
Towards Rule-Based Dynamic

Safety Monitoring for Mobile Robots

Sorin Adam1, Morten Larsen1, Kjeld Jensen2, and Ulrik Pagh Schultz2

1 Conpleks ApS, Struer, Denmark
2 University of Southern Denmark, Odense, Denmark

Abstract. Safety is a key challenge in robotics, in particular for mobile
robots operating in an open and unpredictable environment. To address
the safety challenge, various software-based approaches have been pro-
posed, but none of them provide a clearly specified and isolated safety
layer. In this paper, we propose that safety-critical concerns regarding the
robot software be explicitly declared separately from the main program,
in terms of externally observable properties of the software. Concretely,
we use a Domain-Specific Language (DSL) to declaratively specify a set
of safety-related rules that the software must obey, as well as correspond-
ing corrective actions that trigger when rules are violated. Our prototype
DSL is integrated with ROS, is shown to be capable of specifying safety-
related constraints, and is experimentally demonstrated to enforce safety
behaviour in existing robot software. We believe our approach could be
extended to other fields to similarly simplify safety certification.

1 Introduction

Safety is a key challenge in robotics, in particular for domains such as precision
agriculture where large, mobile robots operate in an open and unpredictable en-
vironment [1]. Safety is typically addressed by a combination of physical safety
systems [2], the use of a safety-aware control algorithm [3], and the use of a
software architecture that maps safety-critical program parts to a specific sub-
system [4]. In an effort to address the safety challenge, various software archi-
tectures have been suggested for agricultural robotic vehicles [5, 6], but none of
them provide specification and isolation of the safety-critical parts of the soft-
ware. This increases the risk that programming errors will cause violations of
those safety properties of the robot that are dependent on the correctness of the
software. Moreover, faulty or erratically behaving hardware poses an additional
safety risk: software built on implicit assumptions regarding the reliability of
the hardware must monitor the system to ensure that these assumptions remain
valid, failure to do so may compromise safety.

Mainstream robotic middleware such as Orocos [7] and ROS [8] allows soft-
ware to be built in terms of reusable and individually tested components that can
be deployed in separate execution environments, but do not provide any explicit
means of expressing safety-related concerns. Model-driven software development
approaches allow controllers to be automatically assembled from well-specified

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 207–218, 2014.
c© Springer International Publishing Switzerland 2014

208 S. Adam et al.

components with explicit invariants that can be monitored at runtime, but typ-
ically provide a component-centric view that does not address the performance
and safety of the system as a whole [9, 10]. Specific components can include
invariants that specify assumptions about the hardware, but there is no com-
prehensive, implementation-independent specification of the hardware platform.
In the specific case of safety, we observe that safety concerns may cross-cut the
component structure of the system, for example enforcing a stop after a bump
sensor has triggered could involve different software components (one for the
sensor, one for the motion actuators).

We propose that safety-critical concerns regarding the robot software be ex-
plicitly declared separately from the main program, in terms of the overall func-
tionality of the software. Rather than addressing the individual functionality of
specific components, we address the functionality of the system as a whole in
terms of externally observable properties of individual components, their com-
munication, and the state of the surrounding execution environment.The main
contribution of our work is the proposal and proof-of-concept experiments of a
simple yet expressive rule-based language for enforcing safety constraints on ex-
isting ROS-based software. This paper presents the initial language design and
prototype implementation, and experimentally documents the effectiveness of
the solution through a series of experiments that test safety-oriented scenarios
both involving software and hardware failures.

The rest of this paper is organised as follows: Section 2 discusses robot safety
and model-driven software development, after which Section 3 presents our main
contribution, Section 4 documents the experimental validation of our approach
and discusses limitations, last Section 5 concludes.

2 Robot Safety and Modeling

2.1 Robot Safety

A robot has to be safe and reliable [11]. In the context of our work, robot safety
concerns all elements of the robot and its immediate environment in which one
or more errors may constitute a threat to nearby humans, animals, facilities and
the robot itself. Faults in control architectures for mobile robots can be cate-
gorised as [12]: Environment (such as unpredictable environmental changes); En-
vironmental Awareness divided into sensing faults (due to sensor or perception
algorithm limitations) and action faults (unexpected outcomes of actuations);
Autonomous System divided into decision making faults (lack of knowledge
leading to inadequate decision making), hardware faults (sensors, actuators,
embedded hardware) and software faults (with regards to software design, im-
plementation and runtime execution). From a technical point of view, we aim
to provide a system-wide supervision system that dynamically detects software
faults; detection of hardware faults is supported to the extent that the fault is
detectable from software. In this respect, our approach is similar to Blanke et al,
where manually implemented supervision modules are used at different levels to
increase safety and reliability in an autonomous robot conducting maintenance

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 209

tasks in an orchard [13]. In our work, we aim to automatically implement all parts
of the supervision infrastructure based on declarative rules, but currently limit
the supervision to deal with safety (not reliability). Unlike more general-purpose
runtime monitoring systems based on temporal logic, we focus on providing a
simple specification language easily accessible to non-experts.

2.2 Commercial Applications and Legal Regulations

We are interested in commercial applications of mobile robots within the agricul-
tural sector. In Europe, from the regulatory point of view, robots are currently
treated like any other commercial machine and thus have to comply with three
European Directives: 2006/95/EC, 2001/95/EC, and 2006/42/EC. One group
of the stated requirements concerns safety, usually evaluated by performing a
safety risk assessment and reduction by using a standard like ISO 12100:2010.
Therefore, the safety risk assessment is the primary source for the safety require-
ments of the robot. Standards like ISO 13849 provide guidance for establishing
safety performance levels (PL) for the safety-related controllers. However, the
safety PLs refer only to qualitative aspects of the software development, and are
not concerned with quantitative aspects like latency, performance or reaction
time. The standards demand, for higher safety PLs, increased software quality,
and thus extensive code reviews, testing and documentation, all adding up to
the project cost and delaying the release date. Moreover, the safety certification
requirements can make the effort of releasing a new revision comparable with
that of releasing of a new product.

2.3 Software Safety

Safety-critical software can be implemented in a general-purpose language and
then verified automatically, and fault-tolerance can be improved using tradi-
tional techniques for software reliability, such as n-version programming [14].
Alternatively, using model-driven software development driven by a metamodel,
the software can be specified in a high-level formalism from which an implemen-
tation satisfying the required properties can be automatically derived [15, 16].
Formal modeling enables analysis of more abstract properties, such as the safety
of a robot, to be formally verified [17]. Automatic generation has the added
benefit of accelerating software development [18–20, 10]. In this work we use a
simple metamodel to describe existing ROS software, enabling both static anal-
ysis of the integrity of the software [21], as well as correctly programming in a
high-level domain-specific language that targets this existing software, which is
the subject of this paper.

2.4 Analysis

A commonly attributed reason for the popularity of ROS is the large amount
of freely available software for the platform, in the form of reusable compo-
nents (nodes). Indeed, the use of components as reusable building blocks is

210 S. Adam et al.

fundamental to many approaches for model-driven software development for
robotics [20, 10]. To ensure correct runtime functionality in a component, its
execution can be monitored according to predefined invariants that essentially
specify a contract for the dynamic behaviour of the component [9]. In all cases,
the required safety-related behaviour may be specific to the application (e.g.,
the maximal speed at which the robot may move), may concern system-wide
properties (e.g., a correlation of sensor values from multiple sensors), and may
entail system-level reactions (e.g., an emergency stop of the robot). Since robot
safety ultimately is a system-level property, we believe it is essential to enable
the programmer to specify safety in terms of the robot software as a whole.
Making this safety specification separate from the functionality facilitates veri-
fying that the safety specification conforms to safety requirements, provided we
guarantee that the robot software always follows the safety specification. In this
paper, we propose to program the functionality-providing part of the software
using standard ROS nodes, and to automatically program the safety-enforcing
part based on declarative rules.

3 Rule-Based Dynamic Safety Monitoring

We propose a software architecture for implementing the safety-related func-
tionality of the robot software separated from the main functionality, driven
by a domain-specific language (DSL) for declaratively specifying the safety re-
quirements. In more detail, safety rules, for example identified when performing
the risk assessment, are described at a high level using the Rule-Based Safety
Specification (RuBaSS) DSL. RuBaSS provides a simple and declarative syntax,
making the task of implementing the safety-related requirements more accessible
to robotics experts with a lower degree of software engineering expertise. The risk
of errors is reduced, as the RuBaSS declaration drives the automatic generation
of all safety-related code. Our approach directly enables an implementation-
independent reuse of the safety-related part of a robot controller between dif-
ferent releases, since the RuBaSS declaration does not need to change when the
underlying software changes (except that names shared between RuBaSS rules
and component interfaces must be kept consistent). Moreover, the infrastructure
can be reused in a range of products: the code generator can be directly reused
whereas low-level interfaces to sensors and actuators will be specific to each
robot. Safety-related customisation for the products is thus mainly achieved at
the higher level, using the safety language.

The implementation of the low-level hardware interfacing and the code gener-
ation part of RuBaSS is naturally the responsibility of a skilled software develop-
ment team, this division of roles is a normal consequence of introducing a more
structured approach to robotics software development [20]. To further enhance
robustness of the safety layer, and hence the overall safety of the robot, devel-
opment of the code generator and execution supporting platform could be done
by separate teams, targeting different programming languages. The decision for

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 211

Fig. 1. Process overview

the implementation languages will normally be platform dependent, so different
robotics platforms could favour certain languages. For example, for ROS-based
robots, the safety-related code generation could target C++ and Python; in this
paper, for simplicity we only implement a single prototype based on Python, in
the future we expect to also support C++.

3.1 Overview

We consider that safety in robotic systems is a cross-cutting feature that interacts
with many different parts of the system, so we propose to specify safety-related
concerns in a separate declaratively programmed subsystem. This approach en-
ables runtime isolation of the safety-related part from the rest of the robot
application: although not currently implemented, the safety-related constraints
can execute in a different context, for example using off-the-shelf virtualisation
techniques, or on different hardware. Fig. 1 shows the overall workflow of using
RuBaSS. The developer derives a RuBaSS from an informal safety specification
and can access information from a system model which provides information on
components (topics and nodes), thereby providing static consistency checks of
the specification. The RuBaSS compiler generates a runtime safety component
which monitors the specified properties of the software system.

The use of a DSL enables the total system cost to be optimised, since the same
specification can be automatically redeployed by using different code generators.
For example, the safety-related functionality may be executed as a regular ROS
node during development, and then during field testing be redeployed to run on
a dedicated, high-reliability hardware platform with modest processing power
requirements, while the rest of the robot software executes on an inexpensive,
less reliable hardware platform. The safety-related language we propose relies on
the modularity offered by frameworks like Orocos and ROS, where the software
functionality is divided into several intercommunicating parts implemented in
dedicated components. We currently only support components that communi-
cate using topic-based publish-subscribe, support for other communication pat-
terns is considered future work. Monitoring of internal component state is not
supported, if needed we expect that an approach similar to Lotz et al could be
used [9].

212 S. Adam et al.

1 action primitive stop ;
2 entity dr iv e sy s t em : encoder node , actuator node ; {
3 r u l e s : // simple example compri s ing one ac tua tor
4 a c t u a t o r e r r a t i c :
5 ((topic / cmd v e l l e f t . l i n e a r . x > 0 .02m/s
6 or topic / cmd v e l l e f t . l i n e a r . x < −0.02m/s)
7 and topic / e n c od e r l e f t . data == 0) for 0 .4 sec ; }
8 i f (d r iv e sy s t em . a c t u a t o r e r r a t i c for 1 sec) then { stop ; } ;

Fig. 2. RuBaSS example (prettyprinted): enforcing stop on erratic behaviour

3.2 The Language

A simple example of the RuBaSS language is presented in Fig. 2 (a more ex-
tensive set of rules is used for the experiments later in the paper). The listing
demonstrates the main features of the language. RuBaSS code is written in a
safety description file containing two key parts: entities that group nodes together
based on their functionality, and the behaviour section where the safety require-
ments are described. The safety-related actions the robot can execute can be
triggered from the behaviour section; in this example the primitive action stop

is declared, a complete set of actions can be imported from a robot-specific li-
brary. If the stop action is invoked by the rules, the robot stops (primitive actions
are implemented in the underlying robot firmware). The entity section describes
the drive system as being composed of two nodes: the encoder node and the
actuator node. For this entity only one rule is exemplified: actuator erratic.
This rule collects three different conditions under a common name using logical
operators expressed in words. The rule is fulfilled when the actuator is unre-
sponsive. RuBaSS also accepts temporal conditions, e.g., a logical expression is
assessed and has to remain true for a continuous period of time. The behavioural
section is where robot actions are associated with selected event occurrences. In
the example, the actuator is declared to be “erratic” if there is a command and
the encoders are not reporting any movement. Since this condition can occur
during normal operation, e.g., due to reaction delays, a temporal condition is
added specifying that the command and lack of movement must be present for
more than 0.4 seconds. In summary, the entity rules define concrete safety-related
events, the behavioural part of the specification concerns what action to take
when based on combinations of these events.

In general, RuBaSS supports multiple entities and multiple compound rules
defined inside every entity. The rules can be constructed around nodes or topics.
Nodes can be supervised in terms of liveness, CPU and memory usage, whereas
topics can be supervised in terms of publishing frequency and constraints on the
data exchanged. The behaviour section associates actions to logical combinations
of rules. All conditions, both for rules and behaviours, can be time-quantified
using the for operator, and all constants can include physical units; units are
currently only for documentation, statically checking their consistency using a
component model that annotates physical units to components is future work.

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 213

3.3 Target Platform and Code Generation

A proof of concept of RuBaSS, generating Python code, has been implemented.
Python has been chosen due to its ease of use and previous experience with
Python and ROS; for production code C++ would be a better choice for target
language, since it can both execute on a standard laptop and be executed on an
embedded system with few resources. (Since having multiple implementations is
advantageous for safety-critical systems, the Python-generated code could run on
a PC-class controller together with the embedded code on a low-end controller.)

In order to ease the code generation, a Python library implementing classes
for representing rules, entities, topic and node monitoring has been developed.
A rule object stores the result of each rule evaluation in a timestamped buffer,
making the result of the rule accessible for a given time interval. The topic
monitoring class also stores the received ROS messages in a timestamped buffer.
Each of the classes implement a loop method allowing the rule to be evaluated,
and in the case of a topic, the average frequency to be calculated. The loop
method is called on each object at a specific interval, currently 0.1 seconds (10
Hz), but can be set as high as the computer performance allows.

The need to access past data of the left hand side of the operator, compli-
cates the generation of the code for the for operator. The solution used is to
implement a buffering scheme in the rule and topic monitoring classes. However,
the expression may be composed of a number of sub-expressions, for which past
results should be kept. To solve this problem, we analyse the RuBaSS program
before code generation and replace the left-hand side expression of a for with
a reference to an intermediate rule containing the original left-hand side expres-
sion. Each time a rule is evaluated, the timestamped result is stored in a buffer
used to remove old rule results outside of the time limit of the for expression.

4 Experiments

Experiments have been conducted using two different robots running different
software: a physical Frobit robot and the standard, simulated iClebo Kobuki
robot from the ROS distribution. The Frobit [22] is a small, low-cost robot
designed for rapid prototyping; it is differentially steered and the low-level inter-
face resembles that of many tracked and wheeled field robots; it is running the
standard deployment of the FroboMind ROS-based software framework for field
robots [5] on an i3 PC with 3Gb RAM running Ubuntu 12.04. The Kobuki is
similar to the Frobit but has a different low-level interface and runs the standard,
different and independently developed ROS-based control software, demonstrat-
ing the generality of our approach.

The experiments have been conducted using a specially written ROS test
node, illustrated in Fig. 3. The node consists of a common part implement-
ing the launch of the test cases and another containing the test-case-specific
code for test environment (physical or simulated). For the Frobit, the test node
is able to physically interrupt control lines of the wheels encoders and motors

214 S. Adam et al.

Fig. 3. Robot setup. Frobit hardware setup (left) and Kobuki setup (right).

through an Arduino-type board communicating with the test program via a serial
connection. As the Arduino board is able to control the motors, the RuBaSS
stop command is implemented using this board. For the Kobuki, the velocity
commands coming from the robot’s controller are altered by the test program to
simulate a misbehaviour. In all cases we measure the time between when a fault
has been introduced and when the safety-related node sends the stop command.
All experiments have been repeated ten times.

A set of safety rules extracted from the risk assessment performed for com-
mercial robots developed at Conpleks1 have been implemented using the DSL.
For the Frobit experiments, RuBaSS was used to implement rules supervising
the wheels encoders, and limiting the linear speed of the robot (in total 3 entities
and 9 rules). For the Kobuki experiments, the rules enforce a maximum linear
and spinning speed for the robot, a maximum processor load for the ROS node
controlling the robot, as well as the area the robot is allowed to move in (in total
1 entity and 4 rules).

4.1 Hardware Failure Experiments

For the Frobit, a number of experiments have been performed simulating a sin-
gle fault or combination of wheels encoders not working or motors misbehaving.
In all tests, the robot has been manually controlled using a remote control (a
Nintendo Wii game controller) and specific faults, such as an encoder failure,
were manually triggered using the test node. The experimental scenarios, im-
plemented in the dedicated ROS test node, were running on the same hardware
platform as the rest of the robot.

We tested combinations of the following failures: (1) Left or right wheel en-
coder not working (denoted Ex): The control line for the left and/or right wheel
of the quadrature encoder has been interrupted. (2) Left, right, or both motors
running at full speed (denoted Mx): The H-bridge controller of one or both mo-
tors have been wired in such a way that the motor has been forced to run at full
speed, but the direction of movement (forward or backwards) was still under the
control of the robot. (3) Combined simulated faults, with left or right motor full
speed and right or left wheel encoder not working.

1 The GrassBots grass-cutting robot [23] and the FIXFeeder mink-feeding robot [24]
from Conpleks ApS.

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 215

Table 1. Experimental results. All times are in seconds. E indicates encoder failure,
M indicates motor speed exceeded, in both cases left or right.

Frobit Ideal Avg SD Min Max

ER 1.40 2.07 0.35 1.41 2.66
EL 1.40 1.87 0.24 1.60 2.34
MR 0.50 0.82 0.13 0.61 1.02
ML 0.50 1.71 0.30 0.92 2.13
MLR 0.50 0.86 0.31 0.58 1.56
ML + ER 0.50 0.72 0.10 0.58 0.93
MR + EL 0.50 0.74 0.18 0.57 1.11

Kobuki Ideal Avg SD Min Max

Boundary 0.00 0.07 0.02 0.03 0.09
Max speed 1.00 1.23 0.42 0.91 2,00
Max spin 0.70 8.15 1.89 4.66 10.32
(Exp=0.2) 0.20 0.17 0.03 0.12 0.21
(Exp=0.0) 0.00 0.17 0.04 0.11 0.22
CPU 1.50 1.71 0.14 1.51 1.95

4.2 Simulated Experiments

Several experiments have been performed using the simulated Kobuki robot:
leaving a predefined area, exceeding the linear or spinning speed, and ROS-node
CPU overload. All the tests were executed by indicating a target goal for the
robot, leaving the planner to decide a route and control the robot. The same
dedicated test ROS node has been used as for the Frobit, interfacing to the
simulator by having the node monitor and modify the velocity and odometry
information exchanged between the simulator and the robot.

We performed the following experiments: (1) Boundary exceeded: The robot
target position has been set outside the predefined safety area, forcing the con-
troller to violate the safety rules when driving the robot towards the target. The
time interval between the moment when the border has been touched by the
robot and when the stop command was issued by the safety ROS node has been
measured. (2) Maximum linear or spin speed exceeded: The velocity commands
issued by the controller have been modified by the test node: with every new
velocity command received, an increasingly drifting amount has been added to
the linear or spin velocity field value of the commands sent to the simulated
robot. The test case measured the delay between the moment when the sent
velocity command exceeds the maximum allowed linear or spin speed defined by
the safety rules and when the stop command have been sent by the safety node.
(3) CPU overload: The test node simulated a temporary software misbehaviour
of one of the ROS nodes by executing a CPU-intensive loop for a determined pe-
riod of time. The test case measured the time between when the CPU intensive
loop was entered and when the safety node issued the stop command.

4.3 Results

The data obtained are shown in Table 1 for both the Frobit and Kobuki ex-
periments. The columns in the table refer to the ideal minimum expected time
according to the safety rules (Ideal), average time over the 10 repeated exper-
iments (Avg), standard deviation (SD), minimum (Min) and maximum (Max)
reaction time of the safety-related node measured during the experiments. For
the Kobuki, the “maximum spinning speed exceeded” experiment has been re-
peated with the RuBaSS rules reacting to the speed being continuously exceeded
for 0.7 seconds, 0.2 seconds and 0 seconds (instant reaction).

216 S. Adam et al.

4.4 Discussion

All the tests performed were successful: the robot stopped when expected to stop.
However, for the Frobit experiments, in the cases of right and left encoder error,
the average reaction time was significantly higher than the ideal one. The reason
is the way the temporal rule works: the condition has to be true continuously
for the specified amount of time. Any change in the monitored values will reset
the rule, and thus will delay triggering the action. In case of the wheel encoders,
one line of the quadrature encoders was interrupted which generated some noise
at the output. Similarly, there is a significant difference in reaction time when
the right or left motor was forced to run at full speed. Even though the robot
was not able to control the speed of one of the wheels, the rotation direction was
still left under the control of the robot. In the left motor running at full speed
experiments, the control algorithm of the robot changed the rotation direction
of the left wheel several times, inducing a brake effect on the wheel, and delaying
the fulfilment of “continuous speed exceeded for 0.4 seconds.” In the simulator
experiments the minimum measured reaction time is, in some cases, lower than
the minimum ideal reaction time; The reason is the lack of real-time in event
publishing and event handling, and the unsynchronised messages published by
the ROS nodes. Conversely, the results of the tests when maximum spinning
speed is exceeded are far from the minimum ideal value. Here, the robot has been
instructed to spin at a value different from the one calculated, diverting from
the planned route, and triggering the controller error correction mechanisms.
The rule used requires the condition to be true continuously for 0.7 seconds, so
even if the maximum spinning speed was exceeded momentarily, the triggering
condition was not fulfilled as the controller tried to compensate. The recorded
time presented in the table includes successful robot controller error corrections,
and therefore is much longer that the ideal minimum one. A similar behaviour
was seen in the case of the linear speed being exceeded, but at a much lower scale,
giving a lower standard deviation. When the reaction time was set to 0.2 seconds,
the robot did not have time to react to the introduced spinning error: the topics
were publishing new messages every 0.1 seconds (10 Hz), so two consecutive cases
of exceeding the maximum spinning were enough to trigger the safety rule. In the
case when the safety rule was changed to react to any single case of exceeding the
maximum spinning speed, due to the fact that the robot software is not reacting
in real-time to the events but with a delay of approximately 0.1 seconds, the
end results of the experiment are not significantly different from the case when
0.2 seconds reaction time was tested. The CPU load safety rule implementation
detects if ROS nodes running in separate threads are overloaded. The usage of
this kind of rule is limited, since the same processor is used for both assessing
the rule conditions and running the ROS node code. To address those limitations
we plan to monitor a heartbeat signal in the supervised ROS nodes and measure
its frequency on another processor [25].

In the experiments only a complete stop action has been used as the reaction
to any safety rule violation. That was done for simplicity of the implementa-
tion, but is obviously not the best action in all real-life scenarios. An improved

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 217

fault-handling based on diagnosis and fault isolation will be addressed in a fu-
ture work together with improving the RuBaSS language to statically detect
overlapping safety rules or potential contradictions. We note that for the imple-
mentation of safety-related rules using our DSL to take place without modifying
the existing source code, we are dependent on the interfaces of the robot (e.g.,
the exposed interfaces between the different ROS nodes). If the needed informa-
tion is not available on the exposed interfaces, the appropriate ROS nodes of the
robot would have to be modified to publish it.

5 Conclusion

We have shown that it is possible to use RuBaSS to generate the implementa-
tion of the safety rules identified during a safety risk assessment, covering both
hardware faults (e.g., encoders or motors not working) and misbehaviour of the
software controlling the robot (e.g., the robot leaving the designated working
area or CPU overload). RuBaSS has a simple syntax, making it easy to ex-
press the safety rules, and enabling the generation of runtime safety monitoring
code, as our initial proof-of-concepts experiments demonstrate. Moreover, based
on our initial experience, we find that addressing safety issues of robots with
RuBaSS is efficient and easily customisable, even with partial access to source
code. A systematic and realistic validation of RuBaSS is considered future work,
we expect that the language, the software architecture and the implementation
need to be significantly extended to be useful for realistic scenarios.

References

1. Kohanbash, D., Bergerman, M., Lewis, K.M., Moorehead, S.J.: A safety architec-
ture for autonomous agricultural vehicles. In: American Society of Agricultural and
Biological Engineers Annual Meeting (July 2012)

2. Griepentrog, H., Andersen, N., Andersen, J., Blanke, M., Heinemann, O., Madsen,
T., Nielsen, J., Pedersen, S., Ravn, O., Wulfsohn, D.L.: Safe and reliable: further
development of a field robot. In: Henten, E., Goense, D., Lokhorst, C. (eds.) Pre-
cision Agriculture 2009, pp. 857–866. Wageningen Academic Publishers (2009)

3. Bouraine, S., Fraichard, T., Salhi, H.: Provably safe navigation for mobile robots
with limited field-of-views in unknown dynamic environments. In: 2012 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 174–179 (May 2012)

4. Griepentrog, H., Jæger-Hansen, C., Ravn, O., Andersen, N., Andersen, J., Nakan-
ishi, T.: Multilayer controller for field robots - high portability and modularity to
ease implementation. Paper presented at LAND.TECHNIK - AgEng 2011 (2012)

5. Jensen, K., Bøgild, A., Nielsen, S., Christiansen, M., Jørgensen, R.: Frobomind,
proposing a conceptual architecture for agricultural field robot navigation. Paper
presented at CIGR 2012 (2012)

6. Nebot, P., Torres-Sospedra, J., Martnez, R.J.: A new hla-based distributed control
architecture for agricultural teams of robots in hybrid applications with real and
simulated devices or environments. Sensors 11(4), 4385–4400 (2011)

7. Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE ICRA
2001 Proceedings, vol. 3, pp. 2523–2528 (2001)

218 S. Adam et al.

8. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3(2) (2009)

9. Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software compo-
nents: Increasing robustness of service robotic systems. In: Proceedings of the 15th
International Conference on Advanced Robotics, pp. 285–290. IEEE (2011)

10. Gherardi, L., Brugali, D.: Modeling and reusing robotic software architectures: the
hyperflex toolchain. In: IEEE International Conference on Robotics and Automa-
tion (ICRA) (to appear, 2014)

11. Dhillon, B.S.: Robot reliability and safety. Springer (1991)
12. Crestani, D., Godary-Dejean, K.: Fault tolerance in control architectures for mobile

robots: Fantasy or reality? In: 7th National Conference on Control Architectures
of Robots, Nancy, France (2012)

13. Blanke, M., Blas, M.R., Hansen, S., Andersen, J.C., Caponetti, F.: Autonomous
robot supervision using fault diagnosis and semantic mapping in an orchard. In:
Fault Diagnosis in Robotic and Industrial Systems, pp. 1–22. iConcept Press Ltd.
(2012)

14. Powell, D., Arlat, J., Deswarte, Y., Kanoun, K.: Tolerance of design faults.
In: Jones, C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing. LNCS,
vol. 6875, pp. 428–452. Springer, Heidelberg (2011)

15. Schlegel, C., Steck, A., Brugali, D., Knoll, A.: Design abstraction and processes in
robotics: From code-driven to model-driven engineering. In: Ando, N., Balakirsky,
S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI),
vol. 6472, pp. 324–335. Springer, Heidelberg (2010)

16. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley (2006)

17. Yakymets, N., Dhouib, S., Jaber, H., Lanusse, A.: Model-driven safety assessment
of robotic systems. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS (2013)

18. Bordignon, M., Stoy, K., Schultz, U.: Generalized programming of modular
robots through kinematic configurations. In: Proceedings of IROS 2011: The 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3659–
3666 (2011)

19. Schultz, U., Bordignon, M., Stoy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29(1), 35–57 (2011)

20. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-
usage in service robotics. In: Proceedings of Generative Programming and
Component-Based Engineering (GPCE). ACM (2011)

21. Larsen, M., Adam, S., Schultz, U., Jørgensen, R.N.: Towards automatic consistency
checking of software components in field robotics. In: RHEA 2014: Second Interna-
tional Conference on Robotics and Associated High-technologies and Equipment
for Agriculture and Forestry (May 2014)

22. Larsen, L.B., Olsen, K.S., Ahrenkiel, L., Jensen, K.: Extracurricular activities tar-
geted towards increasing the number of engineers working in the field of precision
agriculture. In: XXXV CIOSTA & CIGR V Conference, Billund, Denmark (July
2013)

23. Conpleks ApS: Grassbots, https://www.youtube.com/watch?v=KMjEUrB5C5I
24. Conpleks ApS: Fixfeeder, https://www.youtube.com/watch?v=q8h63rYoNQ0
25. Jensen, K., Larsen, M., Nielsen, S.H., Larsen, L.B., Olsen, K.S., Jørgensen, R.N.:

Towards an open software platform for field robots in precision agriculture.
Robotics 3(2), 207–234 (2014)

https://www.youtube.com/watch?v=KMjEUrB5C5I
https://www.youtube.com/watch?v=q8h63rYoNQ0

	Towards Rule-Based DynamicSafety Monitoring for Mobile Robots
	1 Introduction
	2 Robot Safety and Modeling
	2.1 Robot Safety
	2.2 Commercial Applications and Legal Regulations
	2.3 Software Safety
	2.4 Analysis

	3 Rule-Based Dynamic Safety Monitoring
	3.1 Overview
	3.2 The Language
	3.3 Target Platform and Code Generation

	4 Experiments
	4.1 Hardware Failure Experiments
	4.2 Simulated Experiments
	4.3 Results
	4.4 Discussion

	5 Conclusion
	References

