
Optimizing Robotic Team Performance

with Probabilistic Model Checking�

Sagar Chaki, Joseph Giampapa, David Kyle, and John Lehoczky

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We present an approach to analytically construct a robotic
team, i.e., team members and deployment order, that achieves a specific
task with quantified probability of success. We assume that each robot is
Markovian, and that robots interact with each other via communication
only. Our approach is based on probabilistic model checking (PMC). We
first construct a set of Discrete Time Markov Chains (DTMCs) that each
capture a specific “projection” of the behavior of an individual robot.
Next, given a specific team, we construct the DTMC for its behavior by
combining the projection DTMCs appropriately. Finally, we use PMC
to evaluate the performance of the team. This procedure is repeated
for multiple teams, the best one is selected. In practice, the projection
DTMCs are constructed by observing the behavior of individual robots
a finite number of times, which introduces an error in our results. We
present an approach – based on sampling using the Dirichlet distribu-
tion – to quantify this error. We prove the correctness of our approach
formally, and also validate it empirically on a mine detection task by a
team of communicating Kilobots.

1 Introduction

Autonomous robots are increasingly being used in teams to communicate and
achieve tasks in a collaborative manner. Given a collection of robots and a spe-
cific mission, a designer solves the coalition formation problem and selects the
coordination strategy so as to maximize the chances of mission success. Cur-
rently this is done in an ad-hoc manner since navigating the solution space and
selecting the best one manually is impossible. This is true even if the designer
is able to observe each robot individually to construct a model of its behavior.
First, it is not clear which modeling formalism to use. Second, since these models
are complex (if they are to be precise) it is impossible to compose them manually
to make predictions about the overall behavior of a robotic team.

In this paper, we present an analytic approach to solve a simplified but com-
mon version of this problem. Specifically, we assume robots are Markovian, and

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001326.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 134–145, 2014.
c© Springer International Publishing Switzerland 2014

Optimizing Robotic Team Performance with Probabilistic Model Checking 135

only influence each other via communication (i.e., no physical interaction such as
collisions). We call this a communicating multi-robot mission (CMRM). Given
a CMRM S and a deadline D, our approach computes the following class of
properties: (i) probability of an event e happening when S is executed up to
time D; and (ii) expected value of an attribute a of S when it is executed up to
time D. We make the following contributions.

First, we formalize a CMRM as a modal Discrete Time Markov Chain
(DTMC). A modal DTMC consists of a finite set of component DTMCs. Each
component DTMC corresponds to a robot, and engages alternately in two kinds
of moves: (i) deterministic – the DTMC’s state changes instantly according to a
“mode-change” function that depends on the current states of the other DTMCs;
and (ii) probabilistic – according to its own transition relation; this happens syn-
chronously with the other DTMCs and takes unit time. We show (see Theorem 1)
that a modal DTMC is semantically equivalent to a specific combination of the
“projections” of its component DTMCs. This result enables us to compute prop-
erties of modal DTMCs, and therefore a CMRMs, using existing probabilistic
model checkers, such as prism [9], that verify DTMCs.

Second, we present an approach to quantify the error in our predictions. In
practice, each projection DTMC is constructed by observing and measuring a
finite set of runs of the corresponding robot. This means that the DTMC differs
from the true DTMC for the robot’s behavior. Therefore, predictions based on
them lie within an error margin of the correct values. We present an approach
that quantifies this error and estimates the correct property value. Specifically,
we sample a set of DTMCs “around” the constructed projection, and make
prediction using each sample. From these predictions, we use statistical theory
to estimate the real property value and the error margin. A key aspect of our
sampling procedure is its use of the Dirichlet distribution [7]. To our knowledge,
this is a new approach for error estimation in the DTMC context.

Finally, we implement our approach and evaluate it using a team of Kilo-
bots [11]. To construct the projection DTMC for a Kilobot, we: (i) run it and
record its actual behavior; (ii) reproduce this behavior in the V-REP [1] simula-
tor using manually tuned parameters; and (iii) construct the projection DTMC
from measurements of multiple simulation runs. Using a simulator enables us to
perform many runs and lower our error margins. At the same time, tuning the
simulation parameters to replicate observed robot behavior grounds our results
in reality. We show that our approach yields accurate predictions that match
observed results with Kilobot teams. Further details are presented in Section 4.

Related Work. Konur et al. [8] model coordinated robotic behavior in the context
of swarms. Like us, they compose individual models of robots into a model of
team behavior. However, they assume that all robots have the same behavioral
characteristics. This allows them to produce a team model which operates on
counts of robots in each state, instead of tracking each robot individually. We
do not assume homogeneous robots. Their attempt to track robots individually
met untenable state explosion past a team size of 3. Our individual models are

136 S. Chaki et al.

significantly more complex, but still due to the use of projections, we were able
to verify teams of up to 6 robots.

Ghorbal et al. [4] present an approach for predicting intervals of result proba-
bilities based on intervals of transition probabilities. This addresses the issue of
error propagation, but assumes that a true range of probabilities for each transi-
tion is known with certainty. Effectively, this is a 100% confidence interval, which
is unrealistic . Their approach is fully analytic, while we rely on sampling. They
develop a new verification algorithm which is validated on a 21 state model,
while we use existing tools and handle systems with thousands of states.

This paper builds on a wide body of work in modeling and verifying proba-
bilistic systems [12]. In particular, probabilistic model checking has been used to
verify systems ranging from pacemakers [2], root contention protocols [10] and
biological pathways [6]. We extend the application of probabilistic model check-
ing to yet another domain – communicating autonomous multi-robot missions.

The rest of this paper is organized as follows. In Section 2 we present our
approach to predict properties of modal DTMCs by combining projections. In
Section 3, we present our approach for quantifying error. In Section 4, we present
our experimental results, and in Section 5, we conclude.

2 Modal DTMC and Verification

In this section we define modal DTMCs and present an algorithm to compute
their properties. We begin with preliminary notation and concepts. Given a set
X , a probability density function (PDF) over X is a mapping π : X �→ [0, 1]
such that:

∑
x∈X π(x) = 1. The set of all PDFs over X is denoted by Π(X).

Given two sets X1 and X2, and PDFs π1 ∈ Π(X1) and π2 ∈ Π(X2), the joint
PDF π1 ⊗ π2 ∈ Π(X1 ×X2) is defined as follows:

∀(x1, x2) ∈ X1 ×X2 � (π1 ⊗ π2)(x1, x2) = π1(x1)× π2(x2)

A DTMC is a triple (S, I, R) where: (i) S is a finite set of states; (ii) I ∈ S is
the initial state; and (iii) R : S �→ Π(S) is the transition probability matrix.

We use Probabilistic Computation Tree Logic (PCTL) [5] to express proper-
ties. For a PCTL formula ϕ, and a DTMC S, S |= ϕ is the probability that S
satisfies ϕ. For example, if ϕ = F(p ∨ q), then S |= ϕ is the probability that the
DTMC eventually reaches a state where either p or q holds, where p and q are
propositions that are either true or false in each state. For DTMCs S1, S2 we
write S1 ≡ S2 to mean that for every PCTL formula ϕ, (S1 |= ϕ) = (S2 |= ϕ),
i.e., S1 and S2 satisfy all PCTL formulas with equal probability.

2.1 Modal DTMC

A n-component modal DTMC is a 2n-tuple (M1, . . . ,Mn, δ1, . . . , δn) whereMi =
(Si, Ii, Ri) are DTMCs, and:

δi : Si �→ 2S1×···×Si−1×Si+1×···×Sn × Si

Optimizing Robotic Team Performance with Probabilistic Model Checking 137

are “mode transition” functions. Informally δi(si) = (E, s̄i) means that if DTMC
Mi is in state si, and the other DTMCs are in state e = (s1, . . . , si−1, si+1, . . . sn),
then either (i) e ∈ E and Mi makes a mode change by moving to state s̄i; or (ii)
e 	∈ E and Mi remains in state si.

Formally, the semantics of the modal DTMC P = (M1, . . . ,Mn, δ1, . . . , δn),
denoted [[P]], is the DTMC (S̃, Ĩ, R̃) where: (i) S̃ = S1 × · · · × Sn; (ii) Ĩ =
(I1, . . . , In); and (iii) R̃ : S̃ �→ Π(S̃) is defined as:

R̃(s1, . . . , sn) = R1(s
′
1)⊗ · · · ⊗Rn(s

′
n)

where for all i ∈ [1, n], if δi(si) = (E, s̄i) then:

(s1, . . . , si−1, si+1, . . . sn) ∈ E ∧ (s′i = s̄i)
∨

(s1, . . . , si−1, si+1, . . . sn) 	∈ E ∧ (s′i = si)

Note that, in the definition of R̃(s1, . . . , sn) above, state (s′1, . . . , s
′
n) denotes

the result of (instantaneous) mode change due to exchange of information be-
tween the component DTMCs. This is followed by simultaneous probabilistic
transition made by each component DTMC (which requires one unit of time), as
denoted by the application of R1, . . . , Rn to states s′1, . . . , s

′
n, respectively, and

composing the resulting PDFs via the ⊗ operator.
In the rest of the paper, for simplicity of explanation, we consider only a 2-

component modal DTMC P , i.e., P = (M1,M2, δ1, δ2). The generalization to an
arbitrary (but finite) number of components is done in a natural manner. Our
overall goal is to verify a PCTL formula ϕ over P , the topic of Section 2.2.

2.2 Modal DTMC Verification

For any set X , and x ∈ X , Δ(x) ∈ Π(X) is the PDF that maps x to 1
and all other elements of X to 0. Recall that our target modal DTMC is
P = (M1,M2, δ1, δ2). We verify P by constructing a model based on observ-
ing M1 and M2 individually. Our approach relies on several key ideas:

1. A state of a component DTMC (i.e., M1 and M2) records at least the current
time and the time at which the last mode change happened. Thus, each state
is of the form (t,m, d) where t is the current time, m is the time of mode
change (m = ∞ means that mode change has not happened yet), and d is the
remaining state information. Thus, the initial state is of the form (0,∞, d).
Also, we know that m 	= t since up to the point of mode change m = ∞ 	= t,
and after the mode change m < t.

2. On any execution of the DTMC, a mode change happens at most once, and
is instantaneous. Thus,

δi(t,m, d) = (E, (t̄, m̄, d̄)) ⇒ (m = ∞) ∧ (t̄ = m̄ = t)

3. The system is time-bounded, i.e., there is some time T ≥ 0 at which the
system stutters. In terms of the transition relation R, this means that if
s = (T,m, d) for some m and d, then R(s) = Δ(s). For our experiments, the
time bound equals the deadline specified in the property.

138 S. Chaki et al.

4. During our individual observations, we can change the mode of Mi at arbi-
trary time points. This is because a mode change is controlled via software,
which we are able to reprogram.

Approach. Our overall approach is as follows:

– Let DTMC 〈Mi, t〉 be the projection of Mi under the restriction
that mode change always happens at time t. Construct all projections
{〈M1, t〉 | 0 ≤ t ≤ T} and {〈M2, t〉 | 0 ≤ t ≤ T} for M1 and M2, respectively.

– Construct a DTMC M̂ by “re-combining” the projection DTMCs using the
definitions of the mode change functions δ1, . . . , δn. Prove that M̂ = [[P]].

– Compute M̂ |= ϕ using a probabilistic model checker, e.g., prism [9].

2.3 DTMC Projection

We now define the projection of a DTMC based on mode change time. First
define function δ̂i : Si �→ Si as follows:

∀si ∈ Si � δ̂i(si) = s̄i � ∃E � δi(si) = (E, s̄i)

Thus, δ̂i is the projection of δi on the second component of its range, and
is well-defined. Let Mi = (Si, Ii, Ri). Then the projection of Mi under the re-
striction that mode change always happens at time t (where 0 ≤ t < T) is the
DTMC 〈Mi, t〉 = (Si, Ii, 〈Ri, t〉) such that ∀s = (t,m, d) ∈ Si:

〈Ri, t〉(s) =
{
Ri(δ̂i(s)) if t = t

Ri(s) otherwise

2.4 Combining Projections

Consider the projections {〈M1, t〉 | t ∈ [0, T]} and {〈M2, t〉 | t ∈ [0, T]} ofM1 and

M2. Define the DTMC M̂ = (Ŝ, Î, R̂) as follows:

Ŝ = S1 × S2 Î = (I1, I2) and

∀s1 ∈ S1 � ∀s2 ∈ S2 � s1 = (t1,m1, d1) ∧ s2 = (t2,m2, d2) ∧
δ1(s1) = (E1, s̄1) ∧ δ2(s2) = (E2, s̄2) ⇒ R̂(s1, s2) = A1 ⊗ A2 where

A1 =

{ 〈R1, t1〉(s1) if s2 ∈ E1

〈R1,m1〉(s1) otherwise
A2 =

{ 〈R2, t2〉(s2) if s1 ∈ E2

〈R2,m2〉(s2) otherwise

We now present our main result, Theorem 1, which states that the combination
of projection DTMCs described above is equivalent to the modal DTMC.

Theorem 1. M̂ = [[P]].

Proof. Recall that M̂ = (Ŝ, Î, R̂) and [[P]] = (S̃, Ĩ, R̃). By definition, we already

know that: (i) Ŝ = S̃ = S1 × S2 and Î = Ĩ = (I1, I2). Hence it suffices to show

that R̂ = R̃.

Optimizing Robotic Team Performance with Probabilistic Model Checking 139

Let s1 = (t1,m1, d1) and s2 = (t2,m2, d2). Then R̃(s1, s2) = R1(s
′
1)⊗R2(s

′
2).

First we show that R1(s
′
1) = A1. Let δ1(s1) = (E1, s̄1).

Case 1: s2 ∈ E1. In this case, s′1 = s̄1 = δ̂1(s1). Then R1(s
′
1) = R1(δ̂1(s1)) =

〈R1, t1〉(s1) = A1.
Case 2: s2 	∈ E2. In this case, s′1 = s1. Recall that m1 	= t1. Hence,

〈R1,m1〉(s1) = R1(s1). Hence, R1(s
′
1) = R1(s1) = 〈R1,m1〉(s1) = A1.

In a symmetric manner, we can show that R2(s
′
2) = A2. Thus, R̃(s1, s2) =

R1(s
′
1)⊗R2(s

′
2) = A1 ⊗A2 = R̂(s1, s2).

Theorem 1 enables us to compute a property of the modal DTMC P by com-
bining projections of its components to construct DTMC M̂ , and then applying
probabilistic model checking. In practice, a projection 〈Mi, t〉 is constructed from
observations of multiple runs of the corresponding robot. This inevitably intro-
duces an error in our results. The next section presents our approach to quantify
and bound this error.

3 Error Quantification

Suppose we model a real-world system G, e.g., a robot, using a DTMC M̂ . For a
given PCTL formula ϕ, let p̂ = (M̂ |= ϕ), i.e., the probability that M̂ satisfies ϕ,

and let p = (G |= ϕ). If the model is perfect, i.e., M̂ = G, then p̂ = p. However,
such perfect modeling is impracticable for several reasons. First, G might not
be Markovian. Second, suppose G is Markovian, i.e., G ≡ M� for some DTMC
M�. Note that, in this case, (M� |= ϕ) = (G |= ϕ) = p. However, M̂ might not
capture enough state to accurately model G; i.e., there could be hidden variables
in G resulting in behaviors that are absent in M̂ . Finally, M̂ might have the same
states as M�, but different transition probabilities, and hence diverges from G.

In practice, we should expect transition probabilities to be imprecise. Ulti-
mately, the only approaches to obtain these probabilities for a real-world system
are based on intuitive guesses or finite observations of the system. Thus, we
should also expect any predictions made by a model to deviate from reality by
some margin, where that margin is related to the uncertainty of those transition
probabilities. This is the error we seek to quantify.

3.1 Constructing an Approximation

Recall that there exists a DTMC M� = (S, I, R) such that M� ≡ G. Suppose
that each state ofM� corresponds to a known combination of observable charac-
teristics in G. Thus, if we execute a trial of G, and observe it at each discrete time
point, then from each observation we can compute the corresponding state of
M�. Suppose we execute several trials of G, and record our observations as a list
of evidence E, where each evidence e ∈ E is a sequence of states 〈s0, s1, . . . , sk〉
of M� corresponding to observations of a trial of G at discrete time points.

140 S. Chaki et al.

Using E, we construct a transition probability matrix R̂ : S �→ Π(S) as
follows. Given a sequence of states e, and states s, s̄, let e(s) and e(s, s̄) denote,
respectively, the number of times 〈s〉 and 〈s, s̄〉 appear as a subsequence of e. We
generalize this to E as follows: E(s) =

∑
e∈E e(s) and E(s, s̄) =

∑
e∈E e(s, s̄).

Thus E(s) is the number of times we observe G to reach state s, and E(s, s̄) is
the number of times we observe G to move from s to s̄ in one time step.

Then, we have two cases: (i) if E(s) = 0, then R̂(s) = Δ(s); (ii) otherwise ∀s̄ ∈
S �R̂(s)(s̄) = E(s,s̄)

E(s) . Thus, for states not observed in our trials (case-i) we assume

self-transitions. For other states (case-ii) we use the “frequentist” approach. Note

that R̂ is a well-defined PDF, and provides the best possible approximation of R
given the available evidence E. Then, our approximate DTMC is M̂ = (S, I, R̂).

Note that M̂ deviates from M� only in its transition probabilities.

3.2 Distribution Definitions

The construction of M̂ described in the previous section does not provide any
insight into how M̂ |= ϕ relates to M� |= ϕ (and thus G |= ϕ) in terms of error.
Note that each possible transition (s, s̄) can be viewed as a Bernoulli trial. Thus,
statistical methods allow us to estimate the error of each individual transition
probability of M̂ . However, understanding how these errors – i.e., the difference
between R and R̂ – affect error in M̂ |= ϕ is not straightforward.

Let M be the set of all DTMCs of the form (S, I, R̃), i.e., M is the
set of all DTMCs that have the same states and initial state as M�.
Given a real number r ∈ [0, 1], let Mr = {M ∈ M | (M |= ϕ) ≤ r} be
the set of DTCMs that satisfy ϕ with probability at most r. Let M =
{Mr | r ∈ [0, 1] ∧ ∀r′ ∈ [0, 1] � r < r′ =⇒ M r ⊂ Mr′}. Note that the elements
of M are strictly ordered by size.

Given evidence E from trials of G, we define the PDF M̂E ∈ Π(M) by the
following cumulative density function (CDF):

CDF (M̂E)(M) = P(M� ∈ M |E) (1)

That is, the CDF of M̂E maps each set of DTMCs M ∈ M to the probability
that some DTMC in M is “correct”, and thus equivalent to M� and G, given
the evidence E. Let dom(M) = {r ∈ [0, 1] | Mr ∈ M }. Next, given M̂E , define

a PDF P̂E ∈ Π(dom(M)) by the following CDF:

CDF (P̂E)(r) = P((M� |= ϕ) ≤ r | E) (2)

Thus, the CDF of P̂E maps r to the probability that G satisfies ϕ with
probability at most r given evidence E. Note that, from (1) and (2), we have:

CDF (P̂E)(r) = P(M� ∈ Mr | E) = CDF (M̂E)(Mr) (3)

We now show how to construct M̂E and P̂E .

Optimizing Robotic Team Performance with Probabilistic Model Checking 141

3.3 Constructing Distributions

To construct M̂E, we define a mapping T : S �→ Π(Π(S)) from states to a PDF
over PDFs of other states to transition to. We use the Dirichlet distribution since
it produces sets of variates that sum to one (i.e., a PDF), and it is a conjugate
prior for the Multinomial distribution [7]. We define T in several steps. First, we
define a prior T 0 to T as:

∀s ∈ S � ∀π ∈ Π(S) : T 0(s)(π) = P(π|αs) = Dirichlet(π|αs)

where αs is a vector of pseudo-counts of prior belief in transition likelihood of
transitioning from s to each state in S. Thus, for each s ∈ S, T 0(s) is a Dirichlet
distribution with parameters αs. In our implementation, we used the union of
the individual robots’ DTMCs created during unit testing as the prior.

Next, recall that E(s, s̄) is the number of times we observe G to move from
state s to s̄ in one time step during our trials. Also, R(s)(s̄) is the probability
of transitioning from s to s̄ in M�. Let cs = (∀s̄ ∈ S : E(s, s̄)) be the vector of
counts of transitions from s to each s̄. Since M� perfectly models G, we have:

∀s ∈ S : cs ∼ Multinomial(∀s̄ ∈ S : R(s)(s̄))

That is, cs is drawn from a Multinomial distribution, which the true dis-
tribution for state s in G. Finally, given the well known relationship between
Multinomial distributions and Dirichlet priors [7], we construct T as the poste-
rior Dirichlet distribution of transition probabilities. In other words:

∀s ∈ S � ∀π ∈ Π(S) � T (s)(π) = P(π|αs, cs) ∝ P(cs|π)p(π|αs)

= Multinomial(cs|π)T 0(s)(π) = Multinomial(cs|π)Dirichlet(π|αs)

= Dirichlet(π|αs + cs)

That is, for any state s ∈ S, T (s) is a Dirichlet distribution with parameters

αs + cs. Next, recall that M̂E ∈ Π(M). We define M̂E using T as follows:

∀M = (S, I, R̃) ∈ M � M̂E(M) =
∏

s∈S

T (s)(R̃(s))

That is, for any M which has a set of states and an initial state which are
the same as M�, the probability of drawing it from M̂E is the probability
of drawing each of its states transition probabilities from the corresponding
Dirichlet distributions in T .

Given M̂E , we still do not know how to construct P̂E , or calculate its statis-
tic measures. Since M is infinite, an exhaustive construction of P̂E is impossi-

ble. Instead, we sample P̂E to generate a vector M̃E of n DTMCs, such that

∀M̃ ∈ M̃E : M̃ ∼ M̂E . More specifically, we have M̃E = (M̃1, . . . , M̃n) such

that for 1 ≤ i ≤ n, M̃i ∼ M̂E = (S, I, R̃i) where ∀s ∈ S � R̃i(s) = πis ∼ T (s) ∼
Dirichlet(αs + cs). That is, we construct each DTMC M̃i by drawing the tran-
sition probabilities for each of its states from the corresponding Dirichlet dis-
tribution in T . The algorithm for drawing variates from Dirichlet distributions

142 S. Chaki et al.

is well known [3]. Finally, given M̃E , we construct the vector of probabilities

P̃E = 〈r1, . . . , rn〉, such for 1 ≤ i ≤ n, ri = M̃i |= ϕ. We compute each ri using

a probabilistic model checker. Our main result is that P̃E is drawn from P̂E , as
expressed in Theorem 2.

Theorem 2. If P̃E and P̂E are defined as above, then P̃E ∼ P̂E.

Proof. We wish to show that each ∀ri ∈ P̃E, ri ∼ P̂E , or equivalently, ∀r ∈
dom(M) � P(ri ≤ r) = CDF (P̂E)(r). This holds because:

P(ri ≤ r) = P((M |= ϕ) ≤ r | M ∼ M̂E)

= CDF (M̂E)({M | (M |= ϕ) ≤ r}) = CDF (M̂E)(M r) = CDF (P̂E)(r)

The last equality follows from (3). This completes the proof.
��

To quantify the error between M̂ |= ϕ and G |= ϕ, we analyze P̃E with the

usual statistical measurements, and determine whether M̂ is a suitable approx-
imation of G. Specifically, for our experiments, we determine the 5th and 95th

percentiles of P̃E to find a 90% credible interval. If this interval is too wide, we
narrow it by performing more trials of G to increase the size of E.

Even for a fixed E, our analysis approximately characterizes the true distribu-

tion P̂E. However, with a sufficiently large number of samples of P̂E , i.e., |P̃E |,
we expect these approximations to approach true values. Since each sample is
obtained by running an automated tool (e.g., prism), as opposed to running a

trial of a physical robot team, it is feasible to construct a sufficiently large P̃E .

4 Experimental Results

We validate our approach on an example representing a demining operation by
a team of communicating Kilobots. Our tools and examples, and instructions
to reproduce our experiments are available at https://db.tt/Wc9tBsNd. All
our experiments were done on a 4 core 3.1GHz i5 machine with 4GB of RAM.
Kilobots are very simple robots. They can communicate with each other within
a very limited range (a few inches) by bouncing infrared signals off the table
they are moving on, and they move by vibrating two motors at different speeds.
They possess no reliable localization.

The Scenario. A mine has been placed in a culvert beneath a road. The culvert is
too small to admit advanced robots, so Kilobots must be used instead. One, two,
or three Kilobots are used as a team of sweepers. Each Kilobot enters the culvert,
traverses it in search of the mine, and returns to the mouth of the culvert for
recovery, and to communicate whether it found the mine. We represent the mine
and the base station at the mouth of the culvert by two (static) Kilobots. We
place sweeper Kilobots immediately adjacent to the base station on deployment.
The mine continually broadcasts a “Mine Here” message, while the base station
initially broadcasts a “Base Here” message.

https://db.tt/Wc9tBsNd

Optimizing Robotic Team Performance with Probabilistic Model Checking 143

Each sweeper behaves as follows: (i) upon hearing the “Base Here” message
for the first time, it begins moving forward; (ii) if it hears no other messages, it
turns around at a predefined timeout (2 minutes); (iii) at any time, if it hears a
“Mine Here” message or “Mine Found” message it begins transmitting a “Mine
Found” message itself; also, if it hasn’t turned around yet, it does so; (iv) if the
base station hears a “Mine Found” message, it begins transmitting a “Mission
Success” message instead; (v) if a sweeper moving backward hears a “Base Here”
or “Mission Success” message, it assumes it is in the recovery zone, and stops.

Note that while each robot in our scenario has the same intent, it has a dis-
tinct behavior due to its motion characteristic and its release time. In other
words, different robots released at the same time would behave differently, and
the same robot released at a different time would also behave differently. More-
over, our approach also allows for different robots to have different intents, and
perform multiple tasks in sequence or in parallel. This would lead to more com-
plex DTMCs and increased verification time. However, in our experience, prism
is able to handle systems with millions of reachable states.

Metrics. We use the following three measures of success: (i) f : the probability
that at least one Kilobot finds the mine (i.e., transmits “Mine Found”); (ii)
s: the probability that the base station knows about the mine (i.e., transmits
“Mission Success”); and (iii) r: the expected number of Kilobots that return to
the recovery zone, irrespective of whether it found the mine or not. Note that
each of these measures provides valuable information about the mission success
that is not supplied by the other two.

Modeling Kilobots. We first reproduced our scenario physically in the laboratory
using actual Kilobots. We ran the scenario 190 times and noted 7 distinct Kilobot
behaviors. Next, we reproduced these behaviors in the VREP simulator by tuning
the Kilobot model parameters appropriately. Subsequently, all our experiments
were done via simulation. This physical-simulation hybrid approach enabled us to
perform as many experiments as needed while grounding our results on observed
behavior of physical Kilobots.

The Kilobot model in VREP has four parameters, each corresponding to the
speed of a motor. To reproduce the observed behavior of a real Kilobot we first
manually tuned them to appropriate values. Each VREP simulation is com-
pletely deterministic. Next, in order to introduce randomness across different
experiments, we modified these parameters at each simulation step to a value
selected from a normal distribution with mean equal to its tuned value and stan-
dard deviation 25. VREP has a sophisticated physics engine, and our approach
produced simulated behaviors that are observably analogous to actual Kilobots.

Constructing Projection DTMCs. We discretized time at 20s units, and space
into a 3 × 8 2-dimensional grid. Since each Kilobot Gi has a maximum turn
around time of 120s (when it times out), it has 7 projections corresponding to
0s, 20s, 40s, 60s, 80s, 100s, 120s. We constructed each projection 〈Mi, tj〉 by
simulating Kilobot Gi 30 times with a pre-programmed turn around time of tj .
Using the results of these simulations as our evidence E, 〈Mi, tj〉 is constructed
as described in Sec. 3.1.

144 S. Chaki et al.

Table 1. Experiment results (3x8)

Team f∗
̂f ˜fμ ˜f5 ˜f95 s∗ ŝ s̃μ s̃5 s̃95 r∗ r̂ r̃μ r̃5 r̃95

3-2-1 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.91 0.99 2.20 2.17 2.17 1.97 2.38
4-6-1 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.96 0.91 0.99 1.67 1.23 1.23 1.14 1.33
4-6-2 1.00 1.00 1.00 1.00 1.00 0.47 0.43 0.43 0.29 0.58 0.83 0.70 0.70 0.55 0.89
5-6-2 1.00 1.00 1.00 1.00 1.00 0.50 0.43 0.43 0.28 0.61 0.83 0.72 0.73 0.53 0.91
5-6-7 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.43 0.29 0.29 0.19 0.38
6-1-7 1.00 1.00 1.00 1.00 1.00 0.93 0.96 0.96 0.91 0.99 1.57 1.23 1.24 1.14 1.35
6-5-7 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.20 0.29 0.30 0.19 0.41
7-3-5 1.00 1.00 1.00 1.00 1.00 0.70 0.83 0.83 0.72 0.92 0.70 0.85 0.85 0.73 0.94
7-3-6 1.00 1.00 1.00 1.00 1.00 0.83 0.83 0.84 0.74 0.92 1.17 1.11 1.12 0.95 1.25
7-6-1 1.00 1.00 1.00 1.00 1.00 0.90 0.96 0.96 0.92 0.99 1.63 1.23 1.24 1.13 1.34

Team Selection. To validate our approach we used teams of 3 Kilobots. Since
each team is specified by a set of Kilobots and their deployment order, there
are 210 such possible teams. For practicality, we validated our approach on ten
randomly selected teams as a representative sample. For each team in the sample,
we conducted two experiments, which we describe now in more detail.

Experiment One: Predictions Using Projections. First, we computed the pre-
dicted values of f , s and r by combining the constructed projections 〈Mi, tj〉 as
described in Sec. 2.4 and verifying the resulting DTMC using prism [9]. These

predictions are denoted f̂ , ŝ, and r̂, respectively and shown in the correspond-
ing column of Table 1. To evaluate the accuracy of these predictions, we also
computed the corresponding “observed values” f∗, s∗ and r∗. Specifically, each
observed value (e.g., f∗) is the average of the corresponding success measure
(e.g., f) over 30 simulations of the corresponding team using VREP. During
each team simulation (e.g., team 5-6-2), Kilobots are introduced to the scene
at 20s intervals in the order specified by the team (e.g., G5 → G6 → G2). The
observed values are shown in the corresponding columns of Table 1. Note that,
in each case, the predicted and observed results are close, indicating that our
approach is sound, and that our assumptions do not distort results significantly.

Experiment Two: Error Quantification. Next, we computed (f̃µ, f̃5, f̃95),
(s̃µ, s̃5, s̃95), and (r̃µ, r̃5, r̃95), which correspond, for each measure, to the mean
5th-percentile, and the mean 95th-percentile of the Dirichlet sampling error es-
timation method described in section 3. Each mean was computed using 200
Dirichlet samples. The results are also shown in the corresponding columns of
Table 1. Note that in most cases, the observed results, e.g., f∗, fall within the

90% confidence interval, e.g., between f̃5 and f̃95.
We also experimented with teams of varying size. The average model checking

times were 1.98s, 2.19s, 4.94s, 10.71s, and 42.20s, for team sizes 2 through 6,
respectively. For teams of size 7, prism ran out of memory on our 4G machine.

5 Conclusion

We presented an approach to analytically construct a team of communicating
Markovian robots that achieves a specific task with quantified probability of

Optimizing Robotic Team Performance with Probabilistic Model Checking 145

success. We first construct a set of Discrete Time Markov Chains (DTMCs) that
each capture a specific “projection” of the behavior of an individual robot. Next,
given a specific team, we construct the DTMC for its behavior by combining the
projection DTMCs appropriately. Finally, we compute the performance of the
team using Probabilistic Model Checking. The best team is selected by repeating
this process for multiple candidates. We also show how to quantify the error in
our results due to finite sampling when constructing the projection DTMCs. We
prove the correctness of our approach formally, and also validate it empirically
on a mine detection task by a team of communicating Kilobots. An important
direction for future work is to extend our approach to non-Markovian systems,
and also to quantify the error due to discretization of time and space.

References

1. V-REP: Virtual robot experimentation platform (2014)
2. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Quantitative Verification

of Implantable Cardiac Pacemakers. In: Proceedings of the 33rd Real-Time Sys-
tems Symposium (RTSS 2012), San Juan, PR, USA, pp. 263–272. IEEE Computer
Society (December 2012)

3. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
4. Ghorbal, K., Duggirala, P.S., Kahlon, V., Ivančić, F., Gupta, A.: Efficient proba-

bilistic model checking of systems with ranged probabilities. In: Finkel, A., Leroux,
J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 107–120. Springer, Heidelberg
(2012)

5. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (1994)

6. Heath, J., Kwiatkowska, M.Z., Norman, G., Parker, D., Tymchyshyn, O.: Prob-
abilistic model checking of complex biological pathways. Theoretical Computer
Science (TCS) 391(3), 239–257 (2008)

7. Huang, J.: Maximum likelihood estimation of dirichlet distribution parameters.
Technical report, Robotics Institute, Carnegie Mellon University (2005)

8. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. In: Robotics and Autonomous Systems (2011)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

10. Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic Model Checking of
Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal
Aspects of Computing (FACJ) 14(3), 295–318 (2003)

11. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. In: IEEE Intl. Conf on Robotics and Automation (ICRA),
p. 6 (2012)

12. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,
Available as Technical Report MIT/LCS/TR-676 (1995)

	Optimizing Robotic Team Performancewith Probabilistic Model Checking
	1 Introduction
	2 Modal DTMC and Verification
	2.1 Modal DTMC
	2.2 Modal DTMC Verification
	2.3 DTMC Projection
	2.4 Combining Projections

	3 Error Quantification
	3.1 Constructing an Approximation
	3.2 Distribution Definitions
	3.3 Constructing Distributions

	4 Experimental Results
	5 Conclusion
	References

