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Abstract. The DARPA Virtual Robotics Challenge (VRC)[1] was a cloud-based
robotic simulation competition. Teams competed by writing control software for
a humanoid robot to perform disaster response tasks in real-time simulation. Sim-
ulating the physics and sensors of a humanoid robot in real-time presented chal-
lenges related to the trade-off between simulation accuracy and computational
time. The Projected Gauss-Seidel (PGS) iterative solver was chosen for its per-
formance and robustness, but it lacks the accuracy and the fidelity required for
reliable simulation of task-level behaviors. This paper presents the modeling deci-
sions and algorithmic improvements made to the Open Dynamics Engine (ODE)
physics solver that improved PGS accuracy and fidelity without sacrificing its
real-time simulation performance in the VRC. These improvements allowed for
stable simulation regardless of user input during the VRC, and supported reliable
contact dynamics during VRC tasks without violating the near real-time require-
ment.

1 Introduction

The DARPA Robotics Challenge (DRC) is a competition with the goal of improving
robotic systems for use in disaster response. With sufficient mobility and dexterity,
robots may assist technicians and emergency responders in dangerous environments.
The DRC will test the ability of robots to complete tasks relevant to disaster response,
such as walking on uneven terrain, driving a utility vehicle, opening doors, climbing
industrial ladders, and threading a fire hose into a standpipe.

In addition to physical testing in the DRC Trials and DRC Finals, the DRC also
included the Virtual Robotics Challenge (VRC), in which teams wrote control soft-
ware for a simulated humanoid robot. The Open Source Robotics Foundation (OSRF)
provided an open-source cloud-based simulator for the disaster response tasks using a
model of the Atlas robot from Boston Dynamics [2] and the dexterous Sandia hand [3].

When selecting the simulation tasks for the VRC, it was necessary to consider the
difficulty of accurately simulating tasks using Newton-Euler equations of motion with
a Coulomb friction approximation. The following high-level tasks were chosen: walk
across various terrains, drive a utility vehicle, and thread a fire hose into a stand-
pipe. These tasks require simulation of dynamic balancing, walking on uneven terrain,
ingress/egress of a utility vehicle, manipulation of vehicle controls (pedals, gear shift,
steering), vehicle dynamics, and object manipulation with a dexterous hand.
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2 Literature Review

There are numerous approaches to modeling rigid body dynamics with frictional con-
tacts. Explicit penalty methods apply restorative forces to ”penalize” collisions between
rigid bodies as contacts arise. For example, the Hertz model [4], is an idealized model
of material deformation and contact forces for spherical surfaces that is often applied
as an explicit penalty force. Constraint-based methods formulated as a Linear Comple-
mentarity Problem (LCP) attempt to resolve all contact (and constraint) forces simul-
taneously when collisions are detected. Examples of constraint-based methods using
velocity-impulse formulated as an LCP include [5,6,7,8]. These methods can have per-
formance advantages when compared with pure penalty based methods due to reduced
numerical stiffness. This is mostly due to the fact that penalty methods can require very
small time steps for stability while simulating dynamic walking and grasping.

The strategies for solving the constraint based LCP problem mainly fall into two
categories: iterative and direct (pivoting) methods. This paper presents improvements
to the iterative Projected Gauss-Seidel solver that exists within the Open Dynamics
Engine (ODE). Note that ODE also includes a direct method that is based on Lemke’s
algorithm [9], which is an extension of Dantzig’s algorithm [10].

An important aspect to consider when formulating the equations for articulated rigid
body dynamics is the internal state representation. In maximal coordinate formulations,
such as ODE, each rigid body has six degrees of freedom. Articulation is encoded as
equality constraints on the dynamic states. This approach yields convenient sparse ma-
trix structures, such as a block diagonal mass matrix and a sparse constraint Jacobian.
Additionally, the approach treats contact and articulation constraints in a uniform man-
ner. In contrast, formulations based on internal (or generalized) coordinates (often using
Featherstone’s algorithm [11,12]) consider articulation implicitly by adding the system
degrees of freedom with each articulation joint. This yields more accurate kinematics
and a smaller mass matrix, though the mass matrix structure is no longer sparse. There
was some discussion prior to the VRC regarding the relative merit of maximal and
generalized coordinates [13], though a robust comparison is not presented here.

3 Modeling and Fidelity Considerations

This section presents the modeling decisions that were made to improve real-time per-
formance while maintaining sufficient physical accuracy.

The Atlas robot is a humanoid robot manufactured by Boston Dynamics Inc. (BDI),
with 28 hydraulically actuated degrees of freedom [2]. The kinematics, rigid body in-
ertias, 3D mesh collision shapes, maximum joint angles, velocities, and torques were
provided by BDI. In the absence of details about the hydraulic systems, each joint was
modeled as a pin joint with torque control subject to position, velocity, and torque lim-
its. The torque and speed limits were not coupled with a torque-speed curve. Static joint
friction was not modeled, though viscous damping (proportional to joint velocity) was
applied at the joints in a heuristic manner to improve solver stability. Contact friction
was modeled as Coulomb friction using a friction pyramid (see Section 4.6).



Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 39

Although a full set of 3D concave meshes was provided for the Atlas robot, each col-
lision shape was approximated by a union of convex sphere, box, and cylinder collision
primitives. It was found that the collision primitives exhibited faster collision detection
and more robust contact resolution than the 3D meshes [14].

Some physical interactions were approximated due to insufficient fidelity at the re-
quired level of real-time performance. Threading a fire hose, for example, involves con-
tact between millimeter-scale features. Instead of modeling the fine contact geometry,
a screw joint was dynamically created when the fire hose coupling was sufficiently
aligned with the standpipe. The coupling could be rotated in one direction to connect or
in the opposite direction to release the coupling. Sitting in the seat of a utility vehicle
was another challenge, as the seat was modeled as a rigid body. This caused difficulty
in finding a stable seating position. To remedy this, a viscous damping field was created
on the surface of the seat. This partially mitigated the problem, though stable sitting in
the vehicle proved a continual challenge in the VRC [15].

4 Open Dynamics Engine

This section presents the algorithms used by Open Dynamics Engine (ODE) [16]. ODE
represents rigid body states with maximal coordinates, in which each rigid body has
six degrees of freedom, and articulation and contact constraints are enforced by adding
constraint equations. Please see ODE’s User Manual [17] for general documentation.

4.1 Unconstrained Rigid Body Dynamics

The notation for maximal coordinates is borrowed from [18], and it is assumed that all
vectors are expressed in the world frame unless otherwise specified. Each rigid body has
an associated coordinate frame with center of gravity (c.g.) position x̄ and orientation
quaternion q̄. The coordinate frames evolve in time according to

x̄t = ˙̄x, q̄t = (1/2)ω̄q̄ (1)

with ˙̄x and ω̄ representing linear and angular velocity. The velocities evolve according
to the Newton-Euler equations of motion, which are expressed as

m ˙̄xt = f̄ , L̄t = τ̄

where m is the mass; f̄ and τ̄ are the net force and torque; L̄ = ¯̄Iω̄ is the angular momen-
tum with inertia tensor ¯̄I = ¯̄R ¯̄D ¯̄RT , rotation matrix ¯̄R(q̄), and body-frame inertia tensor
¯̄D. For a single unconstrained rigid body, this can be re-written as:[

m ¯̄δ ¯̄0
¯̄0 ¯̄I

][
¨̄x
˙̄ω

]
=

[
f̄

τ̄ − ω̄ × ¯̄Iω̄

]
(2)

where ¯̄δ is the identity matrix.
For a system with multiple rigid bodies, augmented variables are defined for each

body b: velocity vector v̄b = [ ˙̄xT
b , ω̄

T
b ]

T ; block diagonal mass matrix ¯̄mb = diag(mb
¯̄δ , ¯̄Ib);
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and effort vector ēb = [ f̄ T
b ,(τ̄b − ω̄b × ¯̄Ibω̄)T ]T . The dynamics in equation 2 can then be

expressed as:
¯̄mb ˙̄vb = ēb (3)

For a system of N rigid bodies, system variables are defined as the velocity states
v̄ = [v̄T

1 , v̄
T
2 , ...v̄

T
N ]

T ; the block diagonal system mass matrix ¯̄M = diag( ¯̄m1, ¯̄m2, ..., ¯̄mN);
and the system effort vector Ē = [ēT

1 , ē
T
2 , ...ē

T
N ]

T . The unconstrained system dynamics
from 3 are then given as:

¯̄M ˙̄v = Ē (4)

4.2 Articulation and Contact Constraints

Articulation and contact are encoded through a set of nonlinear constraints on rigid
body position and orientation, with articulation using equality constraints he(x̄, q̄) = 0,
and contact using inequality constraints hi(x̄, q̄)≥ 0.

To avoid nonlinearities, the position constraints are differentiated to yield linear ve-
locity constraints of the form

¯̄Jv̄ = c̄ (5)

where ¯̄J is the constraint Jacobian matrix and ce = 0,ci >= 0, for articulation equality
constraints and contact inequality constraints, respectively. The velocity constraints are
adjoined to the equations of motion using a vector of Lagrange multipliers λ̄ as:

¯̄M ˙̄v = Ē + ¯̄JT λ̄ (6)

4.3 Discretization

The dynamics in equation 6 are discretized over a time interval Δ t using a first-order
Euler method as ˙̄vΔ t = v̄n+1 − v̄n, and rearranged to yield the difference equation for
constrained rigid body dynamics in matrix form as[

(1/Δ t) ¯̄M − ¯̄JT

¯̄J 0

][
v̄n+1

λ̄

]
=

[
(1/Δ t) ¯̄Mv̄n + Ē

c̄

]
(7)

Assuming that the constraints are satisfied implicitly at the next time step (t +Δ t),
¯̄Jv̄n+1 = c̄, the Lagrange multipliers λ̄ are computed by left multiplying 7 by ¯̄J ¯̄M−1 as

[ ¯̄J ¯̄M−1 ¯̄JT ]λ̄ =
c̄

Δ t
− ¯̄J[

v̄n

Δ t
+ ¯̄M−1Ē] (8)

Solving 8 yields the necessary constraint forces λ̄ for forward dynamics. This equation
is solved using an iterative Projected Gauss Seidel algorithm, omitted here for brevity.

Given λ̄ , the rigid body velocities v̄n+1 are computed from equation 7. The positions
xn+1 and orientations qn+1 are computed by integrating equation 1 using the velocity
value vn+1 to give semi-implicit stability.

Note that the Lagrange multipliers for inequality constraints are initially computed
by solving 8 but are afterwards projected into their proper domains.
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4.4 Constraint Error Correction

Rigid body dynamics solvers with fixed time stepping schemes will encounter instances
where two rigid bodies intersect. Constraint violation can also be caused by position
drift from numerical errors during integration and unconverged iterative solvers.

One approach is to backup simulation and take smaller time steps until a non-
penetrating contact has been made. Physics engines such as Simbody [19] uses this
variable time stepping approach.

On the other hand, ODE adds a position constraint correction term. The position
constraint error is evaluated for each constraint and expressed at timestep n as h̄n. It
is added to the velocity constraint equation with coefficient β (also known as error
reduction parameter ERP inside ODE).

¯̄Jv̄+
β
Δ t

h̄n = c̄ (9)

This term can be considered a form of Baumgarte stabilization [20]. It is used to restore
constraint error to zero when β = 1 with a first-order Euler integrator, though values
less than 1 are used in practice.

The constraint error correction term can be added into 8 as

[ ¯̄J ¯̄M−1 ¯̄JT ]λ̄ =
c̄

Δ t
− β

Δ t2 h̄n − ¯̄J[
v̄n

Δ t
+ ¯̄M−1Ē] (10)

4.5 Constraint Force Mixing and Spring-Damper

An interesting concept called Constraint Force Mixing (CFM) was applied by Smith in
ODE to stabilize the pivoting Lemke’s solver. It was also implemented in the standard
PGS algorithm in ODE. The approach adds a term (1/Δ t) ¯̄Cλ̄ to equation 10, where
¯̄C is a diagonal positive semidefinite matrix composed of CFM parameters. With the

right-hand side of 10 abbreviated as rhs, the equation is rewritten as follows:[
¯̄J ¯̄M−1 ¯̄JT + 1

Δ t
¯̄C
]

λ̄ = rhs (11)

An extremely useful application of the CFM and ERP parameters is that they map
a constraint directly to an equivalent spring and damper system with stiffness kp and
viscous dissipation kd properties:

ERP =
kpΔ t

kpΔ t + kd
CFM =

1
kpΔ t + kd

(12)

See Catto [21] for a derivation of equivalence between these parameters.
Effectively, any spring damper system can be implemented using CFM and ERP.

Most importantly, the spring damper system solution is obtained implicitly as part of the
overall LCP system, without the numerical stiffness problems experienced by explicit
spring dampers.



42 J.M. Hsu and S.C. Peters

4.6 Coulomb’s Friction Approximation Constraints

Given a frictional constraint with contact normal f̄cn and corresponding frictional force
f̄μ along the direction satisfying the maximum dissipation principle [22], the governing
equations can be posed as velocity constraints:

J̄ f ricv̄ = c̄ f ric (13)

The corresponding λ̄μ is projected into a corresponding solution space based on
Coulomb’s law: ‖ f̄μ‖ ≤ μ f̄cn. Solving equation 13 yields a solution for frictional con-
tact based on Coulomb’s friction cone if the direction of maximum dissipation j̄μ is
determined.

To avoid computing the direction of maximum dissipation, the frictional constraints
can be split into two or more spanning vectors on the contact surface manifold [22]. This
approximates the friction cone as a pyramid. The corresponding constraint equations
become:

J̄ f ricv̄ =

[· · · j̄cn · · · j̄μ1 · · ·
· · · j̄cn · · · · · · j̄μ2

][· · · v̄T
cn · · · v̄T

μ1
v̄T

μ2

]T
= c̄ f ric (14)

with corresponding unknowns λ̄μ1 and λ̄μ2 , to be projected into their corresponding
solution spaces at each iteration based on

‖ f̄μ1‖ ≤ μ1 f̄cn, ‖ f̄μ2‖ ≤ μ2 f̄cn. (15)

This approach yields anisotropic friction, but is much faster than the friction cone.

5 Modifications to Projected Gauss-Seidel Solver within Open
Dynamics Engine

ODE is a robust solver that provides an excellent starting point for a fast dynamics
simulator with tunable accuracy. There were some inadequacies, however, that needed
to be addressed before using it in the VRC. This section will discuss some of the work
done to improve the dynamics solver in ODE.

5.1 Contact Constraint Correction with Position Projection (Split Impulse)

The problem with the existing correction method in ODE (described in section 4.4) is
that the ERP term adds non-physical energy to the system every time an interpenetra-
tion occurs. Alternatively, if ERP is zero, the solution will not correct for interpenetra-
tion and the rigid bodies in contact may drift into deeper constraint violations. A method
similar to the Split Impulse method was introduced in ODE to cope with position er-
rors caused by fixed time step interpenetration, unconverged iterative PGS residual and
numerical integration errors.

For this method, the LCP equations 7 are solved twice, with β to yield v̄n+1
β and

without β to yield v̄n+1. Note the two equations can be solved in parallel. The velocity
vector without β (v̄n+1) is used as the next velocity vector, while the velocity vector
with β (v̄n+1

β ) is integrated in 1 to yield the next position x̄n+1 and orientation q̄n+1.
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The proposed position projection correction approach effectively teleports the over-
lapping objects away from each other without introducing excess energy into the sys-
tem. At the velocity level, contact constraints are seen as non-penetrating inelastic im-
pacts if PGS converges fully.

For example, a box on the ground plane with initial collision interpenetration of
1 centimeter will correct its position until resting contact is achieved without gaining
energy if position projection is turned on. Figure 1a shows box position trajectory and
velocity with and without position projection correction.
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Fig. 1. Trajectory of box model interactions with ground plane with and without position correc-
tion (ERP = 1)

In addition to more stable interpenetration correction, position projection correction
is ideal for modeling completely inelastic impacts as demonstrated in figure 1b.

5.2 Convergence Acceleration by Static and Dynamics Invariant Inertia Ratio
Reduction

The large-mass-ratio problem [23] is a well known issue for iterative LCP solvers. As
the solution is updated via row-sweep, the impulse flux propagating across constraints is
effectively throttled by the smallest Eigenvalue of the global constraint matrix ¯̄J ¯̄M−1 ¯̄JT .

The Atlas and Sandia hand models contain large inertia ratios across some of the
constraints. The Atlas model has an inertia ratio of∼ 9017 across the ankle joint causing
PGS to converge slowly. With a limited number of PGS inner iterations, this causes joint
constraint violations, noise in the dynamics solution and an inability to dynamically
control articulated bodies.

During the VRC, issues with PGS convergence were raised (see discussion [24]),
and various constraint stabilization methods (e.g. [25]) were suggested. While con-
straint stabilization is a promising future research direction, an intermediate solution
was found which stabilizes the solution for the Atlas model by inertia ratio reduction.

The method for modifying the Atlas model inertias to stabilize simulation is sum-
marized below, with detailed documentation available in Bitbucket pull request [26].
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Given two bodies with bilateral constraint Jacobian J̄b, the bodies’ moments of inertia
in constrained directions can be re-distributed to reduce the inertia ratio. The moment
of inertia of a body along an arbitrary unit line vector S̄ can be computed by ¯̄IL =
S̄T ¯̄IS̄ · S̄S̄T . Redistributing the moments of inertia components about the line vector for
the two connected bodies is done by modifying the original moment of inertias for both
bodies ¯̄Inew

i = ¯̄Ii+α( ¯̄IL
j − ¯̄IL

i ), where α ∈ [0,1] controls the distribution ratio. This inertia
redistribution is recomputed on every simulation update step.

To illustrate the effect of inertia ratio reduction, a double pendulum with an large
inertia ratio is considered (shown in Fig. 2a). The pendulum links are modeled as uni-
form boxes of equal density and different size. This size difference leads to an inertia
ratio over 6000. Gravity is applied along the y-axis gy = −9.81 and also along the z-
axis gz = 1 (into the page in Fig. 2a). The rotations of each rigid body about the x-axis
should be zero, but the non-zero gz component causes constraint errors. With a time
step of 1 ms and 50 iterations, the standard algorithm goes unstable with full revolu-
tions about the x-axis (labeled as pitch in top of Fig. 2b). With inertia ratio reduction
enabled, the constraint error is held to within 0.001 rad (bottom of Fig. 2b).

z

(a) Schematics for Inertia Ratio
Reduction pendulum example
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Fig. 2. Constraint error in rotations about the x-axis for a double pendulum with high inertia ratio,
before and after inertia ratio reduction

Since reducing the inertia ratio modifies the inertia of rigid bodies, it may change
the behavior of bodies with large angular velocity due to gyroscopic effects. It was not
observed to be a problem during the VRC.

5.3 Implicit Joint Spring Dampers

In lieu of simulating friction, viscous joint damping is extremely useful in stabilizing
overall dynamics of the simulation. For the VRC, implicit joint damping was applied
by adding a constraint to the joint degree of freedom, and adjusting the ERP and CFM
values to set its spring stiffness kp to zero and its viscous damping coefficient kd to
an estimated value1. Equations 12 and 12 were used to construct a joint damping con-
straint, and enforce joint damping implicitly through the constraint.

1 A back of the envelope estimate of realistic joint viscous damping coefficients.
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Another requirement for making VRC manipulation tasks solvable was indefinite
grasp-hold of an object by the Sandia hand in simulation. Contact chatter and vibration
have been a major obstacle in stable and robust contact dynamics in simulated grasping.
Many high fidelity approaches exist [27,28], but the VRC required an approach com-
patible with real-time speeds. In one example demonstrated in figure 4a, the Atlas robot
with the Sandia hand is seen holding an object of significantly larger uniform density
mass (5.39 kg) than the individual finger links (∼ 0.01 kg and principle moments of
inertia on the order of ∼ 1e−6 kg ·m2) in contact with the object. The robot eventually
loses grasp of the object because: the object drifts due to high frequency chatter of the
finger links and insufficient contact force is transmitted from the arm in motion to the
grasped object through the finger links due to lack of PGS convergence. With sufficient
joint viscous damping, however, high frequency chatter is reduced while additional con-
tact forces are transmitted from the finger joints to the finger-object contact constraints
to make the grasp stable. In the limit where viscous damping coefficient approaches
infinity, the finger joint becomes effectively a fixed joint.

This approach helps overall simulation stability, but errors due to PGS non-
convergence are still visible in finger contact simulation due to the fact that PGS has
not fully converged.

5.4 PGS Row Ordering and Residual Smoothing

Contact friction drift was a major challenge for the Atlas robot while standing with a
dynamically controlled balancing behavior. Approaches to achieving drift-free dynamic
standing and grasping using ODE with � 50 inner iterations are being investigated. This
would allow real-time simulation of Atlas with Sandia hands on a typical Intel i7 CPU
architecture. One possible solution for improving ODE accuracy was to increase the
number of inner iterations to above ∼ 250, which severely degraded simulation perfor-
mance to � 0.4× real-time. An alternative is to optimize the order of the constraints
in the Jacobian matrix as described in equation 10. The constraint rows were arranged
in the following order: bilateral, contact normal, and contact friction. At the very end,
the friction contraints received an additional 10 iterations. This appeared to speed up
convergence and reduce contact chatter.

In addition to solving the frictional directions last in PGS, high frequency oscillations
in the frictional contact solutions are reduced by smoothing the contact normal and
frictional (non-bilateral) constraints via an exponential smoothing filter λ n+1

k+1 = (1−
ε)λ n+1

k + ελ n, where k denotes the PGS inner iteration number within a time step and
ε was hard coded to 0.01 for the VRC.

Figure 3a is an example of Atlas grasping a cylinder indefinitely after row reordering
and residual smoothing. In this example, all contact normals are perpendicular to grav-
ity, so friction forces are keeping the cylindrical object from falling out of the grasp.
Figure 3b shows the frictional drift of the Atlas feet with and without row reordering
and residual smoothing.
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5.5 Warm Starting PGS

Warm starting Gauss-Seidel iterations can help accelerate PGS convergence by starting
inner iterations for each time step with the solution from the previous time step (i.e. use
λ̄ n as the initial guess for λ̄ n+1 in equation 10). Even for a very simple system without
contact constraints, however, warm starting PGS must be applied with care as shown in
the following example.

Potential pitfalls of warm starting PGS can be demonstrated with a pendulum at-
tached to the inertial frame via a revolute joint constraint. Figure 4a) depicts Atlas robot
holding an uniform density 5.39 kilogram cylindrical shaped object. As demonstrated
in figure 4b, ∼ 50% warm starting, i.e. λ̄ n+1 = β λ̄ n where β = 0.5, does show some
reduction in solution chatter over both 0% and 100% warm starts. Note that from our
experience, 100% warm start with the solution from the previous time step can result in
non-convergence.

(a) Atlas with Sandia hand holding a
5.39 kg cylindrical object

-4e-05

-2e-05

 0

 2e-05

 4e-05

 65.1  65.15  65.2  65.25  65.3

D
rif

t D
is

ta
nc

e 
(m

)

Simulation Time (sec)

Atlas Grasp Cylinder Drift

50% Warm Start
100% Warm Start.

No Warm Start.

(b) Effect of warm start values on
cylinder vertical position drift
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6 Conclusions

This paper presented the solver algorithm used by the Open Dynamics Engine as well
as numerous modifications made during the VRC to stabilize the constrained rigid body
dynamics solution and accelerate convergence of the iterative solver.

Without sacrificing real-time dynamics performance, we were able to improve PGS
solution for stable contact during dynamic standing and grasping behaviors, maintain
overall system stability and prevent divergence in physics solutions. These achieve-
ments made the VRC possible from a physics perspective.

A benchmark of the Atlas dynamic walking behavior is shown in figure 5, the re-
sulting simulator performance and constraint violation errors are compared against the
number of PGS inner iterations performed at every time step. Figure 5 indicates that at
50 PGS iterations, we were near an optimal trade-off point between constraint error and
simulation speed.
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