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Abstract. In this article, we present the process of modeling control
algorithms as means to increase reliability of software components. The
approach to developing Embedded Control Software (ECS) is tailored to
Component-Based Software Development (CBSD). Such tailoring allows
to re-use the ECS development process tools in a development process for
robotics software. Model-to-text transformation of the ECS design tool
is extended to model-to-component transformation suitable for CBSD
frameworks. The development process and tools are demonstrated by a
use case.

1 Introduction

The quest for safety and autonomy of a robot is extremely complex, and strongly
connected to concepts of reliability. Robots are designed to perform a variety of
tasks in diversified conditions. However, development of a robotic application is a
complex and error-prone process which requires integration of results from many
engineering domains (software, mechanical, electrical and control engineering).
This is especially important in development of robot motion-control software,
as this part of the system is critical for reliability of robots. Thus, it is crucial
that fault avoidance techniques are exercised to a full possible extent during
development of the software.

Current research in software development for robots is focused on Component-
Based Software Development (CBSD) [18,19]. CBSD supports the development
and reuse of large-grained pieces of robotics software through component-based
software frameworks such as ROS [39], Orocos [20,34], SmartSoft [36,37]. To gain
the advantages provided by a component-based software framework, the software
has to be structured into independent components. This need for structuring of
software has triggered research on the application of Model-Driven Engineering
(MDE) techniques to CBSD.
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In CBSD, models are used to design and analyze the software architecture [38].
Following the concept of separation of concerns as presented in [21], a software
architecture can be described by models formulated in terms of Computation,
Composition, Connection [26], Configuration [18] and Coordination [27], referred
to as 5C. Composition and Connection indicate the software architecture of the
system. Configuration and Coordination describe parametric and discrete states
of the system. Computation stands for the actual algorithm implemented in the
component, for example of a control law such as a PID controller. Modeling the
Computation is not part of the existing CBSD practice.

To make sure that modeling the Computation becomes a part of a well-defined
development process, we combine two relevant development processes — The
Robotic Application development Process (RAP) [29] and the Embedded Con-
trol Software (ECS) design trajectory [15,14]. RAP has been proposed by the
BRICS project as a result of simultaneously tailoring of over 25 different devel-
opment processes to the robotics domain and CBSD. The ECS design trajectory
represents practices in development of software for embedded applications and
explicitly advocates modeling of the algorithm of a software component (con-
troller) [14]. Both development processes use modeling of software to achieve a
higher quality product. Nevertheless, these development processes have different
perspectives on software modeling. We argue that combining these models re-
sults in a uniform description of the software on the modeling level, thus allowing
to gain the benefits from both development processes.

Throughout this article, the combination of these two development processes is
discussed. Relevant terms used in MDE in application to CBSD are adopted from
[21,10]. The dependability related terms are adopted from [1]. The motivation for
modeling the Computation to gain software reliability improvement is presented
in Section 2. The combination of RAP and ECS design trajectory is discussed in
Section 3. The integration of tools used in RAP and the ECS design trajectory
is presented in Section 4. The resulting tool-chain is demonstrated by a use case
presented in Section 5.

2 Modeling the Computation to Increase Software
Dependability

Modeling the Computation is describing the actual algorithm to be implemented.
The result of Modeling the Computation is a computation model. It represents
the mathematical nature of the algorithm. Such model leaves out platform, oper-
ating system, framework or programming-language specific elements. A compu-
tation model can be constructed based on several different meta-models: transfer
functions, logic circuits, Bayesian networks, neural networks, bond graphs.

A computational model serves three purposes:

— A model improves understanding of functioning of the algorithm, thus re-
vealing the points where robustness should be improved.

— A model, supported by simulation tools, can be used to study the behavior
of the algorithm, in an attempt to verify its qualities.
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— A model can be automatically transformed to a formulation needed for the
next step in the development process.

These purposes overlap with means of improving a system’s reliability, typical
for a development process: fault prevention, fault removal and fault forecasting
(Figure 1).

Fault Prevention i Modeling
Fault Removal : Code generation

Fault Forecasting Simulation

Fig. 1. Mapping of reliability means on purposes of a Computation model

A developer models the Computation to obtain a simplified but competent
representation of the algorithm (the model of algorithm). This is achieved by
choosing the modeling language that supports an effective and simple represen-
tation of the algorithm that is being developed, i.e. the chosen modeling lan-
guage is more expressive than a general-purpose implementation language. The
general-purpose language might obscure the design intent due to a vast number
of implementation details, while a model allows to focus on design of the algo-
rithm avoiding implementation issues [38]. The model of algorithm provides a
clear expression of the design intent and thus prevents logic faults. It especially
concerns the class of development, human-made, deliberate, nonmalicious faults
[1] as the trade-offs made at development time are made explicit.

Faults (class of development, human-made, non deliberate, nonmalicious [1])
can be prevented by modeling the Computation with appropriate tool support.
The composition rules, defined by the meta-model, can be used to prevent ille-
gal constructs that would result in faults, which are typical unintended actions
done by mistake. This enforcement of composition rules on model level also pre-
vents faults occurring due to misunderstanding between collaborating teams [13],
which also classify as non-deliberate, human-made faults. Furthermore, appro-
priate tool support allows to automate the transformation of models to formu-
lations needed for next steps in the development process. This allows reducing
significantly the number of human-made faults as the developer is excluded form
the transformation process.

Simulation of the algorithm, one of the purposes of modeling the Computa-
tion, supports both fault removal and fault forecasting means (Figure 1). This
fault removal process is similar to the approach of iteratively refining models,
used in the ECS design trajectory [15,14]. In simulation, a designer has full
control over the system states, outputs and inputs, thus any situation or behav-
ior can be tested, and the response can be verified. An example of such use of
simulations is fault modeling and fault injection [13]. This approach prescribes
building a model of faulty behavior in addition to modeling expected behavior.
This approach can be used to evaluate performance of the proposed fault-tolerant
control. Overall, use of simulateable models simplifies and increases the quality
of the fault removal and fault forecasting processes.
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3 Modeling the Computation in the Development
Process

Modeling of software in a development process can be done from different per-
spectives (5C as described in [21]), moreover modeling software from each per-
spective leads to improvement in software quality. Thus by modeling software
from all perspectives allows to maximize the benefits from using models in de-
velopment process. A development process has to indicate at which step each
model has to be developed. Furthermore, the steps at which the models are be-
ing synchronized and transformed into implementation have to be indicated such
that inconsistencies in models are avoided.

The development processes noted above (Section 1) use modeling of software
as one of the main activities. Nevertheless, these development processes have
different perspectives on software modeling. The goal of combining these devel-
opment processes is to indicate steps of synchronization and transformation of
models into implementation. That would enable modeling software from all per-
spectives, and development of appropriate tool support as demonstrated later.
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Fig. 2. The proposed ECS trajectory combined with architectural elements form RAP

The updated ECS trajectory (Figure 2) combines the modeling procedures of
the ECS trajectory [16] and RAP [29]. Development steps inherited from RAP,
indicated with RAP tag, represent the process of modeling the software architec-
ture. Development steps inherited from ECS, indicated with ECS tag, represent
the process of modeling the algorithm of the application. Steps, indicated by
both tags, are prescribed by both RAP and ECS, and require information about
the algorithm and the software architecture. By combining modeling processes
of RAP and ECS the information about algorithm and software architecture
is captured inform of models before the Software Implementation step. These
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models are complimentary to each other as they contain different type of infor-
mation about the software system. The combination of these models represents a
uniform model of a software component, which covers all 5 aspects of a software
system (5C [21]).

To maintain synchronization between models from RAP and ECS two addi-
tional interlinks (the dashed lines nr. 1 and nr. 2 (Figure 2)) between architecture
design and algorithm design are added. These interlinks indicate information flow
during modeling and emphasize the iterative style of model development.

Line nr. 1 (Figure 2) indicates that the constraints imposed by the runtime
architecture have to be taken into account during Algorithm design. The analysis
of the effects of the run-time architecture on the algorithm performance allows
to forecast possible failures and develop algorithms that tolerate these.

Line nr. 2 (Figure 2) indicates that a detailed knowledge about algorithm
functioning is required for building the efficient component architecture. For
example, a component architecture built without that knowledge might result
in unreasonable communication requirements (such extreme band-with or un-
achievable small latency). Inclusion of component architecture into Algorithm
Design step allows to identify these issues at the modeling stage and can lead to
restructuring the component architecture.

At the Software Implementation step, the models of the algorithm (Com-
putation or Coordination aspects developed in the Algorithm Design step) are
combined with the model of software architecture (Configuration, Connection,
Composition aspects developed in the Runtime Architecture Design step). The
automation of this Software Implementation step is discussed in Section 4.

4 Tool Integration

The goal of the tool integration is, as indicated by the design trajectory (Fig-
ure 2), to facilitate combining the models of a component resulted from RAP
and ECS steps. Moreover, if these models contain sufficient information about
all of the 5 aspects of a software system (5C), the Software Implementation step
can be automated, such that the models are transformed into forms/artifacts
necessary in the consecutive steps of the development process.

Table 1. Tools and their focus in modeling

Configuration & Connection & Composition Computation & Coordination

BRIDE|9] MatLAB[30]
SmartSoft[36] 20-sim[23]
OpenRTM(33] LabView[31]

Proteus[35] OpenModelica[32]

TERRA|[3] Dymola[24]

The development process (Figure 2) can be used with a number of tools that
provide similar functionality such as presented in Table 1.

To exemplify the tool integration, the tools BRIDE and 20-sim are used as
suggested by the authors of RAP [29] and the ECS design trajectory [15].
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The BRIDE toolchain [9] has been developed in the project BRICS to sup-
port RAP. It facilitates the design of components and component compositions
for robotic application deployment. It offers graphical editors to model compo-
nents using the BRICS Component Model (BCM) [21], with model-to-model
transformations to the software frameworks Orocos RTT [34,22] and ROS [39].

20-sim was developed for the design of mechatronic systems and supports the
ECS design trajectory as development methodology. It embodies the concept
of concurrent design of mechanical, electrical and control parts of the system.
20-sim provides modeling primitives for designing the Computation. It can be
used for both modeling of control algorithms and physical systems behaviour.
20-sim allows a graphical approach to hierarchical structuring of algorithms.

4.1 CBSD- and Computation-Model Integration

The transformation of any Computation meta-model into a component meta-
model used by the CBSD tools (like BRIDE) results in a model reduction since
the concepts of computation are not supported by such tools. To preserve the
computation elements a second artifact is generated — the code (Figure 3). The
combination of the generated code and the model completely represent a single
component which can be used in the next phase of the development process, i.e.
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Fig. 3. Model-to-component transformation

The integration between BRIDE and 20-sim is structured as a 2-step process
[12]. First 20-sim transforms the Computation model into a code and a model
of the component (Figure 3). Second, the model of the component is analysed
and, by using predefined rules, a BRIDE model of the component is generated.
The newly generated model contains information about the Communication and
Configuration (component interface). The Coordination and Computation of the
component are only encoded in the component implementation as BRIDE does
not offer primitives to describe these concepts.
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5 Use Case Application

5.1 BRICKS Stacking Application

The use case is motion control for the KUKA youBot [4,11] mobile manipulator.
The resulting set of software components is termed as motion stack. These are
implemented using the methodology described above. Orocos RTT was used as
target component-based software framework.

Based on Figure 2 some of the steps can be performed in parallel. The Physical
System Modeling step can be preformed in parallel to the Functional Architec-
ture Design step. The Component Architecture Design, Run-time Architecture
Design and Algorithm Design steps have circular dependency, and therefore re-
quire an iterative approach. The Software Implementation and Realization steps
are preformed sequentially.

The Physical System Modeling step is presented in detail in [25], and a detailed
description of the algorithms is presented in [12,10]. The focus of this paper is the
architectural design (Section 5.2), the effect of architecture on algorithm (Section
5.3) and automated transformation of the models into components (Section 5.4).

5.2 Architecture Design

The architecture design is done in three steps, each increase the level of detail
at which the system is described.

A generic functional architecture of a motion stack [12] is presented in Figure 4.
The proposed organization of the software specifies the granularity of the algo-
rithms and provides a standard functional decomposition into components. This
standardisation of component functions enables further harmonization of the com-
ponent interfaces, which is a requirement for introducing variation points [17]. As
a result, an exchange of a component for one with a different behavior should not
require modifying the motion control structure nor any component internals.

Figure 5 depicts the component-level architecture of the motion stack in the
form of a data-flow diagram, based on its functional decomposition. The pre-
sented architecture is an example of a variability solution.

A run-time architecture is required to define how components are executed
with their time and concurrency relations. A run-time architecture can introduce
various effects that will affect the algorithm performance. For example, message
passing between components can introduce time delays, or message losses. To
verify the algorithm’s robustness and tolerance of such effects, the robot model
has to include them. Time delay elements (27!) indicate possible time delays in
the signal exchange, that has been used in algorithm verification.

5.3 Algorithm Design

Algorithm Design (Modeling the Computation) goes in parallel with the design
of the architecture. The effects that are introduced by the architecture are used
to model and identify unexpected behaviours. Knowledge about the algorithm
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performance is used to modify the component architecture and generate deploy-
ment constraints.

The algorithm design requires a competent model of the system that will
be controlled. In the use case, a model developed in [25] was used to verify
performance and robustness of the algorithms in a simulation.

The data-flow diagram, shown in Figure 5, has resulted from the architecture
design route. Each block of this diagram has to become a software component
in the real system and has been filled in with required algorithm according to
its task, details of the algorithms are reported in [10].

When the responses of the system meet the task requirements, such model is
ready for the Software Implementation step.

5.4 Software Implementation

The parts of the motion stack were implemented as components in the Orocos
RTT framework. The data-flow diagram (Figure 5) illustrates the component-
level architecture of the motion stack, where blocks in the diagram stand for
software components, except z~! which model the effects of communication (la-
tency).

The block at the firmware and drivers level (denoted YouBotModel in Fig-
ure 5) implements the communication to the firmware of the youBot actuators
and sensors. This component contains operating-system specific and hardware-
specific code, and is written in a general purpose language (C++).

The blocks at the “trajectory planner” level of the given application are the
Coordination-type components. The Coordination-type components are most ef-
ficiently expressed in a FSM, therefore, a DSL for a FSM was used to design the
actual trajectory planner components [28]. The existing life-cicle state machine
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of an Orocos-RTT component has been extended to include states required for
the application. The Coordination was modeled using rFSM [28], a textual mod-
eling language for FSM. The component Configuration and Communication were
modeled using BRIDE. The model designed with rFSM is part of the working
system, it is executed using a run-time interpreter based on Lua.

Other blocks in the data-flow diagram (Figure 5) are ’pure’ Computation
components. These components are implemented using the model-to-component
transformation, as described in Section 4.

The generated component is imported into BRIDE, where Communication
and Configuration perspectives can be further refined to connect the generated
component into the system. Detailed instructions on using code generation pro-
cess are presented by [12].

A composition model of the application is finalized using BRIDE. The models
of computation are transformed into component models usable by BRIDE. These
models are combined with the models components that were developed in BRIDE
to obtain composition model.

6 Testing the Methodology

The methodology and the youBot motion stack software, resulting from applying
our method, have been tested for reusability and reliability, in three different
occasions, namely three BRICS events.

In the first event, the BRICS research Camp 3 [6], the youBot motion stack
was used to test re-usability of the components developed using the proposed
methodology. The software was provided to students, research camp participants,
with only brief explanation of the algorithmic aspects of the system; the Compu-
tation and Coordination model were presented. The students have successfully
used concepts of modeling of Computation and Coordination to adapt the pro-
vided system to their tasks, which demonstrates ease of re-use of the developed
components. Two groups of 4 students were using the proposed methodology to
modify the provided youBot motion stack using our tool-chain. Moreover, one of
the groups modified their own development tools according to our methodology
to develop a sequence control for solving their exercises.

In the second event, Automatica 2012 [7], the youBot motion stack was used
to test reliability of the components with respect to inter-component communi-
cation faults. The algorithms were shown to work with communication over a
congested WiFi [12]. The software was subjected to prolonged active use, with
frequent interruptions for inspection and parametric changes, which were done
for demonstration purposes. The setup was performing flawlessly for the whole
week of the trade fair (5 days 8 hours a day). Comparable research software is
rarely capable of withstanding such stress testing on first-time use.

At the third event, BRICS research Camp 5 [8] re-usability and reliability of
the components were further tested. The software has been given for modification
to the BRSU RoboCup@work team, after a brief introduction similar to Research
camp 3 student teams. The RoboCup team has successfully modified parts of
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the motion stack and uses this software for robot control during completions.
This also confirms that components developed using the proposed methodology
can be easily re-use for different applications with high level of reliability.

The software integration developed in Section 4 is available as open source
[40,41] and is being used in other projects of our lab such as for example [5].

7 Conclusions

The combination of both approaches, the CBSD method (RAP) advocated by
BRICS and the ECS design trajectory, results in uniform coverage of modeling
perspectives (5C) for a software component, and thus results in more reliable
robotic components and applications.

The proposed approach contributes to software quality improvement as fol-
lows:

— Automated model-to-code transformations reduce faults during implemen-
tation of the algorithm by excluding human factor from the process.

— Modeling enables the designer to focus on the chosen aspects of the sys-
tem (e.g. algorithm or architecture), instead of implementation details, and
thereby increasing quality of the resulted software.

— Simulation of the algorithm allows to examine hypothetical /dangerous situ-
ations using fault modeling techniques, such as sensor failures, which can be
used for development of fault tolerance algorithms.

The methodology tests have shown that algorithms verified in simulation have
a high success rate on a real setups, which confirms results reported by [14].

To achieve the uniform coverage of modeling perspectives, two different mod-
eling tools had to be used. Each tool focuses on a different engineering role. Two
tools were used as an example of the approach, BRIDE and 20-Sim. BRIDE
is used to model architecture of the system, and 20-sim is used to model the
algorithm.

The presented model-based tool integration shows that tools can easily be
combined on the component level. A model-to-model transformation is used to
export the component interface of a 20-Sim sub-model to an Orocos-RTT com-
ponent model. The Orocos-RTT component model is used in BRIDE to design
the deployment of a robotic application. The advantage of directly generating
the executable component from 20-Sim is that the target component meta-model
is not required to support an equivalent Computation meta-model because the
algorithm code is directly generated for the target framework. The software in-
tegration developed in Section 4 is available as open source code [40,41] and is
being used in other projects such as for example [5]. The integration approach
is generic such that other tools can be integrated in a similar way.

Future work is further developed the tool-chain getting beyond prototype
stage.

The developed tool chain requires creation of separated components for each
modeling language being used. The template of Generic Architecture Component
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(GAC) presented by [2] demonstrates the need to combine Coordination and
Computation primitives in a single component. The tool-chain can be modified
to accommodate that requirement.
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