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Abstract. Service robots become increasingly capable and deliver a
broader spectrum of services which all require a wide range of perceptual
capabilities. These capabilities must cope with dynamically changing re-
quirements which make the design and implementation of a robot percep-
tion architecture a complex and tedious exercise which is prone to error.
We suggest to specify the integral parts of robot perception architec-
tures using explicit models, which allows to easily configure, modify, and
validate them. The paper presents the domain-specific language RPSL,
some examples of its application, the current state of implementation
and some validation experiments.

1 Introduction

Service robots operating in industrial or domestic environments are expected to
perform a wide variety of tasks in different places with often widely differing
environmental conditions. This poses many challenges for the perception-related
parts of the control software (here referred to as robot perception archi-
tecture (RPA)), which includes recognizing and tracking manipulable and non-
manipulable objects, furniture, people, faces, and recognizing gestures, emotions,
sounds, and speech.

Designing a single set of perception components that performs all these per-
ceptual tasks simultaneously, robustly, and efficiently would require enormous
effort and would result in unmanageable complexity. To meet the challenges of
service robotics we need concepts, methods, and tools for designing and devel-
oping RPAs in a very flexible manner. Ultimately the robot should be able to
adjust to the wide range of situations autonomously (e.g. by dynamically select-
ing a set of perceptual components into an RPA configuration for a particular
task). Fig. 1 illustrates the concept, where the components shown in red com-
pose the RPA configuration active when the pose of a person is required. To
do so, explicit knowledge representation about its available perception capabili-
ties/functionalities (as depicted in Fig. 1) are required.

However, many RPA design decisions remain nowadays implicit. These deci-
sion concern the robot platform, robot’s tasks, and the environment in which the
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robot operates. Some examples include the selection and configuration (e.g. res-
olution and data frequency) of sensors, the selection and parameterization of fil-
ters and feature detectors (see also [1]), and the selection, configuration and/or
training of classifiers. Also, the domain experts connect all these perceptual com-
ponents into a coherent RPA. We argue that implicit design decisions are a major
cause for the inflexibility of today’s RPAs as if any of the implicit assumptions is
changing, the task to adapt the RPA remains challenging and is prone to errors.
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Fig. 1. The design space of Robot Perception Architectures (RPAs) includes the fol-
lowing constituents: i) heterogenous sets of sensors (blue boxes), ii) processing compo-
nents (black boxes), iii) task-relevant information and knowledge (brown boxes), and
iv) perception graphs (red visualized path)

Providing RPAs with the aforementioned cabilities requires to model the de-
sign decisions in an explicit and computable manner [2]. In the work presented
here, the Model-Driven Engineering [2] approach is adopted for the design and
development of RPAs as it enables modeling for and by reuse. More precisely,
we introduce a set of meta-models and a corresponding domain-specific lan-
guage (DSL) which enables the declarative and explicit specification of the inte-
gral parts of RPAs (see Sec. 2). We also show how concrete domain models are
reused in an architecture facilitating the demand-driven selection and execution
of perception graphs stored in a (model) repository (see Sec. 3).

2 RPSL: Robot Perception Specification Language

In the following we introduce the meta-models (abstract syntax) of the RPSL
which is a textual domain-specific language (DSL) [2]. The RPSL allows to
specify the integral parts of RPAs in an explicit manner. To identify the domain
abstractions required to specify RPAs a domain analysis was performed on ex-
isting RPAs [3] which have been integrated on various robot platforms. Ranging
from people detection, recognition and tracking to object recognition, pose es-
timation and categorization the assessed functionalities cover a wide range of
perceptual capabilities required for today’s service robots. Several core domain
concepts were identified and described, namely components, algorithms, and
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perception graphs. These domain concepts correspond roughly to the structural
constituents of RPAs as shown in Fig. 1. We also identified conceptual spaces as
a cross-cutting domain. We apply a MDE approach using the Eclipse Modeling
Framework (EMF)1. Each domain is specified in the form of an Ecore model.
Based on the Ecore models, we developed a DSL using the Xtext framework2.

Example: Color-Based Region Growing Segmentation. To exemplify the domain
abstractions introduced with RPSL we use a standard segmentation method
commonly applied in robotics, namely color-based region growing segmenta-
tion [4]. An example of the output of the system is shown in Fig. 2. Here, a
scene with industrial objects such as screws and nuts is segmented. We assume
the following setup: i) A RGB-D camera provides a 3D point cloud with RGB
information at a resolution of 640 × 480 pixels. ii) Another component imple-
ments the color-based region growing segmentation. The component takes the
whole point cloud as an input and provides a list of segmented regions, based
on a certain configuration such as color range and minimum/maximum number
of points per segmented region.

(a) Before Segmentation (b) After Segmentation

Fig. 2. Example of the color-based region growing segmentation

2.1 Modeling Components

We propose component-based development for RPAs similar to [5]. The core idea
is to use components as building blocks and to design RPAs by composing com-
ponents with clearly defined interfaces. Component-based development fosters
structured design and development and is nowadays the predominant software
development approach in robotics [6].

The Component Meta-Model (CMM) (see Fig. 3) borrows the core struc-
tural elements, such as components and ports, from the BRICS Component
Model (BCM) [6] and has been enriched through RPA-specific aspects. The
main objective of the CMM is to model Components, the basic building blocks
of RPAs. Each Component contains Ports of type InputPort and OutputPort,
which serve as endpoints for communication between Components. Comparable

1 http://www.eclipse.org/modeling/emf/
2 http://www.eclipse.org/Xtext/

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/
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Fig. 3. The Component Meta Model (CMM)

to robot software frameworks such as Orocos RTT and others3 Ports are typed.
In RPSL, the type is modeled using the conceptual space meta-model (CSMM)
presented in Sec. 2.3. Based on our domain analysis [3] we identified and dis-
tinguish between two types of Components, namely SensorComponents and
ProcessingComponents.

SensorComponents are used to model sensors (e.g. cameras and laser range
finders) and ProcessingComponents are used to model purely computational
components which implement functionalities such as filters and feature detec-
tors. ProcessingComponents link to an Algorithmmodeled using the algorithm
meta-model (see Sec. 2.2). Nowadays, some sensors preprocess data internally
(e.g. noise filtering) before the sensor data is delivered. Thus, SensorComponents
might link to an Algorithm as well. Each Component has properties such as
configuration parameters, which are specific to the actual functionality (e.g. the
minimum number of points per region for the region-growing segmentation), and
Quality of Service (QoS) characteristics, such as worst case execution time.
Similarly to Ports, the QoS characteristics and properties are modeled using
the CSMM. Components are the basic first-class primitives in our meta-model.
Currently, we do not support composition of components on a CMM level; hierar-
chies will be introduced later with the Perception Graph Meta-Model (PGMM)
(see Sec. 2.4). Ports of Components are solely intended for data exchange among
Components and not for configuration concerns (e.g. configuration ports found
in other component models [7]). This design decision implies that the domain
expert needs to specify all components together with particular configuration
values. This approach fosters the modeling of feasible configuration values for
components, as the domain expert is led to provide them. This also provides the
possibility (if needed at a later stage) to reduce the design space (e.g. through
grouping components).

3 See [7] for a discussion on Component Models found in robotics.



Declarative Specification of Robot Perception Architectures 295

2.2 Modeling Algorithms

The main objective of the AlgorithmMeta-Model (AMM) (see Fig. 4) is to model
meta-information about the algorithms which are integrated in components4.
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Fig. 4. The Algorithm Meta Model (AMM)

We distinguish between Algorithm and AlgorithmImplementation, where
AlgorithmImplementation models a particular implementation of an
Algorithm. Each Algorithm belongs to a Category (e.g. filter, feature de-
scriptor) and provides information about its Complexity. Grouping algorithms
in certain categories is feasible and best practice. In fact, every major com-
puter vision and perception library, such as PCL [8] or OpenCV [9], is orga-
nized in categories sharing some properties. The distinction in Algorithm and
AlgorithmImplementation is useful because it enables the domain expert to
model different implementations of a particular algorithm. The color-based re-
gion growing algorithm, for instance, could either be implemented näıvely on the
CPU, while another implementation is optimized for GPUs. Both implementa-
tions are specializations of the same Algorithm (e.g. RegionGrowing), but have
different properties such as precision.

2.3 Modeling Conceptual Spaces

RPAs are producing heterogenous output spanning multiple levels of abstrac-
tions and ranging from raw sensor data and subsymbolic representations to
symbolic information. The type of output depends on the task of the robot
and on other functional components demanding the information. For example,
in a pick-and-place scenario a decision making component might be interested in
the types/names (symbolic information) of present objects, whereas a grasping
component demands information about the pose of an object. Hence, a knowl-
edge representation approach which enables us to model data produced by RPAs

4 Please note, we do not model the algorithms themselves, e.g. in terms of steps and
procedures.
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on various levels of abstractions is required. In [10], Gärdenfors introduced Con-
ceptual Spaces (CS) as a knowledge representation mechanism, which is used
here and extended for RPSL. A CS contains the following constituent parts:

– A Conceptual Space is a metric space where Concepts are defined as
convex regions in a set of domains (e.g. the concept Color).

– A Domain includes a set of Domain Dimensions5 that form a unit and
are measurable (e.g. the domain dimension Red of the RGB color model).

– An Instance is a specific vector in a space (e.g. the RGB color red with the
values 255 (red), 0 (green), and 0 (blue)).

– A Prototype is an Instance which encodes typical values for a Concept.

The vector-based representation of the CS framework allows to apply similarity
measures such as Euclidian distance to decide to which concept an instance be-
longs. In [11], Chella et al. showed that the CS framework enables the systematic
integration of different knowledge representations as required in robotics. Fur-
ther, the CS representation facilitates computationally efficient implementations
based on the vector-based approach.

The Conceptual Space Meta-model (CSMM))(see Fig. 5) is a formalization of
the CS framework as an Ecore model. In RPSL its purpose is to model the in-
put and output of computational components of RPAs. Additionally, we use it to
model QoS and general properties of Components and Algorithms. The CSMM
contains several Concepts, where Concepts may contain subConcepts thereby
supporting hierarchical concept structures. For each Domain a DomainDimension

is defined. According to Gärdenfors, a DomainDimension is measurable. As RPAs
deal with different types of data we introduce four DomainDimensions based
on the work of Stevens [12], namely NominalDimension, OrdinalDimension,
IntervalDimension, and RatioDimension. Each dimension permits to apply a
set of logical and mathematical operators suitable to model different data.

Example: The color-based region growing segmentation component produces
a list of regions. For each region the points belonging to it, the number of
points, and the average RGB value of the points in the region are stored. We
model a region as a Concept named Region referring to three Domains, namely
PointCloud, NumberOfPoints, and AvgColor. We now exemplify the AvgColor

domain which is decomposed into four DomainDimensions each of them of type
IntervalDimension. Three of them are used to model the RGB color model and
one for the standard deviation σ of the color distribution of the region. Each
IntervalDimension for the RGB color model is equipped with an Interval

ranging from 0 to 255 and of type Integer whereas the range for σ is from 0
to 1 and of type Double. Furthermore, a prototype is defined, which declares
typical values for each Domain. For instance, depending on the configuration of

5 In [10], a domain dimension is named quality dimension. For the sake of avoiding
confusion with the term Quality of Service, we renamed it domain dimension.
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Fig. 5. Excerpt of the Conceptual Space Meta Model (CSMM). For the sake of read-
ability some elements are not shown: the set of mathematical operators applicable on
each domain dimension, the Interval class for the IntervalDimension, and the full
set of attributes for each dimension class.

the algorithm the NumberOfPoints would be an IntervalDimension with an
interval from 50 (minimum number of pixels per region) to 10, 000.

2.4 Modeling Perception Graphs

The Perception GraphMeta-Model (PGMM) (see Fig. 6) enables the composition
of components (see Sec. 2.1) in a directed acyclic graph (DAG) of components. A
PerceptionGraph (PG) consists of two types of Elements (where Element refers
to exactly one Component), namely Nodes which have at least one successor and
Leafs without successor. To explicitly model successors, Nodes are connected
through Connections, which have one InputPort and one OutputPort and refer
to exactly one Element. Hence, we ensure that we do not connect two InputPorts
or OutputPortswith each other. The PGMM enables the domain expert to model
PGs which can easily be reused. Ranging from simple filtering pipelines to more
elaborated PGs with multiple input, output and processing branches.

2.5 Modeling Constraints

Once domain concepts are represented as meta-models, we can also define con-
straints on concrete domain models conforming to these meta-models. Simi-
larly to [13], we use the Object Constraint Language (OCL)6 to model two
types of constraints, namely atomic and composition constraints. Here, atomic
constraints are valid for single meta-models whereas composition constraints
appear when we compose meta-models (e.g. CSMM and PGMM in Sec. 2.4).

6 http://www.omg.org/spec/OCL/2.3.1/

http://www.omg.org/spec/OCL/2.3.1/
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Beside atomic constraints, such as ensuring non-empty names and IDs, we
check the following composition constraints: i) Each Element of type Leaf

in a PerceptionGraph refers to a Component with at least one OutputPort.
This ensures that a PerceptionGraph always provides an output. ii) Each
PerceptionGraph does not have any directed cycles. This ensures the DAG
property.

2.6 Modeling Demand

So far, we have modeled the integral parts of RPAs. To allow for demand-driven
selection of PGs, we need abstractions to express demands. For that, we intro-
duce the concept of a Request, which encodes an expected piece of information
which is to be provided as the output of a PerceptionGraph. As inputs and out-
puts are modeled with the CSMM, a Request needs to know which Concepts

are available in our architecture (see also Fig. 8). We introduce the concept of a
PrototypeRequest. A PrototypeRequest consists of i) the prototype, which is
a concrete instance of a concept (i.e. all properties have a specific value), ii) a
distance, which determines how close values must be to the prototype, and iii)
a distance measure. An example of a PrototypeRequest is shown in Fig. 7. The
general idea of a ProtoypeRequest is that a client (the component expressing
the demand) defines an expected value for each DomainDimension of a Concept

which is later used to compute the most suitable PG. The suitability is defined
by the Request in terms of Similarity which contains a Metric (e.g. a Eu-
clidian distance or Jaccard distance) and a corresponding distance value which
is interpreted as the maximally-allowed deviation. Assuming the Request can
be fulfilled, the client expects some sort of data which is specified in the Data

entry. Here, we support either one sample or a list of samples (in our example a
list of Regions).
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from myconcepts import Region as R

PrototypeRequest segmentedRegions {
Prototype regionPrototype {
R.AvgColor .Red = 220
R.AvgColor .Green = 20
R.AvgColor .Blue = 60
// ...

}

Similarity similarity {
Metric m = SIMILARITY_METRIC.EUCLIDIAN_DIST
Distance d = 0

}

Data data {
List_of Region

}
}

Fig. 7. An excerpt of a PrototypeRequest modeled with the Request DSL for the
segmentation example

3 RPSL Run Time Environment

To validate the abstractions introduced by the RPSL and to realize the demand-
driven selection and execution of previously modeled PGs we implemented the
RPSL run time architecture shown in Fig. 8. During design time, a domain
expert uses an editor to model concrete domain models of PerceptionGraphs

using previously modeled Components and Concepts. The PerceptionGraphs

and Concepts are stored in dedicated repositories which are accessible at run
time by the run time architecture, which is bound to receive several requests
each of which encodes a demand for a concrete piece of information that can be
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provided by a stored PerceptionGraph. This demand is modeled with the ab-
stractions introduced in Sec. 2.6. Based on the request and the models stored in
the repositories we need to select and execute a PerceptionGraph (see activities
in Fig. 8). Demand-driven selection and execution of perception graphs is ben-
eficial for two reasons: First, it is not necessary anymore to deploy PGs before
they are actually required at run time as for many tasks the sequence which PG
needs to be active is not known a priori. In particular, for resource-constrained
robots (e.g. micro air vehicles) this is advantagous as the use of resources like
memory can be optimized. Second, requests are made explicit, which faciliates
step-wise development and systematic testing of RPAs.

Algorithm 1. Selection of a perception graph based on a request

Input: Request R, set of perception graphs PG = {pg1, pg2, ..., pgi}
Output: Set of candidates C = {{c1, c2, ..., ci} where C ⊂ PG

for all Output oi in PG do
if Concept CR of R matches the concept Ci of oi then

if R is of type PrototypeRequest and oi includes Prototype pi then
// Compute similarity dist. with given measure between CR and pi
di ← R.similarity.m(CR, pi)
if di <= R.distance then

C ← C ∪ pgi

Perception Graph Selection and Execution. To select a PG matching a partic-
ular Request, we apply Algorithm 1 which iterates over each PG stored in the
repository and assesses the outputs it provides. As a result, a Request can yield
any of the following situations: i) no PG matches, ii) exactly one PG matches,
iii) several PGs match. In the case of a PrototypeRequest, the PG with the
shortest distance is executed.

Implementation and Experiments. The architecture shown in Fig. 8 is work
in progress, implemented in Java and Ruby, and will be released soon as open
source.7 For each meta-model presented in Sec. 2, we already provide an Eclipse-
based textual editor which enables the specification and storage of domain
models. The run time system of the RPSL architecture contains two main mod-
ules: PG selection and PG execution. The selection module realizes the
platform-independent algorithm described above, whereas the execution mod-
ules is platform-dependent. The modeled PGs are independent of a particular
framework in which the PGs are implemented. For execution of the PGs, the PG
primitives are mapped to framework-specific primitives. So far, we have a direct
mapping to ROS nodes implementing the PGs, but we plan to realize this step
with a Model-2-Model transformation from the PGMM to a framework-specific
meta-model. To assess the overall approach, we modeled several PGs ranging
from smaller examples such as the different variants of the region growing PG

7 https://github.com/nicoh/RPSL

https://github.com/nicoh/RPSL
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to more complex PGs, such as combined region of interest, segmentation, and
shape-extraction PGs. For each PG we also tested corresponding Requests. It
is possible to select a PG which matches the Request even in a repository which
is unstructured (different PGs stored for different purpose).

4 Discussion and Related Work

To the best of our knowledge the presented approach is the first which applies
the MDE approach to the design and development of RPAs. Although MDE
approaches are becoming popular in robotics, they mainly focus on subdomains
such as coordinate representations [14].

The CSMM turned out to be a general-purpose meta-model which is appli-
cable not only to describe the input and output of components but also their
properties and QoS characteristics. We intend to consider this information also
in the selection process to select the fastest or most reliable PG. To which ex-
tend this information will be reflected in the Request remains open and will be
investigated in ongoing work. To model these non-functional properties we will
also investigate the meta-models proposed in [15].

Even though with PrototypeRequests we can already select PGs we foresee
the implementation of different types of Requests such as ConstraintRequests.
Here, a ConstraintRequestwould define constraints (e.g. inequality constraints
such as >, <= etc.) on DomainDimension which is beneficial when several PGs
provide the same concept at their output, but their characteristics differ (e.g. dif-
ferent Intervals for the same DomainDimension).

To define acceptable names and terms for the Concepts is crucial for the usage
of the proposed approach. Hence, we will investigate ontologies proposed in other
projects such as [16]. In contrast to the work by Moisan et al. [1], our approach
does not depend on a feature-model representation as it is mainly driven by the
integral architectural parts of RPAs.

We also plan to enrich the PG execution through deployment models [13]
such that PGs can be deployed on platforms which increase the performance.

5 Conclusion

This paper presented the Robot Perception Specification Language (RPSL)
which enables the explicit specification of RPAs. We showed how to model and
store ready-to-use perception graphs and to efficiently select the most appropri-
ate perception graph at run time.
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