
High Performance Relaying of C++11 Objects

across Processes
and Logic-Labeled Finite-State Machines

Vlad Estivill-Castro, René Hexel, and Carl Lusty

Machine Intelligence and Pattern Analysis Laboratory (MiPal)
Griffith University, Nathan, QLD 4111, Australia

Abstract. We present gusimplewhiteboard, a software architecture
analogous to ROS:services and ROS:messages, that enables the construc-
tion and extremely efficient inter-process relaying of message-types as
C++11 objects, All gusimplewhiteboard objects reside in shared memory.
Moreover, our principle is to use idempotent message communication,
in direct contrast to previously released platforms for robotic-module
communication, that are based on an event-driven subscriber model
that queues and multi-threads. We combine this with compiled, time-
triggered, logic-labeled finite state machines (llfsms) the are executed
concurrently, but scheduled sequentially, in an extremely efficient man-
ner, removing all race conditions and requirements for explicit synchro-
nisation. Together, these tools enable effective robotic behaviour design,
where arrangements of llfsms can be organised as hierarchies of machines
and submachines, enabling composition of very complex systems. They
have proven to be very powerful for Model-Driven Development, capable
of simulation, validation, and formal verification.

1 Introduction

Since its inception, the blackboard control architecture [17], has become ubiqui-
tous as a mechanism to integrate cognitive processes, behaviours, and problem-
solving. It has also become central to agent architectures and publish/subscribe
patterns among the software engineering community. Over and above the pub-
lisher/subscriber pattern, a blackboard allows a further level of decoupling by
being data-centric (rather than component-centric). The provider may supply
information for unknown (possibly inactive) consumers without the need to be
aware of a consumer’s interface, only the interface to the blackboard is necessary.

From a software architecture perspective, the flexibility of a blackboard is
also incorporated into the notion of a broker, enabling a sender to issue what we
will refer to as add Message(msg : T), a non-blocking call that may optionally
include additional information, e.g. a sender signature, a timestamp, or an event
counter that records the belief the sender has of the currency of the message.
There are essentially two modes for retrieving a message.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 182–194, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Interprocess Relay of C++11 Objects 183

subscribe(T, f): The receiver subscribes to messages of a certain type T (of an
implied class) and essentially goes to sleep. Subscription includes the name
f of a function. The blackboard will notify the receiver of the message msg
every time someone posts for the given class T by invoking f(msg) (usually
queued in a type T specific thread). This is typically called Push technology.

get Message(T): The receiver issues a get message to the blackboard that sup-
plies the latestmsg received so far for the type T . This is usually called Pull.

The type identifies the communication channel, and in ROS’ Push technology is
named a ROS::topic. The modules posting (publishing) or getting (subscribing
to) messages are called nodes. The data structures available for messages
(and described in msg files) are restricted to a simplified message descrip-
tion language, because ROS aims at supporting cross-programming-language
communication. This architecture is common in robotic systems and other
robotic projects have produced similar infrastructures: Carmen (carmen.sf.net),
Microsoft Robotics Studio (msdn.microsoft.com/en-us/robotics/), MIRA [6],
MOOS (www.robots.ox.ac.uk/˜mobile/MOOS/wiki/pmwiki.php), Orca

(orca-robotics.sf.net), Orocos (www.orocos.org), Player (playerstage.sf.net),
and YARP (http://eris.liralab.it/yarp/).

Such robotic-system architectures organise many modules under different
paradigms. One of them is the sense-decide-act cycle. Here, sensors post in-
formation onto the blackboard. This information may be processed by decision
makers (even as complicated as planners) that then publish commands to actua-
tor modules. The blackboard enables very flexible information processing about
the state of the world that is supplied by sensors. For example, if sensors are
noisy, then an intermediate filter (such as a Kalman filter) can be placed in be-
tween the raw posting of the sensor and the decision maker. This mechanism can
be extended to a whole pipeline of publishers and subscribers between the sensor
data and the final actuators. The features of gusimplewhiteboard include:

1. Completely C++11 and POSIX compliant; thus, platform independent: used
on Mac OS X (Mountain Lion), LINUX 13.10, Aldebaran Nao 1.14.3,
Webots 7.1, the Raspberry Pi (www.raspberrypi.org), and Lego NXT.

2. Released as a ROS:catkin package (mipal.net.au/downloads.php).
3. Extremely fast performance for add Message and get Message, intra-process

as well as inter-process.
4. Completely OO-compliant. The classes that can be used are not restricted,

the full data-structure mechanisms of C++11 are available.
5. Very clear semantics that removes lots of issues of concurrency control.

2 Challenges of Inter-module Communication

Control modules in charge of robot behaviour rely heavily upon predictable com-
munication latency. Even very standard algorithms in robotics, like the Kalman
filter, would be significantly less effective if the time between the reading of an
observation and the execution of the filtering step was randomly perturbed. The

http://carmen.sf.net
http://msdn.microsoft.com/en-us/robotics/
http://www.robots.ox.ac.uk/~{}mobile/MOOS/wiki/pmwiki.php
http://orca-robotics.sf.net
http://www.orocos.org
http://playerstage.sf.net
http://eris.liralab.it/yarp/
http://www.cyberbotics.com
http://www.raspberrypi.org
http://mipal.net.au/downloads.php

184 V. Estivill-Castro, R. Hexel, and C. Lusty

motion model would not be able to make sufficiently accurate predictions, and
the integration of information provided by the next observation with the pre-
diction would be jeopardised. Similarly, issuing commands to actuators heavily
depends on the issuer having reasonably accurate information of the position of
the actuator at the time of issuing the next command. If sensor information or
control commands are unboundedly delayed, the safety of actions can be seri-
ously compromised. Thus, the emergence of compliant actuators is not enough:
the software architecture is equally responsible for safe operation.

Delays not only depend on the type of channel used by the blackboard ar-
chitecture, but also the determinism (or lack thereof) of the concurrency model
used. Our software architecture proposes to schedule publishers and subscribers
sequentially (see Section 3). In such a model, the use of subscribe can be min-
imised or avoided. The use of Push technology (for example ROS) results in
the classical producer-consumer problem (or bounded-buffer problem) of multi-
process synchronisation and its associated challenges (e.g. critical sections, and
message queues). Throughout, the call-back function f must be fast enough
to terminate and be ready to process the next invocation. Deadlocks, live-locks,
starvation, or similar concurrency issues can result in catastrophic consequences.
But even in the best of scenarios, a traditional, multi-threaded operating system
cannot usually guarantee a schedule that will meet deadlines for all tasks; hence,
there is simply no guarantee when an specific event will be handled. With this
in mind, it is somewhat surprising that the robotics community is adopting this
approach by endorsing ROS which for inter-process communciation uses the net-
work stack to relay messages (wiki.ros.org/ROS/TCPROS), and even nodelets
(that only work within the same process) use a subscribe and queuing mech-
anism. In fact, the issues of using networking infrastructure as the transport
layer has prompted some developers to state that ROS was originally intended
for a single host, and not necessarily suitable for distributed communication [14].
However, others (MOOS, Microsoft Robotics Studio, naoqi non-local modules,
etc.) have also built on top of TCP/IP, nondeterministic, multi-threaded pro-
cessing and/or event-handling of the underlying operating systems; and thus face
the very same challenges.

3 Arrangements of Logic-Labeled Finite-State Machines

We now present clfsm, our compiler and scheduler for arrangements of llfsms .
Since Harel’s seminal work [16], finite-state machines (FSMs) have become ubiq-
uitous models of system behaviour. Finite-state machines guide coding and
model-based system development [29,30]. Among the software engineering com-
munity, FSMs machines are ubiquitous. Studies have demonstrated that, jointly
with class-diagrams, state-charts are the top most used UML artefact [7,27].
FSMs are the best understood tool for model-driven development in software
engineering [24]. For modelling the behaviour of robots, variants of FSMs have
also become fundamental. Augmented FSMs are the basis of the subsumption [4]
and reactive software architectures [23]. In RoboCup, several teams and their
research groups use FSMs to model and implement behaviours [18,22,25,28].

http://wiki.ros.org/ROS/TCPROS

Efficient Interprocess Relay of C++11 Objects 185

Tools for deploying systems using FSMs include the robotics simulator Webots
(offering BotStudio) [26], StateWORKS [30] and MathWorks R© StateFlow, ROS
has a tool named smach [3] (wiki.ros.org/smach), Qt’s State Machine Framework
(qt-project.org/doc/qt-5/statemachine-api.html) that is based on the W3C’s
state chart XML (SCXML) (www.w3.org/TR/scxml/), the rFSM [18] framework
in Lua, and the boost library Meta State Machine and StateChart templates.

Key characteristics of clfsm include the following.

1. Complete POSIX and C++11 compliance.
2. Open source catkin ROS package release (mipal.net.au/downloads.php).
3. Transitions are labeled by Boolean expressions (not events), facilitating for-

mal verification and eliminating all need for concerns about event queues.
4. Transition labels are arbitrary C++11 Boolean expressions, enabling reason-

ing into what may otherwise seem a purely reactive architecture.
5. Handling of machines constructed with states that have UML 2.0 (or

SCXML) OnEntry, OnExit, and Internal sections with clear semantics.
6. Guaranteed sequential ringlet schedule for the concurrent execution of FSMs

(removing the need for critical sections and synchronisation points).
7. Efficient execution as the entire arrangement runs as compiled code without

thread switching.
8. Being agnostic to communication mechanisms between machines, allowing,

for example use with ROS:services and ROS:messages – however, we recom-
mend the use of our class-oriented gusimplewhiteboard.

9. Mechanisms for sub-machine hierarchies and introspection to implement
complex behaviours. FSMs can be suspended, resumed, or restarted, as well
as queried as to whether they are running or not.

10. Formal semantics that enables simulation, validation, and formal verification.
11. Associated tools such as (MiEditLLFSM and MiCASE) that enable rapid de-

velopment of FSM arrangements.

Some details of these characteristics as well as examples of their use will
follow. The corresponding download includes full documentation and exam-
ples. Videos illustrating the tools (youtu.be/gN6rIveCWNk) and using ROS

(youtu.be/AJYA2hB4i9U) are available online.

4 The Logic-Labeled Finite-State Machine Model

Each llfsm consists of a set S of states, and a transition table T : S × E → S.
There is a distinguished state s0 ∈ S, named the initial state. Our llfsms are of
the synchronous type [16]. The set E are expressions. This is a very important
distinction from all other approaches where events label transitions (the domi-
nant UML approach). The use of Boolean expression to label transitions has a
series of advantages: it simplifies semantics, facilitates scheduling and handling
of concurrency [9,10,12] and enables validation and formal verification [11]. This
produces rapid development and simulation of robot behaviours [5].

http://www.cyberbotics.com
http://wiki.ros.org/smach
http://qt-project.org/doc/qt-5/statemachine-api.html
http://www.w3.org/TR/scxml/
http://mipal.net.au/downloads.php
http://youtu.be/gN6rIveCWNk
http://youtu.be/AJYA2hB4i9U

186 V. Estivill-Castro, R. Hexel, and C. Lusty

Since any C++11 expression can label a transition, we can incorporate reason-
ing and deliberative architectures in what otherwise would be a reactive archi-
tecture. Thus, it is possible to include an entire reasoning system, for example
using Prolog and invoke it from C++11 using standard APIs. This approach was
used for poker hands [2] and to build a poker playing robot. We have found
DPL, a common sense non-monotonic logic, very useful for declarative aspects.
For example, DPL can be used for expressing the soccer off-side rule in a way
similar to the original FIFA specification [1], or describing when it is dangerous
for an elderly lady to face a stranger [1]. The C++11 llfsm mechanism has been
shown to suitably integrate planning incorporating Planning Domain Definition
Language (PDDL) planners [8]. Fig. 1 illustrates the power of merging reason-
ing with the C++11 statements in state activities using a simplified example of a
vision pipeline. Here, a blob (of orange pixels) reported by the vision module is
analysed for its fitness to correspond to a ball. The C++11 arithmetic enables the
calculation of values such as the ratio of orange pixels to other pixels in the blob.
The DPL rules determine that blobs whose orange-colour density is not higher
than a threshold are not to be considered balls. Other conditions include how
close the blob matches a square as opposed to an elongated rectangle1. Figure 2
shows a feedback loop control for keeping the ball in sight.

On Entry
toleranceRatio=2; densityTolerance=3;
badProportionXY= blob.sizeX()/blob.sizeY() > toleranceRatio;
badProportionYX= blob.sizeY()/blob.sizeX() > toleranceRatio;
badDensityVsDensityTolerance = (blob.area() / blob.numPixels()) >
densityTolerance;

On Exit

Internal

BLOB_FOUND

BALL_FOUND

is_it_a_ball

%%%%%%%%%%% BallConditions.d

name{BALLCONDITIONS}.

input{badProportionXY}. input{badProportionYX}.

input{badDensityVsDensityTolerance}.

BC0: {} => is_it_a_ball.

BC1: badProportionXY => ~is_it_a_ball. BC1 > BC0.

BC2: badProportionYX => ~is_it_a_ball. BC2 > BC0.

BC3: badDensityVsDensityTolerance => ~is_it_a_ball. BC3 > BC0.

output{b is_it_a_ball, "is_it_a_ball"}.

Fig. 1. A state with calculation and a Decisive Plausible Logic (DPL) theory that defines
when a blob is a ball

Fig. 2. A simple ball tracker

The semantics for T (si, et) = sj is that when the machine is in state si ∈ S
and et evaluates to true, the machine will move to the state sj . Without loss of

1 We are thankful to Francisco Mart́ın-Rico from the SPiTeam for this example.

Efficient Interprocess Relay of C++11 Objects 187

expressivity, the transitions are considered in sequence (as in MathWorks R© and
StateFlow with SymLink), that is, T (si, et) = sj will transition to state sj if et
evaluates to true and no prior es (∀s < t) evaluates to true in T (si, ·).

The OnEntry section is executed upon arrival from a different state, while
actions in the OnExit section are executed iff a transition fires. Thus, the ac-
tions in these two sections are executed once and only once. The third section
(like UML’s do) is executed only if none of the transitions fires. When the in-
ternal actions are completed, the cycle repeats with evaluating the sequence of
expressions of the transitions out of the state. One pass over the cycle is a ringlet.

Variables and Machine Communication. The compiler is completely agnos-
tic of custom libraries or communication mechanisms. Variables can be created
in any C++11 context. Importantly, variables can be created at the state level
(intra-state-variables), or at the machine level, exclusive to one and only one
llfsm instance and its states.

Concurrency Model. In one ringlet execution there is only one read operation
at the beginning, by which a local copy of each external variable is made before
the execution of any section or the evaluation of any expression labelling any
transition. This read operation is a snapshot phase (similar to rFSM evaluation
contexts, in order to avoid open environment [18] inconsistencies). That is, the
execution context of a ringlet for external variables remains the same throughout.
At the end of the ringlet, a write reflects external variables. While the ringlet
dispatcher will ensure ringlet atomicity for concurrent llfsm , the snapshot phase
will also ensure a consistent view of the world outside the FSM arrangement,
such as external events (e.g. new sensor readings). If no transition fires and the
internal actions complete, then a new ringlet commences.

An ensemble of llfsms is executed in a round-robin fashion from one ringlet
of one llfsm to the next. Thus, the llfsm arrangement is a single sequential
execution, executed by one thread. While event-driven execution of ringlets is
possible, the evaluation of logic expressions is predominantly state-based. This
is also reflected in the convention to use idempotent whiteboard messages for
communication. Moreover, time-driven guards such as after() and after ms()

allow the designation of precise state times and an execution style that follows
the principles of the time-triggered architecture [20].

The use of a deterministic schedule for the arrangement brings several advan-
tages over a nondeterministic, multi-threaded approach. From the design point of
view, open concurrency (where the management of switches between threads is
left to the system) puts an unnecessary cognitive load on the behaviour designer
as it opens all sorts of needs for synchronisation, and vigilance of nondeter-
ministic communication delays. Burdens include managing critical sections and
fairness as well as avoiding deadlocks, live-locks, and starvation (not to mention
the associated complexity of CPU context switch overhead, and other system
overhead). Our model enables formal correctness verification of models. Model-
checking on concurrent threads, by contrast, quickly becomes infeasible for all
but the most trivial tasks, as it must consider the combinatorial explosion of all

188 V. Estivill-Castro, R. Hexel, and C. Lusty

possible state combinations in the system. For robotic systems and embedded
systems where there are strict timing requirements, sequential execution is su-
perior to the multiplication of threads [25]. The models produced with llfsms
can be verified using public domain model-checking technology (NuSMV) within
a matter of seconds [13,5], but using behaviour trees – which spawn parallel
threads – requires several days of CPU time [15].

Scalability. Composition of machines is not only essential for abstraction, but
it is a very powerful encapsulation mechanism when building complex (deeply
nested) state machines. Complex models can be created by composing simple
llfsms into more complex behaviours, and those in turn, into still more complex
behaviours; clfsm supports Brooks’ famous subsumption architectures [4], with-
out prescribing strict, hierarchical dependencies. In fact, an entire multi-agent
system can be built this way. Here is how the clfsm tool supports subsumption
architectures or similar organisations.

Each llfsm has a single designated state, the SUSPEND state, that has an
(implicit) transition to this state from each of the machine’s states. This tran-
sition is the first one evaluated in every sequence of outgoing transitions and
checks whether the machine shall be suspended. The libclfsm run-time library
provides the suspend() function which allows a machine to suspend another.
When the token of execution arrives at the machine named in the suspend,
the OnEntry section of SUSPEND gets executed. Implicit transitions from the
SUSPEND state back to the each state also exist that are labelled with the des-
tination state’s name. A transition to the previously running state, the resume
state, gets triggered by the resume() libclfsm call. Alternatively, restart()
can be used to unsuspend a machine and restart it from its initial state. Thus,
SUSPEND acts like any other state, with exactly the same semantics (e.g. the
machine will execute its Internal section while suspended). Any state can be
designated the SUSPEND state (an empty one is create by clfsm if none exists).
Based on this, hierarchical control of machines that, in turn, start other ma-
chines, can be achieved by explicitly suspending sub-machines in the OnEntry
section of SUSPEND (by issuing suspend() calls to all sub-machines).

In addition to controlling the suspension of llfsms , libclfsm provides an
is suspended() introspection predicate that can be used as a transition label
(or as part of any other Boolean expression in the C++11 code) to detect whether
a given machine is suspended or not.

5 The gusimplewhiteboard Implementation

gusimplewhiteboard is a library that implements a decentralised, distributed
access pattern without the need to initiate a broker (in ROS, ROS:roscore is
a pre-requisite and must be running before any nodes can communicate). To
use gusimplewhiteboard, a module simply needs to include the corresponding
headers and link against the library. The first module to execute on a host creates
the corresponding data structures for the blackboard in shared memory.

For example, to issue a message for debugging purposes, one can use a prede-
fined message type Print. The module must then includes two public files.

Efficient Interprocess Relay of C++11 Objects 189

#include "gugenericwhiteboardobject.h"
#include "guwhiteboardtypelist generated.h"

Then, to add Message to the blackboard, one declares (in the guWhiteboard

name space), a blackboard singleton instance for the object (using a known
blackboard type) by appending t to the type name:

Print t print;

Now, we can use a setter (or, for convenience, the overloaded function call
operator ()) to actually post a message (a std::string for Print):

print("Hello, blackboard");

To observe the effects of the module we provide a tool guWhiteboardMonitor to
inspect the messages as they are posted to the blackboard2. The monitor makes
visible the effect of the print by displaying the following output.

Type: Print Value: Hello, blackboard

To construct the classes for objects to become known to the blackboard, a
default constructor, the assignment operator, and a description() serialisation
method that returns a std::string, are required. The header file of newly
defined classes must be placed in a well-known directory with some pre-processor
directives and the class name must be associated with its type(s) in a well-known
file3. With this, any module can construct blackboard objects of that class. E.g.,
a class Ball Belief could describe the coordinates of the centre of an orange
blob (likely to be the ball) in the reference framework of the camera image. The
following C++11 code constructs an object of such a class.

Ball Belief a ball(50,30);

The gusimplewhiteboard approach to add Message comprises two statements,
first declaring the handler, then adding the object to the blackboard.

Ball Belief t wb ball; wb ball.set(a ball);

This is much simpler than the analogous construction of a publisher in ROS (there
is no need to explicitly register as a node and obtain a NodeHandle as well as
requesting to obtain a ROS:Publisher object).

Introspection. We already mentioned guWhiteboardMonitor, a tool that
makes use of description(). Readers familiar with ROS may also be aware
of the versatility provided by being able to publish messages of a certain topic
onto the communication mechanism through rostopic pub. Our corresponding
tool is gusimplewhiteboardposter. This tool is based on the requirement that
pre-existing classes, as well as new user-defined classes that want to support in-
trospection, need to implement a method called from string(). This method,
at a minimum, deserialises an instance of the class previously serialised by the
description() method (but may include arbitrarily versatile parsing of more
user-friendly input strings). It should be noted that this is optional and its im-
plementation only impacts on gusimplewhiteboardposter.

2 This is analogous to ROS’s rostopic echo. By default, the guWhiteboardMonitor

displays every object posted, but it is possible to specify a type and the effect is
analogous to rostopic echo displaying the data published on a ROS:topic.

3 Again, this is analogous to the ROS construction of a msg description.

190 V. Estivill-Castro, R. Hexel, and C. Lusty

Getting Messages from the Blackboard. As discussed before, the preferred
approach of our software architecture is a synchronous type of concurrency,
analogous to a time-triggered architecture (as opposed to an event-driven ar-
chitecture). It is well documented in the literature [19,21] that the reliability of
time-triggered systems is significantly easier to determine than event-driven sys-
tems. Time-triggered systems handle peak-load situations by design. The band-
width of communications and message rate is constant across low, regular, and
peak load situations. Event-driven systems are inherently unpredictable, they
can collapse during peak loads or event showers, and no analytical guarantees
can be given for their performance in worst-case scenarios.

In a round-robin scheduling of modules interested in a message, a module that
has the execution token (the module that has the CPU) can request information
from the blackboard. Besides including the corresponding header files for the
user-defined class, the actual code to achieve this is also very simple.

Ball Belief t wb ball;
Ball Belief ball = wb ball.get(); // or alternatively: ball = wb ball();

This Pull approach always retrieves the most recent information, i.e. the last
information that was published. For ease of implementation of event-triggered
subscribers, gusimplewhiteboard provides a class analogous to the Push ap-
proach, the whiteboard watcher. A module that wishes to become a subscriber
carries out a subscribe(T, f) operation as follows.

whiteboard watcher *watcher;
watcher = new whiteboard watcher();
SUBSCRIBE(watcher, class T, subscriber class, subscriber class ::f);

The semantics of such a subscription (e.g., the semantics of ROS:subscriber)
is fixed size queuing followed by the invocation of the callback function sub-
scriber class ::f (using libdispatch, https://libdispatch.macosforge.org).
There is limited queuing of messages and, for the reasons outlined earlier, in
our own code we deprecate the use of event-triggered queuing in favour of time-
triggered handling of idempotent messages.

6 Putting gusimplewhiteboard into Practice

Our gusimplewhiteboard has proven a very efficient and effective communi-
cation infrastructure of objects defined by fully fleshed C++11 classes. In com-
bination with clfsm, they provide a very flexible control architecture [2] that
minimises concurrency concerns and has facilitated the rapid development of
complex, high-level behaviours through composition of modules and llfsms .
Moreover, C++11’s static type system enables far more secure software develop-
ment. Libraries and modules have been developed for image processing, sensor
noise filtering, localisation and navigation, object tracking, and motor control,
for Naos, as well as for the ePuck, and simulators such as Webots. Fig. 3 on the
next page shows the power of fully C++11 compliant messages with clfsm. The
two states implement a feedback loop for an ePuck to follow a line. The code
in between #ifdef DEBUG and #endif demonstrates that even pre-processing

https://libdispatch.macosforge.org
http://www.cyberbotics.com

Efficient Interprocess Relay of C++11 Objects 191

Fig. 3. Two states that use gusimplewhiteboard services to perform a feedback loop
to control an ePuck that follows coloured lines

directives are handled and thus, debugging and monitoring information can be
relayed to the blackboard, and reviewed by guWhiteboardMonitor. As per con-
trol theory, the sensing and estimation of the discrepancy between the desired
system output and the sensor reading is encapsulated in the FEEDBACK state.
The statements

WEBOTS NXT camera t camera data ptr;
cameraWidth = camera data ptr.get().width();

retrieve the camera object from the blackboard using the camera data ptr han-
dler for a known message of the WEBOTS NXT camera class. We can Pull the
object and obtain an attribute in one go, e.g. camera data ptr.get().width().

delta = camera data ptr.get().get channel(theChannel).secondParameter()
- cameraWidth/2;

obtains a sensor message of the WEBOTS NXT bridge class. This demonstrates
the use of sophisticated class composition allowed by C++11 (as opposed to the
ROS:msg restrictions). Finally, delta stores the measured error, followed by the
computation of the desired motor target speeds. The SET MOTORS SPEED
state simply constructs a local WEBOTS NXT bridge object and posts it to
the whiteboard. You can see a video of this state machine in action at
http://youtu.be/F8K4V78vUbk

Of course gusimplewhiteboard can be considered an alternative to the event-
driven blackboard control architectures developed by the robotics community.
Our approach aims at establishing components for which formal verification
is possible. However, its presentation here is not meant to be a replace-
ment for ROS:roscore, ROS:services, or ROS:nodelets, but a complement.

http://youtu.be/F8K4V78vUbk

192 V. Estivill-Castro, R. Hexel, and C. Lusty

In fact, we have a gusimplewhiteboard-ROS bridge that enables relaying of
data across ROS:core and gusimplewhiteboard: since one of the basic ROS:msg
types is String.msg and classes known to gusimplewhiteboard implement the
description()method as a serialisation to string and the from string()meth-
ods as a materialisation from a string, the bridge is a publisher/subscriber across
ROS:roscore and gusimplewhiteboard that relays messages.

The capacity of clfsm and gusimplewhiteboard in day-to-day use is remark-
able. We currently run 27 llfsms on board Alderbaran’s Nao robot to implement
the behaviour of MiPal ’s soccer player. We cross-compile the machines to native
code before they are set-up for execution on the robot. Among those 27, there is
one machine that follows the states of the SPL-league game controller, providing
an unambiguous, formal interpretation of the standard platform league rules.

Performance. We have implemented a comparison catkin package, benchmark-
ing gusimplewhiteboard posting and ROS topic publishing. Thus, the compiler
used is the same and so are the optimisation flags. The benchmark has been
tested with several computers, but the data shown is from a late 2013 Mac Pro,
3 GHz 8-Core Intel Xeon E5, 32 GB memory 1867 MHz DDR3 ECC RAM. The
data type is very simple, it is a Boolean value using std msgs::Bool in the case of
ROS and the boolean type from C++11 for the gusimplewhiteboard. Larger, more
complicated types make ROS even slower. For example, for an add Message, the
gusimplewhiteboard delivers 411,895,543 messages per second while ROS only
manages 47,925. Moreover, ROS seems to be affected by kernel and networking
constraints, e.g., a bottleneck in the number of messages per second the kernel
can push through locally. The delays in ROS have been documented before [6],
but our catkin benchmark here shows at least 50 times faster performance (and
in the CPUs on board of robots, the gap would be larger).

gusimplewhiteboard ROSmacports Hydro
get Message 0.0024 µs ROS:subscribe() 20.14 µs
add Message 0.0120 µs ROS:publish() 20.87 µs

7 Conclusion

The released clfsm ROS package contains simple examples that demonstrate the
construction and execution of llfsms . Our videos demonstrate an arrangement of
6 llfsmsthat make a Nao avoid obstacles. The tools for building this behaviour
were used in a third year undergraduate course and students could construct this
behaviour within a single, two hour laboratory session. This provides evidence of
the flexibility and rapid prototyping and development that can be achieved with
clfsm. The full construction of this behaviour also appears in the download and
documentation of the MiEditLLFSM state machine editor. Compositions of
machines have also been used to create higher levels of navigation and planning
for the ePuck in the Webots simulator (also a student lab session), using a
feedback loop control approach to construct a coloured-line follower.

http://www.cyberbotics.com

Efficient Interprocess Relay of C++11 Objects 193

References

1. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning
on board a sony AIBO. In: Lima, P. (ed.) Robotic Soccer, ch.3, pp. 45–70. I-Tech
Education and Publishing, Austria (2007)

2. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Architecture for hybrid
robotic behavior. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B.
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 145–156. Springer, Heidelberg (2009)

3. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS News]. IEEE
Robotics & Automation Magazine 17(4), 18–20 (2010)

4. Brooks, R.A.: Intelligence without reason. In: 12th ICJAI 1991, Sydney, pp. 569–595
(1991)

5. Coleman, R., Estivill-Castro, V., Hexel, R., Lusty, C.: Visual-trace simulation of
concurrent finite-state machines for validation and model-checking of complex be-
haviour. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012.
LNCS, vol. 7628, pp. 52–64. Springer, Heidelberg (2012)

6. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.-M.: MIRA - middle-
ware for robotic applications. In: 2012 IEEE/RSJ IROS, Portugal, pp. 2591–2598
(2012)

7. Erickson, J., Siau, K.: Can UML be simplified? practitioner use of UML in separate
domains. In: 12th EMMSAD 2007, vol. 365, pp. 87–96. CEUR (2007)

8. Estivill-Castro, V., Ferrer-Mesters, J.: Path-finding in dynamic environemnts with
PDDL-planners. In: 16th Int. Conf. Advanced Robotics (ICAR), Montevideo
(2013)

9. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines semantics,
simulation, and model checking. In: Int. Conf. on Model-Driven Engineering and
Software Development MODELSWARD, pp. 182–189. SCITEPRESS, Barceloan
(2013)

10. Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its
application to FMEA in model-driven engineering. In: 8th ENASE Evaluation of
Novel Approaches to Software Engineering, pp. 218–225. INSTCC, Angers (2013)

11. Estivill-Castro, V., Hexel, R.: Correctness by construction with logic-labeled finite-
state machines – comparison with Event-B. In: 23rd Australasian Software Engi-
neering Conf., Sydney. IEEE Computer Soc. CPS (2014)

12. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient modelling of embed-
ded software systems and their formal verification. In: 19th Asia-Pacific Software
Engineering Conf (APSEC 2012), pp. 428–433. IEEE Computer Soc., CPS (2012)

13. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Failure mode and effects analy-
sis (FMEA) and model-checking of software for embedded systems by sequential
scheduling of vectors of logic-labelled finite-state machines. In: 7th Int. IET System
Safety Conf., Edinburgh, UK, Paper 3.a.1 (2012)

14. Garber, L.: Robot OS: A new day for robot design. Computer 46(12), 16–20 (2013)
15. Grunske, L., Winter, K., Yatapanage, N., Zafar, S., Lindsay, P.A.: Experience with

fault injection experiments for FMEA. Software, Practice and Experience 41(11),
1233–1258 (2011)

16. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM T. on
Software Engineering Methodology 5(4), 293–333 (1996)

17. Hayes-Roth, B.: A blackboard architecture for control. In: Distributed Artificial
Intelligence, San Francisco, pp. 505–540 (1988)

18. Klotzbuecher, M.: rFSM v1.0-beta6, http://www.orocos.org/rfsm

http://www.orocos.org/rfsm

194 V. Estivill-Castro, R. Hexel, and C. Lusty

19. Kopetz, H.: Should responsive systems be event-triggered or time-triggered? IEICE
Transactions on Information and Systems 76(11), 1325 (1993)

20. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. of the IEEE 91(1),
112–126 (2003)

21. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Transactions on Programming Languages and Systems 6, 254–280 (1984)

22. Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M.: Designing agent behavior with
the extensible agent behavior specification language XABSL. In: Polani, D., Brown-
ing, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020,
pp. 114–124. Springer, Heidelberg (2004)

23. Mataric, M.J.: The Robotics Primer. MIT Press (2007)
24. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven archi-

tecture. Addison-Wesley, Reading (2002)
25. Merz, T., Rudol, P., Wzorek, M.: Control system framework for autonomous robots

based on extended state machines. In: ICAS 2006, Silicon Valley, vol. 14 (2006)
26. Michel, O.: Webots: Professional mobile robot simulation. J. Advanced Robotics

Systems 1(1), 39–42 (2004)
27. Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagrams? a

preliminary survey Technical report, Universitá di Genova, Italy (DIBRIS) (1998)
28. Risler, M., von Stryk, O.: Formal behavior specification of multi-robot systems us-

ing hierarchical state machines in XABSL. In: AAMAS 2008-Workshop on Formal
Models and Methods for Multi-Robot Systems, Estoril (2008)

29. Samek, M.: Practical UML Statecharts in C/C++, 2nd Edition: Event-Driven
Programming for Embedded Systems. Newnes (2008)

30. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines: A Practical Approach. CRC Press, NY (2006)

	High Performance Relaying of C++11 Objects
across Processes
and Logic-Labeled Finite-State Machines

	1 Introduction
	2 Challenges of Inter-module Communication
	3 Arrangements of Logic-Labeled Finite-State Machines
	4 The Logic-Labeled Finite-State Machine Model
	5 The
gusimplewhiteboard Implementation
	6 Putting gusimplewhiteboard into Practice

	7 Conclusion
	References

