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Abstract. As the complexity of robots deployed in the real world
increases, the use of formal specifications in the development of safety-
critical robot systems is becoming increasingly important. A formal spec-
ification gives confidence in the correctness, completeness, and accuracy
of a system design. In this paper, we present a formal specification of a
redundant control architecture for a mobile robot in the form of a model.
The model is created using the Architecture Analysis and Design Lan-
guage (AADL). This formal language allows the model to be analysed
to prove system properties of interest. In this case, we are interested in
proving the response time of the robot to external obstacles and to inter-
nal errors. We present the model and the results of these analyses with
the goal of proving that the architecture is sufficiently safe for use in a
safe robot wheelchair.

1 Introduction

As with any cyber-physical or embedded system, an important part of design-
ing a robot is specifying the architecture of the control system that turns sen-
sor readings and planned actions into controlled motions of the robot. Sensors,
micro-processors, control software, actuators, and the communication buses that
connect them must all be designed to provide sufficient capacity, in each respec-
tive way, to perform their role in the overall control system.

For system correctness, it is not enough to simply design the control system. It
is also necessary to ensure that the design will satisfy the system’s requirements.
When the system being developed is safety-critical, there is a further need to
provide proof that a design is correct and satisfies the system’s functional and
non-functional requirements.

An approach to both ensuring and proving that a design is suitable is the
application of formal methods, including formal specifications of design. The use
of formal methods during the design of cyber-physical and embedded systems
is becoming increasingly common. There have been several noteworthy projects
to produce complete tool chains using formal methods for system design, such
as the TOPCASED project [9]. Their continued growth is an indication of the
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success they have had in introducing formally-based methodology to fields such
as aerospace and railway development.

Formal methods allow a design to be proven to be correct, in that it contains
no mistakes in specification. For example, designed wiring between components
can be shown to be correct in such terms as the information carried, or that
all necessary connections exist in the design. Formal specifications of behaviour,
for example finite automata, can ensure that the system’s behaviour is defined
for all known inputs. The use of formal methods can reduce the time to de-
velop a system through reduction of other parts of the development process; for
example, the IEC 61508 standard for Functional Safety of Programmable Elec-
trical/Electronic Devices specifically states that the use of formal methods in
design of software reduces the necessary testing that must be performed [2,3].1

Analyses performed using a formal method can even aid in debugging problems
found during implementation, such as solving a bottleneck in system response
by identifying parts of the system that may experience high latencies.

This article describes the application of a formal method during the design
of the control system architecture for a safety-monitoring motorised wheelchair.
The wheelchair applies robot control technology to avoid collisions when pos-
sible and reduce impact forces when not. It also ensures that the wheelchair is
robust to failures and is guaranteed to come to a safe stop in the case of one.
A formal specification language was used to specify the control architecture of
the wheelchair. Formal analyses were performed on this specification to deter-
mine such factors as the latency in responding to the appearance of an obstacle,
the response time to a failure, and the suitability of the chosen micro-controller
hardware. Based on the analyses, we claim that the control system architecture
is correct and sufficient to provide reasonable safety to a user of a motorised
wheelchair under the analysed scenarios.

The next section discusses the formal specification language used in this work.
Following that, the formal model of the control system architecture is given in
Section 3. Analysis results are given in Section 4.

2 AADL

The Architecture Analysis and Design Language (AADL) is a modelling lan-
guage for the formal modelling of embedded system architectures [4]. Its goal
is modelling and formally proving the correctness of cyber-physical and embed-
ded system architectures, allowing the architecture of even extremely complex
systems to be designed accurately It is a declarative language, focusing on struc-
ture rather than behaviour. It supports modelling a system’s software structure,
the structure of the execution hardware, the mapping of software to execution
hardware, and the sensors, actuators and similar devices that provide interfaces
to the external world.

1 The standard requires the use of formal methods at higher safety integrity levels –
see Table A.2 of Part 3 of the standard.
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AADL has a formal semantics and fixed syntax. This means that it is pos-
sible to check a model for correctness. The capacity to specify properties of all
components in the model, including software, processors, and communication
buses, allows a developer to perform model analysis to examine properties of
the system such as execution time or communication bandwidth utilisation. We
describe some analyses in Section 4.

AADL was chosen for this work due to its formality. We have previously used
SysML to model the entire wheelchair system, including its control architecture,
during the design stages [5]. SysML added structure to the design information
that was particularly a benefit in establishing traceability between system re-
quirements and system design; we were able to establish that each functional
requirement relating to necessary features of the system was satisfied. However,
we found that the semi-formal nature of the SysML model limited its usefulness
both for proving design correctness and for analysing properties of the control
architecture. By contrast, AADL’s formality makes such analyses simple. At the
same time, AADL is tightly focused on the embedded control system’s struc-
tural design, whereas SysML can model a wider range of information such as
requirements, testing and behaviour.2

There are several tools available for specifying and analysing AADL models.
In this work, we use the Open Source AADL Tool Environment (OSATE) tool
version 2.0.5 [7]. It provides a compiler for AADL models, syntax and semantic
error checkers, a model correctness checker, and several analysis tools includ-
ing connection analysis, thread execution schedule analysis, and flow latency
analysis.

The next section describes our application of AADL to the design of the
safety-monitoring wheelchair’s control architecture. Our use of the OSATE tool
to perform analyses on this model is described in Section 4.

3 Safe Mobile Robot Architecture Model

A model of the control architecture for a safety-monitoring wheelchair, described
in [8], has been developed using AADL. This architecture is designed to conform
to SIL2 of the IEC 61508 standard for electrical/electronic/programmable elec-
tronic safety-related systems [1]. This section briefly summarises the key points
of the architecture and describes the model.

3.1 Architecture Description

The control architecture modelled in this work is used to control the wheel speed
of a motorised wheelchair. Wheel speed must be controlled in response to velocity
command inputs from an external system, such as a human operating a joystick.

The controller provides two safety aspects. The first aspect is safety against
collisions. Range sensors cover the wheelchair’s entire surroundings, watching for

2 Planned and recently-produced extensions to the AADL standard (known as “an-
nexes”) add support for error modelling and requirements modelling.
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obstacles. The wheelchair’s velocity is limited appropriately when obstacles are
near. Additionally, a contact sensor detects impacts on the wheelchair, bringing
it to an immediate halt when one is detected.

The second aspect is safety against failures. Redundancy is used in the form
of dual CPUs. They each control a single motor/wheel and run identical soft-
ware (with an exception for configuring one to rotate its motor in the opposite
direction). The two CPUs also continuously monitor each other. If a failure is
detected, such as non-responsiveness or an incorrect response to a command or
sensor input, the partner CPU will halt its own motor.3

The redundant controller architecture has been implemented on real hard-
ware. The execution hardware used is two Renesas SH72AW CPUs, one for each
redundant motor control unit. These run at 160 MHz and have 96 kB of RAM.
Two AC motors are used, one for each wheel/drive unit. Each motor controller/-
motor combination drives a single wheel. Four Hokuyo UAM-01LP-T301 laser
range finders, which are certified to SIL2 of IEC 61508, are used for ranged
sensing, and a fault-tolerant strip switch provides contact sensing.

3.2 AADL Model

This section presents an AADL model of the control architecture described
in Section 3.1. The model describes only the structural architecture of the
wheelchair control system.

The model is organised into several systems and black box devices that are
composed to produce the whole control system. This top-level structure is shown
in Figures 1 (information connections) and 2 (hardware buses). The laser range
finders, touch sensors, and the motors and their related control hardware are
all treated as black boxes with known external interfaces and known activity
periods.4 Note also the presence in the model of several buses, such as the wire
connections to the sensors and the CAN bus connections to the motors. The
presence of execution hardware such as this in the model allows for analysis of
sense-compute-actuate latencies and bus bandwidth utilisation. In this model,
each individual bus has been specified to allow the analysis of bus bandwidth
use.

The two redundant CPUs and the software they execute (named a “control
unit” in the discussion below) are each represented by instances of the same sub-
system design. This sub-system is shown in Figure 3. Each control unit contains
both the software to be executed (the ctrl proc process) and the computing
hardware to execute it. The software itself is divided into five separate tasks,
shown in Figure 4. These each have a role in turning sensor and control inputs
into motor commands while monitoring safety. Each thread’s required real-time
execution deadline and processor budget is specified in the model. Modelling the
software allows for analysis of processor load and deadline achievement.

3 Halting the motor of the failed CPU is achieved through a watchdog timer on the
motor control input of the motor controller and brakes that engage when power is
removed.

4 The activity periods of sensors and actuators are necessary during latency analyses.
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Fig. 1. The information connections at the top level of the control architecture model

The drive units are similarly represented by two instances of the same sub-
system design, shown in Figure 5. Each drive unit includes an AC motor (which
includes a rotation sensor), a brake, a separate rotation sensor using a different
technology to that used in the in-built sensor of the motor, and the motor control
unit that turns motor torque commands into AC voltages to drive the motor.

The model contains 796 SLOC of AADL.

4 Formal Analysis

The formal semantics of AADL allow a variety of analyses to be performed on
an instantiated model. The limit to what can be analysed is determined by the
available tools and the properties provided in the model. This section describes
some of the analyses performed on the safety architecture model.
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Fig. 2. The buses at the top level of the control architecture model

4.1 Obstacle Response Latency

The response time of an embedded system depends on the latency between
receiving an input and producing an output. In AADL, such latencies can be
modelled and calculated using flows [6]. A flow is a path through a system
specified by the model developer. Typically it is from an input (the source),
through the communication and processing of that input (the path), and to an
output (the sink). Flows may be hierarchically specified, with one flow making
use of sub-flows along its path.

We have used flows to analyse two latencies in the control system that are
important to safety. The first, described below, is the latency of responding to
the detection of an obstacle. The second, described in the next section, is the
latency of one drive unit responding to an error in the opposite side’s drive unit.

The flow of signals through the control system from a range sensor to the
motor controlling a wheel is illustrated in Figures 1 to 5, highlighted in blue.

The results of the latency calculations performed by OSATE for this flow are
given in Table 1. The latency is calculated for the worst case. It includes the
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Fig. 3. The structure of one of the redundant control units, including software and
execution hardware

maximum possible delay from the range sensor (30ms, corresponding to its cycle
time), delays due to sampling and scheduling of software in the processor, the
communication delay across the CAN bus to the motor controller (at a transfer
speed of 1 Mbps), and the response time of the motor controller and motor itself,
excluding physically-limited response time.

The calculated total worst-case latency is 160.064 ms. At the maximum ve-
locity of the robot of 8 km/h, it corresponds to a distance of 0.356 m. At the
more common velocity of 4 km/h, it is 0.178 m.

4.2 Partner Monitoring Latency

The worst-case latency of responding to an error has been calculated. The error
used is the left drive unit responding to a failure in the right drive unit, man-
ifesting as a mis-match between the right encoder reading and what the right
control unit reports for motor rotation. The flow of signals through the control
system from the right rotation sensor to the motor controlling the left wheel is
illustrated in Figures 1 to 5, highlighted in red.
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Unfortunately, a bug in the version of OSATE used prevented us from calculat-
ing the latency of the complete path. An exception is triggered when calculating
the latency of the serial link between the two controllers, preventing the latency
calculation from completing. To work around this, we split the flow into two,
one for each side of the partner monitoring link.

The latency of the flow from its source to the my status port of controller r
is given in Table 2. This is the time for the right control unit to produce a status
message. The latency of the flow from the partner status port of controller l to
its sink is given in Table 3. This is the time for the left control unit to detect and
respond to the error. As in the previous analysis, it includes the various delays
and latencies involved in controlling the motor.

The latency of the serial monitoring link between the two controllers has been
calculated as 2.08 ms. This is based on a transmission speed of 38400 bps and a
message size (from the model) of 10 bytes.

Based on the two latency values and the manual calculation of the latency
of the serial monitoring link, the total worst-case latency is 142.186 ms. At the
maximum velocity of the robot of 8 km/h, it corresponds to a distance of 0.316
m. At the more common velocity of 4 km.h, it is 0.158 m.

5 Discussion

The latency analyses of the previous section indicate that the control architecture
provides safety in the two analysed scenarios. However, we say “indicate” here
rather than “prove” due to the problem with the tool mentioned in Section 4.2.
The failure in calculating one of the latencies led us to doubt the calculation
results, and a manual estimate had to be calculated to confirm they are in the
expected range, but even then we do not consider them to be absolute proof.

A formal specification gives confidence in the correctness of the specification.
It does so through correctness checks on the specification for internal consistency
and consistency with the formal model in use. In our case, these checks are per-
formed when the AADL model is compiled; they confirm that the specification
is error-free, but not that the design is error-free.

Analyses on the specification give confidence in the design, and are used to
confirm that the design is error-free with regard to the requirements. In the
analyses presented in this paper, this is the need for the control architecture to
have a sufficiently fast response time.

In both cases, however, we are relying on a tool. Our experience illustrates
the importance of having reliable tools; without a tool that can be trusted to be
correct, a formal specification drops in value. Manually checking for errors and
performing analyses is far less reliable than automated checks and analyses, and
automation is essential for large systems.

Fortunately, AADL is a standardised language. There are several for-cost tools
in existence that may be more reliable than the free OSATE tool. Our experience
shows the need to choose tools carefully, but it does not negate the benefits of
AADL.
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The information stored in the AADL model enables many other analyses
relevant to the correct design of robots. For example, the specification can be
checked for fairness to all entities using a communication bus, based on the rate
of message production of each entity. Such analyses depend on tool support;
future work should focus on producing analysis tools useful to robot systems.

6 Conclusions

In this work, we have used the AADL formal specification language to specify
the design of the redundant control architecture of a safety-monitoring motorised
wheelchair. The formal semantics and syntax of AADL shows that the specifi-
cation is correct.

Using this model, we have formally analysed the control architecture design
to indicate that the worst-case latency of response to sensor input and failure is
sufficiently low. In both cases, the response time is sufficiently short given the
maximum speed of the wheelchair. The dominant factor in safety response speed
can be considered the braking speed of the wheelchair, not the control system
response time.
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