α7, β7,m7,m8 NO (*)
σ5 O2:Field operator ≡ O2:Company
σ6 O1:Company � O1:Owner σ4, α6 YES
σ7 O2:Company � O2:Field owner σ3, σ5 YES

However, these entailments lead to other violations included in our variant (σ6 and σ7),
and may also be considered as violations. These conservativity principle violations may
hinder the usefulness of the generated ontology mappings since may affect the quality
of the results when performing OBDA queries over the vocabulary of O2.

Example 1. Consider the following conjunctive queryCQ(x) ← O2:Well(x). The query
asks for wells and has been formulated from the Optique’s query formulation interface,
using the vocabulary of O2. The query is rewritten, according to the ontology axioms
and mappings β1, β4,m1,m3,m4 in OU = O1 ∪ O2 ∪ M, into the following union
of conjunctive queries UCQ(x) ← O2:Well(x)∪O1:Well(x)∪O2:Exploration well(x)∪
O2:Appraisal well(x)∪O1:ExplorationWellBore(x)∪O2:Explor borehole(x). Since only
the vocabulary ofO1 is linked to the data, the union of conjunctive queries could be sim-
plified as UCQ(x) ← Well(x)∪ExplorationWellBore(x), which will clearly lead to non
desired results. The original query was only asking for wells, while the rewritten query
will also return data about exploration wellbores.

We have shown that the quality of the mappings in terms of conservativity principle
violations will directly affect the quality of the query results. Therefore, the detection
and repair of these violations arise as an important quality assessment step in Optique.

4 Methods

We have reduced the problem of detecting and solving conservativity principle viola-
tions, following our notion of conservativity (see Section 2), to a mapping (incoherence)
repair problem. Currently, our method relies on the indexing and reasoning techniques
implemented in LogMap, an ontology matching and mapping repair system [17, 20, 21].

Algorithm 1 shows the pseudocode of the implemented method. The algorithm ac-
cepts as input two OWL 2 ontologies, O1 and O2, and a set of mappings M which are
coherent8 with respect to O1 and O2. Additionally, an optimised variant to add disjoint-
ness axioms can be selected. The algorithm outputs the number of added disjointness
during the process disj, a set of mappings M′, and an (approximate) repair R≈ such
that M′ = M \ R≈. The (approximate) repair R≈ aims at solving most of the con-
servativity principle violations of M with respect to O1 and O2. We next describe the
techniques used in each step.

Module Extraction. In order to reduce the size of the problem our method extracts
two locality-based modules [7], one for each input ontology, using the entities involved

8 Note that M may be the result of a prior mapping (incoherence) repair process.
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Algorithm 1. Algorithm to detect and solve conservativity principle violations
Input: O1, O2: input ontologies; M: (coherent) input mappings; Optimization: Boolean value
Output: M′: output mappings; R≈: approximate repair; disj: number of disjointness rules
1: 〈O′

1,O′
2〉 := ModuleExtractor(O1,O2,M)

2: 〈P1,P2〉 := PropositionalEncoding(O′
1,O′

2)
3: SI1 := StructuralIndex(O′

1)
4: SI2 := StructuralIndex(O′

2)
5: if (Optimization = true) then
6: SIU := StructuralIndex(O′

1 ∪ O′
2 ∪ M)

7: 〈Pd
1 , disj1〉 := DisjointAxiomsExtensionOptimized(P1, SI1, SIU ) � See Algorithm 3

8: 〈Pd
2 , disj2〉 := DisjointAxiomsExtensionOptimized(P2, SI2, SIU )

9: else
10: 〈Pd

1 , disj1〉 := DisjointAxiomsExtensionBasic(P1, SI1) � See Algorithm 2
11: 〈Pd

2 , disj2〉 := DisjointAxiomsExtensionBasic(P2, SI2)
12: end if
13: 〈M′,R≈〉 := MappingRepair(Pd

1 ,Pd
2 ,M) � See Algorithm 2 in [21]

14: disj := disj1 + disj2
15: return 〈M′,R≈, disj〉

in the mappings M as seed signatures for the module extractor (step 1 in Algorithm
1). These modules preserve the semantics for the given entities, can be efficiently com-
puted, and are typically much smaller than the original ontologies.

Propositional Horn Encoding. The modules O′
1 and O′

2 are encoded as the Horn
propositional theories, P1 and P2 (step 2 in Algorithm 1). This encoding includes rules
of the form A1 ∧ . . . ∧ An → B. For example, the concept hierarchy provided by an
OWL 2 reasoner (e.g., [32, 23]) will be encoded as A → B rules, while the explicit
disjointness relationships between concepts will be represented as Ai ∧ Aj → false.
Note that the input mappings M can already be seen as propositional implications.
This encoding is key to the mapping repair process.

Example 2. Consider the ontologies and mappings in Tables 1 and 2. The axiom β6 is
encoded as Field operator∧Owner → Field owner, while the mappingm2 is translated
into rules O1:WellBore → O2:Borehole, and O2:Borehole → O1:WellBore.

Structural Index. The concept hierarchies provided by an OWL 2 reasoner (exclud-
ing ⊥) and the explicit disjointness axioms of the modules O′

1 and O′
2 are efficiently

indexed using an interval labelling schema [1] (steps 3 and 4 in Algorithm 1). This
structural index exploits an optimised data structure for storing directed acyclic graphs
(DAGs), and allows us to answer many entailment queries over the concept hierarchy
as an index lookup operation, and hence without the need of an OWL 2 reasoner. This
kind of index has shown to significantly reduce the cost of answering taxonomic queries
[5, 33] and disjointness relationships queries [17, 20].

Disjointness Axioms Extension. In order to reduce the conservativity problem to a
mapping incoherence repair problem following the notion of assumption of disjoint-
ness, we need to automatically add sufficient disjointness axioms into each module O′

i.
However, the insertion of additional disjointness axioms δ may lead to unsatisfiable
classes in O′

i ∪ δ.

Example 3. Consider the axiom β9 from Table 1. Following the assumption of dis-
jointness a very naı̈ve algorithm would add disjointness axioms between Borehole,
Continuant and Occurrent, which would make Borehole unsatisfiable.
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Algorithm 2. Basic disjointness axioms extension
Input: P : propositional theory; SI: structural index
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: for each pair 〈A,B〉 ∈ OrderedVariablePairs(P) do
4: if not (areDisj(SI,A,B) or inSubSupRel(SI,A,B) or shareDesc(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A � B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

In order to detect if each candidate disjointness axiom leads to an unsatisfiability,
a non naı̈ve algorithm requires to make an extensive use of an OWL 2 reasoner. In
large ontologies, however, such extensive use of the reasoner may be prohibitive. Our
method, in order to address this issue, exploits the propositional encoding and structural
index of the input ontologies. Thus, checking if O′

i ∪ δ contains unsatisfiable classes is
restricted to the Horn propositional case.

We have implemented two algorithms to extend the propositional theories P1 and
P2 with disjointness rules of the form A ∧ B → ⊥ (see steps 5-12 in Algorithm 1).
These algorithms guarantee that, for every propositional variable A in the extended
propositional theory Pd

i (with i ∈ {1, 2}), the theory Pd
i ∪ {true → A} is satisfiable.

Note that this does not necessarily hold if the disjointness axioms are added to the OWL
2 ontology modules, O′

1 and O′
2, as discussed above.

Algorithm 2 presents a (basic) algorithm to add as many disjointness rules as possi-
ble, for every pair of propositional variables A,B in the propositional theory P given
as input. In order to minimize the number of necessary disjointness rules, the variables
in P are ordered in pairs following a top-down approach. The algorithm exploits the
structural index SI to check if two propositional variables (i.e., classes in the input
ontologies) are disjoint (areDisj(SI,A,B)), they keep a sub/super-class relationship
(inSubSupRel(SI,A,B)), or they share a common descendant (shareDesc(SI,A,B))
(step 4 in Algorithm 2). Note that the structural index is also updated to take into ac-
count the new disjointness rules (step 6 in Algorithm 2).

The addition of disjointness rules in Algorithm 2, however, may be prohibitive for
large ontologies (see Section 5). Intuitively, in order to reduce the number of disjoint-
ness axioms, one should only focus on the cases where a conservativity principle viola-
tion occurs in the integrated ontology OU = O′

1 ∪ O′
2 ∪M, with respect to one of the

ontology modules O′
i (with i ∈ {1, 2}); i.e., adding a disjointness axiom between each

pair of classes A,B ∈ O′
i such that A � B ∈ consViol(O′

i,OU ), as in Definition 4.
Algorithm 3 implements this idea for the Horn propositional case and extensively ex-
ploits the structural indexing to identify the conservativity principle violations (step 3
in Algorithm 3). Note that this algorithm also requires to compute the structural index
of the integrated ontology, and thus its classification with an OWL 2 reasoner (step 6
in Algorithm 1). The classification of the integrated ontology is known to be typically
much higher than the classification of the input ontologies individually [16]. However,
this was not a bottleneck in our experiments, as shown in Section 5.
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Algorithm 3. Optimised disjointness axioms extension
Input: P : propositional theory; SI: structural index SIU : structural index of the union ontology
Output: Pd: extended propositional theory;disj: number of disjointness rules
1: disj := 0
2: Pd := P
3: for A → B ∈ ConservativityViolations(SI, SIU ) do
4: if not (areDisj(SI,A,B)) then
5: Pd := Pd ∪ {A ∧ B → false}
6: SI := updateIndex(SI,A � B → ⊥)
7: disj := disj + 1
8: end if
9: end for

10: return 〈Pd, disj〉

Mapping Repair. The step 13 of Algorithm 1 uses the mapping (incoherence) repair
algorithm presented in [17, 21] for the extended Horn propositional theoriesPd

1 and Pd
2 ,

and the input mappings M. The mapping repair process exploits the Dowling-Gallier
algorithm for propositional Horn satisfiability [9] and checks, for every propositional
variableA ∈ Pd

1∪Pd
2 , the satisfiability of the propositional theoryPA = Pd

1∪Pd
2∪M∪

{true → A}. Satisfiability of PA is checked in worst-case linear time in the size of PA,
and the number of Dowling-Gallier calls is also linear in the number of propositional
variables in Pd

1 ∪ Pd
2 . In case of unsatisfiability, the algorithm also allows us to record

conflicting mappings involved in the unsatisfiability, which will be considered for the
subsequent repair process. The unsatisfiability will be fixed by removing some of the
identified mappings. In case of multiple options, the mapping confidence will be used
as a differentiating factor.9

Example 4. Consider the propositional encoding P1 and P2 of the axioms of Table 1
and the mappings M in Table 2, seen as propositional rules. Pd

1 and Pd
2 have been cre-

ated by adding disjointness rules to P1 and P2, according to Algorithm 2 or 3. For
example, Pd

2 includes the rule ψ = O2:Well ∧ O2:Borehole → false. The map-
ping repair algorithm identifies the propositional theory Pd

1 ∪ Pd
2 ∪ M ∪ {true →

O1:ExplorationWellbore} as unsatisfiable. This is due to the combination of the map-
pings m3 and m4, the propositional projection of axioms β1 and β2, and the rule ψ. The
mapping repair algorithm also identifies m3 and m4 as the cause of the unsatisfiability,
and discards m3, since its confidence is smaller than that of m4 (see Table 2).

Algorithm 1 gives as output the number of added disjointness rules during the pro-
cess disj, a set of mappings M′, and an (approximate) repair R≈ such that M′ =
M \ R≈. M′ is coherent with respect to Pd

1 and Pd
2 (according to the propositional

case of Definition 2). Furthermore, the propositional theory P1 ∪ P2 ∪ M′ does not
contain any conservativity principle violation with respect to P1 and P2 (according to
the propositional case of Definition 4). However, our encoding is incomplete, and we
cannot guarantee that O′

1 ∪ O′
2 ∪ M′ does not contain conservativity principle viola-

tions with respect to O′
1 and O′

2. Nonetheless, our evaluation suggests that the number
of remaining violations after repair is typically small (see Section 5).

9 In scenarios where the confidence of the mapping is missing (e.g., in reference or manually
created mapping sets) or unreliable, our mapping repair technique computes fresh confidence
values based on the locality principle [19].
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Algorithm 4. Conducted evaluation over the Optique and OAEI data sets
Input: O1, O2: input ontologies M: reference mappings for O1 and O2

1: OU := O1 ∪ O2 ∪ M
2: Store size of Sig(O1) (I), Sig(O2) (II) and M (III)
3: Compute number of conservativity principle violations (our variant as in Definition 4):

consViol := |consViol(O1,OU)| + |consViol(O2,OU )| (IV)
4: Compute number of conservativity principle violations (general notion as in Section 2.4):

diff≈ := |diff≈
Sig(O1)(O1,OU )|+ |diff≈

Sig(O2)(O2,OU)| (V)

5: Compute two repairs R≈ using Algorithm 1 for O1, O2, M, with the Optimization set to false (see Table 5) and
true (see Table 6)

6: Store number of added disjointness disj (VI and XII), size of repair |R≈| (VII and XIII), time to compute disjointness
rules td (VIII and XIV), and time to compute the mapping repair tr (IX and XV)

7: OU := O1 ∪ O2 ∪ M \ R≈

8: Compute number of remaining conservativity principle violations (our variant):
consViol := |consViol(O1,OU)| + |consViol(O2,OU )| (X and XVI)

9: Compute number of remaining conservativity principle violations (general notion):
diff≈ := |diff≈

Sig(O1)(O1,OU )|+ |diff≈
Sig(O2)(O2,OU)| (XI and XVII)

5 Evaluation

In this section we evaluate the feasibility of using our method to detect and correct con-
servativity principle violations in practice. To this end we have conducted the evaluation
in Algorithm 4 (the Roman numbers refer to stored measurements) over the Optique’s
use case and the ontologies and reference mapping sets of the OAEI 2013 campaign:10

i Optique’s use case is based on the NPD ontology and a bootstrapped ontology
(BootsOnto) from one of the Optique databases. The mappings between these on-
tologies were semi-automatically created using the ontology matcher LogMap [20].
Although the NPD ontology is small with respect to the size of the bootstrapped on-
tology, its vocabulary covers a large portion of the current query catalog in Optique.

ii LargeBio: this dataset includes the biomedical ontologies FMA, NCI and (a frag-
ment of) SNOMED, and reference mappings based on the UMLS [3].

iii Anatomy: the Anatomy dataset involves the Adult Mouse Anatomy (MO) ontology
and a fragment of the NCI ontology (NCIAnat), describing human anatomy. The
reference alignment has been manually curated [48].

iv Library: this OAEI dataset includes the real-word thesauri STW and TheSoz from
the social sciences. The reference mappings have been manually validated.

v Conference: this dataset uses a collection of 16 ontologies from the domain of
academic conferences [46]. Currently, there are 21 manually created mapping sets
among 7 of the ontologies.

Table 4 shows the size of the evaluated ontologies and mappings (I, II and III).
For the Conference dataset we have selected only 5 pair of ontologies for which the
reference mappings lead to more than five conservativity principle violations. Note that
we count equivalence mappings as two subsumption mappings, and henceM represents
subsumption mappings. Table 4 also shows the conservativity principle violations for

10 Note that the reference mappings of the OAEI 2013 campaign are coherent with respect to the
test case ontologies [13]. More information about the used ontology versions can be found in
http://oaei.ontologymatching.org/2013/

http://oaei.ontologymatching.org/2013/
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Table 4. Test cases and violations with original reference mappings. BootsOnto contains around
3,000 concepts, and a large number of properties.

Dataset O1 ∼ O2

Problem size Original Violations
I II III IV V

|Sig(O1)| |Sig(O2)| |M| consViol diff≈

Optique NPD∼BootsOnto 757 40,671 102 214 220

LargeBio
SNOMED∼NCI 122,519 66,914 36,405 >525,515 >546,181
FMA∼SNOMED 79,042 122,519 17,212 125,232 127,668
FMA∼NCI 79,042 66,914 5,821 19,740 19,799

Anatomy MO∼NCIAnat 2,747 3,306 3,032 1,321 1,335

Library STW∼TheSoz 6,575 8,376 6,322 42,045 42,872

Conference

cmt∼confof 89 75 32 11 11
conference∼edas 124 154 34 8 8
conference∼iasted 124 182 28 9 9
confof∼ekaw 75 107 40 6 6
edas∼iasted 154 182 38 7 7

Table 5. Results of our basic method to detect and solve conservativity principle violations

Dataset O1 ∼ O2

Solution size Times Remaining Violations
VI VII VIII IX X XI

#disj |R≈| td(s) tr (s) consViol diff≈

Optique NPD∼BootsOnto 4,716,685 49 9,840 121 0 0

LargeBio
SNOMED∼NCI – – – – – –
FMA∼SNOMED 1,106,259 8,234 35,817 1,127 0 121
FMA∼NCI 347,801 2,176 2,471 38 103 112

Anatomy MO∼NCIAnat 1,331,374 461 397 56 0 3

Library STW∼TheSoz 591,115 2,969 4,126 416 0 24

Conference

cmt∼confof 50 6 0.01 0.01 0 0
conference∼edas 774 6 0.03 0.01 0 0
conference∼iasted 2,189 4 0.06 0.02 0 0
confof∼ekaw 296 6 0.02 0.01 0 0
edas∼iasted 1,210 4 0.06 0.02 1 1

the reference mappings (IV and V). For LargeBio and Library the number is expecially
large using both our variant and the general notion of the conservativity principle.11

Tables 5 and 6 show the obtained results for our method using both the basic and
optimised algorithms to add disjointness axioms.12

We have run the experiments on a desktop computer with an AMD Fusion A6-3670K
CPU and allocating 12 GB of RAM. The obtained results are summarized as follows:

i The number of added disjointness rules disj (VI), as expected, is very large in the
basic algorithm and the required time prohibitive (VIII) when involving SNOMED
(it did not finish for SNOMED-NCI). This is clearly solved in our optimised algo-
rithm that considerably reduces the number of necessary disjoitness rules (XII) and
it requires only 275 seconds to compute them in the SNOMED-NCI case (XIV).

11 In the SNOMED-NCI case no OWL 2 reasoner could succeed in classifying the integrated
ontology via mappings [16], so we used the OWL 2 EL reasoner ELK [23] for providing a
lower bound on the number of conservativity principle violations.

12 The computation times of Steps 1-4 in Algorithm 1 were negligible with respect to the repair
and disjointness addition times (tr and td) and thus they were not included in the result tables.
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Table 6. Results of our optimised method to detect and solve conservativity principle violations

Dataset O1 ∼ O2

Solution size Times Remaining Violations
XII XIII XIV XV XVI XVII
#disj |R≈| td(s) tr (s) consViol diff≈

Optique NPD∼BootsOnto 214 41 2.54 0.17 0 0

LargeBio
SNOMED∼NCI 525,515 15,957 275 3,755 >411 >1,624
FMA∼SNOMED 125,232 8,342 30 251 0 131
FMA∼NCI 19,740 2,175 34 6.18 103 112

Anatomy MO∼NCIAnat 1,321 491 1.39 0.53 0 3

Library STW∼TheSoz 42,045 3,058 4.93 41 0 40

Conference

cmt∼confof 11 6 0.05 0.01 0 0
conference∼edas 8 6 0.07 0.01 0 0
conference∼iasted 9 1 0.22 0.01 0 0
confof∼ekaw 6 5 0.04 0.01 0 0
edas∼iasted 7 4 0.21 0.02 1 1

ii The computed repairs R≈ (VII and XIII) using both the basic and optimised al-
gorithms are of comparable size. This suggests that the large number of added
disjointness in the basic algorithm does not have a negative impact (in terms of
aggressiveness) on the repair process.

iii Repair times tr (IX and XV) are small and they do not represent a bottleneck in
spite of the large number of added disjointness rules.

iv The conservativity principle violations using both algorithms and considering our
variant (X and XVI) are completely removed in the Optique, Anatomy and Library
cases, and almost completely removed in the Conference and LargeBio datasets.

v The number of missed violations is only slightly higher when considering the gen-
eral notion of the conservativity principle (XI and XVII), which suggests that our
(approximate) variant is also suitable in practice. Furthermore, in several test cases
these violations are also almost removed.

vi The computed repairs R≈, using both algorithms (VII and XIII), are rather ag-
gressive and they can remove from 16% (Anatomy) up to 48% (Optique) of the
mappings. In the Optique’s use case, however, we follow a better safe than sorry
approach and we prefer to remove as many violations as possible, rather than pre-
serving potentially conflicting mapping sets.

In summary, the results suggest that our method to repair conservativity principle
violations is suitable for Optique, and it is feasible in practice, even when considering
the largest datasets of the OAEI.

6 Related Work

The conservativity principle problem, although indirectly, has been actively studied in
the literature. For example, the assumption of disjointness was originally introduced by
Schlobach [38] to enhance the repair of ontologies that were underspecified in terms of
disjointness axioms. In [30], a similar assumption is followed in the context of repairing
ontology mappings, where the authors restricted the number of disjointness axioms by
using learning techniques [45]. These techniques, however, typically require a manually
created training set. In [12] the authors present an interactive system to guide the expert
user in the manual enrichment of the ontologies with disjointness axioms. In this paper,
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as in [45, 30, 12], we have also focused on the addition of a small set of disjointness
axioms, since adding all possible disjointness may be unfeasible for large ontologies.
However, our method does not require manual intervention. Furthermore, to address the
scalability problem when dealing with large ontologies and mapping sets, our method
relies on the propositional projection of the input ontologies.

Ontology matching systems have also dealt with the conservativity principle in order
to improve the precision (with respect to a reference mapping set) of the computed
mappings. For example, systems such as ASMOV [15], Lily [47] and YAM++ [34] have
implemented different heuristics and patterns to avoid violations of the conservativity
principle. Another relevant approach has been presented in [2], where a set of sanity
checks and best practices are proposed for computing ontology mappings. In this paper
we present an elegant way to detect and solve conservativity principle violations by
reducing the problem to a consistency principle violation problem. Concretely, we have
reused and adapted the infrastructure provided by LogMap [17, 20]. However, other
mapping repair systems, such as Alcomo [29] or AML [37], could be considered. Note
that, to the best of our knowledge, these mapping repair systems have only focused on
solving violations of the consistency principle.

The work presented in [26, 14, 27] deserves a special attention since they propose an
opposite approach with respect to ours. Authors consider the violations of the conser-
vativity principle as false positives, based on the potential incompleteness of the input
ontologies. Hence, the correction strategy does not aim at removing mappings but at in-
serting subsumption axioms to the input ontologies to enrich their concept hierarchies.
Authors in [35] also suggest that removing mapping may not be the best solution in a
mapping repair process, and fixing the input ontologies may be an alternative.

Currently, in the Optique use case, we consider that the input ontologies are not
modifiable. The query formulation ontology is based on the NPD ontology, which in-
cludes knowledge already agreed by the community, while the bootstrapped ontology
is directly linked to the information represented in the database. Nevertheless, future
extensions in Optique may consider appropriate the extension of the input ontologies.

7 Conclusions and Future Work

In this paper we have presented an approximate and fully-automatic method to detect
and correct conservativity principle violations in practice. We have characterised the
conservativity principle problem, following the assumption of disjointness, as a consis-
tency principle problem. We have also presented an elegant and scalable way to detect
and repair violations in the Horn propositional case. Thus, our method is incomplete
and it may fail to detect and repair all violations. However, the conducted evaluation
suggests that our method produces competitive results in practice. In the close future
we plan to consider extensions of the current projection to Horn propositional logic
while keeping the nice scalability properties of the current method.

The implemented method follows a “better safe than sorry” approach, which we
currently consider suitable for the Optique project since we do not want ontology-to-
ontology mappings to lead to unexpected results for the OBDA queries, as motivated
in Section 3. Hence, we currently delegate complex relationhips between ontology en-
tities and the database to the (hand-crafted) schema-to-ontology mappings, which will
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also play an important role in Optique. Nevertheless we do not discard in the future
to explore alternative methods to detect and repair conservative principle violations.
In particular, we plan to study the potential application of approaches based on graph-
theory, in order to extend the detection and repair of conservativity principle violations.
Strongly connected compontents of a graph representation of the subsumption relation
between named concepts (as defined in [29]), for instance, may be used to capture vio-
lations between pairs of concepts already involved in a subsumption relationship.

Additionally, we will also consider exploring the use of learning techniques for the
addition of disjointness axioms [45], and to involve the domain experts in the assess-
ment/addition of such disjointness [18, 12]. This manual assessment may also be used
to consider violations as false positives, as proposed in [26, 14, 27], and suggest them
as candidate extensions of the input ontologies.

We consider that the proposed method has also potential in scenarios others than
Optique. For instance, the authors in [28] apply ontology matching in a multi-agent
system scenario in order to allow the exchange and extension of ontology-based ac-
tion plans among agents. In such a context, violations of the conservativity principle
should be taken into account and highly critical tasks should not be performed if viola-
tions are detected. In [44], authors present an ontology-based data integration (OBDI)
system, which integrates ontology mapping and query reformulation techniques. As in
Optique, mappings violating the conservativity principle may compromise the quality
of the query results in the proposed OBDI system.

Finally, we have short-term plans for deployment in the Optique industry partners
Statoil and Siemens. The techniques described in this paper have already been inte-
grated within the “ontology and mapping management module” (see [24] for details
about the Optique architecture).
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Abstract. BioPortal is a repository for biomedical ontologies that also includes
mappings between them from various sources. Considered as a whole, these map-
pings may cause logical errors, due to incompatibilities between the ontologies
or even erroneous mappings.

We have performed an automatic evaluation of BioPortal mappings between
19 ontology pairs using the mapping repair systems of LogMap and Agreement-
MakerLight. We found logical errors in 11 of these pairs, which on average in-
volved 22% of the mappings between each pair. Furthermore, we conducted a
manual evaluation of the repair results to identify the actual sources of error, ver-
ifying that erroneous mappings were behind over 60% of the repairs.

Given the results of our analysis, we believe that annotating BioPortal map-
pings with information about their logical conflicts with other mappings would
improve their usability for semantic web applications and facilitate the identifica-
tion of erroneous mappings. In future work, we aim to collaborate with BioPortal
developers in extending BioPortal with these annotations.

1 Motivation

OWL ontologies are extensively used in biomedical information systems. Prominent
examples of biomedical ontologies are the Gene Ontology [1], the National Cancer
Institute Thesaurus (NCIT) [14] and the Foundational Model of Anatomy (FMA) [32].

Despite some community efforts to ensure a coordinated development of biomed-
ical ontologies [38], many ontologies are being developed independently by different
groups of experts and, as a result, they often cover the same or related subjects, but
follow different modeling principles and use different entity naming schemes. Thus,
to integrate data among applications, it is crucial to establish correspondences (called
mappings) between the entities of the ontologies they use.

In the last ten years, the semantic web and bioinformatics research communities
have extensively investigated the problem of (semi-)automatically computing corre-
spondences between independently developed ontologies, which is usually referred to
as the ontology matching problem. Resulting from this effort are the growing number of
ontology matching systems in development [8,7,37] and the large mapping repositories
that have been created (e.g., [2,10]).
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One such repository, BioPortal [10,33], is a coordinated community effort which
currently provides access to more than 370 biomedical ontologies and over 12 mil-
lion mappings between them.1 While not all BioPortal ontologies were originally OWL
ontologies (e.g., some were developed in OBO format2), many have been (or can be)
converted to OWL [15]. Mappings in BioPortal are either generated automatically by
a sophisticated lexical matcher [13] or added manually by domain experts through the
Web interface or the REST APIs [29].

OWL ontologies have well-defined semantics [4] and thus the integration of inde-
pendently developed ontologies via a set of mappings (i.e., an alignment) may lead to
logical errors such as unsatisfiablities [25]. BioPortal, however, explicitly supports the
idea that alternative (i.e., created for different purposes) mapping sets may co-exist and
that they could potentially contradict each other [29].

While it is true that many logical errors in alignments are caused by incompatibilities
between the ontologies they map [19,31], some may be caused by erroneous mappings.
Furthermore, logical soundness may be critical to some semantic web applications that
integrate two or more ontologies [31]. For these reasons, we consider that it would be
advantageous to enrich BioPortal mappings with annotations about potential logical
conflicts with other mappings. This would improve the usability of BioPortal mappings
for semantic web applications and domain users, and facilitate the identification of er-
roneous mappings and potential errors in the ontologies themselves.

In this paper we quantify the logical errors in the BioPortal mappings among several
ontologies by applying mapping repair algorithms. Furthermore, we manually analyze a
subset of the identified conflicting mappings in order to qualify the causes of the errors.
Our goal is to show the importance of identifying (and annotating) logical conflicts in
BioPortal and the role ontology mapping repair algorithms may play in that task.

The rest of the paper is organized as follows: Section 2 describes how mappings
are represented in BioPortal; Section 3 introduces the concept of mapping repair and
presents the repair algorithms used in this study; Section 4 details the automatic and
manual evaluations we conducted and presents and discusses their results; and finally,
Section 5 presents some conclusions and future work lines.

2 Mappings in BioPortal

Mappings are treated as first-class citizens in BioPortal [29,12], as it enables the query-
ing, upload, and retrieval of all mappings between all of its ontologies. A survey con-
ducted in 2009 revealed that 33% of BioPortal ontologies had 50% of their entities
mapped to other ontologies [12], which indicates that BioPortal ontologies are highly
interconnected.

The number of mappings in BioPortal has grown quickly in recent years, from 30,000
mappings between 20 ontologies in 2008 [29] to 9 million mappings between 302 on-
tologies in 2012 [33]. At the time of writing this paper, there were approximately 13
million mappings between 373 ontologies.

1 BioPortal: https://bioportal.bioontology.org/
2 http://www.geneontology.org/GO.format.obo-1_4.shtml

https://bioportal.bioontology.org/
http://www.geneontology.org/GO.format.obo-1_4.shtml
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Mappings in BioPortal are represented as a 4-tuple of the form 〈e1, e2, Rel, Ann〉,
where e1, e2 are the URIs of two entities from the vocabulary of two BioPortal ontolo-
gies, Rel is the semantic relationship between them, and Ann is a set of annotations
or metadata associated to the mapping. The relation Rel can be of one of the follow-
ing types:3 skos:exactMatch, skos:relatedMatch, skos:closeMatch, skos:narrowMatch,
skos:broadMatch. Ann includes, among other details, important provenance informa-
tion about the mapping such as: origin (e.g., user-defined or alignment system em-
ployed), application context, creator, and creation date.

According to BioPortal authors [33], the statistics about mapping origin are the fol-
lowing: (i) 64.96% of the mappings were created by the lexical matcher LOOM [13];
(ii) 32.48% of the mappings had UMLS [2] as origin; (iii) 2.41% represented map-
pings between entities with the same URI; (iv) 0.02% came from Xref OBO Mappings;
(v) finally 0.13% of the mappings were submitted by users.

Mappings between entities with the same URI are labeled skos:exactMatch by Bio-
Portal, LOOM and UMLS mappings are labeled skos:closeMatch, and Xref OBO Map-
pings are labeled skos:relatedMatch. User submitted mappings can be labeled with any
of the relation types listed above.

BioPortal mappings can be retrieved via its REST API, being straightforward to
identify the entities involved in the mapping, its origin, and the source ontologies.4

In this paper, we have focused only on skos:closeMatch mappings, which account for
the large majority of BioPortal mappings. We represented these mappings as OWL 2
equivalence axioms since that is typically the semantic relation they convey (the tag
skos:closeMatch is used to link concepts that can be used interchangeably, at least in a
given context). Mapping annotationsAnn have (optionally) been represented as OWL 2
axiom annotations. This representation of mappings enables the reuse of the extensive
range of OWL 2 reasoning infrastructure that is currently available. Note that alterna-
tive formal semantics for ontology mappings have been proposed in the literature (e.g.,
[3,6,28]).

3 Mapping Repair

The ontology resulting from the integration of O1 and O2 via a set of mappings M,
may entail axioms that do not follow from O1, O2, or M alone. These new semantic
consequences can be captured using the notion of deductive difference [24,18], and can
be divided into desired and undesired entailments. Undesired entailments are typically
introduced due to erroneous mappings in M. However, even if all mappings in M
are correct, undesired entailments may occur due to conflicting descriptions between
the overlapping entities in O1 and O2. Undesired entailment can be divided into two
groups: entailments causing unsatisfiable classes, which can be easily detected using
(automatic) logical reasoning; and entailments not causing unsatisfiable classes, which
require domain knowledge to decide whether they are indeed undesired. In this paper
we only focus on the first group of undesired entailments.

3 http://www.bioontology.org/wiki/index.php/BioPortal_Mappings
4 http://data.bioontology.org/documentation#Mapping

http://www.bioontology.org/wiki/index.php/BioPortal_Mappings
http://data.bioontology.org/documentation#Mapping
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A set of mappings that leads to unsatisfiable classes in O1 ∪ O2 ∪M is referred to
as incoherent w.r.t. O1 and O2 [26].

Definition 1 (Mapping Incoherence). A set of mappingsM is incoherent with respect
to O1 and O2, if there exists a class A in the signature of O1∪O2 such that O1∪O2 �|=
A � ⊥ and O1 ∪ O2 ∪M |= A � ⊥.

An incoherent set of mappingsM can be fixed by removing mappings fromM. This
process is referred to as mapping repair (or repair for short).

Definition 2 (Mapping Repair). Let M be an incoherent set of mappings w.r.t. O1

and O2. A set of mappings R ⊆ M is a mapping repair for M w.r.t. O1 and O2 if
M\R is coherent w.r.t. O1 and O2.

A trivial repair is R = M, since an empty set of mappings is obviously coherent.
Nevertheless, the objective is to remove as few mappings as possible. Minimal (map-
ping) repairs are typically referred to in the literature as mapping diagnosis [25].

In the literature there are different approaches to compute a repair or diagnosis for
an incoherent set of mappings. Early approaches were based on Distributed Description
Logics (DDL) (e.g. [27,28,30]). The work presented in [30] deserves special mention,
as it reports on a preliminary coherence evaluation of BioPortal mappings using DDL.5

The authors, however, emphasized the problems of efficiency of the coherence check-
ing task due to the reasoning complexity of DDL and suggest the use of approximate
techniques in the future.

Alternatively, if mappings are represented as OWL 2 axioms, mapping repairs can
also be computed using the state-of-the-art approaches for debugging and repairing
inconsistencies in OWL 2 ontologies, which rely on the extraction of justifications for
the unsatisfiable classes (e.g. [36,22,39,18]). However, justification-based technologies
do not scale when the number of unsatisfiabilities is large (a typical scenario in mapping
repair problems [16]).

To address this scalability issue, mapping repair systems usually compute an approx-
imate repair using incomplete reasoning techniques (e.g. [17,25,9]). An approximate
repair R≈ does not guarantee that M\R≈ is coherent, but it will (in general) reduce
significantly the number of unsatisfiabilities caused by the original mappings M. In-
deed, approximate repair techniques have been successfully applied to audit the UMLS
metathesaurus [19,17].

In this paper, we have applied the approximate mapping repair techniques imple-
mented in LogMap [17,20,21] and AgreementMakerLight (AML) [9,35] to the BioPor-
tal mappings. As described in Section 2, we have represented the BioPortal mappings
as OWL 2 equivalence axioms. Note that, although both LogMap and AML were orig-
inally implemented as ontology matching systems, they can also operate as a stand-
alone mapping repair systems. From this point onwards, we will refer to LogMap’s and
AML’s repair modules as LogMap-Repair and AML-Repair respectively.

5 To the best of our knowledge, no automatic repair was conducted.
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Algorithm 1. AML-Repair algorithm
Input: O1, O2: input ontologies; M: input mappings
Output:M′: output mappings; R≈: approximate mapping repair; CS: identified conflicting sets;
MCS : mappings involved in conflicting sets

1: M′ := M
2: R≈ := ∅
3: 〈O′

1, O′
2, Checkset〉 := BuiltCoreFragments(O1,O2,M′)

4: CS := ConflictSets(O′
1,O′

2,M
′, Checkset)

5: MCS := MappingsInConflictSets(CS)
6: CS ′ := CS
7: while |CS ′| > 0 do
8: w := SelectMappingToRemove(CS ′)
9: CS ′ := RemoveMapping(CS ′, w)

10: M′ : = M′ \ {w};
11: R≈ := R≈ ∪ {w}
12: end while
13: return 〈M′,R≈, CS,MCS〉

3.1 Mapping Repair Using AML-Repair

The pseudocode of the algorithm implemented by AML-Repair is described in Algo-
rithm 1. The algorithm is divided in three main tasks:

1. The computation of the core fragments (see [34]) (step 3);
2. The search for all (minimal) conflicting sets of mappings CS, i.e. mappings that

lead to an incoherence (step 4);
3. The resolution of incoherences using a heuristic to minimize the set of mappings

removed from every conflicting set (step 8 to 11);
4. The algorithm outputs a set of repaired mappings M′, an approximate mapping

repair R≈, conflicting sets of mappings CS, and the set of all mappings involved in
at least one conflicting set MCS .

AML-Repair implementation is based on a modularization of the input ontologies,
called core fragments, that only contains the necessary classes and relations to detect
all existing incoherences [34]. This modularization is computed by the BuildCoreFrag-
ments method (Step 3 of Algorithm 1), which also computes a minimal set of classes
(the Checkset) that need to be checked for incoherences.

AML-Repair determines subsumption relations between atomic classes syntactically
(i.e., without using an OWL 2 Reasoner) and it also considers disjointness axioms be-
tween atomic classes. Unlike LogMap-Repair, equivalence mappings are considered
indivisible units and are never split into two subsumption mappings. Thus, an input
mapping is either removed or kept in the alignment during the repair procedure.

The ConflictSetsmethod (step 4) returns all mapping sets that will lead to an incoher-
ence by doing a full depth-first search in the core fragments structure for each class in
the Checkset. This way, AML-Repair determines all minimal sets of mappings, called
conflicting sets CS , which cause the incoherences. Since conflicting sets are minimal, a
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Algorithm 2. LogMap-Repair algorithm based on Horn propositional reasoning
Input: O1, O2: input ontologies; M: input mappings
Output: M′: output mappings; R≈: approximate mapping repair; CG: conflicting groups;
MCG : mapping average in conflicting groups

1: M′ := M
2: R≈ := ∅
3: CG := ∅
4: 〈P1,P2〉 := PropEncoding(O1,O2)
5: for each C ∈ OrderedVariables(P1 ∪ P2) do
6: PC := P1 ∪ P2 ∪M′ ∪ {true → C}
7: 〈sat,M⊥〉 := DowlingGallier(PC)
8: if sat = false then
9: CG := CG ∪ {M⊥}

10: Rep := ∅
11: rep size := 1
12: repeat
13: for each subset RC of M⊥ of size rep size do
14: sat := DowlingGallier(PC \ RC)
15: if sat = true then Rep := Rep ∪ {RC}
16: end for
17: rep size := rep size+ 1
18: until Rep �= ∅
19: RC := element of Rep with minimum aggregated confidence.
20: M′ := M′ \ RC

21: R≈ := R≈ ∪ RC

22: end if
23: end for
24: MCG := AverageMappingsInConflictGroups(CG)
25: return 〈M′,R≈, CG,MCG〉

conflicting set is resolved if at least one of its mappings is removed. The algorithm also
keeps the set MCS containing all mappings involved in a conflicting set (Step 5).

AML-Repair aims to minimize the number of removed mappings by determining
a minimal set of mappings that intersect all conflict sets. Given that computing this
set is NP-Complete, AML-Repair uses an efficient heuristic procedure that consists of
iteratively removing the mappings that belong to the highest number of conflicting sets
(as identified in Step 8 of Algorithm 1), and in case of tie, those that have the lowest
confidence values. This strategy typically produces near-optimal results.

3.2 Mapping Repair Using LogMap-Repair

Algorithm 2 shows the pseudocode of the algorithm implemented by LogMap-Repair.
Steps 1-3 initialise the output variables. LogMap-Repair encodes the input ontologies
O1 and O2 as Horn propositional theoriesP1 and P2 (Step 4) and exploits this encoding
to subsequently detect unsatisfiable classes in an efficient and sound way during the
repair process. The theory P1 (resp. P2) consists of the following Horn rules:
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– A rule A → B for all distinct classes A,B such that A is subsumed by B in O1

(resp. in O2); subsumption relations can be determined using either an OWL 2
reasoner, or syntactically (in an incomplete way).

– Rules Ai ∧ Aj → false (1 ≤ i < j ≤ n) for each disjointness axiom of the form
DisjointClasses(A1, . . . , An).

– A rule A1 ∧ . . . ∧ An → B for each subclass or equivalence axiom having the
intersection of A1, . . . An as subclass expression and B as superclass.

In Step 5, propositional variables in P1 (resp. in P2) are ordered such that a variable
C in P1 (resp. in P2) comes before D whenever D is subsumed by C in O1 (resp. in
O2). This is a well-known repair strategy: subclasses of an unsatisfiable class are also
unsatisfiable and hence before repairing an unsatisfiable class one first needs to repair
its superclasses. Satisfiability of a propositional variable C is determined by checking
satisfiability of the propositional theory PC (Step 6) consisting of (i) the rule (true →
C); (ii) the propositional representations P1 and P2; and (iii) the current set of output
mappings M′ (seen as propositional implications). Note that LogMap-Repair splits
equivalence mappings into two equivalent subsumption mappings.

LogMap-Repair implements the classical Dowling-Gallier algorithm for proposi-
tional Horn satisfiability [5,11]. LogMap-Repair’s implementation of Dowling-Gallier’s
algorithm also records all mappings potentially involved in an unsatisfiability. Thus, a
call to Dowling-Gallier returns a satisfiability value sat and, optionally, the (overes-
timated) group of conflicting mappings M⊥ (see Steps 7 and 14). For statistical pur-
poses, the set CG keeps all conflicting groups for the identified unsatisfiable classes
(Step 9). An unsatisfiable class C is repaired by discarding conflicting mappings for C
(Steps 10 to 21). Thus, subsets RC of M⊥ of increasing size are then identified until a
repair is found (Steps 12-18). Note that, LogMap-Repair does not compute a diagnosis
for the unsatisfiable class C but rather the repairs of smallest size. If several repairs of
a given size exist, the one with the lowest aggregated confidence is selected according
to the confidence values assigned to mappings (Step 19). Steps 20 and 21 update the
output mappings M′ and the approximate mapping repair R≈ by extracting and adding
RC , respectively. Finally, Step 24 calculates the average number of mappings in each
identified conflicting group CG.

Algorithm 2 ensures that P1∪P2∪M′∪{true → C} is satisfiable for each C occur-
ring in P1 ∪P2. The propositional encoding of O1 and O2 is, however, incomplete and
hence the algorithm does not ensure satisfiability of each class in O1∪O2∪M′. Never-
theless, the number of unsatisfiable classes remaining after computing an approximate
repair R≈ is typically small.

4 Evaluation

In order to evaluate the coherence of BioPortal mappings, we manually selected 19 on-
tology pairs from BioPortal such that (i) each pair had at least 500 mappings listed in
BioPortal, (ii) at least one of the ontologies in the pair contained disjointness clauses
between their classes, and (iii) the domain of both ontologies was biomedical. The pur-
pose of the first two criteria is to exclude ontology pairs that are uninteresting from an
(automatic) mapping repair perspective, whereas the third criterion ensures that we are
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Table 1. Ontologies comprising the 19 ontology pairs selected

Ontology Acronym # Classes Source

Bone Dysplasia Ontology BDO 13,817 BioPortal
Cell Culture Ontology CCONT 14,663 BioPortal

Experimental Factor Ontology EFO 14,499 BioPortal
Human Developmental Anatomy Ontology, timed ver. EHDA 8,340 OBO Foundry

Cardiac Electrophysiology Ontology EP 81,957 BioPortal
Foundational Model of Anatomy FMA 83,280 BioPortal

Mouse Adult Gross Anatomy Ontology MA 3,205 OBO Foundry
NCI Thesaurus NCIT 105,347 BioPortal

Online Mendelian Inheritance in Man OMIM 76,721 BioPortal
Sleep Domain Ontology SDO 1,382 BioPortal

SNP ontology SNP 2,206 BioPortal
Sequence Types and Features Ontology SO 2,021 BioPortal

Teleost Anatomy Ontology TAO 3,372 OBO Foundry
Uber Anatomy Ontology UBERON 15,773 OBO Foundry

Zebrafish Anatomy and Development Ontology ZFA 2,955 OBO Foundry

Table 2. BioPortal mappings for the selected ontology pairs

Ontology Pair Listed Mappings Retrieved Mappings Actual Mappings Unsat. Classes

BDO-NCIT 1,637 1,636 1,636 34,341
CCONT-NCIT 2,815 2,813 2,097 (-19) 50,304

EFO-NCIT 3,289 3,287 2,507 60,347
EHDA-FMA 3,731 2,496 2,496 0

EP-FMA 79,497 78,489 78,489 210
EP-NCIT 2,468 2,465 2,465 (-1) 14,687 (-1)
MA-FMA 5,491 961 961 850

OMIM-NCIT 5,198 5,198 5,178 70,172
SDO-EP 662 135 135 44

SDO-FMA 593 529 529 (-1) 0
SNPO-SO 2,168 2,150 2,028 (-1) 0

UBERON-FMA 2,233 1,932 1,932 4,753
ZFA-CCONT 532 437 333 0

ZFA-EFO 773 538 427 913
ZFA-EHDA 2,595 1,809 1,809 0
ZFA-FMA 1,240 265 265 0
ZFA-MA 1,639 129 129 0
ZFA-TAO 1,737 1,524 1,521 0

ZFA-UBERON 817 724 724 104

able to manually evaluate the repair results as they lie within our domain of expertise.
This selection was not exhaustive, as our goal was merely to select a substantial and
representative set of ontology pairs.
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Algorithm 3. Automatic repair evaluation of BioPortal mappings
Input: O1, O2: two BioPortal ontologies; M: the set of BioPortal mappings between them

1: Compute all conflict sets of mappings CS, the total number of mappings involved in conflicts
MCS , and the approximate repair R≈ using AML-Repair system � See Algorithm 1

2: Get unsatisfiable classes of O1 ∪ O2 ∪M \R≈ using ELK reasoner
3: Compute the conflicting mapping groups CG per unsatisfiability, the average number of map-

pings per conflict group MCG , and the approximate repair R≈ using LogMap-Repair system
� See Algorithm 2

4: Get unsatisfiable classes of O1 ∪ O2 ∪M \R≈ using ELK reasoner

The 15 ontologies comprising these 19 pairs are listed in Table 1. We retrieved the
latest OWL version of each ontology from BioPortal, except for the ontologies that
were only available in OBO format. Because AML is currently not set-up to handle
ontologies in the OBO format, we retrieved the latter from the OBO Foundry6 [38] in
OWL format (making sure the versions matched those in BioPortal).

We implemented a script that, given a pair of ontologies, uses BioPortal’s REST API
to retrieve all mappings between those ontologies. We focused only on skos:closeMatch
mappings and we represented them as OWL 2 equivalence axioms. We did not consider
skos:exactMatch mappings since they represent correspondences between entities with
the same URI, which in OWL ontologies are considered equivalent (even though the
equivalence between them is not explicitly defined). We also excluded a few mappings
that had only a null source or involved only one entity.

The mappings between the 19 selected ontology pairs are listed in Table 2. We ver-
ified that the number of retrieved mappings did not match the number of mappings
listed in the BioPortal website, and that sometimes the discrepancy was large (i.e., not
accounted for by the small fraction of mappings we excluded). BioPortal developers
confirmed that there is indeed an inconsistency between the metrics and the available
mappings. Furthermore, in several cases, some of the mappings retrieved pointed to
classes that were not found in the ontologies (possibly obsolete classes), so the actual
mappings between the ontologies were less than those retrieved. Additionally, in some
cases less mappings were found when using the Jena API to read the ontologies (used
by AML) than when using the OWL API (used by LogMap). The difference between
the two is shown in parenthesis in Table 2.

Finally, we computed the satisfiability of each alignment with the OWL 2 EL rea-
soner ELK [23], finding several unsatisfiable classes in 11 of the alignments. We opted
for ELK for the sake of efficiency, given the size of some of the ontologies. ELK is in-
complete and thus the identified unsatisfiabilities represent a lower bound of the actual
number of such logical errors.

4.1 Automatic Repair Evaluation

For each of the 11 ontology pairs that had incoherent mapping sets (as detected by ELK
and listed in Table 2), we conducted the evaluation detailed in Algorithm 3. The results

6 http://www.obofoundry.org/

http://www.obofoundry.org/
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Table 3. Automatic mapping repair using AML-Repair and LogMap-Repair

Ontology Pairs M AML-Repair LogMap-Repair
|CS| |MCS| |R≈| Unsat. |CG| MCG |R≈| Unsat.

BDO-NCIT 1,636 1,649 1,374 (84%) 53 0 125 3.2 154 0
CCONT-NCIT 2,097 1,197 1,136 (55%) 55 3,630 125 2.7 119 75
EFO-NCIT 2,507 1,731 1,541 (61%) 143 3,687 311 4.3 353 73
EP-FMA 78,489 348 109 (0.1%) 16 0 168 11.0 168 0
EP-NCIT 2,465 363 307 (12%) 69 253 136 3.8 180 0
MA-FMA 961 21 22 (2%) 1 0 1 2.0 2 0
OMIM-NCIT 5,178 1,800 1,078 (21%) 154 0 396 10.2 536 0
SDO-EP 135 3 3 (2%) 1 0 1 3.0 3 0
UBERON-FMA 1,932 486 121 (6%) 19 25 70 6.3 85 25
ZFA-EFO 427 7 11 (3%) 5 0 10 2.6 10 0
ZFA-UBERON 724 0 0 (0%) 0 104 0 0 0 104

Average 8,777 691 518 (22%) 94 700 122 5 146 25
M: number of BioPortal mappings; |CS|: number of conflict sets; |MCS |: number of distinct
mappings in conflict sets; |CG|: number of conflict groups; MCG : average number of mappings

per conflict group; |R≈|: repair size in number of mappings (AML) or number of
half-mappings (LogMap); Unsat.: unsatisfiable classes after repair.

we obtained are shown in Table 3. Note that LogMap-Repair splits equivalence map-
pings into two subsumption mappings, so the value of R≈ is not directly comparable
with AML-Repair (the latter should be doubled to compare it with the former).

The incoherence of the repaired mapping sets has been significantly reduced, and in
many cases completely removed. The one exception was the ZFA-UBERON case, as
neither AML-Repair nor LogMap-Repair could detect and repair any of the unsatisfi-
abilities in this alignment. Furthermore, the computed (approximate) repairs were not
aggressive, as they removed at most 5.7% (AML-Repair) and 7% (LogMap-Repair) of
the mappings (in the EFO-NCIT case).

In addition to producing a repair, AML-Repair also identifies the number of conflict-
ing mapping sets CS and the total number of mappings that are involved in at least one
conflict MCS . For example, in the BDO-NCIT case, AML-Repair identifies 1,649 con-
flicting sets which involve 84% of the mappings M in this alignment. Given that these
mappings were leading to 34,341 unsatisfiable classes (see Table 2), the fact that only 53
equivalence mappings were removed indicates that (at least) some of these were caus-
ing several unsatisfiabilities, likely because they were in conflict with multiple other
mappings.

LogMap-Repair, on the other hand, identifies groups of potentially conflicting map-
pings CG (which contain one or more CS) involved in each unsatisfiability, and the
average number of mappings in each conflicting group MCG . CG represents a lower
bound of the total number of groups, since LogMap-Repair repairs on-the-fly and re-
moving one mapping may solve multiple unsatisfiabilities. For example, in the BDO-
NCIT case, LogMap-Repair only identifies 125 conflicting groups with an average of
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3.2 mappings per group. Note that solving the 125 unsatisfiabilities corresponding to the
conflict groups is sufficient to repair the original 34,341 unsatisfiabilities, which again
suggests that a few mappings in the conflict groups were causing many of these errors.

4.2 Manual Analysis

To complement the automatic repair evaluation and investigate the causes behind the
incoherences identified therein, we analyzed manually the mappings removed by AML-
Repair and LogMap-Repair (up to a maximum of 100 mappings per ontology pair, and
in the case of LogMap-Repair, only the cases where the subsumption mappings were
removed in both directions).

For each removed mapping, we assessed whether it was correct or erroneous (within
the context of the ontologies). We deemed a mapping to be erroneous if it falls into one
of the following categories:

1. At least one of the entities it maps is obsolete/retired, as in the mapping: BDO#
HP 0001596 (Alopecia) ⇔ NCIT#C2865 (Alopecia), where the latter class is re-
tired in NCIT.

2. The entities it maps are not directly related, as in the mapping: BDO#PATO
0001901 (Back) ⇔ NCIT#C13062 (Back), where the former class stands for the
directional qualifier and the latter stands for the body part.

3. The entities it maps are related but the relationship between them should not be
modeled as skos:closeMatch, as in the the mapping: BDO#G0000064 (CREBP)
⇔ NCIT#C17803 (CREB-Binding Protein), which maps entities that are related
(the gene and corresponding protein) but semantically distinct. Moreover, this map-
ping conflicts with the correct (protein-protein) mapping: BDO#P000022 (CREB-
Binding Protein) ⇔ NCIT#C17803 (CREB-Binding Protein).

Additionally, when the removed mapping was deemed to be correct, we analyzed the
conflict sets CS in which the removed mapping was present (computed by AML-Repair,
see Algorithm 3) and assessed whether the mappings in conflict with it were correct or
erroneous. For the purpose of our evaluation, the main issue is not whether the repair
algorithms remove erroneous mappings, but rather whether any of the unsatisfiabilities
in which it is involved are caused by erroneous mappings. Thus, if either the removed
mapping or at least one of its conflicting mappings was erroneous, we attributed the
cause of removal to a mapping error. If the mapping itself and all of its conflicting
mappings were correct, we considered the cause of removal to be an incompatibility
between the ontologies.

The results of our manual analysis are summarized in Table 4. In total, over 40%
of the mappings removed by both repair systems were indeed erroneous. Furthermore,
errors in the mappings were the cause of removal of over 60% of the mappings.

We found that category 1 errors (i.e., mappings including obsolete/retired classes)
were relatively common in all alignments that included NCIT. Furthermore, there were
two common category 3 error patterns in these alignments: gene-protein matches, and
human-mouse matches. The former pattern consists of a mapping between a gene and
its corresponding protein or vice-versa, as exemplified above. The latter pattern consists
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Table 4. Manual evaluation of the repaired BioPortal mappings

Ontology Pairs
AML-Repair LogMap-Repair

Analyzed Erroneous Err. Cause Analyzed Erroneous Err. Cause

BDO-NCIT 53 55% 83% 52 62% 83%
CCONT-NCIT 55 33% 62% 68 43% 59%
EFO-NCIT 100 53% 91% 100 54% 93%
EP-FMA 16 0% 0% 84 0% 0%
EP-NCIT 69 43% 71% 78 60% 73%
MA-FMA 1 100% 100% 1 100% 100%
OMIM-NCIT 100 48% 71% 100 49% 76%
SDO-EP 1 100% 100% 0 N/A N/A
UBERON-FMA 19 0% 0% 20 0% 0%
ZFA-EFO 5 60% 100% 4 75% 100%

Total 419 44% 71% 507 42% 62%

of a mapping between a (Human) Health/Anatomy classes and a corresponding NCIT
Mouse class (from the Mouse Pathologic Diagnoses or Mouse Anatomy Concepts sec-
tions) which naturally conflicts with the mapping to the main (Human) NCIT sections.
One example of this pattern is the mapping: BDO#HP 0010786 (Urinary Tract Neo-
plasm) ⇔ NCIT#C25806 (Mouse Urinary Tract Neoplasm). Another pattern of this
category that occurred in the OMIM-NCIT alignment consists of a mapping between
a disease/symptom and a corresponding adverse event, such as: OMIM#MTHU023845
(Neck Pain) ⇔ NCIT#C56135 (Neck Pain Adverse Event).

Regarding category 2 errors, there were few patterns other than number mismatches,
such as in the mapping: BDO#G0000133 (TBX4) ⇔ NCIT#C101638 (TBX3 Gene).
While the cause of these mismatches was often clear, as in the ‘back’ example above,
some defy reason as the case of: EFO#CHEBI 15366 (Acetic Acid) ⇔ NCIT#C37392
(C58 Mouse).

As for incompatibilities between the ontologies, one of the most interesting cases
is the EP-FMA alignment, which is actually an alignment between the OBO version
of FMA (which is imported by EP) and the BioPortal version of FMA. Indeed, it was
surprising to find that the alignment is incoherent, given that all mappings are true
equivalences. It turns out that there are a few structural differences between the two
versions of the ontology which cause the incoherences, as some entities are modeled
as ‘Material Anatomical Entity’ in the OBO version and as ‘Immaterial Anatomical
Entity’ in the BioPortal version (with the latter appearing to be more correct in most
cases). The same type of structural differences is also behind the incoherences in the
UBERON-FMA alignment. Also interesting is the OMIM-NCIT alignment, as OMIM
models diseases as subclasses of the anatomical structures where they occur, whereas
NCIT models diseases as disjoint from anatomical structures, making it impossible to
obtain a coherent alignment between the ontologies where both diseases and anatomical
structures are mapped.
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4.3 Discussion

The results of our study reveal that many sets of BioPortal mappings lead to logical
incoherences when taken as a whole, and that many of these incoherences involve erro-
neous mappings. Thus, adding annotations to BioPortal mappings about potential log-
ical incompatibilities with other mappings would not only improve their usability for
semantic web applications, which require logical integrity, but also contribute to iden-
tify and discard erroneous mappings.

Our study also demonstrates that approximate repair algorithms such as AML-Repair
and LogMap-Repair can effectively identify most of the logical conflicts in BioPortal
mappings, as well as the mappings that cause them. Furthermore, unlike complete repair
algorithms such as those based on DDL [30], AML-Repair and LogMap-Repair are
feasible in practice (repair times in AML-Repair ranged from 10 seconds to 10 minutes,
whereas in LogMap-Repair they ranged from 3 to 92 seconds, in a quad-core computer
with 8 GB allocated RAM). Thus these algorithms could play a pivotal role in the task
of identifying and annotating conflicts between BioPortal mappings.

Furthermore, in addition to the annotation of existing mappings, AML-Repair and
LogMap-Repair could be employed to screen newly submitted mappings, so that those
leading to logical conflicts can be reviewed before being integrated into BioPortal. This
could effectively preclude the addition of some erroneous mappings, and would enable
the immediate annotation of the mappings accepted for integration.

Regarding the categories of erroneous mappings found, the category 1 errors (i.e,
mappings that include retired/obsolete entities) are straightforward to identify and han-
dle automatically, even without the use of repair algorithms. These mappings should
not be maintained as ‘active’ mappings in BioPortal given that retired/obsolete entities
are no longer be considered an active part of the ontologies. However, it makes sense
to keep track of such mappings, so the best solution would be to annotate the mappings
themselves as obsolete.

Category 2 errors (i.e., mappings between unrelated classes) should definitely be
excluded from BioPortal, whereas category 3 errors (i.e., mappings between classes
that are related but not closely) can be addressed either by exclusion or by changing
the semantic relationship. For instance, a gene and its corresponding protein could be
considered skos:relatedMatch rather than skos:closeMatch, although ideally a more de-
scriptive mapping relation should be used. However, if both ontologies describe the
gene and the protein, at least one ontology describes the relation between them, and
BioPortal includes both the gene-gene and the protein-protein mappings; then main-
taining a gene-protein mapping is semantically redundant.

Although finding category 2 and 3 errors typically requires human intervention, the
use of mapping repair algorithms is critical to facilitate their detection. Note that, not
all erroneous mappings necessarily lead to logical conflicts, particularly when the on-
tologies lack disjointness definitions. Nevertheless, addressing conflict-causing errors
will surely be a significant improvement, and the common error patterns thus identified
can be employed to search for (non-conflict causing) errors, even in ontologies that lack
disjointness restrictions.

The identification of logical conflicts caused by inherent incompatibilities between
the ontologies is also critical to understand the limits of interoperability. For instance,
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integrating OMIM and NCIT requires excluding either mappings between anatomic
entities or mappings between diseases (depending on the intended application), or ulti-
mately relaxing the disjointness restrictions in the NCIT. Additionally, such incompat-
ibilities may point to modeling errors in the ontologies, as in the EP-FMA case, and
enable their correction.

5 Conclusions

BioPortal fulfills a critical need of the biomedical community by promoting integration
and interoperability between the numerous biomedical ontologies with overlapping do-
mains. However, the different scopes of these ontologies often lead to incompatible
views of a given domain, placing restrictions on interoperability. Maintaining conflict-
ing mappings may best serve the needs of the community, as a wider mapping coverage
will satisfy more users and enable more applications. Nevertheless, if BioPortal map-
pings are to be usable on a large scale, and particularly by automatic applications, then
identifying those that lead to logical errors is paramount.

Another issue that affects BioPortal are mapping errors, which are inevitable on this
scale, particularly when most mappings are produced by automated ontology matching
techniques. Finding and correcting these errors is a daunting task, but one of the utmost
importance, as they are likely to propagate if used to draw inferences. While not all
errors cause logical conflicts, many do, and as our evaluation illustrates, identifying
these enables the discovery of error patterns that can be applied to identify further errors.

Identifying logical conflicts in BioPortal mappings thus serves the dual purpose of
improving usability and facilitating error detection. Given that using complete reason-
ers for this task is unfeasible, due to the scale of BioPortal, approximate mapping repair
systems such as AML-Repair and LogMap-Repair appear to be the ideal solution. In-
deed, our study has shown that these systems are both effective and efficient in tackling
large sets of mappings, and will be even more efficient considering that the goal is only
to identify conflicts rather than to repair them.

Our proposal is that BioPortal mappings be enriched with annotations about other
mappings they conflict with, a solution which fits into BioPortal’s community-driven
and multiple-perspective approach. While distinguishing mappings errors from incom-
patibilities will require manual analysis, this is a task that could be carried out gradually
by the community once mappings are annotated with logical conflicts.

There is, however, one type of error that can be addressed immediately: mappings
that include obsolete/retired entities. Despite the fact that there are different represen-
tations of these entities among BioPortal ontologies, identifying them (and their map-
pings) should be straightforward to do automatically. We propose that such mappings
be annotated as obsolete, which would enable BioPortal and its users to keep track of
them while allowing their automatic exclusion by applications.

Our next step will be to contact BioPortal developers and collaborate with them in
the process of finding and annotating mappings with information about logical conflicts,
by applying our repair algorithms to the whole BioPortal.
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Abstract. The Ontology Alignment Evaluation Initiative is a set of
benchmarks for evaluating the performance of ontology alignment sys-
tems. In this paper we re-examine the Conference track of the OAEI,
with a focus on the degree of agreement between the reference align-
ments within this track and the opinion of experts. We propose a new
version of this benchmark that more closely corresponds to expert opin-
ion and confidence on the matches. The performance of top alignment
systems is compared on both versions of the benchmark. Additionally, a
general method for crowdsourcing the development of more benchmarks
of this type using Amazon’s Mechanical Turk is introduced and shown
to be scalable, cost-effective and to agree well with expert opinion.

1 Introduction

The Ontology Alignment Evaluation Initiative (OAEI) is now a decade old,
and it has been extremely successful by many different measures: participation,
accuracy, and the variety of problems handled by alignment systems have all in-
creased, while runtimes have decreased [4]. The OAEI benchmarks have become
the standard for evaluating general-purpose (and in some cases domain-specific
or problem-specific) alignment systems. In fact, you would be hard-pressed to
find a publication on an ontology alignment system in the last ten years that
didn’t use these benchmarks. They allow researchers to measure their system’s
performance on different types of matching problems in a way that is considered
valid by most reviewers for publication. They also enable comparison of a new
system’s performance to that of other alignment systems without the need to
obtain and run the other systems.

When a benchmark suite becomes so widely used and influential, it is impor-
tant to re-evaluate it from time to time to ensure that it is still relevant and
focused on the most important problems in the field. In this paper we do this
for the Conference track within the OAEI benchmark suite. In particular, we ex-
amine the ramifications on ontology alignment system evaluation of the rather
strong claims made by the reference alignments within the Conference track, in
terms of both the number of matches and the absolute certainty of each match.

The paper is organized as follows: In Section 2 we discuss the current version of
the OAEI Conference track, including the performance of automated alignment
systems and a group of experts as evaluated with respect to the existing refer-
ence alignments. Section 3 introduces a new version of the Conference reference
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alignments that includes varying confidence values reflecting expert disagree-
ment on the matches. Performance of current alignment systems is evaluated on
this benchmark in terms of both traditional precision and recall and versions
of these metrics that consider the confidence values of the matches. Because
it is difficult to gather enough expert opinions to generate reference alignment
benchmarks of this type, Section 4 analyzes the feasibility of using Amazon’s
Mechanical Turk webservice for this purpose and introduces an openly available
software tool to automate the process. Finally, Section 5 discusses related work
and Section 6 concludes the paper by summarizing the results of this research
and describing how they can be used in the future.

The central contributions of this paper are:

– A new version of a popular ontology alignment benchmark that more fully
reflects the opinion and degree of consensus of a relatively sizable group of
experts.

– Evaluation of 15 state-of-the-art alignment systems against the current and
proposed revision of the benchmark.

– A general method for creating more benchmarks of this type that is scalable,
cost-effective, and agrees well with expert opinion.

2 The OAEI Conference Track

The OAEI Conference track contains 16 ontologies covering the domain of confer-
ence organization. These ontologies were created to reflect the material on confer-
ence websites, software tools used for organizing conferences, and the knowledge
of people involved in conference administration. Alignment systems are intended
to generate alignments between each pair of ontologies, for a total of 120 align-
ments. Each system’s output is evaluated against reference alignments in terms
of precision, recall, and f-measure. A subset of 21 reference alignments have been
published. The intent of the track is to provide real-world matching problems
over ontologies covering the same domain. More detail about the track can be
found at the OAEI website: http://oaei.ontologymatching.org

The ontologies that comprise the Conference track were developed in 2005 as
part of the OntoFarm project [17]. As explained in [4], the Conference track,
together with the Anatomy track, was introduced to provide more realism and
difficulty than that offered by the synthetically-generated Benchmark track. The
history of the Conference track can be gleaned from the OAEI website. The track
has been a part of every OAEI since 2006. For the first two years, reference align-
ments were unavailable and so alignments were evaluated using a combination of
manual labeling by a group of experts (where each match was marked correct,
incorrect, or unclear), data mining and logical reasoning techniques. Interest-
ing or unclear matches were discussed in “Consensus Workshops.” In 2008 the
track organizers created a reference alignment for all possible pairs of five of
the conference ontologies. The reference alignments were based on the majority
opinion of three evaluators and were discussed during the consensus workshop
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Fig. 1. Number of participating systems throughout the history of the Conference track

that year. The confidence value for all mappings in the reference alignments is
1.0. By 2009 the reference alignments contained all pairs for seven ontologies and
the consensus workshop had been phased out.1 Additionally, as the number of
participating systems grew (see Figure 1), the manual labeling was scaled back
from one of correct, incorrect, or unclear to simply correct or incorrect. Further,
this labeling was performed on the 100 matches in which the alignment systems
had the highest confidence. By 2011 manual labeling was eliminated entirely and
evaluation relied completely on the reference alignments and logical coherence.
Each step in this history, while understandable due to the increasing number of
participating systems, resulted in a loss of nuance in evaluation.

Today the reference alignments for the Conference track are being used to re-
port precision and recall values for nearly all ontology alignment systems being
developed. As can be seen in Figure 2, performance has improved significantly
over the existence of the track. Also, none of the matches in the reference align-
ments have been questioned in any of the ontology matching workshop papers
submitted by tool developers from 2006 through 2013, and in the last three years
of the ontology matching workshop none of the matches have come up for de-
bate. However, it should be noted that these alignments were developed by just
three individuals (with support from the consensus workshops). We wanted to
determine the degree of consensus on these reference alignments from a group

1 These reference alignments were revised slightly in 2012 by computing the transi-
tive closure of the original alignments and manually resolving any logical conflicts.
This revision was minor and did not significantly impact the performance of most
alignment systems.
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Fig. 2. Best and median f-measure throughout the history of the Conference track

of experts. Initially we collected all of the matches in the reference alignments
together with any match that was produced by at least one alignment system
that competed in the 2013 OAEI. This resulted in 757 matches. We asked a
group of people familiar with both ontologies and academic conferences to indi-
cate whether or not they agreed with each match. The experts politely refused
to opine on so many matches. In order to prune the question set, we adopted
the approach described in [15] by using the consensus of existing alignment sys-
tems as a filter. In our case the alignment systems we consulted were the 2013
OAEI competitors that performed better than the baseline string similarity met-
ric edna. There were 15 such systems, which is a much larger sample than was
used for the filtering step in [15]. We considered those matches in the refer-
ence alignments that at least one of the qualifying alignment systems disagreed
on. This resulted in 168 matches that were presented to the experts for vali-
dation. The 141 matches that all of the alignment systems agreed upon were
simple string equivalences. In fact, the Conference track seems quite challenging
for current alignment systems, most of which are unable to identify the large
majority of matches in the reference alignments that do not involve equivalent
or nearly-equivalent strings. Additionally, there does not seem to be evidence
of widespread overfitting despite the reference alignments being made available
over five years ago. This is similar to the lack of overfitting discovered in an anal-
ysis of results on the Benchmark track after it had been available for a similar
amount of time [14], and encouraging for the field of ontology alignment.

The experts were given a link to download a Java program and accompanying
data files. See Figure 3 for a screenshot of the program during execution. Note
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Fig. 3. Sample matching question presented to users

that the entity labels from each match were stripped of the URL, tokenized,
and put into lower case. Additionally, in order to provide the experts with some
context for the labels, all of the axioms in the ontologies were translated to
English using Open University’s SWAT Natural Language Tools.2 Any axioms
related to either of the entities in the match were displayed to the users. Users
were then asked a question of the form “Does labelA mean the same thing as
labelB?” and prompted to choose a yes or no answer.

We received input from 13 experts. Using a majority rules approach (i.e. con-
sidering any matches on which more than 50 percent of the experts agreed to be
valid), the experts concurred with 106 of the 168 matches. Assuming that the ex-
perts would also have accepted all of the 141 matches that were not asked about
because all of the alignment systems agreed upon them and that they would not
have identified any additional mappings not in the reference alignments, their
precision is 1.0. The second part of this assumption is admittedly more of a leap,
but seems reasonable because no other matches were suggested by more than one
of the top-performing alignment systems, and the developers of those systems are
encouraged to bring matches that they believe to be correct but are not in the
reference alignment to the attention of the track organizers. The expert recall is
0.80 and their f-measure is 0.89. The f-measure of the individual experts ranges
from 0.78 to 0.95 when computed against the OAEI reference alignment. This
compares to an f-measure of 0.74 for the top-performing automated alignment
system in 2013, while the median of this group of systems was 0.64.

2 http://swat.open.ac.uk/tools/

http://swat.open.ac.uk/tools/


38 M. Cheatham and P. Hitzler

Table 1. Matches on which all experts agreed

Entity 1 Entity 2 Test Name

email E-mail cmt-sigkdd
has an email hasEmail conference-confOf
hasSurname hasLastName confOf-edas
has a review hasReview conference-ekaw
hasAuthor writtenBy cmt-confOf
hasFirstName hasFirstName confOf-edas
has the last name hasLastName conference-edas
CoffeeBreak Coffee break edas-iasted
isReviewing reviewerOfPaper edas-ekaw

One of the main things that stands out from the results of this experiment
is the lack of consensus among the experts on these matches. For each match,
we consider the certainty of our expert group as the difference between the
percentage of people who answered “yes” and the percentage who answered
“no.” The average certainty over all matches was 43%, with a variance of 9%.
There was total agreement on just 9 matches, while the experts were split 7-6
or 6-7 on 40 matches. Further, 6 of the 9 matches with complete consensus were
exact or near lexical matches that were missed by one or more of the alignment
systems for some reason (see Table 1). The experts deemed all of these matches
to be valid – there were no cases in which the experts unanimously disagreed
with a match.

3 Conference v2.0

In 2011 the developers of MapPSO pointed out that in the reference alignment
for the Benchmark track (a separate testset offered alongside the Conference
track) there were two matches resulting from the synthetic testset generation
process that could not possibly be detected unequivocally from an information
theoretic perspective. They argue that since neither humans nor machines could
resolve these mappings, the confidence should be set at 50% for each [1]. We
claim that our results on the experiment discussed in the previous section show
that a similar issue is occurring with the Conference track. It is less than ideal
to evaluate automated alignment systems against a reference alignment with
confidence values for all matches equal to 1.0 when the degree of consensus
among human experts is actually quite different. Therefore, we have established
another version of the Conference track reference alignments which has confi-
dence values that reflect the percentage of agreement for each match among our
group of experts. This alignment is available in the Alignment API format from
http://www.michellecheatham.com/files/ConferenceV2.zip.

The first six columns of Table 2 show the results of the 2013 alignment sys-
tems that performed better than the string edit distance baseline on both the
original (v1) and our revised (v2) versions of this benchmark. These columns
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Table 2. Results of qualifying 2013 OAEI alignment systems on the traditional and
proposed revision of the Conference track

System Pre v1 Rec v1 Fms v1 Pre v2 Rec v2 Fms v2 Precont Reccont Fmscont

AML 0.87 0.56 0.68 0.83 0.67 0.74 0.88 0.65 0.75
AMLback 0.87 0.58 0.70 0.81 0.68 0.74 0.88 0.68 0.76
CIDER CL 0.74 0.49 0.59 0.74 0.61 0.67 0.75 0.60 0.67
HerTUDA 0.74 0.50 0.60 0.74 0.63 0.68 0.75 0.66 0.70
HotMatch 0.71 0.51 0.60 0.71 0.64 0.67 0.71 0.66 0.68
IAMA 0.78 0.48 0.59 0.78 0.60 0.68 0.78 0.64 0.70
LogMap 0.80 0.59 0.68 0.76 0.70 0.73 0.83 0.56 0.67
MapSSS 0.74 0.50 0.60 0.73 0.62 0.67 0.72 0.64 0.68
ODGOMS 0.76 0.51 0.61 0.76 0.64 0.70 0.78 0.67 0.72
ODGOMS1 2 0.74 0.60 0.66 0.70 0.72 0.71 0.71 0.73 0.72
ServOMap 0.72 0.55 0.63 0.68 0.65 0.67 0.71 0.67 0.69
StringsAuto 0.71 0.54 0.61 0.68 0.65 0.66 0.67 0.67 0.67
WeSeEMatch 0.85 0.47 0.60 0.85 0.58 0.69 0.84 0.61 0.70
WikiMatch 0.73 0.49 0.59 0.73 0.62 0.67 0.73 0.65 0.69
YAM++ 0.80 0.69 0.74 0.73 0.79 0.76 0.80 0.54 0.65

show the traditional precision, recall, and f-measure metrics. In this evaluation
approach, matches in the new version of the benchmark with a confidence of
0.5 or greater are considered fully correct and those with a confidence less than
0.5 are considered completely invalid. Thresholds for the matchers’ results were
set at a value that optimized f-measure for each system, in accordance with the
evaluation procedure used by the OAEI. A hypothetical alignment system that
perfectly agreed with the current version of the Conference track reference align-
ments would have a precision of 0.8 and a recall of 1.0 on this version, yielding an
f-measure of 0.89. All of the qualifying 2013 alignment systems saw an increase
in traditional f-measure. In fact, six systems saw a double-digit percentage im-
provement. In most cases precision remained constant or dropped slightly while
recall increased significantly (see Figure 4). This is expected because no new
matches were added to the reference alignments, but those that the experts did
not agree on were removed. If we rank the systems in terms of f-measure, we see
that the top five systems remain consistent across both versions. Also interesting
to note, the rank of StringsAuto, the authors’ own automated alignment system
[2], dropped from the middle of the pack to next-to-last when evaluated under
this version of the benchmark. This was by far the largest drop in rank of any
system. StringsAuto approaches the ontology alignment problem solely through
the use of string similarity metrics. The specific metrics used are chosen based
on global characteristics of the particular ontologies to be matched. The relative
success of this approach on the existing version of the Conference track may
indicate a bias towards exact or near-exact lexical matches in the benchmark.

Intuitively, it seems desirable to penalize an alignment system more if it fails
to identify a match on which 90% of the experts agree than one on which only
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Fig. 4. Percent difference in traditional precision, recall, and f-measure between the
current and proposed revision of the Conference track

51% of them agree. To do this, we evaluate the same group of 2013 systems based
on modified precision and recall metrics that consider the confidence values of
the matches, i.e., precision and recall metrics which are continuous versions of
the traditional, discrete ones. Let us briefly reflect on how to do this. In order
to follow the intuition of the discrete (Boolean, two-valued) case, we would like
to retain the usual definitions of precision, recall, and f-measure in terms of the
numbers of true positives (tp), false positives (fp), and false negatives (fn), which
are as follows.

Precision =
tp

tp + fp

Recall =
tp

tp + fn

F-measure =
2 · tp

2 · tp + fp + fn
=

2 · Precision · Recall
Precision + Recall

It remains to obtain tp, fp, and fn for the case where both the benchmark and
the results of the system to be evaluated are expressed in terms of confidence
values for each alignment.

Given a potential match i (say, between “conference participant” and “par-
ticipant”), let b(i) ∈ [0, 1] denote the confidence value assigned to this match
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by the benchmark, and let s(i) ∈ [0, 1] denote the confidence value assigned
to this match by the system to be evaluated. Interpreting b(i) and s(i) as cer-
tainty values in the sense of fuzzy set theory [12] – which is reasonable from our
perspective – we thus arrive at the formula

tp =
∑

i∈I

T (b(i), s(i)),

where T is some t-norm, i.e., a continuous-valued version of logical conjunction.
The most obvious choices for the T-norm are arguably the product t-norm and
the Gödel (or minimum) t-norm – it actually turns out that there is not much
difference between these two with respect to our analysis. In fact the effect is
within rounding error in most cases and maximally 3% (resulting in, e.g., f-
measure of .65 rather than .67). In the following we will thus stick with the
product t-norm.3

From this perspective, we thus arrive at the following.

tp =
∑

i∈I

b(i) · s(i)

fp =
∑

i∈{j∈I|b(j)<s(j)}
|b(i)− s(i)|

fn =
∑

i∈{j∈I|b(j)>s(j)}
|b(i)− s(i)|

Note that all three revert to their original definition in a discrete (Boolean)
setting in which only confidence values of 0 and 1 are used.

With these definitions, we thus obtain the following.

Precision =
tp

tp + fp
=

∑
i∈I b(i) · s(i)∑

i∈I b(i) · s(i) +
∑

i∈{j∈I|b(j)<s(j)} |b(i)− s(i)|

Recall =
tp

tp + fn
=

∑
i∈I b(i) · s(i)∑

i∈I b(i) · s(i) +
∑

i∈{j∈I|b(j)>s(j)} |b(i)− s(i)|

F-measure =
2 · tp

2 · tp + fp + fn
=

2 ·
∑

i∈I b(i) · s(i)
2 ·

∑
i∈I b(i) · s(i) +

∑
i∈I |b(i)− s(i)|

Note that the f-measure is also rather intuitive: It is the sum
∑

i∈I |b(i) − s(i)|
of all differences in confidence, normalized (using tp) to a value between 0 and
1. The value for (fp + fn) is captured in this sum of differences.

A Java class that computes these metrics is included with the downloadable
version of the reference alignments, together with a small driver program illus-
trating its use.

The last three columns of Table 2 show the results of the alignment systems
when evaluated with these metrics. The continuous precision for most systems

3 Note that the product t-norm also lends itself to a probabilistic interpretation.
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was slightly higher than that of the traditional precision metric on Conference
v2. The average increase was about 3%. The continuous recall measures were
also slightly higher (generally 3-5%) than the traditional version. Half of the
alignment systems evaluated here created alignments that consisted entirely or
predominantly of matches with a confidence at or very near 1.0. If confidence
values were stressed more as part of the alignment system evaluation, we would
likely see larger differences between the continuous and discrete (traditional)
precision and recall measures.

An interesting side note is that this method of evaluation does not involve
setting any thresholds, either for the reference alignment or the matching sys-
tems. We argue that this is an improvement because it eliminates the need to
artificially discretize a similarity assessment that is inherently continuous. It also
considerably speeds up the evaluation process.

The performance of two systems in particular looks very different when these
confidence-conscious versions of precision and recall are used to evaluate them.
LogMap and YAM++ move from the top three to the bottom three systems
when ranked by f-measure. These systems assign relatively low confidence values
(e.g. 0.5-0.75) for many matches even when the labels of the entities involved
are identical, which apparently does not correspond well to human evaluation of
the match quality.

4 Using Mechanical Turk to Establish Benchmarks

While it is clearly valuable to have ontology alignment benchmarks that reflect
the consensus opinions of a large number of experts, it is very difficult to per-
suade such experts to take the time necessary to create the required reference
alignments. What if we could leverage the so-called “Wisdom of Crowds” for
this task instead? We have investigated the use of Amazon’s Mechanical Turk
webservice for this purpose.

Amazon publicly released Mechanical Turk in 2005. It is named for a famous
chess-playing “automaton” from the 1700s. The automaton actually concealed
a person inside who manipulated magnets to move the chess pieces. Similarly,
Amazon’s Mechanical Turk is based on the idea that some tasks remain very dif-
ficult for computers but are easily solved by humans. Mechanical Turk therefore
provides a way to submit these types of problems, either through a web inter-
face or programmatically using a variety of programming languages, to Amazon’s
servers, where anyone with an account can solve the problem. In general, this
person is compensated with a small sum of money, often just a cent or two. The
solution can then be easily retrieved for further processing, again either manually
or programmatically. While there are few restrictions on the type of problems
that can be submitted to Mechanical Turk, they tend towards relatively simple
tasks such as identifying the subject of an image, retrieving the contents of re-
ceipts, business cards, old books, or other documents that are challenging for
OCR software, transcribing the contents of audio recordings, etc. As of 2010,
47% of Mechanical Turk workers, called “Turkers”, were from the United States
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while 34% were from India. Most are relatively young (born after 1980), female,
and have a Bachelors degree [8]. It is possible for individuals asking questions
via Mechanical Turk (called Requesters) to impose qualifications on the Turkers
who answer them. For instance, Requesters can specify that a person lives in a
particular geographic area, has answered a given number of previous questions,
has had a given percentage of their previous answers judged to be of high qual-
ity, or pass a test provided by the Requester. In addition, Requesters have the
option to refuse to pay a Turker if they judge the Turker’s answers to be of poor
quality.

We used Mechanical Turk to ask 40 individuals their opinion on the same 168
matches presented to the group of experts. Each question was formatted in the
same way as Figure 3, with the exception of the Next button. The questions
were presented in 21 batches with 8 questions per batch. Respondents earned 16
cents for each batch and were paid regardless of the specific answers they gave.
No qualifications were placed on who could work on the tasks.

We created alignments for the pairs of ontologies in the Conference track based
on the results from the 40 Turkers. The confidence of each match was set to the
percentage of Turkers who indicated the match was valid. These alignments were
then evaluated against both the current and proposed revisions of the reference
alignments. The results are shown in Table 3. The first line in the table shows
that the recall is somewhat low on the current version of the Conference track.
This is arguably an indication that the current version attempts to map too
much. Remember from Section 2 that the performance of the experts, when
taken as a group, was nearly identical (their precision was 1.0 and their recall was
0.80, yielding an f-measure of 0.89). Though further experimentation is necessary
for confirmation, these results support the hypothesis that using Mechanical
Turk to validate existing reference alignments yields essentially the same results
as those produced by experts. Moreover, the third row in Table 3 indicates
that the Turkers don’t just agree with the experts in a binary context – the
degree of consensus among them also closely corresponded to that of the experts,
resulting in very similar confidence values. These results are quite encouraging
– for $134.40 we generated a high-quality reference alignment in less than two
days (over Easter weekend, no less). However, they may be somewhat overly
optimistic, because the results were calculated on the reference alignments in
their entirety, but 141 of the 309 matches in those alignments were trivial and
therefore not included in our survey. If we compute the same metrics but restrict
them to the subset of matches on which the Turkers and experts were surveyed,
we arrive at the values in the last row of Table 3. These results are still quite
strong, and we feel that this is a viable method of benchmark generation. This
belief is supported by the fact that when the performance of the top alignment
systems from the 2013 OAEI on the expert-generated reference alignments is
compared to what it would be if the reference alignments were instead based
solely on the results from the Turkers, there is little practical difference between
the two. None of the continuous precision, recall, or f-measures differs by more
than 0.02, and the vast majority are within 0.01.
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Table 3. Performance of the Mechanical Turk-generated alignments on the traditional
and proposed revision of the Conference track

Test Version Prec. Recall F-meas.

Conference v1 1.00 0.81 0.90
Conference v2 (discrete) 0.88 0.89 0.88
Conference v2 (continuous) 0.98 0.96 0.97
Conference v2 subset (continuous) 0.94 0.88 0.91

Other researchers have mentioned a problem with spammers on Mechani-
cal Turk, who will answer questions randomly or with some other time-saving
strategy in order to maximize their profit-to-effort ratio [15]. While we did not
have this issue during our experiments, it might be possible to further optimize
the crowdsourcing of reference alignments by reducing the number of Turkers
recruited for the effort. It stands to reason that the fewer inputs that are col-
lected, the higher quality each one needs to be in order to reap reasonable results.
Amazon’s Mechanical Turk Requester Best Practices Guide4 suggests several
potential ways to find high-quality Turkers, including using qualification tests
or “golden questions.” In an effort to identify high-performing individuals, we
implemented the golden question approach, in which a Turker’s answers are val-
idated against a set of questions for which the answers are obvious. In this case,
there were nine questions on which all of the experts agreed. There were 10
Turkers who agreed on either 8 or 9 of these golden questions. We call these
respondents “Super Turkers.” We created alignments using only the results of
these Super Turkers and evaluated them with respect to the expert-generated
reference alignments. If we evaluate their results over the whole of the Confer-
ence v2 reference alignments, we arrive at essentially the same result we achieved
using the 40 regular Turkers. However, if we evaluate the Super Turker results
over the subset of unclear matches, the performance is slightly worse than that
of the entire group. Actually, it is roughly the same as the performance of a
sample of the same size drawn randomly (see Figure 5, which shows the contin-
uous precision, recall, and f-measure for varying numbers of randomly selected
Turkers). So it does seem that the wisdom lies in the crowd rather than a few
individuals in this instance.

The Java code to interact with Mechanical Turk and generate the reference
alignments is available at http://www.michellecheatham.com/files/MTurk.zip.
The program can be run from the command line and requires the following
input:

– The ontologies to be aligned, in OWL or RDF format.

– A text file specifying the particular matches to be verified. One option would
be to use one or more automated alignment algorithms to arrive at a set of
possibilities.

4 http://mturkpublic.s3.amazonaws.com/docs/MTURK_BP.pdf

http://mturkpublic.s3.amazonaws.com/docs/MTURK_BP.pdf
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Fig. 5. Performance of varying-sized groups of Turkers randomly selected from the
responses

– A text file containing the English translations of all of the axioms in both
ontologies. This can be produced using the tool at http://swat.open.ac.uk/
tools/.

– Two Mechanical Turk properties files containing information such as a Re-
quester access key, the payment amount per question, and any qualifications
required for Turkers to accept the assignments.

A Mechanical Turk Requester account with sufficient funds is required to
submit questions to Amazon. There is a sandbox available from Amazon to test
the assignments before submitting them.

5 Related Work

Most of the existing work on benchmark development for evaluation of ontol-
ogy alignment systems has been conducted as part of the OAEI. The Benchmark
track of the OAEI, which contains synthetically-generated tests to exercise differ-
ent aspects of an alignment system, was revised in 2011 to increase its variability
and difficulty [14]. The creation of a track within the OAEI in 2008 focused on
evaluating the matching of instance data is described in [5]. There is also a
system called TaxME 2 that generates large scale reference alignments to eval-
uate the scalability of alignment systems. These reference alignments were built
semi-automatically from Google, Yahoo and Looskmart web directories [6]. In
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addition, there are more general papers on the qualities of a good benchmark,
such as “Good Benchmarks are Hard to Find” [3], “The Art of Building a Good
Benchmark” [7], and “Using Benchmarking to Advance Research” [16].

In terms of using crowdsourcing for tasks related to ontologies, a group of re-
searchers from Stanford University has recently published several papers on using
Mechanical Turk to verify relationships within biomedical ontologies [10,13,11,9].
This is clearly closely related to the work presented in Section 4 of this paper,
though our focus on generating reference alignments between pairs of ontolo-
gies and the potentially more “approachable” domain of conference organization
caused us to have slightly different experiences. In particular, when relationships
to be verified come from separate ontologies rather than from within a single one,
ontology design decisions can confuse this issue. Also, precise vocabulary such
as that found in biomedical ontologies is less subject to different interpretations.
The end result was that we did not need to qualify the Turkers who worked on
our tasks in order to obtain good results as the group from Stanford did, but it
was harder to judge the accuracy of the crowdsourced results due to the lack of
strong consensus among both experts and Turkers.

There is also an alignment system called CrowdMap that uses Mechanical
Turk to generate alignments between two ontologies [15]. The focus in that
work is on generating alignments from scratch, which are then evaluated against
the existing OAEI benchmarks (including the Conference track). While that is a
topic we are interested in as well, we view the work presented here as complemen-
tary since our current goal is to establish a new version of the Conference track
that more accurately reflects expert opinion. For instance, the authors of [15] in-
dicated that some of the mappings from the reference alignments seemed suspect,
including WelcomeTalk = Welcome address, SocialEvent = Social program and
Attendee = Delegate (from the edas-iasted test case). Our work here has shown
that the authors do indeed have a point in at least the last of these cases – our
experts had a confidence of 0.85, 0.69, and 0.38, respectively, in those matches.

There has also been research into using crowdsourcing in other contexts that
bear some similarity to ontology alignment, such as natural language processing,
information retrieval, and audio processing [19,18].

6 Conclusions and Future Work

In this paper we show that the reference alignments in the current version of
the OAEI Conference track do not reflect the high degree of discord present
among experts familiar with both ontology design and conference organization.
We suggest a revised version of this benchmark with confidence values that
quantify the degree of consensus on each match. This benchmark can be used
in the same manner as the current version by considering any matches with
a confidence of 0.5 or greater to be fully correct and all other matches to be
completely invalid. Alternatively, the revised version can be used with variants
of the standard precision and recall metrics that consider the confidence levels in
both the reference alignments and the alignments to be evaluated. We argue that
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this more clearly reflects the degree to which an alignment system’s results match
user expectations. A comparison of the top 15 performing alignment systems
from the 2013 OAEI on the current and revised versions of the Conference track
is presented. Finally, a general method of producing new reference alignments
using crowdsourcing via Mechanical Turk is introduced and validated. A Java
implementation of this system is available as open source software.

On a more general note, this paper stressed that alignments are used for a
variety of purposes. For instance, an alignment used to query multiple datasets
and merge the results has different requirements than one used to facilitate
logical reasoning across datasets. The point here is that alignments are inherently
biased (e.g. towards a particular viewpoint of the domain or a particular use
case for the ontology). Crowdsourcing a reference alignment is one way to reflect
the natural spectrum of different biases. The result of such crowdsourcing is
meaningful confidence values for mappings between ontologies. It should also be
noted that a lack of consensus on mappings, either on the part of experts or
automated alignment systems, is not a sign that something is wrong. Rather,
the degree of consensus is in some sense a reflection of both the reasonableness
of the mapping and the breadth of situations in which it makes sense.

Our future work in this area will involve the further verification of the crowd-
sourcing approach to reference alignment generation, and the creation of addi-
tional benchmarks. We also plan to integrate Mechanical Turk into an existing
ontology alignment system with the specific goal of improving performance on
property alignment, particularly in cases where a property in one ontology is
related to a class in another ontology.
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Abstract. In this paper we define the notion of an axiom dependency
hypergraph, which explicitly represents how axioms are included into
a module by the algorithm for computing locality-based modules. A
locality-based module of an ontology corresponds to a set of connected
nodes in the hypergraph, and atoms of an ontology to strongly connected
components. Collapsing the strongly connected components into single
nodes yields a condensed hypergraph that comprises a representation of
the atomic decomposition of the ontology. To speed up the condensation
of the hypergraph, we first reduce its size by collapsing the strongly con-
nected components of its graph fragment employing a linear time graph
algorithm. This approach helps to significantly reduce the time needed
for computing the atomic decomposition of an ontology. We provide an
experimental evaluation for computing the atomic decomposition of large
biomedical ontologies. We also demonstrate a significant improvement in
the time needed to extract locality-based modules from an axiom depen-
dency hypergraph and its condensed version.

1 Introduction

A module is a subset of an ontology that includes all the axioms required to
define a set of terms and the relationships between them. Computing minimal
modules is very expensive (or even impossible) and cheap approximations have
been developed based on the notion of locality [7]. Module extraction facilitates
the reuse of existing ontologies. Moreover, some meta-reasoning systems such as
MORe1 and Chainsaw2 also exploit module extraction techniques for improving
the performance of some reasoning tasks.

The number of all possible modules of an ontology can be exponential wrt.
the number of terms or axioms of the ontology [7]. Atomic decomposition was
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introduced as a succinct representation of all possible modules of an ontology [5].
Tractable algorithms for computing the atomic decomposition for locality-based
modules have been defined [5], and subsequently improved further [14]. Moreover,
it has been suggested that the atomic decomposition of an ontology can help to
improve the performance of the locality-based module extraction algorithm [4].

In this paper we introduce the notion of an axiom dependency hypergraph
(ADH) for OWL ontologies, which explicitly represents how axioms are included
into a module by the locality-based module extraction algorithm [7]. This algo-
rithm first identifies the axioms that are non-local wrt. a given signature Σ,
and then it extends Σ with the symbols of the axioms selected. In this fashion,
the algorithm iteratively includes in the module more axioms of the ontology
that become non-local wrt. to the extended signature until no more axioms are
added. The hyperedges of an ADH indicate which axioms become non-local wrt.
a signature after one or more axioms of the ontology have been included in the
module [9]. Unlike other hypergraph representations of ontologies [12,10], the
relationship between atoms of an ontology and the strongly connected compo-
nents (SCCs) of the ADH becomes apparent. This allows us to employ standard
algorithms from graph theory to compute atoms and locality-based modules.

To speed up the computation of SCCs in a directed hypergraph, we first com-
pute the SCCs of its graph fragment (only directed edges are considered), and
subsequently we collapse them into a single nodes. Note that in directed graphs,
the SCCs can be computed in linear time wrt. the size of the graph [13], whereas
in directed hypergraphs, this process is at least quadratic [1]. In this way, we
manage to reduce the size of the original hypergraph significantly, in some cases,
which then reduces the time needed for computing the SCCs in the hypergraph.
The result of computing and collapsing all SCCs of an axiom dependency hyper-
graph yields its condensed version, a condensed axiom dependency hypergraph.
The graph fragment of this hypergraph corresponds to the atomic decomposition
of the ontology as introduced in [5]. From the condensed axiom dependency hy-
pergraph, it is also possible to compute locality-based modules using an adapted
version of the modularization algorithm discussed in [7]. In this case, a module
correspond to a connected component in the hypergraph.

We implemented our method in a Java prototype named HyS. We compared
our prototype against state-of-the-art implementations for computing locality-
based modules and atomic decomposition [14,15]. We confirm a significant im-
provement in running time for a selection of large biomedical ontologies from
the NCBO Bioportal.3

The paper is organised as follows. In Section 2 we present relevant notions
on syntactic locality, atomic decomposition, and hypergraphs. In Section 3 we
introduce the notion of axiom dependency hypergraphs, and we use this notion to
characterise locality-based modules and the atomic decomposition of any OWL
ontology. We explain implementation details of HyS in Section 4, and we report
on the result of the evaluation of our Java prototype in Section 5. We conclude
this paper in a final section.

3 http://bioportal.bioontology.org/

http://bioportal.bioontology.org/
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2 Preliminaries

We consider ontologies formulated in the expressive description logic SROIQ [8]
which underlies the Web Ontology Language OWL 2.4 For the evaluation of our
algorithms for computing modules and the atomic decomposition as introduced
in this paper, we consider prominent biomedical ontologies formulated in the
light-weight description logic EL++ [2], which is at the core of the OWL 2 EL
profile.5 We refer to [3] for a detailed introduction to description logics.

2.1 Syntactic Locality-Based Modules

For an ontologyO and a signature Σ, a moduleM is a subset ofO that preserves
all entailments formulated using symbols from Σ only. A signature Σ is a finite
set of symbols, and we denote with sig(X) the signature of X , where X ranges
over any syntactic object.

Definition 1 (Module). M ⊆ O is a module of O wrt. a signature Σ if for
all entailments α with sig(α) ⊆ Σ: M |= α iff O |= α. �

Computing a minimal module is hard (or even impossible) for expressive frag-
ments of OWL 2. The notion of syntactic locality was introduced to allow for
efficient computation of approximations of minimal modules [7]. Intuitively, an
axiom α is local wrt. Σ if it does not state anything about the symbols in Σ.
In this case, an ontology can safely be extended with α, or it can safely import
α, where ‘safe’ means not changing the meaning of terms in Σ. A locality-based
module wrt. Σ of an ontology consists of the axioms that are non-local wrt. Σ
and the axioms that become non-local wrt. Σ extended with the symbols in
other non-local axioms. Typically the notions ⊥-locality and �-locality are con-
sidered [7]. We denote with Modx

O(Σ) the x-local module of an ontology O wrt.
Σ, where x ∈ {⊥,�}.

Checking for syntactic locality involves checking that an axiom is of a certain
form (syntax), no reasoning is needed, and it can be done in polynomial time [7].
However, the state of non-locality of an axiom can also be checked in terms of
signature containment [12]. To this end, we introduce the notion of minimal
non-locality signature for SROIQ axioms.

Definition 2 (Minimal non-Locality Signature). Let x ∈ {⊥,�} denote a
locality notion. A Minimal non-x-Locality Signature for an axiom α is a sig-
nature Σ ⊆ sig(α) such that α is not x-local wrt. Σ, and Σ is minimal (wrt.
set inclusion) with this property. The set of minimal non-x-locality signatures is
denoted by MLS x(α). �

The notion of minimal non-locality signature turns out to be equivalent to the
notion of minimal globalising signatures, which were introduced specifically for
computing modules from an atomic decomposition [4].

4 http://www.w3.org/TR/owl2-overview/
5 http://www.w3.org/TR/owl2-profiles/#OWL_2_EL

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL


52 F. Mart́ın-Recuerda and D. Walther

The following example shows that there can be exponentially many minimal
non-locality signatures for an axiom using merely conjunction and disjunction
as logical operators.

Example 1. Let α = (X11�X12�· · ·�X1m)�· · ·� (Xn1�Xn2�· · ·�Xnm) 	 Y
be an axiom. The minimal non-⊥-locality signature MLS(α) of α is as follows:

MLS⊥(α) = {{X1i1 , X2i2 , . . . , Xnin} |
i1, i2, . . . , in ∈ {1, ...,m}}

Then: |MLS⊥(α)| = mn. �

However, exponentially many minimal non-locality signatures can be avoided
if the axiom is normalised. An ontology O (that is formulated in the description
logic SRIQ) is normalised by applying the normalisation rules presented in [10],
which are an extension of the normalisation for EL ontologies [12]. Axioms of
a normalised ontology have one of the following forms, where Ai ∈ NC ∪ {�},
Bi ∈ NC ∪ {⊥}, Ri ∈ NR ∪ inv(NR), X,Y ∈ {∃R.B, (≥nR.B), ∃R.Self | B ∈
NC, R ∈ NR ∪ inv(NR), n ≥ 0} and �,m ≥ 0:

α1 : A1 � . . . � A� 	 B1 � . . . �Bm α5 : X 	 Y
α2 : X 	 B1 � . . . �Bm α6 : R1 	 R2

α3 : A1 � . . . � A� 	 Y α7 : Dis(R1, R2)
α4 : R1 ◦ . . . ◦R� 	 R�+1

where inv(NR) is the set of inverse roles r−, for r ∈ NR, and ∃R.Self expresses
the local reflexivity of R. The normalisation of an ontology O runs in linear time
in the size of O. The normalised ontology preserves Σ-entailments of O [10].6

Notice that the normalisation rules can be applied backwards over normalised
axioms to compute the original axioms of the ontology. However, denormalisation
requires a careful application of the normalisation rules to ensure that we obtain
the original axioms.

There are at most two minimal non-locality signatures for a normalised axiom.

Proposition 1. Let α be a normalised axiom. Then: |MLS⊥(α)| = 1 and
|MLS�(α)| ≤ 2. �

We can apply additional normalisation rules to reduce the number of symbols
on the left- and right-hand side of normalised axioms [9]. Bounding the number
of symbols in an axiom results in bounding the size of the minimal non-locality
signatures of the axiom.

We now give simple conditions under which normalised axioms are not syn-
tactic local. Similar non-locality conditions are presented in the notions of ⊥-
and �-reachability in [10].

6 The normalisation in [10] can straightforwardly be extended to SROIQ-ontologies.
Then a normalised axiom can be of the forms as described, where Ai and Bi addi-
tionally range over nominals. However, nominals are not contained in any minimal
non-locality signature of a normalised axiom.
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Proposition 2 (Non-locality via Signature Containment). Let α be a
normalised axiom, and denote with LHS(α) and RHS(α) the left- and the right-
hand side of α, respectively. Let Σ be a signature. Then: α is not ⊥-local wrt. Σ
iff one of the following holds:

– sig(LHS(α)) ⊆ Σ if α is of the form α1, α2, α3, α4, α5, α6;
– sig(α) ⊆ Σ if α is of the form α7;

Then: α is not �-local wrt. Σ iff α is of the form α7 or one of the following
holds:

– sig(RHS(α)) ∩Σ �= ∅ if α is of the form α3, α4, α5, α6;
– sig(RHS(α)) ⊆ Σ if α is of the form α1, α2. �

2.2 Atomic Decomposition

An atom is a set of highly related axioms of an ontology in the sense that they
always co-occur in modules [5].

Definition 3 (Atom). An atom a is a maximal set of axioms of an ontology
O such that for every module M of O either a ∩M = a or a ∩M = ∅. �

Consequently, we have that two axioms α and β are contained in an atom a
iff ModxO(sig(α)) = ModxO(sig(β)), where sig(α) (sig(β)) is the signature of the
axiom α (β). We denote with AtomsxO the set of all atoms of O wrt. syntactic x-
locality modules, for x ∈ {⊥,�}. The atoms of an ontology partition the ontology
into pairwise disjoint subsets. All axioms of the ontology are distributed over
atoms such that every axiom occurs in exactly one atom. A dependency relation
between atoms can be established as follows [5].

Definition 4 (Dependency relation between atoms). An atom a2 depends
on an atom a1 in an ontology O (written a1 �O a2) if a2 occurs in every module
of O containing a1. The binary relation �O is a partial order. �

In other words, an atom a2 depends on an atom a1 in an ontology O if the
module ModxO(sig(β)) is contained in the module ModxO(sig(α)), for some α, β
with α ∈ a1 and β ∈ a2. For a given ontology O, the poset 〈AtomsxO,�O〉
was introduced as the Atomic Decomposition (AD) of O, and it represents the
modular structure of the ontology [5].

2.3 Directed Hypergraphs

A directed hypergraph is a tuple H = (V , E), where V is a non-empty set of nodes
(vertices), and E is a set of hyperedges (hyperarcs) [6]. A hyperedge e is a pair
(T (e), H(e)), where T (e) and H(e) are non-empty disjoint subsets of V . H(e)
(T (e)) is known as the head (tail) and represents a set of nodes where the hyper-
edge ends (starts). A B-hyperedge is a directed hyperedge with only one node in
the head. We call a B-hyperedge e simple if |T (e)| = 1 (i.e., if e corresponds to a
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directed edge); otherwise, if |T (e)| > 1, e is called complex. Directed hypergraphs
containing B-hyperedges only are called directed B-hypergraphs ; these are the
only type of hypergraphs considered in this paper.

A node v is B-connected (or forward reachable) from a set of nodes V ′ (written
V ′ ≥B v) if (i) v ∈ V ′, or (ii) there is a B-hyperedge e such that v ∈ H(e) and
all tail nodes in T (e) are B-connected from V ′. For a set of nodes V ′ ⊆ V , we
denote with ≥B(V ′) the set ≥B(V ′) = {v ∈ V | V ′ ≥B v} of B-connected nodes
from V ′.

In a directed hypergraph H, two nodes v1 and v2 are strongly B-connected if
v2 is B-connected to v1 and vice versa. In other words, both nodes, v1 and v2, are
mutually connected. A strongly B-connected component (SCC) is a set of nodes
fromH that are all mutually connected [1]. We allow an SCC to be a singleton set
since the connectivity relation is reflexive, i.e., any axiom is mutually connected
from itself.

3 Axiom Dependency Hypergraph

Directed B-hypergraphs can be used to explicitly represent the locality-based
dependencies between axioms. Axiom dependency hypergraphs for ontologies wrt.
the locality-based modularity notions are defined as follows.

Definition 5 (Axiom Dependency Hypergraph). Let O be an ontology.
Let x ∈ {⊥,�} denote a locality notion. The Axiom Dependency Hypergraph
Hx

O for O wrt. x-locality (x-ADH) is defined as the directed B-hypergraph Hx
O =

(Vx, Ex), where

– Vx = O; and
– e = (T (e), H(e)) ∈ Ex iff T (e) ⊆ Vx and H(e) = {β}, for some β ∈ Vx,

such that:
(i) β /∈ T (e), and
(ii) β is not x-local wrt. sig(T (e)). �

The nodes of the axiom dependency hypergraph are the axioms in the on-
tology. Hyperedges are directed and they might connect many tail nodes with
one head node. Note that a head node of a hyperedge is not allowed to occur in
its tail. Intuitively, the tail nodes of an hyperedge e correspond to axioms that
provide the signature symbols required by the axiom represented by the head
node of e to be non-local. We can think on reaching B-connected nodes as how
the module extraction algorithm computes a module by successively including
axioms into the module [9].

The notion of ADH for ontologies depends on the notion of syntactic locality.
Using Prop. 2, we can similarly define this notion using minimal non-locality
signatures by replacing Item (ii) of Def. 5 with:

(iib) Σ ⊆ sig(T (e)), for some Σ ∈ MLS(β).

An ADH HO contains all locality-based dependencies between different ax-
ioms of the ontologyO. These dependencies are represented by the hyperedges in
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HO. Note that HO may contain exponentially many hyperedges, many of which
can be considered redundant in the following sense.

Definition 6. A hyperedge e in a directed B-hypergraph H is called redundant
if there is a hyperedge e′ in H such that H(e) = H(e′) and T (e′) � T (e). �
A compact version of a directed B-hypergraphH is obtained fromH by removing
all redundant hyperedges while the B-connectivity relation between axioms is
preserved. In the remainder of the paper, we consider ADHs that are compact.
Notice that compact ADHs are unique and they may still contain exponentially
many hyperedges. The number of hyperedges can be reduced to polynomially
many by applying extra-normalisation rules that restrict the amount of signature
symbols in each side of the axiom up to 2 symbols.

Next, we characterise modules and atoms together with their dependencies in
terms of ADHs for which B-connectivity is crucial.

3.1 Locality-Based Modules in an ADH

B-connectivity in an ADH can be used to specify locality-based modules in
the corresponding ontology. A locality-based module of an ontology O for the
signature of an axiom α (or a subset of axioms O′ ⊆ O) corresponds to the
B-connected component in the ADH for O from α (or O′) [9].

Proposition 3. Let O be an ontology, O′ ⊆ O and Σ = sig(O′). Let ≥B

be the B-connectivity relation of the x-ADH for O, where x ∈ {⊥,�}. Then:
Modx

O(Σ) = ≥B(O′). �
However, ADHs do not contain sufficient information for computing a module

for any signature as the following simple example shows.

Example 2. Let O = {α1 = A 	 C,α2 = C � B 	 D,α3 = D 	 A} and
Σ = {A,B}. We have that Mod⊥(Σ) = {α1, α2, α3}. The ⊥-ADH for O contains
no hyperedge e with H(e) = {α2} and, consequently, α2 cannot be reached via
a hyperedge. �

The problem can be solved by incorporating the signature Σ into the ADH.
The Σ-extension Hx

O,Σ of an x-ADH Hx
O for an ontology O wrt. x-locality,

x ∈ {⊥,�}, is defined as the ADH according to Def. 5 but with Item (ii) replaced
with:

(iii) β is not x-local wrt. Σ ∪ sig(T (e)).

Intuitively, no symbol in Σ contributes to the dependencies between axioms.
Consequently, less axioms in the tail are needed to provide the signature for
non-locality of β. Note that non-redundant hyperedges in the original ADH may
become redundant in the Σ-extended ADH. The remaining hyperedges represent
the dependencies between axioms modulo Σ.

Example 3. Let O and Σ be as in Ex. 2. The Σ-extension of ⊥-ADH for O
contains the edge e = {{α1}, {α2}}. Hence, α2 can be reached via the hyperedge
e. Axiom α1 is the only axiom that is not-⊥ local wrt. Σ. The B-connected
nodes from α1 are the axioms in Mod⊥(Σ). �
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Given the Σ-extension of an ADH for an ontology, B-connectivity can be
used to determine the axioms that are not local wrt. to Σ and to compute the
corresponding locality-based module.

Proposition 4. Let O be an ontology, Σ a signature and x ∈ {⊥,�}. Let Ox
Σ be

the set of axioms from O that are not x-local wrt. Σ. Let ≥B be the B-connectivity
relation of the Σ-extension of the x-ADH for O. Then: Modx

O(Σ) = ≥B(Ox
Σ). �

Proof. The algorithm for computing the locality-basedmoduleModx
O(Σ) (see [9])

computes a sequence M0, ...,Mn such that M0 = ∅, Mi ⊆ Mi+1, for i ∈
{0, ..., n − 1}, and Mn = Modx

O(Σ). We show by induction on n > 0 that
M1 ≥B α, for every axiom α ∈ Mn.

For the direction from right to left of the set inclusion, we show that Ox
Σ ≥B β

implies β ∈ Modx
O(Σ) by induction on the maximal length n = distH(Ox

Σ , β) of
an acyclic hyperpath from an axiom α in Ox

Σ to β. �

3.2 ADH Atomic Decomposition

In the previous section, we have established that locality-based modules of an
ontology O correspond to sets of B-connected nodes in the axiom dependency
hypergraph for O. An atom of O consists of axioms α that share the same mod-
ules wrt. the signature of α. It holds that for every x-local atom a ⊆ O with
x ∈ {⊥,�}: α, β ∈ a if, and only if, Modx

O(sig(α)) = Modx
O(sig(β)) [5]. Together

with Proposition 3, we can now characterise the notion of an atom with a corre-
sponding notion in axiom dependency hypergraphs. We have that two nodes in
an ADH represent axioms that are contained in the same atom if, and only if,
the nodes agree on the set of nodes that are B-connected from them. Formally:
α, β ∈ a if, and only if, ≥B(α) = ≥B(β), where ≥B be the B-connectivity rela-
tion of the ADH HO for O. It follows that all axioms of an atom are mutually
B-connected in HO. Axioms that are mutually B-connected constitute strongly
B-connected components of HO. Consequently, the set of atoms for an ontol-
ogy O corresponds to the set of strongly B-connected components in the axiom
dependency hypergraph for O. Let SCCs(Hx

O) be the set of strongly connected
components of the hypergraph Hx

O, where x ∈ {⊥,�}.

Proposition 5. Let O be an ontology and let x ∈ {⊥,�} denote a locality no-
tion. Let Hx

O = (Vx
O, Ex

O) be the x-ADH for O. Then: AtomsxO = SCCs(Hx
O). �

The condensed ADH is formed by collapsing the strongly B-connected compo-
nents into single nodes and turning hyperedges between axioms into hyperedges
between sets of axioms. The condensed ADH corresponds to the quotient hyper-
graph HO/�B of HO under the mutual B-connectivity relation �B in HO. The
�B-equivalence classes are the strongly B-connected components of HO. The
partition of a hypergraph under an equivalence relation is defined as follows.

Definition 7 (Quotient Hypergraph). Let H = (V , E) be a hypergraph. Let
� be an equivalence relation over V. The quotient of H under �, written H/�,
is the graph H/� = (V/�, E�), where
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– V/� = {[x]� | x ∈ V}; and
– e = (T (e), H(e)) ∈ E� iff there is an e′ ∈ E such that T (e) = {[x]� | x ∈

T (e′)}, H(e) = {[x]� | x ∈ H(e′)} and T (e) ∩H(e) = ∅. �

We can now define the notion of a condensed ADH (cADH) as the partition
of the ADH under the mutual B-connectivity relation. The cADH is formed by
collapsing the strongly B-connected components into single nodes and turning
hyperedges between axioms into hyperedges between the newly formed nodes.

Definition 8 (Condensed Axiom Dependency Hypergraph). Let Hx
O be

the x-ADH for an ontology O, where x ∈ {⊥,�}. Let �B be the mutual B-
connectivity relation in Hx

O. The condensed axiom dependency hypergraph for
O wrt. x-locality (x-cADH) is defined as the quotient Hx

O/�B of Hx
O under �B.

�

Similarly, it is also possible to compute the partially condensed ADH (pcADH) of
an ADH. The idea is to identify and collapse the strongly connected components
of the graph fragment of the ADH (Axiom Dependency Graph) such that only
simple B-hyperedges are considered (|T (e)| = 1). The hyperedges of the ADH
are re-calculated to consider the newly formed nodes.

Definition 9 (Partially Condensed Axiom Dependency Hypergraph).
Let Hx

O = (Vx
O, Ex

O) be the x-ADH for an ontology O, where x ∈ {⊥,�}. Let
GHx

O = (VHx
O , EHx

O ) be a directed graph such that VHx
O = Vx

O and EHx
O =

{(T (e), H(e)) ∈ Ex
O | | T (e) |= 1}.

Let �B be the mutual B-connectivity relation in GHx
O . The partially condensed

axiom dependency hypergraph for O wrt. x-locality (x-cADH) is defined as the
quotient Hx

O/�B of Hx
O under �B.

�

The dependency relation �x
O between x-local atoms of O, for x ∈ {⊥,�}, is

defined as follows [5]. For atoms a, b ∈ AtomsxO and axioms α ∈ a and β ∈ b:
a �x

O b if, and only if, b ⊆ Modx
O(α) if, and only if, Modx

O(β) ⊆ Modx
O(α).

Proposition 6. Let O be an ontology with α, β ∈ O. Let a, b ∈ AtomsxO such
that α ∈ a and β ∈ b, where x ∈ {⊥,�}. Let � be the mutual B-connectivity
relation in the x-locality ADH H for O and ≥ the B-connectivity relation in the
x-cADH for O. Then: a �x

O b iff [α]� ≥ [β]�. �

Example 4. Let O = {α1, ..., α5}, where α1 = A 	 B, α2 = B � C � D 	 E,
α3 = E 	 A �C �D, α4 = A 	 X , α5 = X 	 A. The ⊥-ADH H⊥

O contains the
following hyperedges:

e1 = ({α1, α3}, {α2}) e2 = ({α1}, {α4}) e3 = ({α2}, {α3}) e4 = ({α3}, {α1})
e5 = ({α3}, {α4}) e6 = ({α4}, {α1}) e7 = ({α4}, {α5}) e8 = ({α5}, {α1})
e9 = ({α5}, {α4})



58 F. Mart́ın-Recuerda and D. Walther

We obtain the following ⊥-local modules for the axioms:

Mod⊥O(α1) = {α1, α4, α5} Mod⊥O(α4) = {α1, α4, α5}
Mod⊥O(α2) = {α1, α2, α3, α4, α5} Mod⊥O(α5) = {α1, α4, α5}
Mod⊥O(α3) = {α1, α2, α3, α4, α5}

The resulting atoms in Atoms⊥O are a1 = {α2, α3} and a2 = {α1, α4, α5}, where
a1 � a2, i.e. a2 depends on a1. The ADH H⊥

O with the SCCs and the condensed
ADH H⊥

O/�B is depicted in Figure 1.

α2

α3

α1

α4

α5

scc1

scc2

e2
e3 e4

e5

e6

e7

e8

e9

e1

SCC1 SCC2

(a) H⊥
O

e10

(b) H⊥
O/�B

Fig. 1. Example 4: From the ⊥-ADH to the condensed ⊥-ADH

Consider the strongly connected components of H⊥
O. Axiom α1 is B-connected

with the axioms α4 and α5, α4 is B-connected with α1 and α5, and α5 is B-
connected with α1 and α4. Axiom α2 is B-connected with α3 and vice versa.
Axioms α2, α3 are each B-connected with α1, α4 and α5, but not vice versa.
Hence, {α1, α4, α5} and {α2, α3} are the strongly connected components of H⊥

O.
Moreover, we say that the former component depends on the latter as any two
axioms contained in them are unilaterally and not mutually B-connected. Note
that the atoms a1 and a2 of O and their dependency coincide with the strongly
connected components of H⊥

O. �

Analogously to the previous section, we can characterise modules in terms of
B-connectivity in condensed axiom dependency hypergraphs. Proposition 4 can
be lifted to cADHs as follows.

Proposition 7. Let O be an ontology, Σ a signature and x ∈ {⊥,�}. Let Ox
Σ

be the set of axioms from O that are not x-local wrt. Σ. Let � be the mutual
B-connectivity relation of the x-ADH for O and ≥B the B-connectivity relation
of the Σ-extended x-cADH for O. Then: Modx

O(Σ) =
⋃
≥B({[α]� | α ∈ Ox

Σ}).
�
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4 Implementation

The number of hyperedges of an ADH may be exponential in the size of the input
ontology [9], which makes it impractical to represent the entire ADH explicitly.
We implement an ADH H = (V , E) as a directed labelled graph GH = (V , E ′,L)
containing the simple hyperedges of H and encoding the complex hyperedges in
the node labels as follows. A node vα in G for an axiom α is labelled with the pair
L(vα) = (MLSx(α), sig(α)) consisting of the minimal non-x-locality signatures
of α and the signature of α, where x ∈ {⊥,�}. In fact, not all symbols of
sig(α) are needed in the second component, only those symbols that occur in the
minimal non-locality signature of some axiom in the ontology. Condensed axiom
dependency hypergraphs are implemented in a similar way with the difference
that nodes represent sets of axioms. A node vS for a set S of axioms is labelled
with the pair L(vS) = (MLSx(S), sig(S)), where MLSx(S) =

⋃
α∈S MLSx(α)

and sig(S) =
⋃

α∈S sig(α).
We introduce the notion of a graph representation of an axiom dependency

hypergraph that may be (partially) condensed.

Definition 10. Let H = (VH, EH) be an ADH, pcADH or cADH. Let x ∈ {⊥,�}
be a syntactic locality notion. The graph representation GH of H is the directed
labelled graph GH = (V , E ,L), where

– V := VH;
– E := {(v, v′) | Σv′ ⊆ sig(v), for some Σv′ ∈ MLSx(v′)};
– L(v) := (MLSx(v), sig(v)), for every v ∈ V. �

To define the graph representation GH of a hypergraph H, we assume that every
node v in H is associated with a set MLSx(v) of minimal non-locality signatures,
and a set sig(v) of signature symbols. Note that a node in H represents an axiom
if H is an ADH, and a set of axioms if H is a pcADH or a cADH.

4.1 Atomic Decomposition

For a collection of well-known biomedical ontologies from the NCBO Bioportal,
we observe that for many (if not all) axioms, the locality-based dependencies
to other axioms can be represented using only simple directed hyperedges. For
instance, the ADH for ontologies like CHEBI can be seen as a directed graph
without complex hyperedges. Computing strongly connected components in a
directed graph can be done in linear-time using standard algorithms from graph
theory [11,13]. That is, for ontologies like CHEBI we compute the strongly con-
nected components of the respective ADH in linear time.

For ADHs of ontologies O like SNOMED CT that contain both, simple and
complex hyperedges, we compute the strongly connected components in four
steps. First, we build the axiom dependency graph GHx

O , which is the fragment
of the ADH Hx

O for O without complex hyperedges. Second, we compute the
strongly connected components of GHx

O using a linear-time algorithm [11,13].
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Note that the strongly connected components give rise to an equivalence rela-
tion �BG on the nodes in GHx

O . In the third step, we reduce the size of Hx
O by

computing the quotient graph Hx
O/�BG of Hx

O using �BG (cf. Def. 7). This cor-

responds to the computation of the pcADH, Hx
O/�BG , for the ADH Hx

O. Finally,
in step four, we obtain the strongly connected components of Hx

O by determining
for any two nodes in Hx

O/�BG whether they are mutually reachable. This last

step produces the cADH, Hx
O/�BH , where �BH is the mutual B-connectivity

relation in Hx
O/�BG . Note that computing mutual connectivity this way is a

quadratic process [1]. However, using Hx
O/�BG instead of Hx

O it is usually more
efficient as the number of nodes is typically reduced.

The function compute condensed hypergraph(.) provides a more succinct de-
scription of the previous process.

function compute condensed hypergraph(G = (V, E ,L)) returns Gc

1: Gpc := collapse SCCs(G,Tarjan((V, E)))
2: if (contains complex Dependencies(Gpc) = false) then

3: return Gc := Gpc

4: end if

5: Gc := collapse SCCs(Gpc,mutual reach(Gpc))

6: return Gc

Given the graph representation G of an ADH Hx
O, the function

compute condensed hypergraph(G) computes the graph representation, denoted
with Gc, of the cADH of Hx

O in two main steps. In the first step, the func-
tion computes the graph representation of the pcADH, which we denote with
Gpc (Line 1). Only simple directed hyperedges (E) of G are considered. The
strongly connected components are determined in linear time using the Tarjan
algorithm [13] (Line 2). The computation of the strongly connected components
when complex directed hyperedges are considered is done in Line 5. After the
strongly connected components are identified, the function collapse SCCs pro-
duces the graph representation Gc of the cADH for Hx

O.

4.2 Module Extraction

Modules correspond to connected components in the axiom dependency hyper-
graph or its (partially) condensed version. We now present the algorithm for
computing the connected components in the graph representation of a directed
hypergraph that can encode an ADH, pcADH or cADH for the input ontology.

The function Modx(G, Σ) computes all Σ-reachable nodes in the labelled
graph G and returns the axioms represented by these nodes. In Line 2, the
algorithm determines the set S1 of initial nodes in G. Every initial node S1

is associated with a minimal non-locality signature that is contained in Σ. In
Line 5, the set of nodes is determined that are reachable via simple B-hyperedges
that are explicitly given in E . Note that E(v) denotes the set of nodes that are
directly reachable in G from the node v using simple directed hyperedges.
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function Mod x(GHx
O = (V, E ,L), Σ) returns x-local module of O wrt. Σ

1: Σ0 := Σ, m := 1

2: S0 := ∅, S1 := {v ∈ V | Σv ⊆ Σ0 for some Σv ∈ MLSx(v)}
3: do

4: m := m+ 1

5: Sm :=
⋃ { E(v) | v ∈ Sm−1\ Sm−2} ∪ Sm−1

6: Σm := (
⋃

s∈Sm\Sm−1
sig(s)) ∪Σm−1

7: Sm := Sm ∪ {v ∈ V | Σv ⊆ Σm for some Σv ∈ MLSx(v) with |Σv| > 1}
8: until Sm = Sm−1

9: return get axioms(Sm)

In Line 7, the input signature is extended with the symbols that are associated
to the nodes reached so far. Using the extended signature Σm, the function
Modx(·, ·) computes the nodes that can be reached using complex B-hyperedges
implicitly represented by the labels L(v) of the nodes v in Sm. The algorithm
iterates until a fix point is reached and no more new nodes are added (Lines 3−8).
Finally, in Line 9, the function get axioms(·) computes the set of axioms that
correspond to the nodes in Sm.

5 Evaluation

The system HyS is a Java implementation of the approach described in the
previous section. HyS can compute syntactic locality-based modules for a given
input signature and the atomic decomposition of an ontology defined in EL++

extended with inverse and functional role axioms.7 In the current version of HyS
only syntactic ⊥-locality is supported. We plan to extend the implementation to
support both �-locality and full SROIQ-ontologies in the future.

For the evaluation, we have selected nine well-known biomedical ontologies.
Seven of them are available in the NCBO Bioportal. The version of Full-Galen
that we used is available in the Oxford ontology repository.8

We divide the ontologies into two groups: a group consisting of CHEBI, FMA-
lite, Gazetteer, GO, NCBI and RH-Mesh, and another group consisting of CPO,
Full-Galen and SNOMED CT. Every ontology in the former group consist of
axioms whose ⊥-locality dependencies between axioms can be represented using
simple directed hyperedges only. This means that the ADH can be represented
using a direct graph. On the other hand, each of the latter three ontologies
contain axioms that require complex hyperedges to represent the dependencies.

We compare HyS against two systems for computing the atomic decomposition
of OWL 2 ontologies which implement the same algorithm from [14]: FaCT++

7 HyS supports all the constructors used in the ontology Full-Galen.
8 http://www.cs.ox.ac.uk/isg/ontologies/

http://www.cs.ox.ac.uk/isg/ontologies/


62 F. Mart́ın-Recuerda and D. Walther

v1.6.2, which is implemented in C++ [14]9, and OWLAPITOOLS v1.0.0 which
is implemented in Java [15]10 as an extension of the OWLAPI.11

Ontology O Properties of O Time for Atomic Dec. of O
Signature #axioms #axioms #role

size A � C C ≡ D axioms FaCT++ OWLAPI HyS

TOOLS

CHEBI 37 891 85 342 0 5 137 s 1 619 s 4 s
FMA-lite 75 168 119 558 0 3 18 481 s 13 258 s 17 s
Gazetteer 517 039 652 355 0 6 31 595 s – 24 s
GO 36 945 72 667 0 2 47 s 1 489 s 4 s
NCBI 847 796 847 755 0 0 49 228 s – 66 s
RH-Mesh 286 382 403 210 0 0 6 921 s 9 159 s 17 s

CPO 136 090 306 111 73 461 96 9 731 s 26 480 s 2 283 s
Full-Galen 24 088 25 563 9 968 2 165 640 s 781 s 115 s
SNOMED CT 291 207 227 698 63 446 12 16 081 s 57 282 s 2 540 s

All experiments were conducted on an Intel Xeon E5-2640 2.50GHz with 100GB
RAM running Debian GNU/Linux 7.3. We use Java 1.7.0 51 and the OWLAPI
version 3.5.0. The table lists the time needed for each system to compute the
atomic decomposition of the ontologies. The time values are the average of at
least 10 executions. We applied a timeout of 24h, which aborted the executions
of the OWLAPITOOLS on the ontologies Gazetteer and NCBI. Moreover, the
table contains, for each ontology, the size of the signature, the number of axioms
of the form A 	 C, where A is a concept name, the number of axioms of the
form C ≡ D, the number of role axioms contained in the ontology.

HyS consistently outperforms FaCT++ which in turn (considerably) outper-
forms the OWLAPITOOLS, with the exception of FMA-lite. In the case of the
first group of six ontologies, an over 1 000-fold speedup could be achieved com-
pared to the performance of FaCT++ on FMA-lite and Gazetteer. For the small-
est ontology in this group, which is GO, HyS is 13 times faster than FaCT++.
HyS also scales better than the other systems. For the second group of three on-
tologies, the speedup is reduced but HyS is still considerably faster. HyS is 4–7
times faster than FaCT++ and 11–23 faster than the OWLAPITOOLS. The
computation of the partially condensed ADH nearly decreases 50% the number
of nodes in the ADH. The use of a tree datastructure to represent the set of
reachable nodes computed for each node of the ADH reduces the time needed
to identify mutually reachable nodes.

We compare the performance of HyS for extracting ⊥-locality modules with
the performance of FaCT++ and the OWLAPI. The following table presents
for every method the time needed to extract a module from an ontology for a
signature consisting of 500 symbols selected at random.

9 http://code.google.com/p/factplusplus/
10 http://owlapitools.sourceforge.net/
11 http://owlapi.sourceforge.net/

http://code.google.com/p/factplusplus/
http://owlapitools.sourceforge.net/
http://owlapi.sourceforge.net/
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Ontology O Time for Extraction of ⊥-local Modules from O
FacT++ OWLAPI HyS

ADH pcADH cADH

CHEBI 38.6 ms 175.8 ms 3.9 ms 2.4 ms 2.1 ms
FMA-lite 326.9 ms 1 042.3 ms 55.3 ms 3.9 ms 3.4 ms
Gazetteer 177.9 ms 1 503.0 ms 27.3 ms 16.1 ms 15.9 ms
GO 512.2 ms 1 398.7 ms 8.1 ms 6.2 ms 6.1 ms
NCBI 236.2 ms 9 193.6 ms 22.7 ms 15.8 ms 16.3 ms
RH-Mesh 91.2 ms 1 811.3 ms 10.6 ms 9.1 ms 8.9 ms

CPO 564.7 ms 3 026.8 ms 84.3 ms 53.4 ms 51.6 ms
Full-Galen 75.2 ms 215.4 ms 13.2 ms 3.7 ms 2.9 ms
SNOMED CT 525.0 ms 2 841.3 ms 93.6 ms 88.4 ms 84.4 ms

HyS outperforms FaCT++ and the OWLAPITOOLS in all cases. For the first
group of six ontologies, the best speedup of over 90 times was achieved in the
case of FMA-lite. Notice that module extraction times using the pcADH and the
cADH (last two columns) are nearly the same as the two graphs are equivalent.
The small variation in extraction time is due to noise in the execution environ-
ment. The differences in the times values in the third column and the last two
columns correspond to the differences in size of the ADH and the pcADH/cADH.
For the second group of three ontologies, the best performance improvement was
realised in the case of Full-Galen with a speedup of over 20-times. However, we
note that using the cADH instead of the pcADH does not yield a large per-
formance difference despite the fact that the cADH is slightly smaller than the
pcADH. In the particular case of Full-Galen, there appears to be a trade-off be-
tween condensation and increased time needed to perform signature containment
checks. Computing the partially condensed ADH (using a linear time algorithm)
is generally much faster than computing the condensed ADH (which is done in
quadratic time). Given that the module extraction times are similar when using
the pcADH and the cADH (cf. the times in the last two columns), it seems more
efficient to only compute modules using the partially condensed ADH.

6 Conclusion

We have introduced the notion of an axiom dependency hypergraph that repre-
sents explicitly the locality-based dependencies between axioms. We have shown
that locality-based modules of an ontology correspond to a set of connected
nodes in the hypergraph, and atoms of an ontology to strongly connected com-
ponents. We have implemented a prototype in Java that computes, based on
axiom dependency hypergraphs, the atomic decomposition of EL++-ontologies
wrt. ⊥-locality. Our prototype outperforms FaCT++ and the OWLAPITOOLS
in computing the atomic decomposition of all biomedical ontologies tested. In
some cases a staggering speedup of over 1 000 times could be realised. Moreover,
the prototype significantly outperforms FaCT++ and the OWLAPI in extract-
ing syntactic ⊥-locality modules.
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We plan to extend the prototype implementation to support both �-locality
and full SROIQ-ontologies. Moreover, it would be interesting to investigate the
possibility to compute strongly connected components in hypergraphs in less
than quadratic time. Such a result would improve the performance of computing
mutual connectivity in the axiom dependency hypergraph for ontologies whose
locality-based dependencies can only be represented by hyperedges with more
than one node in the tail.
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Abstract. The Atomic Decomposition of an ontology is a succinct representa-
tion of the logic-based modules in that ontology. Ultimately, it reveals the mod-
ular structure of the ontology. Atomic Decompositions appear to be useful for
both user and non-user facing services. For example, they can be used for on-
tology comprehension and to facilitate reasoner optimisation. In this article we
investigate claims about the practicality of computing Atomic Decompositions
for naturally occurring ontologies. We do this by performing a replication study
using an off-the-shelf Atomic Decomposition algorithm implementation on three
large test corpora of OWL ontologies. Our findings indicate that (a) previously
published empirical studies in this area are repeatable and verifiable; (b) comput-
ing Atomic Decompositions in the vast majority of cases is practical in that it can
be performed in less than 30 seconds in 90% of cases, even for ontologies con-
taining hundreds of thousands of axioms; (c) there are occurrences of extremely
large ontologies (< 1% in our test corpora) where the polynomial runtime be-
haviour of the Atomic Decomposition algorithm begins to bite and computations
cannot be completed within 12-hours of CPU time; (d) the distribution of number
of atoms in the Atomic Decomposition for an ontology appears to be similar for
distinct corpora.

Keywords: OWL, Ontologies, Atomic Decomposition.

1 Introduction

The Atomic Decomposition of an ontology is essentially a succinct representation of
the modular structure of that ontology. In this article we present an empirical study on
the Atomic Decomposition of ontologies. We begin by introducing modularity in the
context of ontologies and then move on to discuss the notion of Atomic Decomposi-
tion. We then present a replication study that we have performed, which thoroughly
examines the performance of existing software and techniques for computing Atomic
Decompositions.

Ontology Modularity. In recent years the topic of ontology modularity has gained a
lot of attention from researchers in the OWL community. In the most general sense, a
module of an ontologyO is a subset ofO that has some desirable (non-trivial) properties
and is useful for some particular purpose. For example, given a biomedical ontology
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Fig. 1. The ε-connection Partition of the Koala Ontology

about anatomy one might extract a module for the class Heart. This module preserves
all information about Heart from the original ontology and can therefore be used in
place of the original ontology when a description of Heart is needed. In this case, the
module that describes Heart is hopefully much smaller than the size of the original
ontology, which makes reusing the description of Heart much easier (in terms of file
size, editing and reasoning) than if it were necessary to import and reuse the original
ontology in its entirety. For large biomedical ontologies, the difference in size between
a module for a term and the size of ontology that the module was extracted from can
be very large. For example, Suntisrivaraporn [7] determined that the average size of a
module in SNOMED was around 30 axioms compared to the size of the ontology which
is over 300,000 axioms. A key desirable property about the kinds of modules discussed
here is that given a moduleM of an ontologyO, the entities in M are described exactly
as they are in O, and from the point of view of these entities, M is indistinguishable
from O.

From Modules to the Modular Structure of an Ontology. Although the above scenario
of ontology reuse was the main driving force for the development of proper modularity
definitions and practical module extraction techniques, modules have also been used for
other purposes such as ontology comprehension. Here, the basic idea is that an ontology
can be split up into modules that capture the different topics that are described by the
complete ontology. Moreover, a dependency relation between topics specifies how they
link together, and for a given topic, which other topics it depends upon. For example,
in a medical ontology the topic (module) “diseases of the heart” may depend upon the
topic “hearts”, which may depend upon the topic “organs”. Figure 1, taken from [10],
shows how this idea could be used in a tool.1 The circles in the diagram represent the
various topics in the Koala ontology2 with the lines between the circles representing
the logical dependencies between these topics. For example, the topic Animal depends
upon the topics Gender, Habitat and Degree. Each topic contains axioms that describe

1 In this particular case, the modules are ε-connection modules, and the diagram has been pro-
duced by the ontology editor Swoop.

2 The ontology can be found in the TONES ontology repository at
http://owl.cs.manchester.ac.uk/repository/

http://owl.cs.manchester.ac.uk/repository/
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entities pertaining to that topic. It is easy to imagine that such a representation would
be useful for getting an overview of, and browsing, an ontology.

As far as the latest modularisation techniques for OWL ontologies are concerned
(efficient syntactic-locality-based techniques) there can be an exponential number of
modules for any given ontology with respect to the size of the ontology. However, not
all modules are necessarily interesting. This gives rise to the notion of genuine modules.
A genuine module is essentially a module that is not made up of the union (disjoint
union or otherwise) of two or more other modules. Genuine modules are of interest
because they can be used to generate a topicality-based structuring of an ontology.

In terms of computing genuine modules, a straight forward algorithm for obtaining
the set of genuine modules for an ontology is to compute all of the modules for the
ontology and then to compare them with each other in order to eliminate non-genuine
modules. However, since there can be an exponential number of modules for any given
ontology this is, in general, not feasible. Fortunately, it is possible to efficiently compute
the Atomic Decomposition of an ontology as a succinct representation3 of the modules
in that ontology. Ultimately, an Atomic Decomposition can be used to generate struc-
tures similar to the structure shown in Figure 1. Moreover, it is possible to generate
these succinct representations in a runtime that is polynomial (actually quadratic) with
respect to the size of the input ontology.

Atomic Decomposition. In short, the Atomic Decomposition of an ontology O is a pair
consisting of a set of atoms of O and a directed dependency relation over these atoms
[10]. An atom is a maximal set of axioms (statements from O) which are tightly bound
to each other. That is, for a given module M in O, either all of the axioms in an atom
belong to M or else none of them belong to M. More precisely,

Definition 1 (Atom). let O be an ontology. A non-empty set of axioms S ⊆ O is an
atom in O if for any module M ⊆ O, it is the case that (a) either S ⊆ M, or, S∩M =
∅; and (b) S is maximal, i.e. there is no S ′ strict superset of S that satisfies (a).

For the notions of modules considered in this article, which are depleting modules, the
set of atoms for an ontology O is uniquely determined, it partitions O, and is called an
atomic decomposition of O.

Besides being used for end user facing tasks such as ontology comprehension, the
technique of Atomic Decomposition can also be used in non-user facing services as
an optimisation technique. For example, Klinov and colleagues use Atomic Decom-
position based techniques for the offline computation of modules, in order to reduce
memory requirements and speed up reasoning in Web services [11]. Similarly, Tsarkov
et al use Atomic Decomposition based techniques for optimising reasoning in their
CHAINSAW reasoner [9].

In terms of using Atomic Decomposition in 3rd party tools, there are off-the-shelf
implementations of algorithms for computing the Atomic Decomposition of an ontol-
ogy. These algorithms have been designed and implemented by Del Vescovo and col-
leagues [10], and further optimised by Tsarkov [8]. Assuming that the modularisation

3 In this case succinct representation means a non-exponential representation that is linear in the
size of the ontology.
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sub-routines used by the algorithm have polynomial runtime behaviour (which is the
case for the most widely used modularisation algorithms), the worst case complexity
of these Atomic Decomposition algorithms is polynomial-time in the size of the input
ontology.

Despite the fact that a polynomial-time algorithm is considered to be an efficient
procedure, Del Vescovo points out that if a single invocation of the modularisation sub-
routine takes 1 ms to perform, then it would take ten years to compute the Atomic
Decomposition for an ontology the size of SNOMED (300,000 axioms in size). How-
ever, Del Vescovo performed a series of experiments on a restricted subset of the Bio-
Portal [6] corpus of ontologies and her results indicate that, in practice, the algorithm
performs well and is useable in tools.

Aims and Objectives. Given the potential of Atomic Decomposition techniques for use
in both user-facing and non-user-facing tools, in this article we aim to check the claims
of the practicality of the optimised algorithm for computing Atomic Decompositions.
Del Vescovo’s original experiments were performed on a subset of 253 ontologies from
the NCBO BioPortal repository. Amongst various filtering criteria, Del Vescovo ex-
cluded ontologies from the experiment that were greater than 20,000 axioms in size.
Clearly, this leaves some room for verification. We therefore replicate Del Vescovo’s ex-
periments, showing that they are repeatable, and we verify the claims made by extend-
ing the experiments using a current, and complete, snapshot of the BioPortal corpus.
We also bolster our results with a much larger corpus of 4327 ontologies that includes
non-biomedical ontologies—specifically, we use the Semantic Web corpus described
by Matentzoglu and colleagues at ISWC 2013 in “A Snapshot of the OWL Web” [4].

We make the following contributions:

– We replicate Del Vescovo’s Atomic Decomposition experiments. We show that they
are repeatable and we verify the runtime performance results on the exact corpus
used by Del Vescovo.

– We use the same methodology and software to extend the experiments on the com-
plete BioPortal corpus. This includes ontologies that are an order of magnitude
larger than the paired down corpus used by Del Vescovo. We do this to investigate
the claims that the techniques are practical.

– We carry out another round of experiments on a third corpus of 4327 ontologies
obtained from a Web-crawl. As well as being larger than the BioPortal corpus, this
Web-crawl corpus contains non-biomedical ontologies, which may reflect differ-
ent styles of modelling. We examine both the runtime performance of the Atomic
Decomposition algorithm and also the number of atoms per ontology, comparing
these result to the results from Del Vescovo’s corpus.

– We discuss how the nature of the ontologies affects the results of the second and
third experiments and make some recommendations for future work.

2 Preliminaries

In the work presented here, we deal with a corpus of ontologies written in the Web On-
tology Language (OWL), and more specifically OWL 2, its latest version [5]. Through-
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out the rest of this article we refer to OWL 2 simply as OWL. In this section, we present
the main OWL terminology that is useful in the context of this article. We assume that
the reader has basic familiarity with ontologies and OWL.

OWL: Entities, Class Expressions, Axioms and Ontologies. An OWL ontology is a
set of axioms. Each axiom makes a statement about the domain of interest. The building
blocks of axioms are entities and class expressions. Entities correspond to the impor-
tant terms in the domain of interest and include classes, properties, individuals, and
datatypes. The signature of an ontology is the set of entities that appear in that ontol-
ogy. OWL is a highly expressive language and features a rich set of class constructors
that allow entities to be combined into more complex class expressions. As a conven-
tion, we use the letters A and B to stand for class names and the letters C and D to
stand for (possibly complex) class expressions. We also use the word term (or terms) as
a synonym for entity (entities).

Syntactic-Locality-Based Modularity. The most widely implemented form of modu-
larity in available tools, and the type of modularity used by Del Vescovo and thus in the
experiments in this article, is syntactic-locality-based modularity. Given an ontology O
and a signature Σ which is a subset of the signature of O, a syntactic-locality-based
module M = Module(O, Σ) ⊆ O can be extracted from O for Σ by inspecting the
syntax of axioms in O. Syntactic-locality-based-modules have the desirable property
that given an entailment α expressed using terms from Σ, M behaves exactly the same
as O. That is, M entails α if and only if O entails α. Given O and Σ, it is possible to
extract three three main types, or notions, of syntactic-locality-based modules: the ⊥-
module (pronounced “bottom module”), the �-module (pronounced “top module”) and
the �⊥�-module (pronounced “star module”). To take a very rough, over-simplistic
view, a ⊥-module includes axioms that define relationships between terms in Σ and
more general terms in O, a �-module includes axioms that define relationships be-
tween terms in Σ and more specific terms in O, and a �⊥�-module includes axioms
that define and preserve relationships between terms in Σ.

Atomic Decomposition. An atomic decomposition of an ontologyO is a pair (A(O),�),
where A(O) is the set of atoms induced by the genuine modules of O, and � is a partial
order (dependency relation) between the atoms. An atom is a set of axioms (fromO) all of
which, for a givenΣ and corresponding genuine moduleM, are either contained within
M or are not contained within M. An atomic decomposition can be computed within
a period of time that is polynomial with respect to the size of the ontology. For a given
ontology O and each notion of syntactic-locality it is possible to compute an Atomic
Decomposition of O. This gives us a ⊥ Atomic Decomposition (or ⊥-AD for short), a
� Atomic Decomposition (or �-AD for short), and a �⊥� Atomic Decomposition (or
�⊥�-AD for short). The ⊥-AD highlights dependencies of more specific atoms on more
general atoms, the �-AD highlights the dependencies of more general atoms on more
specific atoms, and the �⊥�-AD highlights differences between atoms.

Class Expression, Axiom and Ontology Length. In line with the reporting of results
in Del Vescovo’s work [10], we use the notion of the “length” of an ontology to report
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the results in this article. In essence the length of an ontology is the number of steps
required to parse the symbols in an ontology and reflects the number of operations
required to compute a module for some signature. For example, the length of C � D
is the length of C plus the length of D. The length of C 	 D is the length of C plus
the length of D. The length of the class name A is 1. The length of an ontology O is
the sum of the lengths of the axioms in O. For the sake of brevity we do not give a
complete definition of length here. Instead we stick with the intuitive meaning and refer
the reader to page 23 of Del Vescovo’s thesis [10] for a complete definition.

3 Previous Studies on Atomic Decomposition

The most comprehensive study on Atomic Decomposition to date is presented in Del
Vescovo 2013 [10]. In this work, Del Vescovo describes a series of experiments on 253
ontologies that were taken from a November 2012 snapshot of the NCBO BioPortal
repository [6]. For each ontology Del Vescovo investigated the time to compute the on-
tology’s ⊥-AD, �-AD, and �⊥�-AD and she also explored the makeup of the structure
of each Atomic Decomposition.

The expressivity of ontologies contained in Del Vescovo’s corpus, ranges from
lightweight EL [1] (OWL2EL) andAL (56 ontologies), throughSHIF (OWL-Lite, 51
ontologies) to SHOIN [3] (OWL-DL, 36 ontologies) and SROIQ [2] (OWL2DL, 47
ontologies). While this corpus does not contain ontologies that could not be downloaded
or parsed from BioPortal, for obvious reasons, it also excludes BioPortal ontologies that
are either (a) inconsistent or, (b) that are greater than 20,000 axioms in size.

Given that Del Vescovo’s experiments are limited to a single filtered corpus, which
has itself evolved since 2013, a replication study, which uses both the current BioPortal
corpus and other ontology corpora, would be useful in order verify her results and help
reduce threats to the external validity of her experiments. In what follows we therefore
repeat and extend her experiments using three different corpora of ontologies.

4 Ontology Corpora

In our replication experiments which follow we use three different ontology corpora.
The first, is the exact corpus used by Del Vescovo. We refer to this as the DEL-VESCOVO

corpus. The second and third corpora, which contain much larger ontologies than the
DEL-VESCOVO corpus, are made up from all parseable OWL (and OWL compatible
syntaxes such as OBO) ontologies from the BioPortal ontology repository [6], and on-
tologies from a Web-crawl. We refer to these as the BIOPORTAL corpus and the WEB-
CRAWL corpus respectively. BioPortal is a community-based repository of biomedical
ontologies [6]4, which at the time of writing contains more than 360 biomedical ontolo-
gies written in various languages.

We now describe the three corpora in more detail. All three corpora, along with
summary descriptions for each (sizes, expressivities etc.), may be found on-line.5

4 http://bioportal.bioontology.org
5 http://www.stanford.edu/ horridge/publications/2014/iswc/
atomic-decomposition/data

http://bioportal.bioontology.org
http://www.stanford.edu/~horridge/publications/2014/iswc/atomic-decomposition/data
http://www.stanford.edu/~horridge/publications/2014/iswc/atomic-decomposition/data
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The DEL-VESCOVO Corpus (242 Ontologies)

The corpus used by Del Vescovo is described in detail in Del Vescovo 2012 [10]. It
contains a handful of ontologies that are well known ontologies in the area of modular-
ontologies research, namely Galen, Koala, Mereology, MiniTambis, OWL-S, People,
TambisFull, and University. It also contains a subset (234 ontologies) of the ontologies
from a November 2012 snapshot of the NCBO BioPortal repository. Del Vescovo gra-
ciously provided us with the exact set of ontologies used in her experiment. For each
ontology in the corpus, its imports closure was provided to us merged into a single
OWL/XML ontology document.

The BIOPORTAL Corpus (249 Ontologies)

Since the DEL-VESCOVO corpus contains a subset of the ontologies from BioPortal,
and in particular does not contain ontologies whose sizes are greater than 20,000 ax-
ioms, we decided to construct a corpus based on all of the downloadable, and parseable,
OWL and OBO ontologies contained in BioPortal. The corpus was constructed as fol-
lows: We accessed BioPortal on the 5th of May 2014 using the NCBO Web services
API. We downloaded all OWL compatible (OWL plus OBO) ontology documents. For
each document in the corpus we parsed it using the OWL API version 3.5.0, merged the
imports closure and then saved the merged imports closure into a single ontology docu-
ment. We silently ignored missing imports and discarded any ontologies that would not
parse. The total number of (root) ontology documents that could be parsed along with
their imports closures was 249.

The WEB-CRAWL Corpus (4327 Ontologies)

The WEB-CRAWL corpus is based on a corpus obtained by crawling the Web for on-
tologies and is described by Matentzoglu in the ISWC 2013 article, “A Snapshot of the
OWL Web” [4]. This is a large and diverse corpus containing ontologies from many
different domains (including biomedicine). A “raw” version of the corpus was supplied
to us by Matentzoglu as a zip file containing the exact collection of RDF ontology doc-
uments that were obtained by the Web-crawl. For each document in this collection, we
parsed it using the OWL API version 3.5.0, merged its imports closure and then saved
the merged imports closure into a single ontology document. We silently ignored miss-
ing imports and discarded any ontologies that would not parse.6 The total number of
(root) ontology documents that could be parsed along with their imports closures was
4327.

Corpora Summary

Table 1 shows ontology sizes (number of logical axioms) and lengths for the three
corpora. Looking at the 90th and 99th percentiles, and also the max values of the BIO-
PORTAL corpus, and comparing these to those of the DEL-VESCOVO corpus, it is clear

6 In the time between the Web-crawl and present day several imported ontologies have become
unavailable.
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Table 1. A summary of the three ontology corpora. For each corpus the 50th, 75th, 90th, 99th and
100th (Max) percentiles are shown for ontology size (number of logical axioms) and ontology
length. For any given percentile Pn, the value represents the largest size (or length) of the smallest
n percent of ontologies.

Corpus P50 P75 P90 P99 Max

DEL-VESCOVO #Ax 691 2,284 4,898 12,821 16,066
Length 1,601 5,812 14,226 35,327 38,706

BIOPORTAL #Ax 1,230 4,384 25,942 324,070 433,896
Length 3,113 12,303 62,950 835,834 1,209,554

WEB-CRAWL #Ax 105 576 3,983 68,593 740,559
Length 255 1,427 11,374 184,646 2,720,146

to see that the BIOPORTAL corpus includes much larger ontologies, both in terms of
size (an order of magnitude larger) and length (two orders of magnitude larger). Sim-
ilarly, the WEB-CRAWL corpus is distinctively different in terms of size. It contains a
lot of small and mid-sized ontologies (75% being 576 axioms or less), and a also some
extremely large ontologies. For example, the largest ontology in the WEB-CRAWL cor-
pus contains 740,559 axioms (it has a length of 2,720,146), which is two orders of
magnitude larger than the largest ontology in the DEL-VESCOVO corpus.

5 Materials and Methods

Apparatus

All experiments were performed using Ubuntu GNU/Linux machines running 24-core
2.1 GHz AMD Opteron (6172) processors. The machines were running Java version
1.7.0_25 OpenJDK Runtime Environment (IcedTea 2.3.10).

Algorithm Implementation

For computing Atomic Decompositions we used the off-the-shelf implementation pro-
vided by Del Vescovo and Palmisano. The implementation is available via Maven Cen-
tral (maven.org) with an artifactId of owlapitools-atomicdecomposition. We
used version 1.1.1 dated 23-Jan-2014. For parsing and loading ontologies we used the
OWL API version 3.5.0—also available via Maven Central.

Procedure

The algorithm implementation described above was used to compute the ⊥-AD, �-AD
and �⊥�-AD of each ontology in each of the three corpora (DEL-VESCOVO, BIOPOR-
TAL , WEB-CRAWL). Each Atomic Decomposition was run as a separate process with 8

maven.org
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Gigabytes of RAM set as the maximum available memory for the Java Virtual Machine
(-Xmx8G).7 A timeout of 12 hours was imposed for each kind of Atomic Decompo-
sition on each ontology. The CPU-time required for each Atomic Decomposition was
measured using the JavaThreadMX framework. Finally, for each Atomic Decomposi-
tion, the number atoms and the sizes of each atom were recorded.

6 Results

In what follows we present the main results that we obtained in this replication study.
An analysis and interpretation of the results takes place in Section 7.

The times for computing each type of Atomic Decomposition are shown in Fig-
ures 2–7. To make comparison with Del Vescovo’s work easier the results for the DEL-
VESCOVO corpus have been repeated throughout the figures. Figures 2, 3 and 4 show
CPU-times for the Atomic Decompositions of the DEL-VESCOVO corpus versus the
BIOPORTAL corpus for ⊥-AD, �-AD and �⊥�-AD respectively. Figures 5, 6 and 7
show CPU-times for the Atomic Decompositions of the DEL-VESCOVO corpus versus
the WEB-CRAWL corpus for ⊥-AD, �-AD and �⊥�-AD respectively. For each Figure,
the x-axis plots the length of the ontology and the y-axis plots the time in milliseconds
(ms) for the associated computation. It should be noted that the axes in all plots are
logarithmic.

Summaries of CPU-times for each corpus are described below and presented in Ta-
bles 2, 3 and 5. Due to the large spread of times, some of the summaries that we present
include percentile times (for the 90th, 95th and 99th percentiles). The time for the nth
percentile represents the maximum time taken for n percent of ontologies in the relevant
corpus. For example, the 95th percentile time for ⊥-AD in the DEL-VESCOVO corpus
(shown in Table 2) is 23,366ms. This means that 95 percent of ontologies in this corpus
can be decomposed in 23,366ms or less.

The DEL-VESCOVO corpus All computations finished within the 12 hour time-out
window. A summary of the CPU-time required to compute Atomic Decomposition over
the corpus is shown in Table 2. All times are shown in milliseconds.

The BIOPORTAL Corpus Within this corpus 240 ontologies completed within the
12 hour timeout period. A summary of the CPU-time required to compute Atomic De-
composition over the corpus is shown in Table 3. All times are shown in milliseconds.
There were 9 timeouts, with the ontologies that timed out being very large in size. Table
4 shows these ontologies, along with their sizes and lengths. Although these ontologies
timed out, we note that there are other very large ontologies that do not time out. For
example, three such ontologies are: one with 433,896 axioms and a length of 1,209,554;
one with 356,657 axioms and a length of 891,619; and one with 227,101 axioms and a
length of 726,421.

The WEB-CRAWL Corpus Within the WEB-CRAWL corpus Atomic Decomposi-
tions for 4,321 ontologies were completed within the timeout period. The Mean, Stan-
dard Deviation (StdDev), Median, 90th percentile, 95th percentile, 99th percentile and

7 We chose 8 Gigabytes of RAM as this was the limit used in Del Vescovo’s original work. We
acknowledge that that there are other differences in the hardware used, but where possible we
used the same parameters, for example, max available RAM.
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Fig. 2. The time (ms) to compute ⊥-AD versus ontology length
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Fig. 3. The time (ms) to compute �-AD versus ontology length
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Fig. 4. The time (ms) to compute �⊥�-AD versus ontology length
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(b) WEB-CRAWL

Fig. 5. The time (ms) to compute ⊥-AD versus ontology length.
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(c) DEL-VESCOVO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
● ●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Ontology Length

T
im

e 
/ m

s

1 10 100 1000 10,000 100,000 1,000,000

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

(d) WEB-CRAWL

Fig. 6. The time (ms) to compute �-AD versus ontology length
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Fig. 7. The time (ms) to compute �⊥�-AD versus ontology length
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Fig. 8. Number of axioms vs number of atoms for the WEB-CRAWL corpus. Each point on the
plot represents one ontology. The diagonal line represents a one-to-one correspondence between
axioms and atoms, where each dot on this line is an atom containing exactly one axiom.

the Maximum (Max) CPU-time required to compute Atomic Decompositions over the
corpus is shown in Table 5. All times are shown in milliseconds. There were 12 ontolo-
gies for which timeouts occurred in one form or another. Table 6 shows the failures and
where they occurred.

7 Analysis

In what follows we analyse the repeatability of Del Vescovo’s work and also make some
observations on the verifiability of the results in relation to the fresh ontology corpora
that we used.

Are the Experiments Published in Del Vescovo’s Work Repeatable? We were able
to obtain Del Vescovo’s input dataset, the software that she used and we were able to
replicate the experiments. Further more, when we replicated the experiments on the
DEL-VESCOVO corpus, all of the algorithms terminated on all inputs and, while we
do not include an exact comparison of times due to hardware setup differences, our
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Table 2. A Summary of the CPU-Time required for computing Atomic Decompositions on the
DEL-VESCOVO corpus. All times are shown in milliseconds. Pn represents the maximum time
for the nth percentile.

CPU-Time / (milliseconds)
Type Mean StdDev Median P90 P95 P99 Max

⊥-AD 3,756 10,597 461 8,424 23,366 64,586 72,499
�-AD 5,379 21,857 353 8,559 23,327 131,541 222,760

�⊥�-AD 5,633 16,275 564 13,051 35,783 93,090 113,581

Table 3. A Summary of the CPU-Time required for computing Atomic Decompositions on the
BIOPORTAL corpus. All times are shown in milliseconds.

CPU-Time / (milliseconds)
Type Mean StdDev Median P90 P95 P99 Max

⊥-AD 31,592 164,585 575 27,988 102,048 587,664 1,778,371
�-AD 56,499 387,190 171 20,573 113,216 1,274,069 5,168,475

�⊥�-AD 52,687 288,363 306 44,074 155,289 1,053,092 3,046,087

times were in the same order of magnitude as the times computed by Del Vescovo.
Figures 2(a) - 7(a) exhibit the same data spread as Figures 4.7, 4.8 and 4.9 in Del
Vescovo’s presentation of the results [10]. Del Vescovo observed that, over her complete
corpus, times for computing �-AD’s are generally larger than those for computing ⊥-
AD’s. We also observed this aspect (Table 2), mainly for larger ontologies in the corpus.
Overall, we therefore consider Del Vescovo’s results to be repeatable. Moreover, we
consider our results on the DEL-VESCOVO corpus to be a reliable proxy for her results.

What Are the Main Similarities and Differences That Can Be Observed between
the DEL-VESCOVO Corpus the Other Two Corpora? The first thing to note are
significant differences in the makeup of the DEL-VESCOVO corpus and our corpora.
Both the BIOPORTAL corpus and the WEB-CRAWL corpus contain ontologies that are
smaller and also ontologies that are (one or two orders of magnitude) larger than the
ontologies found in the DEL-VESCOVO corpus (see Table 1). For some of the largest
ontologies, certain types of Atomic Decompositions could not be computed within 12
hours (Table 4 and Table 6). Having said this, there are equally large ontologies for
which it is possible to compute the Atomic Decompositions. Looking at these Figures
2(a) - 7(a) and comparing these with the corresponding 2(b) - 7(b) the distributions
of points on the plots over the same length scales are obviously similar. For smaller
ontology lengths and larger ontology lengths, the plots highlight the polynomial trend
in computation time. For the largest ontologies, which have lengths in excess of 500,000
and up to 1,000,000, it is noticeable that the computation time strays above one hour
(3,600,000ms). Ontologies of this size were not present in Del Vescovo’s sample and
these results begin to give some idea of what is possible with, and the boundaries of,
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Table 4. Ontologies in the BIOPORTAL corpus that had timeouts

Ontology Axioms Length

OMIM 112,794 302,298
NPO 160,002 389,385

CVRGRID 172,647 431,713
SNMI 218,231 545,611

NCI 227,101 726,421
RXNORM 253377 759,955

PIERO 288,767 794,163
ICD 356,657 891,619

RADLEX 433,896 1,209,554

Table 5. A Summary of the CPU-Time required for computing Atomic Decompositions on the
WEB-CRAWL corpus. All times are shown in milliseconds.

CPU-Time / (milliseconds)
Type Mean StdDev Median P90 P95 P99 Max

⊥-AD 35,617 732,890 105 968 11,018 21,915 54,340
�-AD 72,124 832,698 100 2,732 21,291 982,399 21,793,805

�⊥�-AD 37,940 643,327 138 2,246 26,418 688,046 28,993,456

the current implementation. Obviously, whether or not these times are practical depends
entirely upon the application in question.

Why Do Several Ontologies in the BIOPORTAL Corpus and the WEB-CRAWL

Corpus Have Timeouts? The primary cause is the size of the ontology and the size
of modules in these ontologies. On closer inspection we found that nearly all of these
ontologies have extremely large ABoxes. Browsing through them in Protégé also re-
vealed that these ABoxes are largely used for annotation purposes as their individual-
signatures were puns of class names which participated in labelling property assertions
(such as skos:notation, or name, where these properties are data properties rather than
annotation properties). Ignoring these ABox assertions, which are essentially annota-
tions, would bring many of the ontology lengths into the bounds whereby the Atomic
Decompositons could be computed.

How Does the Number of Atoms Vary between the Different Corpora? Figure 8
shows how the number of atoms per ontology vary over the DEL-VESCOVO corpus and
the WEB-CRAWL corpus.8 The main thing to note is that variation over each corpus is
similar for the different notions of Atomic Decomposition. For example, it is easy to see
that the number of atoms in a �-AD tend to be fewer and larger when compared to the

8 For the sake of brevity we only compare these two corpora. The results are similar for the
DEL-VESCOVO corpus and the BIOPORTAL corpus.
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Table 6. Ontologies in the WEB-CRAWL corpus that had timeouts. Ontologies are sorted by
length.

OntologyId Axioms Length

3631 117,135 234,268
3069 139,358 288,755
4093 119,560 327,946
3886 168,826 423,119
3147 230,477 474,265
4301 334,546 693,230
2245 277,039 816,406
1577 539,885 1,128,610
1123 238,310 1,495,684

496 714,789 1,892,611
47 740,559 2,122,416

2658 476,620 2,720,146

⊥-AD and �⊥�-AD.9 The other thing to note is that the majority of �-AD and ⊥-AD
atoms are fine-grained. This phenomena is manifested as the points clustering around
the diagonals in the plots for these types of decompositions. In this sense, ontologies
in the WEB-CRAWL corpus exhibit similar modular structures to the ontologies in the
DEL-VESCOVO corpus.

What Is the Practical Implication of These Results? The algorithm for computing
Atomic Decompositions has a theoretical worst-case complexity of polynomial runtime
behaviour. The polynomial runtime over all corpora is evident from looking at the plots
of CPU-time vs ontology length. For the vast majority of ontologies, Del Vescovo’s
observation, that computing the Atomic Decompositions for naturally occurring on-
tologies is practical holds—over all corpora the Atomic Decompositions for 90% of
ontologies could be computes in less than 30 seconds. For the handful of extremely
large ontologies, the polynomial runtime behaviour of the algorithm begins to bite and
there a small number of these ontologies for which it is not possible to compute the
Atomic Decomposition within what one might regard as a reasonable time frame. For
balance, we note that there are huge ontologies for which it is possible to compute the
Atomic Decompositions including ontologies of sizes 433,896 axioms, 356,657 axioms
and 227,101 axioms.

8 Conclusions

In this article we performed a replication study using an off-the-shelf Atomic Decom-
position algorithm on three large test corpora of OWL ontologies. The main aim of this
work was to replicate and verify previously published results. Our findings indicate that

9 Recall that atoms are disjoint with each other and the complete set of atoms for an ontology
covers that ontology.
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(a) the previously published empirical studies in this area are repeatable; (b) comput-
ing Atomic Decompositions in the vast majority of cases is practical, in that they can
be computed in less than 30 seconds in 90% of cases, even for ontologies containing
hundreds of thousands of axioms; (c) there are occurrences of extremely large ontolo-
gies (< 1% in our test corpora) where the polynomial runtime behaviour of the Atomic
Decomposition algorithm begins to bite, and computations cannot be completed within
12-hours of CPU time; (d) the distribution of number of atoms in the Atomic Decompo-
sition for an ontology appears to be similar for distinct corpora. Finally, the ontology cor-
pora, summary metrics for the corpora, experiment results and software used to run the
experiments are available online at http://www.stanford.edu/˜horridge/
publications/2014/iswc/atomic-decomposition/data.

Acknowledgements. This work was funded by Grant GM103316 from the National
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Abstract. The Linked Data cloud has grown to become the largest
knowledge base ever constructed. Its size is now turning into a major bot-
tleneck for many applications. In order to facilitate access to this struc-
tured information, this paper proposes an automatic sampling method
targeted at maximizing answer coverage for applications using SPARQL
querying. The approach presented in this paper is novel: no similar RDF
sampling approach exist. Additionally, the concept of creating a sample
aimed at maximizing SPARQL answer coverage, is unique. We empiri-
cally show that the relevance of triples for sampling (a semantic notion)
is influenced by the topology of the graph (purely structural), and can be
determined without prior knowledge of the queries. Experiments show a
significantly higher recall of topology based sampling methods over ran-
dom and naive baseline approaches (e.g. up to 90% for Open-BioMed at
a sample size of 6%).

Keywords: subgraphs, sampling, graph analysis, ranking, Linked Data.

1 Introduction

The Linked Data cloud grows every year [4,10] and has turned the Web of Data
into a knowledge base of unprecedented size and complexity. This poses problems
with respect to the scalability of our current infrastructure and tools. Datasets
such as DBPedia (459M triples) and Linked Geo Data (289M triples) are central
to many Linked Data applications. Local use of such large datasets requires
investments in powerful hardware, and cloud-based hosting is not free either.
These costs are avoidable if we know which part of the dataset is needed for
our application, i.e. if only we could pick the data a priori that is actually being
used, or required to solve a particular task. Experience in the OpenPHACTS and

� This work was supported by the Dutch national program COMMIT, and carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 81–96, 2014.
c© Springer International Publishing Switzerland 2014



82 L. Rietveld et al.

Data2Semantics projects1 shows that for the purposes of prototyping, demoing
or testing, developers and users are content with relevant subsets of the data.
They accept the possibility of incomplete results that comes with it. A locally
available subset is also useful when the connection to a cloud based server is
inaccessible (something which happens frequently [10]). Since more users can
host subsets of very large data locally, this will lift some of the burden for (often
non-commercial) Linked Data providers, while links to the remaining parts on
external servers remain in place.

Our analysis of five large datasets (>50M triples) shows that for a realistic set
of queries, at most 2% of the dataset is actually used (see the ‘coverage’ column
in Table 1): a clear opportunity for pruning RDF datasets to more manageable
sizes.2 Unfortunately, this set of queries is not always known: queries are not
logged or logs are not available because of privacy or property rights issues. And
even if a query set is available, it may not be representative or suitable, e.g. it
contains queries that return the entire dataset.

We define relevant sampling as the task of finding those parts of an RDF
graph that maximize a task-specific relevance function while minimizing size.
For our use case, this relevance function relies on semantics: we try to find
the smallest part of the data that entails as many of the original answers to
typical SPARQL queries as possible. This paper investigates whether we can use
structural properties of RDF graphs to predict the relevance of triples for typical
queries.

To evaluate this approach, we represent “typical use” by means of a large num-
ber of SPARQL queries fired against datasets of various size and domain: DB-
pedia 3.9 [3], Linked Geo Data [5], MetaLex [19], Open-BioMed3, Bio2RDF [8]
and Semantic Web Dog Food [24] (see Table 1). The queries were obtained from
server logs of the triple stores hosting the datasets and range between 800 and
5000 queries for each dataset. Given these datasets and query logs, we then 1)
rewrite RDF graphs into directed unlabeled graphs, 2) analyze the topology of
these graphs using standard network analysis methods, 3) assign the derived
weights to triples, and 4) generate samples for every percentile of the size of the
original graph. These steps were implemented as a scalable sampling pipeline,
called SampLD.

Our results show that the topology of the hypergraph alone helps to predict
the relevance of triples for typical use in SPARQL queries. In other words, we
show in this paper that without prior knowledge of the queries to be answered,
we can determine to a surprisingly high degree which triples in the dataset
can safely be ignored and which cannot. As a result, we are able to achieve a
recall of up to .96 with a sample size as small as 6%, using only the structural

1 See http://openphacts.org and http://www.data2semantics.org, respectively.
2 The figure of 2% depends on the assumption that the part of the graph touched by

queries is relatively stable over time. We intend to investigate this further in future
work.

3 See http://www.open-biomed.org.uk/

http://openphacts.org
http://www.data2semantics.org
http://www.open-biomed.org.uk/
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properties of the graph. This means that we can use purely structural properties
of a knowledge base as proxy for a semantic notion of relevance.

This paper is structured as follows. We first discuss related work, followed
by the problem definition and a description of our approach. The fourth section
discusses the experiment setup and evaluation, after which we present the results.
Finally we discuss our conclusions.

2 Related Work

Other than naive random sampling [30], extracting relevant parts of Linked Data
graphs has not been done before. However, there are a number of related ap-
proaches that deserve mentioning: relevance ranking for Linked Data, generating
SPARQL benchmark queries, graph rewriting techniques, and non-deterministic
network sampling techniques.

Network Sampling. [23] evaluates several non-deterministic methods for sam-
pling networks: random node selection, random edge selection, and exploration
techniques such as random walk. Quality of the samples is measured as the struc-
tural similarity of the sample with respect to the original network. This differs
from our notion of quality, as we do not strive at creating a structurally repre-
sentative sample, but rather optimize for the ability to answer the same queries.
Nevertheless, the sampling methods discussed by [23] are interesting baselines
for our approach; we use the random edge sampling method in our evaluation
(See Section 5).

Relevance Ranking. Existing work on Linked Data relevance ranking fo-
cuses on determining the relevance of individual triples for answering a single
query [2,7,12,20,22]. Graph summaries, such as in [11], are collections of impor-
tant RDF resources that may be presented to users to assist them in formulating
SPARQL queries, e.g. by providing context-dependent auto completion services.
However, summarization does not produce a list of triples ordered by relevance.

TRank [32] ranks RDF entity types by exploiting type hierarchies. However,
this algorithm still ranks entities and not triples. In contrast, TripleRank [12]
uses 3d tensor decomposition to model and rank triples in RDF graphs. It takes
knowledge about different link types into account, and can be seen as a multi-
model counterpart to web authority ranking with HITS. TripleRank uses the
rankings to drive a faceted browser. Because of the expressiveness of a tensor
decomposition, TripleRank does not scale very well, and [12] only evaluate small
graphs of maximally 160K triples. Lastly, TripleRank prunes predicates that
dominate the dataset, an understandable design decision when developing a user
facing application, but it has an adverse effect on the quality of samples as
prominent predicates in the data are likely to be used in queries as well.

ObjectRank [7] is an adaptation of PageRank that implements a form of
link semantics where every type of edge is represented by a particular weight.
This approach cannot be applied in cases where these weights are not known
beforehand. SemRank [2] ranks relations and paths based on search results. This
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approach can filter results based on earlier results, but it is not applicable to a
priori estimation of the relevancy of the triples in a dataset. Finally, stream-
based approaches such as [15] derive the schema. This approach is not suitable
for retrieving the most relevant factual data either, regarding a set of queries.

Concluding, existing approaches on ranking RDF data either require prior
knowledge such as query sets, a-priori assignments of weights, produce samples
that may miss important triples, or focus on resources rather than triples.

Synthetic Queries. SPLODGE [14] is a benchmark query generator for ar-
bitrary, real-world RDF datasets. Queries are generated based on features of
the RDF dataset. SPLODGE-based queries would allow us to run the sam-
pling pipeline on many more datasets, because we would not be restricted by
the requirement of having a dataset plus corresponding query logs. However,
benchmark queries do not necessarily resemble actual queries, since they are
meant to test the performance of Linked Data storage systems [1]. Further-
more, SPLODGE introduces a dependency between the dataset features and
the queries it generates, that may not exist for user queries.4

RDF Graph Rewriting. RDF graphs can be turned into networks that are
built around a particular property, e.g. the social aspects of co-authorship, by
extracting that information from the RDF data [33]. Edge labels can sometimes
be ignored when they are not directly needed, e.g. to determine the context of
a resource [20], or when searching for paths connecting two resources [17].

The networks generated by these rewriting approaches leave out contextual in-
formation that may be critical to assess the relevance of triples. The triples 〈: bob, :
hasAge, “50”〉 and 〈: anna, : hasWeight, “50”〉 share the same literal ("50"), but
it respectively denotes an age and a weight. Finally, predicates play an important
role in our notion of relevance. They are crucial for answering SPARQL queries,
which suggests that they should carry as much weight as subjects and objects in
our selection methodology. Therefore, our approach uses different strategies to re-
move the edge labels, while still keeping the context of the triples.

In [18], RDF graphs are rewritten to a bipartite network consisting of sub-
jects, objects and predicates, with a separate statement node connecting the
three. This method preserves the role of predicates, but increases the number of
edges and nodes up to a threefold, making it difficult to scale. Additionally, the
resulting graph is no longer directed, disqualifying analysis techniques that take
this into account.

3 Context

In the previous section, we presented related work on RDF ranking and net-
work sampling, and showed that sampling for RDF graphs has not been done
4 In an earlier stage of this work, we ran experiments against a synthetic data and

query set generated by SP2Bench [29]. The results were different from any of the
datasets we review here, as the structural properties of the dataset were quite dif-
ferent, and the SPARQL queries (tailored to benchmarking triple-stores) are incom-
parable to regular queries as well.



Structural Properties as Proxy for Semantic Relevance in RDF 85

before. This section introduces a very generic framework for such RDF sampling.
We elaborate on different RDF sampling scenarios, and present the particular
sampling scenario addressed by this paper.

3.1 Definitions

A ‘sample’ is just an arbitrary subset of a graph, so we introduce a notion of
relevance to determine whether a sample is a suitable replacement of the original
graph. Relevance is determined by a relevance function that varies from applica-
tion to application. The following definitions use the same SPARQL definitions
as presented in [25].

Definition 1. An RDF graph G is a set of triples. A sample G′ of G is a proper
subset of G. A sample is relevant w.r.t. a relevance function F (G′,G) if it max-
imizes F while minimizing its size.

Finding a relevant sample is a multi-objective optimization problem: selecting a
sample small enough, while still achieving a recall which is high enough. More-
over, there is no sample that fits all tasks and problems, and for each application
scenario a specific relevance function has to be defined. In this paper, relevance
is defined in terms of the coverage of answers with respect to SPARQL queries.

Definition 2. The relevance function for SPARQL querying Fs(G′,G) is the
probability that the solution μ to an arbitrary SPARQL query Q is also a solution
to Q w.r.t. G′.

As usual, all elements T ∈ G are triples of the form (s, p, o) ∈ I × I × (I ∪L),
where s is called the subject, p the predicate, and o the object of T . I denotes
all IRIs, where L denotes all literals. For this paper, we ignore blank nodes.

In other words, a relevant sample of a RDF graph is a smallest subset of
the graph, on the basis of which the largest possible number of answers that
can be found with respect to the original RDF graph. As common in multi-
objective optimization problems, the solution cannot be expected to be a single
best sample, but a set of samples of increasing size.

3.2 Problem Description

The next step is to determine the method by which a sample is made. As
briefly discussed in the introduction, this method is restricted mostly by the
pre-existence of a suitable set of queries. To what extent can these queries be
used to inform the sampling procedure? As we have seen in the related work,
sampling without prior knowledge – uninformed sampling – is currently an un-
solved problem. And in fact, even if we do have prior knowledge, a method that
does not rely on prior knowledge is still useful.

With informed sampling, there is a complete picture of what queries to expect:
we know exactly which queries we want to have answered, and we consequently
know which part of the dataset is required to answer these queries. Given the
size of Linked Data sets, this part can still be too large to handle. This indicates
a need for heuristics or uninformed methods to reduce the size even more.
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Table 1. Data and query set statistics

Dataset #Tripl. Avg.
Deg.

Tripl. w/
literals #Q Coverage Q w/

literals

#Triple patt.
per query

(avg / stdev)

DBpedia 3.9 459M 5.78 25.44% 1640 0.003% 61.6% 1.07 / 0.40
LGD 289M 4.06 46.35% 891 1.917% 70.7% 1.07 / 0.27
MetaLex 204M 4.24 12.40% 4933 0.016% 1.1% 2.02 / 0.21
Open-BioMed 79M 3.66 45.37% 931 0.011% 3.1% 1.44 / 3.72
Bio2RDF/KEGG 50M 6.20 35.06% 1297 2.013% 99.8% 1.00 / 0.00
SWDF 240K 5.19 34.87% 193 39.438% 62.4% 1.80 / 1.50

If we have an incomplete notion of what queries to expect, e.g. we only know
part of the queries or only know their structure or features, we could still use
this information to create a semi-informed selection of the data. This requires a
deeper understanding of what features of queries determine relevance, how these
relate to the dataset, and what sampling method is the best fit.

In this paper we focus on a comparison of methods for uninformed sampling,
the results of which can be used to augment scenarios where more information
is available. For instance, a comparison of query features as studied in [26,28],
combined with performance of our uninformed sampling methods, could form
the basis of a system for semi-informed sampling.

To reiterate, our hypothesis is that we can use standard network metrics on
RDF graphs as useful proxies for the relevance function. To test this hypothesis,
we implemented a scalable sampling pipeline, SampLD, that can run several
network metrics to select the top ranked triples from RDF datasets and evaluate
the quality of those samples by their capability to answer real SPARQL queries.

3.3 Datasets

We evaluate the quality of our sampling methods for the six datasets listed in
the introduction: DBPedia, Linked Geo Data (LGD), MetaLex, Open-BioMed
(OBM), Bio2RDF5 and Semantic Web Dog Food (SWDF). These datasets were
chosen based on the availablity of SPARQL queries. These datasets were the
only ones with an available correponding large query set. The MetaLex query
logs were made available by the maintainers of the dataset. In the other five
cases, we used server query logs made available by the USEWOD workshop
series [9].

Table 1 shows that the size of these dataset ranges from 240K triples to 459M
triples. The number of available queries per dataset ranges between 193 and
4933. Interestingly, for all but one of our datasets, less than 2% of the triples
is actually needed to answer the queries. Even though the majority of these
queries are machine generated (see Section 7), this indicates that only a very
small portion of the datasets is relevant, which corroborates our intuition that
5 For Bio2RDF, we use the KEGG dataset [21], as this is the only Bio2RDF dataset

for which USEWOD provides query logs. KEGG includes biological systems infor-
mation, genomic information, and chemical information.
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the costs for using Linked Data sets can be significantly reduced by selecting
only the relevant part of a dataset. However, these low numbers make finding
this small set of relevant triples more difficult as well. Other relevant dataset
properties shown in this table are the average degree of the subjects and objects,
the percentage of triples where the object is a literal, the percentage of queries of
which at least one binding uses a literal, and the average and standard deviation
of the number of triple patterns per query.

4 Sampling Pipeline

The SampLD pipeline calculates and evaluates the quality of samples across dif-
ferent uninformed sampling methods for multiple large datasets.6 The procedure
consists of the following four phases:

1. rewrite an RDF graph to a directed unlabeled graph,
2. analyze the rewritten graph using standard network analysis algorithms,
3. assign the node weights to triples, creating a ranked list of triples,
4. generate samples from the ranked list of triples.

We briefly discuss each of the four phases here.

Step 1: Graph Rewriting. Standard network analysis methods, are not read-
ily suited for labeled graphs, nor do they take into account that a data model
may be reflected in the verbatim RDF graph structure in many ways [16]. Since
the edge labels (predicates) play an important role in RDF, simply ignoring
them may negatively impact the quality of samples (see the related work). For
this reason, the SampLD pipeline can evaluate pairwise combinations of net-
work analysis techniques and alternative representations of the RDF graph, and
compare their performance across sample sizes.

SampLD implements five rewriting methods: a simple (S), unique literals
(UL), without literals (WL), context literals (CL), and path (P). As can be seen
in Figure 1, the first four methods convert every triple (s, p, o) to a directed edge
6 The SampLD pipeline and evaluation procedure are available online at
https://github.com/Data2Semantics/GraphSampling/

https://github.com/Data2Semantics/GraphSampling/
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s → o. If several triples result in the same edge (e.g. when only the predicate dif-
fers), we do not assert that edge more than once. These first four methods differ
primarily with respect to their treatment of literal values (i.e. non-IRI nodes)
in the graph. It is important to note that for all approaches, any removed liter-
als are re-added to the RDF graph during the round-trip phase detailed below.
Since literals do not have outgoing edges they have a different effect on network
metrics than IRIs, e.g. by acting as a ‘sink’ for PageRank.

The Simple (S) method retains the exact structure of the original RDF graph.
It treats every syntactically unique literal as a single node, taking the data
type and language tag of the literal into account. Two occurrences of the literal
“50"ˆˆxsd:Integer result in a single node. The Unique literals (UL) method con-
verts every occurrence of a literal as a separate node. The average degree drops,
and the graph becomes larger but will be less connected. The Context literals
(CL) approach preserves the context of literals, it groups literals that share the
same predicate together in a single node. This allows us to make sure that the
network metrics distinguish e.g. between integers that express weight, and those
that express age. This also results in fewer connections and a lower average de-
gree since predicate-literal pairs will be less frequent than literals. The Without
literals (WL) method simply ignores all occurrences of literals. As a result the
graph becomes smaller.

The fifth method, Path (P), is triple, rather than resource oriented. It repre-
sents every triple (s, p, o) as a single node, and two nodes are connected when
they form a path of length 2, i.e. their subject and object must overlap. As-
serting edges between triples that share any resource discards the direction of
the triple, and produces a highly verbose graph, cf. [18], as a resource shared
between n triples would generate n(n−1)

2 edges. Also, occurrences of triples with
rdf:type predicates would result in an extremely large number of connections.
The path method has the advantage that it results in a smaller graph with low
connectedness, and that maintains directedness, where we can assign weights
directly to triples rather than resources (as with the other methods).

Step 2: Network Analysis. In the second step, SampLD applies three common
network analysis metrics to the rewritten RDF graph: PageRank, in degree and
out degree. These are applied “as is” on the rewritten graphs.

Step 3: Assign Triple Weights. Once we have obtained the network analysis
metrics for all nodes in the rewritten graph, the (aggregated) values are assigned
as weights on the triples in the original graph. For method P, we simply assign
the value of the node that corresponds to the triple. For the S, UL, WL and
CL methods, we retrieve the values for the subject and object of each triple,
and assign whichever is highest as weight to that triple7. When the object of a
triple is a literal, it has no corresponding node in the graph produced through

7 One can also use the minimum or average node weight. We found that the maximum
value performs better.
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the WL method: in such cases, the value of the subject will function as weight
for the triple as a whole. The result of this assignment phase is a ranked list of
triples, ordered by weight in descending order. The distribution of triple weights
typically follows a ‘long tail’ distribution, where large numbers of triples may
share the same weight. To prevent potential bias when determining a sample,
these triples with equal weights are added to the ranked list in random order.

Step 4: Generating Samples. Given the ranked list of triples, generating
the sample is a matter of selecting the desired top-k percent of the triples, and
removing the weights. The ‘best’ k value can differ per use-case, and depends
on both the minimum required quality of the sample, and the maximum desired
sample size. For our current purposes SampLD produces samples for each accu-
mulative percentile of the total number of triples, resulting in 100 samples each
for every combination of dataset, rewrite method and analysis algorithm.

Implementation. Because the datasets we use are quite large, ranging up
to 459 Million triples for DBPedia, each of these steps was implemented using
libraries for scalable distributed computing (Pig [13] and Giraph [6]). Scale also
means that we are restricted in the types of network metrics we could evaluate.
For instance, Betweenness Centrality is difficult to paralellize because of the need
for shared memory [31]. However many of the tasks are parallelizable, e.g. we
use Pig to fetch the weights of all triples.

Given the large number of samples we evaluate in this paper (over 15.000,
considering all sample sizes, datasets and sampling methods), SampLD uses a
novel scalable evaluation method that avoids the expensive procedure (in terms
of hardware and time) of loading each sample in triple-stores to calculate the
recall.

5 Experiment Setup and Evaluation

The quality of a sample is measured by its ability to return answers on a set of
queries: we are interested in the average recall taken over all queries. Typically,
these queries are taken from publicly available server query logs, discarding those
that are designed to return all triples in a dataset, and focusing on SELECT
queries, as these are the most dominant. A naive approach would be to execute
each query on both the original dataset and the sample, and compare the results.
This is virtually impossible, given the large number of samples we are dealing
with: 6 datasets means 15.600 samples (one, for every combination of dataset
(6), sampling method (15) and baseline (1+10), and percentile(100)), or 1.4·1012
triples in total.

Instead, SampLD (a.) executes the queries once on the original dataset and
analyzes which triples are used to answer the query, (b.) uses a cluster to check
which weight these triples have. It then (c.) checks whether these triples would
have been included in a sample, and calculates recall. This avoids the need to load
and query each sample. Below, we give a detailed description of this procedure.
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Terminology. For each graph G we have a set of SELECT queries Q, acting
as our relevance measure. Each Q ∈ Q contains a set of variables V , of which
some may be projection variables Vp ⊆ V (i.e. variables for which bindings are
returned). Executing a query Q on G returns a result set Rg

q , containing a set of
query solutions S. Each query solution S ∈ S contains a set of bindings B. Each
binding B ∈ B is a mapping between a projection variable Vp ∈ Vp and a value
from our our graph: μ : Vp → (I ∪ L)

Required Triples. Rewriting a SELECT query into a CONSTRUCT query
returns a bag of all triples needed to answer the SELECT query. However,
there is no way to determine what role individual triples play in answering the
query: some triples may be essential in answering all query solutions, others just
circumstantial. Therefore, SampLD extracts triples from the query on a query
solution level. It instantiates each triple pattern, by replacing each variable used
in the query triple patterns with the corresponding value from the query solution.
As a result, the query contains triple patterns without variables, and only IRIs
and literals. These instantiated triple patterns (‘query triples’) show us which
triples are required to produce this specific query solution. This procedure is not
trivial.

First, because not all variables used in a query are also projection variables,
and blank nodes are inaccessible as well, we rewrite every SELECT query to the
‘SELECT DISTINCT *’ form and replace blank nodes with unique variable names.
This ensures that all nodes and edges in the matching part of the original graph
G are available to us for identifying the query triples. However, queries that
already expected DISTINCT results need to be treated with a bit more care.
Suppose we have the following query and dataset:

SELECT DISTINCT ?city WHERE {
?university :inCity ?city ;

:rating :high .
}

<university1> :inCity <London> .
<university1> :rating <high> .
<university2> :inCity <London> .
<university2> :rating <high> .

Rewriting the query to ‘SELECT DISTINCT *’ results in two query solutions,
using all four dataset triples. However, we only either need at least the first two
triples, or the last two, but not all four. SampLD therefore tracks each distinct
combination of bindings for the projection variables Vp.

Secondly, when the clauses of a UNION contain the same variable, but only
one clause matches with the original graph G, the other clause should not be
instantiated. We instantiate each clause following the normal procedure, but use
an ASK query to check wether the instantiated clause exists in G. If it does not
exist, we discard the query triples belonging to that clause.

Thirdly, we ignore the GROUPand ORDER solution modifiers, because they do
not tell us anything about the actual triples required to answer a query. The LIMIT
modifier is a bit different as it indicates that the user requests a specific number of
results, but not exactly which results. The limit is used in recall calculation as a
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cap on the maximum number of results to be expected for a query. In other words,
for these queries we don’t check whether every query solution for G is present for
the sample but only look at the proportion of query solutions.

Finally, we currently ignore negations in SPARQL queries since they are very
scarce in our query sets. Negations may increase the result set for smaller sample
sizes, giving us a means to measure precision, but the effect would be negligible.

Calculate Recall. For all query triples discovered in the previous step, and
for each combination of rewrite method and network analysis algorithm, we find
the weight of this triple in the ranked list of triples. The result provides us with
information on the required triples of our query solutions, and their weights
given by our sampling methods. SampLD can now determine whether a query
solution would be returned for any given sample, given the weight of its triples,
and given a k cutoff percentage. If a triple from a query solution is not included
in the sample, we mark that solution as unanswered, otherwise it is answered.

Recall is then determined as follows. Remember that query solutions are
grouped under distinct combinations of projection variables. For every such com-
bination, we check each query solution, and whenever one of the grouped query
solutions is marked as answered, the combination is marked answered as well.
For queries with OPTIONAL clauses, we do not penalize valid query solutions
that do not have a binding for the optional variable, even though the binding
may be present for the original dataset.8 If present, the value for the LIMIT
modifier is used to cap the maximum number of answered query solutions.

The recall for the query is the number of answered projection variable combi-
nations, divided by the total number of distinct projection variable combinations.
For each sample, SampLD uses the average recall, or arithmetic mean over the
query recall scores as our measure of relevance.

Baselines. In our evaluation we use two baselines: a random selection (rand)
and using resource frequency (freq). Random selection is based on 10 random
samples for each of our datasets. Then, for each corresponding query we calculate
recall using the 10 sampled graphs, and average the recall over each query. The
resource frequency baseline counts the number of occurrences of every subject,
predicate and object present in a dataset. Each triple is then assigned a weight
equal to the sum of the frequencies of its subject, predicate and object.

6 Results

This section discusses the results we obtained for each of the datasets. An in-
teractive overview of these results, including recall plots, significance tests, and
degree distributions for every dataset, is available online.9 Figure 2a shows the
best performing sample method for each of our datasets. An ideal situation would
show a maximum recall for a low sample size.10 For all the datasets, these best
8 Queries with only OPTIONAL clauses are ignored in our evaluation.
9 See http://data2semantics.github.io/GraphSampling/

10 Note that all plots presented in this paper are clickeable, and point to the online
interactive version.

http://data2semantics.github.io/GraphSampling/
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Fig. 2. Best samping methods per dataset (a) and comparison of methods for DBPedia
(b,c,d)12

performing sampling methods outperform the random sample, with often a large
difference in recall between both. The P rewrite method (see Figure 1) combined
with a PageRank analysis performs best for Semantic Web Dog Food and DB-
pedia (see also Figure 2). The UL method combined with an out degree analysis
performs best for Bio2RDF and Linked Geo Data. For Open-BioMed the WL and
out degree performs best, where the naive resource frequency method performs
best for MetaLex. For each dataset, the random baseline follows an (almost)
linear line from recall 0 to 1; a stark difference with the sampling methods.

Figure 2a also shows that both the sample quality and method differs between
datasets. Zooming in on sample sizes 10%, 25% and 50%, the majority of the best
performing sampling methods have significantly better average recall (α = 0.05)
than the random sample. Exceptions are LGD and Bio2RDF for sample size
10%, and MetaLex for sample size 10% and 25%.

The dataset properties listed in Table 1 help explain results for some sampling
methods. The resource frequency baseline performs extremely bad for OBM9:
for all possible sample sizes, the recall is almost zero. Of all objects in Open-
BioMed triples, 45.37% are literals. In combination with 32% duplicate literals,

http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Pagerank&enabled=DBpedia-Path%20-%20Pagerank&enabled=DBpedia-Simple%20-%20Pagerank&enabled=DBpedia-UniqueLiterals%20-%20Pagerank&enabled=DBpedia-WithoutLiterals%20-%20Pagerank
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Indegree&enabled=DBpedia-Path%20-%20Indegree&enabled=DBpedia-Simple%20-%20Indegree&enabled=DBpedia-UniqueLiterals%20-%20Indegree&enabled=DBpedia-WithoutLiterals%20-%20Indegree
http://data2semantics.github.io/GraphSampling/d3jsResults.html?showgrid&enabled=DBpedia-RandomSample&enabled=DBpedia-ResourceFrequency&enabled=DBpedia-ContextLiterals%20-%20Outdegree&enabled=DBpedia-Path%20-%20Outdegree&enabled=DBpedia-Simple%20-%20Outdegree&enabled=DBpedia-UniqueLiterals%20-%20Outdegree&enabled=DBpedia-WithoutLiterals%20-%20Outdegree
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this results in high rankings for triples that contain literals for this particular
baseline. However, all of the queries use at least one triple pattern consisting
only of IRIs. As most dataset triples contain a literal, and as these triples are
ranked high, the performance of this specific baseline is extremely bad.

Another observation is the presences of ‘plateaus’ in Figure 2a, and for some
sample sizes a steep increase in recall. This is because some triples are required
for answering a large number of queries. Only once that triple is included in a
sample, the recall can suddenly rise to a much higher level. For the Bio2RDF
sample created using PageRank and the path rewrite method (viewable online),
the difference in recall between a sample size of 1% and 40% is extremely small.
In other words, choosing a sample size of 1% will result in more or less the same
sample quality as a sample size of 40%.

Figure 2 (b,c,d) shows the performance of the sampling methods for DBpedia.
The P method combined with either PageRank or in degree performs best on DB-
pedia, where both baselines are amongst the worst performing sampling methods.
A sample size of 7% based on the P and PageRank sampling method already results
in an average recall of 0.5. Notably, this same rewrite method (P) performs worst
on DBpedia when applied with out degree. This difference is caused by triples with
literals acting as sink for the path rewrite method: because a literal can never oc-
cur in a subject position, that triple can never link to any other triple. This causes
triples with literals to always receive an out degree of zero for the P rewritemethod.
Because 2/3 of the DBpedia queries require at least one literal, the average recall is
extremely low. This ‘sink’ effect of P is stronger compared to other rewrite meth-
ods: the triple weight of these other methods is based on the weight of the subject
and object (see section 4). For triples containing literals, the object will have an
out degree of zero. However, the subject may have a larger out degree. As the sub-
ject and object weights are aggregated, these triples will often receive a non-zero
triple weight, contrary to the P rewrite method.

Although our plots show striking differences between the datasets, there are
similarities as well. First, the out degree combined with the UL, CL and S methods
performs very similar across all datasets and sample sizes (See our online results9).
The reason for this similarity is that these rewrite methods only differ in how they
treat literals: as-is, unique, or concatenated with the predicate. These are exactly
those nodes which always have an out degree of zero, as literals only have incom-
ing edges. Therefore, this combination of rewrite methods and network analysis
algorithms performs consistently the same. Second, the in degree of the S and
CL rewrite methods are similar as well for all datasets with only a slight devi-
ation in information loss for DBpedia. The main idea behind the CL is appending
the predicate to the literal to provide context. The similarity for the in degree of
both rewrite methods might indicate only a small difference between the literals
in both rewrite methods regarding incoming links: adding context to these literals
has no added value. DBpedia is the only dataset with a difference between both
rewrite methods. This makes sense, as this dataset has many distinct predicates
(53.000), which increases the chances of a single literal being used in multiple con-
texts, something the CL rewrite method is designed for.
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What do these similarities buy us? They provide rules of thumb for applying
SampLD to new datasets, as it shows which combinations of rewrite methods
and network analysis algorithms you can safely ignore, restricting the number of
samples to create and analyze for each dataset.

7 Conclusion

This paper tests the hypothesis as to whether we can use uninformed, network
topology based methods to estimate semantic relevance of triples in an RDF
graph. We introduced a pipeline that uses network analysis techniques for scal-
able calculation and selection of ranked triples, SampLD. It can use five ways
to rewrite labeled, directed graphs (RDF) to unlabeled directed graphs, and
runs a parallelized network analysis (indegree, outdegree and PageRank). We
furthermore implemented a method for determining the recall of queries against
our samples that does not require us to load every sample in a triple store (a
major bottleneck). As a result, SampLD allows us to evaluate 15.600 different
combinations of datasets, rewritten graphs, network analysis and sample sizes.

RDF graph topology, query type and structure, sample size; each of these can
influence the quality of samples produced by a combination of graph rewriting
and network analysis. This paper does not offer a definitive answer as to which
combination is the best fit: we cannot yet predict the best performing sampling
method given a data and query set. To make this possible, we plan to use Ma-
chine Learning on the results for several more independent data and query sets.
Although SampLD provides the technical means, the number of publicly avail-
able query sets is currently too limited to learn significant correlations (6 query
sets in total for USEWOD 2013, only 3 in 2014)11.

In other work [27,28] we propose a SPARQL client (YASGUI), of which its
logs allows us to gather and analyze queries for a wider range of datasets. [28]
shows that these queries are quite different from the ones we can find in the
publicly available server logs that we had access to for the purposes of this
paper. In future work, we will use these query features in abstract, intermediate
representations of queries and query sets. This allows us to better understand the
effect of query types on our sampling methods, and forms the basis for sample
quality prediction: a prerequisite for more informed sampling methods. Finally,
a deeper analysis of the queries will also reveal information about the dynamics
of Linked Data usage: does the part of the data touched by queries remain stable
over time, or is it very volatile? In other words, is the 2% coverage from Table 1
predictive for future situations?

Our results, all of which are available online12, indicate that the topology
of RDF graphs can be used to determine good samples that, in many cases,

11 See http://data.semanticweb.org/usewod/2013/challenge.html and
http://usewod.org/reader/release-of-the-2014-usewod-log-data-set.html,
respectively.

12 Interactive plots of our results are available at
http://data2semantics.github.io/GraphSampling/.

http://data2semantics.github.io/GraphSampling/
http://data.semanticweb.org/usewod/2013/challenge.html
http://usewod.org/reader/release-of-the-2014-usewod-log-data-set.html
http://data2semantics.github.io/GraphSampling/.
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significantly outperform our baselines. Indeed, this shows that we can mimic
semantic relevance through structural properties of RDF graphs, without an
a-priori notion of relevance.
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Abstract. Many RDF descriptions today are text-rich: besides struc-
tured data they also feature much unstructured text. Text-rich RDF data
is frequently queried via predicates matching structured data, combined
with string predicates for textual constraints (hybrid queries). Evaluat-
ing hybrid queries efficiently requires means for selectivity estimation.
Previous works on selectivity estimation, however, suffer from inherent
drawbacks, which are reflected in efficiency and effectiveness issues. We
propose a novel estimation approach, TopGuess, which exploits topic
models as data synopsis. This way, we capture correlations between struc-
tured and unstructured data in a holistic and compact manner. We study
TopGuess in a theoretical analysis and show it to guarantee a linear space
complexity w.r.t. text data size. Further, we show selectivity estimation
time complexity to be independent from the synopsis size. In experi-
ments on real-world data, TopGuess allowed for great improvements in
estimation accuracy, without sacrificing efficiency.

1 Introduction

RDF data contains descriptions of entities, with each description being a set of
triples. Many RDF descriptions feature textual data: On the one hand, structured
RDF data often comprises text via predicates such as comment or description.
On the other hand, unstructured Web documents are frequently annotated with
structured data (e.g., via RDFa or Microformats).

Hybrid Queries. Such text-rich RDF descriptions are often queried with
queries, which comprise predicates that match structured data as well as words
in text data (hybrid queries). Consider the following example (cf. Fig. 1-a/b):

SELECT * WHERE {

?m ex:title ?title . ?p ex:name ?name . ?l ex:name ?name2 .

?m ex:starring ?p . ?p ex:bornIn ?l .

?m a Movie . ?p a Person .

FILTER (contains(?title,"Holiday") && contains(?name,"Audrey") &&

contains(?name2,"Belgium")) }

� This work was supported by the European Union through project XLike (FP7-ICT-
2011-288342).

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 97–113, 2014.
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Fig. 1. (a) RDF graph about “Audrey Hepburn” and her movie “Roman Holiday”.
(b) Hybrid query graph asking for movies with title “Holiday” and starring a person
with name “Audrey”, who was born in “Belgium”. (c) Vocabulary W comprising all
words from attributes values in the data graph.

Hybrid queries are highly relevant for RDF stores with SPARQL fulltext ex-
tension, e.g., LARQ1 or Virtuoso2. In fact, every store that supports FILTER

clauses on texts faces hybrid queries.

Selectivity Estimation. For finding an optimal query plan, RDF stores rely
on selectivity estimates to approximate the result size of a query (fragment) [19].
Various selectivity estimation techniques have been proposed for relational
data [1,7,9,17,18,21] as well as for RDF data [10,16,19,20,23]. These techniques
summarize the data via a data synopsis (e.g., histograms, join synopses, tuple-
graph synopses, or probabilistic relational models (PRM)) to capture data corre-
lations/statistics. Based on these synopses, different estimation approaches have
been proposed to efficiently approximate the query’s selectivity.

However, when applying state-of-the-art selectivity estimation techniques for
hybrid queries effectiveness and efficiency issues (I.1 and I.2) arise:

(I.1) Effectiveness Issues. Queries over RDF data typically comprise a large
number of joins. Thus, a data synopsis must capture statistics for multiple
(joined) query patterns in order to allow effective estimates. Recent work on se-
lectivity estimation for RDF data captured multiple patterns either via comput-
ing statistics for frequent (star/chain) join patterns [10,16], via heuristics [19,20],
or by conditional probabilities [23]. These strategies work well for structured
query patterns (i.e., class, relation, and attributes), because the number of struc-
tured elements (i.e., class, relation, and attributes) is usually small and indepen-
dent of the instance data size. However, in the presence of textual data and
hybrid queries, capturing multiple patterns is much harder, since the number
of words is oftentimes very large. For instance, the DBLP dataset (used in our
evaluation) has 25 million words vs. 56 structure elements.

Example. In Fig. 1-a, there can be many entities of type Person (i.e., bindings
for ?p a Person), while only few entities have a name “Audrey”. So, in order

1 http://jena.sourceforge.net/ARQ/lucene-arq.html
2 http://virtuoso.openlinksw.com

http://jena.sourceforge.net/ARQ/lucene-arq.html
http://virtuoso.openlinksw.com


Holistic and Compact Selectivity Estimation for Hybrid Queries 99

to estimate the # bindings for ?p in Fig. 1-b, a synopsis has to capture statistics
for any word associated (via name) with Person entities.

Moreover, the number of words is strongly dependent on the data and text size,
respectively. So, with growing data sets, statistics become increasingly complex
and space consuming. To address this, all previous works summarized the words
via a small synopsis, which is constructed either by hashing [19], heuristics [20],
categorization [16], discretization [10], or via string synopses [23]. Unfortunately,
such coarse-grained synopses result in an “information loss”. That is, oftentimes
heuristics must be employed to estimate selectivities of query keywords (e.g.,
“Audrey”), which leads to severe miss-estimations.

(I.2) Efficiency Issues. All previous works [10,16,19,20,23], aim at constructing
a query-independent data synopsis at offline time. In fact, previous approaches
directly use this offline constructed data synopsis to estimate the query selec-
tivity. Thus, a large synopsis would influence the estimation efficiency. In order
to guarantee an efficient selectivity estimation at runtime, existing approaches
either construct only small synopses [10,16,19,23] or purely rely on heuristics for
selectivity estimation [20].

Contributions. (1) In this paper, we propose a novel approach (TopGuess),
which utilizes relational topic models as data synopsis. Such synopses are well-
suited to summarize text data, because they provide statistics for the complete
vocabulary of words by means of topics. So, no “information loss” can occur
due to coarse-grained synopses. Furthermore, correlations between structured
query patterns (e.g., ?m ex:starring ?p and ?m rdf:type Movie, see Fig. 1-
b) can also be captured. Thus, we have an effective and holistic synopsis for
hybrid queries (effectiveness issues, I.1). The TopGuess approach also constructs
a query-independent data synopsis at offline time. However, in contrast to pre-
vious approaches, we do not directly use this large synopsis at runtime. Instead,
we only employ a small and compact synopsis (Bayesian network), which is con-
structed specifically for the current query (efficiency issues, I.2).

(2) We provide a theoretical analysis: TopGuess achieves a linear space com-
plexity w.r.t. text data size (cf. Thm. 1). Further, TopGuess has an estimation
time complexity that is independent of the synopsis size (given the number of
topics), cf. Thm. 4.

(3) We conducted experiments on real-world data: TopGuess could improve
the effectiveness by up to 88% – without sacrificing runtime performance.

Outline. First, in Sect. 2 we outline preliminaries. We introduce the TopGuess
approach in Sect. 3. In Sect. 4, we present evaluation results, before we outline
related work in Sect. 5. We conclude with Sect. 6.

2 Preliminaries

Data and Query Model. We use RDF as data model:

Definition 1 (RDF Graph). Let �a (�r) be a set of attribute (relation) labels.
A RDF graph is a directed labeled graph G = (V,E, �a, �r), with nodes V =
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VE � VA � VC where VE are entity nodes, VA are attribute value nodes, and VC

are class nodes. Edges (so-called triples) E = ER � EA � type are a disjoint
union of relation edges ER and attribute edges EA. Relation edges connect entity
nodes: 〈s, r, o〉 ∈ ER, with s, o ∈ VE and r ∈ �r). Attribute edges connect an
entity with an attribute value: 〈s, a, o〉 ∈ EA, with s ∈ VE , o ∈ VA and a ∈ �a.
Triple 〈s, type, o〉 ∈ E models that entity s ∈ VE belongs to class o ∈ VC .

We conceive an attribute value in VA as a bag-of-words. Further, let a vocab-
ulary W comprise all such words. That is, W is derived from words in attribute
values: for each triple 〈s, p, o〉 ∈ EA we add all words in o to W . See also Fig. 1.

Conjunctive queries resemble the basic graph pattern (BGP) feature of
SPARQL. In this work, we use hybrid queries:

Definition 2 (Hybrid Query). A query Q is a directed graph GQ = (VQ, EQ),
with VQ = VQV � VQC � VQK , VQV as variables, VQC as constants, and VQK as
keywords. Edges EQ are called predicates: (1) Class predicates 〈s, type, o〉, with
s ∈ VQV , o ∈ VQC . (2) Relation predicates 〈s, r, o〉, with s ∈ VQV , o ∈ VQC � VQV ,
and r ∈ �r. (3) String predicates 〈s, a, o〉, with s ∈ VQV , o ∈ VQK , and a ∈ �a.

Fig. 1-b shows an example query. Query semantics follow those for BGPs. That
is, results are subgraphs of the data graph, which match all query predicates.
The only difference is due to keyword nodes: a value node o ∈ VA matches a
keyword w ∈ VQK , if the bag-of-words from o contains word w.

We rely on two data synopses: topic models and Bayesian networks (BNs):

Topic Models. Topic models assume that texts are mixtures of “hidden” topics,
where a topic is a probability distribution over words. These topics are abstract
clusters of words – formed according to word co-occurrences. More formally, a
text collection can be represented by k topics T = {t1, . . . , tk}, where W is
the vocabulary (see above definition) and each topic t ∈ T is a multinomial
distribution of words in W : P(w | t) = βtw and

∑
w∈W βtw = 1.

Example. Three topics are depicted in Fig. 2-c: T = {t1, t2, t3}. Every topic t
assigns a probability (represented by vector βt) to each word in the vocabulary.
Probabilities in βt indicate the importance of words within topic t. For instance,
“Belgium” is most important for topic t3 (βtw = 0.014), cf. Fig. 2-c.

Bayesian Networks. A Bayesian network (BN) is a directed graphical model,
which compactly represents a joint probability distribution via its structure and
parameters [12]. The structure is a directed acyclic graph, where nodes stand
for random variables and edges represent dependencies. Given a node Xi and its
parents Pa(Xi) = {Xj, . . . , Xk}, Xi dependents on Pa(Xi), but is conditionally
independent of all non-ancestor random variables (given Pa(Xi)).

BN parameters are given by conditional probability distributions (CPDs).
That is, each random variable Xi is associated with a CPD capturing the con-
ditional probability P(Xi | Pa(Xi)). The joint distribution P(X1, . . . , Xn) can
be estimated via the chain rule [12]: P(X1, . . . , Xn) ≈

∏
i P(Xi | Pa(Xi)).

Example. A BN is shown in Fig. 3. Nodes such as Xm and Xholiday stand
for random variables. Edges stand for dependencies between those nodes. For
instance, the edge Xm → Xholiday denotes a dependency between the parent,
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Xm, and the child, Xholiday. In fact, given its parent, Xholiday is conditionally
independent of all non-ancestor variables, e.g., Xp. Every node has a CDP. For
example, Xholiday has a CDP for P(Xholiday | Xm), cf. Fig. 3-b.

Problem. Given a hybrid query Q, we aim at a result size estimation function
F(Q) as [9]: F(Q) ≈ R(Q) · P(Q).

Let R be a function R : Q → N that provides an upper bound cardinality for a
result set for query Q. Further, let P be a probabilistic component, which assigns
a probability to query Q that models whether Q’s result set is non-empty.

R(Q) can be easily computed as product over “class cardinalities” of Q [9].
That is, for each variable v ∈ VQV we bound the number of its bindings, R(v), as
number of entities belonging v’s class c: |{s|〈s, type, c〉 ∈ E}|. If v has no class, we
use the number of all entities (i.e., |VE |) as a bound. Finally, R(Q) =

∏
v R(v).

In the remainder of the paper, we provide an effective (I.1) and efficient (I.2)
instantiation of the probabilistic component P .
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3 TopGuess

Targeting the effectiveness (I.1) and efficiency (I.2) issues of existing works w.r.t.
hybrid queries (cf. Sect. 1), we now introduce our novel TopGuess approach.

More precisely, we present an uniform data synopsis based on relational topic
models in Sect. 3.1 (I.1), and show in Thm. 1 that this synopsis has a linear
space complexity w.r.t. vocabularyW (I.2). Further, we introduce a probabilistic
component P in Sect. 3.2 and 3.3, and show in Thm. 4 selectivity computation
complexity to be independent of the synopsis size (I.2).

Note, the topic model (data synopsis) is learned at offline time and may be
stored on disk. At runtime, we construct a small BN for each given query –
reflecting our data synopsis as well as query characteristics via topic mixtures.

3.1 Relational Topic Models as Data Synopsis

Synopsis Parameters. For an effective synopsis over text-rich RDF data,
TopGuess exploits relational topic models [2,4,14,25]. These topic models
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summarize the data by means of one uniform synopsis – considering structured
and text data. More precisely, our synopsis comprises of two parts:

(1) First, the TopGuess synopsis captures text data in a low-dimensional
representation via a set of k topics T = {t1, . . . , tk}.

Example. Fig. 2-c groups words from the vocabulary W = {“Roman”, “Holi-
day”, . . .}, cf. Fig. 1-c, via three topics, T = {t1, t2, t3}. This way, text data in
Fig. 1-a, e.g., associated via attribute comment, is compactly represented.

The number of topics is dictated by the data characteristics. In particular,
previous works allow to learn the optimal number of topics [8]. By means of this
compact summary, TopGuess achieves a linear space complexity linear w.r.t. a
vocabulary, see Thm. 1.

(2) Second, the TopGuess synopsis captures correlations between those topics
and structured data. For our query model, we rely on two correlation parameters
for selectivity estimation: λ and ω. Note, for other kinds of queries, further types
of correlation parameters may be considered.
– Class-Topic Parameter λ. We capture correlations between a class c ∈ VC

and topics in T via a vector λc, where each vector element, λc(t), represents
the weight between class c and topic t. A higher weight indicates that a class
is more correlated with a topic.
Example. Fig. 2-a shows the two class-topic parameters for the classes Movie
and Person: λmovie and λperson. Both indicate correlations w.r.t. topics T =
{t1, t2, t3}. For instance, λmovie states that class Movie is highly correlated
with topic t1, has some correlation with t3, and has no correlation with t2.

– Relation-Topic Parameter ω. We measure correlations between a relation r
and the topics in T via a matrix ωr. Since relation r is observed “between”
two entities, say 〈s, r, o〉, the topic of its subject s and its object o is consid-
ered. Given k topics, matrix ωr has k × k dimensions and entries such that:
if entity s is associated with topic ti and entity o has topic tj , the weight of
observing a relation r “between” s and o is given by the entry 〈i, j〉, denoted
as ωr(ti, tj). Note, TopGuess features a matrix ω for each relation.
Example. Fig. 2-b depicts the relation-topic parameter for the starring re-
lation: ωstarring. According to ωstarring, starring is most often observed
(weight 7) if its subject (object) contains words from topic t1 (t2).

Parameter Learning. For training above parameters, we do not restrict
TopGuess to a single topic model. Instead, different approaches can be used.
For instance, classical topic models such as LDA [3] may be employed to learn
the first part, i.e., word/topic probabilities, cf. Fig. 2-c. Then, correlations be-
tween those topics and classes/relations must be obtained. For this, topic models
have been extended to consider structured data, so-called relational topic mod-
els [2,4,14,25]. Most notably, a recent approach, the Topical Relational Model
(TRM) [2], trains topics as well as class/relation correlations simultaneously
from RDF data. We used a TRM as data synopsis in our experiments.
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Xm Xp Xl

Xholiday Xmovie Xstarring Xaudrey Xperson XbornIn Xbelgium

(a) (b)
Xholiday = T      Xm

0.647          t1

0.118          t2

0.235          t3

CPD: P(Xholiday|Xm)

Fig. 3. (a) Query-specific BN for the query in Fig.1-b. It contains three topical
variables (color: blue, e.g., Xm), two class predicate variables (color: light gray, e.g.,
Xmovie), two relation predicate variables (color: dark gray, e.g., Xstarring), and three
string predicate variables (color: white, e.g., Xholiday). Observed variables (color:
white/light gray/dark gray) are independent from each other and only dependent on
hidden topical random variables (color: blue) – as dictated by Def. 4. (b) CDP for
random variable Xholiday, cf. parameters in Fig. 2-c.

Discussion. The TopGuess synopsis comes with key advantages: First, in con-
trast to existing work [23], we do not need separate synopses for structured and
text data. This way, we may learn correlations in a uniform manner.

Moreover, TopGuess parameters are not required to be loaded in mem-
ory. This is a crucial advantage over state-of-the-art selectivity estimation sys-
tems [9,21,23], as memory is commonly a limited resource. So, TopGuess can
utilize the complete vocabulary W for learning word/topic probabilities β.

Last, as empirically validated by our experiments, correlations between topics
and structured data suffice for an accurate selectivity estimation. Since even a
small number of topics can capture these correlations, our synopsis does not
grow exponentially in its vocabulary size.

In fact, we can show that a topic-based data synopsis has linear space com-
plexity w.r.t. its vocabulary:

Theorem 1 (Synopsis Space Complexity). Given k topics, a vocabulary
W , classes VC , and relations �r, TopGuess has a storage space complexity in
O(|W | · k + |VC | · k + |�r| · k2).
Proof. See our report for a proof [22] �

3.2 Probabilistic Component: Query-Specific BN

In this section, we exploit the synopsis parameters for an efficient probabilistic
component (I.2, Sect. 1). For this, we first construct a small, query-specific BN
and afterwards compute its joint probability in Sect. 3.3. Both steps are done at
runtime. In contrast to [9,21,23], all synopsis parameters may be kept on disk,
while only the query-specific BN is loaded into memory.

To construct a BN specifically for a query Q, we capture every query predi-
cate in Q via a random variable: For a class predicate, 〈s, type, c〉, and relation
predicate, 〈s, r, o〉, we create a binary random variable Xc and Xr. Similarly, for
a string predicate, 〈s, a, w〉, we introduce a binary random variable Xw. Most
importantly, we assume that each variable v in Q belongs to one or more topics
in T . So, we model variable v via a topical random variable, Xv. More formally,
Xv has a multinomial distribution over the topics:
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Definition 3 (Topical Random Variable). For a set of topics T , a query
Q, and its variable v ∈ VQV , the random variable Xv is a multinomial topical
random variable for v, with topics T as sample space.

Based on topical random variables, we perceive query variables as topic mix-
tures. Thus, Xv captures query variable v’s “relatedness” to every topic. In the
following, we denote the set of all string, class, relation, and topical random
variables for query Q as Xw, Xc, Xr, and Xv.

We create a simple BN structure by means of a fixed structure assumption:

Definition 4 (Topical Dependence Assumption). Given a class/string
predicate 〈v, ∗, ∗〉, the corresponding variable X depends only the topical ran-
dom variable Xv. Given a relation predicate 〈v, ∗, y〉, the corresponding variable
X depends only on two topical random variables: Xv and Xy.

The topical dependence assumption lies at the core of the TopGuess approach.
It considers that query predicate probabilities depend on (and are governed by)
the topics of their associated topical random variables. Further, the assumption
allows us to model the query probability, P(Q), via a tree-shaped BN.

Example. Fig. 3-a depicts a BN for the query in Fig. 1-b. Adhering to Def. 4,
each topical variable (Xm, Xp, and Xl) forms a small tree of dependent random
variables. For instance, random variable Xholiday is only dependent on its topical
variable, Xm. In fact, given Xm, Xholiday is conditionally independent of all
other variables, e.g., Xaudrey. This way, topic mixtures of Xm, Xp, and Xl

govern the overall query probability, P(Q).
Last, note that the topical dependence assumption leads to a valid BN:

Theorem 2. A query-specific BN constructed according to Def. 4 is acyclic.

Proof. See [22] for a proof �

3.3 Probabilistic Component: Query Probability Computation

Having formed the BN structure for a given query Q, we may compute the query
probability, P(Q), via the chain rule (CR) [12]:

P(Q) = P
( ∧

Xw = T
∧

Xc = T
∧

Xr = T
)

(1a)

≈
CR

∏

〈v,a,w〉 ∈Q

P(Xw = T | Xv) ·
∏

〈v,type,c〉 ∈Q

P(Xc = T | Xv)

·
∏

〈v,r,y〉∈Q

P(Xr = T | Xv, Xy) (1b)

In order to solve Eq. 1, we require a CPD for each random variable, cf. Fig. 3-
b. We rely on TopGuess parameters as well as distributions of topical random
variables to approximate these CPDs. As topical variables Xv are hidden, we
learn their distributions from observed random variables (Xw, Xc, Xr).
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In the following, we first discuss CPD estimation for observed random vari-
ables, given topical random variables (topic distributions). Subsequently, we
present learning of topic distributions for hidden topical variables.

Query Predicate Probabilities. Probabilities for query predicates are influ-
enced by their associated topical random variables and their TopGuess parame-
ters. In other words, we may compute the CPDs for Xw, Xc, and Xr using topic
distributions of topical variables and probabilities estimated by the correspond-
ing β, λ, or ω parameter:

(1) Class Predicates. Adhering to the topical dependence assumption, the
probability of observing a class, P(Xc = T), is only dependent on its topical
variable Xv. We use the class-topic parameter λ to obtain the weight λc(t),
which indicates the correlation between topic t and class c:

P(Xc = T | Xv, λ) =
∑

t∈T
P(Xv = t)

λc(t)∑
t′ ∈T λc(t′)

Example. Fig. 3-a shows two random variables, Xmovie and Xperson, which
dependent on their topical variables Xm and Xp. For computing P(Xmovie = T)
and P(Xperson = T), the parameters λmovie and λperson are used, cf. Fig. 2-a.
Assuming P(Xm = t1) = 0.6, P(Xm = t2) = 0.1, and P(Xm = t3) = 0.3, we
get: P(Xmovie = T) = 0.6 · 0.75 + 0.1 · 0 + 0.3 · 0.25 = 0.525.

(2) Relation Predicates. A relation predicate 〈v, r, y〉 connects two query vari-
ables, which have the two topical variables Xv and Xy. Random variable Xr

solely depends on the topics of Xv and Xy. The correlation between relation r
and these topics is given by the relation-topic parameter ωr:

P(Xr = T | Xv, Xy, ωr) =
∑

t,t′ ∈T

P(Xv = t) ωr(t, t
′) P(Xy = t′)∑

t′′,t′′′ ∈T ωr(t′′, t′′′)

Example. In Fig. 3-a, we have the variables Xstarring and XbornIn – both
dependent on two topical variables. For instance, Xstarring depends on Xm and
Xp. P(Xstarring = T) is estimated via matrix ωstarring, cf. Fig. 2-b.

(3) String Predicates. For each string predicate 〈v, a, w〉, there is a random
variable Xw. The word-topic parameter βtw represents the probability of ob-
serving word w given topic t. Thus, P(Xw = T) is calculated as probability of
observing w, given the topics of v’s topical variable, Xv:

P(Xw = T | Xv, β1:K) =
∑

t∈T
P(Xv = t)

βtw∑
t′ ∈T βt′w

Example. Fig. 3-a depicts three random variables for string predicates. Given
P(Xm) as in the above example, the probability for “holiday” is (cf. Fig. 3-b):

P(Xholiday = T) = 0.6 · 0.011
0.017

+ 0.1 · 0.002
0.017

+ 0.3 · 0.004
0.017

= 0.47

Learning Topic Distributions. Finally, we wish to estimate topic distribu-
tions for the hidden topical variables based on Xw, Xc, and Xr. We aim at
finding a topic distribution for every topical variable, so that the query proba-
bility in Eq. 1 is maximized. Thus, this optimal topic distribution directly gives
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us P(Q). Let θvt denote a set of topic parameters for topical random variable
Xv. Further, let θ = {θvt | v ∈ VQV , t ∈ T } be the set of all parameters θvt.
Then, we search for parameter θ that maximizes the log-likelihood of Eq. 1:

argmax
θ

L(θ : Xw,Xc,Xr) (2)

where L(θ : Xw,Xc,Xr) is the log-likelihood defined as:

L(θ : Xw,Xc,Xr) = P(Xw,Xc,Xr | θ, β, ω, λ)

=
∑

v

∑

Xw ∈Xv
w

logP(Xw | Xv, β)+
∑

v

∑

Xc ∈Xv
c

logP(Xc | Xv, λ)

+
∑

v,y

∑

Xr ∈Xv,y
r

logP(Xr | Xv, Xy, ω)

where Xv
w and Xv

c is the set of all string/class random variables having Xv as
parent. Xv,y

r is the set of all relation random variables with parents Xv and Xy.
We use gradient ascent optimization to learn the parameter θ. First, we

parametrize each P(Xv = t) with θvt such that

P(Xv = t) =
eθvt∑

t′ ∈T eθvt′

to obtain a valid probability distribution over the topics. Obtaining the gradient
requires dealing with the log of the sum over the topics of each topical variable.
Therefore, we make use of theorem [12]:

Theorem 3. Given a BN and D = {o[1], . . . ,o[M ]} as a partially observed
dataset. Let X be a variable in that BN with Pa(X) as its parents. Then:

∂L(θ : D)

∂P(x | pa) =
1

P(x | pa)

M∑

m=1

P(x,pa | o[m], θ),

This provides the necessary form of the gradient. Now, the gradient of the log-
likelihood w.r.t. parameter θvt is:

∂L(θ : Xw,Xc,Xr)

∂θvt
=

∂L(θ : Xw,Xc,Xr)

∂P(Xv = t)︸ ︷︷ ︸
(i)

· ∂P(Xv = t)

∂θvt︸ ︷︷ ︸
(ii)

(3)

The (i)-part of the gradient, Eq. 3, may be obtained via Theorem 3:

∂L(θ : Xw,Xc,Xr)

∂P(Xv = t)
=

1

P(Xv = t)

⎛

⎝
∑

Xw ∈Xv
w

P(Xv = t | Xw, β)

+
∑

Xc ∈Xv
c

P(Xv = t | Xc, λ) +
∑

y

∑

Xr ∈Xv,y
r

P(Xv = t | Xr, Xy, ω)

⎞

⎠
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Using Bayes rule we get:

∂L(θ : Xw,Xc,Xr)

∂P(Xv = t)
=

∑

Xw ∈Xv
w

P(Xv = t)P(Xw | β, t)∑
t′ P(Xv = t′)P(Xw | β, t′)

+
∑

Xc ∈Xv
c

P(Xv = t)P(Xc | λ, t)∑
t′ P(Xv = t′)P(Xc | λ, t′)

+
∑

y

∑

Xr ∈Xv,y
r

P(Xv = t)
∑

t′ P(Xr | Xy, ω, t
′)∑

t′′ P(Xv = t′′)
∑

t′′′ P(Xr | Xy, ω, t′′′)

Finally, the (ii)-part of the gradient in Eq. 3 is given by:

∂P(Xv = t)

∂θtv
=

eθtv
∑

t′−t e
θt′v

(
∑

t′ e
θt′v)2

Time Complexity. Query probability estimation has a complexity bound:

Theorem 4 (Time Complexity for P(Q) Estimation). Given k topics and
a query Q, the time for computing P(Q) in Eq. 1 is in O(ψ · |Q| · k), with ψ as
number of iterations needed for optimization and |Q| as # predicates in Q.

Proof. A proof is given in [22] �

Note, ψ is determined by the specific algorithm used for optimization. So, overall
complexity for computing P(Q) is independent of the synopsis size given the
topics.

4 Evaluation

We conducted experiments to analyze the effectiveness (I.1) and efficiency (I.2)
of TopGuess. Overall, our results are very promising: we achieved up to 88% more
accurate selectivity estimates, while runtime was comparable to the baselines.
Further, in contrast to the baselines, we noted TopGuess’s runtime behavior to
be much less influenced by the synopsis size – thereby confirming Thm. 4.

4.1 Evaluation Setting

Systems. We employ two categories of baselines: (1) String predicates are com-
bined with structured predicates via an independence assumption: IND baseline.
That is, the selectivity of string predicates and structured predicates is estimated
using two separate synopses: a string synopsis (explained below) and a synopsis
for structured RDF data based on histograms [10]. Obtained probabilities are
combined in a greedy fashion while assuming independence. (2) We reuse our
previous work on BNs for text-rich data graphs [23]: BN baseline. Here, all query
predicates are captured uniformly via a single BN. To handle string predicates,
we employ n-gram string synopses [24]

A n-gram synopsis summarizes the vocabulary by “omitting” certain n-grams.
Thus, a synopsis represents a subset of all possible n-grams occurring in the



108 A. Wagner et al.

Table 1. Data synopsis memory/disk space in MB

IMDB DBLP

BN/IND TopGuess BN/IND TopGuess

Mem. {2, 4, 20, 40} ≤ 0.1 {2, 4, 20, 40} ≤ 0.1
Disk 0 281.7 0 229.9

data. A simplistic strategy is to choose random n-gram samples from the data.
Another approach is to construct a top-k n-gram synopsis. For this, n-grams are
extracted from the data together with their counts. Then, the k most frequent
n-grams are included in the synopsis. Further, a stratified bloom filter (SBF)
synopsis has been proposed [24], which uses bloom filters as a heuristic map that
projects n-grams to their counts. Note, we refer to omitted n-grams as “missing”.
The probability for missing n-grams cannot be estimated with a probabilistic
framework, as such strings are not included in a sample space. So, a string
predicate featuring a missing n-gram is assumed to be independent from the
remainder of the query. Its probability is computed via a heuristic. We employ
the leftbackoff strategy, which finds the longest known n-gram that is the pre-
or postfix of the missing n-gram. Then, the probability of the missing n-gram is
approximated based on statistics for its pre-/postfix [24].

Combining string synopses with the two categories of baselines yields six sys-
tems: INDsample, INDtop-k, and INDSBF rely on the independence assumption,
while BNsample, BNtop-k, and BNSBF represent BN approaches.

Data. We employ two real-world RDF datasets: DBLP [15] and IMDB [6]. From
both datasets we have large vocabularies: 25, 540, 172 (DBLP) and 7, 841, 347
(IMDB) words. Note, while DBLP and IMDB feature text-rich attributes, they
differ in their overall amount of text. On average an attribute in DBLP contains
2.6 words, with a variance of 2.1 words. In contrast, IMDB attributes contain
5.1 words, with a variance of 95.6 words. Moreover, we observed during learning
of the BN baseline that there are more data correlations in IMDB than in DBLP.
We expect correlations between query predicates to have a strong influence on
the system effectiveness.

Queries. We used IMDB [6] and DBLP [15] keyword search benchmarks: We
generated 54 DBLP queries from [15]. Further, we constructed 46 queries for
IMDB based on queries in [6]. We omitted 4 queries from [6], as they could not
be translated to conjunctive queries. Overall, our load features 100 queries with:
0-4 relation, 1-7 string, 1-4 class predicates, and 2-11 predicates in total. Further
query statistics and a complete query listing can be found in [22].

Synopsis Size. We employ baselines with varying synopsis size. For this, we
varied # words captured by the string synopsis. The top-k and sample synop-
sis contained # words ∈ {0.5K, 1K, 5K, 10K}. The SBF string synopsis cap-
tured {2.5K, 5K, 25K, 50K} words for each attribute. Note, SBF systems fea-
tured most keywords occurring in our query load. Different string synopsis sizes
translated to a memory consumption of baselines ∈ {2, 4, 20, 40} MB. IND and
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BN baselines load their synopsis into main memory. In contrast, TopGuess keeps
a large topic model at disk and constructs a small, query-specific BN in memory
at runtime (≤ 100 KBytes). Table 1 depicts further details.

Implementation and Offline Learning. For IND and BN baselines, we started
by constructing their string synopses. Each synopsis was learned in ≤ 1h.

Then, we constructed BN systems based on [23]. That is, we capture words and
structured data elements using random variables and learn correlations between
them, thereby forming a BN structure. For efficient selectivity estimation the
network is reduced to a “lightweight” model capturing solely the most important
correlations. Then, we calculate model parameters (CPDs) based on frequency
counts. For IND systems, we do not need the model structure and merely keep
the marginalized BN parameters. Structure and parameter learning combined
took up to 3h. To compute query selectivities the BN systems need inferencing
strategies. For this, we used a Junction tree algorithm [23].

TopGuess exploits an “off-the-shelf” TRM from [2]. The number of topics is
an important factor – determining which correlations are discovered. We exper-
imented with a varying number of topics ∈ [10, 100]. We found 50 topics are
sufficient to capture all strong correlations in our datasets. The TopGuess learn-
ing took up to 5h and its parameters were stored on hard disk, cf. Table 1. At
query time, we employed a greedy gradient ascent algorithm for learning the
topic distributions. To avoid local maxima, we used up to 10 random restarts.

We implemented all systems in Java 6. Experiments were run on a Linux server
with: 2 Intel Xeon CPUs at 2.33GHz, 16 GB memory assigned to the JVM, and
a RAID10 with IBM SAS 10K rpm disks. Before each query execution we cleared
OS caches. Presented values are averages over five runs.

4.2 Selectivity Estimation Effectiveness

We employ the multiplicative error metric (me) [7] for measuring effectiveness:

me(Q) =
max{Fe(Q),Fa(Q)}
min{Fe(Q),Fa(Q)}

with Fe(Q) and Fa(Q) as exact and approximated selectivity. Intuitively, me(Q)
is the factor to which Fa(Q) under-/overestimates Fe(Q).

Overall Results. Figs. 4-a/e (b/f) show the multiplicative error vs. synopsis
size (# predicates) for DBLP and IMDB. Baseline system effectiveness strongly
varies with their synopsis size. In particular, for small synopses≤ 20 MB IND and
BN performed poorly. We explain this with missing words in their string synopses,
which led to heuristics being used for probability computation. In simple terms,
IND and BN systems traded synopsis space for estimation accuracy.

TopGuess, on the other hand, did not suffer from this issue. All its parameters
(cf. Sect. 3.1) could be stored at disk and solely the query-specific BN was loaded
at runtime. Thus, TopGuess could exploit very fine-grained probabilities and
omitted any kind of heuristic. We observed that TopGuess reduced the error
of the best BN system, BNSBF, by 88% (33%) for IMDB (DBLP). Further, we
outperformed the best IND system, INDSBF, by 99% (35%) on IMDB (DBLP).
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Fig. 4. Effectiveness: (a)+(b) for DBLP and (e)+(f) for IMDB. Efficiency: (c)+(d) for
DBLP and (g)+(h) for IMDB. Y-axes are given in logarithmic scale.

Synopsis Size. Figs. 4-a/e show estimation errors w.r.t. in-memory synopsis
size. An important observation is that the synopsis size is a key factor for effec-
tiveness. Top-k and sample-based string synopsis systems were strongly affected
by their (string) synopsis size. Given a small synopsis ≤ 4 MB, we observed that
top-k/sample-based systems performed poorly. Here, many relevant query key-
words were missed, leading to inaccurate heuristics being applied. With increas-
ing synopsis size ∈ [4, 20] MB, the performance of top-k approaches converged to
the most accurate baseline (SBF-based systems). For instance given 4 MB space,
the BNtop-k approach preformed 95% worse than BNSBF on IMDB, but only 33%
worse given 20 MB. Further, we noted SBF-based approaches to perform fairly
stable. We explain this with SBF systems using bloom filters as an effective
summary. Such systems were able to capture most query keywords. Thus, few
heuristic-based estimations were necessary. However, SBF-based systems also
have a limited memory space and must eventually omit words.

In contrast, we observed TopGuess to use ≤ 0.1 MB memory for IMDB as
well DBLP. We explain this extremely compact BN with: (1) TopGuess has a
network size, which is bound by the query size. (2) The BN only contains random
variables that either are binary or have a sample space, which is bounded by the
number of topics. For example, over the DBLP query load TopGuess needed on
average 40 KB. Yet, TopGuess resolves the issue of missing words completely:
the TopGuess parameters (stored on disk) capture all words in the vocabulary.
At runtime, TopGuess retrieves the necessary statistics for a particular query
and constructs its query-specific BN. This way, TopGuess achieved up to by
88% (33%) better results on IMDB (DBLP) than the best baselines.

Overall, we can conclude that estimation effectiveness is driven by accurate
string predicate probabilities. Thus, there is a strong need for a data synopsis
allowing for extensive word/text data statistics.

Correlations. We found system performances to vary for IMDB and DBLP.
For the IMDB dataset, BNSBF could reduce errors of the INDSBF approach by up
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to 93%. On the other hand, for DBLP improvements were much smaller. These
differences are due to the varying degree of correlations in our two datasets.
While learning the BNs for BN, we observed less correlations in DBLP than in
IMDB. For instance, for DBLP queries with string predicates name and label,
we noted no significant correlations. Thus, the probabilities obtained from BN

systems were almost identical to the ones from IND.
In contrast, even for the less correlated dataset DBLP, TopGuess outperforms

the best baselines, INDSBF and BNSBF, by 35% and 33%. We explain this our a
fine-grained, query-specific BN. More precisely, we observed that BN approaches
exploited data correlations, which were observed in the data graph. However,
TopGuess captured even minor correlations via its topic mixtures at query time
– learned for each query individually.

Query Size.We depict the multiplicative error vs. # query predicates in Figs. 4-
b/f. As expected, estimation errors increase for all systems in # predicates.
For our baselines, we explain this behavior with: (1) Given an increasing #
predicates, the chances of missing a query keyword increase. (2) When missing
a single query keyword, the error is “propagated” throughout the computation.

However, while the TopGuess approach also led to more misestimates for
larger queries, the degree of this increase was smaller. For instance, considering
IMDB queries with 7-11 predicates, we could observe that TopGuess performs
much more stable than BN or IND baselines, cf. Fig. 4-f.

4.3 Selectivity Estimation Efficiency
We now analyze the estimation efficiency vs. synopses size (# query predicates),
cf. Figs. 4-c/g (d/h). For TopGuess, the reported times comprise parameter
loading, BN construction, and topic learning. For BN and IND, the times represent
only selectivity computation, i.e., no model learning or parameter loading.

Overall Results. Considering BN and IND systems, we saw that their string
synopsis was a key performance factor. Intuitively, the more words were missed,
the “simpler” and the more efficient these systems became. However, such gains
came at the expense of effectiveness: the fastest baseline system, INDsample, also
computed the least accurate selectivity estimates.

Comparing the two systems with the best effectiveness, TopGuess and BNSBF,
TopGuess led to a better performance by up to 45%. Unfortunately, in compar-
ison to top-k systems, TopGuess resulted in a performance decrease of 40%. We
explain these drawbacks with the time-consuming disk I/O, which was needed for
loading the statistics. However, while BN and IND clearly outperformed TopGuess
w.r.t. small synopses ≤ 4 MB, TopGuess results are comparable for synopses
≥ 20 MB. We expect such effects to be more drastic for “large” BN/IND synopses
� 100 MB. So, TopGuess guarantees a much more “stable” behavior.

Synopsis Size. Figs. 4-c/g show time vs. synopsis size. For the baselines, we
saw a correlation between synopsis size and runtime behavior: While BN and IND

reach a high efficiency for synopses ≤ 4 MB, their performance decreases rapidly
for synopses ≥ 20 MB. We explain this effect with the larger CPDs, which led
to longer probability estimation times. We observed SBF-based approaches to
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be less driven by their synopsis size. This is because their computational costs
are mainly determined by bloom filters. In contrast, TopGuess did not suffer
from this issue at all. That is, for a given query, TopGuess only loads/processes
statistics necessary for that query. All others statistics are kept on disk.

Query Size. All systems had increasing estimation times in query size, cf.
Figs. 4-d/h. This is because each additional query predicate translated to more
probability computations. However, as TopGuess exploits a compact query-
specific BN, we expected it’s performance to be less influenced by query size. To
confirm this, we compared the standard deviation of the estimation time w.r.t. a
varying # query predicates. For instance, the standard deviations was 82.48 ms
(213.48 ms) for TopGuess (BN). The low deviation for TopGuess indicates that
its probability estimation times varied less than those from BN systems.

5 Related Work

For selectivity estimation on structured data, existing works exploit various data
synopses, e.g., join samples [1], graph synopses [18], or graphical models [9,21,23].
In particular, those synopses have been applied for selectivity estimation of struc-
tured SPARQL/BGP queries on RDF data, e.g., [7,10,16,19].

Unfortunately, such synopses can not effectively capture statistics for combi-
nations of words and structured data elements. In order to guarantee a manage-
able synopsis size, various summarization techniques are commonly applied on
words, e.g., hashing [19], heuristics [20], categorization [16], discretization [10],
or string synopses [23] (I.1, Sect. 1). Moreover, since the offline constructed
data synopsis is directly used for the selectivity estimation at runtime, existing
works must either keep the data synopsis small [10,16,19,23] or solely employ
heuristics [20] (I.2, Sect. 1). In contrast, our TopGuess approach overcomes both
issues (I.1 and I.2) by relying on relational topic models as data synopsis and a
query-specific BN for selectivity estimation.

With regard to selectivity estimation on text data, language models and other
machine learning techniques have been employed [5,11,13,24]. More specifically,
some works aim at substring or fuzzy string matching [5,13], while other ap-
proaches target “extraction” operators, e.g., dictionary-based operators [24].
However, such works do not consider correlations among multiple string predi-
cates or correlations between string predicates and structured query predicates.

6 Conclusion

We proposed a holistic approach (TopGuess) for selectivity estimation of hybrid
queries. We showed space and time complexity bounds for TopGuess. Further, we
conducted empirical studies on real-world data and achieved strong effectiveness
improvements, while not requiring additional runtime.

As a future work, we plan to extend TopGuess in order to become a more
generic selectivity estimation approach for RDF data and BGP queries, respec-
tively. For this, we replace the topic distributions in our data synopsis with
different application-specific probability distributions, e.g., a continuous distri-
bution for estimating the selectivity of range queries over numerical data.
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Abstract. An increasing amount of data is becoming available in the
form of large triple stores, with the Semantic Web’s linked open data
cloud (LOD) as one of the most prominent examples. Data quality and
completeness are key issues in many community-generated data stores,
like LOD, which motivates probabilistic and statistical approaches to
data representation, reasoning and querying. In this paper we address the
issue from the perspective of probabilistic databases, which account for
uncertainty in the data via a probability distribution over all database
instances. We obtain a highly compressed representation using the re-
cently developed RESCAL approach and demonstrate experimentally
that efficient querying can be obtained by exploiting inherent features of
RESCAL via sub-query approximations of deterministic views.
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1 Introduction

The rapidly growing Web of Data, e.g., as presented by the Semantic Web’s
linked open data cloud (LOD), is providing an increasing amount of data in
form of large triple databases, also known as triple stores. However, the LOD
cloud includes many sources with varying reliability and to correctly account
for data veracity remains a big challenge. To address this issue, reasoning with
inconsistent and uncertain ontologies has recently emerged as a research field
of its own [6,31,4,9,3,15]. In this paper we approach the veracity issue from the
perspective of probabilistic databases (PDB), which consider multiple possible
occurrences of a database via a possible worlds semantics and account for un-
certainty in the data by assigning a probability distribution over all database
instances [27]. As such, querying PDBs has a clear interpretation as generaliza-
tions of deterministic relational database queries.

When applying PDBs to large triple stores various key challenges need to be
addressed. First, consider storage requirements. A common assumption in PDBs
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is tuple independence, or in our case triple independence, which requires a repre-
sentation of each triple’s uncertainty. Unless default values are used, representing
the individual uncertainty levels can lead to huge storage requirements.

Second, there is the question of how the triple uncertainty is quantified and
where it is specified. In PDBs one typically assumes that the data uncertainty
is specified by the application, e.g., one assumes given measurements of uncer-
tainty. However, in the Web of Data such information is typically not available.
Rather the Web of Data is incomplete and contains incorrect information, as
triples are missing and existing triples can be false. The third issue concerns
probabilistically correct and efficient querying. Although individual triples are
assumed to be independent, complex queries introduce dependencies such that
correct query answering becomes, in the worst case, intractable.

We address all three issues by exploiting the recently developed RESCAL ap-
proach [19], which computes a memory-efficient low-rank tensor representation
of a triple store from which probabilities for individual triples can be derived
easily without materializing the whole probabilistic representation of the triple
store. These probabilities are meaningful in as much as the underlying data gen-
eration process (which we explore through the factorization) is sensible for the
particular triple store; experimentally it has been shown that this is the case,
e.g., for significant parts of the LOD [20]. While the RESCAL model alone al-
lows to query the probability of individual ground triples, more complex queries,
which generally might contain complex dependencies between ground triples
throughout the complete PDB, remain a major challenge. When restricting the
allowed queries to so-called safe queries, extensional query evaluation can pro-
vide answers with polynomial time complexity [27]. Unfortunately, polynomial
time complexity does not necessarily imply acceptable query time. During query
evaluation it might be necessary to materialize sub-queries, which often produce
large (dense) views and as such have high computational and high memory com-
plexity. Here, we propose a new method for extensional query evaluation (after
factorization) that avoids the expensive materialization of dense database views
by exploiting the factorized low-rank representation of a triple store computed
by RESCAL. The idea is to first materialize the sub-query in the initial deter-
ministic representation of the triple store (that can be efficiently constructed and
is generally sparse) and to then derive a low-rank approximation of that view
using fast RESCAL updates, which then produces the probabilistic view.

The paper is organized as follows: In the next section we discuss related work.
Section 3 reviews PDBs and Section 4 describes the RESCAL approach. Section 5
contains the main contribution of the paper and addresses the querying of a
factorized probabilistic triple databases. Section 6 describes our experimental
results and Section 7 contains our conclusions.

2 Related Work

Probabilistic databases (PDB) have gained much interest in recent years and
an overview over the state of the art is provided by [27]. Important ongoing
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research projects include the MayBMS project [10] at Cornell University, the
MystiQ project [2] at the University of Washington, the Orion project [26] at
the Purdue University, and the Trio project [16] at the Stanford University. The
idea of materialized views on PDBs has been developed in [5], where it was
proposed to materialize probabilistic views to be used for query answering at
runtime.

Uncertainty in Semantic Web ontologies has been addressed in BayesOWL [6]
and OntoBayes [31]. Furthermore, PR-OWL [4] is a Bayesian Ontology Language
for the Semantic Web. The link between PDBs, Description Logic and Semantic
Web data structures has been explored by [9,3,15]. In contrast to these ap-
proaches, we start with a deterministic triple store and then derive probabilities
via the factorization. Common to all these approaches is the challenge of efficient
querying.

In our work we perform a probabilistic ranking of candidate query answers
as done by the top-k querying approaches [7,21,25], however without pruning of
low-confidence answers. In these top-k querying approaches the computation of
exact probabilities for the potential top-k answers are avoided by using lower
and upper bounds for the corresponding marginal probabilities. Unfortunately,
none of these approaches, apart from [7], can avoid extensive materializations in
finding answer candidates [28].

Tensors have been applied to Web analysis in [12] and to ranking predictions
in the Semantic Web in [8]. [23] applied tensor models to rating predictions.
Using factorization approaches to predict ground atoms was pioneered in [29];
[19], [30], [1], and [11] applied tensor models for this task, where [19] introduced
the RESCAL model. [24] applied matrix factorization for relation extraction in
universal schemas.

In [20] the YAGO ontology was factorized and meaningful predictions of sim-
ple triples in selected subgroups of YAGO were derived through the reconstruc-
tion from the low rank representation of the triple store. However, in these papers
querying was limited to the evaluation of independent ground triples. Here, we
study the significantly more difficult problem of complex queries on predicted
triple confidence values (including existentially quantified variables). Thereby we
realize extensional query evaluation on safe queries, which can induce complex
dependencies between individual predicted triple probabilities throughout the
database. In particular, we are concerned with how these queries can be exe-
cuted efficiently, without the need for extensive materialization of probability
tables, by exploiting the factorized representation during querying.

3 Probabilistic Databases

3.1 Semantics

Probabilistic databases (PDB) have been developed to extend database tech-
nologies to handle uncertain data. A general overview is provided by [27]. PDBs
build on the concept of incomplete databases, i.e. databases that are allowed to
be in one of multiple states (worlds): Given an active domain ADom of constants
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(resources in RDF) each world contains a subset of all possible ground atoms
(triples), formed by the elements of ADom and the predicates in the database.
A PDB then assigns a probability distribution to all possible worlds W ∈ W,
where W is the set of all worlds under consideration. More precisely, given an
active domain ADom of constants or resources in terms of a RDF framework,
each world contains a subset of all possible ground atoms (triples), formed by the
elements of ADom and the predicates. A PDB is an incomplete database where,
furthermore, a probability distribution is assigned to the possible worlds. In the
following, we adopt the common assumption of PDBs that the probabilities for
all ground atoms are mutually independent (i.e., tuple independence).

3.2 Querying on Probabilistic Databases

Query evaluation in PDBs remains a major challenge. In particular, scalability to
large domains is significantly harder to achieve when compared to deterministic
databases.

Of interest here is the possible answer semantics which calculates the proba-
bility that a given tuple t is a possible answer to a query Q in a world W ∈ W
of a PDB D. For the marginal probability over all possible worlds, we get

P (t ∈ Q) =
∑

W∈W:t∈QW

P (W )

where QW is the query with respect to one possible world of D.
An important concept in query evaluation is the lineage ΦD

Q of a possible
answer tuple t to Q with respect to D. The lineage of a possible output tuple to
a query is a propositional formula over tuple states in the database, which says
which input tuples must be present in order for the query to return the particular
output. The concept of lineage allows a reduction of the query evaluation problem
to the evaluation of propositional formulas. For queries involving many variables
the lineage can become very complex but can still be derived in polynomial time
(with the size of the database).1

In intensional query evaluation, probabilistic inference is performed over the
lineage of all possible answers to a query Q. Every relational query can be evalu-
ated this way, but the data complexity depends dramatically on the query being
evaluated, and can be hard for #P. Thus it is in general advantageous to avoid
the evaluation of the lineage.

In contrast, extensional query evaluation is concerned with queries where the
entire probabilistic inference can be computed in a database engine and thus,
can be processed as effectively as the evaluation of standard SQL queries. Re-
lational queries that can be evaluated this way are called safe queries. If the
extensional query plan does compute the output probabilities correctly for any
input database, then it is called a safe query plan.

In this paper we focus on queries that allow an extensional query evaluation,
as discussed next.

1 For a more detailed explanation on the concept of lineage we refer to [27, Chp.2].
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3.3 Extensional Query Evaluation

Extensional query evaluation is only dependent on the query expression itself
and the lineage does not need to be computed. During the evaluation process,
several rules are applied to the query in order to divide it into smaller and easier
sub-queries until it reduces to ground tuples with elementary probability val-
ues. Queries that can be completely simplified to ground tuples with extensional
evaluation rules are safe, in the sense mentioned above. Extensional query eval-
uation can be implemented via the application of six rules [27]. In the following
we will briefly describe three of those rules relevant throughout this paper.

Consider a query that can be written as a conjunction of two simpler queries

Q = Q1 ∧Q2.

If one can guarantee that the sub-queries are independent probabilistic events,
one can write

P (Q1 ∧Q2) = P (Q1) · P (Q2). (independent-join rule)

More formally one needs the condition of a syntactical independence between Q1

andQ2: Two queriesQ1 and Q2 are syntactically independent if no two relational
atoms unify, which means that it is not possible that exactly the same ground
tuples, under any assignments of constants, can occur in both sub-queries. With
syntactical independence we also get

P (Q1 ∨Q2) = 1− (1− P (Q1)) · (1− P (Q2)). (independent-union rule)

Further for queries of the form ∃x.Q we can use the independent-project rule

P (∃x.Q) = 1−
∏

b∈ADom

(1− P (Q[b/x])). (1)

This rule can always be applied if x is a separator variable.2 As an example,
consider that we want to know the probability that Jack is born in Rome and
that he likes someone who is a child of Albert Einstein (AE). This query can be
written as a conjunction of two sub-queries Q1 and Q2,

Q1(x, t) : − bornIn(x, t)

Q2(x, z) : − ∃y.(likes(x, y), childOf(y, z))

with x = Jack, t = Rome and z = AE. Q1 asks if Jack is born in Rome and
Q2 if Jack likes somebody who is a child of Albert Einstein. By exploiting the

2 x is a separator variable if it occurs in all atoms in Q and if in the case that atoms
unify, x occurs at a common position. Two atoms unify if they can be made identical
by an assignment of constants.
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Fig. 1. RESCAL model for binary relations

independent join rule on Q1 and Q2 and the independent project rule on Q2 this
query can be calculated as,

P (Q(x = Jack, t = Rome, z = AE) = P (bornIn(Jack,Rome))

×
(
1−

∏

b∈ADom

[1− P (likes(Jack, b)) · P ((childOf(b,AE))]

)
.

Note that since a person can like many other persons the likes atoms in Q2 are
not mutually exclusive what induces a complex expression that is not simply the
sum or the product or probabilities.

4 RESCAL

In PDBs one typically assumes that the data uncertainty is specified by the
application. Although there are efforts towards uncertainty management for the
Web of Data, currently such information not widely available. Rather the Web
of Data is incomplete, i.e., many triples are missing, and contains incorrect in-
formation, i.e., existing triples are false. To overcome this problem, we employ a
probabilistic model of the triple database – i.e. the recently developed RESCAL
approach – and derive data uncertainty from the agreement of the data with
this model. RESCAL relies on a specific factorization of a third-order adjacency
tensor from which triple probabilities can be derived. In addition, RESCAL
computes a highly compressed representation of the PDB, reducing the memory
footprint dramatically. The latter point is of particular interest, since PDBs can
be dense.

4.1 Notation

To describe RESCAL, we need to introduce some notation. We consider a
database as a set of M relations {rk}Mk=1. A relation is a table with attributes
as columns and subject-object entity pairs Ez = (ei, ej) as rows. If rk is a re-
lation, then rk(·) is the corresponding predicate. A predicate is a function that
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maps a tuple to true (or one), if the tuple is part of the relation, and to false
(or zero), otherwise. A predicate applied to a particular tuple rk(Ez) is called a
ground atom. A mapping of all possible tuples for all predicates to true or false,
i.e., the assignment of true or false to all ground atoms, defines a world W (see
Section 3). We now assume the following parameterization for a possible world,

P (W |Θ) =
∏

k,z

P (rk(Ez)|θk,Ez (Θ)). (2)

Here, Θ is a set of model parameters and θk,Ez(Θ) is a scalar that is a function
of the parameters. As it is common in probabilistic databases, Equation (2)
assumes that all ground atoms are independent given the model parameters.

4.2 Parameterization

RESCAL [19] is a latent variable method for learning from multi-relational data
where Equation (2) is parametrized as

θk,(ei,ej) =

r∑

l1=1

r∑

l2=1

Rkl1,l2
ai,l1aj,l2 = aT

i Rkaj . (3)

Thus in RESCAL each entity ei is assigned a vector of r latent variables ai

and the matrix Rk describes how these latent variables interact for a particular
relation.

Note that the parameters Θ = {{ai}ni=1, {Rk}mk=1} are coupled via the unique
representation of the entities, what permits the global exchange of information
across different relations and across subject/object-occurrences of entities. Here,
n is the number of entities and m is the number of relation types. This property
is also referred to as collective learning.

4.3 Cost Functions

In RESCAL, one uses a least-squares penalty on the parameters (implying a
Gaussian prior distribution) and uses the cost function

∑

k,Ez

lossk,Ez + λA‖A‖2F + λR

∑

k

‖Rk‖2F

where A is the matrix of latent factors with (A)i,j = ai,j and λA ≥ 0 and
λR ≥ 0 are hyperparameters for the regularization. ‖ · ‖F is the Frobenius norm.
For the loss function there are several options. An appropriate choice for the
conditional probability in Equation (2) would be a Bernoulli distribution and
we would obtain lossk,Ez = −rk(Ez) log θk,Ez − (1 − rk(Ez))(1 − θk,Ez). After
training, we can interpret θk,Ez ≈ P (rk(Ez) = 1|θk,Ez). Alternatively, one can
use a least-squared loss

lossk,Ez = (rk(Ez)− θk,Ez )
2
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with the same interpretation of θk,Ez . A drawback is that we cannot guarantee
that predicted values are nonnegative and upper bounded by one. To overcome
this issue, we employ a post-processing step of the form,

θ̂Bz = sigε(θ
G
z ) (4)

where θGz is the parameter derived from the Gaussian model and θ̂Bz would be
an estimate for the corresponding Bernoulli parameter. The precise definition of
sigε(θ

G
z ) can be found in the Appendix. Alternatively, a form of Platt scaling

can be used to define sigε(θ
G
z ) [22].

In our work we employ the least squares cost function since then the highly
efficient alternating least-squares (ALS) updates can be employed that exploit
data sparsity [19]. RESCAL has been scaled up to work with several million
entities and close to 100 relation types. In contrast, with the Bernoulli cost
function it would not be possible to exploit the sparsity of the data efficiently:
gradient-based methods for the Bernoulli cost function would require to compute
the dense tensor ARkA

T explicitly, what is both slow and impractical [18] and
pattern-based approaches (such as stochastic gradient descent) have not proven
to be effective with a Bernoulli cost function.

4.4 Tensor Factorization

Note, that in Equation (3) we need to optimize the latent entity representations
ai and the relation-specific Rk matrices. This can be done by first factorizing an
adjacency tensor X ∈ {0, 1}n×n×m whose entries xijk correspond to all possible
ground atoms over n entities and m different relation types. In particular, the
entries ofX are set to one, if the ground atom rk(Ez) exists and to zero otherwise.
Figure 1 illustrates the tensor factorization.

5 Querying Factorized Probabilistic Databases

We will describe now how complex queries on PDBs can be answered efficiently
via the RESCAL model when the queries are restricted to ∃x.Q-type safe queries.

A naive approach would be to use the triple probabilities as calculated by the
RESCAL model in the extensional query evaluation rules,

P (likes(Jack, Jane)) = sigε(a
T
JackRlikesaJane)

where sigε is defined in Equation (4). However, this would not remove the compu-
tational complexity of the evaluation and would computationally be demanding
for any reasonably sized triple store. A probabilistic database is not sparse in
general: e.g., the evaluation of a query the examples used in Section 3.3 requires
on the order of |ADom| evaluations of the RESCAL model. The complexity
is mainly introduced by the existentially quantified query variables and their
product-aggregation in the independent-project rule (Equation (1)). Assuming
further that we are not only interested in the probability with x = Jack but
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in a probabilistic ranking of all persons in the database, the total costs become
already quadratic in |ADom|.

The key idea is to approximate safe sub-queries of the type ∃x.Q by employ-
ing the RESCAL tensor factorization model. Through this approach, we avoid
costly evaluations of sub-queries and additionally construct materialized views
that have a memory efficient factorized representation. To illustrate the pro-
posed approach, consider the query example from Section 3.3. This query can
be subdivided into two parts, Q(x, t, z) = Q1(x, t) ∧Q2(x, z) with

Q1(x, t) : − bornIn(x, t)

Q2(x, z) : − ∃y.(likes(x, y), childOf(y, z)).

As discussed before, the calculation of Q2 can become very expensive. To over-
come this problem, we approximate the probabilistic answer to Q2 by a two-step
process. First, we create a newly formed compound relation likesChildOf, which
represents the database view generated by Q2

Q2(x, z) : −likesChildOf(x, z).

To create the compound relation we use the deterministic and sparse represen-
tation of the affected relations from Q2 and join them into a single relation.
This avoids the expensive calculation of the probabilities for each instance of
the active domain of y and can be computed efficiently as the deterministic join
is not expensive if the (deterministic) domain is sparse. However, the represen-
tation of Q2 would only be based on the available deterministic information so
far and would not utilize the probabilistic model of the triple store computed
by RESCAL. Hence in a second step we now need to derive probabilities for the
triples in the newly formed relation. Fortunately, all that is needed to derive these
probabilities under the RESCAL model is to compute a latent representation of
the newly created compound relation likesChildOf, which can be done very effi-
ciently. In the following, let X(∗) denote the newly created compound relation.
Furthermore, assume that a meaningful latent representation of the entities has
been explored via the factorization of the deterministic triple store. Since the
RESCAL model uses a unique representation of entities over all relations, all
that is needed to derive probabilities for a new relation is to compute its latent
representation R(∗). The big advantage of the proposed method is that R(∗) can
now be derived by simply projecting X(∗) into the latent space that is spanned
by the RESCAL factor matrix A. This can be done very efficiently: Consider
the ALS updates derived in [17]. Essentially what is needed is to calculate the
latent matrix for the materialized view, i.e., R(∗) as

R(∗) = (ZTZ + λI)−1ZTX(∗)
with Z = A⊗A.

R(∗) can be calculated more efficiently by using the following property of the
singular value decomposition regarding the Kronecker product [13]

A⊗A = (U ⊗ U)(Σ ⊗Σ)(V T ⊗ V T )
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where A = UΣV T . From this property the following update for R(∗) can be
derived [17],

R(∗) = V (S � UTX(∗)U)V T

where � represents the Hadamard (element-wise) matrix product and S is de-
fined as

[S]ij =
σiσj

σ2
i σ

2
j + λ

where σi is the i-th singular value of A. The calculation of R(∗) for the newly
created relation can now be done in O(r3 + nr + pr), where p represents the
number of nonzero entries in X(∗), r represents the rank of the factorization,
and where n 
 r represents all entities in the triple database. Please note that
the computation of R(∗) is now linear in all parameters regarding the size of
the triple store and cubic only in the number of latent components r that are
used to factorize the triple store. As such it can be computed efficiently even for
very large triple stores. Furthermore, for each query of the same type the same
relational representation can be used, i.e. R(∗) only needs to be computed once.

6 Experiments

6.1 Evaluating the Quality of the Approximation

First we conducted experiments on various smaller benchmark datasets. Here,
the materialized views (compound relations) can still be computed (and stored)
and we can compare the standard approach using materialized views constructed
by extensional query evaluation (Section 3.3) with our proposed method that ap-
proximates these views. The constructed views that we consider in these experi-
ments range over the join of two relational atoms of the type ∃y.S(x, y), T (y, z).
For evaluation, we removed ground tuples only from the deterministic relations S
and T and factorized the truncated triple store with RESCAL. From the result-
ing factorization, we construct the compound relation of S and T by extensional
query evaluation or approximated it with our proposed method. For both ap-
proaches, we measure the quality of the ranking via the Area Under the Receiver
Operating Characteristic Curve (AUC) in two settings: First, we compared the
ranking to the full ground truth, i.e. against the ranking constructed from the
full triple store(called all tuples in the following) including training and test
data (evaluation setting all). Second, we compared the ranking to that part of
the ground truth that could not have been inferred deterministically from the
truncated (training) data, therefore evaluating only the discovery of new tuples
(called unknown tuples in the following)(evaluation setting unknown). We report
the average scores after 10-fold cross-validation. Additionally, we also compared
the runtime of both techniques. All experiments were conducted with an Intel(R)
Core(TM) i5-3320M CPU @ 2.60GHz.
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(a) negativeBehaviorTo. (b) Runtime (c) associatedAndResultOf (d) Runtime

Fig. 2. Results for the two materialized views negativeBehaviorToAlliedNa-
tionOf (Nations) and associatedToResultOf (UMLS): RESCAL+Rules(blue) rep-
resents the construction solely with the independent-project rule (Section 3.3).
RESCAL+Approx.(green) represents the approximation of these views with the method
proposed in this work (Section 5). (a,c) The left two bars show the performance (AUC)
on all tuples of the deterministic version of the corresponding materialized view (eval-
uation setting all). The right two bars show the performance (AUC) on the tuples that
were unknown at factorization and querying time (evaluation setting unknown).(b,d)
Show the runtime for constructing the views for each technique (independent-project
rule or approximation).

In the experiments, we used the Nations and the UMLS datasets:

Nations. 14 × 14 × 56 multi-relational data that consist of relations between
nations (treaties, immigration, etc).

UMLS. 135 × 135 × 49 multi-relational data that consist of biomedical rela-
tionships between categorized concepts of the Unified Medical Language System.

For the nations dataset we explored the view : “Does x show negative behavior
towards an ally of z?”, leading to the query

negativeBehaviorToAlliedNationOf(x, z) : −∃y.negativeBehaviorTo(x, y),
alliedNationOf(y, z).

For the UMLS dataset we materialized the view associatedToAndResultOf as

associatedToAndResultOf(x, z) : −∃y.associatedTo(x, y), resultOf(y, z).

The results of the experiments are shown in Figure 2. Generally, the results
in Figure 2.a and Figure 2.b show that both techniques do a good job when
constructing the compound relations. Regarding the ranking of all tuples in these
views, very high AUC values could be achieved. In case of the UMLS dataset,
the score is almost perfect (0.999). Also the discovery of unknown tuples seems
to work quite well (right bars in plots a and c). As would have been expected,
in both views the materializations based on the independent-project rule seem
to work a little bit better than the ones approximated by our proposed method,
but the performance is comparable (0.843/0.805 and 0.996/0.978).
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When we are looking at the runtime of the materialization of the views, it
can be clearly seen that the approximated compound relations are constructed
significantly faster than the ones constructed through the independent-project
rule. For the compound relation negativeBehaviorTo the rules based approach
takes 124 times longer (40 times longer for negativeBehaviorToAlliedNationOf ).
This result was expected since the complexity of the approximation is mostly
dependent on the rank of the factorization, where the construction through
independent-project is cubic in |ADom|.3

6.2 Evaluating Queries

In the second set of experiments, we used a larger triple store, i.e., a sample of the
DBpedia dataset4 [14] covering the musical domain and the task was to answer
predefined queries. The queries are answered by using both techniques, rules and
the sub-query approximation proposed in this work. We measure the quality of
the probabilistic ranking of answer tuples to the different predefined queries in
AUC. For evaluation we removed ground tuples from those relations that take
part in constructing parts of the query where our method is supposed to ap-
proximate the sub-query. The resulting truncated triple store is then factorized
by RESCAL. We compare the query answers inferred solely through extensional

(a) Q1(x) (b) Runtime (c) Q2(x) (d) Runtime

Fig. 3. Results for the queries (a) Q1(x) and Q2(x): RESCAL+Rules(blue) rep-
resents the answering with extensional query evaluation rules (Section 3.3).
RESCAL+Approx.(green) represents the query answer of a combination of extensional
query evaluation rules and the approximation of joined ∃y.Q type relational atoms.
(Section 5). (a,c) The left two bars show the quality of the probabilistic ranking (AUC)
when compared to all answer tuples returned from the complete deterministic triple
store with respect to the corresponding query (evaluation setting all). The right two
bars show the ranking quality (AUC) with respect to unknown answer tuples (eval-
uation setting unknown).(b,d) Shows the runtime for answering the query with each
technique (Extensional query evaluation with or without sub-query approximation).

3 |ADom| products have to be computed for each tuple in the compound relation
matrix when applying the independent-project rule.

4 http://wiki.dbpedia.org/Downloads35?v=pb8

http://wiki.dbpedia.org/Downloads35?v=pb8
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query evaluation rules against our method, where sub-queries (compound rela-
tions) were approximated instead of applying the independent-project rule. As
in the first set of experiments, we compare the ranking of possible answer tuples
to the full ground truth, i.e. against the answer tuples inferred from the complete
deterministic triple store, including training and test data (called all tuples in
the following)(evaluation setting all). In addition we compared the ranking to
those answer tuples that could not have been inferred deterministically from the
truncated (training) data, therefore evaluating only the discovery of new tuples
(called unknown tuples in the following)(evaluation setting unknown). For the
query evaluation process the runtime of both approaches was also compared.

The DBpedia dataset:

DBpedia-Music. 44345 × 44345 × 7 multi-relational data that consists of
relations and entities regarding the musical domain. The relations are Genre,
RecordLabel (rL), associatedMusicalArtist, associatedBand, musicalArtist (mA),
musicalBand, album. We pre-defined the following queries for the experiments:

– What songs or albums from the Pop-Rock genre are from musical artists
that have/had a contract with Atlantic Records?

Q1(x) : −∃y.(genre(x, z) ∧ mA(x, y) ∧ rL(y,Atlantic Records)).

– Which musical artists from the Hip Hop music genre have/had a contract
with Shady (SD), Aftermath (AM) or Death Row (DR) records?

Q2(x) : −∃y.(genre(x,Hip hop music)∧mA(x, y)∧rL(y, {SD,AM,DR}))

– Which musical artists from the Hip Hop music genre are associated with
musical artists that have/had a contract with Interscope Records and are
involved in an album whose first letter is a ”T”?

Q3(x) : −∃y.(associatedMusicalArtist(x, y) ∧ rL(y, Interscope Records))∧
genre(x,Hip hop music) ∧ ∃z.∃t.(mA(z, x) ∧ album(z, {Album T.*}))

Q1 and Q2 are calculated as

Q1(x) =

⎡

⎣1−
∏

z∈{PopRock}
1− P (genre(x, z))

⎤

⎦

×
[
1−

∏

b∈ADom

1− P (mA(x, b) · P (rL(b,Atlantic record))

]
.

Q2(x) = P (genre(x,Hip hop music))

×

⎡

⎣1−
∏

b∈ADom

1− P (mA(x, b)

⎡

⎣1−
∏

c∈{SD,AM,DR}
1− P (rL(b, c))

⎤

⎦

⎤

⎦ .
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The computation of Q3 is omitted, since its structure is a combination of Q1

and Q2. For the factorization of the database, a rank of r=100 was used. The
results of the experiments for Q1 and Q2 are shown in Figure 3. Similar to
the previous results, both approaches perform well and comparable in answer-
ing the queries. Also the discovery of unknown answer tuples seems to work
quite well (above 0.9) for both methods. Regarding the answering time (Figure
3.b,d) it can be clearly seen that the proposed method, which approximates the
view on musicalArtist(x, y) ∧ recordLabel(y, l), resulted in a significantly faster
response time for both queries, even though the complete join of musicalArtist
and recordLabel was not needed when using the independent-project rule. For
Q1, the query was answered 180 times faster and in case of Q2 this difference is
even greater, because we have a nested independent-project in the query (we ask
for multiple record labels). The response time of our method is almost the same
for both queries, where the runtime of the answer generated solely through the
extensional rules doubles for Q2. In case of Q3 (results not shown) this becomes
even more dramatic, because there are many potential albums that start with
T. As expected, the answer generated by the proposed approach doubles its run-
time to 3.6 seconds since Q3 is a combination of Q1 and Q2 (AUC 0.997, 0.985
(unknown answer tuples)), but without sub-query approximation the evaluation
of Q3 did not terminate even after 6 hours runtime! In addition, we constructed
a factorized representation of the approximated views which can be stored with
almost no cost (100 × 100 entries ≈ 80kByte). In comparison, a materialized
view constructed with rules would take 44345× 44345 entries ≈ 15.7GB.

From the results presented in this section, it can be observed that with the
technique introduced in Section 5 we are able to join sub-queries of the form
∃x.Q orders of magnitudes faster and that the join is competitive to a prob-
abilistically correct join generated solely through extensional query evaluation
rules (independent-project).

7 Conclusions

In this paper we have demonstrated how a factorized model based on the
RESCAL approach can lead to a very efficient representation of the probabilistic
database and also can be used to derive the probabilities for the ground tuples.
Most importantly, we have shown how efficient querying can be achieved within
the RESCAL framework by factorizing a deterministic view at query time.

In general, the approach is not restricted to the ∃x.Q type queries but can
always be employed when factorized materialized deterministic views can be used
to simplify the probabilistic query. Note that after we perform the deterministic
joins, we might obtain views with arities larger than two. This is not a serious
problem since our approach is not restricted to binary relations.
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Appendix

The sigmoidal transfer function sigε is defined as

sigε(x) = x if ε < x < 1− ε

sigε(x) =
ε

exp(1)
exp(x/ε) if x ≤ ε

sigε(x) = 1− ε

exp(1)
exp((1 − x)/ε) if x ≥ 1− ε

and 0 ≤ ε ≤ 1/2.
Hereby, ε controls the spreading of the non-probabilistic confidence values in

the interval [0,1], and which values are affected by the function. Since sigε is
monotonic, the ordering is maintained. Asymptotically the Gaussian estimate
converges to the correct probabilities and we can set ε → 0.
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Abstract. Much of the recent work in Semantic Search is concerned
with addressing the challenge of finding entities in the growing Web of
Data. However, alongside this growth, there is a significant increase in
the availability of ontologies that can be used to describe these enti-
ties. Whereas several methods have been proposed in Semantic Search
to rank entities based on a keyword query, little work has been pub-
lished on search and ranking of resources in ontologies. To the best of
our knowledge, this work is the first to propose a benchmark suite for
ontology search. The benchmark suite, named CBRBench1, includes a
collection of ontologies that was retrieved by crawling a seed set of ontol-
ogy URIs derived from prefix.cc and a set of queries derived from a real
query log from the Linked Open Vocabularies search engine. Further, it
includes the results for the ideal ranking of the concepts in the ontol-
ogy collection for the identified set of query terms which was established
based on the opinions of ten ontology engineering experts.

We compared this ideal ranking with the top-k results retrieved by
eight state-of-the-art ranking algorithms that we have implemented and
calculated the precision at k, the mean average precision and the dis-
counted cumulative gain to determine the best performing ranking
model. Our study shows that content-based ranking models outperform
graph-based ranking models for most queries on the task of ranking con-
cepts in ontologies. However, as the performance of the ranking models
on ontologies is still far inferior to the performance of state-of-the-art
algorithms on the ranking of documents based on a keyword query, we
put forward four recommendations that we believe can significantly im-
prove the accuracy of these ranking models when searching for resources
in ontologies.

1 Introduction

The growth of Linked Data in recent years has given rise to the need to represent
knowledge based on ontologies. Prefix.cc2, a service to register prefixes, counts
about ~1250 such ontologies (April 2014) whereby many cover similar domains,
e.g. our crawl found the concept Person to exist in 379 ontologies. One of the
major advantages claimed of ontologies, however, is the potential of “reuse”
opposed to creating a new ontology from scratch. Consequently, finding the
1 https://zenodo.org/record/11121
2 http://prefix.cc

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 130–147, 2014.
c© Springer International Publishing Switzerland 2014
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right ontology, or more specifically classes and properties within ontologies that
match the intended meaning for a specific use case is an important task that is
becoming increasingly difficult.

The Linked Open Vocabularies (LOV) search engine3, initiated in March 2011,
is to the best of our knowledge, the only purpose-built ontology search engine
available on the Web with an up-to-date index. It uses a ranking algorithm
based on the term popularity in Linked Open Data (LOD) and in the LOV
ecosystem [22].

There are also some ontology libraries available that facilitate the locating
and retrieving of potentially relevant ontology resources [13]. Some of these
libraries are domain-specific such as the Open Biological and Biomedical On-
tologies library4 or the BioPortal [14], whereas others are more general such as
OntoSearch [20] or the TONES Ontology Repository5. However, as discussed
by Noy & d’Aquin [13] only few libraries support a keyword search and basic
ranking, and only one (Cupboard [2]) supports a ranking of ontologies based
on a user query using an information retrieval algorithm (i.e. tf-idf), while no
library supports the ranking of resources within the registered ontologies.

Semantic Search engines such as Swoogle [4] (which was initially developed
to rank ontologies only), Sindice.com [21], Watson [3], or Yars2 [8] do allow a
search of ontology resources through a user query. The ranking in these search
engines follows traditional link-based ranking methods [10], in particular adapted
versions of the PageRank algorithm [15], where links from one source of infor-
mation to another are regarded as a ‘positive vote’ from the former to the latter.
Often, these ranking schemes also take the provenance graph of the data into
account [9]. Other strategies, mainly based on methods proposed in the infor-
mation retrieval community, are employed in Semantic Search [5], but what all
these methods have in common is that they are targeted to rank entities, but do
not work well for ranking classes and properties in ontologies [4,1].

The task of ranking resources defined in ontologies can be based on many
different criteria [6], for example, how well an ontology meets the requirements
of certain evaluation tests (e.g. [7]) or on methods to evaluate general properties
of an ontology based on some requirement (e.g. [11]). However, only limited work
has been proposed to rank the returned resources based on a user posed keyword
query such that the most relevant results appear higher in the list. Alani et al. [1]
propose four measures (i.e. Semantic Similarity, Betweenness, Density and Class
Match Measure) to evaluate different representational aspects of the ontology
and calculate its ranking.

In the information retrieval community many algorithms, such as the vec-
tor space model, the boolean model, BM25, tf-idf, etc. have been proposed to
identify and rank a small number of potentially relevant documents through a
top-k document retrieval. To the best of our knowledge, no systematic study
has been conducted to compare the performance of these state-of-the-art rank-
ing techniques on the task of ranking resources in ontologies. For our study we

3 http://lov.okfn.org
4 http://www.obofoundry.org/
5 http://owl.cs.manchester.ac.uk/repository/

http://lov.okfn.org
http://www.obofoundry.org/
http://owl.cs.manchester.ac.uk/repository/
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have implemented eight ranking algorithms, four of which have been proposed
by the information retrieval community whereas the others were adapted for the
ranking of ontologies by Alani et al [1]. We defined a set of queries derived from
a real query log, and computed the ranking for these queries on a collection of
ontology resources that we have crawled with a seed set of ontology URIs derived
from prefix.cc. We computed a baseline ranking and established a ground truth
by asking ten ontology engineers to manually rank ontologies based on a given
search term from the collection of resources obtained by the baseline ranking.
We compared the ground truth derived through the human evaluation with the
results from each of the ranking algorithms. We calculated the precision at k,
the mean average precision and the discounted cumulative gain of the ranking
algorithms in comparison to a ground truth to determine the best model for the
task of ranking resources/ontologies. The contribution of this paper are:

– a design of a benchmark suite named CBRBench, for Canberra Ontology
Ranking Benchmark, including an ontology collection, a set of queries and a
ground truth established by human experts for evaluating ontology ranking
algorithms,

– a methodology for resource ranking evaluation where we discuss many of the
decision that need to be made when designing a search evaluation framework
for resources defined in ontologies,

– the evaluation of eight ranking algorithms through these benchmarks, and
– a set of recommendations derived from an analysis of our experiment that

we believe can significantly improve the performance of the ranking models.

The remainder of this paper is organised as follows. We begin with a discus-
sion of the ranking algorithms that we have implemented for this experiment in
Section 2. In Section 3, we describe the evaluation setup. We then present the
results and a result analysis in Section 4. Section 5 discusses some recommenda-
tions for the improvement of the ranking models for ontology search, before we
conclude in Section 6.

2 Ranking Algorithms
We have chosen eight different ranking models that are commonly used for rank-
ing documents and/or ontologies and applied them on the task of ranking re-
sources/ontologies according to their relevance to a query term. These eight
ranking models can be grouped in two different categories.

1. Content-based Ranking Models: tf-idf, BM25, Vector Space Model and
Class Match Measure.

2. Graph-based Ranking Models: PageRank, Density Measure, Semantic
Similarity Measure and Betweenness Measure.

Because of the inherit graph structure of ontologies, graph-based ranking mod-
els can be used for ranking as such. However, content-based ranking models (e.g.
tf-idf, BM25 and Vector Space Model) need to be tailored towards ontologies so
that instead of using a word as the basic unit for measuring, we are considering
a resource r in an ontology as the measuring unit. Therefore, the relevance of a
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query word to the ontology is the sum of the relevance of all the resources that
match the query term. For tf-idf we compute the relevance score of the resource,
all other algorithms generate a cumulative relevance score for the ontology and
resources are ranked according to the relevance score of their corresponding
ontology. The matched resource set for each term/word is selected from a cor-
pus if a word exists in the value of the 1) rdfs:label 2) rdfs:comment, or 3)
rdfs:description property of that resource or if the word is part of the URI
of the resource. As most of the existing adaptations of graph ranking models
for ontology ranking do not compute a ranking for properties in an ontology we
only consider the ranking of classes/concepts in this study. However, it turns out
that only 2.6% of all resources in our corpus (cf. Section 3) are properties.

In the following sections we introduce all ranking models, and describe the
choices we made to adapt them for the ranking of resources in ontologies. Com-
mon notations used in the following sections are shown in Table 2.

Table 1. Notation used

Variable Description
O Corpus: The ontology repository
N Number of ontologies in O

O An ontology: O ∈ O

r A resource uri: r ∈ O & r ∈ URI
z Number of resources in O
Q Query String
qi query term i of Q
n number of keywords in Q
σO set of matched uris for Q in O
σO(qi) set of matched uris for qi in O : ∀ ri ∈ σO , ri ∈ O & ri matches qi
m number of uris in σO(qi)

2.1 tf-idf

Term frequency inverse document frequency (tf-idf) [18] is an information re-
trieval statistic that reflects the importance of a word to a document in a col-
lection or corpus. For ranking ontologies we compute the importance of each
resource r to an ontology O in a ontology repository, where r ∈ R : R = URI
only (i.e. excluding blank nodes and literals).

tf(r, O) = 0.5 + 0.5 ∗ f(r, O)
max{f(ri, O) : ri ∈ O}

idf(r,O) = log
N

|{O ∈ O : r ∈ O}|
tf − idf(r, O,O) = tf(r, O) ∗ idf(r, O) (1)

Here tf(r,O) is the term frequency for resource r in O. tf(r,O) is the frequency
of r (number of times r appears in O) divided by the maximum frequency of
any resource ri in O. The inverse document frequency idf(r,O) is a measure of



134 A.S. Butt, A. Haller, and L. Xie

commonality of a resource across the corpus. It is obtained by dividing the total
number of ontologies in the corpus by the number of documents containing the
resource r, and then computing the logarithm of that quotient. The final score
of r for this query is the tf-idf value of r.

Score(r, Q) = tf − idf(r, O,O) : ∀r{∃qi ∈ Q : r ∈ σ(qi)} (2)

2.2 BM25

BM25 [17] is a ranking function for document retrieval used to rank matching
documents according to their relevance to a given search query. Given a query
Q, containing keywords q1, ..., qn, the BM25 score of a document d is computed
by:

score(d, Q) =
n∑

i=1
idf(qi, d) tf(qi, d) ∗ k1 + 1

tf(qi, d) + k1 ∗ (1 − b + b ∗ ( |d|
avgdl ))

(3)

where tf(qi, d) is the term frequency and idf(qi, d) is the inverse document fre-
quency of the word qi. |d| is the length of the document d in words, and avgdl is
the average document length in the text collection from which the documents are
drawn. k1 and b are free parameters, usually chosen, in absence of an advanced
optimisation, as k1 ∈ [1.2,2.0] and b = 0.75.

In order to tailor this statistic for ontology ranking we compute the sum of
the score of each rj ∈ σO(qi) for each query term qi rather than computing the
score for qi. For the current implementation we used k1 = 2.0, b = 0.75 and |O|
= total number of terms (i.e. 3 * |axioms|) in the ontology. The final score of
the ontology is computed as:

score(O, Q) =
n∑

i=1

∑

∀rj:rj∈σO(qi)

idf(rj , O)
tf(rj , O) ∗ k1 + 1

tf(rj , O) + k1 ∗ (1 − b + b ∗ ( |O|
avgol ))

(4)

2.3 Vector Space Model (VSM)

The vector space model [19] is based on the assumptions of the document simi-
larities theory where the query and documents are represented as the same kind
of vector. The ranking of a document to a query is calculated by comparing the
deviation of angles between each document vector and the original query vector.
Thus, the similarity of a document to a query is computed as under:

sim(d, Q) =
∑n

i=1 w(qi, d) ∗ w(qi, Q)
|d| ∗ |Q| (5)

Here w(qi, d) and w(qi, Q) are weights of qi in document d and query Q re-
spectively. |d| is the document norm and |Q| is the query norm. For this im-
plementation, we are considering the tf-idf values of a query term as weights.
Therefore, the similarity of an ontology to query Q is computed as:
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sim(O, Q) =
∑n

i=1 tf − Idf(qi, O) ∗ tf − idf(qi, Q)
|O| ∗ |Q|

tf − idf(qi, O) =
m∑

j=1
tf − idf(rj , O) : rj ∈ σO(qi)

tf − idf(qi, Q) = f(qi, Q)
max{f(q, Q) : q ∈ Q} ∗ log

N

|{O ∈ O : r ∈ O&r ∈ σO(qi)}|

|O| =

√√√√
z∑

i=1
(tf − idf(ri, O))2

|Q| =

√√√√
n∑

i=1
(tf − idf(qi, O))2 (6)

2.4 Class Match Measure

The Class Match Measure (CMM) [1] evaluates the coverage of an ontology for
the given search terms. It looks for classes in each ontology that have matching
URIs for a search term either exactly (class label ‘identical to’ search term) or
partially (class label ‘contains’ the search term). An ontology that covers all
search terms will score higher than others, and exact matches are regarded as
better than partial matches. The score for an ontology is computed as:

scoreCMM (O, Q) = αscoreEMM (O, Q) + βscorePMM (O, Q) (7)

where score
CMM

(O, Q), score
EMM

(O, Q) and score
PMM

(O, Q) are the scores for
class match measure, exact match measure and partial match measure for the
ontology O with respect to query Q, α and β are the exact matching and partial
matching weight factors respectively. As exact matching is favoured over partial
matching, therefore α > β. For our experiments, we set α = 0.6 and β = 0.4 (as
proposed in the original paper [1]).

score
EMM (O,Q) =

n∑

i=1

m∑

j=1
ϕ(rj , qi) : rj ∈ σO(qi)

ϕ(rj , qi) =
{

1 if label(rj) = qi

0 if label(rj) �= qi
(8)

score
PMM

(O, Q) =
n∑

i=1

m∑

j=1
ψ(rj , qi) : rj ∈ σO(qi)

ψ(rj , qi) =
{

1 if label(rj) contains qi

0 if label(rj) does not contain qi
(9)
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2.5 PageRank (PR)

PageRank [15] is a hyperlink based iterative computation method for document
ranking which takes as input a graph consisting of nodes and edges (i.e. ontologies
as nodes and owl:imports properties as links in this implementation). In each
successive iteration the score of ontology O is determined as a summation of the
PageRank score in the previous iteration of all the ontologies that link (imports)
to ontology O divided by their number of outlinks (owl:imports properties). For
the kth iteration the rank of ontology O i.e. (scorek(O) ) is given as under:

scorek(O) =
∑

j∈deadlinks(O) Rk−1(j)
n

+
∑

i∈ininks(O)

Rk−1(i)
|outdegree(i)|

scorek(O) = d ∗ scorek(O) + 1 − d

n
(10)

Here deadlinks(O) are ontologies in corpus O that have no outlinks, i.e. they
never import any other ontology. All nodes are initialised with an equal score
(i.e. 1

n , where n is total number of ontologies in O before the first iteration. In
the experimental evaluation, we set the damping factor d equal to 0.85 (common
practise) and we introduced missing owl:imports link among ontologies based
on reused resources.

2.6 Density Measure

Density Measure (DEM) [1] is intended to approximate the information con-
tent of classes and consequently the level of knowledge detail. This includes how
well the concept is further specified (i.e. the number of subclasses), the num-
ber of properties associated with that concept, number of siblings, etc. Here
score

DEM
(O, Q) is the density measure of ontology O for query Q. Θ(rj , qi) is

the density measure for resource rj and w is a weight factor set for each dimen-
sionality i.e. sub classes = 1, super classes = 0.25, relations = 0.5 and siblings
= 0.5 and k = n ∗ m (i.e. number of matched r) for query Q.

score
DEM

(O, Q) = 1
k

n∑

i=1

m∑

j=1
Θ(rj) : rj ∈ σO(qi)

Θ(rj) =
∑

sk∈S

wsk
|sk|

S = {ssub, ssup, ssib, srel}
w = {1, 0.25, 0.5, 0.5} (11)

2.7 Semantic Similarity Measure

The Semantic Similarity Measure (SSM) calculates how close the concepts of
interest are laid out in the ontology structure. The idea is, if the concepts are
positioned relatively far from each other, then it becomes unlikely for those
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concepts to be represented in a compact manner, rendering their extraction and
reuse more difficult. score

SSM
(O, Q) is the semantic similarity measure score of

ontology O for a given query Q. It is a collective measure of the shortest path
lengths for all classes that match the query string.

score
SSM

(O, Q) = 1
z

z−1∑

i=1

z∑

j=i+1
Ψ(ri, rj) : ∀q∈Q((ri, rj) ∈ σO))

Ψ(ri, rj) =

{ 1
length(minp∈P {ri

p−→rj})
if i �= j

1 if i = j
z = |(ri, rj)| (12)

2.8 Betweenness Measure

The Betweenness Measure (BM)[1] is a measure for a class on how many times
it occurs on the shortest path between other classes. This measure is rooted on
the assumption that if a class has a high betweenness value in an ontology then
this class is graphically central to that ontology. The betweenness value of an
ontology is the function of the betweenness value of each queried class in the
given ontologies. The ontologies where those classes are more central receive a
higher BM value.

score
BM

(O, Q) is the average betweenness value for ontology O and k is the
number of matched resources from O for Q. The betweenness measure for re-
source rj i.e. ϑ(rj , qi) is computed as:

score
BM

(O, Q) = 1
k

n∑

i=1

m∑

j=1
ϑ(rj , qi) : rj ∈ σO(qi)

ϑ(rj , qi) =
∑

rx �=ry �=rj

λ(rx, ry(rj))
λ(rx, ry)

(13)

where λ(rx, ry) is the number of the shortest path from rx and ry and λ(rx, ry(rj))
is the number of shortest paths from rx and ry that passes through rj .

3 Experiment Setup
To compare and evaluate the implemented ranking models we developed a bench-
mark suite named CBRBench, for Canberra Ontology Ranking Benchmark,
which includes a collection of ontologies, a set of benchmark queries and a
ground truth established by human experts. The CBRBench suite is available
at https://zenodo.org/record/11121.

3.1 Benchmark Ontology Collection
To the best of our knowledge there exists no benchmark ontology collection for
ranking of ontologies. To derive at a representative set of ontologies used on the

https://zenodo.org/record/11121
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Web, we used the namespaces registered at prefix.cc6 as our set of seed ontology
URIs. We crawled all registered prefix URIs and for each successfully retrieved
ontology (we encountered hundreds of deadlinks and non-ontology namespaces)
we also followed its import statements until no new ontologies were found. This
resulted in 1022 ontologies that we used as our benchmark collection. In total
these ontologies define more than 5.5M triples, including ~280k class definitions
and ~7.5k property definitions. We stored each ontology seperately as a named
graph in a Virtuoso database.

3.2 Benchmark Query Terms

To test the ranking algorithms on a representative set of query terms we have
used the query log7 of the Linked Open Vocabularies (LOV) search engine [22]
as input. We ranked the most popular search terms in the log covering the
period between 06/01/2012 and 16/04/2014 based on their popularity. For the
most popular query terms we checked through a boolean search if there is a
representative sample of relevant resources available in our benchmark ontology
collection that at least partially match the query term. We included ten search
terms in our corpus where there were at least ten relevant ontology classes in the
result set. The chosen search terms and their popularity rank within the Linked
Open Vocabularies search log are shown in Table 2. All queries are single word
queries – that is for two reasons. First, only about 11% of all queries posed on
the LOV search engine use compound search queries and no compound query
was among the 200 most used queries and second, for no compound query in
the top 1000 query terms did the benchmark collection contain enough relevant
resources to derive at a meaningful ranking.

Although shallow evaluation schemes are preferred in web search engine eval-
uations [16] we opted for a deep evaluation scheme for two reasons. First, there
is only a limited set of knowledge domains where there is a sufficient number of
ontologies available on the Web, and second, for the domains with a sufficient
number of ontologies, many ontologies exist that define or refine similar con-
cepts. This assumption is confirmed by the high number of matching classes for
the terms in our query set (see for example Table 3).

3.3 Establishing the Ground Truth

We conducted a user study with ten human experts who were sourced from the
Australian National University, Monash University, the University of Queens-
land and the CSIRO. Eight of the evaluators considered themselves to possess
“Expert knowledge” and two considered themselves to have “Strong knowledge”
in ontology engineering on a 5-point Likert-Scale from “Expert knowledge” to
“No Knowledge”. All of the evaluators have developed ontologies before and some
are authors of widely cited ontologies. To reduce the number of classes our ten
judges had to score for a given query term (for some query terms a naïve string
search returns more than 400 results) we asked two experts to pre-select relevant
6 http://www.prefix.cc
7 See http://lov.okfn.org/dataset/lov/stats/searchLog.csv

http://www.prefix.cc
http://lov.okfn.org/dataset/lov/stats/searchLog.csv
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Table 2. Query terms

Search Term Rank
person 1
name 2
event 3
title 5
location 7
address 8
music 10
organization 15
author 16
time 17

Table 3. Ranking of “Person” in ground truth

URI Rank
http://xmlns.com/foaf/0.1/Person 1
http://data.press.net/ontology/stuff/Person 2
http://schema.org/Person 3
http://www.w3.org/ns/person#Person 4
http://www.ontotext.com/proton/protontop#Person 5
http://omv.ontoware.org/2005/05/ontology#Person 6
http://bibframe.org/vocab/Person 7
http://iflastandards.info/ns/fr/frbr/frbrer/C1005 8
http://models.okkam.org/ENS-core-vocabulary.owl#person 9
hhttp://swat.cse.lehigh.edu/onto/univ-bench.owl#Person 9

URIs. The experts were asked to go through all resources that matched a query
through a naïve string search and evaluate if the URI is either “Relevant” or
“Irrelevant” for the given query term. We asked the two experts to judge URIs
as “Relevant” even when they are only vaguely related to the query term, i.e.
increasing the false positive ratio.

We developed an evaluation tool which allowed our experts to pose a key-
word query for the given term that retrieves all matching ontology classes in the
search space. Since keyword queries where the intended meaning of the query is
unknown are still the prevalent form of input in Semantic Search [16] and since
the meaning of the search terms derived from our real query log was also un-
known, we needed to establish the main intention for each of our query terms. We
used the main definition from the Oxford dictionary for each term and included
it in the questionnaire for our judges. We then asked our ten human experts
to rate the relevance of the results to each of the 10 query terms from Table 2
according to their relevance to the definition of the term from the Oxford dic-
tionary. After submitting the keyword query, each evaluator was presented with
a randomly ordered list of the matching ontology classes in the search space
to eliminate any bias. For each result we showed the evaluator, the URI, the
rdfs:label and rdfs:comment, the properties of the class and its super-classes
and sub-classes. A judge could then rate the relevance of the class with radio
buttons below each search result on a 5-point Likert scale with values “Extremely
Useful”, “Useful”, “Relevant”, “Slightly Relevant” and “Irrelevant”. There was
no time restriction for the judges to finish the experiment. We assigned values
from 0-4 for “Irrelevant”-“Extremely Useful” for each score and performed a hy-
pothesis test on the average scores per evaluator with a H0 μ = 2 against H1 μ
<> 0. This resulted in a p-value of 0.0004, a standard error of mean of 0.144
and a 95% confidence interval for the mean score of (0.83,1.49), indicating there
is a strong evidence that the average scores per evaluator are not 2 which would
indicate a randomness of the scores. We also asked our ten evaluators to score 62
random response URIs for the ten queries again two months after we performed
our initial experiment. The average scores of the ten evaluators for these URIs
had a correlation coefficient of 0.93, indicating that in average, the scores of the
participants in the second study were highly correlated to the scores in the first
study.
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Table 3 shows the ideal ranking for the query “Person” as derived from the
median relevance scores from our ten experts. For ties we considered the resource
with the more consistent relevance scores (i.e. the lower standard deviation) as
better ranked. Not all ties could be resolved in this way as can be seen for rank
No. 9.

3.4 Evaluation and Performance Measures

We consider three popular metrics from the information retrieval community,
precision at k (P@k), mean average precision (MAP), and normalized discounted
cumulative gain (NDCG). Since we asked our judges to assign a non-binary value
of relevance (on a 5-point Likert scale), we converted these values to a binary
value for all those metrics that consider a binary notion of relevance. We chose
a resource as being relevant to the query term if the relevance score is equal or
higher than the average value on the 5-point Likert scale. Changing this cut off
value to the right or to the left of the average changes the overall precision of the
result. However, the relative performance of the algorithms remains the same.
Precision@k: We are calculating precision at k (P@k) for a k value of 10. P@k
in our experiment is calculated as:

p@k =
number of relevant documents in top k results

k

Average Precision: The average precision for the query Q of a ranking model is
defined as:

AP (Q) =
∑k

i=1 rel(ri) ∗ P @i

k

where rel(ri) is 1 if ri is a relevant resource for the query Q and 0 otherwise,
P@i is the precision at i and k is the cut off value (i.e. 10 in our experiment).
MAP is defined as the mean of AP over all queries run in this experiment and
is calculated as:

MAP =
∑

Q∈Q
AP (Q)

|Q|
Normalize Discounted Cumulative Gain (NDCG): NDCG is a standard evalu-
ation measure for ranking tasks with non-binary relevance judgement. NDCG
is defined based on a gain vector G, that is, a vector containing the relevance
judgements at each rank. Then, the discounted cumulative gain measures the
overall gain obtained by reaching rank k, putting more weight at the top of the
ranking:

DCG(Q) =
k∑

i=1

2reli − 1
log2(1 + i)

To compute the final NDCG, we divide DCG by its optimal value iDCG which
puts the most relevant results first. iDCG is calculated by computing the optimal
gain vector for an ideal ordering obtained from the median of the user assigned
relevance scores.
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Table 4. MAP

Person Name Event Title Loc. Addr. Music Org. Author Time
boolean 0.17 0.00 0.23 0.02 0.00 0.66 0.39 0.02 0.08 0.44
tf-idf 0.75 0.44 0.82 0.51 0.73 0.89 0.48 0.70 0.28 0.53
BM25 0.19 0.74 0.03 0.40 0.08 0.49 0.18 0.32 0.62 0.00
vector-space 0.06 0.00 0.19 0.08 0.00 0.58 0.18 0.00 0.01 0.00
pagerank 0.19 0.38 0.55 0.70 0.63 0.18 0.04 0.29 0.49 0.77
class-match-measure 0.00 0.00 0.00 0.40 0.00 0.35 0.18 0.00 0.02 0.00
density-measure 0.30 0.00 0.08 0.11 0.00 0.50 0.11 0.00 0.07 0.00
semantic-similarity 0.00 0.00 0.00 0.40 0.00 0.35 0.18 0.00 0.00 0.00
between-measure 0.69 0.23 0.40 0.36 0.55 0.99 0.14 0.80 0.14 0.66

Table 5. NDCG

Person Name Event Title Loc. Addr. Music Org. Author Time
boolean 0.06 0.00 0.16 0.11 0.00 0.44 0.22 0.07 0.07 0.15
tf-idf 0.29 0.20 0.46 0.27 0.32 0.57 0.39 0.32 0.15 0.30
BM25 0.07 0.42 0.02 0.13 0.07 0.32 0.16 0.19 0.14 0.00
vector-space 0.12 0.00 0.06 0.10 0.00 0.36 0.16 0.00 0.01 0.00
pagerank 0.14 0.18 0.28 0.21 0.15 0.18 0.17 0.22 0.11 0.14
class-match-measure 0.00 0.00 0.00 0.15 0.00 0.17 0.16 0.00 0.05 0.00
density-measure 0.25 0.00 0.07 0.13 0.00 0.27 0.19 0.00 0.04 0.00
semantic-similarity 0.00 0.00 0.00 0.15 0.00 0.17 0.16 0.00 0.03 0.00
between-measure 0.22 0.18 0.17 0.24 0.31 0.69 0.15 0.59 0.19 0.19

4 Results

Table 4 and 5 show the MAP and the NDCG scores for all ranking models for
each query term, whereas Fig. 1 shows the P@10, MAP, DCG, NDCG scores for
each of the eight ranking models on all ten queries. For P@10 and MAP, tf-idf is
the best performing algorithm with betweenness measure as the second best and
PageRank as the third best. In terms of the correct order of top k results, we
found again tf-idf as the best performing algorithm, with betweenness measure
and PageRank as the second and third best, respectively.

4.1 Results Analysis

From the results of this experiment it can be seen, somehow surprisingly, that
content-based models (i.e. tf-idf and BM25) outperform the graph-based rank-
ing models for most queries. Overall, seven out of ten times, the content-based
models achieve a better or equal to the highest NDCG for all ranking algorithms.

However, although tf-idf achieved the highest mean average precision value of
0.6 in our experiment, it is still far from an ideal ranking performance. That is,
because the philosophy of tf-idf works well for the tf part, but not so for the idf
part when ranking resources in ontologies. The intuition behind tf-idf is that if
a word appears frequently in a document, it is important for the document and
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Fig. 1. Effectiveness of Ranking Model

is given a high score (i.e. tf value), but if it appears in many documents, it is
not a unique identifier and is given a low score (i.e. idf value). In ontologies, a
resource that is reused across many ontologies is a popular and relatively more
important resource in the ontology and the corpus. Therefore, in our experiment,
tf-idf successfully ranks a resource high in the result set if that resource is the
central concept of the ontology (i.e. it is assigned a high tf value). However, if
a resource is also popular among the corpus, it is scored down for the idf value.
For example, http://xmlns.com/foaf/0.1/Person has the highest tf value (i.e.
0.589) of all concepts in the FOAF ontology, but since it is also the most popular
concept in our corpus appearing in total in 162 distinct ontologies, it does not
appear among the top ten results of tf-idf.

Since BM25 is a cumulative relevance score for an ontology rooted in the tf
and idf values of a matched resource, the limitations of tf-idf are implicit in BM25
as well. However, BM25 ranks concept specific ontologies higher in the result set
for a query term that matches to that particular concept. The reason is that for
a specific ontology, the query term matches to one of the important resource and
many of its attached resources. All these matched resources sum up to a higher
BM25 score for that ontology. For example, for the “Name” query, BM25 ranks
all resources in the GND ontology8 higher, since this ontology defines different
types of Names. All these types of names are important concepts of this ontology
and finally leverage the BM25 score for the GND ontology.

The vector space model did not perform well for any query. The main reason
is that the vector space model considers tf-idf values of resources as well as query
term/s. The idf value for a query term is calculated by considering the idf values
of all the resources in the corpus that matched the query term. Therefore, the
effect of the wrong assumptions for the idf values doubles for the vector space
model.

8 http://d-nb.info/standards/elementset/gnd#

http://xmlns.com/foaf/0.1/Person
http://d-nb.info/standards/elementset/gnd#
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PageRank ranks resources according to their popularity, that is why it performs,
for example, well in ranking highly the “Person” concept in the FOAF ontology as
it is a widely used ontology that is imported by many other ontologies. However,
considering popularity in the corpus as the only factor for ranking ontologies some-
times results in poor precision and recall. e.g. http://www.loria.fr/˜coulet/
ontology/sopharm/version2.0/disease_ontology.owl#DOID_4977 with the
label “other road accidents injuring unspecified person” is one of the popular re-
sources in our corpus but not at all relevant for the “Person” concept. Still, PageR-
ank assigns it a higher rank based on its popularity in the corpus. The performance
of the PageRank algorithm could be significantly improved if it also takes the data
for a given ontology into consideration (as is done in Semantic Search engines). In-
stead of using only the import statement as the measure of popularity, the links
from data will give higher weights to resources in ontologies for which there exists
data across multiple domains.

As expected, the class match measures is the least precise algorithm in the ex-
periment. Since the algorithm ranks an ontology only on the basis of the label of
the matched resources within that ontology, an ontology with single or zero exact
matched labels and many partial match labels gets a higher relevance score than
those ontologies where few concepts are relatively more important. Secondly,
assigning the same weight to partially matched labels is problematic. For exam-
ple, for the query “Address” two partially matched resources “Postal address”9
and “Email address of specimen provider principal investigator”10 are obviously
not equally relevant to the address definition provided in our user study. How-
ever, CMM uses equal weights for both of these resources while computing the
relevance score of their corresponding ontologies.

The density measure model performs relatively poorly, because it assigns high
weights for super-class and sub-class relations. The intention is that the further
specified a resource is in an ontology the more important it is. However, in our
study the density measure model always favours upper level ontologies or highly
layered ontologies, where many subclasses and super classes are defined for a
resource (e.g. OBO ontologies), irrespective of its relevance to the query term.

The semantic similarity measure model considers the proximity of matched
resources in an ontology. Although this metrics can be useful when considering
similarity among the matched resources of two or more query terms of a multi-
keyword query, it performs poorly on single word queries. As mentioned earlier,
users seem to be not using multi-keyword queries in ontology search yet and
thus the semantic similarity measure appears to be not particularly useful for
ranking resources in ontologies.

The betweenness measure performs better than all other graph-based ranking
models because it calculates the relative importance of the resource to the par-
ticular ontology. A resource with a high betweenness value is the central resource
of that ontology [1], which means that the resource is well defined and impor-
tant to the ontology. Further, the betweenness measure performs well even with
resources that are irrelevant to the query term if they are not central resources

9 http://purl.obolibrary.org/obo/IAO_0000422
10 http://purl.obolibrary.org/obo/OBI_0001903

http://www.loria.fr/~coulet/ontology/sopharm/version2.0/disease_ontology.owl#DOID_4977
http://www.loria.fr/~coulet/ontology/sopharm/version2.0/disease_ontology.owl#DOID_4977
http://purl.obolibrary.org/obo/IAO_0000422
http://purl.obolibrary.org/obo/OBI_0001903
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of that ontology, as their score will not contribute greatly to the cumulative
relevance score for the ontology. For example, irrelevant resources such as “dis-
location” for the query “location” do not appear high in the ranking of the be-
tweenness measure, because all resources with the label including “dislocation”
are not central concepts in the ontology where they are defined.

A general observation that can be made is that all ranking models other than
tf-idf ignore the relevance and importance of a resources to the query when as-
signing a weight to a particular ontology for a given query term. This is more
prominent for graph-based approaches, where the cumulative ranking score for
an ontology is computed based on all the relevant terms of that ontology for this
query. An ontology that has more matched URIs to the query term gets a higher
weight than an ontology that has few or only a single relevant resource in the on-
tology. For example, http://www.ontologydesignpatterns.org/cp/owl/
participation.owl#Event with the label “event” is ranked “Extremely use-
ful” to “Useful” for the query “event” by our human experts. However, since this
is the only relevant resource in the ontology and it is a small ontology, none of
the graph-based models ranked this URI among the top ten resources.

5 Recommendations
Based on the analysis of our experiment we put forward the following four rec-
ommendations that we believe could significantly improve the performance of
the different ranking algorithms.

1. Intended type vs. context resource: We believe that differentiating the
intended type from the context resource of a URI has a positive impact
on the performance of all ranking models. For example, for a resource in
the GND ontology11 with the label “Name of the Person”, “Name” is the
intended type, whereas “Person” is the context resource. This resource URI
appears in the search results for both, the “Person” and the “Name” query
term in our experiment. The human experts ranked this resource on average
from “Extremely useful” to “Useful” for the “Name” query term and only
“Slightly useful” for the “Person” query. However, all the ranking algorithms
assigned an equal weight to this resource while calculating ranks for either
of the two query terms. The performance of the ranking models could be
improved if they either only consider those resource URIs whose intended
type is matching the queries intended type or if they assign a higher weight
to such URIs as compared to the ones where the query terms’ intended type
matches only the context resource of that URI.

2. Exact vs. partial matches: As identified by Alani et al. [1] exact matching
should be favoured over partial matching in ranking ontologies. Whereas the
class match measure model assigns a value of 0.6 to exact matches and 0.4
to partial matches, all other algorithms consider partial and exact matched
resources equally. For example, for the query “Location”, results that include
“dislocation” as partial matches should not be considered, since the word
sense for location and dislocation are different. Instead of assigning static

11 http://d-nb.info/standards/elementset/gnd#NameOfThePerson

http://www.ontologydesignpatterns.org/cp/owl/participation.owl#Event
http://www.ontologydesignpatterns.org/cp/owl/participation.owl#Event
http://d-nb.info/standards/elementset/gnd#NameOfThePerson
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weight factors, we believe that other means of disambiguation between the
actual meaning of the query term and of the resource URI can significantly
improve the performance of the algorithms. Wordnet [12] or a disambiguation
at the time of entry of the query term could be efficient methods for this
purpose.

3. Relevant relations vs. context relations: For the graph-based ranking
models that calculate the relevance score according to the number of re-
lationships for the resource within that ontology (i.e. density measure and
betweenness measure), direct properties, sub-classes and super-classes of a
class have to be distinguished from relations (i.e. properties) that are very
generic and are inferred from its super-classes. For example, the class “email
address”12 from one of the OBO ontologies has properties like “part of con-
tinuant at some time”, “geographic focus’, “is about”, “has subject area”,
“concretized by at some time”, “date/time value” and “keywords”. However,
not all of these properties are actually relevant to the concept “email ad-
dress”.

4. Resource relevance vs. ontology relevance: All ranking models dis-
cussed in this study (except tf-idf), rank ontologies for the query term by
considering all matched resources from a given ontology against the query
term. This results in a global rank for the ontology and all the resources that
belong to that ontology share the same ontology relevance score. Therefore,
in a result set, many resources hold the same relevance score. While ordering
resources with the same relevance score from the ontology, the ranking mod-
els lack a mechanism to rank resources within the same ontology. We believe
that the tf value of the resource could be a good measure to assign scores
to resources within an ontology. Therefore, while ranking all the resources
of an ontology, the tf value can be used to further rank resources that be-
long to the same ontology. Another solution could be to compute individual
measures (all measures other than tf-idf) for each resource, independent of
how many other matched resources there are in the same ontology.

6 Conclusion

This paper represents, to the best of our knowledge, the first systematic attempt
at establishing a benchmark for ontology ranking. We established a ground truth
through a user study with ten ontology engineers that we then used to compare
eight state-of-the-art ranking models to. When comparing the ranking models
to the ideal ranking obtained through the user study we observed that content-
based ranking models (i.e. tf-idf and BM25) slightly outperform graph-based
models such as betweenness measure. Even though content-based models per-
formed best in this study, the performance is still inferior to the performance
of the same models on ranking documents because of the structural differences
between documents and ontologies. We put forward four recommendations that
we believe can considerably improve the performance of the discussed models
for ranking resources in ontologies. In particular:
12 http://purl.obolibrary.org/obo/IAO_0000429

http://purl.obolibrary.org/obo/IAO_0000429
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– Determine the intended type of a resource: A resource should only
match a query if the intended type of the query matches the intended type
of the resource.

– Treat partial matches differently: Instead of treating partial matches
of the query and a resource similar to exact matches or assigning a static
weight factor, the models should consider other means of disambiguating the
actual meaning of the query when matching it with a resource.

– Assign higher weight to direct properties: Instead of considering all
relations for a class equally when calculating the centrality score in graph-
based models, the models should consider assigning a higher score to relations
that describe the class directly.

– Compute a resource relevance: Additionally to computing a relevance
score for an ontology as a whole, all ranking models should be changed so
that they also compute a score for individual resources within the ontology.

In conclusion, we believe that with few modifications several of the tested
ranking models can be significantly improved for the task of ranking resources
in ontologies. We also believe that the proposed benchmark suite is well-suited
for evaluating new ranking models. We plan to maintain, improve and extend this
benchmark, in particular by adding further queries and updating the ontology
collection as new ontologies become available. We expect that this will motivate
others to produce tailor-made and better methods for searching resources within
ontologies.
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Abstract. We identify a class of Horn ontologies for which standard
reasoning tasks such as instance checking and classification are tractable.
The class is general enough to include the OWL 2 EL, QL, and RL
profiles. Verifying whether a Horn ontology belongs to the class can be
done in polynomial time. We show empirically that the class includes
many real-world ontologies that are not included in any OWL 2 profile,
and thus that polynomial time reasoning is possible for these ontologies.

1 Introduction

In recent years there has been growing interest in so-called lightweight ontology
languages, which are based on logics with favourable computational properties.
The most prominent examples of lightweight ontology languages are the EL, QL
and RL profiles of OWL 2 [23]. Standard reasoning tasks, such as classification
and fact entailment, are feasible in polynomial time for all profiles, and many
highly scalable profile-specific reasoners have been developed [3,6,8,16,24,26,28].

All the OWL 2 profiles are Horn languages: any ontology in a profile can be
translated into a set of first-order Horn clauses. However, many Horn OWL 2
ontologies fall outside the profiles, and when reasoning with such ontologies we
are forced to resort to a fully-fledged OWL 2 reasoner if a completeness guar-
antee is required. Indeed, in contrast to the lightweight logics underpinning the
profiles, the logics required to capture Horn OWL 2 ontologies are intractable:
standard reasoning is ExpTime-complete for the description logic Horn-SHOIQ
and 2-ExpTime-complete for the more expressive Horn-SROIQ [25].

Our aim is to push the tractability boundaries of lightweight ontology lan-
guages, and devise efficiently implementable reasoning algorithms that can be
applied to most existing Horn ontologies. In our recent work, we took a first step
towards achieving this goal by defining a new class of tractable ontologies based
on a role (aka property) safety condition, the idea behind which is to preclude
the interactions between language constructs that are ultimately responsible for
intractability [9]. We showed that Horn-SHOIQ ontologies in the QL, RL and
EL profiles contain only safe roles,1 and that for ontologies containing only safe

1 The intersection of the normative profiles and Horn-SHOIQ excludes certain fea-
tures such as property chain axioms.
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roles, standard reasoning tasks are still tractable even if the ontology is not cap-
tured by any of the profiles. However, our evaluation revealed that, although this
usefully extends the range of ontologies for which tractable reasoning is known to
be possible, many real-world Horn ontologies contain (a relatively small number
of) unsafe roles, and for these ontologies tractability remains unclear.

In this paper we go a step farther and define a new class of Horn-SHOIQ
ontologies in which unsafe roles are allowed to occur, but only under certain
restrictions. Membership in this class can be efficiently checked by first generat-
ing a graph from the materialisation of a Datalog program, and then checking
whether the generated graph is an oriented forest. We call the ontologies satisfy-
ing this condition role safety acyclic (RSA), and show that standard reasoning
tasks remain tractable for RSA ontologies. To this end, we employ a reasoning
algorithm based on a translation from a Horn-SHOIQ ontology O into a set NO
of first-order Horn rules with function symbols. We show that this transforma-
tion preserves standard reasoning outcomes and hence one can reason over NO
instead of O. Furthermore, if O is RSA, then the Skolem chase [10,22] terminates
in polynomially many steps when applied to NO, and yields a Herbrand model
of polynomial size from which the relevant reasoning outcomes can be directly
retrieved. Finally, we propose a relaxation of the acyclicity condition for which
tractability of reasoning is no longer guaranteed, but that still ensures termina-
tion of the Skolem chase over NO with a Herbrand model of exponential size.
We refer to ontologies satisfying this relaxed condition as weakly RSA (WRSA).

We have tested our acyclicity conditions over two large ontologies repositories.
Our results show that a large proportion of out-of-profile ontologies are RSA.
Our conditions can thus have immediate practical implications: on the one hand,
RSA identifies a large class of ontologies for which reasoning is known to be
tractable, and on the other hand, we show that reasoning for both RSA and
WRSA ontologies can be implemented using existing Logic Programming engines
with support for function symbols, such as DLV [21] and IRIS [5].

Finally, we note that our notion of acyclicity is related to (yet, incomparable
with) existing acyclicity notions applicable to existential rules and ontologies
[4,10,11,18,22]. Unlike existing notions, our main goal is to ensure tractability of
reasoning rather than chase termination. Indeed, even if O is RSA, the Skolem
chase applied to (the clausification of) O may not terminate.2

This paper comes with an extended version with all proofs of our results.3

2 Preliminaries

The Logic Horn-SHOIQ. We assume basic familiarity with the logics un-
derpinning standard ontology languages, and refer the reader to the literature
for further details [1,13,14]. We next define Horn-SHOIQ [20,25] and specify its
semantics via translation into first-order logic with built-in equality. W.l.o.g. we
restrict our attention to ontologies in a normal form close to those in [19,25].

2 We defer a detailed discussion to the Related Work section.
3 http://www.cs.ox.ac.uk/isg/TR/RSAcheck.pdf

http://www.cs.ox.ac.uk/isg/TR/RSAcheck.pdf
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Horn-SHOIQ axioms α First-order sentences π(α)

(R1) R1 � R2 R1(x, y) → R2(x, y)
(R2) R1 � R−

2 R1(x, y) → R2(y, x)
(R3) Tra(R) R(x, y) ∧ R(y, z) → R(x, z)

(T1) A1 � . . . �An � B A1(x) ∧ . . . ∧ An(x) → B(x)
(T2) A � {a} A(x) → x ≈ a
(T3) ∃R.A � B R(x, y) ∧ A(y) → B(x)
(T4) A �≤ 1S.B A(x)∧ S(x, y) ∧B(y) ∧ S(x, z) ∧B(z) → y ≈ z
(T5) A � ∃R.B A(x) → ∃y.(R(x, y) ∧B(y))
(T6) Ran(R) = A R(x, y) → A(y)
(T7) A � ∃R.{a} A(x) → R(x, a)

(A1) A(a) A(a)
(A2) R(a, b) R(a, b)

Fig. 1. Horn-SHOIQ syntax and semantics, where A(i) ∈ NC, B ∈ NC, R(i), S ∈ NR

with S simple, and a, b ∈ NI. Universal quantifiers are omitted. Axioms (T6) and (T7)
are redundant, but are useful for defining (resp.) the EL and the RL profiles.

A (DL) signature Σ consists of disjoint countable sets of concept names NC,
role names NR and individuals NI, where we additionally assume that {�,⊥} ⊆
NC. A role is an element of NR ∪ {R−|R ∈ NR}. The function Inv(·) is defined
over roles as follows, where R ∈ NR: Inv(R) = R− and Inv(R−) = R.

An RBox R is a finite set of axioms (R1)-(R3) in Fig. 1. We denote with �R
the minimal relation over roles in R s.t. R �R S and Inv(R) �R Inv(S) hold if
R � S ∈ R. We define �∗

R as the reflexive-transitive closure of �R. A role R
is transitive in R if there exists S s.t. S �∗

R R, R �∗
R S and either Tra(S) ∈ R

or Tra(Inv(S)) ∈ R. A role R is simple in R if no transitive role S exists s.t.
S �∗

R R. A TBox T is a finite set of axioms (T1)-(T5) in Fig. 1.4 An ABox
A is a finite, non-empty set of assertions (A1) and (A2) in Fig. 1. An ontology
O = R∪T ∪A consists of an RBox R, TBox T , and ABox A. The signature of
O is the set of concept names, role names, and individuals occurring in O.

We define the semantics of a Horn-SHOIQ ontology by means of a mapping
π from Horn-SHOIQ axioms into first-order sentences with equality as specified
in Fig. 1. This mapping is extended to map ontologies to first-order knowledge
bases in the obvious way. Ontology satisfiability and entailment in first-order
logic with built-in equality (written |=) are defined as usual.

We sometimes treat � and ⊥ as ordinary unary predicates, the meaning of
which is axiomatised. For a finite signature Σ, we denote with F�⊥

Σ the smallest
set with a sentence A(x) → �(x) for each A ∈ NC and R(x, y) → �(x) ∧ �(y)
for each R ∈ NR. This is w.l.o.g. for Horn theories: a Horn-SHOIQ ontology O
with signature Σ is satisfiable iff π(O) ∪ F�⊥

Σ 
|= ∃y.⊥(y). Furthermore, O |= α
with O satisfiable and α an axiom over Σ iff π(O) ∪ F�⊥

Σ |= π(α).
Similarly, we may treat the equality predicate ≈ as ordinary and denote with

F≈
Σ its axiomatisation as a congruence relation over Σ, and we denote with |=≈

4 For presentational convenience, we omit axioms A � ≥nR.B. These can be simu-
lated using axioms A � ∃R.Bi and Bi �Bj � ⊥ for 1 ≤ i < j ≤ n.
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the entailment relationship where equality is treated as an ordinary predicate.
Axiomatisation of equality preserves entailment: for each set F of sentences with
signature Σ and each sentence α over Σ, we have F |= α iff F ∪ F≈

Σ |=≈ α.

OWL 2 Profiles. The OWL 2 specification defines three normative profiles,
EL, QL, and RL, all of which are captured by Horn-SROIQ. In this paper
we restrict our attention to the intersection of these profiles with Horn-SHOIQ
(which excludes features such as property chain axioms), as this greatly simplifies
the algorithms and proofs. A Horn-SHOIQ ontology O is: (i) EL if it does not
contain axioms of the form (R2) or (T4); (ii) RL if it does not contain axioms of
the form (T5); and (iii) QL if it does not contain axioms of the form (R3), (T2)
or (T4), each axiom (T1) satisfies n = 1, and each axiom (T3) satisfies A = �.

Horn Rules and Datalog. A Horn rule is a first-order sentence of the form

∀x∀z.[ϕ(x, z) → ψ(x)]

where tuples of variables x, z are disjoint, ϕ(x, z) is a conjunction of function-
free atoms, and ψ(x) is a conjunction of atoms (possibly with function symbols).
A fact is a ground, function-free atom. A Horn program P consists of a finite
set of Horn rules and facts. A rule (program) is Datalog if it is function-free.5

Forward-chaining reasoning over Horn programs can be realised by means of the
Skolem chase [10,22]. We adopt the treatment of the Skolem chase from [10].

A set of ground atoms S′ is a consequence of a Horn rule r on a set of ground
atoms S if a substitution σ exists mapping the variables in r to the terms in S
such that ϕσ ⊆ S and S′ ⊆ ψσ. The result of applying r to S, written r(S), is the
union of all consequences of r on S. ForH a set of Horn rules,H(S) =

⋃
r∈H r(S).

Let S be a finite set of ground atoms, let H be a set of rules, and let Σ be the
signature of H ∪ S. Let H′ = H ∪ F≈

Σ ∪ F�⊥
Σ .The chase sequence for S and H

is a sequence of sets of ground atoms S0
H, S1

H, . . . where S0
H = S and, for each

i > 0 : Si
H = Si−1

H ∪H(Si−1
H ).

The Skolem chase of the program P = H ∪ S is defined as the (possibly
infinite) Herbrand interpretation I∞P =

⋃
i S

i
H. The Skolem chase can be used to

determine fact entailment: for each fact α it holds that P |= α iff α ∈ I∞P . The

Skolem chase of P terminates if i ≥ 0 exists such that Si
H = Sj

H for each j > i.
If P is a Datalog program, then I∞P is the finite least Herbrand model of P ,

which we refer to as the materialisation of P . Furthermore, by slight abuse of
notation, we sometimes refer to the Skolem chase of a Horn-SHOIQ ontology
O as the chase for the program obtained from π(O) by standard Skolemisation
of existentially quantified variables into functional terms.

3 The Notion of Role Safety

In contrast to the logics underpinning the OWL 2 profiles, the logics required
to capture existing Horn ontologies are intractable. In particular, satisfiability is

5 We adopt a more liberal definition of Datalog that allows conjunction in rule heads.
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ExpTime-hard already for Horn-ALCI (the fragment of Horn-SHOIQ without
nominals [15,19] or cardinality restrictions).

A closer look at existing complexity results reveals that the main source of
intractability is the phenomenon typically known as and-branching: due to the
interaction between existential quantifiers over a role R (i.e., axioms of type
(T5)) and universal quantifiers over R (encoded by axioms of type (T3) and
(R2)), an ontology may only be satisfied in models of exponential size. The
same effect can be achieved via the interaction between existential quantifiers
and cardinality restrictions (axioms of type (T4)): reasoning in the extension of
the EL profile with counting is also known to be ExpTime-hard [2].

And-branching can be tamed by precluding the harmful interactions between
existential quantifiers and universal quantifiers, on the one hand and existential
quantifiers and cardinality restrictions, on the other hand. If we disallow exis-
tential quantifiers altogether (axioms (T5)), then we obtain the RL profile, and
ontologies become equivalent to Datalog programs with equality. Similarly, if we
disallow the use of inverse roles and cardinality restrictions, thus precluding both
universal quantification over roles and counting, then we obtain the EL profile.

The main idea behind our notion of role safety is to identify a subset of the
roles in an ontology over which these potentially harmful interactions between
language constructs cannot occur. On the one hand, if a role does not occur
existentially quantified in axioms of type (T5), then its “behaviour” is similar
to that of a role in an RL ontology, and hence it is safe. On the other hand, if
a role occurs existentially quantified, but no axioms involving inverse roles or
counting apply to any of its super-roles, then the role behaves like a role in an
EL ontology, and hence it is also safe.

Definition 1. Let O = R∪T ∪A be an ontology. A role R in O is safe if either
it does not occur in axioms of type A � ∃R.B, or the following properties hold
for each role S:

1. R 
�∗
R S and R 
�∗

R Inv(S) if S occurs in a concept ≤ 1S.B;
2. R 
�∗

R Inv(S) if S occurs in an axiom of type ∃R.A � B with A 
= �.

Example 1. Consider the example ontology OEx in Figure 2, which is not cap-
tured by any of the normative profiles. The role Attends is safe: although it occurs
existentially quantified in axiom (2), its inverse AttendedBy does not occur in an
axiom of type (T3), and the ontology does not contain cardinality restrictions.
In contrast, the role AttendedBy is unsafe since it occurs existentially quantified
in (5) and its inverse role Attends occurs negatively in (3). �

Note that Definition 1 explains why (Horn-SHOIQ) ontologies captured by
any of the normative profiles contain only safe roles: in the case of EL, roles can
be existentially quantified, but there are no inverse roles or cardinality restric-
tions, and hence conditions 1 and 2 in Definition 1 hold trivially; in the case of
RL, roles do not occur existentially quantified in axioms of type (T5); and in the
case of QL, there are no cardinality restrictions, all axioms of type (T3) satisfy
A = �, and hence conditions 1 and 2 also hold.
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LazySt � Student (1)

Student � ∃Attends.Course (2)

∃Attends.MorningCourse � DiligentSt (3)

LazySt � DiligentSt � ⊥ (4)

Course � ∃AttendedBy.Student (5)

Attends− � AttendedBy (6)

AttendedBy− � Attends (7)

LazySt(David) (8)

Fig. 2. Example ontology OEx

4 Role Safety Acyclicity

In this section, we propose a novel role safety acyclicity (RSA) condition that
is applicable to Horn-SHOIQ ontologies and that does not completely preclude
unsafe roles. Instead, our condition restricts the way in which unsafe roles are
used so that they cannot lead to the interactions between language constructs
that are at the root of ExpTime-hardness proofs; in particular, and-branching.

To check whether an ontology O is RSA we first generate a directed graph GO
by means of a Datalog program PO. The edges in GO are generated from the
extension of a fresh “edge” predicate E in the materialisation of PO. Intuitively,
the relevant facts over E in the materialisation stem from the presence in O
of existential restrictions over unsafe roles. Once the directed graph GO has
been generated, we check that it is a directed acyclic graph (DAG) and that it
does not not contain “diamond-shaped” subgraphs; the former requirement will
ensure termination of our reasoning algorithm in Section 5, while the latter is
critical for tractability. Furthermore, we define a weaker version of RSA (WRSA)
where GO is only required to be a DAG. Although this relaxed notion does not
ensure tractability of reasoning, it does guarantee termination of our reasoning
algorithm, and hence is still of relevance in practice.

Definition 2. Let O be an ontology, let Σ be the signature of O, and let π be the
mapping defined in Figure 1. Let PE and E be fresh binary predicates, and let U
be a fresh unary predicate. Furthermore, for each pair of concepts A,B and each
role R from Σ, let vAR,B be a fresh constant. Let Ξ be the function mapping each
axiom α in O to a datalog rule as given next, and let Ξ(O) = {Ξ(α) | α in O}:

Ξ(α) =

{
A(x) → R(x, vAR,B) ∧B(vAR,B) ∧ PE(x, vAR,B) if α = A � ∃R.B

π(α) Otherwise.

Then, PO is the following datalog program:

PO = Ξ(O) ∪ {U(x) ∧ PE(x, y) ∧ U(y) → E(x, y)} ∪ {U(vAR,B) | R is unsafe}
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LazySt(x) → Student(x)
Student(x) → Attends(x, vStAt,Co) ∧ Course(vStAt,Co) ∧ PE(x, vStAt,Co)

Attends(x, y) ∧MorningCourse(y) → DiligentSt(y)
LazySt(x) ∧ DiligentSt(x) → ⊥(x)

Course(x) → AttendedBy(x, vCoIa,St) ∧ Student(vCoIa,St) ∧ PE(x, vCoIa,St)
Attends(y, x) → AttendedBy(x, y)

AttendedBy(x, y) → Attends(y, x)
U(x) ∧ PE(x, y) ∧ U(y) → E(x, y)

LazySt(David)
U(vCoIa,St)

Fig. 3. Checking acyclicity of our example ontology OEx

Let GO be the smallest directed graph having an edge (c, d) for each fact E(c, d)
s.t. E(c, d) ∈ I∞PO . Then, O is Role Safety Acyclic (RSA) if GO is an oriented
forest.6 Finally, O is weakly RSA (WRSA) if GO is a DAG.

The core of the program PO is obtained from O by translating its axioms
into first-order logic in the usual way with the single exception of existen-
tially quantified axioms α, which are translated into Datalog by Skolemising
the (unique) existential variable in π(α) into a constant. The fresh predicate PE
is used to track all facts over roles R generated by the application of Skolemised
rules, regardless of whether the relevant role R is safe or not. In this way, PE
records “possible edges” in the graph. The safety distinction is realised by the
unary predicate U, which is populated with all fresh constants introduced by
the Skolemisation of existential restrictions over the unsafe roles. Finally, the
rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y) ensures that only possible edges between
Skolem constants in the extension of U eventually become edges in the graph.

Example 2. Figure 3 depicts the rules in the program POEx
for our example

ontology OEx. The constant vCoIa,St is the only fresh constant introduced by the
Skolemisation of an existential restriction (∃AttendedBy.Student) over an unsafe
role (AttendedBy), and hence the predicate U is populated with just vCoIa,St.

Next consider the application of the Skolem chase on POEx
, which applies to

the initial facts S = {LazySt(David),U(vCoIa,St)} and rules H = POEx
\S. The chase

terminates after the following iterations:

S1
H = S ∪ {Student(David)}

S2
H = S1

H ∪ {Attends(David, vStAt,Co),Course(vStAt,Co),PE(David, vStAt,Co)}
S3
H = S2

H ∪ {AttendedBy(vStAt,Co, vCoIa,St), Student(vCoIa,St),PE(vStAt,Co, vCoIa,St)}
S4
H = S3

H ∪ {Attends(vCoIa,St, vStAt,Co),PE(vCoIa,St, vStAt,Co)}

6 An oriented forest is a disjoint union of oriented trees; that is, a DAG whose under-
lying undirected graph is a forest.
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v1L,2

v1R,2

v2L,3

v2R,3

vn−1
L,n

vn−1
R,n

vnL,n+1

vnR,n+1

Fig. 4. An acyclic graph which is not an oriented forest

No more atoms are derived in subsequent steps and hence I∞POEx
= S4

H. Note

that the graph induced by the auxiliary PE predicate is cyclic; in contrast, the
extension of E is empty and GOEx

has no edges. Clearly, OEx is thus RSA. �

The following example illustrates the difference between RSA and WRSA.

Example 3. Consider the (family of) ontologies On consisting of the fact A1(a)
and the following axioms for each n ≥ 1 and each 1 ≤ i ≤ n:

Ai � ∃L.Ai+1, Ai � ∃R.Ai+1

� �≤ 1L.�, � �≤ 1R.�.

Clearly, both R and L are unsafe roles since they are defined as functional.
The program POn then contains facts A1(a), U(v

i
L,i+1), and U(viR,i+1) for each

1 ≤ i ≤ n, as well as the following rules for each 1 ≤ i ≤ n:

Ai(x) → Ai+1(v
i
L,i+1) ∧ L(x, viL,i+1) ∧ PE(x, viL,i+1)

Ai(x) → Ai+1(v
i
R,i+1) ∧ L(x, viR,i+1) ∧ PE(x, viR,i+1)

U(x) ∧ PE(x, y) ∧ U(y) → E(x, y)

The chase terminates in n + 1 steps. The graph GOn induced by the edge
predicate E is given in Figure 4. Note that the graph is always a DAG, but it is
a tree only if n < 3; hence all ontologies On are WRSA, but they are RSA only
for n < 3. �

The following theorem establishes that checking RSA and WRSA is tractable.
Intuitively, the program PO is linear in the size ofO and each of its rules contains
at most three variables regardless ofO; as a result, the materialisation (and hence
also the resulting graph) is polynomially bounded.

Theorem 1. Checking whether an ontology O is RSA (resp. WRSA) is feasible
in polynomial time in the size of O.

5 Reasoning over Acyclic Ontologies

In this section, we show that standard reasoning tasks are tractable for RSA
ontologies. To this purpose, we propose a translation from a Horn-SHOIQ on-
tology O into a set NO of first-order Horn rules, which may contain function
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LazySt(x) → Student(x)
Student(x) → Attends(x, vStAt,Co) ∧ Course(vStAt,Co)

Attends(x, y) ∧MorningCourse(y) → DiligentSt(y)
LazySt(x) ∧ DiligentSt(x) → ⊥(x)

Course(x) → AttendedBy(x, fCoIa,St(x)) ∧ Student(fCoIa,St(x))
Attends(y, x) → AttendedBy(x, y)

AttendedBy(x, y) → Attends(y, x)
LazySt(David)

Fig. 5. Running Example: Reasoning

symbols in the head. Axioms in O are translated directly into first-order rules as
specified in Fig. 1. As can be seen, axioms of type (T5) are translated into rules
with existentially quantified variables in the head; such variables are eliminated
via Skolemisation into a constant (if the corresponding role is safe) or into a
function term (if the corresponding role is unsafe).

Definition 3. Let O be an ontology, let Σ be the signature of O, and let π be the
mapping defined in Fig. 1. Furthermore, for each pair of concepts A,B and each
safe role R from Σ, let vAR,B be a fresh constant, and for each pair of concepts

A,B and each unsafe role R from Σ, let fA
R,B be a fresh unary function symbol.

Let Λ be the function mapping each axiom α in O to a Datalog rule as given
next:

Λ(α) =

⎧
⎪⎨

⎪⎩

A(x) → R(x, vAR,B) ∧B(vAR,B) if α = A � ∃R.B with R safe

A(x) → R(x, fA
R,B(x)) ∧B(fA

R,B(x)) if α = A � ∃R.B with R unsafe

π(α) Otherwise.

Finally, we define the Horn program NO as the set {Λ(α) | α in O}.

Example 4. Figure 5 depicts the rules of the Horn program NOEx
for our running

example OEx. Let us compare NOEx
with the Datalog program POEx

in Fig. 3,
which we used for acyclicity checking. In contrast to POEx

, the programNOEx
con-

tains function terms involving unsafe roles; furthermore, NOEx
does not include

the auxiliary graph generation predicates from POEx
. Next, consider the appli-

cation of the Skolem chase on NOEx
, i.e., to the initial fact S = {LazySt(David)}

and rules H = NOEx
\ S. We can check that the chase terminates after four it-

erations and generates function terms of depth at most one. Furthermore, the
only fact that is derived over the individuals from OEx is Student(David). �

We next show that this translation preserves satisfiability, subsumption, and
instance retrieval reasoning outcomes, regardless of whether the ontology O is
acyclic or not. Thus, we can reason over NO instead of O without sacrificing
correctness. Since NO is a strengthening of O, due to the Skolemisation of some
existential quantifiers into constants, completeness is trivial. To show soundness,
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we propose an embedding of the Skolem chase of NO into the chase of O. This
embedding is not a homomorphism, as it does not homomorphically preserve
binary facts; however, we can show that unary facts are indeed preserved.

Theorem 2. The following properties hold for each ontology O, concept names
A,B and constants a and b, where Σ is the signature of O and c is a fresh
constant not in Σ:

1. O is satisfiable iff NO is satisfiable iff I∞NO contains no fact over ⊥.
2. O |= A(a) iff NO |= A(a) iff A(a) ∈ I∞NO ;
3. O |= A � B iff NO ∪ {A(c)} |= B(c) iff B(c) ∈ I∞NO∪{A(c)}.

A closer inspection of the proof of the theorem (see our online technical report)
reveals that preservation of binary facts can also be ensured if the relevant role
satisfies certain properties. The following example illustrates the only situation
for which binary facts may not be preserved.

Example 5. Consider the ontology O consisting of ABox assertions A(a), A(b),
TBox axiom A � ∃R.B and RBox axioms R � S, R � S−, and Tra(S). Clearly,
R is a safe role, and the fresh individual vAR,B is introduced by Skolemisation.

We can check that NO |= {S(a, vAR,B), S(v
A
R,B, b)} and hence NO |= S(a, b) since

role S is transitive. Note, however that O 
|= S(a, b) since O has a canonical tree
model in which a and b are not S-related. �

Proposition 1. Let O be an ontology with signature Σ. Furthermore, let R ∈ Σ
be a role name satisfying at least one of the following properties: (i) R is simple,
(ii) for every axiom of type A � ∃S.B in O, with S being a safe role S 
�∗

R R, or
(iii) for every axiom of type A � ∃S.B in O, with S being a safe role S 
�∗

R R−.
Then, O |= R(a, b) iff NO |= R(a, b) iff R(a, b) ∈ I∞NO .

Example 6. Coming back to our running example, recall that the only relevant
facts contained in the chase ofNOEx

are LazySt(David) and Student(David). Thus,
we can conclude that NOEx

is satisfiable and does not entail unary facts other
than these ones. Furthermore, all roles in OEx are simple and hence we can also
conclude that OEx entails no relevant binary facts. �
So far, we have established that we can dispense with the input ontology O and
reason over the Horn program NO instead. The Skolem chase of NO, however,
may still be infinite. We next show that acyclicity of O provides a polynomial
bound on the size of the Skolem chase of NO. Intuitively, every functional term
occurring in an atom of the chase of NO corresponds to a single path in GO,
and the size of the graph is polynomial in O. In an oriented forest there is at
most one path between any two nodes, which bounds polynomially the number
of possible functional terms. In contrast, the latter condition does not hold for
DAGs, where only a bound in the length of paths can be guaranteed.

Theorem 3. Let O be an RSA ontology with signature Σ. Then, the Skolem
chase of NO terminates with a Herbrand model of polynomial size. Furthermore,
if O is WRSA, then the Skolem chase of NO terminates with a Herbrand model
of size at most exponential.
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Example 7. As already mentioned, the chase for NOEx
terminates and computes

only ground atoms of functional depth at most one. Consider, however, the chase
for the programs NOn corresponding to the family of ontologies On in Example
3. Program NOn contains the following rules for every 1 ≤ i ≤ n:

Ai(x) → Ai+1(f
i
L,i+1(x)) ∧ L(x, f i

L,i+1(x))

Ai(x) → Ai+1(f
i
R,i+1(x)) ∧R(x, f i

R,i+1(x))

When initialised with the fact A1(a), the Skolem chase will generate in each step
i the following atoms:

Ai(f
i+1
L,i (ti)), Ai(f

i+1
R,i (ti)), L(ti, f

i+1
L,i (ti)), R(ti, f

i+1
R,i (ti)),

where ti ∈ {gi(. . . (g2(a)) . . .) | gj = f j
L,j−1 or gj = f j

R,j−1, 2 ≤ j ≤ i}. Note that
for every i, the number of terms ti is exponential in i. �

Theorems 2 and 3 suggest a reasoning algorithm for acyclic ontologies O. First,
compute the program NO as in Definition 3. Then, run the Skolem chase for NO
and read out the reasoning outcomes from the computed Herbrand model. If GO
is an oriented forest (i.e., O is RSA) we can implement our algorithm efficiently,
which yields the following result as a corollary of the previous theorems.

Theorem 4. Satisfiability and unary fact entailment is feasible in polynomial
time for the class of RSA ontologies.

In contrast to RSA, our algorithm runs in exponential time for WRSA ontolo-
gies. We next show that, indeed, reasoning with WRSA ontologies is intractable
under standard complexity-theoretic assumptions.

Theorem 5. Unary fact entailment is Pspace-hard for WRSA ontologies.

Finally, note that our reasoning technique can be implemented by reusing
existing Logic Programming engines with support for function symbols [21,5].

6 Stronger Notions of Acyclicity

Note that Theorem 4 does not make any claims about the tractability of concept
subsumption for RSA ontologies. To check whether O |= A � B we need to
extendNO with an assertion A(c) over a fresh individual c, run the Skolem chase,
and check whether B(c) is derived (see Theorem 2). However, as illustrated by
the following example, RSA is not robust under addition of ABox assertions.

Example 8. Let O consist of a fact B(c) and the following axioms:

A � B B � C A � ∃R.A � �≤ 1.R.�

Ontology O is RSA because the rule corresponding to the “dangerous” axiom
A � ∃R.A involving the unsafe role R does not fire during materialisation; as a
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result, the graph generated by PO is empty. Indeed, the chase terminates on NO
and determines satisfiability as well as all the facts entailed by O. In contrast,
if we add the fact A(c) to NO to determine the subsumers of A, the chase will
no longer terminate because the ontology O extended with A(c) is now cyclic. �

To ensure tractability of subsumption and classification, we therefore propose
the following stronger notion of acyclicity.

Definition 4. Let O be an ontology with signature Σ. For each concept name
A ∈ Σ, let cA be a fresh constant and let ACl = {A(cA) | A ∈ Σ}. We say that
O is RSA for classification if O extended with ACl is RSA.7

Tractability of subsumption immediately follows from our results in Section 5.

Proposition 2. Checking whether O |= A � B is feasible in polynomial time
for ontologies O that are acyclic for classification.

Although this notion is well-suited for TBox reasoning, data-intensive appli-
cations where the ABox changes frequently require a further strengthening.

Definition 5. An ontology O is universally RSA if O ∪ A′ is RSA for every
ABox A′.

Checking whether O = R ∪ T ∪ A is universally RSA can be reduced to
checking whether the ontology O extended with a special critical ABox AO

∗ is
RSA, where AO∗ consists of all facts that can be constructed using concept and
role names from O, all individuals occurring in T , and a fresh individual ∗.

Proposition 3. An ontology O is universally RSA iff O ∪AO
∗ is RSA.

Example 9. The critical ABox for our example ontology OEx consists of all facts
A(∗) and R(∗, ∗) for A a concept name and R a role name from OEx. It can be
checked that OEx is universally RSA, and hence also RSA for classification. �

Universal RSA is, however, a rather strict condition, especially in the presence
of equality. The following example illustrates that, e.g., every ontology with a
functional role used in an existential restriction is not universally RSA.

Example 10. Consider O consisting of axioms A � ∃R.B and � �≤ 1R.�.
The critical ABox contains facts A(∗), B(∗), and R(∗, ∗). The corresponding
Datalog program entails a fact R(∗, vAR,B) due to axiom A � ∃R.B. Due to the

functionality of R, the individuals ∗ and vAR,B become equal, and hence we have

A(vAR,B) and eventually also R(vAR,B, v
A
R,B). Since R is unsafe, the graph contains

a cyclic edge E(vAR,B , v
A
R,B). Indeed, the chase of both O and NO is infinite. �

It is well-known that the Skolem chase often does not terminate in the presence
of equality [10,22]. The standard approach to circumvent this issue is to exploit
the so-called singularisation technique [22]. Roughly speaking, singularisation

7 Note that ontologies that are RSA for classification are also RSA.
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replaces equality ≈ in O with a fresh predicate Eq. The Eq predicate is axioma-
tised in a similar way to equality, but without the usual replacement rules (i.e.,
rules of the form A(x) ∧ Eq(x, y) → A(y), for each concept name A, are not in-
cluded in the axiomatisation); instead, the premises of rules in the ontology are
modified to compensate for the lack of replacement rules. After application of
the singularisation transformation, the ontology is thus equality-free. Singulari-
sation preserves reasoning outcomes in a well-understood way, and it is effective
in addressing non-termination problems.

We have exploited this technique by checking acyclicity over a singularisation
Os of the input ontology O, instead of checking acyclicity over O itself (see
our online TR for further details). If the singularised ontology Os is acyclic,
then our results in Section 5 ensure that the chase I∞NOs

of NOs is finite and
captures reasoning outcomes over Os. The properties of singularisation then
ensure that reasoning outcomes over the original O are also preserved, and they
can be retrieved from I∞NOs

. The use of singularisation significantly increased the

number of universally acyclic ontologies in our evaluation (see Section 8).

7 Related Work

In recent years the computational properties of Horn Description Logics have
been extensively investigated. The logical underpinnings for the EL and QL
profiles of OWL 2 are provided by, respectively, the Horn logics EL++ [2] and DL-
LiteR [7], while the RL profile is based on Datalog and its intersection with DLs
[12]. Hustadt et al. proposed the expressive logic Horn-SHIQ, and establised its
complexity [15]. Krötzsch et al. studied the complexity of a wide range of Horn
DLs with complexities in-between the tractable logics underpinning the profiles
and Horn-SROIQ [20,19]. Finally, the exact complexity of Horn-SHOIQ and
Horn-SROIQ was determined by Ortiz et al. [25].

Our techniques in Section 5 extend the so-called combined approach to rea-
soning in EL [17,27], where ontologies are transformed into Datalog programs
by means of Skolemisation of all existentially quantified variables into constants.
Skolemisation into constants was also exploited by Zhou et al. [29] to compute
upper bounds to query answers.

Finally, in the literature we can find a wide range of acyclicity conditions that
are sufficient to ensure chase termination. Weak acyclicity [11] was one of the
first such notions, and was subsequently extended to joint acyclicity [18], acyclic-
ity of a graph of rule dependencies [4], and super-weak acyclicity [22], amongst
others. The notion of acyclicity closest to ours is model summarising acyclicity
(MSA) [10], where acyclicity can also be determined by the materialisation of
a Datalog program. Unlike existing acyclicity notions, ours was designed to en-
sure tractability of reasoning rather than chase termination. In particular, the
Skolem chase of our example RSA ontology OEx is infinite and hence OEx cannot
be captured by any acyclicity condition designed for chase termination. Instead,
our notion ensures termination of the Skolem chase over a particular transformed
Horn program NO, which we can use for reasoning over O. Another important
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Table 1. Acyclicity evaluation results for ontologies outside the OWL 2 profiles

Repository Reasoning Task Total Safe
RSA Cyclic Time-out

no Sing. Sing. no Sing. Sing. no Sing. Sing.

Oxford Satisfiability 126 37 37+43 37+44 46 39 0 6
Ontology Classification 126 37 37+35 37+35 52 49 2 5
Repository Universality 126 37 37+2 37+31 87 57 0 1

Ontology Satisfiability 23 14 14+9 14+9 0 0 0 0
Design Classification 23 14 14+8 14+8 1 1 0 0
Patterns Universality 23 14 14+4 14+8 5 1 0 0

difference is that, in contrast to the chase of O, the chase of the transformed pro-
gramNO is not a universal model ofO, and hence it does not preserve answers to
general conjunctive queries (but only for satisfiability and fact entailment). Fi-
nally, although existing acyclicity conditions guarantee termination of the chase,
none of them ensures polynomiality of the computed Herbrand model. Indeed,
checking fact entailment over Horn-SHI ontologies that are weakly acyclic [11]
(the most basic acyclicity notion for chase termination) is Pspace-hard [10].

8 Proof of Concept

We have implemented RSA and WRSA checkers using RDFox [24] as a Datalog
reasoner. For testing, we used the ontologies in the Oxford Repository and the
Design Patterns repository. The former is a large repository currently containing
761 real-world ontologies; the latter contains a wide range of smaller ontologies
that capture design patterns commonly used in ontology modeling (these ontolo-
gies are particularly interesting as they highlight common interactions between
language constructs). Experiments were performed on a laptop with 16 GB RAM
and an Intel Core 2.9 GHz processor running Java v.1.7.0 21, with a timeout of
30 min. The software and data used for testing are available online.8

Our results are summarised in Table 1. For each repository, we first selected
those ontologies that are Horn-SHOIQ and are not captured by any of the
OWL 2 profiles. We found 126 such ontologies in the Oxford Repository and
23 in the Design Patterns repository. We then tested our acyclicity conditions
for satisfiability (Def. 2), classification (Def. 4) and universality (Def. 5) on all
these ontologies.9 We performed tests both with and without singularisation.
Interestingly, in both repositories we could not find any ontology that is WRSA
but not RSA, and hence the two notions coincided for all our tests.

As we can observe, 37 ontologies in the Oxford Repository contained only
safe roles, and hence are RSA. Without singularisation, we found 43 additional
ontologies with unsafe roles that are RSA, 35 of which were also RSA for classifi-
cation and only 2 universally acyclic. When using singularisation the number of

8 https://www.dropbox.com/sh/w1kh3vuhnvindv1/AAD59BK3s5LlD7xCblIsrlSHa
9 For classification and universality, we disregarded the ABox part of the ontologies.

https://www.dropbox.com/sh/w1kh3vuhnvindv1/AAD59BK3s5LlD7xCblIsrlSHa
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additional RSA ontologies increased significantly, and we obtained 29 additional
universally RSA ontologies, but unfortunately our tests timed-out for several on-
tologies. This can be explained by the fact that the use of singularisation leads
to more complicated Datalog rules for which RDFox is not optimised.

In the case of the Design Patterns repository, all ontologies are RSA. We only
found one ontology that was not universally RSA when using singularisation.
Ontologies in this repository are smaller, and we encountered no time-outs.

9 Conclusions and Future Work

We have proposed the new tractable class of RSA ontologies, which is based
on the notion of safe roles, and a novel acyclicity condition. Our experiments
suggest that a significant proportion of out-of-profile ontologies are RSA; as a
result, we can exploit a worst-case optimal algorithm that runs in polynomial
time to solve standard reasoning tasks over such ontologies, where only worst-
case exponential algorithms were applicable before. This result thus opens the
door to further optimisation of ontology reasoning.

So far, our experiments have established that many ontologies satisfy our RSA
condition. Our next goal is to develop and optimise our reasoning algorithm as
well as our acyclicity checker. We also plan to extend our techniques to apply to
Horn-SROIQ and hence to all Horn OWL 2 ontologies.

Acknowledgements. Work supported by the Royal Society, the EPSRC project
Score!, the NSF under award 1017255 “III: Small: TROn: Tractable Reasoning
with Ontologies” and “La Caixa” Foundation.
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Abstract. We study the problem of approximating Description Logic (DL) on-
tologies specified in a source language LS in terms of a less expressive target
language LT . This problem is getting very relevant in practice: e.g., approxima-
tion is often needed in ontology-based data access systems, which are able to deal
with ontology languages of a limited expressiveness. We first provide a general,
parametric, and semantically well-founded definition of maximal sound approxi-
mation of a DL ontology. Then, we present an algorithm that is able to effectively
compute two different notions of maximal sound approximation according to the
above parametric semantics when the source ontology language is OWL 2 and
the target ontology language is OWL 2 QL. Finally, we experiment the above
algorithm by computing the two OWL 2 QL approximations of a large set of ex-
isting OWL 2 ontologies. The experimental results allow us both to evaluate the
effectiveness of the proposed notions of approximation and to compare the two
different notions of approximation in real cases.

1 Introduction

Description Logic (DL) ontologies are the core element of ontology-based data access
(OBDA) [15], in which the ontology is utilized as a conceptual view, allowing user ac-
cess to the underlying data sources. In OBDA, as well as in all the current applications
of ontologies requiring automated reasoning, a trade-off between the expressiveness
of the ontology specification language and the complexity of reasoning in such a lan-
guage must be reached. More precisely, most of the current research and development
in OBDA is focusing on languages for which reasoning, and in particular query an-
swering, is not only tractable (in data complexity) but also first-order rewritable [2,5].
This imposes significant limitations on the set of constructs and axioms allowed in the
ontology language.

The limited expressiveness of the current ontology languages adopted in OBDA pro-
vides a strong motivation for studying the approximation of ontologies formulated in
(very) expressive languages with ontologies in low-complexity languages such as OWL
2 QL. Such a motivation is not only theoretical, but also practical, given the current
availability of OBDA systems and the increasing interest in applying the OBDA ap-
proach in the real world [1,6,7,16]: for instance, ontology approximation is currently

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 164–179, 2014.
c© Springer International Publishing Switzerland 2014
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one of the main issues in the generation of ontologies for OBDA within the use cases
of the Optique EU project.1

Several approaches have recently dealt with the problem of approximating Descrip-
tion Logic ontologies. These can roughly be partitioned in two types: syntactic and
semantic. In the former, only the syntactic form of the axioms of the original ontology
is considered, thus those axioms which do not comply with the syntax of the target
ontology language are disregarded [17,18]. This approach generally can be performed
quickly and through simple algorithms. However, it does not, in general, guarantee
soundness, i.e., to infer only correct entailments, or completeness, i.e., all entailments of
the original ontology that are also expressible in the target language are preserved [14].
In the latter, the object of the approximation are the entailments of the original ontol-
ogy, and the goal is to preserve as much as possible of these entailments by means of
an ontology in the target language, guaranteeing soundness of the result. On the other
hand, this approach often necessitates to perform complex reasoning tasks over the on-
tology, possibly resulting significantly slower. For these reasons, the semantic approach
to ontology approximation poses a more interesting but more complex challenge.

In this paper, we study the problem of approximating DL ontologies specified in
a source language Ls in terms of a less expressive target language Lt. We deal with
this problem by first providing a general, parametric, and semantically well-founded
definition of maximal sound approximation of a DL ontology. Our semantic definition
captures and generalizes previous approaches to ontology approximation [4,8,11,14].
In particular, our approach builds on the preliminary work presented in [8], which pro-
posed a similar, although non-parameterized, notion of maximal sound approximation.

Then, we present an algorithm that is able to effectively compute two different no-
tions of maximal sound approximation according to the above parametric semantics,
when the source ontology language is OWL 2 and the target ontology language is OWL
2 QL. In particular, we focus on the local semantic approximation (LSA) and the global
semantic approximation (GSA) of a source ontology. These two notions of approxima-
tion correspond to the cases when the parameter of our semantics is set, respectively, to
its minimum and to its maximum. Informally, the LSA of an ontology is obtained by
considering (and reasoning over) one axiom α of the source ontology at a time, so this
technique tries to approximate α independently of the rest of the source ontology. On
the contrary, the GSA tries to approximate the source ontology by considering all its
axioms (and reasoning over such axioms) at the same time. As a consequence, the GSA
is potentially able to “approximate better” than the LSA, while the LSA appears in prin-
ciple computationally less expensive than the GSA. Notably, in the case of OWL 2 QL,
the GSA corresponds to the notion of approximation given in [14], which has been
shown to be very well-suited for query answering purposes.

Finally, we experiment the above algorithm by computing the LSA and the GSA in
OWL 2 QL of a large set of existing OWL 2 ontologies. The experimental results allow
us both to evaluate the effectiveness of the proposed notions of approximation and to
compare the two different notions of approximation in real cases. In particular, the main
properties pointed out by our experimental results are the following:

1 http://optique-project.eu

http://optique-project.eu
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1. the computation of the LSA is usually less expensive than computing the GSA of a
given source ontology;

2. in many cases, both the LSA and the GSA of an ontology are very good approxima-
tions of the ontology, in the sense that the approximated ontologies actually entail
a large percentage of the axioms of the source ontology;

3. in many cases, the LSA and the GSA coincide. This and the previous property imply
that the computationally less expensive LSA is usually already able to compute a
high-quality sound approximation of the source ontology.

The paper is structured in the following way. First, in Section 2 we recall DL ontol-
ogy languages, in particular OWL 2 and OWL 2 QL. Then, in Section 3 we present our
formal, parameterized notion of semantic sound approximation of an ontology, and il-
lustrate some general properties of such a notion. In Section 4 we present the techniques
for computing the GSA and the LSA of OWL 2 ontologies in OWL 2 QL. Finally, we
present an experimental evaluation of the above techniques in Section 5, and draw some
conclusions in Section 6.

2 Preliminaries

Description Logics (DLs) [3] are logics that allow one to represent the domain of in-
terest in terms of concepts, denoting sets of objects, value-domains, denoting sets of
values, attributes, denoting binary relations between objects and values, and roles de-
noting binary relations over objects.

In this paper we consider the DL SROIQ [10], which is the logic underpinning
OWL 2, as the “maximal” DL considered in this paper.

Let Σ be a signature of symbols for individual (object and value) constants and
predicates, i.e., concepts, value-domains, attributes, and roles. Let Φ be the set of all
SROIQ axioms over Σ.

An ontology over Σ is a finite subset of Φ.
A DL language over Σ (or simply language) L is a set of ontologies over Σ. We call

L-ontology any ontology O such that O ∈ L. Moreover, we denote by ΦL the set of
axioms

⋃
O∈LO.

We call a language L closed if L = 2ΦL . As we will see in the following, there exist
both closed and non-closed DL languages among the standard ones.

The semantics of an ontology is given in terms of first-order (FOL) interpretations
(cf. [3]). We denote with Mod(O) the set of models of O, i.e., the set of FOL interpreta-
tions that satisfy all the axioms in O (we recall that every SROIQ axiom corresponds
to a first-order sentence). As usual, an ontology O is said to be satisfiable if it admits at
least one model, and O is said to entail a First-Order Logic (FOL) sentence α, denoted
O |= α, if αI = true for all I ∈ Mod(O). Moreover, given two ontologies O and O′,
we say that O and O′ are logically equivalent if Mod(O) = Mod(O′).

In this work we will mainly focus on two specific languages, which are OWL 2,
the official ontology language of the World Wide Web Consortium (W3C) [9], and
one of its profiles, OWL 2 QL [12]. Due to the limitation of space, here we do not
provide a complete description of OWL 2, and refer the reader to the official W3C
specification [13].
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We now present the syntax of OWL 2 QL. We use the German notation for describing
OWL 2 QL constructs and axioms, and refer the reader to [12] for the OWL functional
style syntax.

Expressions in OWL 2 QL are formed according to the following syntax:

B −→ A | ∃Q | δF (U) | �C | ⊥C E −→ ρ(U)
C −→ B | ¬B | ∃Q.A F −→ �D | T1 | · · · | Tn

Q −→ P | P− | �P | ⊥P V −→ U | �A | ⊥A

R −→ Q | ¬Q W −→ V | ¬V

where: A, P , and U are symbols denoting respectively an atomic concept, an atomic
role, and an atomic attribute; P− denotes the inverse of P ; ∃Q, also called unqualified
existential role, denotes the set of objects related to some object by the role Q; δF (U)
denotes the qualified domain of U with respect to a value-domain F , i.e., the set of
objects that U relates to some value in F ; ρ(U) denotes the range of U , i.e., the set
of values related to objects by U ; T1, . . . , Tn denote n unbounded value-domains (i.e.,
datatypes); the concept ∃Q.A, or qualified existential role, denotes the qualified domain
of Q with respect to A, i.e., the set of objects that Q relates to some instance of A. �C ,
�P , �A, and �D denote, respectively, the universal concept, role, attribute, and value-
domain, while ⊥C , ⊥P , and ⊥A denote, respectively, the empty concept, role, and
attribute.

An OWL 2 QL ontology O is a finite set of axioms of the form:

B � C Q � R U � V E � F ref(P ) irref(P )
A(a) P (a, b) U(a, v)

From left to right, the first four above axioms denote subsumptions between concepts,
roles, attributes, and value-domains, respectively. The fifth and sixth axioms denote
reflexivity and irreflexivity on roles. The last three axioms denote membership of an
individual to a concept, membership of a pair of individuals to a role, and membership
of a pair constituted by an individual and a value to an attribute.

From the above definition, it immediately follows that OWL 2 QL is a closed lan-
guage. On the other hand, we recall that OWL 2 is not a closed language. This is due to
the fact that OWL 2 imposes syntactic restrictions that concern the simultaneous pres-
ence of multiple axioms in the ontology (for instance, there exist restrictions on the
usage of role names appearing in role inclusions in the presence of the role chaining
constructor).

3 Approximation

In this section, we illustrate our notion of approximation in a target language LT of an
ontology OS in a language LS .

Typically, when discussing approximation, one of the desirable properties is that of
soundness. Roughly speaking, when the object of approximation is a set of models, this
property requires that the set of models of the approximation is a superset of those of the
original ontology. Another coveted characteristic of the computed ontology is that it be
the “best” approximation of the original ontology. In other words, the need of keeping
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a minimal distance between the original ontology and the ontology resulting from its
approximation is commonly perceived.

On the basis of these observations, the following definition of approximation in a
target language LT of a satisfiable LS-ontology is very natural.

Definition 1. Let OS be a satisfiable LS-ontology, and let ΣOS be the set of predicate
and constant symbols occurring in OS . An LT -ontology OT over ΣOS is a global
semantic approximation (GSA) in LT of OS if both the following statements hold:

(i) Mod(OS) ⊆ Mod(OT );
(ii) there is no LT -ontology O′ over ΣOS such that Mod(OS) ⊆ Mod(O′) ⊂

Mod(OT ).

We denote with globalApx (OS ,LT ) the set of all the GSAs in LT of OS .

In the above definition, statement (i) imposes the soundness of the approximation,
while statement (ii) imposes the condition of “closeness” in the choice of the approxi-
mation.

We observe that an LT -ontology which is the GSA in LT of OS may not exist. This
is the case when, for each LT ontology O′

T satisfying statement (i) of Definition 1,
there always exists an LT -ontology O′′

T which satisfies statement (i), but for which we
have that Mod(OS) ⊆ Mod(O′′

T ) ⊂ Mod(O′
T ).

The following lemma provides a sufficient condition for the existence of the GSA in
a language LT of an ontology OS .

Lemma 1. Given a language LT and a finite signature Σ, if the set of non-equivalent
axioms in ΦLT that one can generate over Σ is finite, then for any LS-ontology OS

globalApx (OS ,LT ) �= ∅.

In cases where GSAs exist, i.e., globalApx (OS ,LT ) �= ∅, given two ontologies O′

and O′′ in globalApx (OS ,LT ), they may be either logically equivalent or not. The
condition of non-equivalence is due to the fact that the language in which the original
ontology is approximated is not closed. We have the following lemma.

Lemma 2. Let LT be a closed language, and let OS be an ontology. For each O′ and
O′′ belonging to globalApx (OS ,LT ), we have that O′ and O′′ are logically equivalent.

Proof. Towards a contradiction, suppose that Mod(O′) �= Mod(O′′). From this, and
from Definition 1 we have that Mod(O′) �⊂ Mod(O′′) and Mod(O′′) �⊂ Mod(O′).
Hence, there exist axioms α and β in ΦLT such that O′ |= α and O′′ �|= α, and O′′ |= β
and O′ �|= β. Since both O′ and O′′ are sound approximations of OS , OS |= {α, β}.
Because LT is closed, the ontology O′

β = O′ ∪ {β} is an LT -ontology. From the
above considerations it directly follows that Mod(OS) ⊆ Mod(O′

β) ⊂ Mod(O′).
This means that O′ does not satisfy condition (ii) of Definition 1, and therefore O′ �∈
globalApx (OS ,LT ), which is a contradiction. The same conclusion can be reached
analogously for O′′.
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In other words, if the target language is closed, Lemma 2 guarantees that, up to logical
equivalence, the GSA is unique.

Definition 1 is non-constructive, in the sense that it does not provide any hint as to
how to compute the approximation in LT of an ontology OS . The following theorem
suggests more constructive conditions, equivalent to those in Definition 1, but first we
need to introduce the notion of entailment set [14] of a satisfiable ontology with respect
to a language.

Definition 2. Let ΣO be the set of predicate and constant symbols occurring in O, and
let L′ be a language. The entailment set of O with respect to L′, denoted as ES(O,L′),
is the set of axioms from ΦL′ that only contain predicates and constant symbols from
ΣO and that are entailed by O.

In other words, we say that an axiom α belongs to the entailment set of an ontology
O with respect to a language L′, if α is an axiom in ΦL′ built over the signature of O
and for each interpretation I ∈ Mod(O) we have that I |= α.

Clearly, given an ontology O and a language L′, the entailment set of O with respect
to L′ is unique.

Theorem 1. Let OS be a satisfiable LS-ontology and let OT be a satisfiable LT -
ontology. We have that:

(a) Mod(OS) ⊆ Mod(OT ) if and only if ES(OT ,LT ) ⊆ ES(OS ,LT );
(b) there is no LT -ontology O′ such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT ) if

and only if there is no LT -ontology O′′ such that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆
ES(OS ,LT ).

Proof. We start by focusing on the first statement. (⇐) Suppose, by way of contradic-
tion, that ES(OT ,LT ) ⊆ ES(OS ,LT ) and that Mod(OS) �⊆ Mod(OT ). This means
that there exists at least one interpretation that is a model for OS but not for OT . There-
fore there exists an axiom α ∈ OT such that OS �|= α. Since OT is an ontology in LT ,
then α is an axiom in ΦLT . It follows that α ∈ ES(OT ,LT ) and that α �∈ ES(OS ,LT ),
which leads to a contradiction.

(⇒) Towards a contradiction, suppose that Mod(OS) ⊆ Mod(OT ), but
ES(OT ,LT ) �⊆ ES(OS ,LT ). This means that there exists at least one axiom
α ∈ ES(OT ,LT ) such that α �∈ ES(OS ,LT ). It follows that OT |= α while
OS �|= α, which immediately implies that Mod(OS) �⊆ Mod(OT ). Hence we have a
contradiction.

Now we prove the second statement. (⇐) By contradiction, suppose that there exists
an LT -ontologyO′ such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT ), and that there does
not exist any LT -ontologyO′′ such that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(OS ,LT ).
From what shown before, we have that Mod(OS) ⊆ Mod(O′) ⊆ Mod(OT ) implies
that ES(OT ,LT ) ⊆ ES(O′,LT ) ⊆ ES(OS ,LT ). Moreover, since both O′ and OT

are LT ontologies, Mod(O′) ⊂ Mod(OT ) implies that ES(OT ,LT ) �= ES(O′,LT ).
Hence, ES(OT ,LT ) ⊂ ES(O′,LT ) ⊆ ES(OS ,LT ), which contradicts the
hypothesis.

(⇒) Suppose, by way of contradiction, that there exists an LT -ontology O′′ such
that ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(OS ,LT ) and there is no LT -ontology O′
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such that Mod(OS) ⊆ Mod(O′) ⊂ Mod(OT ). From property (a) we have that
Mod(OS) ⊆ Mod(O′′) ⊆ Mod(OT ). Since both O′′ and OT are LT ontologies,
then ES(OT ,LT ) ⊂ ES(O′′,LT ) implies that Mod(O′′) �= Mod(OT ), which di-
rectly leads to a contradiction.

From Theorem 1 it follows that every ontologyOT which is a GSA in LT of an ontology
OS is also an approximation in LT of OS according to [8], and, as we shall show in the
following section, for some languages, this corresponds to the approximation in [14].

As discussed in [8], the computation of a GSA can be a very challenging task even
when approximating into tractable fragments of OWL 2 [12]. This means that even
though a GSA is one that best preserves the semantics of the original ontology, it cur-
rently suffers from a significant practical setback: the outcome of the computation of the
approximation is tightly linked to the capabilities of the currently available reasoners
for LS-ontologies. This may lead, in practice, to the impossibility of computing GSAs
of very large or complex ontologies when the source language is very expressive.

We observe that the critical point behind these practical difficulties in computing
a GSA of an ontology is that, in current implementations, any reasoner for LS must
reason over the ontology as a whole. From this observation, the idea for a new notion
of approximation, in which we do not reason over the entire ontology but only over
portions of it, arises. At the basis of this new notion, which we call k-approximation, is
the idea of obtaining an approximation of the original ontology by computing the global
semantic approximation of each set of k axioms of the original ontology in isolation.
Below we give a formal definition of the k-approximation.

In what follows, given an ontology O and a positive integer k such that k ≤ |O|, we
denote with subsetk (O) the set of all the sets of cardinality k of axioms of O.

Definition 3. Let OS be a satisfiable LS-ontology and let ΣOS be the set of predicate
and constant symbols occurring in OS . Let Uk = {Oj

i | Oj
i ∈ globalApx (Oi,LT ),

such that Oi ∈ subsetk(OS)}. An LT -ontology OT over ΣOS is a k-approximation in
LT of OS if both the following statements hold:

–
⋂

Oj
i∈Uk

Mod(Oj
i ) ⊆ Mod(OT );

– there is no LT -ontology O′ over ΣOS such that
⋂

Oj
i∈Uk

Mod(Oj
i ) ⊆ Mod(O′) ⊂

Mod(OT ).

The following theorem follows from Theorem 1 and provides a constructive condi-
tion for the k-approximation.

Theorem 2. Let OS be a satisfiable LS-ontology and let ΣOS be the set of predi-
cate and constant symbols occurring in OS . An LT -ontology OT over ΣOS is a k-
approximation in LT of OS if and only if:

(i) ES(OT ,LT ) ⊆ ES(
⋃

Oi∈subsetk(OS) ES(Oi,LT ),LT );

(ii) there is no LT -ontology O′ over ΣOS such that ES(OT ,LT ) ⊂ ES(O′,LT ) ⊆
ES(

⋃
Oi∈subsetk(OS) ES(Oi,LT ),LT ).
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Proof. (sketch) The proof can be easily adapted from the proof of Theorem 1 by
observing that in order to prove the theorem one has to show that:
(a)

⋂
Oj

i∈Uk
Mod(Oj

i ) ⊆ Mod(OT ) if and only if ES(OT ,LT ) ⊆
ES(

⋃
Oi∈subsetk (OS)

ES(Oi,LT ),LT );

(b) and that there is no LT -ontology O′ over ΣOS such that
⋂

Oj
i∈Uk

Mod(Oj
i ) ⊆

Mod(O′) ⊂ Mod(OT ) if and only if there is no LT -ontology O′′ over ΣOS such that
ES(OT ,LT ) ⊂ ES(O′′,LT ) ⊆ ES(

⋃
Oi∈subsetk (OS)

ES(Oi,LT ),LT ).

We note that in the case in which k = |OS |, the k-approximation actually coincides
with the GSA. At the other end of the spectrum, we have the case in which k = 1.
Here we are treating each axiom α in the original ontology in isolation, i.e., we are
considering ontologies formed by a single axiom α. We refer to this approximation as
local semantic approximation (LSA).

We conclude this section with an example highlighting the difference between the
GSA and the LSA.

Example 1. Consider the following OWL 2 ontology O.

O = { A � B � C B � D A � ∃R.D
B � C � F C � D ∃R.D � E }.

The following ontology is a GSA in OWL 2 QL of O.

OGSA = { A � D B � D A � ∃R A � ∃R.D
A � E C � D D � F }.

Indeed, it is possible to show that, according to Theorem 1, each axiom entailed by
OGSA is also entailed by O, and that it is impossible to build an OWL 2 QL ontologyO′

such that ES(OGSA, OWL 2 QL) ⊂ ES(O′, OWL 2 QL) ⊆ ES(O, OWL 2 QL).
Computing the LSA in OWL 2 QL of O, i.e., its 1-approximation in OWL 2 QL, we

obtain the following ontology.

OLSA = { B � D A � ∃R
C � D A � ∃R.D }.

It is easy to see that Mod(O) ⊂ Mod(OGSA) ⊂ Mod(OLSA), which means that
the ontology OGSA approximates O better than OLSA. This expected result is a con-
sequence of the fact that reasoning over each single axiom in O in isolation does not
allow for the extraction all the OWL 2 QL consequences of O.

Moreover, from Lemma 2, it follows that every O′ ∈ globalApx (OS , OWL 2 QL)
is logically equivalent to OGSA. ��

4 Approximation in OWL 2 QL

In this section we deal with the problem of approximating ontologies in OWL 2 with
ontologies in OWL 2 QL.

Based on the characteristics of the OWL 2 QL language, we can give the following
theorem.
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Algorithm 1. computeKApx(O, k)

Input: a satisfiable OWL 2 ontology O, a positive integer k such that k ≤ |O|
Output: an OWL 2 QL ontology OApx

begin
OApx ← ∅;
foreach ontology Oi ∈ subsetk (OS)

OApx ← OApx ∪ ES(Oi, OWL 2 QL);
return OApx;

end

Theorem 3. Let OS be a satisfiable OWL 2 ontology. Then the OWL 2 QL ontology⋃
Oi∈subsetk (OS)

ES(Oi, OWL 2 QL) is the k-approximation in OWL 2 QL of OS .

Proof. (sketch) To prove the claim, we observe that Lemma 1 holds for OWL 2 QL
ontologies, and this guarantees that for every OWL 2 ontology OS , there exists at least
one OWL 2 QL ontology which is its GSA, i.e., globalApx (OS , OWL 2 QL) �= ∅.
Moreover, we have that since OWL 2 QL is closed, for Lemma 2, all ontologies in
ES(OS , OWL 2 QL) are pairwise logically equivalent. Another consequence of the
fact that OWL 2 QL is closed is that, whichever language the original ontology OS is
expressed in, ES(OS , OWL 2QL) is an OWL 2 QL ontology. Furthermore, given a set
of OWL 2 QL ontologies, the union of these ontologies is still an OWL 2 QL ontology.
From these observations, it is easy to see that, given an OWL 2 ontology OS and an
integer k ≤ |OS |, the set

⋃
Oi∈subsetk (OS)

ES(Oi, OWL 2QL) satisfies conditions (i)
and (ii) of Theorem 2. Hence, we have the claim.

Notably, we observe that for k = |OS | the k-approximation OT in OWL 2 QL of OS

is unique and coincides with its entailment set in OWL 2 QL. This means that OT is
also the approximation in OWL 2 QL of OS according to the notion of approximation
presented in [14]. Therefore, all the properties that hold for the semantics in [14] also
hold for the GSA. In particular, the evaluation of a conjunctive query q without non-
distinguished variables over OS coincides with the evaluation of q over OT (Theorem
5 in [14]).

From Theorem 3, one can easily come up with Algorithm 1 for computing the k-
approximation of an LS-ontology OS in OWL 2 QL. The algorithm first computes
every subset with size k of the original ontology OS . Then, it computes the ontology
which is the result of the k-approximation in OWL 2 QL of the ontology in input as the
union of the entailment sets with respect to OWL 2 QL of each such subset. A naive
algorithm for computing the entailment set with respect to OWL 2 QL can be easily
obtained from the one given in [14] for DL-Lite languages. We can summarize it as
follows. Let O be an ontology and let ΣO be the set of predicate and constant symbols
occurring in O. The algorithm first computes the set Γ of axioms in ΦOWL 2 QL which
can be built over ΣO, and then, for each axiom α ∈ Γ such that O |= α, adds α to the
set ES(O, OWL 2QL). In practice, to check if O |= α one can use an OWL 2 reasoner.
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Since each invocation of the OWL 2 reasoner is N2EXPTIME, the computation of the
entailment set can be very costly [4].

A more efficient technique for its computation is given in [8], where the idea is to
limit the number of invocations to the OWL 2 reasoner by exploiting the knowledge
acquired through a preliminary exploration of the ontology. To understand the basic
idea behind this technique, consider, for example, an ontology O that entails the in-
clusions A1 � A2 and P1 � P2, where A1 and A2 are concepts and P1 and P2 are
roles. Exploiting these inclusions we can deduce the hierarchical structure of the gen-
eral concepts that can be built on these four predicates. For instance, we know that
∃P2.A2 � ∃P2, that ∃P2.A1 � ∃P2.A2, that ∃P1.A1 � ∃P2.A1, and so on. To obtain
the entailed inclusion axioms, we begin by invoking the OWL 2 reasoner, asking for
the children of the general concepts which are in the highest position in the hierarchy.
So we first compute the subsumees of ∃P2 through the OWL 2 reasoner. If there are
none, we avoid invoking the reasoner asking for the subsumees of ∃P2.A2 and so on.
Regarding the entailed disjointness axioms, we follow the same approach but starting
from the lowest positions in the hierarchy.

The following theorem establishes correctness and termination of algorithm
computeKApx.

Theorem 4. Let OS be a satisfiable OWL 2 ontology. computeKApx(OS, k) termi-
nates and computes the k-approximation in OWL 2 QL of OS .

Proof. (sketch) Termination of computeKApx(OS , k) directly follows from the
fact that OS is a finite set of axioms and that, for each Oi ∈ subsetk(OS),
ES(Oi, OWL 2 QL) can be computed in finite time. The correctness of the algorithm
directly follows from Theorem 3.

5 Experiments

In this section we present the experimental tests that we have performed for the approx-
imation of a suite of OWL 2 ontologies into OWL 2 QL through the two notions of
approximation we have introduced earlier.

We notice that by choosing a value for k different from |OS |, the computation of
the entailment set becomes easier. However, observing Algorithm 1, the number of
times that this step must be repeated can grow very quickly. In fact, the number of
sets of axioms in subsetk(OS) is equal to the binomial coefficient of |OS | over k, and
therefore for large ontologies this number can easily become enormous, and this can be
in practice a critical obstacle in the computation of the k-approximation.

For this reason, in these experiments we have focused on comparing the GSA (k-
approximation with k = |OS |) to the LSA (k-approximation with k = 1), and we
reserve the study of efficient techniques for k-approximation with 1 < k < |OS | for
future works. Furthermore, to provide a standard baseline against which to compare the
results of the GSA and LSA, we have compared both our approaches with a syntactic
sound approximation approach, consisting in first normalizing the axioms in the ontol-
ogy and then eliminating the ones that are not syntactically compliant with OWL 2 QL.
We will refer to this approach as “SYNT”.
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Table 1. Characteristics of the ontologies used in the GSA and LSA tests

Ontology Expressiveness Axioms Concepts Roles Attributes OWL2 QL Axioms
Homology ALC 83 66 0 0 83

Cabro ALCHIQ 100 59 13 0 99
Basic vertebrate anatomy SHIF 108 43 14 0 101

Fungal anatomy ALEI+ 115 90 5 0 113
Pmr ALU 163 137 16 0 159
Ma ALE+ 168 166 8 0 167

General formal Ontology SHIQ 212 45 41 0 167
Cog analysis SHIF(D) 224 92 37 9 213
Time event ALCROIQ(D) 229 104 28 7 170

Spatial ALEHI+ 246 136 49 0 155
Translational medicine ALCRIF(D) 314 225 18 6 298

Biopax SHIN (D) 391 69 55 41 240
Vertebrate skeletal anatomy ALER+ 455 314 26 0 434

Image S 548 624 2 0 524
Protein ALCF(D) 691 45 50 133 490
Pizza SHOIN 712 100 8 0 660

Ontology of physics for biology ALCHIQ(D) 954 679 33 3 847
Plant trait ALE+ 1463 1317 4 0 1461

Dolce SHOIN (D) 1667 209 313 4 1445
Ont. of athletic events ALEH 1737 1441 15 1 1722

Neomark ALCHQ(D) 1755 55 105 488 842
Pato SH 1979 2378 36 0 1779

Protein Modification ALE+ 1986 1338 8 0 1982
Po anatomy ALE+ 2128 1294 11 0 2064

Lipid ALCHIN 2375 716 46 0 2076
Plant S 2615 1644 16 0 2534

Mosquito anatomy ALE+ 2733 1864 5 0 2732
Idomal namespace ALER+ 3467 2597 24 0 3462

Cognitive atlas ALC 4100 1701 6 0 3999
Genomic ALCQ 4322 2265 2 0 3224

Mosquito insecticide resistance ALE+ 4413 4362 21 0 4409
Galen-A ALEHIF+ 4979 2748 413 0 3506
Ni gene SH 8835 4835 8 0 8834

Fyp SH 15105 4751 69 0 12924
Fly anatomy SH 20356 8064 72 0 20353

EL-Galen ALEH+ 36547 23136 950 0 25138
Galen full ALEHIF+ 37696 23141 950 0 25613

Pr reasoned S 46929 35470 14 0 40031
Snomed fragment for FMA ALER 73543 52635 52 0 35004

Gene SH 73942 39160 12 0 73940
FMA OBO ALE+ 119560 75139 2 0 119558

The suite of ontologies used during testing contains 41 ontologies and was assem-
bled from the Bioportal ontology repository2. The ontologies that compose this suite
were selected to test the scalability of our approaches both to larger ontologies and to
ontologies formulated in more expressive languages. In Table 1 we present the most
relevant metrics of these ontologies.

All tests were performed on a DELL Latitude E6320 notebook with Intel Core
i7-2640M 2.8Ghz CPU and 4GB of RAM, running Microsoft Windows 7 Pre-
mium operating system, and Java 1.6 with 2GB of heap space. Timeout was set

2 http://bioportal.bioontology.org/

http://bioportal.bioontology.org/
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at eight hours, and execution was aborted if the maximum available memory was
exhausted. The tool used in the experiments and the suite of ontologies are avail-
able at http://diag.uniroma1.it/˜mora/ontology approximation/
iswc2014/.

As mentioned in Section 4, the computation of the entailment set involves the use of
an external OWL 2 reasoner. Therefore, the performance and the results of the computed
approximations are greatly effected by the choice of the reasoner. For our tests, we have
used the Pellet3 OWL 2 reasoner (version v.2.3.0.6).

In Table 2 we present the results of the evaluation. An analysis of these results leads
to the following observations.

Firstly, we were able to compute the GSA for 26 out of the 41 tested ontologies. For
the remaining fifteen, this was not possible, either due to the size of the ontology, in
terms of the number of its axioms, e.g., the FMA 2.0 or Gene ontologies, which have
more than seventy thousand and one hundred thousand axioms, respectively, or due to
its high expressivity, e.g., the Dolce ontology or the General formal ontology. The LSA
approach is instead always feasible, it is quicker than the GSA approach for all but one
of the tested ontologies, and it is overall very fast: no ontology took more than 250
seconds to approximate with the LSA.

Secondly, it is interesting to observe the comparison between the quality of the ap-
proximation that one can obtain through the LSA with respect to that obtained through
the GSA. This relationship answers the question of whether the ontology obtained
through the LSA (the “LSA ontology”) is able to capture a significant portion of the
one obtained through the GSA (the “GSA ontology”). Our tests in fact confirm that
this is the case: out of the 26 ontologies for which we were able to compute the GSA,
in only four cases the LSA ontology entails less than 60 percent of the axioms of the
GSA ontology, while in twenty cases it entails more than 90 percent of them. The av-
erage percentage of axioms in the original ontologies entailed by the GSA ontologies
is roughly 80 percent, and of the axioms of the GSA ontologies entailed by the LSA
ontologies is roughly 87 percent.

Furthermore, the LSA provides a good approximation even for those ontologies for
which the GSA is not computable. In fact, Table 3 shows the percentage of axioms of the
original ontology that are entailed by the LSA ontology. Out of the twelve ontologies
for which we were able to obtain this value (the remaining three ontologies caused
an “out of memory” error), only in three cases it was less than 60 percent, while in
four cases it was higher than 80 percent. These results are particularly interesting with
respect to those ontologies for which the GSA approach is not feasible due to their
complexity, as is the case for example for the Dolce ontology, for Galen-A, and for the
Ontology of physics for biology. Indeed, even though these ontologies are expressed in
highly expressive DL languages, the structure of the axioms that compose them is such
that reasoning on each of them in isolation does not lead to much worse approximation
results than reasoning on the ontology as a whole: for the nine smallest ontologies in
Table 3, for which the GSA fails not because of the size of the ontology, the average
percentage is 68.6.

3 http://clarkparsia.com/pellet/

http://diag.uniroma1.it/~mora/ontology_approximation/iswc2014/
http://diag.uniroma1.it/~mora/ontology_approximation/iswc2014/
http://clarkparsia.com/pellet/
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Table 2. Results of the GSA, LSA, and SYNT. The values represent, from left to right, the number
of axioms in the ontology obtained through the GSA, the percentage of axioms of the original
ontology that are entailed by the ontology obtained through the GSA, the number of axioms
in the ontology obtained through the LSA, the percentage of axioms of the ontology obtained
through the GSA that are entailed by the LSA, the number of axioms in the ontology obtained by
the SYNT, the percentage of axioms of the ontology obtained through the GSA that are entailed
by the ontology obtained through the SYNT, the percentage of axioms of the ontology obtained
through the LSA that are entailed by the ontology obtained through the SYNT, and finally the
GSA time and the LSA time (both in seconds).

Ontology
GSA

axioms
GSA entails
original (%)

LSA
axioms

LSA entails
GSA (%)

SYNT
axioms

SYNT entails
GSA (%)

SYNT entails
LSA (%)

GSA
time (s)

LSA
time (s)

Homology 83 100 83 100 83 100 100 1 4
Cabro 233 96 121 100 100 100 100 4 2

Basic vertebrate anatomy 192 93 141 97 71 56 67 3 3
Fungal anatomy 318 98 140 69 113 69 100 2 2

Pmr 162 97 159 98 159 98 100 2 2
Ma 411 99 240 95 167 96 100 4 4

General formal ontology – – 286 – 177 – 100 – 6
Cog analysis 104407 75 474 46 215 1 82 36 7
Time event 93769 71 662 99 196 1 58 45 11

Spatial 510 63 371 86 155 42 52 9 4
Translational medicine 4089 86 505 99 275 30 64 19 7

Biopax 2182057 – 3217 – 251 – 81 – 11
Vertebrate skeletal anatomy 9488 95 581 92 434 57 99 27 5

Image 1016 95 596 98 571 98 100 178 5
Protein – – 10789 – 475 – 88 – 20
Pizza 2587 91 755 92 678 92 99 7 4

Ont. of physics for biology 1789821 – 1505 – 1241 – 100 – 7
Plant trait 2370 99 1496 99 1461 100 100 10 9

Dolce – – 2959 – 1555 – 100 – 8
Ontology of athletic events 5073 99 2392 99 1731 92 100 42 9

Neomark – – 39807 – 1723 – 63 – 50
Pato 4066 89 2209 100 1976 78 99 99 18

Protein Modification 2195 99 2001 100 1982 100 100 12 19
Po anatomy 11486 96 2783 77 2078 78 100 455 18

Lipid 14659 87 3165 97 2759 89 97 47 10
Plant 18375 96 3512 80 2574 81 100 929 15

Mosquito anatomy 21303 99 4277 43 2732 44 100 214 16
Idomal namespace 67417 99 4259 98 3461 59 100 496 16

Cognitive atlas 7449 97 5324 100 1364 26 30 162 17
Genomic – – 86735 – 85037 – 98 – 54

Mosquito insecticide res. 6794 99 4502 100 4409 100 100 86 14
Galen-A – – 8568 – 4971 – 90 – 26
Ni gene 46148 99 10415 90 8834 91 100 472 32

Fyp – – 19675 – 11800 – 82 – 43
Fly anatomy 460849 99 28436 67 20346 67 100 25499 45

EL-Galen – – 70272 – 43804 – 89 – 59
Galen full – – 72172 – 44279 – 89 – 61

Pr reasoned – – 56085 – 47662 – 100 – 93
Snomed fragment for FMA – – 140629 – 101860 – 76 – 250

Gene – – 86292 – 73940 – 100 – 178
FMA OBO – – 143306 – 119558 – 100 – 113

Finally, both the GSA and LSA compare favorably against the syntactic sound ap-
proximation approach. In fact, the average percentage of axioms in the LSA and GSA
ontologies that are entailed by the ontologies obtained through the SYNT approach are
respectively roughly 90 percent and 72 percent. While the latter result is to be expected,
the former is quite significant, even more so when one considers that the LSA is very
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Table 3. LSA results for ontologies for which the GSA is not computable

Ontology
Original
axioms

LSA
axioms

LSA entails
original (%)

LSA
time (s)

General formal ontology 212 264 67 6
Biopax 391 3204 53 11
Protein 691 10720 47 20

Ontology of physics for biology 954 1074 75 7
Dolce 1667 2914 78 8

Neomark 1755 38966 46 50
Genomic 4322 9844 65 54
Galen-A 4979 8568 70 26

Fyp 15105 19672 85 43
EL-Galen 36547 70272 – 59
Galen full 37696 72172 – 61

Pr reasoned 46929 55391 83 93
SNOMED fragment for FMA 73543 140629 – 250

Gene 73942 86289 99 178
FMA OBO 119560 143306 99 113

fast. Indeed, a “gain” of 10 percent of axiom entailments by the LSA with respect to
the SYNT in the case of large ontologies such as Galen and Snomed translates to tens
of thousands of preserved axioms in very little computation time.

In conclusion, the results gathered from these tests corroborate the usefulness of both
the global semantic approximation and the local semantic approximation approaches.
The former provides a maximal sound approximation in the target language of the orig-
inal approach, and is in practice computable in a reasonable amount of time for the
majority of the tested ontologies. The latter instead represents a less optimal but still
very effective solution for those ontologies for which the GSA approach goes beyond
the capabilities of the currently-available ontology reasoners.

6 Conclusions

In this paper we have addressed the problem of ontology approximation in Description
Logics and OWL, presenting (i) a parameterized semantics for computing sound ap-
proximations of ontologies, (ii) algorithms for the computation of approximations (the
GSA and the LSA) of OWL 2 ontologies in OWL 2 QL, and (iii) an extensive experi-
mental evaluation of the above techniques, which empirically proves the validity of our
approach.

The present work can be extended in several ways. First, while we have focused on
sound approximations, it would be interesting to also consider complete approxima-
tions of ontologies. Also, we would like to study the development of techniques for
k-approximations different from GSA and LSA, i.e., for k such that 1 < k < |OS |, as
well as to analyze the possibility of integrating ontology module extraction techniques
in our approach. Then, this work has not addressed the case when there are differences
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in the semantic assumptions between the source and the target ontology languages. For
instance, differently from OWL 2 and its profiles, some DLs (e.g., DL-LiteA [15]) adopt
the Unique Name Assumption (UNA). This makes our approach not directly applica-
ble, for instance, if we consider OWL 2 as the source language and DL-LiteA as the
target language. The reason is that the UNA implies some axioms (inequalities between
individuals) that can be expressed in OWL 2 but cannot be expressed in DL-LiteA. We
aim at extending our approach to deal with the presence of such semantic discrepancies
in the ontology languages. Finally, we are very interested in generalizing our approach
to a full-fledged ontology-based data access scenario [15], in which data sources are
connected through declarative mappings to the ontology. In that context, it might be
interesting to use both the ontology and the mappings in the target OBDA specification
to approximate a given ontology in the source OBDA specification.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338).
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Abstract. We present a new procedure for ontology materialization (comput-
ing all entailed instances of every atomic concept) in which reasoning over a
large ABox is reduced to reasoning over a smaller “abstract” ABox. The abstract
ABox is obtained as the result of a fixed-point computation involving two stages:
1) abstraction: partition the individuals into equivalence classes based on told
information and use one representative individual per equivalence class, and 2)
refinement: iteratively split (refine) the equivalence classes, when new assertions
are derived that distinguish individuals within the same class. We prove that the
method is complete for Horn ALCHOI ontologies, that is, all entailed instances
will be derived once the fixed-point is reached. We implement the procedure in
a new database-backed reasoning system and evaluate it empirically on existing
ontologies with large ABoxes. We demonstrate that the obtained abstract ABoxes
are significantly smaller than the original ones and can be computed with few re-
finement steps.

1 Introduction

Ontology based data access (OBDA) is an increasingly popular paradigm in the area
of knowledge representation and information systems. In ODBA, a TBox with back-
ground knowledge is used to enrich and integrate large, incomplete, and possibly semi-
structured data, which users can then access via queries. To efficiently handle large data
sets (called ABoxes), OBDA approaches assume that the data is stored in a database
or triple store. Nevertheless, the assumption of complete data that is typically made in
databases does not hold and reasoning is required to compute the (entailed) types of
individuals or answers to queries in general.

Different reasoning approaches have been developed in the OBDA context: (i) Query
rewriting or backward-chaining approaches answer a query, by “compiling” the back-
ground knowledge of the TBox into the query [2,12]. The analysis of which languages
are FO rewritable (i.e., which queries can be answered by query rewriting) inspired
the development of DL-Lite [2] and resulted in the OWL QL profile [11] of the Web
Ontology Language OWL 2. (ii) Materialization or forward-chaining techniques take
the opposite approach by pre-computing all entailed information upfront, independent
of the queries [1,14,8]. After extending the ABox with all pre-computed facts, the un-
modified queries can be evaluated over the enriched data only (i.e., without considering
the schema). The idea of query answering via materialization is directly present in the
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OWL RL profile [11], which specifies a suitable set of materialization rules. (iii) Fi-
nally, also combined approaches have been proposed, which allow for smaller rewritten
queries by materializing some (but not all) entailments [10,9] or for computing the ma-
terialization dynamically as required for a given query.

In this paper, we focus on the materialization of entailed facts for large ABoxes
that are stored in a (graph)database or triple store and where the schema is expressed
in terms of a Horn ALCHOI ontology. For full OWL RL support, functionality and
property chains have to be encoded, but Horn ALCHOI also goes beyond OWL RL
(and OWL QL). For example, existential quantification (owl:someValuesFrom) is fully
supported, which is a feature that is difficult for standard materialization and rewriting
approaches. While the principle of materialization is conceptually simple, it requires
considerable computational resources in particular for large ABoxes or expressive TBox
languages. Furthermore, reasoners for the language we tackle, are typically main mem-
ory and refutation-based, i.e., to show that an individual a is an instance of the concept
C, the reasoner tries to derive a contradiction for the ontology (temporarily) extended
with ¬C(a) (asserting that a is not an instance of C). Consequently, handling large
ABoxes directly is infeasible.

Our approach for handling large ABoxes is based on the assumption that individ-
uals with similar asserted types are likely to have the same inferred types. We group
such individuals into equivalence classes and compute the types just for one represen-
tative individual. For building the initial equivalence classes, we also consider the role
(property) assertions in the ABox, but we do not simply merge individuals. Instead, we
iteratively compute a so-called abstraction that contains one representative individual
for each equivalence class plus representative individuals for its direct role successors
and predecessors in the ABox. We show how derivations for the latter individuals can
be used in the refinement process to split equivalence classes for individuals that no
longer have the same assertions. The number of individuals in the abstraction is always
bounded exponentially in the number of different concepts and roles and linearly in the
size of the original ABox; hence the abstraction is relatively small when the number of
individuals is much larger than the number of concepts and roles used in the ontology.

We implement the technique in a database-backed system that interacts with a highly
optimized in-memory reasoner that materializes the abstract ABox. The database en-
gine needs to support only simple operations and does not require any knowledge of
the TBox. We show that the procedure is sound and it is complete for computing the
entailed types of individuals in Horn ALCHOI ontologies.

The paper is structured as follows: We next introduce directly related approaches.
In Section 3, we present some preliminaries and continue with the presentation of the
theoretical foundation of our approach in Section 4. In Section 5, we prove complete-
ness of our procedure. In Section 6, we evaluate the procedure on a range of real-world
ontologies with large ABoxes, and conclude in Section 7. Full proofs and further details
are available in a technical report [5].

2 Related Work

In this section, we focus on work that is closely related to our aim of abstracting the
ABox. The SHER approach [4,3] merges similar individuals to obtain a compressed,
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so-called summary ABox, which is then used for (refutation-based) consistency check-
ing. The technique (as well as ours) is based on the observation that individuals with the
same asserted types are likely to have the same entailed types. Since merging in SHER
is only based on asserted concepts, the resulting summary ABox might be inconsistent
even if the original ABox is consistent w.r.t. the TBox. To remedy this, justifications [6]
are used to decide which merges caused the inconsistency and to refine the summary
accordingly. Justification-based refinements are also needed for query answering since
SHER is not a materialization approach and performs reasoning at query time. We avoid
justification computation by partitioning individuals of the same type into equivalence
classes. Such partitioning guarantees the soundness of derived atomic concept asser-
tions. We also have to perform refinement steps, but the refinement is to incrementally
derive more consequences. What is computed before remains sound.

Wandelt and Möller propose a technique for (refutation-based) instance retrieval over
SHI ontologies based on modularization [15,16]. As an optimization and similar to our
approach, they group individuals into equivalence classes based on the asserted types
of an individual, its successors, predecessors and the asserted types of the successors
and predecessors.1 The assertions that define the equivalence class of an individual are
used for finding sound entailments. For checking entailments that cannot be read-off
from these assertions, it might be necessary to fall-back to (refutation-based) reason-
ing over the (possibly large) ABox module for the individual. Instead of falling back to
modules of the original ABox, we propose an iterative refinement process for the equiv-
alence classes. The refinement is based on semantic criteria, i.e., only when individuals
are semantically distinguishable, we refine the equivalence class, whereas the modules
defined by Wandelt and Möller are syntactically defined.

3 Preliminaries

We first define the syntax and semantics of the Description Logic (DL) ALCHOI ,
which is the main ontology language we consider in this paper.

The syntax of ALCHOI is defined using a vocabulary (signature) consisting of
countably infinite disjoint sets NC of concept names, NO of nominals, NR of role
names, and NI of individual names. Note that concepts are called classes and roles
are called properties in OWL. Complex concepts and axioms are defined recursively in
Table 1. An ontology O is a finite set of axioms and we often write O = A∪ T , where
A is an ABox consisting of the concept and role assertions in O and T a TBox consisting
of the concept and role inclusions in O. We use con(O), rol(O), ind(O) for the sets of
concept names, role names, and individual names occurring in O, respectively.

An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , the domain of I,
and an interpretation function ·I , that assigns to each A ∈ NC a subset AI ⊆ ΔI , to
each o ∈ NO a singleton subset oI ⊆ ΔI , ||oI || = 1, to each R ∈ NR a binary relation
RI ⊆ ΔI×ΔI , and to each a ∈ NI an element aI ∈ ΔI . This assignment is extended
to complex concepts as shown in Table 1. I satisfies an axiom α (written I |= α) if
the corresponding condition in Table 1 holds. I is a model of an ontology O (written
I |= O) if I satisfies all axioms in O. We say that O is consistent if O has a model.

1 We ignore the types of successors and predecessors to achieve larger equivalence classes.
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Table 1. The syntax and semantics of ALCHOI

Syntax Semantics
Roles:

atomic role R RI ⊆ ΔI ×ΔI (given by I)
inverse role R− {〈e, d〉 | 〈d, e〉 ∈ RI}

Concepts:
atomic concept A A ⊆ ΔI (given by I)
nominal o oI ⊆ ΔI , ||oI || = 1 (given by I)
top � ΔI

bottom ⊥ ∅
negation ¬C ΔI \ CI

conjunction C 	D CI ∩DI

disjunction C �D CI ∪DI

existential restriction ∃R.C {d | ∃e ∈ CI : 〈d, e〉 ∈ RI}
universal restriction ∀R.C {d | ∀e ∈ ΔI : 〈d, e〉 ∈ RI → e ∈ CI}

Axioms:
concept inclusion C � D CI ⊆ DI

role inclusion R � S RI ⊆ SI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈aI , bI〉 ∈ RI

We say that O entails an axiom α (written O |= α), if every model of O satisfies α. We
say that O is concept materialized if A(a) ∈ O whenever O |= A(a), A ∈ con(O) and
a ∈ ind(O); O is role materialized if R(a, b) ∈ O wheneverO |= R(a, b), R ∈ rol(O),
a, b ∈ ind(O); O is materialized if it is both concept and role materialized.

Remark 1. Some definitions do not present nominals as primitive symbols, but use a
special nominal constructor {a} with individual a (in this case, {a}I = {aI}). We can
easily convert such ontologies to our representation by renaming every nominal {a}
with the corresponding nominal symbol oa and adding a concept assertion oa(a). This
transformation is a conservative extension, i.e., it preserves all original entailments.

4 Computing ABox Materialization by Abstraction

The typical OBDA scenario is such that the ABox contains a large number of individ-
uals and its size is significantly larger than the size of the TBox. Hence, the number
of different concept names is typically much smaller than the number of different in-
dividuals, which also means that many individuals are instances of the same concepts.
If we can identify individuals that yield the same consequences, we can compute the
materialization by computing entailed consequences only for representative individuals.

4.1 Bi-homomorphic Individuals and Individual Types

In order to (syntactically) characterize individuals that yield the same consequences, we
study structure-preserving transformations of ABoxes.
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Definition 1. Let A and B be two ABoxes and h : ind(A) → ind(B) a mapping from
the individuals in A to individuals in B. We extend h to axioms in a straightforward
way: h(C(a)) = C(h(a)), h(R(a, b)) = R(h(a), h(b)), and h(α) = α for other
axioms α. We say that h is a homomorphism (from A to B) if h(A) ⊆ B. An individual
a in A is homomorphic to an individual b in B if there exists a homomorphism h from
A to B such that h(a) = b; in addition, if b is homomorphic to a, then a and b are
bi-homomorphic.

Example 1. Consider the ABox A = {R(a, a), R(a, b), R(b, b)}. Then the mappings
h1 = {a �→ b, b �→ b} and h2 = {a �→ a, b �→ a} are homomorphisms from A to A.
Since h1(a) = b and h2(b) = a, the individuals a and b are bi-homomorphic. Note that
there is no isomorphism h from A to A (a bijective homomorphism such that its inverse
is also a homomorphism) such that h(a) = b or h(b) = a.

It is easy to show that entailed axioms are preserved under homomorphisms between
ABoxes. In particular, bi-homomorphic individuals are instances of the same concepts.

Lemma 1. Let h : ind(A) → ind(B) be a homomorphism between ABoxes A and B.
Then for every TBox T and every axiom α, A ∪ T |= α implies B ∪ T |= h(α).

Proof. We show that Lemma 1 even holds for SROIQ without unique name as-
sumption. Suppose that A ∪ T |= α. Then h(A ∪ T ) |= h(α). Since h(A ∪ T ) =
h(A) ∪ h(T ) = h(A) ∪ T ⊆ B ∪ T , by monotonicity we obtain B ∪ T |= h(α). ��

Corollary 1. If individuals a and b in an ABox A are bi-homomorphic, then for every
TBox T and every concept C, we have A∪ T |= C(a) if and only if A ∪ T |= C(b).

If an ABox does not have role assertions, the bi-homomorphic individuals are ex-
actly those that have the same concepts in the assertions. Hence, we can identify bi-
homomorphic individuals by just looking at their types—the set of concepts of which
the individual is an (asserted) instance. Clearly, the number of different types, and hence
the maximal number of individuals that are not bi-homomorphic to each other is at most
exponential in the number of different concepts used in the ABox. With role assertions,
however, we cannot decide whether individuals are bi-homomorphic by just looking at
their assertions. In fact, the number of non-bi-homomorphic individuals can be arbitrary
large even if just one role is used in role assertions and there are no concept assertions.

Example 2. Consider an ABox A = {R(ai−1, ai) | 1 < i ≤ n}. It can be easily shown
that the only homomorphism h : ind(A) → ind(A) from A to A is the identity h =
{ai �→ ai | 1 ≤ i ≤ n}, i.e., no different individuals in A are bi-homomorphic to each
other. In fact, it is easy to find a TBox T with which all individuals in A entail different
sets of assertions. Indeed, take T = {
 � A1, Ai−1 � ∀R.Ai, 1 < i ≤ n}. Then we
have A ∪ T |= Aj(ai) if and only if 1 ≤ j ≤ i ≤ n.

From Example 2 one can see that with many role assertions, an ABox is less likely
to have many bi-homomorphic individuals. Note from Corollary 1 that if two individ-
uals are bi-homomorphic, then they entail the same assertions w.r.t. every TBox. This
property is too strong for our purpose, as we need to deal with just one given TBox. It
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can be that many (non-bi-homomorphic) individuals are still materialized in the same
way. To take this into account, instead of partitioning the individuals in equivalence
classes according to the bi-homomorphism relation, we start with an approximation to
this relation, which makes more individuals equivalent. As soon as entailed assertions
are obtained using a reasoner that distinguish elements within the same equivalence
class, we refine our approximation and repeat the process until the fixpoint.

Definition 2. Let A be an ABox. The type of an individual a (w.r.t. A) is a triple
tp(a) = (tp↓(a), tp→(a), tp←(a)) where tp↓(a) = {C | C(a) ∈ A}, tp→(a) = {R |
∃b : R(a, b) ∈ A}, and tp←(a) = {S | ∃c : S(c, a) ∈ A}.

Intuitively, the type of an individual is obtained by considering all assertions in which
this individual occurs in the ABox, and ignoring all other individuals in these assertions.
Note that bi-homomorphic individuals have the same types, so the relation between
individuals of the same types is an approximation to the bi-homomorphism relation.

4.2 Abstraction of an ABox

If we compress the ABox by simply merging all individuals with the same type into one,
we might obtain unexpected entailments, even if all individuals are bi-homomorphic.

Example 3. Consider the following ABox A = {R(a, b), R(b, a)}. Clearly, a and b are
bi-homomorphic in A. Let B = {R(a, a)} be obtained fromA by replacing individual b
with a, and let T = {
 � B � C, ∃R.B � C}. It is easy to check that B∪T |= C(a),
but A ∪ T �|= C(a) (and hence A ∪ T �|= C(b)).

We could follow the approach in the SHER system and compute justifications for en-
tailed assertions to determine which individuals should not be merged, but our goal is
to avoid such computationally expensive operations. Instead of merging all individuals
with the same type into one, we realize every individual type in our abstract ABox. With
abstract ABoxes defined as follows, we can guarantee that assertions that are entailed
for the representative individuals also hold for the original individuals.

Definition 3 (ABox Abstraction). The abstraction of an ABox A is an ABox B =⋃
a∈ind(A) Btp(a), where for each type tp = (tp↓, tp→, tp←), we define Btp = {C(xtp) |

C ∈ tp↓} ∪ {R(xtp, y
R
tp ) | R ∈ tp→} ∪ {S(zStp, xtp) | S ∈ tp←}, where xtp, yRtp , and zStp

are fresh distinguished abstract individuals.

Intuitively, the abstraction of an ABox is a disjoint union of small ABoxes witnessing
each individual type realized in the ABox.

Example 4. Consider the ABox A = {A(a), A(d), R(a, b), R(a, e), R(b, c), R(b, e),
R(c, a), R(d, c), R(e, d)}. We have tp(b) = tp(c) = tp(e) = tp1 = (∅, {R}, {R}) and
tp(a) = tp(d) = tp2 = ({A}, {R}, {R}). The abstraction of A is B = Btp1 ∪ Btp2 with
Btp1 = {R(xtp1 , y

R
tp1
), R(zRtp1 , xtp1

)}, Btp2 = {A(xtp2
), R(xtp2

, yRtp2), R(zRtp2 , xtp2
)}.

The following lemma shows the soundness of concept assertions derived from the
abstraction.
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Lemma 2. Let A be an ABox, B its abstraction, and T a TBox. Then for every type
tp = (tp↓, tp→, tp←), every a ∈ ind(A) with tp(a) = tp w.r.t. A, and every concept C:

(1) B ∪ T |= C(xtp) implies A∪ T |= C(a),
(2) B ∪ T |= C(yRtp ) and R(a, b) ∈ A implies A ∪ T |= C(b), and
(3) B ∪ T |= C(zStp) and S(c, a) ∈ A implies A ∪ T |= C(c).

Proof. Consider all mappings h : ind(B) → ind(A) such that:

h(xtp) ∈ {a ∈ ind(A) | tp(a) = tp},
h(yRtp ) ∈ {b | R(h(xtp), b) ∈ A}, and

h(zStp) ∈ {c | S(c, h(xtp)) ∈ A}.
Clearly, h(B) ⊆ A for every such mapping h. Furthermore, for every a ∈ ind(A), every
R(a, b) ∈ A and every S(c, a) ∈ A, there exists h with h(xtp) = a, h(yRtp ) = b, and
h(zStp) = c for tp = tp(a). Hence, claims (1)–(3) follow by Lemma 1. ��

4.3 Abstraction Refinement

Note that the individuals from an ABoxAmay correspond to several abstract individuals
in the ABox abstraction B: Each individual a corresponds to the abstract individual xtp

for tp = tp(a). In addition, if R(b, a) ∈ A or S(a, b) ∈ A for some individual b, then a
also corresponds to yRtp and zStp respectively for tp = tp(b). The additional individuals yRtp
and zStp were introduced intentionally to refine the initial abstraction when new assertions
of abstract individuals are derived, which in turn, can be used to derive new assertions
of individuals in A. Specifically, assume that we have materialized all entailed atomic
assertions for the abstract ABox B w.r.t. the TBox using a reasoner. By Lemma 2, the
corresponding assertions must also be entailed in the original ABox A. In particular, by
case (1), the new assertions computed for the individualxtp, also hold for every individual
a in A with tp(a) = tp. If we add all such assertions to the original ABox A, these
individuals would still have the same types, so even by building a new abstraction for
the extended ABox, we would not derive new assertions for the abstraction. On the other
hand, if we add the new assertion according to cases (2) and (3) of Lemma 2, we may
obtain different assertions for individuals that previously had the same types. Indeed, if
R(a, b) ∈ A, and we have derived a new assertion A(b) using case (2) of the lemma,
then it is not necessary that a similar assertion A(b′) will be derived for every b′ with
tp(b′) = tp(b), because it is not necessarily the case that there exists R(a′, b′) ∈ A
with tp(a′) = tp(a), for which this case also applies. Hence, adding the newly derived
assertions using Lemma 2 may refine the types of the original individuals and, in turn,
result in a new abstraction, for which new assertions can be derived once again.

The above suggests the following materialization procedure based on abstraction
refinement. Given an ontology O = A ∪ T we proceed as follows:

1. Build an initial abstraction B of A according to Definition 3.
2. Materialize B ∪ T using a reasoner.
3. Extend A with the newly derived assertions according to Lemma 2.
4. Update the types of the individuals in A and re-compute its abstraction B.
5. Repeat from Step 2 until no new assertions can be added to A.
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ABox: A =

a
A(I)

b

B(II), A(III)

c

B(II)

d

A(I)

e
B(II)

TBox: T =

A � ∀R.B

B � ∀R−.A

Materialized Abstractions
abstract ABoxes I II III

yR
tp1

xtp1

zRtp1

{c, e, a, d}
{b, c, e}
{a, b, d}

yR
tp2+B

xtp2A

zRtp2

{b, e, c}
{a, d}
{c, e}

{b, e, c}
{a, d}
{c, e}

{b, e, c}
{a, d}
{c, e}

yR
tp3

xtp3B

zRtp3+A

{c, e, a, d}
{b, e, c}
{a, b, d}

{a, d}
{c, e}
{b, d, a}

yR
tp4+B

xtp4A,B

zRtp4+A

{c, e}
{b}
{a}

Fig. 1. The abstractions I-III produced in Example 5. Each abstraction consists of the ABoxes
corresponding to the four individual types. The inferred assertions are indicated with the “+” sign
and are added to the corresponding original individuals shown in each column. The materialized
assertions in the original ABox are labeled with the first iteration in which they appear.

Example 5 (Example 4 continued). Let AI be the ABox A from Example 4 and T =
{A � ∀R.B, B � ∀R−.A} a TBox. Let BI be the abstraction B of AI = A computed
in Example 4 (see Figure 1). By materializing BI w.r.t. T we get B(yRtp2

), from which
we obtain AII = AI ∪ {B(b), B(e), B(c)} using Lemma 2. Recomputing the types
of individuals in AII yields tp(b) = tp(c) = tp(e) = tp3= ({B}, {R}, {R}), while
the types of a and d remain unchanged. The abstraction of AII is thus BII = Btp2 ∪
Btp3 , where Btp3 = {B(xtp3

), R(xtp3
, yRtp3), R(zRtp3 , xtp3)}. By materializing BII, we get

A(zRtp3), from which we obtain AIII = AII ∪ {A(b)}. We again recompute the types of
individuals in AIII, which gives tp(b) = tp4 = ({A,B}, {R}, {R}), while the types of
the other individuals do not change. The abstraction of AIII is thus BIII = Btp2 ∪ Btp3 ∪
Btp4 , where Btp4 = {A(xtp4), B(xtp4

), R(xtp4 , y
R
tp4
), R(zRtp4 , xtp4

)}. Materializing BIII

yields B(yRtp4) and A(zRtp4), which correspond to B(c), B(e), and A(a). However, those
assertions already exist in AIII, so the procedure terminates.

The abstraction refinement procedure terminates since after every iteration except the
last one, new atomic assertions must be added to A, and there is a bounded number of
such assertions. Specifically, the number of iterations is at most ||ind(O)|| × ||con(O)||.
The number of realized individual types in every ABox A, and hence the size of every
abstract ABox B, is at most exponential in the number of different concepts and roles
in O. In practice, however, it is likely to be much smaller since not every possible type
is realized in real ontologies. Note also that in practice, it is not necessary to add the
newly derived assertions explicitly to the original ABox—one can recompute the new
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types using some simple operations on the sets of individuals (intersection and unions),
and keep the derived assertions only once for every new equivalence class. Note also
that without nominals, we can exploit that B is a disjoint union of very simple ABoxes
corresponding to the types of individuals, so they can be materialized independently
of each other. This is particularly useful for updating the abstraction since only those
ABoxes that correspond to newly created types should be materialized at every iteration.

5 Completeness

Lemma 2 guarantees that at every point of the iteration, our abstraction refinement
procedure adds only entailed assertions to the ABox A. In other words, our procedure
is sound. The main question of this section is, whether our procedure is complete, i.e.,
whether we always compute all entailed atomic assertions in this way. Unfortunately,
this is in general not the case, as demonstrated by the following example.

Example 6. Consider the ABox A = {A(a), R(a, b), B(b)} and the TBox T = {B �
C � D, ∃R.C � C,A � C � ∀R.D}. Note that A ∪ T |= D(b). Let us compute
the materialization using abstraction. We have tp(a) = ({A}, {R}, ∅) and tp(b) =
({B}, ∅, {R}). Therefore B = Btp(a) ∪ Btp(b), where Btp(a) = {A(xtp(a)), R(xtp(a),
yRtp(a))} and Btp(b) = {B(xtp(b)), R(zRtp(b), xtp(b))}. It is easy to see that B ∪ T does
not entail any new atomic concept assertions. Hence, our procedure terminates after the
first iteration without producing the entailment A∪ T |= D(b).

The primary reason why our method does not work in this example is that our ab-
straction breaks the ABox into disconnected parts, which cannot communicate the non-
deterministic choices, e.g., for the disjunctionC�D. The only communication between
ABoxes happens through the entailment of new assertions. If the ontology language
does not allow such non-deterministic constructors, it is possible to obtain a complete
procedure.

5.1 Horn ALCHOI
While the results on the previous sections hold for ALCHOI in general (and even ex-
tensions thereof), we restrict ontologies in this section to a Horn fragment of ALCHOI:

Definition 4 (Horn ALCHOI). An ALCHOI ontology O is Horn if, for every con-
cept assertion D(a) and every axiom C � D, the concepts C and D satisfy, respec-
tively, the following grammar definitions:

C(i) ::= 
 | ⊥ | A | o | C1 � C2 | C1 �C2 | ∃R.C, (1)

D(i) ::= 
 | ⊥ | A | o | D1 �D2 | ∃R.D | ∀R.D | ¬C. (2)

Intuitively, negations and universal restrictions should not occur negatively, and disjunc-
tions should not occur positively. We can also allow TBox axioms that are equivalent
to Horn axioms. For example, A � ¬∀R.⊥ � ¬∀S.(B � C) is not Horn according to
Definition 4, but is equivalent to the Horn axiom A � ∃R.
 � ∃S.¬(B �C).
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It is a well-known property of Horn languages that every consistent Horn ontology
has a so-called canonical model that entails exactly the consequences entailed by the
ontology. For the purpose of the paper, we require a weaker version of this property that
speaks only about entailment of atomic concept assertions.

Theorem 1 (Weak Canonical Model Property for Horn ALCHOI). Every consis-
tent Horn ALCHOI ontology O has a model I such that I |= A(a) implies O |= A(a)
for every atomic concept assertion A(a) with a ∈ ind(O) and A ∈ con(O).

Theorem 1 can be proved using the property that Horn ALCHOI models are closed
under direct products. Then a canonical model is obtained from the direct product of
models refuting (finitely many) atomic non-types.

Before formulating our completeness result, we need to solve one small technical
problem illustrated in the following example.

Example 7. Consider A = {A(a), B(b), R(a, b)} and T = {A � ∃R.B � C}, which
consist of Horn axioms. Clearly, A ∪ T |= C(a). A realizes two different individual
types: tp(a) = tp1 = ({A}, {R}, ∅) and tp(b) = tp2 = ({B}, ∅, {R}), so our ab-
straction B = Btp1 ∪ Btp2 consist of two ABoxes Btp1 = {A(xtp1), R(xtp1 , y

R
tp1
)}, and

Btp2 = {B(xtp2
), R(zRtp2 , xtp2

)}. In neither of these ABoxes we obtain a new assertion
after materialization, so our procedure terminates without deriving C(a).

In order to see how to fix this problem, note that Btp2 ∪ T |= (∃R.B)(zRtp2
), so there

is an entailed assertion, just not an atomic one. To capture this inference, we introduce
a new concept that “defines” ∃R.B. Specifically, let T ′ = {∃R.B � X, A �X � C}
where X is a fresh concept name. Clearly, T ′ is a conservative extension of T (one can
extend every model of T to a model of T ′ by interpretingX as ∃R.B), so the assertions
for A, B, and C entailed by T ′ are the same as for T . However, with T ′ we can derive a
new assertion Btp2 ∪T ′ |= X(zRtp2). If we now add the corresponding assertion X(a) to
A and recompute the abstraction for the updated type tp(a) = tp3 = ({A,X}, {R}, ∅)
(tp(b) does not change), we have Btp3 = {A(xtp3

), X(xtp3
), R(xtp3

, yRtp3)}, and obtain
Btp3 ∪ T ′ |= C(xtp3

), which gives us the intended result.

Example 7 suggests that to achieve completeness, we need to represent existential re-
strictions on the left hand side of the axioms using new atomic concepts. Note that
∃R.B � X is equivalent to B � ∀R−.X . Thus we can just require that there are
no existential restrictions on the left hand side of concept inclusions, and all universal
restrictions on the right have only atomic concepts as fillers.

Definition 5 (Normal Form for HornALCHOI). Horn ALCHOI axioms D(a) and
C � D are in normal form if they satisfy the following grammar definitions:

C(i) ::=
 | ⊥ | A | o | C1 � C2 | C1 � C2 (3)

D(i) ::=
 | ⊥ | A | o | D1 �D2 | ∃R.D | ∀R.A | ¬C (4)

Intuitively, in addition to the constraints for Horn ALCHOI ontologies given by (1)
and (2) of Definition 4, negative occurrences of existential restrictions are not allowed,
and (positive) occurrences of universal restrictions can only have concept names as
fillers. It is easy to convert axioms to such a normal form using the well-known struc-
tural transformation. Specifically, we can repeatedly replace every existential restriction
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∃R.C in (1) with a fresh concept name X and add a new axiom C � ∀R−.X . Likewise,
we can replace every universal restriction ∀R.D in (2) with ∀R.Y for a fresh concept
name Y and add an axiom Y � D. As with Horn axioms, we do not actually need
the axioms in the TBox to be syntactically in the normal form. It is sufficient that they
are equivalent to axioms in the normal form – the reasoner will still produce the same
result. For example, an axiom ∃R.(A1 �A2) � B1 �B2 can be left untouched because
it is equivalent to an axiom A1 � A2 � ∀R−.B1 � ∀R−.B2 in normal form. Note that
the axiom A � ∃R.B � C in T from Example 7 is not equivalent to the pair of axioms
∃R.B � X , A �X � C in T ′ because the latter axioms contain a new symbol X . In
fact, A � ∃R.B � C is not equivalent to any axiom(s) in normal form.

5.2 Completeness Proof

We are now ready to show the following completeness result:

Theorem 2. Let O = A ∪ T be a normalized Horn ALCHOI ontology and B the
abstraction of A. O is concept materialized if, for every type tp = (tp↓, tp→, tp←),
every individual a ∈ ind(A) with tp(a) = tp, and every atomic concept A, we have:

(1) B ∪ T |= A(xtp) implies A(a) ∈ A,
(2) B ∪ T |= A(yRtp ) and R(a, b) ∈ A implies A(b) ∈ A, and
(3) B ∪ T |= A(zStp) and S(c, a) ∈ A implies A(c) ∈ A.

Proof. To prove Theorem 2, we extend the abstraction B of A with new role assertions
R(xtp(a), xtp(b)) for every R(a, b) ∈ A. Let us denote this extended abstract ABox by
B′. Since, for every C(a) ∈ A, we also have C ∈ tp↓(a) and, thus, C(xtp(a)) ∈ B ⊆ B′,
the mapping h : ind(A) → ind(B′) defined by h(a) = xtp(a) is a homomorphism from
A to B′. Therefore, by Lemma 1, if A∪ T |= A(a), then B′ ∪ T |= A(xtp(a)). The key
part of the proof is to demonstrate that in this case we also have B ∪ T |= A(xtp(a)).
That is, the extended abstract ABox B′ does not entail new atomic concept assertions
compared to B. It follows then that A(a) ∈ A by condition (1) of the theorem. This
implies that O is concept materialized.

To prove that B′ entails the same atomic concept assertions as B, we use the re-
maining conditions (2) and (3) of Theorem 2 and the canonical model property formu-
lated in Theorem 1. Note that since new role assertions of the form R(xtp(a), xtp(b))
are added to B′ only if R(a, b) ∈ A, we have R ∈ tp→(a) and R ∈ tp←(b) by Def-
inition 2. Therefore, we already had role assertions R(xtp(a), y

R
tp(a)) ∈ B and likewise

R(zRtp(b), xtp(b)) ∈ B for the same role R. Furthermore, by condition (2) of Theorem 2,

if B ∪ T |= A(yRtp(a)), then since R(a, b) ∈ A, we also have A(b) ∈ A, and thus

A(xtp(b)) ∈ B. Likewise, by condition (3), if B ∪ T |= A(zRtp(b)), then A(xtp(a)) ∈ B.
The following lemma shows that with these properties for B, after adding the new role
assertion R(xtp(a), xtp(b)) to B, no new atomic concept assertions can be entailed.

Lemma 3 (Four-Individual Lemma). Let O be a normalized Horn ALCHOI on-
tology such that {R(x1, y1), R(z2, x2)} ⊆ O for some x1, y1, z2, x2, and R. Further,
assume that for every concept name A we have:
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(1) O |= A(y1) implies O |= A(x2), and
(2) O |= A(z2) implies O |= A(x1).

Finally, let O′ = O∪{R(x1, x2)}. Then for every concept name A and every individual
a, we have O′ |= A(a) implies O |= A(a).

Proof (Sketch). Suppose that O′ |= A(a). We will show that O |= A(a). If O is in-
consistent then this holds trivially. Otherwise, there exists a model I of O satisfying
Theorem 1. From I we construct an interpretation I ′ that coincides with I apart from
the interpretation of role names. With the given individuals x1 and x2, for every role
name S we define

SI′
= SI ∪

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(xI
1 , x

I
2 )} if O |= R � S and O �|= R � S−

{(xI
2 , x

I
1 )} if O |= R � S− and O �|= R � S

{(xI
1 , x

I
2 ), (x

I
2 , x

I
1 )} if O |= R � S and O |= R � S−

∅ otherwise

We will prove that I ′ |= O′, which implies I ′ |= A(a) since O′ |= A(a), and
thus I |= A(a) by definition of I ′, from which O |= A(a) follows since I satisfies
Theorem 1.

First, we prove by induction that for each C and D defined respectively by (3) and
(4), we have CI = CI′

and DI ⊆ DI′
. The only non-trivial case is D = ∀S.A with

O |= R � S and S ∈ rol(O) (the case where S is an inverse role can be proved
analogously). Take any d ∈ DI . To show that d ∈ DI′

, we need to prove that d′ ∈ AI′

for every d′ with 〈d, d′〉 ∈ SI′
. If 〈d, d′〉 ∈ SI , this is obvious. Otherwise, 〈d, d′〉 =

〈xI
1 , x

I
2 〉. By assumption, I |= R(x1, y1) and O |= R � S, hence, I |= S(x1, y1),

which, together with d = xI
1 ∈ DI , implies yI1 ∈ AI . Thus I |= A(y1). Since

I satisfies Theorem 1, we have O |= A(y1). By Condition (1), O |= A(x2). Thus
d′ = xI

2 ∈ AI = AI′
, and hence, d = xI

1 ∈ DI′
, what was required to show.

It remains to show that I ′ |= O′ with O′ = O ∪ {R(x1, x2)}. Since I |= O, for
every C � D ∈ O we have CI′

= CI ⊆ DI ⊆ DI′
, for every D(a) ∈ O we have

aI
′
= aI ∈ DI ⊆ DI′

, and for every R(a, b) ∈ O we have 〈aI′
, bI

′〉 = 〈aI , bI〉 ∈
RI ⊆ RI′

. Finally, the definition of I ′ ensures that for every role inclusion S � P ∈ O
we have SI′ ⊆ P I′

, and that I ′ |= R(x1, x2). Thus I ′ |= O′. ��

By repeatedly applying Lemma 3 for each x1 = xtp(a), y1 = yRtp(a), x2 = xtp(b),

z2 = zRtp(b) and R such that R(a, b) ∈ A, we obtain that B′ entails only those atomic
assertions that are entailed by B, which completes the proof of Theorem 2. ��

6 Implementation and Evaluation

To evaluate the feasibility of our approach, we implemented the procedure sketched in
Section 4.3 in Java. The system relies on Neo4j 1.9.42 to store the ABoxes and uses an
external OWL reasoner for materializing the abstractions.

2 http://www.neo4j.org

http://www.neo4j.org
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Table 2. Test suite statistics with the number of atomic concepts in the ontology (#A and #AN

for the normalized ontology), roles (#R), individuals (#I), role (#R(a, b)) and concept (#A(a))
assertions, and the number of concept assertions inferred by the system

Ontology #A #AN #R #I #R(a, b) #A(a) #A(a) inferred

Gazetteer 710 711 15 516 150 604 164 11 112 538 799
Coburn 719 1 161 109 123 515 237 620 297 002 535 124
LUBM 1 43 49 25 17 174 49 336 18 128 48 326
LUBM 10 43 49 25 207 426 630 753 219 680 593 485
LUBM 50 43 49 25 1 082 818 3 298 813 1 147 136 3 097 722
LUBM 100 43 49 25 2 153 645 6 645 928 2 281 035 6 164 538
LUBM 500 43 49 25 10 189 173 31 073 066 10 793 509 29 169 321
UOBM 1 69 90 35 24 925 153 571 44 680 142 747
UOBM 10 69 90 35 242 549 1 500 628 434 115 1 381 722
UOBM 50 69 90 35 1 227 445 7 594 996 2 197 035 6 991 583
UOBM 100 69 90 35 2 462 012 15 241 909 4 409 891 14 027 772
UOBM 500 69 90 35 12 379 113 76 612 736 22 168 148 72 215 007

The goal of our evaluation is to estimate whether our assumption that in relatively
simple ontologies with large ABoxes the number of realized types and, consequently,
the size of the abstract ABoxes is small. Furthermore, we analyze whether it is indeed
the case that real-world ontologies have relatively simple axioms that do not require
many refinement steps, where a refinement step is the process of refining the individual
types.

We selected ontologies with large ABoxes that are also used to evaluate other ap-
proaches.3 Table 2 provides relevant metrics for the test ontologies. Gazetteer is from
the NCBO BioPortal, Coburn is a large bio ontology from the Phenoscape project, and
LUBM (UOBM) refers to the Lehigh University Benchmark4 (the University Ontology
Benchmark).5 LUBM n (UOBM n) denotes the data set for n universities. Gazetteer
is genuinely within Horn ALEO and the remaining ontologies have been converted to
Horn ALCHOI . Note that the increase of normalized concepts (AN ) in comparison
to the original concepts (A) in Table 2 is a rough indicator of TBox complexity, which
adds extra workload to reasoners.

Tables 3 and 4 show the results of computing and iteratively refining the abstract
ABoxes until the fixpoint. The second column in Table 3 shows the number of refine-
ment steps. The third and fourth (fifth and sixth) columns show the number of individu-
als (assertions) in the first and last abstraction, respectively, while the last four columns
show the according relative reduction in percent compared to the original ABoxes. Ta-
ble 4 shows the type statistics, i.e. the number of types and the average number of
individuals, concept names, and property names per type.

In general, the abstract ABoxes are significantly smaller than the original ones and
the ontologies can be materialized with few refinement steps. For ontologies with

3 Download and references at http://www.derivo.de/dl14-ontologies/
4 http://swat.cse.lehigh.edu/projects/lubm
5 http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator

http://www.derivo.de/dl14-ontologies/
http://swat.cse.lehigh.edu/projects/lubm
http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator
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Table 3. Number of refinement steps, size of the abstract ABoxes, and size of the abstract ABoxes
in comparison with the original ABoxes for the first and the last abstraction

# of Abstract ABox size Abstract ABox size (%)Ontology
steps # indiv. # assertions % indiv. % assertions

Gazetteer 1 5 640 5 640 5 142 8 512 1.09 1.09 0.79 1.31
Coburn 2 3 992 4 059 5 569 8 633 3.23 3.29 1.04 2.16
LUBM 1 1 139 139 143 254 0.81 0.81 0.21 0.38
LUBM 10 1 154 154 158 281 0.07 0.07 0.02 0.03
LUBM 50 1 148 148 152 271 0.01 0.01 0.003 0.006
LUBM 100 1 148 148 152 271 0.007 0.007 0.002 0.003
LUBM 500 1 148 148 152 271 0.001 0.001 0.001 0.001
UOBM 1 2 25 378 39 322 31 659 101 324 101.82 157.76 15.97 51.11
UOBM 10 2 98 266 169 579 125 056 448 400 40.51 69.92 6.46 23.18
UOBM 50 2 226 176 395 956 290 652 1 057 854 18.43 32.26 2.97 10.80
UOBM 100 2 311 574 547 361 402 188 1 472 058 12.66 22.23 2.05 7.49
UOBM 500 2 596 135 1 033 685 772 920 2 806 786 4.82 8.35 0.78 2.84

simple TBoxes, which contain mostly atomic concept inclusions, domains and
ranges for roles, and conjunctions, only one refinement step is required. This is the
case since any concept assertion derived for a successor or predecessor of an abstract
individual is also derived for the individual itself. LUBM and UOBM additionally con-
tain universal quantifications, e.g. Department � ∀headOf−.Chair (rewritten from
∃headOf.Department � Chair), but these axioms do not create long propagations of
concept Assertions over roles. For LUBM, many individuals have similar types and can
be grouped into equivalence classes. This results in an extremely good compression
with abstractions of nearly constant size for arbitrarily many LUBM universities. For
instance, the final abstractions are just 0.38 % (for LUBM 1) and 0.001 % (for LUBM
500) of the size of the original ABox. This and the fact that only one refinement step
is needed also explains that other related approaches like SHER and Wandelt’s and
Möller’s approach show a very good performance for LUBM. UOBM also contains
nominals and the individuals are more diverse than in LUBM. Thus, UOBM requires
one more refinement step compared to LUBM.

Our qualitative performance evaluation confirms the correlation between the size of
abstract ABoxes and the total time for the materialization. We compared the respective
materialization times of the original ABox with the sum of materialization times for
all abstract ABoxes using the reasoners HermiT and Konclude.6 For ontologies with
small abstract ABoxes such as LUBM, Gazetteer and Coburn, the sum of the reasoning
times for all abstract ABoxes is less than a tenth of the reasoning time for the original
ABox. While the runtimes for the abstractions of UOBM 1 are still 2 to 4 times that of
the original ABox, the runtimes for UOBM 50 are already down by 50%. The original
UOBM 100 ontology could neither be processed within eight hours by HermiT nor by
Konclude with a 32GB RAM limit run on Intel Xeon E5-2440 6 cores, but its abstrac-
tion can easily be materialized, e.g., within 84 seconds and 8GB RAM by Konclude.
Currently, we re-compute the abstraction after each refinement step. There is certainly

6 See http://www.hermit-reasoner.com and http://www.konclude.com

http://www.hermit-reasoner.com
http://www.konclude.com
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Table 4. Statistics about individual types for the first and the last abstraction: number of individual
types, average number of individuals, concept names, and property names per individual type

# Individual Individual type statisticsOntology
types # indiv. / type #AN / type #R / type

Gazetteer 1 845 1 845 280 280 0.73 2.56 2.05 2.05
Coburn 1 056 1 072 117 115 2.49 5.27 2.79 2.79
LUBM 1 30 30 572 572 1.13 4.83 3.63 3.63
LUBM 10 29 29 7 153 7 153 1.14 5.38 4.31 4.31
LUBM 50 27 27 40 104 40 104 1.15 5.56 4.48 4.48
LUBM 100 27 27 79 765 79 765 1.15 5.56 4.48 4.48
LUBM 500 27 27 377 377 377 377 1.15 5.56 4.48 4.48
UOBM 1 3 104 4 705 8 5 3.02 14.18 7.18 7.35
UOBM 10 11 453 17 347 21 14 3.34 15.48 7.58 7.86
UOBM 50 25 636 43 283 48 28 3.52 16.29 7.82 8.14
UOBM 100 34 992 59 184 70 42 3.59 16.62 7.91 8.24
UOBM 500 65 148 108 691 190 114 3.71 17.31 8.15 8.51

room for optimizations, e.g. by updating the types and computing the abstractions in-
crementally.

7 Conclusions and Future Work

We have presented an approach for ontology materialization based on abstraction re-
finement. The main idea is to represent ABox individuals using several (overlapping)
equivalent classes and to use information derived for their abstract representatives to
refine the abstraction. Although the approach does not necessarily guarantee that the
abstraction is always smaller than the original ABox, the method particularly pays off
for ontologies with large ABoxes and relatively small and simple TBoxes.

Currently, our approach is complete for Horn ALCHOI ontologies due to the prop-
erty that only (deterministically) derived assertions are used for abstraction refinement.
We could potentially extend our approach to non-Horn ontology languages by exploit-
ing additional information about non-deterministically derived instances as provided,
for example, by the HermiT reasoner [7]. Some Horn features, on the other hand, could
be supported, e.g., it is easy to support transitive roles and role chains by using the
well-known encoding of these axioms via concept inclusions [13].

In this paper we mainly focus on concept materialization since role materialization
for Horn ALCHOI can essentially be computed by expanding role hierarchies (spe-
cial care needs to be taken of nominals though). When ontologies contain role chains
and functional roles, however, materialization of role assertions becomes less trivial,
e.g. the encoding of role chains is not enough and a naive encoding of functionality is
inefficient. We currently investigate how these features can efficiently be supported.

Since the abstraction consists of disjoint parts, these parts can be processed indepen-
dently of each other (if nominals are taken care of). This can be used in the refinement
steps to process only the parts that have really changed or for an efficient support of
updates to the ABox. In addition, the abstract ABoxes could serve not only as a generic
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interface for communication with the reasoner, but also as a compact representation of
the materialization. This can be particularly useful when answering instance and con-
junctive queries over the materialized ABoxes, where the abstraction can be used to
prune the search space.
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Abstract. EL is a family of tractable Description Logics (DLs) that is the basis
of the OWL 2 EL profile. Unlike for many expressive DLs, reasoning in EL can
be performed by computing a deductively-closed set of logical consequences of
some specific form. In some ontology-based applications, e.g., for ontology de-
bugging, knowing the logical consequences of the ontology axioms is often not
sufficient. The user also needs to know from which axioms and how the conse-
quences were derived. Although it is possible to record all inference steps during
the application of rules, this is usually not done in practice to avoid the overheads.
In this paper, we present a goal-directed method that can generate inferences for
selected consequences in the deductive closure without re-applying all rules from
scratch. We provide an empirical evaluation demonstrating that the method is fast
and economical for large EL ontologies. Although the main benefits are demon-
strated for EL reasoning, the method can be potentially applied to many other
procedures based on deductive closure computation using fixed sets of rules.

1 Introduction and Motivation

The majority of existing DL reasoners are based on optimized (hyper)tableau-based
procedures, which essentially work by trying to construct counter-models for the en-
tailment. If the reasoner could not find a counter-model by trying all alternatives, it
declares that the entailment holds. It is not easy to use such procedures to generate an
explanation for the entailment, or even to determine which axioms are responsible for
the entailment—the axioms that were used to construct the models are not necessar-
ily the ones that are causing the clash. Recently another kind of reasoning procedures,
which work by deriving logical consequences of ontology axioms directly, became pop-
ular. Such consequence-based procedures were first introduced for the EL family of
tractable ontology languages [1], and later the same principle has been extended to
more expressive (non-tractable) languages such as Horn-SHIQ and ALCH [10,19].
The consequence-based procedures work by computing the closure under the rules by
forward chaining. The inference rules make sure that the result is complete—all entailed
conclusions of interest are obtained in the closure.

It is easy to extend any consequence-based procedure so that for each derived con-
clusion, it also records the inferences that have produced it. This way, one can easily
generate proofs for the entailed conclusions. Unfortunately, saving all applied infer-
ences during reasoning is not practical, as each conclusion could be derived in many
ways and storing all inferences requires a lot of memory. In practice, one usually does
not need to retrieve all inferences, but just inferences for some particular (e.g., unex-
pected) consequences. In this paper, we demonstrate how these inferences can be traced

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 196–211, 2014.
c© Springer International Publishing Switzerland 2014
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Table 1. The syntax and semantics of EL+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top � ΔI

conjunction C �D CI ∩DI

existential restriction ∃R.C {x | ∃y ∈ CI : 〈x, y〉 ∈ RI}
Axioms:

concept inclusion C 	 D CI ⊆ DI

role inclusion R 	 S RI ⊆ SI

role composition R1 ◦ R2 	 S RI
1 ◦RI

2 ⊆ SI

back in a goal-directed way using the pre-computed set of conclusions. The main idea,
is to split the conclusions on small partitions using the properties of the inference sys-
tem, such that most inferences are applied within each individual partition. It is then
possible to re-compute the inferences for conclusions within each partition by forward
chaining using conclusions from other partitions as “set of support”. A similar idea has
been recently used for incremental reasoning in EL+ [11]. We demonstrate empirically
that only a small fraction of inferences is produced when generating proofs for EL+

consequences and that the inferences can be computed in just a few milliseconds even
for ontologies with hundreds thousands of axioms.

2 Tutorial

In this section, we introduce the problem addressed in the paper and present the main
ideas of our solution. For simplicity, we focus on reasoning in EL+ [2]. Later, in Sec-
tion 3, we generalize the method to arbitrary (deterministic) inference systems.

2.1 The Description Logic EL+

The syntax of EL+ is defined using a vocabulary consisting of countably infinite sets
of (atomic) roles and atomic concepts. Complex concepts and axioms are defined recur-
sively using Table 1. We use letters R,S for roles, C,D,E for concepts, and A,B for
atomic concepts. An ontology is a finite set of axioms. Given an ontology O, we write
�∗

O for the smallest reflexive transitive binary relation over roles such that R �∗
O S

holds for all R � S ∈ O.
An interpretation I = (ΔI , ·I) consists of a nonempty set ΔI called the domain

of I and an interpretation function ·I that assigns to each role R a binary relation
RI ⊆ ΔI × ΔI , and to each atomic concept A a set AI ⊆ ΔI . This assignment
is extended to complex concepts as shown in Table 1. I satisfies an axiom α (written
I |= α) if the corresponding condition in Table 1 holds. I is a model of an ontology
O (written I |= O) if I satisfies all axioms in O. We say that O entails an axiom α
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R0
C 	 C

R�
C 	 � : � ∈ G(C)

R�
C 	 D

C 	 E
: D 	 E ∈ O

R−
�

C 	 D1 �D2

C 	 D1 C 	 D2

R+
�

C 	 D1 C 	 D2

C 	 D1 �D2
: D1 �D2 ∈ G(C)

R∃
E 	 ∃R.C C 	 D

E 	 ∃S.D :
∃S.D ∈ G(E)
R 	∗

O S

R◦
E 	 ∃R1.C C 	 ∃R2.D

E 	 ∃S.D :
R1 	∗

O S1

R2 	∗
O S2

S1 ◦ S2 	 S ∈ O

Fig. 1. The inference rules for reasoning in EL+

(written O |= α), if every model of O satisfies α. A concept C is subsumed by D w.r.t.
O if O |= C � D. The ontology classification task requires to compute all entailed
subsumptions between atomic concepts occurring in O.

2.2 The Reasoning Procedure for EL+

The EL+ reasoning procedure works by applying inference rules to derive subsump-
tions between concepts. In this paper, we use a variant of the rules that does not require
normalization of the input ontology [14]. The rules for EL+ are given in Figure 1, where
the premises (if any) are given above the horizontal line, and the conclusions below.

Some inference rules have side conditions given after the colon that restrict the ex-
pressions to which the rules are applicable. The side conditions are formulated using the
given ontology O and a mapping that assigns to every concept X the set of goal sub-
sumers G(X) consisting of concepts Y (not necessarily occurring in O), subsumptions
which should be checked by the procedure. That is, if we want the procedure to check
whether the subsumption X � Y is entailed, we need to add Y to G(X). Intuitively,
the mapping G(X) restricts the concepts that should be constructed by the inference
rules R�, R+

� and R∃. For technical reasons, we need to require that each G(X) also
contains all concepts occurring in the left-hand sides of concept inclusion axioms of O
(possibly as a sub-concept). Note that the axioms in the ontology O are only used in
side conditions of the rules R�, R∃, and R◦, and never as premises of the rules.

The rules in Figure 1 are complete for deriving all entailed goal subsumptions. That
is, if O |= X � Y and Y ∈ G(X) (with X and D not necessarily occurring in O) then
X � Y can be derived using the rules in Figure 1 [14]. The rules can be also applied
in a goal-directed way, if the set of concepts X for which subsumptions X � Y should
be derived (with Y ∈ G(X)) is also known in advance.

Theorem 1 (Completeness of the rules in Figure 1 [14]). Let O be an EL+ ontology,
F a set of concepts, G(·) a mapping such that for each X ∈ F , and each C � D ∈ O,
G(X) contains all sub-concepts of C, and S a set of subsumptions such that:

(i) If X ∈ F and X � Y is obtained by a rule in Figure 1 applied to premises in S
using O and G(·) then X � Y ∈ S,

(ii) If X ∈ F and X � ∃R.Y ∈ S for some R and Y , then Y ∈ F .

Then for every X ∈ F and Y ∈ G(X), we have O |= X � Y iff X � Y ∈ S.
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A 	 A A 	 ∃R.B A 	 ∃H.B A 	 C

B 	 B B 	 ∃S.A B 	 ∃S.C B 	 C

C 	 C C 	 ∃R.A

R0

R0

R�

R�

R∃ R�

R0 R� R∃ R�

Fig. 2. The inference diagram for the proof in Example 1

Example 1. Consider the EL+ ontology O consisting of the following axioms:

A � ∃R.B, B � ∃S.A, ∃H.B � C, ∃S.C � C, C � ∃R.A, R � H.

Then the following subsumptions can be derived using the rules in Figure 1 using
G(X) = {A, B, C, ∃H.B, ∃S.C} for every concept X . We show the premises used
in the inferences in parentheses and the matching side conditions after the colon:

A � A by R0(), (1)

B � B by R0(), (2)

C � C by R0(), (3)

A � ∃R.B by R�(A � A) : A � ∃R.B ∈ O, (4)

B � ∃S.A by R�(B � B) : B � ∃S.A ∈ O, (5)

C � ∃R.A by R�(C � C) : C � ∃R.A ∈ O, (6)

A � ∃H.B by R∃(A � ∃R.B, B � B) : ∃H.B ∈ G(A), R �∗
O H , (7)

A � C by R�(A � ∃H.B) : ∃H.B � C ∈ O, (8)

B � ∃S.C by R∃(B � ∃S.A, A � C) : ∃S.C ∈ G(B), R �∗
O R, (9)

B � C by R�(B � ∃S.C) : ∃S.C � C ∈ O. (10)

The inferences (1)–(10) are shown schematically in Figure 2. Let F = {A, B, C}. It is
easy to see that no new subsumption of the form X � Y with X ∈ F and Y ∈ G(X)
can be derived from (1)–(10) using the rules in Figure 1. Furthermore, F satisfies the
condition (ii) of Theorem 1 for the set of subsumptions (1)–(10). Hence, by Theorem 1,
all subsumptions of the form X � Y with X ∈ F and Y ∈ G(X) that are entailed
by O must occur in (1)–(10). In particular, all entailed subsumptions between atomic
concepts A, B, and C that are required for classification of O are computed.

By Theorem 1, in order to classify an ontology O, it is sufficient to (i) initialize set
F with all atomic concepts of O, (ii) assign to every X ∈ F a set G(X) consisting of
all atomic concepts and concepts occurring in the left-hand side of concept inclusion
axioms of O, (iii) repeatedly apply the rules in Figure 1 that derive X � Y with
X ∈ F , and (iv) whenever a subsumption of the form X � ∃R.Y is derived, extend F
with Y . By induction, it can be shown that the resulting set S of derived subsumptions
satisfies the condition of Theorem 1 and contains only X � Y for which both X and
Y occur in O. Since the number of such subsumptions is at most quadratic in the size
of O, the classification procedure terminates in polynomial time.
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2.3 Tracing of Inferences

As discussed in the previous section, reasoning in EL+ is typically performed by com-
puting a set that is closed under (restricted) applications of rules in Figure 1, from which
all entailed subsumptions of interest (e.g., subsumptions between all atomic concepts
for classification) can be obtained using Theorem 1. It is not difficult to use the same
procedure to also keep track of how each derived subsumption was obtained. Essen-
tially, for every derived subsumptions, the procedure can store the inference information
like in (1)–(10). The inference information specifies by which rules the subsumption
was obtained, from which premises, and using which side conditions. We refer to a rule
application procedure that retains this kind of information as tracing.

Tracing of inferences can be used for extracting proofs that represent a sequence of
inferences producing the given subsumption in the end. Proofs can be reconstructed
by simply traversing the inferences backwards: first take the inferences for the given
subsumption, then for the subsumptions used in the premises of such inferences, and
so on, disregarding cycles. Proofs can be used to automatically check correctness of
entailments (proof checking), or to explain how the entailments were produced to the
user. The latter is important for ontology debugging when the axioms responsible for
erroneous conclusions need to be identified. For example, from Figure 2, one can see
that the subsumption A � C was proved in 5 inference steps involving intermediate
subsumptions A � A, A � ∃R.B, A � ∃H.B, and B � B. From the side conditions
of the inferences (4), (7), and (8) used in this derivation, one can see that only axioms
A � ∃R.B, R � H , and ∃H.B � C in O are responsible for the conclusion A � C.

2.4 Goal-Directed Tracing of Inferences

Keeping information about all inferences in addition to storing the derived subsump-
tions can be impractical. First, the number of inferences can be significantly larger than
the number of the derived conclusions (some conclusions may be derived multiple times
by different rules). Second, storing each inference requires more memory than storing
just the conclusion of the inference. Finally, inferences may not be required very of-
ten. For example, when debugging an ontology, one is usually interested in proofs for
only few (unexpected) subsumptions. In applications using large ontologies, such as
SNOMED CT, which involve hundreds of thousands of concepts, avoiding storing un-
necessary information can make a significant difference in practice.

In this paper, we propose a method for finding the inferences used in the proofs
of given subsumptions without performing full tracing, i.e., storing all inferences dur-
ing rule application. The main idea is (i) to over-estimate a subset of subsumptions in
the closure from which the given subsumption can be derived (in one inference step),
(ii) re-apply the inferences for these subsumptions to find from which premises the
subsumption is actually derived, and (iii) repeat the process for these premises.

To illustrate the method, suppose that we have computed the closure (1)–(10) under
the rules in Figure 1 (without recording the inference information), and our goal is to
identify how subsumption B � C was derived. By inspecting the conclusions of rules
in Figure 1, we can see that every subsumption of the form X � Y can be either derived
by rules R0 or R�, or by other rules using at least one premise of the form X � Z ,
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A 	 A A 	 ∃R.B A 	 ∃H.B A 	 C

B 	 B B 	 ∃S.A B 	 ∃S.C B 	 C

R0 R� R∃ R�

R0 R� R∃ R�

Fig. 3. The inferences applied for tracing subsumptions of the form B 	 Y (solid lines) and of
the form A 	 Y (dashed lines) in (1)–(10)

i.e., with the same concept X on the left-hand side. Thus, B � C must have been
derived either by R0 or R�, or from (2), (5), (9), or (10) using other rules (possibly
using other premises from (1)–(10)). It is easy to re-apply all such inferences, this time,
with tracing. This way, we reconstruct all inferences producing subsumptions of the
form B � Y in (1)–(10), and, in particular of B � C—see the solid lines in Figure 3.

After we have recorded all inferences producing conclusions of the form B � Y in
(1)–(10), we traverse the computed inferences backwards to see which other premises
were involved in the proof for B � C. This way, we arrive at premise A � C, for
which no inference was recorded so far. This premise has A on the left-hand side, and
similarly as above, we can now compute all inferences deriving subsumptions of the
form A � Y in (1)–(10): see the dashed lines in Figure 3. After we have done this, all
inferences used in the proof for B � C are found.

Our tracing procedure does not guarantee to save only inferences that are used in
the proof of the given subsumption. For example, to find the proof for the subsumption
B � ∃S.A, we would have similarly saved all inferences for B (solid lines in Figure 3)
because at that time, we do not know which of these inferences are used in the proof for
B � ∃S.A. Note that producing inferences for A would not be necessary in this case
since A � C is not reachable from B � ∃S.A when traversing inferences backwards.
Similarly, tracing of inferences for B is not necessary when finding proofs for A �
∃R.B, and tracing inferences for neither A nor B is necessary when finding proofs for
C � ∃R.A. In our experiments, we will demonstrate that only few inferences need to be
re-applied when producing proofs of the entailed subsumptions in existing ontologies.

3 Tracing of Inferences

In this section, we provide a formal description of the goal-directed procedure outlined
in the previous section and prove its correctness. The procedure is formulated in a gen-
eral way and can be used with arbitrary rule systems. In the end of the section we discuss
which properties of the inference system are important for efficiency of the method.

3.1 Inferences, Rules, and Closure under the Rules

We start by formalizing the basic notions of inferences and inference rules. Let E be a
fixed countable set of expressions. An inference over E is an object inf which has a finite
set of premises inf.Prem ⊆ E and a conclusion inf.concl ∈ E.1 When inf.Prem = ∅, we
say that inf is an initialization inference. An inference rule R over E is a countable set

1 We assume that there can be different inferences with the same premises and conclusions.
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Algorithm 1. Computing the inference closure by saturation
saturation(R):
input : R: a set of inferences
output : S = Clos(R)

1 S, Q ← ∅;
2 for inf ∈ R with inf.Prem = ∅ do /* initialize */
3 Q.add(inf.concl);

4 while Q �= ∅ do /* close */
5 exp ← Q.takeNext();
6 if exp /∈ S then
7 S.add(exp);
8 for inf ∈ R with exp ∈ inf.Prem ⊆ S do
9 Q.add(inf.concl);

10 return S;

of inferences over E; it is an initialization rule if all these inferences are initialization
inferences. In this paper, we view an inference system consisting of several rules as one
inference rule R containing all the inferences.

Intuitively, an inference corresponds to an application of a rule to particular premises.
For example, the application of R∃ producing (7) in Example 1 corresponds to an in-
ference inf with inf.Prem = {A � ∃R.B,B � B} and inf.concl = (A � ∃H.B). Rule
R∃ in Figure 1 consists of all such inferences in which the premises and conclusions
satisfy the side conditions (for the given G(·) and O). Similarly, R0 is an initialization
rule consisting of inf with inf.Prem = ∅ and inf.concl = (C � C) for all C.

We say that a set of expressions Exp ⊆ E is closed under an inference inf if
inf.Prem ⊆ Exp implies inf.concl ∈ Exp. Exp is closed under an inference rule R if
Exp is closed under every inference inf ∈ R. The closure under R is the smallest set of
expressions Clos(R ) that is closed under R. Note that Clos(R ) is empty if and only if
R does not contain any initialization inferences.

Using the introduced notation, we can now describe the well-known forward chain-
ing procedure for computing the closure under the inference rules R. The procedure is
formalized in Algorithm 1. Intuitively, the algorithm computes the (expanding) set of
expression S, called the saturation, by repeatedly matching premises of the rules to S
and adding their conclusions back to S until a fixpoint is reached (in contrast, back-
ward chaining procedures match the conclusions of rules to the given goals to find the
premises). A special care is taken to avoid repeated applications of rules to the same
premises. For this purpose, the algorithm uses a queue Q to buffer the conclusions of
the inferences. The queue Q is first initialized with conclusions of the initialization in-
ferences (lines 2–3), and then in a cycle (lines 4–9), repeatedly takes the next expression
exp ∈ Q, and if it does not occur in the saturation S already, inserts it into S and applies
all inferences having this expression as one of the premises and other premises from
S (line 8). The conclusions of such inferences are then inserted back into Q. Note that
every inference inf ∈ R with inf.Prem ⊆ S is applied by the algorithm exactly once,
namely, when the last premise of this inference is added to S.
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Algorithm 2. Full tracing of inferences
fullTracing(R):
input : R: a set of inferences
output : M: a multimap from expressions to inferences such that M.Keys = Clos(R ) and

M(exp) = {inf ∈ R | inf.Prem ⊆ Clos(R) & inf.concl = exp} (exp ∈ M.Keys)

1 M, Q ← ∅;
2 for inf ∈ R with inf.Prem = ∅ do /* initialize */
3 Q.add(inf );

4 while Q �= ∅ do /* close */
5 inf ← Q.takeNext();
6 exp ← inf.concl;
7 if exp /∈ M.Keys then
8 M.add(exp �→ inf);
9 for inf ∈ R with exp ∈ inf.Prem ⊆ M.Keys do

10 Q.add(inf );

11 else
12 M.add(exp �→ inf);

13 return M;

3.2 Proofs, Inference Oracle, and Full Tracing

Given the closure S = Clos(R ) under the rules R, i.e, the output of Algorithm 1, we
are interested in finding proofs for a given expression exp ∈ S consisting of inferences
by which exp was derived in S. Formally, a proof (in R) is a sequence of inferences
p = inf1, . . . , infn (infi ∈ R, 1 ≤ i ≤ n) such that infj .Prem ⊆ {infi.concl | 1 ≤ i < j}
for each j with 1 ≤ j ≤ n. If exp = infn.concl then we say p is a proof for exp. A proof
p = inf1, . . . , infn for exp is minimal if no strict sub-sequence of inf1, . . . , infn is a proof
for exp. Note that in this case infi.concl �= infj .concl when i �= j (1 ≤ i, j ≤ n). For
example, the sequence of inferences (1)–(10) in Example 1 is a proof for A � C, but
not a minimal proof since there exists a sub-sequence (1), (2), (4), (5), (7)–(10), which
is also a proof for A � C (in fact, a minimal proof for A � C, see Figure 2).

To find minimal proofs, one can use an inference oracle, that given exp ∈ S returns
inferences inf ∈ R such that inf.Prem ⊆ S and inf.concl = exp. Using such an oracle,
the proofs can be easily found, e.g., by recursively calling the oracle for the premises of
the returned inferences, avoiding repeated requests to ensure minimality of the proofs
and termination. If one is interested in retrieving just one proof, it is sufficient to use an
inference oracle that returns one inference per expression; if all proofs are required, the
oracle should return all inferences producing the given expression from S.

The inference oracle can be implemented by simply precomputing all inferences
using a modification of Algorithm 1. This modification is shown in Algorithm 2. We
refer to this algorithm as full tracing. Instead of collecting the expressions derived by
the inferences in S, we collect the inferences themselves and store them in a multimap
M: for each applied inference inf, we add a record exp 	→ inf to M where exp is the
conclusion of inf (M is a multimap because several inferences can be stored for the same
conclusion). Thus, the keys M.Keys of M is the set of all conclusions of inferences in S.



204 Y. Kazakov and P. Klinov

Algorithm 3. Partial tracing of inferences
partialTracing(R,S,Exp):
input : R: a set of inferences, S ⊆ E: a subset of expressions,

Exp ⊆ S ∩ Clos({inf ∈ R | inf.Prem ⊆ S}): the expressions to trace
output : M: a multimap from expressions to inferences such that M.Keys = Exp and

M(exp) = {inf ∈ R | inf.Prem ⊆ S & inf.concl = exp} (exp ∈ M.Keys)

1 M, Q ← ∅;
2 for inf ∈ R with inf.Prem ⊆ S \ Exp & inf.concl ∈ Exp do /* initialize */
3 Q.add(inf );

4 while Q �= ∅ do /* close */
5 inf ← Q.takeNext();
6 exp ← inf.concl;
7 if exp /∈ M.Keys then
8 M.add(exp �→ inf);
9 for inf ∈ R with exp ∈ inf.Prem ⊆ M.Keys ∪ (S \ Exp) & inf.concl ∈ Exp do

10 Q.add(inf );

11 else
12 M.add(exp �→ inf);

13 return M;

The newly applied inferences are first buffered in the queue Q. When processed, if the
conclusion of the inference is new (line 7), we add this inference to M for the conclusion
(line 8) and produce all inferences between this conclusion and the previously derived
conclusions (lines 9-10). Otherwise, we just store the new inference and do nothing
else (line 12). Note that it is easy to modify this algorithm so that only one inference
is stored per conclusion. For this, one can just remove line 12 and make M an ordinary
map. Similarly to Algorithm 1, Algorithm 2 generates every inference at most once.

Once the multimap is computed, the inference oracle can be easily implemented by
performing a lookup in the multimap M for the given expression exp.

3.3 Partial Tracing of Inferences and Inference Oracle Based on Partitions

The construction in Algorithm 2 can be further extended to perform partial tracing,
that is, to compute not all inferences inf ∈ R with inf.Prem ⊆ S for S = Clos(R),
but only those that produce conclusion in a given set of expressions Exp. This idea is
realized in Algorithm 3. This algorithm constructs a multimap M that is a restriction
of the multimap constructed by Algorithm 2 to the keys from Exp. The only difference
in this algorithm are lines 2 and 9 where the inferences are applied. First, the algorithm
considers only inferences with conclusions in Exp (inf.concl ∈ Exp). Second, since the
algorithm never derives expressions from S\Exp, all premises in S\Exp are considered
in each application of the rule. In other words, if to ignore the premises from S \ Exp
in rule applications, the algorithm would look exactly like Algorithm 2. Note that Al-
gorithm 2 is just an instance of Algorithm 3 when Exp = S = Clos(R), in which case
S \ Exp = ∅ and the restriction inf.concl ∈ Exp can be dropped. In the input of Al-
gorithm 3, we require that Exp is a subset of the closure under the inferences inf with
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inf.Prem ⊆ S. This means that every exp ∈ Exp is derivable by applying inf ∈ R to only
premises in S. This condition holds trivially if Exp ⊆ S = Clos(R).

Theorem 2 (Correctness of Algorithm 3). Let R′ = {inf ∈ R | inf.Prem ⊆ S} for
some set of inferences R and a set of expressions S. Let Exp ⊆ S ∩ Clos(R′), and
M the output of Algorithm 3 on R, S, and Exp. Then M.Keys = Exp and M(exp) =
{inf ∈ R′ | inf.concl = exp} for each exp ∈ M.Keys.

Proof. First, observe that M.Keys ⊆ Exp since only inferences inf ∈ R with inf.concl ∈
Exp are added to Q. Next we show that M.Keys = Exp. Let Clos′ = M.Keys ∪
(Clos(R′) \ Exp). Note that Clos′ ⊆ Clos(R′) since M.Keys ⊆ Exp ⊆ Clos(R′). We
claim that Clos′ is closed under R′, which implies that Clos′ = Clos(R′) since Clos(R′)
is the minimal set closed under R′. This proves M.Keys = Exp.

To prove that Clos′ is closed under R′, take an arbitrary inference inf ∈ R′ such that
inf.Prem ⊆ Clos′. We show that inf.concl ∈ Clos′. There are two cases possible:

1. inf.concl /∈ Exp: Since Clos(R′) is closed under R′, in particular, inf.concl ∈
Clos(R′) \ Exp, so inf.concl ∈ Clos′.

2. inf.concl ∈ Exp: Since inf.Prem ⊆ Clos′ ∩S, then inf.Prem ⊆ M.Keys∪ (S \Exp).
Hence inf will be applied either in line 2 if inf.Prem ⊆ (S\Exp), or in line 9 for the
last premise exp ∈ inf.Prem∩M.Keys added to M.Keys. In both cases, inf is added
to Q, which means that inf.concl ∈ M.Keys ⊆ Clos′.

It remains to prove that M(exp) = {inf ∈ R′ | inf.concl = exp} for exp ∈ M.Keys:
(⊇): Take any exp ∈ Exp and any inf ∈ R′ with inf.concl = exp. From Case 2 above,

it follows that inf ∈ M(exp).
(⊆): Take any exp ∈ M.Keys and any inf ∈ M(exp). Then from lines 6, 8, and 12

of Algorithm 3 we have inf.concl = exp and from lines 2 and 9 we have inf.Prem ⊆
M.Keys ∪ (S \ Exp). Since M.Keys ⊆ Exp ⊆ S, we obtain that inf ∈ R′.

Performance of Algorithm 3 depends on whether it can efficiently enumerate the infer-
ences in lines 2 and 9. Enumerating inferences in line 9 can be simply done by applying
all inferences with the given premise exp and other premises from S similarly to Algo-
rithm 2, and disregarding all inferences that do not satisfy the additional conditions (it
is reasonable to assume that the number of inference applicable to a given expression
exp is already small to start with). Efficient enumeration of inferences in line 2, how-
ever, is more problematic and may depend on the particular inference system R and set
Exp. As shown in Section 2.4, if we take R to be the EL+ rules in Figure 1, and Exp
the set of subsumptions of the form X � Y for a fixed concept X , then the inferences
inf ∈ R with inf.Prem ⊆ S \ Exp and inf.concl ∈ Exp can be only inferences by R0

and R� producing X � X and X � � respectively—the other rules cannot derive a
subsumption of the form X � Z ∈ Exp without a premise of the form X � Y ∈ Exp.

If all expressions E can be partitioned on subsets Exp for which the set of inferences
{inf ∈ R | inf.Prem ⊆ S \ Exp & inf.concl ∈ Exp} can be efficiently enumerated, then
one can implement an inference oracle by (i) identifying the partition Exp to which the
given expression exp belongs, (ii) computing the inferences for all expressions in Exp
using Algorithm 3, and (iii) returning the inferences for exp ∈ Exp. This approach is
more goal-directed compared to the oracle using full tracing, as it only computes and
stores the inferences producing conclusions in one partition.
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4 Goal-Directed Tracing of Inferences in EL+

Next we show how to use the approach from Section 3 to implement the tracing proce-
dure for EL+ described in Section 2.4. We assume that the closure S under the rules R
in Figure 1 is computed (for the given parameters O, F , and G(·)) and we are given a
subsumption X � Y ∈ S for which all inferences used in the proofs should be found.

To partition the closure S, we use the partitioning method used for incremental rea-
soning in EL+ [11]. Specifically, for a concept X let S[X ] be the subset of S consisting
of all subsumption X � Y ∈ S for all Y . Clearly, S is partitioned on disjoint subsets
S[X ] for different X . By inspecting the rules in Figure 1, it is easy to see that if the
conclusion of the rule belongs to S[X ] then either it has a premise that belongs to S[X ]
as well, or it does not have any premises. Thus, for each Exp = S[X ] and each inference
inf such that inf.Prem ∈ S \ Exp and inf.concl ∈ Exp, we have inf.Prem = ∅. Hence,
if Algorithm 3 is applied with Exp = S[X ], only initialization inferences need to be
applied in line 2, which can be done very efficiently.

The inference oracle based on Algorithm 3 can be used to compute the proofs for the
derived subsumptions exp = (X � Y ) ∈ Clos in a goal directed way. For this, we first
need to apply Algorithm 3 for the partition Exp = S[X ], then, retrieve all inferences inf
with conclusion exp from the set of computed inferences, and finally, repeat the process
for each premise of the retrieved inferences. This process can be adapted accordingly if
only one proof should be generated or proofs are to be explored interactively by the user.
Since most inferences by the rules in Figure 1 are applied within individual partitions,
this should not result in many calls of Algorithm 3, and since partitions are typically
quite small, not many inferences should be saved. We will present empirical evidences
confirming these claims in Section 6.

Example 2. Consider the set S consisting of subsumptions (1)–(10) derived in Exam-
ple 1. These subsumptions are assigned to partitions A, B, and C. To compute the
inferences with conclusion B � C, it is sufficient to apply Algorithm 3 for Exp = S[B]
using the precomputed closure S. It is easy to see that only inferences for (2), (5), (9),
and (10) will be produced by this algorithm (see the solid lines in Figure 3). During ini-
tialization (line 2), Algorithm 3 applies only rule R0 deriving B � B. During closure
(line 4), the algorithm applies only inferences to the derived subsumptions in partition
S[B], and keeps only inferences that produce subsumptions in the same partition. For
example, the inference by R∃ producing (7) should be ignored, even though it uses a
premise B � B from partition S[B].

Note that knowing S is essential for computing these inferences. E.g., to produce
B � ∃S.C we need to use the premise A � C from S, which we do not derive during
tracing. Thus, the precomputed set S is used in our procedure as a ‘set of support’2 to
reach the conclusions of interest as fast as possible.

Now, if we want to traverse the inferences backwards to obtain full proofs forB � C,
we need to iterate over the premises that were used to derive B � C and trace their par-
titions using Algorithm 3. In our case, B � C was derived from B � ∃S.C, for which
the partition S[B] was already traced, but continuing further to premise A � C will

2 Analogously to the ‘set of support’ strategy of resolution, we use premises from S only if at
least one other premise comes from the traced partition.
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bring us to partition S[A]. When tracing partition S[A] using Algorithm 3, we produce
the remaining inferences for (1), (4), (7), and (8) used in the proof (see Figure 3). Note
that it is not necessary to trace partition S[A] to find the proof for, e.g., B � ∃S.A
because no subsumption in partition S[A] was used to derive B � ∃S.A.

5 Related Work

In the context of ontologies, most research relevant to the issue of explanations has re-
volved around justifications3—the minimal subsets of the ontology which entail the re-
sult [3,5,8,9,16]. The fact that justifications are minimal subsets is useful to the user but
also makes them intractable to compute [16]. Much research has gone into developing
optimizations to cope with this complexity in practical cases. The known approaches
usually fall into one of the two categories: black-box and glass-box. The former use the
underlying reasoning procedure as a black-box and employ generic model-based diag-
nosis algorithms [17] to find justifications [5,9,8]. Thus, they can work for any (mono-
tonic) logic for which a black-box implementation of a decision procedure is available.
On the other hand, such methods cannot use the properties of the reasoning procedure
for optimizations and recover the steps used to prove the entailment. Thus, it is still up
to the user to understand how to obtain the result from the justifications.

Glass-box methods do use the properties of the underlying reasoning procedure,
in particular, for recording how inferences are made. They have been designed for
tableau [7], automata [3], and consequence-based procedures [4,18]. The latter meth-
ods are similar to what we call full tracing. For example, Sebastiani et. al. [18] encodes
every inference performed during EL classification in propositional Horn logic. E.g.,
inference (8) in Example 1 would correspond to s[A�∃H.B] ∧ ax[∃H.B�C] → s[A�C].
Once the entire formula φO capturing all inferences is built, justifications, e.g., for
A � C, can be found by pinpointing conflicts in φO ∧ ¬s[A�C] using the correspond-
ing functionality of SAT solvers.

Any algorithm for computing justifications can be optimized using ontology mod-
ularity techniques to obtain a goal-directed behaviour (see, e.g., [5]). The so-called
locality-based modules [6] are well-defined fragments of the ontology which guaran-
tee to contain all justifications for a given entailment. Modules can be often computed
efficiently and can limit the search for justifications to a smaller subset of the ontology.

We conclude this section by briefly discussing the relationship between our tracing
technique and justifications. From any (minimal) proof obtained by unfolding the infer-
ences computed by Algorithm 3 one can extract the axioms used in the side conditions
of inferences (R�, R∃, and R◦ in the EL case), which represent a subset of the ontol-
ogy that entails the proved subsumption. This subset, however, might be not a minimal
subset for this entailment, but all minimal subsets—that is, justifications—can be easily
computed from all such sets. Note that this can be done “offline”, i.e., the reasoner is not
needed after tracing the inferences. Instead of computing the justification by enumerat-
ing proofs, one can also simply take the set of all axioms used in the proofs and extract all
justifications from this set using any conventional method [4,9,5,8,18]. Our evaluation

3 Not to be confused with justifications in the context of Truth Maintenance Systems.
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Table 2. Number of axioms, partitions, conclusions and inferences in test ontologies, running
time (in ms.) and memory consumption (in MB) for classification with and without full tracing

Ontology Num. of Num. of Num. of conclusions Num. of No tracing Full tracing
axioms partitions (max per partition) inferences time mem. time mem.

GO 87,492 46,846 2,450,505 (395) 5,715,611 1,877 546 5,004 1,102
GALEN 36,547 25,965 1,922,549 (1,350) 3,944,921 1,326 722 3,786 765
SNOMED 297,327 371,642 19,963,726 (484) 54,553,961 16,968 924 OOM OOM

shows that these subsets are much smaller than the locality-based modules usually used
for this purpose, and computation of justifications from them is much faster.

6 Experimental Evaluation

We implemented algorithms 2 and 3 as well as their recursive extension to obtain
full proofs within the EL+ reasoner ELK4 (which implements Algorithm 1 as its base
procedure). We used three large OWL EL ontologies commonly used in evaluations
of EL reasoners [2,13,15]: a version of the Gene Ontology (GO),5 an EL+-restricted
version of the GALEN ontology,6 and the July 2013 release of SNOMED CT.7 We used
a PC with Intel Core i5-2520M 2.50GHz CPU, with Java 1.6 and 4GB RAM available
to JVM. The following experiments have been performed:

Full Tracing Overhead: Our first experiment evaluates the overhead of full tracing
(Algorithm 2) comparing to pure saturation (Algorithm 1). Each ontology was classified
10 times with and without full tracing and the results were averaged (excluding 5 warm-
up runs). The results in Table 2 show that there is roughly x2–x4 time overhead. The
memory overhead is also significant which causes the algorithm to run out of memory
(OOM) when classifying SNOMED CT with full tracing.8 In addition, the results show
that the maximal number of conclusions per partition is negligible in comparison with
the total number of conclusions. Thus the fact that Algorithm 3 saves some inferences
not used in proofs of the target expression should not result in a substantial overhead.

Goal-Directed Tracing: Next we evaluate performance of the recursive proof tracing
procedure based on goal-directed tracing with partitions (i.e., on Algorithm 3). The
experimental setup is as follows: each ontology was classified and then each direct
subsumption between concept names was traced with recursive unfolding. Each sub-
sumption was traced independently of others. We separately report results for tracing

4 Version 0.5.0, projected release date Oct 2014, see http://elk.semanticweb.org.
5 It is a richer version with concept equivalences, role hierarchies and chains. We thank Chris

Mungall from the Lawrence Berkley Lab for providing it. It is accessible at:
http://elk.semanticweb.org/ontologies/go_ext.owl.

6 http://www.co-ode.org/galen/
7 http://www.ihtsdo.org/snomed-ct/
8 With the smaller ontologies the difference is less observable because of the relatively high

(4GB) memory limit set to JVM; the difference is better observable with lower memory limits.

http://elk.semanticweb.org
http://elk.semanticweb.org/ontologies/go_ext.owl
http://www.co-ode.org/galen/
http://www.ihtsdo.org/snomed-ct/
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Table 3. Results for recursive goal-directed tracing partitions on all atomic subsumptions in the
ontology when all (resp. the first) inferences for each conclusion are recursively unfolded. All
numbers, e.g., the number of traced partitions, are averaged over all traced subsumptions.

Ontology Total # of traced # of traced # of traced # of inferences # of used Time
subsumptions partitions inferences used in proofs 	 axioms (in ms.)

GO 73,270 3.7 (1.4) 456.2 (244.1) 94.9 (6.4) 18.6 (2.5) 2.0 (1.2)
GALEN 38,527 1.9 (1.5) 414.4 (350.9) 21.7 (10.1) 5.2 (4.4) 1.9 (0.8)
SNOMED 443,402 8.6 (1.6) 788.3 (332.9) 385.9 (12.7) 9.7 (3.7) 10.1 (1.9)

all of the inferences for each conclusion or just of the first inference. The former is
useful for generating all proofs whereas the latter can be used to produce one proof.

The results are presented in Table 3. First, they demonstrate that the proposed method
is very fast as it takes just a few milliseconds to find all inferences used in all proofs
of a given subsumption. This is the effect of its goal-directed nature: it only traces
inferences which belong to the same partitions as inferences actually used in the proofs,
and the partitions are relatively small. From Table 2 one can calculate that the biggest
partitions do not exceed 0.07% of the total number of derived subsumptions while on
average there are only 122, 152, and 146 inferences per partition in GO, GALEN, and
SNOMED CT respectively. The performance results thus follow from the low number
of traced partitions and traced inferences. Second, the algorithm traces more inferences
when all proofs are needed but the difference is not substantial and the running times are
usually close. This is because alternative proofs overlap and the algorithm rarely needs
to trace new partitions when considering more than one inference per conclusion. Third,
the difference between the number of traced and used inferences shows granularity of
partitioning in EL+ (inferences not used in proofs are traced only if they happen to
be in one partition with used inferences). Finally, since the results are averaged over
all subsumptions, the reader may wonder if the good performance is because most of
them can be proved trivially. We present a more detailed evaluation in the technical
report [12], where we separately aggregate results over subsumptions that are provable
from at least 10 axioms and show that performance stays on the same level.

Tracing and Justifications: In our final experiment, we investigate if it makes sense
to use our tracing method to improve the computation of justifications. As discussed in
Section 5, the set of axioms used in the side conditions of the inferences in each proof
must be a superset of some justification. So it is worth to compare the number of such
axioms with the sizes of justifications. Finding all justifications is intractable so we con-
sider only the first proof and the first justification. In addition, we compare the number
of axioms used in all proofs of a subsumption with the size of the (�⊥)∗-module ex-
tracted for this subsumption, and the times needed to extract the first justification from
these sets—as discussed, both sets must contain all justifications. We use the OWL API
which provides generic methods for extracting modules and finding justifications.

The results are given in Table 4. While we were able to generate the first justifications
for all subsumptions in GO, it was not feasible for GALEN and SNOMED CT (with
a 10 hours time-out). The problem with GALEN is that modules are large and even
the first justification often takes minutes to pinpoint in the corresponding module (but
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Table 4. Computing the set of subsumption axioms used in all proofs Sall or the first proof S1 vs.
extracting the module M for the signature of the entailment or computing the first justification
J1. Size of M and J1 is measured as the number of subsumption axioms (concept equivalence
axioms in the ontologies are rewritten as two subsumptions). Running times are in milliseconds.

Ontology Num. of traced Sall size S1 Sall S1 J S
1 M M J1 J1

subsumptions (max size) size time time time size time size time

GO 73,270 18.6 (288) 2.5 2.0 1.2 25.1 124.8 164 2.2 85
GALEN 38,527 5.2 (86) 4.4 1.9 0.8 128.1 10,899 195 4.35 N/A
SNOMED CT 10,000 (sample) 9.7 (133) 3.7 10.1 1.9 19.0 38.8 887 1.9 48

not in the results of tracing, as explained below). Thus we focus only on the size of
modules and their extraction time. In contrast, modules of SNOMED CT are small but
take nearly a second to extract (since the ontology is large). So instead of extracting
them for all subsumptions, we took a random uniform sample of 10, 000 subsumptions.

For GO and SNOMED CT it can be seen that on average the number of axioms
used in the first proof (S1) is not much larger than the size of the first justification
(J1) while the number of axioms used in all proofs (Sall) is 3–7 times smaller than the
module (M). The latter difference is several orders of magnitude for GALEN, which
induces very large modules due to cyclic axioms. The time required to extract the first
justification from Sall (J S

1 time) is also 2.5–3.5 times smaller then the time to extract
the first justification from M (J1 time) for the cases where it was possible.

7 Summary

In this paper we have presented a simple, efficient, and generalizable method for goal-
directed tracing of inferences in EL+. Depending on the application, the inferences can
be used offline to produce proofs or compute justifications. The method is goal-directed
in the sense that it re-applies only a limited number of inferences using the previously
computed conclusions as a set of support. It does not require storing additional indexing
information or any sort of bookkeeping during the normal classification.

The method is based on the same granularity property of reasoning in EL+ as was
previously used for concurrent and incremental reasoning [13,11]. Specifically, concept
subsumers in EL+ most of the time can be computed independently of each other.
This enables efficient partitioning of all derived expressions so that tracing a particular
expression requires re-applying inferences only in few partitions, as shown empirically.

It is worth pointing out that our goal-directed procedure does not guarantee to be an
improvement over full tracing in worst case: it is easy to construct pathological exam-
ples which trigger full tracing. This happens, e.g., for O = {Ai � Ai+1 | 1 ≤ i < n}∪
{An � A1}, for which every inference is used in the proof of every entailed subsump-
tion (since all concepts are equivalent), or for O = {A � Bi | 1 ≤ i ≤ n}, for which
there is only one partition. Arguably, such examples are not to be often expected in prac-
tice as the number of entailed subsumers of each concept is usually relatively small.
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Abstract. The Semantic Web is intended as a web of machine readable data
where every data source can be the data provider for different kinds of applica-
tions. However, due to a lack of support it is still cumbersome to work with RDF
data in modern, object-oriented programming languages, in particular if the data
source is only available through a SPARQL endpoint without further documen-
tation or published schema information. In this setting, it is desirable to have an
integrated tool-chain that helps to understand the data source during development
and supports the developer in the creation of persistent data objects. To tackle
these issues, we introduce LITEQ, a paradigm for integrating RDF data sources
into programming languages and strongly typing the data. Additionally, we re-
port on two use cases and show that compared to existing approaches LITEQ
performs competitively according to the Halstead metric.

1 Introduction

RDF has primarily been developed for consumption by applications rather than direct
use by humans. However, its design choices, which facilitate the design and publication
of data on the Web, complicate the integration of RDF data into applications as its
principles do not tie in smoothly with modern concepts in programming languages.

A paradigm that aims to support a developer in integrating RDF data into his applica-
tion must overcome several challenges. First, accessing an external data source requires
knowledge about the structure of the data source and its vocabulary.

Therefore, an approach that provides integration of RDF data sources should include
a mechanism for exploring and understanding the RDF data source at development time.
Second, it is desirable that an exploration and integration mechanism is well-integrated,
easily learnable and useable. The integration should be either on programming language
level or at least in the used IDE (Integrated Development Environment), as this allows
for seamless exploration and integration during application development. Third, there
is an impedance mismatch between the way classes or types are used in programming
languages compared to how classes are used in RDF data, cf. [8,14,6,3]. For this reason,
an approach for integrating RDF data into a programming language must define a clear
mapping between these two mismatching paradigms.

To address these challenges, we present LITEQ, a paradigm for querying RDF data,
mapping it for use in a host language, and strongly typing1 it for taking the full benefits

1 By “strongly typed“, we refer to languages where it is not possible to have unchecked runtime
type errors, e.g., through validating the program by static type checking before execution.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 212–227, 2014.
c© Springer International Publishing Switzerland 2014
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of advanced compiler technology. The core of LITEQ is the Node Path Query Lan-
guage (NPQL), a variable-free schema and data query language, which comprises the
following features:

1. various operators for the navigation and exploration of RDF graphs (Section 4.1),
2. an intensional semantics, which defines the retrieval of RDF schema information

and enables our implementation of LITEQ to provide persistent code types of RDF
entities (Section 4.3),

3. an extensional semantics, which defines the retrieval of RDF resources and enables
our implementation of LITEQ to construct persistent objects from the retrieved data
(Section 4.3), and

4. an autocompletion semantics, which assigns a formal result set to partially written,
i.e. incomplete, queries; this allows an incremental query writing process (Sec-
tion 4.2).

The fully functional prototype of LITEQ (called LITEQF#) is written in F#, a mem-
ber of Microsoft’s .NET family. Up until now, there has been only limited support for
RDF in the .NET framework. Our approach LITEQF# is currently being prepared to be
added to the FSharp.Data project, a library containing access mechanisms for many dif-
ferent structured data formats. In this in-use paper, we report also on two use cases that
show the applicability of LITEQ for practical problems. The prototype is documented
at our website2 and can be downloaded from github3.

The remainder of the paper is organized as follows. In Section 2, we start with a brief
introduction of RDF and F# followed by a general process overview of how a data model
based on the Semantic Web is implemented in Section 3. We then describe LITEQs fea-
tures in Section 4 and its implementation in Section 5 before we show the feasibility of
our approach based on two different use cases in Section 6. This is followed by a discus-
sion of related work in Section 7 and a short summary in Section 8.

2 Foundations

The Resource Description Framework4 is a data model for representing data on the Web.
An RDF a data source consist of a graph, which is a set of RDF statements (triples).

Definition 1 (RDF Graph). Let B (blank nodes), L (literals), and U (URIs) be disjoint
sets. An RDF graph G is a set of RDF triples: G = {(s p o)|(s p o) ∈ (B ∪ U)× U ×
(B ∪ L ∪ U) }. In each RDF triple, s is referred to as subject, p as predicate and o as
object.

In the further course of this paper, we assume that such a graph is enriched with com-
plete RDF schema information such that each predicate between a subject and an object

2 LITEQ Project at WeST
http://west.uni-koblenz.de/Research/systems/liteq, last visit 12th Mai,
2014.

3 LITEQ on Github https://github.com/Institute-Web-Science-and-
Technologies/Liteq, last visit 12th Mai, 2014.

4 RDF Primer: http://www.w3.org/TR/rdf-primer last visit January 13th, 2014.

http://west.uni-koblenz.de/Research/systems/liteq
https://github.com/Institute-Web-Science-and-Technologies/Liteq
https://github.com/Institute-Web-Science-and-Technologies/Liteq
http://www.w3.org/TR/rdf-primer
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is appropriately typed with a domain class that the subject belongs to and a co-domain
class that the object belongs to. In addition, we assume for each property only one sin-
gle domain class and one single co-domain class exists. If such strict assumptions are
not met by the RDF data sources, LITEQ provides configuration possibilities that can
make up for not meeting this assumption and which will be explained in Section 4.

The F# language is a statically typed, object-oriented and functional-first program-
ming language based on Microsoft’s .NET framework. It has been fully open sourced by
the F# Software Foundation and features a cross-platform compiler that allows F# to run
on Windows, Linux and OS X. Libraries written in F# can be used in all .NET languages.

3 Process Overview for Implementing a Use Case

Generally, the process of developing an application using an RDF data source can be
described by five different tasks that must be addressed during development. First, the
developer must design an initial data model based on the requirements of his applica-
tion (Task 1). He explores the schema of his data set and identifies the RDF classes
and properties that are of interest to him (Task 2). To this end, he either has external
documentation that he refers to, or has to explore the schema using a series of SPARQL
queries. In this step, he will also align his previously created data model to the data
source. He can then leave the design phase and enter the coding phase, where he im-
plements a data model prototype in the programming language (Task 3) and designs
the queries he needs to access the data (Task 4). Lastly, he has to combine the results
of Task 3 and 4. He needs to map the results of his previously written queries onto the
code types representing his data model (Task 5). Figure 1 summarizes the process.

Fig. 1. Process Overview for creating a data model based on a RDF data set

4 Using LITEQF# in Practice

The current implementation of LITEQ in F# is IDE-independent and can be used in
many F#-IDE like Microsoft’s Visual Studio5, Xamarin Studio6, or Monodevelop7.

5 http://www.visualstudio.com/ last visit April 29th, 2014.
6 https://xamarin.com/studio last visit April 29th, 2014.
7 http://monodevelop.com/ last visit April 29th, 2014.

http://www.visualstudio.com/
https://xamarin.com/studio
http://monodevelop.com/
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Fig. 2. Setting up LITEQ

As with any other library, LITEQ must be referenced and imported before it can be
used. This is shown in Figure 2. The developer imports the LITEQ API, cf. line 1, and
sets up a data access object using a specific configuration. Listing 1 shows an example
of such a configuration file.

s e r v e r U r i = h t t p : / / . . . / o p en rd f−sesame / r e p o s i t o r i e s / Jamendo
i sRead On ly= f a l s e
p r e f i x f i l e = p r e f i x e s . i n i

Listing 1. A LITEQ configuration File

The first line of this configuration file defines a SPARQL endpoint that is acting as a
data source. The key isReadOnly defines whether the endpoint also accepts SPARQL
update queries or not8. In the example configuration, it is set to false, meaning that the
store can be updated. The prefixfile property points to a file in which RDF vocabulary
prefixes are defined. This is optional, as the namespaces and prefixes may not be known
beforehand, but improves the readability of expressions as the shortened versions can
be used instead of the full URI. As many real world data sources separate the schema
from the data and provide the schema only as a separate file, the optional property
schemaFile has been introduced. This property can be used to include such an external
schema file. If the property is not given, the schema is assumed to be queryable via the
given SPARQL endpoint.

The data access object returned by the initialization can then be used to perform
the different operations provided by LITEQ, such as exploration, navigation, and data
retrieval.

4.1 Node Path Query Language

Core to LITEQ is the Node Path Query Language (NPQL), a schema and data naviga-
tion language which supports the developer in navigating and exploring the RDF data
source from within his programming environment.

The NPQL method of the data access object mentioned above allows for navigating
the schema using NPQL expressions, cf. Figure 3.

Every NPQL expression starts with an URI of the target graph. In case of the ex-
ample shown in Figure 3, line 10, we start with foaf:Agent as entry point for our
NPQL exploration. The different operators of NPQL then allow for traversal of the RDF
schema from this entry point on. We provide three different operators in NPQL, which
allow for navigating through the schema in different ways.

8 Objects constructed by LITEQF# can automatically update the store when assigned new data.
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Fig. 3. Navigating the Schema using NPQL

1. The subtype navigation operator “v” refines the currently selected RDF type to one
of its direct subclasses. The expression in Figure 3 line 7, will refine the selected
starting point foaf:Agent to mo:MusicArtist.

2. The property navigation operator “->” expects a property that may be reached
from the currently selected RDF type. This property is used as an edge to navigate
to the next node, which is defined as the range type of that property. So extend-
ing the NPQL expression from the Figure 3 lines 8–9, shifts the selection from
foaf:Agent to the property and further to its foaf:Group, its range.

3. The property restriction operator “<-” expects a property and uses this property to
restrict the extension of the currently selected RDF node. To illustrate this, let us
assume a property restriction choosing foaf:skypeID, cf. Figure 3 line 10–11.
This will not change the currently selected RDF type but restrict its extension to
all URIs of RDF type foaf:Group for which there is also an foaf:skypeID
relation.

Using these three operators, the developer can explore the data. Furthermore, he can use
the very same expressions to construct data types and objects from the data and schema,
as we will demonstrate in Section 4.3.

4.2 Autocompletion Support

LITEQF# provides an autocompletion mechanism for NPQL, i. e., at every step of
query writing we can formally define the meaning of the partially written query and
provide suggestions for completion. This was done in order to support the developer
during the exploration of the data source as described in Task 2, Section 3. Figure 4
shows the autocompletion feature when writing an NPQL query in Visual Studio. The
developer starts with mo:MusicArtist and decides to perform a property naviga-
tion. This evaluates to the list of all properties, that have mo:MusicArtist or one of
its supertypes is its domain.

Fig. 4. LITEQs Autocompletion support
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In a further step, the developer reduces the results by defining the starting letters of
the properties to be “ma“, cf. Section 4.1. As shown in Fig. 5, this reduces the results to
foaf:made and foaf:maker.

Fig. 5. Refinement of autocompletion suggestions

4.3 Evaluation of NPQL Expressions

In order to interpret NPQL expressions, LITEQ provides two different functions, (Ex-
tension and Intension) that evaluate complete NPQL expressions based on two for-
mal semantics. We only provide an informal overview here, the formal intensional
and extensional semantics of NPQL can be found in our technical report published
on https://west.uni-koblenz.de/Research/systems/liteq

Intension The intensional semantics evaluates an NPQL expression to a code type (the
intension). This relates to Task 3 (data model creation) as presented in Section 3. Fig-
ure 6 shows the intension of mo:MusicArtist, cf. line 11. In the figure, its code
type MusicArtist is subsequently used to instantiate a new artist newArtist, cf. line 12.
The declared MusicArtist class has property definitions of all properties as they were
defined in the RDF schema, e. g., the foaf:name property of the new instance which
is set to myBandName, cf. line 13.

Fig. 6. Declaring code types using LITEQ

Extension The extensional semantics evaluates an NPQL expression to its set of RDF
objects. The extension could either be a set of URIs (in case of RDF types) or to a set
of domain/range tuples (in case of properties). This relates to Task 4 (Query design) as
presented in Section 3. However, LITEQ will also automatically type the result of such
an extensional evaluation, returning instances of code types as if they were generated
through an intensional evaluation. Therefore, extensional evaluation also relates to Task
5 (Mapping of query results). Figure 7 shows such a extensionally evaluated NPQL
expression, cf. line 15. This statement returns a sequence of all mo:MusicArtist to
allArtists. This sequence is subsequently iterated in order to print the music records of
all artists, cf. lines 16-17.

https://west.uni-koblenz.de/Research/systems/liteq
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Fig. 7. Querying for all artists and iterating through the result

In LITEQF#, both, the intensional and extensional evaluation is implemented by
transforming the expressions into SPARQL queries which are then executed against a
SPARQL endpoint.

5 Implementation of LITEQF#

LITEQF# is based on the type provider9 framework. This framework allows us to
generate code types based on the available schema information.

Figure 8 shows a class diagram of the current implementation. It is centered around
the LITEQ type provider, which serves as an entry point. It is also responsible for
building the navigational classes for NPQL. All code necessary for the mapping from
RDF types to actual programming language types is contained in the TypeMapper class.
Both need access to the triples and schema information, which can currently either be a
generic SPARQL endpoint via the SPARQL HTTP interface or a dump of the schema.

Fig. 8. Simplified (for brevity) class diagram of the implementation

Figure 9 shows the runtime behavior of the system. At some point, the library is
called via the build method. This will trigger the creation of all necessary classes for
NPQL queries and usage in the language. However, they newly created classes do not
yet contain any properties as this turned out to be to slow in practice. Properties are only
added once the IDE asks the object for its properties. The objects contain callbacks to
the methods of the LITEQ type provider or type mapper that will return all properties
for the specific object. This step finalizes the object.

9 http://msdn.microsoft.com/en-us/library/hh156509.aspx

http://msdn.microsoft.com/en-us/library/hh156509.aspx
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Fig. 9. Sequence diagram of behavior during usage

6 Use Cases

In order to show the feasibility of LITEQF#, we have chosen to implement two tasks
using a traditional framework such as dotNetRDF and the LITEQF# approach. We then
compare the implementations using the Halstead metric [5] to determine the difficulty
and effort of the implementations.

6.1 Use Case: Creating a New Artist Object and Listing All Tracks

An RDF data source in a programming language should be easily queryable but also
modifiable. Therefore, our first simple use case is about inserting new data and iterating
over a subset:

R1 The program shall create a new instance of type music artist and assign a name to
that instance.

R2 The program shall iterate over all instances of type music artist and print the music
records associated with them.

The data that serves as the input for this task comes from the Jamendo data set10.

6.1.1 Implementation Using the dotNetRDF Framework
A SPARQL implementation of this task relies on the SPARQL Update functionality.
This type of SPARQL queries allow the insertion of new triples into the triple store.

10 http://moustaki.org/resources/jamendo-rdf.tar.gz, last accessed on
08.05.14.

http://moustaki.org/resources/jamendo-rdf.tar.gz
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Listing 3 shows how the code for inserting a new artist with a specific foaf:name
looks like. SPARQL queries are written as plain strings with specific symbols marking
substrings that are to be replaced with concrete values, such as the music artist URI or
the name, right before the update is executed. To simplify the SPARQL query, names-
paces are often bound in a separate step outside of the actual query.

let connection = new SesameHttpProtocolConnector(
"http://.../openrdf-sesame",
"Jamendo")

// Defining Update query
let query = new SparqlParameterizedString("INSERT DATA {

@instanceUri a mo:MusicArtist .
@instanceUri foaf:name @name . }")

query.Namespaces.AddNamespace("mo",
new Uri("http://purl.org/ontology/mo/"))

query.Namespaces.AddNamespace("foaf",
new Uri("http://xmlns.com/foaf/0.1/"))

// Setting specific values and executing
query.SetUri("instanceUri",

new Uri("http://artist/1234"))
query.SetLiteral("name", "myBandName")
connection.Update( query.ToString() )

Listing 2. Inserting a new MusicArtist with a specific name

Iterating over the music artists is similar. Listing 3 shows how it can be implemented.
Again, the query is defined as a string with the namespaces being bound separately. In
this specific query, the expected result contains always the artist URI and the record URI
that was made by this artist. The result of this query is initially a result set, which can
be grouped by artists by piping11 it to the group by function and specifying a projection
function. The computation will result in tuples containing the specific artist and a list
of result sets that contain the query results about the artist. These result sets associated
with the different artists can then be mapped to a list containing only the record URIs.
The resulting tuple containing artist and the list of records they made can then be printed
to the console.

let query’ = new SparqlParameterizedString("SELECT
?artist ?record WHERE {
?artist a mo:MusicArtist .
?artist foaf:made ?record .

}")
query’.Namespaces.AddNamespace("foaf",

new Uri("http://xmlns.com/foaf/0.1/"))
query’.Namespaces.AddNamespace("mo",

new Uri("http://purl.org/ontology/mo/"))

11 The pipe operator f | > g is used to pass the result of one computation to the next one. An
equal statement has the form g(f()).
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let results =
connection.Query(query’.ToString()):?>SparqlResultSet
|> Seq.groupBy( fun res ->

res.Value("artist").ToString() )
|> Seq.map( fun (artist, results) ->

artist, results |> Seq.map(fun res ->
res.Value("record").ToString())

)
for (artist, records) in results do

printfn "Artist %A made the following records: %A"

Listing 3. Iterating over artists and printing records

6.1.2 Implementation Using LITEQ
The LITEQ implementation has already been used as an example. Creating a new music
artist is an intensional evaluation of the mo:MusicArtist URI. The resulting type
can afterwards be instantiated and assigned data via setter methods as displayed in
Fig. 6.

Iterating over the music artists in the data source is an extensional evaluation of
mo:MusicArtist—this returns a sequence of music artists that is iterable as done
in Fig. 7.

6.1.3 Comparison
In order to evaluate the two different approaches, we chose to apply the Halstead metric.
According to Halstead, a program can be seen as a collection of tokens that are classified
as operators and operands. Halstead [5] then defines:

Definition 2 (Halsteads complexity measure). Let n1 be the number of distinct oper-
ators, N1 the total number of operators, n2 the number of distinct operands, and N2

the total number of operands. Then one has:

Program vocabulary n = n1 + n2

Program length N = N1 +N2

Volume V = N × log2n
Difficulty D = n1

2 × N2

n2

Effort E = D × V
Necessary time T = E

18seconds

Of special interest to us is the difficulty of a program, which expresses how hard it is
to understand it a code review, and the theoretical time that is needed to code such a
program. When applying the metric, we defined that all language constructs, such as
“let .. =“, “type .. =“ or “for .. in .. do“ and access operators were to be counted as op-
erations. The same holds for static parameters12 and “,“ creating tuples in mappings13.
12 <> indicate a static parameter.
13 We omitted them when they were used as separators for method parameters due to language

differences between F#, for which LITEQ is optimized and C#, which dotNetRDF was written
in.
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The remaining type and method names were counted as operands. The same holds for
strings, except for those representing SPARQL queries. SPARQL queries were counted
as one operator for the general construct (INSERT DATA .. or SELECT .. WHERE ..
), one operation to form a specific triple pattern and three operands per triple. In LITEQ
namespaces are defined in an separate file, so we did not count the code necessary to
add namespace definitions, as shown in Listing 3, By applying this metric to the Use
Case, we get the results shown in Table 214

Table 1. Halsteads complexity applied to Use Case 1

dotNetRDF LITEQ
No. of distinct operators (n1) 12 7
No. of distinct operands (n2) 39 18
Total no. of operators (N1) 36 15
Total no. of operands (N2) 63 25
Program Vocabulary 51 25
Program length 99 40
Program Volume 561,57 185,75
Difficulty 9,69 4,86
Effort 5442,91 902,97
Time needed 302s 50s

6.2 Use Case: Analyzing Number of EU Seats for Countries

RDF data sets, especially governmental data, are often used for analysis and visualiza-
tion. Therefore, the second use case visualizes the number of EU seats hold by different
countries:

R1 The program shall select all countries that hold at least one EU seat
R2 The program shall then transform this data into a suitable structure and visualize it

The data set used for this task was a dump of the DBpedia data set15.

6.2.1 Implementation Using the dotNetRDF Framework
Using the dotNetRDF framework, a developer needs to open the connection to the
SPARQL endpoint and can then write a query receiving the name of the country and
its number of seats. He then needs to map the result from the result set to a tuple con-
taining a string representing the name of the country and the number of EU seats. The
visualization is then only a function call. Listing 4 shows the the necessary code to do
so in F#.
14 The full source code with annotations that describe what we counted as operand and operator

or omitted(e.g. brackets) can be found under
http://www.uni-koblenz-landau.de/campus-koblenz/fb4/west/
Research/systems/liteq

15 Available under http://wiki.dbpedia.org/Downloads39, last accessed on
06.05.14

http://www.uni-koblenz-landau.de/campus-koblenz/fb4/west/Research/systems/liteq
http://www.uni-koblenz-landau.de/campus-koblenz/fb4/west/Research/systems/liteq
http://wiki.dbpedia.org/Downloads39


Semantic Web Application Development with LITEQ 223

let connection = new SparqlRemoteEndpoint(
new Uri("http://dbpedia.west.uni-koblenz.de:8890/sparql"))

let data =
connection.QueryWithResultSet("""SELECT ?countryName
?numberOfSeats WHERE {

?country <http://dbpedia.org/property/euseats>
?numberOfSeats .

?country <http://xmlns.com/foaf/0.1/name> ?countryName .
}""")

|> Seq.map ( fun resultSet ->
resultSet.Value("countryName").ToString(),
int(resultSet.Value("numberOfSeats").ToString()
.Replace("ˆˆhttp://www.w3.org/2001/XMLSchema#integer",

""))
)

data
|> Chart.Pie

Listing 4. Calculating percentage of EU seats

6.2.2 Implementation Using LITEQ
All countries holding an EU seat can be selected using an NPQL expression. The ex-
pressions returns a sequence of Country objects as if created through the intension,
the name and number of EU seats can be accessed as in an object model. While they re-
turn proper types (strings for the name and ints for the number of EU seats), they return
lists of these types as the schema did not specify the cardinality. In order to visualize
the countries are mapped to a sequence of tuples containing name and number of EU
seats by accessing the corresponding members and taking the first element out of the
result list. Listing 5 shows the necessary code to do so.

type Store = RDFStore<".\liteq_default.ini">

let euCountries =
Store.NPQL().‘‘dbpedia:Country‘‘.‘‘<-‘‘.‘‘dbpediapr:euseats‘‘
.Extension

euCountries
|> Seq.map( fun country ->

country.‘‘foaf:name‘‘.[0],
country.‘‘dbpediapr:euseats‘‘.[0] )

|> Chart.Pie

Listing 5. Calculating percentage of EU seats using SPARQL

However, as the DBPedia ontology did not specify any range or domain for the number
of EU seats a country holds, we had to extend the schema, in the local schema file, with
the specific values to enable this implementation.
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6.2.3 Implementation Using a Custom Object Model
Apart from comparing the implementations in LITEQ and plain SPARQL, we also want
to compare to an custom implementation. Such an implementation bases on a object
model which incorporates schematic information that exceeds the information currently
available in RDFS such as information about cardinalities of properties.

As such object models usually do not incorporate query languages, all countries have
to be selected in this scenario. The resulting sequence can then be filtered to contain
only countries that hold at least one EU seat. To visualize the data, the same approach
as with LITEQ can be used — mapping the sequence of countries to a sequence of
tuples containing name and number of seats for the country and passing this to the
visualization function. Listing 6 displays such code.

connectToStore "http://.../openrdf-sesame/Jamendo"

let euCountries =
Country.findAllInstances
|> Seq.filter( fun country -> country.EuSeats > 0 )

euCountries
|> Seq.map( fun country -> country.Name, country.EuSeats )
|> Chart.Pie

Listing 6. Calculating percentage of EU seats with an object model

6.2.4 Comparison
To evaluate the three different approaches, we again apply the Halstead metric as de-
fined in Def. 2.

Table 2. Halsteads complexity applied to Use Case 2

dotNetRDF LITEQ Custom Object Model
No. of distinct operators (n1) 9 7 6
No. of distinct operands (n2) 25 16 13
Total no. of operators (N1) 19 18 13
Total no. of operands (N2) 34 22 20
Program Vocabulary 34 23 19
Program length 53 40 33
Program Volume 269,64 180,94 140,20
Difficulty 6,12 4,81 4,62
Effort 1650,17 870,79 646,99
Time needed 92s 49s 36s

Again, the version using dotNetRDF and SPARQL is the most difficult to understand
and slowest to code. LITEQ improves on this while a custom object model can improve
on LITEQ.

6.3 Evaluation of the Results

The Halstead metric supports our assumption—in both use cases, it is much easier to
understand the code implementing such a scenario with LITEQ than using SPARQL
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queries. The same holds for the time necessary to write the code, which is, in all cases
less for LITEQ than a implementation using dotNetRDF.

When comparing LITEQ to a custom object model, it can be seen that there is still
room for improvement. A better mapping from RDF types to code types manifests
itself in less difficulty and less effort. However, if such a better mapping exists, we can
incorporate it into LITEQ and get similar results.

7 Related Work

LITEQ is generally related to three different research directions: query languages for
RDF, the integration of data access into a host languages in particular mappings of RDF
into the object oriented paradigm, and exploration tools for unknown RDF data sources.

Considering query languages, a number of different languages are available for RDF.
In general, we can distinguish two different ways of querying graph data as RDF. The
first one considers querying as a graph matching problem, matching subgraphs descrip-
tions against the data, like in SPARQL queries. The second way is by using a graph
traversal language, like Gremlin16 or Cypher17 or the languages mentioned in [16]. Ex-
amples of graph traversal languages for RDF data are nSPARQL [13], a language with
focus on navigation through RDF data, or GuLP [4], which can include preferential at-
tachment into its queries. However, there are two major differences between these two,
exemplary chosen, languages and LITEQ. While nSPARQL and GuLP both use their
own evaluation implementations, LITEQ exploits the widely spread SPARQL support
by mapping its queries to SPARQL. The second difference lies in the type generation
provided by LITEQ.

NPQL queries and Description Logics (DL) expressions share some similarities. A
DL expressions always describes a concept, its place in the concept lattice and the ex-
tension of the concept. Similarly, NPQL expressions can be evaluated extensionally to
a set of entities or intensionally to a type description including its place in the type hier-
archy. The intensional evaluation of NPQL expressions also consists information about
the attributes of the type, in contrast to DL concepts which only contain information
about constrains over attributes.

The problem of accessing and integrating RDF data in programming environments
has already been recognized as a challenge in various work. Most approaches focus on
ontology driven code generation in order to realize RDF access in the programming en-
vironment. Frameworks like ActiveRDF [9], AliBaba18, OWL2Java [8], Jastor19, RD-
FReactor20, OntologyBeanGenerator21, and Àgogo [12] were developed in the past.

16 Gremlin graph traversal language
https://github.com/tinkerpop/gremlin/wiki last visit January 13th, 2014.

17 Cypher graph traversal language in Neo4J
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html last
visit January 13th, 2014.

18 http://www.openrdf.org/alibaba.jsp last visit January 13th, 2014.
19 http://jastor.sourceforge.net/ last visit January 13th, 2014.
20 http://semanticweb.org/wiki/RDFReactor last visit January 13th, 2014.
21 http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator

last visit January 13th, 2014.

https://github.com/tinkerpop/gremlin/wiki
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://www.openrdf.org/alibaba.jsp
http://jastor.sourceforge.net/
http://semanticweb.org/wiki/RDFReactor
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator
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An overview can be found at Tripresso22, a project web site on mapping RDF to the
object-oriented world. The common goal for all these frameworks is to translate the
concepts of the ontology into an object-oriented representation. While the previous ex-
amples are targeted at specific languages, some concepts which are language-agnostic
language exist. Àgogo [12] and OntoMDE [15] are programming-language independent
model driven approaches for automatically generating ontology APIs. They introduce
intermediate steps in order to capture domain concepts necessary to map ontologies to
object-oriented representations. All the aforementioned approaches rely on external ex-
ploration of the data, dedicated type declarations, and code generation steps in order to
provide the desired data representations in a programming language.

The basic mapping principles of RDF triples to objects common to the previously
presented approaches [10] and programming language extensions to integrate RDF or
OWL constructs [11] have already been explored. LITEQ also uses these principles.
However, there are two main differences that sets LITEQ apart. For one, LITEQ has
build-in type generation support, that can automatically generate such types. Another
examples that also features this is [11]. This is a language extension for C# that of-
fers features to represent OWL constructs in C# and that is able to create the types at
compile time. In contrast to LITEQ however, there is no means for querying and navi-
gating unknown data sources. The developer must be fully aware of the structure of the
ontology ahead of development time.

Other research work has a dedicated focus on exploration and visualization of Web
data sources. The main motivation of this work is to allow users without SPARQL
experiences an easy means to get information from RDF data sources. tFacet [1] and
gFacet [7] are tools for faceted exploration of RDF data sources via SPARQL endpoints.
fFacet provides a tree view for navigation, while gFacet has a graph view for browsing.
The navigation of RDF data for the purpose of visualizing parts of the data source
is studied in [2], but with the focus on visualization aspects like optimization of the
displayed graph area. In contrast to LITEQ, these approaches do not consider any kind
of integration aspects like code generation and typing. Furthermore, the navigation is
rather restricted to a simple hierarchical top-down navigation.

8 Summary

This paper presented the fully functional prototype of LITEQF# targeted for release
as part of FSharp.Data library. The implementation features a new paradigm to access
and integrate representations for RDF data into typed programming languages. We also
showed the feasibility of our approach. The documentation of the current LITEQF# li-
brary, including a video showing LITEQ in use, can be found on our website23, while the
source code is available at Github24. In the near future, we plan to improve performance

22 http://semanticweb.org/wiki/Tripresso last visit January 13th, 2014.
23 http://west.uni-koblenz.de/Research/systems/liteq, last visit 12th Mai,

2014.
24 https://github.com/Institute-Web-Science-and-Technologies/
Liteq, last visit 12th Mai, 2014.

http://semanticweb.org/wiki/Tripresso
http://west.uni-koblenz.de/Research/systems/liteq
https://github.com/Institute-Web-Science-and-Technologies/Liteq
https://github.com/Institute-Web-Science-and-Technologies/Liteq
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and stability of the system, before shifting focus and ensuring a smooth integration into
FSharp.Data.

Acknowledgments. This work has been supported by Microsoft.
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K.-L. (eds.) ICDE 2011, pp. 1324–1327. IEEE Computer Society (2011)

4. Fionda, V., Pirrò, G.: Querying graphs with preferences. In: CIKM 2013, pp. 929–938 (2013)
5. Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Se-

ries). Elsevier Science Inc., New York (1977)
6. Hart, L., Emery, P.: OWL Full and UML 2.0 Compared (2004),

http://uk.builder.com/whitepapers/
0and39026692and60093347p-39001028qand00.htm

7. Heim, P., Ziegler, J., Lohmann, S.: gFacet: A Browser for the Web of Data. In: IMC-SSW
2008. CEUR-WS, vol. 417, pp. 49–58 (2008)

8. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.A.: Automatic Mapping of OWL Ontologies
into Java. In: SEKE 2004 (2004)

9. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: Activerdf: object-oriented semantic
web programming. In: WWW 2007, pp. 817–824. ACM (2007)

10. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: Embedding Semantic Web Data into Object-
oriented Languages. J. Web Sem., 191–202 (2008)
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Abstract. The widespread adoption of Information Technology systems and
their capability to trace data about process executions has made available In-
formation Technology data for the analysis of process executions. Meanwhile,
at business level, static and procedural knowledge, which can be exploited to
analyze and reason on data, is often available. In this paper we aim at provid-
ing an approach that, combining static and procedural aspects, business and data
levels and exploiting semantic-based techniques allows business analysts to in-
fer knowledge and use it to analyze system executions. The proposed solution
has been implemented using current scalable Semantic Web technologies, that
offer the possibility to keep the advantages of semantic-based reasoning with
non-trivial quantities of data.

1 Introduction

The last decades have witnessed a rapid and widespread adoption of Information Tech-
nology (IT) to support business activities in all phases, governing the execution of busi-
ness processes and the processing and storage of related documents. This, together with
knowledge at the business level, gives the potential to leverage IT techniques to analyze
business procedures, thus bringing several remarkable advantages, as for example to al-
low business analysts to observe and analyze process executions; to identify bottlenecks
and opportunities of improvement of processes; to identify discrepancies between the
way processes have been designed, and the way they are really executed.

In fact, a variety of Business Intelligence tools have been proposed, even by major
vendors, that aim at supporting Business Activity Monitoring (BAM), and hence the
activities above, to different extent; examples are Engineering’s eBAM,1 Microsoft’s
BAM suite in BizTalk,2 Oracle’s BAM.3 However, all these approaches mainly focus,
besides data, on the only procedural knowledge. The knowledge related to the static

� This work is supported by “ProMo - A Collaborative Agile Approach to Model and Monitor
Service-Based Business Processes”, funded by the Operational Programme “Fondo Europeo
di Sviluppo Regionale (FESR) 2007-2013 of the Province of Trento, Italy.

1 http://www.eclipse.org/ebam
2 https://www.microsoft.com/biztalk/en/us/business-activity-
monitoring.aspx

3 http://www.oracle.com/technetwork/middleware/bam/
overview/index.html

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 228–243, 2014.
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aspects of the domain (e.g., concerning documental or organizational aspects), gener-
ally representable as domain ontologies, is not taken into account, thus precluding the
capability to reason on and analyze execution data from a business domain perspective.

On the contrary, existing approaches for the semantic monitoring and analysis of
processes usually separately focus on model or execution aspects. Several works, in-
cluding [1,2,3,4,5,6,7], enrich process models with semantic knowledge either for spec-
ifying the execution semantics of models or for denoting the meaning of their elements.
Only few attempts have been made to combine the static and the procedural model at
the business layer with execution data (e.g., [8]). In these works, however, business
knowledge is mainly exploited to provide domain-independent solutions to automate
the reconciliation between the business and data layers, rather than to support analysis.
In this paper we focus on enabling business analysts to perform useful analysis on pro-
cess execution data, covering both static and procedural dimensions as well as business
and data levels. Our contribution is twofold: (i) by extending our previous work [6,9]
combining static and procedural dimensions, we define a semantic model for combin-
ing static, procedural and data knowledge, which enables semantic reasoning and allows
analysts to query asserted and inferred knowledge to bring execution data analysis at
business level; and (ii) we propose an implementation of the approach on top of current
Semantic Web technologies – namely triplestores – that aims at coping with the large
quantities of data and the high data rates typical of real application scenarios.

The paper is organized as follows. In Section 2 we present the problem through an
example scenario, which is then used, in Section 3, to introduce the orthogonal dimen-
sions we tackle and the high level idea of the proposed approach. In Section 4 we de-
scribe the integrated model and its components from a conceptual point of view, while
Section 5 and Section 6 report about implementation and evaluation on a project use
case, respectively. Finally, Section 7 presents related works and Section 8 concludes.

2 Scenario

In this section we present an application scenario for the proposed approach. It will
be used throughout the paper to clarify the concepts and the motivation behind the
work. The example has been taken from an industrial case study related to the Public
Administration field in the context of the ProMo project for the collaborative model-
ing, monitoring and analysis of business processes. Figure 1 shows the process model
(represented in the BPMN [10] notation) describing the Italian birth management pro-
cedure, that aims at recording citizens’ birth data. Data have to be stored both in the
municipality registry and in the central national registry (SAIA) – since newborns are
Italian citizens who live in a given municipality – as well as in the national welfare sys-
tem repository (APSS) – as newborns are users of the welfare system. For instance, the
newborn can be first registered in the welfare repository and then in the registry systems
or viceversa, according to the parents’ choice. This, in turn, requires the coordination
of several actors, as well as the generation of some crucial data that will become part of
the personal data of the newborn – e.g. his/her ID, the Fiscal Code (FC).

In scenarios like this one, which are applied on a large scale and with high public
costs, it is important to be able to analyze the actual executions of the procedures or to
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Fig. 1. Birth Management Process

realize what-if analyses for maintenance purposes. This means understanding how pro-
cedures perform; how many, when and where failures and bottlenecks occur; whether
executions deviate from the model. Examples of queries related to the birth manage-
ment procedure that business analysts could be interested to answer are:

Q.1 the average time per process execution spent by the municipality of Trento;
Q.2 the total number of Registration Request documents filled from January, 1st, 2014;
Q.3 the percentage of times in which the flow followed is the one which passes first

through the APSS pool and then through the Municipality one;
Q.4 the number of cases and the average time spent by each public office involved in

the birth management procedure for executing optional activities (i.e., activities
which, taken a path on the model, can be either executed or not);

Finding an answer to this kind of questions poses three interesting challenges.

Challenge 1. Combining Three Different Dimensions. Scenarios in which a procedure
is carried out in a specific domain, as the one described above, are very common in prac-
tice. They are usually characterized by three main dimensions that need to be taken into
account per se and in combination in order to be able to analyse the scenario: a procedu-
ral dimension, a dimension describing the specific domain of interest and an execution
dimension. The procedural dimension is defined by the process model describing the
carried out procedure. For example, such a dimension is required for detecting in Q.3
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whether the execution flow passes first through the APSS pool and then through the mu-
nicipality pool or viceversa. Knowledge about the domain of interest, i.e., the domain
in which the procedure is carried out, makes it possible, for example, to identify in Q.2
what are Registration Request documents. Finally, the execution dimension, i.e., the ac-
tual execution data both in terms of the procedural execution trace and of produced data
is required for example for retrieving in Q.1 the actual execution time.

Challenge 2. Semantic Reasoning. In many cases and especially in complex scenarios,
data explicitly asserted in collected execution traces and in process and domain models
represent only part of the information that is globally available about a process. In these
cases, semantic reasoning enabled on top of the three orthogonal components makes
it possible to query not only asserted but also inferrable information. For example, in
query Q.4 semantic reasoning allows both making explicit the semantics of public of-
fices, as well as reasoning about paths in the process model to detect optional activities
(which are situated on alternative paths between two directly connected gateways).

Challenge 3. Scalability. Scenarios characterizing complex organizations, as, for ex-
ample, Public Administrations (PAs), tend to deal with massive data. PAs usually have
huge and complicated procedures with several variants and exceptions, which relate to
as much huge and structured domains (e.g., in all PA domains the document classifica-
tion is usually very intricate). In this kind of scenarios a huge quantity of data is usually
produced at a very high rate. For example, in Italy there are about 500000 newborns
per year with, on average, a birth per minute.4 It means that, at least 500000 (one per
minute) execution traces of the birth management procedure are produced per year and
have to be readily managed and analyzed. This demands for a scalable system able to
manage this huge quantity of data in a reasonable time, so as to (i) process and store
execution data with a high throughput; and (ii) provide a prompt answer, which also
takes into account procedures not yet completed, to queries involving this data.

3 An Integrated View

Analysts dealing with situations like those characterizing complex organizations usu-
ally need to face the problem of combining and reconciling knowledge and information
related to different orthogonal dimensions, the business and the data as well as the static
and the dynamic one. Figure 2 depicts these layers and dimensions:

– At business level, knowledge describes the domain of interest (e.g., the company’s
documents, organization and procedures) and pertains to two dimensions:
D.1 the procedural knowledge (P), usually represented using business process

models that offer a view on the steps carried out to realize specific objectives;
D.2 the (static) domain knowledge (K), which describes aspects of the domain

such as the organization structure (e.g., role hierarchy), the data structures
(e.g., document organization) and the relations among these and other domain
entities; these aspects are usually described in terms of ontological knowledge.

– At data level, the data stored by information systems provide information on the
actual executions of business procedures, leading to our third dimension:

4 Data by the Italian statistical office for year 2011
(http://www.istat.it/it/archivio/74300).

http://www.istat.it/it/archivio/74300
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Fig. 2. An integrated view

Fig. 3. Extract of domain ontology

D.3 the IT data, i.e., the execution traces (T) collected by IT systems that describe
the sequence of events and the data related to a process execution.

Concerning IT data, we focus on knowledge integration and exploitation assuming
that heterogeneous data have already been reconciled and collected into execution
traces. A preprocessing step to collect IT data into execution traces (e.g., [11])
and to align traces with the business layer (e.g., semantic-based [8] or structural
approaches [12]) can be realized by exploiting existing approaches in the literature.

In order to improve on state-of-the-art approaches, which do not allow analysts to in-
vestigate these three dimensions together, we propose to combine the knowledge related
to the domain described at business level K, the one related to the procedural aspects P
and the data captured by IT systems T, into a semantic solution and take advantage of
it for inferencing and querying purposes.

The first step towards the integration is combining the two types of business knowl-
edge: the static (K) and the procedural (P) one. Intuitively, combining K and P, means
enriching the process diagram components with the semantic knowledge [6,9] and
viceversa, i.e., adding a procedural view to the static knowledge. For instance, in the
example of the birth management procedure, a role APSS, semantically characterized
as a Public Office role by the taxonomy of roles shown in the excerpt of domain
ontology of Figure 3, can be associated to the APSS pool of the process in Figure 1.

The second step consists of combining the business and the data layers, i.e., K and P
with T. Assuming to have (i) an execution trace that collects all the events and the asso-
ciated data and performers related to a single execution , and (ii) an alignment of these
components with the business knowledge, combining the business and the data layers
intuitively means instantiating the business level components with the corresponding
set of execution data. For example, an event “Fiscal Code Generation” in an execution
trace, according to the alignment between data and business, could be an instance of the
activity labeled with “Generate FC Municipality” enriched with its domain semantics.
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Fig. 4. Integrated Ontological Model. For each component of the model, a class or instance ex-
ample is provided (among parenthesis).

4 A Comprehensive Model for Process Execution Analysis

To be exploited for query purposes, the three types of knowledge (K, P and T) described
in Section 2 need to be expressed in a unique language and plugged into an integrated
system. In this section we present the conceptual model used for the integration. To
this purpose, three ontologies were formalized – a BPMN Ontology, a Domain Ontol-
ogy and a Trace Ontology – and a three-level architectural model was built on top of
them. Purpose of the Domain Ontology is to provide a formal description of the static
aspects of the domain (K), while the BPMN Ontology and the Trace Ontology provide
a formalization of a metamodel of the procedural (P) and data (T) aspects, respectively.

Figure 4 shows how the three ontologies are used to formalize and combine the
three starting ingredients (P, K and T) along with the three levels. Specifically, at the
Metamodel level, which deals with all types of knowledge encompassing process model
scenarios (i.e., the core parts of the Trace Ontology, Domain Ontology and BPMN On-
tology), K is formalized as an extension of the core Domain Ontology. At the Process
Model level, which deals with knowledge specific to a process model, the integration of
P and K is formalized. Finally, at the Trace level, focusing on the execution traces, T
and its relationships with P and K are formalized.

In the following we discuss in more details each of the three ontologies (Section 4.1)
and then describe their integration into the three-level architectural model (Section 4.2).

4.1 Component Description

BPMN Ontology. The BPMN Ontology (BPMNO) formalizes the structure of a busi-
ness process model diagram (BPD). It is a formalization of the BPMN standard as
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Fig. 5. Core Domain Ontology

described in Annex B of the BPMN specification 1.0 [13] enriched with the main com-
ponents of BPMN2.0 [10], and consists of a set of axioms that describe the BPMN
elements and the way in which they can be combined for the construction of BPDs.5

A detailed description is provided in [6,9]. We remark that the BPMNO provides a for-
malization of the structural part of BPDs, describing which are the basic elements of a
BPD and how they are (can be) connected. The BPMNO is not intended to model the
dynamic behavior of BPDs (that is, how the flow proceeds within a process).

Domain Ontology. The Domain Ontology, which is in charge of providing a formal-
ization of the static aspects of the domain of interest, is composed of an upper-level part
– the Core Domain Ontology – that describes the high level concepts and is independent
from the specific domain, and, for each domain, of a domain-dependent extension.

Goal of the Core Domain Ontology (reported in Figure 5) is offering a framework
for the definition of the key entities and relationships characterizing the domain of a
business process. Its central entity is the activity, which can constitute the building
block of a process, i.e., a process is composed of a non-empty set of activities. An
activity is usually performed by an executor with a specific role, which, in turn, can be
classified in a hierarchy of roles (e.g., in the case of complex organizations) and can
produce in output data objects (e.g., a document), which are collections of data. Data
in data objects are organized in data structures, which, in turn, can be further structured
in other data structures and so on, so that, only at the end of the chain, a value can be
associated to a simple data (e.g., a non-decomposable field of a document).

The domain-dependent extension specializes classes and properties of the Core Do-
main Ontology for a specific domain of interest, as shown in Figure 3 for the birth
management scenario. In this example, the activity of type Generate card performed
by the Municipality role could have as output a Card data object. The Address

is one of the data reported in the data object. However, Address could be, in turn, a
data structure organized in Street, Number, City, Nation. Also City can be further
structured (e.g., in terms of CityName and ZIPCode) and so on up to reach simple data.

It is worth pointing out that the Core Domain Ontology defines and emphasizes the
relationship between activities and simple data, i.e., how an activity manipulates (cre-

5 The BPMN 1.0 ontology enriched with some of the new main elements of BPMN2.0 can be
found at https://shell-static.fbk.eu/resources/
ontologies/bpmn2 ontology.owl

https://shell-static.fbk.eu/resources/ontologies/bpmn2_ontology.owl
https://shell-static.fbk.eu/resources/ontologies/bpmn2_ontology.owl
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ates, updates, displays) a simple data. To this end, a unique semantics is associated
to each simple data nested in a specific chain of data structures and on each manipu-
lation property defined between manipulating activities and data fields. For example,
Card.Address.City.ZIPCode is a simple data on which it is possible to explicitly
define the activity manipulations. Moreover, simple data of different data objects can be
mapped one to another (via property mapped to, see Figure 5) to indicate that they hold
the same value, thus providing useful knowledge to perform reasoning. For example,
the data on the card emitted by the municipality corresponds to the data reported by the
citizen on the registration request module, thus RegistrationRequest.NewBorn.
CityCode and Card.Address.City.ZIPCode are mapped one to another.

Trace Ontology. The Trace Ontology ontology has finally been designed to specifically
address the aspects related to the execution, providing a metamodel representation of
the knowledge that can be collected and traced by IT systems (i.e., knowledge in terms
of instances) and stored in execution traces. It also has a core part – the Core Trace
Ontology – whose key entity is the Trace. A trace is composed of Traceable Process El-
ements, which can be either Traceable Flow Objects and Traceable Data Objects. The
first are (instances of) events traced by IT systems that can have both a start and an end
time intervals and an actual Performer. The latter are (instances of) data structures col-
lecting sets of data. The core part of the Trace Ontology (the Core Trace Ontology) can
then be enriched and structured according to the specific types of information collected
by IT systems and analyzed in a particular scenario. For example, properties defining
the provenance of data or events of the execution trace (e.g., the IT system they come
from), could need to be stored, and hence the Trace Ontology extended accordingly.

4.2 A Three-Level Architectural Model

Starting from the components previously described, a three-level architectural model
has been built to combine the three dimensions K, P and T. Figure 4 depicts such a
model, which extends our previous work [6,9] that only accounts for K and P.

The first level (Metamodel level) contains the three ontologies mentioned in the pre-
vious subsection, i.e., the initial building blocks of the integrated model: the BPMN
Ontology, the Domain Ontology, representing an ontological formalization of the do-
main knowledge, and the Trace Ontology. Referring to the examples shown (within
parenthesis) in Figure 4, classes Task, Activity and Traceable Flow Object are
representative of the contents of the BPMN Ontology, Domain Ontology and Trace On-
tology respectively, and all of them lie in the Metamodel level.

The second level (Process Model level) contains an integrated description of a single
process model diagram in terms of domain and procedural aspects. Such an integrated
model can be looked in two different ways. On one side (and similarly to the approach
in [6,9]), a process diagram and the elements it contains are instances of the corre-
sponding semantic classes in the Domain Ontology and BPMN Ontology. On the other
side (and differently from [6,9]), a process model diagram and its elements are model
components which, though still inheriting their domain semantics from a Domain On-
tology, act as classes that are instantiated by process execution traces. In this view, a
more agile and specific semantics than the heavy one given by the BPMN notation, can
be provided by these classes to the execution traces (e.g., there is no need to constraint
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the event corresponding to an activity execution to have at most an outgoing sequence
flow). For example, in the birth management process, the BPMN activity labeled with
“Generate FC Municipality” (e.g., the diagram element with id “BPD activity 12”) is
an instance of the Domain Ontology class Generate FC by Municipality and of
the BPMN Ontology class Task (see the examples in Figure 4). However, the same
element is also a class instantiated by the actual executions (in the trace level) of the
“Generate FC Municipality” activity, that, by exploiting subsumption relations, inher-
its the characteristics of Traceable Flow Object from the Trace Ontology and of
Generate FC by Municipality in the Domain Ontology. To represent these two per-
spectives on process model elements, we decided to model them both as individuals of
an Abox Ontology (as modelling is at instance level) that instantiates the Domain On-
tology and the BPMN Ontology, and as classes of a Tbox Ontology (as modelling is at
the terminological level) that specializes the Domain Ontology and the Trace Ontology;
a special associated to relation links corresponding elements in the two ontologies.6

Finally, a third level (Trace level) is devoted to store the execution traces. An ex-
ecution trace is actually an instance of the process model diagram class of the Tbox
Ontology that is, as described above, a subclass of the Domain Ontology class specify-
ing the process domain semantics and of the Trace class of the Trace Ontology. For
example, an execution trace of the birth management process will be an instance of the
Tbox Ontology class inheriting from the Domain Ontology Birth Management class
and the Trace Ontology Trace class, the latter related to properties typical of execution
traces. Events and data structures in the execution trace are managed similarly.

By looking at the examples in Figure 4 we can get an overall clarifying view of
the three levels and their relationships. For instance, the trace event “Fiscal Code Gen-
eration” is represented as an instance of the Tbox Ontology class corresponding to the
BPMN diagram element “BPD activity 12”. This class, which extends the Trace Ontol-
ogy class Traceable Flow Object and the Domain Ontology class Generate FC by

Municipality, is associated to the corresponding instance (“BPD activity 12”) in the
Abox Ontology. The latter, in turn, is an instance of classes Task of the BPMN Ontology
and Generate FC by Municipality of the Domain Ontology.

5 Architectural Solution

In this section we propose an architecture for the runtime collection of information at
the various dimensions (P, K, T), its integration according to the comprehensive model
of Section 4 and its unified querying to support business analysts needs.

The two major challenges at the architectural level are to cope with the huge quan-
tity of collected trace data and their fast rate of arrival on the one hand, and to allow
analysts to query also for implicit knowledge in collected data on the other hand, which
requires some kind of reasoning support in the system (respectively, challenges 3 and 2
of Section 2). To address these challenges, we investigate the use of Semantic Web tech-
nologies in the form of triplestores. Triplestores are repositories for RDF data, possibly

6 Despite the described scenario and the technological solution adopted would allow the use of
punning, i.e., treating classes as instances of meta-classes, we chose to have separate entities
for classes and instances, in order to keep the solution in line with the traditional conceptual
distinction between classes and instances.
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Fig. 6. Architecture. PM and T denote asserted triples, PM’ and T’ inferred triples.

organized into named graphs, with support for reasoning with different semantics (e.g.,
RDFS, OWL 2 RL and OWL 2 QL) and querying via the standard SPARQL query lan-
guage and protocol [14]. Triplestore solutions have been widely investigated in recent
years as a means to manage huge quantities of data, and several triplestore implemen-
tations have become mature products (e.g., OWLIM7 and Virtuoso8, to name a few), so
they represent a natural choice for implementing our model.

In the rest of the section we detail, referring to Figure 6 for a general overview, how
data is organized, populated and queried in our architecture using triplestores, while in
the next section we present some results pointing out the potential of the solution.

5.1 Data Organization

The most efficient way to support SPARQL querying is to place all data in a central
triplestore, materializing all the inferrable triples so that no reasoning has to be done
at query time. We thus exclude federated queries over multiple triplestores as well as
backward-chaining reasoning approaches (e.g., based on query rewriting), as they both
introduce additional delay that is unacceptable for complex analytical queries.

The central triplestore has to store the process model data (the Tbox Ontology and
Abox Ontology of Figure 4, which in turn encompasses both the procedural knowledge
P and the static knowledge K) and all the completed/running execution traces collected
so far (the IT data T). To better organize this information we store it in different named
graphs: one for the process model and one for each trace (see Figure 6). This solution
allows for the use of SPARQL constructs related to named graphs (FROM and USING
clauses and graph management operations) to more easily select and manipulate traces.

5.2 Data Population

Process model data is produced at design time and can be stored once per all, while
a trace update operation must occur every time a new piece of information about a
running process is captured. Each trace update operation requires either the creation or
the modification of the named graph of the trace. While these modifications are often
monotonic (i.e., only new data is added), for the sake of generality we consider them
as non-monotonic. In particular, non-monotonicity may arise when only a subset of
process activities are observed and recorded in a trace (e.g., only e-mail exchanges are

7 http://www.ontotext.com/owlim
8 http://virtuoso.openlinksw.com/

http://www.ontotext.com/owlim
http://virtuoso.openlinksw.com/
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recorded among human activities). In these cases, missing information could be auto-
matically reconstructed in an approximate way based on known data. This could imply
the possibility of a revisitation of reconstructed information as new data is observed.

An obvious solution to populate the central triplestore would be to directly access
and modify it with collected data, relying on its reasoning capabilities for inferring
implicit triples. This approach is however inefficient, as it overloads a single system
with querying and reasoning tasks, the latter being particularly expensive due to the
need to retract inferred triples that are no longer valid after a non-monotonic update.
A better solution can be devised by considering that traces are largely independent one
to each other, as they describe different and unrelated instances of documents, process
activities and other execution events. This means that no meaningful knowledge can
be inferred by combining two different traces,9 and thus inference over traces can be
computed by processing each trace in isolation (together with the process model) and
merging all the inferred triples that have been separately computed.

The trace independence assumption leads naturally to the processing scheme shown
in Figure 6. When the system is first started, the process model (PM) is read and the
inference machinery of a temporary inferencing triplestore is employed to augment it
with inferred triples (PM’), producing an augmented process model that is stored once
per all in the central triplestore. Whenever a trace update operation is triggered, the
trace data (T) is fed into another temporary inferencing triplestore together with the
TBox definitions of the augmented process model, producing an augmented trace con-
taining inferred triples (T’). The augmented trace is then extracted from the inferencing
triplestore, filtered to remove triples of the augmented process model (as already stored)
and triples that are not needed by queries10 (for efficiency reasons), and finally stored
in a trace-specific named graph in the central triplestore.

A first benefit of the described scheme is a clear separation of reasoning and query-
ing through the use of separate triplestores, which can be chosen and optimized based
on each particular task. To that respect, in our implementation we use OWLIM-Lite for
both tasks, configuring OWL 2 RL inference and no persistence when used as an infer-
encing triplestore, and disabling inference and increasing index sizes when using it as
the central triplestore. A second and more important benefit, however, is the possibility
to parallelize trace update operations using multiple worker threads and/or machines,
thus enabling massive scalability. The only ‘bottleneck’ is represented by the storage of
processed data in the central triplestore, but this operation is very efficient as it does not
involve any reasoning or inference retraction.

5.3 Data Querying

As shown in Figure 6, SPARQL queries by business analysts are targeted at the central
repository, where they are evaluated against the integrated knowledge base built and

9 We refer here to inference at the ABox level (the trace data) based on the OWL 2 semantics.
The limited overlapping in terms of instances (e.g., documents) among traces means that lit-
tle or nothing about an instance in a trace can be inferred in OWL 2 exploiting knowledge
about unrelated instances in other traces. This does not exclude, however, the possibility to
’infer’ useful knowledge by comparing or aggregating trace data in a non-OWL setting, a task
supported by the querying facilities of our approach.

10 In detail, we drop unnecessary x owl:sameAs x and x rdf:type owl restriction bnode triples.
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augmented with inferred triples as previously described. As an example, Listing 1 re-
ports the formulation in SPARQL of query Q.4, whose results are shown in Table 1. In
general, we found analytical queries to greatly benefit from SPARQL 1.1 aggregates,
but SPARQL support for managing dates and other temporal information (e.g., for com-
puting time differences) resulted quite inadequate. We addressed this problem by defin-
ing a suite of user-defined SPARQL functions that can be used by analysts, leveraging
the extension mechanisms provided by Sesame,11 though this solution is generally not
portable across different triplestore implementations.

PREFIX bpmn : <h t t p : / / dkm . f bk . eu / i ndex . php / BPMN Ontology #>
PREFIX domain : <h t t p s : / / dkm . f bk . eu / #>
PREFIX t r a c e : <h t t p : / / dkm . f bk . eu / Tr ace O nt o l ogy #>
PREFIX t t r a c e : <h t t p : / / dkm . f bk . eu / TTr ace O nt o l ogy #>
PREFIX f n : <h t t p : / / s h e l l . f bk . eu / c u s t o m f u n c t i o n s />

SELECT ? o f f i c e n a m e ? a c t i v i t y n a m e (COUNT( ? t ) AS ? e x e c u t i o n s ) (AVG( ? t ) AS ? t ime )
WHERE {

[ ] a bpmn : b u s i n e s s p r o c e s s d i a g r a m , domain : B i r t h Managem en t ; # r e t r i e v e p r o c e s s
bpmn : h a s b u s i n e s s p r o c e s s d i a g r a m p o o l s [ # and p u b l i c o f f i c e

bpmn : h a s p o o l p a r t i c i p a n t r e f [ # p a r t i c i p a n t s f o r
a domain : P u b l i c O f f i c e ; # each poo l o f t h e
bpmn : h a s p a r t i c i p a n t n a m e ? o f f i c e n a m e ] ; # b i r t h management

bpmn : h a s p o o l p r o c e s s r e f ? p r o c e s s ] . # p r o c e s s diagram

? gateway1 a bpmn : gateway . # r e q u i r e t h e
? gateway2 a bpmn : gateway . # p r e s e n c e o f two
? a c t i v i t y a bpmn : a c t i v i t y . # ga t ew ays and

# an a c t i v i t y i n
? p r o c e s s bpmn : h a s p r o c e s s g r a p h i c a l e l e m e n t s # t h e p a r t i c i p a n t

? gateway1 , ? gateway2 , ? a c t i v i t y . # p r o c e s s

? gateway1 # r e q u i r e two p a t h s
bpmn : i s d i r e c t l y c o n n e c t e d v i a s e q u e n c e f l o w ? gateway2 ; # be t w een ga t ew ays :
bpmn : i s c o n n e c t e d v i a s e q u e n c e f l o w ? a c t i v i t y . # − a d i r e c t pa t h

# − an i n d i r e c t
? a c t i v i t y t t r a c e : a s s o c i a t e d t o ? A c t i v i t y ; # pa t h p a s s i n g

bpmn : h a s f l o w o b j e c t n a m e ? a c t i v i t y n a m e ; # t hrough t h e
bpmn : i s c o n n e c t e d v i a s e q u e n c e f l o w ? gateway2 . # a c t i v i t y

OPTIONAL { # i f t h e a c t i v i t y
? a c t i v i t y e x e c u t i o n a ? A c t i v i t y ; # was performed ,
t r a c e : i n i t i a l s t a r t d a t e T i m e ? s t a r t ; # g e t i t s e x e c u t i o n
t r a c e : f i n a l e n d d a t e T i m e ? end . # t i m e u s i n g t h e
BIND ( ( f n : timestamp ( ? end ) − f n : timestamp ( ? s t a r t ) ) AS ? t ) # custom f u n c t i o n

} # f n : t i m es t am p
}
GROUP BY ? o f f i c e n a m e ? a c t i v i t y n a m e

Listing 1. SPARQL formulation of query Q.4: “Number of cases and avg. time spent for
optional activities by public offices involved in the birth management procedure”.

Table 1. Query results

office name activity name executions time
“SAIA” “Verifica CF” 86 501.097 s
“SAIA” “Genera CF SAIA” 15009 270.122 s
“Comune” “Genera CF Comune” 21000 485.541 s
“APSS” “Genera CF APSS” 8315 418.327 s

11 http://www.openrdf.org/

http://www.openrdf.org/
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6 Evaluation

In this section we report on the evaluation of the proposed model and architecture on a
real case study – the birth management scenario –investigated in the scope of the ProMo
project, with the goal to assess the usefulness and scalability of the approach.

In the above mentioned scenario:

– P is a BPMN process model (see Figure 1) containing 4 pools, 19 activities, 11
domain objects, 19 events, 14 gateways, 54 sequence flows and 6 message flows;

– K is a domain ontology (an extract is shown in Figure 3) containing 5 properties and
379 classes covering 28 activities and 12 data objects such that, on average, each
data object contains 25 simple data fields organized in a 4 levels-depth structure;

– T is a set of execution traces automatically generated based on the aforementioned
P and K and a few samples of real traces (that we can not directly use as containing
sensitive personal data); on average each trace covers 10 events with associated data
objects, and is encoded with 2040 triples from which 1260 triples can be inferred.

In order to assess the approach in real contexts, we selected and analyzed 8 queries
among those that business analysts involved in the ProMo project were interested to
investigate, with the selection driven by our perception about their importance for busi-
ness analysts as well as by the goal to cover as much variety as possible (e.g., type of
query result, multiple VS single trace analysis) so to increase their representativeness.
Queries and their analysis are reported in Table 2. For each query, the columns corre-
sponding to the component(s) (P, K or T) involved by the query, are marked. Similarly,
the inference column (Inf.) is marked when the query demands for reasoning support.
The table suggests that all the three dimensions explored by the proposed approach, as
well as the inference support, are indeed needed to answer business analysts’ queries,
thus suggesting the usefulness of the proposed approach in real business scenarios.

Concerning scalability, we mainly focus on the storing and querying aspects. Assum-
ing the data rates of the Italian birth management scenario at national level (Section 2),
we investigated a one day, one week and one month loads (respectively ∼1500,∼10500
and ∼42000 traces). Table 3 shows the corresponding performance figures, measured
on a quad-core Intel Core I7 860 workstation with 16 GB of memory. For each load, we

Table 2. Query analysis

Query Description P K T Inf.
Q.1 Average time per process execution spent by the municipality of Trento X
Q.2 Total number of Registration Request documents filled from Jan 1st, 2014 X X
Q.3 Percentage of times in which the flow followed is the one which passes

X X
first through the APSS pool and then through the municipality one

Q.4 Number of cases and average time spent by each public office involved in
X X X X

the birth management procedure for executing optional activities
Q.5 Number of times the municipality sends to SAIA a request without FC X X X X
Q.6 Last event of trace TRACEID X
Q.7 Average time spent by trace TRACEID X
Q.8 Does trace TRACEID go through activity labeled “Present at the hospital”? X X
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Table 3. Scalability Results

Traces
Stored triples Storing Querying

Asserted Inferred Total Throughput Total time Time Q.4 Time Q.8
1500 3062349 1895471 4957820 37.89 trace/min 2426.88 s 324 ms 41.4 ms

10500 21910269 13057464 34967773 37.41 trace/min 16851.21 s 881.4 ms 26.2 ms
42000 87503538 52045200 139548738 37.34 trace/min 67537.95 s 4510.0 ms 105.0 ms

report the number of stored triples (asserted, inferred, total), the storing time (through-
put in traces per minute and total population time) and the average evaluation times for
queries Q.4 and Q.8 (from Table 2), which are representative, respectively, of analytical
and non-selective queries and of very specific and selective queries.

Overall, the system is able to manage a throughput of about 37 traces per minute,
which is perfectly adequate with the Italian scenario (a newbirth per minute). More
significantly, the throughput is largely independent of the load, demonstrating how the
choice to decouple inference for each trace allows to efficiently cope with increasingly
large amounts of data. Finally, the time required for performing a query as complex as
Q.4, which involves all the dimensions and exploits inferred knowledge (e.g., for iden-
tifying public offices and determining whether an activity is optional), is still acceptable
for the specific context and for an online analysis of data. Of course, the more the repos-
itory grows, the slower the answer is. Nevertheless, queries concerning the whole set of
data collected in a month, can be managed in times of the order of seconds.

7 Related Works

Approaches adding formal semantics to process models (also defined in the BPMN
notation) are not new in the literature [1,2,3,4,5,6]. We can divide the existing proposals
into two groups: (1) those adding semantics to specify the dynamic behavior exhibited
by a business process [1,2,3], and (2) those adding semantics to specify the meaning of
the entities of a Business Process Diagram (BPD) in order to improve the automation
of business process management [4,5,6]. The latter are more relevant in our context, as
they focus on models, rather than the execution semantics of the processes.

Thomas and Fellmann [5] consider the problem of augmenting EPC process models
with semantic annotations. They propose a framework which joins process model and
ontology through properties (such as the “semantic type” of a process element). This
enrichment associates annotation properties to the process instances. In the SUPER
project [4], the SUPER ontology is used for the creation of semantic annotations of both
BPMN and EPC process models in order to support automated composition, mediation
and execution. In [1], semantic annotations are introduced for validation purposes, i.e.
to verify constraints about the process execution semantics.

In our previous work [6,9], we enrich process models with semantic knowledge and
establish a set of subsumption (aka subclass) relations between the classes of two on-
tologies: one formalizing the notation used (the BPMN meta-model) and another de-
scribing the specific domain of the process model. This way we provide an ontology
integration scheme, based on hierarchical ontology merge, that supports automated ver-
ification of semantic constraints defining the correctness of semantic process annota-
tions as well as of structural constraints [6].
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Only few works (e.g., [15,8,16]) in the context of the SUPER project have tried to
combine static and procedural business level aspects (very close to the ones we con-
sider) with the execution data. Nevertheless either they try to provide a comprehen-
sive Semantic Business Process Management framework (e.g., [15]) or, when explicitly
dealing with process monitoring and analysis [8], they mainly focus on the usage of
semantic technologies to provide domain-independent solutions to process monitoring,
which, instantiated by concrete organizations in their specific domain, aims at automate
the reconciliation between the business and the data level. In this work, semantic tech-
nologies are exploited to integrate the three investigated dimensions, thus supporting
process analysis by means of inference and querying.

Finally, there exist works dealing with the formalization of abstract frameworks for
describing process executions. For instance, the standardized PROV-O [17] ontology,
whose aim is providing a formalization for representing and interchanging provenance
information generated in different systems, provides a set of classes (and relationships
and axioms) to be instantiated with activity executions and artefacts, similarly to the
Trace Ontology. Through the opportune mapping between PROV-O and Trace Ontol-
ogy classes (e.g., the PROV-O activity and the Trace Ontology Traceable Flow

Object), it would be possible to align the proposed model to PROV-O and thus allow
the consumption of Trace Ontology data by PROV-O aware applications.

The problem of exploiting the advantages deriving from semantic-based approaches
with large amounts of data has been widely investigated in the last years. One of the
most known and used solutions is the Ontology Based Data Access [18] (OBDA).
OBDA aims at providing access to data stored in relational heterogeneous data sources
through the mediation of a semantic layer in the form of an ontology, that provides a
high level conceptual view of the domain of interest [19]. Among the available efficient
query answering reasoners we can find MASTRO-i [18] and the most recent Quest [20].

Triplestore solutions like Virtuoso, Owlim, Bigdata and others provide similar query
answering functionalities though a different mechanism. Among the available Seman-
tic Web technologies we chose to use a semantic triplestore solution. Indeed, besides
allowing us to address the semantic as well as the big data requirements, it also allows
us to update the model structure in a lightweight way. Being based on triples, it does
not strongly constraint the meta-level, thus leaving the flexibility to change the model
in an agile way, without loosing the data already stored.

8 Conclusion

In this paper we show how to combine different orthogonal dimensions and exploit rea-
soning services in order to expose interesting analysis on organizations’ execution data
in business terms. In detail, static domain knowledge, procedural domain knowledge
and execution data have been plugged into a semantic solution and Semantic Web tech-
nologies have been exploited to cope with large quantities of data. The approach has
been applied to an industrial case study investigated in the context of the ProMo project
for the modeling, monitoring and analysis of Italian Public Administration procedures.
In the future we plan to further investigate the reasoning capabilities that semantic tech-
nologies can offer, also in terms of user-defined rule-sets.
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Abstract. RDF streams are sequences of timestamped RDF statements
or graphs, which can be generated by several types of data sources (sen-
sors, social networks, etc.). They may provide data at high volumes and
rates, and be consumed by applications that require real-time responses.
Hence it is important to publish and interchange them efficiently. In this
paper, we exploit a key feature of RDF data streams, which is the regu-
larity of their structure and data values, proposing a compressed, efficient
RDF interchange (ERI) format, which can reduce the amount of data
transmitted when processing RDF streams. Our experimental evaluation
shows that our format produces state-of-the-art streaming compression,
remaining efficient in performance.

1 Introduction

Most of the largest RDF datasets available so far (e.g. Bio2RDF,1 LinkedGeo-
Data,2 DBpedia3) are released as static snapshots of data coming from one
or several data sources, generated with some ETL (Extract-Transform-Load)
processes according to scheduled periodical releases. That is, data are mostly
static, even when they contain temporal references (e.g. the Linked Sensor Data
dataset, which contains an historical archive of data measured by environmen-
tal sensors). Typical applications that make use of such datasets include those
performing simulations or those training numerical models.

In contrast, some applications only require access to the most recent data, or
combine real-time and historical data for different purposes. In these cases a dif-
ferent approach has to be followed for RDF data management, and RDF streams
come into play. RDF streams are defined as potentially unbounded sequences of
time varying RDF statements or graphs, which may be generated from any type
of data stream, from social networks to environmental sensors.

Several research areas have emerged around RDF streams, e.g. temporal rep-
resentation in RDF [12,6,11], or RDF stream query languages and processing
engines (C-SPARQL [2], SPARQLStream and morph-streams [4], CQELS Cloud
[15], Ztreamy [1]). The recently-created W3C community group on RDF Stream

1 http://bio2rdf.org/.
2 http://linkedgeodata.org/.
3 http://www.dbpedia.org/.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 244–259, 2014.
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Processing is working on the provision of “a common model for producing, trans-
mitting and continuously querying RDF Streams”.4

In this paper, we focus on the efficient transmission of RDF streams, a nec-
essary step to ensure higher throughput for RDF Stream processors. Previous
work on RDF compression [9,14] shows important size reductions of large RDF
datasets, hence enabling an efficient RDF exchange. However, these solutions
consider static RDF datasets, and need to read the whole dataset to take ad-
vantage of data regularities. A recent proposal, RDSZ [10], shows the benefits
of applying the general-purpose stream compressor Zlib [8] to RDF streams,
and provides a compression algorithm based on the difference of subject groups
(provided in Turtle [17]), with some gains in compression (up to 31% w.r.t. Zlib).

Our work sets on the basis of RDSZ and exploits the fact that in most RDF
streams the structural information is well-known by the data provider, and the
number of variations in the structure are limited. For instance, the information
provided by a sensor network is restricted to the number of different measured
properties, and in an RDF context the SSN ontology [5] will be probably used for
representing such data. Furthermore, given that “regularities” are also present
in very structured static datasets (e.g. statistical data using the RDF Data
Cube Vocabulary [7]), our approach may be also applicable to those datasets.
Thus, our preliminary hypothesis states that our proposed RDF interchange
format can optimize the space and time required for representing, exchanging,
and parsing RDF data streams and regularly-structured static RDF datasets.

In this paper, we propose a complete efficient RDF interchange (ERI) format
for RDF streams. ERI considers an RDF stream as a continuous flow of blocks
(with predefined maximum size) of triples. Each block is modularized into two
main sets of channels to achieve large spatial savings:
– Structural channels: They encode the subjects in each block and, for each

one, the structural properties of the related triples, using a dynamic dictio-
nary of structures.

– Value channels: They encode the concrete data values held by each predicate
in the block in a compact fashion.

We also provide a first practical implementation with some decisions regard-
ing the specific compression used in each channel. An empirical evaluation over
a heterogeneous corpora of RDF streaming datasets shows that ERI produces
state-of-the-art compression, remaining competitive in processing time. Similar
conclusions can be drawn for very regular datasets (such as statistical data) and
general datasets in which the information is strongly structured.

Our main contributions are: (i) the design of an efficient RDF interchange
(ERI) format as a flexible, modular and extensible representation of RDF streams;
(ii) a practical implementation for ERI which can be tuned to cope with specific
dataset regularities; and (iii) an evaluation that shows our gains in compactness
w.r.t. current compressors, with low processing overheads.

The rest of the paper is organized as follows. Section 2 reviews basic foun-
dations of RDF streaming and compression. Our approach for efficient RDF

4 http://www.w3.org/community/rsp/.

http://www.w3.org/community/rsp/.
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interchange (ERI) is presented in Section 3, as well as a practical deployment for
ERI encoding and decoding. Section 4 provides an empirical evaluation analyzing
compactness and processing efficiency. Finally, Section 5 concludes and devises
future work and application scenarios.

2 Background and Related Work

A key challenge for stream processing systems is the ability to consume large vol-
umes of data with varying and potentially large input rates. Distributed stream
processing systems are a possible architectural solution. In these systems, the
circulation of data between nodes takes an amount of time that depends on
parameters like data size, network bandwidth, or network usage, among others.
Hence it is crucial to minimize data transmission time among processing nodes.

To reach this goal, our work focuses on RDF stream compression techniques.
RDF compression is an alternative to standard compression such as gzip. It
leverages the skewed structure of RDF graphs to get large spatial savings. The
most prominent approach is HDT [9], a binary format that splits and succinctly
represents an RDF dataset with two main components: the Dictionary assigns
an identifier (ID) to all terms in the RDF graph with high levels of compression,
and the Triples uses the previous mapping and encodes the pure structure of
the underlying RDF graph. HDT achieves good compression figures while pro-
viding retrieving features to the compressed data [9]. However, these are at the
cost of processing the complete dataset and spending non-negligible processing
time. The same applies to other recent RDF compression approaches based on
inferring a grammar generating the data [14] or providing other dictionary-based
compression on top of MapReduce [19].

Streaming HDT [13] is a deviation from HDT that simplifies the associated
metadata and restricts the range of available dictionary IDs. Thus, the scheme
is a simple dictionary-based replacement which does not compete in compres-
sion but allows operating in constrained devices. RDSZ [10] is the first specific
approach for RDF streaming compression. RDSZ takes advantage of the fact
that items in an RDF stream usually follow a common schema and, thus, have
structural similarities. Hence it uses differential encoding to take advantage of
these similarities, and the results of this process are compressed with Zlib to
exploit additional redundancies. Experiments show that RDSZ produces gains
in compression (17% on average) at the cost of increasing the processing time.

The increasing interest on RDF compression over streaming data has also
been recently highlighted by RDF stream processing systems such as CQELS
Cloud [15] and Ztreamy [1]. The first one uses a basic dictionary-based approach
to process and move fixed-size integers between nodes. The latter exploits the
Zlib compressor with similar purposes. In addition, it is also relevant to detect
trends in data, extract statistics, or compare historic data with current data
to identify anomalies, although historical data management is not considered in
most of stream processing systems [16]. A potential use case of RDF compression
may be the integration of historical data and real-time data streams.
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Fig. 1. ERI processing model

3 Efficient RDF Interchange (ERI) Format

The ERI format is a compact RDF representation designed to leverage the in-
herent structural and data redundancy in RDF streams. In the following, we
introduce the basic concepts behind the ERI format, and we present a practical
implementation for encoding and decoding RDF data.

3.1 Basic Concepts

In ERI, we consider the generic processing model depicted in Figure 1. In this
scheme, RDF data, potentially in the form of a data stream, is encoded or
decoded to ERI, resulting in a compressed data stream. We refer to an ERI
processor as any application able to encode such RDF data to ERI or to decode
the ERI compressed stream (defined below) to make the RDF data accessible. A
processor mainly leverages on two information sets to improve compactness: (i)
the Structural Dictionary and (ii) the Presets, defined as follows.

The Structural Dictionary holds a dynamic catalog of all different struc-
tural patterns found for a given set of triples called Molecules.

Definition 1 (RDF (general) molecule). Given an RDF graph G, an RDF
molecule M ⊆ G is a set of triples {t1, t2, · · · , tn}.

Molecules are the unit elements for encoding; each molecule will be codified as
its corresponding identifier (ID) in the dictionary of structures and the concrete
data values held by each predicate.

The most basic (but inefficient) kind of grouping is at the level of triples (one
group per triple), i.e. having as many molecules as the total number of triples in
the RDF data. In this case, the Structural Dictionary will assign an ID to each
structure which is just the predicate in the triple. Trying to set up larger groups
sharing regularities is much more appropriate.

A straightforward approach is to consider the list of all triples with the same
subject (similar to abbreviated triple groups in Turtle [17]). We take this group-
ing as the method by default, then managing RDF subject-molecules:

Definition 2 (RDF subject-molecule). Given an RDF graph G, an RDF
subject-molecule M ⊆ G is a set of triples {t1, t2, · · · , tn} in which subject(t1) =
subject(t2) = · · · = subject(tn).
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Fig. 2. Example of molecules and their Structural Dictionary

Note that an RDF stream can be seen as a sequence of (potentially not dis-
joint) RDF subject-molecules5. Figure 2 illustrates two molecules in a sequence
of weather sensor data and their entry in the Structural Dictionary. This data
excerpt (inspired by the data examples in SRBench [20]) represents tempera-
ture measures of a sensor at two sampling times. As can be seen, the lists of
predicates is exactly the same for both molecules. In addition, we can observe
regularities in certain property values (in different color). In particular, the val-
ues for rdf:type, om-owl:observedProperty and om-owl:procedure are exactly the
same, and will be repeated throughout the data stream for all the air tempera-
ture observations of the same sensor. We call this type of predicates producing
massive data repetitions, discrete predicates. Thus, we avoid these repetitions
and save space codifying the concrete values for discrete predicates as part of the
structural patterns, as shown in Figure 2 (right). In this example, the structure
in the dictionary is encoded as the list of related predicates and, for each one,
it counts the number of objects for the predicate and the aforementioned fixed
property value if the predicate is discrete.

We assume that discrete predicates can be easily identified by streaming data
providers and set up before encoding, or they can be statistically detected at
run time. In any case, this kind of information that must be shared between
encoders and decoders, is kept in the information set called Presets. Presets
include all the configuration and compression-oriented metadata supplied by
the data provider or inferred at run time. We distinguish between (a) mandatory
features in Presets, which include the aforementioned set of discrete predicates
and the selected policy for grouping triples into molecules, and (b) application-
specific configurations. The latter opens up the format for extensions as long as
the concrete application clearly states the decisions and available configurations.
For instance, specific features could include common prefixes, suffixes or infixes
in URIs and BNodes, or a set of common datatypes in some concrete predicates.

5 For simplicity, we will use the term molecules hereinafter, assuming that they are
subject-molecules by default.
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3.2 ERI Streams

At a high level, an ERI Stream is a sequence of contiguous blocks of molecules,
as depicted in Figure 3. That is, ERI first splits the incoming RDF data into
contiguous blocks of a maximum predefined blockSize, measured in number of
triples and set up in the encoder. Then, the molecules (groups) within each
block are identified according to the established grouping policy. Note that the
grouping by default could slightly alter the original order of triples once it groups
triples by subject. Other grouping policies may be established for those scenarios
with specific ordering needs.

ERI follows an encoding procedure similar to that of the Efficient XML Inter-
change (EXI) format [18]: each molecule is multiplexed into channels:

Definition 3 ((general) Channel). A channel is a list of lower entropy items
(similar values), which is well suited for standard compression algorithms.

The idea is to maintain a channel per different type of information, so that a
standard compressor can be used in each channel, leveraging its data regularities
to produce better compression results. In ERI we distinguish between two types
of channels: (i) structural channels and (ii) value channels.

Structural channels hold the information of the structure of the molecules
in the block and keep the Structural Dictionary updated. We define the following
high-level minimum channels:
– Main Terms of molecules: In the grouping by default, it states the subject

of the grouping. Other kinds of groupings may assign different values.
– ID-Structures: It lists the ID of the structure of each molecule in the block.

The ID points to the associated structural entry in the Structural Dictionary.
– New Structures: It includes new entries in the Structural Dictionary.
Value channels organize the concrete values in the molecules of the block

for each non-discrete predicate. In short, ERI mainly considers one channel per
different predicate, listing all objects with occurrences in the molecules related
to it. Having property values of a predicate grouped together may help parsers
to directly retrieve information corresponding to specific predicates.

The complete ERI stream consists of an ERI header followed by an ERI body,
as shown in Figure 3 (bottom). The ERI header includes the identification of the
stream and the initial Presets, as previously described. The ERI body carries
the content of the streaming representing each block as (i) a set of metadata
identifying the block and updating potential changes in Presets, and (ii) its
compressed channels, using standard compression for each specific channel.

The decoding process is the exact opposite: the stream body is decompressed
by channels, and demultiplexed into blocks containing the molecules.

3.3 Practical ERI Encoding and Decoding

Now we describe our current deployment for ERI encoding and decoding. For
simplicity, we obviate citing the representation of metadata as it is relatively
easy to define a key set of keywords, and we focus on channel representations.
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Fig. 3. Overview of the ERI format

Figure 4 illustrates our practical decisions over the previous example in Figure
2. The figure represents the structural and value channels of the data excerpt, as
well as the potential standard compression that could be used to produce each
compressed channel. Regarding structural channels, we first follow a straightfor-
ward approach for Main Terms of Molecules and list main terms (subjects) in
plain. Advanced representations could consider the usage of an additional dic-
tionary mapping terms to identifiers, and using the corresponding identifier to
refer to a main term previously seen in the input streaming data. However, our
experience with streaming data suggests that main terms are rarely repeated
because they refer to a certain timestamp.

The ID-Structures channel lists integer IDs representing the entry in the Struc-
tural Dictionary. New entries are identified by means of an additional channel
called New Structure Marker. This channel has a bit for each ID in the ID-
Structures channel: a 0-bit states that the corresponding ID is already in the
Structural Dictionary, whereas a 1-bit shows that the ID points to a new entry
that is retrieved in the New Structures channel. In Figure 4, the first molecule
is related to the structure having the ID-30, which is marked as new. Then, the
concrete structure can be found in New Structures. Similarly to the example
in Figure 2, we codify each dictionary entry as the predicates in the structure,
the number of objects for each predicate and the concrete property values for
discrete predicates. To improve compactness in the representation we use a dic-
tionary of predicates, hence the predicate in the structure is not a term but an
ID pointing to the predicate entry in this dictionary. If there is a new predicate
never seen before in a block, it is listed in an additional New Predicates channel,
as shown in Figure 4.

The decoder will maintain a pointer to the next entry to be read in New Struc-
tures (and increment it after reading), and to hold and update the dictionary
of structures and predicates. Given that the number of predicates is relatively
low in RDF datasets, we consider a consecutive list of IDs in the predicate dic-
tionary for the encoder and decoder. For the dictionary of structures, we use
a Least Recently Used (LRU) policy for the dictionary in the encoder. That is,
whenever the maximum capacity is reached, the LRU entry is erased and the
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Fig. 4. Example of ERI channels

ID is available to encode the next entry, which must be marked as new in the
New Structure Marker channel. Therefore, the decoder can make use of simple
hashing for the dictionary, as it always knows if the entry is new.

Regarding value channels, Figure 4 illustrates several options. The channel
ID-pred2 storing the values of the second predicate (rdfs:label) simply lists all
the values. In contrast, ID-pred5 and ID-pred6 make use of a dictionary of ob-
jects. This case is similar to the dictionary of structures: the channels hold the
ID of the entry, and an associated list of bits (New Object Marker ID-pred5 and
New Object Marker ID-pred6, respectively) describes if this corresponds to a
new entry in the dictionary. The ERI processor maintains an object dictionary
per predicate. This decision produces shorter IDs per predicate w.r.t. maintain-
ing one general dictionary of objects. In contrast, the processor manages more
dictionaries, although the number of different predicates always remains pro-
portionally low, and so the number of dictionaries. In our implementation we
maintain one channel (New Terms) with all the new terms in the dictionaries.
As this list is coordinated with the IDs, there are no overlaps; the decoder must
keep a pointer to the next entry to be decoded when a 1-bit in a marker indicates
that there is a new term.

Finally, ID-pred7 also holds the object values directly, as in ID-pred2. How-
ever, as shown in the figure, it extracts the datatype of all values (xsd:float).
We assume that all property values for a given predicate are of the same kind.
In practice, this means that (i) every channel holds whether URIs/BNodes or
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Table 1. Description of the evaluation framework

Category Dataset Triples
Nt Size

Subjects Predicates Objects
(MB)

Streaming

Mix 93,048 12 17,153 89 36,279
Identica 234,000 25 56,967 12 116,065
Wikipedia 359,028 33 119,676 3 215,382
AEMET-1 1,018,815 133 33,095 59 5,812
AEMET-2 2,788,429 494 398,347 7 403,824
Petrol 3,356,616 485 419,577 8 355,122
Flickr Event Media 49,107,168 6,714 5,490,007 23 15,041,664
LOD Nevada 36,767,060 7,494.5 8,188,411 10 8,201,935
LOD Charley 104,737,213 21,470 23,306,816 10 23,325,858
LOD Katrina 172,997,931 35,548 38,479,105 10 38,503,088

Statistics

Eurostat migr reschange 2,570,652 467 285,629 16 2,376
Eurostat tour cap nuts3 2,849,187 519 316,576 17 47,473
Eurostat avia paexac 66,023,172 12,785 7,335,909 16 235,253

General
LinkedMDB 6,147,996 850 694,400 222 2,052,959
Faceted DBLP 60,139,734 9,799 3,591,091 27 25,154,979
Dbpedia 3-8 431,440,396 63,053 24,791,728 57,986 108,927,201

literals and (ii) all literal values of a given predicate are of the same data
type (float, string, dateTime, etc.). We refer to this assumption as consistent
predicates. Although this is common for data streams and other well-structured
datasets, it is more difficult to find general datasets in which this assumption
remains true. Thus, we set a parameter in Presets to allow or disallow consistent
predicates.

Regarding potential channel compressions, Figure 4 includes some standard
compression techniques and tools for each type of data. In practice, to simplify
the following evaluation, our ERI processor uses Zlib whenever textual informa-
tion is present, i.e. in the main terms of molecules, new structures, new predicates
and new terms channels. As for those channels managing IDs, each ID is encoded
with log(n) bits, n being the maximum ID in the current channel.

4 Evaluation

We implemented a first prototype of an ERI processor in Java, following the
aforementioned practical decisions. We used some tools provided by the HDT-
Java library 1.1.26, and the default Deflater compressor provided by Zlib. Tests
were performed on a computer with an Intel Xeon X5675 processor at 3.07
GHz and 48 GB of RAM, running Ubuntu/Precise 12.04.2 LTS. The network is
regarded as an ideal communication channel for a fair comparison.

4.1 Datasets

Table 1 lists our experimental datasets7, reporting: number of triples, size in N-
Triples (Nt herinafter) format, and the different number of subjects, predicates

6 https://code.google.com/p/hdt-java.
7 We have set a Research Object with all the datasets as well as the prototype source
code at http://purl.org/net/ro-eri-ISWC14 .

https://code.google.com/p/hdt-java.
http://purl.org/net/ro-eri-ISWC14
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and objects. We choose representative datasets based on the number of triples,
topic coverage, availability and, if possible, previous uses in benchmarking.

We define three different categories of datasets: streaming (10), statistics (3)
and general (3). Obviously, Streaming datasets are our main application focus;
the first six datasets in Table 1 have been already used in the evaluation of RDSZ
[10] and correspond to RDF messages in the public streamline of a microblog-
ging site (Identica), Wikipedia edition monitoring (Wikipedia), information from
weather stations in Spain (AEMET-1 andAEMET-2), credit card transactions in
petrol stations (Petrol) and a random mix of these datasets (Mix). We complete
the corpora with information of media events (e.g. concerts and other perfor-
mances) in Flickr (Flickr Event Media), and weather measurements of a blizzard
(LOD Nevada) and two hurricanes (LOD Charley and LOD Katrina) extracted
from the Linked Observation Data dataset which is the core of SRBench [20].

Statistical datasets are the prototypical case of other (non-streaming)
data presenting clear regularities that ERI can take advantage of. We
consider three datasets8 (Eurostat migr-reschange, Eurostat tour cap nuts3 and
Eurostat avia paexac) using the RDF Data Cube Vocabulary [7], providing pop-
ulation, tourism and transport statistics respectively.

Finally, we experiment with general static datasets, without prior assump-
tions on data regularities. We use well-known datasets in the domains of films
(LinkedMDB) and bibliography (Faceted DBLP), as well as Dbpedia 3-8.

4.2 Compactness Results

ERI allows multiple configurations for encoding, providing different space/time
tradeoffs for different scenarios. In this section we focus on evaluating three dif-
ferent configurations: ERI-1K (blocksize - 1024), ERI-4k (blocksize - 4096) and
ERI-4k-Nodict (blocksize - 4096). ERI-1K and ERI-4K include a LRU dictionary
for each value channel whereas ERI-4k-Nodict does not. We allow the consistent
predicates option (i.e. we save datatype tag repetitions) in all datasets except
for the mix dataset and all the general category in which the aforementioned
assumption is not satisfied. In turn, we manually define a set of common dis-
crete predicates in Presets. Finally, according to previous experiences [10], the
blockSize selection introduces a tradeoff between space and delays: the bigger
the blocks, the more regular structures can be found. This implies better com-
pression results, but with longer waiting times in the decoder. Based on this, we
select two configurations, 1K and 4K triples providing different tradeoffs.

We compare our proposal with diverse streaming compression techniques.
Table 2 analyzes the compression performance providing compression ratios as
Compressed size
Original size , taking Nt as the Original size. First, we test standard deflate

over Nt (Nt Deflate-4K), flushing the compression internal buffer each 4096
triples, and over the Turtle (TTL Deflate) serialization9 in the best scenario of
compressing the complete dataset at once. We also test the RDSZ approach,

8 Taken from Eurostat-Linked Data, http://eurostat.linked-statistics.org/.
9 For the conversion process we use Any23 0.9.0, http://any23.apache.org/.

http://eurostat.linked-statistics.org/.
http://any23.apache.org/
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Table 2. Compression results on the different datasets

Dataset
Compression Ratio

Nt Deflate-4K TTL Deflate ERI-4k ERI-4k-Nodict RDSZ HDT-4K HDT

Mix 8.2% 5.1% 5.2% 5.1% 4.9% 10.6% 7.6%
Identica 11.0% 8.5% 8.4% 8.0% 8.7% 16.4% 13.6%
Wikipedia 10.5% 7.5% 7.5% 7.7% 7.2% 13.4% 10.9%
AEMET-1 4.1% 1.5% 1.2% 0.8% 1.3% 4.4% 2.9%
AEMET-2 2.8% 1.1% 1.1% 1.1% 1.1% 3.8% 3.8%
Petrol 6.5% 3.8% 2.9% 2.6% 3.9% 9.9% 5.2%
Flickr Event Media 9.0% 6.9% 6.6% 6.3% 6.6% 14.4% 7.2%
LOD Nevada 3.2% 1.3% 1.5% 1.3% 1.2% 4.9% 3.2%
LOD Charley 3.1% 1.3% 1.4% 1.2% 1.2% 4.9% 3.2%
LOD Katrina 3.1% 1.3% 1.4% 1.2% 1.2% 5.0% 3.2%
Eurostat migr. 2.1% 0.5% 0.5% 0.5% - 2.6% 2.5%
Eurostat tour. 2.2% 0.6% 0.5% 0.6% - 2.6% 2.5%
Eurostat avia paexac 2.2% 0.6% 0.6% 0.6% - 3.2% 2.6%
LinkedMDB 4.7% 2.9% 3.1% 2.6% - 9.5% 5.9%
Faceted DBLP 5.4% 3.7% 4.0% 3.5% - 11.3% 9.2%
Dbpedia 3-8 8.0% 6.4% 8.0% 7.5% - 16.0% 8.0%

which is focused on compressing streams of RDF graphs, whereas ERI considers
continuous flows of RDF triples. Thus, the evaluation with RDSZ is limited to
streaming datasets (the first category in the table), for which we can configure
the RDSZ input as a set of Turtle graphs merged together (the input expected
by the RDSZ prototype), one per original graph in the dataset. The results of
RDSZ depend on two configuration parameters: we use batchSize=5 and cache-
Size=100, the default configuration in [10]. For a fair comparison, we consider
the original size in Nt in the reported RDSZ compression results. To complete
the comparison, we evaluate the HDT serialization, although it works on complete
datasets. Thus, we also analyze HDT on partitions of 4096 triples (HDT-4k).

The results show the varied compression ratio between categories and different
datasets. The considered statistical datasets are much more compressive than the
rest. Besides structural repetitions, they are highly compressible because they
include few objects (see Table 1) repeated throughout the dataset.

As can be seen, ERI excels in space for streaming and statistical datasets. As
expected, it clearly outperforms Nt compression (up to 5 times) thanks to the
molecule grouping. This grouping is somehow also exploited by Turtle, which
natively groups items with the same subject. Thus, the deflate compression over
Turtle can also take advantage of datasets in which predicates and values are
repeated within the same compression context. In turn, ERI clearly outperforms
Turtle compression (up to 1.9 times) in those datasets in which the repetitions in
structures and values are distributed across the stream (e.g. Petrol and Identica).

Similar reasoning can be made for the slightly different results reported by
ERI-4k and ERI-4k-Nodict. As can be seen, the presence of the object dic-
tionary can overload the representation, although it always obtains comparable
compression ratios. Note that, since ERI groups the objects by predicate within
each block, ERI-4k-Nodict using Zlib can already take advantage of the redun-
dancies in objects whenever these repetitions are present in the same block. In
turn, ERI-4k slightly improves ERI-4k-Nodict in those cases (such as statistical
datasets) in which the object repetitions are distributed across different blocks.
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Fig. 5. Analysis of compression results of the considered ERI configurations

RDSZ remains comparable to our approach. ERI outperforms RDSZ in those
datasets in which the division in graphs of the input fails to group redundancies
in compression contexts. In contrast, the RDSZ compression slightly outper-
forms ERI in two particular cases of interest: Mix, where the information is
randomly distributed, and the simple Wikipedia dataset, where only 3 predi-
cates are present. In such cases, ERI pays the cost of having several compression
channels and thus flushing the metadata of several compressors (in contrast to
one compressor in RDSZ). An alternative, which is not exploited in the present
proposal, is to group channels and use one compressor per group of channels.
This kind of decision has also been taken by EXI [18].

As for general data, LinkedMDB and Faceted DBLP datasets provide well-
structured information and thus ERI can also take advantage of repetitive struc-
tures of predicates, obtaining the best compression as well. As expected, ERI
losses efficiency in a dataset with very diverse information and structures such
as Dbpedia. Nonetheless, Turtle compression is the only competitor in this case.

As expected, HDT is built for a different type of scenario and the results are not
competitive w.r.t. ERI. Although the compression of the full dataset with HDT

improves the compression by blocks (HDT-4k), it remains far from ERI efficiency.
Figure 5 compares the compression ratio of the three ERI configurations that

have been considered. As expected, a smaller buffer in ERI-1k slightly affects
the efficiency; the more blocks, the more additional control information and
smaller regularities can be obtained and compressed. The comparison between
ERI-4k and ERI-4k-Nodict corresponds with the results in Table 2 and the
aforementioned analysis denoting the object dictionary overhead.

4.3 Processing Efficiency Results

In this section we measure the processing time of ERI, reporting elapsed times
(in seconds) for all experiments, averaging five independent executions.
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Table 3. Compression and decompression times comparing ERI and RDSZ

Dataset
Compression Time (sec.) Decompression Time (sec.)

RDSZ ERI-4k ERI-4k-Nodict RDSZ ERI-4k ERI-4k-Nodict

Mix 2.5 1.8 1.2 0.5 1.4 1.2
Identica 8.4 3.1 2.1 0.8 2.9 2.1
Wikipedia 3.8 2.8 2.2 2.7 3.2 2.7
AEMET-1 17.9 4.3 4.6 3.7 6.3 5.1
AEMET-2 95.7 15.7 12.5 4.8 20.3 16.8
Petrol 149.9 13.4 11.8 6.7 16.8 20.4
Flickr Event Media 1,141.8 262.4 207.2 204.0 311.7 388.2
LOD Nevada 534.7 329.9 208.3 428.2 191.8 218.3
LOD Charley 1,388.9 663.6 501.4 1,115.7 600.6 611.1
LOD Katrina 2,315.7 1,002.5 822.0 1,869.6 1,038.0 890.0

First, we compare compression and decompression times of ERI against RDSZ.
Table 3 reports the results for the streaming datasets (in which RDSZ applies),
comparing ERI-4k and ERI-4k-Nodict. As can be seen, ERI always outper-
forms the RDSZ compression time (3 and 3.8 times on average for ERI-4k

and ERI-4k-Nodict, respectively). In contrast, ERI decompression is commonly
slower (1.4 times on average in both ERI configurations). Note again that RDSZ
processes and outputs streams of graphs, whereas ERI manages a stream of
triples. Thus, RDSZ compression can be affected by the fact that it has to
potentially process large graphs with many triples (as is the case of the LOD
datasets), hence the differential encoding process takes a longer time. In contrast,
ERI compresses blocks of the same size. In turn, ERI decompression is generally
slower as it decompresses several channels and outputs all triples in the block.
In those datasets in which the number of value channels is very small (Wikipedia
with three predicates and LOD datasets with many discrete predicates), ERI
decompression is comparable or even slightly better than RDSZ.

As expected, the object dictionary in ERI-4k deteriorates the performance
against ERI-4k-Nodict, once the dictionary has to be created in compression and
continuously updated in decompression. The decompression is faster in ERI-4k

when there are series of triples in which the dictionary does not change.
Then, we test an application managing ERI for compression, exchange and

consumption processes. We assume hereinafter an average unicast transmission
speed of 1MByte/s. Although applications could work on faster channels, we
assume that there is a wide range of scenarios, such as sensor networks, where
the transmission is much poorer, limited, or costly. In the following, we only
focus on streams of RDF triples. Thus, we obviate RDSZ (managing streams
of graphs) and Turtle (grouping human-readable triples by default), and we
establish compressed Nt as the baseline for a fair comparison.

We first focus on transmission and decompression, without considering at this
stage the compression process as many scenarios allow the information to be com-
pressed beforehand. Thus, we measure the parsing throughput provided to the
client of the transmission, i.e. the number of triples parsed per time unit. In turn,
the total time includes the exchange time of the considered network, the decom-
pression time and the parsing process to obtain the components (subject, pred-
icate and object) of each triple. Figure 6 reports the average results over the
corpora, in triples per second, comparing ERI-4k and ERI-4k-Nodict against the
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Fig. 6. Analysis of Parsing (Exchange+Decompressing) throughput

Fig. 7. Comparison of processing performance, ERI-4K against NT-Deflate-Blocks-4k

baselineNT-Deflate-Blocks-4K. As can be seen, both ERI-4k and ERI-4k-Nodict

outperform the baseline in most cases except for those datasets with less regulari-
ties in the structure or the data values, which is in line with the previous results for
compression. This is the case of general datasets as well as two streaming datasets
(Wikipedia and Flickr Event Media in which most objects are unrepeated (as can
be seen in Table 1). On average, the gains in parsing throughput for both ERI con-
figurations are 110.64% and 142.36% for streaming and statistical datasets respec-
tively, whereas they only decrease to 99.65% for general datasets.

Finally, we address a scenario where compression is subsequently followed
by transmission and decompression (including parsing the final output to obtain
each triple). Figure 7 compares the resulting times (in logarithmic scale) of ERI-
4k against the baseline NT-Deflate-Blocks-4K. We choose ERI-4k over ERI-4k-
Nodict because the first one produces bigger sizes and worse parsing throughput,
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hence we are comparing our worst case over the baseline. Under these conditions,
ERI-4k suffers an expected overhead, given that we are always including the time
to process and compress the information in ERI whereas the baseline directly
compresses the information. Nevertheless, the time in which the client receives
all data in ERI is comparable to the baseline even in this worst case (ERI-4k-
Nodict performs better than ERI-4k as stated above), which the aforementioned
improvement in parsing throughput (as shown in Figure 6). In turn, the huge
savings in the statistical dataset make ERI slightly faster than the baseline.

5 Conclusions and Future Work

In this paper we have focused on compression as a way to minimize transmission
costs in RDF stream processing. In particular, we propose the ERI format, which
leverages inherent structural and data redundancy, which is common on RDF
streams, especially those using the W3C Semantic Sensor Network Ontology.
ERI groups triples into information units called molecules, which are encoded
into two type of channels: structural channels referencing the structure of each
molecule by means of a dynamic dictionary of structures, and value channels
grouping and compressing together all the property values by predicate. We
provide insights on the flexible and extensible ERI configurations and present a
practical implementation that is empirically evaluated.

Experiments show that ERI produces state-of-the-art compression for RDF
streams and it excels for regularly-structured static RDF datasets (e.g., statis-
tical datasets), remaining competitive in general datasets. Time overheads for
ERI processing are relatively low and can be assumed in many scenarios.

Our next plans focus on integrating ERI within the next version of morph-
streams [3], with the purpose of scaling to higher input data rates, minimizing
data exchange among processing nodes and serving a small set of retrieving fea-
tures on the compressed data. This will come together with other new features,
including an adaptive query processor aware of the compression dimension dur-
ing the application of optimization strategies. Besides, we expect to improve per-
formance of ERI management by exploring parallel compression/decompression
and the use of caches and other fast compressors besides Zlib.
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Abstract. We propose a knowledge-driven activity recognition and seg-
mentation framework introducing the notion of context connections. Gi-
ven an RDF dataset of primitive observations, our aim is to identify, link
and classify meaningful contexts that signify the presence of complex ac-
tivities, coupling background knowledge pertinent to generic contextual
dependencies among activities. To this end, we use the Situation concept
of the DOLCE+DnS Ultralite (DUL) ontology to formally capture the
context of high-level activities. Moreover, we use context similarity mea-
sures to handle the intrinsic characteristics of pervasive environments in
real-world conditions, such as missing information, temporal inaccura-
cies or activities that can be performed in several ways. We illustrate
the performance of the proposed framework through its deployment in a
hospital for monitoring activities of Alzheimer’s disease patients.

Keywords: ontologies, activity recognition, segmentation, context.

1 Introduction

In recent years, the demand for intelligent, customized user task support has pro-
liferated across a multitude of application domains, ranging from smart spaces
and healthcare [30] to transportation and energy control [10]. The key challenge
in such applications is to abstract and fuse the captured context in order to elicit
a higher level understanding of the situation. Towards this direction, a grow-
ing body of research has been investigating ontology-based (knowledge-driven)
frameworks for modelling and reasoning about context [4], [5], [7]. The idea is
to map low-level information (e.g. objects used, postures, location) and activ-
ity models onto ontologies, enabling the inference of high-level activities using
domain knowledge and ontology reasoning. In many cases, activity recognition
is further augmented with rules [12] for representing richer relationships not
supported by the standard ontology semantics, like e.g. structured (composite)
activities [19].

A significant challenge in activity recognition is the ability to identify and
recognise the context signifying the presence of complex activities. Time win-
dows [21], [9] and slices [24], [20], background knowledge about the order [27], [23]

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 260–275, 2014.
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Fig. 1. Example observations detected during tea preparation

or duration [32] of activities constitute commonly used approaches in knowledge-
driven activity recognition. Such approaches, however, define strict contextual
dependencies, e.g. start/end activities or maximum activity duration, assuming
that all the information is available. Thus, they fail to capture many intrin-
sic characteristics of pervasive environments in real-world conditions, such as
imperfect information, noise or inaccurate temporal correlations.

An important factor to take into consideration is that contextual information
is typically collected by multiple sensors and complementary sensing modali-
ties. Each modality generates information from a different perspective, but by
combining them together we are in a position to infer far more about a person’s
activities than by any sensor alone. Thus, a further challenge is to effectively fuse
multiple sources of heterogeneous, noisy and potentially inconsistent information
in a way that provides accurate and useful outputs.

In order to better highlight the challenges, consider the two example time-lines
in Fig. 1 that contain information regarding the location and the objects that
a person interacts with when preparing hot tea. These are subsets of real-world
data obtained by monitoring Alzheimer’s disease patients in the FP7 project
Dem@Care1. As illustrated in the figure:

– The duration of activities usually varies, even when they are performed by
the same person. The use of time windows, slices or background knowledge
regarding activity duration fails to capture this characteristic, or, at least,
the segmentation task becomes too complex.

– Many activities are carried out differently even by the same person. Thus,
the use of strictly structured background knowledge relevant to the order of
activities or their temporal boundaries is not always practical and flexible.

– The information integrated from heterogeneous sources is intrinsically noisy,
incomplete, with inaccurate temporal correlations. For example, the cup2
and teabag2 observations in the second time-line in Fig. 1 do not coincide
with information regarding the location of the person. Such information
cannot be processed by patterns that, e.g., explicitly enumerate the sub-
activities and temporal relations involved in a complex behaviour.

Towards addressing these intrinsic challenges of pervasive applications, this
paper presents a practical ontology-based activity recognition framework. The
framework detects complex activities in multi-sensor fusion environments based

1 Dementia Ambient Care: Multi-Sensing Monitoring for Intelligent Remote Manage-
ment and Decision Support, http://http://www.demcare.eu/

http://http://www.demcare.eu/


262 G. Meditskos, E. Kontopoulos, and I. Kompatsiaris

on loosely coupled domain activity dependencies rather than on strict contex-
tual constraints. More specifically, given an RDF dataset of primitive activi-
ties (observations), we define a procedure for assigning context connections, i.e.
links among relevant groups of observations that signify the presence of com-
plex activities. The connections are determined by semantically comparing local
contexts, i.e. the type and number of neighbouring observations, against context
descriptors, i.e. background knowledge about domain activity dependencies. We
formalise these descriptors by capitalising on the Situation concept of the DnS
pattern [13] of the DOLCE+DnS Ultralite (DUL) [11] ontology, exploiting the
OWL 2 meta-modelling capabilities (punning [15]) for defining generic relations
among classes. As a result, this paper features the following contributions:

– We deliver a flexible and reusable framework for recognising complex activ-
ities that is applicable to a wide range of activity recognition scenarios.

– We propose a simple and reusable ontology pattern for capturing common
sense background knowledge regarding domain activity dependencies.

– We present a context-aware activity recognition and segmentation algorithm
that incorporates the level of relaxation needed during context classification.

In this work we consider non-interleaving human activities, i.e. only one ac-
tivity can be performed each time. Moreover, we focus on offline activity recog-
nition. We consider the support of interleaved and concurrent activities, as well
as, the real-time continuous activity recognition as very important research di-
rections of our ongoing work. On the other hand, we believe our approach is
quite suitable for further research purposes, e.g. towards extracting behaviour
patterns and detecting behaviour changes, including the manner in which activ-
ities are performed, idiosyncratic and habitual knowledge, as well as recurrent
routines. We further elaborate on this direction in Section 5.

The rest of the paper is structured as follows: Section 2 reviews relevant
ontology-based activity recognition frameworks. Section 3 describes the ontology
pattern we use to associate high-level activities with generic context descriptors,
whereas the algorithms for segmentation and activity recognition are described
in Section 4. Section 5 presents the results of the evaluation of our approach on
real-world data. Conclusions and future directions are presented in Section 6.

2 Related Work

Ontologies have been gaining increasing attention as a means for modelling and
reasoning over contextual information and, particularly, human activities. Un-
der this paradigm, OWL is used for describing the elements of interest (e.g.
events, activities, location), their pertinent logical associations, as well as the
background knowledge required to infer additional information. For example, a
tea preparation activity in the kitchen that is inferred on the basis of heating
water and using a tea bag and a cup could be modelled in OWL (TBox) as:

MakeTea ≡ Activity and (actor only (Person and (uses some TeaBag)

and (uses some Cup) and (uses some Kettle) and (in some Kitchen)))
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In such cases, the data (ABox) needs to be segmented into chunks of activities
to allow complex activities to be derived using standard OWL reasoning. How-
ever, the issue of data segmentation in ontology-based activity recognition has
received little attention. For instance, in [8] and [26], situations correspond to
OWL individuals, while DL reasoning [2] is used for determining which contex-
tual concepts a specific situation falls into. However, no details are provided with
respect to the method used for segmenting the data. In [25] statistical inferencing
is used for segmenting the data and for predicting the most probable activities,
whereas symbolic DL reasoning is applied for further refining the results.

The most common approach for ontology-based activity segmentation involves
the use of time windows and slices. In [9] and [21] dynamically sliding time win-
dows are used for activity recognition. The activities are specified as sequences
of user-object interactions, whereas subsumption reasoning is used for inferring
the ongoing activity. In [20], time slices are used for grouping activities and
inferring complex situations. In [24], one-minute fixed time slices are used for
activity recognition, using notions such as recently used and second last activity.
In most cases, though, such approaches require prior domain knowledge, such as
maximum duration of activities or window length, which results in inflexible and
difficult to implement approaches, even if they can be dynamically adjusted.

In [32], an approach is presented for the recognition of multi-user concurrent
activities where each activity is constrained by necessary conditions, e.g. activ-
ity “prepare breakfast” should occur in the morning and activity “bath” should
last more than 5 minutes. In [23], an ontology is used for capturing atomic and
compound events and for defining operators among event sets (e.g. sequence, con-
currency). In addition, many approaches combine ontologies with rules [20], [31],
[33], CEP patterns [18], [28] and SPARQL queries [29], [1], [3], [17]. The main
limitation of these approaches is that they encapsulate strict activity patterns
that cannot provide enough flexibility for handling the imprecise and ambiguous
nature of real-world events in multi-sensor fusion environments.

The authors in [27] conceive activity recognition as a plan recognition problem.
An activity plan consists of a partially ordered sequence of temporal constraints
and actions that must be carried out in order to achieve the activity’s goals.
Though relevant to environments where the order of observations is accurate,
plans fall short when more intricate activity patterns are involved, e.g. when
fusing multi-sensor data with inherent temporal incoherences.

Our work has been mainly inspired by [22] and [14]. In [22], a data-driven
approach is described for human activity recognition based on the order of object
usage. The authors use web mining for extracting the objects most relevant
to specific activities and each activity is then associated with a key object.
The limitation is that each activity in the list is assumed to have a unique key
object. Moreover, the proposed algorithms handle only sequential traces without
overlaps. In our work, we follow a more formal and flexible approach, defining
the activities relevant to high-level situations in terms of an ontology, without
needing to specify key objects. Moreover, the recognition algorithms take into
account the type and number of overlapped activities.
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Fig. 2. (a) The ContextDescriptor class, (b) Example annotation of the MakeTea

domain activity

In [14] a similarity-based segmentation approach is proposed. Generic activity
models are built that are specific to the deployment environment and contain sen-
sor activation sets for each complex activity. The segmentation and recognition
are based on similarity measures for comparing timely ordered sensor sequences
and sensor models of activities. The key difference of our work is that we use an
ontology for modelling common sense high-level knowledge about activity depen-
dencies, which also allows us to incorporate hierarchical relationships in context
classification. Moreover, similarly to [22], instead of using window thresholds for
analysing input data, we examine neighbouring events.

3 Domain Context Descriptors

In order to describe the context pertinent to each high-level activity in an ab-
stract yet formal way, we reuse the Situation concept of the Descriptions and
Situations (DnS) [13] pattern of DOLCE+DnS Ultralite (DUL) [11]. The aim
is to provide the conceptual model for annotating domain activity classes with
lower-level observation types. Fig. 2 (a) shows the specialisation of the Situation
class, along with two sub-properties of the isSettingFor upper-level property.

Our aim is to define relations among classes, therefore, the proposed ontology
treats classes as instances, allowing property assertions to be made among do-
main concepts. Intuitively, the ontology can be thought of as a conceptual (meta)
layer that can be placed on top of any domain activity ontology. This way, in-
stances of the ContextDescriptor are used to link domain activities (describes
property) with one or more lower-level conceptualisations through dependency
property assertions. Fig. 2 (b) presents an example of annotating classMakeTea
with class types relevant to objects (e.g Cup) and location (e.g. TeaZone).

The model also allows annotated classes to inherit the context dependencies
of the superclasses through the following property chain axiom:

describes ◦ subClassOf ◦ isDescribedBy ◦ dependency � dependency
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In the rest of the paper, we use the term “context descriptor” to refer to the
set of classes, denoted as dC , that a domain activity C has been annotated with.
For example, the context descriptor of MakeTea is denoted as dMakeTea and is
equal to the set {Cup, Kettle, Spoon, T eaZone, Sugar, T eaBag}.

4 Segmentation and Activity Recognition

Given a set O = {o1, o2, ..., on} with RDF instances representing low-level ob-
servations, e.g. objects, locations, postures, etc., and a set of domain context
descriptors D = {dC1 , dC2 , ..., dCk

}, we describe in this section the steps involved
in identifying meaningful contexts in O for recognizing higher level activities. We
use Fig. 3 (a) as a running example that involves observations relevant to mak-
ing and drinking tea, while the corresponding context descriptors are depicted
in Fig. 2 (b) and Fig. 3 (b), respectively.

4.1 Local Contexts

The first step of the segmentation algorithm is to define the local contexts for
each observation oi ∈ O that capture information relevant to the neighbouring
observations of oi and the most plausible activities that oi can be part of. More
specifically, let N r

i be the set of observations oj in the neighbourhood of oi that
either overlap with oi (oi ◦ oj) or are the r-nearest to oi (n(oi, oj) ≤ r), based on
their temporal ordering. Moreover, let T (oi) be the most specific class of oi, D
the set of domain context descriptors and ϕ a local context similarity function.

Definition 1. A local context li of an observation oi ∈ O is defined as the tuple
〈oi, N r

i , C〉, where N r
i = {oj | ∀oj ∈ O, oi ◦ oj ∨ n(oi, oj) ≤ r} and C is the

high-level class of the most plausible classification of li, such that �dA ∈ D :
ϕ(N r

i,T , dA) > ϕ(N r
i,T , dC), where dC ∈ D, dC �= dA and N r

i,T = {t | ∀oj ∈
N r

i , t = T (oj)}.

The class C denotes the most plausible domain activity classification of li,
derived by computing the ϕ similarity between the set with the most specific
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observation classes N r
i,T and the domain context descriptors dk ∈ D. The sets

N r
i,T are represented as multisets (duplicates are allowed), since the number of

observations with similar class types in the neighbourhood of oi is important.

Local Context Similarity ϕ. The ϕ measure captures the similarity between
the multiset N r

T of a local context against the context descriptor set dC of a
class C. It is defined as

ϕ(N r
T , dC) =

∑

∀n∈Nr
T

max
∀c∈dC

[
δ(n, c)

]

|N r
T |

(1)

where N r
T is the multiset with neighbouring observation class types and dC is

the context descriptor of C. ϕ is computed as the mean value of the maximum
δ similarities for each concept n ∈ N r

T , since each n may have more than one
relevant concepts in dC . Intuitively, ϕ captures the local plausibility of an ob-
servation oi to be part of a complex activity C. If ϕ = 1, then all the classes
in N r

T appear in dC and, therefore, it is very likely that the corresponding local
context is part of the complex activity C.

Equation (1) uses the δ function that computes the similarity of a neighbour-
ing observation class n ∈ N r

T against a context descriptor class c ∈ dC as

δ(n, c) =

⎧
⎪⎨

⎪⎩

1, if n � c (includes n ≡ c)
|U(n)∩U(c)|

|U(n)| , if c � n

0, otherwise

(2)

where U(C) is the set of the superclasses of C, excluding the Thing concept,
such that U (C) = {A | C � A,A �= �}. Intuitively, an observation class n in the
neighbourhood of oi exactly matches a class c in the context descriptor set dC ,
if it is equivalent to or a subclass of c. In this case, n is subsumed by c and, thus,
fully satisfies the contextual dependency imposed by dC that there should be at
least one observation of type c. On the other hand, if c is subsumed by n (c � n),
then n is a more general concept than the one required by the context descriptor
and the similarity is computed based on the rate of the superclasses of n that
are also superclasses of c. For example, if Spoon is a direct subclass of Cutlery
(Spoon � Cutlery), n = Spoon and c = Cutlery, then δ(Spoon,Cutlery) = 1,
since Spoon is subsumed by Cutlery. If n = Cutlery and c = Spoon, then
δ(Cutlery, Spoon) < 1, depending on their superclasses.

Creating Local Contexts. Algorithm 1 describes the procedure for creating
set L with the most plausible local contexts for each oi ∈ O. The algorithm
begins by defining set N r

i with the neighbour observations of oi (line 3). Then,
the partial context set Pi is created as the multiset of the most specific class types
of the observations in N r

i (line 4). The algorithm then computes the ϕ similarity
Sk of Pi against each context descriptor dCk

, creating the set Gi with tuples
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Algorithm 1. Creating local contexts

Data: Observations: O = {o1, o2, ..., oi}, Domain context descriptors:
D = {dC1 , dC2 , ..., dCk}, Nearest observations threshold: r.

Result: The set L with the most plausible local contexts.
1 L ← ∅;
2 foreach oi ∈ O do
3 Nr

i = {oj | ∀oj ∈ O, oi ◦ oj ∨ n(oi, oj) ≤ r};
4 Pi ← {t | ∀oj ∈ Nr

i , t = T (oj)};
5 Gi ← ∅;
6 foreach dCk ∈ D do
7 if ∃A ∈ dCk , T (oi) 
 A then Gi ← Gi ∪ {〈Ck, ϕ(Pi, dCk)〉}, ϕ �= 0

8 forall the 〈Ck, Sk〉 ∈ Gi with the max Sk do
9 L ← L ∪ {〈oi, Nr

i , Ck〉};

of the form 〈Ck, Sk〉 (lines 5 to 7). If the class type of oi does not semantically
belong to class descriptor dCk

, then the corresponding similarity tuple is omitted
(line 7), ignoring noisy observations. Finally, a tuple 〈oi, N r

i , Ck〉 is created for
all 〈Ck, Sk〉 with the maximum similarity in Gi and inserted into L. Note that
Gi may contain more than one 〈Ck, Sk〉 tuples with the maximum similarity,
and, therefore, more than one local contexts can be generated for oi.

Example.We describe the definition of the local context for teacup2 (o7) in Fig.
3 (a), using r = 1. Observations o5, o6 and o8 overlap with o7, whereas o9 and
o4 are the 1-nearest to o7. Thus, N

1
7 = {o7, o5, o6, o8, o9, o4} (line 3) and P7 =

{TeaCup, TableZone, T eaBag, Sitting, Spoon, Kettle} (line 4). According to
Figs. 2 (b) and 3 (b), the context descriptor set is D = {dMakeTea, dDrinkTea},
where dMakeTea = {TeaCup, Kettle, Spoon, T eaZone, Sugar, T eaBag} and
dDrinkTea = {TeaCup, Sitting, TableZone, Spoon}. The class type for o7 is
TeaCup that exists in both context descriptors, therefore ϕ will be computed
for both of them. According to (1), ϕ(P7, dMakeTea) = 1+0+1+0+1+1

6 = 0.66
and ϕ(P7, dDrinkTea) = 1+1+0+1+1+0

6 = 0.66 (assuming that there are no hi-
erarchical relationships among the domain class types). Thus, there are two
local contexts for o7 with maximum plausibility 0.66: l7 = 〈o7, N1

7 ,MakeTea〉
and l′7 = 〈o7, N1

7 , DrinkTea〉. Similarly, we have the following local contexts (ϕ
similarity is also depicted for completeness): l1 = 〈o1, N1

1 ,MakeTea〉1.0, l2 =
〈o2, N1

2 ,MakeTea〉1.0, l3 = 〈o3, N1
3 ,MakeTea〉0.83, l4 = 〈o4, N1

4 ,MakeTea〉0.75,
l5 = 〈o5, N1

5 , DrinkTea〉0.5, l6 = 〈o6, N1
6 ,MakeTea〉0.66, l8 = 〈o8, N1

8 , Drink-
Tea〉0.57, l9 = 〈o9, N1

9 ,MakeTea〉0.5, l′9 = 〈o9, N1
9 , DrinkTea〉0.5, l10 = -.

4.2 Context Connections

Based on the local contexts obtained in the previous section, the next step is to
define context connections, that is, links among relevant local contexts that will
be used to create the final segments for activity recognition.
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Algorithm 2. Creating context connections

Data: Local contexts: L = {l1, l2, ..., lj}, where lj = 〈oj , Nr
j , Ck〉.

Result: Set Cset with context connections.
1 Cset ← ∅;
2 foreach li = 〈oi, Nr

i , Cm〉 ∈ L do
3 foreach lj = 〈oj , Nr

j , Cn〉 ∈ L, where oi �= o2, Cm ≡ Cn and oi ∈ Nr
j do

4 Cset ← Cset ∪ {li Cm�−−→ lj}

Definition 2. Two local contexts li = 〈oi, N r
i , Cm〉 and lj = 〈oj , N r

j , Cn〉 are

linked with a context connection, denoted as li
Cm−−→ lj, if oi ∈ N r

j and Cm ≡ Cn.

Intuitively, a context connection captures the contextual dependency between
two neighbouring observations oi and oj with respect to a common high-level
classification activity Cm (Cm ≡ Cn). Note that symmetry and transitivity do
not hold. For example, in Fig. 3 (a), spoon1 (o9) belongs to the neighbourhood
set N1

5 of table.zone1 (o5) (N1
5 = {o1, o3, o4, o5, o6, o7, o8, o9}), but table.zone1

does not belong to the neighbourhood set N1
9 of spoon1 (N1

9 = {o6, o8, o9, o10}).
Algorithm 2 describes the process for creating the set of context connections

Cset. Two local contexts li = 〈oi, N r
i , Cm〉 and lj = 〈oj , N r

j , Cn〉 are retrieved
from L, such that oi belongs to the neighbourhood of oj (oi ∈ N r

j ) and Cm ≡ Cn

(lines 2 and 3), and the context connection li
Cm−−→ lj is added to Cset (line 4).

Example. Algorithm 2 creates 29 context connections among the local contexts
described in Section 4.1 for the running example in Fig. 3 (a). For example,
o7 belongs to the neighbourhood of the local contexts l5, l6 and l8, i.e. o7 ∈
N1

5 , o7 ∈ N1
6 and o7 ∈ N1

8 . As described in Section 4.1, the classification class of
l5 and l8 is DrinkTea (DT ), whereas the classification class of l6 is MakeTea
(MT ). Moreover, o7 has two local contexts: l7 with classification class MakeTea

and l′7 with classification class DrinkTea. Therefore, l7
MT−−→ l6 and l′7

DT−−→ l5,

l′7
DT−−→ l8. The other context connections that are generated are: l1

MT−−→ l2,

l1
MT−−→ l3, l1

MT−−→ l4, l2
MT−−→ l1, l2

MT−−→ l3, l3
MT−−→ l1, l3

MT−−→ l2, l3
MT−−→ l4,

l4
MT−−→ l1, l4

MT−−→ l2, l4
MT−−→ l3, l4

MT−−→ l6, l4
MT−−→ l7, l6

MT−−→ l3, l6
MT−−→ l7,

l6
MT−−→ l9, l9

MT−−→ l6, l9
MT−−→ l7, l5

DT−−→ l7, l5
DT−−→ l8, l8

DT−−→ l5, l8
DT−−→ l7,

l8
DT−−→ l9, l9

DT−−→ l5, l9
DT−−→ l7, l9

DT−−→ l8.

4.3 Activity Situations and Recognition

The last step is to create activity situations, i.e. subsets of the initial set of
observations O, and to compute the similarity σ to the context descriptor dC .

Definition 3. An activity situation S is defined as the tuple 〈Obs, C, V 〉, where
Obs ⊆ O is the set of the observations that belong to the activity situation
and V denotes the similarity of S to the context descriptor dC , such that V =
σ(dC , ObsT ), where dC ∈ D and ObsT = {t | ∀oi ∈ Obs, t = T (oi)}.
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Situation Similarity σ. The σ measure captures the similarity between the
domain context descriptor of class C, namely dC , and set ObsT with the most
specific classes of the observations in a situation.

σ(dC , ObsT ) =

∑

∀n∈dC

max
∀c∈ObsT

[
δ(c, n)

]

|dC |
(3)

Similarly to ϕ in (1), σ denotes the similarity of two sets of concepts. However,
ϕ aims to capture the local (partial) similarity of neighbourhood class types (N r

T )
against the context descriptor dC . In contrast, σ captures the similarity of the
context descriptor dC against the set of situation observation class types (ObsT ),
in order to derive the final plausibility for the corresponding situation. If σ = 1,
then all the classes in dC appear in ObsT , meaning that the situation can be
considered identical to the context descriptor dC , and, therefore, to class C.

Creating Activity Situations. An activity situation is derived by simply

traversing the path defined by context connections la
Cm−−→ lb

Cm−−→ ...
Cm−−→ le,

collecting the observations oi of the local contexts li found in the path. The
collected observations constitute set Obs of a situation S = 〈Obs, Cm, V 〉.

Algorithm 3 describes the aforementioned procedure. It begins by selecting

a context connection li
Cm−−→ lj , which has not been visited yet (line 2), as the

root of the current path, adding it to the Expand set (line 4). In each iteration,

a context connection lk
Cm−−→ ll is selected from the Expand set and: (a) the

observations of the pertinent local contexts are added to Obs (line 7), (b) the
current context connection is added to the V isited set (line 8), and (c) the

context connections lp
Cm−−→ lq are retrieved from Cset and added to the Expand

set, such that lp = ll (lines 9, 10). An empty Expand set denotes that there
are no other context connections in the current path. In this case, the context
descriptor of Cm (dCm) is compared against the set ObsT with the most specific
types of observations in Obs to compute the σ similarity of S (line 11).

Example. By applying Algorithm 3 over the context connections presented in
Section 4.2, two situations are generated: S1 = 〈Obs1,MakeTea, 0.833〉 and
S2 = 〈Obs2, DrinkTea, 1.0〉, where Obs1 = {o1, o2, o3, o4, o6, o7, o9} and Obs2 =
{o5, o7, o8, o9}. It is worth noting that despite the overlapping and noisy nature
of the observations in the example (e.g. the location-related observations o3 and
o5 overlap), the algorithm is able to discriminate the two situations of making
and drinking tea by also connecting the relevant observations.

Moreover, the nearest observations threshold r in the running example was set
to 1, meaning that, apart from overlapping observations, the 1-nearest observa-
tions were also taken into account to define neighbourhood relations. If we instead
use r = 0, then we get the following situations: S′

1 = 〈Obs′1,MakeTea, 0.666〉
and S′

2 = 〈Obs2, DrinkTea, 1.0〉, where Obs′1 = {o1, o2, o3, o4} and Obs′2 =
{o5, o7, o8, o9}. In this case, o6 (teabag2) is not connected with observations
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Algorithm 3. Creating activity situations

Data: Context connections: Cset = {la Ck�−−→ lb, le
Cl�−→ lf , ..., li

Cm�−−→ lj}.
Result: The set Sset with activity situations S.

1 Sset, V isited ← ∅;
2 foreach li

Cm�−−→ lj ∈ Cset ∧ li
Cm�−−→ lj �∈ V isited do

3 Obs ← ∅;
4 Expand ← {li Cm�−−→ lj};
5 while Expand �= ∅ do

6 lk
Cm�−−→ ll ← Expand.pop;

7 Obs ← Obs ∪ {ok, ol};
8 V isited ← V isited ∪ {lk Cm�−−→ ll};
9 Cons ← {lp Cm�−−→ lq | lp = ll,∀lp Cm�−−→ lq ∈ Cset, lp

Cm�−−→ lq �∈ V isited};
10 Expand ← Expand ∪ Cons;

11 Sset ← Sset ∪ {S}, where S ← 〈Obs,Cm, σ(dCm , ObsT )〉 and
ObsT = {t | ∀o ∈ Obs, t = T (o)};

relevant to the MakeTea activity, and is considered as noise, breaking also the
connection of o7 and o9 with the MakeTea activity. Despite the fact that the
MakeTea activity is detected with a lower plausibility when r = 0, it could be
argued that the resulted situations are more meaningful for further analysis. Intu-
itively, r allows to control the amount of contextual information taken into account
during the definition of the neighbourhood sets and local contexts of observations.
Currently, r is defined manually based on domain knowledge regarding the quality
and temporal characteristics of the data used.

5 Deployment, Results and Discussion

We have implemented our approach on top of OWLIM [6], following an ontology-
based representation of local contexts, context connections and situations and
using SPARQL queries (rules) for implementing the algorithms (SPARQL In-
ferencing Notation - SPIN [16]). Fig. 4 presents a sample SPARQL query that
implements Algorithm 2 for creating context connections.

Our framework is part of a real-world deployment for monitoring Alzheimer’s
disease patients in a hospital2. The aim is to help clinicians assess the patients’
condition through a goal-directed protocol of 10 Instrumental Activities of Daily
Living (IADL), e.g. preparing the drug box (Fig. 5). Based on primitive obser-
vations, high-level activities are recognised that inform the clinicians, who are
not present during the protocol, about activities with too long duration or ac-
tivities that have been missed or repeated. The setting involves wearable and
ambient video and audio sensors, accelerometers and physiological sensors. Table
1 presents the context descriptors used for the detection of the 10 activities.

2 The system has been installed in the Memory Resource and Research Centre
(CMRR) of the University Hospital in Nice (CHUN), under Dem@Care FP7 Project.
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CONSTRUCT {

[] a :ContextConnection; :li ?li; :lj ?lj; :classification ?Cm.

}

WHERE {

?li a :LocalContext; :obs ?oi; :classification ?Cm.

?lj a :LocalContext; :obs ?oj; :classification ?Cm; :neighbour ?oi.

FILTER (?oi != ?oj).

NOT EXISTS {[] a :ContextConnection; :li ?li; :lj ?lj; :classification ?Cm.}.

}

Fig. 4. SPARQL-based implementation of Algorithm 2

Table 1. The context descriptor dependencies of the high-level activities

IADL Context Descriptor Classes

Establish account balance Sitting, Accounts, Table, TableZone, Pen
Prepare drug box Pillbox, Basket, MedicationZone
Prepare hot tea Kettle, TeaZone, TeaBag, Cup, Sugar, TeaBox
Search for bus line Map, MapZone, RouteInstructions
Make a phone call Phone, PhoneZone, PickUpPhone, Talk
Watch TV Remote, TV, TVZone, Sitting
Water the plant WateringCan, PlantZone, Bending, Plant
Write a check Sitting, Pen, Check, TableZone, Table
Read an article Sitting, TableZone, Newspaper, Table
Enter/Leave the room DoorOpen, EmptyRoom

Table 2 summarises the performance on a dataset of 25 participants, where
True Positives (TP) is the number of IADLs correctly recognised, False Positives
(FP) is the number of IADLs incorrectly recognised as performed and False
Negatives (FN) is the number of IADLs that have not been recognised. The
True Positive Rate (TPR) and Positive Predicted Value (PPV) measures denote
the recall and precision, respectively, and are defined as:

TPR =
TP

TP + FN
, PPV =

TP

TP + FP

We used r = 0, since the dataset contains highly overlapping observations,
and we set a minimum threshold on σ (≥ 0.65), so as to ignore activities with low
plausibility. To demonstrate the effect of a higher r value in our experiments,
we also present the performance using r = 5. By increasing the r value, the
number of neighbours for each observation also increases. This way, more local
contexts are generated, affecting precision and recall. As explained, the optimal r
value depends on the data quality and temporal characteristics and, in principle,
datasets with highly overlapping and incoherent observations need small r values.

Our approach achieves the best accuracy for activities “Prepare hot tea”,
“Make a phone call”, “Watch TV” and “Water the plant”, whose context de-
scriptors encapsulate richer domain contextual information, compared to “Pre-
pare drug box” and “Search for bus line”. On the other hand, the recall of these
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Table 2. Activity recognition performance

r = 0 r = 5

IADL TP FP FN TPR% PPV% TPR% PPV%

Establish account balance 30 10 4 88.24 75.00 85.71 73.17
Prepare drug box 23 3 2 92.00 88.46 85.19 82.14
Prepare hot tea 23 1 6 79.31 95.83 76.67 88.46
Search for bus line 24 4 1 96.30 86.67 92.86 83.87
Make a phone call 24 1 3 89.29 96.15 86.21 92.59
Watch TV 21 1 4 84.00 95.45 80.77 91.30
Water the plant 20 1 5 80.00 95.24 80.00 86.96
Write a check 28 8 4 87.50 77.78 87.50 75.68
Read an article 23 4 1 95.83 85.19 92.00 85.19
Enter/Leave the room 49 0 1 98.00 100 98.00 98.00

(a) Writing a check (b) Preparing the drug box

Fig. 5. Example IADL activities of the protocol (wearable and ambient camera)

activities is relatively low, since they are more susceptible to false negatives,
requiring richer contextual dependencies to be present.

Another interesting finding involves activities “Establish account balance”,
“Write a check” and ”Read an article”. The context descriptors of these activities
have many members in common; e.g. “Accounts” and “Checks” are the only dis-
criminating contextual objects between “Establish account balance” and “Write
a check”. This way, our approach detects both activities when the corresponding
observations are missing, resulting in low accuracy. Finally, the “Enter/Leave the
room” activities share exactly the same context descriptors; however, we distin-
guish them (in an ad hoc manner) by the order in which they take place.

As already mentioned, our approach is currently used in an offline mode,
where each participant’s data is collected and processed after the execution of the
protocol; therefore, the processing time is not a critical requirement in the current
setting. However, Fig. 6 gives a gist about the required time for processing
different sets of observations using a Dell Optiplex 7010 PC configuration (i7-
3770 Processor, Quad Core, 3.40GHz). In each protocol execution, approx. 500
to 800 observations are generated, depending on the participant’s performance.
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Fig. 6. Activity recognition time in relation to the number of observations

Discussion. Our framework achieves an average TPR and PPV close to 90%,
demonstrating the feasibility of our approach in real-world settings. However,
there are still certain limitations, which we consider as very important research
directions for future work. First, our approach cannot handle interleaved activ-
ities, nor can it resolve conflicts after the recognition process, as argued for the
“Establishing account balance” and “Write check” activities. We are investigat-
ing the use of defeasible reasoning on top of the framework for further enhancing
the activity recognition capabilities. Second, our next step is to deploy the frame-
work in homes for providing context-aware real-time assistance to Alzheimer’s
patients. To this end, we are currently investigating adaptations of our algo-
rithms to allow the dynamic and incremental generation of local contexts and
context connections for real-time activity segmentation and recognition.

In addition, one of the most challenging tasks in pervasive healthcare is pa-
tient profiling, which can provide the behaviour interpretation and feedback
services with knowledge-driven personalisation capabilities and adaptive sup-
port services. To this end, we are exploring methods for extracting behaviour
patterns and detecting behaviour changes from activity situations that are gen-
erated based on the abstract context descriptors presented here. Regarding the
representation of these patterns, our objective is to take full advantage of the
DnS pattern, associating each Situation to one or more behavioural Description
instantiations pertinent to patients’ idiosyncratic and habitual information.

6 Conclusions

We propose a knowledge-driven framework towards activity recognition and seg-
mentation, coupling ontology models of abstract domain activity dependencies
with a context-aware approach for multi-sensor fusion and monitoring. We for-
malise activity dependencies, capitalising upon the Situation conceptualisation
of the DnS ontology pattern in DUL for defining generic context descriptors,
whereas activity segmentation and recognition is reduced in linking and clas-
sifying meaningful contextual segments. We elaborated on the obtained results
from the evaluation of our approach in a real-world deployment, monitoring ac-
tivities of elderly people during the execution of a clinical protocol for assessing
Alzheimer’s disease. The use of generic context descriptors in representing activ-
ity models achieves very promising results, leading to handling the intrinsically
noisy and imperfect information in multi sensory environments, beyond strict
activity patterns and background knowledge (e.g. max activity duration).
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The key directions that underpin our ongoing research involve (a) introducing
an additional layer for detecting interleaved activities and resolving conflicts,
(b) adapting our algorithms for supporting real-time context-aware monitoring,
and, (c) patient profiling through the extraction and learning of behavioural
patterns from the detected activity situations. In addition, we are investigating
extensions to the Situation model for capturing richer contextual dependencies,
such as compositions of context descriptors.
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Abstract. Agricultural decision support systems are an important ap-
plication of real-time sensing and environmental monitoring. With the
continuing increase in the number of sensors deployed, selecting sensors
that are fit for purpose is a growing challenge. Ontologies that represent
sensors and observations can form the basis for semantic sensor data
infrastructures. Such ontologies may help to cope with the problems of
sensor discovery, data integration, and re-use, but need to be used in
conjunction with algorithms for sensor selection and ranking. This paper
describes a method for selecting and ranking sensors based on the re-
quirements of predictive models. It discusses a Viticulture use case that
demonstrates the complexity of semantic modelling and reasoning for the
automated ranking of sensors according to the requirements on environ-
mental variables as input to predictive analytical models. The quality
of the ranking is validated against the quality of outputs of a predictive
model using different sensors.

Keywords: Semantic sensor data, Sensor ranking, Sensor Cloud Ontol-
ogy, Viticulture, Predictive analytical models.

1 Introduction

Real-time sensing for agricultural environmental monitoring has been an intense
area of research (e. g., [6], [13]). Farmers and crop managers monitor crop growth
and health continuously to make decisions based on their local knowledge and
experience. Decision making is supported by environmental data as provided by
automatic weather stations and by analytical tools that make predictions based
on this data, e. g., predicting the risk of frost or plant disease.

In viticulture, for example, botrytis bunch rot, or botrytis, causes ripening
bunches to rot on the vine [2]. Botrytis can develop during the ripening period
and bunches may have to be harvested early at low sugar, having negative impact
on wine quality. Wet weather is one of the factors that promotes the development
of botrytis. To assist farmers, analytical models have been developed that simu-
late the effects of risk factors and control options on the development of botrytis
epidemics. These models use weather information and crop management inputs
to predict the risk that a major botrytis epidemic will occur at harvest.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 276–291, 2014.
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The proliferation of sensing devices deployed in our environment benefits farm-
ers in terms of enhanced situational awareness. There are, however, remaining
challenges related to the deployment of sensors [5], the usability of decision sup-
port systems [16], as well as the discovery of sensors and re-use of data from
different sensing devices. The latter is the focus of our work. Models that pre-
dict the risk of botrytis require specific sensor data as part of their input (e. g.,
air temperature, wind speed, and leaf wetness) and are sensitive to the quality of
the input data. For a model to produce reliable results it is of great importance
to run the model with input data that is fit for purpose.

Our contribution is the development of a generic method for analysing sensors
based on their capabilities, observed phenomena, calibration history, previous
measurements, and current state to find sensors that meet the requirements of a
particular model. Ontologies that represent sensors and observations may help
to cope with the problems of sensor discovery, data integration, and re-use, but
need to be used in conjunction with algorithms for sensor selection and ranking.
We present an algorithm that ranks available sensors based on their suitability
as input for a given model. Model-specific requirements towards input data are
expressed using a set of fitness functions. Our algorithm runs queries over the
semantically annotated resources to evaluate these functions. The result is an
ordered list of sensors that satisfy model requirements.

In addition, we discuss our experience in using ontologies to model knowledge
about sensing data and sensing devices in the context described above. We build
on the SSN Ontology [4] and ontologies derived from OGC’s Semantic Web
Enablement data models to provide an umbrella ontology, named Sensor Cloud
Ontology (sco), for our Sensor Web infrastructure. We discuss a number of use
cases, in which we applied sco.The design goal of sco was to refine the semantic
models provided by the imported ontologies according to the data and metadata
captured by our infrastructure.

We evaluate our modelling and ranking based on requirements of a Viticulture
use case that demonstrates the complexity of semantic modelling and reasoning
for automated ranking of sensors according to the requirements on input data
by predictive analytical models. The quality of the ranking is validated against
the quality and sensitivity of the predictive model regarding different inputs.

The remainder of this paper is structured as follows. Section 2 describes our
semantic sensor infrastructure and sco. Section 3 gives details about application
requirements through use cases. The semantic modelling to address the use cases
in discussed in Section 4. Section 5 presents our ranking algorithm. We evaluate
the results of our algorithm in Section 6. Section 7 concludes the paper by
discussing related work and giving a brief outlook into future work.

2 The Semantic Sensor Cloud

The Commonwealth Scientific and Industrial Research Organisation (csiro) col-
lects and archives data from a large number of terrestrial and marine sensors.
Parts of the data are made available via an in-house sensor data infrastructure,
referred to as Sensor Cloud. An overview of the architecture is given in [14].
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Within the Sensor Cloud, sensor data is structured following the hierarchy of
Network → Platform → Sensor → Phenomenon → Observation. This struc-
ture resembles the deployment of sensors in the physical world, i. e., a sensor
network consists of platforms, each platform has one or more sensors attached,
and each sensor observes one or more phenomena. Besides observations, infor-
mation such as sensor device characteristics and calibration history can also be
accessed through the Sensor Cloud.

2.1 The Sensor Cloud Ontology

To semantically describe sensor data from the Sensor Cloud we created the
Sensor Cloud Ontology (sco)1. Figure 1 shows the main classes and properties
of sco. The principle behind its design is to use and extend existing ontologies,
meanwhile aligning with the Sensor Cloud terminologies. Accordingly, classes
and properties are created and mapped to the ones in existing ontologies. We re-
use several ontologies, including the Semantic Sensor Network ontology (ssn)2,
the DOLCE ontology (dul)[12], the OGC’s Observation and Measurements (om)
ontology3, and the geo location (wgs84) vocabulary4. The advantages of re-
using and extending existing ontologies are that sensor data can be queried
according to the original terminologies while their consistency can be checked
against sco. We create SCO instances (RDF) from data in the Sensor Cloud
using a system called seraw, as described in [14].

ssn was designed to describe sensors: what is observed, how observations
are made and the qualities of the sensors and observations [4]. ssn is built
around a central pattern that describes the relationship between ssn:Sensors,
the ssn:Property measured, the real-world ssn:Stimulus that ’triggers’ the
sensor and the resultant ssn:Observation [9] . The ontology expands on this
to describe the ssn:MeasurementCapability (ssn:Accuracy, ssn:Frequency,
etc.) of the sensor as well as to provide a skeleton structure for describing
ssn:Platforms and ssn:Deployments.

Concepts that aggregate multiple sensors into larger units, such as sensor net-
works or sensors grouped by properties, are required by our applications. ssn pro-
vides ssn:System and ssn:hasSubSystem for describing multi-instrument units
of technology. In sco, such aggregationsbecome sco:Networks,which can be used
for wireless sensor networks, organisational networks, geographically related net-
works or mission oriented networks. These aggregations enable ranking and or-
ganisation of sensing resources: from sco:Sensor through sco:Network up to
sco:SensorCloud. Such aggregations further enable the propagation of quality
and trust estimates both up and down the hierarchy. For example, tending to
increase the quality estimates of observations on a sensor because it is associ-
ated with networks of a known high-quality provider, or decreasing the trust on
a provider because their sensors are not regularly maintained and calibrated.

1 http://www.sense-t.csiro.au/sensorcloud/ontology
2 http://purl.oclc.org/NET/ssnx/ssn
3 http://def.seegrid.csiro.au/isotc211/iso19156/2011/observation
4 http://www.w3.org/2003/01/geo/wgs84_pos

http://www.sense-t.csiro.au/sensorcloud/ontology
http://purl.oclc.org/NET/ssnx/ssn
http://def.seegrid.csiro.au/isotc211/iso19156/2011/observation
http://www.w3.org/2003/01/geo/wgs84_pos
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Fig. 1. Main Concepts in the Sensor Cloud Ontology

To describe sensor observations in sco, we introduced the four concepts
sco:ObservedPhenomenon, sco:ObservedProperty, sco:ObservationResult
andsco:TimeSeriesObservedValue as subclasses of conceptsssn:Observation,
ssn:Property, ssn:SensorOutput, and ssn:ObservationValue, respectively.
ssn leaves open the representation of time — fixing time only as a dul:Region

— and does not include a definition of time series. We model time series as obser-
vation results of time-value pairs, by setting sco:TimeSeriesObservedValue �
sco:ObservationValue, and with the sco:TimeSeriesObservedValues having
sco:hasTimeValuePair relations to sco:TimeValuePairs. In Section 4, we give
more details of sco:ObservedPhenomenon and sco:ObservedProperty.

To be compatible with geo and om, we introduce sco:LocationCoordinate
as a type of geo:Point, and use om:Metadata to describe metadata of several
classes (e.g. sco:Sensor). In doing so, we are then able to use standardised
(ISO) vocabularies for coordinates, deployment, and quality that are left open
in ssn. Furthermore, we introduce some properties that are specific to the Sensor
Cloud, e. g., those describing the number of time-value pairs of time series, and
the first or last observation time.
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3 A Use Case from Viticulture

Our work is informed by use case requirements in the viticulture domain. In this
section we describe examples taken from the Sense-T project5. The project orga-
nized user workshops, from which requirements for environmental sensor data,
derived variables and prediction models were collected from domain experts.

Predictive models for Botrytis risk use a combination of environmental vari-
ables. For example, the empirical early-season model in [2] assesses the effects
of weather on botrytis risk. A botrytis risk index, called the Bacchus Index [10],
uses air temperature and leaf wetness data to determine the daily risk of in-
fection by Botrytis. The Bacchus Index is calculated for the given temperature
at each “wet hour”, which in turn is calculated from the leaf wetness duration.
The hour is wet if the proportion of wetness duration is above, say 50%. Leaf
wetness raw data measurements can vary for different sensors. As an example,
the measurement can be the value of the electrical resistance on the surface of
the sensor or, derived from that, the percentage of time that a leaf surface is
considered wet6.

The Accumulated Bacchus Index (abi) is calculated from the daily sum of the
Bacchus Index over a specified time period (e.g. from flowering to harvest). The
early-season model plots the abi each day and compares it against a threshold
line, which is statistically determined from monitored botrytis epidemics over
many years. This model runs in an ad-hoc manner. That is, at a point prior
to the harvesting period the farmer decides to run the abi. At this point, the
challenge is to discover suitable sensors from a network of available sensors. We
may find automatic weather stations or low-cost sensors deployed in a vineyard
or in surrounding areas. In many cases suitable sensors may be deployed and
operational, but if sensors are malfunctioning or not well maintained, data needs
to be gathered from other suitable sensors. The choice of sensors can be based on
their location as well as on their maintenance status and their current behaviour,
for instance excluding sensors that have not been calibrated recently as well as
sensors that show “unexpected” readings , for example, from interference to the
sensing mechanism.

Although we have given the example of a predictive model, the same consider-
ations apply to derived variables for the purpose of situational awareness. These
include derived variables such as Growing Degree Days, Evapotranspiration or
the hourly Bacchus Index (see for example [13]). From the user or application
perspective, environmental variables derived from automatic weather stations
sensor data streams are usually summarized in expressions like “Average daily
temperature”, “Total daily rainfall”, “Maximum monthly discharge”, “9am Rel-
ative Humidity”, or “Average 10m wind speed (m/s)”.

For the purpose of finding or reusing sensors, representing the meaning of
these expressions can make the search or querying process much more efficient
and precise. Say we are looking at measurements recorded as time series, these

5 http://www.sense-t.org.au/projects/viticulture
6 http://www.campbellsci.com.au/237-l

http://www.sense-t.org.au/projects/viticulture
http://www.campbellsci.com.au/237-l
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expressions constitute a combination of a functional (statistical) aggregation op-
erator (e.g. average) and a temporal aggregator (e.g. daily) for an environmental
property (e.g. temperature) with a unit of measure (e.g. degree Celsius). Com-
posing properties with modifiers in a structured way can facilitate the reuse of
sensor measurements that usually incur in very expensive computations. Usually
these computations are necessary for the visualisation of time series, but they
are equally important when used as input for predictive models.

Predictive models not only require observation data of a certain type, but
also, in many cases, models have further (weak) constraints that define desired
properties for the input data. One of the main constraints affecting the quality
of the observation is the location of the sensors. For example, the sensors chosen
for measuring temperature for the risk of frost in a vineyard should be the ones
as close as possible to the frost event location. Another example of importance
is proper sensor calibration. Data from poorly calibrated sensors can have a
negative impact on forecast performance.

There might also be additional quality constraints that may require to ex-
amine values in time series e. g., no gaps longer than 6 hours, accuracy of all
observations ≥ 0.95. In addition, we may want to propagate quality information
along the hierarchy of Network, Platform, Sensor, and ObservedPhenomenon,
for example a platform with many poorly calibrated sensors is considered low
quality; if a network is considered poorly maintained the observations from the
sensors are not reliable. Thus, in order to improve quality and reduce uncer-
tainty in models, the discovery of sensors can involve finding information about
sensor capability, deployment, calibration as well as measuring or ranking the
quality of these factors so that they fit the requirements. Having knowledge of
quality information for model input may also be used to estimate the uncertainty
associated with the model output.

4 Semantic Modelling

In the following we describe the required semantic modelling and the solution
given by the sco and ssn ontologies according to the use case described in the
last section. We look at environmental variables from two perspectives. First,
as observed phenomena, where the observed property and the features of its
measurement are represented. Then from the perspective of the sensor device
and its influence on the quality of the measurement.

We use sco:observedPhenomenon to describe the context of the measure-
ment for an environmental variable. This is aligned with the representation
of ssn:Observation as a dul:Situation. As partially shown in the exam-
ple below, this context includes a temporal modifier (e.g. daily), a functional
modifier (e.g. total), the unit of measure (e.g. degree Celsius) and the sensor
height (sco classes and properties accordingly). This is in addition to the in-
herited ssn class properties, which relate the observation to its observed prop-
erty and result, among others. The sco:ObservedProperty is independent of
an observation. It may be decomposed into parts using sco:hasPropertyPart,
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which is a sub-property of dul:hasPart. This aligns with dul:Quality and
thus sub concept ssn:Property being decomposable with dul:hasPart. We use
dul:UnitOfMeasure as the super-class for units of measure from MUO7. Prop-
erty sco:hasUnitPart can be used to decompose units of measure into parts.

<sco:ObservedPhenomenon rdf:ID="daily -sum -of-Bacchus -index">
<sco:hasFunctionalModifer rdf:resource ="#total"/>
<sco:hasTemporalModifier rdf:resource ="#daily"/>
<ssn:observedProperty rdf:resource ="#bacchus -index"/>

</sco:ObservedPhenomenon>

<sco:ObservedProperty rdf:ID="bacchus -index">
<sco:hasPropertyPart rdf:resource ="#leaf -wetness "/>
<sco:hasPropertyPart rdf:resource ="http://purl.oclc.org/NET/ssnx/

cf/cf-property #air_temperature"/>
</sco:ObservedProperty >

The decomposition of observed properties and units into smaller parts enables
finding variables that are related to the derived variables in the user query. For
example, a query for “daily temperature” can closely match any temperature
that has a unit of measure equal to the “day” unit of measure or any of the
“day”’s unit parts (e.g. minute, second). Similarly, a query for “degree days”
can match related variables that are equal to “degree days’s” property parts.

Regarding the quality of sensors, ssn has no capacity for describing calibration
or maintenance, both of which often change a deployed sensor’s properties (the
properties described by ssn:MeasurementCapability). Calibration is adjusting
a single device’s output based on comparison against reference devices. Manu-
facturer specifications may describe the full accuracy range of a sensing device,
but the actual performance of the device within this range depends on its partic-
ular calibration and the time and conditions since calibration. ssn does provide
ssn:Drift as a way of describing the degradation of accuracy over time. But the
interaction of calibration, time since calibration, expected drift, and dependence
on calibration method, are subtle properties of a sensor that are important in
some applications.

Our solution for this issue, as shown below, is to use ssn:inCondition to spec-
ify a time range for which the particular capability is valid. More specifically, we
model sco:CalibrationEvent as a condition, in effect stating, for example, that
the accuracy holds for the given calibration period. This approach is powerful
because the combination of ssn capabilities and conditions can express many
properties of sensors and the conditions under which they are true. Further,
such a method is invariant to the passage of time and consequent changes in
the world: to make a fixed specification, such as classifying a sensor as having
accuracy 2.9% or classifying it into a concept such as HighAccuracy, means that
any changes require retracting the assertion as well as any derived consequences
and making new assertions. In our system, where changes in time affect our
choices of the best sensors, and where we may need to revisit the history of a
sensor (e.g. find the sensors that have always been well maintained), retraction
and reassertion would be awkward and wouldn’t give the required functionality.

7 http://purl.oclc.org/NET/muo

http://purl.oclc.org/NET/muo
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<ssn:hasMeasurementCapability rdf:resource ="# calibration -capability -12-06-13"/>
<ssn:hasMeasurementCapability rdf:resource ="# calibration -capability -20-01-14"/>
...

</sco:Sensor >

<ssn:MeasurementCapability rdf:ID=" calibration -capability -20-01-14">
<ssn:inCondition rdf:resource ="# calibrationEvent_20 -01-14"/>
<ssn:forProperty rdf:resource ="http :// purl.oclc.org/NET/ssnx/cf/

cf -feature#rainfall"/>
<ssn:hasMeasurementProperty rdf:resource ="# RIMCO_Low_Rainfall_Accuracy "/>

</ssn:MeasurementCapability >

<ssn:Accuracy rdf:ID=" RIMCO_Low_Rainfall_Accuracy">
<sco:hasMaxValue rdf:resource ="# max_low_rainfall_mm_s "/>
<sco:hasMinValue rdf:resource ="# min_low_rainfall_mm_s "/>

</ssn:Accuracy >

<sco:MaximumAmount rdf:ID=" max_low_rainfall_mm_s">
<dul:hasDataValue rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#string"

>0.3</dul:hasDataValue >
<dul:isClassifiedBy rdf:resource ="# uom_mm_s"/>

</sco:MaximumAmount >

<sco:CalibrationEvent rdf:ID=" calibrationEvent_20 -01-14">
<ssn:endTime rdf:resource ="# calibration_date_20 -01-14"/>

</sco:CalibrationEvent >

<dul:TimeInterval rdf:ID=" calibration_date_20 -01-14">
<sco:hasIntervalDateTime rdf:datatype ="http ://www.w3.org /2001/
XMLSchema#dateTime ">2014-01-20 T00 :00:00 </ sco:hasIntervalDateTime >

</dul:TimeInterval >

<sco:Sensor rdf:ID=" RIMCO_Rainfall">

Further to this issue, ssn gives no guidance on how to describe the measure-
ment capabilities of an installed sensor instance versus the full range of potential
properties defined for the device. For example, it is typical to describe proper-
ties of types of sensors using TBox assertions and properties of instances of such
sensors as ABox assertions; if the TBox asserts that the device may have an
accuracy of ±2–4%, and the ABox asserts that a particular instance of the de-
vice has accuracy ±2–2.9% (due to calibration), both are still asserted (using
ssn:hasMeasurementCapability) for the instance because the TBox assertion
is still inferred. Some method of distinguishing between general (possible) prop-
erties of sensors and actual properties of deployed and calibrated instances of
such sensors is required. Our solution using instances (ABox assertions) accord-
ing to sco modelling is shown in the example above.

Attaching assertions, such as a sensor’s accuracy or an assessment of its suit-
ability as input to a model, to time points is in line with the fluents approach [18]
and the modelling of the passage of time in DOLCE. The approach allows ob-
jects, such as sensors, to keep a fixed uri, but still show the variance of the
object over time. As in the example below, it is easy to sparql for the latest
accuracy assertion or all the quality assessments made on a sensor.

SELECT ?s (MAX(?time) AS ?lastCalibration)
WHERE {
?s ssn:hasMeasurementCapability ?mc .
?mc ssn:inCondition ?c .
?c a sco:CalibrationEvent .
?c ssn:endTime ?ti .
?ti sco:hasIntervalDateTime ?time .

} GROUP BY ?s
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5 Ranking of Sensors Based on Fitness for Purpose

In this section we describe a ranking algorithm for selecting sensors that provide
suitable input for a predictive model or to compute a derived variable. Our
algorithm is based on the semantic modelling described in Section 4. It takes a
description of model requirements for sensor data as input and returns a list of
suitable sensors together with their observations. Results are ranked based on
their fitness for purpose. In the following we describe the design of our ranking
algorithm based on the definitions of fitness functions and fitness queries.

5.1 Fitness Functions and Fitness Queries

In our queries we distinguish required properties and desired properties for sen-
sor data. Required properties (rps) define data properties that are essential
in order to run a model. A typical example is the observed property. If a
model requires air temperature as input it does not make sense to use rain-
fall observations instead. We consider sco classes and properties associated
with sco:observedPhenomenon to define rps, e. g., temporal modifier, func-
tional modifier, and unit of measure. The temporal modifier defines the interval
between observed values (e. g., hour). The functional modifier describes how ob-
served values within the interval are aggregated (e. g., average). In addition,
most models expect observations to be represented in a specific measurement
unit (e. g., Fahrenheit).

Desired properties (dps) describe preferences that models have towards the
input data in order to ensure high quality results. A common example is sensor
location. When running a predictive model we are interested in finding sensors
that are in close proximity to the location for which the prediction is made (e. g.,
a vineyard). Other examples include calibration history (e. g., we prefer sensors
that are calibrated regularly), age of the sensing device (e. g., newer devices are
preferred over older ones), or state of the time series of observation (e. g., number
of missing observations). In our ranking algorithm dps are used to further restrict
the set of sensors suitable to run a model as well as to rank results based on how
they satisfy the dps.

From our examples it becomes clear that there is a wide variety of dps. To
account for this variety we model dps using fitness functions. We assume a
set of fitness functions F = {f1, . . . , fn}. Each function f(G, op,KV ) takes as
input a knowledge base in the form of a rdf graph G, an observed phenomenon
op, and a set of function-specific key-value pairs KV . Each function returns a
value in an ordered domain D or a special null value ⊥. A typical example is a
spatial distance function. The function takes latitude and longitude information
as additional parameters. It retrieves the latitude and longitude of the sensor
that observed the given phenomenon and returns the Euclidean distance between
that sensor and the given location. If latitude and longitude information does
not exist for the given sensor the function returns ⊥.

Fitness functions may also access external data sources. This is particularly
important for functions that operate on time series. Currently we exclude the
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actual observed time-value pairs from our knowledge base. The two main reasons
for this decision are that (1) the data changes frequently and we would need
to continuously update the knowledge base, and (2) rdf is not well suited to
represent time series data potentially leading to increased query execution times.
Observed time-value pairs can be stored using different architectures (e. g., the
Sensor Cloud), instead. Our knowledge base contains a reference (url) to the
data. Using these references a fitness function can retrieve the time series from
the external source and compute a value over the data (e. g., the maximal time
gap between consecutive observations).

Formally, a query for sensors suitable to run a given model, referred to as
fitness query, is a pair (Q,FFS). Q is a sparql query for observed phenomena
that satisfy the rps of a model. Note that we focus on observed phenomena
instead of sensors since each sensor can observe multiple phenomena. We later
retrieve the sensor that made the observations for our final result. FFS is a
set of fitness function statements. Each fitness query contains a non-empty set
of fitness functions FFS = {(f1, ω1, c1,KV 1), . . . , (fn, ωn, cn,KV n)}. With each
function we associate a weight ω to reflect the importance given to that particular
property. For example, a model may give higher importance to the distance of a
sensor to a given location than to calibration status. Although fitness functions
represent desired properties (or weak constraints), models can have thresholds
on fitness values, e. g., only consider sensors that have been calibrated within the
last 12 months. We associate a Boolean function c with each fitness function to
represent such strong constraints. Function c returns true if the value returned
by f satisfies the constraint and false otherwise.

5.2 Ranking Algorithm

Our ranking algorithm, which executes fitness queries, is shown in Figure 2.
Information about sensors and their properties is maintained in a knowledge
base in rdf format. The algorithm takes the rdf graph G, a sparql query Q,
and fitness function statements FFS as input. It returns a ranked list of (sen-
sor, observed phenomenon)-pairs. There are three main steps in our algorithm:
(1) retrieve observed phenomena that satisfy the rps, (2) compute a ranking
of returned phenomena for each fitness function in FFS , and (3) compute an
aggregate ranking of phenomena from the individual rankings.

The first step in the algorithm returns observed phenomena in G that satisfy
the rps by executing the sparql query Q. The only constraint towards Q is
that it returns a list of uris for sco:ObservedPhenomenon. An example query
is shown below. The query retrieves all observed phenomena for the observed
property cf:air temperature, which have been measured hourly and classified
according to http://purl.oclc.org/NET/muo/ucum/unit/time/hour.

SELECT DISTINCT ?observation
WHERE {

?observation a sco:ObservedPhenomenon .
?observation ssn:observedProperty cf:air_temperature .
?observation sco:hasTemporalModifier ?tempMod .
?tempMod dul:isClassifiedBy <http :// purl.oclc.org/NET/muo/ucum/unit/time/hour >

}
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Input: G,Q,FFS
Output: List of (sensor, observed phenomenon)-pairs and their overall ranking score

CANDIDATES ← SPARQL(G,Q); /* Step 1 */
RANKINGS ← ∅; /* Step 2 */
for all (f, ω, c,KV ) ∈ FFS do

RANK ← ∅;
for all op ∈ CANDIDATES do

val ← f(G, op,KV );
if c(val) then

RANK ← RANK ∪ {(op, val)};
else

CANDIDATES ← CANDIDATES \ op;
end if

end for
RANKINGS ← RANKINGS ∪ sortf (RANK );

end for
RESULT ← ∅; /* Step 3 */
for all op ∈ CANDIDATES do

score ← 0;
for all (f, ω, c,KV ) ∈ FFS do

score ← score + (ω × get-rank -position(op,RANKINGS , f));
end for
RESULT ← RESULT ∪ {((op, get-sensor -for(op)), score)};

end for
sortASC(RESULT );
return RESULT ;

Fig. 2. Pseudo-code for ranking algorithm

The second step in the algorithm ranks candidate phenomena for each fitness
function f individually. Should a candidate fail the respective strong constraint c
associated with f it is removed from the set of candidates. For those candidates
that satisfy the constraint we maintain the uri of the phenomenon and the
returned function value. We then rank all candidates that have not been pruned.
We assume the existence of a ranking function sortf that returns a list of uri-
value pairs such that the pair with the best value (according to function f)
is ranked first, the second-best value second, and so on. For a spatial distance
function, for example, the pairs are sorted in ascending order of distance values.

The last step of the algorithm computes an aggregate ranking for candidates
based on the individual rankings and the weights given to the respective fitness
functions. We maintain a list of rankings (RANKINGS). The problem of combin-
ing ranking results has been studied extensively in social choice theory and web
search (e. g., [7], [1]). Dwork et al. show that the problem of computing an opti-
mal solution can by NP-hard (for certain distance measures) given four or more
input rankings [7] and propose several heuristic algorithms for rank aggregation.
Our current implementation is based on Borda’s positional method [3] that can
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be computed in linear time. Borda’s method assigns a score to each candidate
corresponding to the position at which it appears in each individual ranking.
The function get -rank -position(op,RANKINGS , f) returns the rank position of
the candidate identified by op in the ranking computed for fitness function f .
We multiply the result by the weight assigned to f . Function get -sensor -for (op)
retrieves the uri of the sensor that observed phenomenon op. For our result we
sort all (sensor, observed phenomenon)-pairs in ascending order of their accu-
mulated score. Note that we can use other rank aggregation methods, e. g., using
Markov chains as proposed in [7]. The main purpose of this section, however,
is to present a method for discovering sensors that are fit for purpose based on
the semantic modelling in Section 4. We consider the problem of evaluating the
effectiveness of different ranking methods as future work.

Table 1 gives examples of fitness functions that we have implemented. The
functions use sparql queries to retrieve information such as sensor location,
most recent calibration event, or the url that provides access to the time series
of observed values. The spatial distance function expects coordinates for a point
of interest (PoI). It computes the Euclidean distance between the PoI and the
retrieved coordinates. The gap count function looks at the time intervals between
consecutive values in a time series. If the interval between two values is larger
than the maximum interval it increments the gap count by the quotient of the
actual interval and the expected interval.

To give an example for fitness function statements consider a model like the
accumulated Bacchus index that requires leaf wetness data. The dps are (i) close
proximity to a PoI, and (ii) calibrated recently. We use the following statements
to express the dps for location (f : Spatial Distance, ω: 0.8, c(val ): val ≤ 10 km,
KV : {lat : −42.15, lon : 147.45}) and calibration (f : Calibration, ω: 0.2, c(val):
val ≤ 6 months, KV : {}). We exclude sensors that are more than 10 km away
from the PoI or that have not been calibrated in the last 6 months. We also put
higher importance on the distance of the leaf wetness sensor to PoI than on the
calibration date, e. g., due to the model being more sensitive to location.

Table 1. Three examples of fitness functions for spatial distance, last calibration date,
and number of gaps in a time series of observed values

Steps Parameter

Spatial Distance
1) sparql for location of measuring sensor Latitude for PoI
2) Calculate Euclidean distance Longitude for PoI

Calibration 1) sparql as shown on page 283

Gap Count
1) sparql for url to access data Expected Time Interval
2) Retrieve time series of observed values Max. Time Interval
3) Count number of gaps

6 Implementation and Evaluation

We implemented a number of derived variables from our Viticulture use case.
We used the Kepler [11] workflow engine to compute the variables, having the
Sensor Cloud infrastructure as the source of raw data.
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We use the Accumulated Bacchus Index (abi) (see Section 3) to evaluate our
modelling and fitness for purpose ranking algorithm. The abi requires hourly
air temperature and leaf wetness observations as input. Our evaluation consists
of the following steps. We first compute a baseline abi graph for a fixed period
(Jan. 2014) using a pair of well maintained sensors for air temperature and leaf
wetness, i. e., our gold standard. We then fix the leaf wetness sensor and re-run
the abi with different temperature sensors from a set of candidates. That is, we
assume that we need to find a replacement for the gold standard temperature
sensor. We plot the different abi outputs in Figure 3. From these results we
derive the optimal ranking of candidates based on how good they resemble the
baseline result. We then show that our ranking algorithm produces the optimal
ranking according to the user criteria.

Fig. 3. abi computed for Jan. 2014 using a fixed leaf wetness sensor (at Pooley
Cooinda) and six different air temperature sensors

Our baseline is obtained using sensors at Pooley Cooinda. Our set of candi-
dates contains five air temperature sensors that are in close proximity to Pooley
Cooinda. Figure 3 shows that the sensor at Home Hill results in an abi that
almost exactly resembles the baseline result. The sensor at Spring Vale gives
a less accurate but still acceptable result. Using the sensor at Frogmore Creek
produces the worst result. This is mainly due to the fact that the sensor has a
large gap (approximately seven days) with missing data. Based on Figure 3 we
define an optimal ranking for candidates in order of increasing mean squared
error (mse) with the baseline (shown in brackets): Home Hill (0.008), Spring
Vale (0.015), Cape-Barren (0.068), Flowerdale (0.110), Frogmore Creek (0.371).
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We now show that our ranking algorithm can produce the optimal ranking
based on user criteria expressed using fitness function statements. To do so, we
use two different fitness functions: one for spatial distance and one for missing
data (as shown in Section 5). For the latter we count the number of missing
observed values considering that the abi requires input on an hourly basis.

Table 2 shows rankings of candidate sensors using different fitness function
statements. The ranking using the spatial distance fitness function solely uses
distance from the leaf wetness sensor at Pooley Cooinda to rank the temperature
sensors. According to this ranking the sensor at Frogmore Creek is the best re-
placement sensor and the sensor at Cape-Barren is the worst replacement sensor.
The result clearly contradicts the optimal ranking. When ranked by increasing
number of gaps, Home Hill is the best choice and Frogmore Creek the worst.
This ranking exactly reflects the optimal ranking and highlights that the quality
of data is of higher importance to the abi than the distance of the sensor. The
aggregated rankings are weighted over distance and gap count. When giving a
higher importance to distance (Aggreg. (0.8, 0.2)), the sensor at Frogmore Creek
is still ranked as one of the preferred replacements. The situation changes when
giving higher importance to gap count instead.

Table 2. Rankings of candidate sensors for different fitness functions

Rank Spatial Distance Gap Count Aggreg. (0.8, 0.2) Aggreg. (0.2,0.8)

1 Frogmore Creek Home Hill Home Hill Home Hill
2 Home Hill Spring Vale Frogmore Creek Spring Vale
3 Spring Vale Cape-Barren Spring Vale Cape-Barren
4 Flowerdale Flowerdale Flowerdale Flowerdale
5 Cape-Barren Frogmore Creek Cape-Barren Frogmore Creek

We repeat the experiment for Apr. 2014 where none of the candidate sensors
has gaps (graph not shown). The optimal ranking (based on mse) is: Frogmore
Creek (0.001), Home Hill (0.004), Spring Vale (0.011), Flowerdale (0.022), Cape-
Barren (0.075). This ranking equals the ranking based on spatial distance (as
shown in Figure 2). A ranking on gaps, on the other hand, will rank all sensors
the same. Thus, for the different time periods different fitness functions produce
the optimal result, i. e., gap count for Jan. 2014 and distance for Apr. 2014. For
both time periods the aggregated ranking that gives higher importance to gaps
always produces the optimal result. This clearly shows the benefit of combining
fitness function statements to receive optimal results for different situations.

The evaluation shows that our algorithm is able to produce optimal rankings.
The quality of ranking, however, depends on the user supplied fitness function
statements. If the statements correctly capture the fact that the abi has high
sensitivity to gap count, our algorithm correctly ranks the replacement candi-
dates. Should the user decide to give higher weight to the distance, on the other
hand, the results could be non-optimal. In general, the choice of functions and
their weights requires knowledge about the sensitivity of the model. We envision
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that developers of a model will specify these fitness requirements. The user then
only specifies user dependent properties such as the location of their vineyard.

7 Conclusions

In this paper we propose an ontology-based framework for finding observation
data that is fit for purpose as input to predictive models. In particular, we focus
on the modelling methodology and approaches to handling the difficulties of
describing sensors and evaluating them in a dynamic environment.

Within this framework, we further present a generic approach to ranking
sensor data based on fitness for purpose. Our framework allows to rank sensors
against criteria such as location, most recent calibration event, administered by
an organisation that maintains sensors regularly, and data quality over a period
of time (e. g., number of gaps). Ranking makes use of the accumulated metadata
and semantics in the ontology for long term analysis and semantic analysis of
the sensors. Since the quality of sensor measurements is not fixed over time our
semantic model accounts for this changing behaviour.

Our work presents a first approach to exploit sensor properties for ranking
based on fitness for a particular purpose. Existing approaches rank sensors based
on the probability that they have a certain output state at a given time [8] or
based on the similarity of their observed values [17]. The work in [15] goes into
a similar direction as ours, however, our work has a strong focus on semantic
modelling. Furthermore, the fitness functions that we consider allow for more
complex expressions of fitness for purpose.

In future work, we consider automating the search for compatible sensors. For
example, when a model requires maximum hourly air temperature, sensors that
observe air temperature on a minutely basis are candidates because the data
can convert through aggregation. Performance of evaluating fitness functions is
another area of future work. Here, our particular focus is on caching the results
of functions that incur high cost, e. g., computing values over time series data
from external data sources.
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Abstract. IBM STAR-CITY is a system supporting Semantic road Traffic Ana-
lytics and Reasoning for CITY. The system has ben designed (i) to provide in-
sight on historical and real-time traffic conditions, and (ii) to support efficient
urban planning by integrating (human and machine-based) sensor data using va-
riety of formats, velocities and volumes. Initially deployed and experimented in
Dublin City (Ireland), the system and its architecture have been strongly limited
by its flexibility and scalability to other cities. This paper describes its limitations
and presents the “any-city” architecture of STAR-CITY together with its seman-
tic configuration for flexible and scalable deployment in any city. This paper also
strongly focuses on lessons learnt from its deployment and experimentation in
Dublin (Ireland), Bologna (Italy), Miami (USA) and Rio (Brazil).

1 Introduction

Entering 2014, the transportation system has matured in all major cities in the world; it
only expands its infrastructure by a fraction of a percentage each year [1]. However, as
projections indicate that more than half the world’s population will be living in cities
by 2030, congestion will continue to grow at an alarming rate, adversely impacting
our quality of life and increasing the potential for accidents, long delays and other
indirect consequences such as bus bunching. These are expected to escalate, calling for
IT professionals to increase the functionalities, scalability, integration and productivity
of existing transportation systems through the use of operational improvements.

There are several traffic analysis tools available, and some open, for use; however,
they rarely encompass mechanisms for handling data heterogeneity, variety and inte-
gration. Therefore very few traffic systems are easily really portable from one city to
another one. Most of the existing modern traffic systems1 such as US TrafficView [2],
TrafficInfo, French Sytadin or Italian 5T mainly focus on monitoring traffic status in
cities using pre-determined and dedicated sensors (e.g., loop indiction detectors), all
exposing numerical data. Others, more citizen-centric such as the traffic layer of Google

� The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement ID 318201 (SIMPLI-CITY).

1 Traffic Systems: trafficview.org, trafficinfo.lacity.org,
www.sytadin.fr, www.5t.torino.it/5t
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Maps or [3], provide real-time traffic conditions and estimation but do not deliver in-
sight to interpret historical and real-time traffic conditions. For instance the diagnosis
of traffic condition [4] or the problem of explaining traffic condition is not addressed
by state-of-the-art traffic systems. Basic in-depth but semantics-less state-of-the-art an-
alytics are employed, limiting also large scale real-time data interpretation and integra-
tion. Thus, context-aware computing together with reusability of the underlying data
and flexible deployment of traffic systems are limited. The reasoning functionalities are
also very limited and reduced to basic analytics such as traffic monitoring or prediction.

STAR-CITY2,3 (Semantic Traffic Analytics and Reasoning for CITY) [5], as a
daily-used system which integrates heterogeneous data in terms of format variety (struc-
tured and unstructured data), velocity (static and dynamic data) and volume (large
amount of historical data), has been mainly designed to provide such insights on histor-
ical and real-time traffic conditions. STAR-CITY completely relies on the W3C seman-
tic Web stack e.g., OWL 2 (Web Ontology Language) and RDF (Resource Description
Framework ) for representing semantics of information and delivering inference out-
comes. The strength of STAR-CITY lies in the ability of the system to perform various
types of semantic inferences i.e., spatio-temporal analysis, diagnosis, exploration and
prediction of traffic condition and congestion (cf. [5] for an high level presentation).
These inferences are all elaborated through a combination of various types of reasoning
i.e., (i) semantic based i.e., distributed ontology classification-based subsumption [6],
(ii) rules-based i.e., pattern association [7], (iii) machine learning-based i.e., entities
search [8] and (iv) sensor dynamic-based i.e., correlation [7].

Initially deployed and experimented in Dublin City (Ireland), the system, its archi-
tecture and its semantic-related components have shown limitations regarding their flex-
ibility and scalability to other cities. This paper describes their scenarios and their lim-
itations. We also present the “any-city” architecture of STAR-CITY together with its
semantic configuration for flexible and scalable deployment in any city. The paper also
strongly focuses on lessons learnt from the deployment and experimentation of the new
architecture in Dublin (Ireland), Bologna (Italy), Miami (USA) and Rio (Brazil), which
is completely novel with respect to past presented work [4] (STAR-CITY diagnosis in
Dublin), [9] (STAR-CITY prediction in Dublin) and [5] (STAR-CITY in Dublin). To
the best of our knowledge there is no single traffic system which (i) supports advanced
traffic analysis functionalities as STAR-CITY does, and (ii) scales up to major cities.

The paper is organized as follows: Section 2 presents the contexts and scenarios as-
sociated to Bologna, Miami, Rio and their main differentiators with Dublin. Section 3
describes the new flexible system architecture and configuration for “any city”. Section
4 reports some experimental results regarding scalability, flexibility and semantic ex-
pressivity. Section 5 reports on lessons learned from deploying STAR-CITY in major
cities. Section 6 draws some conclusions and talks about possible future directions.

2 Diagnosing Anomalies in Dublin, Bologna, Miami and Rio

As highlighted in Section 1 the STAR-CITY system has been designed for analyz-
ing, diagnosing, exploring and predicting traffic condition in cities. We focus on the

2 Video (.avi, .mov, m4v format) available: http://goo.gl/TuwNyL
3 Live system: http://dublinked.ie/sandbox/star-city/

http://goo.gl/TuwNyL
http://dublinked.ie/sandbox/star-city/
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Table 1. (Raw) Data Sources for STAR-CITY in Dublin, Bologna, Miami and Rio

Source Data
Description

City
Type Source Dublin (Ireland) Bologna (Italy) Miami (USA ) Rio (Brazil)

Journey travel Traffic CSV format (47
times across the Department’s routes, 732 sensors) ✗ (not available)

T
ra

ffi
c

A
no

m
al

y

city TRIPS systema 0.1 GB per dayb

Vehicle activity SIRI: XML formate CSV format CSV format
Dublin Bus (GPS location, ✗ (596 buses, (893 buses, (1, 349 buses,
Dynamics line number, (not used) 80KB per update 225 KB per update 181 KB per update

delay, stop flag ) 11GB per dayd ) 43 GB per daye ) 14 GB per dayf )

Social- Reputable sources “Tweet” format - Accessed through Twitter streaming APIg

Media of road traffic Approx. 150
✗

Approx. 500
✗

Related conditions in tweets per dayh

(not available)
tweets per dayi

(not available)
Feeds Dublin City (approx. 0.001 GB) (approx. 0.003 GB)

Road Works
PDF format XML format HTML format

✗
and Maintenance

(approx. 0.003 GB (approx. 0.001 GB (approx. 0.001 GB
(not available)

per dayj ) per dayk ) per dayl )

Planned events with
XML format - Accessed once a day through EventbritemAPIs

Social events small attendance
Approx. 85 events Approx. 35 events Approx. 285 events Approx. 232 events

e.g., music event,
per day (0.001 GB) per day (0.001 GB) per day (0.005 GB) per day (0.01 GB)T

ra
ffi

c
D

ia
gn

os
is

political event Planned events with
XML format - Accessed once a day through EventfulmAPIs

large attendance
Approx. 180 events Approx. 110 events Approx. 425 events Approx. 310 events
per day (0.05 GB) per day (0.04 GB) per day (0.1 GB) per day (0.08 GB)

Bus Passenger Loading / Unloading
✗ ✗

CSV format CSV format
(information related to number of

(not available) (not available)
(approx. 0.8 GB (approx. 0.1 GB

passenger getting in / out) per daye ) per daye )
a Travel-time Reporting Integrated Performance System - http://www.advantechdesign.com.au/trips
b http://dublinked.ie/datastore/datasets/dataset-215.php (live)
c Service Interface for Real Time Information - http://siri.org.uk
d http://82.187.83.50/GoogleServlet/ElaboratedDataPublication (live)
e Private Data - No Open data
f http://data.rio.rj.gov.br/dataset/gps-de-onibus/resource/cfeb367c-c1c3-4fa7-b742-65c2c99d8d90 (live)
g https://sitestream.twitter.com/1.1/site.json?follow=ID
h https://twitter.com/LiveDrive - https://twitter.com/aaroadwatch - https://twitter.com/GardaTraffic
i https://twitter.com/fl511 southeast
j http://www.dublincity.ie/RoadsandTraffic/ScheduledDisruptions/Documents/TrafficNews.pdf
k http://82.187.83.50/TMC DATEX/
l http://www.fl511.com/events.aspx
m https://www.eventbrite.com/api - http://api.eventful.com

diagnosis-based reasoning scenarios of Bologna, Miami and Rio as they are the most
representative and exposed in terms of semantic Web technologies. In particular we dif-
ferentiate the latter three innovative in-use scenarios with the one from Dublin, which
has already been implemented, tested and experimented [4]. Table 1 synthesizes the
main important details of the data sets we have considered for this reasoning task.
We report major in-use challenges for each scenario where concrete solutions are pre-
sented (Section 3) and experimentation conducted (Section 4) for validation.

2.1 Diagnosing Traffic Congestion in Dublin City (Reminder of [4])

• Description: The diagnosis task in Dublin consists in explaining why the road traffic
is congested. Anomalies are captured by the Dublin journey travel time data set in Table
1 (cf. traffic anomaly row). There are a number of specific circumstances which cause
or aggravate congestion. However capturing an accurate explanation of the reasons of
congestion is a challenging problem. Traffic accidents, road works and social events
(e.g., music, political events) are considered as potential sources of explanation in the
Dublin context (cf. traffic diagnosis related rows).

• Motivation: Traffic congestion has a number of negative effects, which strongly af-
fects cities, their citizens and operators. For instance it reduces economic health because
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of the (i) non-productive activity of people stuck in their vehicles, (ii) wasted fuel,
among others. Capturing the explanation of traffic congestion will support the city and
transportation operators to act upon changing scenarios in real-time. For instance, given
accurate explanations of congestion, the city traffic manager could be pro-active by (i)
taking corrective actions on incoming traffic flow by changing the traffic strategies of
close traffic lights, (ii) alerting the appropriate emergency services, (iii) re-routing traf-
fic, (iv) better planning events in the city and more importantly (iv) informing its citizen
in real-time

• Challenge: Diagnosing traffic condition is a challenging research problem of interest
for the semantic Web community because (i) relevant data sets (e.g., road works, social
events, incidents), (ii) their correlation (e.g., road works and social events connected
to the same city area) and (iii) historical traffic conditions (e.g., road works and con-
gestion in Canal street on May 9th, 2014) are not fully integrated, linked and jointly
exploited. Recent progress in the area [4] demonstrated the applicability of semantic
Web technologies in solving this challenge.

2.2 Diagnosing Bus Congestion in Bologna

• Description: The diagnosis task in Bologna consists in explaining why buses are
congested. Contrary to the Dublin scenario, bus data is considered, providing more
sparse data (because of the moving bus-related sensors) and a different data format i.e.,
SIRI XML instead of CSV. In addition the amount of data used for diagnosis (cf. traffic
diagnosis row) is not as significative as in the Dublin scenario in terms of (i) size and
(ii) number of data sets e.g., no report of traffic incident in Bologna. Finally the road
works are exposed in Italian and digitalized in a different format.

• Motivation: cf. Motivation of Section 2.1 with a focus on bus congestion in Bologna.

• Challenges and STAR-CITY Limitations: Conceptually, diagnosing bus congestion
relies in a similar reasoning task of the one described in Section 2.1. However from
an in-use perspective diagnosing bus congestion in Bologna requires to address the
following technical challenges:

C1 Traffic anomalies are identified and represented differently.
How to capture a semantic, core representation of anomalies in any city?

C2 The sources of diagnosis and their size are not similar e.g., social media is missing.
How accuracy of diagnosis is impacted by its sources? Are they still representative?

C3 The sources of diagnosis are heterogeneous from one city to another one.
How to configure STAR-CITY in a way that is scalable and flexible to any city?

C4 Data exposed in Bologna is real-time information but with a very low throughput.
Could the architecture of STAR-CITY be decoupled from its streaming components?

C5 The schema of some data sources is in Italian cf. road works in Table 1.
How to make use of cross languages data sources?

2.3 Diagnosing Bus Bunching in Miami

• Description: The diagnosis task in Miami consists in explaining why buses bunched.
Fig.1 illustrates STAR-CITY in Miami. In public transport, bus bunching refers to a
group of two or more buses, which were scheduled to be evenly spaced running along
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Fig. 1. STAR-CITY In Miami. (color).

the same route, instead running in the same location at the same time. This occurs when
at least one of the vehicles is unable to keep to its schedule and therefore ends up in
the same location as one or more other vehicles of the same route at the same time.
Contrary to Dublin but similarly to Bologna scenario, bus data is considered but with
a much higher throughput, which may raise some questions regarding scalability of
STAR-CITY in Miami. Contrary to Dublin and Bologna scenarios, much more data
sources (i.e., passengers-related data) with larger size are considered. Again the format
of data slightly changed across cities.

• Motivation: The end result can be unreliable service and longer effective wait times
for some passengers on routes that had nominally shorter scheduled intervals. Another
unfortunate result can be overcrowded vehicles followed closely by near-empty ones.

• Challenges and STAR-CITY Limitations: In addition to challenges C1, C2 and C3

in Section 2.2 which are also valid in this context, diagnosing bus bunching in Miami
requires to address the following technical challenge:

C6 The number of diagnosis sources is larger e.g., bus passenger loading set is added.
How accuracy of diagnosis is impacted by new external sources? (dual to (b)).

2.4 Diagnosing Low On-Time Performance of Buses in Rio

• Description: The diagnosis task in Rio consists in explaining the low on-time per-
formance of buses i.e., buses which are heavily delayed. The reasons can range from
traffic incidents, accidents, bus bunching, detour, or unrealistic scheduling. Contrary to
the Dublin and Miami scenarios the amount of data sets of potential use for diagnosis
is very low i.e., only events and information about passengers loading are available. In
addition the schema of the latter data set is different and in Portuguese.

• Motivation: Such problems can result in unreliable bus services for Rio, which could
turn in complex problems such as bus bunching, and even more critical problems such
as emphasized in motivation of Section 2.1.

• Challenges and STAR-CITY Limitations: In addition to challenges C1, C2, C3, C5

and C6 in Sections 2.2 and 2.3 which are also valid in this context, diagnosing bus
delays in Rio requires to address the following technical challenges:

C7 The historic of information is 480 days while it is more than 3 years for other cities.
How accurate is the diagnosis in a context of limited historical information?
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This section described the problems which have not been foreseen by the initial ar-
chitecture of STAR-CITY, but which have strong impacts and limitations for flexible
and scalable deployment in Bologna, Miami and Rio. All challenges C1, C3-C5 are
problems where semantic web technologies have been strongly considered in the inno-
vative and deployed architecture of STAR-CITY in Bologna, Rio and Miami (cf. Sec-
tion 3) while challenges C2, C6 and C7 are related to data characteristics (availability,
relevance, accuracy) and their fit-for-purpose (cf. Section 4).

3 Flexible System Architecture and Semantic Configuration
The high-level architecture of STAR-CITY (both Dublin and Bologna, Miami, Rio ver-
sions) in Fig.2 consists of four main components: (i) semantic application configuration,
(ii) semantic application server, (iii) data layer and (iv) user interface. In this section we
explain how we adapted the initial version of STAR-CITY (running for Dublin) and
its underlying technologies (i) to address the aforementioned challenges C1, C3-C5 of
Section 2, and then (i) to be flexible for deployment in other major cities in the world.
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Flexible Deployment in Bologna, Miami and Rio. (color).

3.1 Semantic Application Configuration

The semantic application management and configuration component is the main com-
ponent of STAR-CITY which enables flexible and scalable deployment of the system
to other cities. Initially deployed and experimented in Dublin city, STAR-CITY did not
address the challenges C1, C3 and C5.

• Challenge C1 “Anomaly Identification”: The identification of anomalies in the initial
version of STAR-CITY is pre-determined by some very simple fixed encoded rules, for
instance (1) encoding the rule “if travel time between sensorID203 and sensorID2 is less
than 183 seconds then trigger diagnosis service”.

TriggerDiagnosis(s1, s2, time) ← Sensor(s1) ∧ Sensor(s2) ∧ travelT ime(s1, s2, time, value)

∧ equalTo(s1, 203) ∧ equalTo(s2, 2)

∧ lessThan(value, 183) % with “183” is the min. threshold (1)
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Obviously such an approach is not scalable to other domains and even other cities. In-
deed, one would need to redefine the rules at every new deployment phase from scratch.
We address this problem by following [10], which provides semantics for capturing
anomalies at semantic level. The approach consists in supervising the end-user in an-
notating values ranges of sensors with predefined concepts “Anomaly” and “Normal”
from our domain ontology OD . This ontology, represented as a RDF-S taxonomy, is
simply used for defining the domain e.g., Dublin Travel Time and its anomalies. Further
domains can be easily added e.g., Bologna, Miami and Rio Bus domain. The appropri-
ate rules are then encoded semantically using SWRL rules4, which connect the logical
rules to the domain of application. Following this semantic extension of STAR-CITY,
end-user can easily extend OD, and then encode any anomaly identification rules.

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix dbpr: <http://dbpedia.org/resource/> .
@prefix addr: <http://schemas.talis.com/2005/address/schema#> .
@prefix rdfcal: <http://www.w3.org/2002/12/cal/icaltzd#> .
@prefix ibmVoc: <http://www.ibm.com/smartercities/cityfabric/voc#> .
@prefix busVoc: <http://www.ibm.com/SCTC/ontology/BusOntology.owl#> .
@prefix xmls: <http://www.w3.org/2001/XMLSchema#> .

<!-- Spatial Representation -->
<http://starcity.traffic.bus.miami.anomaly/venues/AltonRoad_10>

a geo:SpatialThing ; dbpr:Country_Code <dbpr#ISO_3166-1:US> ;
addr:countryName "USA" ; addr:localityName "Miami" ; addr:streetAddress "Alton Road" ;
rdfcal:summary "Bus Bunching Anomaly" ;
geo:lat "25.788371ˆˆ<xmls#float>" ; geo:long "-80.141280ˆˆ<xmls#float>" .

<!-- Temporal Representation and Type -->
<http://starcity.traffic.bus.miami.anomaly/event/Anomaly_1398032000_Bus113>

a rdfcal:Vevent ; a ibmVoc:Anomaly ; a ibmVoc:Traffic ;
ibmVoc:eventTag "flow" , "speed", "bunching", "delay", "road", "traffic" ;
ibmVoc:hasEventCategory rdfcal:Vevent , ibmVoc:Anomaly , ibmVoc:BusBunching ;
rdfcal:tzname "GMT" ; rdfcal:created "2014-04-20T20:01:20ˆˆ<xmls#dateTime>" ;
rdfcal:dtstart "2014-04-20T20:01:20ˆˆ<xmls#dateTime>" ;
rdfcal:dtend "2014-04-20T20:13:20ˆˆ<xmls#dateTime>" ;
rdfcal:summary "Bus Bunching Anomaly" ;
ibmVoc:hasSensingBUS <busVoc#Bus113> ; ibmVoc:hasSeverity "STOPPEDFLOW" ;
geo:location <http://starcity.traffic.bus.miami.anomaly/venues/AltonRoad_10> .

Fig. 3. Example of a Bus Bunching Anomaly Representation in Miami (rdf/s prefixes omitted)

• Challenge C1 “Anomaly Representation” (Fig.3): The initial representation of
anomalies did not require any semantics has only one type of anomaly was diagnosed in
the Dublin scenario. In larger cities, traffic anomalies could be of different types, which
need to be captured. The new representation of anomalies in STAR-CITY follows a
strict and simplistic (on purpose) representation of anomalies i.e., spatial, temporal rep-
resentations, types and associated key tags e.g., Miami bus 113 bunching in Fig.3. Such
a semantic representation is specifically important in the context of bus-related diagno-
sis since different types of bus anomalies may occur in one city e.g., delay, congestion,
bunching. Capturing and representing their types is very important to (i) understand
how anomalies and their types are correlated to their diagnoses, (ii) easily search among
anomalies which are captured by different systems e.g., bus congestion by a TRIPS sys-
tem, bus delays by a bus operator related system (cf. Dublin case where bus delay and
travel time could be provided by two different systems).

• Challenge C3 “Semantic Inter-City Configuration”: The semantic inter-city config-
uration challenge C3 is complimentary addressed by the semantic application config-

4 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/
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@prefix ibmVoc: <http://www.ibm.com/smartercities/cityfabric/voc#> .

<!-- Configuration Settings for Bus Congestion Diagnosis in Bologna -->
<http://starcity.traffic.bus.bologna/reasoning/diagnosis>

<!-- Configuration of inputs to be considered for diagnosis reasoning -->
<Class ibmVoc:Input> <Type ibmVoc:RoadWork> <Source "BolognaRoadWorkComplete">

<Property geo:lat> <Property geo:long> <!-- Spatial Constraints -->
<Property rdfcal:dtstart> <Property rdfcal:dtend> <!-- Temporal Constraints -->
<Property ibmVoc:description> <Property ibmVoc:areaOfWork> <!-- RoadWork Features -->

<Class ibmVoc:Input> <Type ibmVoc:MajorEvent> <Source "Eventful"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:MinorEvent> <Source "Eventbrite"> <!-- Property omitted -->

<!-- Configuration Settings for Bus Bunching Diagnosis in Miami -->
<http://starcity.traffic.bus.miami/reasoning/diagnosis>

<Class ibmVoc:Input> <Type ibmVoc:RoadWork> <Source "BolognaRoadWorkComplete">
<Property geo:lat> <Property geo:long> <!-- Spatial Constraints -->
<Property ibmVoc:description> <Property ibmVoc:areaOfWork> <!-- RoadWork Features -->
<Property rdfcal:dtstart> <Property rdfcal:dtend> <!-- Temporal Constraints -->
<Property ibmVoc:impact>

<Class ibmVoc:Input> <Type ibmVoc:MajorEvent> <Source "Eventful"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:MinorEvent> <Source "Eventbrite"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:Incident> <Source "Twitter"> <!-- Property omitted -->
<Class ibmVoc:Input> <Type ibmVoc:BusLoading> <Source "BusTransit"> <!-- Property omitted -->

Fig. 4. Semantic Configuration for Bologna and Miami Diagnosis Reasoning

uration (i.e., configuration-layer in this section), server (services-side in Section 3.2)
and data layer (data-side Section 3.3) in STAR-CITY. In the initial version of STAR-
CITY for Dublin, each and every dimension of our data sets has been represented in
OWL / RDF, reaching to a very detailed contextual information but also to (i) a very
tight model which is not flexible to other cities, and (ii) a time-consuming mapping
process (i.e., mapping from raw to RDF data cf. Section 3.3). The migration of STAR-
CITY from one city to another one requires major customization and many steps of
configuration. For instance the traffic impact of a road work event is defined in Dublin
and Miami, not Bologna; its area of work (e.g., secondary, pavement) is defined in Mi-
ami and Bologna, not in Dublin. Similarly traffic accidents (through social media) are
captured in the Dublin and Miami scenarios, but not for Bologna and Rio. Since the
diagnosis is highly coupled to the level and categories of representation of events, it is
very important that the inputs of diagnosis (i.e., traffic diagnosis row of Table 1) are
pre-configurable. To this end we let the (admin) users define the relevant raw data and
associated concepts to be considered for diagnosis. For instance, the diagnosis applica-
tion of Bologna and Miami could be defined as in Fig.4. In such a configuration, the
diagnosis reasoning can be configured with respect to its inputs (e.g., input of diag-
nosis for diagnosing bus congestion in Bologna), their types (e.g., RoadWork defined
in the ibmVoc ontology) and raw data sources (e.g., BolognaRoadWorkComplete) and
respective properties (e.g., latitude, longitude, area of work).

The new configuration settings of STAR-CITY, defined through the IBM Rational
family of software configuration management solutions and extended with semantics,
is flexible, easy to be exported to any city. Instead of directly interacting with the REST
APIs (cf. Fig.2), the semantic configuration is used to automatically adapt the APIs with
the appropriate settings. The city-wide customization is then driven by (the semantics
of) the vocabulary used for defining the inputs, their types, sources, properties.

• Challenge C5 “Multi-Lingual System”: STAR-CITY has been designed for running
with english vocabularies such as IBM ibmVoc. Such vocabularies, which strongly
drive the reasoning engine, do not offer multi-lingual features and very few connec-
tions to open vocabularies. This strongly limits the entry of non-english speakers to the
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STAR-CITY configuration, which turns to be the case for Bologna (Italian language)
and Rio (Portuguese language) administrators. Therefore the interpretation and cus-
tomization of inputs (e.g., configuration in Fig.4), results (e.g., diagnosis schema-related
such as their types cf. Fig.5) are rather difficult, and even impossible in some cases. We
address this problem by simply manually adding extra links (i.e., Linked Open Data
resources [11]) to all concepts of our IBM vocabulary.

(a) Diagnosis in Dublin (English) (b) Diagnosis in Bologna (Italian)

Fig. 5. Semantics-driven Multi-Lingual STAR-CITY (color). Diagnosis results are automatically
provided in preferred language by using language-related links of DBpedia. (Hyperlinks are pro-
videdfordescribingspecifictermse.g., cantiere-construction-notdisplayedforsakeofreadability).

By adding LOD links to our vocabulary we also give the possibility for non expert
users to get extra and detailed information related to non self-explanatory events such as
construction, obstruction, drainage (by simply follow new hyperlinks in STAR-CITY).
Fig.6 illustrates a simple extension of our vocabulary, where associated Italian5 and
Portuguese6 transcriptions of Traffic collision are used in the appropriate context.
<http://www.ibm.com/smartercities/cityfabric/voc#TrafficIncident>

a http://www.ibm.com/smartercities/cityfabric/voc#Event
owl:sameAs <http://dbpedia.org/resource/Traffic_collision"> <!-- [A] -->
<!-- owl:sameAs <http://it.dbpedia.org/resource/Incidente_stradale> through ref. to [A] -->
<!-- owl:sameAs http://pt.dbpedia.org/resource/Acidente_rodovirio> through ref. to [A] -->

Fig. 6. Sample of a Simple LOD Extension of IBM STAR-CITY Vocabulary

3.2 Semantic Application Server

• Challenge C3 “Semantic Inter-City Configuration”: As reported in Fig.2 and Fig.7,
web-facing services use a set of SA-REST services7. These services are implemented
on a custom application running on IBM WebSphere Application Server. REST-related
technologies have been considered in STAR-CITY because of its lightweight proto-
col. Extended with a semantic layer, SA-REST was the most appropriate solution to
accommodate our semantic configuration (cf. Challenge C3 in Section 3.1). In details
the semantic configuration is combined with the skeleton of each STAR-CITY APIs to

5 Italian http://it.dbpedia.org/resource/Incidente_stradale for English
Traffic Collision.

6 Portuguese http://pt.dbpedia.org/resource/Acidente_rodovirio for En-
glish Traffic Collision.

7 http://www.w3.org/Submission/SA-REST/

http://it.dbpedia.org/resource/Incidente_stradale
http://pt.dbpedia.org/resource/Acidente_rodovi�rio
http://www.w3.org/Submission/SA-REST/
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provide customized SA-REST analysis, exploration, diagnosis and prediction services
e.g., diagnosing bus bunching in Miami with road works and accidents, or both. The
description of the low-level implementation of the services is described in the APIs reg-
istry (e.g., how technically diagnosis reasoning is interacting with input data sources)
while the semantic and high-level representation of the expected services are described
in the semantic configuration (e.g., Figure 4 for configuring STAR-CITY Bologna and
Miami). Such an architecture, which discharges the manual and syntactic configuration
of services, ensures flexible deployment of customized STAR-CITY functionalities in
the context of any city.

: STAR−CITY Components

Functionality
Registry

Diagnosis, Prediction)

CAPTION:

: Data Flow Ordering

: Research Challenges

SA−REST Services

(Analysis, Exploration,

Instantiation of
Semantic Configuration

is Described by

is Described by

Knowledge
Background Services

SA−REST

STAR−CITY APIs

2

C3

3

C3

1

i

Fig. 7. Semantic Instantiation and Implementation of STAR-CITY SA-REST Services. (color).

3.3 Data Layer

Contrary to the semantic application server, a step of manual configuration is required
in the data layer. It is mainly in charge of defining the data access points (e.g., URL of
TRIPS datab in Table 1), protocols (e.g., HTTP for TRIPS), frequency (e.g., every minute
for TRIPS) and various basic raw data parsing (e.g., adding timestamp to data collected
for TRIPS). The Perl programming language, its standard modules together with CRON
jobs are used for this purpose. We also manually define the mapping procedure from raw
data source to semantic representation. The mapping procedure, completely described
in Section 3.2 of [9], consists of a set of mapping files which describes how raw data is
transformed in semantic representations associated to our domain ontology. Basic XSLT
(for XML) and custom tabular transformation procedures (for CSV) are applied.

• Challenge C4 “Semantic Stream Agnostic Architecture”: Initially designed in a
streaming infrastructure, the data access and transformation of STAR-CITY is now
stream-agnostic. Ontology streams are not generated anymore from the data layer. The
main reasons of this architecture shift are: (i) low throughput of STAR-CITY-related
sensors in our city test cases, (ii) cost of streaming platform deployment, (iii) cost
of configuration, and (iv) weak flexibility (regarding the on-the-fly integration of new
data). Instead data transformation and aggregation is performed independently in a tra-
ditional manner (i.e., using pre-defined java routines and Perl scripts). The output of
the transformation is a semantic and temporal representation. Therefore, conceptually,
the output is similar to the initial version i.e., OWL statements are stored in jena TDB,
where some temporal indexes have been added.

4 Experimental Results

This section focuses on challengesC2, C6 and C7 by comparing and analyzing the scal-
ability and accuracy of the reasoning component of STAR-CITY in Dublin, Bologna,
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Miami and Rio. In particular we aim at (i) analyzing how our approach reacts to the size
(C2), number (C6) and historic (C7) of data sources (cf. Sections 4.2 and 4.3) within our
city context (cf. Section 4.1), and (ii) studying the impact of semantic expressivity by
adjusting the underlying ontologies (cf. Section 4.4). Requested by traffic controllers,
scalability and accuracy of the system have been extensively tested to validate the rele-
vance, usefulness and (agreed) deployment of STAR-CITY. The experiments have been
conducted on a server of 6 Intel(R) Xeon(R) X5650, 3.46GHz cores, and 6GB RAM.

4.1 Context

Live data from Dublin, Bologna, Miami and Rio (Table 1) are ingested and transformed
in OWL/RDF (Table 2) following the principles of the STAR-CITY data layer (Fig.2
and Section 3.2 of [9]) and using different static background knowledge (Table 3), are
used for experimentation. The highest expressivity of the ontologies is OWL EL.

Table 2. Details of Real-time Live Data in No Particular Order (average figures)

Real Time,
City

Frequency of Raw Update Semantic Update Semantic Conversion
Live Data Update (s) Size (KB) Size (KB) #RDF Triples Computation Time (s)

[a] Journey Times Dublin 60 20.2 6, 102 63, 000 0.61
Bologna 120 31.8 1, 166 4, 550 0.295

[b] Bus Miami 40 66.8 1, 766 11, 000 0.415
Rio 60 96.8 2, 366 16, 145 0.595

[c] Incident
Dublin 600 0.2 1.0 7 0.002
Miami 180 0.2 1.0 9 0.002
Dublin once a week 146.6 77.9 820 3.988

[d] Road Works Bologna once a day 78.9 133.2 1, 100 0.988
Miami 3600 102.6 103.6 912 1.388
Dublin 240.7 297 612 1.018

[e] City Events
Bologna

once a day
111.2 149 450 0.434

Miami 637.2 789 1, 190 1.876
Rio 585.3 650 950 1.633

[f] Bus Loading
Miami 40 833 2, 500 4, 500 0.390

Rio 60 69.7 650 1, 230 0.147

The objective is to diagnose traffic anomalies in the different test cities i.e., traffic
congestion in Dublin, bus congestion in Bologna, bus bunching in Miami, low on-time
performance of buses in Rio. The evaluation is achieved on a different data sets com-
binations since our test cities have access to different data sets. From the most to the
least complete case we have: [b,c,d,e,f] for Miami, [a,c,d,e] for Dublin, and [b,e,f] for
Rio,[b,d,e] for Bologna (cf. Table 2 for data set {a,b,c,d,e,f} reference). Specifically we
evaluate the impact of the data sets combination on scalability and accuracy.

Table 3. Static Background Knowledge for Semantic Encoding

Ontology Size (KB) #Concepts
#Object #Data

#Individuals
Imported Data Sets

Properties Properties Ontologies Covered

IBM Travel Time 4, 194 41 49 22 1, 429 Time [a]
IBM SIRI-BUS [4] 41.9 21 17 18 - Geo [b]
LODEa(initial) 12 14 16 - - [e]
(extended) 56 87 68 31 - Time, Geo [c-f]
W3C Timeb 25.2 12 24 17 14 - [a-f]
W3C Geoc 7.8 2 4 - - - [a-f]
DBpedia Only a subset is used for annotation i.e., 28 concepts, 9 data properties [c-e]

a http://linkedevents.org/ontology/2010-10-07/rdfxml/
b http://www.w3.org/TR/owl-time/
c http://www.w3.org/2003/01/geo/
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4.2 Scalability Experimentation and Results

Fig.8 reports the scalability of our diagnosis reasoning and core components (i.e., data
transformation, OWL / RDF loading in Jena TDB, anomaly detection) of STAR-CITY
by comparing their computation time in different cities and contexts. Similarly to data
transformation and OWL / RDF loading, the anomaly detection and diagnosis reasoning
have been performed over one day of traffic.

• Challenges C2, C6“Impact of Data Sources (and their combination)”: The number
and size of data sets have strong negative impact on the overall STAR-CITY. Indeed
the more data sets the more overhead on transformation, loading, and reasoning. For
instance STAR-CITY performs better in Bologna (data sets [b,d,e]) than in Miami (data
sets [b,c,d,e,f]), although the latter results remain scalable.

• Challenges C7 “Impact of Historic Data”: As expected the computation performance
(of one day) of raw data transformation is not impacted by the size of historical infor-
mation (cf. secondary vertical x axis) while the computation of the OWL / RDF loading
slightly increases accordingly. The latter is caused by the overhead of RDF triples load-
ing on the TDB store, which requires some non negligible time times for re-indexing
e.g. 100 minutes of indexing over one complete day of RDF storage in Rio. More in-
terestingly the more historical information the more computation time, specifically for
diagnosis reasoning e.g., a factor of 5.3 from an historic of 10 days to 480 days in
Miami. This is caused by the intensive event similarity search over historical events
performed by the diagnosis [4].

Fig. 8. Scalability of STAR-CITY in Dublin, Bologna, Miami and Rio

4.3 Accuracy Experimentation and Results

Fig.9 reports the impact of historical information (challengesC2, C6) and size and num-
ber of data sets (challenge C7) on accuracy of diagnosis results in Dublin, Bologna,
Miami and Rio. The accuracy has been evaluated by comparing our explanation results
against those estimated by transportation experts (used as ground truth) in their respec-
tive cities. A basis of one complete day of experimentation has been used i.e., 2, 800,
240, 1190 and 3, 100 traffic anomalies for respectively Dublin, Bologna, Miami and
Rio. Fig.9 reports the average accuracy of diagnosis results.
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• Challenges C2, C6“Impact of Data Sources (and their combination)”: The more
data sources the more accurate the diagnosis results. For instance the accuracy of di-
agnosis is the highest in the context of Miami (with the largest number of datasets i.e.,
[b,c,d,e,f]) while the accuracy is the lowest for Bologna (with the smallest number of
datasets i.e., [c,d,e]) for all historical configurations. Interestingly, we learned that the
bus passenger loading dataset has a stronger positive impact on diagnosis accuracy than
the traffic incident dataset in all historical configurations |D| = 10, 60, 120, 240 and
480 cf. Bologna context vs. Miami context.

• Challenges C7 “Impact of Historic Data”: Reducing the number of historical events
decreases accuracy of diagnosis. The more similar historical events the higher the prob-
ability to catch accurate diagnosis. For instance the accuracy of diagnosis results is
improved by a factor of 1.5 by multiplying the number of historical days by a factor 8
(from 60 to 480 days).

Fig. 9. Accuracy of STAR-CITY Diagnosis in Dublin, Bologna, Miami and Rio

4.4 Expressivity Experimentation and Results

We slightly adjust the context (Section 4.1) by modifying the expressivity of the under-
lying ontologies (Table 3). Initially in OWL EL, we removed existential constructs of
the representation to capture knowledge in RDF/S. We also extend the latter knowledge
to capture the OWL RL dialect. Finally we consider OWL SROIQ(D) by adding extra
artificial constraints to the initial model. The number of historical days |D| considered
for diagnosis is fixed to 480.

• Expressivity vs. Scalability: Fig.10 reports the scalability of STAR-CITY using dif-
ferent levels of representation. Unsurprisingly the RDF/S configuration is the most
scalable while the SROIQ(D) is the most time consuming in all contexts. The di-
agnosis reasoning is the most impacted components i.e., (on average) +750% from
RDF/S to SROIQ(D). The computation time of anomaly detection (+410%) is also
altered while the OWL / RDF loading (+1.5%) and data transformation (+1.1%) are
less impacted. The diagnosis reasoning is based on consistency checking and seman-
tic matching functionalities8, which are constrained by the expressivity of the model.

8 Diagnosis reasoning is achieved by semantically comparing events and their characteristics
over time.
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Fig. 10. Expressivity vs. Scalability of STAR-CITY in Dublin, Bologna, Miami and Rio

Similarly the more expressive the model the more time consuming is the anomaly de-
tection, following results from [10]. These claims are demonstrated by results of Fig.10.

• Expressivity vs. Accuracy: Fig.11 reports the accuracy of STAR-CITY using differ-
ent levels of representation. Interestingly the RDF/S version of STAR-CITY is over
performed by the OWL EL (+186%), OWL RL (+174%) and OWL SROIQ(D)
(+190%) versions. By reducing the expressivity of the model (i.e., RDF/S) we tend
to light and loose the semantic representation of events in Table 3, which in turn largely
reduces the accuracy of the semantic matching functions (crucial during the diagnosis
phase). In other words downgrading the model to RDF/S largely impacts the accuracy
of diagnosis since all discriminating elements of the events cannot be considered by the
matching procedure, which ends up with a large portion of similar (and more critically
non-discriminable) events. Upgrading the models to OWL EL, RL or SROIQ(D)
adds extra semantic features to events which can be used for semantic matching and
comparison, hence a better semantic events discrimination and diagnosis accuracy.

The OWL EL, RL and SROIQ(D) configurations reach roughly similar accuracy
results, although the OWL SROIQ(D) version is slightly better than the OWL EL
(+0.97%) and RL (+0.91%) versions. The differences are not significative since the
OWL RL and SROIQ(D) versions do not differentiate events descriptions much fur-
ther than OWL EL. They actually simply support a refinement of the matching scores.

5 Lessons Learned

Deploying STAR-CITY and its semantics-aware architecture in more than one city
raised new challenges C1-C7 which we addressed in the new version of the deployed
system. The universal anomaly identification, representation (C1) and configuration
(C3) were the most critical challenges from a flexible, scalable deployment inter-city.
We extensively use semantic technologies for addressing these issues i.e., (i) seman-
tic model for C1, (ii) semantic configuration and SA-REST services for C3. Even so
some manual tasks are required to be achieved e.g., identification of anomalies ranges,
definition of OWL / RDF mapping process (for data transformation). The OWL / RDF
(concept) linking (alignment) process has also been performed manually to address C5,
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Fig. 11. Expressivity vs. Accuracy of STAR-CITY in Dublin, Bologna, Miami and Rio

but only once. However the latter needs to be replicated for each new data source and
mapping presented to STAR-CITY. The automation of this process is a complex task as
it required to align descriptions from very expressive vocabularies with concepts from
unexpressive models such as DBpedia.

The semantic stream conversion was not beneficial to the overall architecture as
it adds overhead on costs, deployment, configuration, systems interactions. Since the
throughput of sensors in the four cities was considerably low we shifted the semantic
transformation to a more traditional architecture. Shifting architectures did not impact
the performance of the system (experimentation not reported in this paper). Even if
higher throughput sensors could be an issue, we did not face it in our city contexts.

As experimented in Fig.10, expressive representation models means scalability is-
sues. Even if the accuracy of the reasoning results is correlated to the expressivity of
the semantic model, we noted differences in scale and impact cf. OWL EL vs. RDF/S
configurations in Fig.11, cf. OWL EL vs. SROIQ(D) configurations in Fig.11. There-
fore defining the appropriate level of representation is not a trivial task, and need to be
driven by the application needs while ensuring scalable and accurate processing.

Data from sensors evolve over time. We considered a subset of the W3C Time on-
tology to represent the starting date/time and a simple temporal extension of TDB.
However more complex time feature could have been used for compacting semantic
information e.g., temporal intervals. We did not address this problem but a complex
temporal-aware representation mode would support more complex reasoning e.g., over
time intervals. STAR-CITY uses basic methods to evaluate loose temporal similarity.
However research challenges, already tackled by [12], would need to be considered for
more accurate temporal joints.

From a pure STAR-CITY perspective, reducing the number of historical events (to-
gether with the number and size of sources for diagnosis) increases scalability, but also
decreases accuracy. Therefore the more source the better for STAR-CITY. However the
scalability of the ingestion, transformation and loading of semantic representation is
strongly altered by these dimensions (cf. indexing issues raised by challenge C7 in Sec-
tion 4.2). The latter raises requirements towards scalable (big) semantic data structure.

Applying STAR-CITY to other cities raise also challenges regarding the well-known
problem of data interpretation in general. Before adding any semantics, we were facing
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the problem of making sense of schema-less data, specifically when data was described
in Italian and Portuguese. For instance most content of bus passengers loading data set
is not really necessary and does not need semantic transformation.

6 Conclusion

IBM STAR-CITY is a system supporting Semantic (road) Traffic Analytics and
Reason-ing for CITY. Initially deployed and experimented in Dublin City (Ireland),
the system, its architecture and its semantic-related components have shown limitations
regarding their flexibility and scalability to other cities. This paper, focusing on the
diagnosis reasoning component of STAR-CITY, described (i) its semantics-related lim-
itations in the context of Bologna (Italy), Miami (USA), Rio (Brazil), and (ii) the inno-
vative “any-city” architecture of STAR-CITY together with its semantic configuration
for flexible and scalable deployment in any city. The paper also reported experimenta-
tions of STAR-CITY in Bologna, Miami and Rio, which have validated the architecture,
design and specifications of new deployed system.

As emphasized in Section 5 the challenges related to automated semantic data linking
and loading are immediate in-use problems to be addressed, while the issues related to
temporal compact representation are longer-term challenges.
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10. Lécué, F.: Towards scalable exploration of diagnoses in an ontology stream. In: AAAI (2014)
11. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf.

Syst. 5(3), 1–22 (2009)
12. Lutz, C.: Interval-based temporal reasoning with general tboxes. In: IJCAI, pp. 89–96 (2001)



Adapting Semantic Sensor Networks
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Abstract. The Internet of Things is one of the next big changes in which
devices, objects, and sensors are getting linked to the semantic web.
However, the increasing availability of generated data leads to new inte-
gration problems. In this paper we present an architecture and approach
that illustrates how semantic sensor networks, semantic web technolo-
gies, and reasoning can help in real-world applications to automatically
derive complex models for analytics tasks such as prediction and diag-
nostics. We demonstrate our approach for buildings and their numerous
connected sensors and show how our semantic framework allows us to
detect and diagnose abnormal building behavior. This can lead to not
only an increase of occupant well-being but also to a reduction of en-
ergy use. Given that buildings consume 40% of the world’s energy use
we therefore also make a contribution towards global sustainability. The
experimental evaluation shows the benefits of our approach for buildings
at IBM’s Technology Campus in Dublin.

1 Introduction

With the development of embedded cyber physical systems and large computa-
tional resources in the cloud, the availability of sensor information continuously
increases towards the Internet of Things. Semantic Sensor Networks (SSN) play
an important role in this development as they provide a homogeneous seman-
tic layer for sensor information and simplify the detection and retrieval of data
[1,2]. This is key for connecting cloud-based analytic tasks that process this
data. However, advanced analytics need also knowledge of the system’s internal
processes. Diagnostics, for example, require hypotheses of the cause-effect rela-
tionships between sensors. SSN do not provide ways to model such aspects and
it is often necessary to add this information manually [3,4]. However, this can
turn into a very tedious task and prevent the exploitation of SSN for large scale
analytic applications.

Building automation systems (BAS) are one established example of large scale
sensor and control networks that contain thousands of devices in newer buildings.
Analyzing the data allows to improve the building’s energy consumption with
large environmental impact as buildings consume about 40% of the energy in
industrialized countries and are responsible for 36% of their CO2 emissions [5].
For large companies building energy management is done at enterprise scale
that enables them to monitor, analyze, report and reduce energy consumption

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 308–323, 2014.
c© Springer International Publishing Switzerland 2014
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across their building portfolio, including retail and office properties. However,
the integration of thousands of sensors of buildings in different locations, with
different systems and technologies is a challenging task.

This paper presents the architecture and approach of IBM’s Semantic Smart
Building Diagnoser. It allows to automatically derive complex analytic tasks in
buildings from a semantic sensor network model. With some small extensions to
the SSN ontology we are able to derive large models of the physical processes
within the building using solely semantics techniques such as SPARQL update.

The following section reviews the state of the art. Section 3 explains the archi-
tecture of our approach that is detailed in Section 4. We present the evaluation
of our approach at IBM’s Technology Campus in Dublin in Section 5. The paper
concludes with remarks on the lessons we learned.

2 State of the Art

The building automation domain has a long history with interoperability prob-
lems due to the diversity of systems and technologies [6]. The trend is to use
semantic web technologies to describe sensors and the observed context as states
and events [3,6,7]. Similar capabilities are provided by the domain independent
W3C Semantic Sensor Network (SSN) ontology [2], which will be explained in
Sec. 4.1. The benefit of these ontologies is that they provide a homogeneous
semantic model of sensors to backend systems that then can be agnostic of the
underlying technology. However, the approaches model sensors only as inter-
faces of the system and do not describe the processes within the system. This
information is important for many in-depth analytic tasks such as diagnosis.

An estimated 15% to 30% of energy in buildings could be saved if faults in the
BAS system and its operation could be detected in a timely manner [8]. Katipa-
mula and Brambley [9] provide an extensive review of the common approaches.
They classified them in three categories: physical model based approaches, data
driven approaches, and rule-based approaches. The first require physical mod-
els of the building components like boilers or chillers. These approaches can
diagnose faults precisely. However, the model development requires time and ex-
pertise and the models are difficult to adapt to different buildings. Data driven
approaches like [10] are solely based on the building’s sensor data. While this
makes them easily adaptable to different buildings their diagnostic capability
is limited to the detection of faults rather than their identification. Therefore,
rule-based approaches are most established and also used by IBM’s TRIRIGA
Environmental and Energy Management Software. The rules capture domain
knowledge of conditions for anomalies and their cause-effect relationships [11].
It was shown in [3,4] that the rules can also be executed directly on the semantic
model. This leads to a more integrated approach that simplifies the deployment.
However, it still requires data modeling engineers to create the diagnostic model.
Herein also lies its biggest limitation: as rules can detect predefined situations
only, they need to be manually adapted to each system by people with in-depth
knowledge of all potential cause-effect relationships.
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Our approach combines the benefits of these three concepts to overcome their
disadvantages: it models high level physical processes in the systems to derive
diagnosis rules; it parameterizes the rules using data analytics and applies them
effectively during runtime. The strength of a semantic approach is that we can
use reasoning and semantic web techniques to automate this process for the
large scale sensor networks found in buildings such that the human modeling
and calibration effort is minimal.

3 Architecture

Figure 1 shows the architecture of the Semantic Smart Building Diagnoser. It
is designed to allow energy management of a global portfolio of buildings. The
individual building’s BAS are integrated via REST services that are usually
available and allow retrieving time series information and non-semantic text
labels for sensors. This data is enriched with additional semantic information in
different steps such that we can autonomously run different analytic processes
on the top layers that are agnostic of the underlying BAS. The process is divided
into an initialization phase, that creates the semantic model once, and a runtime
phase, that uses the semantic model to efficiently process online stream data.
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Fig. 1. Architecture of the approach

During the initialization phase we lift the usually non-semantic data to a
semantic representation in a domain ontology that specifies common semantic
types and physical processes in buildings as extension of the W3C SSN ontology
(Sec. 4.1). The lifting is composed of three steps. First, we create a SSN model
that describes the available sensors. The step is semi-automated by an internal
label mapping tool that maps the non-semantic BAS text labels to their seman-
tic equivalents in the domain ontology and asks a human for validation [12].
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From this homogeneous semantic representation we then automatically derive a
physical process model that expands the relationships between sensors (Sec. 4.2).
It allows us to automate individual analytic tasks based on sensor data from the
building by extending specific semantic information. For example, the diagnosis
model generator extends cause-effect relationships between sensors (Sec. 4.3).
The different semantic models are stored in a DB2RDF database for efficient
access during runtime.

The runtime environment is using the semantic version of IBM InfoSphere
Streams [13], which handles mixed time series and RDF data based stream pro-
cessing/reasoning in real-time. This hybrid setup is important as not all time
series data can be rendered in RDF for scalability reasons (Sec. 4.4). We enrich
the dataset with external information by linking, for example, additional expla-
nations of semantic types to DBpedia. Historical weather data and forecasts from
wunderground are used for diagnosis and energy predictions [14]. Room booking
information from IBM Notes is used to estimate and predict room occupancy. We
use this semantically-enriched dataset for the different analytic tasks (Sec. 4.4).
The individual steps of our approach are detailed in the following section.

4 Approach

We start by introducing a necessary extension to the SSN ontology that will
enable us to automatically derive the physical process model and a diagnostic
model.

4.1 Extended SSN Ontology

In the first step, we create a SSN representation for each BAS using an internal
label mapping tool [12]. The tool semi-automatically assigns the corresponding
semantic sensor type in our domain ontology to each BAS label using com-
mon structure, acronyms, and units in the textual descriptions (e. g. we extract
”Temperature Sensor in Room R1” from the label ”R1 Tmp”).

The resulting model is an extension of the Semantic Sensor Network (SSN)
skeleton ontology defined by the W3C incubator group [2]. SSN consolidates con-
cepts from various sensor network ontologies and was chosen because it provides
differentiated views on the aspects of sensing beyond the building domain. In
particular it uses the Stimulus-Sensor-Observation ontology design pattern [15].
The pattern separates the concepts of ssn:Sensor for physical devices taking
measurements in form of ssn:Observation and the actual changes that happen
in the environment, which is the ssn:Stimulus of the measurement. This sepa-
ration is important as it recognizes that: 1) stimuli occur in the environment
independently of the number and kind of sensors that observe them and 2) ob-
servations made by a sensor are not identical to stimuli as measurements can
be incorrect due to measurement noise, outliers, or sensor failures. We use the
following classes from the skeleton ontology:

– ssn:FeatureOfInterest: The monitored (diagnosed) system is defined as a Fea-
tureOfInterest. In the following we will use the shorter feature as synonym.
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ssn:S mulusssn:FeatureOf-
Interest ssn:Observa onssn:Property

phy:hasOutput

ssn:Sensor
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phy:ObservedCause
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Extension phy:FeatureLink

phy:hasInputphy:linksFeature

DUL:includesEvent ssn:observedByssn:hasProperty ssn:isProxyFor

phy:Cause

phy:Effect

phy:hasPotCause

Fig. 2. Extension to the SSN ontology

– ssn:Property : Properties are qualities of a Feature. They can be observed like
the air temperature of a room. In extension to the SSN, we define that prop-
erties may also be unobservable. Unobservable properties are often relevant
to correctly understand the physical processes within features. One example
is the inner energy of the room. The inner energy is the heat stored in the
air in the room. It is related to the air temperature, but not measurable.

– ssn:Sensor : A time series provided by a physical device or computational
method observing a property.

– ssn:Observation : Observations describe discrete states that are derived from
the sensor time series data. An observation state may be that an air tem-
perature is above 20 ◦C.

– ssn:Stimulus: A stimulus is an event or state of a property. A stimulus is not
identical with the observation made by a sensor, as the sensor itself may fail.

The SSN ontology provides no means to model physical and cause-effect re-
lationships between sensors. Therefore, we have extended the SSN ontology in
[16] using the namespace phy by the concepts1 shown in Figure 2:

– phy:PhysicalProcess 2: The properties of many real world features are related
by physical processes. A phy:PhysicalProcess models this as directed relation-
ship of a source property (phy:hasInput) that influences a target property
(phy:hasOutput). We differentiate different process types that relate to com-
mon models used in control theory3. In the paper we will only use positive
and negative correlated properties. The influence is a phy:PosCorrProc if a
factor increases with its influence and it is a phy:NegCorrProc if it decreases
with an increase of the influence. The temperature we feel, for example, is
influenced by the inner energy in a room via a positive correlation process,
as it feels warmer when we increase the energy. The cooling system uses a
negative correlation process as it removes heat from this energy.

– phy:FeatureLink : Physical processes occur not only between properties with-
in the same feature, but, also between related features. A FeatureLink de-
notes such a relationship between features that are defined by the object

1 A complete version of the provided example and an extended one is available at
https: // www. dropbox. com/ s/ z369tzmn00f1jv9/ demopackage. zip .

2 Not to be confused with ssn:Process or dul:Process from DOLCE subset used by
SSN. The first describes the sensing process and the second an event in transition.

3 We use classes of linear time-invariant systems such as proportional, integral, deriva-
tive, or delay processes. This is similar to data flow models such as Matlab/Simulink.

https://www.dropbox.com/s/z369tzmn00f1jv9/demopackage.zip
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{Outside} {Room}{Wall}

{TempHigh}
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Object Property:
phy:linksFeature
ssn:observedBy
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Fig. 3. Example input of the approach

property phy:linksFeature. They are, for instance, used to model spatial re-
lationships between two adjacent rooms connected by a wall.

– phy:Cause , phy:Effect : are subconcepts of ssn:Stimulus and describe the not
necessarily observed stimulus of a cause and the resulting effect.

– phy:Anomaly : is a subconcept of ssn:Observation that is used to describe
abnormal observations that should be diagnosed. An anomaly may be for
example a high room temperature.

– phy:ObservedCause : is another subconcept of ssn:Observation describing the
observable discrete states of potential causes of an anomaly. A cause for a
high temperature in a room may be an inactive cooling system.

We will later introduce additional object and annotation properties to model
the generic process knowledge in a domain ontology. In the following example
we use the namespace sb for this smart building domain ontology.

Example 1 (Semantic Input)
We illustrate the approach with the running example of a single office room
{Room}4 shown in Figure 3. It is separated from to the outside by a wall.
The room contain sensors for air temperature {TempSensor} and occupancy
{OccupancySensor}. A virtual sensor {OutsideTempSensor} links to the outside
temperature retrieved from wunderground.com. The room also contains a cooling
system with actuator {CoolingActuator} and setpoint {CoolingSetpointValue}.
The setpoint value is automatically decreased if the room is occupied to save cool-
ing energy if it is unoccupied.

We map the sensors in the example from Figure 3 to our domain ontology.
It contains concepts for the sensors sb:TemperatureSensor , sb:OccupancySensor ,
sb:CoolingActuatorValue, and sb:CoolingSetpointValue � ssn:Sensor . The sen-
sors observe the corresponding room properties sb:Temperature, sb:Occupancy ,
sb:Cooling , sb:CoolingSetpoint �ssn:Property . In addition we define sb:Energy�
ssn:Property for the unobservable property of a rooms inner energy. The rooms
are instances of sb:Room and the environment of sb:Outside which are both fea-
tures, thus sb:Room , sb:Outside � ssn:FeatureOfInterest.The locations are con-
nected by sb:Wall � ssn:FeatureLink .

Our aim is to determine which of the sensors, related to the room or its sur-
rounding, can localize the cause of an abnormally high temperature {TempHigh}.
Here we consider any sensor value abnormal that deviates by more than two de-
grees from the cooling set point of that room.

4 We denote by {c} � C an instance c, internalized as a concept {c} which is a special-
ization of C.

wunderground.com
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4.2 Deriving the Process Model

The SSN is automatically extended by the properties and processes within the
system. We do this in two steps. First, we create property instances for all fea-
ture instances, even if they are not observed as they may be involved in physical
processes. Second, we connect these property instances by processes. The neces-
sary knowledge about the properties and processes is modeled on concept level
in the domain ontology using annotation properties. As the same domain on-
tology is used by all buildings, this modeling effort needs to be done only once.
For example, our smart building ontology contains concepts for 62 sensor and
18 properties as well as 53 process annotations (see footnote 1). This will enable
us in Sec. 5.1 to create several thousand property and process instances for the
IBM Technology Campus Dublin.

We differentiate mandatory and optional properties. Mandatory properties
are characteristic physical properties of a FeatureOfInterest and need to be cre-
ated for each feature instance. Optional properties are not explicitly required by
a feature and are only created if they are observed by a sensor. We define these
relationships on concept level of the domain ontology using annotation proper-
ties. For example, we may not find a temperature sensor in each room, but, each
room has a temperature. Thus, we annotate the sb:Room class using the anno-
tation phy:requiresProperty to link to sb:Temperature as a mandatory property.
The cooling actuator on the other hand is not mandatory to a room as not all
rooms have a cooling unit. We annotate the sensor subclass sb:CoolingActuator
using the annotation phy:defaultObserved referring to the sb:Cooling property.
It specifies that a room only possesses a Cooling property if it also has a Coolin-
gActuator as sensor.

We use these annotation properties to create the property instances using
SPARQL 1.1 update (SPARUL). SPARUL is an extension of SPARQL that
does not only allow the search for specific RDF patterns, but also allows mod-
ifying and extending the RDF graph around such patterns. Figure 4 shows on
the top left and top right two SPARUL queries that create mandatory and
optional properties, respectively. The SPARUL blocks consist of a modification
pattern (INSERT) that is executed for each match of a search pattern (WHERE).
With the top left query #1 we search for instances of a feature class annotated
by phy:requiresProperty that refers to a mandatory property. For each instance
found we create an instance of the property using an unique URI that is com-
puted by the function UURI 5. The SPARUL query #2 for optional properties
works similarly and creates properties for these features that have a sensor of a
class with the phy:defaultObserved annotation.

In the second step, we connect the created properties by process instances. We
use again annotation properties to model the generic relationships on concept
level of the domain ontology and then use SPARUL to extend the specific SSN
instances. Please note, that physical processes may exist between properties of
the same feature (e. g. cooling reduces internal energy) as well as between prop-

5 The function UURI needs to compute the same unique URI for identical inputs such
that mandatory and optional properties extend each other.
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INSERT { #1: Create mandatory properties
?newuri1 rdf:type ?propCls.
?newuri1 ssn:isPropertyOf ?feat.
?feat ssn:hasProperty ?newuri1.

} WHERE {
?feat a ?featCls.
?featCls phy:requiresProperty ?propCls.
BIND(UURI(?feat,?propCls) as ?newuri1).

}

INSERT { #2: Create optional properties
?newuri2 rdf:type ?propCls.
?newuri2 ssn:isPropertyOf ?feat.
?feat ssn:hasProperty ?newuri2.
?sensor ssn:forProperty ?newuri2.

} WHERE {
?sensor a ?sensCls.
?sensCls phy:defaultObserved ?propCls.
?sensor ssn:ofFeature ?feat.
BIND(UURI(?feat,?propCls) as ?newuri2).

}
INSERT { #3: Create internal processes
?newuri3 rdf:type ?proc.
?newuri3 phy:hasInput ?prop2.
?newuri3 phy:hasOutput ?prop1.

} WHERE {
?anno rdfs:subPropertyOf phy:hasIntInfl.
?anno phy:equalsProcess proc.
?propCls1 ?anno ?propCls2.
?prop1 a ?propCls1.
?prop1 phy:isPropertyOf ?feat1.
?feat1 phy:hasProperty ?prop2.
?prop2 a ?propCls2.
BIND(UURI(?prop1,?prop2) as ?newuri3).

}

INSERT { #4: Create external processes
?newuri4 rdf:type ?proc.
?newuri4 phy:hasInput ?prop2.
?newuri4 phy:hasOutput ?prop1.

} WHERE {
?anno rdfs:subPropertyOf phy:hasExtInfl.
?anno phy:equalsProcess proc.
?propCls1 ?anno ?propCls2.
?prop1 a ?propCls1.
?prop1 phy:isPropertyOf ?feat1.
?featL phy:linksFeature ?feat1.
?featL phy:linksFeature ?feat2.
?feat2 phy:hasProperty ?prop2.
?prop2 a ?propCls2.
BIND(UURI(?prop1,?prop2) as ?newuri4).

}

Fig. 4. SPARUL code to create the process model

erties of different features (e. g. two adjacent rooms exchange energy). Therefore,
we use two different annotation patterns to: i) describe internal process relation-
ships of properties within the same feature and ii) external process relationships
connecting properties of linked features. An internal process relationship is de-
tected by the SPARUL query #3 in Figure 4. It searches for two properties
of the same feature, whose classes are linked by an annotation property ?anno
that is a subproperty of phy:hasIntInfl . For each match it creates a physical pro-
cess of type ?proc. The type is specified by a property phy:equalsProcess of the
annotation ?anno. The SPARUL query #4 in Figure 4 uses a similar pattern,
but, searches for phy:hasExtInfl annotations as well as for properties of different
features that are linked by the phy:linksFeature property of a feature link.

Example 2 (Process Model Creation)
Let us consider that the following triples are defined in our domain ontology

sb:Room phy:requiresProperty sb:Energy .
sb:CoolingActuator phy:defaultObserved sb:Cooling .
phy:hasNegIntInfl rdfs:subPropertyOf sb:hasIntInfl .
phy:hasNegIntInfl phy:equalsProcess phy:PosCorrProc .
sb:Energy phy:hasNegIntInfl sb:Cooling .

and the following part from the SSN ontology of example 1 in RDF N3 syntax
:Room a sb:Room .
:CoolingActuator a sb:CoolingActuator .
:CoolingActuator ssn:ofFeature :Room.

The left top SPARUL query #1 in Figure 4 matches the room as ?feat =
:Room that instantiates class ?featCls = sb:Room and requires the property
class ?propCls = sb:Energy . A new unique URI ?newuri1 is computed for this



316 J. Ploennigs, A. Schumann, and F. Lécué
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(b) Process relationships for the example.

Fig. 5. Conceptual level and process model for the example

match. The insert part then adds a new instance {?newuri1} � sb:Energy and
links it to :Room as ssn:isPropertyOf and ssn:hasProperty vice versa.

The top right SPARUL query #2 will match ?sensor = :CoolingActuator of
class ?sensCls = sb:CoolingActuator that links to ?propCls = sb:Cooling and
create a new instance of sb:Cooling under the URI ?newuri2.

The bottom left query #3 in Figure 4 matches these newly created properties
with ?prop1 =?newuri1 and ?prop2 =?newuri2 as their classes ?propCls1 =
sb:Energy and ?propCls2 = sb:CoolingActuator are linked by phy:hasNegIntInfl .
The query creates a new phy:hasNegIntInfl instance connecting the properties
as the annotation property links to the class via phy:equalsProcess .

In a similar way the relationships between all properties can be described.
We illustrate this in Figure 5a for the case of smart buildings. The generic do-
main knowledge was extracted from physical models such as [17]. The figure
shows that occupancy, temperature and energy are defined as mandatory prop-
erties for a room by phy:requiresProperty annotation properties. For the outside
only energy and temperature are mandatory as occupancy has a negligible in-
fluence on the temperature outside. The sensors define occupancy, temperature,
cooling setpoint and cooling as optional via the phy:defaultObserved annotation.
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The phy:hasPosIntInfl and phy:hasNegIntInfl annotations define the positive and
negative correlation processes within a room. The temperature in the room is
positively influenced by the internal energy. The energy is increased by people
in the rooms and decreased by an active cooling system. The cooling system
actuates based on the room temperature and setpoint. A room also exchanges
energy with the outside and neighboring rooms depending on the temperature
difference at the wall. This is defined by a phy:hasPosExtInfl annotation property
between temperature and energy.

Applying this knowledge to our example in Figure 3 using the SPARUL queries
in Figure 4 results in the processes shown in Figure 5b. The added mandatory
properties by SPARUL query #1 are light gray. The optional properties and
the links between sensors and properties added by query #2 are dark gray.
The adaptation of the model is visible for the Outside feature, which does not
have properties for the cooling actuator, setpoint or occupancy as they were not
defined as mandatory. The internal processes added by query #3 are identical to
Figure 5a. To keep readability we replaced the process classes by solid and dashed
arrows representing positively and negatively correlated processes, respectively.
The external processes added by query #4 are highlighted by a double line.
After these four simple queries the SSN contains a semantic physical model that
describes the relationships between sensors in the whole building.

4.3 Generating the Diagnosis Model

The physical process model can be used for automating analytics. We illustrate
this for the task of extracting a diagnosis model for an anomaly of a sensor. The
diagnosis model defines hypotheses of potential causes for each anomaly. The
physical processes can be used to trace these cause-effect-relationships. We con-
sider sensors as potentially observing the cause of an anomaly, if the properties
they observe are either linked directly by a physical process to the anomaly or
via a sequence of unobserved properties linked by processes in the direction of
effect.

Example 3 (Potential Causes of an Effect)
Consider the generation of diagnosis rules for the anomaly {TempHigh} �
phy:Anomaly that is observed by the room temperature sensor {TempSensor}
in our example. By tracing back the physical processes plotted in Figure 5b the
following potential causes can be identified:
– Observation {OccCause} � phy:ObservedCause of the {OccupancySensor}

is a potential cause since {Occupancy}, {Energy}, {Temperature} is a chain
of properties linked by physical processes in Figure 5b with {Occupancy}
and {Temperature} being the only properties observed by a sensor,

– {OutTempCause}observed by {OutsideTempSensor}is a phy:ObservedCause
since {OutsideTemp}, {Energy}, {Temperature} is a chain without other
observable properties,

– {CoolActCause} � phy:ObservedCause is observed by {CoolingActuator}
and a potential cause via the chain {Cooling}, {Energy}, {Temperature}.

There is no potential cause at the cooling setpoint value as {CoolingSetpoint} is
only connected through the already observed {Cooling} property.



318 J. Ploennigs, A. Schumann, and F. Lécué

To implement the detection of process chains in SPARUL, we iteratively com-
bine a chain of two successive physical process instances by adding a new direct
process instance. We preserve the type of the process correlation as it is relevant
for the diagnosis. The occupancy sensor for example influences the energy by a
positive correlation process and the energy influences the temperature also pos-
itively. From these two successive positive correlation processes it follows that
the occupancy influences also the temperature by a positive correlation via the
energy. Thus, we can add a new positive process that connects the occupancy
to the temperature. In a similar way, we can combine any successive positive
and negative correlation process by a negative one and two negative ones neu-
tralize each other to one positive correlation process. The SPARUL code #5 of
Figure 6 shows an example for a process chain with positive and negative cor-
relation. It filters observable properties. Three similar SPARUL queries replace
other combinations of positive and negative correlation processes.

INSERT { #5: Combine process chains
?newuri5 rdf:type phy:NegCorrProc.
?newuri5 phy:hasInput ?prop1.
?newuri5 phy:hasOutput ?prop3.

} WHERE {
?proc1 a phy:PosCorrProc.
?proc2 a phy:NegCorrProc.
?proc1 phy:hasInput ?prop1.
?proc1 phy:hasOutput ?prop2.
?proc2 phy:hasInput ?prop2.
?proc2 phy:hasOutput ?prop3.
FILTER NOT EXISTS

{?prop2 ssn:forProperty ?anyDP}
BIND(UURI(?prop1,?prop3) as ?newuri5).

}

INSERT { #6: Create potential causes
?newuri6 rdf:type phy:ObservedCause.
?abnom phy:hasPotCause ?newuri6.
?newuri6 ssn:observedBy ?sensor2.

} WHERE {
?abnom a phy:Anomaly.
?abnom ssn:observedBy ?sensor1.
?sensor1 ssn:forProperty ?prop1.
?proc1 phy:hasOutput ?prop1.
?proc1 a phy:PhysicalProcess.
?proc1 phy:hasInput ?prop2.
?sensor2 ssn:forProperty ?prop2.
BIND(UURI(?sensor2) as ?newuri6).

}

Fig. 6. SPARUL code to create diagnosis rules

Example 4 (Process Chains)
From example 3, we can combine the process chain {Occupancy}, {Energy},
{Temperature} of only positive correlation processes by a direct positive correla-
tion process linking {Occupancy} to {Temperature}. The chain {OutsideTemp},
{Energy}, {Temperature} also contains only positive correlation processes and
can be combined into a new positive correlation process between {OutsideTemp}
and {Temperature}. The chain {Cooling}, {Energy}, {Temperature} contains
one negative and one positive correlation process that can be combined into one
negative correlation process between {Cooling} and {Temperature}.

The above approach creates direct process links between the influencing prop-
erties. This enables us to directly link potential causes of an anomaly with the
SPARUL code #6 in Figure 6. The query first looks for anomalies defined in the
ontology. It then identifies the property of the sensor that observed the anomaly.
For each observable property that is connected by a physical process to the for-
mer property, a potential cause observation is created for the observing sensor.
This cause state is then assigned to the anomaly as potential cause.

We utilize the semantic type of processes to narrow down the nature of the
potential cause. For example, if the anomaly is characterized by a sb:High state,
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then a cause that is connected by a positive correlation process is probably also
sb:High. If the cause is connected by a negative correlation process it is probably
sb:Low . This is implemented by modifying query #6 for the different cases.

Example 5 (Cause Classification)
The anomaly {TempHigh} is defined as sb:High in our input SSN. Using the
semantic information of the direct link processes in example 4 it can be derived
that {OccCause} and {OutTempCause} should also be instance of sb:High as the
linking processes are positively correlated. Only {CoolActCause} is an instances
of sb:Low as it is linked by a negative correlation process.

4.4 Discretisation and Diagnosis

To use our diagnosis model it is necessary to discretize the sensor time series val-
ues. For scalability reason, we only extract abnormal observations. An anomaly
is detected if predefined rules are violated. These rules define a normal opera-
tion range and we classify observations as sb:High if they are above this range
and sb:Low if they are below it. For example, all room temperatures higher 22 ◦C
are assigned to the observation instance sb:TempHigh by adding the property
ssn:observationSamplingTime with the current time. The same applies to poten-
tial causes, which are assigned to corresponding sb:High or sb:Low observation in-
stances if the current sensor value is above or below an upper and lower threshold.
These limits are determined fromhistorical data using a statistical model [14]. The
model learns from historical anomaly-free time series data what the data range is
under normal circumstances. It bases on the intuition that a cause of an anomaly
is also characterized by abnormal values in comparison to the anomaly-free data.
The discretization allows for a fast diagnosis using SPARQL query#7 in Figure 7.

SELECT { #7: Diagnose
?abnom ?cause ?time.

} WHERE {
?abnom a phy:Anomaly.
?abnom phy:hasPotCause ?cause.
?abnom ssn:observationSamplingTime ?time.
?cause ssn:observationSamplingTime ?time.

}

Fig. 7. SPARQL code to query diagnosis results

5 Experiments

We tested the accuracy and scalability of our approach using real-world and
synthetic examples. All examples are described using the domain ontology in
Fig. 5a that we extended by more subconcepts to model BAS components and
related properties and processes (see footnote 1).

5.1 Results at IBM’s Technology Campus in Dublin

Our system is in-use for the IBM Technology Campus in Dublin. The site con-
sists of six buildings from different IBM divisions and operated by an external
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Table 1. Diagnosis results for different examples with: TP - true positives, TN - true
negatives, FP - false positives, FN - false negatives in % of anomalies

(a) Real office building.

TP TN FP FN
Heating Issues 67.95 32.05 0.00 0.00
Bad Isolation 89.58 1.62 0.10 8.70

(b) Running example.

TP TN FP FN
CoolFault 94.90 0.00 5.10 0.00
CoolFault (sem) 94.90 5.10 0.00 0.00
Occupancy 86.77 0.84 12.40 0.00
Occupancy (sem) 86.77 8.93 4.30 0.00
WindOpen 89.69 0.00 10.31 0.00
WindOpen (sem) 89.69 0.00 10.31 0.00

contractor. The buildings provide more than 3,500 sensors. Mapping sensors to
the SSN representation and defining the features took more than a day in a
first manual approach. We now use an internal label mapping tool that does
this in a few minutes. Afterwards the Smart Building Diagnoser is initialized
automatically as described above. A big benefit of our approach is the cover-
age of the resulting diagnostic rules that allows detecting and diagnosing many
new anomalies. The campus was formerly managed by the IBM TRIRIGA En-
vironmental and Energy Management Software that monitored 194 sensors with
300 rules. Our test system covers 2,411 sensors, with 1,446 effects and 47,284
potential cause observations linked via 10,029 processes.

We investigated deeper into a 3,500m2 office building on the campus to eval-
uate the diagnostic accuracy of the approach. The building contains 271 sensors
including temperature sensors and a heating system in most of the 100 rooms.
We defined as abnormal if the temperature falls two degrees below the setpoint.
The potential causes for the anomaly are a low outside temperature, neighboring
rooms with a low temperature, and an inactive heating system. We compared
the causes identified by our approach with feedback from the operator.

In the simulation 4% of the room temperature samples are abnormal. Table 1a
summarizes further results. The diagnoser shows that 67.95% of these cases
are related to an inactive heating system. All cases could be validated by the
operator by analyzing the data. He explained the behavior by the fact that the
building is only heated at night to utilize low electricity prices. In 89.58% of the
abnormal cases the diagnoser relates the outside temperature which the operator
largely confirmed to be the case. Only 8.7% of the cases that he identified could
not be retrieved by our approach. Most relevant for the operator was, that our
approach revealed that most of these cases occurred in 11 rooms with severe
isolation problems which were using an estimated 50% of the buildings heating
energy.

5.2 Benefits of a Semantic Diagnosis Model

We use a commercial building simulator [17] to evaluate the diagnostic accuracy
of the approach for the running example of a room with a cooling system. The
anomaly TempHot is detected if the room temperature rises above 22 ◦C. We
first run experiments testing the situation in the room without faults where the
cooling system controlled the room temperature without anomalies. We then
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defined temporarily break downs of the cooling system, high room occupancy,
or an air exchange through an open window. We simulated the room behavior
for a full year for a building in Athens to have a constantly high outside temper-
ature and applyed the introduced semantic diagnoser as well as a non-semantic
diagnoser. This non-semantic diagnoser has no information whether the cause
could be tracked back to a too high or to a too low sensor reading.

Table 1b illustrates the results. In case of the cooling system break down the
room heats slowly to the higher outside temperature. The approach correctly
detects 94.9% of the cases when the anomaly TempHot occurs together with a
cooling break down. The non-semantic approach has a high false positive rate of
5.1% as it assigns also cases when the cooling actuator is active. The semantic
diagnoser knows that the actuator value has to be low and correctly refuses
other cases. In the scenario of a high occupancy, the room temperature increases
due to a large group of people. 86.77% of the cases are correctly identified by
both approaches. However, the non-semantic diagnosis approach has again a
higher false positive rate: 12.4% compared to 4.3% of the semantic approach. It
avoids assigning situations with low room occupancy. If the window is open the
room temperature quickly adjusts to the outside temperature. In this scenario
both approaches have the same true positive rate of 89.69% and the same false
positive rate of 10.31%. The latter cases occur when the effect of a high room
temperature still persists for a while after the window was closed.

These results demonstrate that the semantic diagnosis approach is not only
capable of correctly diagnosing different fault scenarios. The cooling fault and
occupancy scenario also shows that the semantic model provides additional infor-
mation and can exclude illegitimate causes. Further improvements are expected
by considering more specific types of processes including delays to further reduce
the false positive rate of delayed effects such as the already closed window. This
simple example illustrates already that semantic information benefits diagnosis.

5.3 Scalability

Finally, we investigated in the scalability of the approach using synthetic ex-
amples. For this we evaluated the performance of the approach for examples of
different size and reasoner configurations. We evaluated examples with up to 10
storeys with 100 rooms each arranged north and south of a long corridor. All
rooms are equipped with heating, cooling, lighting and ventilation systems.

For the example the number of created processes, observations, and triples
scales linearly with the number of sensors. It starts with 78 thousand triples for
55 sensors and reaches 20 million triples for the large example with 15 thousand
sensors. The small example contains 92 processes and 99 observations and the
large example has 70 thousand processes and 80 thousand observations.

Figure 8 shows the mean computational time on a PC with an Intel Xeon
X5690 processor for different reasoner configurations of the Jena framework.
The performance strongly depends on the reasoning capabilities of the model.
The micro OWL rules inference engine takes in mean 130minutes to apply the
SPARUL queries #1 to #7 to the large example with 15 thousand sensors. The
RDFS inferencer applies the same SPARUL rules in 85minutes. An OWL model
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with no additional entailment reasoning computes in 38minutes including the
required preprocessing of the necessary class subsumption by two additional
SPARUL queries. The reasoner spend in total 37% of the time for the combina-
tion of process chains with query #5 and 58% for identifying the potential causes
with query #6 in Figure 6. This is primarily related to the generality of query
#5, which creates many physical processes unneeded for the diagnosis purpose.
This significantly increases the search space for query #6. The best computation
time performance shows a procedural implementation of the SPARUL queries
#1 to #6 in Java. It benefits from a depth-first search in the graph model of
only the processes connected to an anomaly. Note that, the IBM campus model
computes in 55 s with the procedural implementation.

Please note that queries #1 to #6 are only executed once during the initial-
ization phase of the system. During runtime only the discretizer and query #7
are executed. They compute in less than a second for the IBM Campus.

6 Conclusion

We have shown that semantic techniques can be used for automating analytic
tasks in complex systems such as buildings. Specifically we have presented IBM’s
Semantic Smart Building Diagnoser which is the first of its kind that can auto-
matically derive diagnosis rules from the sensor network definition and behaviour
of a specific building. This allows not only for the diagnosis of smart building
problems that existing techniques cannot diagnose but also for easier adaptabil-
ity to other buildings.

Our approach was realized by using semantic techniques for: (i) integrating
heterogeneous data from different buildings, (ii) extending SSN for automating
the creation and configuration of physical models, and by (iii) automatically
deriving the diagnosis rules from the latter. The addition and extension of new
sensor types and processes is also straightforward given the annotation patterns
of our domain ontology.

Our experiments have shown that we can indeed efficiently identify the causes
of anomalies for real buildings. They also revealed that semantic information
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can even be used to improve the accuracy of the diagnosis result. Our approach
currently runs on IBM’s Technology Campus in Dublin and has provided several
insights for improving energy performance. Future deployments on further sites
are planned.
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Abstract. Most existing approaches to Twitter sentiment analysis assume that
sentiment is explicitly expressed through affective words. Nevertheless, senti-
ment is often implicitly expressed via latent semantic relations, patterns and de-
pendencies among words in tweets. In this paper, we propose a novel approach
that automatically captures patterns of words of similar contextual semantics and
sentiment in tweets. Unlike previous work on sentiment pattern extraction, our
proposed approach does not rely on external and fixed sets of syntactical tem-
plates/patterns, nor requires deep analyses of the syntactic structure of sentences
in tweets. We evaluate our approach with tweet- and entity-level sentiment anal-
ysis tasks by using the extracted semantic patterns as classification features in
both tasks. We use 9 Twitter datasets in our evaluation and compare the perfor-
mance of our patterns against 6 state-of-the-art baselines. Results show that our
patterns consistently outperform all other baselines on all datasets by 2.19% at
the tweet-level and 7.5% at the entity-level in average F-measure.

Keywords: Sentiment Analysis, Semantic Patterns, Twitter.

1 Introduction

Sentiment analysis on Twitter has established itself in the past few years as a solid
research area, providing organisations and businesses with efficient tools and solutions
for monitoring their reputation and tracking the public opinion on their brands and
products.

Statistical methods to Twitter sentiment analysis rely often on machine learning clas-
sifiers trained from syntactical and linguistic features such as word and letter n-grams,
part-of-speech tags, prior sentiment of words, microblogging features, etc [2,5,13]. How-
ever, merely relying on the aforementioned features may not lead to satisfactory sentiment
detection results since sentiment is often context-dependent.Also, people tend to convey
sentiment in more subtle linguistic structures or patterns [16]. Such patterns are usually
derived from the syntactic [16] or semantic relations [6] between words in text. For exam-
ple, the adjective word “mean” when preceded by a verb, constitutes a pattern of negative
sentiment as in: “she said mean things”. Also, the word “destroy” formulates
a positive pattern when occurs with the concept “invading germs”.

Both syntactic and semantic approaches to extracting sentiment patterns have proven
successful when applied to documents of formal language and well-structured sentences
[16,8]. However, applying either approach to Twitter data faces several challenges. Firstly,
tweets data are often composed of sentences of poor grammatical and syntactical struc-
tures due to the the extensive use of abbreviations and irregular expressions in tweets [20].

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 324–340, 2014.
c© Springer International Publishing Switzerland 2014
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Secondly, both approaches function with external knowledge sources. Most syntactic ap-
proaches rely on fixed and pre-defined sets of syntactic templates for pattern extraction.
On the other hand, semantic approaches rely on external ontologies and common sense
knowledge bases. Such resources, although useful, tend to have fixed domains and cov-
erages, which is especially problematic when processing general Twitter streams, with
their rapid semiotic evolution and language deformations [19].

In this paper, we propose a novel approach for automatically extracting semantic
sentiment patterns of words on Twitter. We refer to these patterns from now on as SS-
Patterns. Unlike most other approaches, our proposed approach does not rely on the
syntactic structure of tweets, nor requires pre-defined syntactic templates. Instead, it
extracts patterns from the contextual semantic and sentiment similarities between words
in a given tweet corpus [19]. Contextual semantics (aka statistical semantics) are based
on the proposition that meaning can be extracted from words co-occurrences [28,26].

We apply our approach to 9 different Twitter datasets, and validate the extracted
patterns by using them as classification features in two sentiment analysis tasks: (i)
tweet-level sentiment classification, which identifies the overall sentiment of individual
tweets, and (ii) entity-level sentiment classification, which detects sentiment towards
a particular entity (e.g., Obama, Cancer, iPad). To this end, we train several super-
vised classifiers from SS-Patterns and compare the sentiment classification performance
against models trained from 6 state-of-the-art sets of features derived from both the syn-
tactic and semantic representations of words.

Our results show that our SS-Patterns consistently outperform all our baseline feature
sets, on all 9 datasets, in both tweet-level and entity-level sentiment classification tasks.
At the tweet level, SS-Patterns improve the classification performance by 1.94% in accu-
racy and 2.19% in F-measure on average. Also, at the entity level, our patterns produce
6.31% and 7.5% higher accuracy and F-measure than all other features respectively.

We also conduct quantitative and qualitative analyses on a sample of the patterns
extracted by our approach and show that the effectiveness of using SS-Patterns as ad-
ditional features for classifier training is attribute to their ability in capturing words
with similar contextual semantics and sentiment. We also show that our extraction ap-
proach is able to detect patterns of controversial sentiment (strong opposing sentiment)
expressed by people towards certain entities.

The main contributions of this paper can be summarised as follows:

– Propose a novel approach that automatically extracts patterns from the contextual
semantic and sentiment similarities of words in tweets.

– Use patterns as features in tweet- and entity-level sentiment classification tasks,
and compare the classification performance against 6 state-of-the-art baselines on
9 Twitter datasets in order to avoid the bias that any single dataset or baseline may
introduce.

– Perform a cross comparison between the syntactic and semantic baseline feature
sets used in our work and show the effectiveness of the latter for tweet-level senti-
ment classification over the former.

– Conduct quantitative and qualitative analyses on a sample of our extracted semantic
sentiment patterns and show the potential of our approach for finding patterns of
entities of controversial sentiment in tweets.
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The remainder of this paper is structured as follows. Related work is discussed in Sec-
tion 2. The proposed approach to extracting semantic sentiment patterns is presented in
Section 3. Experimental setup and results are presented in Sections 4 and 5 respectively.
Our pattern analysis study is described in Section 6. Discussion and future work are
covered in Section 7. Finally, we conclude our work in Section 8.

2 Related Work

Much work on Twitter sentiment analysis follows the statistical machine learning ap-
proach by training supervised classifiers (e.g., Naı̈ve Bayes, Maximum Entropy and
Support Vector Machines) from features extracted from tweets such as word and let-
ter n-grams [9,15,2], lexicon features (i.e., prior sentiment of words in sentiment lexi-
cons) [5], microblogging features [10], POS tags [1] and several combinations of them
[13]. Classifiers trained from these types of features have produced relatively high per-
formance on various Twitter datasets with accuracies ranging between 80% and 86%.
However, it has been argued that sentiment in text is not always associated with individ-
ual words, but instead, through relations and dependencies between words, which often
formulate sentiment [16].

In previous work, these relations are usually complied as a set of syntactic patterns
(i.e., Part-of-Speech patterns) [25,16,24], common sense concepts [6], semantic con-
cepts [21,8], or statistical topics [20,11].

For example, Riloff et al. [16] proposed extracting sentiment patterns from the
syntactic relations between words in sentences. To this end, they used a fixed set
of pre-defined POS templates, e.g., <subject> passive-verb which maps
to the opinionated sentence “<customer> was satisfied” and <subject>
active-verb that maps to “<she> complained”. The extracted patterns were
then incorporated into high-precision classifiers (HP-Subj and HP-Obj) in order to in-
crease their recall.

One limitation of the syntactic extraction methods is that they are usually limited to
the number of the syntactic templates they use. Moreover, these methods are often se-
mantically weak, that is, they do not consider the semantics of individual words in their
patterns. This may constitute a problem when trying, for example, to identify context-
sensitive sentiment (e.g., <beer> is cold and <weather> is cold).

Conceptual semantic sentiment methods, on the other hand, utilize both syntactic
and semantic processing techniques in order to capture the latent conceptual semantic
relations in text that implicitly convey sentiment. For example, Cambria and Hussain
[6] proposed Sentic Computing, a sentiment analysis paradigm, in which common sense
concepts (e.g., “happy birthday”, “simple life”) are extracted from texts and
assigned to their sentiment orientations using semantic parsing and affective common
sense knowledge sources. Gangemi et al. [8] further investigated the syntactic structure
of sentences in order to detect more fine grained relations between the different seman-
tic parts within it. For example, their approach is able to detect not only the sentiment in
text, but also the opinionated topics, subtopics, the opinion holders and their sentiment.

The semantic methods, therefore, are more sensitive to the latent semantic relations
between words in texts than syntactic methods. Nevertheless, in the above works, nei-
ther syntactic nor semantic methods are tailored to Twitter due to the lack of language



Semantic Patterns for Sentiment Analysis of Twitter 327

formality and well structured sentences in tweets. Moreover, Semantic methods are usu-
ally limited to the scope of their underlying knowledge bases, which is especially prob-
lematic when processing general Twitter streams, with their rapid semiotic evolution
and language deformations.

Contextual or statistical semantic methods extract patterns of semantically similar
words by looking at the words’ co-occurrence patterns in a given corpus [28,26]. LDA
is a state-of-the-art method that have been widely used to this end [4].1 For example,
Lin et al. [11] propose JST, a topic generative model based on LDA. JST extracts, not
only the patterns (topics) of words in text, but also their associated sentiment. The topics
along with their associated sentiment have been evaluated in our previous work [20] and
proven valuable for sentiment analysis on Twitter. However, these methods usually rely
on the bag-of-words representation, and therefore are often unable to handle negations
and other patterns that strongly influence sentiment.

In order to overcome the aforementioned limitations of the above methods, we design
our sentiment pattern extraction approach in a way that captures patterns based on the
contextual semantic and sentiment similarities between words in a Twitter corpus. Our
approach does not rely on the syntactic structures in tweets, nor requires using pre-
defined syntactic template sets or external semantic knowledge sources.

3 Semantic Sentiment Patterns of Words

Semantic sentiment patterns, by definition, are clusters of words which have similar
contextual semantics and sentiment in text. Based on this definition, the problem of
capturing these patterns in tweets data breaks down into three phases as illustrated in
Figure 1. In the first phase, tweets in a given data collection are syntactically processed
in order to reduce the amount of noise and language informality in them. In the second
phase we apply the SentiCircle representation model [19] on the processed tweets to
capture the contextual semantics and sentiment of words in the tweets. In the third
step, the semantic sentiment patterns are formed by clustering words that share similar
semantics and sentiment (i.e., similar SentiCircles).

Tweets 

Capturing Contextual 
Semantics & Sentiment 

Sentiment Lexicon 

Syntactical Preprocessing Extracting Semantic 
Sentiment Patterns 

Bag of 
SentiCircles 

Bag of  
SS-Patterns 

Fig. 1. The systematic workflow of capturing semantic sentiment patterns from Twitter data

In the subsequent sections we further describe each of the aforementioned phases in
some more details:

3.1 Syntactical Preprocessing

Tweets are usually composed of incomplete, noisy and poorly structured sentences due
to the frequent presence of abbreviations, irregular expressions, ill-formed words and

1 Patterns extracted by LDA are usually called Topics.
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non-dictionary terms. Such noisy nature of tweets has been shown to indirectly affect
the sentiment classification performance [20]. This phase therefore, aims at reducing the
amount of noise in the tweets by applying a series of pre-processing steps as follows:

– All URL links in the corpus are replaced with the term “URL”
– Remove all non-ASCII and non-English characters
– Revert words that contain repeated letters to their original English form. For exam-

ple, the word “maaadddd” will be converted to “mad” after processing.
– Process contraction and possessive forms. For example, change “he’s” and

“friend’s” to “he” and “friend”

Note that we do not remove stopwords from the data since they tend to carry sentiment
information as shown in [18].

3.2 Capturing Contextual Semantics and Sentiment of Words

SS-patterns are formed from the contextual semantic similarities among words. There-
fore, a key step in our pipeline is to capture the words’ contextual semantics in tweets.
To this end, we use our previously proposed semantic representation model, SentiCir-
cle [19].

Ci 

ri = TDOC(Ci) 
θi = Prior_Sentiment (Ci) 

X 

Y 

ri 

θi 

i

xi 

yi 

m 

Positive Very Positive 

Very Negative Negative 

+1 

-1 

+1 -1 XX
i

xxi

+1+1 Neutral  
Region 

Fig. 2. SentiCircle of a term m

Briefly speaking, the SentiCircle model ex-
tracts the contextual semantics of a word from
its co-occurrences with other words in a given
tweet corpus. These co-occurrences are then repre-
sented as a geometric circle which is subsequently
used to compute the contextual sentiment of the
word by applying simple trigonometric identities
on it. In particular, for each unique term m in a
tweet collection, we build a two-dimensional geo-
metric circle, where the term m is situated in the
centre of the circle, and each point around it rep-
resents a context term ci (i.e., a term that occurs
with m in the same context). The position of ci,
as illustrated in Figure 2, is defined jointly by its
Cartesian coordinates xi, yi as:

xi = ri cos(θi ∗ π) yi = ri sin(θi ∗ π)

Where θi is the polar angle of the context term ci and its value equals to the prior
sentiment of ci in a sentiment lexicon before adaptation, ri is the radius of ci and its
value represents the degree of correlation (tdoc) between ci andm, and can be computed
as:

ri = tdoc(m, ci) = f(ci,m)× log
N

Nci

where f(ci,m) is the number of times ci occurs with m in tweets, N is the total number
of terms, and Nci is the total number of terms that occur with ci. Note that all terms’
radii in the SentiCircle are normalised. Also, all angles’ values are in radian.
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The rational behind using this circular representation shape is to benefit from the
trigonometric properties it offers for encoding the contextual semantics of a term as
sentiment orientation and sentiment strength. Y-axis defines the sentiment of the term,
i.e., a positive y value denotes a positive sentiment and vice versa. The X-axis defines
the sentiment strength of the term. The smaller the x value, the stronger the sentiment.2

This, in turn, divides the circle into four sentiment quadrants. Terms in the two upper
quadrants have a positive sentiment (sin θ > 0), with upper left quadrant representing
stronger positive sentiment since it has larger angle values than those in the top right
quadrant. Similarly, terms in the two lower quadrants have negative sentiment values
(sin θ < 0). Moreover, a small region called the “Neutral Region” can be defined. This
region, as shown in Figure 2, is located very close to X-axis in the “Positive” and the
“Negative” quadrants only, where terms lie in this region have very weak sentiment (i.e,
|θ| ≈ 0).

The Sentiment Median of SentiCircle. In summary, the SentiCircle of any term m
is composed by the set of (x, y) Cartesian coordinates of all the context terms of
m. An effective way to compute the overall sentiment of m is by calculating the ge-
ometric median of all the points in its SentiCircle. Formally, for a given set of n
points (p1, p2, ..., pn) in a SentiCirlce Ω, the 2D geometric median g is defined as:
g = argming∈R2

∑n
i=1 ‖pi − g‖2. The boundaries of the neutral region can be com-

puted by measuring the density distribution of terms in the SentiCircle along the Y-axis.
In this paper we use similar boundary values to the ones in [19] as we use the same
evaluation datasets. We call the geometric median g the SentiMedian as its position in
the SentiCircle determines the total contextual-sentiment orientation and strength of m.

3.3 Extracting Patterns from SentiCircles

At this stage all the unique words in the tweet collection have their contextual semantics
and sentiment extracted and represented by means of their SentiCircles. It is very likely
to find words in text which share similar contextual semantics and sentiment. In other
words, finding words with similar SentiCircles. Therefore, this phase seeks to find such
potential semantic similarities in tweets by building clusters of similar SentiCircles.
The output of this phase is a set of clusters of words, which we refer to as the semantic
sentiment patterns of words (SS-Patterns).

SentiCircles Clustering. We can capture patterns that emerge from the similarity of
word’s sentiment and contextual semantics by clustering the SentiCircles of those words.
In particular, we perform a clustering task fed by dimensions that are provided by Senti-
Circles; density, dispersion, and geometry. Density and dispersion usually characterise
terms and entities that receive controversial sentiment in tweets as will be further ex-
plained and validated in Section 6. Geometry, on the other hand, preserves the con-
textual sentiment orientation and strength of terms. Once we extract the vectors that
represent these three dimensions from all the terms’ SentiCircles, we feed them into a
common clustering method; k-means.

2 This is because cos θ < 0 for large angles.
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In the following, we describe the three dimensions we extract from each term’s Sen-
tiCircle Ω along with the components they consist of:

– Geometry: includes the X- and Y -component of the SentiMedian g(xg, yg) ∈ Ω
– Density: includes the total density of points in the SentiCircle Ω and its computed

as: density(Ω) = N/M , where N is the total number of points in the SentiCircle
and M is the total number of points in the SentiCircles of all terms.
We also compute five density components, representing the density of each sen-
timent quadrant in the SentiCircle (i.e., positive, very positive, negative and very
negative quadrants) along with the density of its neutral region. Each of these com-
ponents is computed as density(Q) = P/N where P is the total number of points
in the sentiment quadrant Q.

– Dispersion: the total dispersion of a SentiCircle refers to how scattered or con-
densed the points (context terms) in the circle. To calculate the value of this com-
ponent, we use the median absolute deviation measure (MAD), which computes
the dispersion of Ω as the median of the absolute deviations from the SentiCircle’s
median point (i.e., the SentiMedian gm) as:

mad(Ω) = (

n∑

i=1

|pi − gm|)/N

Similarly, using the above equation, we calculate the dispersion of each sentiment
quadrant and the neutral region in the SentiCircle. We also calculate the dispersion
of the active region in SentiCircle (i.e., The SentiCircle after excluding points in
the neutral region)

The last step in our pipeline is to apply k-means on all SentiCircles’ dimensions’
vectors. This results in a set of clusters K = (k1, k2, ..., kc) where each cluster consists
of words that have similar contextual semantics and sentiment. We call K as the pattern
set and and ki ∈ K the semantic sentiment pattern.

In the subsequent section we describe how to determine the number of patterns (clus-
ters) in the data and how to validate the extracted patterns by using them as features in
two sentiment classification tasks.

4 Experimental Setup

Our proposed approach, as shown in the previous section, extracts patterns of words of
similar contextual semantics and sentiment. We evaluate the extracted SS-patterns by us-
ing them as classification features to train supervised classifiers for two sentiment analy-
sis tasks, tweet- and entity-level sentiment classification. To this end, we use 9 publicly
and widely used datasets in Twitter sentiment analysis literature [17]. Nine of them will
be used for tweet-level evaluation and one for entity-level evaluation. As for evaluation
baselines, we use 6 types of classification features and compare the performance of clas-
sifiers trained from our SS-patterns against those trained from these baseline features.

4.1 Tweet-Level Evaluation Setup

The first validation test we conduct on our SS-patterns is to measure their effective-
ness as features for binary sentiment analysis of tweets, i.e., classifying the individual
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tweets as positive or negative. To this end, we use SS-patterns extracted from a given
Twitter dataset to train two supervised classifiers popularly used for tweet-level senti-
ment analysis, Maximum Entropy (MaxEnt) and Naı̈ve Bayes (NB) from Mallet.3 We
use 9 different Twitter datasets in our validation in order to avoid any bias that a single
dataset can introduce. Numbers of positive and negative tweets within these datasets are
summarised in Table 1, and detailed in the references added in the table.

Table 1. Twitter datasets used for tweet-level sentiment analysis evaluation. Instructions on how
to obtain these datasets are provided in [17].

Dataset Tweets #Negative #Positive #Unigrams
Stanford Twitter Test Set (STS-Test) [9] 359 177 182 1562
Sanders Dataset (Sanders) [17] 1224 654 570 3201
Obama McCain Debate (OMD) [7] 1906 1196 710 3964
Health Care Reform (HCR) [22] 1922 1381 541 5140
Stanford Gold Standard (STS-Gold) [17] 2034 632 1402 4694
Sentiment Strength Twitter Dataset (SSTD) [23] 2289 1037 1252 6849
The Dialogue Earth Weather Dataset (WAB) [3] 5495 2580 2915 7485
The Dialogue Earth Gas Prices Dataset (GASP) [3] 6285 5235 1050 8128
Semeval Dataset (Semeval) [14] 7535 2186 5349 15851

4.2 Entity-Level Evaluation Setup

In the second validation test, we evaluate the usefulness of SS-Patterns as features for
entity-level sentiment analysis, i.e., detecting sentiment towards a particular entity. To
this end, we perform a 3-way sentiment classification (negative, positive, neutral) on a
dataset of 58 named entities extracted from the STS-Gold dataset and manually labelled
with their sentiment class. Numbers of negative, positive and neutral entities in this
dataset are listed in Table 2 along with five examples of entities under each sentiment
class. Details of the extraction and the annotation of these entities can be found in [17].

Table 2. Numbers of negative, positive and neutral entities in the STS-Gold Entity dataset along
with examples of 5 entities under each sentiment class

Negative Entities Positive Entities Neutral Entities
Total Number 13 29 16

Examples

Cancer Lakers Obama
Lebron James Katy Perry Sydney

Flu Omaha iPhone
Wii Taylor Swift Youtube

Dominique Wilkins Jasmine Tea Vegas

The entity sentiment classifier we use in our evaluation is based on maximum like-
lihood estimation (MLE). Specifically, we use tweets in the STS-Gold dataset to esti-
mate the conditional probability P (c|e) of an entity e assigned with a sentiment class
c ∈ {Positive,Negative} as: as P (c|e) = N(e, c)/N(e) where N(e, c) is the fre-
quency of an entity e in tweets assigned with a sentiment class c and N(e) is the fre-
quency of the entity e in the whole corpus.

3 http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/


332 H. Saif et al.

We incorporate our SS-Pattern features and other baseline features (Section 4.3) into
the sentiment class estimation of e by using the following back-off strategy:

ĉ =

{
P (c|e) if N(e, c) �= 0
P (c|f) if N(e, c) = 0

(1)

where f is the incorporated feature (e.g., the SS-Pattern of e) and P (c|f) is the condi-
tional probability of the feature f assigned with a sentiment class c and it can be also
estimated using MLE. The rationale behind the above back-off strategy is that some
entities might not occur in tweets of certain sentiment class, leading therefore, to zero
probabilities. In such cases we resort to the sentiment of the latent features associated
with these entities in the dataset.

The final sentiment of e can be derived from the ratio Re = P (c =
Positive|e)/P (c = Negative|e). In particular, the sentiment is neutral if Re is less
than a threshold γ, otherwise the sentiment is negative if Re < 1 or positive if Re > 1.

We determine the value of γ by plotting the ratio Re for all the 58 entities and check
where the plot converges. In our case, the ratio plot converged with γ = 0.3.

4.3 Evaluation Baselines

The baseline model in our evaluation is a sentiment classifier trained from word uni-
gram features. Table 1 shows the number of unique unigram features extracted from
our datasets.

In addition to unigrams, we propose comparing our SS-Pattern features against the
below described five state-of-the-art types of features in sentiment analysis. Amongst
them, two sets of features are derived from the syntactical characteristics of words in
tweets (POS features, and Twitter features), one is based on the prior sentiment orienta-
tion of words (Lexicon features) and two are obtained from the semantic representation
of words in tweets (Semantic Concept features and LDA-Topic features):

1. Twitter Features: refer to tokens and characters that are popularly used in tweet
messages such as hashtags (e.g., “#smartphone”), user mentions (e.g, “@obama”),
the tweet reply token (“RT”) and emoticons (e.g., “:) :D <3 o O”).
2. Part-of-Speech Features: refer to the part-of-speech tags of words in tweets (e.g.,
verbs, adjectives, adverbs, etc). We extract these features using the TweetNLP POS
tagger.4

3. Lexicon Features: these features are formed from the opinionated words in tweets
along with their prior sentiment labels (e.g., “good positive”, “bad negative”,
“nice positive”, etc.). We assign words with their prior sentiments using both Thel-
wall [23] and MPQA [27] sentiment lexicons.
4. Semantic Concept Features: This type of features refers to the semantic con-
cepts (e.g., “person”, “company”, “city”) that represent entities (e.g., “Obama”,
“Motorola”, “Vegas”) appearing in tweets. To extract the entities and their associ-
ated concepts in our datasets we use AlchemyAPI,5 which we have previously evaluated
its semantic extraction performance on Twitter data [21]. The number of extracted con-
cepts in each dataset is listed in Table 3.

4 http://www.ark.cs.cmu.edu/TweetNLP/
5 http://www.alchemyapi.com

http://www.ark.cs.cmu.edu/TweetNLP/
http://www.alchemyapi.com
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Table 3. Numbers of the semantic concepts extracted from all datasets

Dataset STS-Test Sanders OMD HCR STS-Gold SSTD WAB GASP Semeval
No. of Concepts 299 1407 2191 1626 1490 699 1497 3614 6875

5. LDA-Topic Features: These features denote the latent topics extracted from tweets
using the probabilistic generative model, LDA [4]. LDA assumes that a document is a
mixture of topics and each topic is a mixture of probabilities of words that are more
likely to co-occur together under the topic. For example the topic “iPhone” is more
likely to generate words like “display” and “battery”. Therefore, LDA-Topics
represent groups of words that are semantically related. To extract these latent topics
from our datasets we use an implementation of LDA provided by Mallet. LDA requires
defining the number of topics to extract before applying it on the data. To this end,
we ran LDA with different choices of numbers of topics (e.g., 1 topic, 10 topics, 20
topics, 30 topics, etc). Among all choices, 10 topics was the opitmal number that gave
the highest sentiment classification performance when the topics were incorporated as
additional features into the feature space.

Note that all the above sets of features are combined with the original unigram fea-
tures when training the baseline sentiment classifiers for both entity- and tweet-levels.

4.4 Number of SS-Patterns in Data

As described earlier, extracting SS-patterns is a clustering problem that requires deter-
mining beforehand the number of clusters (patterns) to extract. To this end, we run
k-means for multiple times with k varying between 1 and 100. We then plot the within-
cluster sum of squares for all the outputs generated by k-means. The optimum number
of clusters is found where an “elbow” appears in the plot [12]. For example, Figure
4 shows that the optimum number of clusters for the GASP dataset is 17, which in
other words, represents the number of SS-Patterns features that our sentiment classi-
fiers should be trained from. Table 4 shows the number of SS-Patterns extracted by our
model for each dataset.
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Table 4. Numbers of SS-Patterns extracted from all datasets

Dataset STS-Test Sanders OMD HCR STS-Gold SSTD WAB GASP Semeval
No. of SS-Patterns 18 20 23 22 26 24 17 17 19

5 Evaluation Results

In this section, we report the results from using our proposed SS-Patterns as features for
tweet- and entity-level sentiment classification tasks and compare against the baselines
described in Section 4.3. All experiments in both evaluation tasks are done using 10-
fold cross validation.

5.1 Sentiment Patterns for Tweet-Level Sentiment Classification

The first task in our evaluation aims to asses the usefulness of SS-Patterns as features
for binary sentiment classification of tweets (positive vs. negative).6 We use NB and
MaxEnt classifiers trained from word unigrams as the starting baseline models (aka,
unigram models). We then compare the performance of classifiers trained from other
types of features against these unigram models.

Table 5 shows the results in accuracy and average F1 measure of both unigram mod-
els across all datasets. The highest accuracy is achieved on the GASP dataset using
MaxEnt with 90.49%, while the highest average F-measure of 84.08% is obtained on
the WAB dataset. On the other hand, the lowest performance in accuracy is obtained us-
ing NB on the SSTD dataset with 72.36%. Also, NB produces the lowest F1 of 66.69%
on the HCR dataset. On average, MaxEnt outperforms NB by 1.04% and 1.35% in ac-
curacy and F1 respectively. Hence, we use MaxEnt only to continue our evaluation in
this task.

Table 5. Accuracy and the average harmonic mean (F1 measure) obtained from identifying posi-
tive and negative sentiment using unigram features, where Acc is the classification accuracy

Dataset STS-Test Sanders OMD HCR STS-Gold SSTD WAB GASP SemEval Average

MaxEnt
Acc 77.82 83.62 82.90 77.02 86.02 72.84 84.12 90.49 82.11 81.88
F1 77.94 83.58 81.34 69.10 83.10 72.27 84.08 81.81 77.03 78.91

NB
Acc 81.06 82.66 81.57 74.27 84.22 72.36 82.79 88.16 80.44 80.84
F1 81.07 82.52 79.93 66.69 80.46 72.20 82.74 78.15 74.35 77.57

Table 6 shows the results of MaxEnt classifiers trained from the 5 baseline sets of
features (See Section 4.3) as well as MaxtEnt trained from our proposed SS-patterns,
applied over all datasets. The table reports the average results in three sets of minimum,
maximum, and average win/loss in accuracy and F-measure relating to the results of
the unigram model in Table 5. For simplicity, we refer to MaxEnt classifiers trained
from any syntactic feature set as syntactic models and we refer to those trained from
any semantic feature set as semantic models.

6 Unlike entity-level, we do not perform 3-way classification (positive, negative, netrual) in this
task since not all the 9 datasets contain tweets of neutral sentiment.
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It can be observed from these results in Table 6 that all syntactic and semantic models
outperform on average the unigram model in both accuracy and F-measure. However,
MaxEnt trained from our SS-Patterns significantly outperforms those models trained
from any other set of features. In particular, our SS-Patterns produce on average 3.05%
and 3.76 % higher accuracy and F1 than the unigram model. This is 2% higher perfor-
mance than the average performance gain of all syntactic and semantic models. More-
over, we get a maximum improvement in accuracy and F-measure of 9.87% and 9.78%
respectively over the unigram model when using our SS-Patterns for training. This is at
least 3.54% and 3.61% higher than any other model. It is also worth noting that on the
GASP dataset, where the minimum performance gain is obtained, MaxEnt trained from
SS-Patterns gives a minimum improvement of 0.70%, while all other models suffer a
performance loss of -0.45% averagely.

Table 6. Win/Loss in Accuracy and F-measure of using different features for sentiment classifi-
cation on all nine datasets

Features
MaxEnt Classifier

Accuracy F-Measure
Minimum Maximum Average Minimum Maximum Average

Syntactic

Twitter Features -0.23 3.91 1.24 -0.25 4.53 1.62
POS -0.89 2.92 0.79 -0.91 5.67 1.25
Lexicon -0.44 4.23 1.30 -0.38 5.81 1.83
Average -0.52 3.69 1.11 -0.52 5.33 1.57

Semantic

Concepts -0.22 2.76 1.20 -0.40 4.80 1.51
LDA-Topics -0.47 3.37 1.20 -0.68 6.05 1.68
SS-Patterns 0.70 9.87 3.05 1.23 9.78 3.76
Average 0.00 5.33 1.82 0.05 6.88 2.32

Finally, we notice that syntactic features, and more specifically the lexicon ones are
highly competitive features to the semantic type of features. For example, lexicon fea-
tures slightly outperform concept and LDA-Topic features. However, from the average
performance in Table 6 of both types of features, we can see that semantic models are
still bypassing syntactic models in both accuracy and F-measure by 0.71% and 0.75%
on average respectively.

5.2 Results of Entity-Level Sentiment Classification

In this section, we report the evaluation results of using our SS-Patterns for entity-level
sentiment classification on the STS-Gold Entity dataset using the entity sentiment clas-
sifier described in Section 4.2. Note that STS-Gold is the only dataset among the other
9 that provides named entities manually annotated with their sentiment labels (positive,
negative, neutral). Therefore, our evaluation in this task is done using the STS-Gold
dataset only.

Table 7 reports the results in accuracy, precision (P), recall (R) and F1 measure of pos-
itive, negative and neutral sentiment classification performances from using unigrams,
semantic concepts, LDA-Topics and SS-Patterns features. Generally, our SS-Patterns
outperform all other features including word unigrams in all measures. In particular,
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Table 7. Accuracy and averages of Precision, Recall, and F measures of entity-level sentiment
classification using different features

Features Accuracy Positive Sentiment Negative Sentiment Neutral Sentiment Average
P R F1 P R F1 P R F1 P R F1

Unigrams 48.28 92 79.31 85.19 6.67 7.69 7.14 22.22 25 23.53 40.3 37.33 38.62
LDA-Topics 58.62 92 79.31 85.19 31.82 53.85 40 36.36 25 29.63 53.39 52.72 51.6
Semantic Concepts 55.17 92 79.31 85.19 25 38.46 30.3 30.77 25 27.59 49.26 47.59 47.69
SS-Patterns 60.34 92 79.31 85.19 34.78 61.54 44.44 40 25 30.77 55.59 55.28 53.47

merely using word unigrams for classification gives the lowest performance of 48.24%
and 38.62% in accuracy and average F1. However, augmenting the feature space with
SS-Patterns improves the performance significantly by 12.06% in accuracy and 14.85%
in average F1. Our SS-Patterns also outperform LDA-Topics and semantic concepts
features by at least 1.72% and 1.87% in accuracy and average F1.

As for per-class sentiment classification performance, we observe that all features
produce high and similar performances on detecting positive entities. This is because
classifiers trained from either feature set fail in detecting the sentiment of the same en-
tities. Moreover, it seems that detecting negative and neutral entities are much more
difficult tasks than detecting positive ones. For example, unigrams perform very poorly
in detecting negative entities with a F1 less then 8%. Although the performance im-
proves a lot by using SS-Patterns, it is still much lower than the positive classification
performance. For neutral sentiment classification the performance is the lowest with
unigrams (F1 = 23.53%) while it is the highest with SS-Patterns (F1 = 30.77%). Such
varying performance might be due to the uneven sentiment class distribution in the en-
tity dataset. As can be noted from Table 2, positive entities constitute 50% of the total
number of entities while the neutral and negative entities form together the other 50%.

6 Within-Pattern Sentiment Consistency

Our approach, by definition, seeks to find SS-Patterns of terms of similar contex-
tual semantics and sentiment. Therefore, SS-Patterns are best when they are con-
sistent with the sentiment of their terms, that is, they consist mostly of terms of
similar contextual sentiment orientations. In this section, we further study the sen-
timent consistency of our patterns on a set of 14 SS-Patterns extracted from the

Fig. 4. Within-Cluster sentiment
consistencies in the STS-Gold En-
tity dataset

58 annotated entities in the STS-Gold dataset. These
number of patterns was determined based on the elbow
method as explained in Section 4.4.

Table 8 shows four of the extracted patterns along
with the top 5 entities within them and the entities’
gold-standard sentiment. Patterns 3, 12 and 11 are
strongly consistent since all entities within them have
the same sentiment. On the other hand, Pattern 5 has
low sentiment consistency as it contains entities of
mixed sentiment orientations. We systematically cal-
culate the sentiment consistency of a given SS-Pattern
ki as:
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consistency(ki) = argmax
s∈S

Es

E′ (2)

where s ∈ S = {Positive,Negative,Neutral} is the sentiment label, Es is the
number of entities of sentiment s and E′ is the total number of entities within Ki.

Figure 4 depicts the sentiment consistency of the 14 SS-Patterns. 9 patterns out of
14 are perfectly consistent with the sentiment of their entities while two patterns have
a consistency higher than 77%. Only patterns 2,5 and 6 have a consistency lower than
70%. Overall, the average consistency value across the 14 patterns reaches 88%.

Table 8. Example of three strongly consistent SS-Patterns (Patterns 3, 11, and 12) and one incon-
sistent SS-Pattern (Pattern 5), extracted from the STS-Gold Entity dataset

Pattern.3 (Neutral) Pattern.12 (Positive) Pattern.5 (Mixed) Pattern.11 (Positive)
Entity True Sentiment Entity True Sentiment Entity True Sentiment Entity True Sentiment
Brazil Neutral Kardashian Positive Cancer Negative Amy Adams Positive
Facebook Neutral Katy Perry Positive Fever Negative Dallas Positive
Oprah Neutral Beatles Positive Headache Negative Riyadh Positive
Sydney Neutral Usher Positive McDonald Neutral Sam Positive
Seattle Neutral Pandora Positive Xbox Neutral Miley Cyrus Positive

Sentiment Consistency vs. Sentiment Dispersion. From the above, we observed that
patterns 2,5 and 6 have low sentiment consistency. Looking at characteristics of enti-
ties in these patterns, we notice that the average dispersion of their SentiCircles is 0.18
on average. This is twice higher than the dispersion of the entities within the other 11
strongly consistent patterns. Overall, we found a negative correlation of -0.42 between
the sentiment consistency of SS-Patterns and the dispersion of their entities’ SentiCir-
cles. This indicates that SS-Patterns that contain entities of high dispersed SentiCircles
are more likely to have low sentiment consistency. Based on the SentiCircle model (Sec-
tion 3), these high dispersed entities either occur very infrequently or occur in different
contexts of different sentiment in the tweet corpus.

Fig. 5. Number of times that entities in Pattern 2, 5 and 6 receive negative, positive and neutral
sentiment

To validate our above observation, we analyse the human sentiment votes on the 58
entities in STS-Gold dataset.7 Figure 5 shows entities under patterns 2,5 and 6 along

7 Human votes on each entity are available to download with the STS-Gold dataset under
http://tweenator.com.

http://tweenator.com
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with number of times they receive negative, positive and neutral sentiment in tweets
according to the three human coders. We observe that entities in patterns 2 and 6 occur
very infrequently in tweets, yet with consistent sentiment. On the other hand, most enti-
ties in Pattern 5 occur more frequently in tweets. However, they receive strong and con-
troversial sentiment (i.e., opposite sentiment). For example, the entity “McDonald’s”
occurs 3, 4 and 8 times with negative, positive and neutral sentiment respectively.

The above analysis shows the potential of our approach for generating patterns of
entities that indicate sentiment disagreement or controversy in tweets.

7 Discussion and Future Work

We showed the value of our proposed approach in extracting semantic sentiment pat-
terns of words and exploiting them for sentiment classification of tweets and entities.
Our patterns, by definition, are based on words’ similarities in a given context in tweets,
which make them relevant to that specific context. This means that they might need up-
dating more frequently than context-independent patterns, i.e., patterns derived based
on pre-defined syntactic templates [16] or common-sense knowledge bases [6]. Hence,
potential gain in performance may be obtained by combining context-independent pat-
terns with our patterns, which constitutes a future task to this work.

For tweet-level sentiment classification, SS-Patterns were evaluated on 9 Twitter
datasets with different results. For example, our SS-Patterns produced the highest per-
formance improvement on the STS-Test dataset (+9.78% over the baseline) while the
lowest improvement was obtained on the GASP dataset (+1.23%). Different factors
might be behind such variance. For example our datasets differ in their sizes, sparsity
degrees and sentiment classification distributions. We plan to further study the impact
of these factors on (i) the quality of the extracted patterns and (ii) the sentiment classi-
fication performance.

For entity sentiment classification, evaluation was performed on one dataset and by
using a single classifier. We noticed that detecting positive entities was much easier than
detecting neutral or negative entities. This might be due to (i) the choice of the classifier
we use or (ii) the large number of positive entities in this dataset. Therefore, as future
work, we intend to continue experimenting with our patterns on multiple and balanced
entity datasets and using several and more advanced entity sentiment classifiers.

We showed that our approach was able to discover patterns of terms and entities
that could indicate sentiment disagreement, instability, or controversy in tweets. Those
patterns have also shown low consistency with the sentiment of entities within them.
Thus, one may expect terms under these patterns to have low contribution to the senti-
ment classification performance, and therefore, remove them from the feature space for
sentiment classification. We are currently investigating this issue and its impact on the
classification performance.

8 Conclusions

We proposed a novel approach for extracting patterns of words of similar contextual
semantics and sentiment on Twitter. Our approach does not rely on the syntactical struc-
ture of tweets, nor uses external syntactic templates for pattern extraction.
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We applied our approach on 9 Twitter datasets and validated the extracted patterns by
incorporating them as classification features for sentiment classification of both tweets
and entities. For tweet level sentiment classification, we used two supervised classifiers,
NB and MaxEnt while for entity level we proposed a sentiment classifier based on
Maximum Likelihood Estimation.

In both sentiment classification tasks and on all datasets, classifiers trained from our
SS-Patterns showed a consistent and superior performance over classifiers trained from
other 4 syntactical and 2 semantic sets of features.

We conducted an analysis of our SS-Patterns and showed that our patterns are
strongly consistent with the sentiment of the terms within them. Also, the analysis
showed that our approach was able to derive patterns of entities of controversial sen-
timent in tweets.
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Abstract. Social media has become an effective channel for communicating
both trends and public opinion on current events. However the automatic topic
classification of social media content pose various challenges. Topic classifica-
tion is a common technique used for automatically capturing themes that emerge
from social media streams. However, such techniques are sensitive to the evo-
lution of topics when new event-dependent vocabularies start to emerge (e.g.,
Crimea becoming relevant to War Conflict during the Ukraine crisis in 2014).
Therefore, traditional supervised classification methods which rely on labelled
data could rapidly become outdated. In this paper we propose a novel transfer
learning approach to address the classification task of new data when the only
available labelled data belong to a previous epoch. This approach relies on the
incorporation of knowledge from DBpedia graphs. Our findings show promising
results in understanding how features age, and how semantic features can support
the evolution of topic classifiers.

Keywords: social media, topic detection, DBpedia, concept drift, feature rele-
vance decay.

1 Introduction

Microbloging platforms such as Twitter, has proven to be powerful tools for sharing
opinions and spreading the word on trends and current events. Understanding what is
being discussed on social media has been the focus of much research and develop-
ment, to monitor opinion and sentiment [21,11], to detect emerging events [27,8], to
track topics [5,12], etc. One persistent challenge often faced by such works is the task
of assigning topic labels to microposts; a core step in classifier training. The contin-
uous change in topics and vocabulary on social media raises the need for retraining
such classifiers with fresh topic-label annotations, which are often time consuming and
costly to acquire. Topic classification of microposts is also challenged by the inherent
characteristics of social media content, which often consists of ill-formed language,
abbreviations, and hashtags.

In an event-dependent topic, not only new lexical features could potentially rechar-
acterise the topic, but also previous features could fade out and become irrelevant for
this topic. Because of the progressive feature drifts of topics in dynamic environments
the expectation that training data and future data to be in the same feature space is not

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 341–357, 2014.
c© Springer International Publishing Switzerland 2014



342 A.E. Cano, Y. He, and H. Alani

normally met. One such topic is Violence in Social Media and microposts, whose lan-
guage model is continuously reshaping based on current violence-related events. For
example, the word Crimea might not have been relevant to the topic Violence two years
ago, but has become increasingly relevant in recent months. Similarly, the term Jan25,
which was characteristic of violence behaviour during the Egyptian revolution, is now
less representative of violence in current microblogs.

Such concept drifts [9][16] introduce new challenges to the topic classification of
tweets. These linguistic and topic evolutions contribute to the progressive reshaping of
the language model that characterises a topic, which renders existing topic classification
models less and less efficient. To maintain the adequacy of our models, it is necessary to
regularly retune them to fit current social media content. Relearning the models would
enable us to incorporate new relevant features, and to reuse the weight of features which
have become outdated or less relevant to the topic.

Particularly on a topic classification of tweets at a current epoch, it is common to
only have sufficient training data from previous epochs. An extensive area of research
which addresses this problem is Transfer Learning [18], which aims to apply knowledge
learned in the past to solve new problems.

In this paper we propose a transfer learning approach to the epoch-based topic clas-
sification of tweets, where no label data is available on a current epoch but label data
from past epochs is available. This approach relies on the incorporation of semantic
features derived from temporal topic graphs extracted from a structured knowledge
source. DBpedia has become one of the major sources of structured knowledge ex-
tracted from Wikipedia. Such structures gradually re-shape the representation of Topics
as new events relevant to such topics emerge. The incorporation of new event-data to a
topic representation leads to a linguistic evolution of a topic, but also to a change on its
semantic structure. To the best of our knowledge, none of the existing approaches for
topic classification using semantic features [10][3][26], has focused on the epoch-based
transfer learning task. In this work we present a comparison of lexical and semantic fea-
tures on epoch-based transfer learning tasks. The main contributions of this paper can
be summarised as follows:

(1) we generate a cross-epoch dataset consisting of 12,000 annotated tweets over three
different years and three topics;

(2) we enrich our classification models with 4 types of semantic features extracted
from our Twitter content using different DBpedia dumps (3.6 to 3.9) to simulate
epoch-based settings;

(3) we propose a novel weighting strategies for epoch-based transfer learning which
relies on topic-based semantic graphs at a given point in time. Our findings show
that the proposed strategies improve performance upon our baseline while outper-
forming F-measure upon lexical features; and

(4) we compare the performance of lexical feature-based models against semantic fea-
tures. Our findings demonstrate that class-based (rdf:type) features alone can
achieve on average a gain in F of 12% over lexical features on cross-epoch
settings.
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2 Related Work

Topic classification of tweets consists of the task of labelling a tweet as being either
topic-related or non-topic-related. Various works have made use of lexical and profile
based features to approach this task [19,24]. Other approaches have incorporated the
use of external knowledge sources (KS) to enrich Twitter content. Some of them relying
only on KS [10,23,17]; others incorporating semantic features derived from semantic
meta graphs [26,3] on supervised settings; and others incorporating DBpedia lexical
features on unsupervised classification tasks [2]. However to the best of our knowledge,
none of these approaches focused on the epoch-based transfer learning task. In contrast
to previous work, rather than focusing on how semantic features perform against lexical
features within the same epoch datasets, we focus on analysing the change in perfor-
mance on cross-epoch settings. In these settings, models are trained on data from an
epoch t, and tested on data for which no training data is available yet.

Transfer learning was proposed over a decade ago [25,4]. However, its use in nat-
ural language processing is relatively new[18]. [1] introduced a structural correspon-
dence learning method for domain adaptation applied to part-of-speech tagging. [7]
introduced the feature augmentation strategy for domain adaptation. [15] studied cross-
domain classification by applying word similarities using semantic nets. However, their
setting is not cross-epoch dependent but rather cross-domain. Previous work on senti-
ment analysis [12] studied the simultaneous sentiment and topic detection on a dynamic
setting based on an unsupervised approach. As opposed to previous work which rely on
the use of lexical features, we propose the incorporation of semantic features in the
cross-epoch learning task. To the best of our knowledge no existing work has been for-
mally studied for the topic classification of tweets as a cross-epoch transfer learning
task on a supervised setting.

3 Characterising Topic Changes with DBpedia

DBpedia is periodically updated to incorporate any additions and modification in
Wikipedia. This enables us to track how specific resources evolve over time, by com-
paring these resources over subsequent DBpedia editions.

For example, changes to the semantic graph for the concept Barack Obama can be de-
rived from snapshots of this resource’s semantic graph from different DBpedia dumps.1

Consider Figure 1, although some of the triples remain unchanged in consecutive
dumps, (e.g. [dbp:Barack Obama, dbo:birthPlace, dbpedia:Hawaii]) new
triples provide further information on the resource: i) current contexts (e.g. DBpedia
3.7 [dbp:Barack Obama, skos:subject, dbp:Al-Qaeda]); ii) future con-
texts (e.g. DBpedia 3.7 [dbp:Barack Obama, dbo:wikiPageWikiLink,
dbp:Uni-ted States presidential candidates, 2012]) and iii) past con-
text (e.g. DBpedia 3.8 [dbp:Barack Obama, dbo:wikiPageWikiLink,
dbp:Budget Control Act of 2011]). Changes regarding a resource are exposed

1 The DBpedia dumps correspond to Wikipedia articles at different time periods as follows:
DBpedia 3.6 generated on 2010-10-11; DBpedia 3.7 on 2011-07-22, DBpedia 3.8 on 2012-
06-01, DBpedia 3.9 on late April. DBpedia have them available to download at DBpedia
http://wiki.dbpedia.org/Downloads39

http://wiki.dbpedia.org/Downloads39
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Fig. 1. Triples of the Barack Obama resource extracted from different DBpedia dumps (3.6 to
3.8). Each DBpedia dump presents a snapshot in time of factual information of a resource.

both through new semantic features (i.e triples) and new lexical features –appearing on
changes in a resource’s abstract–.

DBpedia therefore covers a wealth of structured resources exhibiting both lexi-
cal and semantic information. Moreover, these resources are commonly characterised
with a Topic via the skos:subject property, which links a DBpedia resource with a
skos:Concept. Hence in DBpedia each particular topic (e.g. cat:War2) is broadly
represented through its associations with a large number of resources (e.g. dbp:War -
profiteering). This resource-concept relationship yields to a broad set of
resources characterising a topic. A topic can be therefore represented by
a collection of resources belonging to both the main topic (e.g. cat:War)
and resources (e.g dbp:Combat assess-ment) belonging to subcategories (e.g.
cat:Military operations) of the main Topic.

Using multiple DBpedia dumps, we are able to characterise topics during different
time periods. This paper proposes a novel approach which makes use of time-based se-
mantic graph changes for characterising the relevance of a feature to a given Topic. The
following section introduces our framework for extracting a time-dependent DBpedia-
based representations of tweets. It also presents a set of feature weighting strategies
which aim to overcome the drop in classification performance when classifiers are ap-
plied to previously unseen datasets.

4 Framework for Twitter Topic Classification with DBpedia

Since the changes on the lexical and semantic representation of a topic are time-
dependent, we propose to make use of temporal features in the form of semantic-graphs
snapshots. In this paper we aim to understand how the relevance of features for clas-
sifying a topic changes once the characterisation of that topic changes over time. To
this end, we perform an analysis based on the lexical and semantic feature expansion
of tweets using DBpedia3. This involves investigating how the availability of resources

2 Where cat is the qname for http://dbpedia.org/resource/Category:
3 Analysis of joint KSs is future work.

http://dbpedia.org/resource/Category:
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Fig. 2. Architecture for backtrack mapping of resources to DBpedia dumps and deriving topic-
relevance based features for epoch-dependent topic classification

overtime can impact the classification performance on previously unseen data. As de-
picted in Figure 2, our framework makes use of different DBpedia dumps for the topic
classification of tweets. The main stages of this framework are: 1) Extraction of lexi-
cal and semantic features from tweets; 2) Time-dependent content modelling; 3) Strat-
egy for weighting topic-relevant features with DBpedia; and 4) Construction of time-
dependent topic classifiers based on lexical, semantic and joint features . These stages
are described in the following subsections.

4.1 Lexical and Semantic Feature Extraction

We focus on two main feature types: lexical and semantic features. The lexical feature
representation of a tweet consists of a bag of words approach using a TF-IDF weighting
strategy [13]. To generate a semantic feature representation of a tweet, we make use of
DBpedia information for all entities appearing on this content. The semantic feature
generation consists of three stages: 1) entity extraction; 2) entity linking to DBpedia
resources, and 3) generation of semantic features. We first extract entities from a tweet
content using the AlchemyAPI entity extraction and Linked Data service.4 This service
takes a piece of text as an input, and returns a collection of annotated entities appear-
ing in the given text. Each entity annotation provides both the entity type and a set of
disambiguated links for this entity. An entity’s disambiguated links include links point-
ing to DBpedia, Freebase,5 and Yago6 resources. In this analysis we only kept entities
disambiguated to DBpedia resources. The following section describes the generation of
time-based semantic features.

4.2 Time-Based Content Modeling

A Resource Meta Graph is an aggregation of all resources, properties and classes related
to a resource [3]. Here we extend this definition by assigning a temporal marker to this
graph:

4 AlchemyAPI, http://www.alchemyapi.com/
5 http://freebase.com
6 http://www.mpi-inf.mpg.de/yago-naga/yago/

http://www.alchemyapi.com/
http://freebase.com
http://www.mpi-inf.mpg.de/yago-naga/yago/
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Definition 1 (Resource Meta Graph) is a sequence of tuples G := (R,P,C, Y, ft)
where
• R, P, C are finite sets whose elements are
resources, properties, and classes;

• Y is the ternary relation Y ⊆ R × P × C representing a hypergraph with ternary
edges. The hypergraph of a Resource Meta Graph Y is defined as a tripartite graph
H (Y) = 〈V, D〉 where the vertices are V = R ∪ P ∪ C, and the edges are:
D = {{r, p, c} | (r, p, c) ∈ Y }.

• ft is a function that assigns a temporal marker to each ternary edge.
Therefore a meta graph of a resource provides additional contextual information regard-
ing an entity at a given point in time. In this work we make use of the following features
extracted from a resource meta graph:

– Resource feature (Res): Consisting of the resource for which the semantic meta
graph is derived. For example for the dbp:Barack Obama resource.

– Class Type features (Cls): Consisting of all classes appearing in the seman-
tic meta graph of a resource that we derive from DBpedia. For example for the
dbp:Barack-
Obama resource these features include dbo:OfficeHolder.

– Category features (Cat): Consisting of all resources of type skos:Concept ap-
pearing in the DBpedia semantic meta graph of an entity. For example for the
dbp:Barack Obama resource these features include cat:Obama family.

– Property features (Prop): Consisting of all properties appearing on the DBpedia-
derived semantic meta graph of an entity. For example for the dbp:Barack Obama
resource these features include foaf:givenName and dbo:writer.

Therefore a document can be represented by the semantic features derived from the
entities it contains. One approach to weight the semantic feature vector of a document is
to use a frequentist approach, like the Semantic Feature Frequency (SFF)[3] weighting
strategy which computes the frequency of a feature on a document applying a Laplace
smoothing. This SFF will be our baseline for comparing the set of weighting strategies
introduced in the following subsection.

4.3 Topic-Relevance Strategy for Weighting Features with DBpedia

Rather than characterising the relevance of a feature on a resource’s graph (as in [3]
[26]), here we aim to characterise the global relevance of a semantic feature to a given
topic in DBpedia at a given point in time. For this we propose a novel set of semantic
feature weighting strategies which rely on the semantic representation of a topic derived
from DBpedia. As discussed in Section 3, a topic such as War can be represented by
the collection of resources belonging to the cat:War category, and resources from
its subcategories. This collection of resources build a topic-based graph structure that
characterises this topic and evolves as new resources are added to the DBpedia graph.

The following strategies make use of a time-stamped DBpedia Topic graph to derive
a feature’s relative importance to this topic at a given time. When analysing the children
to parent category relations we set the number of traversing steps to 2. In order to
capture the relative importance of a feature to a given topic, we propose the following
weighting strategies:
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- Class-based Topic Relevance (ClsW ): Weights a type-feature f as the ratio of
the number of distinct resources whose rdf:type is f and are labeled with cat-
egories appearing on the Topic graph, and the number of resources of rdf:type
f derived from a DBpedia graph at time t (DBt). For example to weight the type
dbo:OfficeHolder7 in the context of the Topic War we compute this weight as
depicted in Figure 3.

W(dbo:OfficeHolder, cat:War) = {|         
< ?broader skos:broader cat:War > .       
< ?cat skos:broader ?broader > .           
< ?s rdf:type dbp:OfficeHolder > .        
< ?s dc:subject ?cat > ∈ DB_t|}  /          
{| < ?s rdf:type dbo:OfficeHolder >∈ DB_t|} DB_t

cat:War

War-DB_t

subCat1

subCatN

X a OfficeHolder

ResN a OfficeHolder

subCatY ?s

Fig. 3. Class Feature Weighting Strategy (ClsW )

where DBt
8 represents the DBpedia graph at time t. A higher weight means that the

type feature f appears more often on resources derived from cat:War, therefore is
more relevant to this Topic.

- Property-based Topic Relevance (PropW ): Weights a property-feature f as the ratio
of the number of distinct resources whose property is f and are labeled with cat-
egories appearing on the Topic graph; and the number of resources of type f de-
rived from a DBpedia graph at time t (DBt). For example to weigh the property
dbProp:currency9 in the context of the Topic War we compute this weight as de-
picted in Figure 4.

W(dbProp:currency, cat:War) =  {|      
< ?broader skos:broader cat:War >.        
< ?category skos:broader ?broader >.   
< ?s dbProp:currency ?val >.           
< ?s dc:subject ?category >∈ DB t|} /   
{| < ?s dbProp:currency ?value >∈ DB t|} DB_t

cat:War

War-DB_t

subCat1

subCatN

X dbp:Currency ?val

ResN dbp:Currency ?val

subCatY ?s

Fig. 4. Property Feature Weighting Strategy (PropW )

- Category-based Topic Relevance (CatW ): Weighs a category-feature f based on the
number of resources appearing on sibling categories, which are also descendants of
the main Topic category; divided by the number of resources belonging to the cate-
gory and subcategories of the main Topic category derived from a DBpedia graph at
time t (DBt). For example to weight the type cat:Conflict in the context of the
Topic War we compute this weight as described in Figure 5:

- Resource Relevance (ResW ): This weighting strategy does not make use of the topic
graph, but rather characterises the relevance of a resource by comparing it to other
resources. It is defined as the ratio of the number of resources which share this re-
source’s categories and the number of resources in DBpedia labelled by a category
derived from a DBpedia graph at time t (DBt). For example to weight the resource
dbp:Barack Obama10 we compute this weight as described in Figure 6:

7 dbo, qname for http://dbpedia.org/ontology/
8 DBpedia graph snapshots are based on different DBpedia dumps described in section 5.
9 dbProp, qname for http://dbpedia.org/property/

10 dbp, qname for http://dbpedia.org/resource/

http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://dbpedia.org/resource/
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W(cat:Conflict, cat:War) = {|              
< cat:Conflict skos:broader ?parent >.    
< ?group skos:broader ?parent > .          
< ?s dc:subject ?group > .                 
< ?broader skos:broader cat:War > .       
< ?category skos:broader ?broader > .      
< ?s dc:subject ?category > ∈ DB t|}/       
{| < ?broader skos:broader cat:War >.    
< ?category skos:broader ?broader > .       
< ?s dc:subject ?category >∈ DB t|} DB_t

subCat1 .. subCatN

?group ?s

cat:War

War-DB_t

?category

?broader

?parent

cat:Conflict

Fig. 5. Category Feature Weighting Strategy (CatW )

W(dbp:Barack Obama) = {|                 
< ?category skos:broader ?broader > .     
< ?s dc:subject ?category >                
< dbp:Barack_Obama dc:subject ?category >   
∈ DB t|} /                                 
{| < ?s dc:subject ?cat >∈ DB t|} DB_t

?s

?Category

?broader

dbp:Barack_Obama

Fig. 6. Resource Feature Weighting Strategy (ResW )

Once the semantic feature space of a corpus has been weighted based on the above
weighting strategies, we integrate these weights into the feature representation of a
tweet post by multiplying the number of times the feature appears on the document
by the feature weight derived from the DBpedia graph (DB t). Therefore the semantic
feature f in a document x is weighted based on the frequency of a semantic feature f
in a document x with Laplace smoothing and the topic-relevance of the feature in the
DB t graph:

Wx(f)DB t = [
[Nx(f)DB t + 1

|F |+∑
f ′∈F Nx(f ′)DB t

] ∗ (WDB t(f))
1/2 (1)

where Nx(f) is the number of times feature f appears in all the semantic meta-graphs
associated with document x derived from the DB t graph ; F is the semantic features’
vocabulary of the semantic feature type and WDB t(f) is the weighting function cor-
responding to the semantic feature type computed based on the DB t graph.11 This
weighting function captures the relative importance of a document’s semantic features
against the rest of the corpus and incorporates the topic-relative importance of these
features in the DB t graph.

4.4 Construction of Time-Dependent Topic Classifiers

To characterise the time-dependent impact on the decay in performance of a topic clas-
sifier we focus on the binary topic classification task in cross-epoch-based scenarios. In
these scenarios the classifier that we train on a corpus from epoch t− 1, is tested on a
corpus on epoch t. We use our semantic graphs to characterise the two corpora, to verify
our hypothesis that, as opposed to lexical features which are situation-dependent and
can change progressively in time, semantic structures – including ontological classes
and properties – can provide a more stable representation of a Topic in cross-epoch
settings.

11 Notice that the square root on the proposed weight aids to emphasize this value, since the order
of magnitude of this weight tends to be low.
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Following the weighting strategies in the previous section, the semantic feature rep-
resentations of the t− 1 corpus and the t corpus, are both generated from the DBpedia
graph available at t − 1. For example when applying a classifier trained on data from
2010, the feature space of a target test set from 2011 is computed based on the DBpe-
dia version used for training the 2010-based classifier. This is in order to simulate the
availability of resources in a DBpedia graph at a given time.12

5 Experimental Setup

In this section we introduce our datasets and present the experimental setting for eval-
uating the effectiveness of the proposed weighting strategies on a cross-epoch transfer
learning task.

5.1 Dataset Description

Our datasets comprise two main collections: DBpedia and Twitter datasets. The DBpe-
dia collection is comprised of four DBpedia dumps (3.6 to 3.9).13 These dumps were
installed on a Virtuoso server using separate named-graphs for each dump to facilitates
dump-specific SPARQL queries. The DBpedia dumps allow us to extract semantic fea-
tures for resources contained on a tweet, based on a specific DBpedia graph available
at a particular epoch.

The Twitter datasets consist of a collection of Violence-related topics: Disaster Acci-
dent, Law Crime and War Conflict. Each of these datasets comprises three epoch-based
collections of tweets, corresponding to 2010, 2011, and 2013. The 2010 collection was
gathered during November 2010 and December 2010 comprising over 1 million tweets.
The 2011 collection was gathered during August 2011 also comprising over 1 million
tweets. Finally the 2013 collection was sampled during September of 2013 also com-
prising of over 1 million tweets. To generate our gold standard we first labelled these
tweets using the topic labelling service from OpenCalais14 which classifies a tweet into
18 different categories.15 Then for each year we retrieved those tweets with labels cor-
responding to “Disaster & Accident”, “Law & Crime” and “War & Conflict”.

Based on a random selection of 10,000 tweets for each year of each Topic we used
the AlchemyAPI service to extract entities. Then we performed a manual annotation
based only on those tweets which contained at least one resource. We stop the manual
annotation of a randomly sorted sample for each Topic for each year when reaching
1,000 tweets per topic per year, giving us a total of 9,000 tweets. In order to generate
a negative set for each year, we used a 10,000 sample of the OpenCalais annotated set
with tweets annotated with categories other than these three. We also pre-filtered tweets
which contained at least one entity. Since in this work our aim is topic characterisation
rather than violence detection we decided to keep balanced sets. Therefore for each

12 The comparison based on progressive availability of resources is future work.
13 General statistics of these dumps are available at
http://wiki.dbpedia.org/Downloads39

14 OpenCalais, http://www.opencalais.com
15 Full list of OpenCalais categories, http://www.opencalais.com/documentation/
calais-web-service-api/api-metadata/document-categorization

http://wiki.dbpedia.org/Downloads39
http://www.opencalais.com
http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/document-categorization
http://www.opencalais.com/documentation/calais-web-service-api/api-metadata/document-categorization
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year we kept a manual annotation of 1,000 tweets which are not related to any of these
three topics. Based on the manual re-annotation of two annotators (computer science
researchers) we achieved an averaged inter-annotator Kappa score of 73.5%. The final
Twitter dataset therefore contained 12,000 annotated tweets.

In order to derive the lexical features, these datasets were preprocessed by first re-
moving punctuation, numbers, non-alphabet characters, stop words, and links. We then
performed Porter stemming [20] in order to reduce the vocabulary size. To generate the
semantic features we used the disambiguated DBpedia links provided by AlchemyAPI.
However since Alchemy is based on the most recent DBpedia dump, we resolved each
disambiguated DBpedia resource to the DBpedia dump available at the time in which
the tweet was created. Therefore for each document we only kept those entities which
existed on the DBpedia dump available at the time in which the tweet was created.

The general statistics of these datasets including semantic features is summarised in
Table 1. In this work we follow a frequency-based weighting strategy, which is a common
approach in Information Retrieval. However here we report that only 26% of the lexical
features in our Twitter dataset have frequency greater than 1 on a document. For the
semantic feature spaces we have the following distributions: Cat-11%,Prop-94.7%,Res-
1%,Cls-29%16. Notice that for each cross-time setting scenario presented in Section 6
where a classifier at time t is tested on a dataset at t + 1, we recalculated the semantic
features of the t+ 1 dataset to point back to the DBpedia graph available at time t.

Table 1. Statistics of the lexical and semantic features extracted for the Disaster Accident (D
& A), Law Crime (L & C), War Conflict (W & C), and Negative (Neg) tweet collections. The
reported statistics for Unigrams is after preprocessing.

Unigram Category Properties Resource Class tweets

2010 1,361 1,224 1,862 218 60 1,000
2011 1,118 711 1,533 111 66 1,000

D
&

A

2013 1,380 1,615 2,260 220 63 1,000

2010 1,427 1,577 1,795 213 65 1,000
2011 1,012 870 1,698 111 70 1,000

L
&

C

2013 1,288 1,530 2,202 208 104 1,000

2010 1,300 1,196 1,440 182 46 1,000
2011 1,038 601 1,245 95 58 1,000

W
&

C

2013 1,263 1,515 2,105 202 98 1,000

2010 1,634 2,044 2,167 229 86 1,000
2011 1,244 1,562 2,080 160 101 1,000

N
eg

2013 1,194 1,896 2,048 162 114 1,000

Table 2, presents the top three lexical and semantic features ranked based on the SFF
baseline strategy and based on our weighting strategies for the 2010 Law Crime topic.
The left column present the top semantic features ranked using our baseline (SFF) while
the right column presents top features ranked using our semantic weighting strategies
(SFG). Notice that while the frequency based strategy (SFF) seem to provide a repre-
sentation specific to the current-situation modelling the Topic; the proposed SFG seem
to provide a broader representation of the Topic based on the information derived from
the DBpedia graph.

16 Averaged for the three topics and three years.
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Table 2. An extract of the feature space of the Law Crime Topic of 2010. We also present the
top three features for unigram. The qualified names used in this table are mapped as follows: [dbp,

http://dbpedia.org/ontology], [dbc, http://dbpedia.org/resource/Category/], [dbpr, http://dbpedia.org/resource/], [dbpProp,

http://dbpedia.org/property/], [gml, http://www.opengis.net/gml/], [skos, http://www.w3.org/2004/02/skos/core# ], [foaf,

http://xmlns.com/foaf/0.1/], [dc, http://purl.org/dc/terms/subject].

2010-SFF 2010-SW

Lex wikileak, arrest, law wikileak, arrest, law
Cat cat:Living People, cat:Liberal democracies,

cat:G20 nations
cat:Living People, cat:Theft,
cat:Commercial crimes

Prop dc:subject, foaf:name, dbpProp:leaderName foaf:page, rdf:label, dbpProp:name

L
aw

C
ri

m
e

Res dbpr:United States, dbpr:Julian Assange,
dbpr:Wikileaks

dbpr:Marc Emery, dbpr:Erik Bornmann,
dbpr:Reggie Bush

Cls dbp:Place, gml: Feature, dbp:PopulatedPlace dbp:Work, dbp:Criminal, dbp:Person

5.2 Experimental Setting

To assess the features temporal impact on a classification task we use as a baseline the
performance of a topic classifier trained and tested on an epoch t. In this case we assess
performance differences when a classifier is tested on future epochs as we described in
Section 4.4. We use the standard weighting strategies as a baseline (i.e., TF-IDF for
BOW and SFF for semantic features17) to compare against the weighting ones intro-
duced in section 4.2.

To test whether semantic features can aid on this cross-epoch transfer learning task,
we performed the following series of experiments. For each topic we built supervised
topic classifiers using the independent feature types (i.e., bag of words features [BoW],
semantic features –class [Cls], property [Prop], category [Cat], resource [Res]–) and the
merged features (i.e., joint-semantic features, [Sem], and the BoW + semantic features
[All]). In this collection of classifiers features were weighted based on our baseline
weighting strageties: TF-IDF for the BoW features and SFF for the semantic features
( SFF ). We also generated the same set of classifiers but this time using the SFG
weighting strategies ( SFG) introduced in Section 4. We also generated merged set-
tings, here SemSFF and SemSFG correspond to classifiers trained on joint semantic
features weighted with SFF and SFG respectively. Semjoint refers to classifiers us-
ing all semantic features weighted with the SFF+SFG setting. The All classifiers are
based on the semantic + BoW settings; the subscript indicates the weighting scheme.

6 Experimental Results

In this section we address the following questions: Do semantic features built from DB-
pedia Graphs aid on a cross-epoch transfer learning task for the topic classification of
Tweets? if so, to what extent can these semantic features help the classification task?
In our experiments we used Support Vector Machine (SVM) [6] with polynomial ker-
nel classifiers. All the experiments reported here were conducted using a 10-fold cross
validation setting [22][14].

17 We used the SSF weighting strategy in order to have a one to one comparison based on seman-
tic feature types. This is the reason why we did not include the class-property co-occurrence
frequency [3] strategy in our baseline.
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Table 3. Performance of the classifiers trained and tested on the same epoch. The classifiers where
applied on testsets weighted based on the classifier weighting scheme. The values highlighted in
bold correspond to the best results obtained in F measure for each topic and each year. A � denotes
that the P-measure of a given weighted feature significantly outperforms the corresponding SFF
baseline. Significance levels: p-value < 0.01.

Dissaster Acc Law Crime War Conflict

P R F1 P R F1 P R F1

BOW 0.855 0.809 0.831 0.776 0.756 0.765 0.868 0.821 0.844

CatSFF 0.740 0.661 0.697 0.639 0.663 0.650 0.781 0.712 0.744
CatSFG 0.744 0.546 0.629 0.731 0.458 0.562 0.797 0.698 0.743
Catjoint 0.769 0.608 0.678 0.716 0.508 0.594 0.793 0.686 0.735
PropSFF 0.720 0.646 0.680 0.612 0.671 0.639 0.749 0.694 0.720
PropSFG 0.711 0.618 0.659 0.584 0.697 0.635 0.735 0.678 0.705
Propjoint 0.734 0.623 0.673 0.588 0.685 0.632 0.759 0.679 0.716

20
10

ResSFF 0.773 0.627 0.692 0.724 0.569 0.637 0.812 0.720 0.762
ResSFG 0.776 0.567 0.654 0.749 0.499 0.599 0.812 0.656 0.725
Resjoint 0.775 0.600 0.675 0.751 0.510 0.607 0.821 0.677 0.741
ClsSFF 0.637 0.631 0.633 0.552 0.629 0.583 0.688 0.595 0.637
ClsSFG 0.632 0.608 0.619 0.582 0.486 0.527 0.666 0.573 0.614
Clsjoint 0.635 0.606 0.619 0.583 0.510 0.542 0.684 0.584 0.628

SemSFF 0.746 0.700 0.720 0.639 0.683 0.659 0.782 0.740 0.760
SemSFG 0.685 0.773 0.725 0.629 0.738 0.678 0.757 0.740 0.748
Semjoint 0.777� 0.652 0.708 0.716� 0.553 0.623 0.795� 0.715 0.752
AllSFF 0.817 0.791 0.803 0.761 0.766 0.763 0.851 0.830 0.840
AllSFG 0.807 0.814 0.809 0.764 0.789 0.776 0.847 0.837 0.841
Alljoint 0.829 0.769 0.797 0.782 0.726 0.752 0.860 0.814 0.836

BOW 0.899 0.853 0.875 0.868 0.808 0.836 0.905 0.860 0.882

CatSFF 0.841 0.735 0.784 0.830 0.697 0.756 0.881 0.817 0.847
CatSFG 0.848 0.698 0.765 0.849 0.681 0.755 0.881 0.798 0.837
Catjoint 0.852 0.724 0.782 0.842 0.683 0.753 0.879 0.806 0.840
PropSFF 0.815 0.722 0.765 0.763 0.661 0.706 0.856 0.806 0.830
PropSFG 0.812 0.714 0.759 0.780 0.652 0.709 0.872 0.797 0.832
Propjoint 0.825 0.716 0.766 0.778 0.656 0.711 0.856 0.797 0.824

20
11

ResSFF 0.856 0.736 0.791 0.849 0.706 0.770 0.886 0.810 0.846
ResSFG 0.882 0.702 0.781 0.871 0.655 0.746 0.896 0.779 0.832
Resjoint 0.880 0.699 0.779 0.865 0.679 0.760 0.893 0.788 0.837
ClsSFF 0.714 0.712 0.712 0.700 0.616 0.653 0.824 0.773 0.797
ClsSFG 0.716 0.710 0.712 0.705 0.584 0.636 0.814 0.761 0.786
Clsjoint 0.714 0.709 0.711 0.697 0.613 0.650 0.811 0.761 0.784

SemSFF 0.814 0.761 0.786 0.805 0.729 0.764 0.861 0.824 0.841
SemSFG 0.807 0.767 0.786 0.774 0.727 0.748 0.855 0.823 0.838
Semjoint 0.831� 0.744 0.784 0.824� 0.714 0.764 0.871� 0.809 0.838
AllSFF 0.876 0.846 0.861 0.843 0.804 0.822 0.882 0.844 0.862
AllSFG 0.884 0.858 0.870 0.846 0.814 0.829 0.884 0.853 0.868
Alljoint 0.878 0.844 0.860 0.856 0.787 0.819 0.887 0.836 0.860

BOW 0.862 0.806 0.833 0.875 0.832 0.852 0.870 0.808 0.838

CatSFF 0.774 0.687 0.727 0.798 0.682 0.734 0.756 0.657 0.701
CatSFG 0.807 0.625 0.704 0.817 0.634 0.713 0.780 0.606 0.681
Catjoint 0.791 0.658 0.717 0.826 0.644 0.723 0.788 0.622 0.694
PropSFF 0.762 0.680 0.718 0.771 0.682 0.723 0.742 0.657 0.696
PropSFG 0.748 0.657 0.699 0.772 0.680 0.722 0.753 0.665 0.705
Propjoint 0.768 0.672 0.716 0.777 0.673 0.720 0.765 0.665 0.711

20
13

ResSFF 0.788 0.660 0.718 0.821 0.663 0.733 0.787 0.611 0.687
ResSFG 0.800 0.623 0.700 0.836 0.634 0.720 0.804 0.606 0.690
Resjoint 0.806 0.614 0.696 0.836 0.632 0.719 0.813 0.578 0.673
ClsSFF 0.707 0.659 0.680 0.745 0.657 0.697 0.694 0.653 0.671
ClsSFG 0.717 0.609 0.657 0.750 0.647 0.693 0.704 0.649 0.672
Clsjoint 0.716 0.634 0.671 0.748 0.658 0.699 0.702 0.674 0.686

SemSFF 0.767 0.719 0.741 0.772 0.725 0.747 0.751 0.706 0.728
SemSFG 0.741 0.762 0.751 0.754 0.755 0.754 0.736 0.743 0.739
Semjoint 0.778� 0.694 0.733 0.803� 0.681 0.736 0.770� 0.656 0.708
AllSFF 0.832 0.799 0.814 0.844 0.800 0.821 0.836 0.804 0.819
AllSFG 0.837 0.824 0.830 0.845 0.821 0.832 0.835 0.819 0.827
Alljoint 0.844 0.781 0.811 0.854 0.779 0.814 0.840 0.764 0.799
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6.1 Evaluation of Semantic Features on Same-Epoch Scenarios

In order to assess the benefit of using semantic features in topic classification, we start
by studying their role when a topic classifier is trained and tested on the same epoch.

Table 3 shows the results of topic classifiers trained and tested on the same years
and datasets, using (1) BoW features (i.e., lexical features); (2) baseline semantic fea-
tures weighted based on SFF (Section 4.2); (3) semantic features with our graph-based
weighting strategies (SFG, Section 4.3); (4) using joint semantic features (Sem); and
(5) using the joint BoW and semantic features (All).

Results show that in same-epoch scenarios, BoW features outperform all semantic
features in topic classification. They also show that while results with SFF are better
than with SFG in almost all cases, their joint use outperform the SFF baseline in P.
These are interesting, but unsurprising results. This is because the training and clas-
sification are done on the same dataset and epoch, and hence the current data content
should be more representative of the topic. However this set of same-year results be-
come our baseline against cross-epoch settings (where these classifiers are tested on
future epochs).

6.2 Evaluation of Semantic Features on Cross-Epoch Scenarios

Now we study the performance of our BoW and semantic features when the training
is done on one epoch and the classification is applied to another. This will help us
understand how these features decay across epochs.

Table 4 presents results for three cross-epoch scenarios for the Disaster Accident
(Dis Acc) topic. Each X-Y column refers to the performance of a classifier trained on
epoch X and tested on epoch Y. The last column presents the average results of this topic
across these cross-epoch scenarios. Comparing the performance of the Dis Acc 2010
classifier (Table 3) with the 2010-2011, and 2010-2013 results (Table 4) we observe a
consistent drop in F measure when this Dis Acc 2010 TC is applied usingBoW features.
The same occurs when comparing performance of Dis Acc 2011 when applied to 2013.
Moreover we observe that for this Topic all individual semantic features types -weighted
with SFF, SFG and SFF+SFG (Joint)–, consistently outperform the BoW baseline in F-
measure. When analysing the overall contribution of semantic features we observe that
in average all semantic features weighted with SFG (SemSFG) significantly improve
P when compared to the SFF baseline (SemSFF ) (t-test with α < 0.01), while con-
sistently improve F-measure when compared to the averaged BoW features (t-test with
α < 0.01).

To compare the benefit of the proposed weighting strategies across all topics we com-
puted the averaged P, R, F1 across epochs for each Topic. These averages, presented in
Table 5, show that in average the merged SFG (SemSFG features significantly outper-
forms the merged SFF (SemSFF ) features (t-test with α < 0.01) classifiers by 4.3%.
These results also show that on cross-epoch scenarios, on average, some individual se-
mantic features-based classifiers outperform the BoW classifier in F-measure obtaining a
maximum increment of 16.37% (t-test withα < 0.01) when using theClsjoint weighted
feature. Moreover Class semantic features(Cls) alone (ClsSFF, ClsSFG, ClsJoint) in av-
erage consistently outperform BoW in F with a gain of 12.5% for all cross-epoch sce-
narios for all three topics. This demostrates that the use of Cls semantic features alone
compared to lexical features is benefitial in characterising a topic in time.
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Table 4. Presents results for the cross-epoch scenarios for the Disaster Accident topic. A � de-
notes that the P-measure of the shaded cell significantly outperforms their corresponding SFF
baseline. A † denotes that the F-measure of a weighted feature outperforms the BoW baseline.
Significance levels: p-value < 0.01.

2010-2011 2010-2013 2011-2013 Average

P R F1 P R F1 P R F1 P R F1

BOW 0.807 0.526 0.634 0.773 0.350 0.481 0.857 0.155 0.261 0.812 0.343 0.458

CatSFF 0.721 0.650 0.683 0.696 0.443 0.539 0.808 0.389 0.524 0.741 0.494 0.582
CatSFG 0.766 0.613 0.677 0.766 0.483 0.592 0.809 0.468 0.592 0.780 0.521 0.620
CatJoint 0.798 0.645 0.713 0.734 0.310 0.434 0.818 0.381 0.518 0.783 0.445 0.555
PropSFF 0.708 0.631 0.665 0.656 0.486 0.557 0.718 0.387 0.502 0.694 0.501 0.574
PropSFG 0.689 0.676 0.681 0.668 0.489 0.564 0.750 0.453 0.564 0.702 0.539 0.603
PropJoint 0.724 0.652 0.686 0.686 0.480 0.564 0.717 0.352 0.470 0.709 0.494 0.573
ResSFF 0.794 0.756 0.774 0.723 0.438 0.544 0.770 0.317 0.445 0.762 0.503 0.587
ResSFG 0.818 0.752 0.783 0.791 0.486 0.599 0.786 0.299 0.423 0.798 0.512 0.601
ResJoint 0.806 0.754 0.779 0.765 0.477 0.586 0.788 0.284 0.409 0.786 0.505 0.591

D
is

as
te

r
A

cc

ClsSFF 0.684 0.701 0.691 0.666 0.667 0.665 0.705 0.638 0.669 0.685 0.668 0.675
ClsSFG 0.679 0.700 0.689 0.663 0.657 0.660 0.700 0.644 0.670 0.680 0.667 0.673
ClsJoint 0.688 0.704 0.695 0.668 0.656 0.661 0.699 0.640 0.667 0.685 0.666 0.674

SemSFF 0.720 0.683 0.700 0.699 0.493 0.578 0.814 0.411 0.545 0.744 0.529 0.607
SemSFG 0.755� 0.599 0.668† 0.776� 0.371 0.501† 0.816� 0.333 0.472† 0.782� 0.434 0.547†
SemJoint 0.781� 0.623 0.693† 0.720� 0.402 0.515† 0.815† 0.313 0.451† 0.772� 0.446 0.553†
AllSFF 0.768 0.555 0.642 0.771 0.428 0.549 0.845 0.205 0.330 0.565 0.396 0.507
AllSFG 0.791� 0.546 0.644† 0.724� 0.388 0.505† 0.850� 0.210 0.335† 0.788� 0.381 0.494†
AllJoint 0.798� 0.527 0.632 0.791� 0.372 0.504† 0.844� 0.168 0.279† 0.811� 0.355 0.471†

We also observe that when incorporating BoW to the semantic feature space – ex-
tended feature representation of a document, where a tweet is represented using its lex-
ical+semantic features – we consistently outperform the BoW baseline for the three
joint settings (AllSFG, AllSFG, Alljoint ) with the highest F-measure achieved by
the AllSFG classifier. This setting significantly outperforms the BoW classifier in F-
measure by 1.6% (t-test with α < 0.01) while providing the best precision across
semantic features. This positive increment indicates that the incorporation of external
knowledge (DBpedia-graph) in the cross-epoch transfer learning task is beneficial when
applied jointly with document derived weighting strategies.

We analyse the relevance decay of features based on performance gain on the cross-
epoch scenarios. These is calculated by comparing the cross-scenario performance of
each classifier against the performance of the corresponding classifier on the same-year
scenario (e.g. 2010-2011 compared against 2010). The heatmap to the left in Figure
7 presents our results for all features. The heatmap to the right in Figure 7 presents
the averaged gain on BoW for three cross-epochs for each Topic. The heatmap to the
left presents average gain on F-measure on a cross-scenario compared against its corre-
sponding same-year scenario classifier. A higher value indicates that the feature adapts
better (i.e. lower decay) in a cross-epoch setting, while a lower value indicates that on
average the feature is less relevant for a topic on a cross-epoch setting. The heatmap to
the right presents the average gain on BoW F-measure on a cross-scenario compared
against its corresponding BoW gain on a same-year scenario classifier. Here a higher
value indicates that a feature adapts better than the BoW on a cross-epoch setting, while
a lower value indicate otherwise. Here we observe that on a cross-epoch setting the Cls
semantic features are highly relevant for the cross-epoch learning task. Moreover based
on these results, these semantic feature appears to provide more stable (i.e. lower decay)
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Table 5. Average results for the cross-epoch scenarios for each topic. The last column present the
average results of all three topics. A � denotes that the P-measure of the shaded cell significantly
outperforms their corresponding SFF baseline. A † denotes that the F-measure of a weighted
feature outperforms the BoW baseline. Significance levels: p-value < 0.01.

Disaster Acc Law Crime War Conflict Average

P R F1 P R F1 P R F1 P R F1

BOW 0.812 0.343 0.458 0.739 0.549 0.620 0.873 0.394 0.531 0.808 0.429 0.536

CatSFF 0.741 0.494 0.582 0.641 0.479 0.537 0.774 0.325 0.453 0.719 0.433 0.524
CatSFG 0.780 0.521 0.620 0.769 0.432 0.549 0.803 0.350 0.480 0.784 0.434 0.55
CatJoint 0.783 0.445 0.555 0.766 0.426 0.542 0.777 0.280 0.406 0.775 0.383 0.501
PropSFF 0.694 0.501 0.574 0.604 0.445 0.504 0.755 0.411 0.506 0.684 0.452 0.528
PropSFG 0.702 0.539 0.603 0.596 0.468 0.509 0.731 0.391 0.460 0.676 0.460 0.524
PropJoint 0.709 0.494 0.573 0.618 0.462 0.518 0.767 0.383 0.487 0.698 0.446 0.526
ResSFF 0.762 0.503 0.587 0.756 0.473 0.578 0.773 0.338 0.466 0.764 0.438 0.544
ResSFG 0.798 0.512 0.601 0.757 0.428 0.539 0.771 0.337 0.448 0.775 0.426 0.529
ResJoint 0.786 0.505 0.591 0.761 0.413 0.528 0.786 0.307 0.432 0.777 0.408 0.517
ClsSFF 0.685 0.668 0.675 0.626 0.679 0.647 0.764 0.599 0.660 0.692 0.649 0.660
ClsSFG 0.680 0.667 0.673 0.668 0.617 0.640 0.724 0.632 0.661 0.691 0.638 0.658
ClsJoint 0.685 0.666 0.674 0.669 0.645 0.656 0.761 0.608 0.664 0.705 0.640 0.665

SemSFF 0.744 0.529 0.607 0.603 0.457 0.509 0.778 0.329 0.459 0.708 0.438 0.525
SemSFG 0.782 0.434 0.547 0.710 0.384 0.494 0.762 0.302 0.431 0.751 0.373 0.490
SemJoint 0.772 0.446 0.553 0.734 0.397 0.512 0.743 0.369 0.490 0.75 0.404 0.518
AllSFF 0.565 0.396 0.507 0.709 0.507 0.586 0.819 0.387 0.520 0.774 0.43 0.537
AllSFG 0.788� 0.381 0.494 0.756� 0.523 0.613 0.859� 0.411 0.550 0.801� 0.438 0.552†
AllJoint 0.811 0.355 0.471 0.762 0.471 0.578 0.795 0.449 0.571 0.789� 0.425 0.540†

information than the one provided by the BoW. In this case the Clsjoint exhibits a gain
which exceeds on over 7% the BoW one.

Finally to analyse the gain over BoW on the cross-epochs, we computed gain dif-
ferences on the BoW F-measure obtained by each feature, and compared it with the
one of the same-year scenarios. These results indicate that on average the Cls features
exhibit a lower decay when compared to the BoW providing a more stable F-measure
on the cross-epoch scenarios.

Fig. 7. Averaged gain on BoW for three cross-epochs for each Topic
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7 Discussion

In this paper we introduce a novel approach to the cross-epoch transfer learning task.
This approach proposes the use of semantic features as a more stable representation of
a topic over time. While the proposed set of weighting strategies is based on heuris-
tics, other weighting strategies could be studied in future work. Such strategies could
be enhanced with methods and results from work on ontology and linked data search-
ing, ranking, and summarisation. Also other lexical features (e.g. part-of-speech) and
structure information (e.g. WordNet)18 could be used along with semantic features to
improve performance.

The limited availability of annotated datasets spanning across longer periods of time
made us focus only on a range of three different epochs. This work could be further
expanded by considering longer periods of time, and by experimenting with different
type of topics. So far we have demostrated that for the violence-related topics the Cls
feature exhibited the lowest relevance decay on the transfer learning task. For these
topics some individual features were less performing that others. However further re-
search is necessary to understand what makes a semantic feature a good option for the
cross-epoch modeling task depending on the type of topic.

8 Conclusions and Future Work

In this paper we proposed the use of semantic features to approach the cross-epoch trans-
fer learning task for topic classification of tweets. Moreover we introduced a framework
which proposes to enrich semantic features by incorporating information derived from
an external knowledge source. The framework introduced a set of weighting strategies
which calculates the relevance of features from time-stamped topic graphs extracted from
DBpedia. Our results showed that semantic features are much slower to decay than other
features, and that they can improve performance upon traditional BoW-based classifiers
in cross-epoch scenarios. Furthermore, results showed that the proposed strategies im-
prove performance upon our baseline while outperforming F-measure upon BoW fea-
tures. These results demonstrate the feasibility of the use of semantic features in epoch-
based transfer learning tasks. This opens new possibilities for the research of concept
drift tracking for transfer learning based on existing Linked Data sources. Future work
includes the comparison of semantic feature based transfer learning with other state of
the art transfer learning approaches based on lexical features.
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Abstract. Linked Open Data provides a means of unified access to large
and complex interconnected data sets that concern themselves with a
surprising breath and depth of topics. This unified access in turn allows
for the consumption of this data for modelling cultural heritage sites,
historical events or creating serious games. In the following paper we
present our work on simulating the terrain of a Great War battle using
data from multiple Linked Open Data projects.

Keywords: Simulations, Consuming Linked Open Data, Serious Games.

1 Introduction

Linked Open Data (LOD, [1]) has created new avenues for content publishers
to distribute their data while providing detailed linkages and annotations. We
report here on a prototype method for automated Linked Open Data driven
procedural game generation. This was a part of an interdisciplinary partner-
ship between The Games Institute at the University of Waterloo, The Big Data
Institute at Dalhousie University and the School of Media, Culture & Arts at
Curtin University. The collaboration is the result of discussions on the general-
izability and implementations of approaches such as Distant Reading [2], oper-
ational history and virtual heritage [3] using Big Data and Linked Open Data.

1.1 Simulation as an Information Retrieval Interface

The amount of information available digitally is increasing and the use of Linked
Open Data approaches have made it a) available through standardized interfaces
within structures that are self-documenting and b) these structures and their
definitions can be linked across to different data sets.

These two items are most relevant in that they allow the retrieval of the
information through a standardized interface while ensuring it relevancy through
complex querying. Simulations, visualizations and games1 have long been known

1 In the course of this paper, we will use 3D simulation, visualization and game as
interchangeable terms.
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to be effective means of communicating information. However their design and
construction is a crafting process that is multidisciplinary, intuitive and does not
lend itself easily to mass customization.

Because of the linkability and the built-in ontological support of linked open
data, we believe the data-integration cost significantly lowered and that gener-
alized information retrieval through simulation is now possible. As an example,
the queries that unite Linked Geo Data, DBPedia and Muninn data to gener-
ate flora information in Section 4.2 can be hard-coded using conventional SQL
and/or XML databases. However, the use of public facing SPARQL interfaces
and OWL ontological constructs allow us to retrieve the data without requiring
special access to the databases like conventional databases would.

Google Earth is a analogous example of a standardized visualization engine
that represents data from multiple concurrent sources each with its own API,
data definitions and administrative process. The ongoing data reach of Google
Earth is only possible through the large ecosystem supported by Google that
ensures the ongoing maintenance of the data-source specific translation mecha-
nisms.

The objective of this research direction is not to replace the simulation de-
signer, but rather automate a number of processes that are fundamentally so-
phisticated information retrieval and processing. This automation has already
occurred with areas such as game physics which are now mostly handled by the
game engine instead of the game designer. This is the next logical step as we
move from one-off game designs to game engines, to manual content generation,
to the current procedural game generation and then to this proposed linked open
data-driven game generation.

This paper reviews our initial attempt at creating a generalizable engine ca-
pable of making use of Linked Open Data to construct a simulation. We also
state that these simulations as realistic not because of the visual accuracy of
the rendering, but in that the events, places and things that occur within the
simulation are based on documented facts.

The organisation of the paper is as follows: we first discuss previous work and
the benefits of using LOD for simulations, followed by a description of a proto-
type based on the events of the Great War using data from the Muninn Project,
a LOD project focused on the Great War. We then review some of the lessons
learned from the exercise and we close with a discussion of ongoing work on the
methodologies needed to consume data in context.

2 Previous Work

Data driven simulations are not new and in common use with Building Informa-
tion Management [4], Cultural Heritage [5] and even recreational game develop-
ment. Concurrently, Linked Open Data has been used extensively for describing
archival [6] and bibliographic [7] material and as well as GIS data [8]. A renewed
interest in the ideas of the Venice Charter is driving the markup and storage of
Cultural Heritage data using LOD formats owing to its ability to record data in
a long lasting description format.

http://linkedgeodata.org/About
http://wiki.dbpedia.org/About
http://rdf.muninn-project/
http://www.muninn-project.org/
http://www.international.icomos.org/charters/venice_e.pdf
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Linked Open Data is seen as a desirable technology for Digital Humani-
ties especially those focused on the Galleries, Libraries, Archives and Museums
(GLAM) industries. LOD for cultural heritage allows updateable information,
closer collaboration with archival institutes and more responsive design for dif-
ferent platforms while being aligned with some of ideas of the London Charter
on cultural heritage visualization.

Using LOD to procedurally create content directly from a live database on a
as-needed basis is the next logical step that builds on previous works on proce-
dural content generation and the Semantic Virtual Environment [9]. From the
game generation perspective, a taxonomy of possible methods is reviewed by
Togelius et al. [10] with some early work on [11,12] Procedural Content Gen-
eration (PCG). Kallman and Thalman [13] proposed the precursor of current
“prefabricated” objects within games by having an event model where different
objects could interact with one another. Müller et al. [14] and Andrés et al. [15]
also using combined photogrammetric and procedural modelling to build models
of a city in a automatable fashion.

Tutenel et al. [16] primarily saw the semantics problem of the data as a
means of tracking the contents within games and keeping track of the physi-
cal constraints at design time. Vanacken et al. [17] used a similar approach using
Ontology Web Language (OWL) to track objects within the virtual world and
their properties. The Semantic Virtual Environment (SVE) was proposed by
Otto [9] where the minutia of the virtual environment was linked to a semantic
web database holding the properties and hierarchy of the environment. The in-
tent was to have a higher level knowledge system of the items within the virtual
environment using inheritance of properties between object classes. Fuhrmann
et al. [18] designed an ontology to record the appearance and organisation of
clothing within a virtual environment so that it could be procedurally generated
while Gutiérrez et al. [19] human beings ontology where a person’s motions were
related to ensure realistic motion. Games With A Purpose (GWAP) have also
been proposed [20] as a means of acquiring ontological or annotation data. Most
recently Fribeger and Togelius [21] made use of LOD to create a Monopoly-like
board game customized to a locality. Reitmayr et al. [22] used a similar con-
cept with augmented reality to relate objects within the world to external data
sources, such as web pages. Grimaldo et al. [23] saw the semantics and onto-
logical aspects primarily as a means of negotiating relationships and behaviours
between objects within the virtual world.

A large part of procedural game design was the simulation and creation of
“game level” as outlined by Tutenel et al. in 2008 [24]. While the procedural
generation of game terrain through the detailed simulation of an ecosystem, as
described by Dussel et al. [25] can be simulated from scratch, the trade-off be-
tween random simulation and data-driven parameter simulation is based on the
data available for the simulation. In a similar vein, Lu et al. [26] reviewed sim-
ulation of weathering, rusting and cracking of paint based on both computation
simulations of the break of the material and the emulation of the visual aspect
of the cracking.

http://www.londoncharter.org/
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Trinh et al. [27] wrote about the use of the semantic web for the represen-
tation of orientation, direction and attitude within a a virtual world. Coyne et
al. [28] had a similar approach that was used to translate contextual descrip-
tions of a world into a virtual materialization based on the use of constraints to
disambiguate the world objects and their positions.

To the best of our knowledge the use of Linked Open Data to automated the
creation of data-driven procedurally generated 3D simulations of historical and
current locations is a novel contribution. Previous contributions were primarily
tools supporting the designer in creating an environment that would then be
statically used within a game. A secondary contribution is the creation of cul-
turally sensitive prefabricated assets within a simulation environment that taken
on the content appropriate to the both location and time.

3 Theoretical Framework

A significant amount of data exists encoded in Resource Description Framework
(RDF) and Ontology Web Language (OWL) formats on the web about top-
ics ranging from geography to linguistics. Unlike previous approaches to data
markup and storage, the detail contained within LOD has reached sufficient
complexity that it is now difficult for a human to enumerate, let alone query,
LOD.

Creating a generalizable data-driven simulation implies the following two
types of queries:

a) Well defined, structured queries that return deterministic results based on
known parameters. These include spatial and temporal information to which
a number of other events and objects are tied to, such as the sun, the moon,
terrain, etc. Some uncertainty may be contained within this process but the
actual query process itself remains deterministic.

b) Poorly defined, serendipitous queries whose goals are ancillary to the era
or the story telling aspect of the simulation and that create the minor details
that are relevant to its realism. This can include “litter” on the ground, posters,
titles of books on shelves and so on.

The use of ontologies and databases is ideal for this purpose in that the on-
tological description of a thing enables the simulation engine to determine what
properties should be located to materialize an instance. A more generalizable
approach is the use of a simulation; the detailed minutia of information lends
itself well to automated querying of the information necessary to answering a
hypothesis.

A secondary benefit is that the ontology can also be used to determine what
details can be omitted from a materialized instance and which can be estimated.
It also gives guidance to the simulation engine as to how to query the database
in order to estimate a missing property. As an example, a military trench on a
battlefield has been dug into the ground at a depth and width. In many cases
geometry information or archival information will reveal the dimension of a spe-
cific trench and it can be rendered. When the dimensions of the trench are
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not known, they can be replaced by the statistical average width and depth of
trenches within the area.

4 Simulating the Great War

Given the centenary of the Great War and the primary author’s ongoing work
in this era, an area of Western France in late 1914 was chosen as case study to
simulate2. Later on in 1917, this would be the site of the Battle of Vimy Ridge,
which would see the Canadian Corps fight as a single entity for the first time.
This location is ideal as a test case for a number of reasons including the presence
of two distinct areas (Entente trenches versus Central trenches) with different
cultures and features changing over time.

Fig. 1. A modern topographical map of
Vimy Ridge (OpenTopomap)

Fig. 2. Vimy Ridge on September 16,
1914 at about 50.366N, 2.796E

An example use case for this methodology would be an historian attempting
to determine who had the advantage of the terrain shown in Figure 1. Given this
map, an experienced historian or geographer could make an educated evaluation
based on his interpretation of a two dimensional document. If the contents of the
map are digitized into a GIS data structure and merged with other information,
a programmer could design a one-off algorithm to try and determine terrain
advantage. No doubt, this would require extensive consultation with the historian
and a significant amount of time wrestling with deep methodological questions.

Within a simulated environment based on the actual digital terrain eleva-
tion and trench data, a historian can simply walk around in the virtual world
and have direct understanding of the advantages of terrain. The argumenta-
tion and narrative proof of the conclusion conducted by the researcher has not
changed from previous methodologies but the ease of access and interpretation
of a highly described information source is dramatically improved. Linked Open
Data also allows us to promote the convergence of multiple consumption and
analysis strategies.

We review here four aspects of the simulation generator based on the issues
that they identify: the layout of the trenches on the battlefield, the elements of
the vegetation estimation, the use of culturally attuned prefabricated objects and
the crediting of work and data sources within the simulation. The simulation was

2 http://rdf.muninn-project.org/demo

http://rdf.muninn-project.org/ww1/vimyGeometry
http://rdf.muninn-project.org/ww1/2011/11/11/Battle/8e7205137820f9c41c909ecd72893825
http://rdf.muninn-project.org/ww1/Corps/73b6ce9500f783c59b1b739f2fb33ca7
http://opentopomap.org/#map=14/50.37251/2.79121
http://rdf.muninn-project.org/demo
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implemented with the Unity game engine drawing data from LOD databases.
The approach is meant to use multiple concurrent SPARQL servers, however
given Unity’s lack of Cross Origin Request Security (CORS) support, we use a
intermediary SPARQL server that proxies the retrieval of data from multiple
LOD servers.

4.1 Trenches

The First World War in Western Europe was a war of attrition fought in trenches
that were often within earshot of the enemy. In this section we review the creation
of the terrain through geometries that are obtained through the Muninn project.
The geometries and features are derived from British Trench Maps in a Linked
Geo[8] format that also support access using the Ordered List Ontology, further
details have been previously published in [29]. Figure 2 is a screenshot of the simu-
lated trenches. The information used to generate the trenches includes both depth
and width, however additional information about the state of the trench (aban-
doned, occupied) is also available and effects how the trench is represented.

The state of an object, or its serviceability can be recorded in one of two
ways: a state property or the use of a class hierarchy as Linked Geo Data
does. An example is RailwayThing which is the superclass for Rail, LightRail and
AbandonedRailway. Muninn makes use of the graves:hasState property that allows
us to record the state of the feature as reported on the original British Trench
Maps. The reason for this decision was that while the state of a real world object
changes over time, its fundamental identity does not and the use of sub-classes
to encode state results in an unmanageable number of classes.

This state is what the simulation engine uses to make decisions on how the
LOD is translated into the visuals, materials and terrain. In the case of the
trenches, ’abandoned’ trenches will be filled with debris and the width and depth
of the trenches will be reduced by a small, randomly changing percentage to
simulate neglect.

This process of simulating a trench is executed by depressing the terrain in
the median line of the trench as reported by the LOD. Width is set according
to each position node within the LOD stream and the textures of the trench
bottom, walls and fields set according to generic Unity textures.

mil:MilitaryTrench
rdf:Type

trench1
geom:geometry

...

time:hasDateTimeDescription
graves:hasState

graves#Serviceable

...

2
mil:hasDepth

Fig. 3. Basic ontological view of trench data

http://www.w3.org/wiki/CORS_Enabled
http://rdf.muninn-project.org/ww1/vimyGeometry
http://smiy.sourceforge.net/olo/spec/orderedlistontology.html
http://linkedgeodata.org/ontology/RailwayThing
http://linkedgeodata.org/ontology/Rail
http://linkedgeodata.org/ontology/LightRail
http://linkedgeodata.org/ontology/AbandonedRailway
http://rdf.muninn-project.org/ontologies/graves.html#term_hasState
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4.2 Vegetation

We review here the generation of vegetation as recorded in archival and GIS
information sources. Different data sources report information on vegetation at
different levels of granularity over time. Trees and forested areas are created
based on the basis of available and the processes described in this section are
applicable to shrubs, bushes, hedges and plantation fields.

When inserting new vegetation in the simulation, select 3D assets or textures
that fit the particular class of vegetation is not difficult given the availability of
3D assets. The difficulty lies in managing under-specified vegetation instances or
aggregates of vegetation instances such as a forest. In some cases, an area may
be a tree plantation of a very specific species, in others an old-growth forest and
in some cases, individual trees.

What species of tree, tree size, height and any seasonal effects on appearance
will dictate appearance and modification of generic assets. Furthermore, in the
case of historical data the vegetation information may only be available for cer-
tain points in time and any visualisation in between these points has to estimate
the state of the information by interpolation or other means.

Within our prototype simulation, trees are programmatically generated based
on reported flora information from British Trench Maps. These maps provide an
interesting challenge as in this era they were printed using a generic base plate
from one date while coloured overlays were added with the most up-to-date
information. Both layers represent information at different points in time where
not all features are up to date.

The state of the features is an interesting problem: it is obvious that trees
within a battlefield would be heavily scarred by projectiles and shrubbery would
have been destroyed by the movement of personnel and pack animals. Additional
statistical simulations driven from external event data, such as battles, could be
used to infer the amount of damage that would occur. In this case we chose not
to implement such a non-trivial process but note that there may be some oppor-
tunities for ontologically inferring the state of a feature based on the presence of
a second feature: that a ground track has been indicated on a map implies that
it can be visually differentiated from the ground next to it and thus the state of
the general area can also be determined.

As with the previous section on Trenches, an ontological approach to data
management has some advantages under uncertainty. The ontology can be re-
used to locate or estimate properties that are missing from the source data or
derived from other ontological constructs. Consider a simple tree ontology T
that presents the following properties for each tree instance: h height from the
ground, c height of the crown of the tree and the width w of the crown3. If a
single tree does not have size or species information specified, it can be esti-
mated by querying neighbouring trees. A simple query of neighbouring GAvg(h)

ρDist(Lat,Lot)<Radius (t ∈ T ) trees can estimate height h or use a frequency

3 These measurements were chosen because of their simplicity and their direct use in
classifying trees using LIDAR data [30].
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approach for a species s for a value or πsi GMax(Count(s)) ρDist(Lat,Lot)<Radius

(t ∈ T ) to select a species instance si of the species class S.
Another means of estimating foliage data is to infer its properties based on

other data-sets. Given the coordinates of the tree and the month of the year, one
should be able to find LOD about foliage properties and the regions in which
they thrive. DBpedia presented a ready made collection of information against
which queries could be run to answer the basic question: at a certain time and
place, if a tree were to exists, what would it be and how would it look like?. The
triple pattern in Figure 4 represents the graph required to locate the tree species
probable in the area being simulated.

dbpedia:Flora by country skos:broader ?f .
?f dcterms:subject ?tree .
Category:Ornamental trees dcterms:subject ?tree .
Category:Trees skos:broader Category:Ornamental trees .

Fig. 4. Finding the right species of ?tree based on a regional category ?f

Binding ?f should be Category:Flora of France for the right set of ?tree’s to be
retrieved. However there exists no term that links country or regional terms to
these categories, limiting the generalization of the approach: in an ideal case, we
should be able to translate coordinates to a country or region to a tree category.

A similar experience occurred when querying ontologies and data-sets dedi-
cated to flora and forestry. Designed and authored by domain specialists, these
data-sets are deeply integrated into the biology application ecosystems and de-
scend directly from human readable, portal published databases. Tightly coupled
to their primary objectives and have no connections to generalizable concepts
that would frame their data to solve other problems.

For example, the Plant Ontology data-set has for mandate to be a “controlled,
structured vocabulary (ontology) of terms to describe plant anatomy, morphol-
ogy and the stages of plant development”. Its contents are effectively a taxonomy
for biological classification using Binomial nomenclature. As per accepted ontol-
ogy best practices, it lacks a generalizable object that would relate its terms
to dbpedia:Tree or dbpedia:Plant as this would be a “lazy concept” [31]. While
appropriate in the pure theoretical ontological view, these design decisions make
ontological discovery and matching impossible. Thus, in our experimental imple-
mentation we chose to use dbpedia as a data source for our fauna information.

Figure 5 is a screenshot of what occurs when a user clicks on a specific tree
in the simulation. The information about the tree is reported as well as the
provenance of its information and the decision mechanism that was used for its
placement, shape and species.

4.3 Culturally Aware Prefabricated Game Assets

Realistic simulations can contain 3D assets that represent everyday objects.
These are not directly relevant to the simulation or information need but help

http://dbpedia.org/resource/Category:Flora_of_France
http://www.plantontology.org/
http://dbpedia.org/resource/Tree
http://dbpedia.org/resource/Plant
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Fig. 5. Objects such as individual trees
are created based on actual data. The
simulation provides both the individual
tree instance and tree class information.

Fig. 6. A culturally aware phonograph
in the Canadian trenches. It’s placement
is purely demonstrative, but the content
played is relevant to the locality.

create a comfortable aesthetic. Within the framework of Section 3, these queries
are poorly defined as their objective is to be sensical without necessarily being
relevant to the initial query.

Designers usually make these assets to be simple image placeholders that carry
no information beyond appearing realistic. With a LOD approach, the creation
of these assets can be mechanized through the retrieval of contents from Linked
Open databases relevant to the time or place. We note that projects, such as
CARARE [32] are working on creating repositories of 3D objects that could be
expanded with these specific behaviours.

In our simulation, we chose to focus on documents and media that are de-
scribed in period texts as littering the trenches of a battlefields such as discarded
newspapers or postcards. Dugouts are similarly documented as containing crea-
ture comforts such as books, posters, paperwork or maps.

Fig. 7. A discarded Figaro newspaper in
the Entente trenches.

Fig. 8. A discarded
Gumbinner Kreisblatt newspaper in
the Central trenches.

Figures 7 and 8 are screen shots of discarded newspapers that move in the wind
across a battlefield. The newspaper is a prefabricated asset (“prefab”) that can
be instantiated anywhere on the battlefield but which displays a random page
from a newspaper that is appropriate to the location or nationalities nearby
on a date that is weeks beforehand the simulations. This is made possible by
partial LOD made available by the French and German National Libraries of
their holdings.

http://zefys.staatsbibliothek-berlin.de/en/oai/?tx_zefysoai_pi1[identifier]=dea47469-d315-4bf1-8cac-e307e9898f95
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The same can be done with books whose contents and covering images are
available from LOD data-sets such as Project Gutenberg or Archive.org. An-
other interesting prefabricated asset that was developed for this project was
that of a phonograph, an item which would be commonly available in some of
the rear areas of the battlefield to entertain the troops. The phonograph 3D as-
set of Figure 6 is one that is freely available, through behaviour has been added
which is similar to that of the newspaper 3D asset: songs and airs related to
nearby locations or nationalities are chosen from the appropriate era. As with
the example of Figure 5, clicking on the phonograph reveals the LOD resources
used by the 3D asset. These types of 3D assets supported by LOD data sets are
desirable because they add realism relevant to the era without requiring further
localisation work.

4.4 Credit Generation

Lastly, the use of Linked Open Data entails that some measure of provenance
is available to tell us about every single term retrieved from servers. This opens
up the interesting possibility of creating a bibliography, citation list or credit
listing for both the creators and sources that were involved (in)directly in the
simulation. The traditional notion of authorship is now challenged as the increase
in the complexity of creative works [33] makes assigning credit and authorship
non-trivial.

In this case, our simulation creates a new LOD document that links to all of
the URL’s retrieved to create the simulation. This document is then parsed when
the simulation is exited and used to create a rolling credits scene that outlines all
data sources used by the simulation. Individual roles played in its construction
can be recovered from a series of statements attached to the consumed LOD. The
question then becomes how much detail should be shown in the credits: should
every contributor to a Wikipedia page be credited for the use of a DBPedia
term? Should the order of the credits be based on the relative importance of
each contribution or on its chronological use within the simulation?

The current generation of credit sequence is driven by the number of terms
used from each source, with the intuition being that the data-set used most often
is the most important. As an added aesthetic touch, the media assets (images and
music) can be randomly played in the background while credits move up. This
serves to remind the audience that the individual assets used by the simulation
were retrieved from several sources and were not statically chosen.

5 Experimental Results

In this section the performance of our experimental implementation is reviewed
and conclusions drawn from our use of Linked Open Data.

5.1 Performance Evaluation

One of the concerns with online procedural content generation was the speed
with which scenes could be generated from Linked Open Data. This is a valid

http://www.gutenberg.org/
http://www.archive.org/
https://www.assetstore.unity3d.com/en/#!/content/8458
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concern given the amount of information needed to generate an ad-hoc scene
and the use of the SPARQL query language which is often criticised as being
unresponsive.

In practice, the retrieval time of information from different LOD databases is
not a concern, even with consumer grade internet connections. A disproportion-
ate amount of wall-clock time is spent in creating the virtual world within the
simulation engine. The amount of detail that linked open data driven procedural
generation entails is high and for a few LOD entities, several dozen operations
on a specific area of the virtual world need to be performed and prefabricated
objects instantiated.

Procedural content generation has traditionally been a design tool used to
create a terrain or world that is then statically stored for use. In this case, the
LOD is retrieved directly from the endpoint and a new terrain is generated from
the most up-to-date data available at run time.

The use of SPARQL servers over that of APIs was a necessity in that they pro-
vide standardized access to information using a generalizable query language. In
some cases, the retrieval of content could only be done through other APIs or by
parsing the HTML code of web portals. This situation should be remediated as it
limits the ability of the content consumers to search multiple information sources
without significant investment for each additional source. The Museum API4

Page lists over 50 different APIs of historical interest. The diversity of methods,
formats and specifications becomes a hindrance to a generalizable method as
each new data source must be integrated and maintained individually.

Accuracy is a thorny problem which remains an open area of research. Domain
expert and layman interpretation of the same visualization can be different as well
as their requirements. For example, in our demonstration simulation we randomly
place discarded newspapers as described in Section 4.3. While first hand accounts
of the war tell us that discarded newspapers were common and the date and in-
stance of the newspaper respects locality, its placement is random and only for
aesthetic purposes. Depending on the audience, one can argue that this is needed
for communicative purposes or deliberately misleading to the audience.

In our prototype, every prefabricated object placed within the environment
can be selected and a pop-up window will report on its provenance, instance and
class, as in Figure 5. This type of reporting is an effective means of providing
justification or explanation on the asset placement and has been previously been
used by Pauwels et al. [34] in documenting engineering drawings.

This works well for discrete objects such as basic shapes like individual trees
but poorly for complex structures such as buildings or terrain surfaces where the
object of interest is hard to select. Interestingly, from the perspective of creating
a simulation, there is no difference between a historical simulation and a current-
world simulation as the uncertainty that is represented within the LOD is dealt
with in the same way. While not done here for lack of space, we can change
the location and time of the simulation for a current day metropolitan city and
display a simulation without problem.

4 http://museum-api.pbworks.com/Museum%C2%A0APIs

http://museum-api.pbworks.com/Museum%C2%A0APIs
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5.2 Insufficient Provenance Information

An element in historical reconstruction and building information management
is the tracking of the provenance of information both in terms of informa-
tion provider and creation process. Currently, semantic web terms can be re-
lated to their home URI through the rdfs:isDefinedBy, a data-set description
void:inDataset, a “source” dc:source or to detailed provenance information with
the PROV ontology.

In attempting to locate data sources for this project, few data-sets were found
that had detailed provenance, as confirmed independently by Buil-Aranda et
al [35]. The underlying assumption is that the data-set is already known and
explicitly queried by a particular user or his agent. There is anecdotal evidence
that suggests the reason for this is that the ontology or data-set is created with
a specific community in mind and no outside use was foreseen.

This lack of overall description is a concern in that this makes the automated
discovery of additional data in ways similar to that of Akar et al. [36] impossible.
This prevents tracking the authorship or ownership of data that would make
citation straightforwards and credit sharing possible. But foremost, it prevents
the sharing of quality, precision and process information that should apply to all
terms of the data-set, such as the date of issue or validity. This information is
especially necessary when dealing historical data as the data set description may
be the only means of assigning temporal information to the remaining terms.

As an example, DBPedia has attempted to document its processes and the
raw source used to created a dbpedia term through the use of the dc:source term
linked to the original Wikipedia page. It is not possible to gleam publication
date for the resource without parsing the HTML source or already knowing the
location of the data set description since no void:inDataset is provided to link
back to it.

When using LOD that moves beyond small, known data sets the necessity of
including rdfs:isDefinedBy and void:inDataset terms with every resource becomes
evident. The reason for this is that the necessary use of aggregating and triple
search services obfuscates the original provenance of the information, including
by changing the base of the URL. We did notice a bias in data-set authorship
in that having one’s data linked to (cited) is valuable, while linking to (citing)
another data-set less so. Some of the most linked to data-sets, are also the least
likely to link to other data-sets. Part of this is due to the concern that their data
might be tainted with inaccuracies. Of course, linking (citing) requires effort on
the part of the data-set author while the effort of being linked to is externalized
to others. This classic agency theory problem remains to be solved within LOD
systems.

5.3 Semantic Versus Appearance

The semantic web is meant to provide semantic information to a thing as opposed
to the World Wide Web which provides appearance information to a thing. It
therefore comes as a concerns that a number of practices meant to support human

http://www.w3.org/TR/rdf-schema/#ch_isdefinedby
http://rdfs.org/ns/void#inDataset
http://purl.org/dc/terms/source
http://www.w3.org/TR/prov-o/
http://purl.org/dc/terms/source
http://rdfs.org/ns/void#inDataset
http://www.w3.org/TR/rdf-schema/#ch_isdefinedby
http://rdfs.org/ns/void#inDataset
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consumption of the data are hindering machine consumption of the data. An
example of this is the use of basic descriptive terms that contain content which
are mapped directly from text fields from a catalogue entry. This is due to data
providers using a “mapping approach” to creating LOD from existing databases.
This is a problem in that the fields in these initial systems were meant to be
human readable, but are of little use to a machine.

This has primarily to do with the fact that most archival LOD is being gener-
ated through a “mapping” approach to creating LOD that does not necessarily
translate classifications as linkages and simply copies strings. In many cases a
search for a certain type of publication, such as a newspaper, is not possible
unless the correct human-readable string is used. Some cataloguing implemen-
tations use the the original description strings to record publication types, such
as <dc:type>czasopismo</dc:type>, requiring a prior knowledge of the national
language before the data can be queried. This shows a deep-seated assumption
that content is still retrieved by keywords or that the RDF properties contents
are only meant as displayable content.

The above case makes locating newspapers impossible unless searching for ev-
ery translation of the string “newspaper” in use within the data-set. The concern
is that the considerable efforts that have been made in using standardized cata-
loguing processes are being wasted by simply “mapping” the string values into
LOD terms without appropriate pre-processing. Another example of the prob-
lems created by direct mapping occurs when using audio recording data from the
PCDHN data-set. Here recordings are represented by LOD structures that rep-
resent a concept, its manifestations and the actual recordings at items. However,
it is impossible to programmatically determine what language the songs are ac-
tually interpreted in, and whether the materialization of the concept is the whole
record or a single track. This materialized expression has the property<dc:subject

xml:lang=”fr”>Chansons française</dc:subject>, which is ambiguous as to whether
the song is culturally French or performed in French. Lastly, the two items
linked to the manifestation are in two different binary formats which require
either parsing the extension type or connecting to the web server until an ac-
ceptable encoding is found, requiring extra exemption handling on the part of
the client. The problematic structure of the LOD is due to an archival view
of the data where the approach of LinkedBrains / MusicBrains to representing
audio recordings may be preferable.

The same concerns about mapping human readable data apply to Library of
Congress (LOC) headings and terms, where chansons françaises makes no differ-
entiation between the cultural origins, the localization or the specific interpreta-
tion of the works. In trying to locate content that is localised both linguistically
and culturally these are important concerns. The problem is compounded by the
use of strings, which need to be both culturally localised and transliterated.

The aggressive use of SKOS vocabularies, without supporting OWL state-
ments, makes the discovery of additional resources and their query difficult in
that the taxonomy must be known before the SPARQL query is written. Worse,
authoritative vocabularies such as the LOC Subject Headings have traditionally

http://www.canadiana.ca/en/pcdhn-lod
http://linkedbrainz.org/
http://id.loc.gov/authorities/subjects/sh85137241.html
http://id.loc.gov/authorities/subjects/sh85137241.html
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had multiple top-level concepts that have intermingling hierarchies. This means
that concept Tree has skos:broader concepts Nursery stock, Woody plants and
skos:narrower concepts Bark peeling and Fruit trees. Primarily meant for human
consumption, subject headings were never meant as a hierarchy of concepts and
the implicit change in conceptSchemes prevents it from being used for auto-
mated querying, even in a non-transitive context. This same model of “multiple
trees” is used by DBPedia to translate Wikipedia category data into LOD and
highlights some of the hurdles in transforming human generated data to machine
readable data.

5.4 Separation of Meta-data and Data

One of the early users of LOD has been the GLAM communities that see a
flexible means of distributing data to their clients and amongst themselves. One
of the challenges of consuming this data is the underlying assumption that LOD
is meant as a meta-data framework, separate from the document.

This reflects the strong cataloguing tradition of these institution in a pre-
digitization environment where interacting with the document (eg: a book) was
a separate act from its discovery in a catalogue. In some cases online LOD sources
have the document available in digital format but it is segregated in a separate
system that is neither machine readable nor linked to by the LOD catalogue.

It would be preferable if both data and meta-data were represented in the LOD
set as this would enable not only seamless access but opportunities for supporting
data mining projects. Furthermore we note that HTTP content negotiation as it
is currently used to support different LOD representations (See [37]) can also be
applied to media formats. As an example, the Project Gutenberg RDF catalogue
makes extensive use of dc:hasFormat term to link a document to the different file
formats it is available under. It is desirable, especially for human consumption,
to have different URL’s that allow a client to explicitly specify a format. But
given the sophistication that is expected from a LOD client, and indeed that is
already present in the average Web browser, offloading media type negotiation
to the HTTP transport layer seems reasonable.

The Muninn Project currently makes use of content negotiation to not only
select the appropriate LOD serialization but also serve images in the format re-
quested or accepted by the browser. Similarly, the Stanford IIIF JSON-LD API
also uses the same approach in its image content negotiations. The unification
and simplification in the number of APIs and endpoints needed to reach the
content needed is desirable from both an efficiency point of vue and to lower the
cost of development.

6 Conclusions

In this paper we presented a novel, generalizable way of consuming LOD within
a game engine to create on-the-fly digital simulations of historical or present
day places. We also presented the novel contribution of culturally adaptable 3D

http://id.loc.gov/authorities/subjects/sh85137241
http://www.w3.org/2008/05/skos#broader
http://id.loc.gov/authorities/subjects/sh85093347
http://id.loc.gov/authorities/subjects/sh85148041
http://www.w3.org/2008/05/skos#narrower
http://id.loc.gov/authorities/subjects/sh85011870
http://id.loc.gov/authorities/subjects/sh85052186
http://purl.org/dc/terms/hasFormat
http://www-sul.stanford.edu/iiif/image-api/1.1/
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prefabricated assets that can take on the content or appearance appropriate to
time and location.

The following issues were noted in consuming LOD for 3D virtual worlds: a)
LOD is being published under the assumption that it will be consumed by hu-
mans, sometimes making machine consumption impossible, b) data-set authors
are neglecting to provide provenance and data-set information that would al-
low proper data-set discovery and c) some LOD publishers still see publication
as a meta-data search mechanism for other services which requires unnecessary
retrieval steps on the client’s part.

In future work, we will focus on scenario and story generation using detailed
event data found within Linked Open Data databases as well as generalizing the
extraction of behaviours from generic objects within the virtual world.
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Abstract. We study the semantics of SPARQL queries with optional
matching features under entailment regimes. We argue that the norma-
tive semantics may lead to answers that are in conflict with the intuitive
meaning of optional matching, where unbound variables naturally rep-
resent unknown information. We propose an extension of the SPARQL
algebra that addresses these issues and is compatible with any entailment
regime satisfying the minimal requirements given in the normative speci-
fication. We then study the complexity of query evaluation and show that
our extension comes at no cost for regimes with an entailment relation
of reasonable complexity. Finally, we show that our semantics preserves
the known properties of optional matching that are commonly exploited
for static analysis and optimisation.

1 Introduction

SPARQL became the standard language for querying RDF in 2008 [1]. Since
then, the theoretical properties of SPARQL have been the subject of intensive re-
search efforts and are by now relatively well-understood [2,3,4,5,6,7]. At the same
time, SPARQL has become a core technology in practice, and most RDF-based
applications rely on SPARQL endpoints for query formulation and processing.

The functionality of many such applications is enhanced by OWL 2 ontolo-
gies [8], which are used to provide background knowledge about the application
domain, and to enrich query answers with implicit information. A new version
of SPARQL, called SPARQL 1.1, was released in 2013 [9]. This new version cap-
tures the capabilities of OWL 2 by means of the so-called entailment regimes [10]:
a flexible mechanism for extending SPARQL query answering to the W3C stan-
dards layered on top of RDF. A regime specifies which RDF graphs and SPARQL
queries are legal (i.e., admissible) for the regime, as well as an entailment relation
that unambiguously defines query answers for all legal queries and graphs.

The semantics of SPARQL under entailment regimes is specified for the con-
junctive fragment, where queries are represented as basic graph patterns (i.e.,
sets of RDF triples with variables) and query answers are directly provided by
the entailment relation of the regime. Roughly speaking, to check whether a map-
ping from variables of the query to nodes in the RDF graph is an answer to the
query, one first transforms the query itself into an RDF graph by substituting
each variable with the corresponding value, and then checks whether this graph
is entailed in the regime by the original data graph [10,11].
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When one goes beyond the basic fragment of SPARQL the language becomes
considerablymore complicated, but the effect of entailment regimes on the query se-
mantics remains cirscumscribed to basic graph patterns. Thus, to evaluate a query
onemust first evaluate its component basic patterns using the relevant regime, and
then compose the results by means of the SPARQL algebra operations.

Of particular interest from both a theoretical and a practical perspective is
the extension of the basic fragment of SPARQL with the optional matching
feature, which is realised in the language by means of the OPTIONAL operator
(abbreviated by OPT in this paper). This feature allows the optional information
to be added to query answers only when the information is available in the RDF
data graph: if the optional part of the query does not match the data, then the
relevant variables are left unbounded in query answers.

One of the main motivations behind optional matching in SPARQL was to
deal with the “lack of regular, complete structures in RDF graphs” (see [9] Sec-
tion 6) and hence with the inherent incompleteness of information in RDF data
sources where only partial information about the relevant Web resources is typ-
ically available. In this setting, an unbound variable in an answer mapping is
naturally interpreted as a “null” value, meaning that there might exist a binding
for this variable if we consider other information elsewhere on the Web, but none
is currently available in the RDF graph at hand. An additional (and slightly dif-
ferent) motivation for optional matching was to introduce a mechanism for “not
rejecting solutions because some part of the query pattern does not match” [1];
in this sense, one would naturally expect optional matching to either extend
solutions with the optional information, or to leave solutions unchanged.

Both readings of optional matching coincide if we focus just on RDF, and they
are faithfully captured by the normative semantics. In this paper, however, we
argue that they naturally diverge once we consider more sophisticated entailment
regimes. Furthermore, the differences that arise, even if subtle, can have a major
impact on expected answers.

To make this discussion concrete, let us briefly discuss a simple example of
an RDF graph representing the direct train lines between UK cities as well as
ferry boat transfers from UK cities to international destinations. Let this graph
be exhaustive in its description of rail connections, but much less so in what
concerns ferry transfers. We may exploit optional matching to retrieve all direct
train connections between cities X and Y, extended with ferry transfers from Y
to other cities Z whenever possible. Under the normative semantics of SPARQL
we may obtain answers (London ,Oxford ,−) and (London ,Holyhead ,−) provided
the graph has information about direct train lines from London to both Oxford
and Holyhead , but no matching can be found in the graph for ferry connections
starting from Oxford or Holyhead to other cities. Suppose next that the data
graph is extended to a graph corresponding to an OWL 2 ontology in which
it is stated that inland cities do not have ferry connections, and that Oxford
is an inland city. The ontology establishes a clear distinction between Oxford
and Holyhead : whereas the former is inland and cannot have ferry connections,
the latter may still well be (and indeed is) a coastal city offering a number of
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transfers to international destinations. The normative OWL 2 direct semantics
entailment regime, however, does not distinguish between the case of Holyhead
(where the information about ferry connections is still unknown) and Oxford
(where the information is certain), and both answers would be returned. In this
way, the normative semantics adopts the reading of optional matching where the
optional information is used to complete (but never discard) query answers. In
contrast, under the reading of unbounded variables as placeholders for unknown
information, one would naturally expect the answer on Oxford to be ruled out.
Indeed, if our goal were to find rail to ferry transfers starting from London
and terminating in Dublin by first querying this graph and then looking for the
missing information elsewhere on the Web, discarding cities like Oxford on the
first stage would significantly facilitate our task.

In this paper, we propose an alternative semantics for the OPT operator which
adopts the aforementioned reading of optional matching as an incomplete “null”.
We call our semantics strict, which reflects the fact that it rules out those an-
swers in which unbound variables in the optional part cannot be matched to any
consistent extension of the input graph. Our semantics is given as an extension of
the SPARQL algebra and hence satisfies the expected compositionality proper-
ties of algebraic query languages. Furthermore, it is backwards-compatible with
the normative semantics for regimes in which all legal graphs are consistent, such
as the RDF regime [10]. We also study the complexity of query evaluation and
show that our extension comes at no cost for regimes in which entailment is not
harder than query evaluation under normative semantics for the RDF regime.
Finally, we show that our semantics preserves the known properties of optional
matching that are commonly exploited for static analysis and optimisation.

2 SPARQL 1.1 under Entailment Regimes

In this section, we formalise the syntax and normative semantics of a core frag-
ment of SPARQL 1.1 with optional matching under entailment regimes. Our
formalisation is based on the normative specification documents [9,10,11] and
builds on the well-known foundational works on SPARQL [2,3,6].

2.1 Syntax

Let I, L, and B be countably infinite sets of IRIs, literals, and blank nodes,
respectively. The set of RDF terms T is I ∪ L ∪ B. An RDF triple is a triple
(s p o) from T × I × T, where s is called subject, p predicate, and o object. An
(RDF) graph is a finite set of RDF triples.

Assume additionally the existence of a countably infinite set V of variables
disjoint from T. A triple pattern is a tuple from (T∪V)× (I∪V)× (T∪V). A
basic graph pattern (BGP) is a finite set of triple patterns. Built-in conditions
are inductively defined as follows:

1. if ?X, ?Y ∈ V and c ∈ T then bound(?X), ?X = c, and ?X =?Y are built-in
conditions; and
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2. if R1 and R2 are built-in conditions then ¬R1, R1 ∧ R2 and R1 ∨ R2 are
built-in conditions.

Complex graph patterns are constructed from BGPs using a wide range of avail-
able operators that are applicable to graph patterns and built-in conditions. We
focus on the AND-OPT-FILTER fragment (i.e., we consider neither union nor
projection), which is widely accepted to be the fundamental core of SPARQL [2].
In this setting, graph patterns are inductively defined as follows (e.g., see [11]):

1. every BGP is a graph pattern;
2. if P1 and P2 are graph patterns that share no blank nodes then (P1 ANDP2)

and (P1 OPT P2) are graph patterns (called AND and OPT patterns); and
3. if P is a graph pattern and R is a built-in condition, then (P FILTERR) is

a graph pattern (called FILTER pattern).

We denote vars(P ) (resp. with triples(P )) all the variables from V (resp. all triple
patterns) which appear in a graph pattern P .

We conclude with the definition of a special class of graph patterns with
intuitive behaviour [2]. A graph pattern is well-designed iff (a) for each of its
FILTER sub-patterns (P FILTER R) all the variables of R are in vars(P ), and
(b) for each of its OPT sub-patterns (P1 OPT P2) the pattern P1 mentions all
the variables of P2 which appear outside this sub-pattern. Note that all graph
patterns in the examples of this paper are well-designed.

2.2 Semantics of BGPs under Entailment Regimes

The semantics of graph patterns is defined in terms of mappings ; that is, partial
functions from variables V to terms T. The domain dom(μ) of a mapping μ is
the set of variables on which μ is defined. For a BGP P we denote with μ(P )
the BGP obtained by applying μ to all variables in P from dom(μ).

Two mappings μ1 and μ2 are compatible (written as μ1 ∼ μ2) if μ1(?X) =
μ2(?X) for all variables ?X which are in both dom(μ1) and dom(μ2). If μ1 ∼ μ2,
then we write μ1 ∪ μ2 for the mapping obtained by extending μ1 with μ2 on
variables undefined in μ1. A mapping μ1 is subsumed by a mapping μ2 (written
μ1 � μ2) iff μ1 ∼ μ2 and dom(μ1) ⊆ dom(μ2). Finally, a set of mappings Ω1 is
subsumed by a set of mappings Ω2 (written Ω1 � Ω2) iff for each μ1 ∈ Ω1 there
exists μ2 ∈ Ω2 such that μ1 � μ2.

Based on [10], an entailment regime R (or simply a regime) can be formalised
as a tuple (R,G,P , C, �·�), where

1. R is a set of reserved IRIs from I;
2. G is the set of legal graphs;
3. P is the set of legal BGPs;
4. C is the set of consistent graphs, such that C ⊆ G; and
5. �·� is the query answering function, that takes a graph G from G and a

BGP P from P and returns either a set �P �G of mappings μ such that
dom(μ) = vars(P ), if P ∈ C; or Err, otherwise.
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As in most theoretical works on SPARQL [2,3,6,12], we assume that the query
answering function returns a set of mappings, rather than a multiset. In the
normative specification [10] the value of �·� for inconsistent graphs is explicitly
undefined, and the only thing which is guaranteed is that the answer is finite.
However, an assumed behaviour is to at least issue a warning for inconsistent
graphs. Moreover, in some regimes such as the OWL 2 Direct Semantics Regime
issuing an error is mandatory. A regime must also satisfy certain basic additional
conditions, which are immaterial to our results (see [10] Section 1.3).

The definitions of query answering and consistency in a regime are based on an
entailment relation [10], which is also specified as part of the regime. We do not
model the entailment relation explicitly, but assume two conditions that capture
the effects of any reasonable entailment relation on legality and consistency. All
regimes mentioned in the normative specification satisfy these properties and in
this paper we consider only regimes that do so.

(C1) If graphs G, G1 and G2 are legal and there is h : T → T, preserving R,
such that h(G1 ∪ G2) ⊆ G then G1 ∪ G2 is legal; if, in addition, G is in C
then G1 ∪G2 is also in C.

(C2) If a BGP P is in P then μ(P ) is in G for any (total) μ : V → (T\R), such
that μ(P ) is a graph; if also μ(P ) is in C then μ ∈ �P �µ(P ).

Condition (C1) formalises (a weak form of) the monotonicity of legality and
consistency: an illegal graph that is a union of legal ones cannot be made legal
by identifying and renaming of non-reserved terms or adding triples to it; more-
over, a similar property holds for consistency. Condition (C2) guarantees, that
“freezing” variables of a legal BGP to non-reserved terms gives us a legal graph,
and, moreover, if such a graph is consistent, then the answer of the BGP on this
graph contains the mapping corresponding to the “freezing”.

The notions introduced in the remainder of this paper are parameterised with
a regime R, which is not mentioned explicitly for brevity.

2.3 Normative Semantics under Entailment Regimes

Following [2], now we show how the query answering function �·� extends to
complex graph patterns (we refer to [2] for details). A mapping μ satisfies a
built-in condition R, denoted μ |= R, if one of the following holds:

1. R is bound(?X) and ?X ∈ dom(μ); or
2. R is ?X = c, ?X ∈ dom(μ) and μ(?X) = c; or
3. R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y ); or
4. R is an evaluating to true Boolean combination of other built-in conditions.

Given two sets of mappings Ω1 and Ω2, the join, union and difference opera-
tions are defined as follows:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1 and μ2 ∈ Ω2 such that μ1 ∼ μ2},
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 \Ω2 = {μ1 | μ1 ∈ Ω1, there is no μ2 ∈ Ω2 such that μ1 ∼ μ2}.
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Based on these, the left outer join operation is defined as follows:

Ω1 ��Ω2 = (Ω1 �� Ω2) ∪ (Ω1 \Ω2).

A graph pattern is legal for a regime R if all the BGPs it contains are legal.
The normative query answering function �·�n is inductively defined for all legal
graph patterns P on the base of �·� as follows. For graphs G from C we have:

1. if P is a BGP then �P �nG = �P �G;
2. if P is P1 AND P2 then �P �nG = �P1�

n
G �� �P2�

n
G;

3. if P is P1 OPT P2 then �P �nG = �P1�
n
G �� �P2�

n
G; and

4. if P is P ′ FILTERR then �P �nG = {μ | μ ∈ �P ′�nG and μ |= R}.

If G 
∈ C then �P �nG = Err for any graph pattern P (which again coincides with
�P �G when P is a BGP). Note, that by these definitions μ ∈ �P �nG implies that
dom(μ) ⊆ vars(P ), but this inclusion may be strict if P contains OPT operator.

Having the semantics defined, we say that two legal patterns P1 and P2 are
equivalent (under normative semantics) with respect to a regime R, denoted by
P1 ≡n P2, if �P1�

n
G = �P2�

n
G for every RDF graph G ∈ G.

3 On Optional Matching under the Normative Semantics

One of the main motivations for optional matching in SPARQL was to deal with
the “lack of regular, complete structures in RDF graphs” [9]. In contrast to rela-
tional databases, RDF data is loosely structured and hence in many applications
it is not satisfactory to reject an answer if some relevant information is missing.
For example, if we are interested in retrieving the names, emails, and websites
of employees, we may not want to discard a partial answer involving the name
and email address of a particular employee merely because the information on
the employee’s website is not available in the graph.

The normative semantics was designed to deal with such situations: the op-
tional information is included in query answers only when the information is
available; otherwise, the relevant variables are left unbounded. An unbound vari-
able in an answer is thus a manifestation of inherent incompleteness of RDF
data sources, and the missing information is interpreted as unknown.

This natural interpretation of query results, however, no longer holds if the
query is evaluated under certain entailment regimes, as we illustrate next by
means of examples. In these and all other examples given later on, we focus on
the OWL 2 direct semantics regime. In order for an RDF graph to be legal for
this regime, it must correspond to an OWL 2 ontology; similarly, legal BGPs
must correspond to an extended ontology in which variables are allowed [10].
Thus, in the examples we express RDF graphs and BGPs in (extended) OWL 2
functional syntax, and use words “ontology” and “graph” interchangeably.1

1 Declaration axioms are omitted in ontologies and BGPs. Also, we use shortened
names for some constructs, i.e., PropertyDomain instead of ObjectPropertyDomain.
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Example 1. Consider the OWL 2 ontology O1 consisting of the following axioms:

ClassAssertion(InlandCity Oxford), PropertyAssertion(train London Oxford),

ClassAssertion(CoastalCity Holyhead), PropertyAssertion(train London Holyhead ),

PropertyDomain(ferry CoastalCity), DisjointClasses(CoastalCity InlandCity).

Consider also the following graph pattern P1, which we wish to evaluate over O1:

PropertyAssertion(train ?X ?Y ) OPT PropertyAssertion(ferry ?Y ?Z).

Intuitively, solutions to P1 provide direct train lines from city X to city Y as well
as, optionally, the ferry transfers from Y to other cities Z. Under the normative
semantics, the BGPs in P1 are evaluated separately. In particular, the optional
BGP is evaluated to the empty set, and �P1�

n
O1

= {μ1, μ2}, where

μ1 = {?X �→ London, ?Y �→ Oxford}, and
μ2 = {?X �→ London, ?Y �→ Holyhead}.

In both answers, variable ?Z is unbounded and hence we conclude that O1

contains no relevant information about ferry connections starting from Oxford
orHolyhead . However, the nature of the lack of such information is fundamentally
different. On the one hand, the connections from Holyhead (e.g., to Dublin) are
missing from O1 just by the incompleteness of the information in the graph,
which is usual in (and also a feature of) Semantic Web applications. On the
other hand, Oxford cannot have a ferry connection because it is a landlocked
city, and hence the information about its (lack of) ferry connections is certain.
Thus, the normative semantics cannot distinguish between unknown and non-
existent ferry connections. However, if we adhere to the reading of unbounded
variables as incomplete information or “nulls”, then μ1 should not be returned
as an answer.

The issues described in this example become even more apparent in cases
where the optional part alone cannot be satisfied, as it is incompatible with the
information in the graph, as illustrated by the following example.

Example 2. Consider the ontology O2 with the following axioms:

ClassAssertion(Person Peter), DisjointProperties(hasFather hasMother ).

Furthermore, consider the following pattern P2:

ClassAssertion(Person ?X) OPT ({
PropertyAssertion(hasFather ?X ?Y ),

PropertyAssertion(hasMother ?X ?Y )}).

The optional BGP is evaluated to the empty mapping and hence under the
normative semantics we have the mapping {?X �→ Peter} forming the answer
set �P2�

n
O2

. Note, however, that the optional BGP in P2 is in contradiction with
the disjointness axiom: under the OWL 2 regime, no solution to P2 can exist for
any ontology containing that axiom.
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As these examples suggest, if we interpret unbound variables in answers to
queries with optional parts as an indication of unknown information in the data
graph, then the normative semantics may yield counter-intuitive answers.

At the core of this issue is the inability of the normative semantics to dis-
tinguish between answers in which it is possible to assign values to the missing
optional part (a natural reflection of incompleteness in the data), and those
where this is impossible (a reflection that the missing information is fundamen-
tally incompatible with the answer). This distinction is immaterial for regimes
in which all legal graphs are consistent, but it quickly becomes apparent in more
sophisticated regimes, such as those based on OWL 2.

4 Semantics of Strict Optional Matching

In this section, we propose our novel semantics for optional matching under
regimes. In a nutshell, our semantics addresses the issues described in Section 3
by ruling out those answer mappings where unbound variables in the optional
part cannot be matched to any consistent extension of the input graph. Our
semantics is therefore strict , in the sense that only answers in which unbound
variables are genuine manifestations of incompleteness in the data are returned.

4.1 Definition of Strict Semantics

We start by introducing the notion of a frozen RDF graph for a pattern P and
a mapping μ. Roughly speaking, this graph is obtained by taking all the triple
patterns in P and transforming them into RDF triples by applying the extension
of μ where unbounded variables are “frozen” to arbitrary fresh constants.

Definition 1. Let R = (R,G,P , C, �·�) be an entailment regime. Let P be a
legal graph pattern, and let μ be a mapping from variables V to RDF terms T.
Then, the freezing GP

µ of P under μ is the RDF graph μ̄(triples(P )), where μ̄ is
the mapping that extends μ by assigning each variable in vars(P ), which is not
in dom(μ), to a globally fresh IRI from I (not belonging to R).

The freezing GP
µ depends only on the candidate mapping μ and the triple

patterns occurring in P ; thus, it does not depend either on the specific operators
used in P , or on the RDF graph over which the query pattern is to be evaluated.

Example 3. For the pattern P1 and mappings μ1 and μ2 from Example 1 we
have the following freezings in functional-style syntax:

GP1
µ1

= {PropertyAssertion(train London Oxford),

PropertyAssertion(ferry Oxford w1)};
GP1

µ2
= {PropertyAssertion(train London Holyhead ),

PropertyAssertion(ferry Holyhead w2)};

where w1 and w2 are freshly introduced IRIs.
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Intuitively, the freezing represents the simplest, most general, RDF graph
over which all the undefined variables in a given solution mapping could be
bounded to concrete values. Thus, if GP

µ together with the input graph G is
not a consistent graph for the relevant regime, we can conclude, using condition
(C1) of the regime, that the undefined variables in μ will never be matched to
concrete values in any consistent extension of G and hence μ should be ruled out
as an answer. On the other hand, if G∪GP

µ is consistent, then such an extension
exists and, by condition (C2), the undefined variables can be mapped in this
extension.

Definition 2. Let R = (R,G,P , C, �·�) be an entailment regime. A mapping μ
is R-admissible for a graph G ∈ C and legal graph pattern P if G∪GP

µ is a graph
belonging to C. The set of all R-admissible mappings for a consistent graph G
and a legal graph pattern P is denoted as Adm(G,P ).

Example 4. Clearly,O1∪GP1
µ1

is inconsistent since ferries only depart from coastal

cities, but Oxford is an inland city. In contrast, O1 ∪GP1
µ2

is consistent. Thus, we
have μ1 /∈ Adm(O1, P ), but μ2 ∈ Adm(O1, P ).

We are now ready to formalise our semantics.

Definition 3. Let R = (R,G,P , C, �·�) be an entailment regime. The strict
query answering function �·�s is inductively defined for all legal graph patterns
P on the base of �·� as follows. For graphs G from C we have:

1. if P is a BGP then �P �sG = �P �G;
2. if P is P1 AND P2 then �P �sG = (�P1�

s
G �� �P2�

s
G) ∩ Adm(G,P );

3. if P is P1 OPT P2 then �P �sG = (�P1�
s
G �� �P2�

s
G) ∩ Adm(G,P ); and

4. if P is P ′ FILTERR then �P �sG = {μ | μ ∈ �P ′�sG and μ |= R},

where ∩ denotes the standard set-theoretic intersection. If G 
∈ C then �P �sG =
Err for any graph pattern P . Finally, legal patterns P1 and P2 are equivalent
(under strict semantics), written P1 ≡s P2, if �P1�

s
G = �P2�

s
G for any legal G.

Example 5. The strict semantics behaves as expected for our running examples.
For O1 and P1 from Example 1 we have that �P1�

s
O1

= {μ1}, whereas for O2

and P2 from Example 2 we have �P2�
s
O2

= ∅.

The strict and normative semantics coincide in two limit cases. First, if the
entailment regime does not allow for inconsistent graphs (i.e., if C = G) as is
the case for the RDF regime [10], then �P �sG = �P �nG for every legal pattern P
and graph G. Second, if the relevant pattern P is OPT-free then the freezing for
every candidate answer mapping contains no fresh IRIs and is R-entailed by G;
thus, we again have �P �sG = �P �nG for every legal graph G.

Thus, the difference between the normative semantics �·�n and strict semantics
�·�s manifests only for regimes that admit inconsistency, and is circumscribed
to the presence of OPT in graph patterns, where non-admissible mappings are
excluded in the case of the strict semantics. Note, however, that even if a mapping
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μ1 (resp. μ2) is admissible for a sub-pattern P1 (resp. P2) containing OPT, it is
possible for μ1 ∪ μ2 not to be admissible for the joined pattern P = P1 AND P2.
Thus, the admissibility restriction is also explicitly reflected in the semantics of
AND given in Definition 3. This is illustrated in the example given next.

Example 6. Consider ontology O3, consisting of the following axioms:

SubClassOf(
IntersectionOf(SomeValuesFrom(husband Thing)

SomeValuesFrom(wife Thing))
Nothing),

ClassAssertion(Person Mary).
The first axiom establishes that a person cannot have both a husband and a wife.
Consider also the following well-designed graph pattern P3:

(
ClassAssertion(Person ?X)OPT (PropertyAssertion(husband ?X ?Y ))

)
AND

(
ClassAssertion(Person ?X)OPT (PropertyAssertion(wife ?X ?Z))

)
.

Clearly, μ = {?X �→ Mary} belongs to the strict answer to each of the OPT
sub-patterns of P3 since each of them independently can match to a consistent
extension of O3. However, μ is not admissible for P3 since Mary has both a
husband and a wife in GP3

µ , and hence O3∪GP3
µ is inconsistent. Thus, �P3�

s
O3

= ∅.

4.2 Comparing the Normative and Strict Semantics

Our previous examples support the expected behaviour of our semantics, namely
that its effect is circumscribed to filtering out problematic answers returned un-
der the normative semantics. We next formally show that our semantics behaves
as expected in general, provided that we restrict ourselves to well-designed pat-
terns and negation-free FILTER expressions (which are rather mild restrictions).

It is known that patterns which are not well-designed easily lead to unexpected
answers, even under the normative semantics (we refer to [2] for a detailed dis-
cussion). Therefore, it comes at no surprise that the intuitive behaviour of our
semantics is only guaranteed under this assumption.

But before stating our main result in this section, we establish first a useful
lemma that is applicable to well-designed patterns under both semantics.

Lemma 1. Let R = (R,G,P , C, �·�) be an entailment regime, and let P be a
sub-pattern of a well-designed graph pattern. If a variable appears both inside
and outside P , then it is defined in each mapping from �P �nG for any consistent
G as well as in each mapping from �P �sG.

Proof. For the sake of contradiction, let ?X be a variable which appears both
inside and outside P , but is undefined in some mapping μ ∈ �P �nG ∪ �P �sG. Since
?X is undefined, it appears in the optional (i.e., right) part of an OPT-sub-
pattern of P . The overall graph pattern is well-designed, so ?X must appear in
the mandatory (i.e., left) part of the OPT-sub-pattern of P . If this sub-pattern
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is not in the optional part of another higher-level sub-pattern, then ?X must be
defined in μ, which contradicts the original assumption. Otherwise, we can apply
the same argument and show that ?X is in the mandatory part of the higher-
level sub-pattern. Such reasoning would eventually lead to a contradiction. ��
Theorem 1. Let R = (R,G,P , C, �·�) be an entailment regime. The inclusion
�P �sG � �P �nG holds for any graph G from C and any legal well-designed graph
pattern P which does not use negation ¬ in FILTER expressions.

Proof. The proof is by induction on the structure of the graph pattern P .

1. Let P be a BGP. Then �P �sG = �P �nG = �P �G by definition of the semantics.
2. Let P be P1 AND P2, �P1�

s
G � �P1�

n
G, �P2�

s
G � �P2�

n
G, and μ be a mapping

from �P �sG. By the definition of the semantics of AND patterns we have that
�P �sG = (�P1�

s
G �� �P2�

s
G) ∩ Adm(G,P ), that is there exist compatible μ1 ∈

�P1�
s
G and μ2 ∈ �P1�

s
G such that μ = μ1 ∪ μ2. By the inductive assumption,

there exist μ′
1 ∈ �P1�

n
G and μ′

2 ∈ �P1�
n
G such that μ1 � μ′

1 and μ2 � μ′
2. By

Lemma 1, μ′
1 and μ′

2 are compatible. Indeed, if a variable is defined in both
of them, it occurs in P1 and P2, so, by the lemma, it is defined in both μ1 and
μ2 which are compatible; hence the values of this variable in all μ1, μ2, μ

′
1

and μ′
2 coincide, which implies that the last two are compatible. So, μ′

1 ∪μ′
2

is in �P1�
n
G �� �P2�

n
G = �P �nG as required.

3. Let P be P1 OPT P2, �P1�
s
G � �P1�

n
G, �P2�

s
G � �P2�

n
G, and μ be a mapping

from �P �sG. By the definition of the semantics of OPT patterns we have that
�P �sG = (�P1�

s
G �� �P2�

s
G) ∩ Adm(G,P ), that is, we have two options.

(a) Let μ ∈ �P1�
s
G �� �P2�

s
G and μ ∈ Adm(G,P ). In this case the rest of the

proof goes the same lines as the case when P is an AND graph pattern.
(b) Let μ ∈ �P1�

s
G \ �P2�

s
G and μ ∈ Adm(G,P ). Hence, in particular, μ ∈

�P1�
s
G. By the inductive assumption, there exists a mapping μ′

1 in �P1�
n
G

such that μ � μ′
1. Hence, as required, there exists a mapping μ′ in �P �nG

(which is either μ′
1 ∪ μ′

2 for some μ′
2 ∈ �P2�

n
G compatible with μ′

1, or μ
′
1

itself, if such a μ′
2 does not exist), such that μ � μ′.

4. Let P be P ′FILTERR, �P ′�sG � �P ′�nG, R be a built-in condition not using ¬,
and μ ∈ �P �sG. By the definition of semantics of FILTER patterns, μ ∈ �P ′�sG.
Hence, by the inductive assumption, there exists μ′ ∈ �P ′�nG such that μ � μ′.
Since R does not use ¬, μ′ |= R. So, μ′ ∈ �P �nG, as required. ��

Note that Theorem 1 is formulated in terms of subsumption, instead of set-
theoretic containment. The rationale behind this formulation is clarified next.

Example 7. Consider the ontology O′
1, which is obtained from O1 in Example 1

by removing all axioms involving Holyhead , and adding the following axiom:

PropertyAssertion(bus Canterbury London).

Consider also the following graph pattern P ′
1:

PropertyAssertion(bus ?U ?X)OPT

(PropertyAssertion(train ?X ?Y )OPT

PropertyAssertion(ferry ?Y ?Z)).
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The following mapping μ is returned by the normative semantics:

{?U �→ Canterbury , ?X �→ London , ?Y �→ Oxford}.

As already discussed, Oxford is an inland city and hence cannot have ferry
connections; thus, μ is not returned under strict semantics. However, it may be
possible to reach a ferry connection from London (although none is given), and
hence the following answer μ′ is returned instead of μ under strict semantics.

{?U �→ Canterbury , ?X �→ London}.

Clearly, μ′ is not returned under normative semantics and hence �P ′
1�

s
O′

1

⊆

�P ′
1�

n
O′

1
; however, μ′ � μ and �P ′

1�
s
O′

1
� �P ′

1�
n
O′

1
.

5 Computational Properties and Static Optimisation

In this section, we first study the computational properties of our semantics. We
show that the complexity of graph pattern evaluation under strict and normative
semantics coincide, provided that consistency checking is feasible in PSPACE
for the regime at hand. Then we focus on static query analysis, and in particular
on pattern equivalence. We show that the key equivalence-preserving transfor-
mation rules that have been proposed for static optimisation of SPARQL queries
continue to hold if we consider equivalence under strict semantics.

5.1 Complexity of Strict Graph Pattern Evaluation

Recall that the graph pattern evaluation is the key reasoning problem in
SPARQL. In the context of entailment regimes, it is defined as given next, where
x is either n or s, depending of the semantics.

Graph pattern evaluation

Input : Regime R, legal graph G, legal graph pattern P , and mapping μ.
Question: Is μ ∈ �P �xG under the regime R?

Here, when we say that regime R is a part of the input, we mean that it includes
two oracle functions checking consistency of legal graphs and evaluating legal
BGPs over legal graphs, respectively. In what follows, we refer to the problem
as Normative if x = n, and as Strict if x = s.

It is known that the normative graph pattern evaluation problem is in
PSPACE for the RDF regime [2]. We next argue that membership in PSPACE
holds in general for any regime satisfying the basic properties discussed in Sec-
tion 2 and for both normative and strict versions of the problem, provided that
the complexity of both oracles of the regime is in PSPACE.

Theorem 2. Normative and strict graph pattern evaluation problems
are in PSPACE, provided the oracles associated to input regimes are in PSPACE.
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Proof. We start with the normative semantics. If the regime R allows for incon-
sistent graphs, then the regime may require to first check the input graph for
consistency, which is feasible in PSPACE by the assumptions of the theorem.
Then, the same recursive procedure Eval(μ, P,G) for a mapping μ, graph pat-
tern P and graph G described in [2] for the RDF regime is applicable to evaluate
queries under R. The procedure is in PSPACE because each BGP in the input
pattern can be evaluated by the second oracle in PSPACE by the assumptions.

The situation is analogous for the strict semantics: consistency checking may
be required upfront by the regime and the recursive PSPACE procedure
Eval(μ, P,G) can be designed by a straightforward implementation of the defi-
nition of strict semantics. The only difference with the normative case is that in
each step we need to check for admissibility, which is possible in PSPACE given
our assumptions about the oracles of the regime. For example, if P is a pattern
of the form P1 OPT P2, then Eval first checks whether Eval(μ, P1 AND P2, G)
holds, or Eval(μ, P1, G) with not Eval(μ′, P2, G) for any mapping μ′, dom(μ′) ⊆
vars(P2), holds; and then checks, by means of the oracle function, whether
μ ∈ Adm(G,P ). If both of the checks are positive, then the answer is true,
otherwise, it is false. ��

Consequently, the use of our strict semantics does not increase the computa-
tional complexity for reasonable regimes. In particular, it follows directly from
Theorem 2 that the evaluation problem is in PSPACE under both semantics for
the tractable entailment regimes associated to the OWL 2 profiles [13].

It is also well-known that graph pattern evaluation under normative seman-
tics is PSPACE-hard for the RDF regime [2]. To formulate a general hardness
result that holds for any regime we would need to require additional properties
for a regime to qualify as “reasonable”. In order not to unnecessarily complicate
the presentation, we simply point out that PSPACE-hardness holds for all the
regimes mentioned in the specification under both normative and strict seman-
tics [10]. This is immediate for the normative semantics. The hardness for the
strict semantics can be proved by reduction from quantified boolean formula va-
lidity as it is done in [2]. This reduction encodes a formula in the query pattern,
and relies on a fixed RDF dataset, which corresponds to a set of first-order facts.
Thus, the extension of such fixed graph with the freezing of a sub-pattern of the
query pattern is always consistent under all the regimes in the specification.

5.2 Static Analysis and Optimisation

Static analysis and optimisation of SPARQL queries has received significant at-
tention in recent years [4,6,14,15,16]. A key ingredient for query optimisation is
the availability of a comprehensive catalog of equivalence-preserving transforma-
tion rules for SPARQL patterns. Schmidt et al. [4] and Perez et al. [2] provide
a rich set of such equivalences, which holds under normative semantics for RDF
regime. Some of these equivalences, such as idempotence, commutativity, and
associativity of the AND operator, hold without any restrictions (for our core
fragment of SPARQL) and are quite easy to prove. However, those that involve
OPT are more intricate and hold only for well-designed patterns.
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The claim of this section is that these equivalences continue to hold for any
entailment regime, under both normative and strict semantics. For brevity, we
concentrate only on strict semantics and the equivalences with OPT, leaving
the proofs for the rest out of the scope of this paper. But before doing so we
state the following auxiliary lemma, which proof is straightforward application
of conditions (C1)–(C2) on regimes and omitted for brevity.

Lemma 2. Let R = (R,G,P , C, �·�) be an entailment regime. If μ ∈ Adm(G,P )
for a mapping μ, graph G ∈ C and legal graph pattern P , then μ′ ∈ Adm(G,P ′)
for any mapping μ′ � μ and legal graph pattern P ′ such that triples(P ′) ⊆
triples(P ).

The following theorem establishes that the known equivalences involving OPT
in well-designed patterns hold for any entailment regime under strict semantics.

Theorem 3. Let R be an entailment regime.The following equivalences hold,
provided the graph patterns on both sides are legal and well-designed:

(P1 OPT P2) FILTERR ≡s (P1 FILTERR) OPT P2, (1)

P1 AND (P2 OPT P3) ≡s (P1 AND P2) OPT P3, (2)

(P1 OPT P2) AND P3 ≡s (P1 AND P3) OPT P2, (3)

(P1 OPT P2)OPT P3 ≡s (P1 OPT P3)OPT P2. (4)

Proof. Equivalence (1). For brevity we give a proof only for the fact that for
every graph each mapping in the semantics of the pattern on the left is in the
semantics of the pattern on the right, and the other direction is similar. Let
μ ∈ �(P1OPTP2)FILTERR�sG for a consistent graph G, built-in condition R and
legal graph patterns P1 and P2, such that the both sides of the equivalence are
well-designed. By the definition of strict semantics there are two possibilities.
Case 1: μ = μ1∪μ2 for μi ∈ �Pi�

s
G, such that μ ∈ Adm(G,P1OPTP2) and μ |= R.

To show that μ ∈ �(P1 FILTERR) OPT P2�
s
G the only thing we need to prove is

that μ1 |= R, and we do it by showing that for every ?X which appears in R the
values of μ and μ1 on ?X are either the same or both undefined. Indeed, if such
?X is in P2 then, since (P1 OPT P2) FILTERR is well-designed, it appears in P1,
and hence, by Lemma 1, ?X ∈ dom(μ1), which means that μ(?X) = μ1(?X). On
the other hand, if ?X is not in P2, then ?X /∈ dom(μ2), that is either the value
of μ on ?X coincides with the value of μ1 or both of them are undefined.
Case 2: μ ∈ �P1�

s
G, such that μ ∈ Adm(G,P1 OPT P2), μ |= R, and there is

no μ2 ∈ �P2�
s
G such that μ ∼ μ2. Immediately we have that μ ∈ �(P1 FILTER

R)OPT P2�
s
G.

Equivalence (2). For brevity, we show the more involved direction that shows
containment from right to left. Let μ ∈ �(P1ANDP2)OPTP3�

s
G for a consistent G,

and legal patterns P1, P2 and P3, such that the both sides of the equivalence are
well-designed. We have the following cases by the definition of strict semantics.
Case 1: μ = μ1 ∪μ2∪μ3 for μi ∈ �Pi�

s
G, such that μ1∪μ2 ∈ Adm(G,P1 ANDP2)

and μ ∈ Adm(G, (P1 AND P2) OPT P3). By Lemma 2 the last inclusion implies



388 E.V. Kostylev and B. Cuenca Grau

the first. Moreover, it implies that μ2∪μ3 ∈ Adm(G,P2OPTP3), which, together
with the fact that Adm(G, (P1ANDP2)OPTP3) = Adm(G,P1AND(P2OPTP3))
guarantees that μ ∈ �P1 AND (P2 OPT P3)�

s
G as required.

Case 2: μ = μ1 ∪ μ2 for μi ∈ �Pi�
s
G, such that μ ∈ Adm(G,P1 AND P2), μ ∈

Adm(G, (P1 ANDP2)OPTP3), and there is no μ3 ∈ �P3�
s
G such that μ ∼ μ3. By

Lemma 2 μ2 ∈ Adm(G,P2OPTP3) holds. Also, since P1AND(P2OPTP3) is well-
designed, there is no μ′

3 ∈ �P3�
s
G such that μ2 ∼ μ′

3; otherwise there would be a
variable ?X ∈ dom(μ1) ∩ dom(μ3), but ?X /∈ dom(μ2), with μ1(?X) 
= μ3(?X),
which by the fact that the pattern is well-designed would imply that ?X appears
in P2 and by Lemma 1 would lead to a contradiction. Putting the facts above
together with the equality Adm(G, (P1 AND P2) OPT P3) = Adm(G,P1 AND
(P2 OPT P3)) we obtain that μ ∈ �(P1 AND P2) OPT P3�

s
G as required.

Equivalence (3) follows from (2) and commutativity of AND.

Equivalence (4). We concentrate again on forward direction. Let μ ∈ �(P1OPT
P2)OPTP3�

s
G for a consistent graphG, and legal patterns P1, P2 and P3 such that

the both sides of the equivalence are well-designed. We have four possibilities.
We prove the first two, omitting the very similar proofs for other two for brevity.
Case 1: μ = μ1∪μ2 ∪μ3 for μi ∈ �Pi�

s
G, such that μ1 ∪μ2 ∈ Adm(G,P1 OPTP2)

and μ ∈ Adm(G, (P1 OPT P2) OPT P3). By Lemma 2 the last inclusion implies
μ1 ∪ μ3 ∈ Adm(G,P1 OPT P3), which, together with Adm(G, (P1 OPT P2) OPT
P3) = Adm(G, (P1 OPT P3) OPT P2) guarantees μ ∈ �(P1 OPT P3) OPT P2�

s
G.

Case 2: μ = μ1 ∪ μ2 for μi ∈ �Pi�
s
G, where μ ∈ Adm(G,P1 OPT P2), μ ∈

Adm(G, (P1 OPT P2) OPT P3), and there is no μ3 ∈ �P3�
s
G with μ ∼ μ3. By

Lemma 2 we have μ1 ∈ Adm(G,P1 OPT P3). Similar to Case 2 in the proof
of (2), since (P1 OPT P2) OPT P3 is well-designed, by Lemma 1 there is no
μ′
3 ∈ �P3�

s
G such that μ1 ∼ μ′

3. But then, since Adm(G, (P1 OPT P2)OPT P3) =
Adm(G, (P1 OPT P3)OPT P2) we have μ ∈ �(P1 OPT P3)OPT P1�

s
G as required.

Case 3: μ = μ1 ∪ μ3 for μi ∈ �Pi�
s
G, such that μ1 ∈ Adm(G,P1 OPT P2),

μ ∈ Adm(G, (P1OPTP2)OPTP3), and there is no μ2 ∈ �P2�
s
G such that μ1 ∼ μ2.

Case 4: μ ∈ �P1�
s
G, μ ∈ Adm(G,P1 OPTP2), μ ∈ Adm(G, (P1 OPTP2)OPTP3),

and neither μ2 ∈ �P2�
s
G such that μ ∼ μ2, nor μ3 ∈ �P3�

s
G such that μ ∼ μ3. ��

6 Conclusion

In this paper, we have proposed a novel semantics for optional matching in
SPARQL under entailment regimes where unbound variables in answer mappings
are naturally interpreted as “null” values. Our strict semantics has been designed
to deal in a faithful way with the “lack of regular, complete structures in RDF
graphs” and hence with the fundamental incompleteness of information on the
Semantic Web [1]. We believe that both strict and normative semantics are valid,
but one may be more appropriate than the other in certain applications. Both
semantics are compatible at a fundamental level and it would be possible to
exploit them in the same application by letting users commit to one or the other
explicitly when posing queries. Integrating them in a clean way from a syntactic
point of view is more tricky, and it is something we leave for future investigation.
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Abstract A common way for exposing RDF data on the Web is by means of
SPARQL endpoints which allow end users and applications to query just the
RDF data they want. However, servers hosting SPARQL endpoints often restrict
access to the data by limiting the amount of results returned per query or the
amount of queries per time that a client may issue. As this may affect query
completeness when using SPARQL1.1’s federated query extension, we analysed
different strategies to implement federated queries with the goal to circumvent
endpoint limits. We show that some seemingly intuitive methods for decompos-
ing federated queries provide unsound results in the general case, and provide
fixes or discuss under which restrictions these recipes are still applicable. Finally,
we evaluate the proposed strategies for checking their feasibility in practice.

1 Introduction

The Linked Open Data initiative promotes the publication and linkage of RDF data
on the Web. Under this initiative many organisations (either public or private) expose
billions of statements using the RDF data model and also provide links to other RDF
datasets. A common way for accessing such RDF datasets is by means of SPARQL
endpoints. These endpoints are Web services that implement the SPARQL protocol and
then allow end users and applications to query just the RDF data they want. However,
servers hosting SPARQL endpoints often restrict the access to the data by limiting the
server resources available per received query and client. These physical resource limi-
tations most commonly include restrictions of the size of result set returned to the end
users (e.g., a 10.000 result limit for each query) or simply generating errors such as time
outs on queries that spend too many resources. Such imposed limitations are necessary
due to too many resource limits [2] when serving queries concurrently to many clients.

However, in practice, particularly in the context of using SPARQL1.1’s Federated
Query Extension [9], these limitations prevent users from obtaining complete answers
to their SPARQL queries. The result set size limitation is particularly relevant when a
user wants to federate SPARQL queries over a number of SPARQL endpoints.
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Using different combinations of SPARQL patterns is possible to overcome the
servers’ result size limits and obtain complete result sets for SERVICE queries. A
common pattern that can be used for that purpose is using the VALUES operator from
the new SPARQL 1.1 Recommendation. This operator allows to “ship” the results from
a local query to be joined with a remote pattern along with the service query. How-
ever this operator is still not widely implemented in currently deployed endpoints [2]
and thus alternative options might have to be considered. After some preliminaries (§2)
this paper presents a study of several alternative strategies (§3), allowing users to obtain
sound and complete answers to SPARQL queries; for instance, we show that using naive
nested loops or combinations of the UNION and FILTER operators for constraining
remote queries may return unsound results; we further discuss how to fix these naive
approaches to obtain correct results. Finally in §4+5 we evaluate different settings, de-
pending on the data, the local SPARQL engine and the engine running at the involved
remote endpoints in a federated query, before we conclude in § 6.

2 Preliminaries

We first describe the basics of the SPARQL syntax we will use thorough the paper
followed by the semantics of the most relevant SPARQL operators used.1

Syntax. The official syntax of SPARQL1.1 [3] considers operators OPTIONAL,
UNION, FILTER, SELECT, concatenation via a point symbol (.), { } to group pat-
terns, as well as keywords (new in SPARQL 1.1) SERVICE to delegate parts of a query
to a remote endpoint, and VALUES to define sets of variable bindings.

We follow [1,8] for defining the SPARQL syntax operators including the VALUES
and SERVICE operators. We use letter B,I ,L,V for denoting the (infinite) sets of blank
nodes, IRIs, RDF literals, and variables as usual.2

(1) A triple (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is a graph pattern (a triple pattern).
(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

and (P1 UNION P2) are graph patterns.3

(3) If P is a graph pattern and R is a SPARQL built-in condition, then the expression
(P FILTER R) is a graph pattern.

(4) IfP is a graph pattern, thenSELECT W P ORDER BY V LIMIT l OFFSET o
is a graph pattern (subquery), where ORDER BY, LIMIT, and OFFSET clauses
(aka solution modifiers) are optional, W ,V are sets of variables, and l, o ∈ N.4

(5) If P is a graph pattern and a ∈ (I ∪ V ), then (SERVICE a P ) is a graph pattern.

1 Note that we assume a set-based semantics as in [8] here, i.e. implicitly we assume DISTINCT
queries. We also used DISTINCT queries in our experiments.

2 In SPARQL patterns, blank nodes and variables can be used interchangeably, which is why we
ignore blank nodes in SPARQL patterns.

3 AND is syntactically written as either a sequence of ‘{ }’-delimited group graph patterns, or
a sequence of ‘.’-separated triple patterns.

4 We simplify here, as general ORDER BY clauses in SPARQL allow arbitratry expressions.
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(6) VALUES WA is a graph pattern where W = [?X1, . . . , ?Xn] is a sequence of
pairwise distinct variables, and

A =

⎡

⎢⎢⎢⎣

a1,1, . . . , a1,n
a2,1, . . . , a2,n

...
am,1, . . . , am,n

⎤

⎥⎥⎥⎦

is a matrix of values where ai,j ∈ (I ∪ L ∪ {UNBOUND}).
For the exposition of this paper, we leave out further more complex graph patterns

such as GRAPH graph patterns, or new SPARQL 1.1 [3] like aggregates and property
paths. We will use the notion of FILTER expressions as defined in [8]. We also
use unary predicates like bound, isBlank, and the binary equality predicate ‘=’, which
herein we consider as synonym for sameTerm(·, ·) from [3].5

Let P be a graph pattern; in what follows, we use var(P ) to denote the set of vari-
ables occurring in P . In particular, if t is a triple pattern, then var (t) denotes the set of
variables occurring in the components of t. Similarly, for a built-in condition R, we use
var(R) to denote the set of variables occurring in R.

Semantics. As in [8], we consider a set-based semantics (which can always be achieved
in SPARQL using the keyword DISTINCT), since conjunctive query containment is
already undecidable for bag-semantics [4].

We use terminology defined in [8] for compatibility between solution mappings,
written μ1 ∼ μ2. Let Ω1 and Ω2 be sets of mappings; the join , union, difference, and
left outer-join operations for Ω1 and Ω2 are defined as follows:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1,

μ2 ∈ Ω2 and μ1 ∼ μ2},
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 �Ω2 = {μ ∈ Ω1 | ∀μ′ ∈ Ω2 : μ �∼ μ′},

Ω1 ��� Ω2 = (Ω1 �� Ω2) ∪ (Ω1 �Ω2).

As usual, we use dom(μ) for denoting the variables bound within – i.e. the domain
of – a SPARQL solution mapping μ. The evaluation semantics of SPARQL patterns
with respect to an RDF graph G is defined in Fig. 1.

The evaluation of a FILTER expression R wrt. solution mapping μ relies on a three-
valued logic (�,⊥, ε), cf. [3, §17.2], where
μ(R) = �, if:

- R is bound(?X) and ?X ∈ dom(μ);
- R is isBlank(?X), ?X ∈ dom(μ) and μ(?X) ∈ B;
- R is isIRI(?X), ?X ∈ dom(μ) and μ(?X) ∈ I;
- R is isLiteral(?X), ?X ∈ dom(μ) and μ(?X) ∈ L;

5 Note that ‘=’ would otherwise also involve certain datatype inferences, e.g.
"1.0"ˆˆxsd:decimal="1"ˆˆxsd:integer in SPARQL, whereas
sameTerm("1.0"ˆˆxsd:decimal, "1"ˆˆxsd:integer) = false.
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- R is ?X = c, ?X ∈ dom(μ) and sameTerm(μ(?X), c);
- R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and sameTerm(μ(?X), μ(?Y ));
- R is ¬R1 with μ(R1) = ⊥;
- R is (R1 ∨R2), and μ(R1) = � ∨ μ(R2) = �;
- R is (R1 ∧R2), and μ(R1) = � ∧ μ(R2) = �

μ(R) = ε, if:
- R is isBlank(?X),R = isIRI(?X), or R = isLiteral(?X) and ?X �∈ dom(μ);
- R is ?X = c or ?X =?Y with ?X �∈ dom(μ) or, in the latter case ?Y �∈ dom(μ);
- R is ¬R1 with μ(R1) = ε;
- R is (R1 ∨R2), and μ(R1) = ε ∧ μ(R2) = ε;
- R is (R1 ∧R2), and μ(R1) = ε ∨ μ(R2) = ε

μ(R) = ⊥, otherwise.

(1) If P is a triple pattern t, then �P �G = {μ | dom(μ) = var(t) and μ(t) ∈ G}.
(2) If P is (P1 AND P2), then �P �G = �P1�G �� �P2�G.
(3) If P is (P1 OPT P2), then �P �G = �P1�G ��� �P2�G.
(4) If P is (P1 UNION P2), then �P �G = �P1�G ∪ �P2�G.
(5) If P is (P1 FILTER R), then �P �G = {μ ∈ �P1�G | μ(R)}.
(6) If P is (SERVICE c P1) with c ∈ I ∪ V , then

�P �G =

⎧
⎨

⎩

�P1�ep(c) if c ∈ dom(ep)

{μ∅} if c ∈ I \ dom(ep){
μ ∪ [c → s] | ∃s ∈ dom(ep), μ ∈ �P1�ep(s)) ∧ [c → s] ∼ μ

}
if c ∈ V

(7) If P = VALUES W A then

�P �G = {μj |1 ≤ j ≤ m, dom(μj) = {?Xi ∈ W | ai,j 
= UNBOUND}, μj(?Xi) = ai,j}

(8) If P is SELECT W P1 ORDER BY V LIMIT l OFFSET o, then
�P �G = ΠW (lmt(order(�P1�G,V ), l, o)), where ΠW is projection as in Rel. Alg., and
order(Ω,V ) = L the sequence of μ ∈ Ω obtained from ordering μ(V ) as per [3, §15.1].
lmt(L, l, o) = L′ obtained from Lby removing all L[i] with i ≤ o or o+ l < i

Fig. 1. Definition of �P �G for a graph pattern P using FILTER and VALUES operators.

Note in Fig. 1, that the semantics of SELECT queries is actually non-deterministic,
in the sense that a compliant implementation can give different results, as illustrated by
the following example.

Example 1. Let us assume the default graph G1 = {(a, b, 1), (a, b, 2)}. and the pat-
tern P1 = SELECT ?X(a, b, ?X) LIMIT 1 then obviously both {[?X → 1]} and
{[?X → 2]} would be allowed results, since there is no order prescribed among the re-
sults of �(a, b, ?X)�G. Likewise, P2 = SELECT ?X(a, b, ?X) LIMIT 1 OFFSET 1
could have the same two possible results, indeed a compliant SPARQL engine could –
according to the specification return the same result for both P1 and P2.

Note that even an ORDER BY does not necessarily remedy such ambiguities in all
cases, since, according to the ordering rules in [3, §15.1], not all RDF terms are or-
dered; particularly, no order is specified for instance for blank nodes. To illustrate this,
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assume the default graph G1 = {(a, b, :b1), (a, b, :b2)} such that :b1, :b2 ∈ B.
Then, similarly, both {[?X → :b1]} and {[?X → :b2]} would be allowed re-
sults for either P3 = SELECT ?X(a, b, ?X) ORDER BY ?X LIMIT 1 or P4 =
SELECT ?X(a, b, ?X) ORDER BY ?X LIMIT 1 OFFSET 1.

3 Evaluation Strategies for SPARQL SERVICE Patterns

In this section we outline several potential evaluation strategies for queries
to a remote SPARQL endpoint using SERVICE patterns of the form P =
P1 AND (SERVICE c P2).

Symmetrical Hash Join (SYMHASH). A classical alternative to implement
SERVICE patterns is to use a symmetrical hash join, a type of hash join commonly
used in data streams. We evaluate both query parts P1 and P2 separately and locally
join the results (�P �G = �P1�G �� �P2�Gc) using two hash tables (one for each sub
query). Depending on the interim result sizes of P1 and P2, this join algorithm can be
a very efficient solution due to its possible parallelisation. However, the symmetrical
hash join is expensive if the interim result sets are much larger then the join result size,
plus, particularly, if the remote endpoint c imposes a result size limit of n being smaller
than the size of �P2�Gc , then join results may be lost.

Pagination with ORDERBY and LIMIT (SYMHASHP). An alternative to circum-
vent the problems of a local symmetric hash join would be to use “pagination”. Here, by
“pagination” we mean issuing queries of the form P1 AND (SERVICE c (SELECT ∗
{P2}ORDER BY inScopeV ars(P2)) LIMIT n OFFSET o) where o = n ∗ i with
increasing i ∈ N until less than n results are returned from service c. Each batch of
remote results can again be joined with the local results of P1 using a hash join.

However, Ex. 1 above already shows that there is no simple work-around for cir-
cumventing result size limits when querying remote SPARQL endpoints in terms of
“pagination”: that is, let us assume P = P1 AND (SERVICE c P2) be a SPARQL
pattern, where service c limits result size to delivering at most n results. Then, as a con-
sequence of the Ex. 1, one cannot simply use “pagination” of the results of the remote
endpoint.

Getting back to the ordering rules in [3, §15.1], we note that there are still cases
where we can safely use pagination, namely, (1) if the total result size of the remote
endpoint query is below the remote result size limit n, then there are no problems. This
can be easily checked by issuing a query ASK { SERVICE c { SELECT * { P2

} LIMIT n }} to the remote endpoint. In case this delivers less than n results, we
do not need pagination anyway. Otherwise, we have to check whether we can safely
order the results to guarantee that we can get all available results by “pagination”. To
this end, we need to be sure that all bindings to “output variables” (i.e., variables that
are “in-scope” 6) in the service pattern P2 are either unbound or can be ordered by the
”<” operator according to [3, §15.1]: the ”<” operator (see [3, §17.3.1] Operator Ex-
tensibility) defines the relative order of pairs of numerics, simple literals, xsd:strings,

6 These are just the variables that would be included in a SELECT *,
cf. http://www.w3.org/TR/sparql11-query/#ins

http://www.w3.org/TR/sparql11-query/#ins
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xsd:booleans and xsd:dateTimes. Pairs of IRIs are ordered by comparing them as sim-
ple literals. In fact, we can check this “orderability” condition — which would allow
us to impose a total order on the in-scope variables of the service pattern by using
ORDER BY — by another ASK query:7

ASK { SERVICE c { P2 FILTER ( ! (∧
for each variable ?v ∈ inScopeV ars(P2)

( !bound(?v) ∨
isNumeric(?v) ∨
datatype(?v) = xsd:boolean ∨
datatype(?v) = xsd:dateTime ∨
datatype(?v) = xsd:string ) ) ) } }

If this query returns false, the remote results can be indeed ordered, and we can
proceed with “pagination”. However, while this approach is feasible, it is not applicable
in general, plus executing several consecutive ORDER BY queries might actually be
quite expensive on the remote side and trigger resource limits nonetheless. We thus look
for other, more feasible alternatives, that allow to “push” the results from the local side
into the remote query, which we will describe in the following.

Nested Loop Join (NESTED). A straightforward method to alternatively evaluate a
query of the form P = P1 SERVICE c P2 – with the particular advantage to keep the
intermediate size of results shipped from the remote endpoint low, and thus potentially
circumventing result size limits – is to use a nested loop join. Here, we first evaluate
P1, iterate over the solution bindings μ ∈ �P1�G, execute μ(P2) remotely and extend μ
with the additionally obtained variable bindings.

One potential problem of this approach is that we issue one request for each binding
of P1; this can lead to denial of service attacks if there is no appropriate wait time
between two requests for large interim result sets.

Even worse, when done naively, this method fails in relatively simple queries as
shown in the following example.

Example 2. Assume P1 = (?X, c, d) and P2 = ((?Y, ?Z, ?T) UNION (?X, ?Y, b))
FILTER (?X = ?Y). With the local default graph G1 = {(a, c, d)} and the remote
service’s default graph G2 = {(a, a, b), (e, c, d)}, we obtain: �P1�G1 = {μ}, with
μ = {[?X → a], whereas �P2�G2 = {[?X → a, ?Y → a]}. However, if we proceed as
suggested above, then μ(P2) = ((?Y, ?Z, ?T ) UNION (a, ?Y, b)) FILTER (a =?Y )
which yields an additional solution [?Y → a, ?Z → a, ?T → b] that was not admissible
in the original P2 but is also compatible with {[?X → a]}.

Another problem is with blank nodes. Assume P1 = P2 = (?X, c, d) with
G1 = {( : b, c, d)} and G2 = {(a, c, d)}. Here, as replacement would yield μ(P2) =
( : b, c, d) and since SPARQL engines treat blank nodes in patterns as variables, again
a non-admissible solution would arise.

Thus, applying a nested loop join with naive replacement in a federation scenario,
would potentially obtain inconsistent results.

7 Note that the datatype(·) function also returns xsd:string on simple literals.
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SPARQL 1.1 VALUES Operator (VALUES). As a further alternative, the new
VALUES operator in SPARQL 1.1 can be used for “shipping” the local result bindings
from �P1�G along with the remote query that is sent using the SERVICE operator
as follows: let again P = P1 AND (SERVICE c P2). If we pre-evaluate the solution
bindings for P1, written �P1�G, the SERVICE operator could then be equivalently
evaluated by replacing pattern P2 with

P
VALUESP1
2 = P2 VALUESWA

where W = [var(P1)∩var (P2)] and A = �P1�G to endpoint c, i.e. if Gc is the default
graph of service c

�P �G = �P1�G �� �P
VALUESP1

2 �Gc

However, a potential problem with this approach is that the VALUES operator is not
yet widely deployed in existing endpoints [2] and other operators have to be used in
order to simulate the desired behaviour.

SPARQL FILTER (FILTER). As an alternative to the usage of VALUES one may
consider using FILTERs to “inject” the results of P1 into P2, namely, by replacing P2

with

P
FILTERP1

2 = {P2 FILTER
∨

μ∈�P1�G

(
∧

v∈dom(μ)∩vars(P2)

v = μ(v))}

The FILTER expression here makes sure that only those solution bindings of P2

survive that join with some solution binding of of P2.

SPARQL UNION (UNION). Yet another alternative is the use of the UNION oper-
ator in combination with FILTERs. Here, the idea is to use the results of P1 to create
a large UNION query, where in each branch of the UNION the bindings of one
solution for P1 are ‘injected” by means of a FILTER, instead of one large FILTER.
I.e., for �P1�G = {μ1, . . . , μn} we replace P2 by

P
UNIONP1

2 = {(μFILTER
1 (P2))UNION . . .UNION(μFILTER

n (P2))}
Here, μFILTER(P2) = P2 FILTER(

∧
v∈dom(μ)∩vars(P2)

v = μ(v)).

However, there are problems with unbound variables in both P
FILTERP1

2 and

P
UNIONP1
2 , as shown in the following example.

Example 3. Assume P1 = (?X, b, c), c = I and P2 = ((?Y,d,e) UNION (?X,d,e )). With
the local default graph G1 = {(a, b, c)} and the remote service’ default graph G2 =
{(a, d, e)}, we obtain: �P1�G1 = {[?X → a]} and �P2�G2 = {[?X → a], [?Y → a]};
here, the second solution for �P2�G2 , i.e. μ2 = [?Y → a] is compatible with the single
solution for �P1�G1 , i.e., μ1 = [?Y → a] yielding overall μ = [?X → a, ?Y → a].

However, P
FILTERP1
2 = P

UNIONP1
2 ={ {(?Y,d,e) UNION (?X,d,e )} FILTER( ?X =

a)} which would not yield μ as a solution.

So, while the use of nested loops may yield incorrect additional results, the version
using FILTER and UNIONs seem to miss some results,. In the next subsection we
discuss refined versions of these three alternatives, that solve these issues.
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3.1 Two Equivalence Theorems for SPARQL Federated Queries

As we have seen, some queries may return unexpected result mappings when substi-
tuting a variable for a specific value in nested loops. Thus, we aim at finding out a
restricted class of SPARQL remote queries for which we obtain correct results. It turns
out that one class of queries which avoid the above-mentioned problems is the class of
queries where all join variables are strongly bound[1]: strong boundedness ensures, by
the following syntactic restrictions, that a variable ?X in a SPARQL pattern P will be
bound to a value in each solution binding, independent of the underlying data.

Definition 1 (Strong boundedness (from [1]). Let P be a SPARQL pattern; the set of
strongly bound variables in P , denoted by SB(P ), is recursively defined as follows:

– if P = t, where t is a triple pattern, then SB(P ) = var (t);
– if P = (P1 AND P2), then SB(P ) = SB(P1) ∪ SB(P2);
– if P = (P1 UNION P2), then SB(P ) = SB(P1) ∩ SB(P2);
– if P = (P1 OPT P2) or P = (P1 FILTER R), then SB(P ) = SB(P1);
– if P = (P1 FILTER R), then SB(P ) = SB(P1);
– if P = (SERVICE c P1), with c ∈ I , or P = (SERVICE ?X P1), with ?X ∈ V ,

then SB(P ) = ∅;
– if P = (P1 VALUES S {A1, . . . , An}), then SB(P ) = SB(P1) ∪ {?X |
?X is in S and for every i ∈ {1, . . . , n}, it holds that ?X ∈ dom(μS,Ai)}.

– if P = (SELECT W P1), then SB(P ) = (W ∩ SB(P1)).

Indeed, one source of problems in Ex. 2 was the query results containing the empty
result mapping. That empty result mapping combined with other operators generates
result sets different to the original one (aside of being unexpected) since the empty
result mapping is not null rejecting.

The following Lemma essentially states that replacing strongly bound variables with
IRIs or literals in a pattern will not yield additional results for P .

Lemma 1. Given a SPARQL pattern P with v ∈ SB(P ), let μe = [v → e] for an
e ∈ I ∪ L, then �μe(P )�G �� μe = {μ ∈ �P �G|v ∈ dom(μ) ∧ μ(v) = e}.

Indeed, we can remedy the aforementioned issue of blank nodes if we replace μ(P2)
with μB(P2) = {μ(P2) FILTER(¬(

∨
v∈dom(μ)∩vars(P2)

isBlank(μ(v))))} within
the nested loop, i.e. the problematic solutions containing blank nodes are filtered out.

Indeed, we confirm that nested loop replacement with this modification works for
remote patterns with only strongly bound variables; plus, it turns out that remote queries
with only strongly bound join variables also are evaluated correctly using the FILTER
and UNION approaches:

Theorem 1. Let P = P1 AND (SERVICE c P2) such that (vars(P2)∩ vars(P1)) ⊆
SB(P2), i.e. all variables that participate in a join are strongly bound in the pattern
appearing on the service side, and let Gc be the default graph of service c and let

P
UNIONP1
2 and P

FILTERP1
2 be as defined above, then

(i) �P �G =
⋃

μ∈�P1�G
(μ �� �μB(P2)�Gc)

(ii) �P �G = �P1�G �� �P
UNIONP1

2 �Gc = �P1�G �� �P
FILTERP1

2 �Gc
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We note that if the local graph G does not contain any blank nodes8, then Theorem
1(i) would also hold using the original replacement μ(P2). Moreover, it turns out that
we can generalise the result in Theorem 1(ii) to also work in the general case with
potentially unbound variables in the service pattern. To this end, in both P

FILTERP1
2

and P
UNIONP1

2 expressions we replace v = μ(v) by v = μ(v) ∨ ¬bound(v), obtaining

P
FILTER′

P1
2 and P

UNION′
P1

2 , resp.
The trick to only filter for variables bound within P2 fixes the problem from Ex. 3

above, as stated in the following theorem.

Theorem 2. Let P = P1 AND (SERVICE c P2) and Gc be the default graph of
service c then

�P �G = �P1�G �� �P
FILTER′

P1
2 �Gc = �P1�G �� �P

UNION′
P1

2 �Gc

4 Evaluation

In total, we have 6 alternative evaluation strategies for a P = P1 SERVICEP2 query,
as listed in the overview given in Table 1. The goal of our evaluation is to study how sys-
tems implement the SERVICE keyword and how the alternative evaluation strategies
behave for different queries.

Table 1. Overview of evaluation strategies as detailed in §3

ID Description

SERVICE Baseline evaluation strategy
VALUES Evaluation as described in §3
SYMHASH A symmetrical hash join without pagination
SYMHASHP A symmetrical hash join with pagination of the remote results
NESTED A naive nested loop evaluation strategy
UNION Evaluation as described in Theorem 1
FILTER Evaluation as described in Theorem 2

All of our evaluation strategies are implemented in Java7 using the Jena ARQ library
(version 2.9.4)9. The three systems under test are 1) Jena Fuseki 0.2.7 with on disk index
(TDB), 2) Sesame workbench 2.7.11 and 3) Virtuoso Open Source Edition 7.10.

We did not pose any result limit to the systems and followed the official documenta-
tion for the installation.

8 Existence of blank nodes in a dataset could be easily tested with a query such as ASK {?S
?P ?O FILTER isBlank(?S) ∨ isBlank(?O)) }.

9 The implementation and all queries are online at
https://github.com/cbuil/sparql_strategies

https://github.com/cbuil/sparql_strategies
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4.1 Methodology

The methodology followed in our evaluation consists in two parts: first we evaluate the
correctness of our strategies by using the data and queries presented in §3.1 and next
we evaluate the strategies using real data from the Bio2RDF project10.

SERVICE Implementation Test
First, we test the implementation of the selected SPARQL HTTP servers and how they
deal with the problems addressed in this work. We created two small datasets that con-
tain the RDF data in the examples before. Next we evaluate each of the strategies pre-
sented using these datasets to check the correctness of our approach and the engines
serving SPARQL.

Compare Alternative Strategies
Next, we verify that all strategies can produce the right results if 1) the queries do
not involve unbound join variables and 2) if the queries contain variables that may be
unbound. We remove the result set size limit that the servers usually impose to the query
execution. We also use this test to measure the performance differences of the strategies
depending on the query characteristics and we also test how the symmetrical hash joins
perform with and without pagination. We measured for each configuration of query and
join implementation result size, and query times.

4.2 Data and Queries

SERVICE Evaluation: we use the data and queries from Examples 2 and 3 to test the
SERVICE implementation of the different stores. These two queries are used to check
how unbound variables affect the execution of a federated SPARQL query. The first
query Q1 contains the UNION pattern presented in Example 2 in P1 (i.e. the pattern
that queries the local dataset). The second query Q2 is the query presented in Example
3. That query contains a single graph pattern for querying the local dataset (P1) and the
previous UNION pattern in the remote SERVICE call (P2).

In addition, we downloaded two datasets from the Bio2RDF domain: the Mouse
Genome Database (MGI) and the Database of Human Gene Names (HGNC). The MGI
dataset consists of 2,454,589 triples and the HGNC of 919,738 triples and we created 8
queries for these two datasets. Each query has two SERVICE patterns P1 and P2, the
first one (P1) querying the local endpoint hosting the MGI dataset and the second (P2)
querying the remote endpoint, hosting the HGNC data.

The first 4 queries (B0– B3) plus query B7 do not contain blank nodes in the interim
results or unbound join variables while queries B4– B6 contain variables that may be
unbound. These three queries will allow us to study the behaviour of the proposed
strategies with unbound join variables. The results obtained for these last queries may
be unsound, i.e. they differ in the amount of results returned to the users, according to
the theoretical results presented in Section 3.

10 http://bio2rdf.org

http://bio2rdf.org
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Table 2. Result size of P1 (local) and P2 (remote) for our example queries. |P | is the result size
of executing first P1, next P2 and finally do the join locally.

Cardinality #Triple patterns
Query �P1�G �P2�G |P1| |P2| |P | Comment

B0 27 1 1 1 1
B1 27 33562 1 1 1
B2 17817 33562 2 1 17547
B3 16753 2 2 3 2
B4 250924 23 1 2 6 P1 contains one non strongly bound join variable
B5 16753 8771 2 2 3274 P2 contains one non strongly bound join variable
B6 268743 27132 3 7 23873 P1 and P2 with non strongly bound join variable
B7 35636 33134 3 4 17545 Two join variables

5 Results

In this section we summarise the results we obtained from the execution of the proposed
strategies using the evaluation queries for each dataset configuration. We first present
the results of the strategies over the data and queries of §4 and next we present the
results for the Bio2RDF dataset queries.

5.1 SERVICE Implementation Test

At the time of writing, we initially tested the current version of Fuseki (version 1.0.1)
but due to a bug in the evaluation of FILTER expression we had to settle for a previous
version not containing that error. This behaviour could be not observed with Fuseki
version 0.2.7 which returned the correct results.

Overall, our evaluation confirmed that the SPARQL engines do not properly deal
with unbound join variables for their SERVICE implementation. Table 3 shows the
number of returned results for our two queries and the three tested systems. We ob-
serve that for all queries the FILTER, UNION and symmetrical hash join strategies
returns the correct number of results in Sesame and Virtuoso. Considering Fuseki, all
evaluation strategies fail to return the correct results except for in the symmetrical hash
join strategy. We contacted the lead developer of the Fuseki system to verified that the
SERVICE evaluation strategy is similar to a nested loop approach as the results indi-
cated. Interestingly, Fuseki does not differ from Sesame and Virtuoso in the execution
of SERVICE queries since they all return the same amount of results. That means that
all three systems seem to implement a Nested Loop Join algorithm for implementing
the SERVICE operator.

5.2 Performance of Alternative Strategies

The next evaluation task had the goal to see how the different strategies behave with
real world data and different queries.
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Table 3. Returned amount of results for theorem queries and synthetical data for different
SPARQL engines: the table shows result size differences in the query evaluation for the different
strategies by the SPARQL servers

Q1 (Example2) Q2 (Example3)
Fuseki Sesame Virtuoso Fuseki Sesame Virtuoso

SERVICE 2 2 2 2 2 2
VALUES 2 1 1 2 2 2
FILTER 2 1 1 2 1 1
UNION 2 1 1 2 1 1
NESTED 2 2 2 2 2 2
SYMHASH 1 1 1 1 1 1

Implementation restrictions & solution. In our initial tests we observed two technical
exceptions with the used systems and libraries.
HTTP GET vs HTTP POST queries: At first, we used HTTP GET requests to send

the queries to the local and remote endpoints. However, the servers threw an exception
if the created query URL exceeds the maximum or allowed URL length. This happened
for queries with thousands of interim results for P1. Our solution is to use HTTP POST
requests with the query in the request body.
Large FILTER and UNION expressions: The second exception happened due to in-

ternal stack overflows in the ARQ library while parsing the FILTER (or UNION ex-
pression, caused by large numbers of filter statements for P2. We mark such exception
with a “+”. Our technical solution for these exception is to split the results for P1 into
batches which can be handled by the remote endpoint. If such an exception occurred in
our test we also evaluate the strategy with batch processing.

Results. The runtime in ms for the various strategies and queries are presented in Ta-
ble 4 for Fuseki, Table 5 for Sesame and Table 6 for Virtuoso. We use the superscript
“−” to indicate an incorrect number of results. Results marked with superscript “*”
indicate a 500 Server Error response error from Fuseki, 400 Bad Request
from Sesame11 or HttpException from Virtuoso. These errors indicate that a prob-
lem occurred in the server while the processing of the query was ongoing. In such cases,
we report the times taken from a run with a batch size of 750 results. In this evaluation
we use the symmetrical hash join with pagination strategy (SYMHASHP) with a batch
size of 750 instead of the SYMHASH strategy since the former is more suitable for
queries with larger amounts of results. Those queries that have as result to mean that
were automatically stopped from the client after 30 minutes. The bold results present
the best runtime for each query across the strategies.

Overall the FILTER and VALUES evaluation strategies provide in general the
fastest query times for Fuseki (cf. Table 4). We can also see that the internal SERVICE
evaluation strategy has similar runtimes as our nested loop implementation. This is no
surprise since Fuseki uses a nested loop style evaluation strategy. The UNION strategy
is used for large remote queries which we needed to break down into batches to be

11 Sesame’s 400 Bad Request errors indicate that the query contained to many patterns.
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Table 4. Query times in ms (Fuseki 0.2.7). The best strategy for a Fuseki server is to either use a
FILTER strategy injecting the values in the FILTER expression or use the VALUES operator.
The SYMHASHP is the third best strategy.

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 1436 642 31620 39119 62243∗ 858681− 60276∗ to
FILTER 439 360+ 7235+ 6022+ 13633+ 3638+ 26577+ 62947+

UNION 730 678+ 10657+ 15033+ 22269∗ 7732∗ 60814∗ 63335+

VALUES 211 227 8247 5223 16728∗ 899667− 19289∗ 11646

NESTED 758 643 52160 55445 to− 922805− to to
SYMHASHP 403 16462 17563 1937 9494 13082 53592 28759

accepted by the remote endpoint. However, comparing the runtimes with the FILTER
evaluation strategy, which also required use of batch processing, we measured approxi-
mately two times slower performance. It is important to notice that queries B4 to B6 re-
turned some type of error when using the strategies SERVICE, UNION, VALUES and
NESTED. These queries contain one or more non strongly bound join variables which
that not only increase the complexity of the query evaluation but also return wrong re-
sults. We observed that for query B4 using the NESTED strategy and removing all
timeouts the amount of results returned was 5,361,421 (it should return 6 results) and
it took more than 12 hours to finish (query marked with the superscript −). Query B5
also took longer using the SERVICE, NESTED and VALUES strategies, and returned
4,576,843 results, when it should return 3,274 results. The most reliable strategies were
FILTER and SYMHASHP, which managed to finish all query executions.

Table 5. Query times in ms (Sesame). The best strategy for Sesame is to use either SERVICE or
FILTER strategies.

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 77 320 1555 73 618852− to to 1968
FILTER 149 596 4340+ 4788+ 7815+ 3230+ 15746+ 7032+

UNION 260 645 6415 10807 12502 5443∗ 43648 13673
VALUES 167 153 4289 2893 8095∗ 2276∗ 8482∗ 7042

NESTED 443 385 52051 62083 to− to to 89487
SYMHASHP 101 14520 15037 1203 4662 5409 20915 21242

The results of our evaluation with the Sesame system shows a different picture com-
pared to the Fuseki test (cf. Table 5). Overall, the internal SERVICE implementation
provides the best performance for 4 out of the 8 queries. This is surprising since our
previous experiment suggested that Sesame implements the SERVICE operator as a
Nested Loop Join. However, the results in Table 5 show that the SERVICE strategy
outperforms the NESTED strategy by order of magnitudes. The results indicate that
Sesame uses some internal optimisations (e.g., based on statistics) which results in the
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observed runtime difference. For the other 3 queries, the FILTER strategy showed the
fastest query answering time for queries B5 and B6 while the SYMHASHP strategy
was the fastest for query B4. It is important to note that the only evaluation strategies
that managed to finish executing were the FILTER and SYMHASHP strategies, while
we observed the same problems regarding the non strongly bound join variables: query
B4 returned 5,361,421 results in the SERVICE andNESTED strategies (theNESTED
strategy needed almost 12 hours to complete). Again, the most reliable strategies were
FILTER and SYMHASHP.

Table 6. Query times in ms (Virtuoso 7.10). The best strategy for a Virtuoso Server is a
SYMHASHP, specially for low selective patterns (queries B6 and B7).

B0 B1 B2 B3 B4 B5 B6 B7

SERVICE 45∗ 41∗ 60∗ 35∗ 61∗ 56∗ 54∗ 75∗

FILTER 159 159+ 1731 31720+ 26329+ 31324+ 68749+ 37444+

UNION 267 237+ 30904+ 72495+ 55321+ 3737∗ 7134∗ 11990+

VALUES 137 117 6611 7561 260736− 781657 to 13291−

NESTED 559 500 88240 128399 2721065∗ to to 196280
SYMHASHP 102 1905 2733 2205 5525 2306 8149 3407

Again, the results from the evaluation using the Virtuoso Open Source server are very
different from the evaluation for other stores. The best strategy when using Virtuoso is
a SYMHASHP strategy, which is the fastest in almost all queries. Only in query B1
the strategy VALUES and in query B2 the strategy FILTER strategy were faster. As
before, a similar situation happens when running the queries containing non strongly
bound join variables. In this case the VALUES strategy for query B4 returned 23 re-
sults, which differs from the 6 results that the FILTER and SYMHASHP strategies
return. Again, the SYMHASHP and the FILTER strategies are the only strategies that
were able to finish all query executions.

6 Related Work and Conclusions

Although there is a lot of theoretical work on distributed query processing and query
planning, both in the database world [5] and in the context of the semantic Web
[10,12,7], this is indeed one of the first works that considers practical limitations of
existing SPARQL endpoints when executing already established federated query plans
using SPARQL1.1’s federated query extension. For instance, FedX [12] describes a
similar evaluation strategy to our UNION strategy (called bound join), but does not
consider the corner cases we discuss in Theorems 1+2 above. Likewise, whereas var-
ious works have addressed equivalences and optimisations for local SPARQL query
patterns [8,11,6], few have considered SERVICE patterns.

In summary, in this paper we have, firstly, illustrated that querying remote SPARQL
endpoints with SERVICE patterns is a non-trivial task due to the limitations that the
servers hosting these endpoints impose; the most common restriction is a result size
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limit that prevents users from obtaining complete results to their queries. Secondly, we
have also shown some results in terms of defining equivalences for SPARQL queries
involving SERVICE patterns that may help remedy these limits in practice. Thirdly,
our evaluation should give some hints on which strategies are practically feasible in
a particular setting, depending on the data, the local SPARQL engine and the engine
running at the involved endpoints in a federated query. It is important to notice that
only the FILTER and SYMHASHP strategies returned results for all queries in all
systems. In addition, these strategies were sound, i.e. returned correct results for all
queries since they do not “inject” any new value in the remote query (instead they
either filter the unwanted results out or perform the join locally). TheNESTED strategy
(along with the SERVICE strategy) not only failed to return results in several queries
but also returned incorrect results when non strongly bound join variables were present
(confirming thus the theoretical results obtained). We believe that the investigation of
the issues around executing federated SPARQL queries in practice deserves increased
attention if we seriously intend to make the the Semantic Web vision work.

Acknowledgements. Thanks to Aidan for his last bulletproof reading and to Martı́n
for his support in finding the missing variable bindings.
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A Proof for Theorem 1(i)

Proof. We now show that there is a 1:1 correpsondence between those solution map-
pings of P1 joining with (SERVICE c P2) and the ones joining with μB(P2).

The theorem trivially holds for c ∈ I \ dom(ep), i.e. if c is not the IRI of a SPARQL
endpoint, cf. [1]. Otherwise, let now μ ∈ �P �G, then we know for each mapping12

μi ⊆ μ ∈ �P1�G there is a mapping μj ⊆ μ ∈ �P2�Gc such that for each variable
v ∈ dom(μi) ∩ var(P2) it holds that μi(v) = μj(v) inI ∪ L: since (a) blank nodes
from the local graph queried by P1 are always disjoint with blank nodes from the remote
endpoint P2 and (b) all join variables (i.e., var(P1) ∩ var (P2)) are strongly bound in
P2, which means that indeed all v ∈ dom(μi) ∩ var(P2) are also in dom(μj).
It is now easy to see that for each such solution μj there is a solution μ′

j ∈ �μB(P2)�Gc

with dom(μ′
j) = dom(μj) \ dom(μi) and that corresponds to μj on all variables in

dom(μ′
j), which proves that �P �G ⊆ �P1�G �� �μB(P2)�Gc

On the other hand, there are no additional mappings in �μB(P2)�G that do not cor-
respond to a μj which follows from Lemma 1 and the construction of μB(P2), which
concludes the argument. ��
We leave Theorem 1(ii) – which can be shown with similar arguments – without proof
and directly skip to the proof of the more general Theorem 2.

B Proof of Theorem 2

Proof. Without making any assumptions about (strong) boundedness of variables,
again, we want to show that there is a 1:1 correpsondence between the solu-
tion mappings of P1 joining with (SERVICE c P2) and the ones joining with

(SERVICE c P
FILTER′

P1

2 ). Again, the theorem trivially holds for c ∈ I \ dom(ep),
i.e. if c is not the IRI of a SPARQL endpoint. Otherwise, let now μ ∈ �P �G, then we
know for each μi ⊆ μ ∈ �P1�G there is a compatible mapping μj ⊆ μ ∈ �P2�Gc such
that for each join variable v ∈ var(P1)∩ var(P2) it holds that either: (i) v �∈ dom(μi),
(ii) v �∈ dom(μj), or (iii) μi(v) = μj(v). We now treat these cases separately to show

that μj ∈ �P
FILTER′

P1
2 �Gc in each case:

(i): since the FILTER expression in P
FILTER′

P1

2 only considers variables in dom(μi)
the FILTER leaves bindings for v in P2 unaffected.

(ii) : the FILTER expression in P
FILTER′

P1
2 evaluates to true, due to ¬bound(v)

(iii) : the FILTER expression in P
FILTER′

P1
2 evaluates to true, due to v = μ(v)

In total, we have shown that each �P �G ⊆ �P1�G �� �P
FILTERP1

2 �Gc .

For the other direction, it is easy to see that �P
FILTERP1
2 �Gc ⊆ �P2�Gc , i.e. again, the

rewritten query cannot deliver any additional results on the service side, which proved
the opposite direction. ��

Again, the proof for P
UNION′

P1
2 follows similar arguments.

12 Slightly abusing notation, when we write here μi ⊆ μ, we mean that μi is a submapping of μ,
i.e. that dom(μi) ⊆ dom(μ) and that μi(v) = μ(v) for all v ∈ dom(μi).



Toward the Web of Functions: Interoperable

Higher-Order Functions in SPARQL

Maurizio Atzori

Math/CS Department,
University of Cagliari,

Via Ospedale 72,
09124 Cagliari (CA), Italy

atzori@unica.it

Abstract. In this work we address the problem of using any third-party
custom sparql function by only knowing its URI, allowing the computa-
tion to be executed on the remote endpoint that defines and implements
such function. We present a standard-compliant solution that does not
require changes to the current syntax or semantics of the language, based
on the use of a call function. In contrast to the plain “Extensible Value
Testing” described in the W3C Recommendations for the sparql Query
Language, our approach is interoperable, that is, not dependent on the
specific implementation of the endpoint being used for the query, relying
instead on the implementation of the endpoint that declares and makes
the function available, therefore reducing interoperability issues to one
single case for which we provide an open source implementation. Further,
the proposed solution for using custom functions within sparql queries
is quite expressive, allowing for true higher-order functions, where func-
tions can be assigned to variables and used as both inputs and outputs,
enabling a generation of Web APIs for sparql that we call Web of Func-
tions. The paper also shows different approaches on how our proposal
can be applied to existing endpoints, including a SPARQL-to-SPARQL
compiler that makes the use of call unnecessary, by exploiting non-
normative sections in the Federated Query W3C Recommendations that
are currently implemented on some popular sparql engines. We finally
evaluate the effectiveness of our proposal reporting our experiments on
two popular engines.

1 Introduction

During the years, the Web enlarged its initial scope of place where to publish
static interlinked hypertexts. Standards such as HTTP enabled an incredible
diversity of applications. Recently, Linked Data has shown the huge potential
of having the Web as an unbounded, decentralized and free crowdsourced data
store where everyone can access and contribute. Nowadays, structured data can
be shared by a simple URI, in a similar way to HTML pages, where URIs can
link each others by using the RDF model, forming a huge graph. Each data
publisher provides a part of this graph, and through endpoints those subgraphs
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can be effectively queried by means of a powerful standard (by W3C) query
language, the sparql. When it was announced, Sir Tim Berners-Lee declared
that “SPARQL will make a huge difference” making the Web machine-readable.
More recently, as also detailed later in the paper, a number of researchers worked
on extending the relations between sparql and the Web of Data, allowing for
instance dynamic exploration of the linked data by dereferencing the URIs ap-
pearing in the query, and therefore not relegating sparql to be a language for
local data only.

In our work, we further embrace this research line, but instead of dealing
with the data, we focus on the computational power and expressivity of functions
that can be used within a query. While extending the language with user-defined
custom functions (sometimes called extension functions) represented by URIs is a
native feature of the language, the mechanism only works on the single endpoint
featuring that specific function. Instead, in this paper we envision a Web where
also functions can be openly published, making them available to all the users of
any other endpoint. We address the problem of practically realizing such Web of
Functions with a Remote Procedure Call (RPC) approach, that is, users can call
a function by only knowing its corresponding URI, as it is the case for the Web
of Data, while the implementation and the computational resources are made
available by the function publisher, as it happens with RPC and usual Web APIs.
In other words, we present a first step toward a new generation of Web APIs
available within any endpoint, to be used in sparql queries, and strictly coupled
with the Web of Linked Data. Our contribution enables the Web of Functions
with a surprisingly strong backward compatibility, since (a) it does not require
any change to current sparql specifications, (b) it does not require a special
implementation of the endpoint that declares and publish a custom function
and (c) only requires the definition of a call function on the querying endpoint.
Regarding the last point, we provide an open source implementation for the
required function, along with two other approaches making no requirements on
the querying endpoint, based on W3C sparql Federated Queries (FED). The
approaches are proved to work on Apache Jena and on any other endpoint that
implements the non-normative parts described in the FED Recommendations.

Organization. In Section 2, we review the related work. Section 3 introduces the
problem and the desiderata through simple examples. Section 4 describes our
solution based on a function to implement remote calls. In Section 5 we show
how to deploy the remote call functionality on existing endpoints, including Sec-
tion 5.3 where we show a pure sparql approach that under some hypothesis can
realize the Web of Functions with backward compatibility, through a SPARQL-
to-SPARQL compiler. In Section 6, we discuss notable aspects and limitations of
the approach. In Section 7 we show our outcomes experimenting our prototype
implementation on two popular engines and finally, in Section 8, we draw the
conclusions and identify possible future work in this research area.
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2 Related Work

In [1], Gregory Williams defines an approach to make the extension functions
interoperable. The paper suggests to act on the engine implementation of the
endpoint in order to allow each sparql engine to run code, specifically javascript
code, downloaded from third-party servers at query time. This allows any kind
of functions to be run on the sparql endpoint containing the data. Although
effective, that approach requires modifications of the way sparql functions are
published, with mandatory dereferenceability of functions, the development of
a code interpreter on each endpoint, other than security and other performance
issues already discussed in the original paper. Work in [1] is definitely an in-
teresting research proposal and present a non-backward-compatible way of im-
plementing the Web of Functions, with high costs in terms of sparql engine
codebase modifications. In contrast, our approach already works off-the-shelf in
existing sparql engines, as it is totally compliant with current sparql stan-
dards, without requiring any changes in the existing sparql endpoint codebase,
relying on RPCs made possible by the Federated Queries part of the sparql 1.1
standard.

Another interesting and related line of research is the one of query execution
through link traversal, in Olaf Hartig et al. [2–5], including SQUIN1, a query
interface for the Web of Linked Data based on these studies. In the same area
of research is DIAMOND [6, 7]. In our opinion these papers show the growing
trend of joining tools like endpoints and the sparql query language thought for
local usage, with the larger Web of Linked Data. We believe our work can be
considered in this research streamline, although focusing on functions instead of
data.

In our paper we also deal with the expressivity of sparql. Existing work that
focuses on its computational power and expressivity can be found in [8]. In [9]
we propose a simple function that enhances the computational power of sparql
by introducing recursive sparql functions.

In [10] a recent proposal to combine REST scalability with Linked Data ex-
pressivity is presented. The work is focused on the use of JSON-LD. While pow-
erful and related, their approach seems not to consider sparql endpoints as a
querying source. Our work is instead focused on envisioning a Web of Functions
where functions are callable from any endpoint, while minimizing (or avoiding
at all) technology changes to existing engine installations by leveraging the fed-
erated queries mechanism [11].

3 Problem Definition

In this Section we detail the problems in current custom functions that we are
addressing in this paper. In our opinion, there are two main issues that limit
the free use of “public” (that is, shareable, third-party) custom functions inside
sparql queries: interoperability and expressivity.

1 http://squin.org/

http://squin.org/
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3.1 Limited Interoperability

The first problem is that user-defined functions are not interoperable. In fact,
current official sparql extension function mechanism is based on the exploita-
tion of unspecified behavior in case of function errors, a sort of trick on the seman-
tics of the PrimaryExpression sparql 1.1 grammar rule, where expected error
values are instead used as an extension point to implement custom functions
in specific engines, including Virtuoso, Jena, Sesame and others. Specific imple-
mentations of sparql endpoints can therefore compute a function instead of
throwing an error, allowing the execution of custom user-defined functions miss-
ing in the sparql specification. The specification correctly states that “SPARQL
queries using extension functions are likely to have limited interoperability”, as
the custom function will only run on the endpoint implementing that specific
function. The custom function seems to be confined to the endpoint that imple-
ments it.

In order to better show the problem, let us stick to the following running exam-
ple and have some fun stealing names from cryptography. Suppose we are Alice,
the owner of the domain alice-server.org,with semantic data exposed as linked
open data and through an endpoint at http://alice-server.org/sparql. We
want to query our data using a complex function that is not part of stan-
dard sparql. That function has been already implemented in Bob’s endpoint,
http://bob-server.org/sparql, and he called it http://bob-server.org/fn/
complexFunction.

The desiderata for Alice would be to run on her own endpoint a query similar
to the following:

PREFIX bob: <http://bob-server.org/fn/>

SELECT *

WHERE {

# within Alice data, find useful values for ?arg1, ?arg2 and ?arg3

...

# now use Bob’s function

FILTER(bob:complexFunction(?arg1, ?arg2, ?arg3) )

}

Note that this is perfectly compliant with the syntax of sparql, but nonethe-
less it is not going to work on Alice’s endpoint because it does not recognize the
semantics of bob:complexFunction. On the other end, if she runs the query on
Bob’s endpoint, the function will be working but Alice data would be inacces-
sible. A simple trick could be to use federated query on Bob’s endpoint to get
Alice data and then use bob:complexFunction. Unfortunately, this is not work-
ing in the general case where we also want to use functions from other function
providers, such as carol:otherFunction. Therefore, custom functions such as
bob:complexFunction and carol:otherFunction are totally acceptable from
a syntactic point of view, but unfortunately they are not interoperable, i.e.,
difficult or impossible to be used by other endpoints such as Alice’s. Another
important thing is that, in our view, functions should be utilizable by just shar-
ing the URI, not also the endpoint address. This is a principle in the Web of
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Linked Data, where anyone can access and refer to data by just referring to its
URI. Our desiderata requires the same principle, applied to functions. While the
syntax of sparql already allows functions to be represented as URIs, they are
not usable unless the endpoint that defines their semantics is also known and,
even worse, currently the same URI may have different semantics on different
endpoints.

3.2 Limited Expressivity

As far as we have seen, the syntax of sparql is ready for open functions. In fact
the query shown above, that Alice would like to run, validates. Nevertheless, in
terms of expressivity, the sparql language lacks of basic syntax to handle higher-
order functions (HOF) effectively. First let us review the previous query example
in terms of language expressivity. Function names are URIs, and therefore can
be assigned to variables. Functions can be called passing variables, therefore the
syntax allows functions to accept functions as input, and also to return functions.
Further, although our examples always use functions as FILTER expressions for
the sake of readability, it is well-known that sparql does not relegate functions
to this usage, for instance we can use

BIND( bob:complexFunction(?arg1, ?arg2, ?arg3) AS ?result )

assigning the result of a function call to a variable. This may apparently and
surprisingly put sparql in the class of languages that natively support higher-
order functions. Unfortunately expressivity is strongly limited as we are going
to show in the following example.

SELECT *

WHERE {

# within Alice data, find useful values for ?arg1, ?arg2 and ?arg3

...

# now Alice also binds ?f to a URI that represents a function

# for instance, suppose ?f is bound to alice:fn

BIND(alice:fn AS ?f)

...

# now Alice wants to call the ?f function with arguments

FILTER( ?f(?arg1, ?arg2, ?arg3) )

}

As before, in the last line we want to call a function with 3 arguments, but here
the function is assigned to a variable, whose value is known only at runtime. This
is not valid syntax in sparql 1.1 recommendation. This is not only a syntactic
sugar restriction, it strongly limits the expressivity of function usage in sparql,
since e.g., we cannot call a function which is the result of another function call.
Here another related example of unfeasible query:

PREFIX alice: <http://alice-server.org/fn/>

SELECT *

WHERE {

# within Alice data, find useful values for ?arg1, ?arg2 and ?arg3



Toward the Web of Functions 411

...

FILTER( alice:memoize(alice:fn) (?arg1, ?arg2, ?arg3) )

}

The function alice:memoize, that is supposed to memoize the input function
alice:fn by caching the computed result, returns an (unnamed) function that
should be called with the three arguments. Notice that in this example all the
functions are local on purpose (i.e., not referring to Bob’s endpoint) to better
show that this is not a problem of interoperability.

In the following Section, we propose our simple solution to handle both lim-
itations while sticking on the current syntax of sparql, i.e., without proposing
unlikely future language extensions and changes.

4 A Function to Rule Them All

We found a simple and elegant solution to the problem of expressivity just de-
scribed, that also strongly reduces the problem of interoperability to one single
case. Let us show how the proposed approach can be applied in practice, and
later we will detail how the remaining interoperability issue can be solved.

Given a query such as:

{

?arg a :UsefulThing # some interesting stuff

FILTER( fn:thirdPartyFunction(?arg) )

}

involving a custom function, we propose to write the last line as:

FILTER( wfn:call(fn:thirdPartyFunction , ?arg) )

where the prefix wfn is a loosely short for “Web of Functions”, defined as:

wfn : <http://webofcode.org/wfn/>

The simple expedient of using wfn:call to call a function solves the expressivity
problem of Section 3.2. In fact, now we can handle functions in variables:

?function a :UsefulFunction # match to a function

FILTER( wfn:call( ?function , ?arg) )

as well as nested calls. Please notice that since the expressivity problem of Sec-
tion 3.2 originates from a syntax limitation in sparql, any solutions will have
to deal with the syntax of the query. We believe that our proposal of using a
“call” function can be considered, concerning the syntax, an acceptable solution
to the problem. In fact, it is similar to already well-known functions (e.g., apply
or funcall in other functional languages) and, more importantly, it does respect
the syntax of sparql as per current W3C recommendations, therefore a viable
solution even for existing endpoints.

If this proposed way of formulating a query involving function calls is used,
then the only required custom function to be implemented on an endpoint is
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wfn:call. In other words, its use solves the expressivity issue and reduces the
interoperability issue to one special case, the function wfn:call itself.

In the following, we describe what we expect from the execution of the call
function, in order to implement it. Then, in Section 5 we devise three different
approaches to implement this function, including a pure sparql implementation,
detailed in Section 5.3, that works under some assumptions.

4.1 Semantics of wfn:call

The function wfn:call, as we have seen, is a custom function that takes one
argument, which is a constant or a variable containing an IRI representing a
function, and then zero or more other arguments (either constants or variables).
Whenever the function is called, it takes the first argument, the function URI,
and call it passing all the remaining arguments. The semantics is therefore the
same of funcall in the Lisp language.

Remember that given an IRI, there is no explicit semantics of what code
should be run, since as we already mentioned, it is left to the specific endpoint
implementation. In our approach, calling a function means to execute a sparql
query over the endpoint that defines it. Here is the tricky part, as there is no way
in sparql to know the correct endpoint that defines a custom function given a
function IRI. We propose three possible answers to this problem:

Explicit Reference List. The endpoint has a user-defined list of (function
URI, endpoint URI) pairs, therefore when a function should be called, the
correct endpoint is found by matching that function URI. This approach
requires a static configuration – while restrictive, this has the benefit of
reducing the risks of running functions by only allowing known trusted end-
points.

Dereferenceable Functions. Whenever a function should be called, it is
dereferenced. The entity should be of type sd:Function and also have a
property sd:endpoint that points to the endpoint URL that implements
the dereferenced function. Here we are reusing the official sd prefix defined
in the sparql Service Description recommendation. Dereferecing functions
is a feature already mentioned and proposed in literature (e.g., see [1]), but
currently not described in the recommendation nor used on a widespread ba-
sis. A disadvantage of this approach is that it cannot be implemented using
pure SPARQL since dynamic dereferencing (that is, the URI to be deref-
erenced is contained in a variable) is not allowed in sparql. Anyway, we
suggest to make function URIs dereferenceable even when this approach is
not used to implement wfn:call. We also notice that some RDF attributes
available through function dereferenceability may also inform on the compu-
tational complexity and other function characteristics (number of arguments,
returned type, etc.). In this paper we only focus on the problem of running
remote custom functions without proposing a specific ontology for functions
and algorithms.
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Function-to-Endpoint IRI pattern. By sticking on a URI pattern, we may
force that given a function URI, there is a deterministic way to find its end-
point. We propose to remove all the ending chars different from “/” and then
append the string “sparql”. That is, if the function IRI is alice:myFunction
then the computed endpoint URI will be alice:sparql. To the best of our
knowledge, this is an original proposal that solves the problem. It also al-
lows similar functions (determined by the URI prefix) to be implemented by
the same endpoint and viceversa; also, the computation is fast and can be
implemented in pure sparql as we are going to show in Section 5.3.

As we have seen, all of these 3 strategies to finding the endpoint associated to
a function URI have pros and cons. In the following, unless otherwise noted, we
assume that the Function-to-Endpoint IRI pattern strategy is used.

By using our running example, if Bob wants to share a custom function, he
can create an endpoint such as http://bob-server.org/fn/sparql where his
custom functions, for instance bob:complexFunction and bob:anotherCoolFn,
are implemented. So, now that we know which endpoint should be queried for
a given IRI function, the wfn:call can query the correct endpoint and execute
the custom function. It will proceed by following these protocol steps:

1. compute the endpoint URI by using one of the alternatives mentioned earlier;

2. make a sparql query to the remote endpoint using the given parameters as
arguments for the remote custom function, binding the results to a variable;

3. get the returning value, and use it as a returning value for the call function;
in case of error, the same error must be thrown by the call function, as if
the function was run locally.

For nested calls, the inner calls should be computed first, as usual. This also
means that every remote call will not contain any reference to the custom func-
tion wfn:call in the arguments since it should be already resolved.

5 Implementing and Executing the wfn:call Function

Once we reduced all the interoperability issues arising from the use of custom
functions to one single case, it remains to solve the interoperability issue of the
function wfn:call. In other words, we need to assure that the wfn:call function
will be recognized and run by the querying endpoint.

We devise three approaches here to implement the wfn:call on an endpoint:
(1) through the extensible testing function on the querying endpoint; (2) through
a middleware third-party endpoint implementing the function acting as a proxy
between the querying endpoint and the remote endpoint that implements the
custom function; and (3) through a SPARQL-to-SPARQL compiler (a query
rewriting tool).

In the following we detail all of these three solutions, enlightening both posi-
tive aspects and disadvantages.
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5.1 Native Support on the Querying Endpoint

The simplest way to allow the use of wfn:call is to implement it in the sparql
engine. This can be done by vendors or by the user, as a custom function, and
this is exemplified in the upper path of Fig. 1. We implemented that function in
Java2 on an Apache Jena/Fuseki triplestore, as shown later in the Experiments
section. Notice that such implementation should be implemented only on the
querying endpoint. For instance, the following call:

VALUES (?arg1 ?arg2 ?arg3) {("1st" "2nd" "3rd") }

FILTER( wfn:call(bob:complexFunction, ?arg1, ?arg2, ?arg3) )

will be caught by the sparql processor (also known as ARQ in Apache Jena) and
executed by a Java class3 that extends FunctionBase. The Java implementation
will use one of the strategies in the previous section to compute the endpoint’s
URI associated with the bob:complexFunction function. Then, it will run on
Bob’s endpoint a query such as the following4:

SELECT ?result

WHERE {

BIND( <http://bob-server.org/fn/complexFunction>("1st,"2nd","3rd")

AS ?result)

}

obtaining the result computed in the remote endpoint. Notice that at the time
of running the Java code, arguments are bound and therefore their values can
be used in the query.

This solution will work, with the only drawback of requiring a native imple-
mentation of wfn:call on the endpoint. The next approaches show that under
some hypothesis it is not necessary to implement it on the querying endpoint.

5.2 Proxy-Based Federated Query

If we cannot rely on a native implementation in our endpoint (e.g., we do not
have privileges to register a custom function), we can still use the wfn:call

implemented on a third-party commodity endpoint by using the sparql 1.1
Federated Query mechanism, under a reasonable hypothesis discussed later in
this subsection.

2 Available at http://atzori.webofcode.org/projects/wfn/
3 See https://jena.apache.org/documentation/javadoc/arq/com/hp/hpl/jena/

sparql/function/FunctionBase.html for details; in OpenLink Virtuoso it will re-
quire a C program, and current version forces the use of the prefix bif (built-in
function).

4 The actual query is slightly more complex in order to be run on those endpoints
(such as Virtuoso) that do not support the use of BIND without a previous graph
pattern matching; on some other endpoints (e.g., Apache Jena) this is a valid sparql
query.

http://atzori.webofcode.org/projects/wfn/
https://jena.apache.org/documentation/javadoc/arq/com/hp/hpl/jena/sparql/function/FunctionBase.html
https://jena.apache.org/documentation/javadoc/arq/com/hp/hpl/jena/sparql/function/FunctionBase.html
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Fig. 1. The workflow of the user query in case (a) of an endpoint supporting wfn:call

and (b) of a standard endpoint, not supporting the extension. In the second case, the
tool described in our paper can convert the query into a standard one, that can be run
on any endpoint.

This approach is based on rewriting each part of the query where the call
function appears. For any occurrence of wfn:call, starting from inner nested
calls and continuing to outer calls, the expression is substituted with a SERVICE

call to the commodity call-featured server. For instance, let us take Alice’s query
(PREFIXes are removed for the sake of readability):

SELECT ?arg1

WHERE {

# within Alice data, find useful values for ?arg1, ?arg2 and ?arg3

...

# now want to use remote Bob’s function

FILTER( wfn:call(bob:complexFunction, ?arg1, ?arg2, ?arg3) )

}

The query will not be changed except for the last FILTER line, that will be
replaced with the following lines, exploiting the federated query mechanism:

SERVICE wfn:commodityEndpoint {

BIND ( bob:complexFunction(?arg1, ?arg2, ?arg3) AS ?tmp_result1 )

}

FILTER( ?tmp_result1 )

This simple expedient allows the part of the query using the call function to be
computed against a commodity endpoint known to feature it.

There is a hidden hypothesis under which this federated query will work. The
tricky part is that function arguments (?arg1, . . . ) are bound, but such bind-
ings are not guaranteed to be passed to the remote server according to normative
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W3C specifications. Despite this, a non-normative part of the Federated Query
specifications (section 2.4 Interplay of SERVICE and VALUES 5) suggests to
pass such bound values to the remote server for optimization purposes. In fact,
without passing any constraint to the remote server, most of the federated queries
would be too long to be computed, making the Federated Query mechanism use-
less. We verified on two popular sparql engines, namely Apache Jena/Fuseki
and OpenLink Virtuoso, that on their last versions they actually substitute vari-
ables with their values whenever they perform a SERVICE query, without even
using the VALUES keyword. Therefore, assuming that a performance optimiza-
tion strategy has been implemented (with or without VALUES) and used by the
engine, variable values (bindings) are actually passed to the remote commodity
server, that can use them to finally compute the wfn:call function6.

The exploitation of the performance optimization already implemented in a
number of existing endpoints allows therefore the use of higher-order custom
functions through a proxy endpoint, without having to implement or register
wfn:call on the querying endpoint. We consider such exploitation for a com-
pletely different problem (implementing remote calls on sparql) an original
contribution of this paper.

5.3 A Pure SPARQL Approach Based on SPARQL-to-SPARQL
Query Compiling

In both previous approaches we had to implement wfn:call (in the querying
endpoint or in the proxy endpoint). Here we are going to show how sparql
can be turned into a fully HOF-featuring language without relying on the im-
plementation of a call function nor introducing changes to the current sparql
syntax, We found existing sparql specification mechanisms that can be used to
implement it as a query rewriting tool. This way we can construct a SPARQL-
to-SPARQL compiler able to rewrite a sparql query that uses wfn:call into
another that does not, therefore usable on current endpoints not implementing
the call function.

Firstly, we show that through the Function-to-Endpoint IRI pattern approach
described above we can dynamically compute the endpoint address given a func-
tion IRI, by using only sparql, which is not possible in general by dereferencing,
and very limited by using, instead, a predetermined list of known IRI. Secondly,
we generate a pure sparql query usable within a sparql query from any end-
point by exploiting the federated querymechanism. Thus, we propose a standard-
compliant technique to allow easily shareable third-party functions to be used
within sparql queries from any existing endpoint, assuming the implementation
of two non-normative parts in the Federated Query specifications. We stress that,
unlike other proposals, this is possible without changing sparql specifications
nor any codebase of existing engine implementations, since the compiled query

5 See http://www.w3.org/TR/sparql11-federated-query/#values
6 In case of VALUES, the proxy can read the bindings and rewrite the query to be sent
to the final endpoint, without using the VALUES keyword

http://www.w3.org/TR/sparql11-federated-query/#values
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is a standard sparql 1.1 query where wfn:call does not appear, and other cus-
tom functions are called remotely against the appropriate endpoint. Of course,
the assumption that non-normative parts are implemented does not always hold,
and therefore approaches in previous sections are still interesting. Anyway, we
verified that on the popular Apache Jena/Fuseki engine the two non-normative
parts required for this approach actually hold, and therefore this pure-sparql
approach may have a practical impact on some existing installations.

The SPARQL-to-SPARQL compiler works as described next. As in the pre-
vious proxy-based approach, any occurrence of wfn:call will be replaced with
a SERVICE call. For Alice’s query:

SELECT ?arg1

WHERE {

# within Alice data, find useful values for ?arg1, ?arg2 and ?arg3

...

# now want to use remote Bob’s function

FILTER( wfn:call(bob:complexFunction, ?arg1, ?arg2, ?arg3) )

}

the compiler will not change the query except for the last FILTER line, this time
without using any proxy endpoint, relying on the Bob’s endpoint directly:

SERVICE bob:sparql {

BIND ( bob:complexFunction(?arg1, ?arg2, ?arg3) AS ?tmp_result1 )

}

FILTER( ?tmp_result1 )

Now let us show the case where the function URI is not known at compile time.
The query that Alice wants to run may contain a variable ?f bound to a function:

# now Alice wants to call the ?f function with arguments

FILTER( wfn:call(?f, ?arg1, ?arg2, ?arg3) )

To solve this, we propose the use of another non-normative Section of the W3C
Federated Query Specification (Section 4 titled SERVICE Variables7), that al-
lows to use SERVICE against dynamically computed endpoints. Thus, in this case
the compiler will convert the previous FILTER line into the following:

# dynamically compute the endpoint URI

BIND( URI(REPLACE( STR(?f) ,"/[^/]*$" , "/sparql" ) )

AS ?tmp_endpoint1)

SERVICE ?tmp_endpoint1 {

7 See http://www.w3.org/TR/sparql11-federated-query/#variableService. We
verified that at least on Apache Jena this non-normative part has been implemented.
Note that the query is valid sparql, since the syntax for SERVICE VAR is norma-
tive, but some vendors may require user configuration or have a different semantics
for SERVICE variables.

http://www.w3.org/TR/sparql11-federated-query/#variableService
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BIND ( wfn:call(?f, ?arg1, ?arg2, ?arg3) AS ?tmp_result1 )

}

FILTER( ?tmp_result1 )

Here we are featuring a query that has to deal with the expressivity syntactic
issue of Section 3.2. Therefore, this time wfn:call must appear in the query to
maintain syntactic compatibility with sparql standard. Anyway, it should be
noted that it is performed on the remote server publishing the custom function,
that we may assume it is a call-featuring engine. Also notice that the imple-
mentation of the wfn:call in Bob’s engine is straightforward (a simple query
rewriting), since at the time of execution the variable ?f is always instantiated
by Alice’s endpoint, and it is assumed to point to a Bob’s function.

This last example also helps us to show the implications of the different alter-
natives in the previous section, namely Explicit Reference List, Dereferenceable
Functions, and Function-to-Endpoint IRI pattern. Having an Explicit Reference
List with a known URI can be used to convert, within the query, a function
URI into a sparql endpoint URI, after importing the list by using, e.g., the
FROM clause. Although working, in this approach it is not clear who should be
in charge of maintaining such a centralized list. We believe it is in contrast with
the decentralized architecture of the Web of Linked Data. Dereferenceability of
function URIs is a generally desirable behaviour, but unfortunately the sparql
language does not seem to support dereferencing a URI contained in a variable8,
therefore a pure sparql compiler would not be possible. Instead, as we have
shown, the last approach based on Function-to-Endpoint URI pattern can work
in a SPARQL-to-SPARQL tool without drawbacks except for the acceptable
constraint on the relation between function’s and endpoint’s URIs.

6 Discussion on the Proposed Approach

In the following, we discuss some notable aspects arising when using custom
functions through the “function-as-a-service” RPC approach we have presented.

Decoupling Functions and Data. Since the basic problem addressed in this paper
is about having data and functions in different servers, we should note that de-
coupling them takes consequences on the possible interactions. For instance, the
result of a function that computes the palindrome of a given string only depends
on the input string. Such palindrome function has no interaction problem. We
notice that almost all the standard sparql functions behave like this. On the
contrary, a function computing the length of a minimum path between two IRIs
also needs the whole graph to get the result, not only the two given IRIs. The
same limitation occurs when dealing with blank nodes, which are not sharable
across SPARQL endpoints by definition. A consequence is that functions han-
dling RDF collections (e.g., rdf:List of W3C RDF Schema 1.1 ) cannot be

8 Legacy, non standard solutions may exist on specific engines; for instance, the Vir-
tuoso engine supports the input:grab-var pragma to dereference the content of a
variable.



Toward the Web of Functions 419

computed with the call function, since only a reference to the first element is
transferred (not the whole collection). Although in a true Linked Open Data this
is still feasible, because by dereferencing the IRIs the server implementing such a
function can fetch the whole graph, this may lead to reduced performance. Also
notice that dereferenceability is not mandatory for this approach: the server im-
plementing the function can run a sparql query against the first endpoint to
get the other data needed to answer9.

Performance. Being outsourced, performance on the computation of custom
functions depends on other servers. The approach also has an intrinsic perfor-
mance limitation, requiring the input data to be passed to the external server,
and then getting the answer back. Our experiments show that performances are
acceptable in many cases, whenever the number of function calls (determined by
the number of possible arguments matching locally) is not too large.

The system used to implement the federated query protocol can also con-
tribute to improve the performances. For instance, function calls can be com-
pacted to a single query with the VALUES keyword used to specify multiple set
of function arguments, reducing delays due to network latency.

True HOF. Our HOF approach allows functions to be used as input and output.
In fact, there is no technical constraint that avoids custom functions to be created
at runtime. For instance, we implemented a function compose that given two
other functions returns a dynamically-generated function URI that, whenever
used, returns the composition of the two given functions [12].

Security. Our approach based on computing functions on someone else’s server,
which is declaring the function and providing the implementation, drastically
reduces Denial of Services and more serious security threats feasible in other
approaches [1], where on the contrary the calling endpoint engine does run un-
known code dynamically downloaded from another server. Since we are using
only existing standards, most of the security issues known and related to al-
ready accepted mechanisms, such as federated queries. Anyway, we remark that
enhancing expressivity necessarily also leads to enhanced capabilities for at-
tackers, allowing for instance new kinds of Denial of Services (DoSs) attacks
derived by the composition of functions. We suggest an implementation with
user-configurable timeouts, that will kill any external function call after a deter-
mined period of time. While this paper is not focused on security issues related
to querying untrusted federated endpoints, this should mitigate a number of
possible attacks.

Privacy. Whenever we use a remote custom function, we are providing argu-
ments to a remote (potentially untrusted) endpoint server. Likewise sparql
Federated Queries, privacy issues must be taken into account before sharing
sensitive data with untrusted servers.
9 Although this may introduce interoperability problems in case the data is not shown
by the endpoint.
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7 Experimental Evaluation

In order to verify the effectiveness of our approaches, we implemented wfn:call

on the Apache Jena/Fuseki endpoint, using the Extensible Value Testing mecha-
nism of sparql, available at http://atzori.webofcode.org/projects/wfn/.

7.1 Time Performance of wfn:call

Running a function through a Remote Procedure Call mechanism introduces
network delays that must be evaluated. We computed the concatenation of two
strings on 3 different settings: (a) locally, i.e., without the use of wfn:call, (b)
remotely, against a Jena server, and (c) remotely, against a Virtuoso server. Re-
sults are shown in Table 1. Differences are negligible considering that times are in
milliseconds. We also performed the experiment on a slower network connection,
obtaining no sensible differences, requiring approx 5s for every setting. There-
fore, we conclude that wfn:call is effective in terms of performance, executing
queries in the same order of magnitude (x3.1) even in the worst-case setting.

Table 1. Time performance in different query settings

Setting Time (ms) Overload (times)

local execution of fn:concat 46 x1 (ref)
execution of fn:concat on a remote Jena server 71 x1.5
execution of fn:concat on a remote Virtuoso server 144 x3.1

7.2 Experiments on the Current Feasibility of a SPARQL-to-
SPARQL Compiler

According to Lee Feigenbaum, Co-Chair of the W3C SPARQL Working Group,
“SPARQL 1.1 defines a mechanism to communicate results from one endpoint
to another, but this is not currently widely deployed”. We ran a number of
queries against the latest versions10 of Apache Jena/Fuseki and and OpenLink
Virtuoso to verify their implementation of the Federated Query protocol and
non-normative parts. We found that both engines optimize federated queries
sending bindings to the remote endpoint, although they use substitution instead
of the suggested VALUES clause. For each engine, we found a federated sparql
query that can take the place of the wfn:call function. Further, only Apache
Jena implements SERVICE VAR where variables can contain references to remote
endpoints. More information available at the above web site.

8 Conclusions and Future Work

We have shown how the current specification of the sparql language allows
the use of higher-order custom functions, which are also interoperable. This is

10 Jena v. 2.11.1, Fuseki v. 1.0.1, Virtuoso Opensource Single Server Edition v.
07.10.3209 – all running on a Linux box.

http://atzori.webofcode.org/projects/wfn/
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possible through the use of a specific function, or by query rewriting techniques
developed in the paper without introducing mandatory language extensions on
some engines. We believe this may be the first step toward a novel view of the
Web as a place holding code and functions, not only data as the Linked Data is
greatly doing. The Semantic Web already shifted URIs from pages to conceptual
entities, primarily structured data. We believe that among these concepts there
should be computable functions. In other words, Semantic Web and its sparql
language should include web services as first class resources, not only static Web
of Data, enabling what could be called the Web of Functions. As a future work
we plan to explore this research direction by also including the property functions
(sometimes called magic properties) and possible integrations with user-friendly
sparql interfaces such as SWiPE [13].

Acknowledgments. This work was supported in part by the RAS project
CRP-17615 DENIS and by MIUR PRIN 2010-11 project Security Horizons.
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Abstract. Searching for associations between entities is needed in many
areas. On the Semantic Web, it usually boils down to finding paths that
connect two entities in an entity-relation graph. Given the increasing
volume of data, apart from the efficiency of path finding, recent research
interests have focused on how to help users explore a large set of associ-
ations that have been found. To achieve this, we propose an approach to
exploratory association search, called Explass, which provides a flat list
(top-K) of clusters and facet values for refocusing and refining the search.
Each cluster is labeled with an ontological pattern, which gives a concep-
tual summary of the associations in the cluster. Facet values comprise
classes of entities and relations appearing in associations. To recommend
frequent, informative, and small-overlapping patterns and facet values,
we exploit ontological semantics, query context, and information theory.
We compare Explass with two existing approaches by conducting a user
study over DBpedia, and test the statistical significance of the results.

Keywords: Association exploration, clustering, exploratory search,
faceted search, ontological association pattern.

1 Introduction

Searching for associations (a.k.a. relationships) between two entities is needed in
many areas. For instance, a security agent may be interested in the associations
between two suspected terrorists. A historian may study the associations between
two politicians in history. Researchers may be curious about the associations
between each other in an academic network.

Carrying out association search over unstructured data on the Web, e.g. web-
page text [15], is not an easy task because direct relations between entities need
to be extracted from ambiguous text, and finding indirect associations may even
have to integrate information from multiple sources. In recent years, association
search has been facilitated by the availability of graph-structured data on the
Semantic Web, which exactly describes entities and the relations between them,
and can relatively be easily integrated from different sources. In such an entity-
relation graph, associations between two entities are explicitly captured by the
paths that connect these two vertices. Association search is then transformed
into path finding [3], and it faces two challenges when entity-relation graphs

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 422–437, 2014.
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become very large: how to efficiently find associations, and how to help users
explore a large set of associations that have been found. The latter challenge will
be addressed in this paper.

We meet this challenge by realizing exploratory search for associations. Ex-
ploratory search [16] is designed to serve complex and uncertain information
needs, which is often the case in association search. It aims to help users ex-
plore, process, and interpret a large set of search results via continuous and
exploratory interaction, mainly based on statically defined facets or dynamically
generated clusters [9]. Distinguished from existing work on exploratory associa-
tion search [10,19], our contribution is summarized as follows.

– Our approach to association exploration, called Explass, provides a flat list
(top-K, rather than a hierarchy [19]) of clusters for refocusing. Each cluster
is labeled with an ontological association pattern (or pattern for short),
which makes up of classes and relations and preserves the path structure of
association. It can give users a conceptual summary of the associations in
the cluster.

– To obtain clusters, i.e. to recommend patterns, we propose to firstly mine
all the significant patterns that are highly relevant to the query context by
formulating and solving a data mining problem, and then find top-K ones
that are as frequent and informative as possible while sharing small overlap
between each other by formulating and solving an optimization problem.

– In this novel solution, the frequency of a pattern reflects its relevance to
the query context. The informativeness of a pattern is learned from the
entity-relation graph according to information theory. The overlap between
patterns is identified based on ontological semantics and query context.

– Further, Explass integrates patterns with facet values, which are classes of
entities and relations appearing in associations, and can be used to refine the
search as filters. Rather than showing all of them [10], we adapt the above
solution to recommend top-K ones. We will show that patterns and facets
are complementary in terms of usage in association exploration.

– We implement a prototype of Explass based on DBpedia. To investigate how
patterns and facets help users explore associations in practice, we compare
Explass with two existing approaches by conducting a user study, and test
the statistical significance of the results.

The remainder of the paper is structured as follows. Section 2 discusses related
work. Section 3 presents an overview of Explass. Section 4 gives some preliminar-
ies. Section 5 and 6 describe the recommendation of patterns and facet values,
respectively. Section 7 reports a user study. Section 8 concludes the paper.

2 Related Work

Definitions of Association. Given an entity-relation graph, association be-
tween entities has various definitions. Anyanwu and Sheth [3] defined four types
of associations, in which path-based association has received the most attention
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and is adopted by this paper. Among other definitions, in REX [6], an association
conforms to a certain constrained graph pattern, and is obtained by combining
paths. In Ming [12], an association between a set of entities is a connected sub-
graph containing all of them. In this paper, we will not address these different
definitions, and will only deal with path-based association.

Association Discovery and Ranking. Discovering path-based associations
boils down to finding paths in an entity-relation graph, which is a challenge
when the graph is large, and has attracted considerable interest [7,11]. However,
what we focus on in this paper is a problem that follows, namely how to help
users explore a large set of associations that have been found. So far, major
efforts addressing this issue were made to appropriately rank associations so that
more important ones could be shown earlier. Existing ranking methods exploit
various structural features of an association [1,2], consider query relevance [20],
and produce personalized results [5]. Complementary to ranking, another line of
research builds on exploratory search, and our approach belongs to this category.

Exploratory Association Search. Exploratory search [16] serves complex
and uncertain information needs, and expects search systems to facilitate cogni-
tive processing and interpretation of a large set of search results via continuous
and exploratory interaction that goes beyond lookup and ranking. Facets and
clustering are two popular methods for realizing this [9]. Facets are usually stat-
ically defined, whereas clustering lets search results speak for themselves. Both
facets and clustering have been widely adopted in Web search and, in particu-
lar, in entity search [14,17]. Recently, they have also been adopted in association
search [10,19]. Among existing attempts, RelFinder [10] employs classes of enti-
ties and relations appearing in associations as facet values for refining the search
and filtering associations. RelClus [19] organizes associations inclusively into a
hierarchy of clusters for refocusing, where each cluster is labeled with a pattern.
In this paper, we realize exploratory association search in a new way. Our Ex-
plass integrates both clusters (i.e. patterns) and facets (i.e. classes and relations)
and, in particular, it provides a flat list (top-K) of informative patterns, thereby
avoiding deep and complicated hierarchical organization as well as very gen-
eral and meaningless high-level patterns met on RelClus. Technically, different
from [10,19], we give our attention to the recommendation of patterns and facet
values, and consider their frequency, informativeness, and overlap by exploiting
ontological semantics, query context, and information theory. We will compare
Explass with RelFinder and RelClus in a user study.

3 Overview of Explass

Before formally introducing Explass, in this section, we illustrate the exploration
operations it supports. A prototype based on DBpedia is available online.1

As illustrated in Fig. 1, after obtaining a set of associations between two enti-
ties, Explass recommends a set (top-K) of path-structured patterns (cf. Sect. 5)

1 http://ws.nju.edu.cn/explass/

http://ws.nju.edu.cn/explass/


Explass: Exploring Associations between Entities 425

Fig. 1. A prototype of Explass based on DBpedia

and a set (top-K) of facet values (cf. Sect. 6) for further exploration. Firstly,
all the associations matching a recommended pattern are clustered and placed
under this pattern, which provides a conceptual summary of these associations.
It is followed by the number of these associations in parentheses, and is expand-
able/collapsible to show/hide them for refocusing. Associations not matching
any recommended pattern are placed at the end. Secondly, a pattern can also be
used as a filter to refine the search. After that, search results will be limited to
those matching this pattern, and all the recommendations will be re-computed.
Filters in use can be canceled. Thirdly, classes of entities and relations appearing
in associations comprise facet values, each of which is followed by the number of
associations to expect if using this class/relation as a filter to refine the search
and limit search results to those containing its instance/occurrence.

4 Preliminaries

Table 1 and Fig. 2–4 comprise a running example in this paper.
Let ΣE, ΣC , ΣR be the sets of all entities, classes, and relations (i.e. proper-

ties connecting entities), respectively. An entity is an instance of one or more
classes, as illustrated in Table 1. For each class c, let I(c) be the set of all its
instances. Classes are organized into a class hierarchy describing the subclass-
superclass relation denoted by �C , as illustrated in Fig. 3. At the top of the
class hierarchy, ENTITY represents a superclass of all other classes, and every
entity is an instance of this class. Similarly, a relation hierarchy describing the
subrelation-superrelation relation denoted by �R is illustrated in Fig. 4, the top
of which is called RELATED.

Entities and the relations connecting them form an entity-relation graph,
as illustrated in Fig. 2, which is formalized as a labeled directed graph G =
〈V,A, s, t, lV , lA〉, where

– V is a finite set of vertices,
– A is a finite set of directed arcs,

ENTITY
RELATED
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Table 1. Entities and Their Classes

Entity Class

Alice, Bob Person, ENTITY

PaperA, PaperB, ConfPaper,
PaperC, PaperD Publication, ENTITY

ArticleA
JArticle,
Publication, ENTITY

ConfA, ConfB Conference, ENTITY

Alice Bob

PaperB
PaperC

PaperD ArticleA

firstAuthor

cites

cites
extends

secondAuthor

firstAuthor

firstAuthor

ConfB
inProcOf

chair

PaperA
secondAuthor

inProcOf ConfA
reviewer

Fig. 2. An entity-relation graph

ConfPaperJArticle

Publication Conference Person

ENTITY

Fig. 3. A class hierarchy

firstAuthor secondAuthor

author

reviewer chair

role

RELATED

extends

citesinProcOf

Fig. 4. A relation hierarchy

– s : A �→ V returns the source vertex of each arc,
– t : A �→ V returns the target vertex of each arc,
– lV : V �→ ΣE returns the unique label of each vertex, which is an entity, and
– lA : A �→ ΣR returns the label of each arc, which is a relation.

An association from an entity eS to an entity eE comprises the labels of
the vertices and arcs (i.e. entities and relations) in a path in G from eS to eE
where no vertices are repeated and arcs not necessarily go the same direction. To
differentiate between the two directions of an arc, the label r of each “reverse” arc
going from eE to eS is substituted by a pseudo-relation ˆr. In particular, ˆri �R

ˆrj if and only if ri �R rj ; and for the top relation, ˆRELATED = RELATED. Then
formally, corresponding to a path v0a1 · · · anvn from eS = lV (v0) to eE = lV (vn)
which is an alternating sequence of vertices and arcs, an association of length n
from eS to eE is an alternating sequence of relations and entities, r1e1 · · · en−1rn,
beginning and ending with a relation, and subject to

– for 1 ≤ i ≤ n− 1, ei = lV (vi), and
– for 1 ≤ i ≤ n, if s(ai) = vi−1, then ri = lA(ai); otherwise, ri = ˆlA(ai).

For instance, the entity-relation graph in Fig. 2 contains five associations of
length 3 from Alice to Bob:

Z1 : ˆsecondAuthor PaperA inProcOf ConfA reviewer

Z2 : ˆfirstAuthor PaperB inProcOf ConfB chair

Z3 : ˆfirstAuthor PaperB cites PaperC firstAuthor

Z4 : ˆsecondAuthor PaperD ˆcites PaperC firstAuthor

Z5 : ˆsecondAuthor PaperD ˆextends ArticleA firstAuthor

(1)

An ontological association pattern (or pattern for short) provides an abstrac-
tion of association by substituting entities with classes they belong to and op-
tionally substituting relations with their superrelations. More formally, a pattern

Alice
Bob
Person
ENTITY
PaperA
PaperB
ConfPaper
PaperC
PaperD
Publication
ENTITY
ArticleA
JArticle
Publication
ENTITY
ConfA
ConfB
Conference
ENTITY
RELATED
RELATED
Alice
Bob
secondAuthor
PaperA
inProcOf
ConfA
reviewer
firstAuthor
PaperB
inProcOf
ConfB
chair
firstAuthor
PaperB
cites
PaperC
firstAuthor
secondAuthor
PaperD
cites
PaperC
firstAuthor
secondAuthor
PaperD
extends
ArticleA
firstAuthor
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of length n is an alternating sequence of relations and classes, r1c1 · · · cn−1rn, be-
ginning and ending with a relation. An association Z = r1e1 · · · en−1rn matches
a pattern P = r′1c′1 · · · c′n−1r

′
n, denoted by Z ∈ M(P ), if

– for 1 ≤ i ≤ n− 1, ei ∈ I(c′i), and
– for 1 ≤ i ≤ n, ri �R r′i.

For instance, both Z1 and Z2 in Eq. (1) match several different patterns such as

P1 : ˆauthor ConfPaper inProcOf ENTITY RELATED . (2)

To also allow entities to appear in a pattern, for each entity e, a pseudo-class
psc(e) is introduced that has e as its only instance, i.e. I(psc(e)) = {e}, and is
a subclass of every other class that e belongs to. Then, Z1 also matches

P2 : ˆauthor psc(PaperA) inProcOf ENTITY RELATED . (3)

5 Pattern Recommendation

Given Z, a set of associations from an entity eS to another eE found in the entity-
relation graph G, we aim to recommend up to K patterns for exploring Z. We
firstly mine all the significant patterns that are highly relevant to the query
context, and then find up to K of them that are as frequent and informative as
possible while sharing small overlap between each other.

We assume the associations in Z are all of length n. Otherwise, we can group
them by length, and recommend patterns for each group and show all of them.

5.1 Mining Significant Patterns

Given Z and a pattern P , to characterize the relevance of P to the query context,
we define the frequency of P w.r.t. Z as

freq(P ) =
|hits(P )|

|Z|
hits(P ) = {Z ∈ Z : Z ∈ M(P )} ,

(4)

which is in the range [0, 1]. For instance, given Z comprising the five associations
in Eq. (1), the frequency of P1 in Eq. (2) is 2

5 because it is matched by Z1 and Z2,
i.e. by 2 out of the 5 associations.

We aim to find all the significant patterns, denoted by PZ , namely those
having a frequency higher than a threshold τ ∈ [0, 1]. We formulate it as a
frequent closed itemset mining problem (FCIMP), which has been extensively
studied in the field of data mining [8]. A tricky issue in the formulation is how
to encode the path structure of association and pattern.

Specifically, each association in Z corresponds to a “transaction” (which
is a set of “items”) in FCIMP, and an “item” is a position-relation pair in
{1, 3, . . . , 2n − 1} × ΣR or a position-class pair in {2, 4, . . . , 2n − 2} × ΣC . An

author
ConfPaper
inProcOf
ENTITY
RELATED
author
PaperA
inProcOf
ENTITY
RELATED
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association Z = r1e1 · · · en−1rn, as a “transaction”, contains a position-relation
pair 〈2i−1, r〉 if ri �R r, and contains a position-class pair 〈2i, c〉 if ei ∈ I(c). For
instance, Z1 in Eq. (1) contains 〈1, ˆsecondAuthor〉, 〈1, ˆauthor〉, 〈1, RELATED〉,
〈2, psc(PaperA)〉, 〈2, ConfPaper〉, 〈2, Publication〉, 〈2, ENTITY〉, etc.

Then, we use CHARM [18] to find all the frequent closed “itemsets” being
subsets of at least τ |Z| “transactions”. From such a frequent closed “itemset”, we
try to obtain a pattern by selecting, if possible, one position-relation or position-
class pair for each position in {1, 2, . . . , 2n−1} and arranging these relations and
classes in ascending order of their positions. Once achieved, it can be proved that
the pattern obtained is a significant pattern, and all the significant patterns can
be obtained in this way. The proof is straightforward and is omitted due to lack
of space.

5.2 Finding Frequent, Informative, and Small-Overlapping Patterns

Among all the significant patterns, we aim to find up to K ones that are as
frequent and informative as possible while sharing small overlap between each
other. In the following, firstly we define the informativeness of a pattern and
the overlap between two patterns. Then we formulate and solve an optimization
problem to integrate frequency, informativeness, and overlap.

Informativeness. A significant pattern may provide little information and be-
come meaningless, e.g. one comprising only ENTITY and RELATED. However, we
prefer to recommend informative patterns. To quantify the informativeness of a
pattern, we measure the informativeness of each class and relation in the pattern.

As to classes, the idea is that a class having fewer instances is more specific and
thus more informative. We formulate it using information theory. Specifically,
for each class c, let pr(c) be the probability that a random entity belongs to c.
By estimating it based on the entity-relation graph G = 〈V,A, s, t, lV , lA〉, we
measure sinf (c), the self-information of the event that c is indeed observed as a
class of some entity:

sinf (c) = − log pr(c)

pr(c) =
|{v ∈ V : lV (v) ∈ I(c)}|

|V | .
(5)

For instance, given G in Fig. 2, sinf (ConfPaper) = − log 4
9 because 4 out of

the 9 entities in G belong to ConfPaper. Further, we normalize sinf (c) into the
range [0, 1] as the informativeness of class c:

sinf N (c) =
sinf (c)

log |V | . (6)

As to relations, the idea is similar but more complex because a relation has two
ends (i.e. connecting two entities), called the source end and the target end, and
each of them can be treated as a random variable. We separately process the two

secondAuthor
author
RELATED
PaperA
ConfPaper
Publication
ENTITY
ENTITY
RELATED
ConfPaper
ConfPaper
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ends and integrate the results. Firstly, we treat the target end of a relation r as
a random variable and measure its entropy, denoted by

−→
eta(r), which quantifies

the expected value of the self-information of its outcomes (i.e. all possible entities

appearing at the target end of r, denoted by
−→
val(r)). By estimating −→pr(r, e), the

probability of observing each outcome e based on G = 〈V,A, s, t, lV , lA〉, we have
−→
eta(r) = −

∑

e∈−→
val(r)

−→pr(r, e) log−→pr(r, e)

−→
val(r) = {e ∈ ΣE : ∃a ∈ A, (lA(a) �R r, t(a) = e)}
−→pr(r, e) = |{a ∈ A : lA(a) �R r, t(a) = e}|

|{a ∈ A : lA(a) �R r}| .

(7)

For instance, given G in Fig. 2,
−→
val(firstAuthor) = {Alice, Bob} because only

Alice and Bob (2 times) appear at the target end of firstAuthor, and Bob

appears 2 out of the 3 times so that −→pr(firstAuthor, Bob) = 2
3 . Further, we

normalize
−→
eta(r) into the range [0, 1]:

−→
etaN (r) =

−→
eta(r)

log |{a ∈ A : lA(a) �R r}| . (8)

The source end of r is processed analogously, and its normalized entropy is de-
noted by

←−
etaN (r). To integrate

−→
etaN (r) and

←−
etaN (r), we calculate their harmonic

mean in the range [0, 1] as the informativeness of relation r:

eta(r) =
2 · −→etaN (r) · ←−etaN (r)
−→
etaN (r) +

←−
etaN (r)

. (9)

Finally, the informativeness of a pattern P = r1c1 · · · cn−1rn is obtained by
adding up the informativeness of the classes and relations it contains:

inf (P ) =

n−1∑

i=1

sinf N (ci) +

n∑

i=1

eta(ri) . (10)

Overlap. Patterns sharing considerably large overlap are redundant and will not
be recommended together. We identify two types of overlap between patterns.

Firstly, given two patterns P = r1c1 · · · cn−1rn and P ′ = r′1c
′
1 · · · c′n−1r

′
n, we

check the subclass-superclass and subrelation-superrelation relations in all their
corresponding positions. Based on the following two functions:

ssC(ci, cj) =

{
1 if ci �C cj or cj �C ci,

0 otherwise,

ssR(ri, rj) =

{
1 if ri �R rj or rj �R ri,

0 otherwise,

(11)

firstAuthor
Alice
Bob
Alice
Bob
firstAuthor
Bob
firstAuthor
Bob
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we define the ontological overlap between P and P ′ in the range [0, 1] as

ovlpO(P, P
′) =

∑n−1
i=1 ssC(ci, c

′
i) +

∑n
i=1 ssR(ri, r

′
i)

2n− 1
. (12)

For instance, the ontological overlap between P1 in Eq. (2) and P2 in Eq. (3)
is 5

5 because �C or �R holds in all the 5 positions.
Secondly, we check to what extent P and P ′ are matched by common asso-

ciations in Z. By using the Jaccard similarity, we define the contextual overlap
between P and P ′ in the range [0, 1] as

ovlpC(P, P
′) =

|hits(P ) ∩ hits(P ′)|
|hits(P ) ∪ hits(P ′)| , (13)

where hits is given by Eq. (4). For instance, given Z comprising the five associ-
ations in Eq. (1), the contextual overlap between P1 in Eq. (2) and P2 in Eq. (3)
is 1

2 because P1 is matched by Z1 and Z2, and P2 is matched by Z1.

Optimization. In PZ , the set of significant patterns mined from Z, we aim to
find up to K ones that are as frequent and informative as possible while sharing
small overlap between each other. It can be formulated as a multidimensional
0-1 knapsack problem (MKP) [13]. Specifically, each Pi ∈ PZ corresponds to a
candidate “item” to be selected whose “profit” is freq(Pi) · inf (Pi) and whose
“weight” is 1, when the “capacity” of the “knapsack” is K. For each pair of pat-
terns sharing considerably large ontological or contextual overlap, an additional
constraint is introduced to require that they are not selected together.

More formally, we number the patterns in PZ from P1 to PN=|PZ |, and intro-
duce a series of binary variables xi to indicate whether pattern Pi is selected.
Then we formulate a MKP as:

maximize
N∑

i=1

xi · freq(Pi) · inf (Pi)

subject to

N∑

i=1

xi ≤ K ,

N∑

i=1

xiw
j,k
i ≤ 1 for j, k = 1, . . . , N s.t. j = k and

ovlpO(Pj , Pk) ≥ μO or ovlpC(Pj , Pk) ≥ μC ,

xi ∈ {0, 1} for i = 1, . . . , N ,

(14)

where μO, μC ∈ [0, 1] are thresholds, and

wj,k
i =

{
1 if i = j or i = k,

0 otherwise.
(15)
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MKP is NP-hard [13]. To find a reasonably good feasible solution within rea-
sonable running time, we use a greedy algorithm that considers the “items” (i.e.
patterns) one after another and puts an “item” into the “knapsack” if adding this
“item” would not violate any constraint. We use the following greedy heuristic
to order the “items” in descending order:

g(Pi) =
freq(Pi) · inf (Pi)

w(Pi)
, (16)

where w(Pi) returns the total “weight” of Pi in all the constraints. That is,
priority is given to patterns that are more frequent, more informative, and share
considerably large overlap with fewer patterns in PZ .

6 Facet Value Recommendation

We also aim to recommend up to K classes of entities and K relations appearing
in the associations in Z as facet values. In accordance with the recommendation
of patterns, we adapt our solution described in Sect. 5 to recommend facet val-
ues that are as frequent and informative as possible while sharing small overlap
between each other. To achieve this, we only need to redefine frequency, infor-
mativeness, and overlap for facet values. In this section, we will do this only for
classes due to lack of space. Relations can be processed in an analogous way.

Firstly, given Z and a class c, similar to Eq. (4), we define the frequency of c
w.r.t. Z as

freq(c) =
|hits(c)|

|Z|
hits(c) = {r1e1 · · · en−1rn ∈ Z : ∃ei ∈ I(c)} .

(17)

For instance, given Z comprising the five associations in Eq. (1), the frequency
of Conference is 2

5 because its instances ConfA and ConfB appear in Z1 and Z2,
respectively, i.e. in 2 out of the 5 associations.

Secondly, the informativeness of c has been given by Eq. (6).
Thirdly, two classes c and c′ share ontological overlap if one of them is a sub-

class of the other, i.e. ssC(c, c
′) = 1 according to Eq. (11). Contextual overlap

between classes is defined similar to Eq. (13) by using hits given by Eq. (17).
When formulating a MKP, for each pair of classes sharing ontological or consid-
erably large (i.e. ≥ μC) contextual overlap, an additional constraint is introduced
to require that they are not selected together.

7 User Study

To investigate how patterns and facets help users explore associations in practice,
we invited twenty university students to carry out association exploration tasks
over DBpedia by using Explass and two existing approaches to association ex-
ploration. By analyzing subjects’ responses to questionnaires and their behavior
during the experiment, we mainly aimed to test the following two hypotheses.

Conference
ConfA
ConfB
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H1. For association exploration, providing a flat list (top-K) of frequent, infor-
mative, and small-overlapping patterns (as on Explass) is more satisfying
than an inclusive hierarchy of patterns (as on RelClus [19]).

H2. Patterns and facets are notably complementary in terms of usage in associ-
ation exploration, and thus providing both of them (as on Explass) is more
satisfying than only one of them (as on RelFinder [10] and RelClus [19]).

7.1 Data Sets

We used DBpedia in our experiment. Specifically, the entity-relation graph was
obtained from the mapping-based properties data set, excluding RDF triples
containing literals. Classes of entities were obtained from the mapping-based
types data set. Class and relation hierarchies were obtained from the DBpedia
ontology. The short abstracts and images data sets were used to provide a textual
description and an image for each entity, respectively, which will be detailed later.

7.2 Tasks

To the best of our knowledge, there were no benchmark association exploration
tasks available for evaluation. So we established a set of association exploration
tasks to be used in our experiment as well as in future research. Our association
exploration tasks were derived from the 100 training queries2 provided by the
multilingual question answering challenge of the QALD-3 evaluation campaign,
which mentioned a total of 72 distinct entities in DBpedia. The names of these
entities (e.g. Abraham Lincoln) were submitted to Google Search, some trigger-
ing Google’s Knowledge Graph to return related entities that “people also search
for” (e.g. George Washington, John F. Kennedy). For each search, among the
entities returned that could also be found in DBpedia, the first one (e.g. George
Washington) was selected, and then an association exploration task was defined
in the following way.

Suppose you will write an article about the associations between Abra-
ham Lincoln and George Washington. Use the given system to explore
their associations and identify several themes to discuss in the article.

In this way, 30 distinct tasks were defined. However, three were removed because
in each of these tasks, the number of associations of length 1–4 (which was
the setting for the systems in the experiment) found between the two entities
was less than one hundred, making the task not very challenging; and one was
removed because the two entities belonged to different classes, making this task
inconsistent with the others. Finally, the remaining 26 tasks3 were to be used in
the user study, one of which was specifically for tutorials.

2 http://greententacle.techfak.uni-bielefeld.de/~cunger/

qald/3/dbpedia-train.xml
3 http://ws.nju.edu.cn/explass/tasks.txt

http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/3/dbpedia-train.xml
http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/3/dbpedia-train.xml
http://ws.nju.edu.cn/explass/tasks.txt
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Table 2. Pre-task Questions and Responses about Exploration Context

Question
Response: Mean (SD) F (2, 38)
Explass RelClus RF (p-value)

I think this task is difficult. 3.30 3.80 3.35 2.372
(1.22) (0.77) (1.27) (0.107)

I’m familiar with the domain of this task. 1.75 1.30 2.00 2.684
(0.97) (0.47) (1.08) (0.081)

7.3 Participant Approaches

We (re-)implemented three association exploration approaches over DBpedia to
be compared in the user study: Explass, RelClus [19], and RF (based on [10]).

In all these systems, subjects started with two entity names, which were then
mapped to two entities by the autocomplete functionality. Of each length from 1
to 4, up to one thousand associations between the two entities were found. When
presenting them, each entity involved was accompanied by its image (if available,
as illustrated in Fig. 1), and hovering the mouse over an entity activated a pop-up
showing its textual description. Both images and pop-ups were to help subjects
quickly understand entities and thus understand associations.

However, these systems organized associations in different ways, and sup-
ported different sets of exploration operations.

– Explass, as described in this paper, recommended a total of up to 10 patterns
(giving priority to patterns of a short length), and up to 10 classes and
10 relations as facet values. We set τ, μC , μR to 0.1, 0.7, 0.7, respectively.

– RelClus [19] organized associations inclusively into an expandable/collapsible
hierarchy of clusters for refocusing. Each cluster was labeled with a unique
pattern matched by all the associations in the cluster.

– RF reproduced the core feature of RelFinder [10], namely faceted associa-
tion exploration. However, we did not reproduce the visualization technique
adopted by RelFinder in order to make it comparable with the other two sys-
tems. Besides, in order to be comparable with Explass, RF also recommended
up to 10 classes and 10 relations according to Sect. 6, and the parameters
were set to the same values as in Explass.

7.4 Procedure

Subjects were instructed not to use their prior knowledge of the tasks, and they
were not permitted to use tools other than the given system. Each subject carried
out two random tasks using each of the three systems arranged in random order,
and all the six tasks were different. Before using each system, a tutorial was given
to demonstrate its functionality. The subject was then given the first task as a
warmup. After that, she was given the second task and responded to two pre-
task questions in Table 2 about exploration context. She had to complete this
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Table 3. Post-task Questions and Responses about Exploration Effectiveness

Question
Response: Mean (SD) F (2, 38) LSD post-hoc
Explass RelClus RF (p-value) (p < 0.05)

Q1: The system helped me
get an overview of all the
information.

4.25 3.80 3.05 14.989 Explass,RelClus > RF
(0.85) (0.77) (0.94) (0.000)

Q2: The system helped me
easily find information
relevant to this task.

4.30 3.25 3.15 18.769 Explass > RelClus,RF
(0.57) (0.79) (0.99) (0.000)

Q3: The system helped me
easily compare and
synthesize all kinds of
relevant information.

4.00 3.25 2.60 14.901 Explass > RelClus > RF
(0.86) (0.85) (0.99) (0.000)

Q4: The system provided
me with much support for
carrying out this task.

4.10 3.45 2.85 16.172 Explass > RelClus > RF
(0.72) (0.94) (0.88) (0.000)

Q5: The system provided
me with sufficient support
for carrying out this task.a

3.85 3.20 2.65 11.636 Explass > RelClus,RF
(0.88) (1.11) (0.75) (0.000)

a Different from Q4, this question targets the functions that are expected but missing.

task in ten minutes, during which all her operations were recorded. Finally, she
responded to five post-task questions in Table 3 about exploration effectiveness
(which were inspired by [4]), responded to the widely-used system usability scale
(SUS), and commented on the system. Questions were responded using a five-
point Likert item from 1 for strongly disagree to 5 for strongly agree.

7.5 Results and Discussion

Exploration Context. Pre-task questions in Table 2 capture subject-perceived
task difficulty and domain familiarity. Repeated measures ANOVA revealed that
the differences in subjects’ mean ratings with different systems were not statis-
tically significant (p > 0.05), which supported that tasks were carried out with
different systems in comparable contexts in terms of task difficulty and domain
familiarity. So these two factors can be excluded from the following discussion.

User Experience. Post-task questions Q1–Q5 in Table 3 capture subjects’
exploration experience with different systems. Repeated measures ANOVA re-
vealed that the differences in subjects’ mean ratings were all statistically signif-
icant (p < 0.01). LSD post-hoc tests (p < 0.05) revealed that, according to Q1,
Explass and RelClus provided a better overview of all the associations than RF
due to the use of patterns. According to Q2 and Q3, compared with RF and
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Table 4. SUS Scores

Mean (SD) F (2, 38) LSD post-hoc
Explass RelClus RF (p-value) (p < 0.05)

76.13 68.00 62.75 9.062 Explass > RelClus,RF
(12.53) (17.93) (14.93) (0.001)

Table 5. Average Number of Exploration Operations Performed per Task

Operation Explass RelClus RF

Refocusing by expanding or collapsing a pattern 9.55 19.60 n/a
Refining the search by a pattern filter or canceling it 0.35 n/a n/a
Refining the search by a facet value filter or canceling it 5.35 n/a 9.60

RelClus, Explass helped subjects more easily find, compare, and synthesize as-
sociations by using frequent, informative, and small-overlapping patterns and
facet values. Finally, according to Q4 and Q5, Explass provided subjects with
more comprehensive support for exploring associations than RF and RelClus.

Table 4 summarizes SUS scores of different systems. Repeated measures
ANOVA revealed that the difference in SUS score was statistically significant
(p < 0.01). LSD post-hoc tests (p < 0.05) revealed that Explass was more us-
able than RF and RelClus.

User Behavior. Table 5 summarizes the average number of exploration oper-
ations performed per task on different systems. On Explass, both patterns and
facets were frequently used, indicating that they were notably complementary in
terms of usage. However, patterns were mostly used to refocus but rarely used
to refine the search. Besides, compared with RelClus whose hierarchical organi-
zation of patterns needed to be explored step by step, fewer pattern operations
were performed on Explass mainly due to its flat organization of patterns.

User Feedback and Discussion. We summarized all the major comments
that were made by at least five subjects. On RelClus, 6 subjects (30%) said a
hierarchy of clusters labeled with patterns provided a good overview of all the
associations and helped refocus on a particular theme, but 11 subjects (55%) said
patterns at a high level were often too general to be useful, and they were often
confused about the deep and complicated hierarchies. On RF, 5 subjects (25%)
said recommended classes and relations were useful filters, but 8 subjects (40%)
said they needed a better overview for summarizing associations. On Explass,
14 subjects (70%) said recommended patterns provided a good summary of
associations and helped refocus on a particular theme when recommended facet
values helped filter associations, but 11 subjects (55%) said some very large
clusters could be divided into small ones.
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These comments were consistent with subjects’ experience and behavior re-
ported previously. All of these collectively supported our hypotheses H1 and H2.

– As to H1, Explass better leveraged patterns than RelClus because, firstly,
RelClus may provide a deep and complicated hierarchy of patterns, whereas
Explass recommended a size-controllable flat list (top-K) of patterns. Sec-
ondly, RelClus may provide very general and meaningless patterns, whereas
Explass considered the informativeness of patterns in recommendation.

– As to H2, patterns and facets were complementary because frequent, infor-
mative, and small-overlapping patterns provided an overview that meaning-
fully summarized significant subsets of associations covering diverse themes
to be refocused on, when facets provided useful filters for refining the search.

8 Conclusion and Future Work

We have realized exploratory association search in a new way by recommending
top-K patterns and facet values, which have been shown to be notably comple-
mentary in terms of usage: patterns for summarizing and refocusing, and facets
for refining and filtering. Compared with RelClus, our Explass provides a flat
list (top-K) of clusters, which avoids deep and complicated hierarchies as on
RelClus but sometimes produces very large clusters. Whereas such a large clus-
ter could be divided into small ones by using this pattern as a filter to refine the
search and obtaining its subclusters, such an operation was rarely performed by
subjects in the user study, indicating that our design of user interface still needs
to be carefully improved. In the future, we will also extend the notion of pattern
to support the exploration of associations between more than two entities, or
more generally, the entire entity-relation graph.

To recommend appropriate patterns and facet values, our novel solution has
considered their frequency, informativeness, and overlap, and has exploited onto-
logical semantics, query context, and information theory. Though it was proposed
to deal with associations, the solution or its components may also be applied to
recommend facet values for entity search. In the future, we will compare it with
existing methods in this direction.
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Abstract. Linked data is increasingly available through SPARQL end-
points, but exploration and question answering by regular Web users
largely remain an open challenge. Users have to choose between the ex-
pressivity of formal languages such as SPARQL, and the usability of
tools based on navigation and visualization. In a previous work, we have
proposed Query-based Faceted Search (QFS) as a way to reconcile the
expressivity of formal languages and the usability of faceted search. In
this paper, we further reconcile QFS with scalability and portability by
building QFS over SPARQL endpoints. We also improve expressivity
and readability. Many SPARQL features are now covered: multidimen-
sional queries, union, negation, optional, filters, aggregations, ordering.
Queries are now verbalized in English, so that no knowledge of SPARQL
is ever necessary. All of this is implemented in a portable Web applica-
tion, Sparklis1, and has been evaluated on many endpoints and questions.

1 Introduction

Linked data is increasingly available through SPARQL endpoints, but explo-
ration and question answering is often tedious for SPARQL practitionners, and
largely remains an open challenge for regular Web users. Semantic search can
be evaluated according to a number of criteria such as expressivity or scalabil-
ity. Maximizing any of those criteria in isolation is relatively easy, and what
remains a challenge is to reconcile them as far as possible. We consider such a
reconciliation as a key to the effective access to semantic data, and hence to the
wide adoption of semantic data. Indeed, an easy-to-use system may not satisfy
advanced users with more complex information needs, and everybody can be-
come an advanced user in some domain (e.g., profession, hobby). Similarly, an
expressive system that does not scale is only of limited use. We shortly define
the criteria that motivated this work, and identify for each of them the existing
approach that seems to best fulfill it.

Expressivity measures the diversity and complexity of questions that can be
answered. It seems clear that the leading approach for maximizing that cri-
teria is formal query languages, and prominently SPARQL.

1 Sparklis http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 438–453, 2014.
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Guidance measures the level of assistance given to users in their search. It in-
volves interactivity, suggestion, immediate feedback, and dead-ends preven-
tion. We here retain Faceted Search (FS) [11,24]. First, FS is increasingly
adopted in e-commerce and multimedia collections. Second, FS has already
been adapted to semantic search (see Section 2).

Readability measures the ease for users to read and understand the textual
components and controls of the user interface. Natural Language (NL) is ob-
viously more readable than formal languages like SPARQL. If formal queries
are used in a system, they should therefore be verbalized into NL, which has
already been proposed for SPARQL [22].

Scalability measures the ability of a system to be responsive on large datasets.
Most of the scalability effort in the semantic web has gone into RDF stores
and SPARQL engines. It therefore seems reasonable to leverage their power.

Portability measures the cost of applying a system to a new dataset. Some sys-
tems require manual configuration, and others need an appropriate ontology.
SPARQL endpoints have the advantage to provide a standard API.

Guidance and readability are two aspects of usability that we address in this
paper. Other aspects that we do not consider here are a smooth learning curve
or personalization. Another important criteria for semantic search that is not ad-
dressed in this paper is openness. It measures the ability to explore distributed
linked data (querying several endpoints, following owl:sameAs links). In a pre-
vious work, we have introduced Query-based Faceted Search (QFS) [6,5] as a
way to reconcile the expressivity of formal query languages with the guidance
of faceted search. The obtained user interaction is similar to query builders that
guide users in the construction of queries, but with a more fine-grained guidance
that is based on actual data rather than on syntax and data schema.

The first contribution of this paper is to further reconcile QFS with the read-
ability of NL. Questions and system suggestions are verbalized in (a fragment of)
English so that no knowledge of SPARQL is ever necessary for users. This makes
QFS a kind of Natural Language Interface (NLI) except that questions are not
freely input by users, but produced through a user-system dialog. The second
contribution is to further reconcile QFS with the scalability and portability of
SPARQL endpoints. Question answers and system suggestions are entirely com-
puted by generating and sending SPARQL queries to the endpoint. Portability
is ensured by strictly conforming to the SPARQL standard. Compared to previ-
ous work, we also improve QFS expressivity. In addition to arbitrary basic graph
patterns, unions, and negations, we now also cover multidimensional queries (ta-
bles as results), optionals, common filters, aggregations, and orderings. All those
contributions are implemented in a Web application, Sparklis, that only needs
the URL of the desired endpoint as input.

The main limitation to our work is that it only provides bare views of linked
data, without any pre- or post-processing, and therefore exposes any data noise
and heterogeneity to users. It uses neither linguistic knowledge (e.g., lexicons),
nor external resources (e.g., full-text indexes) to make it more readable and
efficient. We made this choice for the sake of portability, genericity, and sim-
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plicity, but nothing prevents to customize and improve our approach by using
dataset-specific knowledge and resources.

Section 2 is an overview of different approaches and systems in semantic search
(Section 2). Section 3 recalls the key principles of QFS to reconcile expressivity
and guidance. Section 4 and 5 present the contributions of this paper: NL ver-
balization and QFS over SPARQL endpoints. Section 6 provides the results of a
few evaluations of Sparklis w.r.t. the above criteria. Finally, Section 7 concludes
and sketches future work.

2 Related Work

There are mainly two approaches to make semantic search more usable: user
interaction (UI) and natural language (NL). UI systems reuse and adapt
UI paradigms to semantic data: hypertext browsing (e.g., Fluidops Informa-
tion Workbench2), query builders (e.g., SemanticCrystal [16]), faceted search
(FS) [24], or OLAP [2]. Query builders generally offer more expressivity, but
lack readability because based on formal languages. Moreover, their guidance
is mostly based on syntax, and sometimes on a data schema, but not on ac-
tual data, like in FS. Most FS-based systems do not claim for a contribution
in term of expressivity, and contribute either to the design of better interfaces
and visualizations, or to methods for the rapid or user-centric configuration of
faceted views: e.g., Ontogator [19], mSpace3, Longwell4. Similarly, OLAP-based
systems emphasize visualization, and require substantial amount of configura-
tion to extract cubic views over RDF graphs: e.g., Cubix [21], Linked Data
Query Wizard [14]. Therefore, their contributions are somewhat orthogonal to
ours, and could certainly complement them. A few FS-based systems extend
faceted search expressivity: e.g., SlashFacet [13], BrowseRDF [23], gFacet [12],
VisiNav [9], SemFacet [1], OpenLink FS5, Vinge Query&Explore6. While more
expressive than classical FS, those systems are still much less expressive than
SPARQL 1.1, and approximately cover basic graph patterns. None of them sup-
port union, negation, or aggregation. All except Vinge Query&Explore present
only lists of results, rather than tables. That expressivity is reflected by the
frequent choice to use trees and graphs to represent the query. Those represen-
tations have a good match with SPARQL graph patterns, but do not scale well
to express union, negation, or aggregations, unlike natural language.

Natural Language Interfaces (NLI) [18] use NL in various forms, going
from full natural language (e.g., PowerAqua [17]) to mere keywords (e.g.,
NLP-Reduce [16]) through controlled natural languages (e.g., Ginseng [16],
SQUALL [4]). Systems based on full NL or keywords devote the most effort
to bridging the gap between lexical forms and ontology triples (mapping and

2 Fluidops Information Workbench http://iwb.fluidops.com/
3 mSpace http://mspace.fm/
4 Longwell http://simile.mit.edu/wiki/Longwell
5 OpenLink FS http://dbpedia.org/fct/facet.vsp
6 Vinge Query&Explore http://www.vingefree.com/querybyexplore/

http://iwb.fluidops.com/
http://mspace.fm/
http://simile.mit.edu/wiki/Longwell
http://dbpedia.org/fct/facet.vsp
http://www.vingefree.com/querybyexplore/
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Table 1. Navigation scenario in Sparklis over DBpedia

step query

1 Give me something

2 Give me a Writer
3 Give me a Writer that has a nationality

4 Give me a Writer that has nationality Russians

5 Give me a Writer that has nationality Russians and that has a birthDate
6 Give me a Writer that has nationality Russians and whose birthDate

is after 1800
7 Give me a Writer that has nationality Russians and whose birthDate is after

1800 and that is the author of something

8 Give me a Writer that has nationality Russians and whose birthDate is after
1800 and that is the author of a Book

9 Give me a Writer that has nationality Russians and whose birthDate is after
1800 and that is the author of a number of Book

10 Give me a Writer that has nationality Russians and whose birthDate is after
1800 and that is the author of the highest-to-lowest number of Book

11 Give me a Writer that has nationality Russians or something and whose
birthDate is after 1800 and that is the author of the highest-to-lowest number
of Book

12 Give me a Writer that has nationality Russians or Russian Empire and
whose birthDate is after 1800 and that is the author of the highest-to-lowest
number of Book

disambiguation), and process only the simplest questions, i.e., they generate
SPARQL queries with only one or two triples. Most of them support none of
aggregations (e.g., counting), comparatives, or superlatives, even though those
features are relatively frequent.

Some systems integrate the UI approach in NLIs to alleviate the habitability
problem [16], in which users have not a precise knowledge about what can be
understood by the NLI system, and therefore can be frustrated by syntax errors
or empty results. Those systems (e.g., Ginseng [16], Atomate [25]) can be seen as
query builders based on a controlled natural language. They improve the former
with readability, and the latter with guidance, but they still lack the fine-grained
guidance of FS that is necessary to fully solve the hability problem.

3 Query-Based Faceted Search

In this section, we recall the key principles of Query-based Faceted Search
(QFS) [6,5], and how they enable to reconcile expressivity and guidance. QFS
guidance relies on the interaction loop of Faceted Search (FS). FS guides users
in the iterative refinement of a set of items. The key to QFS expressivity is
to replace the set of items by a structured query, and to define the focus as
a syntactic part of the query. System suggestions at each navigation step are
therefore defined as query transformations, rather than as set-based operations.
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Fig. 1. Sparklis screenshot at step 11 of scenario in Table 1

In short, we propose query-based FS as a generalization of classical set-based FS.
It is a generalization because a set of items can be derived unambiguously from
a query and focus (by query evaluation), while many queries may correspond
to a given set of items. We have previously demonstrated that set-based FS has
strong limits in terms of expressivity, which disappear with query-based FS [6].
In particular, it becomes possible to navigate to arbitrary Boolean combinations
of elementary queries.

Table 1 shows the successive queries, as verbalized in Sparklis (see Section 4),
of a QFS navigation scenario that leads the user in 12 steps to a list of “Russian
writers born since 1800, and ordered by decreasing number of written books”.
That scenario is only one of several possible scenarios leading to the same results:
e.g., the birth date could have been constrained before the nationality. At each
step, the bold part represents the newly inserted query element, chosen by the
user at the previous step among system suggestions, and the underlined part
represents the query focus that is used for the next query transformation. The
query focus is moved simply by clicking on different parts of the query. The
query elements that are suggested for insertion at query focus can be entities
(e.g., Russian), classes (e.g., a Book), properties in both directions (e.g., is the

author of, has birthDate), filters (e.g., after 1800), and various modifiers
(e.g., number of, or). Figure 1 is a Sparklis screenshot at step 11, during the
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specification of an alternative nationality for the writer (Russian Empire as a
synonym of Russians). The user interface is made of three parts: top, middle,
bottom. The top part shows the current query, and highlights the current focus,
here something. The first branch of disjunction is transparent to reflect the fact
that it is ignored during the construction of the second branch. The bottom
part is the result table of the current query, with a column for each entity/value
in the query (here: writer, nationality, birth date, and number of books). Note
that QFS has relational results (tables) whereas classical FS has sets (lists).
The focus column, here the nationality, is highlighted. The middle part contains
relevant query elements for insertion at the query focus. It is split in three lists.
The first list contains entities (URIs) and values (literals) found in the focus
column. It also enables the construction of filters over values. The second list
contains concepts (classes and properties) that apply to entities/values found in
the focus column. The third list contains modifiers that are applicable to the
query focus, such as Boolean connectors, aggregation operators, and ordering.
Each list provides auto-completion for quickly locating a query element (see
Section 5.2). In addition to selecting a query element to insert it at query focus,
the query part under focus can be deleted by clicking the red cross in the query.

4 NL Verbalization and SPARQL Translation

In this section, we improve previous work on QFS by verbalizing queries in
NL for user display, and by translating them in SPARQL for evaluation by
SPARQL endpoints. The current query and focus play a central role because they
represent the full state of the navigation process. Results and suggestions are
entirely computed from them. Their internal representation must be designed to
facilitate three processes: (1) NL verbalization, (2) SPARQL translation, and (3)
application of query transformations. Using SPARQL for internal representation
would make (2) trivial, but (1) difficult as shown by previous work [22]. Using
NL for internal representation would make (1) trivial, but (2) and (3) would
be tedious because of the many peculiarities of NL. Our choice, inspired by
state-of-the-art in the compilation of high-level programming languages, is to
use Abstract Syntax Trees (AST) as an intermediate representation between
NL and SPARQL. AST leaves are entities, values, and concepts. AST nodes
correspond at the same time to NL syntactic structures, such as noun phrases
(NP) or verb phrases (VP), and to SPARQL features, such as triple patterns or
unions. The query focus, as a syntactic part of the query, is represented as a
distinguished node of the AST of the query.

NL verbalization is performed by mapping AST leaves and nodes to NL ex-
pressions. Entities and concepts are verbalized by the local name of their URI,
i.e. the part after the last sharp or slash. This choice was made for the sake of
portability and efficiency, but future work will consider the use of RDFS labels
and lexicons, e.g. represented in Lemon [20]. One or a few syntactic patterns are
associated to each type of AST nodes. For example, syntactic patterns for rela-
tive clauses based on a property p are: that has p NP , whose p VP , and that
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Table 2. Mapping from Sparklis query elements to SPARQL features

query element SPARQL feature

concept name, relation triple pattern
entity name URI in triple pattern
value literal in triple pattern
a, the variable in triple pattern, and after SELECT

any variable not put after SELECT

and, that join
or UNION

optionally OPTIONAL

not FILTER NOT EXISTS

matches REGEX()

higher than, after, between, ... comparators (<, ≤, ...)
language lang()

datatype datatype()

highest-to-lowest ORDER BY DESC()

lowest-to-highest ORDER BY ASC()

number of COUNT()

list of GROUP CONCAT()

total, average, ... SUM(), AVG(), ...

PREFIX n1: <http://dbpedia.org/ontology/>
PREFIX n2: <http://dbpedia.org/resource/>
SELECT DISTINCT ?Writer_1 ?birthDate_3 (COUNT(DISTINCT ?Book_4) AS ?number_of_Book_5)
WHERE { ?Writer_1 a n1:Writer .

{ ?Writer_1 n1:nationality n2:Russians . }
UNION { ?Writer_1 n1:nationality n2:Russian_Empire . }
?Writer_1 n1:birthDate ?birthDate_3 .
FILTER ( str(?birthDate_3) >= "1800" )
?Book_4 a n1:Book .
?Book_4 n1:author ?Writer_1 . }

GROUP BY ?Writer_1 ?birthDate_3
ORDER BY DESC(?number_of_Book_5)

Fig. 2. SPARQL translation for the last query in the scenario of Table 1

is the p of NP . The choice of the pattern can depend on whether the object
of the property is better verbalized as a NP or a VP . An example of that is visi-
ble in Table 1, when comparing steps 5 and 6: that has a birthDate becomes
whose birthDate is after 1800 after the insertion of the filter. To render the
correct precedences of Boolean connectors, indentation is used in the display of
the verbalized query (see Figure 1). That makes the query more readable, and
avoids the use of brackets. Finally, syntax coloring is used to differentiate the
different kinds of query elements: class names (orange), property names (purple),
entity names (blue), values (green), modifiers (red).

SPARQL translation is based on Montague grammars [3], which were invented
to bridge the gap between NL and formal languages. Those are founded on
lambda calculus, and are fully compositional in the sense that the meaning of a
sentence is the direct result of the composition of the meaning of its parts. Here,
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the “meaning” of a sentence or any of its parts is represented with SPARQL
patterns. For example, a VP is translated to a function from entities to graph
patterns, while a NP is translated to a function from graph patterns to graph
patterns. Note that, unlike translating from SPARQL to NL, translating from
ASTs to SPARQL is deterministic, and can be performed very efficiently. Fig-
ure 2 shows the SPARQL translation of the final query in the above navigation
scenario, as produced by Sparklis. Table 2 maps elements of Sparklis queries to
SPARQL features, and hence provides an overview of the expressivity of Sparklis
compared to SPARQL. Remember that QFS interaction loop allows to build ar-
bitrary combinations of those query elements, provided that those combinations
make sense in the dataset, i.e. return results. For example, it is possible to use
two aggregations in a same query, to perform ordering on an aggregated value,
to follow arbitrary long property paths, or to define Boolean combinations of
filters on a same variable. The main missing features compared to SPARQL 1.1
are: arbitrary expressions, only simple filters are available; subqueries, which are
for example necessary to express nested aggregations; iterated property paths
(operators + and *); named graphs (GRAPH) and federated search (SERVICE);
CONSTRUCT and DESCRIBE queries; updates. Technical details about query/focus
internal representation and SPARQL translation can be found in a research re-
port [7].

5 Scalable QFS over SPARQL Endpoints

In this section, we improve previous work on QFS by entirely defining the com-
putation of results and suggestions on top of SPARQL endpoints, rather than
with in-memory RDF stores. We also take care to make it scale to the largest
endpoints by limiting the number of results and suggestions. To preserve guid-
ance completeness, results and suggestions beyond that limit can be found with
an intelligent auto-completion mechanism.

NL verbalization, SPARQL translation, and the application of query transfor-
mations are computationally cheap, and are all done entirely on the client side.
The computation of results from the SPARQL query uses one HTTP request to
the SPARQL endpoint at each step, and therefore costs the same as when using
a classical query editor in an incremental way. Therefore, the only significant
additional cost of QFS, compared to direct querying in SPARQL, is the compu-
tation of suggestions, i.e. the three lists in the middle of Figure 1. Indeed, the
three lists must be computed at each navigation step.

5.1 Computation of Suggestion Lists

The first suggestion list contains possible entities/values at the focus. For ex-
ample, in the query Give me a Writer that has a nationality (step 3), na-
tionalities of a writer are possible entities. Those entities/values are exactly
those in the focus column of the result table, and can therefore be computed
efficiently on client side. The third list contains applicable modifiers. There are
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only a dozen modifiers, and their applicability can be decided efficiently by look-
ing at the query/focus. The second list contains concepts that possibly apply to
entities/values in the first list. Here, a client-side computation is incompatible
with portability, because it would require a client-side knowledge of the dataset,
such as an ontology or indices. Moreover, ontology-based suggestions would be
less precise because they would provide general rules (e.g., “books generally have
authors”), rather than concrete facts (e.g., “only 10 of those 200 books have a
defined author”). In heterogeneous datasets, like DBpedia, ontology-based guid-
ance would often lead to empty results, and hence user frustration. Computing
suggested concepts therefore require to query the SPARQL endpoint, and is
actually the main issue for the scalability of QFS.

Assuming SPARQL variable ?f is bound to a possible entity or value at focus,
the possible classes can be obtained as the bindings of variable ?c in the triple
pattern ?f a ?c. Similarly, possible properties can be obtained with the triple
pattern ?f ?p [], and inverse properties with the pattern [] ?p ?f. The ques-
tion is how to use those triple patterns into SPARQL queries so as to efficiently
get lists of suggestions. There are several ways to do it. For the binding of ?f,
the SPARQL translation of the query can be reused, or the entities/values of
the focus column can be used into a large UNION pattern. Relative to the three
kinds of suggestions (classes, properties, inverse properties), three queries can
be used, or a single query using an UNION pattern. We made extensive exper-
iments [7] to compare the efficiency of the different options, and came to the
conclusion that the best option is generally to use three queries, one for each
kind of suggestion, and to avoid the recomputation of the main query by using
an UNION pattern over all focus entities/values: f1, f2, . . . .

Q1: SELECT ?c WHERE { {f1 a ?c} UNION {f2 a ?c} UNION ... }

Q2: SELECT ?p WHERE { {f1 ?p []} UNION {f2 ?p []} UNION ... }

Q3: SELECT ?p WHERE { {[] ?p f1} UNION {[] ?p f2} UNION ... }

In principle, each triple pattern is efficiently evaluated by RDF stores using clas-
sical indices, because it contains one resource (URI or literal), and one unbound
variable.

It remains to define the computation of suggestions at the initial step, when
the query is still empty, and therefore no focus entity/value is available. That
computation is crucial to provide guidance from the beginning. In a first stage,
we use the following efficient SPARQL queries to retrieve classes and properties:

Q1: SELECT DISTINCT ?c WHERE { ?c a rdfs:Class }

Q2: SELECT DISTINCT ?p WHERE { ?p a rdf:Property }

In SPARQL endpoints whose RDF graph does not contain the schema itself,
the above queries return empty results. We then resort to the following queries
which are less efficient, but have the advantage to reflect actual data.

Q1’: SELECT DISTINCT ?c WHERE { [] a ?c }

Q2’: SELECT DISTINCT ?p WHERE { [] ?p [] }
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Although not mentioned for the sake of generality, all above SPARQL queries
come in practice with a LIMIT clause to better control response times. We discuss
in the next section the impact on the completeness of the guidance, and how it
is addressed in Sparklis.

5.2 Intelligent Auto-Completion

There are two important properties for QFS guidance: safeness and complete-
ness. A safe guidance avoids dead-ends (i.e., empty results) by providing only
relevant suggestions, i.e. suggestions that match actual data. A complete guid-
ance fulfills the expressivity potential by providing all relevant suggestions. In a
previous work [6], we formally proved the theoretical safeness and completeness
of QFS. However, in practice, scalability requires to put limits on the number of
query results and suggestions, and SPARQL endpoints also enforce such limits.
Therefore, partial results and suggestions are unavoidable with large datasets. A
previous work [7] has shown that partial results have generally a small impact on
frequent concepts, but a high impact on infrequent concepts and entities/values.
That impact is significant at the beginning of a search when result sets are large,
and tends to disappear when the query becomes specific.

Our objective is to reconcile scalability in the computation of suggestions, and
completeness in guidance. The solution that we have found and implemented in
Sparklis is based on intelligent auto-completion. Auto-completion is a well-known
user interface mechanism that provides guidance and feedback, and has already
been adapted to semantic contexts [15,8]. Sparklis auto-completion is directly
available at the top of each suggestion list, and dynamically filters suggestion
lists at each keystroke for immediate feedback. It is intelligent in two ways. First,
the filter condition depends on the user-selected filter operator. If that operator
is matches all, then the suggestion must contain all keywords, in any order
and insensitive to the case. If that operator is between, then the suggestion
must be between the two given values, using numerical comparisons. Second,
Sparklis auto-completion uses a cascade of three stages to ensure completeness.
At stage 1, the partial list of suggestions is filtered on the client side, which can
be done efficiently. At stage 2, if the filtered list gets empty, the list of suggestions
is re-computed by sending to the SPARQL endpoint a new query that includes
the user filter (depending on the filter operator). This means that the same
partial query results are used, but a constraint is put on the expected classes
and properties. At stage 3, when the filtered list is still empty, new queries are
again sent to the SPARQL endpoint, using the full SPARQL query instead of the
partial results, in addition to the user filter. This ensures that all query results
are used in the computation of suggestions. Given the increasing cost of stages 2
and 3, they are triggered only when the user has entered a full keyword (trailing
space), so as not to do it at every keystroke.
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6 Evaluations

We present three evaluations to assess the portability, the expressivity and scal-
ability, and the usability of QFS, based on its implementation as a Web ap-
plication: Sparklis. The experimental data of those evaluations are available at
http://www.irisa.fr/LIS/ferre/pub/iswc2014/.

6.1 Sparklis: QFS as a Web Application

Sparklis is entirely based on Web standards. It uses SPARQL endpoints for RDF
storage and querying, HTTP requests to query them, JavaScript (JS) for the ap-
plication code, and HTML5/CSS3 for the user interface. Queries to SPARQL
endpoints are sent directly from the client browser, using AJAX requests. It
makes Sparklis independent from a server, hence trivial to deploy, and efficient
because all application code runs on the client. For code safety and develop-
ment speed, the JS code is compiled from a high-level language (OCaml using
js of ocaml7). The source code counts about 4000 lines of code, and the mini-
mized JS code weights about 260k.

6.2 Portability to SPARQL Endpoints

We first assess the portability of Sparklis on permanent SPARQL endpoints
found on the Web. The web site SPARQL endpoints status8 maintains a list of
SPARQL endpoints, along with dynamic information about their availability,
performance, and expressivity. We took a sample of 57 active endpoints, and
tried Sparklis on each of them. We report on three aspects: success/failure of the
connection, performance, and usability. Out of the 57 endpoints, 3 connections
failed because of the endpoint server (e.g., HTTP 500 error, POST requests not
accepted), 24 were successful, and surprisingly 30 connections failed because of
the same-origin policy. That policy, enforced by Web browsers, forbids scripts
to send HTTP requests to other origins (e.g., http://dbpedia.org/) than the
script origin (http://www.irisa.fr/ for Sparklis). It is crucial for the security
of many Web applications, but it is not relevant for SPARQL endpoints, which
act as public web services. Fortunately, there is a simple solution, but it is the
responsability of each endpoint administrator to apply it. It suffices to add the
line Access-Control-Allow-Origin: * in the HTTP response headers.

Out of the 24 successful connections, 22 were responsive enough to allow
for fluid exploration of the dataset. The initial step typically took between
1 and 3 seconds, and 7 seconds in the worst case. In terms of contents, 10
endpoints contained only facts about concepts, ontologies, and datasets; 10
endpoints contained concrete facts about various topics (e.g., Austrian skiers,
Chile administration, Nobel prizes); and 4 endpoints appeared empty. The 4
latter endpoints appeared empty because of a bug in some rkbexplorer-based

7 http://ocsigen.org/js_of_ocaml/
8 http://sparqles.okfn.org/

http://ocsigen.org/js_of_ocaml/
http://sparqles.okfn.org/
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endpoints related to UNION: an union of empty results is not empty, and con-
tains unbounded bindings. On a few endpoints, our random explorations have
led to interesting results. For example, on http://data.ox.ac.uk/sparql/,
we got the list of Oxford colleges along with their logo, and a picture. On
http://data.nobelprize.org/sparql, we found the laureates of the Peace No-
bel prize in decreasing year, people with several prizes (e.g., Marie Curie had 2),
and the shocking gender imbalance (44 women vs 803 men). For 6 endpoints,
URI local names of entities are opaque codes (e.g., numbers) that hinder the
readability of suggestions and results. It does not prevent to access and use the
real names of entities, but it requires additional navigation steps.

6.3 Expressivity and Scalability over DBpedia QALD Questions

We here assess the practical expressivity and scalability of Sparklis using ques-
tions from the QALD-3 challenge9. QALD (Question Answering over Linked
Data) primarily targets Natural Language Interfaces (NLI) where natural ques-
tions are answered in one interaction step. We instead use QALD questions as
the expression of information needs that are satisfied through multi-step interac-
tion (QFS). For each of the 100 training questions over DBpedia, we evaluated
the minimum interaction time to answer the question, when possible, start-
ing from the empty query (Give me something). Because we here evaluate the
scalability and efficiency of Sparklis, and not the usability (see next section), we
strived to minimize the exploration and thinking user time by using the gold
standard SPARQL queries provided by QALD as a guide in the selection of sug-
gestions. Therefore, the measured times represent the optimal interaction time
for a trained and focused user. In real use, interaction times will increase accord-
ing to unfamiliarity with Sparklis and the dataset, and to lack of focus in search
(exploratory search).

Expressivity. With Sparklis, we could answer 90/100 questions. Out of the
10 failed questions, 9 correspond to missing information in DBpedia (aka.
OUT OF SCOPE questions). The other failed question is because a YAGO
class could not be found due to timeouts from the endpoint. Unlike DBpedia
classes that are quickly found among suggestions, YAGO classes are numerous
and difficult to get. A few gold standard queries could not be constructed, but
the answer was still easy to get. For example, the question asking whether Na-
talie Portman was born in the US cannot be reached because she was born in
Israel, but as Sparklis immediately shows the actual birth place, the answer was
obviously No.

Scalability. Figure 3 shows the distribution of the wall-clock interaction time
for the 90 successful questions10. Half of the questions can be answered in less
than 27s (median time). The most complex QALD questions can be answered
in less than 2min. We found those results quite satisfactory given the billions
of triples of DBpedia. The simplest questions generally involve an entity and

9 http://www.sc.cit-ec.uni-bielefeld.de/qald/
10 Note that the responsiveness of DBpedia endpoint may vary over time.

http://data.ox.ac.uk/sparql/
http://data.nobelprize.org/sparql


450 S. Ferré

Fig. 3. Histogram of wall-clock interaction times for 90/100 QALD-3 questions

a property (e.g., Give me the homepage of Forbes), or a class, a property, and
a value (e.g., Give me all books written by Danielle Steel). The more complex
questions combine unions, string matching, numerical comparisons, counts, or
ordering. For example, question (Which telecommunications organizations are
located in Belgium?) has 3 unions and 2 string matching because there are dif-
ferent ways to express telecommunications and located in Belgium due to data
heterogeneity, and it requires 14 navigation steps.

For comparison, we shortly describe the performance of the best NLI partic-
ipant to the QALD-3 challenge: CASIA [10]. CASIA produced correct answers
for 29 questions, and partially correct answers for 8 questions. The average com-
putation time over the 100 questions is 83s. With regard to faceted search, we
found no system capable of exploring DBpedia and responsive enough.

6.4 First Usability Experiments

We have so far conducted three usability experiments of QFS. In the first exper-
iment [6], we asked 20 graduate students to answer 18 questions about genealog-
ical data using Sewelis, a desktop version of QFS. The dataset was small, but
the questions already involved complex graph patterns, disjunction, and nega-
tion, and the subjects had no previous knowledge about SW technologies. The
results showed that, after a short training, all subjects were able to answer sim-
ple questions, and most of them were able to answer complex questions. The
average time per question ranged from half a minutes to six minutes. The main
observed difficulty was in understanding the notion of focus. The SUS question-
naire showed that subjects did not find the system unnecessarily complex, and
that they would learn to use it very quickly.

In the second experiment [7], the developer of the former version of Sparklis,
Scalewelis, took part in the QALD3 challenge on DBpedia questions. He was
of course expert in the use of Scalewelis, but he was unfamiliar with the DB-
pedia dataset. He tried to answer the 100 test questions, and submitted them.
Because Scalewelis was less expressive than Sparklis, he could answer “only” 70
questions. Out of them, 32 were correct and 1 was partially correct. Most er-
rors were because there are often several representations of the same meaning in
DBpedia, which produce different answers: e.g., “being an actor” is represented
either by the pattern ?x a dbo:Actor or by [] dbo:starring ?x. Also, most
properties come in two versions: one in DBpedia ontology, and one among DB-
pedia properties. Scalewelis was ranked third out of six participants, with recall
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(33%) and precision (33%) very similar to best NLI approaches. This experiment
demonstrated that QFS is a promising approach for question answering, albeit
it is based on interaction rather than on NL understanding.

In the third experiment, which is still ongoing as an online survey we ask
anonymous Web users to try and answer 12 questions over DBpedia, after view-
ing a tutorial video11. Only 6 people have filled the survey yet, but they have
different profiles, and results are already instructive. On average, they have built
correct queries for 7.8 questions. For non-IT people (2/6), the average goes only
slightly down to 7. For people having some knowledge of SPARQL (2/6), it goes
up to 10 questions. An expert user, who can write SPARQL queries, had 9 correct
answers, made 2 errors related to disjunction, and skipped a single query (which
was skipped by all users). (S)he found Sparklis much easier to use than SPARQL,
and declared: “I like use this system and I find it is easy to use unlike other se-
mantic web search engines”. An advanced user, who can do some programming
but never heard about SPARQL, had 8 correct answers, made 2 errors by using
string matching instead of numerical comparison, and skipped 2 queries. (S)he
found it difficult to find the right concepts (classes and properties), but declared
that “there are no inconsistencies in the suggestions”, and that “the system is
really usable”. A regular user, who know neither SPARQL nor programming,
had still 6 correct answers (involving comparisons, negation, and ordering), 3
incorrect answers, and 4 skipped queries. (S)he expressed difficulties with focus
position and interaction logic, but declared that “for some questions, it would
take me hours to do the same in Excel, while here a few clicks are enough!”.
No user managed to answer the question Which U.S. states do not possess gold
minerals? because it requires to find one among the many YAGO classes (see
Section 6.3). Most expert and advanced users (4/5) managed to answer the com-
plex question Give me all bridges crossing the Saint Lawrence river, ordered by
decreasing length, and with an optional depiction. whose answer is an ordered
three-dimensional table (bridge, length, and depiction). The SUS questionnaire
gives results consistent with our first experiment, and answers mostly differ on
the expected amount of learning depending on user background.

7 Conclusion

We have improved Query-based Faceted Search (QFS) with NL verbalization
for readability, and with SPARQL endpoint-based computation of results and
suggestions for scalability and portability. This makes it an appealing approach
for semantic search as it reconciles the expressivity of formal languages, the
guidance of query builders and faceted search, the readability of natural language
interfaces, the scalability of the most powerful RDF stores and SPARQL engines,
and the portability to many SPARQL endpoints thanks to a strong conformance
to W3C standards. Our evaluations have shown that our QFS implementation,
Sparklis, can be used effectively on various endpoints, without configuration, can

11 Survey form and video are online at http://tinyurl.com/kxozx9r

http://tinyurl.com/kxozx9r
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answer most QALD questions and more, and was evaluated positively in first
usability experiments.

Our priorities for future work concern expressivity, readability, and visualiza-
tion. We aim to cover all SPARQL features while avoiding to make user inter-
action more complex. Note that union, negation, aggregation, and ordering all
simply add modifiers as suggestions, and we expect the same for other SPARQL
features. User interaction in QFS is FS + query + focus so that usability is
mostly a matter of readability and visualization. We plan to improve readability
by using ontology lexicons [20] in NL verbalization, when available, and visual-
ization by producing graphical views (e.g., diagrams, charts, maps) from tables
of results [21,14].

Acknowledgement. We are grateful to Joris Guyonvarc’h for his master work
that contributed to this work by designing, implementing, and experimenting a
first version of QFS over SPARQL endpoints. Interesting technical details not
present in this paper for space reasons can be found in a technical report [7]. We
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Abstract. Mobile devices are becoming a central data integration hub
for personal information. Thus, an up-to-date, comprehensive and con-
solidated view of this information across heterogeneous personal informa-
tion spaces is required. Linked Data offers various solutions for integrat-
ing personal information, but none of them comprehensively addresses
the specific resource constraints of mobile devices. To address this issue,
this paper presents a unified data integration framework for resource-
constrained mobile devices. Our generic, extensible framework not only
provides a unified view of personal data from different personal infor-
mation data spaces but also can run on a user’s mobile device without
any external server. To save processing resources, we propose a data nor-
malisation approach that can deal with ID-consolidation and ambiguity
issues without complex generic reasoning. This data integration approach
is based on a triple storage for Android devices with small memory foot-
print. We evaluate our framework with a set of experiments on different
devices and show that it is able to support complex queries on large per-
sonal data sets of more than one million triples on typical mobile devices
with very small memory footprint.

Keywords: mobile database, personal information system, RDF store.

1 Introduction

The availability of an up-to-date, comprehensive and consolidated view of a
user’s social context not only enables novel applications such as distributed social
networks [16], semantic life [8], or a semantic desktop [18] but is increasingly
becoming an essential requirement for many mobile applications. As an example,
consider a typical mobile user who has access to contact information of his
acquaintances via Facebook, LinkedIn, Google+ and his phonebook. Each of
these data sources may contain different types of information about this user,
e.g., personal and professional information, phone numbers or message and call
histories, and they may exhibit different levels of quality. Consequently, a contact
management application should be able to link and integrate all this information
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and automatically extract and integrate the right pieces of information from the
whole set of data sources available. Similarly, a messaging widget should be able
to integrate the messages from different services in order to track the user’s
conversations across all messaging service platforms.

However, the creation and continuous maintenance of such a view is a chal-
lenging task. The reason for this is twofold: First, despite the steady increase in
computation and communication capabilities, mobile devices are battery pow-
ered. As a result, developers typically spend a considerable fraction of their
development time on minimizing the amount of computation and bandwidth
utilization to reduce the impact of their applications on the device’s energy
profile. Second, despite the popularity of some mainstream social networking
services, the creation of a truly comprehensive view on the user’s context usu-
ally requires the integration of considerable amounts of data from a user-specific
set of services. As a result, developers must provide mechanisms to deal with the
integration of complementary as well as overlapping and possibly inconsistent
data sets.

Existing solutions typically use one of the following two approaches: Either
they may use a powerful and well-connected cloud infrastructure to perform the
data integration [12] or they may focus on the integration of an application-
specific set of data types from a (possibly) limited set of services [13]. The first
approach requires the provisioning of access credentials to the centralised/cloud-
based data integration infrastructure which may then access, process and store
the user’s information. This remotely processing approach for mobile applica-
tions raises several privacy and security concern as security credentials leave
the device and privacy is given up (entrusted to the cloud/remote servers with-
out control by the users and without means to enforce it). Therefore, granting
access on the mobile device is under the full control of the user is desired in
ongoing security and privacy debates in many countries in respect to the cloud.
To this end, the second approach is the preferable choice. However, it is not
cost-effective as it requires developers to repeatedly make complicated design
decisions. Furthermore, it may be also inefficient, especially in cases where mul-
tiple applications require access to the same data resulting in duplicate data
retrieval and integration.

In this paper, we present an alternative approach for data integration by
introducing a comprehensive framework that takes care of data retrieval, identity
consolidation, disambiguation, storage and access, locally on mobile devices. To
reduce privacy and security concerns, the framework does not require any remote
storage and processing. It is solely executed on the mobile device of a user. In
contrast to application-specific approaches, our framework is generic with respect
to the supported types of data. It is extensible with respect to the supported
services and it is open with respect to application support. To achieve this,
the framework (1) leverages Linked Data to facilitate the storage of arbitrary
types of data, (2) employs a plug-in model to connect to different services and
(3) provides a generic query processor with support for SPARQL to be open
with respect to application support. As a validation of the usefulness of the
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framework and to verify the efficiency of the framework, we present the results
of an extensive experimental evaluation.

The remainder of this paper is structured as follows: In the next section we
describe our approach for data consolidation and integration on mobile devices.
After that we present the design and implementation of our framework, and
evaluate its performance. Finally, we discuss related work and finish the paper
with our conclusions and discuss directions for possible future work.

2 Integration of Heterogeneous Personal Information

To integrate the personal data from different data sources, several approaches pro-
posed a unified data model for transforming heterogeneous data formats to RDF
drivenbyagreed-uponvocabularies (FOAF,SIOC,vCard,etc) [2].RDFstatements
are used to link and describe people, their social relationships, the content objects
relevant to them, etc. However, a person can have multiple identifiers (IDs) on dif-
ferent data spaces.When they are integrated in a single data space, these IDs have
to be interlinked and unified to represent a unique person. To uniquely identify
someone across various data spaces, there are some rules that have to be set to
infer and ensure uniqueness of that person. Along with some explicit properties
like owl:sameAs, there are some implicit rules defined from properties indicating
that two IDs are “talking” about the same person [2]. For instance, in practical, an
“inverse-identification” property is used as an indirect identifier, e.g., foaf:phone,
foaf:mbox sha1sum.Therefore, havingmultiple identifiers poses several challenges
for aggregating personal data from heterogeneous data spaces to store in RDF and
to make it useful on resource constrained devices.

To demonstrate why it is challenging to enable a unified, integrated view
of heterogeneous personal information sources on mobile devices, let us take a
closer look on the example depicted in Figure 1. The data shown in this figure is

phone#me 

“Danh Le Phuoc” 

Facebook:Danh 

Linkedin:Danh 

gplus:Danh 

Phone:+353… 

contact:Gregor 

gplus:Anh 

foaf:phone 

gplus:photo1 

facebook:Anh 

LinkedIn:Gregor 

Facebook:photo2 

     

         

foaf:knows 

“xxyyzz”” 

foaf::mboxsha1sum 

OWL:sameAs 

OWL:SameAs 

Tag:tagin 

foaf:knows 

OWL:SameAs 

foaf:knows 

Tag:tagin foaf:email 

tel:+353... 

Google+ Phone contacts 

Facebook 

Tag:tagin 

mailto:gregor@deri.org 

foaf:knows 

Phone:+353… 

Linkedin 

foaf:name 

“GAMBAS” 

<http://..> foaf:img 

foaf:currentProject 

Fig. 1. Simple RDF graph integrated from data silos
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acquired and transformed to RDF from Facebook, Google+, LinkedIn and phone
contacts of a user’s mobile phone in a similar fashion as proposed in [16,2].

The explicit owl:sameAs statements are added to link a user’s IDs from dif-
ferent data spaces. In addition, two RDF nodes, facebook:Anh (Facebook iden-
tifiers) and gplus:Anh (Google+ identifiers), represent one person because they
have the same inverse-identification property foaf:phone with the same value
< phone : +35389... >. Similarly, two RDF nodes, linkedin:Gregor (LinkedIn
identifier) and phone:Gregor (identifier given by the phone’s contact applica-
tion) also represent one person because the sha1sum value of his email has the
same value as his foaf:mbox sha1sum in LinkedIn. In essence, this RDF graph
implicitly represents “different” pieces of information of three people who have
different RDF statements attached with different RDF nodes representing each
of them. However, if we store the simple RDF reification1 of this graph in a
standard RDF store, the SPARQL query processor will not be able to return
complete information about a person. For instance, the query ”SELECT ?friends
WHERE {phone:me foaf:knows ?friend}” can only return one friend with the
identifier contact:Gregor from the explicit statement in the phone contacts. Stan-
dard SPARQL is not able to infer the implicit statement {phone:me foaf:knows
facebook:Anh} because phone:me and facebook:me is the same person.

cg:me 
“Danh Le 

Phuoc” 

LinkedIn:Danh 

gplus:Danh 

facebook:photo2 

gplus:photo1 

Cg:Anh 

foaf:name 

Tel:+35386... 

Facebook:Anh 

cg:Gergor 
<http:..> 

OWL:SameAs 

taggedin 

foaf:knows 

foaf:img 

tagged 
cg:me 

cg:Anh 

foaf:knows 

OWL:SameAs 

tag:tagged 

<http:..> 

“xxyyzz”” 

“GAMBAS” 

tel:353… 

gplus:Anh 

facebook:Danh 

phone:me 

cg:Gergor LinkedIn:Gergor 

phone:Gergor 

OWL:SameAs 

Consolidated graph SameAs Graph 

Fig. 2. Consolidated and SameAs graph

The solution for this problem is to use entailment regimes2 instead of simple
entailment in the above graph. This requires a modification in the SPARQL
query processor to employ a reasoner to infer implicit RDF statements for basic
graph pattern matching operators. However, this approach is not practical be-
cause it needs a considerable amount of memory and a fairly powerful CPU for
the reasoning process. Another alternative solution is to use an ID consolidation

1 http://www.w3.org/TR/rdf-primer/
2 http://www.w3.org/TR/sparql11-entailment/

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/sparql11-entailment/


458 D. Le-Phuoc et al.

approach [12,6] to compute all implicit RDF statements, then store them in an
RDF store and query it with a standard SPARQL query processor. However,
this approach is hard to adopt for resource constrained mobile devices. On top
of that, having all possible explicit RDF statements in an RDF store is expensive
for both updating and querying the data stored in the storage. It is even more
expensive for incrementally updating the RDF store because the data needs to
be synchronized with the original data sources [15,17].

To remedy these problems, we propose to create a unified integration view by
managing additional graphs to query all personal information desired. Firstly,
we manage a “consolidated graph” that contains the aggregated personal infor-
mation from different data spaces. As illustrated on the left of Figure 2, the
consolidated graph provides an aggregated view of personal information, so that
a standard SPARQL query processor can provide complete answers relevant
to a person. Note that, this consolidated graph uses only one ID scheme that
provides a single ID for one person. However, the integration view also has a
SameAs graph that links consolidated IDs with their counterparts given in other
data spaces as shown on the right of Figure 2.

To store and manage the provenance information of the data acquired from
difference data spaces, the integration view also stores the data from each data
space as a named graph. This enables queries to correlate the consolidated graph
with a graph containing information from a particular data space. For instance,
the following query is used to query all friends in Facebook that are tagged with
“me in a photo” posted in Google+ or Facebook or other data spaces.

SELECT ?fbfriend
FROM NAMED ds:facebook
FROM NAMED ds:cg
FROM NAMED ds:sameas
WHERE{
GRAPH ds:facebook {fb:me foaf:knows ?fbfriend }
GRAPH ds:cg{?cgfriend pim:tagged ?photo. ?cgme pim:tagged ?photo.}
GRAPH ds:sameas {?cgfriend owl:sameAs ?fbfriend . ?cgme owl:sameAs fb:me.}}

To relieve the user of the burden of using the proper identifiers corresponding
to the data spaces and writing such a long query involving the SameAs graph,
it should be possible to use the user identifiers in queries as all identifiers will be
translated to the proper ID scheme based on the context given by the GRAPH
keyword. For instance, a Facebook ID Facebook:me will be translated to the
corresponding one in the consolidated graph by the query processor. The above
query could be written in a shorter form as follows:

SELECT ?fbfriend
FROM NAMED ds:facebook
FROM NAMED ds:cg
WHERE{
GRAPH ds:facebook {fb:me foaf:knows ?fbfriend .}
GRAPH ds:cg{?cgfriend pim:tagged ?photo. fb:me pim:tagged ?photo .}}

To create and maintain the unified view composed from such graphs, we would
need a data integration platform that requires several features specifically de-
signed for mobile devices. The first feature is the data aggregation from het-
erogeneous data sources. After data is aggregated, it has to be consolidated to
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create constituent graphs for the integrated view. To store and query data from
these graphs, the platform also needs a fully-fledged RDF store tailored to the
needs of resource-constrained devices. On top of that, the data in this RDF store
has to be accessed in a controlled manner to meet the security and privacy con-
cerns of personal data. These requirements drives the design and implementation
decisions of our framework in the following section.

3 System Design and Implementation

To enable querying heterogeneous personal information with the unified view
described in previous section, we design the system architecture to meet afore-
mentioned requirements in following. We also describe the implementation of
the core component, RDF store for mobile devices, that dictates the expected
performance of the whole system in context of resource constraints.

3.1 System Architecture

Figure 3 shows the overall system architecture which we will discuss in the
following.

Fig. 3. System architecture overview

As discussed before, there are different sources for personal information like
Facebook or Google Calendar that developers should be able to integrate into



460 D. Le-Phuoc et al.

our framework. To do so, our framework allows developers to create Connec-
tor classes and plug them into the framework using the Connector Manager.
Each Connector is tailored towards a specific information source. So far, we
provide a core set of Connectors, namely for Facebook, Google+, Google Cal-
endar,LinkedIn and the local mobile phone content. If developers need to access
additional information sources, they can easily implement new connectors for
them using the existing ones as a blueprints.

Each connector pulls relevant information from its information source and
pushes it towards the Data Consolidator. The Data Consolidator consolidates
and integrates data from different connectors into the corresponding RDF graphs
for each data source. The Data Consolidator also computes the aggregated graph
and SameAs graph as described in Section 2. These RDF graphs are stored as
an integrated view into the RDF Store.

The RDF Store is a core component of our system as it manages triple data
directly on the mobile phone instead of on an external server. RDF triples can
be stored, indexed and retrieved. The store contains the actual personal data as
well as all metadata needed for data consolidation, e.g., user IDs in different data
sources and how they relate to each other. The RDF Store has major influence
on our system performance and thus must be highly efficient both in terms of
execution speed and memory usage. We therefore implemented a RDF store
that is specifically tailored towards mobile devices instead of using a feature
reduced version of a well known system like Jena. We will discuss the design and
implementation of our RDF Store in more detail later in this section.

To access the RDF Store, clients can use two system components, the Query
Manager and the ID Resolver. The QueryManager can handle standard SPARQL
queries on the data in the RDF Store. In addition to standard query planning
and execution, the Query Manager is also responsible for rewriting queries if
necessary. This is the case if the query contains an ID for a user that originates
in one of the original data sources, e.g., the ID of a user in Facebook. The Query
Manager detects this and rewrites the query such that a consolidated ID is used.
This allows clients to place queries without knowing about the data consolida-
tion. From the client’s point of view it can use the data as if all of it was available
on Facebook. The ID Resolver offers an alternative way of dealing with multi-
ple IDs. It allows a client to request information about a user’s ID in different
data sources. As an example, a client can ask for the IDs of a user for which it
provides the Facebook ID. The ID Resolver looks up the necessary metadata in
the RDF Store and returns all IDs for this user, the consolidated ID as well as
the user’s ID in Google+, etc.

Clearly, security and privacy are major factors when designing a system that
manages personal data. Therefore, we chose to add an additional system com-
ponent, the Secure Access Manager, which is responsible for ensuring that all
client accesses are done in a secure and privacy-preserving manner. The Secure
Access Manager receives requests from local as well as remote client applications.
It authenticates the requesting clients and checks their authorisation to access
private data. Authorisation is given by the local user using so-called privacy
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policies. If access is granted, the Secure Access Manager forwards the request to
either the Query Manager or the ID Resolver. It also forwards any results to the
requesting client.

To ensure secure communication with remote clients, the Secure Access Man-
ager uses the PIKE approach for secure peer to peer communication establish-
ment for mobile devices [1]. PIKE includes mechanisms to initiate a secure key
exchange and to establish a secure network connection with it. It is also able to
set up an ad-hoc communication network between mobile devices if necessary.

3.2 High Performant and Low Memory Consumption RDF Store

As presented in Section 2, our solution formaintaining a unified integration view of
heterogeneous personal information is to manage a consolidated graph for the ag-
gregateddata fromdifferent spaces and a sameAs graph to link the consolidated ID
with their counterparts. Applying this approach on mobile devices requires a mo-
bile RDF store component which is designed for update-intensive operations. To
this end, we built a native and fully-fledged, persistent RDF storage and SPARQL
query processor for Android devices, calledRDFOn the Go (RDF-OTG) 3. RDF-
OTG has been extensively used for managing semantic contextual information on
mobile devices in PECES4 andGAMBAS5 projects. In our implementation, we fo-
cused on minimizing the memory footprint and designing data structures tightly
coupled with the storage mechanism of mobile devices to achieve maximum ef-
ficiency in terms of low memory consumption and high update frequency. In the
following we briefly describe our main optimisations to maximise performance and
scalability for personal information management applications on mobile devices.
A full analysis of the performance gains is given in Section 4.

Reducing memory consumption is one of the critical key targets in mobile
DBMS design [10] since most mobile devices have (relatively) limited memory.
To achieve that, we reduce the memory footprint of data operations on RDF
data by using dictionary encoding, similar to the implementations of JenaTDB
or Sesame. Each RDF node is mapped to a compact 32-bit integer with 9 bit to
encode the node type and the remaining 23 bit encoding a string identifier which
is kept separately on the flash memory instead of in main memory. Most oper-
ations on nodes, e.g., matchings during a query execution, can be performed on
these node identifiers without accessing the actual string representation. Thus,
only one integer must be kept in memory for each node, while string represen-
tations can be stored on the flash memory. This leads to a memory footprint of
just up to 12 bytes per triple. This is considerably low compared to 450 bytes
per triple for the Jena Memory Model as reported by the memory profiler. Note
that the compact integer format is used for optimising millions rather than bil-
lions of RDF nodes which we believe this is the common scale of most mobile
personal information applications. For instance,1.5 million triples are required
to represent the information of 1200 user profiles (cf., Section 4). However, if
necessary, this restriction could be easily removed.

3 RDF-OTG is open-sourced at https://code.google.com/p/rdfonthego/
4 http://www.nes.uni-due.de/research/projects/peces/
5 http://www.gambas-ict.eu/

https://code.google.com/p/rdfonthego/
http://www.nes.uni-due.de/research/projects/peces/
http://www.gambas-ict.eu/
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Mobile devices are equipped flash memory as the secondary storage. Flash
memory has no mechanical latency, reading is faster than writing and the storage
is organized in memory blocks. Instead of reading or writing individual bytes,
the I/O unit always reads/writes a whole block. That leads to its erase-before-
write limitation when writing a single byte in a block, i.e., the whole block must
be read, modified and written again. Thus to achieve the writing requirement,
our RDF store needs to optimize writing efficiency rather than reading effiency.
To simplify the writing process we use the simplest version of multiple indexing
framework of RDF data [4]. It contains only three cyclic orderings of a triple’s
components with respect to subject(S), predicate(P) and object(O): SPO, POS
and OSP. Each indexing order of triples is stored in a separate table.

Due to the impact of flashmemory, unmodified versions of traditional data struc-
tures do not perform well. On the other hand, flash-aware indexing structure do
not work well with “narrow and long” tables as resulting from the above index-
ing approach. Thus, we use a two-layer indexing approach to manage these tuples
of three encoded integers in their corresponding tables. In each table, tuples are
sorted lexicographically, partitioned and compressed into individual fixed-size and
same-length blocks to the flash I/O block size of the device. The second index layer
is a sparse index, small enough to fit into main memory to enable fast lookup for
the triples contained in each block. The index holds the lowest and highest node
identifier in each sorted block.We also use an in-memory cachingmechanismwhich
maintains a limited number of frequently used index blocks.

If a new triple is added, it must be added to the indexes. To do so, the system
loads the required index blocks into the cache. Then the triple must be allocated
at the right position in the index. This is trivial if the triple should be added
at the end of an existing block that still has open space. Otherwise, we would
need to move all triples by one position, resulting in a large number of writes.
To further reduce the number of read/write accesses, when we need to remove
a block from the cache and write it back to flash, our strategy chooses a block
that has thehighest chance of not being changed in the future.

4 Experimental Evaluation

The approach for data integration presented in Section 2 avoids reasoning tasks
by modifying RDF triples and then storing them in a unified integration view.
This solution is suitable for mobile devices since it does not require much memory
for executing the reasoning tasks but it requires a highly performant mobile RDF
store when the graphs have to be modified frequently to maintain the unified
view. Thus, performance of the system described in Section 3 heavily depends
on the performance of the back-end mobile RDF store used. In this section, we
present a thorough experimental evaluation6 of our system’s performance and
scalability in terms of data updating and querying. The evaluation uses two
system configurations with different mobile RDF stores to evaluate its impact

6 The description of how to reproduce the results can be found at
https://code.google.com/p/rdfonthego/wiki/SocialNetworkEvaluation

https://code.google.com/p/rdfonthego/wiki/SocialNetworkEvaluation
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on system’s performance and to measure the efficiency gained through our RDF
store. In the following we first describe the setup of the experiments and then
present and discuss the results obtained from the results.

4.1 Evaluation Setup

Our evaluation setup is as follows: To evaluate the impact of our special triple store
on system performance, we compare two different system configurations. The first
one uses our systemas described in the last section, i.e., it uses our triple store,RDF
OnTheGo (RDF-OTG).Theoriginal implementationofRDF-OTGwaspresented
in [9]. Since then RDF-OTG has been completely redesigned and reimplemented
for maximum performance in Section 3.2. In the experiments we use the most re-
cent version. In the second configuration we replaced RDF-OTG by TDBoid,7 the
Android version of Jena TDB. The rest of the system remained unchanged.

To evaluate how different device profiles with different resources and capabil-
ities impact on the performance, we use three classes of Android devices in the
experiments: a HTC desire, a Samsung Galaxy Nexus, and a Nexus 7 Tablet.
Their configuration details are described in Table 1.

Table 1. Android devices

HTC desire Samsung Galaxy Nexus Nexus 7 Tablet

AndroidOS 2.3.3 AndroidOS 4.2.2 AndroidOS 4.2.2
998Mhz CPU 1200Mhz CPU 1300Mhz CPU
404MB physical RAM 694MB physical RAM 974MB physical RAM
32MB DVM heap size 96MB of DVM heap size 64MB of DVM heap size

For the evaluation dataset, we use a social network data generator [11] to
generate three social networks, one for Facebook, one for Google+ and one
for LinkedIn. From these we extract relevant data profiles for a person, i.e.,
the profiles of that person and his/her friends, and feed them into our sys-
tem. The data generator generates random inverse-identification properties, e.g,
mbox sha1sum, phone from the same dictionary for three social networks so
the overlaps are random. With this dataset, we conducted the following four
experiments:

Update throughput: In the first experiment we tested how much new data
the system can incrementally update with a certain underlying RDF store corre-
sponding to each hardware configuration. We simulated the process of data grow-
ing by gradually adding more data to the system. We measured the throughput
of inserting data (triples/second) until the system crashed or until we reach 1
million triples (whichever happened first).

Query processor comparison: In the second experiment we tested the perfor-
mance and functionalities of TDBoid and RDF-OTG using 8 typical queries with
on the maximum data sizes that both TDBoid and RDF-OTG could support.
The queries are chosen to cover all query patterns and different complexities.
Note that, each query accesses to the aggregated view which already involves

7 https://code.google.com/p/androjena/

https://code.google.com/p/androjena/
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data from multi-sources and queries 7 and 8 are to show the ability to refer back
to the original data sources. The list of the queries in SPARQL language is given
in the Appendix.

Memory consumption: In the third experiment, we measured the memory
consumption of two system configurations while performing the queries. The
experimental application ran the different queries repeatedly and recorded the
maximum memory heap that the operating system allocated for it. To evaluate
the impact of the data size on memory consumption, the test was conducted
on the Nexus 7 Tablet with five datasets with different sizes. Note that the
memory consumption is device-independent. We used the same queries set as in
the second experiment.

Scalability: In the last experiment we evaluated the scalability of RDF-OTG
by measuring the query response time of the above 8 queries on the maximum
data sizes that each of the above devices could store.

4.2 Evaluation Results

Figure 4 shows the results of our first experiment, in which we measured the
update performance of RDF-OTG and TDBoid when adding more and more
triples to the store. As we can see, in general, the writing throughput of RDF-
OTG is roughly twice as high as TDBoid’s. This shows the advantage of our
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optimizations for flash memory compared to the design used in TDBoid, which
was originally designed for normal magnetic disks.

In addition, while throughput decreases for larger data sizes in the store, RDF-
OTG is able to add more triples to the store for all scenarios with acceptable
rates (approx. 200 triples/sec for the HTC Desire and approx. 500 triples/sec for
the two more powerful devices), even if nearly one million triples were already in
the store. TDBoid on the other hand, is not only slower, but it also cannot cope
at all with such data sizes and reaches its upper capacity limit at 100k triples
on the HTC Desire, 220k triples on the Galaxy Nexus and around 200k triples
on the Nexus 7.

In our second experiment we measured the performance of evaluating differ-
ent queries (as discussed earlier) on existing data sets. The results are shown in
Figure 5. Unfortunately, TDBoid does not return any results for Query 7 and 8
because it does not support queries involving named graphs. Therefore, we omit-
ted these two queries from the graphs below. In addition, due to the limitation
in the number of triples that TDBoid can handle, we had to reduce the number
of profiles contained in the test data for each of the devices: 45 profiles for the
HTC Desire, 180 profiles for the Galaxy Nexus and 112 profiles for the Nexus 7.
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Fig. 5. Comparing the query response times of RDF-OTG and TDBoid

The results show that the query performance of RDF-OTG is much higher
than TDBoid’s for the Galaxy Nexus and the Nexus 7. However, for the HTC
Desire, the performance is comparable or even worse for RDF-OTG. The reason
for this is that we specifically optimized our system for flash memory. However,
the HTC Desire uses an external SD card for storing data instead of internal
flash memory. This induces a much higher cost to I/O operations on the HTC
Desire. Since TDBoid is originally designed for (relatively slow) magnetic disks,
it is able to handle this better than RDF-OTG. However, to do so, TDBoid uses
a lot of main memory, which explains its restricted scalability.

The results of the third experiment for measuring the memory consumption for
querying are presented in Table 2. Due to the limited scalability of TDBoid ex-
hibited in the inserting throughput test, the tests with TDBoid could only be ex-
ecuted on data sizes of 100,000 and 200,000 triples. The results of the experiment
demonstrate the great improvement in memory footprint optimization of our sys-
tem. With the same dataset, RDF-OTG requires only one third of the memory
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that TDBoid needs. For instance, RDF-OTG requires 4MB for the 100,000 triple
dataset and 8MB for 200,000 triples to perform the queries while TDBoid requires
11MB and 26MB for the same setup. The efficiency in memory usage also enables
RDF-OTG to support much larger datasets. Even with a dataset of 1.5 million
triples, the heap size of a system configured with RDF-OTG is lower than 64MB
(the JVM maximum heap size of the Nexus 7 tablet).

Table 2. Memory consumption of mix queries/size of data

100k 200k 500k 1m 1.5m

RDF-OTG 4MB 9MB 17MB 34MB 46MB

TDBOID 11MB 26MB N/A N/A N/A

Our last experiment evaluated the scalability of our system. Due to the scal-
ability limitations that we found in earlier experiments, we omitted TDBoid in
this experiment and focused on RDF-OTG. Table 3 shows the query response
times of the 8 queries on the three devices. As we can see, our system is able
to handle datasets of 1 million triples (900 profiles) on the HTC Desire, and
1.5 million triples (1200 profiles) on the Galaxy Nexus and Nexus 7 without
any problems. For simple queries like Query 1 and Query 3, it takes less than
1 second to answer the query on datasets of more than one million triples on
all devices. More complicated queries such as Query 4, Query 5 and Query 6,
take less than 10 seconds, except for Query 5 on the HTC Desire. For this query
RDF-OTG crashes with an out of memory error. The HTC’s maximum heap
size of 32MB is not enough for RDF-OTG to handle the large number of inter-
mediate results generated for this query from the one million triple dataset.8 We
plan to look into this matter further in the future to solve this problem. For the
rest of the queries, it takes 10-25 seconds to answer the query. This is due to
the time spent for fetching a big set of output results and is determined by the
query, so developers have to be careful to “ask the right queries.”

Table 3. Query response time (seconds) on maximum datasets for RDF-OTG

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q 8

HTC (900 Prof/1M tr) 0.114 19.035 0.402 3.714 failed 6.093 22.652 24.345

GALAXY (1.2K Prof/1.5M tr) 0.322 14.705 0.341 3.490 7.858 1.713 16.111 19.223

NEXUS 7 (1.2K Prof/1.5M tr) 0.113 11.638 0.242 2.458 6.649 1.579 12.769 17.044

5 Related Work

Semantic Web and RDF have long been used as a solution for modeling and in-
tegrating heterogeneous personal data. Many works have aimed to better allow a
user’s access to multiple data silos by using Semantic Web technologies to satisfy
the requirements of data portability in terms of identification, personal profiles
and friend networks [2]. SemanticLife [8] is one of the early attempts to employ
ontologies for modeling personal digital information. Then there is a series of

8 34MB would be required as shown in our third experiment.
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work on Semantic Desktop such as the Gnowsis Semanic Desktop [14] or the So-
cial Semantic Desktop [5] to provide semantic Personal Information Management
(PIM) tools. Additionally, other integrated platforms such as Haystack [12] and
Semex [6] provide a wide range of tools and functionalities for PIM. However,
they all aim at a standard computer environment and do not take into account
mobile devices and their specific problems.

Since then several works have tried to achieve the same functionalities on
mobile devices. But the adaptations necessary for the mobile setting proved
to be challenging. The first line of work followed the approach of connecting
mobile devices to a centralized infrastructure where all processing and storages
are delegated to [3,4]. This line of early work has a lot of security, connection
and performance issues. To address them, there are emerging efforts to ship
processing and storage of personal information to mobile devices. For instance,
[16] tries to store the personal data retrieved from distributed social networks
on the phone. However, most of these works still have certain dependencies and
use unsecured data exchanges with intermediate parties.

However, these early works have shown the clear interest of using Semantic
Web technologies for integrating personal data on mobile devices and the also
have shown the need for mobile RDF data processing engines. But these existing
works ignore the fact that existing triple storage technologies from normal com-
puters can not be directly applied to the mobile setting. For example, the early
adoption of Jena to J2ME [7] is micro-Jena 9 which only works on in-memory
data on Symbian mobiles. The Android version of Jena, TDBoid, is far better
due to newer hardware capabilities but it has a lot of limitations in respect to
performance and scalability as we have shown in our experiments in Section 4.
We believe this paper is the first to systematically investigate and address the
issues of security, integration, performance and scalability of integrating hetero-
geneous personal information data.

6 Conclusions

In this paper, we presented a comprehensive framework for the integration of
personal data from heterogeneous data sources, such as different social networks,
on mobile devices. Our framework builds upon Linked Data technologies to be
generic with respect to the supported data types and data requests, offers a plug-
in model to be extensible for additional data sources and relies solely on a user’s
mobile device, without the need for storing or processing any data on an external,
possibly untrusted, server infrastructure. The performance and scalability issues
are addressed by our RDF triple store for Android devices, RDF On the Go,
which is specifically optimised for mobile devices and flash memory usage. It
offers full support for RDF triples and SPARQL queries and is able to handle
more than a million triples on typical mobile devices efficiently. Complex queries
are supported and can be executed in reasonable time, even for such large data
sets but with very small memory footprint.

9 http://poseidon.ws.dei.polimi.it/ca/?page_id=59

http://poseidon.ws.dei.polimi.it/ca/?page_id=59
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Appendix: Queries Used in the Experiments

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?per ?property ?info
WHERE {?per foaf:mbox ’mailto:Thierry59@gmx.com ’. ?per ?property ?info.}

Query 1: Return all information of a person by given mbox
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX db: <http://dbpedia .org/resource />
SELECT ?firstname ?lastname ?mbox ?friend ?birthday ?gender
WHERE {

?person foaf:based_near db:Bulgaria . ?person foaf:firstName ?firstname.
?person foaf:lastName ?lasttname. ?person foaf:mbox ?mbox.
?person foaf:birthday ?birthday .? person foaf:gender ?gender. }

Query 2: Extract some informations of people who are nearby Bulgaria

PREFIX sibv: <http://www.ins.cwi.nl/sib/vocabulary/>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX dbpo: <http://dbpedia .org/ontology />
PREFIX fbp: <http://www.facebook .com/person/>
SELECT DISTINCT ?location
WHERE { ?user sioc:account_of fbp:p151.

?photo sibv:usertag ?user.
?photo dbpo:location ?location . }

Query 3: Request all the locations that a person has taken a photo

SELECT DISTINCT ?properties
WHERE {?person rdf:type foaf:Person. ?subject ?predicate ?person .}

Query 4: Request incoming property of a person

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22 -rdf -syntax -ns#>
SELECT DISTINCT ?properties
WHERE {{?person rdf:type foaf:Person. ?subject ?predicate ?person .}
UNION {?person rdf:type foaf:Person. ?person ?predicate ?object .}}

Query 5: Request incoming and outcoming properties of person

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#>
PREFIX sioc: <http://rdfs.org/sioc/ns#>
PREFIX sibv: <http://www.ins.cwi.nl/sib/vocabulary/>
PREFIX fbp: <http://www.facebook .com/person/>
SELECT DISTINCT ?photo
WHERE{
fbp:p39 foaf:knows ?person. ?user sioc:account_of ?person.
?user sibv:like ?photo. ?photo rdf:type sibv:Photo.}

Query 6: Request all the photos that are liked by a person

PREFIX foaf : <http :// xmlns .com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sioc : <http :// rdfs .org/sioc /ns#>
PREFIX fbph : <http :// www.facebook .com/photoalbum />
SELECT ?per {
GRAPH <facebook > {?per rdf:type foaf :Person .}
GRAPH <master > {? user sioc :account_of ?per. ?user sioc :creator_of fbph :pa103 .}}

Query 7: Request the photo on Facebook by LinkedIn account

PREFIX foaf : <http :// xmlns .com/foaf /0.1/>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX sioc : <http :// rdfs .org/sioc /ns#>
PREFIX sibv : <http :// www.ins.cwi.nl/sib/vocabulary />
SELECT ?user ?c
{
GRAPH <facebook > {?c rdf:type sibv :Comment . ?user sioc :creator_of ?c.}
GRAPH <master > {? user sioc :account_of <http :// linkedin .com/person/p174 >}
}

Query 8: Request the LinkedIn account of a friend on Facebook
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Abstract. We introduce a client side triplestore library for HTML5 web
applications and a personalization technology for web browsers work-
ing with this library. The triplestore enables HTML5 web applications
to store semantic data into HTML5 Web Storage. The personalization
technology enables web browsers to collect semantic data from the web
and utilize them for enhanced user experience on web pages as users
browse. We show new potentials for web browsers to provide new user
experiences by personalizing with semantic web technology.

Keywords: semantic web, HTML5, triplestore, inference, web browser.

1 Introduction

1.1 Silos of Current Web Services

It is becoming common to manage our personal data on diverse web services
in which we can create documents and presentation materials, manage personal
schedules, send and receive emails, manage personal photo albums not only with
web browsers on laptop PCs but also dedicated smart phone applications. It is
also becoming common to synchronize PC data to cloud storage services which
enable users not only to backup but also to open the synchronized files with
smart phone applications on the go. Thanks to social network services, our daily
lives became more communicative with friends and family by instantaneously
sharing messages and schedules and postings.

However, current web systems don’t provide enough options for users to mash
up and utilize personal data which are distributed among those services users
depend on in daily lives. A practical way to reuse our personal data among ser-
vices is to exchange them with one of authorization protocols such as OAuth1.
Through a handshake between OAuth client and OAuth provider, they exchange
an access token which grants a permission to allow OAuth client to access user
data in the OAuth provider. However, the traditional approach using the autho-
rization protocol causes privacy issues for reuse of user data on other services.

1 http://tools.ietf.org/html/rfc6749

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 470–485, 2014.
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Without disclosing our private data to 3rd party services, we can’t reuse and
mash up among them. It is also difficult to understand how securely our privacy
is protected. After granting the access for user data to the 3rd party services,
in general, users don’t pay attention to which user data are still opened and
accessible for 3rd party services they previously authorized. In addition it is dif-
ficult for users to understand what is happening during the handshake because
the architecture of general authorization protocols depends on HTTP redirection
through client web browsers. If our favorite services don’t support the authoriza-
tion protocol, we can’t reuse personal data between services without migrating
or copy-and-pasting them manually.

1.2 The User Data Centralization on 3rd Party Services

Web browsers are becoming more functional on not only rendering rich graphical
web pages but also using latest innovative technologies such as real-time transfer
protocols of WebSocket[1] and SPDY[2], video streaming interface WebRTC[3]
and client side Web Storage[4]. However, we strongly depend on 3rd party ser-
vices to use and manage our personal web data. By disclosing our private data to
those 3rd party services, we get the benefits of reuse of our web data. We depend
on their functionality to control our web data and security levels because cur-
rent web browsers lack functionality for us to control personal web data. Though
Web Storage can store user data in web browsers, this capability is used by web
applications and not directly by users. We are always tied up with the architec-
ture of current web system where web browsers mainly work as web application
execution engine. Web browsers are users’ personal tools and they should give
more control for our personal data on the web without strongly depending on
3rd party services and disclosing our privacy.

1.3 What We Want to Achieve

The prior use cases and applications using semantic web were mainly server side.
The major architecture was to store application data as triples with standardized
formats like RDF[5] and provided endpoints which enabled client applications
to retrieve the stored application data with a dedicated query language such
as SPARQL[6]. However, there are a few challenges to apply semantic web to
client side web applications, especially for the new HTML52 platform which is
dramatically changing the existing web infrastructure.

In this paper we introduce a client side triplestore library, triplestoreJS3, and
semantic web browser plug-in, Semantic Spider4, working with the triplestore.
The Semantic Spider site5 describes the detailed architectures and demonstrates

2 http://www.w3.org/TR/html5/
3 http://www.w3.org/2013/04/semweb-html5/triplestoreJS/
4 https://chrome.google.com/webstore/detail/

semantic-spider/ckdnmkbanbampnifpddcfdphonmfibkb
5 http://www.w3.org/2013/04/semweb-html5/spider/

http://www.w3.org/TR/html5/
http://www.w3.org/2013/04/semweb-html5/triplestoreJS/
https://chrome.google.com/webstore/detail/semantic-spider/ckdnmkbanbampnifpddcfdphonmfibkb
https://chrome.google.com/webstore/detail/semantic-spider/ckdnmkbanbampnifpddcfdphonmfibkb
http://www.w3.org/2013/04/semweb-html5/spider/
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how it works. The source code of triplestoreJS and Semantic Spider is available
in a Github public repository6. The triplestore is a wrapper application pro-
gramming interface (API) for HTML5 Web Storage and enables HTML5 web
applications to store semantic data triples into a web browser local store and
search these stored triples with a dedicated triplestore API. The triplestore is
expected to meet enough processing performance to enable web applications to
work with it at reasonable speed. The semantic web browser plug-in is an HTML5
application working with the triplestore and currently works on Google Chrome
as an extension. The fundamental architecture is to extract semantic data from
web pages which a user visits in daily web browsing and save these data into
the triplestore of the plug-in. In addition to the semantic data extracted from
the web pages, the plug-in also collects personal semantic data from major so-
cial networking services (SNS). The collected semantic data represents the user
interests precisely, and allows the web browser integrating the plug-in to work
with the personal semantic data. This architecture to centralize user data into
the web browser local storage has the potential to resolve privacy issues caused
by the traditional approaches of permitting services to share data among them-
selves. We hope this challenge to apply semantic web technology into an actual
web browser will provide new inspirations and expand the use cases.

2 Related Works

One of the well-known cases using semantic web for knowledge bases is DBpedia7.
DBpedia is a crowd sourced community effort to extract knowledge information
from Wikipedia and make the information accessible on the Web in structured
form. Client applications can retrieve the extracted information with semantic
web tools using RDF/JSON/CSV/HTML as data format and SPARQL as query
language and can become more intelligent by integrating the knowledge bases.
Currently the English version of DBpedia describes 4 million things, out of which
3.22 million are classified in a consistent ontology, including 832,000 persons,
639,000 places, 372,000 creative works, 209,000 organizations and so on. DBpedia
is also available in localized versions in 119 languages. Because Wikipedia is
growing and maintained by contributors from all over the world, DBpedia will
be one of the central knowledge sources for intelligent applications. It is easy to
create an encyclopedia application continuing to support new words and keep
up to date with the internationalization support.

Another well-known case using semantic web for knowledge bases is search
engines. Though a search engine crawler analyzes web pages to identify em-
bedded data for web search, it also extracts semantic data RDF and RDFa[7]
and microdata[8] which annotate the web contents. The semantic data provides
machine readable information which helps client applications like the crawler
to precisely understand the data types and composing properties of the web
contents from the standardized structure format. All of latest major web sites

6 https://github.com/shishimaru/triplestoreJS
7 http://dbpedia.org/

https://github.com/shishimaru/triplestoreJS
http://dbpedia.org/
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integrate semantic data into their HTML pages. They expect that the crawler
analyzes their web sites more precisely and collects higher quality information
which will be useful for web search processing. Currently the major consumer of
the semantic data integrated into web sites is the crawlers of the search engines.
Though the number of web pages continues to increase with the additional se-
mantic data to annotate the web contents, general users don’t directly feel the
full benefit in web browsing.

The Tabulator Extension[9] is a browser plug-in that visualizes RDF semantic
data in tabular form which is retrieved from a server. Users can browse and edit
the visualized RDF data in the web browser and reflect the modification against
the originating server with SPARQL update messages. Piggy Bank[10] is also a
browser plug-in which stores extracted semantic data during web browsing into
the web browser and provide a user interface to review them on any web sites.
However, these prior tools are for semantic web engineers; general users of web
browsers don’t get clear benefits how semantic web can change our lives on the
web. Therefore, we demonstrate how we can utilize potential semantic web for
enhancing browsing experiences as section 4.2-4.5.

There are existing development efforts in semantic web JavaScript libraries
for web applications. Green Turtle8 and microdatajs9 are RDFa and microdata
parsers in JavaScript, respectively. sparql.js10 is a JavaScript SPARQL library
which enables web applications to retrieve semantic data with sending SPARQL
messages to SPARQL endpoints. rdf-store.js11 is a comprehensive semantic web
JavaScript library which supports JSON-LD/Turtle/N3 parsers and a persis-
tent storage using HTML5 LocalStorage and a SPARQL query. Because the
persistent storage is based on W3C RDF Interfaces API which is a set of basic
primitives and a low level interface, it is for advanced developers who understand
the semantic web well. In the other hand, because our triplestoreJS is based on
an extension of RDFa API12 whose architecture integrates the W3C DOM API
general web developers are familiar with, the learning curve is gentler and it is
easier to start web application development with the library.

3 A Triplestore for HTML5 Web Storage

We developed a triplestore wrapper library triplestoreJS in JavaScript which
stores subject-property-value triples into HTML5 Web Storage13. Web Storage
is a new persistent data storage of key-value pairs for web applications and
enables to store application data into local storage of a web browser. The API
of triplestoreJS is an extension on the RDFa API and provides operations to
store and search triples. Though Web Storage is based on key-value and isn’t

8 https://github.com/alexmilowski/green-turtle
9 https://github.com/foolip/microdatajs

10 http://www.w3.org/2001/sw/wiki/SPARQL_Javascript_Library
11 https://github.com/antoniogarrote/rdfstore-js
12 http://www.w3.org/TR/rdfa-api/
13 http://www.w3.org/TR/webstorage/

https://github.com/alexmilowski/green-turtle
https://github.com/foolip/microdatajs
http://www.w3.org/2001/sw/wiki/SPARQL_Javascript_Library
https://github.com/antoniogarrote/rdfstore-js
http://www.w3.org/TR/rdfa-api/
http://www.w3.org/TR/webstorage/
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optimized for storing triples, triplestoreJS is organized for storing and searching
the subject-property-value model. triplestoreJS also conceals the routine work
to resolve CURIEs within RDFa. Therefore, it can reduce the development cost
for web applications which store triples into a browser storage. Performance
measurements of the triplestore are described in section 5.

3.1 A Save Operation

Web applications can store specified triples into Web Storage with a dedicated
triplestore API. Because the Web Storage is based on the key-value model using
string data type, the triplestore stores a subject as a key and a JSON string of
the corresponding RDF properties and values as a value.

var st = new Triplestore();

/*

* ’setMapping(prefix, URI)’ registers a pair

* of prefix and URI for CURIE processing.

*/

st.setMapping(’foaf’, ’http://xmlns.com/foaf/0.1/’);

/*

* ’add(subject, property, value)’ method saves a triple.

* If the subject already has a value for the property,

* the new value is appended as additional values of the property.

*/

st.add(’http://example.org/people#bob’, ’foaf:name’, ’Bob’);

st.add(’http://example.org/people#bob’, ’foaf:homepage’,

’http://old.org’);

/*

* ’set(subject, property ,value)’ method overwrites

* all old values of the property with new one.

*/

st.set(’http://example.org/people#bob’, ’foaf:homepage’,

’http://new.org’);

3.2 A Search Operation

Web applications can search the stored triples with simple APIs, getProper-
ties(subject), getValues(subject, property) and so on. If the property parameter
of getValues(subject, property) is null, all values which associate with the subject
are returned.

//returns [’http://xmlns.com/foaf/0.1/name’,

// ’http://xmlns.com/foaf/0.1/homepage’]

var properties = st.getProperties(’http://example.org/people#bob’);

//returns [’Bob’]

var name = st.getValues(’http://example.org/people#bob’, ’foaf:name’);

//returns all values [’Bob’, ’http://new.org’]

var values = st.getValues(’http://example.org/people#bob’, null);
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4 A Web Browser Enhanced with Personal Semantic
Data

We integrated triplestoreJS into Google Chrome as a Chrome extension to evalu-
ate the potential to apply semantic web technology into the actual web browser
experience. Especially, our challenge is to address how to utilize the personal
semantic data collected during web browsing to enhance current and future user
experience during browsing operations. The Chrome extension is an HTML5
application and has its own Web Storage.

4.1 Collecting Personal Knowledge Bases from the Web

Any web contents annotated with RDFa or microdata are extracted from web
pages users visit and are stored into the web browser automatically via the
triplestoreJS as shown Figure 1. An automatic save function works when one of
following conditions is met:

– When a user stays at a page longer than a specific period, e.g. 5 minutes
– When a user visits a page more than a specific frequency, e.g. 5 times

Fig. 1. Architecture for collecting personal
knowledge bases

Fig. 2. Screenshot of a search function for
stored semantic data

If a subject and the properties are already stored and now new additional
properties of the subject are found in other web pages, the additional properties
are appended to the subject. In this manner, the users’ database of semantic
data will grow based on their web browsing and the plug-in can provide more
personalized functions with the stored personal semantic data.

Besides semantic data extraction from web pages, the plug-in supports login to
Google and Facebook to gather user profile information, contact lists of friends,
personal schedules and postings by the user and friends. Those user data and SNS
data are converted into triples with standard vocabularies from schema.org14

and Friend-of-a-Friend (FOAF)15. Therefore, after storing the user data from

14 http://schema.org/
15 http://www.foaf-project.org/

http://schema.org/
http://www.foaf-project.org/
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those services, the internal representations can be equally combined with general
semantic data stored from web pages.

If a stored triple has an expiration date and time, it will be removed auto-
matically from the triplestore as the browser does for cookie or cache expiration.
When a user visits a web page, the plug-in monitors HTTP traffic and handles
Expires header in HTTP response. When the semantic data is stored, the expi-
ration information is also stored at the same time. Even if the auto-save function
is always enabled by the user, this auto-remove function reduces the growth of
stored semantic data in the triplestore.

The stored semantic data can be synchronized among browsers. If a user
would like to copy stored favorite semantic data into another browser, the user
can indicate which items she would like to synchronize. The plug-in stores the
specified items into a dedicated Chrome synchronization storage and a plug-in
working in another browser merges them into the local triplestore. The plug-in
executes the synchronization process only when the activity on the browser is
idle so as not to slow the browsing operation.

Figure 2 is a screenshot of the visualized stored semantic data. The user
interface has three components: keyword search field, item type search field, and
the search result field. The figure shows an example in which a user searched
items whose types were ’flickr photos:set’ and semantic data stored from online
photo album Flickr is shown in the search result. The type is a service oriented
name or a standardized URI or a term defined in schema.org or FOAF.

4.2 Suggesting Related Semantic Data

The plug-in detects related stored semantic data by calculating the similarities
using inference processing based on the Jaccard similarity coefficient algorithm
[13]. Suppose that A is a list of words composing a stored item X and B is a
list of words composing a new item Y found in a web site the user is browsing.
The plug-in calculates the similarity of A and B by equation (1) after sanitizing
them by eliminating noise words such as numbers and determiners. If the simi-
larity is above a pre-defined threshold, the plug-in recognizes the item X has a
relationship with item Y. If the web site has several items of semantic data, the
plug-in calculates the similarity for all combination of item X and Y. We used
0.5 as the pre-defined threshold for Jaccard.

J(A,B) = |A ∩B|/|A ∪B| (1)

One use case for this similarity function is to make a personal online photo
album by mashing up user data distributed on the web. Figure 3 represents a
possible architecture for the use case. Generally the online photo album should
contain some relationships with other user data. For example, if the photo was
taken while traveling, then the corresponding schedule would be also registered
in a calendar service. If the photo has persons, some of them may be friends who
are registered in SNS services. An SNS friend may post a new message for the
online album representing her impression.
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In step 1 of figure 3, the plug-in collects those personal user data from the web
and stores into the local triplestore. In step 2, the plug-in finds related semantic
data from the personal triplestore by calculating the Jaccard similarities and
suggests this data to mash up with the online multimedia. Then the plug-in
generates an HTML fragment including the detected semantic data and inserts
this fragment into the web page. Figure 4 is a screenshot of the behavior of this
use case on a Google+ photo album. The plug-in suggests the related schedule
item of the trip containing the date and location and creator, a comment item for
the album posted by a Facebook friend, the friend’s SNS profile item containing
the name and account id and organization, the album item containing the title
and date and number of photos. The suggestion window created by the plug-in
is minimized by default and toggled with the ESC key. One common issue for
photo albums is how to easily add annotations to photos because this is a tedious
work and we need to consider the contents of the annotation itself. In section
4.3, we introduce an annotation function which assists users to annotate photos
with the suggested semantic data.

Fig. 3. Architecture of the personalized photo album

In the current architecture, to mash up user data on several services users
needed to authorize those services to allow access to user data. The access to
user data always raises underlying privacy issues. If some of the services don’t
support an authorization protocol, users can’t mash up and utilize their personal
web data. The challenge for mashing up personal data continues to grow as
users manage data in more dedicated services and the kinds of data become
diverse: from an office domain like documents and calendars and emails to a
social network domain like friend networks and published postings and photos



478 H. Uchida, R. Swick, and A. Sambra

Fig. 4. Screenshot of the augmented Google+ photo album

and videos. The web browser itself has a potential to help the users to resolve
the data access situation and we facilitate that with semantic web technology.

4.3 Assisting Media Sharing Operations

Our Chrome plug-in assists users to annotate and share online photos/videos
with their friends and supports users’ SNS activities by utilizing a stored con-
tact list from FOAF. When a user Paul wants to send photos stored in online
photo album services such as Flickr to a new friend whose contact information
isn’t registered to the service, if Paul visits the friend’s homepage or SNS page in-
cluding the friend’s contact information as FOAF, this information is stored into
the triplestore and the plug-in works as personal contact list manager without
depending on and disclosing the private contact information to 3rd party ser-
vices. Figure 5 illustrates this architecture. In step 1, the plug-in collects FOAF
data from SNS services and Blog sites and stores the data into the triplestore.
In step 2, when a user indicates to the plug-in to share a specified online photo
with the SNS friends, the plug-in shows the stored contact information of the
SNS friends overlaid on the photo album site. If the user selects one of contacts,
then the plug-in sends the photo using the specified contact information.

For example, in a personal photo album of a trip to New York City on Flickr,
when a user selects a photo with right click to share with an SNS friend and
select ’share’ from the menu provided by the plug-in then a stored contact list is
overlaid on the web site as showed in Figure 6. When the user selects one of these
contacts, the plug-in asks the user to select related semantic data to annotate
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Fig. 5. Architecture of the assisted media
sharing

Fig. 6. Screenshot of showing a contact list

Fig. 7. Screenshot showing suggested tags
for annotating a photo

Fig. 8. Screenshot showing the photo shar-
ing with a Google+ friend

the photo to be shared. In Figure 7, a schedule name of a trip to New York
stored in Google Calendar and photo album items stored in Flickr are suggested
for annotating the photo. If the schedule name is selected, the user can send the
photo through Google+ or Facebook or email with the annotated travel schedule
as showed in Figure 8. The receiver can see the shared photo with the annotated
travel schedule.

4.4 Assisting Text Input Operations

When a user is inputting a search keyword into text fields in web sites, the plug-
in suggests candidates from stored semantic data. Though newer online services
also suggest popular keywords or users’ prior input histories, keyword suggestion
provided by this plug-in is independent of any 3rd party services and derived
from the users’ personal semantic data collected from their web browsing and
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representing their interests. It is difficult for 3rd party services to collect this
personalized data, however the plug-in learns them from the user’s activities
and we utilize this stored data for the keyword suggestion.

The keyword suggestion works in any text fields on web pages. Figure 9 shows
how this works on online photo albums mashed up with personal schedules of
stored semantic data. In step 1, the plug-in stores the user’s personal schedules
from calendar services into the triplestore. In step 2, when the user starts to
input a search keyword in a search field on the online photo album, the plug-in
finds items whose name are matched with the search keyword and generates an
HTML fragment including the names of the matched items and appends it close
to the search field the user inputs.

Fig. 9. Architecture of the keyword suggestion combining calendar and photo album

Figure 10 is the screenshot of the behavior on an online photo album Flickr. If
a user manages his photo albums based on travel names like ’Travel New York’
and starts to search with a keyword ’Travel’ on a search field in Flickr, then
because personal schedules from Google Calendar can be collected as semantic
data by the plug-in, the corresponding matched travel names are suggested for
the candidate.

The plug-in recognizes semantic tagging on HTML input fields; If a text field
in a web page is annotated with an attribute @itemtype with microdata or @type
with RDFa which constrains the type of semantic data, the plug-in understands
the annotation and suggests only keywords whose types of semantic data are
matched with the specified type. For example, if the text field is described with
the following markup, only keywords which are related to information whose
type is ’http://schema.org/Event’ are suggested.

<input type="text" itemtype="http://schema.org/Event">
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Fig. 10. Screenshot of the search keyword suggestion on Flickr

It is difficult for a general web service to suggest such keywords which are
derived from other web services because the service needs to support at least
one authorization protocol to get permission to access user data and collect
user interests and preferences from other web services beforehand. Our plug-in
architecture allows the web browser to securely collect user interests from web
browsing without changing services, therefore this keyword suggestion can be
realized and works on any web pages.

4.5 Annotating Online Photos

Major online photo album services provide face annotation functionality which
shows the name of the identified person if his or her name and face image are
registeredin the services beforehand. Some online photo album services support
online machine learning which enables users to register new face images on their
online photos and learn with the new faces and improve the accuracy of the face
annotation.

Our plug-in supports a face annotation function which works on any online
photo with the stored personal semantic data without disclosing the user’s pri-
vate information to the photo album services. The plug-in collects profile infor-
mation of friends and family from any web pages distributing FOAF data and
from SNS services like Google+ and Facebook through a login functionality the
plug-in provides. If a user visits a blog site managed by a friend distributing
FOAF data, the plug-in can easily collect profile data when visiting the blog.
After storing FOAF data, the plug-in annotates online photos with the stored
FOAF data using face identification processing we developed. For face detection,
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we used open source libraries ccv.js16 and face.js17 which enable web applications
to detect the face locations on an online photo. We developed a face identification
JavaScript library to annotate online photos with the stored semantic data.

Matthew A. Turk and Alex P. Pentland[14] describe a fundamental identifi-
cation algorithm by comparing characteristics of the face to known individuals
using principal component analysis (PCA). We trained our recognizer offline
using a face database18 of 13233 images and created a training result Eigen-
faces. Figure 11 is the visualized Eigenfaces we acquired. We serialized this into
JavaScript codes to integrate into the face identification processing of the plug-
in. The plug-in compares each face of an online photo with SNS profile images
from the stored semantic data using the serialized Eigenfaces.

Fig. 11. Screenshot of visualized Eigenfaces trained with 13233 face images

Figure 12 is a screenshot of the face annotation functionality on an online
photo. The gray rectangle represents the detected face location obtained from
face.js. If a user moves a mouse pointer to one of the gray rectangles, then the
corresponding FOAF data collected from the web is overlaid on the photo. In
figure 12, a Google+ account is suggested for the selected SNS friend and the user
can share the online photo with the friend through Google+. Without depending
on the functionality of 3rd party online services and disclosing our SNS friends’
information to them, the face annotation can be realized with stored personal
semantic data within client side scripts in real-time.

5 Evaluation

We measured the processing performance of the client side triplestore library
used by the plug-in. For performance measurement we used semantic data col-

16 http://libccv.org/
17 https://github.com/wesbos/HTML5-Face-Detection
18 http://vis-www.cs.umass.edu/lfw/

http://libccv.org/
https://github.com/wesbos/HTML5-Face-Detection
http://vis-www.cs.umass.edu/lfw/
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Fig. 12. Screenshot of face annotation with stored FOAF data
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Fig. 13. The result of performance measurement based on the number of triples

lected from Google+ and Facebook and web sites including RDFa or microdata.
The average number of properties per item was 9.5.

For the ’save’ operation, we measured the performance by saving triples, a
subject and properties and corresponding values into the triplestore. For the
’search’ operation, we measured the performance by searching all values of spec-
ified subjects and properties. The searched data is the data stored by ’save’
operation. Graph 13 shows the measured performance based on the number of
triples. The horizontal axis is the number of triples and the vertical axis is the
total time to complete each operation. For example, in case of 7698 triples, the
average time to save was 1125 milliseconds, and the average time to search was
245 milliseconds. As we can see from the graph 13, the performance is linear
with the number of triples. We think the core operations ’save’ and ’search’ us-
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ing semantic data collected from actual web services meet sufficient performance
for web applications to work on a general HTML5 platform.

6 Conclusion and Future Work

In this paper we introduced a client side triplestore library triplestoreJS for the
HTML5 platform and a web browser personalization technology working with
this library. Where existing examples of semantic web development were mainly
server side applications and used for background development tools, general users
didn’t directly see benefits in daily web browsing. The motivation for general
web developers to integrate semantic data into their web sites was to expect
higher ranking on search results. We directly enhance user experience in the
web browser by utilizing personal semantic data collected during prior browsing
activity.

One of the features we achieved is to make online services more informative
by mashing up with personal semantic data discovered on the web and securely
collected into the web browser local storage. Another feature we achieved is to
enhance user experiences in the web browser by suggesting candidates for text
input operation and assisting to share and annotate online multimedia. This
feature is especially helpful for small devices to improve user experiences whose
user interface area are small and the input features such as hardware buttons
are limited.

A future work is to replace the underlying Web Storage with IndexedDB19 in
the triplestore library. When we started the development, the standardization
progress of IndexedDB was in W3C Candidate Recommendation and there was
still a risk to change the API or behavior. And because we thought supporting
mobile web platforms was also important and these didn’t support IndexedDB
at all, we selected Web Storage for the underlying storage of the triplestore.
However, because IndexedDB can directly store semantic data as JavaScript ob-
jects without converting the objects to a string value to store into Web Storage,
it is expected the performance for storing and searching semantic data can be
improved. A performance comparison of the triplestore between Web Storage
and IndexedDB will be also addressed.

We hope the work introduced in this paper will inspire new applications of
semantic web technologies in HTML5 and will expand the use cases and be a
promising bridge between them.
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Abstract. In this paper we introduce the CrowdTruth open-source soft-
ware framework for machine-human computation, that implements a
novel approach to gathering human annotation data for a variety of me-
dia (e.g. text, image, video). The CrowdTruth approach embodied in the
software captures human semantics through a pipeline of four processes:
a) combining various machine processing of media in order to better un-
derstand the input content and optimize its suitability for micro-tasks,
thus optimize the time and cost of the crowdsourcing process; b) provid-
ing reusable human-computing task templates to collect the maximum
diversity in the human interpretation, thus collect richer human seman-
tics; c) implementing ’disagreement metrics’, i.e. CrowdTruth metrics, to
support deep analysis of the quality and semantics of the crowdsourcing
data; and d) providing an interface to support data and results visualiza-
tion. Instead of the traditional inter-annotator agreement, we use their
disagreement as a useful signal to evaluate the data quality, ambiguity
and vagueness. We demonstrate the applicability and robustness of this
approach to a variety of problems across multiple domains. Moreover,
we show the advantages of using open standards and the extensibility of
the framework with new data modalities and annotation tasks.

Keywords: crowdsourcing, gold standard data, machine-human com-
putation, data analysis, experiment replication, information extraction.

1 Introduction

The unprecedented amount of information available on the Web in terms of text,
images and videos opens incredible opportunities and challenges for machines to
interpret such data adequately. Machines are typically good in handling massive
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scale, e.g. indexing huge amounts of data and humans in interpreting text, images
and audio-visual content. Automated approaches for semantic interpretation are
typically founded on a very simple notion of truth, while in reality the principled
approach is that truth is not universal and is strongly influenced by human
perspectives and the quality of the sources.

The Semantic Web had already made a huge leap by adding both diversity and
machine-readable semantics of data on the Web. However, the scale of the Web
provides unlimited amounts of new perspectives and interpretation contexts.
Using crowdsourcing platforms such as CrowdFlower1 or Amazon Mechanical
Turk2 (MTurk) for gathering human interpretation on data has become now a
mainstream process. In the NLP field [1], crowdsourcing has been used for nearly
a decade, as the low level language understanding tasks map well into micro-
tasks. In the AI field [2], this has become a scalable way to gather a cheaper
annotated data for gold standards that is used to train and evaluate machine
learning systems. However, as we have observed previously [3], the introduction
of crowdsourcing has not fundamentally changed the way gold standards are
created: humans are still asked to provide a semantic interpretation of some data,
with the explicit assumption that there is one correct interpretation. Thus, the
diversity of interpretation and perspectives is still not taken in consideration.

In previous work, we have introduced the CrowdTruth methodology, a novel
approach for gathering annotated data from the crowd. Inspired by the simple
intuition that human interpretation is subjective [4], and by the observation
that disagreement is a natural product of having multiple people performing
annotation tasks, this methodology can provide useful insights about the task,
a particular annotation, or a worker. We proposed rejecting the traditional no-
tion of ground truth in gold standard annotation, in which annotation tasks are
viewed as having a single correct answer, and adopting instead a disagreement-
based crowd truth [5]. In [4, 6–8] we have validated CrowdTruth in the context
of measuring the quality of workers, annotation units, and tasks. We showed
experimental evidence that these measures are inter-dependent, and that ex-
isting crowdsourcing approaches that measure only worker quality are missing
important information, as not all the annotated units are created equal.

This paper presents the open-source CrowdTruth software framework that im-
plements the CrowdTruth methodology in a machine-human computing work-
flow for collecting, processing and evaluating crowdsourcing data. In this work-
flow, the capacities of both humans and machines are optimally combined for the
output of high quality gold standard for machines to learn from. Such frame-
work can be helpful to the Semantic Web community considering the grow-
ing number of crowdsourcing applications in this field, as well as the growing
need for gold standard training and evaluation data. Significant benefits brought
up by the CrowdTruth framework over the current state-of-the-art crowdsourc-
ing frameworks such as CrowdLang [9] and Jabberwocky [10] are the deeper
analysis of the annotated data and the data visualization tools. In contrast to

1 https://crowdflower.com/
2 https://www.mturk.com/mturk/

https://crowdflower.com/
https://www.mturk.com/mturk/
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GATECrowd [11], the presented framework has the advantage of manipulat-
ing a variety of input media types. Moreover, the added value of the frame-
work is increased due to the PROV[12] model integration. Thus, its generic
and domain-agnostic features are essential inside CrowdTruth, as they offer a
straightforward solution to (1) visualize the entire process cycle of a media unit,
(2) assess the clarity of a media unit as well as (3) replicate the same process
for different other media units. The open source CrowdTruth framework is avail-
able for download at https://github.com/laroyo/CrowdTruth, the service at
http://crowdtruth.organd documentation as http://crowdtruth.org/info.

2 CrowdTruth Use Cases

Before diving into the CrowdTruth framework and its components in Section 5,
we introduce the use cases in the context of which the system has been devel-
oped and tested. To ensure data diversity, each use case introduces either a new
domain, content modality or a new annotation task. All the data and the exper-
iments can be viewed in CrowdTruth through the Media section. New content
can be inserted for immediate execution of new experiments through the Upload
Media option, as described in Section 4. Below we describe the four use cases:
– IBM Watson medical text annotation for factor span extraction (FactSpan)

and relation extraction (RelEx)
– IBM Watson newspapers text annotation for event extraction (MRP-Events)
– Sound & Vision video annotation for event extraction (NISV-Events)
– Rijksmuseum image annotation for flower names extraction (Rijks-Flowers)

Fig. 1. CrowdTruth Annotation Workflows for Text, Images and Videos

The main experiments initiating the implementation of this framework were
focussed on providing gold standard to the IBM Watson system for relation
and factor extraction in medical texts. Thus, the best illustration on how the
CrowdTruth Framework works can be currently observed in the RelEx and

https://github.com/laroyo/CrowdTruth
http://crowdtruth.org
http://crowdtruth.org/info
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FactSpan use cases. For this, we have defined (as depicted in Fig. 1) workflow A,
where medical sentences are shown to the crowd for annotation in three micro-
tasks. In the context of the MRP project at IBM, we have also experimented
with newspaper text and annotations for event and named entities extraction
(workflow B). Workflows C and D, show the annotation tasks on Rijksmuseum
Amsterdam images and Sound & Vision videos we have performed within the
context of two research projects. In the following section, Section 3, we provide
a detailed description of the annotation tasks for all use cases.

3 CrowdTruth Annotation Tasks

The CrowdTruth use cases introduce about 14 distinct annotation templates
across three content modalities (text, image, video) and three domains (med-
ical, news, culture). Each of those templates has also a number of variations,
depending on the target result quality. Ultimately, CrowdTruth framework is
aimed to provide its template collection as a continuously extendible library of
annotation task templates, which can be reused and adapted for new data and
use cases. The implementation of CrowdTruth does not pose restrictions for the
creation of new templates. To see more detailed description for all tasks and their
templates, visit this page: http://crowdtruth.org/templates/examples. The
templates themselves are accessible through the Jobs section in CrowdTruth, by
selecting the Create New Job option. Depending on the type of content chosen,
only the applicable sub-set of templates will be presented.

3.1 Medical Text Annotation: IBM Watson Medical Use Cases

– FactSpan: Factor Span Correction. The crowd is given a sentence with
two highlighted factors (either a word or a word phrase). For each factor,
the crowd is asked to determine whether it is complete. If it is not, the
workers highlight the words in the sentence that would complete the factor.

– RelEx: Relation Identification. The crowd is given a sentence with two
highlighted factors and a set of 12 target relation types. The crowd is asked
to select all the relations expressed in the sentence between the given factors.

– RelDir: Relation Direction Identification. The crowd is given the out-
put of RelEx - a sentence, two highlighted factors, and a relation between
the factors - and are asked to choose the direction of the relation. Since this is
an easy task, we use golden units (instances with known answers - e.g. "As-
pirin treats headaches") to decrease the spam rate. The advantage of this
method is that CrowdFlower immediately rejects untrustworthy workers.

– RelExDir: Relation & Direction Identification. The crowd is given
the combined task of relation and direction identification on the FactSpan
output. As with RelEx, the crowd is shown a sentences with two highlighted
factors and is asked to check all the relations that apply between them. The
relations set contains the initial 12 relations and their inverses (23 in total).

http://crowdtruth.org/templates/examples
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3.2 Newspaper Text Annotation: IBM Watson MRP Use Case

– EventEx: Event and Event Type Identification. The crowd is given a
sentence with a highlighted putative event (word phrase that could poten-
tially express an event, i.e. verbs or nominalized verbs) and is asked whether
it refers to an event. For each event the crowd is asked to choose the event
type expressed in the sentence from an EventType taxonomy (see Table 1).

– LocEx, TimeEx, PartEx: Event Location, Participants & Time
Identification. The crowd is given a sentence with a highlighted event
from the EventEx output, and is asked (1) to indicate whether the sentence
contains location, time or participant for this event, (2) to highlight the
words in text that refer to those and (3) to select their types (see Table 1).

Table 1. Event Role Fillers Taxonomies

Role Filler Taxonomy

Event Purpose, Arriving or Departing, Motion, Communication, Usage, Judgment, Leader-
ship, Success or Failure, Sending or Receiving, Action, Attack, Political

Location Geographical (Continent, Country, City); Land Area (Island, Mountain, Beach); Wa-
ter Area (Ocean, River, Lake, Sea); Road/Railroad (Road, Street, Railroad); Building
(Educational, Government, Residence, Commercial, Industrial, Military, Religious)

Period Before, During, After, Repetitive, Timestamp, Date, Year, Week, Day, Part of Day

Participant Person, Organization, Geographical Region, Nation, Object

3.3 Image Annotation: Rijksmuseum Amsterdam Use Case

– FlowerEx: Depicted Flower Identification with Bounding Box. In
the pre-processing we identify the images with the highest chance of depicting
flowers. We ask the crowd to identify all the flowers in them (by surrounding
each flower with a box), and to fill in their names, the total number of flowers
and the number of different flower types depicted.

3.4 Video Annotation: Sound and Vision Use Case

– DescEventEx: Event Identification in Video Description. The named
entities are extracted during pre-processing form the video description text.
The crowd is asked to confirm or reject any machine annotations on this
text, and highlight all the events and their role fillers.

– VidEventEx: Event Identification in Video. The crowd is given a video
or a video segment and is asked to annotate events that are depicted (literally
mentioned) or associated (related to some spoken events/role fillers).

4 CrowdTruth Data Model

Essential to maintaining all the data resulting from the annotation tasks in
Section 2 is the definition of a data model, which complies with three main
requirements: (1) to be abstract enough to store different content modalities, i.e.
text, images, videos, (2) to be specific enough, i.e. semi-structured, to still be able
to query the data, and (3) to capture the provenance of the data. The MongoDB3

3 http://www.mongodb.org/

http://www.mongodb.org/
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document-oriented NoSQL database does not rely on predefined schemas, rather
the structure of the data stored can be defined dynamically at any point in time.
Such flexibility is a key requirement because when collecting crowdsourcing data,
we often do not know upfront the appropriate structure. An example of this
are the various online content processing APIs that return results in a JSON
format but with different structures. MongoDB allows us to store any of these
JSON results in documents without any conversion because of its BSON storage
design. However, storing data without defining structure makes it difficult to
query. Thus, we defined a data model that is abstract enough to be able to store
any type of data, yet specific enough to be able to query this data (Figure 2).

Fig. 2. The CrowdTruth Data Model and Data Provenance

The CrowdTruth MongoDB deployment hosts one database, with four col-
lections Entities, Activities, Agents and SoftwareComponents. For every
collection we define Models in the framework which map to their respective
collections. The models are used by the Moloquent Object Document Mapper,
which allows easy creation, reading, update and deletion of data. The four col-
lections are connected with the core provenance relations as defined by W3C
PROV. Each collection is defined by created_at and updated_at timestamps.

In PROV entities are described with their provenance, that might refer to
other entities (i.e. an image is an entity whose provenance refers to other enti-
ties such as an annotation on the image, the software component or the agent
that created the annotation). Entities can have different attributes and can be
described from different perspectives, e.g. a text unit, the same unit after an-
notation and the aggregation of all annotations on this unit are three distinct
entities for which we save provenance. The advantage of using the PROV model
inside the CrowdTruth data model is the ability to capture each of the stages
performed by the framework (i.e. data pre-processing, gathering human and
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machine annotations, analyzing the results). Moreover, by capturing all those
stages it helps to evaluate the improvement of final results over partial results.

In CrowdTruth Entities represent data units and are defined by format, e.g.
text, image, video with possibility to add other modalities; domain, e.g. medical,
news, art, also extensible with additional domains; documentType, e.g. IBM-
medical-sentence, NYT-news-article, Rijks-image; parents refers to the parent
identifiers to capture the provenance of each data unit, e.g. wasDerivedFrom re-
lation and parents are typically generated upon creation of an entity by an activ-
ity; content, which contains the JSON structure specific to that documentType;
tags, e.g. unit, segment, frame, which typically can indicate an aggregation level
or granularity; hash to prevent duplicates in the database; agent_id refers to the
agent that wasAttributedTo the creation of this entity; cache, e.g. batchCount,
jobsCount, which is a temporary field for query optimisation.

Agents are defined by a type, e.g. user or crowd and are associated with
activities and the softwareComponents_id used by a specific activity, e.g. File
Uploader or CrowdFlower, i.e. the name of the component. Activities refer to
the operations performed on entities by a software component or an agent to
create a new entity. For example, if the next version of each video, image or text
is generated by event annotation, then the activity is this annotation. Activities
are defined with used, agent_id and softwareComponent_id.

Currently the data model is populated with text, images and videos in three
different domains. New data can be ingested in the CrowdTruth MongoDB
database through the Upload Media option by uploading local files or pulling
online resources from APIs. Extending the upload to other domains, types and
APIs requires only minimal changes to the framework. Here, we have introduced
the main use cases (Section 2), their corresponding annotation tasks (Section 3)
and the way the data is stored (Section 4). Next, we describe all CrowdTruth
components involved in the end-to-end workflow.

5 The CrowdTruth Framework

The CrowdTruth software framework integrates a set of open source components
providing an end-to-end workflow for collaborative machine-human computing
for annotation of different data modalities (e.g. text, videos, images). To en-
sure extensibility and openness the framework is implemented using open web
standards. It is built on top of an open source PHP framework Laravel4, which
uses the MVC pattern to decouple application logic, data and presentation. It
leverages built-in packages for authentication, routing, creation of templates and
APIs. External packages are used to extend the framework, e.g we use an Object
Document Mapper Moloquent to query any MongoDB storage. We also developed
open source SDKs for CrowdFlower and MTurk to optimise the communication
with those platforms. Data ingested and produced through the framework can
be exported in different formats. For more details see the documentation5.
4 http://laravel.com/
5 http://crowdtruth.org/info

http://laravel.com/
http://crowdtruth.org/info
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Fig. 3. The CrowdTruth Main Components and Open API

Fig. 3 illustrates the framework components. It provides CrowdTruthPROV-
DB, a provenance-preserving storage of crowdsourcing data, CrowdTruth Data
Collection services for job configuration, creation and results retrieval, including
a library of reusable and extensible micro-task templates, and CrowdTruth An-
alytics, a set of data visualisation and analysis tools. The CrowdTruth API6, is
an open API for external applications to query the data in the framework or to
ingest their own data. Such an API allows for community building in terms of
sharing data, analysis metrics, crowdsourcing templates and optimised job set-
tings. Many of the crowdsourcing templates take a long time to determine their
most effective form, thus sharing previous experiences is extremely valuable.
Figure 4 provides an overview of the overall framework workflow:
– After input data ingestion, specific Data Pre-processing is typically applied

to filter out and specify the appropriate input to reach an optimal crowd-
sourcing task. For examples, the sentence word count property allows for
filtering of sentences between a specific word count range.

– The Job Configuration component takes the aforementioned filtered input
in the form of a batch, and creates a job with specific job settings such as:
the crowdsourcing template that is to be used, payment options, and the
running platform for the job.

– The Data Collection component provides an almost live update of the crowd-
sourcing results from the annotation platforms, as these results are pushed
from CrowdFlower and polled at regular intervals from MTurk. The results
are stored in the database along with their provenance.

– Post-processing allows for deep analysis of the quality of the crowdsourcing
results on three levels: Worker, Annotation and Unit. The CrowdTruth Met-
rics are able to identify the low quality workers, the suitability of a unit for
a task and the clarity of the annotations.

– The Data Analytics component provides visualizations tailored for use with
the CrowdTruth metrics. As such, it provides functionalities for evaluating
results through graphical views at both individual and aggregated levels.

The following sub-sections describe each component in more detail.

6 http://crowdtruth.org/api/examples

http://crowdtruth.org/api/examples
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Fig. 4. CrowdTruth Overall Architecture

5.1 Data Pre-processing Components

The pre-processing components allow for various processing of the input data to
optimize its use in specific crowdsourcing tasks. Before running a flower name
annotation task we pre-process images to know which ones have high probability
of depicting a flower and we send only those for crowd annotations. This saves
both cost and time and makes the micro-task more engaging for the workers.
Figure 5 depicts the three pre-processing workflows for all content modalities.
The left side (A) of the figure shows the workflow for video and image pre-
processing and the right side (B) shows the workflow for text pre-processing.
They all share the same MongoDB storage (depicted in the centre of the figure).
The video pre-processing makes also use of a physical storage. Following, we
provide details on the three pre-processing workflows in this figure.

Fig. 5. CrowdTruth Pre-processing Workflows for Text, Images and Videos
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To ingest images in CrowdTruth framework we use ImageGetter, which
calls the open API of the Rijksmuseum Amsterdam7 by querying, e.g. for a
number of paintings or drawings described with a specific keyword, like ’birds’.
It is straightforward to extend it with additional APIs of other online collections.
The Image pre-processing is performed by three external APIs - Rekognition8,
Cloudinary9, Skybiometry10, and a local classifier. Each of them contributes
complimentary and redundant annotations with their corresponding confidences,
e.g. Rekognition provides depicted objects, faces; Cloudinary detects faces, colour
histogram, while Skybiometry detects faces with their position and gender. The
local classifier is trained for flowers and birds. The pre-processing is finalised
by storing the image URLs and metadata in the MongoDB database as parent
entities together with separate children. The children entities contain information
about the software agent used and its configuration, as well as the features
received by calling the aforementioned APIs and the classifier.

To ingest videos in CrowdTruth framework we use OpenImages11 API
by querying for videos from the collection of the Netherlands Institute for Sound
and Vision. Figure 5 on the left (A) depicts the workflow for video pre-processing.
After returning the requested number of videos from OpenImages, we create an
entity for each item, containing all the metadata features. The item is linked
through the provenance model to an activity OpenImagesGetter and an agent,
e.g. CrowdTruth user. Next, each video is downloaded and saved in the public
storage of the framework together with its description as Metadata Description
entity. For maintaining the provenance consistency, the Metadata Description
entities are linked to an activity VideoDescriptionGetter, an user_id and the
full video as the parent entity.

To optimise the crowd annotations, videos need to be pre-processed to a length
reasonable for a micro-task, e.g. up to a minute. Thus, we perform video segmen-
tation. Similarly as with the images, we would like to have some indication of the
featured topics and objects in each video. For this we extract keyframes, which
are processed as images to detect the depicted objects. Both pre-processing are
implemented using the open source FFmpeg12 framework. Additionally, to detect
main concepts we process the video description and transcript and extract the
named entities. The new entities get stored in the database with their particular
activity, user and parent entity.

We ingest text in CrowdTruth framework using a local component
FileUploader, as we are provided with large amounts of IBM Watson medi-
cal data to experiment with. The text pre-processing is depicted in the right
part (B) of Figure 5. Text annotation tasks typically require specific formatting
of the text in order to anchor the human annotation around specific word(s) or
phrase(s). Similarly as with the videos, the text needs to be fitted to a length
7 http://www.rijksmuseum.nl/api
8 http://rekognition.com/
9 http://cloudinary.com/

10 http://www.skybiometry.com/
11 http://www.openbeelden.nl/api/
12 http://www.ffmpeg.org/

http://www.rijksmuseum.nl/api
http://rekognition.com/
http://cloudinary.com/
http://www.skybiometry.com/
http://www.openbeelden.nl/api/
http://www.ffmpeg.org/
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suitable for a micro-task, e.g. sentences or short paragraphs. Additional filters to
maximise the quality of the sentences have also been implemented, e.g. detection
of UMLS13 medical relations, semicolon or comma-separated list in sentences.
For detailed examples of those special filters consult the dedicated document
section http://crowdtruth.org/info/special_filters.

Additionally, for the Event extraction from newspapers task, we have ingested
a set of NYTimes article URLs and extracted the date when the article was
published and its content. Pre-processing activities for these texts are (1) sen-
tence splitting, (2) length-based selection on the sentences for removing too short
sentences which are meaningless, (3) putative events extraction using the Stan-
ford Parser14 (mainly for verbs) and NomLex, a dictionary for nominalizations.
Next, (4) the putative event is marked in the sentence with capital letters and
surrounded by square brackets; and (5), for each event or event role filler (par-
ticipants, location, time) we align their types to a set of predefined (existing but
simplified) ontologies (Table 1).

5.2 Job Configuration and Data Collection Components

The Job Configuration component provides functionality for (1) creation of
batches of media units to be used in a job, (2) job template configuration and (3)
job settings (Fig. 6). Each job can be duplicated or adapted for different data,
settings and template which is saved in a JSON format and further translated
to the dedicated crowdsourcing platform format. The platform components are
written in the form of Laravel packages. In the documentation there is informa-
tion on how to write your own package, by extending an abstract class, calling
your API and adhering to our data model standard. After configuring the job’s
title, reward and other settings, the user creates the job. The request is routed
through the respective package, where any necessary conversion is done, to the
platforms’ API. If this succeeds, one job per platform is stored in our database.

Fig. 6. CrowdTruth Job Configuration and Data Collection Workflow

The Collection of Annotated Data in CrowdTruth is a workflow of four
main steps as depicted in Figure 6. It starts with the steps described for the

13 https://uts.nlm.nih.gov/home.html
14 http://nlp.stanford.edu/software/lex-parser.shtml

http://crowdtruth.org/info/special_filters
https://uts.nlm.nih.gov/home.html
http://nlp.stanford.edu/software/lex-parser.shtml
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Job Configuration component: batch creation, template selection and job cre-
ation and ordering. Finally, in the Results Gathering phase the crowdsourcing
results from both CrowdFlower (webhook call when a new judgement is re-
ceived) and MTurk (poll the mTurk server at regular intervals to check for new
judgements) are pulled into CrowdTruth framework. Results are saved in the
MongoDB database in the PROV model, along with each additional informa-
tion provided by the platforms.

5.3 Data Post-Processing and Data Analytics Components

Data visualization plays a central role in the CrowdTruth framework. It provides
tools for deep analysis of crowd data based on the core notion of CrowdTruth, to
harness disagreement. Ultimately, it should implement the instantiation of the
triangle of reference [3] for the range of tasks supported in the framework. The
Data Analytics component is developed using the Highcharts JS library and in-
teracts with the CrowdTruth API. In the backend the requests are processed into
optimized aggregated queries for the MongoDB database. Thus, the data is pro-
tected and the process is optimized by efficiently querying the DB and partially
executing in the backend the necessary computations. On one hand the interface
is more responsive, increasing the framework usability. On the other hand, the
visual components are synchronized and communicate between themselves, e.g.
general and specific information views, as well as their table views.

The visual components depict the three main sections of the framework: me-
dia, workers and jobs. The views facilitate the visualization and analysis of im-
ported and generated data by the framework (media, workers, jobs). The visual-
ization of new data is possible as long as it conforms to the defined data model.
All the charts are created through a facade object which specifies the settings
of the graphs. Thus, the charts are easily adaptable by changing the settings of
the objects to be created. Beside the barchart views, which are specific to each
section, all the other components of the views share the same implementation
making the framework robust to changes and easily extensible.

The core of the CrowdTruth framework are the disagreement metrics [6, 5]
that evaluate evaluate the crowdsourced data in a variety of annotation settings,
such as event extraction, video and image annotation, medical relation and fac-
tor extraction. These metrics are implemented in Python and similarly to the
visualization component use the API to get the data from the server. The basic
assumption of the framework and metrics is that each individual unit that can
be interpreted (e.g. sentence, image, video) is annotated by multiple workers,
and their annotations are aggregated together and used in the following ways:

Annotation Vector: The most important step in adapting the CrowdTruth
metrics to a new task is designing the annotation vector so that the results can
be compared using cosine similarity. For each worker i submitting their solution
to a micro-task on a MediaUnit u, the vector Wu,i records their answers. If the
worker selects an answer, its corresponding component would be marked with
‘1’, and ‘0’ otherwise. The size of the vector depends on the number of possible
answers per task. The output for open-ended tasks (e.g. FactSpan) was inter-
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Table 2. Annotation vectors for the various crowdsourcing tasks

Task Annotation vector
FactSpan 9-component vector: 3-words-left-of-factor, 2-words-left-of-factor, 1-words-left-of-

factor, factor, 1-words-right-of-factor, 2-words-right-of-factor, 3-words-right-of-
factor, OTHER, Answer-Validation

RelEx 16-component vector: 12 components - each corresponding to a relation including
NONE and OTHER, and Answer-Validation-NONE, Answer-Validation-OTHER

RelDir 3-component vector: each possible direction of a relation and no relation

RelExDir 23-component vector: each relation with its inverse (if it exists)

EventEx 14-component vector: each event type, OTHER and NONE

PartEx, LocEx,
TimeEx

the size of the vector corresponds to the number of defined types for Location,
Time, Participants + OTHER and NONE

Passage filter-
ing

2 annotation vectors: one to account for disjoint passage-answer pairs, and one for
multiple-choice justifications

Passage align-
ment

fixed-size vectors for each question-passage pair, with a component for each type
of relation that can exist between the terms

preted to fit into a fixed-size vector, for the purpose of reusing the disagreement
metrics. An explanation of how the Annotation vectors were adapted for various
crowdsourcing tasks is available in Table 2.

MediaUnit Vector: This vector accounts for all worker submissions on a
unit, for a given task. For every unit u, we compute the MediaUnit vector Vu =∑

iWu,i by adding up the annotation vectors for all workers on the given task.
Along with the Annotation vector, this is used as a core component for analysing
disagreement in the crowd.

The crowdsourcing system contains 3 components: the Worker, the Unit, and
the Annotation. Ambiguity can occur as part of each of these components (e.g.
a spammer can generate disagreement for the Worker component) or can prop-
agate inside the system (e.g. an unclear Unit can generate disagreement among
workers). Therefore, we analyse how ambiguity and disagreement occur for each
system component using the Annotation and MediaUnit vectors and a set of
specialized metrics for Worker, Annotation and Unit. We use the cosine similar-
ity coefficient as the basis of most of these metrics, in order to determine the
similarity of vectors. In the following section, we show both their definition and
examples of visualisation in the CrowdTruth Analytics (see Fig. 7, 9, 10).

5.4 Worker Metrics

These metrics are used to measure disagreement at the level of the worker, in
order to differentiate between spammers and high quality contributors.

Worker-unit disagreement measures the cosine distance between a worker’s
Annotation vector and the MediaUnit vector (subtracting the worker vector),
for each Worker-Unit pair. The average of this metric across all units in a set
gives a measure of how much a worker disagrees with the crowd on a per-unit
basis. Consistent low unit disagreement scores can indicate a low quality worker.

Worker-worker disagreement is equal to 1 − avg(κ) for a particular worker.
Since κ is a pairwise metric, for each worker we average the κ scores between
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that worker and all the others. Similarly to the previous metric, the worker-
worker disagreement metric measures how close a worker performs to the group
of workers solving the same tasks. sagreement with the majority of workers is
an indicator of low quality work.

Average annotations per unit is measured for each worker as the number of
annotations they choose per unit averaged over all the units they annotate. Since
in many tasks workers are allowed to choose "all annotations that apply", a low
quality worker can appear to agree more with the crowd by repeatedly choosing
multiple annotations, thus increasing the chance of overlap. A high score here
can indicate low quality workers. All three metrics are used to determine worker
quality in the pie chart on the left in Fig. 7.

Fig. 7. Screenshot of CrowdTruth Analytics for Worker Quality and Annotations (jobs
comparison); more details can be obtained by clicking on a worker (bar chart), or a
type of worker (pie chart)

5.5 Unit Metrics

These metrics are used to determine the clarity of the input unit that is given
to the crowd. An ambiguous unit (e.g. a sentence that is difficult to read) could
generate disagreement, therefore tampering with the quality of the results.

Unit-annotation score is the core CrowdTruth metric. It is measured for each
annotation on each unit as the cosine similarity of the unit vector for the anno-
tation with the MediaUnit vector. For instance, in Fig. 8, unit 735 has complete
agreement between annotators for annotation sS. Therefore, the unit-annotation
score for unit 735 and annotation sS is equal to 1. Unit 733 has more disagree-
ment, so its unit-annotation score for annotation sS is equal to 0.63.

Unit clarity is defined for each unit as the maximum annotation score for that
unit. This metric is used to determine the quality of the unit which is given
as input to the crowd. If all the workers selected the same annotation for a
unit (e.g. unit 735 in Fig. 8), the max annotation score will be 1, indicating a
clear unit. In contrast, unclear units will have low clarity scores (e.g. unit 732
has a clarity score of 0.5). Unit clarity is shown in Fig. 9, among other worker
and annotation metrics. This view is the most comprehensive tool to compare
sub-sets of MediaUnits (containing one ore more units) with each other.
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Fig. 8. Annotation vectors of RelEx task on 5 units, with 15 workers contributing
per unit. Rows are individual units, columns are the annotations. Cells contain the
number of workers that selected the annotation for the unit, i.e. 7 workers selected the
sS annotation for unit 732. The cells are heat-mapped per row, highlighting the most
popular annotation(s) per unit.

Fig. 9. Screenshot of CrowdTruth Analytics for Units; more details about the unit
jobs, workers and annotations can be obtained by clicking on a unit bar

5.6 Annotation Metrics

These metrics are used to measure the quality of the pre-defined annotation types
that are part of the task (e.g. whether or not relations in RelEx have overlapping
meanings). This can then be used to distinguish between disagreement that is
the result of low quality workers, and the disagreement from badly designed
tasks, in order to improve future crowdsourcing.

Annotation similarity is defined as the causal power [13], which is the pairwise
conditional probability P (Aj |Ai) adjusted for the prior probability of Ai. We
want to know if annotation Ai is annotated in a unit and how often annotation
Aj is as well, but only if Aj is significantly more likely to be annotated when Ai is
as well. A high similarity score for a pair of annotations indicates the annotations
are confusable to workers: their semantics may be similar or routinely expressed
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in similar ways in language, or the semantic specification may be confusing or
vague. For example when annotations for two relations often appear together in
sentences, this could mean the relations are confusing, overlapping in meaning,
etc. In Fig. 8, the sCA and sS annotations appear to have this form of similarity.

Annotation ambiguity is defined for each annotation as the maximum anno-
tation similarity for the annotation. If an annotation is clear, its score is low.
Annotation that is strongly associated with other may create problems for the
task, as well as for training machines that need to discern between them.

Annotation clarity is defined for each annotation as the max unit-annotation
score for the annotation over all units (of a given type). If an annotation has
a low clarity score this may indicate unattainable NLP targets and problems
with the semantic specification. For instance, in Fig. 8, sM is one example of a
low-clarity annotation, since few workers ever picking this annotation.

Annotation frequency is the number of times the annotation is annotated at
least once in a MediaUnit. The latter three metrics are shown in Fig. 10.

Fig. 10. Screenshot of CrowdTruth Analytics for Annotations on Selected Units in
Selected Jobs; click on the pie chart to see the annotation distribution per micro-task

6 Related Work

The amount of knowledge that crowdsourcing platforms like CrowdFlower or
Amazon Mechanical Turk hold fostered a great advancement in human com-
putation [14]. Although the existing paid platforms manage to ease the human
computation, it has been argued that their utility as a general-purpose computa-
tion platform still needs improvement [9]. Both paid platforms support the task
creation, distribution to the workers and gathering of the results and provide
some quality management tools. However, the quality measures that they apply
are inferior to our CrowdTruth metrics, as lots of tainted judgements are still
accepted. Even if CrowdFlower’s job monitoring support improves the analysis
of the data, the provided set of quality metrics is limited. Moreover, the miss-
ing links for interconnecting the units, workers and annotations across one or
multiple jobs hinder the data exploration and visualization.

Since the development of crowdsourcing has become more intensive, much
research has been done in combining human and machine capabilities in order
to obtain an automation of the process. Some state-of-the-art crowdsourcing
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frameworks are CrowdLang [9], CrowdMap [15], GATECrowd [11]. CrowdLang
represents a general approach of integrating both human and automatic compu-
tation for different use cases and media modalities. However, it restricts the users
to work with its own internal programming language, while the overall frame-
work availability for usage or testing is still low. Further, CrowdMap represents
an implementation of a workflow model for crowdsourcing mappings between
ontologies. The main drawback of the framework is the fact that its parame-
ters are tuned to get the best results for ontology alignment tasks, and it is not
easily extendable to other types of media formats or tasks. Furthermore, both
frameworks lack in proper visualization of the annotated data.

A more general solution for language processing is represented by GATE-
Crowd, a crowdsourcing plugin for the GATE framework. It facilitates the pre-
processing of data for crowdsourcing tasks, communicates with Crowdflower for
gathering the annotated data and aggregates the results. The plugin takes ad-
vantage of the GATE toolbox functionalities for collecting and processing the
data, calculating the inter-annotator agreement and analysis of the data. Addi-
tionally, the quality of the results is insured through golden units. Similarly to
CrowdMap, one of the disadvantages of GATE is its limitation to text media
types. By capturing the provenance between the machine and human generated
annotations, the creation of new metrics is possible. However, additional metrics
imply existing implementation inside the GATE architecture, which introduces
the overhead of familiarization with the entire GATE architecture.

A lot of research has been focused on identifying crowdsourced spam. Al-
though a commonly used algorithm for removing spam workers is the majority
decision [16], according to [17] it is not an optimal approach as it assumes all
the workers to be equally good. Alternatively, expectation maximization [18]
estimates individual error rates of workers. First, it infers the correct answer
for each unit and then compares each worker answer to the one inferred to be
correct. However, [6] shows that some tasks can have multiple good answers,
while most spam or low quality workers typically select multiple answers. For
this type of problem, some disagreement metrics [5] have been developed, based
on workers annotations (e.g. agreement on the same unit, agreement over all the
units) and their behavior (e.g. repetitive answers, number of annotations).

7 Conclusions and Future work

In this paper, we introduced the CrowdTruth open-source software framework
as an end-to-end collaborative machine-human computing workflow for text, im-
ages and video annotations across different domains and use cases. CrowdTruth
framework implements the novel CrowdTruth Methodology for gathering anno-
tated data, which rejects the notion that human interpretation can have a single
ground truth, and is instead based on the observation that disagreement be-
tween annotators can signal ambiguity of the content or annotation task. The
CrowdTruth methodology is based on the triangle of reference [3] whose imple-
mentation in the framework allows for easy adaptation to new micro-tasks. We
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have validated this, as the initial set of metrics was developed for the medical
text use case of IBM Watson and we easily applied them to new tasks, such as
event extraction in newspaper text, question-answer alignment and video and
image annotations.

We presented the details of the entire human-computing and machine pro-
cessing workflow, as well as the specifics of each framework component. We
demonstrated how such a framework can be beneficial to the Semantic Web com-
munity by adding human semantics to existing content interpretations, as well as
by supporting the growing trend for crowdsourcing tasks, and continuous need
for gold standard data. Detailed documentation http://crowdtruth.org/info
and code https://github.com/laroyo/CrowdTruth are provided online. Data
export from the CrowdTruth framework is provided in different formats and at
different phases of the workflow. The CrowdTruth framework is implemented
using open standards, and an important gain is achieved by the usage of the
PROV model, compared to existing crowdsourcing platforms and frameworks.
This ensures a monotonically increasing behaviour curve in terms of media unit
clarity and micro-task template suitability for each media unit that is intended
to gather annotations. As future work, we plan to gather more use cases to ex-
tend the system with new data, micro-task templates and domains. Additional
visualisations are also explored to increase the usability and effectiveness of the
CrowdTruth metrics.
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Abstract. Almost all of the big name Web companies are currently engaged in
building ‘knowledge graphs’ and these are showing significant results in improv-
ing search, email, calendaring, etc. Even the largest openly-accessible ones, such
as Freebase and Wikidata, are far from complete, partly because new informa-
tion is emerging so quickly. Most of the missing information is available on Web
pages. To access that knowledge and populate knowledge bases, information ex-
traction methods are necessitated. The bottleneck for information extraction sys-
tems is obtaining training data to learn classifiers. In this doctoral research, we
investigate how existing data in knowledge bases can be used to automatically
annotate training data to learn classifiers to in turn extract more data to expand
knowledge bases. We discuss our hypotheses, approach, evaluation methods and
present preliminary results.

1 Problem Statement

Since the emergence of the Semantic Web, many Linked datasets such as Freebase [5],
Wikidata [31] and DBpedia [4] have been created, not only for research, but also com-
mercial purposes. These have shown significant results in improving search, email, cal-
endaring, etc. With new information emerging very quickly, cost-efficient methods for
maintaining those datasets are very important. Since most of the missing or new infor-
mation is available on Web pages, the cheapest method for automatically populating
knowledge bases is to process those pages using information extraction (IE) methods.
However, IE methods require training data to learn classifiers. Because manually creat-
ing training data is expensive and time-consuming, we propose to use self-supervised
learning or distant supervision, a method proposed in recent years which utilises data
already present in datasets to train classifiers [19]. Distant supervision is based on the as-
sumption that if two entities participate in a relation, every sentence that contains those
entities expresses that relation. Although distant supervision approaches are promising,
they have so far ignored issues arising in the context of Web IE, specifically:
(i) Incorrect labelling: Distant supervision approaches automatically create training
data by heuristically annotating sentences with relations between entity pairs contained
in a knowledge base. This heuristic causes problems because some entity pairs are am-
biguous and knowledge bases are incomplete.
(ii) Unrecognised entities: One subtask of relation extraction (RE) is entity recognition
and classification (NERC). While existing NERC systems can be used, they are based
on a restrictive set of entity types and are trained for different domains and thus often
fail to recognise entities of diverse types on heterogenous Web pages.

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 505–512, 2014.
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(iii) Data sparsity: Existing distant supervision approaches only learn to extract rela-
tions from text and only from sentences with contain explicit entity mentions. Since not
all information on Web pages is contained in text and entities are not always refered to
by their proper name, but also by using pronouns, this limits the number of extractions.
The goal of this work is to research novel methods, which do not require manually
labelled training data, for Web information extracting to populate knowledge bases.

2 Relevancy

The contribution of this PhD research will be two-fold: the output of the Web informa-
tion extraction can be validated manually and then used to populate knowledge bases,
also, the Web information extraction system can be run as a service to do extraction
on the fly for a given user query. This will be of interest for Web companies interested
in expanding their knowledge graphs or improving results for search, The Linked Data
and Semantic Web community, because it will allow to generate annotations and triples
automatically across domains and reduce manual effort for populating ontologies, The
Natural Language Processing community, because it will improve the state of the art in
information extraction, and the Machine Learning community, because it will increase
the real-world application and improve accessability of distant supervision.

3 Research Questions

Our overall research question is: is distant supervision a feasible approach for Web infor-
mation extraction? How does it perform compared to unsupervised and semi-supervised
methods? To answer this, the following research questions will be investigated:

1. Seed Selection: Is it possible to improve the precision and recall of distant supervi-
sion by strategically selecting training data? If so, by how much?

2. Joint NERC and RE: Is it possible to train an extraction model for joint distantly
supervised entity classification and relation extraction? Will this achieve a higher
precision and recall than a pipeline model which uses a state of the art supervised
NERC as input for a distantly supervised relation extractor?

3. Joint text, list and table extraction: Does training a joint distantly supervised
model for free text, list and table extraction from Web pages achieve higher preci-
sion and recall than using a pipeline model which combines those strategies?

4 Related Work

Web IE approaches to populate knowledge bases which try to minimise manual effort
either use semi-supervised or unsupervised learning. Semi-supervised bootstrapping
approaches such as NELL [6], PROPERA [20] and BOA [11] use pre-defined natu-
ral language patterns to extract information, then iteratively learn new patterns. While
they can be used for Web IE for the purpose of populating knowledge bases, they
are rule-based, not statistical approaches, and as such make hard judgements based on
prominant extraction patterns instead of soft judgments based on weights for features.
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Extraction patterns often have a good performance on narrow domains, but are less
suitable for heterogenous domains, because they are less robust to unseen information
or infrequent expressions. Open information extraction approaches such as TextRun-
ner [34], Reverb [10], OLLIE [16] and ClausIE [8] are unsupervised approaches, which
learn relation-independent extraction patterns from text. Although those patterns can be
mapped to ontologies later, this is an error-prone process. In addition, those approaches
often produce uninformative or incoherent IE patterns. Automatic ontology learning and
population approaches such as FRED [22] and LODifier [3] extract ontology schemas
and information for those schemas by performing deep semantic processing using a
pipeline of text processing tools. Because those tools are trained on newswire, they
are not robust enough to process noisy Web pages. Existing distant supervision system
have so far only been developed for extraction from newswire [33], Wikipedia [19]
or biomedical data [24]. They therefore fail to address issues arising when processing
heterogenous Web text, such as dealing with grammar and spelling mistakes and recog-
nising entities of diverse types.

While there is no system that incorporates all of the aspects discussed in Section 3,
there are approaches which address the three invidual aspects.

Seed Selection: A few strategies for seed selection for distant supervision have al-
ready been investigated: at-least-one models [13][29][23][33][17], hierarchical topic
models [1][25], pattern correlations [30], and an information retrieval approach [32]. At-
least-one models assume that “if two entities particpate in a relation, at least one sentence
that mentions these two entities might express that relation”. While positive results have
been reported for those models, Riedel et al. [23] argue that they are challenging to train
because they are quite complex. Hierarchical topic model approaches group relations by
assuming that the context of a relation is either specific for the pair of entities, the relation,
or neither. Min et al. [17] propose a hierarchical model to only learn from positive exam-
ples to address the problem of incomplete negative training data. Takamatsu et al. [30]
use a probabilistic graphical model to group extraction patterns. Xu et al. [32] propose a
two-step model based on the idea of pseudo-relevance feedback. Our approach to filter
unreliable training data is based on a different assumption: instead of trying to address
the problem of noisy training data by using more complicated multi-stage machine learn-
ing models, we want to examine how data already present in the knowledge base can be
even further exploited for simple statistical methods.

Joint NERC and RE: While RE approaches typically use a separate NERC, previous
works have shown that applying text processing models in a pipeline fashion causes errors
made by one component to be propagated to the next one, which has a significant impact
on precision [26][27][14][15]. Approaches such as Integer Linear Programming [26][27]
and Markov Logic Networks [9] have been proposed to solve both tasks at the same
time. Existing distant supervision systems are based on pipeline models using supervised
NERC models. This is partly because, in order to jointly solve both tasks in one fully dis-
tantly supervised model, the NERC has to be distantly supervised too.

Joint Text, List and Table Extraction: Most existing Web extraction approaches fo-
cus on either text, list or table extraction. There are a few approaches which com-
bine those [28][6][7][12][21][18], but they do so by using separate classifiers for the
different tasks, even apply them to different corpora, then combine the results. We argue
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that by considering text, tables and lists in isolation, important information gets lost. We
want to research how solving those tasks at the same time and also making use of Web
page-level features could improve the precision and recall of Web information extrac-
tion systems.

5 Hypotheses

Our research hypotheses are as follows:

1. Seed Selection: Removing ambiguous training examples, as well as possible false
positives using statistical methods will help to improve the precision of distant su-
pervision approaches.

2. Joint NERC and RE: State of the art supervised NERCs are trained for the news
domain and will therefore have relatively low precision and recall on Web pages.
Distantly supervised NERCs will perform better on Web pages than supervised
NERCs trained on the news domain. Joint NE and relation extraction models will
achieve a higher precision than pipeline models. Using fine-grained ontology-based
NE classes instead of broad NE classes will lead to a higher RE precision.

3. Joint text, list and table extraction: A distant supervision model trained on com-
bined feature vectors for text, list and table features will perform better than three
separate models. Semi-structured (list and table) extractors have a substantially
higher precision than unstructured (free text) extractors, which can be exploited by
giving a higher weight to semi-structured features. Existing semi-structured extrac-
tors only consider lists and tables in isolation. Using the local and global context
of lists and tables on Web pages as features will improve the precision of semi-
structured extractors.

6 Approach

We develop a distantly supervised IE system in order to test our different hypotheses.
A high-level overview of our approach in provided in Figure 1. Our approach consists
the following components: a user integration component, a seed selection component,
a feature extraction component and a multi-task learning component.

User Integration: The user can select what information about an entity of a specific
class to extract, e.g. all members and albums of the band “The Beatles”. For evaluation
purposes, those user queries will be generated automatically. Web pages for the user
query are then retrieved. After the information is extracted, it is presented to the user.

Seed Selection: The seed selection component decides which of the triples in the knowl-
edge base to use for automatically annotating training data. We use several statistical
measures to choose positive and negative training data. Our main idea is to select triples
which have a relatively low ambiguity and are therefore very specific to the relation. As
an example, The Beatles released an album called “Let it Be”, which also contains the
track “Let it Be”. If a sentence contained both “The Beatles” and “Let it Be” it would
be unclear if the sentence represents the relation “has album” or “has track”. We would
therefore discard “Let it Be” as training data because it has a high ambiguity.
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Fig. 1. Architecture of the Joint Web Extraction approach

Further, if two entities appear together in a sentence which are not related in the knowl-
edge base, we use them as negative training data. Because knowledge bases are prone to
be imcomplete, this assumption leads to further noise. Our approach is to devise statis-
tical measures based on background data to determine how likely it is for two unrelated
entities to be false positives, i.e. missing from the knowledge base. We then only select
pairs of entities as negative training data which are likely to be true negatives.

Feature Extraction: The feature extraction component extracts features for entities
and relations in text, lists and tables on Web pages. Instead of merely considering those
sources in isolation, we use the local and global context of lists and tables on Web pages
as features. The local context would for example be the text appearing immediately be-
fore a list or table, whereas the global context would be the title of a Web page or words
appearing on the Web page as a whole. We will also use annotations on Web pages as
features, for example formatting information, which might indicate entity boundaries,
and existing semantic annotations, which might help to extract relations.

Multi-task Learning: The multi-task learning component learns to extract entities and
relations at the same time. Further, selectional restrictions for the subject and object of a
relation obtained from the knowledge base are enforced, e.g. the subject of “has album”
has to be a musical artist and the object has to be an album. We use an existing multi-
task model for this. Our main contribution is to devise a distantly supervised NERC and
to test if multi-task models also perform better than pipeline models if they are distantly
supervised. So far, joint models have only been researched for supervised approaches.
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Because distantly supervised models are trained using noisy data, they are more diffi-
cult to learn than supervised ones, and using them to learn difficult models does not
neccessarily improve the precision of extraction results.

7 Evaluation Plan

Since the task we are working on is fairly novel, there is no existing benchmark. Existing
distant supervision systems [19][23] adopt the following evaluation procedure: 1) auto-
matic evaluation: they automatically annotate a corpus, then split it equally for training
and testing; 2) manual annotation: the highest-ranked results are annotated manually; 3)
precision and relative recall is computed for the automatic evaluation results and pre-
cision for the manual evaluation results. While automatic evaluation does not provide
exact results, it is helpful for feature tuning. We also follow this evaluation procedure,
then re-implement and compare results of existing systems on our corpus. For this pur-
pose, we collect our own Web corpus by using focussed Web queries which contain the
name of the class we are interested in (e.g. ‘Book’), the name of an entity of that class,
and the name of a property. Although we might be able to re-use existing Web corpora
(e.g. ClueWeb 1), it would be more difficult to locate relevant training data, and since
they do not contain annotations relevant to our task, there would be no added benefit.

8 Preliminary Results

We have already performed experiments to test our first research question, results are
partly documented in Augenstein [2]. We find that statistical methods for discarding
highly ambiguous seeds can result in an error reduction of about 35%, however, detect-
ing and discarding unreliable negative training data is a lot more challenging. Further,
using existing NERC tools results in a low recall, since Stanford NERC is trained on
a different sort of text, news, and uses standard NE classes (person, location, organisa-
tion, mixed). It often fails to recognise entities which should fall into the ‘mixed’ class,
such as ‘track’ or ‘album’. Recall improves significantly when using our own NER in
addition to Stanford NERC, which indicates that further experiments on distantly su-
pervised NERC for RE might be useful. Lastly, we find that the distant supervision
assumption is quite restrictive: It requires both subject and object of a relation to be
mentioned in the same sentence explicitly. Using existing coreference resolution tools
does not significantly improve recall, however, we find that performing RE across sen-
tence boundaries by relaxing the distant supervision assumption results in three times
the number of extractions.

9 Reflections

Our approach aims at learning to extract information from the Web in a novel way. Tra-
ditional approaches use supervised learning to train models for extracting entities and
relations. Our approach is based on distant supervision, a method that has gained popu-
larity recently, which leverages on Linked Data to train extraction models and does not

1 http://lemurproject.org/clueweb12/

http://lemurproject.org/clueweb12/
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require manually labelled training data. Distant supervision has so far only been applied
to RE from text and not been used for Web information extraction. We argue that Web
IE is more challenging than the well-researched task of IE from newswire since Web
content often contains noise such as spelling or grammar mistakes, but it is also more
useful for gathering information, since most content is available on the Web. While ex-
isting approaches focus on standard NE classes, we argue that it would be beneficial
to extend this approach to NE classes of any domain and for this purpose investigate
distantly supervised NERC for RE. Preliminary results suggest this would substantially
increase the number of extractions [2]. We further find that filtering unreliable training
data using statistical methods results in an error reduction of about 35% [2].
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Abstract. The recognition of entities in text is the basis for a series
of applications. Synonymy and Ambiguity are among the biggest chal-
lenges in identifying such entities. Both challenges are addressed by En-
tity Linking, the task of grounding entity mentions in textual documents
to Knowledge Base entries. Entity Linking has been based in the use of
single cross-domain Knowledge Bases as source for entities. This PhD
research proposes the use of multiple Knowledge Bases for Entity Link-
ing as a way to increase the number of entities recognized in text. The
problem of Entity Linking with Multiple Knowledge Bases is addressed
by using textual and Knowledge Base features as contexts for Entity
Linking, Ontology Modularization to select the most relevant subset of
entity entries, and Collective Inference to decide the most suitable entity
entry to link with each mention.

Keywords: Entity Linking, Linked Data, Ontology Modularization.

1 Problem Statement

Natural language understanding, in particular, the recognition of entities in text,
has been the basis for different computer-based applications such as Semantic
Search, Recommendation Systems, Sentiment Analysis, and Social Media Mon-
itoring just to mention a few.

Among the biggest challenges in the recognition of entities are the synonymy
and ambiguity. Synonymy is given by the existence of different names (men-
tions) in text to the same real world entity. For instance, IBM and International
Business Machines are two mentions for the same real world entity. Ambiguity,
moreover, occurs when one mention may refer to more than one real world en-
tity. The mention Jackson, for instance, may refer to more than 500 different
entities1.

Entity Linking is the task of grounding entity mentions in documents to
Knowledge Base entries [7]. It is investigated as way to solve both synonymy and
ambiguity by linking mentions in natural language text with entity entries in a
given Knowledge Base, where those entries provide a unique identifier for each

1 http://en.wikipedia.org/wiki/Jackson_(name)

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 513–520, 2014.
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real world entity. One example is the interlinking between the mention Michael
Jackson and the Wikipedia2 link http://en.wikipedia.org/wiki/Michael

Jackson providing information about which real world entity the mention is
referring to.

Cross-domain datasets such as Wikipedia, DBPedia3 and YAGO4 are the
most used Knowledge Bases for Entity Linking. This happens mainly because
of the high number of domains they cover. Even so, those Knowledge Bases
can benefit from expanding them using other Knowledge Bases. Wikipedia, for
instance, has data about almost 5 million entities in different domains. Internet
Movie Database5 (IMDB) contains more than 8 million entities in the cinema
domain, and Music Brainz6 has 30 million entities in the music domain. Those
two databases contain seven times more entities than whole Wikipedia even
when only two domains are considered.

The focus of this work is to enrich the understanding of entities in natural
language text through Entity Linking using multiple Knowledge Bases.

2 Relevancy

Entity Linking enables the improvement of a broad number of applications, such
as: the enrichment of the reader experience when applied in Wikification; the
query for documents based on real world entities instead of keywords, when ap-
plied to Semantic Search; the recognition of sentiments related to entities when
applied to Sentiment Analysis or Reputation Management; and the enrichment
of the analysis of textual data in Big Data Analytics Solutions. The recognition
of entities through Entity Linking can also be used for a series of Information
Extraction (e.g. Relation Extraction and Attribute Extraction) and Natural Lan-
guage Processing approaches (e.g. Coreference Resolution across texts).

The use of multiple Knowledge Bases for Entity Linking improves even more
those applications. It increases the range of entities they can work with. The com-
bination of private and public Knowledge Bases can even be applied to understand
enterprise textual data (such as reports, intranet texts, and Customer Relation-
ship Management descriptions) improving the value of the data for business.

3 Related Work

There are relatively few work on using multiple Knowledge Bases for Entity
Linking. Tools such as AlchemyAPI7 and Zemanta8 are two examples but due

2 http://www.wikipedia.org/
3 http://dbpedia.org/
4 http://www.mpi-inf.mpg.de/departments/databases-and-information-

systems/research/yago-naga/yago/
5 http://www.imdb.com
6 http://musicbrainz.org
7 http://www.alchemyapi.com/
8 http://www.zemanta.com/

http://www.wikipedia.org/
http://dbpedia.org/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.imdb.com
http://musicbrainz.org
http://www.alchemyapi.com/
http://www.zemanta.com/
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to their commercial characteristic, the methods they use are not described in
detail. In the research side, there is the work from [2] and [12] dealing with more
than one Knowledge Base for Entity Linking.

[12] performs Entity Linking using Relational Databases. The authors present
an adaptive solution that can use any database under Boyce-Codd Normal Form
(BCNF) as Knowledge Base. They used IMDB and a sports database for evalu-
ation of their approach.

[2] focuses on large scale Entity Linking using Linked Data. DBPedia, Free-
base9, Geonames10 and New York Times Linked Data11 are used as Knowl-
edge Bases. The authors assume all Linked Data datasets are already linked to
each other. Their algorithm relies on the existence of textual descriptions in the
Knowledge Base and in a crowd-sourcing step to improve the results.

[2] uses TF-IDF over the textual descriptions in the Knowledge Base to choose
the best entity to be linked with each mention. [12] uses text in entity attributes
in the Knowledge Base as information for disambiguation. Both solutions use
only the words around each mention as context for disambiguation (local con-
text). Despite the state-of-the-art in Entity Linking shows the improvement in
using more information as context for disambiguation [11], those contexts (lo-
cal and global) were not applied for Entity Linking with Multiple Knowledge
Bases.

State-of-the-art solutions describe the number of candidates for each mention
(i.e. the ambiguity of a mention) as the main drawback for Entity Linking [4,3,6].
In other words, as bigger the Knowledge Base and the number of candidates per
mention as much time it may take to find a solution. While current approaches
rely in approximate algorithms, this PhD research proposal aims the use of
Ontology Modularization to limit the number of entity entries considered for
linking. Ontology Modularization has been used to improve manual annotation
of image and text [1,13]. To the best of our knowledge this is the first time
Ontology Modularization is used for Entity Linking.

4 Research Questions

The problem of Entity Linking using multiple Knowledge Bases leads to the
following research questions:

RQ1 What are the textual features most relevant for Entity Linking?
RQ2 What are the Knowledge Base features most relevant for Entity Linking?
RQ3 Is it feasible to create an Entity Linking approach using multiple Knowl-

edge Bases with comparable performance to Knowledge Base-specific ap-
proaches?

9 http://www.freebase.com/
10 http://www.geonames.org/
11 http://data.nytimes.com/

http://www.freebase.com/
http://www.geonames.org/
http://data.nytimes.com/
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5 Hypotheses

Our work is based on several hypotheses related to the research questions listed
in Section 4:

H1 Verbs and mentions appearing near a given mention measures the relevance
of a candidate entry to be linked with this mention. (local context)

H2 Mentions appearing in the same paragraph are more relevant for disam-
biguation than those appearing far in the text. (global context)

H3 Mentions and verbs in text can be directly mapped to entities and relation-
ships in the Knowledge Base.

H4 Comparable performance with Knowledge Base-specific Entity Linking can
be achieve through the division of the Knowledge Base in context-specific
modules.

6 Preliminary Results

Our first experiments envisioned the creation of a baseline approach for Entity
Linking with Multiple Knowledge Bases.

The first experiment analyzes the feasibility on using solely Linked Data
Knowledge Bases as sources for entity mentions in text. This experiment eval-
uates different heuristics to automatically discover properties that carry lexical
information for entity entries in the Knowledge Base. The results are avail-
able in [10] and they shows that even simple heuristics can identify the correct
properties. It demonstrates that Linked Data Knowledge Bases can be used as
dictionary for mentions.

The second experiment verifies if current linking methods developed for a
specific Knowledge Base can be used with different ones. We adapted the work
presented in [3] to use Jamendo12 and Linked Movie Database13, two publicly
available Linked Data datasets. As those datasets do not have full text descrip-
tions for all entities, the mapping between text around mentions and textual
descriptions could not be used, as well as the computation of TF-IDF. Even
without this context the results were quite encouraging with f-score of 54% for
Disambiguation with Jamendo and 87% with Linked MDB. Those results are
presented in [9].

Due to the positive results from the second experiment, the third one envi-
sions the use of DBPedia in order to compare with related work. Using AIDA-
CoNLL[4], an annotated corpora, as gold standard, the best accuracy was 32%
while related work [8] reports accuracy ranging from 34% to 82.3% in the same
corpora. Thus, the next step is to evaluate how much each textual and Knowl-
edge Base features contribute to find the best linking. This analysis will help us
discover why the results with DBPedia were so low when they were good with
the other Knowledge Bases. More information about future evaluations are given
in Section 8.
12 http://dbtune.org/jamendo/
13 http://linkedmdb.org/

http://dbtune.org/jamendo/
http://linkedmdb.org/
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7 Approach

Natural language text often contains a human-readable description of a set of en-
tities and their relationships. We consider Knowledge Base as a machine-readable
description of entities and their relationships. This approach aims to use a model
that better represents both descriptions in order to identify the best pair (men-
tion, Knowledge Base entry) that refers to the same real world entity.

There are many formats of Knowledge Bases that can be used for Entity Link-
ing. Linked Data datasets explicit the semantic of the data and enable the easy
extension of the Knowledge Base by direct linking entries in different datasets.
Because of this, this work focus only on the use of Linked Data datasets as
Knowledge Bases.

A series of constraints were identified during the development of our baseline:

– There is no annotated corpora associated to the Knowledge Base.
– The Knowledge Base does not contain textual description for entities.
– All information available for Entity Linking comes only from the textual

source and the Knowledge Base.

This approach is divided in three sequential steps (Figure 1). The Mention
Recognition step deals with the identification of entity mentions in text. The
Candidate Selection step collects a list of candidate entity entries in the Knowl-
edge Base to link with each mention. And the Disambiguation step selects the
most suitable candidate to be linked with each mention. The solution applied
for each one of these steps is explained in the following subsections.

Fig. 1. Entity Linking pipeline

7.1 Mention Recognition

Mention Recognition is the first step for Entity Linking. This step deals with
the recognition of entity mentions in text. The text is given as input and the
expected output is a list with all mentions appearing in it. Using the text ”Mick
Jackson wrote Blame it on the Boogie, a great success of The Jackson’s.” as
input text, the expected output is the list M = {”Mick Jackson”, ”Blame it on
the Boogie”, ”The Jackson’s”}.

Each entry in the Knowledge Base is considered as an entity entry if there
is lexical information attached to it. In other words, a given entry is considered
an entity entry only if its name is expressed in the Knowledge Base. Based on
this, the Knowledge Base is used as a dictionary to identify mentions in the text.
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If one surface form in the text matches a dictionary entry then the surface form
is recognized as a mention.

7.2 Candidate Selection

Given all mentions recognized by theMention Recognition step, the Candidate Se-
lection step selects a set of candidate entries for eachmention. In this context, can-
didate entry is a Knowledge Base entry with a probability higher than zero to be
linked with a given mention. The biggest issue in candidate selection is the high
number of possible candidates for a single mention. For instance, the word Jackson
may refer tomore than 500 entity entries inWikipedia14. Considering aKnowledge
Base with all people in the world, the number of candidates for the word Jackson
turns theprocess ofLinkingunfeasible.Due to that, theCandidateSelection should
return only the most relevant subset of candidates for the given text.

The contribution of this work in the candidate selection is in the use of Ontol-
ogy Modularization. The process of Candidate Selection is given by the division
of the Knowledge Base in contextual modules. Each contextual module keeps
a maximum limit on the number of candidates for each surface form. The key
idea is that entities in the same context are semantically related in the Knowl-
edge Base. Thus, by looking for candidates in the Knowledge Base, the module
that contains candidates for the highest number of mentions is more likely to
represent the context of the text.

7.3 Disambiguation

Finally, the Disambiguation step chooses the most suitable entity entry to be
linked with each mention. If there is no suitable entry for a given mention this
step should return NIL instead. The main challenge in disambiguation is iden-
tifying the best entity entry by using the textual content in the document and
the information provided by the Knowledge Base.

Considering the following text: ”The Battle of the Boogie was the event where
Michael Jackson, the writer of the music, and Michael Jackson, from The Jack-
son 5, were in a dispute for chart positions.”. A human reader easily understands
who are the two Michael Jacksons in the text. By that, she uses hers background
knowledge and the context given by the words in the text to infer the difference
between both. The aim of this approach is to have an algorithm that mimic this
process. It collects the textual context (Research Question RQ1 and Hypotheses
H1 and H2) and maps it to the context provided by the Knowledge Base (Re-
search Question RQ2 and Hypothesis H3). A Collective Inference model will be
used to merge both contexts and identify the best (mention,entry) link [5].

The contribution of this work is in using only content words near mentions
(Hypothesis 1) and lexical cohesion in the text (Hypothesis 2) as textual con-
texts. And the mapping between those content words (nouns, adjectives, and
verbs) to semantic information in the Knowledge Base (entities, attributes, and
relationships) rather than to textual descriptions.

14 http://en.wikipedia.org/wiki/Jackson_(name)

http://en.wikipedia.org/wiki/Jackson_(name)
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8 Evaluation Plan

There are some corpora already linked to Wikipedia and Wikipedia-related
Knowledge Bases [4,11]. Those corpora can be used as gold standard for En-
tity Linking and they enable the comparison with state-of-the-art approaches
[8]. The unique problem is that such corpora do not enable the evaluation using
other Linked Data datasets as Knowledge Bases. Given that, the first step for
the evaluation will be the development of a set of Guidelines for Annotation and
the annotation of a corpus with links to different Knowledge Bases.

8.1 Mention Recognition

In the Mention Recognition step, the evaluation will measure the coverage of
the Knowledge Base as a dictionary to recognize mentions. This evaluation will
use a manually annotated corpora as gold standard and precision, recall, and
f-measure as measures for evaluation.

8.2 Candidate Selection

The best method for generation of modules is the one which returns all the best
possible candidates as part of the candidate set. The annotated corpora will
be used as gold standard for evaluation and the accuracy will be used as the
measure to evaluate the Ontology Modularization method.

8.3 Disambiguation

For disambiguation it is necessary to evaluate: the contribution of each textual
feature, the contribution of each Knowledge Base feature, and the contribution
of the methods for collective inference using both textual and Knowledge Base
contexts. The first two contributions can be measured separately by generating
a ranking of candidates for each mention in text and measuring the precision@N,
recall@N, and f-measure@N. In other words, measuring if the best entity entry
given by the gold standard appears in the first top N positions in the ranking.
This separation of each feature enables the comparison with features used in
related work. The evaluation of methods for collective inference will be made
by choosing the best features from text and Knowledge Base and measuring the
results using precision, recall and f-measure. It also enables the comparison with
related work.

9 Reflections

Despite the increasing number of research papers in Entity Linking there are only
a small number of works considering the use of more than a single Knowledge
Base. In this PhD research proposal the goal is to solve the problem of Entity
Linking with Multiple Knowledge Bases. This will be done by using different
textual and Knowledge Base features, and Ontology Modularization to select
entities in the same semantic context. The main contributions are in enabling:
a higher number of Knowledge Bases to be used for Entity Linking, the use of
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Linked Enterprise Data in Entity Linking context, and the use of more types of
entities for Entity Linking and applications based on the use of entities.

In conclusion, this work will improve upon previous approaches by enabling
the use of multiple Knowledge Bases for Entity Linking.
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Abstract. An Entity Name System (ENS) is a thesaurus for entities.
An ENS is a fundamental component of data integration systems, serv-
ing instance matching needs across multiple data sources. Populating
an ENS in support of co-referencing Linked Open Data (LOD) is a Big
Data problem. Viable solutions to the long-standing Entity Resolution
(ER) problem are required, meeting specific requirements of heterogene-
ity, scalability and automation. In this thesis, we propose to develop and
implement algorithms for an ER system that address the three key cri-
teria. Preliminary results demonstrate potential system feasibility.

Keywords: Entity Name System, Data Integration, Entity Resolution.

1 Problem Statement

Linked Open Data (LOD) has grown exponentially since 2007 [2]. Many enti-
ties on the LOD cloud refer to the same logical entity and need to be resolved
by linking them using owl:sameAs [10]. Given that LOD currently contains bil-
lions of triples in independently developed data sources, the Entity Resolution
(ER) problem needs to be both scalable and to account for schema or structural
heterogeneity between sources. Given that the Deep Web is about 500 times
larger than the Surface Web [12], an ER solution that works with both RDF
and relational (the dominant data model in the Deep Web) would need to also
account for data model heterogeneity. The continuous growth of LOD mandates
automatic linking of entities without excessive reliance on domain expertise.

In this thesis, we develop and implement algorithms for an ER system meeting
certain requirements of heterogeneity, scalability and automation. We describe
these requirements, and propose novel techniques to satisfy them in aMapReduce
based framework for both RDF and relational data models.

2 Relevancy

The primary motivation of the proposed system is data integration [7]. A com-
plete data integration system relies on the population of an ENS component,
to resolve equivalent entities occurring in multiple data sources. The generic
ER problem is pervase, however, both in the relational database community as
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record linkage [8], and in the linked data community as instance matching or link
discovery [10]. The importance of the problem is growing in concert with the
Semantic Web, and with Web-scale efforts such as the Okkam ENS [3]. Thus, our
solution would not be limited in potential application to data integration alone.
Furthermore, the advantage of having a MapReduce [6] implementation is that
the prototype can be deployed scalably as a cloud workflow on dynamically pro-
visioned clusters. Scalability has emerged as an important issue in recent works
on both data and ontology matching [9].

3 Related Work

The longevity of the ER problem has led to a considerable body of work on
the subject. In this section, we selectively assess some recent literature from the
framework of addressing automation, heterogeneity and scalability criteria. We
first survey some techniques developed in the relational community, followed by
related efforts in the Semantic Web community.

The ER problem has emerged in several different communities, with a profu-
sion of terminology. Elmagarmid et al. surveys it broadly in the relational setting
[8]. Typically, ER is conducted as a sequence of two steps. The first step, blocking,
attempts to mitigate O(n2) complexity of pairwise comparison of n records by
clustering ‘similar’ entities into overlapping blocks using an inexpensive blocking
scheme. The second step takes a block as input and applies a similarity func-
tion only to pairs of entities within blocks. Christen provides a good survey of
blocking methods [4]. Intuitively, blocking captures the scalability aspect.

Till quite recently, a domain expert had tomanually specify a blocking scheme.
In 2006, two independent supervised blocking scheme learners (BSLs) were pro-
posed. These BSLs would learn a blocking scheme from provided training ex-
amples [1],[20]. Given that there was no unsupervised blocking, employing these
methods implied choosing between scalability or automation, but not both. Re-
cently however, we presented an unsupervised BSL [16]. In the context of this
thesis, the solution addressed an impending automation issue.

The importance of scalability is further highlighted by an increased interest in
parallel and distributed ER systems [19], with a good example of a MapReduce-
based system being Dedoop [18]. Dedoop expects domain expertise or training
examples, and cannot deduce blocking schemes on its own. We attempt to build
our own MapReduce-based system for this thesis that integrates our automatic
BSL. The ultimate goal is to ensure the system is both automated and scalable.

All works mentioned above (including our own) assumed the relational set-
ting, and additionally, structural homogeneity. Elmagarmid et al. defines this as
input tables restricted to having the same schemas [8]. Applying and extending
these methods to structurally heterogeneous datasets is still relatively open, and
addressed in this thesis as one heterogeneity contribution.

Because of the prevalence of RDF, the Semantic Web community has devel-
oped its own solutions to the ER problem. Research in this area was propelled
in large part by the Silk system [13]. Ferraram et al. survey some recent ER
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methods in the Semantic Web [10]. Two important systems that have gained
recent attention are RDF-AI [23] and Knofuss [21].

From the lens of our three criteria, we note that no automatic MapReduce-
based instance matching system currently exists in the Semantic Web. As for
heterogeneity, while it is addressed within the community [22], linking instances
of two different models is relatively unaddressed. In this thesis, we present tech-
niques to link tables and RDF graphs in a unified framework. In current litera-
ture, data models are explicitly assumed to adhere either to RDF or relational.
This discussion shows that, while ER research is continuing to converge, no
system currently fulfills all three criteria in a combined framework.

We also note that DataSpace Support Platforms (DSSPs) abstractly address
some of the same three criteria as in this thesis [14]. To quote from an influential
work on DSSPs, the framework assumes a ‘large number of diverse, interrelated
sources’ [11]. The authors also described how human attention should be judi-
ciously used to continuously improve performance. Therefore, DSSPs embody
scalability, heterogeneity and automation requirements that we address in this
thesis. Traditionally, DSSPs were proposed in the context of query answering
[11]. This thesis adapts similar principles to ER.

4 Research Questions

Based on the reviewed work, we identified three open research questions to mo-
tivate the thesis proposal and to respectively address heterogeneity, automation
and scalability:

– In our context, a practical ER system must be designed to work with both
RDF and relational models, given the growth of both LOD [2] and the Deep
Web [12]. The first research question investigates whether existing ER tech-
niques are even well-defined for input pairs where one input is RDF and the
other, relational (data model heterogeneity). We also ask if current relational
record linkage techniques can properly address structural heterogeneity.

– Assuming dataspace-like principles [14], a full ER pipeline must properly
accommodate uncertain domain expertise. A research question is if we can
anticipate the possible forms of domain expertise likely to be available, and
incorporate the expertise in a judicious, performance-enchancing manner. A
stronger research question is if we can eliminate supervision altogether.

– Given the dependencies among proposed methods, the last research ques-
tion asks if a full ER pipeline can be implemented in a MapReduce-based
prototype while still fulfilling the other two criteria.

The first two questions identify heterogeneity and automation issues. The third
questions the possibility of scalably integrating these techniques in MapReduce.
We choose MapReduce specifically because of its proven fault-tolerance advan-
tages and the convenience of scaling and deploying MapReduce programs on the
cloud [6].
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Fig. 1. An example of the property table representation of an RDF fragment. The
keyword null and delimiter ; are reserved. Each field value in the property table has
set semantics.

5 Hypotheses

To answer each of these questions, we present the following hypotheses:

– Abstractly, RDF-tabular heterogeneity exists because there are two data
models involved, and also because the RDF model may not have accom-
panying schema information (as RDFS or OWL). We hypothesize that this
heterogeneity is partially reconciled by logically representing RDF in a prop-
erty table, which was originally a physical data structure for efficient triple
store implementations [25]. We detail the rationale (and potential issues) in
Section 6. Figure 1 shows an example.

– We can employ principles from our unsupervised BSL [16] to generate our
own (noisy) training samples using inexpensive heuristics. We hypothesize
that robust machine learning classifiers (e.g. SVMs) will be able to learn
from these noisy samples in a self-supervised fashion. We also propose a
knowledge base (KB) to flexibly incorporate available domain expertise. The
hypothesis is that after N ER tasks, the KB will be sophisticated enough
that the N + 1th task requires no user corrections at all, for reasonable N .

– We design a full ER prototype with two MapReduce phases and one serial
module, with the aim of bounding time and space complexity of each com-
pute node by a sub-quadratic function. Moreover, we would ideally want the
number of compute nodes to scale linearly with input dataset size.

6 Approach

We enumerate some approaches for testing the outlined hypotheses:

– Using a property table has several advantages that allow us to use it for ER.
First, the property schema is built dynamically and populated at run-time,
which makes it appropriate for non-static LOD datasets. Secondly, property
tables are physical data structures that are already used in the Jena frame-
work for implementing triple stores [25]. This gives the approach a systems-
level advantage, since we can link RDF data already present in Jena triple
stores, without processing, moving or re-storing the data. Note that some
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Fig. 2. An in-development prototype for unsupervised ER, with the KB excluded. We
do not describe the full details of this schematic in this document; an implemented,
evaluated version (with an integrated KB) will be a key deliverable of the proposed
thesis

interesting inverse mapping issues arise when representing RDF as property
tabels. For example, R2RML explores mappings in the relational to RDF
direction [5]. Property tables explore mappings in the inverse direction, with
a view towards performing ER between two models. This is an important
theoretical consequence that we will investigate during the course of the the-
sis. Another open issue is how to incorporate available schema information
(as OWL/RDFS files) of the RDF datasets in the property table.

– We will adapt the noisy training set generator from our previous work [16],
to bootstrap the system and make it self-supervised. We will implement the
KB as an ontology, and try a variety of techniques, including rules, transfer
learning and online algorithms to evaluate the best way of accommodating
uncertain domain expertise.

– The schematic of the prototype is shown in Figure 2. Intuitively, a first
MapReduce phase can be used to generate noisy training samples, while
a second MapReduce phase is used to perform two-step ER, based on a
blocking scheme and classifier trained in a serial module. If available, domain
expertise can also be utilized in the serial module. In the first set of empirical
evaluations, we will disallow domain expertise. After deriving initial insights,
we will attempt integrating an adaptive KB into the unsupervised prototype.

7 Evaluation Plan

Both the ER and machine learning literature have well-defined criteria for eval-
uating success of our proposed methods. Henceforth, we assume RDF datasets
are represented as property tables.

– The blocking phase of ER is traditionally evaluated separately using three
metrics: Pairs Completeness (PC), Reduction Ratio (RR) and Pairs Quality
(PQ). In our first set of evaluations, we measure the quality of our noisy
training samples as well as unsupervised blocking. In essence, we are eval-
uating the impact of proposed automation and heterogeneity techniques on
the blocking problem.
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– Final results of ER are evaluated by plotting precision against recall of the
obtained duplicates. We will follow this same methodology for the full ER
system. The first round of full evaluations will be in a serial framework.

– The first1 MapReduce-based prototype will be evaluated empirically through
a Hadoop implementation. We will test individual components of the system,
as well as the results of ER as a whole. Run-times will also be recorded and
plotted to empirically evaluate the scalability of the system. Additionally, we
will analyze and provide theoretical (time and space) bounds on the various
phases. Ideally, we would want to prove near-linear scaling of the system.

– We will evaluate the KB through plotting learning curves showing precision-
recall f-scores against units of domain expertise. The specific nature of these
units will depend on the finalized KB approach. Because it is the most uncer-
tain of the current thesis proposal, this evaluation is the last in our sequence.

We will carry out all these experiments on a range of at least three real-world,
representative test suites. At least one of these has already been identified and
published by us in a related work [24]. We have also identified good sources of
government data.

8 Preliminary Results

We observed in Section 3 that, although unsupervised techniques have been
developed for several ER phases, learning a blocking scheme remained supervised
till quite recently. In a 2013 work, we devised an approach for unsupervised
learning of blocking schemes on structurally homogeneous datasets [16]. To deal
with lack of training data, we devised an inexpensive token-based algorithm
to generate our own noisy training set. We showed that for a few retrieved

Fig. 3. Precision of duplicates automatically retrieved from three benchmark datasets
((a) shows Cora and (b) Restaurant and Census), using an inexpensive heuristic. Pre-
cision of non-duplicates (up to 5000 samples) was 100% for all benchmarks

1 The first version is unsupervised, and does not employ the KB (Figure 2)
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examples, the noise levels are low. Figure 3 shows some selected results from
this work. On all three benchmarks, precision was well over 90%; on Cora, it
was almost perfect. In our blocking scheme learner [16], we used feature-selection
based techniques to compensate for these noise levels. Final blocking results (not
shown here) were competitive compared to a supervised set-covering baseline[1].
This shows that noisy training set generation is a viable procedure as long as
noise levels are low, and the algorithmic design takes the noise into account.

We have since extended this work to account for structural heterogeneity and
link discovery [17], and are also in the process of using it for a full self-supervised
ER pipeline. Additionally, we have also developed some theoretical results on
heterogeneous blocking in a recent report, and are continuing to update it [15].

9 Reflections

In this thesis, we propose solutions to the ER problem that address three key
criteria of automation, heterogeneity and scalability in a unified framework. To
address automation, we generate noisy training samples in an unsupervised pro-
cedure, and incorporate limited domain expertise by building and updating a
flexible knowledge base. We extend methods to explicitly account for structural
heterogeneity, and use the physical property table representation of RDF logically
to address data model heterogeneity. Proposed methods will be implemented in
a MapReduce-based prototype to address scalability and cloud deployment.

One potential area of concern is the noise in the generated training samples.
The system will therefore have to be robust. Another threat could be scaling the
property table for highly heterogeneous RDF datasets, and incorporating OWL
schema information in the property schema. We continue to investigate these
issues, both empirically and also in a theoretical framework.
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Abstract. An increasing amount of information is being made avail-
able as online streams, and streams are expected to grow in importance
in a variety of domains in the coming years (e.g., natural disaster re-
sponse, surveillance, monitoring of criminal activity, and military plan-
ning [7,22]). Semantic Web (SW) technologies have the potential to com-
bine heterogeneous data sources, leveraging Linked Data principles, but
traditional SW methods assume that data is more or less static, which
is not the case for streams. The SW community has attempted to bring
streams to a semantic level, i.e., Linked Stream Data, and a number
of RDF stream processing engines have been produced [1,4,13,20]. This
thesis work aims at developing and evaluating techniques for creating ag-
gregated and layered abstractions of events. These abstractions can be
used by decision makers to create better situation awareness, assisting in
identifying decision opportunities, structuring and summarizing decision
problems, and decreasing cognitive workload.

Keywords: RDF stream processing, Semantic CEP, decision support,
situation awareness.

1 Introduction/Motivation

Traditionally, authorities and citizens have relied on official communication chan-
nels to achieve situation awareness, but today online communication channels
are increasingly being used [11,25]. As an example, analysis of social media has
been used to assess influenza outbreaks [12], and to assist disaster relief [23].
But while humans can handle complex recognition and analysis tasks with great
accuracy, performance suffers greatly as workload increases, which introduces a
bottleneck for large scale data analysis tasks.

The information available as online streams is expected to grow in importance
across many domains, e.g., natural disaster response, surveillance, monitoring of
criminal activity, and military planning [7,22]. Online streams are already used
in domains such as electronic trading and market feed processing [18].

The Semantic Web (SW) community has attempted to bring streams to a
semantic level, i.e., Linked Stream Data, but in handling continuously delivered
data traditional SW technologies fall short [14]. The streaming data is character-
ized by being received continuously in possibly unbounded streams [4]. Since no
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final answer can typically be returned, queries must be executed repeatedly as
new data becomes available. The traditional methods for querying Linked Data
build on the assumption of data as more or less static, but streaming data is
often outdated quickly and needs to be consumed on the fly [24]. Also, the rate
and quantity of the incoming data in itself may require data to be processed
continuously. To tackle this problem a number of streaming engines and query
language extensions, targeted at querying streaming and static RDF data, have
been developed. These systems have largely been inspired by data stream man-
agement systems, e.g., CQL [2], which use query operators to isolate portions of
streams based on timestamps.

The purpose of Complex Event Processing (CEP) is to (semi-)automatically
create “actionable” abstractions from streams of events [16]. In order to sup-
port flexible abstractions and pattern matching of heterogeneous data streams
semantics must be introduced, and Semantic CEP is targeted specifically at se-
mantically interpreting and analyzing data using the Linked Data principles and
SW technologies.

The abstraction task can be described as process in which sets of low-level
events are aggregated into high-level events, by means of some event pattern. An
event is defined here as “anything that happens, or is contemplated as happen-
ing”, while a complex event is defined as “an event that summarizes, represents,
or denotes a set of other events” [16].

A simple view of decision making is as a process in which an answer is selected
among a set of alternatives, but a more sophisticated view includes many other
aspects, such as identifying that there is a decision to be made in the first place.
Empirical studies have demonstrated that human judgment and decision mak-
ing relies heavily on intuitive strategies, rather than on strict reasoning rules [6].
These strategies reduce cognitive load, but also make decisions more sensitive to
biases. The purpose of Decision Support Systems (DSS) is to assist decision mak-
ers in the activity of making a decision by providing a set of tools to aid decision
makers in the process of modeling and analyzing data, identifying decision op-
portunities, imposing structure on data, and supporting the choice processes [17,
Chapter 1]. Another way of supporting the decision making process is to abstract
portions of a decision-making situation and to model the available information
in ways which retain only the essential relationships to reduce cognitive load and
problem complexity. The abstractions additionally help make knowledge easier
to transfer across problems and domains.

2 Related Research

The SW community is relatively new in the field of stream processing, but a
considerable amount of research has previously been done on continuous query
processing over streams, e.g., in projects such as the STREAM prototype de-
veloped at Stanford [2], StreamBase1, and ESPER2. This research has largely

1 http://www.streambase.com/
2 http://esper.codehaus.org/

http://www.streambase.com/
http://esper.codehaus.org/
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made up the foundation for the state-of-the-art RDF stream processing (RSP)
systems that have been implemented to date.

There are no official standards for how RDF data streams are to be repre-
sented or published. In [4] an RDF stream is defined as an ordered sequence
of tuples, consisting of an RDF triple and a timestamp. Triples with the same
timestamp are treated as if they occurred at the same time. However, RDF
streams can be represented in a number of ways, e.g., data elements can be
RDF graphs rather than triples, intervals can be used instead of timestamps,
and timestamps/intervals could be represented in the stream itself rather than
as parts of streamed tuples [9].

In CEP streams consist of simple (atomic) and complex (composite) events.
To represent events in a general sense a number of vocabularies have been pro-
posed [21]. A common model for complex events can simplify querying and ab-
straction into higher level events, but it may also result in additional overhead.

2.1 State of the Art

DSSs normally have narrow application scopes and are typically not generalizable
to different decision-making contexts. Over the last decade SW technologies have
been used in DSS to solve tasks such as information integration and sharing, web
service annotation and discovery, and knowledge representation and reasoning.
For a more in-depth review of SW technologies in DSS refer to [5].

The next sections briefly describe four RDF Stream Processing (RSP) sys-
tems that represent current state of the art. These are followed by discussion of
frameworks using a CEP engine in combination with Linked Stream Data.

CQELS was created to address the problem of scalable query processing of
Linked Stream Data [13]. The query language is an extension of SPARQL 1.1,
supporting query patterns for the defining logical and physical windows over
streams. The engine is a native implementation and returns results in near real-
time, and for some queries the CQELS engine outperforms similar approaches
(C-SPARQL and ETALIS) by orders of magnitude [13].

C-SPARQL is an RSP engine with a query language that extends SPARQL 1.0
to support the definition of physical and logical windows over streams, as well
as aggregation operators. Queries are executed periodically at a rate decided by
the system, and the engine can report duplicates of results if the windows of two
query executions overlap.

EP-SPARQL is a language for event processing developed for ETALIS to
handle SW applications [1]. The language is based on SPARQL 1.0, but extends
the language with a number of binary temporal operators. Instead of defining
windows over streams functions exist to access duration, start time, and end
time, and using these windows can be defined inside filter expressions.
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INSTANS is a query engine capable of continuous execution of selected parts of
SPARQL 1.1 Query and Update [20]. It avoids repeated computation of the same
data, and makes results available immediately when a query patterns is matched.
INSTANS additionally supports the detection of missing events by employing a
timer that can be registered for events. Modeling of time and windows must be
expressed manually in RDF (e.g. as suggested in [8]).

2.2 Framework Approaches

The Streaming Linked Data (SLD) framework [3] was designed to allow pub-
lishers to stream data to a central server, where streams can be queried, stored
and replayed, decorated with additional information, and republished as new
streams. It assumes that streams are published using the HTTP protocol and
uses a built-in RSP engine (C-SPARQL).

Another framework project is the Super Stream Collider (SSC) [19]. It to sup-
ports the registering of streams and queries, but relies instead on the CQELS
engine. SSC supports streams published using Web Sockets. Web Sockets are
highly efficient and allow for real-time and high speed full-duplex communica-
tion, and guarantees that data will arrive in the order it was originally streamed.

A different approach was proposed in the framework in [15]. This framework
focuses on bridging the gap between Linked Data and rule-based CEP engines.
This is accomplished by translating events into the format required by a specified
engine, specifically for Drools Fusion3. The obvious benefit of this approach is
that a mature and well-used CEP engine can be employed, but it also means
that translations need to be provided back and forth between internal engine
formats and Linked Data.

3 Problem Statement and Contributions

Current decision support systems do not assist users in making any high-level
abstractions of situations, rather they only summarize or visualize data. The
main hypothesis of this thesis work is that the combination of Linked Data, SW
technologies, and CEP make it possible to create useful abstractions based on
event patterns in real-time.

Existing vocabularies for expressing complex events will be evaluated and pos-
sibly extended. Additionally, ways of querying event streams, and representing
boundaries of complex events, will be investigated. The work aims to develop
ways of expressing more declarative descriptions of queries and complex events
using Ontology Design Patterns (ODPs)4, and reusable query templates, to en-
able more generalizable event pattern descriptions.

Social media streams are becoming an increasingly important asset in achiev-
ing situation awareness in many domains and will be also be leveraged in this

3 http://drools.jboss.org/drools-fusion
4 http://ontologydesignpatterns.org/

http://drools.jboss.org/drools-fusion
http://ontologydesignpatterns.org/
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work. Social media streams require systems that can handle incomplete, unreli-
able, incorrect, and even contradictory data. To handle this it should be possible
to employ external applications, e.g., for natural language processing.

The novelty of this approach, compared with traditional CEP, lies in bringing
in semantics for the explicit use in decision support, and in taking advantage of
Linked Data concepts to abstract heterogeneous data streams. Complex events
will be described using a vocabulary that supports layered abstractions of events.
By automating various abstraction steps in tractable fashion, the goal is to
support decision makers, e.g., by decreasing cognitive workload, assisting event
detection, and increase situation awareness.

4 Research Methodology and Approach

Part of the research work involves developing a framework for experimenting with
streams, and enabling different RSP engines to be plugged in. This approach is
similar to the examples described in Section 2.2. The framework will make it
possible to experiment with and benchmark different engines, vocabularies, and
queries with minimum overhead. The framework will include adapters for various
types of live and recorded streams and support generation of new streams from
queries, which will enable the development of various types of stream decorations.

Declarative descriptions will be used to simplify the creation and maintenance
of queries, and complex events, and to make some changes to queries possible
with minimal user intervention. Appropriate ODPs and query templates will
have to be developed. Query templates may require an extension of SPIN5 (or
similar).

5 Preliminary or Intermediate Results

We have previously proposed a number of approaches to representing event ob-
ject boundaries in various types of RDF streams [9]. While none of the ap-
proaches have been evaluated in use, it was shown that if events are described
by single RDF graphs boundaries are manageable. In the context of abstracted
event objects, consisting of multiple hierarchically ordered graphs, the boundary
issues become more complex. Supporting a general view of aggregated and com-
posite event objects will require both a suitable vocabulary, and a clear standard
for how RDF streams are represented and communicated.

In [21] we presented a vocabulary that can be used to structure, integrate,
and interchange events, regardless of the underlying vocabulary. The model sup-
ports multiple time-related parameters, e.g., sampling time, time of entry in the
stream, and time of arrival. It also supports the use of payloads, and the encap-
sulation of event objects. Another important aspect of this vocabulary is that is
was defined with querying ability in mind.

5 http://spinrdf.org/

http://spinrdf.org/
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The requirements and challenges for social media monitoring have also been
discussed [10]. In the paper we identified a set of requirements against the cur-
rent state-of-the-art RSP engines, and highlighted some of the strengths and
weaknesses of the systems. While a number of the challenges can be addressed
by providing various stream decoration techniques, others are more difficult to
address. Only INSTANS is designed to make timestamps available as triples,
meaning that it would be difficult for the other engines to support multiple
timestamps. The fact that timestamps are not available as triples also creates
difficulties with regard to how timestamps should be handled in the case of
complex events.

6 Evaluation Plan

The hypothesis of this thesis work will be evaluated within the project Visual
Analytics for Sense-making in CRiminal Intelligence analysis (VALCRI). The
project will enable us to develop and test models for representing complex events,
as well as various ways of expressing generalized event patterns, in a real-world
setting. The project officially started in late May 2014, and preliminary data
and data stream logs have recently been made available.

A survey regarding sate-of-the-art detection of criminal activities will be used
as a reference for developing event patterns, query templates, and ODPs. The
event patterns and ODPs will be developed in cooperation with the Pacific
Northwest National Laboratory. In particular, it will be important to develop
event patterns for detecting events from low-frequency signals.

The event patterns will (hopefully) be tested in cooperation with domain
experts, acting both as users of the systems and as validators of the generated
abstractions. Additionally, validation may be possible based on the data logs
themselves, as they contain anonymized records of criminal reports.

7 Reflections

This thesis work aims to develop techniques to assist decision makers in deal-
ing with systems involving large scale heterogeneous real-time data streams by
creating high-level abstractions of events. Abstractions in decision making sit-
uations can reduce problem complexity and cognitive workload, improve situa-
tion awareness, mitigate decision biases, and help to create predictions of future
states.

It is clear that streaming data is becoming increasingly important in many
domains, but for Semantic CEP to become effective on a broad scale community
consensus is required, and there is a need for establishing standard vocabularies,
query languages, and stream formats.

When producing declarative descriptions of event patterns the degree to which
they can be made scalable is at present not known. All patterns may not be
expressible using the available RSP engines and corresponding query languages,
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e.g., if windows need to be expressed in the past, or a stream has to be referenced
with different windows in the same query.

The representation of complex events risks greatly affecting streaming per-
formance of the engines, and the querying of complex events may introduce
considerable overhead and memory problems. Current state-of-the-art RSP en-
gines are still not fully mature, meaning that they are still quite limited in the
number of streams and queries they can handle efficiently. One possible sce-
nario is therefore that the systems will only be able to execute a very limited
amount of the more complex event pattern queries, or that the queries will result
considerable delays.

Acknowledgement. The thesis work is financed by Visual Analytics for Sense-
making in CRiminal Intelligence analysis (VALCRI), Semantic Technologies for
Decision Support (STeDS), and Center for Industrial Information Technology
(CENIIT).
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21. Rinne, M., Blomqvist, E., Keskisärkkä, R., Nuutila, E.: Event Processing in RDF.
In: ISWC 2013 Workshop: Proceedings of the 4th Workshop on Ontology and Se-
mantic Web Patterns (WOP 2013). CEUR Workshop Proceedings, Sydney (2013)

22. Sequeda, J.F., Corcho, O.: Linked Stream Data: A Position Paper. In: ISWC 2009
Workshop: Proceedings of the 2nd International Workshop on Semantic Sensor
Networks (2009)

23. Slagh, C.L.: Managing Chaos, 140 Characters at a Time: How the Usage of Social
Media in the 2010 Haiti Crisis Enhanced Disaster Relief. Master’s thesis, George-
town University, Washington, DC (2010)
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Abstract. The rapidly increasing number of scientific documents avail-
able publicly on the Internet creates the challenge of efficiently orga-
nizing and indexing these documents. Due to the time consuming and
tedious nature of manual classification and indexing, there is a need
for better methods to automate this process. This thesis proposes an ap-
proach which leverages encyclopedic background knowledge for enriching
domain-specific ontologies with textual and structural information about
the semantic vicinity of the ontologies’ concepts. The proposed approach
aims to exploit this information for improving both ontology-based meth-
ods for classifying and indexing documents and methods based on su-
pervised machine learning.

1 Introduction

The amount of scientific publications available on the Internet is increasing
rapidly. Without efficient methods for document classification and indexing, it
is increasingly time consuming and difficult for researchers to find relevant pub-
lications. Traditionally, scientific institutions performed the task of facilitating
search for relevant literature by manually indexing and classifying new publica-
tions, with the goal of maintaining an ideally complete domain-specific database.
However, this task is becoming progressively more difficult to perform, as manual
indexing is time consuming, tedious and expensive.

In the recent decades, researchers of different domains have attempted to
tackle this problem by developing a wide range of methods for automatic text
classification and indexing. Most of these methods are based on machine learn-
ing algorithms or on algorithms which use ontologies as background knowledge.
While existing approaches allow rapid classification and indexing of a large num-
ber of documents, the quality of the results is not comparable to the performance
of expert human indexers. Therefore, it is an ongoing challenge to improve the
methods for automatic classification and indexing.

The main goal of this thesis is to build upon existing methods to construct
an improved framework for automatic classification and subject indexing of doc-
uments. The proposed approach leverages encyclopedic background knowledge
for enriching existing domain-specific ontologies and classification systems with
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additional textual and structural information about the semantic vicinity of the
ontologies’ concepts. Specifically, I plan to investigate whether this encyclopedic
background knowledge is useful for improving the results of ontology-based clas-
sification and indexing methods as well as methods based on machine learning.

This paper is structured as follows: Section 2 gives a brief overview of related
research on subject indexing and classification. My research questions and hy-
potheses are stated in Section 3. Section 4 discusses the proposed approach and
Section 5 describes the evaluation process. The datasets which I plan to apply
my approach to are introduced in Section 6; preliminary experiments on one of
these datasets are presented in Section 7. Finally, Section 8 concludes this work.

2 Related Work

Most of the approaches to classification and indexing of documents are based
on either machine learning algorithms or on methods which use ontologies as
background knowledge. This section briefly summarizes the main techniques
which have been used to address the challenge of automatically classifying and
indexing documents.

Subject indexing refers to assigning topical keywords to documents (usually
from a controlled vocabulary such as a thesaurus), while document classification
assigns a document to one or more semantic categories. The difference between
these tasks, however, is negligible, as the aim of both is to produce appropriate
connections between documents and semantic entities [10]. Semantic annotation
refers to attaching meta-data to resources, usually in the context of the Semantic
Web [12]. Both subject indexing and document classification can therefore be
seen as a form of semantic document annotation.

Machine Learning Based Methods: Both supervised and unsupervised
machine learning methods have been applied to document classification and in-
dexing. A popular method for representing documents in supervised learning
is the bag-of-words approach, which represents documents by the words they
contain, disregarding the order in which they occur. Instead of single words,
also sequences of words (n-grams) can be used to represent a document. The
words or n-grams can be weighted by different schemes such as term frequency
or TF-IDF [14]. While TF-IDF is unable to capture the semantic structures in
documents, methods such as latent semantic analysis (LSA) [5] and probabilis-
tic LSA (pLSA) [8] try to overcome this weakness. Recently, also encyclopedic
background knowledge has been leveraged for representing documents. For ex-
ample, explicit semantic analysis (ESA) [6] represents the meaning of documents
as weighted vectors of Wikipedia-based concepts. While originally intended for
computing semantic relatedness, it has also been applied successfully to text
classification (e.g. [7]).

One commonly used method for unsupervised text classification and indexing
are topic models. Topic models are statistical models which aim to discover latent
topics in documents. The simplest one is Latent Dirichlet Allocation (LDA),
which was introduced by Blei et al. [3]. A supervised version of LDA, sLDA,
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was later presented by Blei and McAuliffe [2]. Labeled LDA, another supervised
topic model, was introduced by Ramage et al. [13]. Labeled LDA constrains
the latent topics which are to be learned to the labels of the documents in the
training dataset. Topic models have also been used to create features for training
supervised classifiers [2].

Ontology-Based Methods: An ontology is a “formal, explicit specification
of a shared conceptualization.” [15] Ontologies have been used as background
knowledge for semantic annotation of documents (e.g. [9], [4]), mostly in the
context of the Semantic Web. Jonquet et al. [9] presented the Open Biomedical
Annotator, which is an ontology-based Web service for annotating documents
with biomedical ontology concepts. The annotation process consists of two main
steps: The first step, concept recognition produces direct annotations by match-
ing textual meta-data of the documents to ontology concepts. In the second step,
the set of direct annotations is expanded by using semantic relations of the on-
tology and by using existing mappings to other ontologies. I plan to build upon
and extend this approach by incorporating textual and structural encyclopedic
background knowledge.

3 Research Questions and Hypotheses

My research aims to investigate ways in which encyclopedic background knowl-
edge, in the form of textual and structural information about the semantic vicin-
ity of ontology concepts, may be useful for improving the classification and in-
dexing of documents. In particular, I plan to address the following research
questions:

1. How does the effectiveness of automatic indexing and classification tech-
niques which exploit encyclopedic background knowledge compare to the
effectiveness of techniques which do not use encyclopedic background knowl-
edge?

2. How does the effectiveness of automatic indexing and classification tech-
niques which exploit encyclopedic background knowledge change with dif-
ferent strategies of incorporating the background knowledge?

3. In which ways can encyclopedic background knowledge be useful for effec-
tively combining the sets of keywords and classes suggested by machine learn-
ing methods with those suggested by ontology-based methods?

I hypothesize that encyclopedic background knowledge about the semantic
neighborhood of the defined concepts in an ontology can be successfully leveraged
for modeling a more comprehensive representation of said concepts and that
the enhanced representation of these concepts is likely to contribute to a more
accurate classification and indexing of documents.

4 Proposed Approach

This section describes the proposed approach for classifying and indexing
documents using encyclopedic background knowledge. The approach leverages
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non-domain-specific encyclopedic background knowledge to enrich existing domain-
specific ontologies (and classification systems) with additional information about
the concepts contained in the ontology. This additional information includes en-
cyclopedic textual information about concepts which are semantically closely
related to concepts contained in the ontology, as well as structural informa-
tion about the nature of the semantic relations between the concepts. I believe
that this information can be useful for automatic classification and indexing of
documents, contributing to a more accurate assignment of semantic classes and
topical keywords by ontology-based as well as supervised methods.

To the best of my knowledge, this is the first attempt to enrich existing
domain-specific ontologies and classification systems with non-domain-specific
encyclopedic background knowledge with the aim of improving automatic in-
dexing and classification of documents. The two main steps of my approach are
described in more detail in the rest of this section.

4.1 Enriching an Existing Domain-Specific Ontology

The first step of the approach consists in enriching an existing domain-specific
ontology with encyclopedic background knowledge. This can be achieved by first
mapping the concepts contained in the ontology to the concepts contained in an
encyclopedia and subsequently modeling the semantic neighborhood of the on-
tology’s concepts. Wikipedia constitutes an attractive option for using as the
encyclopedia of choice, as it has often shown to be useful for a wide range of ap-
plications in domains such as natural language processing, information retrieval
and ontology building [11]. The mapping could be achieved either manually or
by employing automatic mapping techniques.

For modeling the semantic neighborhood of the ontology’s concepts, it is nec-
essary to identify which encyclopedic entries lie in the semantic vicinity of the
ontology’s concepts, as well as the nature of the semantic relations to the ontol-
ogy’s concepts and between the encyclopedic entries. If Wikipedia is chosen as
the encyclopedia, this task can be achieved by employing ontologies extracted
from Wikipedia such as Yago [16] or DBpedia [1]. One of the main challenges
in this step is to adequately map the entire ontology, and to appropriately deal
with ontology concepts which do not match any encyclopedia concept (e.g., by
linking them to several related encyclopedia concepts).

4.2 Using the Enriched Ontology with Existing Classification and
Indexing Methods

The second step of the approach is to investigate whether the enriched ontology
is useful for classifying and indexing documents. To achieve this, I plan to inte-
grate it into existing ontology-based methods and supervised machine learning
methods.

Ontology-Based Methods: In an approach building upon the one used by
the Open Biomedical Annotator [9], encyclopedic background knowledge is likely
to be useful in both concept recognition and the identification of semantically
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related ontology concepts to extend the keyword set. Concerning the concept
recognition task, the textual information from encyclopedic entries in semantic
vicinity of ontology concepts can be used to better identify matching concepts in
the text (i.a. by alleviating the problem of vocabulary mismatch). Regarding the
extension of the keyword set, the structural information from the encyclopedia
can provide support nodes and support relations, which could prove useful for
making a better decision on which additional ontology concepts to include in the
keyword set.

Supervised Machine Learning Methods: The textual information of the
encyclopedic articles in the semantic vicinity of a category or ontology concept
is likely to be able to diminish the problem of sparseness in training datasets, by
providing additional training examples. A potential limitation for the usefulness
of these additional training examples is that the type of language used in the
documents may differ significantly from the language used in the encyclopedia.

Combination of Ontology-Based and Supervised Methods: Encyclo-
pedic background knowledge could be useful for effectively combining the key-
words suggested by supervised machine learning with those suggested by the
ontology-based approach. The resulting keyword sets could be combined, for ex-
ample, by starting out with the intersection set and including further keywords
from the union of both keyword sets. Which keywords are chosen for indexing
would depend on the semantic distance, calculated on the enriched ontology, to
the keywords in the intersection set.

5 Evaluation

To evaluate the utility of the enriched ontology for the various methods, I plan to
use three methods which I describe in this section. Each method will be employed
to compare indexing and classification methods which use the enriched ontology
with the corresponding methods which do not use the enriched ontology.

Evaluation based on existing manually created keyword sets: The
results of the different models will be compared to existing manually defined
keywords provided by expert indexers. Standard metrics such as precision, recall
and F1-Score can be used to quantify the effectiveness of the models.

Comparison with inter-expert semantic similarity: Semantic similarity
measures can be employed for calculating the semantic distance between different
sets of suggested keywords. The semantic distance between the keyword sets
produced by different human expert indexers (for the same document) will be
measured. This semantic distance will then be compared to the semantic distance
between the keyword set produced by the model and the keyword sets produced
by the different human expert indexers. The choice of the semantic similarity
measure can be based on a preceding evaluation of the accuracy of the results
of different measures, conducted by domain experts.

Recommendation-based evaluation by expert indexers: The keyword
sets produced by the model will be presented to human expert indexers, along
with the document to be indexed. The human annotators will then judge which
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Fig. 1. Distribution of documents (log-scale) in the different classes from the classi-
fication system for the social sciences and concepts from the thesaurus for the social
sciences in the SOLIS dataset.

suggested keywords, in their opinion, are appropriate, which ones are wrong
and which ones are missing. Based on this evaluation, standard metrics can be
calculated, as well as the semantic distance to the keyword set after correction.

6 Datasets

I plan to apply my approach to and evaluate it on the following datasets: the
Social Science Literature Information System (SOLIS), the Social Science Open
Access Repository (databases containing German social science publications),
the German Education Index (German educational science publications), and
PubMed Central (English biomedical and life sciences publications). The first
dataset which I will apply my approach to is SOLIS, a collection of meta-data
(including abstracts) of roughly 450,000 social science publications which are
fully manually classified and indexed by human expert indexers according to the
classification system and the thesaurus for the social sciences.

7 Preliminary Results

This section briefly describes the supervised classification experiments which I
conducted on the SOLIS dataset. The results presented in this section are not
to be seen as preliminary results of my proposed approach, but rather as a
motivation for why an improved approach is necessary.

Experimental Setup: I conducted the classification experiments on a subset
of the SOLIS database which consists of all documents that were published after
the year 2003. It contains 144,259 documents and 306,879 class labels (from the
classification system for the social sciences). Figure 1 shows the skewed distri-
bution of classes and ontology concepts assigned to documents. A skewed class
distribution is often a problem when applying supervised classification methods,
due to the lack of training documents in the sparse classes.
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Fig. 2. Results of supervised machine learning targeting three semantic specificity
levels of the classification system

After applying standard preprocessing techniques (removing stopwords and
stemming), I calculated two sets of features on the textual information of the
documents: TF-IDF features and Labeled LDA topic distributions. Identifying
the categories assigned to a document constitutes a multi-label classification
task, where there can be multiple correct classes for each document. I used the
One-vs-Rest strategy for this task, which trains a separate classifier for each class
and fits this class against all other classes. The classification system for the social
sciences is hierarchically organized, so it is possible to conduct classification at
different levels of semantic specificity. Three classification models, one for each
of the three top semantic levels in the classification hierarchy, were trained for
both feature sets. Support vector machines with linear kernels were used for all
classification experiments, and all classifiers were trained on a 67% split of the
subset and tested on the remaining 33%.

Results and Discussion: The results of the experiments are presented in
Figure 2. Generally, Labeled LDA features produced a higher recall, while TF-
IDF features resulted in a higher precision. While both feature sets achieve
an acceptable F1-Score when targeting only first-level hierarchy categories, the
effectiveness of the classifiers targeting more semantically fine-grained categories
is unsatisfactory. This shows that a more elaborate approach is necessary for
effectively classifying social science documents.

8 Conclusion

Subject indexing of unstructured text continues to constitute a challenging field
of research. The PhD thesis presented in this paper focuses on a new approach to
enriching ontologies and classification systems with the background knowledge
of encyclopedias. From such background knowledge, textual and structural in-
formation about the semantic vicinity of ontologies’ concepts can be extracted.
This additional knowledge, by providing a more comprehensive representation
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of concepts contained in an ontology, is likely to be useful for automatically
indexing and classifying documents.

Acknowledgments. The thesis presented in this paper is supervised by Prof.
Dr. Markus Strohmaier.
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1 Problem Statement

Ontologies play a key role in the development of the Semantic Web and are
being used in many diverse application domains such as biomedicine and energy
industry. An application domain may have been modeled according to different
points of view and purposes. This situation usually leads to the development of
different ontologies that intuitively overlap, but that use different naming and
modeling conventions.

The problem of (semi-)automatically computing mappings between indepen-
dently developed ontologies is usually referred to as the ontology matching prob-
lem. A number of sophisticated ontology matching systems have been developed
in the last years [5, 30]. These systems, however, rely on lexical and structural
heuristics, and the integration of the input ontologies and the mappings may
lead to many undesired logical consequences. In [13] three principles were pro-
posed to minimise the number of potentially unintended consequences, namely:
(i) consistency principle, the mappings should not lead to unsatisfiable classes
in the integrated ontology, (ii) locality principle, the mappings should link enti-
ties that have similar neighbourhoods, (iii) conservativity principle, the mappings
should not introduce new semantic relationships between concepts from one of
the input ontologies. Violations to these principles may hinder the usefulness of
ontology mappings. Our aim is to develop effective and efficient detection and
correction techniques for violations of the conservativity principle for ontology
alignments.

2 Relevancy

Given the formal semantics of ontologies, logical defects in the alignment between
them may hinder their usefulness and lead to undesired results. The practical
effects of these logical violations highly depend on the intrinsic nature and char-
acteristics of the ontology-based system.

When ontology-to-ontology mappings are used, for instance, in an ontology-
based data access (OBDA) [27] or an ontology-based data integration system
(OBDI) [35], a high quality alignment is mandatory. In such scenarios, any vi-
olation of the consistency or conservativity principles will directly affect the

P. Mika et al. (Eds.) ISWC 2014, Part II, LNCS 8797, pp. 545–552, 2014.
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quality of the query results, since queries will be rewritten according to the on-
tology axioms, the ontology-to-ontology mappings and the ontology-to-database
mappings. On the contrary, an ontology-based information retrieval (IR) system
may better tolerate some logical defects.

A definition of effective techniques for assessing and re-establishing the logi-
cal soundness of ontology-to-ontology alignments would be key for any critical
ontology-based system using them, directly or indirectly. When such detection
and repair techniques are also efficient, ontology matchers may use them for:
(i) pruning the usually large search space when computing mappings, (ii) com-
puting high quality alignments by minimising the number of logical violations.
LogMap [12] and AML [28] ontology matchers, for instance, have already suc-
cessfully applied these ideas by including detection and repair techniques for the
consistency principle in the mapping computation process.

Our work follows a classic approach to ontology alignment debugging, where
the repair can only affect the alignment, considering as immutable the matched
ontologies [12, 14, 21, 28]. This is not the only possible approach to the prob-
lem. The work presented in [10, 17, 18], for instance, considers the violations
of the conservativity principle as possible false positives, based on the potential
incompleteness of the input ontologies. Hence, the correction strategy may also
insert subsumption axioms to the input ontologies, to enrich their concept hier-
archies. Authors in [26] also suggest that fixing the input ontologies may be an
alternative for mapping removal.

Nonetheless, there are also important application scenarios in which the aligned
ontologies have to be considered as not modifiable. One such example is the EU
Optique project.1 Optique aims at facilitating scalable end-user access to big data
in the oil and gas industry (based on an OBDA system). Currently, in the Optique
use case, the input ontologies are not modifiable. The query formulation ontology
is a domain ontology based on the Norwegian Petroleum Directorate (NPD) Fact-
Pages2 [31] and it is currently preferred by Optique end-users to feed the visual
query formulation interface [34]. NPD ontology is not intended to be modifiable by
end-users, because it includes knowledge already agreed on by the community. The
other is a bootstrapped ontology directly linked to the information represented in
the database.

In general, our approach aims at developing a technique suitable for any
ontology-based system, where the used ontologies are not directly controlled
by the system and can be only used as they are. For instance, the authors in
[20] apply ontology matching in a multi-agent system scenario in order to allow
the exchange and extension of ontology-based action plans among agents.

3 Related Work

The three principles mentioned in Section 1 have been actively investigated in
the last years (e.g., [11, 12, 13, 21, 22, 23, 28]).

1 http://www.optique-project.eu/
2 http://factpages.npd.no/factpages/

http://www.optique-project.eu/
http://factpages.npd.no/factpages/
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In particular, the conservativity principle problem, although indirectly, hasbeen
actively studied in the literature. Schlobach [29] originally introduced the assump-
tion of disjointness to address the repair of ontologies underspecified in terms of
negative constraints (disjointness axioms, in particular). A serious obstacle for the
practical success of the techniques based on such assumption is the usually pro-
hibitive number of candidate disjointness axioms to be inserted.Meilicke et al. [22]
applied this assumption in the context of repairing ontologymappings, and limited
the number of disjointness axioms to be inserted by using learning techniques [36].
These techniques, however, typically require amanually created training set. In [7]
the authors present an interactive system to guide the expert user in the manual
enrichment of the ontologies with disjointness axioms. Clearly, this method is not
suitable for scenarios in which no user intervention is possible.

Our approach aims at minimising the subset of candidate disjointness axioms
that need to be inserted, without compromising the repair effectiveness. However,
in order to be applicable to completely automatic repair scenarios, our method
needs to work independently from any manual intervention.

Ontology matching systems have also dealt with the conservativity principle in
order to improve the precision (w.r.t. a reference mapping set) of the computed
mappings. For example, systems such asASMOV [11], Lily [37] andYAM++ [24]
have implemented different heuristics to avoid violations of the conservativity
principle. Another relevant approach [2] presents a set of sanity checks and best
practices when computing ontology mappings. A preliminary analysis shows that
the provided heuristics fail at preventing and solving many violations [32, 33].

Unfortunately, for many of the mentioned approaches, the covered ontology
fragment is not clear, and their effectiveness can only be experimentally verified,
thus limiting the comparability of different contributions. Conservativity princi-
ple highly benefited from the definition of formally grounded methods, instead of
heuristics approaches, as the results of OAEI in the years demonstrate. To this
aim, our main goal is to define an elegant way to detect and solve conservativity
principle violations by reducing the problem to a consistency principle violation
problem, in the Horn propositional fragment. However, in the literature an effi-
cient and automatic technique for enriching ontologies with disjointness axioms,
at the basis of the aforementioned reduction, is still missing.

4 Research Questions

After analysing the related work on the subject, we still consider as open the
following research questions: (RQ.i) Which consequences may have an alignment
violating the conservativity principle in different application scenarios? (RQ.ii) Is
there a relationship between the violations affecting an alignment and its correct-
ness or completeness? (RQ.iii) Which algorithms can be used to compute a re-
pair for an alignment violating the conservativity principle? (RQ.iv)Which is the
trade-off between completeness and runtime for these algorithms? (RQ.v) Which
are the consequences of applying ontology alignment evolution techniques on an
alignment violating the conservativity principle? (RQ.vi) How can conservativity
principle violations detection and repair support interactive alignment revision?
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5 Hypotheses

(H.i) Conservativity principle violations may harm the correctness of ontology-
based systems in relevant application scenarios such as OBDA and OBDI (RQ.i).
(H.ii) Conservativity principle is tighly coupled with the notion of conservative
extension [16], an extremely challenging decision problem, and would therefore
benefit from approximated repair techniques for achieving scalability on reduced
DL fragments (e.g., in the EL family). This principle could be partly reduced
to the consistency principle, but a multi-strategy repair is needed to address the
uncovered violation kinds (RQ.iii,RQ.iv). (H.iii) Ontology alignment evolution
algorithms usually propagate violations, this could also affect the optimality of
the update strategies (RQ.v). (H.iv) The detection and repair techniques can be
coupled with existing user-driven ontology enrichment of negative constraints [7]
and ontology revision techniques [25] (RQ.vi).

6 Approach

Addressing the conservativity principle violation requires a detection and repair
technique. For violation detection, we propose a complete technique, based on
an efficient interval labelling schema [1] for the input/aligned ontologies. Given
that not all the violations are independent, we plan to provide a discrimination
between direct and derived violations, that would rely on a graph representa-
tion [32] of the aligned ontology. This refined notion of violation will offer a fine
grained violation rate estimation.

For conservativity violations affecting atomic concepts not involved in a sub-
sumption relationship nor sharing any descendant, the problem can be reduced to
a consistency repair by inserting a disjointness axiom between the two concepts.
A classic approach for debugging ontologies is to compute a repair by computing
a (minimal) hitting set over the set of justifications [9] (minimal sets of axioms
entailing a consequence). Computing all the justifications for a given entailment
is a costly reasoning service, and all the scalable debugging algorithms propose
approximate repair computations [15, 21, 24, 26]. To address the scalability prob-
lem when dealing with large ontologies and mapping sets, our method actually
relies on the (Horn) propositional projection of the input ontologies, but does
not ensure completeness [33]. We plan to cover expressive fragments such as EL
terminologies (e.g., using the hyper-graph representation of [4]). Currently, we
have adapted the infrastructure provided by LogMap matcher[12, 14]. However,
other mapping repair systems, such as Alcomo [21] or AML [28], could be con-
sidered. Note that, to the best of our knowledge, these mapping repair systems
have only focused on solving violations of the consistency principle.

Instead, for the violations affecting concepts involved in a subsumption rela-
tionship, the graph representation [32] will again be used, exploiting the property
that part of these violations form a cycle (one half represents the previous sub-
sumption relationship, the other one representing the violation). The detection
and repair strategies work on the strongly connected components (SCCs) of the
graph representation of the aligned ontology, exploting the well-known relation
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between SCCs and directed cycles. The approximate repair aims at removing all
the cycles corresponding to a violation by computing a solution to an ad-hoc
variant of the Feedback Arc Set problem [6], encoded as a logic program [32].

The idea of enriching the input ontologies with additional disjointness axioms
is not new. The novel aspects of our approach are an automatic and efficient
identification and addition of a small set of disjoint axioms, using interval in-
dexing. As already discussed in Section 3, another contribution would be the
first method addressing the conservativity principle with a theoretical founda-
tion of the concrete ontology fragment covered by both the detection and repair
techniques. Another innovative aspect is the combination of graph-theory and
logic programming for addressing the violations that cannot be reduced to the
consistency problem. Finally, to the best of our knowledge, despite the atten-
tion that ontology alignment debugging and ontology alignment evolution [8, 19]
techniques have received in the literature, a combined analysis of the possible
interrelation between the two fields is still missing.

7 Preliminary Results

Violation Rate: A preliminary analysis [32, 33] suggests that conservativity prin-
ciple violations not only deeply affect the alignments computed by the top-level
ontology matchers, but also widely affect agreed reference alignments, as emerged
from the evaluation of the Ontology Alignment Evaluation Initiative3 (OAEI )
dataset. Also manually curated alignments, such as UMLS-Metathesaurus [3]
(UMLS ), a comprehensive effort for integrating biomedical knowledge bases,
suffer from these violations.

Conservativity to Consistency Principle Reduction: The repair algorithm of [33]
relies on a reduction of the conservativity to the consistency principle, with
promising results. We tested the algorithm on the reference alignments of OAEI
2013 . The complete detection algorithm takes only 275 seconds to process the
aligned ontology SNOMED-NCI (the biggestOAEI ’s test case). Repair efficiency
and effectiveness are also promising. Almost all the violations for the five main
tracks of the OAEI 2013 are fully repaired.

Repair Algorithms: For what concerns the two orthogonal repair techniques, the
preliminary results show their efficiency and effectiveness in isolation [32, 33].
From the theoretical standpoint, the two techniques address different kinds of
conservativity principle violations, but the concrete effect of combining them still
needs to be explored in practice. Moreover, their suitability for an automatic use
in an ontology matching process has to be experimentally verified.

8 Evaluation Plan

The evaluation phase will provide a quantitative measurement of the hypotheses
underlying the different aspects of our proposal:

3 http://oaei.ontologymatching.org/

http://oaei.ontologymatching.org/
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(H.i) will be investigated using the new track of OAEI 2014 ,4 that will be
addressing the problem of ontology alignment for query answering. The effect of
the violations and their repair will be tested using the same metrics proposed by
the organisers. To this extent, another interesting evaluation is the comparison
with alternative approaches (see Section 3) w.r.t. the same task.

(H.ii) has been already successfully addressed in [33]. The preliminary anal-
ysis consisted in the detection of the initial number of violations for the OAEI
reference alignments, the runtime for computing a repair, the size of the re-
pair and the number of unsolved violations. In [32], a similar analysis has been
performed on the alignments computed by OAEI participants. In addition, an
analysis of the repair effect in terms of the completeness and correctness of the
alignments has also been conducted.

(H.iii) The state of the art ontology mapping evolution algorithms will be
tested using the publicly available snapshots of SNOMED-CT, FMA and NCI
ontologies, and UMLS alignments between them (as already done in [8]). The
used metric will be the number of violations with and without a repair step on the
source (and possibly the target) alignment. The effect in terms of completeness
and correctness against the repaired and original reference alignment will be
measured using the standard notions of precision, recall and f-measure.

(H.iv) The practical effect of coupling the automatic detection and repair
techniques with a user-driven ontology disjointness addition will be conducted
by means of a user survey. In addition, we plan to also evaluate completeness and
correctness against a manually defined gold-standard using standard IR metrics.

Finally, the acceptable trade-off between the completeness of the detection and
repair algorithms and their runtime will be tested by integrating the implemented
techniques into an existing ontology matcher.

9 Reflections

Despite the increasing number of contributions addressing ontology alignment
debugging, the conservativity principle has received little attention. A possible
explanation is that the negative effects of violations to the consistency prin-
ciple are already evident for any ontology alignment application scenario, and
therefore were considered at an earlier stage. Our claim (Section 5) is that con-
servativity principle would affect more advanced application scenarios, such as
OBDA and OBDI. To this aim, in our opinion, it is extremely significative the in-
troduction of a novel track addressing ontology-based query answering in OAEI
2014 , given the importance of this venue for ontology matching researchers.

Finally, as discussed in Section 7, we have already been able to accumulate
encouraging results for what concerns the violation rate, and the efficiency and
effectiveness of our detection and repair techniques. This constitute a reasonable
guarantee for the feasability of our approach.

Acknowledgements. The author thanks Ernesto Jiménez-Ruiz and Giovanna
Guerrini for their invaluable help.

4 http://www.om2014.ontologymatching.org/

http://www.om2014.ontologymatching.org/
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