
Davide Brugali Jan F. Broenink
Torsten Kroeger Bruce A. MacDonald (Eds.)

 123

LN
AI

 8
81

0

4th International Conference, SIMPAR 2014
Bergamo, Italy, October 20–23, 2014
Proceedings

Simulation, Modeling,
and Programming
for Autonomous Robots

Lecture Notes in Artificial Intelligence 8810

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Davide Brugali Jan F. Broenink
Torsten Kroeger Bruce A. MacDonald (Eds.)

Simulation, Modeling,
and Programming
forAutonomous Robots
4th International Conference, SIMPAR 2014
Bergamo, Italy, October 20-23, 2014
Proceedings

13

Volume Editors

Davide Brugali
Università degli Studi di Bergamo, Department of Engineering
Viale Marconi 5, 24044 Dalmine, Italy
E-mail: brugali@unibg.it

Jan F. Broenink
University of Twente, Faculty EE-Math-CS
CTIT Institute, Robotics and Mechatronics Group
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: j.f.broenink@utwente.nl

Torsten Kroeger
Stanford University, Artificial Intelligence Laboratory
Stanford, CA 94305-9010, USA
E-mail: t@kroe.org

Bruce A. MacDonald
University of Auckland, Faculty of Engineering
Electrical and Computer Engineering, Science Centre - Mathphysic
38 Princess Street, Auckland 1010, New Zealand
E-mail: b.macdonald@auckland.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11899-4 e-ISBN 978-3-319-11900-7
DOI 10.1007/978-3-319-11900-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014950057

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Robots are versatile machines that are increasingly being used not only to per-
form dirty, dangerous, and dull tasks in manufacturing industries, but also to
achieve societal objectives, such as enhancing safety in transportation, reducing
the use of pesticide in agriculture, helping people with health conditions, provid-
ing companionship, and improving efficacy in the fight against crime and civilian
protection.

Compared to the manufacturing workcell, a public road, a cornfield, a hos-
pital, a home, or a crime scene are open-ended environments, which require
autonomous robots to be equipped with advanced cognitive capabilities, such
as perception, planning, monitoring, coordination, and control in order to cope
with unexpected situations reliably and safely.

In this scenario, the cost of creating new robotics products is significantly
related to the complexity of developing software control systems that are robust,
dependable, and whose correct behavior can be certified. This complexity can be
managed by exploiting system engineering methodologies and tools that build
on the power of software models and domain-specific programming languages to
analyze, design, simulate, implement, test, and deploy complex robotic control
systems.

The series of the International Conference on Simulation, Modeling, and Pro-
gramming for Autonomous Robots (SIMPAR) is organized to foster research in
the above topics. Gathering the most recent works in this field enhances the
reusability of software for robotics and pushes research forward swiftly.

The 2014 event of SIMPAR was held at the “Giovanni XXIII” Conference
Center in Bergamo, Italy during October 20–23. It followed the previous works of
the first SIMPAR 2008 in Venice, Italy, the second SIMPAR 2010 in Darmstadt,
Germany, and the third SIMPAR 2012 in Tsukuba, Japan and provided a forum
for concentrated discussions on the topics of interest.

The number of submitted papers has increased steadily up to 62 for the
SIMPAR 2014 event. Also the paper quality has increased significantly, which
is demonstrated by the 49 contributed papers collected in this book. 41 papers
were presented during regular sessions, while the remaining eight papers were
presented as posters. Each submitted paper received at least two reviews by the
members of a carefully selected international Program Committee.

We also had two impressive plenary talks presented by Raffaello D’Andrea
(ETH Zurich, Swizerland) and Nate Koenig (Open Source Robotics Foundation,
USA). A third plenary talk was planned to be given by Mike Stilman (Georgia
Tech, USA), who passed away following an apparent accident in Atlanta on
May 6th 2014, leaving all robotics community bereft of an emerging leader in
humanoid robotics research.

VI Preface

We want to gratefully thank all Program Committee members and all other
reviewers, supporters, organizers, and volunteers who contributed to this year’s
event of SIMPAR. Without their efforts, it would not be possible to hold this
important conference.

October 2014 Davide Brugali
Jan Broenink

Torsten Kroeger
Bruce MacDonald

Organization

Program Committee

Martin Adams Universidad de Chile, Chile
Hoseok Ahn University of Auckland, New Zealand
Rachid Alami LAAS, France
Monica Anderson University of Alabama, USA
Noriaki Ando AIST, Japan
Marcelo Ang National University of Singapore, Singapore
Soumela Atmatzidou Aristotle University of Thessaloniki, Greece
Ravi Balasubramanian Oregon State University, USA
Kostas Bekris Rutgers University, USA
Spring Berman Arizona State University, USA
Geoffrey Biggs AIST, Japan
Stan Birchfield Clemson University, USA
Jan Broenink University of Twente, The Netherlands
Davide Brugali Università degli Studi di Bergamo, Italy
Zack Butler Rochester Institute of Technology, USA
Mario Campos Universidade Federal de Minas Gerais, Brazil
Stefano Carpin University of California at Merced, USA
Filippo Cavallo Scuola Superiore Sant’Anna, Italy
Heping Chen Texas State University, USA
Ian Chen Open Source Robotics Foundation, USA
Toby Collett Auckland, New Zealand
Nikolaus Correll University of Colorado at Boulder, USA
Anthony Cowley University of Pennsylvania, USA
Mehmet Dogar Massachusetts Institute of Technology, USA
Evan Drumwright George Washington University, USA
Lars-Peter Ellekilde University of Southern Denmark, Denmark
Vlad Estivill-Castro Griffith University, Australia
Alessandro Farinelli Verona University, Italy
David Feil-Seifer University of Southern California, USA
Nicholas Gans University of Texas at Dallas, USA
Luiz M. Garcia Gonçalves Univ. Federal do Rio Grande do Norte, Brazil
Giuseppina Gini Politecnico di Milano, Italy
Antoni Grau Technical University of Catalonia, Spain
Takayuki Kanda ATR, Japan
Hyun Kim ETRI, South Korea
Jaehong Kim ETRI, South Korea
Tomasz Kornuta Warsaw University of Technology, Poland

VIII Organization

Jana Kosecka George Mason University, USA
Tetsuo Kotoku AIST, Japan
Gerhard Kraetzschmar Bonn-Rhein-Sieg University of Applied

Sciences, Germany
Torsten Kroeger Stanford University, USA
Daniel Kubus TU Braunschweig, Germany
Dana Kulić University of Waterloo, Canada
Konrad Ku�lakowski AGH University of Science and Technology,

Poland
Jyh-Ming Lien George Mason University, USA
Dikai Liu University of Technology Sydney, Australia
Bruce MacDonald University of Auckland, New Zealand
Iraklis Markelis Aristotle University of Thessaloniki, Greece
Emanuele Menegatti University of Padua, Italy
Michael Milford Queensland University of Technology, Australia
Issa Nesnas Jet Propulsion Laboratory, USA
Itsuki Noda AIST, Japan
Cyril Novales Université d’Orléans, France
Jason O’Kane University of South Carolina, USA
Sangrok Oh KIST, South Korea
Hong Seong Park Kangwon National University, South Korea
Bruno Patin Dassault Aviation, France
Raquel E. Patiño Escarcina Universidad Católica San Pablo, Peru
Alba Pérez Gracia Idaho State University, USA
Anna Helena Reali Costa Universidade de São Paulo, Brazil
Christian Schlegel Ulm University of Applied Sciences, Germany
Ulrik Page Schultz University of Southern Denmark, Denmark
Dezhen Song Texas A&M University, USA
Domenico G. Sorrenti Universita’ degli Studi di Milano, Italy
Gerald Steinbauer Graz University of Technology, Austria
Serge Stinckwich Institute de Recherche pour le Développement,

France
David Stirling University of Wollongong, Australia
Lydia Tapia University of New Mexico, USA
Flavio Tonidandel Centro Universitario da FEI, Brazil
Jeff Trinkle Rensselaer Polytechnic Institute, USA
Piotr Trojanek Warsaw University of Technology, Poland
Pieter Van Zutven Eindhoven University of Technology,

The Netherlands
Cristina Vicente-Chicote Universidad de Extremadura, Spain
Oskar von Stryk Technische Universität Darmstadt, Germany
Marsette Vona Northeastern University, USA
Ralf Waspe RWTH Aachen, Germany
Uchechukwu Wejinya Michigan State University, USA
Burkhard Wuensche The University of Auckland, New Zealand
Wonpil Yu ETRI, South Korea

Organization IX

Massimiliano Zecca Loughborough University, UK
Hong Zhang University of Alberta, Canada
Cezary Zielinski Warsaw University of Technology, Poland
Uwe Zimmerman KUKA Laboratories, Germany

Additional Reviewers

Baumann, Oliver
Hochgeschwender, Nico
Kim, Doik
Kluth, Jan-Henrik
Lu, Yan
Mobilio, Marco

Muxfeldt, Arne
Raibulet, Claudia
Roop, Partha
Taylor, James
Was, Jaroslaw

Table of Contents

Simulation

Making Time Make Sense in Robotic Simulation . 1
James R. Taylor, Evan M. Drumwright, and Gabriel Parmer

Simulation and HRI Recent Perspectives with the MORSE Simulator . . . 13
Séverin Lemaignan, Marc Hanheide, Michael Karg,
Harmish Khambhaita, Lars Kunze, Florian Lier, Ingo Lütkebohle,
and Grégoire Milliez

A Dynamic Simulator for Underwater Vehicle-Manipulators 25
Olivier Kermorgant

Extending Open Dynamics Engine for the DARPA Virtual Robotics
Challenge . 37

John M. Hsu and Steven C. Peters

Control and Scheduling Co-design for a Simulated Quadcopter Robot:
A Model-Driven Approach . 49

Matteo Morelli and Marco Di Natale

Simulating Human-Robot Interactions for Dialogue Strategy
Learning . 62

Grégoire Milliez, Emmanuel Ferreira, Michelangelo Fiore,
Rachid Alami, and Fabrice Lefèvre

A Simulation Based Architecture for the Development of an
Autonomous All Terrain Vehicle . 74

Gianluca Bardaro, Davide Antonio Cucci, Luca Bascetta,
and Matteo Matteucci

Applying Simulation and a Domain-Specific Language for an Adaptive
Action Library . 86

Jacob Pørksen Buch, Johan Sund Laursen, Lars Carøe
Sørensen, Lars-Peter Ellekilde, Dirk Kraft, Ulrik Pagh Schultz,
and Henrik Gordon Petersen

Simulation Environment for Multi-robot Cooperative 3D Target
Perception . 98

André Dias, Jose Almeida, Nuno Dias, Pedro Lima,
and Eduardo Silva

XII Table of Contents

Combining Complex Simulations with Realistic Virtual Testing
Environments – The eRobotics-Approach for Semantics-Based
Multi-domain VR Simulation Systems . 110

Nico Hempe, Ralf Waspe, and Juergen Rossmann

Modeling

Analysis of Knee-Ankle Orthosis Modelling: An Inverse Dynamics
Approach Using Adaptive Coupled Oscillator . 122

Michael Oluwatosin Ajayi, Karim Djouani, and Yskandar Hamam

Optimizing Robotic Team Performance with Probabilistic Model
Checking . 134

Sagar Chaki, Joseph Giampapa, David Kyle, and John Lehoczky

Modelling and Analysis of a Redundant Mobile Robot Architecture
Using AADL . 146

Geoffrey Biggs, Kiyoshi Fujiwara, and Keiju Anada

Fault Avoidance in Development of Robot Motion-Control Software by
Modeling the Computation . 158

Yury Brodskiy, Robert Wilterdink, Stefano Stramigioli,
and Jan Broenink

Robotic Engineer’s Specifications for a Well-Fitted Model-Driven
Control Architecture for Robots . 170

Éric Moliné, Nicolas Morette, Cyril Novales, and Pierre Vieyres

Programming

High Performance Relaying of C++11 Objects across Processes and
Logic-Labeled Finite-State Machines . 182

Vlad Estivill-Castro, René Hexel, and Carl Lusty

A Survey on Domain-Specific Languages in Robotics 195
Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 207
Sorin Adam, Morten Larsen, Kjeld Jensen, and Ulrik Pagh Schultz

A Proposed Software Framework Aimed at Energy-Efficient
Autonomous Driving of Electric Vehicles . 219

José-Luis Torres Moreno, José-Luis Blanco Claraco, Mauro Bellone,
Francisco Rodr̀ıguez, Antonio Gimènez, and Giulio Reina

Structured Design and Development of Domain-Specific Languages in
Robotics . 231

Sven Schneider, Nico Hochgeschwender,
and Gerhard K. Kraetzschmar

Table of Contents XIII

ROS-I Interface for COMAU Robots . 243
Stefano Michieletto, Elisa Tosello, Fabrizio Romanelli,
Valentina Ferrara, and Emanuele Menegatti

Robot Unit Testing . 255
Andreas Bihlmaier and Heinz Wörn

IMI2S: A Lightweight Framework for Distributed Computing 267
Salvatore M. Anzalone, Marie Avril, Hanan Salam,
and Mohamed Chetouani

Are Middlewares Ready for Multi-robots Systems? 279
Stefan-Gabriel Chitic, Julien Ponge, and Olivier Simonin

Architectures

Declarative Specification of Robot Perception Architectures 291
Nico Hochgeschwender, Sven Schneider, Holger Voos,
and Gerhard K. Kraetzschmar

A Modeling Framework for Software Architecture Specification
and Validation . 303

Nicolas Gobillot, Charles Lesire, and David Doose

Reverse Engineering of Middleware for Verification of Robot Control
Architectures . 315

Ali Khalili, Lorenzo Natale, and Armando Tacchella

An Extensible Software Architecture for Composing Motion and Task
Planners . 327

Zakary Littlefield, Athanasios Krontiris, Andrew Kimmel,
Andrew Dobson, Rahul Shome, and Kostas E. Bekris

A Component-Based Meta-Model and Framework in the Model Driven
Toolchain C-Forge . 340

Francisco J. Ortiz, Diego Alonso, Francisca Rosique,
Francisco Sánchez-Ledesma, and Juan A. Pastor

Methods and Tools

Merging Partially Consistent Maps . 352
Taigo Maria Bonanni, Giorgio Grisetti, and Luca Iocchi

Lower Limb Stiffness Estimation during Running: The Effect of Using
Kinematic Constraints in Muscle Force Optimization Algorithms 364

Roberto Bortoletto, Enrico Pagello, and Davide Piovesan

XIV Table of Contents

On the Benefits of Component-Defined Real-Time Visualization
of Robotics Software . 376

Max Reichardt, Gregor Zolynski, Michael Arndt, and Karsten Berns

A Primate-Inspired Autonomous Navigation Algorithm Using the
Cognitive Mechanism of Mental Rotation . 388

Michael J. Pettinati and Ronald C. Arkin

The Cognitive Interaction Toolkit – Improving Reproducibility of
Robotic Systems Experiments . 400

Florian Lier, Johannes Wienke, Arne Nordmann,
Sven Wachsmuth, and Sebastian Wrede

Enhancing Humanoids’ Walking Skills through Morphogenesis
Evolution Method . 412

Nicolas Jouandeau and Vincent Hugel

Stability Analysis of Densest Packing of Objects Using Partial Order
Representation of Feasible Procedural Sequences . 424

Hiromu Onda

Team Size Optimization for Multi-robot Exploration 438
Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 450
Adam Wolniakowski, Konstantsin Miatliuk, Norbert Krüger,
and Jimmy Alison Rytz

Automatic Verification of Autonomous Robot Missions 462
Matthew O’Brien, Ronald C. Arkin, Dagan Harrington,
Damian Lyons, and Shu Jiang

Probabilistic 2D Acoustic Source Localization Using Direction
of Arrivals in Robot Sensor Networks . 474

Riccardo Levorato and Enrico Pagello

Control and Omni-directional Locomotion of a Crawling Quadruped 486
Douwe Dresscher, Michiel van der Coelen, Jan Broenink,
and Stefano Stramigioli

Embodiment Sensing for Self-generated Zigzag Turning Algorithm
Using Vision-Based Plume Diffusion . 498

Jouh Yeong Chew, Takumi Yoshihara, and Daisuke Kurabayashi

Handling of Asynchronous Data Flow in Robot Perception
Subsystems . 509

Maciej Stefańczyk and Tomasz Kornuta

Table of Contents XV

Systems and Applications

Design of a Healthcare Sensor Managing System for Vital Sign
Measuring Devices . 521

Min Ho Lee, Ho Seok Ahn, Kevin Wang, and Bruce A. MacDonald

Kinesthetic Teaching in Assembly Operations – A User Study 533
Arne Muxfeldt, Jan-Henrik Kluth, and Daniel Kubus

A Constraint Based Motion Optimization System for Quality Inspection
Process Improvement . 545

Nicolò Boscolo, Elisa Tosello, Stefano Tonello, Matteo Finotto,
Roberto Bortoletto, and Emanuele Menegatti

Dealing with Conflicting Requirements in Robot System Engineering:
A Laboratory-Based Course . 554

Luca Gherardi, Davide Brugali, and Andrea Luzzana

Using Augmented Measurements to Improve the Convergence of ICP . . . 566
Jacopo Serafin and Giorgio Grisetti

Design of a Kiosk Type Healthcare Robot System for Older People
in Private and Public Places . 578

Ho Seok Ahn, I-Han Kuo, Chandan Datta, Rebecca Stafford,
Ngaire Kerse, Kathy Peri, Elizabeth Broadbent,
and Bruce A. MacDonald

Erratum

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design
Adam Wolniakowski, Konstantsin Miatliuk, Norbert Krüger,
and Jimmy Alison Rytz

Author Index . 591

E1

Making Time Make Sense in Robotic Simulation

James R. Taylor, Evan M. Drumwright, and Gabriel Parmer

Department of Computer Science, George Washington University, USA
{jrt,drum,gparmer}@gwu.edu

Abstract. Typical dynamic robotic simulators model the rigid body
dynamics of robots using ordinary differential equations (ODEs). Such
software libraries have traditionally focused on simulating the rigid body
dynamics robustly, quickly, and accurately toward obtaining consistent
dynamics performance between simulation and in situ. However, simula-
tion practitioners have generally yet to investigate maintaining temporal
consistency within the simulation: given that simulations run at variable
rates, how does the roboticist ensure the robot’s control software (con-
troller, planners, and other user-level processes) runs at the same rate
that it would run in the physical world? This paper describes an inter-
section of research between Robotics and Real-Time Operating Systems
that investigates mechanisms for addressing this problem.

Introduction

Dynamic robotic simulators are one of the most widely used software tools in the
field of Robotics today. Some of the recent focus on these simulations has been
making them faster (e.g., as with Gazebo in the DARPA Robotics Challenge),
but one ongoing goal for rigid body simulations in general has been greater phys-
ical accuracy. The desire is that the simulations should evince physical behavior
as close as possible to the real world, whether that closeness is measured quan-
titatively (as shown in recent experiments by Vose et al. [8]) or qualitatively
(as can be seen in the unusual behavior observed in rigid “toys” like the Rattle-
back [4]). Clearly, Robotics will benefit as the physical accuracy of these systems
becomes more faithful to reality: planning, optimization, and validation are just
a few areas that can reap substantial improvements with better physical fidelity.

Our recent work [7] has broached an issue that has been safely ignorable for
simulating dynamics for computer gaming and computer animation applications
(the original focus of some popular simulation libraries like Gazebo and ODE):
the temporal consistency between the simulation library and the “user level”
software (controllers, planners, perception loops) for directing the robot. This
issue arises because the simulation software does not simulate at the rate of
“wall clock” time; as a result, the user level software—which may be expected
to feed commands to and pull state from the simulation at roughly the same
rate it would perform those operations on a physically situated robot—can not
be expected to exhibit similar performance in simulation as in situ.

This paper continues investigating the issue of temporally consistent simula-
tion. In addition to the general scheduling mechanisms and accurate timing of

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 J.R. Taylor, E.M. Drumwright, and G. Parmer

a controller interfaced with dynamics that we explored in our previous work,
we have further developed our infrastucture to ensure time consistent sharing of
system resources among multiple controllers and planning processes. Addition-
ally, we use a simple experiment to demonstrate the effect that neglect of this
issue can have on robotic systems.

1 Background

1.1 Conventional Robotic Simulation Paradigm: The Callback
Model

Current simulation architectures leverage a simple model whereby the dynamics
executes for steps of time, and after each step the simulator invokes a call-back
function which defines the planning and control for the system. This function
can access dynamics state and it can actuate the system by adding virtual forces
and torques. Importantly, the callback function can execute for an unbounded
amount of time, without the time in the simulator progressing at all. The im-
plication of this is that a significantly intelligent planner with correspondingly
large computation times will execute on the exact environment it used as input,
thus ignoring planner computation time. If this system were transplanted into a
real environment the physical state of the system would diverge from the plan,
possibly irreparably, by the time such a planner returned a sequence of controls
for the system.

1.2 Simulation Components

Simulators integrate user defined client components together with dynamics li-
braries into a single framework such that a particular scenario may be evaluated.
We define client processes to be the set of controllers and planners evaluated in
such a system. Multiple robots might be simulated, each with sets of client pro-
cesses. Collections of robots and environmental obstacles form a scenario. Each
of the robots has a set of sensors and actuators that are controlled by the client
processes in the system.

1.3 Temporal Requirements

Temporally consistent simulation attempts to ensure temporal consistency be-
tween different software components, and a simulation environment (cf. the no-
tion of consistency for real-time aware, distributed shared memory accesses in
Singla et al. [6]). The goal of temporally consistent simulation is not adhering ex-
ecution to real-time, but rather ensuring consistency between the virtual progress
of the dynamics, and the computational progress of the robotics software.

Real-time operating systems (RTOS) could be used to provide the same func-
tionality as our temporally consistent simulation design on Linux, but would
surprisingly not provide many additional assurances. The focus of RTOSes is

Making Time Make Sense in Robotic Simulation 3

often to control and bound latency for I/O. As temporally consistent simulation
replaces traditional I/O with interfaces for coordinator and dynamics interac-
tions, such RTOS facilities are superfluous.

A difficulty in providing a temporally consistent simulation infrastructure is
that the timing requirements for the client processes vary significantly, and that
they require accurate timing from the system. A system’s sensors and actua-
tors often have a natural frequency at which they provide environmental data
or take actuation commands. Correspondingly, controllers are often executed
at a rate closely tied to those sensor and actuator frequencies (i.e. their rates
of input/output), and thus execute in a periodic manner. Specifically, they are
activated by the OS everyN milliseconds, at which points they do their computa-
tion, and block waiting for the next periodic activation. Note that if a controller
overruns its computation, it might finish execution only after an activation.
This is often called missing a deadline, and can result in instability. In con-
trast, planners often execute irregularly, do as much computation as is required,
and provide their output as fast as they can, but not on a tight schedule as
with controllers. These computations are often called best-effort. Planners often
also provide higher-level sets of commands to the controllers via Inter-Process
Communication (IPC) channels.

In a temporally consistent simulation, the activations of periodic controllers
must be as time-accurate as possible, and the computation for the planners
must not interfere adversely with the controller’s ability to meet deadlines. The
most difficult timing requirements, however, derive from the interactions between
client processes and the external world, and between client processes. If the
simulated time within the dynamics gets too far ahead of the amount of time
that the client processes have executed, then sensor data will reference data “in
the future”. Alternatively, if the simulated time in the dynamics lags behind
computation, then actuator commands will be sent to stale dynamics state.
Comparably, the planner and controllers must be temporally kept in sync for
the same reason. This is at the core of temporal consistency: all aspects of the
simulation environment must proceed at rates that are realistic, and in sync.

1.4 System Scheduling toward Temporally Consistent Simulation

In attempting to address temporally consistent simulation, this research requires
an infrastructure that can control not only the rate of progress of a dynamics
engine (which is often provided naturally by it’s API), but also of the exe-
cution progress of multiple client process computations. Put another way, the
temporally consistent system infrastructure requires control over the scheduling
of the system. Unfortunately, there is a semantic gap between what scheduling
facilities the kernel of the system provides (often a black-box), and what is re-
quired by the simulation architecture. Many previous research projects in the
area of operating systems have attempted to solve this problem. For example,
[5] and [3] provide system infrastructures that are extensible, enabling normal
user-level processes to define their own scheduling policies. However, they both
require drastic system changes to provide these infrastructures. Alternatively,

4 J.R. Taylor, E.M. Drumwright, and G. Parmer

[2] and [1] attempt to create an environment in existing systems in which some
of the timing characteristics can be controlled by user-level code. Our research
continues with this trend by creating a multi-process simulation environment in
which the coordinator plays the role that the kernel traditionally takes: it con-
trols system scheduling (i.e. the interleaving of different client processes, and the
dynamics), and communication. However, it is designed to execute at user-level
using only the facilities and APIs provided by a POSIX-compliant OS such as
Linux. Thus, users need not modify their underlying systems at all.

The coordinator must address three main challenges: (1) how can Linux’s
POSIX-like API be leveraged to control scheduling and communication; (2)how
can abstractions be provided to client processes so that they read sensor data,
send actuator commands, and communicate via IPC normally; and (3) how can
client computation be scheduled alongside the dynamics engine’s virtual time?

2 OS Facilities for Temporally Consistent Simulation

2.1 Timing Facilities

The goal of the temporally consistent system is to ensure that for a number
of client processes, and the dynamics, time progresses consistently for all. A
key concept for temporally consistent systems is the maximum deviation in this
progress, which we define in the following. We denote each of the client processes
and dynamics as {p0, . . . , pn} ∈ P . pi ∈ P has executed (or had simulated time
progress) an amount of time eti by time t within a given simulation infrastructure.
Each periodic process blocks waiting for its next activation, thus essentially
moving its own computational progress forward by the amount of time it waits,
wt

i . This wait time is common for controllers that activate periodically, but don’t
use all execution time until their next activation. Thus we define the temporal
drift of the system, Δ, as such:

Δ = max
∀t
{max
∀pi∈P

(eti + wt
i)− min

∀pi∈P
(eti + wt

i)}

Intuitively, Δ is the maximum deviation in temporal progress between any two
parts of a simulation. A perfectly temporally consistent system is one in that
Δ = 0, while a traditional callback-driven simulator with a planner that always
executes for more time than a step in the dynamics has Δ =∞ as t→∞.

Commodity hardware features timing facilities that are based on somewhat
granular units of time. For example, timer ticks provide preemptive execution
to prevent system starvation from a single process, which occur at a minimum
fixed interval (for example, 100 or 1000 times a second). POSIX-based operating
systems provide APIs for accessing timers and execution accounting facilities.
Thus, the granularity for executing processes on modern systems is somewhat
large. If this is bounded by 10ms (the timer inter-arrival on our system), then
Δ ≥ 10ms. Thus our temporally consistent system attempts to minimize Δ
within the confines of the hardware and OS provisions. However, we have found

Making Time Make Sense in Robotic Simulation 5

that the choice of the OS facility used for this timing has a large impact on the
accuracy of timing in the system.

Accounting for Execution Time. To track the execution progress of a client pro-
cess, traditional OS facilities (such as those used in the time and top programs)
have a very large granularity, and an unbounded error. Instead of relying on
these very coarse grained mechanisms, we use the cycle-accurate time stamp
counter register that is available on most processors. It is a 64 bit value that
counts the number of cycles elapsed in the processor, and is accessible on x86
and x86-64 processors through the rdtsc instruction. To maintain accurate time
using rdtsc, the system must (1) know the processor speed; (2)maintain a con-
sistent processor speed (or, alternatively use “invariant time stamps” in modern
processors); and (3) all client processes and the coordinator must remain active
on only one, shared processor core. For (1), we read the processor speed from
the /proc file-system, for (2), we disable all power saving and throttling fea-
tures, and for (3), we confine the measured process to run on a single processor
core using the sched setaffinity(.) system-call family. Thus our system can
cycle-accurately account for the execution time (eti) of each client process.

Accounting for Wait Time. To track the wait-time (wt
i) for a process, our system

provides an API similar to setitimer which enables recurring, periodic activa-
tions. Controllers use our API to schedule periodic activations, and after their
computation for a specific activation is complete, they become inactive waiting
for the next activation. The system tracks this elapsed wait time until the process
is again executed. Notably, this wait time does signal some temporal progress
for those controllers, even though it does not include computation time, thus
why we consider it in the calculation of Δ.

Granularity of Preemption. For any scheduling system to control the execution
of unknown computation (that might, for example, contain an infinite loop),
preemption is required. A significant flaw of the callback model is that it executes
the planner non-preemptively – the simulator cannot stop the planner when it
has executed for too long. The hardware provides timer interrupts as its basic
mechanism for preemption. POSIX provides a number of facilities for notification
of timer interrupts. Our coordinator uses signals associated with the timer to
receive these notifications. When the hardware causes a timer tick, the OS vectors
it into a user-level signal that switches away from the previously executing client
process (e.g., planner), and to the coordinator, where scheduling decisions can
be made. This, combined with the accurate execution time explained above,
provides the temporally consistent system with the main facilities it requires to
manage timing.

2.2 System Scheduling

The default scheduling policy in Linux is SCHED OTHER that makes no guarantees
on when any thread in the system will make progress. In contrast, it also includes
two real-time policies for first-in-first-out, non-premptive, fixed priority schedul-
ing, and preemptive (round-robin), fixed priority scheduling—SCHED FIFO and

6 J.R. Taylor, E.M. Drumwright, and G. Parmer

SCHED RR, respectively. These policies are predictable in that if two processes
both want to run on the CPU, the higher priority one will always be chosen to
execute. A process can be set to be scheduled using any of these policies via the
sched setparam system call.

Context Switching. We take advantage of the predictable behavior afforded by
these kernel scheduling policies to implement our own scheduling policy in the
coordinator. The coordinator itself always executes at the highest priority. The
client process it wants to switch to will be given the next highest priority. To
finish the switch to that process, the coordinator will block waiting for timer
interrupts, actuator commands, blocking notifications, and IPC (blocking on
multiple sources in POSIX can be done with select). If any of these are de-
tected, it will wake, and immediately activate (as it is highest priority). When-
ever the coordinator executes, it makes a scheduling decision about which client
process/dynamics should run next to optimize for a minimal Δ.

Process Blocking. In attempting to override the scheduling policies of the kernel,
the coordinator must consider the case when a client process blocks. For sim-
plicity, in this work, we assume that the client processes only block waiting for
timeouts (periodic controllers), or waiting for sensor data. Without accounting
for blocking, the coordinator might lose control of the system: if the process
that is supposed to be executing instead blocks, then the kernel will take over
and choose the next highest thread to execute, which might not be in the time
consistent system, thus invalidating the coordinator’s execution accounting.

2.3 Interprocess Communication

Communication between client processes (e.g., the planner sending commands
to the controller), sensor data requests, and actuator commands require the
coordinator to mediate the communication. Each client process is given access
to two pipes that are used to (1) block the process waiting for an event (e.g,.
IPC, sensor data), or (2) send a notification to the coordinator that the process
is sending data (e.g., IPC, actuator commands). The coordinator is awakened
by such notifications and can decide where to copy the data (it is in shared
memory) or how to manipulate the dynamics.

3 Time Consistent Simulator Design

The time consistent simulator must manage multiple conflicting goals. On the
one hand, the timing requirements of controllers require the meeting of dead-
lines (i.e., an accurate activation time), and on the other, temporal consistency
is required to have a clear mapping between actual system execution, and sim-
ulated execution. As the simulated environment must support multiple robots
and varied software infrastructures with rich communication structures, it must
be highly flexible. This section covers the implementation of the infrastructure,
and details how it integrates with the OS facilities from Section 2.

Making Time Make Sense in Robotic Simulation 7

3.1 Hierarchical Scheduling and Threads

To handle the required generality, we use a hierarchical scheduling framework [5].
Such systems define a tree of schedulers. The leaves of the tree are client pro-
cesses, and the dynamics. When activated, the root scheduler determines from
its children which to execute (i.e. it makes a scheduling decision), and does so
using a polymorphic method invocation to dispatch the child. If the child is
a leaf, then the dispatch function will either (1) use the context switch mecha-
nism described in Section 2.2, or (2) make an invocation into the dynamics to
step the simulated time forward. However, as the system is hierarchical, the dis-
patched child could be a scheduler itself. The key insight here is that each of the
schedulers in the hierarchy can define different scheduling policies.

Scheduling Policies. There are two policies we use in the system, one to main-
tain minimal temporal consistency, and the another to do strict priority-based
scheduling. As a general rule, the schedulers close to the root are concerned with
temporal consistency, while those that represent an actual scheduler on a robot
are concerned with maintaining accurate timing for the system controllers, thus
placing them at a higher priority than the planners. Though more scheduling
policies could be added, we found that these are sufficient.

Example Use of Hierarchical Scheduling. The system set-up we use in Section 4
includes a dynamics engine and two robots, one with both a planner and a
controller, and the other with a simple controller. All of the three threads for
the robots, and the dynamics must be scheduled. Thus, we organize the system
with a single root scheduling for consistent timing between each robot, and the
dynamics. The robot with both the planner and the controller has each under a
scheduler with the fixed-priority policy, with priority going to the controller. The
hierarchical arrangement of schedulers and the dynamics and client processes is
essential to properly schedule given the different goals of different parts of the
system, and to enable the simulation of complex, possibly multi-robot systems.

Maintaining Proper Accounting in the Hierarchy. Just as scheduling decisions
follow a chain from the root to a leaf, the accounting for execution time and
progress must go from leaves down toward the root, so that scheduling decisions
can be made at each scheduler based on an accurate rendition of how much tem-
poral progress all of its children have made. For this, we aggregate the execution
times of all children, unless they are all blocked waiting for sensor data, in which
case we determine that child’s progress to be the minimum of those block times.

3.2 Coordinator Design

The coordinator is the heart of the system and orchestrates all execution. The
hierarchical scheduling policy is executed in the coordinator, and when a dispatch
is made to a client process, the coordinator goes through the following steps:
(1) swap the priorities of the previously active client process, and the one we
want to switch to (Section 2.2), (2) take a time-stamp reading (Section 2.1),
and (3) block the coordinator (on select) waiting for an event (timer tick or

8 J.R. Taylor, E.M. Drumwright, and G. Parmer

request for sensor data). As the coordinator (which is highest priority) blocks,
the system naturally switches to the new process, thus completing a context
switch. Unblocking the coordinator (and subsequent blocking of the active client)
is accomplished by writing notifications to the pipes that will wake the main
coordinator thread of execution. Client processes explicitly notify the coordinator
of servicing needs and scheduling demands by sending read, write, and idle

notifications including timestamp to the coordinator which result in yielding by
the client process and rescheduling per their scheduling policy. The coordinator
also implements a real-time monotonic timer via timer create that periodically
sends a timer notification including timestamp. The timer notification ensures
the coordinator interrupts a long running (typically best-effort) client process
such that all client processes (especially periodic) are given fair access to the
processor on a regular basis and no client process can starve all others.

Table 1. Process Priority Assignment

Priority Level Process Description

pc �0 coordinator highest real-time priority for the OS
pc − 1 �1 active client the currently dispatched client
pc − 2 �2 block detection reserved for a block detection process
pc − 3 �3 waiting clients all other waiting (or blocked) clients

Coordinator Initialization. System boot-up is a delicate process that we detail
here. Upon initialization, the coordinator is bound to the CPU, set as a real-
time process with highest priority �0 (Table 1), opens pipes for IPC, opens the
shared memory, intializes the dynamics system, creates all client processes, and
initializes the timer. Creation of a client process involves wrapping the process
with a client thread, forking a new process, scheduling with the system as a
real-time process and with real-time priority �3, binding to the same CPU as
the coordinator, disabling console interaction, and launching the executable file
via execl. Console interaction is disabled after the fork by forwarding stdin,
stout, and stderr to /dev/null to minimize blocking system calls within these
processes, which might disturb the coordinator’s control over timing. When a
client process is dispatched, the coordinator raises the client system priority
from �3 to �1, and yields to the dispatched child by blocking via select. When
the client process publishes any notification to the coordinator, the coordinator
unblocks, preempts the client process, and lowers the client system priority from
�1 to �3.

3.3 Client Process

A client process is an external main function program that must provide facili-
ties for opening the shared buffer, for sending read, write, and idle notifications
on prescribed channels, and for executing its own computation code. A client
process must be preregistered with the simulation such that it is linked to the

Making Time Make Sense in Robotic Simulation 9

corresponding dynamic body, is described as a controller or planner, is classi-
fied as either periodic or best-effort, and has IPC facilites prepared. Forking
the coordinator and executing the external program, inserts the external pro-
gram into the process space of the coordinator as a child process and inherits
the established IPC channels. Notifications of process reads indicate requests
for simulation state (e.g., reading sensor data). The coordinator services these
reads using shared memory to pass data. Client process writes correspond to
either a controller sending commands to actuators, which are correspondingly
interpreted to manipulate dynamics state, or they correspond to a planner send-
ing the plan to the controller via the coordinator. Finally, client processes send
idle notifications to the coordinator to yield until the next activation (e.g., for
periodic controllers).

4 Experimental Validation

Our experiments aim to illustrate the performance discrepancy between systems
using callback functions and our time consistent system. The experiments have
been designed to reflect our experience with building software for both simu-
lated and physically situated robots; this decision results in a few discrepancies
between the time consistent and callback-based systems that will be noted below.

Our experimental scenario uses a predator-prey scenario with two identical
“space ships” (i.e., rigid bodies moving freely in SE(3) via application of forces).
The ships are constrained to move within a cubic region of space; when a ship
attempts to move out of this region, a spring-like penalty force pushes it back
toward the free region.

4.1 Predator and Prey Behavior

The prey is driven by a simple control policy, which enacts either a random walk
(we save the seed so that we can reproduce the walk across trials) or a fleeing
behavior, depending on the distance of the predator. The prey flees by moving
directly away from the predator using limited force.

The predator uses kinodynamic planning to chase the prey by exploiting the
latter’s deterministic behavior when the predator gets sufficiently close. Indeed,
given ample planning time, the predator should be able to plan to intercept the
prey by using the prey’s deterministic movement model and an inverse dynamics
model (that determines the requisite forces to achieve a target acceleration).

Planning and Control. We instituted our own kinodynamic planning mecha-
nism which applies controls, integrates its models of the predator and prey for-
ward in time, and finds a plan that brings the predator closer to the prey. Our
initial efforts used OMPL, but the inherent multi-threaded nature of the library
and its use of wall-clock time for determining when the planner should termi-
nate confounded our system’s efforts to schedule the planning process. Using
wall-clock for process timing assumes that the process will not be scheduled-out,

10 J.R. Taylor, E.M. Drumwright, and G. Parmer

so the planning time parameter in running OMPL in the context of a real-time
system can only be considered an idealized upper bound. The planner is allowed
to execute for a maximum time (1.0s) and the resulting plan is not executed
beyond a maximum duration (0.1s); beyond this point the open loop execution
of the plan by the predator tends to lead to it becoming dynamically unstable.

The planner is called differently on the time consistent and callback-based
systems. On the callback-based system, the planner is called only when all of the
commands from a previous plan have been executed (or the plan has become stale
by going over the maximum allowable duration). The time consistent system calls
a planner in a manner analogous to operation on a real robot: (1) before a plan
arrives, the predator executes “no-op” commands (i.e., it applies no force and
no torque); (2) the planner attempts to find a plan (the predator continues to
execute “no-op”s at this time); (3) when a plan is found, the predator begins
executing the plan and immediately calls the planner to begin planning again;
(4) the planner keeps executing that plan until the sequence of commands is
complete or the planner notifies the controller that a new plan is available.

The predator controller uses a composite feedforward (i.e., the planned com-
mands) and negative-feedback controller to account for error between its current
state and the desired outcome. The prey uses a simple control policy only.

4.2 Time Consistent System and Callback-Based-Systems

The time consistent system was built on top of an otherwise unmodified version
of Moby. For comparison we used two callback-based systems, “vanilla” Moby and
Gazebo/ODE. Each simulation was run with a 0.01s dynamics time step, a max-
imum planning time of 1.0s, a planning step size of 0.01s, and both controllers
running at a frequency of 100Hz. Our experiments were run on Linux kernel
3.2.0 (“vanilla” Ubuntu 12.04) using a 2.80GHz Intel Xeon quad-core processor.

4.3 Experimental Specifications

All scenarios start in the same configuration with the predator and prey halted
and separated by ten meters and a flee triggering distance of five meters. Scenar-
ios were simulated for twenty seconds of simulation time, and each experimental
trial consisted of running the scenario with identical random seed for the prey
using the three systems: Gazebo, “vanilla” Moby, and modified Moby (the time
consistent system).

4.4 Experimental Results

The results of our experiments, depicted in Figure 1, show that the simulations
based on the callback model yield virtually identical statistical behavior while
the time consistent simulation exhibits dissimilar behavior. Because the sim-
ulation state is frozen during planning in the callback model simulations, the
predator is consistently able to plan from its current state to the current state

Making Time Make Sense in Robotic Simulation 11

of the prey, which allows it to maintain close proximity at nearly all times. The
statistical distributions for the callback-based systems are centered within the
flee triggering distance with a maximum distance equal to the initial distance.
In the time consistent simulations, the predator is able to approach the prey
for only short durations and the statistical distribution is centered more closely
to the starting distance and exhibits high variance. Animated renderings of the
simulations show that the predator tracks the prey very closely in the Gazebo

and “vanilla” Moby simulations while the predator generally undershoots or over-
shoots the prey’s position in the time accurate system.

Fig. 1. Histogram showing the instantaneous distances between predator and prey over
ten trials (2,000 samples per trial). Systems based on the callback model are effectively
able to plan while the predator and prey are frozen in time, while the time consistent
system must plan and act in real time. Consequently, the predator is able to stay much
closer to the prey in the systems based on the callback model.

The predator in the callback-based systems is able to maintain much smaller
distances to the prey solely because the predator’s planner is able to execute
proportionally for much longer without the danger of plans becoming stale. At
the end of 20 simulated seconds, the planner in the traditional callback-based
systems consumed on average 188 seconds, thus yielding Δ = 168.01 seconds.
The ratio of planner execution time (1.0s) to planner frequency (0.1s) indicates
that the planner runs for 10 times longer per second than the simulated time pro-
gresses and approximates Δ = 10t. In contrast, Δ = 0.003 seconds for the time
consistent system; though Δ is non-zero (due to intrinsic hardware limitations),
its value is independent of the time that the simulation runs.

In a follow-up experiment, we measured the overhead of our components for
enforcing temporal consistency. For a single trial, the overall system ran twenty
seconds of simulation time in a real-time of 21.22 seconds during which the

12 J.R. Taylor, E.M. Drumwright, and G. Parmer

system spent 0.42 seconds coordinating, 20.21 seconds running planners and
controllers, and 0.59 seconds stepping dynamics. From this result, we estimate
our framework adds 2% of overhead, which we argue is acceptable.

5 Future Work

For future work, we will investigate augmenting our system to increase time
accounting accuracy by detecting unconstrained blocking system events (which
most non-real-time software triggers) and client process unblocking events, which
will allow us to better support existing libraries like OMPL without requiring
modifications to the libraries themselves. To take full advantage of current system
architectures, we will also scale the coordinator scheduling system to utilize
multiple cores and multiple processors. We will support simulations for which
time does not proceed monotonically (like those that use adaptive integration).

Acknowledgements. Thisworkwas partially supported byNSFCMMI-110532.

References

1. Anderson, J.H., Mollison, M.S.: Bringing theory into practice: A userspace library
for multicore real-time scheduling. In: Proc. IEEE Real-Time and Embedded Tech-
nology and Applications Symp (RTAS), pp. 283–292 (2013)

2. Aswathanarayana, T., Niehaus, D., Subramonian, V., Gill, C.: Design and perfor-
mance of configurable endsystem scheduling mechanisms. In: Proc. IEEE Real-Time
and Embedded Technology and Applications Symp. (RTAS), pp. 32–43 (2005)

3. Ford, B., Susarla, S.: Cpu inheritance scheduling. In: Proc. USENIX Symp. on
Operating Systems Design and Implementation (OSDI), pp. 91–105 (1996)

4. Mirtich, B.: Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California, Berkeley (1996)

5. Parmer, G., West, R.: HiRes: A system for predictable hierarchical resource man-
agement. In: Proc. IEEE Real-Time and Embedded Technology and Applications
Symp. (RTAS) (2011)

6. Singla, A., Ramachandran, U., Hodgins, J.: Temporal notions of synchronization
and consistency in beehive. In: Proc. ACM Symp. on Parallel Algorithms and Ar-
chitectures, SPAA 1997, pp. 211–220. ACM, New York (1997)

7. Taylor, J.R., Drumwright, E.M., Parmer, G.: Temporally consistent simulation of
robots and their controllers. In: Proc. ASME Intl. Design Engr. Tech. Conf. and
Comput. and Inform. in Engr. Conf., Buffalo, NY (2014)

8. Vose, T., Umbanhowar, P., Lynch, K.M.: Friction-induced velocity fields for point
parts sliding on a rigid oscillated plate. Intl. J. of Robotics Res. (June 2009)

Simulation and HRI Recent Perspectives

with the MORSE Simulator

Séverin Lemaignan1, Marc Hanheide2, Michael Karg3, Harmish Khambhaita4,
Lars Kunze5, Florian Lier6, Ingo Lütkebohle7, and Grégoire Milliez4

1 CHILI Lab., EPFL, Lausanne, Switzerland
2 Centre for Autonomous Systems, University of Lincoln, UK

3 IAS, Technische Universität München, Germany
4 LAAS/CNRS, Université de Toulouse, France

5 Intelligent Robotics Lab., University of Birmingham, UK
6 CITEC, Bielefeld University, Germany

7 Machine Learning and Robotics Lab., Universität Stuttgart, Germany

Abstract. Simulation in robotics is often a love-hate relationship: while
simulators do save us a lot of time and effort compared to regular deploy-
ment of complex software architectures on complex hardware, simulators
are also known to evade many of the real issues that robots need to man-
age when they enter the real world. Because humans are the paragon
of dynamic, unpredictable, complex, real world entities, simulation of
human-robot interactions may look condemn to fail, or, in the best case,
to be mostly useless. This collective article reports on five independent
applications of the MORSE simulator in the field of human-robot in-
teraction: It appears that simulation is already useful, if not essential,
to successfully carry out research in the field of HRI, and sometimes in
scenarios we do not anticipate.

1 Introduction

The use of simulators for human-robot interaction (HRI) encompasses a variety
of use-cases, from prototyping through evaluation to anticipatory simulation at
runtime. It however suffers from a specific integration problem: Simulation in
HRI requires to model robots in all their complexity plus a mean of representing
and interacting with human agents. We therefore believe that an important
stepping stone for a wider use of simulation in HRI is the availability of an
integrated, easy-to-use framework that can encompass all currently important
use-cases, and that provides an integration interface for developers and end-users
of HRI simulation. In particular, we feel that it must be both easy to install
and use, and offer adequate domain abstractions to facilitate development and
integration. This paper presents how recent work using the Modular OpenRobots
Simulation Engine [2] (MORSE, figure 1) attempts to address this challenge.

We will first review the range of current use-cases for simulation in HRI,
then introduce MORSE with a focus on its HRI specific features, and finally
demonstrate and discuss MORSE’s versatility through several case studies. The

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 13–24, 2014.
c© Springer International Publishing Switzerland 2014

14 S. Lemaignan et al.

Fig. 1. Simulation and HRI: A PR2 and a human avatar in MORSE

case studies also illustrate the collective nature of this article: We report on
contributions and experiences in human-robot interaction simulation from five
unrelated projects, conducted by different people in different organizations, only
sharing the MORSE simulator as common simulation platform.

HRI and Simulation

Applications of Simulation in HRI. In the HRI literature, several distinct
goals for the use of simulation can be discerned. Without claim to complete-
ness, we categorize them into 1) prototyping, 2) human modeling, 3) interactive
simulation, and 4) anticipatory simulation.

The most well-known use-case is probably prototyping: The use of a simulator
to reconstruct and run experiments in a simulated target situation prior to real-
world evaluation. Apart from convenience, reasons to do so include simulation
of unsafe situations (e.g. navigation in narrow spaces [18,9] or crowds [6]), and
exploration of edge cases (e.g. humans not paying attention [10,5]).

Human modeling is one way of realizing human agents in simulation. [3]
present for example a pedestrian model which has been evaluated against a
large-scale database of recorded human movements. When detailed motion or
other actions (such as speaking) is required, cognitive models have often been
used [19], and recently also in HRI [22]. It is probably safe to say that such
models are still far from general, but already quite useful for specific situations.

A problem with these approaches is the significant up-front effort required for
modeling. Therefore, some research has explored the use of game engines in what
we call interactive simulation: a real human controls a simulated human avatar
interactively. While not fully automated, it allows reliable capture of interaction
data for later analysis. This has been used for a long time in tele-operation
settings [24] and also more recently for so-called “crowd-sourcing” work [1].

Simulation and HRI Recent Perspectives with the MORSE Simulator 15

A very different use of simulation is anticipatory simulation. Here, a simulator
is used at runtime, to be able to quickly explore the likely consequences of robotic
actions. This uses simulation engines mainly to support spatial computations,
e.g. to compute social metrics such as walking comfort [9] or proxemics [7]. The
general goal is to enable the system to choose an action based on these metrics.

We believe it is clear that these use-cases benefit from each other. Particularly
prototyping requires models, which could be manually specified, learned from
real-world data, or learned interactively through the simulator.

Simulators for HRI. Softwares used for HRI simulation are currently fairly
diverse, and can be distinguished by their use-cases. Prototyping work often uses
“standard” robot simulators such as USARSim [14] (commonly used for rescue
robotics applications but also beyond), or Gazebo [11] (though Gazebo’s human
agent support is currently limited) and MORSE [2].

In contrast, work in models or more advanced use-cases such as interactive
or anticipatory simulation currently uses custom software – this is true for all
of the papers cited in the previous sections at least. The pedestrian modeling
community seems to share some tools, e.g. the work by Treuille et al [23] is
known to have been re-used, but it has no connection to robot simulators.

Both standard robot simulators and pedestrian simulators use fairly coarse
human models. In contrast, work in the Embodied Virtual Agent (EVA) com-
munity usually provides higher-level functionality, such as simulated emotion
dynamics, behavior generation based on action primitives, conversational dia-
logue systems, and up to cognitive simulations. However, integrating these into
a coherent system with an acceptable interface remains challenging [4].

As stated before, we think that the integration of these diverse functionalities
into standard robot simulators would be an ideal next step, making specialized
tools available to a much wider audience, and thus likely also identifying new
avenues for improvements.

HRI and the MORSE Simulator

All five projects that are presented in this article rely on the domain-independent
MORSE simulator as simulation platform. MORSE is an open-source tool devel-
oped for academic robotic research with contributions from over 15 institutions
worldwide. It extends the Blender Game Engine, a 3D engine which features
shader-based 3D rendering and physics simulation (Bullet physics engine).
This allows for semi-realistic simulation of complex environments. The MORSE
components (sensors and actuators) exchange data with the robotics software
via middleware bindings (Software In The Loop architecture). Four middlewares
designed for robotics are currently supported, including ROS and YARP, as well
as a generic socket-based protocol. This design aims at providing a seamless ex-
perience when switching back and forth between the simulator and the physical
robot. Standard robotic platforms, actuators and sensors (more than 50 com-
ponents) are provided and enable fast creation of simulation scenarios, while
custom components and behaviors can be added via simple Python scripts.

16 S. Lemaignan et al.

MORSE also introduces a concept of abstraction levels: sensors and actua-
tors may expose several levels of abstraction, corresponding to different level
of realism. For instance, users may choose if the odometry sensor returns only
a curvilinear distance, a dX, dY, dZ differential vector, or the absolute position
of the robot (integrated odometry). This allows users that are testing low-level
components to do so, while users working at higher abstraction levels (typically
in HRI) do not have to run full robotic software stacks (and thus, benefit from
a lighter environment) and can work in a more deterministic environment. This
feature can be finely controlled, on a per-component basis.

For HRI applications, MORSE provides a human avatar that can be fully con-
trolled (displacement, gaze, grasping of objects, interactions with the environment
like turning lights on, opening drawers, doors...) from a first-person-shooter per-
spective. This enables the researcher to quickly setup and test human-robot inter-
actions with a tele-operated human model, hence with realistic human behaviors.
As presented in [13], the human avatar can be controlled using a Kinect-like de-
vice. The same avatar can also be programmatically controlled by external scripts,
like any robot in MORSE.With standardMORSE actuators like the waypoint ac-
tuator, the researcher can for instance pre-define paths that the human avatar will
follow in a simulated environment.

2 HRI Simulation: Five Scenarios

To illustrate how simulation can support research in HRI, we present in the next
sections five case-studies. The first three scenarios, Situation Assessment for HRI
and Simulated Feedback, An Expectations Framework for Domestic Robot Assis-
tants and Preliminary Testing of Human-Aware Navigation Planner illustrate
the typically use-case for simulation: rather complex virtual environments are
created where human presence plays a central role, and HRI algorithms are
tested in a convenient and repeatable way. Note that, while we introduce here
simulation-only scenarios, they all are test-cases of experiments that have been
conducted on real robots: simulation is used here to support real-world deploy-
ments.

The fourth scenario, Data Acquisition through Automatic Scene Generation
shows how simulation is used as an alternative source of input to train robots to
behave in human environments, and the last scenario, Automated Execution of
Prototype HRI Experiments, presents how the simulator can be used to provide
automatic testing of human-aware behaviors, fully integrated to the software
development workflow. Each of the presentations follow the same structure: we
first introduce the scenario, we then highlight how simulation has been leveraged
and its benefits, and we finally mention some of the shortcomings of the tool.

2.1 Situation Assessment for HRI and Simulated Feedback

When studying human-robot interaction, understanding the environment inwhich
agents will interact is a key issue. In this first application, MORSE provides

Simulation and HRI Recent Perspectives with the MORSE Simulator 17

Fig. 2. On the left side, the MORSE environment; on the right side, the same envi-
ronment, as perceived by the robot in the SPARK situation assessment module

a virtual environment that we use to harness situation assessment algorithms
(performed by a software called SPARK [17], for SPAtial Reasoning and Knowl-
edge) that also include human-centered perspective taking. The robot updates
its knowledge in SPARK using its own position, human position and objects
seen through abstracted, symbolic cameras provided by MORSE (so-called se-
mantic cameras). In this particular scenario (figure 2), the human is sitting in a
couch and ask the robot to bring specific objects that may be in another room
(Pick-Place-Carry task).

Benefits of the Simulation. The direct benefits of relying on MORSE for the
development of the situation assessment algorithms is the low-cost of deploy-
ment (manual testing on physical systems is labour-intensive), as well as the
repeatability of the experimental conditions, important to assess the algorith-
mic improvements. Also, relying on MORSE effectively supports collaboration
between the partners involved in this project (MaRDi project1): our partners are
also using MORSE simulation to test their software and collect data with the
same environment in their laboratory, where they focus on dialog processing.
They can train their dialog system using MORSE feedback to test the robot
behaviors [16].

2.2 An Expectations Framework for Domestic Robot Assistants

In this scenario, an apartment is simulated in which a domestic service robot is
living together with a person (figure 3). A PR2 robot is controlled via ROS and
the Cram reactive plan language, which is used on several other real robots.
The robots’ duty is to observe the person performing different activities and
detect unexpected situations based on the validation of different types of expec-
tations [8]. The detection of such unexpected behavior can help future domestic
service robots to better assess situations and adapt their actions to human be-
havior.

Benefits of the Simulation. The use of the MORSE simulator enabled us to set
up a large testbed by reusing the real robot control layer via the ROS middleware

1 http://mardi.metz.supelec.fr

http://mardi.metz.supelec.fr

18 S. Lemaignan et al.

Fig. 3. A simulated apartment with a domestic service robot and a person

and easy-to-generate unpredictable human behaviors using the human component
of MORSE. Setting up of such an apartment in a real-world setting, together with
a suitable sensor setup and a reliable robot control, would not only introduce huge
costs but would also be a time-consuming task which can distract researchers from
their actual research focus. The use of the simulated scenario enables us to gain
many insights into the problem domain in a scenario that would not been possi-
ble within our project, while the algorithms were eventually validated on the real
robot, inside a smaller real-world environment.

The human component of MORSE enabled us to test and validate our ap-
proach dynamically in a variety of situations. Since it can be controlled in real-
time like in a 3D computer game while at the same time, a robot can be simulated
by state-of-the-art components, it is possible to generate a multitude of situa-
tions on which the robot has to react. This greatly supported our project to gain
insights about our approach, detect weak points and make improvements.

2.3 Preliminary Testing of Human-Aware Navigation Planner

To evaluate the improvements in the human-aware navigation planner developed
at LAAS we carried out a user study. An experiment was set up, where a robot
encounters a human crossing its path (at 90◦ angle to each other) while the robot
is moving forward to its navigation goal. For preliminary testing of the planning
algorithm, our lab area was simulated in MORSE. This simulated environment
was extensively used to review the algorithm before it was deployed on the PR2
robot to carry out real-world experiments (whose results have been published
in [21]).

Benefits of the Simulation. Development of human-robot interaction algorithms
often require iterative process of prototyping, testing and reviewing. Setting up
and experiment and testing of robot navigation algorithms especially for large
environments involving humans is time consuming and is subject to availability
of lab resources while working in a shared lab between different groups of re-
searchers. Full support of the PR2 robot model among others, availability of a

Simulation and HRI Recent Perspectives with the MORSE Simulator 19

human model, and a convenient way of setting up experiment environment using
Blender software were the most prominent features for choosing MORSE as the
simulation environment for these experiments. Since MORSE already provides
ROS bindings for the PR2 robot and human pose it requires minimal effort to
switch between real-world and simulated environments.

As a consortium member in the EU project SPENCER2, we plan to develop
novel algorithms for robot navigation in large populated environments, e.g. air-
ports. In the future we plan to use MORSE to simulate such large environment
with multiple human models. This will certainly push the limits of simulation
for HRI and hopefully provide new benchmarks.

2.4 Data Acquisition through Automatic Scene Generation

This fourth study proposes a different perspective on the role of simulation in
HRI: simulating credible human environments to train systems to appropriately
react to them: autonomous mobile robots that are to help and assist people in
care homes, households, and at other workplaces have to understand how human
activities affect the dynamics of objects in the environment. That is, robots need
to know, when, where and how people manipulate objects and how they arrange
and structure them in space. In the context of the STRANDS project3 we aim for
robots that understand the long-term, spatio-temporal relationships of objects
and activities of people. In the scenario described here, we looked in particular
at learning qualitative spatial relations of objects on office desks. As an accurate
classification and pose estimation of objects on real-world office desks is still a
challenging and difficult task for current robot perception systems we acquired
a data set of object arrangements using the MORSE simulator. For this, we first
bootstrapped an object statistics from manually labeled images of real office
desks, and secondly, automatically generated a set of physically possible desktop
scenes (figure 4). Based on the generated data we learned relational models of
object arrangements on desks. The learnt models enabled a robot to predict the
position of an object given a landmark. We employed these models to effectively
guide a simulated and a real robot in object search tasks and evaluated its
performance [12].

Benefits of the Simulation. First, the automatic scene generation (made easy by
the use of Python to “program” the simulation scenes) and annotation of object
arrangements in simulation is useful for the acquisition of large amounts of data
over short periods of time. The generated data enabled us to design, implement
and to evaluate our methods for predicting object locations before having a real-
world data set in place. Secondly, the generation of object arrangements can
increase the variability of scenes in human-robot experiments in general. Given
the dynamics of objects in the real world it is important not to oversimplify
human-robot experiments in simulated environments but make them as realistic
as possible (in a controlled way). Finally, in future work, we plan to use the

2 http://www.spencer.eu
3 http://www.strands-project.eu

http://www.spencer.eu
http://www.strands-project.eu

20 S. Lemaignan et al.

Fig. 4. Automatically generated scenes of office desks

generated desktop scenes in web-applications to crowdsource Natural Language
descriptions of object arrangements and commands for robots from Internet
users.

2.5 Automated Execution of Prototype HRI Experiments

In human-robot interaction studies, robots often indicate behavioral variabil-
ity that may influence the experiment’s final outcome. However, manual test-
ing on physical systems is usually the only way to prevent this, but remains
labour-intensive. To tackle this issue, we introduced early automated prototype
testing [15] that consists of: a simulation environment, a software framework for
automated bootstrapping of prototype systems, execution verification of system
components, automated result assessment of experiments and a Continuous Inte-
gration (CI) server to centralize experiment execution. In our setup we bootstrap
and execute a simulated prototype system on a CI server and assess the results
in each run. In this particular scenario, a robot must report the location of a
virtual human in a domestic environment. Both the robot and the human are
moving in the scene and meet in front of a table.

The goal of this simulation setup is to incrementally decrease the level of ab-
straction until a satisfactory/sufficient degree of “realism” to make an assump-
tion about real world behavior, is reached — in an integrated and continuous
approach. In order to achieve this goal, we make use of two essential MORSE
features: a) the human avatar that can be steered (set waypoints) interactively
via middleware and b) a semantic camera that extracts the location of a specific
entity in the simulation environment. The semantic camera is attached to the
robot. If the human enters the robot’s field of view, the location is reported and
sent via middleware. After each CI run, the recorded movement trajectory of the
human avatar is assessed (plotted) and archived. We have explicitly chosen to
simplify the extraction of the location of the human to acquire a ground truth
in the first iterations of the simulation. As an example, a system component
(running outside of the simulation) that is intended to classify whether there is

Simulation and HRI Recent Perspectives with the MORSE Simulator 21

a human in front of a robot, by fusing multiple sensory inputs, can be evaluated
based on this ground truth. Subsequently, we are able to exchange/add diverse
virtual sensors, i.e. add a simulated laser scanner to build a person hypothesis for
instance, thus gradually develop, assess and implement more complex scenarios.

Benefits of the Simulation. First of all, the interactive (remotely controllable)
human avatar is useful to include a dynamic, yet not too realistic, human compo-
nent in this setup. Secondly, the level of abstraction of different sensors, i.e. se-
mantic camera versus virtual laser scanner enables us to gradually raise the level
of complexity/realism and test different algorithms based on abstract and almost
realistic sensor inputs. Lastly, the chance to deploy MORSE in a Continuous In-
tegration environment, i.e. automatically run simulation scripts, generates an
additional benefit.

3 Discussion: Towards Unification

While the five scenarios that we present here implement different use-cases, they
actually cover similar approaches, while relying on the same simulator: study 2.1
shows how MORSE can be thought as a computation engine, 2.2 exploits the
human agent in a computer game style, 2.3 uses MORSE for assessing and
tuning the performance of algorithms, and scenario 2.4, while somewhat unique,
still share similarities with Garrell et al., in that a model for object positions
is trained on real-world data. Finally, the use-case presented in 2.5 proposes a
different approach, with a focus on continuous testing, and can arguably be seen
as the natural progression of using simulators for evaluation, extended here to
cover HRI scenarios.

From this perspective, one may consider that the experiments recently con-
ducted in the MORSE community around the simulation of HRI applications
constitute the first steps towards building an unifying platform for HRI simula-
tion, with two additional features: its programmability (simulation scenarios are
Python scripts) and its concept of abstraction levels that provides an effective
way to focus simulation on a particular problem by hiding irrelevant simulation
artifacts.

These diverse use-cases support the idea that simulation is not only actually
useful as a support tool for development of human-robot applications, but also
enables new research techniques in HRI. Continuous Integration illustrates this
point: while HRI experiments are considered as notoriously difficult to deploy,
test and repeat, we show here how a simulator may enable automated testing of
more and more complex scenarios, including long-term interaction.

Several issues are also raised and must be clearly stated. In its current state,
the MORSE simulator provides only an incomplete model of the environment.
Sounds/speechmodels are incomplete, and humanmodels do not yet provide good
enough accuracy, both at the level of the user interface (some actions can not be
done with the interactive avatar), and at the simulation level (poor/missing walk-
ing cycles for instance). Finally, the overall convenience of MORSE for HRI could
be improved, for instance by providing more assets (furnitures, objects) related

22 S. Lemaignan et al.

to human environments. These issues, that are mostly technical and could be ad-
dressed at the software level, show that simulators dedicated to HRI application
still need tomature. In that regard, the next section presents some of the directions
that are currently researched.

The Next Steps

Several noteworthy developments related to HRI are currently shaping up in
the MORSE community. We outline below some of them, that suggest new
applications that we believe are relevant to HRI research.

A first line of investigation relates to the procedural generation of a variety of
realistic human models. MakeHuman is such an open-source tool that gener-
ates anatomically, kinetically and visually realistic human models. This software
has a tight integration with Blender, and MORSE is soon to provide as well
seamless integration with MakeHuman models. This will bring a wide range of
characters to feed the simulations, and extend testing environments with gen-
der/size/age/skin color variances.

Besides being able to control a human avatar in simulation programmatically
and deterministically, the possibility to automatically generate believable and
realistic crowd behaviors is being explored. In this context, the objective is to
adopt in MORSE technologies previously developed for computer games to gen-
erate trajectories that control the MORSE avatars. Based on the idea of social
forces, the work of [20] is to be adapted to provide believable and realistic move-
ment of several humans within MORSE. This implementation would provide a
more realistic and dynamic environment to study human-robot spatial interac-
tion and to provide a testbed for human-aware motion planning, to give two
exemplary use-cases.

Another line of investigation looks at embedding the researcher into the robotic
simulation. The purpose of such efforts is to provide a life-like immersive simu-
lation environment that would allow at the same time ecologically valid human
behaviors and repeatable, lightweight interaction settings. In [13], we presented
how a human agent could interact with a virtual robot through a deictic interface
based on a Kinect. Two distinct projects are currently looking into extending this
approach, one (at Bielefeld University) aiming at integrating emerging Virtual
Reality devices (like Occulus Rift) with MORSE, the other one (MarDI project)
developing a virtual reality cave, that include 360◦ projections and spatialized
sound.

Also often suggested, the on-line deployment of HRI simulations could effi-
ciently support large scale HRI studies. The simulator and specific interaction
scenarios would be embedded in a dedicated webpage and users would control
a human avatar from their webbrowsers. This would potentially enable collec-
tion of large behavioral datasets. While MORSE development in that direction
has yet to start, Breazeal et al. presented an initial attempt in that direction
in [1] and the Gazebo simulator features a limited WebGL client that act as a
proof-of-concept of on-line robotic simulation.

Simulation and HRI Recent Perspectives with the MORSE Simulator 23

4 Conclusion

These examples and ideas hopefully give a picture of the lively landscape of
the “Simulation for HRI” community, that has built itself around the MORSE
simulator. In the introduction, we mentioned how simulation in HRI had to ad-
dress in parallel constraints stemming from robotic simulation and virtual agent
simulation, while remaining a lightweight, easy-to-use tool. We are certainly not
yet there, much remains to be imagined, refined and achieved. Yet MORSE is
already deployed in several institutions as a platform that efficiently supports
research in human-robot interaction. As an open-source project, we strive for
new use-cases and ideas, and warmly welcome researchers that would like to join
the effort.

Acknowledgment. This research has received funding from the European
Union (FP7/2007-2013) under grant agreements FP7-600623 (STRANDS) and
FP7-600877 (SPENCER).

References

1. Breazeal, C., DePalma, N., Orkin, J., Chernova, S., Jung, M.: Crowdsourcing
human-robot interaction: New methods and system evaluation in a public envi-
ronment. Journal of Human-Robot Interaction 2(1), 82–111 (2013)

2. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P.,
Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE.
In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS,
vol. 7628, pp. 197–208. Springer, Heidelberg (2012)

3. Garrell, A., Sanfeliu, A.: Model validation: Robot behavior in people guidance mis-
sion using DTM model and estimation of human motion behavior. IEEE Transac-
tions on Intelligent Robots and Systems (IROS), 5836–5841 (2010)

4. Gratch, J., Rickel, J., André, E., Cassell, J., Petajan, E., Badler, N.: Creating in-
teractive virtual humans: Some assembly required. IEEE Intelligent Systems 17(4),
54–63 (2002)

5. Guzzi, J., Giusti, A., Gambardella, L.M., Theraulaz, G., Di Caro, G.A.: Human-
friendly robot navigation in dynamic environments. In: IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 423–430. IEEE (2013)

6. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded
environments. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 981–986. IEEE (2010)

7. Hoffman, G., Breazeal, C.: Effects of anticipatory perceptual simulation on prac-
ticed human-robot tasks. Autonomous Robots 28(4), 403–423 (2010)

8. Karg, M., Kirsch, A.: An expectations framework for domestic robot assistants. In:
Conference on Advances in Cognitive Systems, pp. 77–92 (2013)

9. Kidokoro, H., Kanda, T., Brscic, D., Shiomi, M.: Will I bother here? – A robot
anticipating its influence on pedestrian walking comfort. In: 8th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI), pp. 259–266. IEEE
(2013)

24 S. Lemaignan et al.

10. Knepper, R.A., Rus, D.: Pedestrian-inspired sampling-based multi-robot collision
avoidance. In: 21st IEEE International Symposium on Robot and Human Interac-
tive Communication (RO-MAN), pp. 94–100. IEEE (2012)

11. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE

12. Kunze, L., Kumar, K., Hawes, N.: Indirect object search based on qualitative spa-
tial relations. In: IEEE International Conference on Robotics and Automation
(ICRA), May 31-June 7 (2014)

13. Lemaignan, S., Karg, M., Mainprice, M., Kirsch, A., Alami, R.: Human-robot in-
teraction in the MORSE simulator. In: 7th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). Late Breaking Reports (2012)

14. Lewis, M., Wang, J., Hughes, S.: USARSim: Simulation for the study of human-
robot interaction. Journal of Cognitive Engineering and Decision Making 1(1),
98–120 (2007)

15. Lier, F., Lütkebohle, I., Wachsmuth, S.: Towards automated execution and evalu-
ation of simulated prototype HRI experiments. In: 9th ACM/IEEE Conference on
Human-Robot Interaction (HRI). Late Breaking Reports (2014)

16. Milliez, G., Ferreira, E., Fiore, M., Alami, R., Lefèvre, F.: Simulating human-robot
interactions for dialogue strategy learning. In: Brugali, D., Broenink, J., Kroeger,
T., MacDonald, B. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 62–73.
Springer, Heidelberg (2014)

17. Milliez, G., Warnier, M., Clodic, A., Alami, R.: A framework for endowing interac-
tive robot with reasoning capabilities about perspective-taking and belief manage-
ment. In: Proceedings of the 23rd IEEE International Symposium on Robot and
Human Interactive Communication (2014)

18. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A human aware mobile
robot motion planner. Transactions on Robotics 23(5), 874–883 (2007)

19. Sun, R.: Cognition and multi-agent interaction: From cognitive modeling to social
simulation. Cambridge University Press (2006)

20. Szymanezyk, O., Duckett, T., Dickinson, P.: Agent-based crowd simulation in air-
ports using games technology. In: Nguyen, N.-T. (ed.) Transactions on CCI VIII.
LNCS, vol. 7430, pp. 192–213. Springer, Heidelberg (2012)

21. Kruse, T., Khambhaita, H., Kirsch, A., Alami, R.: Evaluating directional cost
models in navigation. In: 9th ACM/IEEE Conference on Human-Robot Interaction
(HRI), Bielefeld, Germany (2014)

22. Trafton, G., Hiatt, L., Harrison, A., Tamborello, F., Khemlani, S., Schultz, A.: Act-
R/E: An embodied cognitive architecture for human-robot interaction. Journal of
Human-Robot Interaction 2(1), 30–55 (2013)

23. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on
Graphics (TOG) 25, 1160–1168 (2006)

24. Wang, J., Lewis, M., Hughes, S., Koes, M., Carpin, S.: Validating USARsim for use
in HRI research. Human Factors and Ergonomics Society Annual Meeting 49(3),
457–461 (2005)

A Dynamic Simulator

for Underwater Vehicle-Manipulators

Olivier Kermorgant

ICube Laboratory, Université de Strasbourg, France
kermorgant@unistra.fr

Abstract. In this paper we present a dynamic simulator for interven-
tion autonomous underwater vehicles. Prototyping and testing of such
robots is often tedious and costly, and realistic simulation can greatly
help validating several aspects of the project. In order to benefit from
existing software, the presented system is integrated with ROS, through
the Gazebo dynamic simulator, and the underwater image rendering
UWSim. The whole approach allows realistic rendering of dynamic multi-
robot simulation, with contact physics, buoyancy, hydrodynamic damp-
ing and low-level PID control. This paper details the modeling choices
that are done and exposes how to build its own AUV model. Integration
with other ROS programs is exposed, and a simulation shows an example
of behavior during a black box recovery mission.

1 Introduction

A strong trend in underwater robotics is the use of autonomous underwater
vehicles instead of the classical Remotely Operated Vehicles and maned sub-
mersibles. Risk and cost are highly reduced, as it is never easy to deploy a team
on a surface vessel or operators in a submersible. However, experimentation with
AUV’s is very difficult, because of the environment and the nature of the ve-
hicle. Small experiments can be carried in water tanks, for example low-level
control and basic prototyping, but this already requires space and resources.
Higher-level experiments like navigation, waypoint following, seabed mapping
or sensor-based control are designed to be carried in open environments, which
involves high costs, human resources and are highly time consuming. Further-
more, in most autonomous underwater experiment the researchers do not have
full knowledge of what is happening underwater, which is another difficulty dur-
ing early development stages.

For these reasons, simulators have been developed in order to help prototyp-
ing AUV control and design. They allow having a full real-time access to all data
during an experiment, and thus make it possible to greatly improve the AUV be-
fore going into the real experiments. A survey of AUV simulator has been carried
in 2008 [6]. Since then, the robotic community got used to the ROS framework
[2] which acquired its own AUV simulator, called UWSim [8]. This simulator
has been used extensively in the Trident project, and renders realistic images

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 25–36, 2014.
c© Springer International Publishing Switzerland 2014

26 O. Kermorgant

(a) Gazebo view. (b) UWSim view.

Fig. 1. Rendering comparison between Gazebo (a) and UWSim (b). osgOcean allows
UWSim to render automatically water color, visibility, floating particles and other
underwater characteristics.

through OpenSceneGraph1 (OSG) and osgOcean2. OSG is an open source 3D
graphics application, while osgOcean was developped to render realistic under-
water images in OSG. Fig. 1 gives an example of comparison between classical
and underwater-oriented rendering. Embedded cameras, basic sonar and other
AUV sensors are supported, and multiple underwater or surface vehicles can be
present in the same simulation, which allows carrying experiments that would
be very difficult in the real environment.

A drawback still present in the current state of the art is the absence of
dynamic AUV simulation. Indeed, UWSim is only a kinematic simulator, with
an external dynamic module that has to be coded in Matlab and only handles
single-body vehicles. It is thus limited to kinematic control in the case of inter-
vention AUV’s (I-AUV), that carry a robotic arm. Several works have been using
UWSim to show advanced whole-body control schemes [1,4], but the simulations
lack realism. On the other hand, the ROS community is used to the Gazebo sim-
ulator [5], that was designed mostly for ground robots. This simulator handles
dynamics, contact physics and is very versatile through its plugin-based design.
A good example of Gazebo extension is the recent Hector Quadrotor package
[7] that proposes quadrotor UAV simulation. However, as seen in Fig. 1a the
rendering is of course far less satisfactory for underwater environments.

The purpose of this paper is to present an integration between Gazebo and
UWSim, in order to achieve both dynamic and visually realistic I-AUV simu-
lation. In this work we focus on the low-level dynamics, as higher-level control
schemes or navigation tasks can already be implemented through the numerous
ROS packages. The proposed simulator, called free-floating Gazebo3, aims to

1 http://www.openscenegraph.org
2 http://code.google.com/p/osgocean
3 https://github.com/freefloating-gazebo

http://www.openscenegraph.org
http://code.google.com/p/osgocean
https://github.com/freefloating-gazebo

AUV Dynamic Simulation 27

be flexible, letting each user specifying the characteristics of his own (I-)AUV.
A typical scenario would be to use CFD software or water tank experiments
to estimate the hydrodynamics coefficients of the vehicle. This parameters can
then be used in the proposed simulator in order to allow real-time simulation of
navigation or sensor-based missions, which leads to a good compromise between
computation cost and realism compared to pure kinematics simulators.

The paper is organized as follows. In Section 2 the simulated dynamics are de-
scribed together with their implementation in the robot model. Section 3 presents
the low-level PID control that is included in the simulator, allowing to control
the I-AUV in position, velocity or effort depending on the controller design. The
integration with other programs such as high-level control is then exposed in
Section 4. Finally, an experiment is detailed in Section 5, showing the recovery
of a black box.

2 Description and Simulation of a Submerged Object

The simulation is carried through two separate Gazebo plugins:

– A world plugin that simulates the overall buoyancy direction and water sur-
face, together with the water current. The current may be varying but is
assumed to be the same in the whole environment.

– A model plugin that handles low-level control through thruster effort (vehicle
body) or joint torque (embedded arm).

We first describe the overall simulated dynamics before going into implementa-
tion details.

2.1 Dynamic Model

Gazebo performs dynamic simulation and takes as inputs the forces and torques
that acts on a body. Through plugins, it is possible to add any kind of effort
and thus to consider an hydrodynamic model. In this section we describe the
dynamic model of a robot link and the approximations that are carried in the
implementation.

We denote p the pose of a robot link expressed in the world frame, and v the
velocity screw expressed in the local frame. In this case, the general form of the
state-space dynamic model of the link yields [3]:

Mv̇ = G(v)v + d(v) + τ g + τu + τ e (1)

ṗ = Jv (2)

where the parameters are defined as:

– M is the inertia matrix. It is the sum of the rigid body inertia matrix Md

and the added inertia matrix Ma due to the fluid. Besides of the mass that
can be measured directly, the values of Md and Ma are usually determined
empirically. The error on Ma can be quite large and we will not consider
this matrix in the model.

28 O. Kermorgant

– G(v) represents the Coriolis and centrifugal forces. It is also the combination
of the corresponding dynamic Gd and hydrodynamic Ga matrices, that are
computed from the inertia matrices. For the same reason as Ma, the matrix
Ga is considered null.

– d(v) is the hydrodynamic damping force, or parasitic drag. Its values are also
usually poorly known, but this effect cannot be ignored in the underwater
case.

– τ g is the combination of the gravity and the buoyancy forces and induced
torques. In most vehicles, the center of gravity and the center of buoyancy
are vertically aligned in order to produce a keel effect that stabilizes the roll
of the vehicle.

– τu represents the forces and torques that are added by the user. In our
case, we consider additional forces through several thrusters that can be
placed on the AUV body. No other kind of motors (for example fins) are
considered. For the links related to the robotic arm, the applied torque and
forces correspond to the joint efforts.

– τ e regroups the other forces and torques applied to the robot link. This
corresponds to the interactions with other robot links or through contact
points with other objects, which are modeled by the Gazebo simulator.

– J is the transformation matrix between the world frame and the link frame.

Because of the usual modeling uncertainties and the low velocity of the vehicle,
the added inertia and Coriolis forces are not taken into account. All additional
efforts related to the hydrodynamic effects are considered into the damping force
d(v), which is a quadratic function of the velocity between the robot link and
the water velocity:

d(v) = −k�|v − J−1vc|(v − J−1vc) (3)

where k expresses the damping coefficients and vc = (vc, 0) is the water velocity
expressed in the world frame and has null angular values.

The same modeling is used for non-actuated objects that may be present in
the simulation. A free-floating buoy or an object lying on the seabed are also
subject to buoyancy and hydrodynamic drag, and a robot that interacts with
such objects will have to cope with the corresponding force. We now detail the
implementation of the given model.

2.2 Implementation

World Plugin for Hydrodynamics. The water velocity vc and the buoyancy
direction are taken into account in a world plugin, The Gazebo simulator sub-
scribes to a ROS topic that gives the intensity and direction of the water current.
It is thus possible to have the current vary if needed. The buoyancy direction is
of course opposed to the gravity, and becomes null as the vehicle goes above the
surface. A Gazebo world file is given and handles this plugin.

AUV Dynamic Simulation 29

We use additional tags in the URDF4 to handle buoyancy and damping related
to a given link or object. This allows giving the position of the center of buoyancy
with regards to the link frame, together with the compensation coefficient that
indicates the percentage of gravity that is compensated. In most I-AUV this
coefficient is slightly greater than 1, meaning that without external effort the
vehicle tends to come to the surface. Here is an example of these additional tags:

<buoyancy>

<compensation>1.01</compensation>

<origin xyz= ".5 0 .2"/>

<limit radius=".5"/>

<damping xyz="40 80 80"/>

</buoyancy>

The <limit> tag indicates where the buoyancy force begins to decrease when
approaching the water surface. In I-AUV simulation we are mostly interested
in controlling the vehicle when it is entirely underwater, therefore no complex
computation are carried to handle the surface approach: the buoyancy force
applied to a given link simply decreases to zero when the link is near the surface.

Model Plugin for Thruster Control. Thrusters are also defined in the
URDF. For each thruster the maximum effort is given, together with the map-
ping between the thrust direction and the body frame:

<link>base_link</link>

<bodyCommandTopic>body_command</bodyCommandTopic>

<jointCommandTopic>joint_command</jointCommandTopic>

<!-- for each thruster, map to XYZ+RPY and maximum effort -->

<thruster>

<map>-1 0 0 0 0 ${-body_width/2}</map>

<effort>30</effort>

</thruster>

It is thus possible to simulate thruster saturation and to handle it in the control
law. For now all thrusters are assumed to be fixed on the same link, which is
defined as base link in the given example. This tag is read by the model plugin
to allow low-level control. In the given example, we see that the Gazebo simulator
will listen to thruster forces on the body command topic, and to joint efforts on
the joint command topic. These efforts can be generated from a high-level force
controller, or more usually from the low-level controller that is included in the
simulator. We now detail the implementation of this controller.

3 Low-Level PID Control

In this section we describe the PID controller of the AUV simulator. Because of
the numerous uncertainties on the dynamic model, it is very tedious to design

4 Universal Robot Description File.

30 O. Kermorgant

Fig. 2. Cascaded PID, here in position control. The position PID outputs a velocity
setpoint that is then followed with the velocity PID.

Fig. 3. Parallel PID, here in velocity control. Both the position and the velocity PID’s
output the desired effort.

a AUV advanced force controller. The usual approach is to have a high-level
controller that generates position or velocity setpoints for the body and the arm,
and a low-level PID controller that ensures the given setpoints are followed.

General Design. A independent ROS node handles the global PID controller,
which is implemented as a set of parallel or cascaded controllers depending on the
user choice. The two configurations are detailed in Fig. 2 (cascaded) and Fig. 3
(parallel). p∗ and v∗ correspond to the desired position and velocity of a joint
value or a body linear or angular direction. p̂ and v̂ represents the estimation of
the position and of the velocity, coming from the sensors or from an estimation
algorithm. The velocity PID is the same in both configuration, but the position
PID outputs the velocity setpoint in cascaded mode, and the effort in parallel
mode. Dynamic Reconfigure5 allows real-time gain tuning, and a configuration
file is used to store the tuned gains. A ROS service is used to switch between
position and velocity control, which are defined independently for the body and
the arm.

Anti-windup and Body Thrusters Mapping. The maximum velocities and
efforts that are given in the URDF are used for anti-windup inner loops in each
PID. In particular, the maximum thruster efforts are mapped to the body di-
rections in order to get the actual controllable directions and their associated
maximum effort. No PID are instanciated for non-controllable directions (typi-
cally roll, but sometimes also pitch and sway). The position setpoint of the AUV
is given in the world frame, while the velocity setpoint are given in the vehicle
frame. The several PID outputs represent the desired wrench τ ∗

u to apply to the
AUV body. This desired wrench is then mapped to the thruster efforts τ ∗

t in
order to apply the saturation, and mapped back to the actual wrench τu to be
applied in Gazebo:

5 http://wiki.ros.org/dynamic_reconfigure

http://wiki.ros.org/dynamic_reconfigure

AUV Dynamic Simulation 31

τu = T.τ t = T.sat(τ ∗
t) = T.sat(T+τ ∗

u) (4)

where T is the mapping matrix between the body directions and the thrusters
and T+ is its Moore-Penrose pseudo-inverse. Another possible strategy in case
of thruster saturation is to scale all thruster efforts instead of only applying the
saturation:

τ u = T.
nt

min
i=1

τmax
i

τ∗i
τ ∗
t (5)

where nt is the number of thrusters and τmax
i is the maximum effort of thruster

i. The real-time load of the thrusters is available for logging or high-level control,
as we will see in Section 5. We now detail the integration of the simulator with
Gazebo, UWSim and higher-level control nodes.

4 Integration

In this section we detail the interactions between the I-AUV simulation in
Gazebo, the PID controller, the UWSim visualization and other potential higher-
level controllers. First the file integration is mentioned as it is necessary to syn-
chronize the Gazebo and UWSim description files. We then expose and detail
an example of graph of nodes.

4.1 File Synchronization

Gazebo and UWSim both have their own approach to describe the robot model,
additional moving objects and the world terrain. As UWSim is only a kinematic
simulator, the URDF used to describe the robots are usually simpler that the
Gazebo ones, that contains all the inertial and collision-related data. On the
opposite, the scene file, used to describe the whole world setup in UWSim,
contains all information about the considered simulation while the same data is
separated in several files when using Gazebo. In this section we briefly expose
the synchronization script that helps building lesser-information files from higher
ones.

The starting point is the UWSim launchfile that contains the UWSim scene
file, that describes the whole setup. This allows retrieving the list of robots
URDF files and moving objects, their starting position and the terrain 3D mesh
that is used. The URDF files may already exist or need to be generated from
existing xacro files, that are used in Gazebo. All starting positions are found in
the UWSim scene file, which allows generating a Gazebo model spawner: this
ensures that the same objects will be present at the same position in Gazebo and
UWSim. Finally, for now UWSim and Gazebo do not use the same convention for
file pathes. The pathes are thus adapted on the fly when generating or updating
missing files. With such synchronization, an experiment can first be carried only
in UWSim with kinematic control for simplicity and debugging, then with the
dynamic simulator and low-level PID loops to have a realistic behavior. We now
detail the interactions between the several ROS nodes in a typical simulation.

32 O. Kermorgant

Fig. 4. Auto-generated graph of nodes (round-shaped) and topics (rectangular)

4.2 Node Interactions

This section details the interactions between the simulation node, integrated
through plugins in Gazebo, and the other nodes of a typical I-AUV simulation.
The graph of nodes is represented in Fig. 4. We can see all moving objects
have their own namespace. Here /g500arm5e is the robot namespace and re-
groups all nodes and topics related to its low-level control, while /blackbox is
related to a moving black box. Moving objects are considered as non-actuated
robots, thus have their own namespaces. The gazebo node subscribes to the
/gazebo/current topic, which allows defining and modifying the water current.

The main controller is called /main control. It reads body and joint positions
from the corresponding topics. In this simulation these values are the true ones
and come directly from Gazebo. Water current, as well as body and joint posi-
tion setpoints are generated. These setpoints are handled by the pid control

node, which generates the joint effort joint command and the body wrench
body command. These topics are read by Gazebo in order to apply the corre-
sponding forces and torques to the vehicle and its arm.

As we can see on the graph, UWSim only receives data in order to visualize
the current pose of the I-AUV and of the black box. Still, an embedded camera
is simulated in UWSim and the generated images could be used in the main
controller to perform visual servoing as shown in [4].

We now expose the simulation results.

5 Experiments

In this section we show an example of behavior of a black box recovering mission.

Experimental Setup. The considered I-AUV is the Girona 500 [9], equipped
with a 3-degrees of freedom robot arm mounted with a hook on the end-effector.
The AUV body has 5 thrusters, allowing to control all degrees of freedom except
for the roll. A keel effect is induced by the relative position of the center of
gravity and the center of buoyancy such that the roll is stable. The AUV is
slightly lighter than water, thus the two vertical thrusters are always used to
stabilize the depth.

AUV Dynamic Simulation 33

(a) End of approach. The
hook is lying on the seabed
and the arm cannot follow
its setpoint.

(b) Lifting. One of the ver-
tical thruster saturates.

(c) Recovery complete.

Fig. 5. UWSim view of the simulation

Simulation Scenario. As the goal is to show the dynamic behavior, position
control is in open loop and the PID gains are not well tuned. The scenario
includes several steps that illustrate difficulties of underwater interventions:

1. At first only joint control is performed to set the arm in an idle position.
2. At iteration 70, body position control is used to approach the black box.

At the end of the approach, around iteration 350, the hook will touch the
seabed and thus the arm will not be able anymore to follow its setpoint.

3. At iteration 520, the joint setpoint is changed to prepare the recovery
4. At iteration 820, the body position setpoint is changed to go up and recover

the box, which is entirely carried by the AUV after iteration 840. Because
of the weight of the box, some joints and some thrusters will be saturated
at this time.

Fig. 5 depicts the I-AUV in various steps. At the end of the approach (Fig. 5a),
the hook slightly hits the seabed, which will appear on the joint measurements.
Fig. 5b shows the beginning of the recovery, which corresponds to some oscil-
lations and to the saturation of a vertical thruster. In Fig. 5c the I-AUV has
recovered the black box and is going up. Because of the weight of the black box,
some joints are saturated.

Body Position Control. The overall behavior of the body control is shown
in Fig. 6. The vertical dotted lines correspond to the key-iterations that are
mentioned above. The measurement rate is 30 Hz. The low-level PID controllers
ensure the body position and orientation setpoints are followed after iteration
70 (beginning of body position control). Interaction with the black box is clearly
visible from iteration 840. As soon as the box is entirely recovered, small oscilla-
tions appear on the orientation error (Fig. 6b). This is due to the fact that the
box behaves like a pendulum when carried by the recovering hook, and induces
some perturbations on the vehicle position control.

34 O. Kermorgant

0 200 400 600 800 1000
iterations

−10

−5

0

5
tx

ty

tz

t∗x
t∗y
t∗z

(a) Body position (plain) and setpoint
(dotted). Surge (blue), sway (green) and
heave (red).

0 200 400 600 800 1000
iterations

0

20

40

60

80

100

120 Δp

Δy

Δr

(b) Body orientation error in degree. Roll
(magenta), pitch (cyan) and yaw (yellow).

Fig. 6. 3D behavior of the I-AUV body. The heave (red) follows its setpoint after
iteration 70, while the orientation error (b) is null even if small oscillations appear
when lifting the black box after iteration 840.

Thruster Load. The described body behaviors also appear in Fig. 7, that
represents the thruster load in percent. When gived a new position setpoint at
iteration 70, we see one of the vertical thruster (cyan) is saturated. This explains
the slow reaching of the heave setpoint (red) in Fig. 6a. From iteration 350 the
hook is lying on the seabed. The load is thus reduced on the vertical thruster.
It is saturated again after iteration 820, when the new position setpoint makes
the I-AUV go up.

The oscillations of the orientation error in Fig. 6b are also visible in Fig. 7
after iteration 820. The thruster load oscillations are more important than the
orientation error, which means the PID controllers of the thrusters manage to
greatly reduce the perturbation induced by the carrying of the black box.

Joint Behavior. The behavior of the 3-degrees of freedom arm is represented in
Fig. 8. First the setpoints are followed but when the hook comes in contact with
the seabed at iteration 350, the arm is stuck between the ground and the I-AUV
body and it becomes impossible to follow the position setpoint. The setpoint
changes at iteration 520, making it possible to be followed again. Once the arm
begins to lift the black box at iteration 820, the joint effort limits clearly appear
as the shoulder and elbow cannot cope with the weight of the black box.

Discussion. The whole experiment demonstrates the dynamic simulation, to-
gether with contact physics between the hook and both the seabed and the black
box. Dynamic coupling is clearly visible when lifting the box, as its pendulum-like
oscillation are passed on the whole I-AUV. The PID controllers of the thrusters
manage stabilizing the body position, but the arm still oscillates and cannot fol-
low its position setpoint due to the limits on joint efforts. The overall simulation

AUV Dynamic Simulation 35

0 200 400 600 800 1000
iterations

0

20

40

60

80

100 x1

x2

y

z1

z2

Fig. 7. Thruster load in percent. Surge/yaw (blue and green), sway (red) and
heave/pitch (cyan and magenta).

0 200 400 600 800 1000
iterations

0

10

20

30

40

50

60

70

80

q1

q2

q3

q∗1
q∗2
q∗3

Fig. 8. Joint positions and setpoints. Slew (blue), shoulder (green) and elbow (red).
The hook touching the seabed is clearly visible at iteration 350, as the arm cannot
ensure its position setpoint. Oscillations appear after iteration 820 because of effort
limits.

shows that dynamic simulation of a I-AUV raises realistic difficulties that are
possible to try and solve in the simulated environment, before having to perform
real experiments.

6 Conclusion

We have presented a dynamic simulator for intervention autonomous under-
water vehicles. Through the ROS framework, it was possible to use both the
dynamic simulation capabilities of Gazebo and the realistic underwater render-
ing of UWSim. The considered modeling is focused on the main effects due to
hydrodynamic forces, that are drag and buoyancy. A possible improvement is to
take into account the added inertia and Coriolis, but these effects are difficult
to quantify precisely. That is why all uncertainties are here considered in the
damping coefficients d(v). Additional URDF tags allows defining the buoyancy

36 O. Kermorgant

and damping parameters of each robot link or other moving object, such as
the black box that is considered in the example. The presented experiment was
designed to show that dynamic simulation can be used to reproduce realistic
difficulties such as thruster or joint effort limit, collision and uncertainties on
the setpoint following. As in real I-AUV, this can be due to non-optimal tuning
of the low-level controllers, or on the uncertainties on the hydrodynamic pa-
rameters. The proposed simulation framework can thus be used to validate new
algorithms for sensor-based control or state estimation. In future works we will
focus on underwater sensors in order to perform realistic sensor-based missions.

References

1. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperinde, A., Turetta, A.: Agility for
underwater floating manipulation: Task & subsystem priority based control strategy.
In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal,
pp. 1772–1779 (September 2012)

2. Cousins, S.: Welcome to ros topics. IEEE Robotics & Automation Magazine 17(1),
13–14 (2010)

3. Fossen, T.I.: Guidance and control of ocean vehicles, vol. 199. Wiley, New York
(1994)

4. Kermorgant, O., Pétillot, Y., Dunnigan, M.: A global control scheme for free-floating
vehicle-manipulators. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Tokyo, Japan (November 2013)

5. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-
robot simulator. In: IROS, vol. 3, pp. 2149–2154. IEEE (2004)

6. Matsebe, O., Kumile, C.: A review of virtual simulators for autonomous underwa-
ter vehicles (auvs). In: Navigation, Guidance and Control of Underwater Vehicles,
Killaloe, Ireland, vol. 2, pp. 31–37 (2008)

7. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Compre-
hensive simulation of quadrotor uAVs using ROS and gazebo. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411.
Springer, Heidelberg (2012)

8. Prats, M., Pérez, J., Fernández, J.J., Sanz, P.J.: An open source tool for simulation
and supervision of underwater intervention missions. In: IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Vilamoura, Portugal, pp. 2577–2582 (October 2012)

9. Ribas, D., Ridao, P., Maǵı, L., Palomeras, N., Carreras, M.: The girona 500, a mul-
tipurpose autonomous underwater vehicle. In: IEEE OCEANS, Santander, Spain,
pp. 1–5 (June 2011)

Extending Open Dynamics Engine
for the DARPA Virtual Robotics Challenge

John M. Hsu and Steven C. Peters

Open Source Robotics Foundation, 419 N. Shoreline Blvd, Mountain View, CA 94041, USA
{hsu,scpeters}@osrfoundation.org

http://osrfoundation.org

Abstract. The DARPA Virtual Robotics Challenge (VRC)[1] was a cloud-based
robotic simulation competition. Teams competed by writing control software for
a humanoid robot to perform disaster response tasks in real-time simulation. Sim-
ulating the physics and sensors of a humanoid robot in real-time presented chal-
lenges related to the trade-off between simulation accuracy and computational
time. The Projected Gauss-Seidel (PGS) iterative solver was chosen for its per-
formance and robustness, but it lacks the accuracy and the fidelity required for
reliable simulation of task-level behaviors. This paper presents the modeling deci-
sions and algorithmic improvements made to the Open Dynamics Engine (ODE)
physics solver that improved PGS accuracy and fidelity without sacrificing its
real-time simulation performance in the VRC. These improvements allowed for
stable simulation regardless of user input during the VRC, and supported reliable
contact dynamics during VRC tasks without violating the near real-time require-
ment.

1 Introduction

The DARPA Robotics Challenge (DRC) is a competition with the goal of improving
robotic systems for use in disaster response. With sufficient mobility and dexterity,
robots may assist technicians and emergency responders in dangerous environments.
The DRC will test the ability of robots to complete tasks relevant to disaster response,
such as walking on uneven terrain, driving a utility vehicle, opening doors, climbing
industrial ladders, and threading a fire hose into a standpipe.

In addition to physical testing in the DRC Trials and DRC Finals, the DRC also
included the Virtual Robotics Challenge (VRC), in which teams wrote control soft-
ware for a simulated humanoid robot. The Open Source Robotics Foundation (OSRF)
provided an open-source cloud-based simulator for the disaster response tasks using a
model of the Atlas robot from Boston Dynamics [2] and the dexterous Sandia hand [3].

When selecting the simulation tasks for the VRC, it was necessary to consider the
difficulty of accurately simulating tasks using Newton-Euler equations of motion with
a Coulomb friction approximation. The following high-level tasks were chosen: walk
across various terrains, drive a utility vehicle, and thread a fire hose into a stand-
pipe. These tasks require simulation of dynamic balancing, walking on uneven terrain,
ingress/egress of a utility vehicle, manipulation of vehicle controls (pedals, gear shift,
steering), vehicle dynamics, and object manipulation with a dexterous hand.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 37–48, 2014.
c© Springer International Publishing Switzerland 2014

38 J.M. Hsu and S.C. Peters

2 Literature Review

There are numerous approaches to modeling rigid body dynamics with frictional con-
tacts. Explicit penalty methods apply restorative forces to ”penalize” collisions between
rigid bodies as contacts arise. For example, the Hertz model [4], is an idealized model
of material deformation and contact forces for spherical surfaces that is often applied
as an explicit penalty force. Constraint-based methods formulated as a Linear Comple-
mentarity Problem (LCP) attempt to resolve all contact (and constraint) forces simul-
taneously when collisions are detected. Examples of constraint-based methods using
velocity-impulse formulated as an LCP include [5,6,7,8]. These methods can have per-
formance advantages when compared with pure penalty based methods due to reduced
numerical stiffness. This is mostly due to the fact that penalty methods can require very
small time steps for stability while simulating dynamic walking and grasping.

The strategies for solving the constraint based LCP problem mainly fall into two
categories: iterative and direct (pivoting) methods. This paper presents improvements
to the iterative Projected Gauss-Seidel solver that exists within the Open Dynamics
Engine (ODE). Note that ODE also includes a direct method that is based on Lemke’s
algorithm [9], which is an extension of Dantzig’s algorithm [10].

An important aspect to consider when formulating the equations for articulated rigid
body dynamics is the internal state representation. In maximal coordinate formulations,
such as ODE, each rigid body has six degrees of freedom. Articulation is encoded as
equality constraints on the dynamic states. This approach yields convenient sparse ma-
trix structures, such as a block diagonal mass matrix and a sparse constraint Jacobian.
Additionally, the approach treats contact and articulation constraints in a uniform man-
ner. In contrast, formulations based on internal (or generalized) coordinates (often using
Featherstone’s algorithm [11,12]) consider articulation implicitly by adding the system
degrees of freedom with each articulation joint. This yields more accurate kinematics
and a smaller mass matrix, though the mass matrix structure is no longer sparse. There
was some discussion prior to the VRC regarding the relative merit of maximal and
generalized coordinates [13], though a robust comparison is not presented here.

3 Modeling and Fidelity Considerations

This section presents the modeling decisions that were made to improve real-time per-
formance while maintaining sufficient physical accuracy.

The Atlas robot is a humanoid robot manufactured by Boston Dynamics Inc. (BDI),
with 28 hydraulically actuated degrees of freedom [2]. The kinematics, rigid body in-
ertias, 3D mesh collision shapes, maximum joint angles, velocities, and torques were
provided by BDI. In the absence of details about the hydraulic systems, each joint was
modeled as a pin joint with torque control subject to position, velocity, and torque lim-
its. The torque and speed limits were not coupled with a torque-speed curve. Static joint
friction was not modeled, though viscous damping (proportional to joint velocity) was
applied at the joints in a heuristic manner to improve solver stability. Contact friction
was modeled as Coulomb friction using a friction pyramid (see Section 4.6).

Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 39

Although a full set of 3D concave meshes was provided for the Atlas robot, each col-
lision shape was approximated by a union of convex sphere, box, and cylinder collision
primitives. It was found that the collision primitives exhibited faster collision detection
and more robust contact resolution than the 3D meshes [14].

Some physical interactions were approximated due to insufficient fidelity at the re-
quired level of real-time performance. Threading a fire hose, for example, involves con-
tact between millimeter-scale features. Instead of modeling the fine contact geometry,
a screw joint was dynamically created when the fire hose coupling was sufficiently
aligned with the standpipe. The coupling could be rotated in one direction to connect or
in the opposite direction to release the coupling. Sitting in the seat of a utility vehicle
was another challenge, as the seat was modeled as a rigid body. This caused difficulty
in finding a stable seating position. To remedy this, a viscous damping field was created
on the surface of the seat. This partially mitigated the problem, though stable sitting in
the vehicle proved a continual challenge in the VRC [15].

4 Open Dynamics Engine

This section presents the algorithms used by Open Dynamics Engine (ODE) [16]. ODE
represents rigid body states with maximal coordinates, in which each rigid body has
six degrees of freedom, and articulation and contact constraints are enforced by adding
constraint equations. Please see ODE’s User Manual [17] for general documentation.

4.1 Unconstrained Rigid Body Dynamics

The notation for maximal coordinates is borrowed from [18], and it is assumed that all
vectors are expressed in the world frame unless otherwise specified. Each rigid body has
an associated coordinate frame with center of gravity (c.g.) position x̄ and orientation
quaternion q̄. The coordinate frames evolve in time according to

x̄t = ˙̄x, q̄t = (1/2)ω̄q̄ (1)

with ˙̄x and ω̄ representing linear and angular velocity. The velocities evolve according
to the Newton-Euler equations of motion, which are expressed as

m ˙̄xt = f̄ , L̄t = τ̄

where m is the mass; f̄ and τ̄ are the net force and torque; L̄ = ¯̄Iω̄ is the angular momen-
tum with inertia tensor ¯̄I = ¯̄R ¯̄D ¯̄RT , rotation matrix ¯̄R(q̄), and body-frame inertia tensor
¯̄D. For a single unconstrained rigid body, this can be re-written as:[

m ¯̄δ ¯̄0
¯̄0 ¯̄I

][
¨̄x
˙̄ω

]
=

[
f̄

τ̄− ω̄× ¯̄Iω̄

]
(2)

where ¯̄δ is the identity matrix.
For a system with multiple rigid bodies, augmented variables are defined for each

body b: velocity vector v̄b = [˙̄xT
b , ω̄

T
b]

T ; block diagonal mass matrix ¯̄mb = diag(mb
¯̄δ , ¯̄Ib);

40 J.M. Hsu and S.C. Peters

and effort vector ēb = [f̄ T
b ,(τ̄b− ω̄b× ¯̄Ibω̄)T]T . The dynamics in equation 2 can then be

expressed as:
¯̄mb ˙̄vb = ēb (3)

For a system of N rigid bodies, system variables are defined as the velocity states
v̄ = [v̄T

1 , v̄
T
2 , ...v̄

T
N]

T ; the block diagonal system mass matrix ¯̄M = diag(¯̄m1, ¯̄m2, ..., ¯̄mN);
and the system effort vector Ē = [ēT

1 , ē
T
2 , ...ē

T
N]

T . The unconstrained system dynamics
from 3 are then given as:

¯̄M ˙̄v = Ē (4)

4.2 Articulation and Contact Constraints

Articulation and contact are encoded through a set of nonlinear constraints on rigid
body position and orientation, with articulation using equality constraints he(x̄, q̄) = 0,
and contact using inequality constraints hi(x̄, q̄)≥ 0.

To avoid nonlinearities, the position constraints are differentiated to yield linear ve-
locity constraints of the form

¯̄Jv̄ = c̄ (5)

where ¯̄J is the constraint Jacobian matrix and ce = 0,ci >= 0, for articulation equality
constraints and contact inequality constraints, respectively. The velocity constraints are
adjoined to the equations of motion using a vector of Lagrange multipliers λ̄ as:

¯̄M ˙̄v = Ē + ¯̄JT λ̄ (6)

4.3 Discretization

The dynamics in equation 6 are discretized over a time interval Δ t using a first-order
Euler method as ˙̄vΔ t = v̄n+1− v̄n, and rearranged to yield the difference equation for
constrained rigid body dynamics in matrix form as[

(1/Δ t) ¯̄M − ¯̄JT

¯̄J 0

][
v̄n+1

λ̄

]
=

[
(1/Δ t) ¯̄Mv̄n + Ē

c̄

]
(7)

Assuming that the constraints are satisfied implicitly at the next time step (t +Δ t),
¯̄Jv̄n+1 = c̄, the Lagrange multipliers λ̄ are computed by left multiplying 7 by ¯̄J ¯̄M−1 as

[¯̄J ¯̄M−1 ¯̄JT]λ̄ =
c̄

Δ t
− ¯̄J[

v̄n

Δ t
+ ¯̄M−1Ē] (8)

Solving 8 yields the necessary constraint forces λ̄ for forward dynamics. This equation
is solved using an iterative Projected Gauss Seidel algorithm, omitted here for brevity.

Given λ̄ , the rigid body velocities v̄n+1 are computed from equation 7. The positions
xn+1 and orientations qn+1 are computed by integrating equation 1 using the velocity
value vn+1 to give semi-implicit stability.

Note that the Lagrange multipliers for inequality constraints are initially computed
by solving 8 but are afterwards projected into their proper domains.

Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 41

4.4 Constraint Error Correction

Rigid body dynamics solvers with fixed time stepping schemes will encounter instances
where two rigid bodies intersect. Constraint violation can also be caused by position
drift from numerical errors during integration and unconverged iterative solvers.

One approach is to backup simulation and take smaller time steps until a non-
penetrating contact has been made. Physics engines such as Simbody [19] uses this
variable time stepping approach.

On the other hand, ODE adds a position constraint correction term. The position
constraint error is evaluated for each constraint and expressed at timestep n as h̄n. It
is added to the velocity constraint equation with coefficient β (also known as error
reduction parameter ERP inside ODE).

¯̄Jv̄+
β
Δ t

h̄n = c̄ (9)

This term can be considered a form of Baumgarte stabilization [20]. It is used to restore
constraint error to zero when β = 1 with a first-order Euler integrator, though values
less than 1 are used in practice.

The constraint error correction term can be added into 8 as

[¯̄J ¯̄M−1 ¯̄JT]λ̄ =
c̄

Δ t
− β

Δ t2 h̄n− ¯̄J[
v̄n

Δ t
+ ¯̄M−1Ē] (10)

4.5 Constraint Force Mixing and Spring-Damper

An interesting concept called Constraint Force Mixing (CFM) was applied by Smith in
ODE to stabilize the pivoting Lemke’s solver. It was also implemented in the standard
PGS algorithm in ODE. The approach adds a term (1/Δ t) ¯̄Cλ̄ to equation 10, where
¯̄C is a diagonal positive semidefinite matrix composed of CFM parameters. With the

right-hand side of 10 abbreviated as rhs, the equation is rewritten as follows:[
¯̄J ¯̄M−1 ¯̄JT + 1

Δ t
¯̄C
]

λ̄ = rhs (11)

An extremely useful application of the CFM and ERP parameters is that they map
a constraint directly to an equivalent spring and damper system with stiffness kp and
viscous dissipation kd properties:

ERP =
kpΔ t

kpΔ t + kd
CFM =

1
kpΔ t + kd

(12)

See Catto [21] for a derivation of equivalence between these parameters.
Effectively, any spring damper system can be implemented using CFM and ERP.

Most importantly, the spring damper system solution is obtained implicitly as part of the
overall LCP system, without the numerical stiffness problems experienced by explicit
spring dampers.

42 J.M. Hsu and S.C. Peters

4.6 Coulomb’s Friction Approximation Constraints

Given a frictional constraint with contact normal f̄cn and corresponding frictional force
f̄μ along the direction satisfying the maximum dissipation principle [22], the governing
equations can be posed as velocity constraints:

J̄ f ricv̄ = c̄ f ric (13)

The corresponding λ̄μ is projected into a corresponding solution space based on
Coulomb’s law: ‖ f̄μ‖ ≤ μ f̄cn. Solving equation 13 yields a solution for frictional con-
tact based on Coulomb’s friction cone if the direction of maximum dissipation j̄μ is
determined.

To avoid computing the direction of maximum dissipation, the frictional constraints
can be split into two or more spanning vectors on the contact surface manifold [22]. This
approximates the friction cone as a pyramid. The corresponding constraint equations
become:

J̄ f ricv̄ =

[· · · j̄cn · · · j̄μ1 · · ·
· · · j̄cn · · · · · · j̄μ2

][· · · v̄T
cn · · · v̄T

μ1
v̄T

μ2

]T
= c̄ f ric (14)

with corresponding unknowns λ̄μ1 and λ̄μ2 , to be projected into their corresponding
solution spaces at each iteration based on

‖ f̄μ1‖ ≤ μ1 f̄cn, ‖ f̄μ2‖ ≤ μ2 f̄cn. (15)

This approach yields anisotropic friction, but is much faster than the friction cone.

5 Modifications to Projected Gauss-Seidel Solver within Open
Dynamics Engine

ODE is a robust solver that provides an excellent starting point for a fast dynamics
simulator with tunable accuracy. There were some inadequacies, however, that needed
to be addressed before using it in the VRC. This section will discuss some of the work
done to improve the dynamics solver in ODE.

5.1 Contact Constraint Correction with Position Projection (Split Impulse)

The problem with the existing correction method in ODE (described in section 4.4) is
that the ERP term adds non-physical energy to the system every time an interpenetra-
tion occurs. Alternatively, if ERP is zero, the solution will not correct for interpenetra-
tion and the rigid bodies in contact may drift into deeper constraint violations. A method
similar to the Split Impulse method was introduced in ODE to cope with position er-
rors caused by fixed time step interpenetration, unconverged iterative PGS residual and
numerical integration errors.

For this method, the LCP equations 7 are solved twice, with β to yield v̄n+1
β and

without β to yield v̄n+1. Note the two equations can be solved in parallel. The velocity
vector without β (v̄n+1) is used as the next velocity vector, while the velocity vector
with β (v̄n+1

β) is integrated in 1 to yield the next position x̄n+1 and orientation q̄n+1.

Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 43

The proposed position projection correction approach effectively teleports the over-
lapping objects away from each other without introducing excess energy into the sys-
tem. At the velocity level, contact constraints are seen as non-penetrating inelastic im-
pacts if PGS converges fully.

For example, a box on the ground plane with initial collision interpenetration of
1 centimeter will correct its position until resting contact is achieved without gaining
energy if position projection is turned on. Figure 1a shows box position trajectory and
velocity with and without position projection correction.

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 0 1 2 3 4 5 6

Simulation Time (sec)

Standard ODE

Position (m)
Velocity (m/s)

-0.01
-0.008
-0.006
-0.004
-0.002

 0

 0 0.001 0.002 0.003 0.004 0.005 0.006

Simulation Time (sec)

With Position Projection Correction

Position (m)
Velocity (m/s)

(a) Initial box-ground plane overlap of
1 meter

-5
-4
-3
-2
-1
 0
 1
 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Simulation Time (sec)

Standard ODE

Position (m)
Velocity (m/s)

-5
-4
-3
-2
-1
 0
 1

 0 0.1 0.2 0.3 0.4 0.5

Simulation Time (sec)

With Position Projection Correction

Position (m)
Velocity (m/s)

(b) Box impacting ground plane

Fig. 1. Trajectory of box model interactions with ground plane with and without position correc-
tion (ERP = 1)

In addition to more stable interpenetration correction, position projection correction
is ideal for modeling completely inelastic impacts as demonstrated in figure 1b.

5.2 Convergence Acceleration by Static and Dynamics Invariant Inertia Ratio
Reduction

The large-mass-ratio problem [23] is a well known issue for iterative LCP solvers. As
the solution is updated via row-sweep, the impulse flux propagating across constraints is
effectively throttled by the smallest Eigenvalue of the global constraint matrix ¯̄J ¯̄M−1 ¯̄JT .

The Atlas and Sandia hand models contain large inertia ratios across some of the
constraints. The Atlas model has an inertia ratio of∼ 9017 across the ankle joint causing
PGS to converge slowly. With a limited number of PGS inner iterations, this causes joint
constraint violations, noise in the dynamics solution and an inability to dynamically
control articulated bodies.

During the VRC, issues with PGS convergence were raised (see discussion [24]),
and various constraint stabilization methods (e.g. [25]) were suggested. While con-
straint stabilization is a promising future research direction, an intermediate solution
was found which stabilizes the solution for the Atlas model by inertia ratio reduction.

The method for modifying the Atlas model inertias to stabilize simulation is sum-
marized below, with detailed documentation available in Bitbucket pull request [26].

44 J.M. Hsu and S.C. Peters

Given two bodies with bilateral constraint Jacobian J̄b, the bodies’ moments of inertia
in constrained directions can be re-distributed to reduce the inertia ratio. The moment
of inertia of a body along an arbitrary unit line vector S̄ can be computed by ¯̄IL =
S̄T ¯̄IS̄ · S̄S̄T . Redistributing the moments of inertia components about the line vector for
the two connected bodies is done by modifying the original moment of inertias for both
bodies ¯̄Inew

i = ¯̄Ii+α(¯̄IL
j − ¯̄IL

i), where α ∈ [0,1] controls the distribution ratio. This inertia
redistribution is recomputed on every simulation update step.

To illustrate the effect of inertia ratio reduction, a double pendulum with an large
inertia ratio is considered (shown in Fig. 2a). The pendulum links are modeled as uni-
form boxes of equal density and different size. This size difference leads to an inertia
ratio over 6000. Gravity is applied along the y-axis gy = −9.81 and also along the z-
axis gz = 1 (into the page in Fig. 2a). The rotations of each rigid body about the x-axis
should be zero, but the non-zero gz component causes constraint errors. With a time
step of 1 ms and 50 iterations, the standard algorithm goes unstable with full revolu-
tions about the x-axis (labeled as pitch in top of Fig. 2b). With inertia ratio reduction
enabled, the constraint error is held to within 0.001 rad (bottom of Fig. 2b).

z

(a) Schematics for Inertia Ratio
Reduction pendulum example

-3

-2

-1

 0

 1

 2

 0 1 2 3 4 5

Simulation Time (sec)

Standard ODE

Upper Link Pitch (rad)
Lower Link Pitch (rad)

-0.0012
-0.001

-0.0008
-0.0006
-0.0004
-0.0002

 0
 0.0002

 0 1 2 3 4 5

Simulation Time (sec)

With Inertia Ratio Reduction

Upper Link Pitch (rad)
Lower Link Pitch (rad)

(b) X-axis orientation error

Fig. 2. Constraint error in rotations about the x-axis for a double pendulum with high inertia ratio,
before and after inertia ratio reduction

Since reducing the inertia ratio modifies the inertia of rigid bodies, it may change
the behavior of bodies with large angular velocity due to gyroscopic effects. It was not
observed to be a problem during the VRC.

5.3 Implicit Joint Spring Dampers

In lieu of simulating friction, viscous joint damping is extremely useful in stabilizing
overall dynamics of the simulation. For the VRC, implicit joint damping was applied
by adding a constraint to the joint degree of freedom, and adjusting the ERP and CFM
values to set its spring stiffness kp to zero and its viscous damping coefficient kd to
an estimated value1. Equations 12 and 12 were used to construct a joint damping con-
straint, and enforce joint damping implicitly through the constraint.

1 A back of the envelope estimate of realistic joint viscous damping coefficients.

Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 45

Another requirement for making VRC manipulation tasks solvable was indefinite
grasp-hold of an object by the Sandia hand in simulation. Contact chatter and vibration
have been a major obstacle in stable and robust contact dynamics in simulated grasping.
Many high fidelity approaches exist [27,28], but the VRC required an approach com-
patible with real-time speeds. In one example demonstrated in figure 4a, the Atlas robot
with the Sandia hand is seen holding an object of significantly larger uniform density
mass (5.39 kg) than the individual finger links (∼ 0.01 kg and principle moments of
inertia on the order of∼ 1e−6 kg ·m2) in contact with the object. The robot eventually
loses grasp of the object because: the object drifts due to high frequency chatter of the
finger links and insufficient contact force is transmitted from the arm in motion to the
grasped object through the finger links due to lack of PGS convergence. With sufficient
joint viscous damping, however, high frequency chatter is reduced while additional con-
tact forces are transmitted from the finger joints to the finger-object contact constraints
to make the grasp stable. In the limit where viscous damping coefficient approaches
infinity, the finger joint becomes effectively a fixed joint.

This approach helps overall simulation stability, but errors due to PGS non-
convergence are still visible in finger contact simulation due to the fact that PGS has
not fully converged.

5.4 PGS Row Ordering and Residual Smoothing

Contact friction drift was a major challenge for the Atlas robot while standing with a
dynamically controlled balancing behavior. Approaches to achieving drift-free dynamic
standing and grasping using ODE with � 50 inner iterations are being investigated. This
would allow real-time simulation of Atlas with Sandia hands on a typical Intel i7 CPU
architecture. One possible solution for improving ODE accuracy was to increase the
number of inner iterations to above∼ 250, which severely degraded simulation perfor-
mance to � 0.4× real-time. An alternative is to optimize the order of the constraints
in the Jacobian matrix as described in equation 10. The constraint rows were arranged
in the following order: bilateral, contact normal, and contact friction. At the very end,
the friction contraints received an additional 10 iterations. This appeared to speed up
convergence and reduce contact chatter.

In addition to solving the frictional directions last in PGS, high frequency oscillations
in the frictional contact solutions are reduced by smoothing the contact normal and
frictional (non-bilateral) constraints via an exponential smoothing filter λ n+1

k+1 = (1−
ε)λ n+1

k + ελ n, where k denotes the PGS inner iteration number within a time step and
ε was hard coded to 0.01 for the VRC.

Figure 3a is an example of Atlas grasping a cylinder indefinitely after row reordering
and residual smoothing. In this example, all contact normals are perpendicular to grav-
ity, so friction forces are keeping the cylindrical object from falling out of the grasp.
Figure 3b shows the frictional drift of the Atlas feet with and without row reordering
and residual smoothing.

46 J.M. Hsu and S.C. Peters

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 70 80 90 100 110 120

D
rif

t D
is

ta
nc

e
(m

)

Simulation Time (sec)

Atlas Grasp Cylinder Drift

Smoothing, Row Reorder, Friction Iters.
Standard ODE.

(a) Position of grasped cylinder in
Sandia hand

-0.0001

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 10 20 30 40 50 60 70 80 90 100

D
rif

t D
is

ta
nc

e
(m

)

Simulation Time (sec)

Atlas Stand Feet Drift

Smoothing, Row Reorder, Friction Iters.
Standard ODE (1/5X)

(b) Atlas robot’s left foot CG location
while standing

Fig. 3. Absolute position drift with and without row reorder and residual smoothing

5.5 Warm Starting PGS

Warm starting Gauss-Seidel iterations can help accelerate PGS convergence by starting
inner iterations for each time step with the solution from the previous time step (i.e. use
λ̄ n as the initial guess for λ̄ n+1 in equation 10). Even for a very simple system without
contact constraints, however, warm starting PGS must be applied with care as shown in
the following example.

Potential pitfalls of warm starting PGS can be demonstrated with a pendulum at-
tached to the inertial frame via a revolute joint constraint. Figure 4a) depicts Atlas robot
holding an uniform density 5.39 kilogram cylindrical shaped object. As demonstrated
in figure 4b, ∼ 50% warm starting, i.e. λ̄ n+1 = β λ̄ n where β = 0.5, does show some
reduction in solution chatter over both 0% and 100% warm starts. Note that from our
experience, 100% warm start with the solution from the previous time step can result in
non-convergence.

(a) Atlas with Sandia hand holding a
5.39 kg cylindrical object

-4e-05

-2e-05

 0

 2e-05

 4e-05

 65.1 65.15 65.2 65.25 65.3

D
rif

t D
is

ta
nc

e
(m

)

Simulation Time (sec)

Atlas Grasp Cylinder Drift

50% Warm Start
100% Warm Start.

No Warm Start.

(b) Effect of warm start values on
cylinder vertical position drift

Fig. 4. Effect of warm start values on contact chatter and slip during grasping

Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge 47

6 Conclusions

This paper presented the solver algorithm used by the Open Dynamics Engine as well
as numerous modifications made during the VRC to stabilize the constrained rigid body
dynamics solution and accelerate convergence of the iterative solver.

Without sacrificing real-time dynamics performance, we were able to improve PGS
solution for stable contact during dynamic standing and grasping behaviors, maintain
overall system stability and prevent divergence in physics solutions. These achieve-
ments made the VRC possible from a physics perspective.

A benchmark of the Atlas dynamic walking behavior is shown in figure 5, the re-
sulting simulator performance and constraint violation errors are compared against the
number of PGS inner iterations performed at every time step. Figure 5 indicates that at
50 PGS iterations, we were near an optimal trade-off point between constraint error and
simulation speed.

 0.00013

 0.000135

 0.00014

 0.000145

 0.00015

 0.000155

 0.00016

 0.000165

 0.00017

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

C
on

st
ra

in
t E

rr
or

s
(m

/s
)

RTF

Bilateral Velocity Constraint RMS Error (m/s) vs. Performance (RTF)

20 PGS Iterations
30 PGS Iterations
40 PGS Iterations
50 PGS Iterations

100 PGS Iterations
200 PGS Iterations

Fig. 5. Plot of Gazebo real-time factor (RTF) vs. bilateral constraint error with varying iterations
for Atlas robot with hands performing dynamic walk

Acknowledgment. This work is not possible without the collaborative contributions
from the DARPA support team, Boston Dynamics team and the Open Source Robotics
Foundation (OSRF) team. This work was supported in part by DARPA contract HR0011-
12-C-0111.

References

1. Defense Advanced Research Project Agency (DARPA), DARPA Robotics Challenge (DRC)
and Virtual Robotics Challenge (VRC),
http://theroboticschallenge.org/about

2. Boston Dynamics, Boston Dynamics Atlas Robot,
http://www.bostondynamics.com/robot_Atlas.html

3. Open Source Robotics Foundation, Sandia Hand Project Webpage,
https://bitbucket.org/osrf/sandia-hand

4. Stronge, W.: Rigid body collisions with friction. Proceedings of the Royal Society
of 431(1881), 169–181 (1990)

http://theroboticschallenge.org/about
http://www.bostondynamics.com/robot_Atlas.html
https://bitbucket.org/osrf/sandia-hand

48 J.M. Hsu and S.C. Peters

5. Brogliato, B., ten Dam, A., Paoli, L., Genot, F., Abadie, M.: Numerical simulation of finite
dimensional multibody nonsmooth mechanical systems. Applied Mechanics Reviews 55(2),
107 (2002)

6. Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with fric-
tion as solvable linear complementarity problems. Nonlinear Dynamics 14, 231–247 (1997)

7. Trinkle, D., Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body
dynamics with inelastic collisions and coulomb friction. International Journal for Numerical
Methods in Engineering 39(15), 2673–2691 (1996)

8. Pang, J., Trinkle, J.: Complementarity formulations and existence of solutions of dynamic
multi-rigid-body contact problems with coulomb friction. Mathematical Programming 73(2),
199–226 (1995)

9. Cottle, R., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem (2009)
10. Cottle, R., Dantzig, G.: Complementary pivot theory of mathematical programming. Linear

Algebra and its Applications, 103–125 (1968)
11. Featherstone, R.: A short course on Spatial Vector Algebra the easy way to do rigid body

dynamics (2005)
12. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer US, Boston (2008)
13. Smith, J., Gerkey, B.: Drcsim issue #378,

https://bitbucket.org/osrf/drcsim/issue/378
14. Bridson, R., Fedkiw, R., Anderson, J.: Robust Treatment of Collisions, Contact and Friction

for Cloth Animation (1994)
15. Koolen, T., Hsu, J., et al.: Drcsim issue #320,

https://bitbucket.org/osrf/drcsim/issue/320
16. Smith, R.: Open Dynamics Engine ODE. Multibody Dynamics Simulation Software,

http://www.ode.org
17. Smith, R.: Open Dynamics Engine ODE. User’s Manual,

http://opende.sourceforge.net/wiki/index.php/Manual
18. Weinstein, R., Teran, J., Fedkiw, R.: Dynamic simulation of articulated rigid bodies with

contact and collision. IEEE Trans. Visualization and Computer Graphics 12(3), 365–374
(2006)

19. Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical research.
In: Procedia IUTAM, vol. 2, pp. 241–261 (January 2011)

20. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems.
Computer Methods in Applied Mechanics and Engineering 1(1), 1–16 (1972)

21. Catto, E.: Soft Constraints reinventing the spring. In: Game Developer Conference (2011)
22. Stewart, D.E.: Rigid-Body Dynamics with Friction and Impact. SIAM Review 42(1), 3

(2000)
23. Silcowitz, M., Niebe, S., Erleben, K.: Nonsmooth Newton Method for Fischer Function Re-

formulation of Contact Force Problems for Interactive Rigid Body Simulation (2009)
24. Atkeson et al.: Simulating hands is killing performance,

http://answers.gazebosim.org/question/1427
25. Atkeson et al.: Constraint stabilization methods discussion,

http://www.cs.cmu.edu/˜cga/drc/constraint-stabilization.html
26. Inertia tweaks, https://bitbucket.org/osrf/drcsim/pull-request/157
27. Zhang, L., Betz, J., Trinkle, J.: Comparison of simulated and experimental grasping actions

in the plane. In: First International Multibody Dynamics... (2010)
28. Drumwright, E., Shell, D.: A robust and tractable contact model for dynamic robotic simula-

tion. In: Proc. ACM symposium on Applied Computing, pp. 1176–1180. ACM (2009)

https://bitbucket.org/osrf/drcsim/issue/378
https://bitbucket.org/osrf/drcsim/issue/320
http://www.ode.org
http://opende.sourceforge.net/wiki/index.php/Manual
http://answers.gazebosim.org/question/1427
http://www.cs.cmu.edu/~cga/drc/constraint-stabilization.html
https://bitbucket.org/osrf/drcsim/pull-request/157

Control and Scheduling Co-design
for a Simulated Quadcopter Robot:

A Model-Driven Approach

Matteo Morelli and Marco Di Natale

Institute of Communication, Information and Perception (TeCiP)
Scuola Superiore Sant’Anna, 56124 Pisa, Italy
{matteo.morelli,marco.dinatale}@sssup.it

Abstract. The Model-based development of robotics applications relies
on the definition of models of the controls that abstract the computation
and communication platform under the synchronous assumption. Com-
putation, scheduling and communication delays can affect the perfor-
mance of the controls in way that are possibly significant, and an early
evaluation allows to select the best control compensation or the best
HW/SW implementation platform. In this paper we show a case study
of the application of the open T-Res framework, an environment for
the co-simulation of controls and real-time scheduling, on a quadcopter
model example, highlighting the possible tradeoffs in the selection of the
scheduling strategy and priority assignment.

1 Introduction

Model-based development of robotics controls is an industrial reality. The MAT-
LAB/Simulink tool from Mathworks is a very popular framework used to define
the controls functionality and the model of the controlled plant, and provides
for the simulation and verification of hybrid systems. In Simulink, however,
the model execution is simulated according to the synchronous reactive (SR)
paradigm, in which all the computations and communications are assumed to
complete within the interval between two events in logical time (formally referred
to as synchronous assumption). When the (controller) model is implemented in
software and its implementation executes on a real architecture of CPUs and
communication links, computation, scheduling and communication delays may
exceed what is prescribed by the synchronous assumption and the jitters and
latencies may affect the performance of the controls. The impact of these de-
lays is often evaluated late, at testing time, with significant costs, additional
development cycles and possible changes to the hardware architecture.

An early evaluation of the impact of the hardware and software implemen-
tation is desirable and requires the co-simulation of the controller functionality,
the plant model, and the computation, scheduling and communication hardware
and software platform. The simulation requires a model of the software tasks
and the messages exchanged over the networks. To support such a co-simulation

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 49–61, 2014.
c© Springer International Publishing Switzerland 2014

50 M. Morelli and M. Di Natale

in the popular Simulink environment we developed the T-Res open project [3]
and a framework supporting its use.

Our framework merges methods and tools of the MDE (Model Driven En-
gineering [15]) approach in a development flow in which Simulink models are
used to define the functionality of the controls and SysML models define the
hardware execution platform and the task model of the controls implementa-
tion. After the functionality is mapped for execution on the platform model,
defining the structure of the tasks and messages, the execution and transmission
times are estimated (or measured) and the Simulink model can be annotated
with blocks that allow the simulation of the scheduling, computation and com-
munication latencies, allowing to fine tune the control logic or the task and
message model (possibly with their priorities), or evaluate different scheduling
policies.

The evaluation of the impact of the scheduling on the controls performance
allows to overcome the often myopic assumption that all control loops/tasks are
of type hard real-time. In reality, several systems may miss deadlines without
losing stability, and indeed, several systems (including fuel injection [8]) actually
operate in spite of deadline misses, at the boundary of overload conditions.

MDE approaches have become popular in robotics and several MDE Inte-
grated Development Environments (IDEs) and Domain-Specific Languages
(DSLs) are available. BRIDE1 is an IDE based on Eclipse developed in the
BRICS project [1]. It targets the automatic generation of platform-specific code
for component-based frameworks from a graphical (abstract) model of the sys-
tem architecture and its SW components (the BRICS Component Model [6]).
BRIDE uses model-to-model (M2M) transformations to generate framework-
specific code for the communication, configuration, composition and coordina-
tion of ROS [16] and Orocos-RTT [7] components. The declarative description of
robotics architectures and SW deployment using a DSL is described in [13] with
a hierarchy of architectural concepts for HW and SW, inspired by AADL [4].
However, the properties of HW and SW that define the timing behavior of
components are not included. The SmartSoftMDSD toolchain [17] supports non-
functional properties for design-time real-time schedulability analysis. The frame-
work allows the graphical modeling of applications in Papyrus2, and provides
M2M transformations to construct a platform-specific model for schedulability
analysis using Cheddar [18]. However, it should be considered that in reality
the scheduling choices affect the performance of the robot controller in a way
that is different from the simple binary (safe/not safe) outcome provided by
schedulability analysis.

Some IDE provide DSLs for the algorithmic description of behaviors. V3CMM
[5] is a modeling language that provides a simplified version of UML activ-
ity diagrams, to model the sequential flow of execution within components.
RobotML [11] is a DSL aiming at the design of robotic applications in Papyrus
and their deployment to multiple target execution platforms (and simulators).

1 http://www.best-of-robotics.org/bride/
2 http://www.eclipse.org/papyrus/

http://www.best-of-robotics.org/bride/
http://www.eclipse.org/papyrus/

Control and Scheduling Co-design for a Simulated Quadcopter Robot 51

It uses a specialization of UML state machines for the modeling of the behavior
of generated component implementations. RobotML enables (simplistic) model-
ing of platform-specific non-functional properties of SW components, that are
used to create models for third-party real-time schedulability analyzers. Hence,
it suffers the same drawbacks of the SmartSoftMDSD toolchain.

Virtual Path [14] is a HW-SW co-Design method that includes Simulink in the
development flow, to create executable models representing the controls. In [19],
Wätzoldt et al. adapt the automotive toolchain to the development of robotic
systems. The design methodology uses Simulink for the simulation of robot func-
tionalities, and Embedded Coder for the generation of the implementation. AU-
TOSAR models and tools (e.g., SystemDesk [12]) are used to combine hard and
soft real-time tasks in a system view and analyze the scheduling feasibility.

Finally, TrueTime [9] is a freeware Matlab/Simulink-based simulation tool
that allows to model multi-task real-time kernels and networks in simulation
models for networked embedded control systems and study the (simulated) im-
pact of lateness and deadline misses on controls. Because of the monolithic archi-
tecture and the number of code artifacts that are needed for system configuration,
the current TrueTime implementation is hardly compatible with an automatic
model generation flow.

2 From the Simulink Model of the Controls to the
Platform and Implementation Design

In the development flow considered in our work (summarized in Figure 1), a
Simulink functional model of the controls executing in the abstract logical time
(zero delays) is the starting point. The functional model is created by importing
in EMF a Simulink model that includes the controller part and the model of
the plant. The Simulink model must comply with the restriction that there is
a decomposition level in which the controller part consists of a collection of
subsystems and each subsystem only contains periodic blocks with the same
period (each subsystem is single-rate).

A Matlab script uses the Simulink modeling API to parse the model structure
and export an XML view of the controller subsystems. The XML conforms to
a schema created in accordance with an Eclipse Ecore meta-model, defined for
representing the execution constraints that apply to the Simulink subsystems
and preserving the structural properties of the Simulink model, such as the
types and interfaces of the blocks and the connections among the blocks, and
also the information related to the timed execution events, including rate and
partial order of execution constraints.

After the functional model is imported in the Eclipse EMF framework, a QVTo
model-to-model transformation is executed to import the model in SysML, lever-
aging a profile definition for SR systems. Generic Block entities are mapped
to standard SysML blocks; Subsystem entities are mapped to SRSubsystem

52 M. Morelli and M. Di Natale

Fig. 1. The development flow for the proposed Model-Driven approach

instances. The input/output ports and the corresponding connections are suit-
ably translated from the source model (Ecore) to the destination model (SysML).

Here, it is extended with the platform and mapping models. For the modeling
of the hardware (HW) part of the execution platform we rely on the concepts
provided in MARTE. It introduces the HwProcessor stereotype, which matches
the concept of CPU and provides the attribute nbCores to specify the number
of cores, thus enabling the modeling of multi-core architectures.

For the modeling of basic software (BSW) components and for the deploy-
ment of BSW modules onto the HW we define our own taxonomy of stereotypes,
since those in MARTE are mostly cumbersome, come with a large number of
properties and are in turn quite difficult to be mastered by the system designer.
The BswRTOS package provides a set of stereotypes to model RTOS concepts
(Figure 2). The stereotype BswRTOS denotes an RTOS and inherits from the gen-
eral block concept of SysML. The RTOS (kernel) contains a scheduler, denoted
as BswScheduler, which is responsible for executing tasks according a given
scheduling policy.

The mapping model represents the execution of functional elements by tasks
and the allocation of tasks on cores. Concurrent execution contexts are classified
in terms of Process and Thread instances. A Thread is contained in a Process,
is characterized by a priority value and runs on one of the system cores under
the control of an RTOS. Specializations of Thread are AperiodicThread and
PeriodicThread (with its period).

The mapping model also specifies a set of dependencies that define map-
pings/deployments as extensions of the standard SysML Allocation concept. The
FunctionToThreadMap denotes the mapping of a functional subsystem into a
Thread. When multiple subsystems are mapped into the same Thread, the at-
tribute mapOrder defines how their execution will be serialized in the generated
thread code. The SysML profile for mapping is shown in Figure 3.

Control and Scheduling Co-design for a Simulated Quadcopter Robot 53

Fig. 2. Structure of the BswRTOS meta-
model

Fig. 3. Structure of the Mapping meta-
model

3 Time and Resource Aware Simulation in Simulink

The simulation of the control functions considering task implementations with
finite execution times and RTOS scheduling delays is enabled by integrating
Simulink and a RT scheduling simulator in the T-Res [3] co-simulation frame-
work. T-Res is designed according to object-oriented design patterns to provide
an easy integration with any RT simulator.

The Simulink master simulation engine computes the model updates at major
steps: time instants in which the inputs and outputs of the blocks are updated.
Major steps include all the periodic activation times of tasks, as well as the
aperiodic events that lead to the activation of other tasks.

T-Res is implemented as a set of custom blocks that execute at all major steps,
interact with the Simulink engine and capture all the relevant events from the
simulated environment. Every time a major step occurs, the block implement-
ing the RTOS kernel is invoked and processes (if there is any) the task arrival
events. These events are forwarded to the underlying RT scheduling simulator
and cause an update of its internal structure. Then, the kernel block queries the
scheduling simulator to determine future events (execution completions and con-
text switches) and uses the Simulink API to define major steps in the simulation
at all the points in time in which a task scheduling event occurs.

In a RT simulator, tasks execute according to a model of (time-consuming)
computations. T-Res assumes that the execution of a task is split in units that
are atomic from the standpoint of execution time granularity, but can be pre-
empted, called segments, informally corresponding to the execution of a function
called by the task main code. Each segment is identified by an execution time
and all segments in a task are executed according to a pre-defined sequence. Seg-
ments represent the execution of Simulink subsystems and their execution order
in a task must match the order of execution of subsystems. The time duration
of each segment corresponds to the execution time of the code implementing the
subsystem. The start and completion times of the segments correspond to the
times in which the corresponding subsystems read or sample their inputs and pro-
duce their outputs. The activation of the Simulink subsystems is changed from

54 M. Morelli and M. Di Natale

Task1

C D E

BA

A AB B

C D D E

activate
segment

terminate
segment

D

PID

y

r

u

f() f()

Latch

D Q

segment
terminate

segment
activate

Task2

(a) The execution of subsystems modeled
through segments.

Task1

activ

next_instr_duration

Kernel

activ

duration

trigger

[T1]

[S_1_1]
[F_1_1]

[A1]

[A3]

[A2]

[T]

[F_1_2]
[S_1_2]

[T2]

[T1]

[T]

[A1]

[T3]

boolean

Aperiodic
Activations

Pattern

Poisson
Integer

f()

(b) Kernel driving three Task blocks
(top), and Task with two segments
(bottom).

Fig. 4. Execution model of segments and interfaces of T-Res blocks

periodic to function activated and a latch barrier is added on all their outputs.
Figure 4a shows the activation mechanism: when a segment starts executing,
the subsystem is activated; the output signals are latched and enabled when the
segment terminates. The signals activating a subsystem (and its input sampling)
and its output latch are generated by the task blocks upon the beginning of the
execution and the completion of the task segment.

The actual implementation of T-Res relies on two custom blocks, namely
Kernel and Task, implemented as C++ S-Functions. Blocks’ input/output in-
terfaces are shown in Figure 4b. The block Task models one instance of a task
that consists of the serialized execution of the segments/subsystems. Task is a
triggered subsystem, executed on the occurrence of a function call event received
on its port f(). Its output port activ issues activation and termination events
to the task segments; port next_instr_duration outputs a scalar signal rep-
resenting the duration of next segment executed by the task. The duration of
segments is set by a variable in the Matlab workspace. The computation time of
a segment can be fixed or random (e.g., uniform and exponential distributions).

The block Kernel models an event-based RT kernel and the scheduler inside
it on a single- or multi-core computer node. It is responsible for keeping the
scheduling simulation aligned with the system simulation. At each activation,
it checks for any aperiodic requests. If there is any, it activates the correspond-
ing aperiodic tasks. Next, it advances the RT scheduler simulator. Two types
of events are relevant for the simulation: the segment completion and task com-
pletion. In the first case, Kernel reads the input signal on the port duration
and dynamically creates a new instruction for the corresponding task. In the
second case, Kernel resets the internal state of the corresponding task. A num-
ber of parameters configure the (simulated) kernel such as the scheduling policy
and the number of cores of the computer node. Parameters are set through
the Kernel mask dialog. T-Res is open-source and is released under the terms of
the 3-Clause BSD License. Currently, it features a concrete implementation of the
adapter layer based on RTSim [2], which is available under the GNU GPLv2+.

Control and Scheduling Co-design for a Simulated Quadcopter Robot 55

4 Case Study: Quadcopter Attitude Control

The application of the methodology and an example of analysis results are shown
using a model of a quadcopter.

4.1 Functional, Platform and Mapping Models

The quadcopter is required to lift off and fly in a circle at constant altitude,
while spinning slowly around its Z-axis. The adopted control scheme (shown in
Figure 5a) is taken from [10] with minor changes introduced to comply with
our design restrictions. The original model in [10] contains multiple functional
loops at the top level of the model hierarchy dedicated to set-point generation
and flight control. Each loop has been included in a Simulink subsystem. The
constantly increasing signal for the desired yaw angle, originally generated by
a Ramp block in [10], is now obtained from the set of blocks of Figure 5b that
use the output of an external Clock block as time source. In Figure 5b, start
represents the time at which the block begins generating the signal, X0 is the
initial value of the output and the the rate of change of the generated signal
is influenced by the parameters of the block Step. This is because subsystems
mapped into segments cannot contain continuous time blocks (such as Ramp).

state

state vector

YawLoop

y_d

X

R_y

tau_y

Telemetry

w_all

XSetPointGen

t

xy_d

yaw_d

z_d

Quadrotor

w1

w2

w3

w4

XPositionLoop

xy_d

X

R_y

pr_d

CtrlMix

tau_p

tau_r

tau_y

thrust

w1

w2

w3

w4

w_all

20

AttitudeLoop

pr_d

X

tau_p

tau_r

AltitudeLoop

z_d

X

thrust

(a) Control scheme from [10], organized in subsystems.

t

Clock

Out1

1

Step

X0start

In1
1

(b) Ramp using ex-
ternal time-source.

Fig. 5. Models used for the quadcopter flight-control scheme

The set-points of the desired circular path and the desired yaw and altitude are
generated by the subsystem SetPointGen. Quadrotor implements the motion
of vehicle. The inputs are the speeds of the four rotors; the output is the 12-
element state vector with the position, velocity, orientation and orientation rate
of the quadcopter. The actual vehicle velocity is assumed to be estimated by an
inertial navigation system or GPS receiver (i.e., there is no velocity estimator in
the Simulink model).

56 M. Morelli and M. Di Natale

The control strategy involves multiple nested loops that compute the required
thrust and torques so that the quadcopter moves to set-points. Position control
has a two-level hierarchical structure: the subsystem AttitudeLoop implements
the inner loop, which uses the current and desired roll and pitch angles and angu-
lar rates to control the vehicle’s attitude and to provide damping (to slow down
the dynamics). The subsystem PositionLoop realizes the outer loop, which con-
trols the XY -position of the flyer by generating changes in roll and pitch angles so
as to provide a component of thrust in the direction of the desired motion. Finally,
yaw angle and altitude are controlled by proportional-derivative (PD) controllers,
respectively implemented by the subsystems YawLoop and AltitudeLoop.

In practice, control loops are implemented as real time tasks, with finite exe-
cution times, running at different rates under the control of a scheduler. Typical
execution rates range from 10Hz for reading (generating) set-points to 50Hz (or
more) for controlling the vehicle attitude. To investigate how the performances of
control code are actually affected by computation and scheduling delays, a struc-
tural view of the Simulink model of controls is first exported to Ecore and then
automatically translated into a SysML model in Papyrus, where it is extended
with the models of platform and mapping (deployment).

Figure 6a shows a (partial) view of an implementation model of controls con-
sisting of four periodic tasks. Task_spr runs every 100ms and reads the set-
points. Task_pos uses the set-points and the current state of the vehicle to
perform the position control. Every 20ms, it executes the position loop, the atti-
tude loop and the control mixer, in sequence. Finally, Task_yaw and Task_alt
use the same information to perform yaw and altitude control with a period of
50ms and 25ms, respectively. Figure 6b shows a view of the deployment model
of tasks to a single-core Autopilot/Flight Management Unit (FMU) board run-
ning a Fixed Priority (FP) real-time scheduler. Subsystems are now modeled as

(a) Function-to-task mapping model.(b) Models of Autopilot board (with BSW) and
of task-to-platform mapping.

Fig. 6. Functional, platform and mapping models

Control and Scheduling Co-design for a Simulated Quadcopter Robot 57

executing with execution times randomly generated according to uniform distri-
butions (Figure 8b). Once the task priorities are specified, the mapping model
includes all the information needed to automatically generate and connect the
kernel and task blocks to the original Simulink model.

4.2 Back-Annotated Functional Model

The Acceleo M2T transformation processes the mapping model and generates
a collection of Matlab scripts that contain the back-annotation commands. The
execution of the Matlab scripts produces the Simulink model of Figure 7.

One instance of kernel block (Kernel1) and four instances of task blocks (the
names are the same of the corresponding SysML modeling artifacts) are added
to the functional model.

state

state vector

YawLoop

function()

y_d

X

R_y

tau_y

YL_Latch

function()

D1

D2

Q1

Q2

Telemetry

w_all

X

Task_yaw

function()
activ

next_instr_duration

Task_spr

function()
activ

next_instr_duration

Task_pos

function()
activ

next_instr_duration

Task_alt

function()
activ

next_instr_duration

SetPointGen

function()

t

xy_d

yaw_d

z_d

SPG_Latch

function()

D1

D2

D3

Q1

Q2

Q3

Quadrotor

w1

w2

w3

w4

X

PositionLoop

function()
xy_d

X

R_y

pr_d

PL_Latch

function()

D Q

Kernel1

activ

duration

trigger

HL_Latch

function()

D1 Q1

[S_pos_1]

[D_pos]

[F_spr_1]

[S_spr_1]

[D_spr]

[D1]

[A_alt]

[F_alt_1]

[A_yaw]

[S_alt_1]

[D_alt]

[F_yaw_1]

[S_yaw_1]

[D_yaw]

[S_pos_3]

[F_pos_3]

[S_pos_2]
[F_pos_2]

[F_pos_1]

[A_pos]

[A_spr]

[S_pos_1]

[A_alt][A_yaw]

[A_pos][A_spr]

[D1]

[D_alt]

[F_alt_1]

[D_yaw]

[S_alt_1]

[F_yaw_1][S_yaw_1]

[F_spr_1][S_spr_1]

[F_pos_3][S_pos_3]

[F_pos_2][S_pos_2]

[F_pos_1]

[D_pos]

[D_spr]

CtrlMix

function()

tau_p

tau_r

tau_y

thrust

w1

w2

w3

w4

w_all

20

CM_Latch

function()

D1

D2

D3

D4

D5

Q1

Q2

Q3

Q4

Q5

AttitudeLoop

function()

pr_d

X

tau_p

tau_r

AltitudeLoop

function()

z_d

X

thrust

AL_Latch

function()

D1

D2

Q1

Q2

Fig. 7. Attitude control with models of RT kernel and tasks from T-Res

Kernel1 outputs task-activation signals in the order specified by the
taskSetIdx attributes of the «ThreadToCPUMap» allocations in the mapping
model. Activation signals are forwarded to task blocks through the Goto-From
connections labeled A_spr, A_pos, A_yaw, and A_alt. Similarly, tasks commu-
nicate the duration of the next segment to Kernel1 through the Goto-From
connections labeled D_spr, D_pos, D_yaw, and D_alt.

Each control subsystem is transformed to a triggered subsystem and a latch
barrier is added on its outputs. Task blocks manage the activation and termina-
tion signals of the (control) subsystems executing in the segments.

Figure 8a shows a snapshot of the generated Matlab code that adds the
Kernel1 block, and configures its parameters. All parameters are available
from the platform model and their values are set through the Matlab function
set_param(). The timing properties and the type of tasks in the task-set are

58 M. Morelli and M. Di Natale

% - Add and configure the Kernel block
kern1 = ’quadcopter_bn/Kernel1 ’;
add_block(’t_res/Kernel ’, kern1);
set_param(kern1 , ’taskset_descr_name’,’task_set_descr’);
set_param(kern1 , ’scheduling_policy’, ’FIXED_PRIORITY’);

(a) Matlab commands for the generation of block Kernel1.

% Description of timing properties of task set
task_set_descr = {...

% type %iat %rdl %ph % prio
’PeriodicTask’, 100*0.001 , 100*0.001 , 0.0, 0; ... % spr
’PeriodicTask’, 20*0.001, 20*0.001 , 0.0, 5; ... % pos
’PeriodicTask’, 50*0.001, 50*0.001 , 0.0, 15; ... % yaw
’PeriodicTask’, 25*0.001, 25*0.001 , 0.0, 10; ... }; %alt

% Sequences of pseudo instructions (task codes)
spr_instrs = {’delay(unif (0.001 ,0.002))’};
pos_instrs = {...
’delay(unif (0.005 ,0.008))’; ... % PositionLoop
’delay(unif (0.003 ,0.007))’; ... % AttitudeLoop
’delay(unif (0.002 ,0.004))’; ... };% CtrlMix

yaw_instrs = {’delay(unif (0.004 ,0.006))’};
alt_instrs = {’delay(unif (0.008 ,0.009))’};

(b) Definition of type and timing properties of tasks.

Fig. 8. Matlab commands for the configuration of kernel and task blocks

described by the variable task_set_descr in Figure 8b (cell array). Tasks types
and periods (or interarrival times) are available from the mapping model. Rel-
ative deadlines coincide with periods and activation offsets are set to zero. All
task periods are expressed in milliseconds, therefore a time-scale constant equal
to 0.001 is generated. The duration of segments executed by each task is de-
scribed by a Matlab cell array of strings (Figure 8b). Each string that describes
the computation time of a segment is available from the execTime attributes of
the «SRSubsystem» block instances.

4.3 Scheduling Selection and Priority Assignments

All design refinements, be them minor (e.g., changing the scheduling policy) or
more prominent (e.g., mapping functional subsystems to a different task-set),
are realized at SysML level to keep platform and mapping models in synch with
the generated Matlab code for back-annotations.

Initially, Task_spr is given the highest priority; the other tasks’ priorities are
assigned according to their period, so that the shorter the period the higher the
priority (Rate Monotonic rule). In this case, computation times and scheduling
delays induce deadline misses of tasks Task_yaw and Task_alt, that do not affect
much the altitude control, as shown in Figure 9a, but degrade the performances
of circular path-following significantly (Figure 9b). This fact is easily explained if
one considers that the low-priority task Task_yaw, which drives the high-priority
task Task_pos (that controls the XY -position of the flyer), is repeatedly subject

Control and Scheduling Co-design for a Simulated Quadcopter Robot 59

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

Time (s)

A
lt
it
u

d
e

 (
m

)

(a) Altitude control.

−1 −0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X Position (m)

Y
 P

o
s
it
io

n
 (

m
)

(b) Circular path-following of
initial design.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Time (s)

N
o

rm
 o

f
A

lt
it
u

d
e

 E
rr

o
r

(m
) Initial FP Design

Refined FP Design
EDF Scheduling

(c) Norm of altitude error with respect to the
pure functional control.

−1 −0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X Position (m)
Y

 P
o

s
it
io

n
 (

m
)

(d) Circular path-following of
refined design.

Fig. 9. Simulation results. Comparison of trajectories and errors for different scheduling
and priority assignments.

to preemption from the mid-priority task Task_alt, and that this prevents the
preservation of SR communication flows between Task_yaw and Task_pos, with
respect to the pure functional control model of Figure 5a.

The analysis indicates that the response time of task Task_yaw has a signif-
icant impact on the effectiveness of the control action, and suggests to raise
its priority to a value greater than the one of Task_alt. Figure 9d shows the
simulation results of circular path-following in the refined design. Task_yaw has
now a priority level greater than Task_alt and meets all its deadlines; conse-
quently, the control behavior is closer to the pure functional one. On the other
hand, Task_alt misses more deadlines than in the initial design and the altitude
control performs slightly worse, as shown in Figure 9c (dark line vs light line).
However, it is still controlled with a reasonable error, which makes the refined
design preferable. As an additional option, we tried an application of the Earli-
est Deadline First (EDF) dynamic scheduling policy, which results in a slightly
worse performance of the altitude control (dashed line of Figure 9c) and path
following performance similar to that of the refined priority model (not shown
in the graphs but practically overlapping with the dark line).

60 M. Morelli and M. Di Natale

5 Conclusions and Future Work

The paper presents a case study application of a MDE framework for the defini-
tion of the execution platform and the impact of the computation and commu-
nication delays and the T-Res co-simulation framework to a quadcopter model.
The example shows how the selection of task priorities and scheduler models can
affect the performance of the controls and the co-simulation environment allows
to quantify the errors for different options. Future work includes the extension
of the modeling and co-simulation framework to networked architectures and
messages and the evaluation on a distributed case-study.

References

[1] BRICS - Best practice in robotics, http://www.best-of-robotics.org/
[2] RT-Sim – Real-Time system SIMulator, http://rtsim.sssup.it/
[3] T-Res – Time and Resource Simulator, http://retis.sssup.it/tres/
[4] Architecture Analysis & Design Language (AADL),

http://standards.sae.org/as5506b/
[5] Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Alvarez, B.: V3cmm: a 3-view

component meta-model for model-driven robotic software development. Journal
of Software Engineering for Robotics 1(1), 3–17 (2010)

[6] Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gher-
ardi, L., Brugali, D.: The BRICS Component Model: A Model-based Development
Paradigm for Complex Robotics Software Systems. In: Proc. of the 28th Annual
ACM Symposium on Applied Computing, pp. 1758–1764 (2013)

[7] Bruyninckx, H., Soetens, P., Koninckx, B.: The Real-Time Motion Control Core
of the Orocos Project. In: IEEE International Conference on Robotics and Au-
tomation, pp. 2766–2771 (2003)

[8] Buttle, D.: Real-time in the prime-time. Keynote presentation. In: Euromicro
ECRTS Conference (July 2012)

[9] Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Årzén, K.E.: How does control
timing affect performance? Analysis and Simulation of Timing using Jitterbug and
TrueTime 23(3), 16–30 (2003)

[10] Corke, P.I.: Robotics, Vision & Control: Fundamental Algorithms in Matlab.
Springer (2011)

[11] Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 149–160. Springer, Heidelberg (2012)

[12] dSPACE GmbH: SystemDesk, http://www.dspace.com/en/pub/home/products/
sw/system_architecture_software/systemdesk.cfm

[13] Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraetzschmar, G., Bru-
gali, D., Bruyninckx, H.: A Model-Based Approach to Software Deployment in
Robotics. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3907–3914 (November 2013)

[14] Nickl, M., Jörg, S., Hirzinger, G.: The virtual path: The domain model for the de-
sign of the MIRO surgical robotic system. In: 9th International IFAC Symposium
on Robot Control, IFAC, Gifu, Japan, pp. 97–103 (2009)

http://www.best-of-robotics.org/
http://rtsim.sssup.it/
http://retis.sssup.it/tres/
http://standards.sae.org/as5506b/
http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm
http://www.dspace.com/en/pub/home/products/sw/system_architecture_software/systemdesk.cfm

Control and Scheduling Co-design for a Simulated Quadcopter Robot 61

[15] Object Management Group: Model Driven Architecture (MDA),
http://www.omg.org/mda/specs.htm

[16] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

[17] Schlegel, C., Steck, A., Brugali, D., Knoll, A.: Design Abstraction and Processes
in Robotics: From Code-Driven to Model-Driven Engineering. In: Ando, N., Bal-
akirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS,
vol. 6472, pp. 324–335. Springer, Heidelberg (2010)

[18] Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: Proceedings of the ACM International Conference on Ada
(SIGAda), pp. 1–8 (2004)

[19] Wätzoldt, S., Neumann, S., Benke, F., Giese, H.: Integrated software development
for embedded robotic systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J.
(eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 335–348. Springer, Heidelberg (2012)

http://www.omg.org/mda/specs.htm

Simulating Human-Robot Interactions

for Dialogue Strategy Learning

Grégoire Milliez1, Emmanuel Ferreira2, Michelangelo Fiore1, Rachid Alami1,
and Fabrice Lefèvre2

1 CNRS, LAAS, 7 avenue du colonel Roche, 31077 Toulouse, France,
Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 31077 Toulouse, France

{gregoire.milliez,michelangelo.fiore,rachid.alami}@laas.fr
2 LIA, Université d’Avignon BP1228 - 84911 Avignon Cedex 9, France

{emmanuel.ferreira,fabrice.lefevre}@univ-avignon.fr

Abstract. Many robotic projects use simulation as a faster and easier
way to develop, evaluate and validate software components compared
with on-board real world settings. In the human-robot interaction field,
some recent works have attempted to integrate humans in the simulation
loop. In this paper we investigate how such kind of robotic simulation
software can be used to provide a dynamic and interactive environment
to both collect a multimodal situated dialogue corpus and to perform an
efficient reinforcement learning-based dialogue management optimisation
procedure. Our proposition is illustrated by a preliminary experiment
involving real users in a Pick-Place-Carry task for which encouraging
results are obtained.

1 Introduction

Simulation softwares are highly needed in robotic projects. By using simulators,
roboticists can evaluate and validate their works on the chosen level of abstrac-
tion in a sandbox that limits the risk-taking. In this way, projects relying on high
level computation (e.g. interaction, dialogue, supervision), can use a simulator to
abstract lower levels (e.g. navigation, image processing, localisation) and avoid
their related issues to interfere during the system evaluation. Furthermore, the
simulation setup can also be useful to assess parts of the development before any
attempt of costly integration on the on-board robotic platform.

In the present study, we specifically focus on Human-Robot Interaction (HRI).
In the simulation context, two distinct solutions can be adopted to integrate
humans in the loop: 1. modelling and implementing their behaviours and actions,
and 2. dealing with tele-operation to control human avatars.

The first solution has the advantage of automatization and does not require
manual manipulation. So, this solution is less time consuming and easier to run.
However, depending on the human features required, it may be really difficult to
have a realistic human model. Humans are complex entities with reactions and
behaviours nearly impossible to consistently synthesize. This solution is usually

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 62–73, 2014.
c© Springer International Publishing Switzerland 2014

Simulating Human-Robot Interactions for Dialogue Strategy Learning 63

used for studies that do not involve the most complex sides of human behaviours,
such as navigation or manipulation.

The second solution consits in having the simulated human controlled by a
real human operator. By doing so, the complexity of the experimentation rises as
an actual human is required to operate the human avatar. However, the avatar
in the simulator will have a far more realistic behaviour. To do so, the simulator
must have a realistic environment rendering and the human control must be
natural and close enough to the real world.

HRI projects that focus on situated dialogue usually investigate tasks that
seem to be within the scope or already implemented in HRI simulator, such
as a Pick-Place-Carry scenario [1], robot bartender [2] or navigation tasks in a
virtual environment [3]. Nevertheless, few works consider the simulation setup
as the way to carry out situated dialogue corpus acquisition as well as a test-
bed for an efficient online dialogue policy learning. Indeed, most of the previous
works in situated dialogue for HRI resorted to a preliminaryWizard-of-Oz (WoZ)
experiment, where a human remotely operates the robot [4,2,5]. However, the
WoZ technique is both time consuming and an expensive method.

In this article we present how a robotic simulation software, in which the
human is integrated, can help to train a dialogue system for realistic HRI from
scratch. In Section 2 we explain how we simulated HRI scenarios with the open-
source robotic simulator MORSE. In Section 3 we show how we used the sim-
ulator along with a robotic architecture, and finally in Section 4 we expose the
integration with the dialogue system and give some testing results. In last Sec-
tion 5, we discuss the outcome of this preliminary study and future work.

2 MORSE as HRI Simulator

2.1 Why MORSE for HRI?

In the robotic field, many simulators are available. We can name the Play-
er/Stage/Gazebo suite [6], the integrated simulation platform OpenHRP [7],
the cross-platform software architecture OpenRAVE [8] or even the commercial
simulator V-REP [9]. However, only a few of them are very well suited to HRI.
They generally limit human agent behaviours to relatively simple motions and
interaction capacities which is one of the reasons why HRI simulations so far
have been carried out in tele-operation settings, where only the robot and the
environment, but not the human agent, are actually simulated. Robotic simula-
tors USARSim [10] and MORSE [11,12] are both used in dozens of HRI studies
due to their explicit support for controlling a human agent. However, the latter
has several specific advantages that motivated our choice.

MORSE is an open-source simulator, with a very active community, that was
developed specifically for robotic simulation. It supports a wide range of middle-
ware (e.g. ROS, YARP, pocolibs) as well as reliable implementations of realistic
sensors and actuators which ease the integration on real robotic platforms af-
terwards. Moreover, MORSE offers an adaptable simulation setup by allowing

64 G. Milliez et al.

virtual robots to interact with the virtual environment through both realistic
sensors/actuators and higher level ones. Thereby, roboticists can control the re-
lated computation cost of low level data processing by exploiting high level out-
puts from unrealistic components. For example, MORSE provides both a vision
camera and a semantic camera sensor. While the first camera provides a rough
image (i.e. raw pixels) as output, the second one gives directly the names of the
perceived objects and their positions in the scene. The latter sensor avoids prac-
titioners to perform object recognition and localization processes when focusing
on higher level issues.

Furthermore, MORSE relies on the Blender Game Engine, a real-time 3D
runtime integrated to the open-source Blender modelling toolkit, for both ad-
vanced 3D (OpenGL shader) and physics simulation (based on the BULLET
physics engine). This setup allows realistic rendering of complex environment
and provides an immersive graphical user interface, which is a required feature
for HRI modelling.

In MORSE, the human avatar can be controlled by a human operator or
directly through external scripts as any other robot.

Fig. 1. Human avatar grabbing an object controlled by an operator (left image) and
human in 3rd person perspective (right image)

In the first case, the operator controls the virtual human in an immersive way
(see Figure 1) in terms of displacement, gaze, and interactions on the environ-
ment, such as object manipulation (e.g. grasp/released an object). To go even
further in realistic human incorporation in the simulator, a motion capture ac-
tuator allows to control the human avatar directly by using an external device.
So, a Kinect sensor collects human gestures and sends the posture data to move
the human avatar accordingly. Furthermore, a Nintendo wiimote can jointly be
used to manage its action (e.g. grasp/released an object).

In the second case, the avatar is programmatically controlled by using stan-
dard MORSE actuators. As an example, it is possible to use a waypoint actuator
on the human to define a path he has to follow.

Simulating Human-Robot Interactions for Dialogue Strategy Learning 65

2.2 Scenario Implementation

In our scenario, a disabled human is in her apartment and has a robot to assist
her to perform everyday life chores. The goal is to make the robot understand,
by reasoning on human speech, gestures and the environment, human’s requests
concerning objects. Objects are limited here to graspable items such as books,
DVDs and mugs, that have diverse colors and a unique identifier.

The PR2 robot is used in the simulator as it is our real platform at LAAS-
CNRS. PR2 is already present in MORSE models, making it directly usable. We
add a symbolic camera (MORSE semantic camera) sensor to the standard model
so that it can perform object recognition and also a teleport actuator to move
it to a designated position (while saving the time of the true displacement). We
also add a human avatar with first person representation to have realistic inputs
of speech and behaviour of human users. We use a virtual model of the physical
environment in which the real robot will be tested (see Figure 2).

Fig. 2. Scenario environment in MORSE

At the start of the simulation, a script randomly positions objects in prede-
fined areas (such as over kitchen table, living-room table, bedroom shelf etc.),
called manipulation areas. This allows us to use different environment configu-
rations without changing the initialization files (MORSE builder script).

2.3 Actions Library

To get a more interactive and realistic simulation and also for the user to evaluate
the fulfilment of her request (e.g. does the robot bring the appropriate object),
we have developed a library of high-level and abstract actions that the robot
will be able to perform.

66 G. Milliez et al.

The list of abstract actions is as followed:

– To explore the environment and bring an object to the human, the robot
needs to be able to move to manipulation areas. To do so, we use the tele-
port actuator of MORSE. This actuator moves instantaneously the robot to
a given place. We define a script function to move the robot to each ma-
nipulation area that has been defined. In this way the robot can go to each
position to pick objects or explore an area to get some contextual informa-
tion.

– The robot is able to scan a manipulation area. To make this action possible
a symbolic camera is added to the robot on its head. We then move the head
sequentially to scan the environment.

– The robot has to grab an object. To perform this action the grasp service of
the PR2 is used. We specify the name of the object it has to grab and if the
object is close to robot’s hand it will be attached to it. In a similar way, we
added a function to drop an object that takes as parameter the manipulation
area where it should be dropped to. The robot will drop the object on top
of the corresponding furniture.

– The last action is giving the object to the human. It consists in moving the
robot to the human position and deploying the arm of the robot toward the
human to give her the object. We simply use the robot armature actuator
to control the robot’s arm.

3 Integration with Robotic System

3.1 SPARK for Spatial Reasoning

To achieve geometric reasoning and to get the environment through robot per-
ception SPARK [13] (SPAtial Reasoning and Knowledge) was used on our robot.
To do the same in our simulated environment we need to get data from MORSE.
We briefly explain here how we linked SPARK with MORSE and then what is
obtained from this integration.

SPARK gets three kinds of input: object identifier and position, human posi-
tion and posture and robot position and posture.

To obtain the object position in SPARK, we use the semantic camera on
the robot head. This sensor can export the position and name of objects in
view field. This data is sent using a middleware and is then read by SPARK
to position the object in its representation. Concerning human and robot, we
attach a pose sensor to them and we export their armature configuration. In
this way SPARK can read the position and posture of the robot and human
through the middleware, requesting only a mapping to match the MORSE joint
representation with the SPARK one.

SPARK uses robot perception data to build the environment as seen by
the robot. It also computes geometrical facts such as topological description of
object’s position (Book isOn table), agents affordances (Book is visibleBy

Human) and knowledge of agents (Human hasKnownLocation Book). These high
level data will be used to enrich the dialogue context.

Simulating Human-Robot Interactions for Dialogue Strategy Learning 67

3.2 Robotic System

By using SPARK as a link in the system, we are able to use a full robotic
architecture with MORSE. This architecture, shown in Figure 3, is composed of
several modules:

– Supervision System: the component in charge of commanding the other com-
ponents of the system in order to complete a task.

– HATP: the Human-Aware Task Planner [14], based on a Hierarchical Task
Network (HTN) refinement [15]. HATP is able to produce plans for the robot
actions as well as for the other participants (humans or robots).

– Collaboration Planners: this set of planners are used in joint actions such as
handover to estimate the user intentions and selects an action to perform.

– SPARK: the Spatial Reasoning and Knowledge component, as explained
in 3.1.

– Knowledge Base: the facts produced by the geometric and temporal reason-
ing component are stored in a central symbolic knowledge base. This base
maintains a different model for each agent, allowing to represent divergent
beliefs.

– Human Planners: a set of human aware motion, placement and manipulation
planners [16].

Our system is able, using SPARK, to create different representations of the
world for itself and for the other agents, which are then stored in the Knowledge
Base. In this way the robot can take into account what each agent can see,
reach and know when creating plans. Using HATP the robot can create a plan
constituted by different execution streams for every present agent.

Fig. 3. Robotic system architecture

68 G. Milliez et al.

The interaction process is designed to be flexible. Users are able to issue com-
mands to the robot but the robot is also able to plan on its own to execute
complex goals and to adapt its plan to user actions. Human actions are mon-
itored using SPARK by creating Monitor Spheres associated to items deemed
interesting in a given context. A Monitor Sphere is a spheric area surrounding
a point that can be associated to different events, like the hand of a human
entering into it. The system is explained in more details in [17].

4 Learning Dialogue Strategies

4.1 Dialogue Management

In this study the robot is dedicated to help a human achieving a specific ob-
ject manipulation task. Thereby, multimodal dialogues are employed to solve
ambiguities and to request missing information until task completion (i.e. full
command execution) or failure (i.e. explicit user disengagement or wrong com-
mand execution). In this setup, the robot, more precisely the Dialogue Manager
(DM), is responsible for taking appropriate multimodal dialogue decisions to
fulfil the user’s goal based on uncertain dialogue contexts.

To do so, the dialogue management problem is cast as a Partially Observable
Markov Decision Process (POMDP). In this setup, the agent maintains a dis-
tribution over possible dialogue states, called the belief state in the literature,
and interacting with its perceived environment using a dialogue policy learned
by means of a Reinforcement Learning (RL) algorithm [18]. This mathematical
framework has been successfully employed in the Spoken Dialogue System (SDS)
field (e.g. [19,20,21]) as well as to manage dialogue in HRI context (e.g. [22,1]).
Indeed, this framework explicitly handles parts of the inherent uncertainty of
the information which the DM has to deal with (erroneous speech recognitions,
misrecognized gestures, etc.).

Recent attempts in SDS have shown the possibility to learn a dialogue policy
from scratch with a limited number (several hundreds) of interactions [23,24,25]
and the potential benefit of this technique compared to the classical use of WoZ
or to develop a well-calibrated user simulator [23]. Following the same idea,
we employ a sample-efficient learning algorithm, namely the Kalman Temporal
Differences (KTD) framework [26,25], which enables us to learn and adapt the
robot behaviour in an online setup. That is while interacting with users. The
main shortcoming of the chosen method consists in the very poor initial perfor-
mances. However, solutions as those proposed in [27,28] can be easily adopted
to alleviate this limitation.

Although objectively artificial, the presented robotic simulation platform pro-
vides a very interesting test-bed module for online dialogue learning. Indeed, a
better control over the global experimental conditions can be achieved (e.g. en-
vironment instantiation, sensors equipped by the robot). Thereby, comparisons
between different approaches and configurations are facilitated. Furthermore,
this solution reduces the subjects’ recruitment costs without strongly hamper-
ing their natural expressiveness (due to the capacities offered by the simulator).

Simulating Human-Robot Interactions for Dialogue Strategy Learning 69

Fig. 4. Architecture of the multimodal and situated dialogue system

4.2 Architecture

The multimodal dialogue architecture considered in our experiments is presented
in Figure 4. Twelve components are responsible of the overall functioning of this
dialogue system.

The four orange ones are those which are implicated in the user’s input man-
agement, speech and gesture modalities in our case. Thus, the combination of
the Google Web Speech API1 for Automatic Speech Recognition (ASR) and a
custom-defined grammar parser for Spoken Language Understanding (SLU) are
used to perform speech recognition and understanding. The Gesture Recognition
and Understanding (GRU) module simply catches the gesture-events generated
by our spatial reasoner during the course of the interaction. Then, the Fusion
module temporally aligns the monomodal inputs then merge them with custom-
defined rules. Finally, the result of the fusion (i.e. N-best list of interpretation
hypotheses and their related confidence scores) becomes the input of the multi-
modal DM.

The three blue components are responsible of the context modelling. SPARK,
previously presented in 3, for both detecting the user gestures and generating the
per-agent spatial facts (perspective taking) which are used to dynamically feed
the contextual knowledge base. These two modules are responsible of per-agent
knowledge modelling which allows the robot to reason over different perspec-
tives on the world. Furthermore, we also make use of a static knowledge base
containing the list of all available objects (even those not perceived) and their
related static properties (e.g. color).

The four yellow components are dedicated to the output restitution. So, the
Fission module splits the abstract system action into verbal and non-verbal ones.
The spoken output is produced by chaining a template-based Natural Language
Generation (NLG) module with a Text-To-Speech Synthesis (TTS) component
based on the commercial Acapela TTS system2. The Non-verbal Behaviour

1 https://www.google.com/intl/en/chrome/demos/speech.html
2 http://www.acapela-group.com/index.html

https://www.google.com/intl/en/chrome/demos/speech.html
http://www.acapela-group.com/index.html

70 G. Milliez et al.

Planning and Motor Control (NVBP/MC) module produces arm gestures and
head and body poses for the robot by translating the non-verbal action into a
sequence of abstract actions, as defined in 2.3.

Finally, the green component is the DM, responsible for updating the internal
belief state and to take the next robot decision. It is based on the POMDP-
based Hidden Information State (HIS) framework [19] which has been adapted
to the multimodal case here. In this setup, the belief state is represented by
a set of partitions. Each partition represents a possible user command. The
decision takes place into a more reduced summary space where RL algorithms
are tractable. So, at each turn the system choose a summary action (e.g. inform,
confirm, execute) and a heuristic-based method maps the summary action back
to the master state (hand-crafted part).

Concerning the DM policy, the sample-efficient KTD-SARSA RL algorithm
[25] was used in combination with the Bonus Greedy exploration scheme to
enable the online learning of a dialogue policy from scratch. A reward function
is defined to penalise the DM by −1 for each dialogue turn and reward it by +20
if the right command is performed at the end of the interaction, 0 otherwise.
More details about this setup are available in [27,28].

4.3 Experimental Setup and Results

In this “proof of concept” study we chose to deal with a limited expert panel,
composed of 6 subjects (2 females and 4 males of around 25 years old), in order
to focus on the capacity of the system to learn from scratch using a limited
set of interactions. The advantage is that the collected data sufficiently explore
the state and action spaces during the online learning to be exploited in offline
learning (using batch samples).

At the beginning of each dialogue, a specific goal (here a command) is ran-
domly generated taking into account the simulated environment settings and
the current interaction history in order to select a possible command. For ex-
ample, “You want the robot to give you the white book on the kitchen table”.
No experimenter has any idea of the chosen configuration of the system with
which he is interacting. So, we basically compare a hand-crafted expert dialogue
policy (noted HDC) to a learned one (noted LEARNED). The latter was trained
using a small set of expert users which first performed 60 dialogues in an online
learning setting.

In the complete multimodal architecture, each interaction takes from 7 to 10
minutes to complete (objects detection, robot movements, etc.). So, without loss
of generality, a practical workaround to speed-up the testing process consisted
in using a fixed representation of the scene (a screenshot from the human point
of view) and a web-based multimodal GUI instead of the full simulation setup.
Overall, 84 dialogues for both the two proposed systems were recorded with 6
distinct subjects. At the end of each interaction users evaluated the system in
terms of task completion. The learned policy were configured to act greedily ac-
cording to the value function. Results are those gathered in test condition where
exploration is not allowed. All the dialogues were recorded both in terms of audio

Simulating Human-Robot Interactions for Dialogue Strategy Learning 71

and various kinds of meta-information (e.g. ASR N-Best list, dialogue manager
detected gestures and related timestamps, etc.) but also high level annotations
(e.g. environment settings, pursued goal, task success). As an illustration, a short
interaction, translated from French, is given in Table 1.

Table 1. Example of a multimodal dialogue

R1
DA hello()

NLG/TTS Can I help you ?

U1
ASR Can you put the book in my bedroom?
SLU inform(action=move,desc=in,room=bedroom)

R2
DA confreq(type=book,position)

NLG/TTS Sorry but where is the book you are talking about?

U3
ASR I am talking about this one
SLU inform(idobj=?)
GRU pointsAt BLUE BOOK 1395848705.31

R3

execute(action=move,destination=bedroom bedsidetable,
DA idobj=BLUE BOOK,position=livingroom table,type=book,

color=blue)
NVBP/MC move(BLUE BOOK,livingroom table,bedroom bedsidetable)
NLG/TTS Ok, I will put the blue book on your bedside table

The results obtained are 14.3 for the HDC method and 17.6 for the LEARNED
one. These results are given in terms of mean discounted cumulative rewards [18].
According to the reward function definition, this metric expresses in a single real
value the two variables of improvement, namely the success rate (accuracy) and
the number of turns until dialogue end (time efficiency). So, here the HDC pol-
icy manages the dialogue with 86% of success rate in an average of 4.8 turns
against respectively 93% and 2.9 turns for the LEARNED one. The difference
observed between the two methods can be mainly explained by a more accurate
and less frequent usage of request of confirmation as well as an expected more
fined-grained uncertainty management for the LEARNED method. Thus, these
results clearly both demonstrates the ability of the overall architecture (simula-
tion software + multimodal dialogue system) to learn an efficient dialogue policy
using few dialogue examples and shows the interest of considering RL methods
rather than a hand-crafted fixed and suboptimal policy. Indeed, only 60 training
dialogues are enough to outperform the HDC by more than 3 points.

5 Summary and Future Work

In this paper we show how the MORSE simulator is used to build a scenario
for HRI and how we used a robotic system along with this simulator to provide
situated data to train the dialogue system. Using the MORSE simulator along
with a robotic system was very helpful for us as it allows several partners to
work with the same environment even being at different physical places and
allows to train the system without using the actual robot, making it much easier

72 G. Milliez et al.

for trainers. We believe this configuration is close enough to reality to efficiently
train the dialogue system. Anyhow as we have not yet deployed the dialogue
system on the robotic platform this affirmation still needs to be proved. These
metrics will be carried out in a future work.

Acknowledgments. This work has been supported by l’Agence Nationale pour
la Recherche under project reference ANR-12-CORD-0021 (MaRDi).

References

1. Lucignano, L., Cutugno, F., Rossi, S., Finzi, A.: A dialogue system for multimodal
human-robot interaction. In: Proceedings of the 15th ACM on International Con-
ference on Multimodal Interaction, pp. 197–204. ACM (2013)

2. Stiefelhagen, R., Ekenel, H.K., Fugen, C., Gieselmann, P., Holzapfel, H., Kraft, F.,
Nickel, K., Voit, M., Waibel, A.: Enabling multimodal human–robot interaction
for the karlsruhe humanoid robot. IEEE Transactions on Robotics 23(5), 840–851
(2007)

3. Byron, D.K., Fosler-Lussier, E.: The osu quake 2004 corpus of two-party situated
problem-solving dialogs. In: Proceedings of the 15th Language Resources and Eval-
uation Conference (LREC 2006) (2006)

4. Prommer, T., Holzapfel, H., Waibel, A.: Rapid simulation-driven reinforcement
learning of multimodal dialog strategies in human-robot interaction. In: INTER-
SPEECH (2006)

5. Rieser, V., Lemon, O.: Learning effective multimodal dialogue strategies from
wizard-of-oz data: Bootstrapping and evaluation. In: ACL, pp. 638–646 (2008)

6. Rusu, R.B., Maldonado, A., Beetz, M., Gerkey, B.P.: Extending Play-
er/Stage/Gazebo towards cognitive robots acting in ubiquitous sensor-equipped
environments. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA) Workshop for Network Robot Systems (2007)

7. Nakaoka, S., Hattori, S., Kanehiro, F., Kajita, S., Hirukawa, H.: Constraint-based
dynamics simulator for humanoid robots with shock absorbing mechanisms. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2007) (2007)

8. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute (August 2010)

9. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation
platform V-REP: A versatile 3D robot simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

10. Lewis, M., Wang, J., Hughes, S.: Usarsim: Simulation for the study of human-robot
interaction. Journal of Cognitive Engineering and Decision Making 2007, 98–120
(2007)

11. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P.,
Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE.
In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS,
vol. 7628, pp. 197–208. Springer, Heidelberg (2012)

Simulating Human-Robot Interactions for Dialogue Strategy Learning 73

12. Lemaignan, S., Hanheide, M., Karg, M., Khambhaita, H., Kunze, L., Lier, F.,
Lütkebohle, I., Milliez, G.: Simulation and HRI recent perspectives with the
MORSE simulator. In: Brugali, D., Broenink, J., Kroeger, T., MacDonald, B. (eds.)
SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 13–24. Springer, Heidelberg (2014)

13. Milliez, G., Warnier, M., Clodic, A., Alami, R.: A framework for endowing interac-
tive robot with reasoning capabilities about perspective-taking and belief manage-
ment. In: Proceedings of the 23rd IEEE International Symposium on Robot and
Human Interactive Communication (2014)

14. Alili, S., Montreuil, V., Alami, R.: HATP Task Planner for social behavior control
in Autonomous Robotic Systems for HRI. In: The 9th International Symposium
on Distributed Autonomous Robotic Systems (2008)

15. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.:
SHOP2: An HTN Planning System. Journal of Artificial Intelligence Research,
379–404 (2003)

16. Sisbot, E.A., Clodic, A., Alami, R., Ransan, M.: Supervision and Motion Planning
for a Mobile Manipulator Interacting with Humans (2008)

17. Fiore, M., Clodic, A., Alami, R.: On planning and task achievement modali-
ties for human-robot collaboration. In: International Symposium on Experimental
Robotics, Marrakech/Essaouira, June 15-18 (2014)

18. Sutton, R., Barto, A.: Reinforcement learning: An introduction. IEEE Transactions
on Neural Networks 9(5), 1054–1054 (1998)

19. Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., Yu, K.:
The hidden information state model: A practical framework for pomdp-based spo-
ken dialogue management. Computer Speech and Language 24(2), 150–174 (2010)

20. Thomson, B., Young, S.: Bayesian update of dialogue state: A pomdp framework
for spoken dialogue systems. Computer Speech and Language 24(4), 562–588 (2010)

21. Pinault, F., Lefèvre, F.: Unsupervised clustering of probability distributions of
semantic graphs for pomdp based spoken dialogue systems with summary space.
In: IJCAI 7th KRPDS Workshop (2011)

22. Roy, N., Pineau, J., Thrun, S.: Spoken dialogue management using probabilistic
reasoning. In: ACL (2000)

23. Gašić, M., Jurč́ıček, F., Keizer, S., Mairesse, F., Thomson, B., Yu, K., Young, S.:
Gaussian processes for fast policy optimisation of pomdp-based dialogue managers.
In: SIGDIAL (2010)

24. Sungjin, L., Eskenazi, M.: Incremental sparse bayesian method for online dialog
strategy learning. Journal on Selected Topics in Signal Processing 6, 903–916 (2012)

25. Daubigney, L., Geist, M., Chandramohan, S., Pietquin, O.: A comprehensive rein-
forcement learning framework for dialogue management optimization. Journal on
Selected Topics in Signal Processing 6(8), 891–902 (2012)

26. Geist, M., Pietquin, O.: Kalman temporal differences. Journal of Artificial Intelli-
gence Research (JAIR) 39, 483–532 (2010)

27. Ferreira, E., Lefèvre, F.: Social signal and user adaptation in reinforcement
learning-based dialogue management. In: Proceedings of the 2nd Workshop on
Machine Learning for Interactive Systems: Bridging the Gap Between Perception,
Action and Communication, pp. 61–69. ACM (2013)

28. Ferreira, E., Lefèvre, F.: Expert-based reward shaping and exploration scheme for
boosting policy learning of dialogue management. In: 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), pp. 108–113. IEEE
(2013)

A Simulation Based Architecture

for the Development of an Autonomous All
Terrain Vehicle

Gianluca Bardaro, Davide Antonio Cucci, Luca Bascetta,
and Matteo Matteucci

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract. In this work we describe a simulation environment for an
autonomous all-terrain mobile robot. To allow for extensive test and
verification of the high-level perception, planning, and trajectory con-
trol modules, the low-level control systems, the sensors, and the vehicle
dynamics have been modeled and simulated by means of the V-Rep 3D
simulator. We discuss the overall, i.e., high and low-level, software archi-
tecture and we present some validation experiments in which the behav-
ior of the real system is compared with the corresponding simulations.

1 Introduction

In this work we present an Autonomous All-Terrain Robot developed starting
from a commercial, fuel-powered, All-Terrain Vehicle (ATV), i.e., a Yamaha
Grizzly 700. This robot is characterized by an Ackermann steering kinematic
and the original vehicle commands have been replaced by servomechanisms con-
trolling the handlebar position, the throttle, and the brake. Multiple sensors have
been fitted on the robot to perform perception activities: two laser range-finders,
a stereo camera rig, a GPS, an Inertial Measurement Unit (IMU), as well as,
wheel and handlebar encoders.

Given the physical dimensions of the robot, the typical operating environment,
and the complexity of the system architecture, it has been quite challenging to
develop and test all the software components, especially in early stages of devel-
opment. The main difficulties come from the intrinsic complexity in operating
the robot, the little repeatability of experiments, the time consuming activity of
fault detection and isolation. Moreover, meteorological and space issues further
affected field evaluation, either because a suitable test area was not always avail-
able for experiments, and because of safety issues for the vehicle itself, which
have a high roll-over risk, and for the people working with it.

To address these challenges we developed a simulation environment in which
the vehicle and its sensors are substituted by a simulator in a way that is trans-
parent with respect to the high-level perception and control software architec-
ture. In contrast with respect to classical hardware-in-the-loop techniques, in
which key elements of the real system, which might be difficult to model, re-
place their simulated counterpart, here the real system and the environment are
replaced with models without changes in the robot control software.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 74–85, 2014.
c© Springer International Publishing Switzerland 2014

A Simulation Based Architecture for the Development of an ATV 75

In our work we employed the Virtual Robot Experimentation Platform (V-
REP) [7], a physical simulator which relies on a distributed and modular ap-
proach and allows to model complex scenarios in which multiple sensors and
actuators operate asynchronously at various rates. Other simulator were avail-
able, such as Gazebo [10], which is mainly focused on robotic applications, and
Dymola [4], which instead focuses on highly accurate multi-domain, multi-body,
physical, simulations. We decided to use V-REP instead of Dymola because
of its capability in simulating the vehicle sensors and we preferred V-REP to
Gazebo for its ease of use. The high-level perception and control architecture
of the robot is implemented relying on the Robot Operating System [13], an
open source framework which has recently become popular in the literature for
its turn-on-and-go functionalities, easiness of deployment, large community, and
support.

The use of simulators is common in robotics and several works related to the
use of a simulator in the development of an autonomous all terrain robot, and
autonomous robots in general, have been presented in the literature: in [9] a
high fidelity model, including sensors, is developed to study the behavior of an
autonomous ATV, focusing on the simulation itself, rather than the integration
with the robot architecture. A simulator is also used in [8] in the actual robot
architecture for real-time path planning, where the aim is to foresee potential
collisions and change the plan accordingly. In [12], the SimRobot simulator is
introduced and example applications in the RoboCup competition are discussed.

This work is organized as follows: in Section 2 the overall robot architecture is
briefly discussed. Next we move to the high-level perception and control modules
implemented employing the ROS framework. In Section 3 we present the simula-
tion environment and we discuss sensor and vehicle models. Finally, in Section 4
we validate our approach comparing the behavior of the simulated system with
the real one during autonomous trajectory following experiments.

2 The Quadrivio ATV

In this section we briefly review the vehicle specifications and the developed hard-
ware and software architectures. The original vehicle used is a Yamaha Grizzly
700 (see Figure 1a), a commercial fuel-powered utility ATV, specifically designed
for agriculture work. For the purposes of the project, the vehicle cover has been
removed and substituted with an aluminum one; this new cover allows to easily
accommodate for control hardware and sensors. Furthermore, the vehicle has
been equipped with three low-level servomechanisms, each one with its own con-
trol loop, to automatically regulate the steer position, the throttle aperture and
the braking force [2][3]. Figure 1b shows the vehicle after customization. The
main characteristics of the vehicle are listed in Table 1.

2.1 The Hardware Architecture

In order to allow for teleoperation and autonomous navigation, an on-board
hardware/software control architecture has been developed.

76 G. Bardaro et al.

(a) Original Yamaha Grizzly 700 (b) Quadrivio ATV

Fig. 1. On the left the original all-terrain vehicle, on the right the vehicle after the
changes to make it autonomous

The architecture is divided in two different layers: the higher level is developed
using ROS and is responsible for acquiring data from external sensors, such
as GPS, magnetometer, Inertial Measurement Unit (IMU), cameras and laser
range-finders. Moreover, it hosts the modules for localization, path planning,
high-level trajectory control and autonomous driving. The lower level acts as
an interface between the vehicle servomechanisms and the ROS architecture:
it receives desired setpoints from the higher level, reads the handlebar angle,
throttle ratio, vehicle speed measurements and runs the low-level control loops.

To implement such an architecture that includes high-level and low-level tasks,
a multi-layered and multiprocessor hardware/software architecture is required,
which consists of: an industrial PLC, which allows a good compromise between
the hard real-time requirements and high-level programming, and a standard
i5 PC, on which runs the high-level ROS architecture (perception, localization,

Table 1. Vehicle characteristics

Main characteristics of the vehicle

Engine type 686cc, 4-stroke, liquid-cooled, 4 valves
Drive train 2WD, 4WD, locked 4WD
Transmission V-belt with all-wheel engine braking
Brakes dual hydraulic disc (both f/r)
Suspensions independent double wishbone (both f/r)
Steering System Ackermann
Dimensions (LxWxH) 2.065 x 1.180 x 1.240 m
Weight 296 Kg (empty tank)

A Simulation Based Architecture for the Development of an ATV 77

ROAMFREE

GPS node IMU node Magnetometer
node

Fast predictor

PLCClient

GPS IMU Magnetometer Odometer Low level
control system

Vehicle

Ttrajectory follower

Planner

ROS

Joypad

Joypad node

Map

Fig. 2. The real system architecture

obstacle avoidance, medium-long range navigation, planning, etc.). Communica-
tion between the two layers is obtained through an Ethernet link.

2.2 The Software Architecture

Figure 2 shows the main modules of the high-level software architecture and
their relations with the external sensors and the vehicle servomechanisms. These
modules live as independent applications running on the standard PC and the
communication between them is guaranteed by the ROS middleware.

The core part of the perception architecture consists in the localization node,
which is based on ROAMFREE [5]. This open source framework provides out-of-
the-box 6-DOF pose tracking fusing the information coming from an arbitrary
number of information sources such as wheel encoders, inertial measurement
units, and so on1. In ROAMFREE, high-level measurement models are used to
handle raw sensor readings and provide calibration parameters to account for
distortions, biases, misalignments between sensors and the main robot reference
frame. The information fusion problem is formulated as a fixed-lag smoother and
it runs in real time thanks to efficient implementations of the inference algorithms
(for further details see [6], and [11]). At the present stage of development the
localization module estimates the robot poses exploiting vehicle kinematic data
(i.e., the handlebar position and the rear wheel speed), GPS, magnetometer, and
the gyroscopes in the inertial measurement unit.

1 http://roamfree.dei.polimi.it

http://roamfree.dei.polimi.it

78 G. Bardaro et al.

The pose estimate is generated by the localization node at a frequency of
20 Hz. However, due to the latencies introduced by the ROS network, delays
in the trajectory control loop which affect the system stability can occasionally
arise. In order to prevent the detrimental effects of these delays, we introduced
a predictor node. This node computes a prediction of the future robot pose at
a frequency of 50 Hz; this prediction is based on the latest available global pose
estimate and on the integration of the Ackermann kinematic model with the
kinematic readings from the vehicle.

Given a map and a goal, a planner node, based on the SBPL library [1],
produces a global path, which is then fed to a lower level trajectory following
module. This module computes setpoints for the vehicle speed and handlebar
angle, based on the current pose and velocity estimates, and on the planned
trajectory. These setpoints are sent to the low-level regulators by a ROS node
communicating with the PLC, which additionally acts as a multiplexer between
the autonomous drive and the manual setpoints, depending on the current op-
erating mode.

3 The Simulation Environment

The software architecture in Figure 2 has been designed introducing a decoupling
layer between the real robot and the high-level perception and control software.
This layer is composed by ROS nodes that respectively handle the GPS and the
IMU sensors, and the communication module between the standard PC and the
PLC. In this section we describe how we have replaced the real vehicle with a
physical simulator and how we set up vehicle and sensor models so that they
accurately mimic the real robot.

3.1 The Simulator

The vehicle simulator was developed using V-Rep [14], a software for robot mod-
elling offering an accurate physics simulation. This software has been chosen for
some of its features that fit particularly well with the requirements of our appli-
cation. First of all, it is simple to set up and use with its integrated development
environment, it has a library with various examples of robots already modeled,
and one of them is particularly similar to our vehicle in terms of kinematics
and suspension geometry. Another important feature is the possibility to control
every object in the simulation with a remote API, that allows the integration
with ROS, making it suitable for interacting with our software architecture.

One important issue which has to be addressed in coupling a simulator with
a control architecture is to make sure that they share a global time reference. In
our case, this was obtained enabling the use sim time parameter in ROS and
having V-Rep publishing the current simulation time on the clock ROS topic.
This is particularly useful when challenging simulations are run which involve
complex terrain or environments and cannot be carried out in real-time.

A Simulation Based Architecture for the Development of an ATV 79

(a) The customized model (b) Suspensions and Ackermann steering

Fig. 3. The vehicle model used in simulation

3.2 The Vehicle Model

V-Rep offers multiple built-in vehicle models. We chose one that shares the
Ackermann steering and the suspension geometry with our vehicle and we cus-
tomized it to match the Quadrivio ATV specifications. The vehicle characteris-
tics required to set up the model are listed in Table 2, while Figure 3a shows the
customized model in which it is possible to see the image from the camera and
the trace of the laser range-finder on the terrain. Figure 3b shows details of the
Ackermann steering and suspensions.

The next step in vehicle simulation was to ensure the real vehicle and the
simulation model share the same dynamic and kinematic behavior. In particular,
we required that the step response for the handlebar and the speed loops on
the real vehicle and in simulation were similar. As we are not interested in
reproducing the engine behavior or in studying the dynamics of the steering
motion control system, but only in simulating the overall vehicle dynamics, the
simulator does not include an accurate model of the steering column and of the
engine. Instead, the steer and speed loops, both based on a PID controller, were

Table 2. Model parameters

Vehicle model specifications.

Track 1920 mm
Wheelbase 1250 mm
Front wheel (WxH) 201 x 635 mm
Rear wheel (WxH) 247 x 635 mm
Weight (estimated) 390 kg

80 G. Bardaro et al.

(a) Handlebar position response (b) Vehicle linear speed response

Fig. 4. Plot of the vehicle actuators step responses on the real vehicle and on the the
simulated one

directly modelled in such a way that the simulated responses of these controlled
systems were as close as possible to the experimental ones.

We recorded data for the handlebar step response of the real vehicle and then
we tuned the PID regulators that control the handlebar column in the V-Rep
simulator so that the simulated vehicle handlebar position step response matches
the one of the real vehicle. In particular, setpoints for the handlebar position and
vehicle speed were recorded while being sent to the real vehicle, then we feed
the simulated vehicle with the same setpoints, allowing to tune the simulator
response. Figure 4a shows a comparison between the handlebar response for the
real vehicle (blue line) and the simulated one (red line). It is possible to see that
the two behaviors substantially match, but the simulated steer cannot reach
a value as high as the real one, because of geometric limitations in the original
model. However, we obtained a reasonable behavior in common operation ranges.

For the speed step response we implemented a custom PID controller, which
controls the torque applied to the motor joint minimizing the error over the
target speed. It was not possible to use the one integrated in the simulator
because the model uses a motorized joint, which models an electric motor, while
the vehicle has a fuel-powered engine with a significantly different characteristic.
After the tuning with field data of the motor PID, we obtained a good matching
behavior in the acceleration phases, while there is still a slight difference in
deceleration due to the difficulties in modeling the engine braking when the
throttle setpoint is suddenly decreased (see Figure 4b).

3.3 The Sensor Models

After modeling the vehicle we added the sensors: GPS, IMU, magnetometer and
odometer. Most of them were already available in V-Rep, but they lacked the
ROS integration and they did not account for noise and fault situations.

The sensors are realized with a “two layers” approach; the first layer is im-
plemented directly inside the simulator, it consists in the sensors itself and a
script that prepares and publishes ROS messages. The second layer is outside

A Simulation Based Architecture for the Development of an ATV 81

the simulator and it consists in a ROS node that reads the messages published by
the simulator and converts them into a format which matches the one produced
by sensors on the real vehicle. This double conversion has the aim of obtaining
the decoupling between the simulator and the high-level perception and control
architecture; indeed, from the point of view of the high-level architecture, there
is no difference between the real sensors and the simulated ones.

The following are the sensor we have simulated with a brief description:

– GPS: V-Rep provides already a simulated GPS providing x/y/z-coordinates
which are compatible with the East-North-Up (ENU) reference frame used
in our architecture, so no further conversion was needed. The node coupled
with this sensor builds the correct ROS message introducing some Gaussian
noise (derived from real data) and allows to model random downtimes, to
simulate for real world GPS unavailability;

– IMU: models for accelerometers and gyroscopes are provided by the simu-
lator out of the box. The raw readings are published as ROS messages and
converted in the desired format;

– Magnetometer: to implement this sensor we extract the current vehicle model
orientation with respect to the global fixed reference frame; from it we can
compute a simulated value for the Earth magnetic field reading in the sensor
reference frame. However, on the real vehicle, hard and soft iron distortion
affect the magnetometer readings. These are considered by employing the
sensor model presented in [15], whose parameters have been calibrated by
means of the sensor self-calibration capabilities of the ROAMFREE sensor
fusion framework;

– Odometer: the vehicle rear wheel speed and the current handlebar position
are extracted from the current status of the relevant joints in V-Rep, and a
TCP socket is employed to communicate with the PLCClient ROS node, in
a way that mimics the behavior of the X20 industrial PLC.

Moreover, there are two sensors that are simulated but not currently used for
localization:

– Laser: the simulator provides a laser scanner out of the box. The associated
script required some adjustment to publish the correct ROS message;

– Camera: V-Rep offers a highly customizable vision sensor that we used to
realize a camera that matched our needs.

Figure 5 shows how the overall architecture changes when the simulator sub-
stitutes the vehicle and the real sensors. Every sensor now is substituted by its
simulated counterpart, yet nothing changes from the point of view of the per-
ception and control modules, since the communication is done on the same ROS
topics. The PLCClient, in charge of communicating with the low-level control
of the vehicle, interacts with a simulated low-level control system through a lo-
cal socket connection. Inside the simulator a script converts setpoints from the
PLCClient into setpoints of the model joints, another one collects odometry and
sends it back to the ROS node. Migration from the simulated environment and
the real vehicle is simple and requires only the change of few parameters.

82 G. Bardaro et al.

ROAMFREE

Simulated GPS
node

Simulated IMU
node

Simulated
magnetometer

node

Fast predictor

PLCClient

Ttrajectory follower

Planner

ROS

Joypad

Joypad node

Map

Simulation

Simulation/ROS interface

V-Rep

Local socket

Fig. 5. Overall architecture in the simulation setup

4 Experimental Evaluation

In this section we discuss some autonomous trajectory following experiments
done on the real vehicle and in the simulation environment. We employ an eight-
shaped trajectory originating 1 meter ahead with respect to the current pose of
the robot. The two circles have a diameter of respectively 18 and 12.5 meters.

Figure 6 shows the results of six experiments done with the real vehicle, in it we
have plotted the reference path, the robot position, estimated by ROAMFREE,
and the raw GPS readings. Especially in the first experiment (Figure 6a), but
also in the other ones, it is possible to see how the trajectory is followed with
reasonable accuracy, and with ROAMFREE being able to account for substantial
multi-path effect compromising GPS readings.

Figure 7, instead, shows the results of the same experiments done with the
simulator. In this case the GPS, like all the other sensors, is simulated and it
is possible to appreciate its simulated faulty behavior. The robot position is
estimated using measurements given by the simulated sensors as they were real,
no special configuration is necessary to use them.

In Figure 7a, and 7b, it is possible to see that multipath effect compromises
the real GPS sensor readings. This happens when the receiver tracks a replica
of the GPS signal which is reflected by environmental features such as buildings
and trees. This effect is hard to model and it has not been simulated in V-Rep,
even though, if we restrict to its effect on localization, a noise model which
accounts for a random transformation to be applied occasionally on the GPS
readings could be considered.

A Simulation Based Architecture for the Development of an ATV 83

(a) 2 m/s (b) 2 m/s

(c) 2 m/s (d) 2 m/s

(e) 3 m/s (f) 4 m/s

Fig. 6. Online trajectory following results. Reference path for the trajectory follower
(black dashed line), the ROAMFREE position output (blue line), and the GPS readings
(red crosses).

84 G. Bardaro et al.

(a) 2 m/s (b) 2 m/s

(c) 3 m/s (d) 4 m/s

Fig. 7. Simulation trajectory following results. Reference path for the trajectory fol-
lower (black dashed line), the ROAMFREE position output (blue line), and the GPS
readings (red crosses).

5 Conclusions

In this work we have presented and validated a simulated environment which
provides an alternative when experiments on the real robots cannot be afforded,
and ultimately simplifies the development and the testing of complex robotic
architectures. As described in Section 3, the simulator transparently substitutes
the real vehicle and its sensors. This is possible thanks to the highly modular
ROS architecture and to the native integration of V-Rep with it. The simulator
does not account for latency of sensors, either internal or caused by the com-
munication, and this makes a simulation more ideal than we would like it to
be, therefore a possible improvement to the current work could be addition of
latency to sensors. The next step is to exploit the features of V-Rep to test the
robot on rough terrains, since the simulator permits to add complex terrains that
can be difficult to find in the real world, or that are too risky for the vehicle.

A Simulation Based Architecture for the Development of an ATV 85

References

1. http://wiki.ros.org/sbpl

2. Bascetta, L., Magnani, G.A., Rocco, P., Zanchettin, A.M.: Design and implemen-
tation of the low-level control system of an all-terrain mobile robot. In: 2009 In-
ternational Conference on Advanced Robotics (ICAR), pp. 1–6. IEEE (2009)

3. Bascetta, L., Cucci, D., Magnani, G., Matteucci, M., Osmankovic, D., Tahirovic,
A.: Towards the implementation of a mpc-based planner on an autonomous all-
terrain vehicle. In: Proceedings of Workshop on Robot Motion Planning: Online,
Reactive, and in Real-time (IEEE/RJS IROS 2012), pp. 1–7 (2012),
http://cs.stanford.edu/people/tkr/iros2012/schedule.php

4. Brück, D., Elmqvist, H., Mattsson, S.E., Olsson, H.: Dymola for multi-engineering
modeling and simulation. In: Proceedings of Modelica, Citeseer (2002)

5. Cucci, D.A., Matteucci, M.: Position tracking and sensors self-calibration in au-
tonomous mobile robots by gauss-newton optimization. In: 2014 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE (to appear, 2014)

6. Cucci, D.A., Matteucci, M.: On the development of a generic multi-sensor fusion
framework for robust odometry estimation. Journal of Software Engineering for
Robotics 5(1), 48–62 (2014)

7. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation
platform V-REP: A versatile 3D robot simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

8. Hellstrom, T., Ringdahl, O.: Real-time path planning using a simulator-in-the-loop.
International Journal of Vehicle Autonomous Systems 7(1), 56–72 (2009)

9. Jayakumar, P., Smith, W., Ross, B.A., Jategaonkar, R., Konarzewski, K.: Devel-
opment of high fidelity mobility simulation of an autonomous vehicle in an off-road
scenario using integrated sensor, controller, and multi-body dynamics. Tech. rep.,
DTIC Document (2011)

10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154. IEEE (2004)

11. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A gen-
eral framework for graph optimization. In: 2011 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)

12. Laue, T., Spiess, K., Röfer, T.: SimRobot – A general physical robot simulator and
its application in roboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg
(2006)

13. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3 (2009)

14. Rohmer, E., Singh, S., Freese, M.: V-REP: A versatile and scalable robot simula-
tion framework. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1321–1326 (2013)

15. Vasconcelos, J., Elkaim, G., Silvestre, C., Oliveira, P., Cardeira, B.: Geometric ap-
proach to strapdown magnetometer calibration in sensor frame. IEEE Transactions
on Aerospace and Electronic Systems 47(2), 1293–1306 (2011)

http://wiki.ros.org/sbpl
http://cs.stanford.edu/people/tkr/iros2012/schedule.php

Applying Simulation and a Domain-Specific

Language for an Adaptive Action Library

Jacob Pørksen Buch, Johan Sund Laursen, Lars Carøe Sørensen,
Lars-Peter Ellekilde, Dirk Kraft, Ulrik Pagh Schultz,

and Henrik Gordon Petersen

The Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, Odense, Denmark
{jpb,josl,lcs,lpe,kraft,ups,hgp}@mmmi.sdu.dk

Abstract. In this paper, we present the status of ongoing research
aimed at tackling the issues of programming robots for small-size produc-
tions where fast set-up times, quick changeovers and easy adjustments
are essential. We use a probabilistic approach where uncertainties are
taken into account, making the deterministic requirements of an assem-
bly process less strict. Concretely, actions from an action library are
modelled through parameters, simulation is used to facilitate learning of
uncertainty-tolerant actions, and a Domain-Specific Language (DSL) is
used to convert the abstractly specified actions into corresponding exe-
cutable actions. The approach is tested on an application example from
industry.

1 Introduction

Extending robotic automation to the wide range of industrial applications with
low volumes, high variance, high flexibility, capability to handle inaccuracies,
etc. is a driving force for research in a range of topics such as computer vision,
haptic and tactile sensing, advanced online robot programming, programming
by demonstration, human-robot interaction and co-operation and modulariza-
tion (plug-and-produce). Somewhat in between all these topics is the problem
of how to develop structures that enable algorithms and software components
to be reused for other applications - in literature often referred to as ”action
libraries” or ”skills”. However, the stored components in these structures have
the drawbacks that there are no easy to use tools for generating the components
and it is rather cumbersome to adjust the components to new scenarios.

We have therefore designed a concept to quickly derive complete solutions
for new automation tasks by the following steps: In the hardware definition step
(S0), the user manually configures the system and in the hardware modeling step
(S1), a computer model of the platform is developed using the software library
RobWork [5]. In the sequencing step (S2), the assembly task is divided into a
sequence of reusable actions. This is performed manually, but planning tools
as [6] may be applied at a later stage. In the action evaluation step (S3), we
perform experimental studies of the new actions using both simulated and real

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 86–97, 2014.
c© Springer International Publishing Switzerland 2014

Applying Simulation and a DSL for an Adaptive Action Library 87

experiments and in the parameter selection step (S4), we use these results to
select optimal parameters for the action. In the sequence testing step (S5), we
combine results from the actions to perform simulated and real execution tests of
the complete action sequences and in the deployment step (S6), the final solution
is chosen based on the results in S5 and then tested and possibly further refined.
Noticed that there are feedback options in these steps so that if an outcome of
a given step is not satisfactory, choices made in previous steps may be modified.

In this paper, we address three main components that are necessary to de-
velop the system: In step S3, the amount of experiments is often quite large due
to the size of the possible solution space even though human intuition is applied.
We therefore need to perform experiments in simulation, which require math-
ematical models and simulation techniques of the involved processes.
The simulation techniques are also combined and used in step S5. The actions
must be formalized in a new way in order to handle inaccuracies while they can
still be combined. This requires a new probabilistic action library. We will
present this action library and discuss how the probabilistic part can also be
sequenced. Combining a user interface with an action library of the complexity
that we envisage (important for steps S2, S5, S6) will be a cumbersome task. We
therefore present our ideas of a new Domain-Specific Language (DSL) sup-
porting an interface for programming the new task in this way. We present our
goals with these three components and the current status in developing them.
Using a small real-world example, we demonstrate that our system is capable of
solving a task that is sensitive to pose uncertainties and tight fits, which nor-
mally would have been difficult to solve using tradition methods. In the example
we create a parameterised action and use simulation to find parameters, making
the action more tolerant to the uncertainties. The adaptive action is instantiated
and interfaced using our DSL.

The paper is structured with Section 2 discussing related work, Section 3
describing the system description and detailing the three main components, and
Section 4 containing the demonstration. The paper is concluded in Section 5.

2 State of the Art

Methods for facilitating robotics in small batch productions are an important
issue [7]. Systems such as softRobot [1] are focused on achieving improvements
in large-scale industrial robot applications, but the ideas about object-oriented
robot programming, separation of real and non-real time, integration of sensors
and expandability are also viable for small batch productions. Other systems
(e.g. RoboEarth [18] and KnowRob [16]) are focused on frameworks for robot
knowledge sharing independent of specific hardware, done through web based
databases and generic components and general skills applied to specific robots.

The system that we suggest is targeted at small batch production and in con-
trast to most previous work, it uses a probabilistic approach for its sub-symbolic
representations. The probabilistic properties are exploited through simulation
enabling us to find the action parameters best able to handle the uncertainties
in the system, which is inspired from work with grasp affordance densities [4].

88 J.P. Buch et al.

An important part of this work is the existence of a software library for
reuse and sharing of functionality. Such are often referred to as skill or action
libraries [2,10,9], and contains a set of actions which has pre- and postconditions
together with prediction and evaluation functionalities. In these papers, skills or
actions are assumed to be deterministic and of a fairly static nature. Here our
work differentiates itself by explicitly modelling uncertainties and considering
actions as something which need to be learned for a given application.

To actually learn actions, we need to rely on process simulation, which is a
wide field having received much attention. In recent years much focus has been
on dynamic simulation for e.g. grasping [3,19], whereas simulation of processes
such as welding [11] and painting [8] have been used for decades. In this work
we will utilize the simulator in RobWork [5] aimed at grasping and assembly.

Domain-Specific Languages can be used to create minimalistic interfaces for
complex systems [1], and are thus relevant for having an easy-to-use system.
Projects such as [15] aim at converting and re-engineering the current vendor
specific DSLs into extensible robotics APIs to be used in the context of general
purpose languages. Other projects, e.g. [17], create DSLs for the new and more
abstract action and skill based robotics systems. Articles such as [13], [14], [12]
tackle the subject of portability and separation of configuration and coordination
in DSLs for programming robots, which is similar to the approach taken here.
Unlike these existing systems, our DSL is however focused on interfacing and
instantiating the adaptive actions while easily allowing the user to complement
the DSL programs with more traditional robot programming.

3 Simulation and DSL for an Adaptive Action Library

Based on the vision described in Section 1, a layered system architecture was
developed. The architecture consists of the following 4 layers:

Workcell Simulation/Actual Hardware: The bottom layer consists of the
actual hardware and a simulation of the system. The actual hardware is chosen
in the hardware definition step (S0) according to the needs of the task and from
which the models for the simulation is made in hardware modeling step (S1).
These components enable a complete test of the system in both simulation and
real world as required for sequence testing step (S5) and deployment step (S6).

Modular Hardware Interface: To be usable interchangeably and also in a
modular fashion to solve different automation problems both the actual hardware
set-ups as well as the simulated workcell need to implement the same software
interfaces. For that purpose, a set of common interfaces has been developed and
is used to connect the bottom layer with higher layers in the architecture. An
example is the general robot interface where robot commands like joint-control
are provided. Actions in the system will only depend on these interfaces, making
them independent of the actual hardware. The modularity of the hardware inter-
face extends beyond the robot and includes digital and analogue I/O, grippers,
sensors etc. This component provides a basis for usage of hardware near actions
in the sequencing step (S2).

Applying Simulation and a DSL for an Adaptive Action Library 89

Action Library (Simulation Tool): Besides the basic and hardware-near ac-
tions provided through the modular interface, we are interested in structuring
more complex actions, which is provided by the third layer. Reuse of previ-
ous experiences and the use of simulation and learning serves to concretise and
instantiate the concept of an action to an actual execution. A simulation compo-
nent is used as part of this layer to predict action outcomes for given parameters,
thereby allowing the selection of suitable actions. More details on the action li-
brary and simulation can be found in Sections 3.1 and 3.2. These components
are used in the action evaluation step (S3) and parameter selection step (S4).

Domain-Specific Language: Hardware and simulation is interfaced from ac-
tions within the action library, but also from the highest layer which is the overall
system interface, provided in the form of a Domain Specific Language (DSL).
The DSL enables the user to closely integrate hardware-near calls with the more
abstract and high-level actions in an easy and intuitive way. For more details
please see Section 3.3. In our work we use the DSL in the sequencing step (S2).

3.1 Action Library

In order to reduce the set-up time of assembly tasks, knowledge from previous
executions should be exploited. We wish to achieve this not by asking an expert
to realize the system, but by a library of assembly actions. The action library
can be seen as a collection of all the actions (such as grasping, peg-in-hole and
screwing) necessary for accomplishing a given assembly task. An action from this
library should be able to improve its performance through learning and reuse
of prior performance data to influence further execution. The action library is
used in the sequencing step (S2) by providing a set of action choices and in the
action evaluation step (S3) by the possibility to reuse previous results.

Any action has a definition A, a set of parameters πA, a precondition Ωi(A)
and a postcondition Ωf (A).

1 Unlike other action libraries, we have a strong em-
phasis on encoding and active handling of uncertainties as this is crucial for
achieving the necessary robustness without fixating all objects accurately prior
to task execution. In an action sequence each action A has a probabilistic pre-
condition xi ∈ Ωi(A) where xi denotes the specific state of the relevant parts
of the overall scene and Ωi(A) denotes the admissible states prior to executing
the action. The action produces a postcondition xf ∈ Ωf (A) where xf denotes
the specific state of the relevant parts of the overall scene invoked by the ac-
tion and Ωf (A) denotes the set of possible states of xf . To illustrate how we
encode uncertainties, assume that xi is not known precisely but rather taken
from a probability density ρi(x) on the set Ωi(A). The action will then pro-
duce an outcome formally defined by a probability density PA(ρi, πA) on Ωf (A)
where πA denotes the action parameters. It is then easy to see that actions

1 In our work pre- and postconditions can include two different types and combinations
thereof, one being regions in continuous spaces (e.g., the Euclidean space), the other
being classic discrete planning predicates (e.g., object in hand).

90 J.P. Buch et al.

A = {A(1), . . . , A(K)} where Ωf (A
(k)) ⊆ Ωi(A

(k+1)) can be sequenced with a re-

sulting map PA(ρi, πA) =
{
P

(K)
A ◦ P (K−1)

A ◦ . . . P (1)
A

}
(ρi) where πA contains the

parameters of all the actions and where ρi is the probability density on Ωi(A
(1))

prior to the first action and PA(ρi) is the probability density on Ωi(A
(K)) after

the last action. Thus, if we know the probability distribution ρi prior to execu-
tion of the action sequence, we can use this framework to optimize the complete
action with respect to a target distribution PA(ρi, πA) on the postcondition.

In the longer run we expect to be able to improve the system by (a) being
able to use already learned actions as sub-components of new actions and by
(b) using experiences the system made with one action to help improve other
actions. For this a similarity metric of actions (and potentially objects) will be
required. The inclusion of additional information required for action chaining,
task verification, planning and re-planning will also be explored at a later stage.

Action Learning by Simulation and Real World Experiments. The ac-
tion can gain its knowledge about how to execute in a good way from both
simulation and real world experiments. In both cases learning in higher dimen-
sions become a problem since the space composed of the precondition Ωi(A) and
the action parameters πA can be huge. It is therefore necessary to apply efficient
learning techniques to avoid exhaustive search in this space. As mentioned (see
Section 1, the action evaluation step (S3) and the parameter selection step (S4))
the idea is that by learning in simulation a good indication on how the action
could be performed in real world (in terms of parameters πA) can be obtained.

The learning is currently terminated after the simulation of the action has
been performed and suitable knowledge obtained, but in the future it could also
continue with real world executions adapting these to the unmodelled particu-
larities of the real situation.

3.2 Simulation

An important component in the system is the availability of a realistic dynamical
simulator that can simulate complete action. The simulator takes the action A,
the action parameters πA and the initial state of the relevant parts xi. The aim
of the simulator is then to calculate the state of the system consisting of only the
relevant parts as accurate as possible while executing an action A. By sampling
initial states from an assumed probability density ρi and by sampling action
parameters πA, it is possible to estimate the function PA(ρi, πA). This sampling
in simulation, instead of performing the corresponding real experiments, signif-
icantly reduces costs and time. In order for the actions to take full advantage
of the simulator and to make implementation of new actions easier, a generic
interface decoupling the actions and the simulation tool is used. This allows sev-
eral actions to use the same tool, without having a separate implementation of
the simulation tool for each action. Through this interface, the actions specify
their intended motions of objects through a sequence of commands. The actions
also specify success criteria such as the final intended position of objects and force

Applying Simulation and a DSL for an Adaptive Action Library 91

limits. This use of simulation is in the third layer of our system Action Library
(Simulation Tool). It is mostly used in the action evaluation step (S3) and to
help with selecting good action parameters (parameter selection step (S4)).

Tests of complete assembly tasks (in the sequence testing step (S5)) can also
be carried out in simulation as represented by the box ”Workcell simulation”.
Here, all parts in the scene are simulated and these simulations are thus typically
much more expensive than those above. However, when these simulations are
applied, the action parameters have been chosen and thus it is only necessary
to sample the initial density ρi. By simulating the full assembly task on the
complete scene, we may be able to predict unexpected pitfalls in the assembly
execution before the solution is implemented on the real set-up. The workcell
simulation is interfaced to the rest of the system in the same way as the hardware
module to make switching with the real set-up as easy as possible.

3.3 Domain-Specific Language

In order to specify and solve industrial assembly problems, individual actions
need to be orchestrated and order in the right way (a part of the sequencing step
(S2), see Section 1). To reduce the complexity of programming with these actions
and to keep programming simple, a Domain-Specific programming language is
used. This DSL is developed as an internal DSL in C++ to remain tightly
integrated with the development of the underlying framework of actions and
hardware set-up. The aim of the DSL is to allow users to quickly reconfigure
and program the robot with new tasks even though these tasks might consist of
complicated assembly operations and actions.

The DSL allows the user to integrate low level and hardware-near actions with
the action library and function calls of a high abstraction level. We use a model-
based approach where an internal metamodel is instantiated and subsequently
interpreted. This approach is intended to enable future extensions of the DSL,
such as exception-style error handling, concurrency, and arbitrary specification
of assembly sequences. In a system where the goal is to reduce changeover times
and allow for easy reconfiguration, there is a need for being able to easily add
and reuse hardware, change execution sequences and make adjustment to the
program. We believe that this can be achieved by creating a clear separation
between imperative and declarative code.

The BNF of the abstract syntax of our DSL is shown in Fig. 1 (omitting syn-
tactic noise due to the use of an internal DSL). The declarative parts consist
of metainformation associated with the assembly items (Item), IO-operations
(IO), and joint configurations (JointConf). IO-operations can be combined and
specified with wait commands to allow for greater control of external equipment.
These declarations are then used to specify an imperative sequence of operations
(Sequence). These sequences consist of move commands, actions from the action
library, I/O-operations, control commands and previously defined sequences. In
our DSL it is therefore possible to declare hardware-related actions, allowing
them to be used imperatively along with the high level and abstract actions,

92 J.P. Buch et al.

P := (Item | IO | JointConf | Sequence) ∗
Item := item Nitem (keyframe N coordinate∗)
IO := IOoperation Nio Primitive∗
JointConf := JointConfiguration Njoint vector

Sequence := sequence N Action∗
Primitive := setLow | bit n | sleep n | . . .
Action := move Njoint | call Naction(Nitem∗) | io Nio | wait n | . . .
N ∈ names, n ∈ R, coordinate specifies coordinates, vector∈ Rn

Fig. 1. BNF of the abstract syntax for the internal DSL

effectively creating a building block structure where actions can be combined,
modelled and reused.

Current implementations of action libraries often requires a large number of
parameters before being able to instantiate an action [13,1]. These parameters
specify detailed information on how the actions are performed. It is is our goal
that the parameters specified in the DSL are based on action descriptions, such
that they reflect the sequence of operations instead of how to perform the action.
In a peg-in-hole action for instance, rather than having the parameters specifying
the orientation of the peg, the parameters specify which end of the peg is used.
This approach leads to missing parameters for the individual actions but our
goal is to learn these parameters from previous action executions and simulation.
Continuing the example, the action might have previous experience with one peg,
some of which can be applied to another peg. An important factor is then how
can we define similarity between actions or objects in a discretised fashion.

We solve the problem of filling in missing parameters by using ”key-frames”.
Key-frames are meta-data associated with the assembly objects that along with
an identifier represent important object positions.

4 Demonstrating the System Concept

This section aims to illustrate how we can apply our concepts and methods
to a small real application where a tube is inserted into a nut. The DSL is
used to program the task sequence (sequencing step (S2)). Since the action
library does initially not contain any action suitable for this task, a new action
is defined and learning is applied. This illustrates how we use simulation to
estimate PA(ρi, πA) (action evaluation step (S3)). The automatic selection of
the action parameters πA (parameter selection step (S4)) is not addressed in this
paper and is therefore done manually. Finally execution of the task sequence on
the real set-up (deployment step (S6)) is performed.

In the experiment the robot is moved to an initial configuration, where a peg-
in-hole action is performed and learning through simulation is applied. In this
action the robot inserts a tube into a tight-fitting union nut placed in a fixture.
The robot then moves the tube with the nut away from the fixture.

Applying Simulation and a DSL for an Adaptive Action Library 93

Listing 1.1. The code written in the DSL to run the demonstration

1 //Platform specific information
2 IOoperations().
3 manipulation("gripper_open").
4 setLow().bit(0).sleep(0.5).
5 manipulation("gripper_close").
6 setHigh().bit(0).sleep(0.5);
7

8 //Scenario declarative information
9 item("Tube").

10 addKeyFrame("Peg_TCP").
11 x(0).y(0).z(-0.046).
12 rx(0).ry(0).rz(0);
13

14 item("Nut").
15 addKeyFrame("Hole_TCP").
16 z(0.0075);

17 JointConfiguration
18 initialPosition = {3.425, -1.0...},
19 liftedPosition = {3.379, -1.2...},
20 changeTubePosition = {3.817, -1.1...};
21

22

23 //Sequence specification
24 sequence("reliability_test").
25 move() << initialPosition;
26 pegInHole("Tube","Nut").
27 move() << liftedPosition
28 << changeTubePosition;
29 io("gripper_open").
30 wait(3.0).
31 io("gripper_close").
32 end();

Sequencing the Assembly Task through DSL. The DSL allows the user
to execute the actions from the action library along with hardware near func-
tionalities. The program in Listing 1.1 is the program used to conduct the real
world experiments. In the DSL, a model of the sequence and actions are first
constructed. The model is then interpreted and executed on the platform.

The program moves the robot to an initial position, calls the peg-in-hole
action, moves the tube and nut out of the fixture and to a final position. Before
the user can specify this sequence, the declarative part of the program has to
be created (I/Os: line 1-6 , key-frames: line 8 to 16, joint configurations: line 17
to 20) in Listing 1.1. After that the sequence, which calls the action, is specified
(line 22 - 31). Notice that the call to the insertion action is marked with italics.

Creating an Action Suitable for Learning and Execution. When the
action is called from the DSL, it needs to learn good parameters, since no prior
data for the action is available. The peg-in-hole action, A, is denoted by the
four parameters πA = {x, θ, φ, y}. These parameters are visualized in Fig. 2: x
is the perpendicular distance from the plane of the hole to the middle of the
peg defined by their respective key-frames. θ is the angle of the peg in the first
linear motion. φ is the approach direction of the peg in the first linear motion.
y is the distance from the calculated contact point between peg and hole to the
rotation point of a circular motion. Based on the key-frames and the parameters
the action is concretised as illustrated in Fig. 2.

The evaluation of the action in simulation is done using two criteria. For A
to succeed the peg has to be inside the nut after the first linear movement and
placed inside the nut after the last, as shown in Fig. 2. By trying different sets
of parameters, data about the success/failure region PA(ρi, πA) is obtained.

To simplify the complexity of the learning and for illustration purposes, two
of the the four parameters in πA is kept constant in this work. As a result

94 J.P. Buch et al.

Fig. 2. Top left: the action parameters. Top right: visualization of a simulation.
Bottom: Action movement visualised with corresponding execution.

the search for solutions was done within the parameter space of φ = 0◦, y =
10mm. x ∈ [−3; 7]mm and θ ∈ [15; 45]◦ with step sizes of 1mm and 3◦ respec-
tively.

Pose uncertainties ρi(x) are approximated in simulation as the relative uncer-
tainty between peg and hole. The positional change is handled by drawing two
values from a normal distribution both with zero mean and a standard deviation
of 1mm, and adding them to the x- and y-position of the peg. Additionally a
rotational disturbance is added by rotating the peg around a random direction
vector in the xy-plane2. The magnitude of the rotation is again drawn from a
normal distribution with zero mean and a standard deviation of 0.01 rad. Ex-
treme values is removed by drawing a new value if it diverges by more than two
standard deviations. These levels of uncertainties are based on empirical tests.

Obtaining an Action Probability Density Map from Simulation. In
our simple experiment, we choose the set of postconditions to be Ωf (A) =

2 The reason for not adding positional changes in the z-direction is that the peg has
the same length and is grasped in the same way each time. By not adding rotational
changes in the z-direction the peg is seen as perfectly circular in simulation.

Applying Simulation and a DSL for an Adaptive Action Library 95

Fig. 3. The simulation result of the peg-in-hole action with varying x and θ. Left:
without perturbations. Right: success-probability with 30 perturbations.

{nut on cyl,¬nut on cyl}. We estimate PA(ρi, πA) by performing a simple
uniform sampling of their intervals. In Fig. 3, we show our results. The left image
shows the resulting ”Probability”≡ {PA(ρi, πA)}(nut on cyl) without pertur-
bations. Not surprisingly, only pure black and white colour appear, indicating
that each set of action parameters leads to a deterministic result of either success
or failure. When taking the pose uncertainties ρi into account each sample point
needs to be experimentally evaluated multiple times where the perturbation in
each experiment is randomly selected from the distribution ρi. The right image
shows our results. As can be seen, there is a clear structure indicating that it
was sampled sufficiently to suppress noise to a reasonable level. Moreover, we
obtain a pure white region indicating a promising set of action parameters.

Simulation shows that the direct approach with a low angle is more likely to
fail. It also shows that big x-values are likely to fail, as big x-values mean that
the turning of the tube will happen before the tube is even partly inside the nut.
This violates the first evaluation criteria.

Choosing an Appropriate Set of Parameters to Execute the Action.
It will in general be a difficult optimization and learning task to derive a (close
to) optimal set of action parameters taking into account the whole sequence and
a potentially large set of parameters. The results from the simulation document
this. Running all the simulation took around 18 hours3.

In this paper, we emphasize illustrating the overall functionality, so this task is
carried out manually by inspecting Fig. 3. The chosen values for these parameters
for the action execution are: πA = {x = 1mm, θ = 30◦, φ = 0◦, y = 10mm}.

Executing the Assembly Sequence in the Real World. To execute the
sequence on the platform, the parameters πA and key-frames is used to calcu-
late a Cartesian path between peg and hole. Using inverse kinematics this was
transformed into configurations and executed on the real platform.

3 Using one core of a Intel Core i7-4600U at 2.1GHz processor with 8GiB of memory.

96 J.P. Buch et al.

On the platform 100 repetitions with the selected parameters were performed.
A 100% success rate was achieved, which seems realistic as the uncertainties used
were chosen conservatively.

5 Conclusion

This article presented a concept for handling automated complex assembly oper-
ations in small size productions, which encompasses the process from hardware
set-up to deployment of a complete solution for an automated assembly tasks.

In particular, we presented our ideas for a software system for handling some
of the intermediate steps of the concept. The software system is based on de-
veloping a library of actions where each action is handled using a probabilistic
approach and we showed how the system can derive solutions that are able to
robustly handle spatial uncertainties and thereby limit the need for a very de-
terministic behaviour. We also presented an internal Domain-Specific Language
for programming the system.

An application example was chosen to showcase architecture and principles
of the system. We illustrated that our system can handle a peg-in-hole type op-
eration with tight fits, which would often fail with a traditional approach due
to spatial uncertainties. The chosen example could only be used for presenting
a small subset of the overall functionality that we have in mind. In the com-
ing period, we will extend our development to more advanced examples with
substantial action sequencing and by this show the full potential of our system.

Acknowledgements. This work was supported by The Danish Council for
Strategic Research through the CARMEN project. The authors would like to
thank the people at Danish Technological Institute for their support with the
platform used for the experiments.

References

1. Angerer, A., Hoffmann, A., Schierl, A., Vistein, M., Reif, W.: Robotics API:
Object-Oriented Software Development for Industrial Robots. Journal of Software
Engineering of Robotics 4, 1–22 (2013)

2. Bøgh, S., Nielsen, O.S., Pedersen, M.R., Krüger, V., Madsen, O.: Does your robot
have skills? In: Proceedings of the 43rd International Symposium on Robotics
(ISR 2012) (2012)

3. Ciocarlie, M., Lackner, C., Allen, P.: Soft finger model with adaptive contact ge-
ometry for grasping and manipulation tasks. In: World Haptics 2007: Second Joint
EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, pp. 219–224 (2007)

4. Detry, R., Kraft, D., Kroemer, O., Bodenhagen, L., Peters, J., Krger, N., Piater, J.:
Learning grasp affordance densities. Paladyn. Journal of Behavioral Robotics 2(1),
1–17 (2011)

5. Ellekilde, L.P., Jorgensen, J.A.: Robwork: A flexible toolbox for robotics research
and education. In: Robotics (ISR), 2010 41st International Symposium on and 2010
6th German Conference on Robotics (ROBOTIK), pp. 1–7 (June 2010)

Applying Simulation and a DSL for an Adaptive Action Library 97

6. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

7. Haegele, M., Skordas, T., Sagert, S., Bischoff, R., Brog̊ardh, T., Dresselhaus, M.:
White paper — industrial robot automation (2005),
http://www.euron.org/miscdocs/docs/euron2/year2/dr-14-1-industry.pdf

8. Hertling, P., Hog, L., Larsen, R., Perram, J.W., Petersen, H.G.: Task Curve Plan-
ning for Painting Robots -Part I: Process Modeling and Calibration. IEEE Trans-
actions on Robotics and Automation 12(2), 324–330 (1996)

9. Huckaby, J., Vassos, S., Christensen, H.I.: Planning with a task modeling frame-
work in manufacturing robotics. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5787–5794. IEEE/RSJ (2013)

10. Huckaby, J., Christensen, H.: A taxonomic framework for task modeling and knowl-
edge transfer in manufacturing robotics. In: Proc. 26th AAAI Cognitive Robotics
Workshop, pp. 94–101 (2012)

11. Jeberg, P., Holm, H., Madsen, O.: Automatic weld planning by finite element
simulation and iterative learning. Welding Journal 87(9), 219S–228S (2008)

12. Klotzbücher, M., Biggs, G., Bruyninckx, H.: Pure coordination using the
coordinator–configurator pattern. In: 3rd International Workshop on Domain-
Specific Languages and models for ROBotic Systems (DSLRob 2012) (2013)

13. Klotzbücher, M., Bruyninckx, H.: Coordinating Robotic Tasks and Systems with
rFSM Statecharts. Journal of Software Engineering for Robotics 3(1), 28–56 (2012)

14. Klotzbücher, M., Smits, R., Bruyninckx, H., De Schutter, J.: Reusable hybrid force-
velocity controlled motion specifications with executable Domain Specific Lan-
guages. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4684–4689 (September 2011)

15. Mühe, H., Angerer, A., Hoffmann, A., Reif, W.: On reverse-engineering the kuka
robot language. In: 1st International Workshop on Domain-Specific Languages and
Models for ROBotic Systems (DSLRob 2010) (2010)

16. Tenorth, M., Beetz, M.: Knowrob knowledge processing for autonomous personal
robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2009, pp. 4261–4266. IEEE (2009)

17. Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A new skill based
robot programming language using uml/p statecharts. In: 2013 IEEE International
Conference on Robotics and Automation (ICRA), pp. 461–466 (May 2013)

18. Waibel, M., Beetz, M., D’Andrea, R., Janssen, R., Tenorth, M., Civera, J., El-
fring, J., Gálvez-López, D., Häussermann, K., Montiel, J., Perzylo, A., Schießle, B.,
Zweigle, O., van de Molengraft, R.: Roboearth - a world wide web for robots.
Robotics & Automation Magazine 18(2), 69–82 (2011)

19. Zhang, L., Betz, J., Trinkle, J.C.: Comparison of simulated and experimental grasp-
ing actions in the plane. In: First International Multibody Dynamics Symposium
(2010)

http://www.euron.org/miscdocs/docs/euron2/year2/dr-14-1-industry.pdf

Simulation Environment for Multi-robot

Cooperative 3D Target Perception

André Dias1, Jose Almeida1, Nuno Dias1, Pedro Lima2, and Eduardo Silva1

1 INESC TEC, INESC Technology and Science,
ISEP/IPP, School of Engineering,

Porto, Portugal
{adias,jma,ndias,eaps}@lsa.isep.ipp.pt

2 Institute for Systems and Robotics,
Instituto Superior Técnico, Universidade de Lisboa,

Lisbon, Portugal
pal@isr.ist.utl.pt

Abstract. Field experiments with a team of heterogeneous robots re-
quire human and hardware resources which cannot be implemented in a
straightforward manner. Therefore, simulation environments are viewed
by the robotic community as a powerful tool that can be used as an
intermediate step to evaluate and validate the developments prior to
their integration in real robots. This paper evaluates a novel multi-robot
heterogeneous cooperative perception framework based on monocular
measurements under the MORSE robotic simulation environment. The
simulations are performed in an outdoor environment using a team of
Micro Aerial Vehicles (MAV) and an Unmanned Ground Vehicle (UGV)
performing distributed cooperative perception based on monocular mea-
surements. The goal is to estimate the 3D target position.

1 Introduction

Robotics emerged as a research field and has seen important advances over
the last years. There has been an increasing research effort on novel multi-
robot cooperative tasks for heterogeneous mobile robotics applications. These
continuous developments achieved by the robotic community are driven by an
significant number of potential end-user applications where it is necessary to
reduce human intervention, including cooperative search and rescue missions[1][2],
surveillance[3][4], or recognition and border tasks[5][4]. Therefore, to accomplish
this level of end-user applications with teams of robots, there are concepts, such
as navigation, perception and control, which must be thoroughly developed,
evaluated and validated under different scenarios.

Another point, which cannot be disregarded and is associated with this level
of application scenarios, is the human resources required. For instance, if a team
of aerial robots is being evaluated while performing a surveillance task, for safety
reasons it is necessary to have at least one human operator for each robot, which
is not feasible for some research groups. Adding to this, some resources are not

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 98–109, 2014.
c© Springer International Publishing Switzerland 2014

Simulation Environment for Multi-robot Cooperative 3D Target Perception 99

available, such as the robots and sensors required. Taking these constraints into
consideration, simulation environments has been an important support tool by
robotics research groups[6][7][8][9][10][11][12], not just to conduct the field ex-
periments successfully, but to ensure that the developments are evaluated and
validated prior to being integrated in real robots. For instance, the work from
Johannes[10] with a simulation environment developed in Gazebo and integrated
with ROS to evaluate the MAV behavior such as flight dynamic, the work from
Nathan[12] with Gazebo in distributed formation control of a swarm team of
ground robots with the ability to adapt the shape of the formation based on
the environment constraints, and the work from Dewan[11] to evaluation the
proposed optimization method to perform cooperative exploration between het-
erogeneous vehicles.

Focusing on the problem of multi-robot cooperative perception and on the
outlined constraints associated with the field experiments using a team of robots,
this paper evaluates a novel multi-robot heterogeneous cooperative perception
framework based on monocular measurements under the open-source MORSE
robotic simulation environment[8][9]. The framework, defined as Uncertainty-
based Multi-Robot Cooperative Triangulation (UCoT), is capable of estimating
the 3D target position based on monocular measurements. Therefore, we propose
to validate is behavior under different conditions, for instance, assessing the
impact of introducing more robots to the environment and also the robustness
of the UCoT to different levels of Gaussian noise associated with the attitude
and position sensors.

The MORSE was chosen as the simulation environment, instead of other pow-
erful simulators such as the Gazebo[10][13], because in the context of our require-
ments MORSE proved to be more versatile, modular, flexible and reusable[8],
due to the ability to provide a straightforward implementation of the outdoor
scenario composed with heterogeneous types of robots and sensors, like GPS,
Laser and Cameras. Moreover, the MORSE is built on the top of the Blender
software, which provides the tools required to model new robots and scenarios.
Another important key issue from MORSE, is the fact of supporting different
middleware used in robotics, such as YARP[14], ROS[15] and MOOS[16].

This paper is outlined as follows: Section 2 presents the framework to be eval-
uated under the MORSE simulation environment, as well as the mathematical
formulation for the Uncertainty-based Multi-Robot Cooperative Triangulation
(UCoT). Section 3 presents the architecture associated to the integration of
the simulation environment with the UCoT framework and also the developed
in Blender of a 3D model of a Unmanned Ground Vehicle (UGV) TIGRE[17].
The UCoT framework is validated in Section 4 with MORSE for an outdoor
simulation environment, using a team of Micro Aerial Vehicles (MAV) and an
Unmanned Ground Vehicle (UGV) performing cooperative perception based on
monocular measurements. The goal is to estimate the 3D target position of a
human moving randomly over an outdoor scenario with the effect of the terrain
morphology. Section 5 provides the concluding remarks and outlines future work
topics.

100 A. Dias et al.

2 Multi-robot Cooperative Perception Framework

This section introduces the framework to be evaluated by the open-source sim-
ulation environment MORSE, which is a multi-robot cooperative perception
method, defined as Uncertainty-based Multi-Robot Cooperative Triangulation
(UCoT). The main contribution of this method is the ability to estimate 3D
information based on monocular measurements, using the relative position and
attitude provided by each robot, and based on the geometric constraints derived
from the triangulation[18].

The method estimates the 3D target position by establishing a flexible and
dynamic geometric baseline between monocular measurements. The uncertainty
of the observation model of each robot, position, attitude and image plane pixel
target position are modeled using the first order uncertainty propagation, with
the assumption that all sources of uncertainty can be modeled as uncorrelated
Gaussian noise. The multi-robot cooperative triangulation method has been in-
troduced in [19] and extended based on the uncertainty of the observation model
provided by each robot in [20].

In order to support the readout, the notation to
fromξξξn is used to denote the

transformation matrix from one coordinate frame to the other. The robot body
frame is called {B} and the global frame is called {W}. The upper case notation
in bold represents the matrix variables, while the lower case in bold represents
the vectors, and finally the lower case represents the scalar variables.

The UCoT architecture framework is outlined in figure 1 and contains the
following components:

Fig. 1. Architecture Framework for Uncertainty-based Multi-Robot Cooperative Tri-
angulation (UCoT)

– Localization is responsible for providing the robots pose to the local state
component, described by the following matrix W

B ξξξ relatively to the global

frame. This information is provided not only by an IMU as uuu
def.
=
[
φ θ ψ
]T

,

Simulation Environment for Multi-robot Cooperative 3D Target Perception 101

where (φ, θ, ψ) are respectively the roll, pitch and yaw angles, but also by a

GPS as ςςς
def.
=
[
λ ϕ h
]T

, where (λ, ϕ, h) are respectively the latitude, longitude
and altitude;

– Local State provides an output 3 tuple 〈WCCC,W RRR, {Wddd}〉 relatively to the
global frame, composed of the camera position WCCC, attitude WRRR and ray
vectors {Wddd}. These represent the direction vector from the points detected
by the monocular vision system {mmm};

– Feature Correspondence is responsible for evaluating the tuples shared
by other robots relatively to the local state component. This evaluation is
performed based on the Euclidean distance between two points projected
in the global frame from the intersection rays λW

i dddi and λW
j dddj, with the

perpendicular to both vectors Wddd⊥ = λW
i dddi ⊥ λW

j dddj;
– Multi-Robot Cooperative Triangulation is responsible for the 3D target

estimation and covariance ΣΣΣTarget related to all sources of uncertainty, as
described in equation (8) for the UCoT method.

2.1 UCoT – Uncertainty Based Multi-robot Cooperative
Triangulation

The UCoT method selects the line that is perpendicular to the shortest segment
of both rays. Based on the uncertainty associated with the position, attitude and
image plane pixel error of each ray, the method will estimate the intersection of
both rays by weighing, in a probabilistic manner, their contribution to the 3D
target position.

Considering the formulation by Trucco[18] relatively to the mid-point triangu-
lation using a stereo rigid baseline and an extended dynamic baseline, described
in [19], it is possible to obtain the following equation:

WPPP = ΩW
i PPPi +ΩW

j PPPj (1)

WPPP = Ωi(
WCCCi + λW

i dddi) +Ωj(
WCCCj + λW

j dddj)

This equation can represent a dynamic baseline approach relatively to the global
frame using a pair of bearing-only systems defined as i, j, where each camera not
only knows its own position WCCC and attitude WRRR, but also shares the direction
vectors Wddd from the points detected by the monocular vision system {mmm}, with
the Ωi and Ωj being the weight assigned to each bearing-only systems, derived
in equation (7).

To ensure that all sources of uncertainty are taken into consideration when
estimating the 3D target position, the ΣΣΣTarget will be estimated based on the
assumption that there is uncertainty in the input pixel localization σmmm, as well
as in the cameras position σςςς and attitude σuuu relatively to the global frame. All
of them are modeled as uncorrelated zero-mean Gaussian random variables.

σςςς =

[
σλ 0 0
0 σϕ 0
0 0 σh

]
σuuu =

[
σφ 0 0
0 σθ 0
0 0 σψ

]
σmmm =

[
σmx 0
0 σmy

]
(2)

102 A. Dias et al.

Using the first-order uncertainty propagation, it is possible to approximate the
distribution of the variables, defined in section 2 as the input state vector
ννν(i,j) = [ςςςi,uuui,mmmi, ςςςj ,uuuj ,mmmj], from equation (2), as multivariate Gaussians. The
ΣΣΣTarget covariance matrix approximately models the uncertainty in the 3D tar-
get estimation, which is computed using the noisy measurements of the Multi-
Robot Cooperative Triangulation, as follows:

ΣΣΣTarget = JPJPJPΛΛΛi,jJPJPJPT (3)

where JPJPJP stands for the Jacobian matrix of WPPP in equation (2) by

JPJPJP [3×16] =∇∇∇(ννν(i,j))
WPPP(ννν(i, j)) (4)

with ΛΛΛi,j being the input covariance matrix represented by a diagonal line rel-
atively to all sources of uncertainty present in equation (2) for each monocular
vision system

ΛΛΛi,j[16×16] =

⎡⎢⎢⎣
σςςςi[3×3] · · ·

· · · σuuui[3×3] · · ·
· · · σmmmi[2×2] · · ·

· · · σςςςj [3×3] · · ·
· · · σuuuj [3×3] · · ·

· · · σmmmj [2×2]

⎤⎥⎥⎦ (5)

To ensure that all sources of uncertainty provided by each intersection ray are
addressed in a probabilistic manner, to obtain the weight associated with each
ray, once again it is necessary to estimate the covariance, using the first-order
uncertainty propagation, ΣΣΣPPPi

and ΣΣΣPPPj
related to WPPP i and

WPPPj , as follows:

ΣΣΣPPP i = JPJPJP iΛΛΛi,jJPJPJPT
i JPJPJP i[3×16] =∇∇∇(ννν(i,j))

WPPPi

ΣΣΣPPP j = JPJPJP jΛΛΛi,jJPJPJPT
j JPJPJP j [3×16] =∇∇∇(ννν(i,j))

WPPPj
(6)

where JPi
JPiJPi and JPj

JPjJPj are respectively the Jacobian matrix from WPPPi and WPPPj ,
and ΛΛΛi,j is the input covariance matrix from equation (5). Therefore, with the
uncertainty of each intersection ray ΣΣΣPPPi

and ΣΣΣPPPj
, and the perpendicular vector

Wddd⊥, the probabilistic weight of each ray is expressed as:

Ωi =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥T)2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥T)2+(Wddd⊥ ΣΣΣPPP j

Wddd⊥T)2
Ωj =

(Wddd⊥ ΣΣΣPPP i
Wddd⊥T)2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥T)2+(Wddd⊥ ΣΣΣPPP j

Wddd⊥T)2 (7)

Therefore, combining the weights Ωi, Ωj from equation (7) and the dynamic
baseline cooperative triangulation equation (2), it is possible to obtain the UCoT
Uncertainty-based Multi-Robot Cooperative Triangulation method, as follows:

WPPP =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥
T)2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥

T)2 + (Wddd⊥ ΣΣΣPPP j
Wddd⊥

T)2
(WCCCi + λW

i dddi)

+
(Wddd⊥ ΣΣΣPPP i

Wddd⊥
T)2

(Wddd⊥ ΣΣΣPPP i
Wddd⊥

T)2 + (Wddd⊥ ΣΣΣPPP j
Wddd⊥

T)2
(WCCCj + λW

j dddj)

(8)

Simulation Environment for Multi-robot Cooperative 3D Target Perception 103

3 Simulation Environment

One of the key points in this paper is the ability to evaluate the multi-robot
cooperative perception method under a simulation environment, and approxi-
mate it as much as possible to a real experimental scenario[19], as depicted in
Figure 2.

Fig. 2. Top-Left: Experimental scenario[19]. Right: MORSE outdoor simulation en-
vironment. Middle - Left: UGV TIGRE[17] and MAV Asctec Pelican. Right: Simu-
lated robots: MAV and the UGV TIGRE developed based on the TIGRE 3D model.
Bottom - Left: TIGRE and MAV camera view. Right: Simulated TIGRE and MAV
camera view.

Therefore, to accomplish this level of similarity, the following items were de-
veloped under the MORSE simulation environment:

– Integrate the UCoT framework, as depicted in figure 3, to receive the Camera
and Pose sensor, over the middleware ROS, from the MORSE output data
stream, and perform image processing equal to the one that has already been
developed in [19].

– Over the middleware ROS, share the required 3 tuple 〈WCCC,W RRR, {Wddd}〉 be-
tween robots so that it is possible to estimate the target 3D position based
on the UCoT framework.

– Develop the UGV TIGRE[17] with the modifications required by the Blender
Game Engine. The rear and the front wheels are attached to the platform
so that the vehicle moves based on the Ackerman geometry, with the Blender

104 A. Dias et al.

Fig. 3. Architecture between the MORSE simulation environment and the multi-robot
cooperative perception framework

simulator being responsible for computing the tyre friction, as well as sus-
pension stiffness, compression and damping.

– Integrate a new component in MORSE, using the Ackerman controller be-
cause the TIGRE robot is based on an electric 4-wheel motor bike with
Ackerman geometry. The inputs of the Ackerman controller are the steering,
force and brake applied to the wheels.

4 Results

This section presents the results from the validation of the UCoT framework in
an outdoor simulation environment with MORSE. The framework is evaluated
using a team of heterogeneous robots composed of MAVs and an UGV with
different values of Gaussian noise applied to position and attitude sensors.

Table 1. Simulated Gaussian noise applied to the position and attitude on each ex-
perimental case

UGV TIGRE MAV Quadrotor

Experimental case Sensor Reference/Model Gaussian Noise Reference/Model Gaussian Noise

I
GPS RTK Septentrio PolaRx + Base Station σςςς =

⎡
⎣
0.01 0 0
0 0.01 0
0 0 0.02

⎤
⎦ NVS08 + Base Station σςςς =

⎡
⎣
0.1 0 0
0 0.1 0
0 0 0.2

⎤
⎦

IMU iMAR iNAV-FMS σuuu =

⎡
⎣
0.00035 0 0

0 0.00035 0
0 0 0.00087

⎤
⎦ PixHawk PX4 σuuu =

⎡
⎣
0.0087 0 0

0 0.0087 0
0 0 0.0174

⎤
⎦

II
GPS RTK Septentrio PolaRx σςςς =

⎡
⎣
0.02 0 0
0 0.02 0
0 0 0.04

⎤
⎦ UBlox LEA-5T σuuu =

⎡
⎣
0.5 0 0
0 0.5 0
0 0 0.75

⎤
⎦

IMU MicroStrain 3DM-GX1 σuuu =

⎡
⎣
0.0087 0 0

0 0.0087 0
0 0 0.0174

⎤
⎦ PixHawk PX4 σuuu =

⎡
⎣
0.0087 0 0

0 0.0087 0
0 0 0.0174

⎤
⎦

Simulation Environment for Multi-robot Cooperative 3D Target Perception 105

The component able to return the position and attitude of each robot is denote
in MORSE by Pose sensor and include a classe Modifier in order to introduce in
the simulated data Gaussian noise. Based on this feature provided by MORSE,
we applied on each experimental case the values present in table 1. The values
are enact on the information provided by the manufacturers but also based on
experimental work[19].

−60 −50 −40 −30 −20 −10 0 10
−2

0

2

4

6

8

10

12

14

16

18

X (m)

Y
 (

m
)

−60
−40

−20
0

20

−10

0

10

20

30
0

5

10

Z
 (

m
)

UGV TIGRE
Target

MAV 1
MAV 2
Target

Start point

Intersection
points between
UGV and target

Fig. 4. Trajectory performed by the UGV TIGRE and the MAVs, relative to the target

In both experimental cases, we used a team of heterogeneous robots, composed
by two MAVs and a UGV estimating the 3D position of the target based on the
UCoT method.

The 3D information from the target was used in the task planner of each
robot. Therefore, the UGV had the task of follow and intersect, if possible, the
target, while the MAVs follow the target with a fixed geometry between each
other and the target, as depicted in figure 4.

The results from the 3D target estimation WPPP and the correspondence median
and standard deviation error with UCoT framework in both experimental cases
are detail in figures 5 - 7, while the covariance ΣΣΣTarget is expressed in figures
6 - 8.

The median and standard deviation error in both experimental cases, details
in figures 5 - 7, present good performance and robustness even went we introduce
in experimental case II, more Gaussian noise. The UCoT framework, in order to
perform cooperative triangulation, estimate the dynamic baseline between robots
based on the position and attitude 〈WCCC,W RRR, {Wddd}〉, therefore it was expected
to reveal a huge sensibility to the introduction of Gaussian noise. Although, due
the probabilistic approach, the contribution of each monocular measurement is
weight Ω to the 3D target estimation position and the result is an accurate
multi-robot cooperative perception method.

106 A. Dias et al.

−60
−40

−20
0

20

−10
0

10
20
−5

0

5

X (m)

UGV TIGRE
 Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

−60
−40

−20
0

20

0

10

20
−5

0

5

X (m)

MAV 2
 Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

UGV TIGRE
UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

rd
ar

d
de

vi
at

io
n

in
 m

et
er

s

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

MAV − 1
 UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

nd
ar

d
de

vi
at

io
n

in
 m

et
er

s

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

MAV − 2
 UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

nd
ar

d
de

vi
at

io
n

in
 m

et
er

s

−60
−40

−20
0

20

−5
0

5
10

15
20
−5

0

5

X (m)

MAV 1
 Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

Fig. 5. Experimental case I - Estimated 3D target position WPPP of each robot with the
UCoT method

Fig. 6. Top view from the 3D Covariance matrix of the target ΣΣΣTarget provided by
each robot during the experimental case I with the red line representing the target
trajectory

−60
−40

−20
0

20

−10

0

10

20
−5

0

5

X (m)

UGV TIGRE
 Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

−60
−40

−20
0

20

−10

0

10

20
−5

0

5

X (m)

MAV 1
Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

−60
−40

−20
0

20

−10

0

10

20
−5

0

5

X (m)

MAV 2
 Target (red)

 UCoT − 3D Target Position (green)

Y (m)

Z
 (

m
)

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

UGV TIGRE
UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

da
rd

 d
ev

ia
tio

n
in

 m
et

er
s

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

MAV 1
 UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

nd
ar

d
de

vi
at

io
n

in
 m

et
er

s

−2

−1

0

1

2

UCoT − X UCoT − Y UCoT − Z

MAV 2
 UCoT − 3D Target Position

M
ed

ia
n,

 s
ta

nd
ar

d
de

vi
at

io
n

in
 m

et
er

s

Fig. 7. Experimental case II - Estimated 3D target position WPPP of each robot with
the UCoT method

Simulation Environment for Multi-robot Cooperative 3D Target Perception 107

Fig. 8. Top view from the 3D Covariance matrix of the target ΣΣΣTarget provided by
each robot during the experimental case II with the red line representing the target
trajectory

5 Conclusions and Future Work

This paper evaluates the Uncertainty-based Multi-Robot Cooperative Triangula-
tion (UCoT) framework under the open-source MORSE simulation environment.
The architecture associated with the integration of the simulation environment
is presented with the UCoT, as well as the architecture developed in Blender for
the UGV TIGRE and the corresponding Ackerman controller component.

The UCoT framework has evaluated using a team of heterogeneous robots
composed of MAVs and a UGV with different values of Gaussian noise applied
to sensors, as well as with a fixed geometry relatively to the target position.

One limitation found in this work has to do with the integration of more robots
in the simulation environment, which is difficult due to the MORSE requirements
in terms of computational and graphics resources. Therefore, based on the Multi-
node provided by the MORSE, a future research topic could be running the same
simulation scenario in separated computers in order to be able to extend the
number of robots. This approach can also be used to evaluate the impact that
introducing communication constraints will have on the UCoT framework when
each robot is sharing the required 3-tuple 〈WCCC,W RRR, {Wddd}〉 to estimate the 3D
information.

Acknowledgments. This work is co-financed by Project ”NORTE-07-0124-
FEDER-000060” by the North Portugal Regional Operational Programme (ON.2
O Novo Norte), under the National Strategic Reference Framework (NSRF)
through the European Regional Development Fund (ERDF) and also by National
Funds through the FCT within project PEst-OE/EEI/LA0009/2013.

References

1. Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada,
Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.:
Collaborative mapping of an earthquake-damaged building via ground and aerial
robots. Journal of Field Robotics 29(5), 832–841 (2012)

108 A. Dias et al.

2. Olson, E., Strom, J., Goeddel, R., Morton, R., Ranganathan, P., Richardson, A.:
Exploration and mapping with autonomous robot teams. Commun. ACM 56(3),
62–70 (2013)

3. Kushleyev, A., Kumar, V., Mellinger, D.: Towards a swarm of agile micro quadro-
tors. In: Proceedings of Robotics: Science and Systems, Sydney, Australia (2012)

4. Xu, Z., Douillard, B., Morton, P., Vlaskine, V.: Towards Collaborative Multi-MAV-
UGV Teams for Target Tracking. In: 2012 Robotics: Science and SystemsWorkshop
on Integration of Perception with Control and Navigation for Resource-limited,
Highly Dynamic, Autonomous Systems (2012)

5. Marino, A., Caccavale, F., Parker, L.E., Antonelli, G.: Fuzzy behavioral control
for multi-robot border patrol. In: 17th Mediterranean Conference on Control and
Automation, MED 2009, pp. 246–251 (2009)

6. Lächele, J., Franchi, A., Bülthoff, H.H., Robuffo Giordano, P.: SwarmSimX: Real-
time simulation environment for multi-robot systems. In: Noda, I., Ando, N., Bru-
gali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 375–387. Springer,
Heidelberg (2012)

7. Folgado, E., Rincón, M., Álvarez, J.R., Mira, J.: A multi-robot surveillance sys-
tem simulated in gazebo. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS,
vol. 4528, pp. 202–211. Springer, Heidelberg (2007)

8. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots
simulation engine: Morse. In: 2011 IEEE International Conference on Robotics
and Automation (ICRA), pp. 46–51 (May 2011)

9. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P.,
Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE.
In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS,
vol. 7628, pp. 197–208. Springer, Heidelberg (2012)

10. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., von Stryk, O.: Compre-
hensive simulation of quadrotor uAVs using ROS and gazebo. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 400–411.
Springer, Heidelberg (2012)

11. Dewan, A., Mahendran, A., Soni, N., Krishna, K.: Heterogeneous ugv-mav explo-
ration using integer programming. In: 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5742–5749 (November 2013)

12. Michael, N., Kumar, V.: Controlling shapes of ensembles of robots of finite size
with nonholonomic constraints. In: Robotics: Science and Systems (2008)

13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proceedings of 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2004), vol. 3, pp. 2149–2154 (September
2004)

14. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot platform. Interna-
tional Journal on Advanced Robotics Systems (2006)

15. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

16. Benjamin, M., Schmidt, H., Newman, P., Leonard, J.: Nested autonomy for un-
manned marine vehicles with moos-ivp. J. Field Robotics, 834–875 (2010)

17. Martins, A., Amaral, G., Dias, A., Almeida, C., Almeida, J., Silva, E.: Tigre - an
autonomous ground robot for outdoor exploration. In: 13th International Confer-
ence on Autonomous Robot Systems and Competitions (2013)

Simulation Environment for Multi-robot Cooperative 3D Target Perception 109

18. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice
Hall PTR, Upper Saddle River (1998)

19. Dias, A., Almeida, J., Silva, E., Lima, P.: Multi-robot cooperative stereo for outdoor
scenarios. In: 2013 13th International Conference on Autonomous Robot Systems
(Robotica), pp. 1–6 (April 2013)

20. Dias, A., Almeida, J., Lima, P., Silva, E.: Uncertainty based Multi-Robot Cooper-
ative Triangulation. In: RoboCup Symposium Proceedings, Brasil. LNCS (LNAI).
Springer (2014)

Combining Complex Simulations

with Realistic Virtual Testing Environments –
The eRobotics-Approach for Semantics-Based

Multi-domain VR Simulation Systems

Nico Hempe, Ralf Waspe, and Juergen Rossmann

RWTH Aachen University, Aachen, Germany
{hempe,waspe,rossmann}@mmi.rwth-aachen.de

Abstract. Today Virtual Reality (VR) simulation technology is a well-
known field of virtual training and engineering and widely applied in
research and in the industry. Multi-domain VR simulation systems cover
multiple technical and visual aspects not limited to a single task or do-
main. While current systems mostly neglect the rendering component
and provide purely functional graphics and simple virtual environments,
we present the concepts of eRobotics and matching system structures
to combine complex simulations and realistic virtual environments in
a holistic VR simulation system. These environments not only provide
attractive visual presentations, they also help to realize close-to-reality
testing of virtual prototypes and positively affect the accuracy and per-
formance of simulated components like optical sensors.

Keywords: eRobotics, multi-domain VR simulation systems, real-time
computer graphics, semantic world modeling.

1 Introduction

Virtual Prototyping (VP) is an important application in engineering, which
allows to experienced a digital model of a product in development prior to con-
struction. By also including the collaboration of the simulated technical com-
ponents, virtual prototypes can be regarded as Virtual Testbeds (VT), which
also allow for the close-to-reality testing and development of the desired sys-
tems [15]. For complex technical or mechatronical systems, such as mobile and
autonomous robots shown in Figure 1, a large number of different subsystems
need to be simulated in order to simulate all desired tasks required for adequate
virtual testing.

Multi-domain VR simulation systems cover multiple technical and visual as-
pects not limited to a single task or domain and can be seen as the top-of-the-
range systems regarding VR simulation technology. They provide a framework
to bring together various simulation and rendering modules. However in com-
mon system structures, the amount of included functionalities is limited due to
complexity, compatibility and performance reasons.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 110–121, 2014.
c© Springer International Publishing Switzerland 2014

Combining Complex Simulations with Realistic Testing Environments 111

Fig. 1. Simulation of the Seekur Jr mobile robot platform. This Virtual Testbed in-
cludes the real-time simulation of the robot itself, as well as several sensors (left: LiDAR
sensor; middle: digital camera; right: Time-of-Flight camera) for testing and develop-
ment of novel navigation approaches.

Especially simulation and rendering tasks rely on different data types and
structures in order to perform best, which is the reason why both areas are
usually separated into independent frameworks. While rendering-related applica-
tions traditionally rely on a scene graph structure, a simulation database may be
optimized for other purposes using a completely different data structure, which
hardly fit into each other without negatively influencing flexibility, applicabil-
ity or performance. In particular, simulation-centric applications do not provide
the flexibility required to integrate state of the art rendering approaches. Addi-
tionally, available virtual environments for engineering systems applied in non-
commercial contexts are often purely functional and limited to a single scenario
due to the resultant costs and the specific expertise requirements in modeling
and real-time rendering. As a consequence, realistic models suitable for the ade-
quate simulation of many different testing scenarios are usually hardly available.
While visually attractive imagery drastically increases acceptance of simulation
technologies, realistic virtual environments are also beneficial for close-to-reality
testing of newly developed systems and approaches in Virtual Testbeds. The
presented eRobotics-approach aims to address this issue by combining complex
simulations with state of the art computer graphics and realistic virtual testing
environments. In Section 2, related work regarding current mobile robot sim-
ulators as well as the usage of semantic data for graphics applications will be
presented. In Section 3, the eRobotics approach is detailed. Section 4 presents
the concepts and structure of the developed system and the semantic database
capable to meet eRobotic needs. Section 5 presents current applications in mul-
tiple robotic domains that benefit from the eRobotics approach. Finally, Section
6 concludes this work and gives an outlook to future developments.

2 Related Work

2.1 Current Mobile Robotic VR Simulation Systems

In the field of mobile robot simulators which are applied in a broad range
of research and development projects, well known VR simulation systems are

112 N. Hempe, R. Waspe, and J. Rossmann

USARSim [4], Player/Stage/Gazebo [11], ROAMS [10] and WeBots [13]. Be-
side physics simulations and rigid body dynamics, these systems also feature
the simulation of various sensors, which are important for this domain [19]. As
illustrated in Figure 2, these environments often consist of a small, single sce-
nario like an indoor environment with several rooms, an alleyway with several
houses or a small outdoor environment, which do not allow for the testing of the
system as a whole under various conditions. Even if a few published works try
to enhance these virtual environments [2][14], these systems do not provide the
technical possibilities to integrate state of the art rendering techniques.

Fig. 2. Screenshots of current mobile robot simulators, which demonstrate typical test-
ing environments. Left: USARSim, middle: Gazebo, right: Webots. Images taken from
the developers’ websites.

2.2 Semantic World Models and Semantic Data Rendering

Semantic world models consist of elementary facts and rules stored in schema-
less graph databases, which allow a set of nodes with dynamic attributes to be
arbitrary linked to other nodes through edges [1]. In contrast to predefined data
structures like scene graphs, semantic world models are not limited to spatial
relations or geometry and can describe the environment more detailed. They
can contain almost any kind of data and give complex information about the
surrounding; hence, they are perfectly suitable to combine different data struc-
tures in a single system database. In order to make graph databases practical for
software systems, they can be realized following the object-orientated paradigm.
These databases are known as Graph-Oriented Object Databases (GOOD) [7];
however, graphics applications benefit for scene-graph-like structures in order to
efficiently apply optimization techniques like culling and batching to grant real-
time performance. In order to address this issue, Mendez et al. [12] suggested
to separate semantics from rendering in the scene graph by using semantic tags
as attributes. Recently, Tobler [20] picked up this idea and suggested a more
complete solution by fully separating semantics from rendering in a split scene
graph architecture. This structure contains a separate semantic and rendering
scene graph following the Model-View-Controller (MVC) design pattern [6]. As
the name implies, the MVC pattern allows for the usage of a single model under
different environments by separating the model from the system view using a
controller that coordinates the translation. The semantic scene graph represents

Combining Complex Simulations with Realistic Testing Environments 113

the model as created by the user, the rendering scene graph represents the view
necessary for the system environment and the rule objects represent the con-
troller that dynamically translate the model into the system view during graph
traversal.

3 The eRobotics Approach

The research field of eRobotics has been established recently in order to help
to cope with the inherent complexity of advanced robotics and mechatronics
development [18]. It focuses on the use of VR technology to optimize and ease
the development process and to significantly cut down the cost. As illustrated
on the left part of Figure 3, the aim of eRobotics is to provide a holistic, but
comprehensive software tool that covers all common VR domains ranging from
education and 3D simulations up to multi-domain simulations. Even in small
projects visually pleasing demonstrations of project ideas and results in attrac-
tive, immersive virtual worlds as a sales argument for possible follow-up projects
must not be neglected.

Fig. 3. Left: eRobotic applications cover all aspects of VR. Model descriptions are
based on semantic world modeling. Right: The semantic database deals as connecting
element between all modules involved.

As illustrated on the right part of the Figure 3, semantic world models stored
in a central GOOD database are suitable to match the flexibility requirements
and are therefore a key feature of eRobotic systems. The rendering components
can benefit from the interpretation of this data, in order to enhance the visual
appearance or to generate close-to-reality virtual environments. However, han-
dling strategies need to be applied in order to transfer the data into optimized
data structures for efficient usage by the simulation and rendering plugins.

114 N. Hempe, R. Waspe, and J. Rossmann

4 A Novel Multi-domain VR Simulation System
Architecture

The semantic database also acts as connecting element between the simula-
tion and render framework and provides the inter-communication between both
frameworks. Rendering modules can be applied to actively support the simu-
lation process in specific tasks (e.g. optical sensor simulation), to improve the
accuracy and performance as shown in a previous publication [16]. However,
it is still a challenge to develop a holistic and comprehensive yet sustainable
multi-domain VR simulation system, which is easily manageable, extensible and
understandable.

4.1 Database Structure

The simulation system is built around the ”Versatile Simulation Database”
(VSD), a schema-less database kernel. In order to retain semantic information
the VSD is an object oriented graph database, which have proven their adapt-
ability to a wide filed of applications, as shown in the overview by [3]. Plugins
to the core system can provide data schema needed for specific simulation tasks
(such as discrete event or 3D simulation) or they can implement further capa-
bilities, such as a graphical user interface, user interaction or rendering. A very
simplified class hierarchy of the VSD core is shown in white on the left of in
Figure 4.

Fig. 4. Left: The VSD core components (white) and a data schema extension for 3D
simulation (gray). Right: A multi-graph of a simple 3D model.

All data describing the state of the simulation is held within the database as
properties. As shown on the right of Figure 4 the spanning tree [5] of the database
is compromised of nodes, with the edges of the graph defined by parent-child

Combining Complex Simulations with Realistic Testing Environments 115

relations (depicted as solid black lines) between nodes. Nodes can be augmented
by extensions (depicted as boxes).

A multi-graph can be created by attaching any Instance to a reference prop-
erty, thus defining additional arbitrary sets of edges within the database. This
can be useful for modeling different arrangements of instances for special views
of the database, such as a rendering graph, as proposed by Tobler [20]. This is
shown in Figure 4, where the ”Render Root” extension attached to the model
root holds links to the render data extensions, which are associated with a hull
node. Geometries are held as special references of hull nodes and are not nodes
themselves, in order to enforce their position within the model database.

4.2 Optimizing Semantic Data for Rendering Purposes

As illustrated in Figure 5 simulation and rendering plugins can both integrate
their desired data elements into the central system database without affecting
each other. Plugins can also work with data elements of other plugins if they are
known, regardless if they are simulation or rendering related. Finally, the pre-
sented active database concept build the ideal basis to realize the MVC pattern.
Plugins can integrate transformation rules in order to transform the semantic
data graph into system-specific data structures optimized for rendering reasons.
For example, the 3D geometry plugin defines a set of semantic nodes (VSD3D),
which contain basic nodes like geometric elements, texture nodes, material nodes,
etc., that can be used to model the scene in a ”natural” fashion. The plugin de-
fines a set of rules which monitor these elements and automatically transforms
them into a rendering-optimized data structure. In contrast to the split scene
graph approach suggested by Tober [20], our approach keeps track of all related

Fig. 5. Illustration of the micro-kernel-based system and plugins, which add new func-
tionalities, semantic elements and transformation rules for the transformation of se-
mantic data structures into rendering-specific ones

116 N. Hempe, R. Waspe, and J. Rossmann

semantic nodes and organize them globally, which allows for more efficient im-
plementations of buffer usage, as well as state-sorting and batching approaches.
A transform rule collection can contain multiple rule sets to consider different
hardware performance characteristics in order to optimize the generated render
data structure by applying techniques like LOD or adaptive mesh refinement. As
illustrated by the vegetation and data visualization plugins in Figure 5 additional
effects can be integrated, which may demand other render or buffer structures.

4.3 Generating Realistic Virtual Environments with Semantic Data
Interpretation

Instead of creating virtual environments manually with high effort, the presented
system can import semantic data from various data sources like geographic infor-
mation services (GIS), which are widely available to the public. While common
systems only rely the terrain geometry or satellite imagery that can be ren-
dered directly and result in a poor visual representation, the presented system
allows to import and interpret provided semantic information in order to gen-
erate life-like virtual mappings of the real environment as illustrated in Figure
6. Further details about the newly developed rendering and interpretation tech-
niques have been presented in [9] and [8]. Beside realistic ground vegetation,
additional semantic render plugins have been implemented, which feature HDR
rendering with changing lighting conditions and shadowing as well as dynamic
weather effects in order to properly test the robustness of newly developed image
processing approaches of mobile robots under different conditions.

Fig. 6. Semantic data can be imported and interpreted by specific plugins in order to
generate realistic mappings of real-world environments

Combining Complex Simulations with Realistic Testing Environments 117

4.4 Rendering-Based Simulation Support

Due to the fact that simulations get more complicated and the accuracy re-
quirements rise with advanced technology development, the calculation power
of modern graphics hardware should not be neglected. The simulation of optical
sensors is an essential field in most robotic applications. Beside the shown exam-
ples to improve the visual quality, the introduced system structure also allows
for rendering-supported simulations. A realistic looking virtual environment en-
hances the realism when using the rendered images as input for digital camera
simulations. Advanced rendering techniques can also be applied in order to sim-
ulate other optical sensors like time-of-flight cameras or laser range scanners
shown in Figure 1 with higher accuracy. Building on that, a GPU-based sensor
simulation component was developed, that allows for accurate real-time simu-
lations of optical sensors including various error models using state-of-the-art
rendering techniques [16]. Further examples of rendering-based simulation sup-
port are data visualization tasks like particle tracing to visualize CFD datasets
in realistic environments as shown in the right column of Figure 10.

5 Applications

The virtual environments achievable with the presented multi-domain VR sim-
ulation system build the ideal testing ground for mobile robots in advanced
Virtual Testbeds. A goal of a recent project was the development of a landmark-
based localization framework for use in outdoor environments, able to estimate
the current position of mobile systems [17]. Figure 7 compares the results of a
semi global matching (SGM) stereo disparity estimation achieved with a real-
world testbed (left), a simple virtual testbed (middle) and the advanced Virtual
Testbed generated out of semantic data (right).

Fig. 7. Different testing environments for computer vision algorithms and achieved
color-coded depth visualizations of the stereo matching results

118 N. Hempe, R. Waspe, and J. Rossmann

It becomes clear, that simple virtual models lead to unsatisfactory results
which strongly differ from data acquired in real-world tests. The environments
generated with the presented system feature life-like, dynamic ground vegetation,
which lead to results comparable to those acquired in real-world setups. For an
evaluation, we use the ground truth data generated by the simulation system and
calculate a disparity map corresponding to the baseline and intrinsic parameters
of the stereo camera system which allows to easily assess the stereo matching
algorithm directly in units of disparity pixels. The achieved results with a simple
and a realistic virtual environment are shown in Figure 8.

Fig. 8. Comparison of stereo matching results achieved with simple and realistic virtual
environments. Left: Mean error and standard deviation between SGM and ground truth
disparity data. Right: Difference image and histogram.

While the matching algorithm has problems finding corresponding pixels on
plain-colored ground in the simple environment, the matching results with highly
detailed ground vegetation are much more reliable. In our test scene, we achieved
mean errors of 15 pixels in the simple environment compared to 5 pixels difference
in the more realistic one. The difference images in the figure show the signed pixel
difference between the ground truth disparity and the stereo estimated disparity
shifted towards the middle of the 8 bit gray scale image. The histograms have
their peak around the value of 127 with standard deviations of up to 28 using
the simple scene and values up to 18 with the more realistic one.

Figure 9 shows another virtual testbed, which demonstrates the aspects of
knowledge transfer as well as the possibilities of early, visually pleasing presen-
tation of project ideas. The basic idea of this project was to mount 2D laser
scanners on a wood harvester in order to apply the computer vision and lo-
calization approaches developed for the Seekur Jr navigation framework. This

Combining Complex Simulations with Realistic Testing Environments 119

navigation system should support the machine operator by guiding him to se-
lected trees in the stand marked for felling in order to to improve the wood
harvesting effectiveness. Due to the usage of the available virtual forest models,
the simulated laser range scanners and the computer vision algorithms developed
for the Seekur Jr project, a fully functional simulation of such a harvester, able
to demonstrate the possibilities and advantages of the project ideas was created
within a short period of time. During the project, the simulation models and
approaches were refined for efficient testing of the newly developed algorithms
before they were applied to the real harvester, which drastically decreases project
costs and development time.

Fig. 9. Real and simulated harvester equipped with 2D laser scanners for forest navi-
gation and harvesting support as an example for knowledge transfer from one project
to another

Fig. 10. Currently, more than 30 eRobotic applications have been realized

Currently, more many eRobotic applications in different domains have been
realized with the presented multi-domain VR simulation system, which benefit
from knowledge transfer from one domain to another, as well as the combination

120 N. Hempe, R. Waspe, and J. Rossmann

of complex simulations, semantic world modeling and realistic computer graph-
ics. Further examples are shown in Figure 10, which range from edutainment
in the Virtual ISS or in digital city models, over virtual training in the Virtual
Forest, up to engineering domains in space robotics.

6 Conclusion and Future Prospects

In this paper, we presented system and database structures to realize the novel
eRobotics approach, which aim is to provide a comprehensive software environ-
ment to address robotics related issues. Semantic world modeling in combination
with the presented active, graph-oriented object database greatly helps to bring
together simulation and rendering tasks in a holistic system, without affecting
each other in a negative way. While the render component was mostly neglected
in scientific contexts in the past, we showed that a powerful render framework is
not only helpful to increase the understanding of robotics-related issues, but is
also important to realize virtual close-to-reality testing environments. The devel-
oped multi-domain VR simulation system builds the optimal basis to deal with
the ever increasing complexity of rendering techniques and current computer-
aided robotic solutions and keep them manageable. Due to its schema-aware
database core that can conveniently be extended in a modular fashion the simu-
lation system is also capable to extend into other domains not related to mobile
robotics, such as automation, decision support and discrete event simulation.

Acknowledgments. The work presented in this paper was done as part of
the Virtual Forest project. The Virtual Forest project is co-financed by the
European Union and the federal state of North Rhine-Westphalia, European
Regional Development Fund (ERDF). Europe - Investing in our future.

References

1. Abrial, J.R.: Data semantics. In: Data Base Management: Proc. of the IFIP Work-
shop Conference on Data Base Management, pp. 1–60 (1974)

2. Alemany, J., Cervera, E.: Design of high quality, efficient simulation environments
for usarsim. In: Technical Report ICC 2011-10-1, University Jaume I, Spain (2011)

3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing
Surveys 40(1), 1–39 (2008)

4. Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M., Scrapper, C.: Usarsim: a
validated simulator for research in robotics and automation. In: Workshop on
Robot Simulators: Available Software, Scientific Applications, and Future Trends
at IEEE/RSJ (2008)

5. Diestel, R.: Graph Theory, 4th edn. Graduate texts in mathematics, vol. 173.
Springer (2012)

6. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

Combining Complex Simulations with Realistic Testing Environments 121

7. Gyssens, M., Paredaens, J., Van Den Bussche, J., Van Gucht, D.: A graph-oriented
object database model. IEEE Transactions on Knowledge and Data Engineer-
ing 6(4), 572–586 (1994)

8. Hempe, N., Rossmann, J.: Efficient real-time generation and rendering of interac-
tive grass and shrubs for large sceneries. In: Proc. of the 13th IASTED International
Conference on Computer Graphics and Imaging (CGIM), pp. 240–247 (2012)

9. Hempe, N., Waspe, R., Rossmann, J.: Geometric interpretation and optimization
of large semantic data sets in real-time vr applications. In: Proc. of the ASME
2012 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference (IDETC/CIE), pp. 1–10 (2012)

10. Jain, A., Huineau, J., Lim, C., Lincoln, W., Pomarantz, M., G., Sohl, S.R.: Roams:
Planetary surface rover simulation environment. In: Proc. of iSAIRAS 2003,
pp. 19–23 (2003)

11. Keonig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proc. of IEEERSJ International Conference on Intelli-
gent Robots and Systems IROS, vol. 3, pp. 2149–2154 (2004)

12. Mendez, E., Schall, G., Havemann, S., Fellner, D., Schmalstieg, D., Junghanns, S.:
Generating semantic 3d models of underground infrastructure. IEEE Computer
Graphics and Applications 28(3), 48–57 (2008)

13. Michel, O.: Cyberbotics ltd. webots tm: Professional mobile robot simulation. Int.
Journal of Advanced Robotic Systems, 39–42 (2004)

14. Rathnam, R., Pfingsthorn, M., Birk, A.: Incorporating large scale ssrr scenarios into
the high fidelity simulator usarsim. In: IEEE International Workshop on Safety,
Security and Rescue Robotics, SSRR 2009, pp. 1–6 (2009)

15. Rossmann, J.: The virtual testbed: Latest virtual reality technologies for space
robotic applications. In: Proc. of the iSAIRAS 2008, pp. 1–8 (2008)

16. Rossmann, J., Hempe, N., Emde, M., Steil, T.: A real-time optical sensor simulation
framework for development and testing of industrial and mobile robot applications.
In: Proc. of the 7th German Conference on Robotics (ROBOTIK 2012), pp. 337–342
(2012)

17. Roßmann, J., Wantia, N., Springer, M., Stern, O., Müller, H., Ellsiepen, M.: Rapid
generation of 3d navigation maps for extraterrestrial landing and exploration mis-
sions: The virtual testbed approach. In: Proc. of the 11th Symposium on Advanced
Space Technologies in Robotics and Automation (ASTRA) (2011)

18. Rossmann, J., Schluse, M., Schlette, C., Waspe, R.: A new approach to 3d simula-
tion technology as enabling technology for erobotics. In: Van Impe, J.F.M., Logist,
F. (eds.) 1st International Simulation Tools Conference and EXPO 2013 (2013)

19. Staranowicz, A., Mariottini, G.: A survey and comparison of commercial and open-
source robotic simulator software. In: Proc. of the 4th International Conference on
Pervasive Technologies Related to Assistive Environments, PETRA 2011, vol. 1,
pp. 39–42 (2011)

20. Tobler, R.: Separating semantics from rendering: a scene graph based architecture
for graphics applications. Visual Computer 27(6-8), 687–695 (2011)

Analysis of Knee-Ankle Orthosis Modelling:

An Inverse Dynamics Approach
Using Adaptive Coupled Oscillator

Michael Oluwatosin Ajayi1,2, Karim Djouani1,2, and Yskandar Hamam1,3

1 Department of Electrical Engineering, Tshwane University of Technology,
Staatsartillerie Road, Pretoria West, Pretoria, South-Africa

2 University of Paris Est Creteil (UPEC), LISSI, 94400 Vitry Sur Seine, France
3 LISV, Btiment Boucher, Pole scientifique et technologique de Velizy,

10-12 avenue de l’Europe, 78140 Velizy
{ajayimo,djouanik,hamama}@tut.ac.za

Abstract. In this paper, an inverse dynamics approach by means of
adaptive coupled oscillators is used in the modelling and control of a
lower limb orthosis applied at the knee and ankle joint level. This design
is aimed at providing assistance and rehabilitative measures to humans
with lower limb disorders and as such presents a platform for which their
mobility performance can be improved. Adaptive oscillators are known
to have the capability of learning high level parameters of sinusoidal,
quasi-sinusoidal or non-sinusoidal signals (amplitude, frequency and off-
set). However, the later signal (non-sinusoidal) considered in this paper
requires a number of oscillators in parallel to replicate the moving joint
regarding filtering via adaptive oscillator. The dynamic model for the
knee and ankle are considered to take the form of a damped pendulum
model connected by two revolute joints. This maps the input torque of
both joints (knee and ankle) to their output trajectories, hence inte-
grating the different forces at the joint level of the different joints. The
coupling effect is achieved by the use of coupled Adaptive Frequency
Oscillator (AFO) for the estimation of the joint trajectories. Tracking
performance for the knee-ankle orthosis is studied for non-sinusoidal ref-
erence trajectories, having a global coupling between the joints. The
results obtained using SCILAB show a good performance of the con-
troller trajectory tracking capabilities even in the presence of external
disturbances.

Keywords: Adaptive Coupled Oscillators, Knee-Ankle Orthosis, Reha-
bilitation Robotics, Robot-assisted platform.

1 Introduction

The objective of rehabilitation is to perform specific movements that exercise
and hence improve motor unit plasticity of the patient thereby influencing mo-
tor recovery and minimising functional deficits [1]. Rehabilitation therefore could

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 122–133, 2014.
c© Springer International Publishing Switzerland 2014

Analysis of Knee-Ankle Orthosis Modelling 123

be implemented manually or robotically (i.e. by the use of a robotic tool). Re-
habilitation robotics is a branch of robotics which provides a platform for the
design of robots in the form of orthosis for the purpose of providing physio-
therapy to persons with physical disability. Conventional manual rehabilitation
is associated with excessive time, energy and resources (physiotherapist) hence
disadvantageous compared to robotic-based rehabilitation [2]. Research on the
efficiency of robotic therapy has shown that rehabilitation technologies provide
new alternatives for repetitive training sessions that can increase efforts to im-
prove the therapy performance. This is also intended to reduce the burden on
physiotherapists and assess quantitatively the level of motor recovery by mea-
suring force and movement patterns [1],[3].

Robotic therapy may be performed on traditional robotic platforms or robot-
assisted platforms [4]. The former is basically used to drive the patients limb
along a pre-specified trajectory using stiff position control as in [5], thereby
making the patient passive during the whole training sessions. Although this
proved to be a drawback, [2] addressed the possibility for traditional robotic
platforms to work in passive and active mode, depending on the recovery stage
of the patients.

The “assistance-as-needed” approach as known as the robot-assisted platform
helps provide assistance for movement to subjects when they are incapable of
completing the movement task [6]. This allows patients to be active during the
entire physiotherapy session and assisted only when required, thereby improving
the patients muscle activity [7]. In [4], a novel assistance method was proposed
for rhythmic movement of the forearm about the elbow using a single adaptive
oscillator. The features associated with this method commensurate with that of
EMG-based assistive device [8], since its level of assistance is same at steady-state
for the subject and virtually no pre-specified trajectory is needed. The objective
of this paper is to investigate a rehabilitation protocol method using CPGs
(Central pattern generators) to perform rhythmic movements of the lower limb
about the knee and ankle. Mechanical coupling about these joints are assumed
to be governed by the principle behind the double pendulum dynamic behaviour.
This is based on an inverse dynamic approach hence, an estimate of the torques
applied to both joints is calculated and the assistance provided to the joints is
a feedback of a fraction of the said calculated torques.

CPGs are biological neural networks that produce coordinated multidimen-
sional rhythmic signals, under the control of simple input signals. The building
block for the construction of the CPG in this paper is the Adaptive Frequency
Oscillator (AFO) developed in [9]. In [10], a variety of different application of the
AFO was highlighted. The global problem associated with estimating derivatives
of noisy position signal in robotics was addressed in [11]. It thus, proposed a new
approach to estimating velocity and acceleration of cyclical/periodic signals us-
ing AFOs. Application to biped locomotion control was presented in [12] hereby
demonstrating how online learning and modulation of pre-recorded walking tra-
jectories using CPGs limit cycle properties can be achieved. [13] addressed the
future of humanoid robots in areas relating to performing periodic tasks. Coupled

124 M.O. Ajayi, K. Djouani, and Y. Hamam

nonlinear oscillators were used to design CPGs similar to human gait pattern ap-
plied in the locomotion of bipedal robot was exploited in [14]. An oscillator-based
model-free approach designed for the assistance and rehabilitation protocols as
regard walking was also demonstrated in [15].

The main contribution of this paper is to demonstrate the possibility of as-
sisting and rehabilitating patients with both knee and ankle anomalies so as to
recuperate their motor functions concurrently using CPGs. Thus, a 2 (two) DOF
(degree of freedom) is considered for the knee-ankle orthotic device.

The rest of the paper is organised as follows: Section 2 presents the knee-ankle
orthosis system. Section 3 gives the methodology for design of the CPG. The
mathematical model of the knee-ankle orthosis is given in Section 4. Section 5
provides the simulation and results of the movement assistance of the knee-ankle
joints based on certain physiological parameters. Finally, in Section 6, further
work and conclusion is made.

2 Knee-Ankle Orthosis System

In this study, the authors consider a Shank-Foot CAD model as shown in Fig.1
which depicts the knee-ankle orthosis. The CAD model is assumed to incorporate
the parameters of the orthosis and the users lower limb (knee and ankle to be
precise). The model thus takes into account the flexion/extension of the knee
about the revolute joint a and the plantar-flexion/dorsal-flexion of the ankle
about b, assuming the motions are performed in a sagittal plane with the subject
in a sitting position, hence the mass of the subject’s shank and foot link of a
single leg are those accounted for in this model. The movements of the knee-
ankle orthosis are in the range 0rad ≤ θ ≤ 2.35rad for the knee and 0rad
≤ θ ≤ 0.87rad for the ankle. Where 0rad relates to the full knee extension,
2.35rad is the maximum flexion of the knee and 1.57rad corresponds to the
rest position of the knee. Furthermore, 0rad as regard the ankle movements
corresponds to the rest position of the ankle, 0.35rad is the maximal ankle
dorsal-flexion, while 0.87rad denotes the maximal ankle plantar-flexion. The
assisted joint positions are required to be measured, so as to determine the
human torques required. It should be noted that the system is considered to
reflect a controlled movement about its axis and hence seen perform a periodic
motion of each link about its pivot. Having known that the system is mechanical
coupled via the joints, the movement are said to be coupled and thus achieved by
CPG (Adaptive Oscillators) as disscused in section 4.2. This is done to guarantee
a global movement since the dynamic model of the shank-foot is treated as a
decoupled system. Based on this, the periodic motions is said to assume the
dynamics of a damped simple pendulum for each link.

3 CPG Design

This section describes the model of the CPG that is used to provide assistance
to the knee-ankle orthosis. The design of the CPG using adaptive oscillators and

Analysis of Knee-Ankle Orthosis Modelling 125

Fig. 1. Shank-Foot model

hence the tuning of the adaptive oscillator for filtering of a two (2) degree of
freedom (DOF) along a non-sinusoidal trajectory are explained.

3.1 Adaptive Frequency Oscillator (AFO)

The adaptive frequency Hopf oscillator was first developed in [9] and [10]. For
the purpose of simplicity, the augmented phase oscillator explained in [15] and
[16] is adopted for the design of the CPGs used for the rhythmic movements
needed to be achieved in this paper. The augmented phase oscillator is written
as:

φ̇ = ω + νFcosφ
ω̇ = νFcosφ

(1)

where φ is the phase of the oscillator and ν represents the learning parameter
that determines the speed of the phase synchronization to F and must be greater
than 0; ν � 0. F is the is the periodic input signal to which the oscillator will
adapt its frequency while ω controls the frequency of the oscillations, and this
is the frequency adapted to the periodic input signal F .

3.2 Coupled AFO

The idea relating to coupled oscillator was used to define a precise way of learning
any periodic input signal. This was in particular used to learn non-sinusoidal
periodic signals due to the fact that most human movements are not usually
sinusoidal. This coupling scheme which is more than just a dynamic Fourier
series decomposition of non-sinusoidal periodic signal, was first proposed in [12]
and later modified using augmented phase oscillator in [15], as shown below:

126 M.O. Ajayi, K. Djouani, and Y. Hamam

φ̇i = iω + νFcosφi

ω̇ = νFcosφ1

α̇i = ηFsinφi

F = θ − θ̂

θ̂ =
N∑
i=0

αisinφi

(2)

where i represents the no. of oscillators in parallel as regard the non-sinusoidal
periodic signal and N the total number of oscillators. αi is the amplitude associ-
ated to the main frequency ω, F is the is the periodic input signal to which the
oscillator will adapt its frequency while θ signifies the non-sinusoidal periodic
signal. θ̂ is the sum of filtered outputs of each oscillator and η is the amplitude
integrator gain. Note that only the main frequency ω will learned to F .

Furthermore, the CPG corresponds to one degree of freedom (DOF), there-
fore, for 2 DOF based on the knee-ankle orthosis 2 CPGs are required. 3 oscilla-
tors relate to one CPG. This is in conjunction with the assumed non-sinusoidal
trajectories of the knee and ankle respectively. Consequently, in this model,
i = 3.

4 Mathematical Model

In this section, the building blocks for the entire system are described. The blocks
include: the dynamic model, coupled AFO (which includes the signal estimator
and the torque estimator) and the human torque. Fig. 2 shows the block diagram
of the combined system (human knee and ankle + orthosis).

Fig. 2. Block diagram of the human knee and ankle + orthosis

4.1 Dynamic Model

The knee and ankle rhythmic movement of the human lower limb generates two
trajectories and therefore the system is modelled as two (2) degree of freedom
(DOF). These rhythmic movements are characterised as movements similar to
that of a damped pendulum dynamics. The purpose of this has been explained

Analysis of Knee-Ankle Orthosis Modelling 127

in section 2. Hence the dynamic model for the knee and the ankle can be math-
ematically written as:

θ̈j = Ij
−1
(
−mjgljsinθj − bj θ̇j + τj

)
(3)

with j is the number of joints which corresponds to two (2) for this particular
model with j = 1 relating to the knee and j = 2 relating to the ankle and Ij
symbolises the inertia of the shank/foot. mj is the mass of the shank/foot, lj
is the equivalent length of the shank/foot, which corresponds to the movement
about the knee and ankle joint while bj represents the damping constants of the
shank/foot movement about knee/ankle joints. g signifies the gravitational force,
θ̈j , θ̇j , θj denotes the knee/ankle angular acceleration, velocity and position re-
spectively and τj is the total torques applied to the knee and ankle respectively.
The dynamic model block simply retrieves the actual angular position by in-
tegrating (3) in relation to each joint level. The generalised coordinate which
represent the actual angular position for the knee and ankle can therefore be
represented as:

θ =
[
θ1 θ2
]T

(4)

4.2 Coupled AFO (Joints Coupling)

The coupling of adaptive frequency oscillators to reproduce non-sinusoidal peri-
odic signal for a single joint was explained in Section 3.2. However, the simulta-
neous rhythmic movement of the knee and ankle joints requires coupling between
each CPG which represent each joint. The choice of coupling used could differ,
as demonstrated in [12] and [15] respectively.

This paper adapts the global coupling procedures which require a common
variable belonging to each CPG controlled by each CPG. Fig. 3 presents a picto-
rial diagram of the coupling of the CPG with the frequency being the common
variable needed to be controlled. The equation of the CPG which incorporates
the global coupling between each joint can be written as:

φ̇i = iω + νFjcosφi

ω̇ =

(
ν

G∑
j=1

Fjcosφ1,j

)
�G

α̇i = ηFsinφi

(5)

with j represents the active joint in question; for which in this particular model
j = 1 relates to the knee, while j = 2 relates to the ankle. Fj is the non-sinusoidal

periodic signal for each CPG and can be written as F =
[
F1 F2

]T
and ω signifies

the frequency and thus initiates the coupling between each CPG. G is the total
number of joints while other terms are same as defined in (2).

128 M.O. Ajayi, K. Djouani, and Y. Hamam

Fig. 3. Structure of CPG coupling

4.3 Signal Estimator

The non-sinusoidal input signal Fj of the adaptive oscillator is the difference
between the knee-ankle angular positions θj and the estimated (learned) signal

θ̂j . This can be expressed as below:

F = θj − θ̂j

θ̂j =
K∑
i=0

αi,j sinφi,j
(6)

The adaptive oscillator estimate of the velocity and acceleration can be written
respectively as in [16]:

ˆ̇
θj =

K∑
i=0

αi,j ωcosφi,j

ˆ̇
θj = −

(
K∑
i=0

αi,j ω
2sinφi,j

) (7)

4.4 Torque Estimator

The estimated torques is derived from the dynamic model in (3). The value
of which is obtained by introducing the estimates from the adaptive oscillators
described in (6) & (7). This forms the basis of the AFO control system. The
equation may be described as:

τ̂j = mjgljsinθ̂j − bj
ˆ̇θj + Ij

ˆ̈θj (8)

with each symbol defined as in section 4.1 but represents its estimated version.

4.5 Human Torque

The human (muscular) torque applied to the device is determined by the PID
controller in conjunction with the reference trajectory for the purpose of simu-
lation and it is thus defined as:

τh,j = Kp,j ej +Ki,j

∫
ejdt+Kd,j ėj (9)

where ej is the error signal which is the difference between the reference trajec-
tories and actual angular positions of the knee/ankle and Kp,j , Ki,j , Kd,j are
the proportional, integral and derivative gains of the controller (human torque)
about the knee/ankle.

Analysis of Knee-Ankle Orthosis Modelling 129

The total torque τj is the sum of the human (muscular) torque τh,j and the
assistive torque τe,j :

τj = τh,j +τe,j (10)

with τe,j = κj τ̂j where κj determines the level of assistance applied at the
knee/ankle joint. κj = 1 implies full assistance, κj = 0.5 represents 50% as-
sistance and κj = 0 signifies no assistance.

5 Numerical Simulation

In this section, the physiological parameters, the non-sinusoidal periodic ref-
erence trajectories chosen for the purpose of this simulation and the eventual
results of the simulation are highlighted.

5.1 Reference Trajectories and Physiological Parameters

The reference trajectories are assumed to be the measured angular position of
the knee and ankle and chosen to be within the range of motion specified in
section 2; they are given as below respectively:

θref 1 = π
12 (sin(2πft) + 0.5cos(πft) + 2.25sin(π2 ft))

θref 2 = π
90 (sin(πft) + 0.8cos(π2 ft) + 0.6sin(π4 ft))

(11)

with f = 0.16Hz
Furthermore, the physiological parameters of the knee/ankle with respect to

the Shank-Foot Model in Fig. 1. were chosen as in Table: 1. below:

Table 1. Physiological Parameters

Parameters Units Values

Shank length (L1) m 0.2
Foot length (L2) m 0.08
Shank mass (m1) kg 2.80
Foot mass (m2) kg 1.17
Shank inertia (I1) kg.m2 0.075
Foot inertia (I2) kg.m2 0.012
gravity (g) m/s2 9.8
Shank damping Coeffiecient b1 Nm/s2 0.4
Foot damping Coeffiecient b2 Nm/s2 0.6

Note that the value of the inertia is calculated assuming cylindrical links and
thus calculated as Ii =

2
3miLi

2.
The PID controller parameters and Adaptive Oscillator parameters are given

as;Kp = 110,Ki = 5.5,Kd = 2 are same for both knee and ankle PID controllers
and the adaptive oscillator parameters values η = 5, ν = 25 are the same for each
CPG representing the knee or ankle.

130 M.O. Ajayi, K. Djouani, and Y. Hamam

5.2 Results

With regards to Section 5.1, the simulation results are given in the figures below.

Fig. 4. Top (left): Position trajectory of knee and ankle with adaptive oscillator
synchronisation. θr1, θ1&θe1 represents the reference, actual and estimated angular
position trajectories of the knee respectively, while θr2, θ1&θe2 signifies the reference,
actual and estimated angular position trajectories of the ankle in the same other. This
same for the top figure in Fig. 6. Top (right): Human (muscular) torque and assistive
torque simulation of knee and ankle κ = 1. τe1&τh1 defines the assistive torque and
human torque for the knee respectively while τe2&τh2 is same as regard the ankle. This
same for Fig. 5 (torque figures only), but with different assistive torques. Bottom:
Tracking error result of knee and ankle with adaptive oscillator synchronisation. This
is a measure of how close the assistive torque follows the human torque of which it is
benchmarked, based on the difference between the actual trajectory and the reference
trajectory.

5.3 Discussion

As shown in Fig. 4 (top (right)) the adaptive oscillator was able to achieve phase
synchronization of all three trajectories which includes the reference, actual and
estimated angular positions (knee and ankle). A considerable replication of the
reference trajectories was achieved with little finite time convergence of for both
positions. This is true for all the conditions which vary from κ = 1 (full assis-
tance), κ = 0.5 (50 % assistance) and κ = 0 (no assistance). By observing Fig. 4

Analysis of Knee-Ankle Orthosis Modelling 131

(bottom), the tracking errors for the angular positions (knee and ankle) are
relatively small with RMS errors value of 0.01012rad for the knee position and
0.00308rad for the ankle position.

In Fig.4 (top (right)) and Fig.5 (top (left) & top (right)), the level of assis-
tance offered to the subject and the human torque of the subject is plotted with
time. This is to verify the effect of the assistance to the subject during a partic-
ular training session. It can be perceived from these figures that as the level of
assistance decreases from κ = 1 to κ = 0, the human torque required to achieve
the proposed task increases. The orthotic device can therefore fully or partially
assist the patient bringing into to play the term “assist as needed”.

Fig. 5. Top (left): Human (muscular) torque and assistive torque simulation of knee
and ankle κ = 0.5. Top (right): Human (muscular) torque and assistive torque simu-
lation of knee and ankle κ = 0. Bottom (left): Human and assistive torque simulation
of knee and ankle κ = 1 with disturbance. It shows the interval of applied disturbance
in human torque which is between 0 − 20s. Bottom (right): Position trajectory of
knee and ankle with adaptive oscillator synchronisation in the presence of disturbance.

To further authenticate the assistive measures rendered, a disturbance which
exemplifies the state of inactivity of the human muscles about the knee and ankle
was introduced to the knee-ankle orthotic device (system). Its introduction is at
early phase of the training sessionwith full assistivemeasure to compensate for this
muscle inactiveness (i.e. at 0− 20s). In real-life circumstances, it could be viewed
as an abstruction to the movement of the shank-foot during the training session.

132 M.O. Ajayi, K. Djouani, and Y. Hamam

A significant ripple effect on the trajectories of the positions was observed in
Fig. 5 (bottom (right)) at the early stage but all the trajectories achieved phase
synchronisation at the end of stipulated training session time. This was due to
the full assistance given to the subject by the device. Fig. 5 (bottom (left))
virtually demonstrates this effect; having observed that the human torque was
abnormal or ineffective between 0−20s, and the effect could be perceived in Fig.
5 (bottom (right)), due to the tracking dificulties encountered as a result of the
disturbance.

Initial spikes of the PID controller which generates the human torques can be
seen in figures which describes the said torque pattern. This can be eliminated
by tuning the PID parameters more efficiently. However, this is for simulation
purpose only as the practical use will be to measure the angular position of the
periodic motions of the shank and foot about the knee and ankle respectively.
This parameter is then used to calculated the human torques in conjuction with
the eventual assistive torques via the estimation of the position, velocity and
acceleration by the AFO.

The main contribution is to establish a rehabilitation protocol which incor-
porates the knee and ankle using the robotic-assisted platform by means of the
AFO and that has been achieved based on the above simulations.

6 Conclusions and Future Works

In this paper, an assistive method for the knee and ankle rehabilitation was
proposed. This was achieved by exploiting the rhythmic traits of CPGs (adaptive
frequency oscillators) for the purpose of developing a new rehabilitation protocol
that requires the knee and ankle concurrent movement with the aid of a global
coupling. An inverse dynamic model assumed to be a simple damped pendulum
dynamics for each link was used to realise a conceived movement pattern. Using a
chosen numerical data, the assistive orthotic device was confirmed to be effective.
This was established by mimicking the muscular (human) torque with the aid
of a PID controller.

In future works, the authors intend to verify this assistive effect in a lab and
also carry out parametric identification by the use of least square method and
regression equations of Zatsiorsky [17] which will be achieved by sampling the
inverse dynamic model along stipulated trajectories of both the knee and ankle
[18]. Furthermore, the final goal will be to implement this control method to
specific human gait systems using its inverse dynamic model.

References

1. Iaki, D., Jorge, J.G., Emilio, S.: Lower-Limb Robotic Rehabilitation: Literature
Review and Challenges. Journal of Robotics (2011)

2. Kordasz, M., Kuczkowski, K., Sauer, P.: Study on possible control algorithms for
lower limb rehabilitation system. In: IEEE International Conference on Rehabili-
tation Robotics (ICORR), pp. 1–6 (2011)

Analysis of Knee-Ankle Orthosis Modelling 133

3. Dollar, A.M., Herr, H.: Lower Extremity Exoskeletons and Active Orthoses: Chal-
lenges and State-of-the-Art. IEEE Transactions on Robotics 24, 144–158 (2008)

4. Ronsse, R., Vitiello, N., Lenzi, T., van den Kieboom, J., Carrozza, M.C., Ijspeert,
A.J.: Adaptive oscillators with human-in-the-loop: Proof of concept for assistance
and rehabilitation. In: 3rd IEEE RAS and EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob), pp. 668–674 (2010)

5. Colombo, G., Wirz, M., Dietz, V.: Driven gait orthosis for improvement of loco-
motor training in paraplegic patients. Spinal Cord 39 (2001)

6. Wolbrecht, E.T., Chan, V., Reinkensmeyer, D.J., Bobrow, J.E.: Optimizing Com-
pliant. Model-Based Robotic Assistance to Promote Neurorehabilitation. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 16, 286–297 (2008)

7. Israel, J.F., Campbell, D.D., Kahn, J.H., Hornby, T.G.: Metabolic Costs and Mus-
cle Activity Patterns During Robotic- and Therapist-Assisted Treadmill Walking in
Individuals With Incomplete Spinal Cord Injury. Physical Therapy 86, 1466–1478
(2006)

8. Sankai, Y.: Leading edge of cybernics: Robot suit hal. In: International Joint Con-
ference SICE-ICASE, pp. P-1–P-2 (2006)

9. Righetti, L., Buchli, J., Ijspeert, A.J.: From dynamic hebbian learning for oscil-
lators to adaptive central pattern generators. In: Proceedings of 3rd International
Symposium on Adaptive Motion in Animals and Machines, AMAM, p. 45 (2005)

10. Righetti, L., Buchli, J., Ijspeert, A.J.: Adaptive frequency oscillators and applica-
tions. Open Cybernetics and Systemics Journal 3, 64–69 (2009)

11. Ronsse, R., De Rossi, S., Vitiello, N., Lenzi, T., Carrozza, M.C., Ijspeert, A.J.:
Real-Time Estimate of Velocity and Acceleration of Quasi-Periodic Signals Using
Adaptive Oscillators. IEEE Transactions on Robotics 29, 783–791 (2013)

12. Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an applica-
tion to biped locomotion control. In: IEEE International Conference on Robotics
and Automation, ICRA, pp. 1585–1590 (2006)

13. Gams, A., Petric, T., Ude, A., Lajpah, L., Zaier, R.: Performing Periodic Tasks:
On-Line Learning, Adaptation and Synchronization with External Signals. In: The
Future of Humanoid Robots Research and Applications, pp. 3–28 (2012)

14. de Pina Filho, A.C., Dutra, M.S., Santos, L., Raptopoulos, C.: Modelling of Bipedal
Robots Using Coupled Nonlinear Oscillators (2006)

15. Ronsse, R., Koopman, B., Vitiello, N., Lenzi, T., De Rossi, S.M.M., van den
Kieboom, J., et al.: Oscillator-based walking assistance: A model-free approach.
In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6
(2011)

16. Rinderknecht, M.D., Delaloye, F.A., Crespi, A., Ronsse, R., Ijspeert, A.J.: Assis-
tance using adaptive oscillators: Robustness to errors in the identification of the
limb parameters. In: IEEE International Conference on Rehabilitation Robotics
(ICORR), pp. 1–6 (2011)

17. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal
robot excitation and identification. IEEE Transactions on Robotics and Automa-
tion 13, 730–740 (1997)

18. Khalil, W., Dombre, E.: Modelisation, identification et commande des robots:
Hermes science publ. (1999)

Optimizing Robotic Team Performance

with Probabilistic Model Checking�

Sagar Chaki, Joseph Giampapa, David Kyle, and John Lehoczky

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract. We present an approach to analytically construct a robotic
team, i.e., team members and deployment order, that achieves a specific
task with quantified probability of success. We assume that each robot is
Markovian, and that robots interact with each other via communication
only. Our approach is based on probabilistic model checking (PMC). We
first construct a set of Discrete Time Markov Chains (DTMCs) that each
capture a specific “projection” of the behavior of an individual robot.
Next, given a specific team, we construct the DTMC for its behavior by
combining the projection DTMCs appropriately. Finally, we use PMC
to evaluate the performance of the team. This procedure is repeated
for multiple teams, the best one is selected. In practice, the projection
DTMCs are constructed by observing the behavior of individual robots
a finite number of times, which introduces an error in our results. We
present an approach – based on sampling using the Dirichlet distribu-
tion – to quantify this error. We prove the correctness of our approach
formally, and also validate it empirically on a mine detection task by a
team of communicating Kilobots.

1 Introduction

Autonomous robots are increasingly being used in teams to communicate and
achieve tasks in a collaborative manner. Given a collection of robots and a spe-
cific mission, a designer solves the coalition formation problem and selects the
coordination strategy so as to maximize the chances of mission success. Cur-
rently this is done in an ad-hoc manner since navigating the solution space and
selecting the best one manually is impossible. This is true even if the designer
is able to observe each robot individually to construct a model of its behavior.
First, it is not clear which modeling formalism to use. Second, since these models
are complex (if they are to be precise) it is impossible to compose them manually
to make predictions about the overall behavior of a robotic team.

In this paper, we present an analytic approach to solve a simplified but com-
mon version of this problem. Specifically, we assume robots are Markovian, and

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001326.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 134–145, 2014.
c© Springer International Publishing Switzerland 2014

Optimizing Robotic Team Performance with Probabilistic Model Checking 135

only influence each other via communication (i.e., no physical interaction such as
collisions). We call this a communicating multi-robot mission (CMRM). Given
a CMRM S and a deadline D, our approach computes the following class of
properties: (i) probability of an event e happening when S is executed up to
time D; and (ii) expected value of an attribute a of S when it is executed up to
time D. We make the following contributions.

First, we formalize a CMRM as a modal Discrete Time Markov Chain
(DTMC). A modal DTMC consists of a finite set of component DTMCs. Each
component DTMC corresponds to a robot, and engages alternately in two kinds
of moves: (i) deterministic – the DTMC’s state changes instantly according to a
“mode-change” function that depends on the current states of the other DTMCs;
and (ii) probabilistic – according to its own transition relation; this happens syn-
chronously with the other DTMCs and takes unit time. We show (see Theorem 1)
that a modal DTMC is semantically equivalent to a specific combination of the
“projections” of its component DTMCs. This result enables us to compute prop-
erties of modal DTMCs, and therefore a CMRMs, using existing probabilistic
model checkers, such as prism [9], that verify DTMCs.

Second, we present an approach to quantify the error in our predictions. In
practice, each projection DTMC is constructed by observing and measuring a
finite set of runs of the corresponding robot. This means that the DTMC differs
from the true DTMC for the robot’s behavior. Therefore, predictions based on
them lie within an error margin of the correct values. We present an approach
that quantifies this error and estimates the correct property value. Specifically,
we sample a set of DTMCs “around” the constructed projection, and make
prediction using each sample. From these predictions, we use statistical theory
to estimate the real property value and the error margin. A key aspect of our
sampling procedure is its use of the Dirichlet distribution [7]. To our knowledge,
this is a new approach for error estimation in the DTMC context.

Finally, we implement our approach and evaluate it using a team of Kilo-
bots [11]. To construct the projection DTMC for a Kilobot, we: (i) run it and
record its actual behavior; (ii) reproduce this behavior in the V-REP [1] simula-
tor using manually tuned parameters; and (iii) construct the projection DTMC
from measurements of multiple simulation runs. Using a simulator enables us to
perform many runs and lower our error margins. At the same time, tuning the
simulation parameters to replicate observed robot behavior grounds our results
in reality. We show that our approach yields accurate predictions that match
observed results with Kilobot teams. Further details are presented in Section 4.

Related Work. Konur et al. [8] model coordinated robotic behavior in the context
of swarms. Like us, they compose individual models of robots into a model of
team behavior. However, they assume that all robots have the same behavioral
characteristics. This allows them to produce a team model which operates on
counts of robots in each state, instead of tracking each robot individually. We
do not assume homogeneous robots. Their attempt to track robots individually
met untenable state explosion past a team size of 3. Our individual models are

136 S. Chaki et al.

significantly more complex, but still due to the use of projections, we were able
to verify teams of up to 6 robots.

Ghorbal et al. [4] present an approach for predicting intervals of result proba-
bilities based on intervals of transition probabilities. This addresses the issue of
error propagation, but assumes that a true range of probabilities for each transi-
tion is known with certainty. Effectively, this is a 100% confidence interval, which
is unrealistic . Their approach is fully analytic, while we rely on sampling. They
develop a new verification algorithm which is validated on a 21 state model,
while we use existing tools and handle systems with thousands of states.

This paper builds on a wide body of work in modeling and verifying proba-
bilistic systems [12]. In particular, probabilistic model checking has been used to
verify systems ranging from pacemakers [2], root contention protocols [10] and
biological pathways [6]. We extend the application of probabilistic model check-
ing to yet another domain – communicating autonomous multi-robot missions.

The rest of this paper is organized as follows. In Section 2 we present our
approach to predict properties of modal DTMCs by combining projections. In
Section 3, we present our approach for quantifying error. In Section 4, we present
our experimental results, and in Section 5, we conclude.

2 Modal DTMC and Verification

In this section we define modal DTMCs and present an algorithm to compute
their properties. We begin with preliminary notation and concepts. Given a set
X , a probability density function (PDF) over X is a mapping π : X �→ [0, 1]
such that:

∑
x∈X π(x) = 1. The set of all PDFs over X is denoted by Π(X).

Given two sets X1 and X2, and PDFs π1 ∈ Π(X1) and π2 ∈ Π(X2), the joint
PDF π1 ⊗ π2 ∈ Π(X1 ×X2) is defined as follows:

∀(x1, x2) ∈ X1 ×X2 � (π1 ⊗ π2)(x1, x2) = π1(x1)× π2(x2)

A DTMC is a triple (S, I, R) where: (i) S is a finite set of states; (ii) I ∈ S is
the initial state; and (iii) R : S �→ Π(S) is the transition probability matrix.

We use Probabilistic Computation Tree Logic (PCTL) [5] to express proper-
ties. For a PCTL formula ϕ, and a DTMC S, S |= ϕ is the probability that S
satisfies ϕ. For example, if ϕ = F(p ∨ q), then S |= ϕ is the probability that the
DTMC eventually reaches a state where either p or q holds, where p and q are
propositions that are either true or false in each state. For DTMCs S1, S2 we
write S1 ≡ S2 to mean that for every PCTL formula ϕ, (S1 |= ϕ) = (S2 |= ϕ),
i.e., S1 and S2 satisfy all PCTL formulas with equal probability.

2.1 Modal DTMC

A n-component modal DTMC is a 2n-tuple (M1, . . . ,Mn, δ1, . . . , δn) whereMi =
(Si, Ii, Ri) are DTMCs, and:

δi : Si �→ 2S1×···×Si−1×Si+1×···×Sn × Si

Optimizing Robotic Team Performance with Probabilistic Model Checking 137

are “mode transition” functions. Informally δi(si) = (E, s̄i) means that if DTMC
Mi is in state si, and the other DTMCs are in state e = (s1, . . . , si−1, si+1, . . . sn),
then either (i) e ∈ E and Mi makes a mode change by moving to state s̄i; or (ii)
e �∈ E and Mi remains in state si.

Formally, the semantics of the modal DTMC P = (M1, . . . ,Mn, δ1, . . . , δn),
denoted [[P]], is the DTMC (S̃, Ĩ, R̃) where: (i) S̃ = S1 × · · · × Sn; (ii) Ĩ =
(I1, . . . , In); and (iii) R̃ : S̃ �→ Π(S̃) is defined as:

R̃(s1, . . . , sn) = R1(s
′
1)⊗ · · · ⊗Rn(s

′
n)

where for all i ∈ [1, n], if δi(si) = (E, s̄i) then:

(s1, . . . , si−1, si+1, . . . sn) ∈ E ∧ (s′i = s̄i)
∨

(s1, . . . , si−1, si+1, . . . sn) �∈ E ∧ (s′i = si)

Note that, in the definition of R̃(s1, . . . , sn) above, state (s′1, . . . , s
′
n) denotes

the result of (instantaneous) mode change due to exchange of information be-
tween the component DTMCs. This is followed by simultaneous probabilistic
transition made by each component DTMC (which requires one unit of time), as
denoted by the application of R1, . . . , Rn to states s′1, . . . , s

′
n, respectively, and

composing the resulting PDFs via the ⊗ operator.
In the rest of the paper, for simplicity of explanation, we consider only a 2-

component modal DTMC P , i.e., P = (M1,M2, δ1, δ2). The generalization to an
arbitrary (but finite) number of components is done in a natural manner. Our
overall goal is to verify a PCTL formula ϕ over P , the topic of Section 2.2.

2.2 Modal DTMC Verification

For any set X , and x ∈ X , Δ(x) ∈ Π(X) is the PDF that maps x to 1
and all other elements of X to 0. Recall that our target modal DTMC is
P = (M1,M2, δ1, δ2). We verify P by constructing a model based on observ-
ing M1 and M2 individually. Our approach relies on several key ideas:

1. A state of a component DTMC (i.e., M1 andM2) records at least the current
time and the time at which the last mode change happened. Thus, each state
is of the form (t,m, d) where t is the current time, m is the time of mode
change (m =∞ means that mode change has not happened yet), and d is the
remaining state information. Thus, the initial state is of the form (0,∞, d).
Also, we know that m �= t since up to the point of mode change m =∞ �= t,
and after the mode change m < t.

2. On any execution of the DTMC, a mode change happens at most once, and
is instantaneous. Thus,

δi(t,m, d) = (E, (t̄, m̄, d̄))⇒ (m =∞) ∧ (t̄ = m̄ = t)

3. The system is time-bounded, i.e., there is some time T ≥ 0 at which the
system stutters. In terms of the transition relation R, this means that if
s = (T,m, d) for some m and d, then R(s) = Δ(s). For our experiments, the
time bound equals the deadline specified in the property.

138 S. Chaki et al.

4. During our individual observations, we can change the mode of Mi at arbi-
trary time points. This is because a mode change is controlled via software,
which we are able to reprogram.

Approach. Our overall approach is as follows:

– Let DTMC 〈Mi, t〉 be the projection of Mi under the restriction
that mode change always happens at time t. Construct all projections
{〈M1, t〉 | 0 ≤ t ≤ T} and {〈M2, t〉 | 0 ≤ t ≤ T} for M1 and M2, respectively.

– Construct a DTMC M̂ by “re-combining” the projection DTMCs using the
definitions of the mode change functions δ1, . . . , δn. Prove that M̂ = [[P]].

– Compute M̂ |= ϕ using a probabilistic model checker, e.g., prism [9].

2.3 DTMC Projection

We now define the projection of a DTMC based on mode change time. First
define function δ̂i : Si �→ Si as follows:

∀si ∈ Si � δ̂i(si) = s̄i � ∃E � δi(si) = (E, s̄i)

Thus, δ̂i is the projection of δi on the second component of its range, and
is well-defined. Let Mi = (Si, Ii, Ri). Then the projection of Mi under the re-
striction that mode change always happens at time t (where 0 ≤ t < T) is the
DTMC 〈Mi, t〉 = (Si, Ii, 〈Ri, t〉) such that ∀s = (t,m, d) ∈ Si:

〈Ri, t〉(s) =
{
Ri(δ̂i(s)) if t = t

Ri(s) otherwise

2.4 Combining Projections

Consider the projections {〈M1, t〉 | t ∈ [0, T]} and {〈M2, t〉 | t ∈ [0, T]} ofM1 and

M2. Define the DTMC M̂ = (Ŝ, Î, R̂) as follows:

Ŝ = S1 × S2 Î = (I1, I2) and

∀s1 ∈ S1 � ∀s2 ∈ S2 � s1 = (t1,m1, d1) ∧ s2 = (t2,m2, d2) ∧
δ1(s1) = (E1, s̄1) ∧ δ2(s2) = (E2, s̄2)⇒ R̂(s1, s2) = A1 ⊗ A2 where

A1 =

{ 〈R1, t1〉(s1) if s2 ∈ E1

〈R1,m1〉(s1) otherwise
A2 =

{ 〈R2, t2〉(s2) if s1 ∈ E2

〈R2,m2〉(s2) otherwise

We now present our main result, Theorem 1, which states that the combination
of projection DTMCs described above is equivalent to the modal DTMC.

Theorem 1. M̂ = [[P]].

Proof. Recall that M̂ = (Ŝ, Î, R̂) and [[P]] = (S̃, Ĩ, R̃). By definition, we already

know that: (i) Ŝ = S̃ = S1 × S2 and Î = Ĩ = (I1, I2). Hence it suffices to show

that R̂ = R̃.

Optimizing Robotic Team Performance with Probabilistic Model Checking 139

Let s1 = (t1,m1, d1) and s2 = (t2,m2, d2). Then R̃(s1, s2) = R1(s
′
1)⊗R2(s

′
2).

First we show that R1(s
′
1) = A1. Let δ1(s1) = (E1, s̄1).

Case 1: s2 ∈ E1. In this case, s′1 = s̄1 = δ̂1(s1). Then R1(s
′
1) = R1(δ̂1(s1)) =

〈R1, t1〉(s1) = A1.
Case 2: s2 �∈ E2. In this case, s′1 = s1. Recall that m1 �= t1. Hence,

〈R1,m1〉(s1) = R1(s1). Hence, R1(s
′
1) = R1(s1) = 〈R1,m1〉(s1) = A1.

In a symmetric manner, we can show that R2(s
′
2) = A2. Thus, R̃(s1, s2) =

R1(s
′
1)⊗R2(s

′
2) = A1 ⊗A2 = R̂(s1, s2).

Theorem 1 enables us to compute a property of the modal DTMC P by com-
bining projections of its components to construct DTMC M̂ , and then applying
probabilistic model checking. In practice, a projection 〈Mi, t〉 is constructed from
observations of multiple runs of the corresponding robot. This inevitably intro-
duces an error in our results. The next section presents our approach to quantify
and bound this error.

3 Error Quantification

Suppose we model a real-world system G, e.g., a robot, using a DTMC M̂ . For a
given PCTL formula ϕ, let p̂ = (M̂ |= ϕ), i.e., the probability that M̂ satisfies ϕ,

and let p = (G |= ϕ). If the model is perfect, i.e., M̂ = G, then p̂ = p. However,
such perfect modeling is impracticable for several reasons. First, G might not
be Markovian. Second, suppose G is Markovian, i.e., G ≡M� for some DTMC
M�. Note that, in this case, (M� |= ϕ) = (G |= ϕ) = p. However, M̂ might not
capture enough state to accurately model G; i.e., there could be hidden variables
in G resulting in behaviors that are absent in M̂ . Finally, M̂ might have the same
states as M�, but different transition probabilities, and hence diverges from G.

In practice, we should expect transition probabilities to be imprecise. Ulti-
mately, the only approaches to obtain these probabilities for a real-world system
are based on intuitive guesses or finite observations of the system. Thus, we
should also expect any predictions made by a model to deviate from reality by
some margin, where that margin is related to the uncertainty of those transition
probabilities. This is the error we seek to quantify.

3.1 Constructing an Approximation

Recall that there exists a DTMC M� = (S, I, R) such that M� ≡ G. Suppose
that each state ofM� corresponds to a known combination of observable charac-
teristics in G. Thus, if we execute a trial of G, and observe it at each discrete time
point, then from each observation we can compute the corresponding state of
M�. Suppose we execute several trials of G, and record our observations as a list
of evidence E, where each evidence e ∈ E is a sequence of states 〈s0, s1, . . . , sk〉
of M� corresponding to observations of a trial of G at discrete time points.

140 S. Chaki et al.

Using E, we construct a transition probability matrix R̂ : S �→ Π(S) as
follows. Given a sequence of states e, and states s, s̄, let e(s) and e(s, s̄) denote,
respectively, the number of times 〈s〉 and 〈s, s̄〉 appear as a subsequence of e. We
generalize this to E as follows: E(s) =

∑
e∈E e(s) and E(s, s̄) =

∑
e∈E e(s, s̄).

Thus E(s) is the number of times we observe G to reach state s, and E(s, s̄) is
the number of times we observe G to move from s to s̄ in one time step.

Then, we have two cases: (i) if E(s) = 0, then R̂(s) = Δ(s); (ii) otherwise ∀s̄ ∈
S �R̂(s)(s̄) = E(s,s̄)

E(s) . Thus, for states not observed in our trials (case-i) we assume

self-transitions. For other states (case-ii) we use the “frequentist” approach. Note

that R̂ is a well-defined PDF, and provides the best possible approximation of R
given the available evidence E. Then, our approximate DTMC is M̂ = (S, I, R̂).

Note that M̂ deviates from M� only in its transition probabilities.

3.2 Distribution Definitions

The construction of M̂ described in the previous section does not provide any
insight into how M̂ |= ϕ relates to M� |= ϕ (and thus G |= ϕ) in terms of error.
Note that each possible transition (s, s̄) can be viewed as a Bernoulli trial. Thus,
statistical methods allow us to estimate the error of each individual transition
probability of M̂ . However, understanding how these errors – i.e., the difference
between R and R̂ – affect error in M̂ |= ϕ is not straightforward.

Let M be the set of all DTMCs of the form (S, I, R̃), i.e., M is the
set of all DTMCs that have the same states and initial state as M�.
Given a real number r ∈ [0, 1], let Mr = {M ∈M | (M |= ϕ) ≤ r} be
the set of DTCMs that satisfy ϕ with probability at most r. Let M =
{Mr | r ∈ [0, 1] ∧ ∀r′ ∈ [0, 1] � r < r′ =⇒ M r ⊂Mr′}. Note that the elements
of M are strictly ordered by size.

Given evidence E from trials of G, we define the PDF M̂E ∈ Π(M) by the
following cumulative density function (CDF):

CDF (M̂E)(M) = P(M� ∈M |E) (1)

That is, the CDF of M̂E maps each set of DTMCs M ∈M to the probability
that some DTMC in M is “correct”, and thus equivalent to M� and G, given
the evidence E. Let dom(M) = {r ∈ [0, 1] |Mr ∈M }. Next, given M̂E , define

a PDF P̂E ∈ Π(dom(M)) by the following CDF:

CDF (P̂E)(r) = P((M� |= ϕ) ≤ r | E) (2)

Thus, the CDF of P̂E maps r to the probability that G satisfies ϕ with
probability at most r given evidence E. Note that, from (1) and (2), we have:

CDF (P̂E)(r) = P(M� ∈Mr | E) = CDF (M̂E)(Mr) (3)

We now show how to construct M̂E and P̂E .

Optimizing Robotic Team Performance with Probabilistic Model Checking 141

3.3 Constructing Distributions

To construct M̂E, we define a mapping T : S �→ Π(Π(S)) from states to a PDF
over PDFs of other states to transition to. We use the Dirichlet distribution since
it produces sets of variates that sum to one (i.e., a PDF), and it is a conjugate
prior for the Multinomial distribution [7]. We define T in several steps. First, we
define a prior T 0 to T as:

∀s ∈ S � ∀π ∈ Π(S) : T 0(s)(π) = P(π|αs) = Dirichlet(π|αs)

where αs is a vector of pseudo-counts of prior belief in transition likelihood of
transitioning from s to each state in S. Thus, for each s ∈ S, T 0(s) is a Dirichlet
distribution with parameters αs. In our implementation, we used the union of
the individual robots’ DTMCs created during unit testing as the prior.

Next, recall that E(s, s̄) is the number of times we observe G to move from
state s to s̄ in one time step during our trials. Also, R(s)(s̄) is the probability
of transitioning from s to s̄ in M�. Let cs = (∀s̄ ∈ S : E(s, s̄)) be the vector of
counts of transitions from s to each s̄. Since M� perfectly models G, we have:

∀s ∈ S : cs ∼ Multinomial(∀s̄ ∈ S : R(s)(s̄))

That is, cs is drawn from a Multinomial distribution, which the true dis-
tribution for state s in G. Finally, given the well known relationship between
Multinomial distributions and Dirichlet priors [7], we construct T as the poste-
rior Dirichlet distribution of transition probabilities. In other words:

∀s ∈ S � ∀π ∈ Π(S) � T (s)(π) = P(π|αs, cs) ∝ P(cs|π)p(π|αs)

= Multinomial(cs|π)T 0(s)(π) = Multinomial(cs|π)Dirichlet(π|αs)

= Dirichlet(π|αs + cs)

That is, for any state s ∈ S, T (s) is a Dirichlet distribution with parameters

αs + cs. Next, recall that M̂E ∈ Π(M). We define M̂E using T as follows:

∀M = (S, I, R̃) ∈ M � M̂E(M) =
∏
s∈S

T (s)(R̃(s))

That is, for any M which has a set of states and an initial state which are
the same as M�, the probability of drawing it from M̂E is the probability
of drawing each of its states transition probabilities from the corresponding
Dirichlet distributions in T .

Given M̂E , we still do not know how to construct P̂E , or calculate its statis-
tic measures. Since M is infinite, an exhaustive construction of P̂E is impossi-

ble. Instead, we sample P̂E to generate a vector M̃E of n DTMCs, such that

∀M̃ ∈ M̃E : M̃ ∼ M̂E . More specifically, we have M̃E = (M̃1, . . . , M̃n) such

that for 1 ≤ i ≤ n, M̃i ∼ M̂E = (S, I, R̃i) where ∀s ∈ S � R̃i(s) = πis ∼ T (s) ∼
Dirichlet(αs + cs). That is, we construct each DTMC M̃i by drawing the tran-
sition probabilities for each of its states from the corresponding Dirichlet dis-
tribution in T . The algorithm for drawing variates from Dirichlet distributions

142 S. Chaki et al.

is well known [3]. Finally, given M̃E , we construct the vector of probabilities

P̃E = 〈r1, . . . , rn〉, such for 1 ≤ i ≤ n, ri = M̃i |= ϕ. We compute each ri using

a probabilistic model checker. Our main result is that P̃E is drawn from P̂E , as
expressed in Theorem 2.

Theorem 2. If P̃E and P̂E are defined as above, then P̃E ∼ P̂E.

Proof. We wish to show that each ∀ri ∈ P̃E, ri ∼ P̂E , or equivalently, ∀r ∈
dom(M) � P(ri ≤ r) = CDF (P̂E)(r). This holds because:

P(ri ≤ r) = P((M |= ϕ) ≤ r |M ∼ M̂E)

= CDF (M̂E)({M | (M |= ϕ) ≤ r}) = CDF (M̂E)(M r) = CDF (P̂E)(r)

The last equality follows from (3). This completes the proof.
��

To quantify the error between M̂ |= ϕ and G |= ϕ, we analyze P̃E with the

usual statistical measurements, and determine whether M̂ is a suitable approx-
imation of G. Specifically, for our experiments, we determine the 5th and 95th

percentiles of P̃E to find a 90% credible interval. If this interval is too wide, we
narrow it by performing more trials of G to increase the size of E.

Even for a fixed E, our analysis approximately characterizes the true distribu-

tion P̂E. However, with a sufficiently large number of samples of P̂E , i.e., |P̃E |,
we expect these approximations to approach true values. Since each sample is
obtained by running an automated tool (e.g., prism), as opposed to running a

trial of a physical robot team, it is feasible to construct a sufficiently large P̃E .

4 Experimental Results

We validate our approach on an example representing a demining operation by
a team of communicating Kilobots. Our tools and examples, and instructions
to reproduce our experiments are available at https://db.tt/Wc9tBsNd. All
our experiments were done on a 4 core 3.1GHz i5 machine with 4GB of RAM.
Kilobots are very simple robots. They can communicate with each other within
a very limited range (a few inches) by bouncing infrared signals off the table
they are moving on, and they move by vibrating two motors at different speeds.
They possess no reliable localization.

The Scenario. A mine has been placed in a culvert beneath a road. The culvert is
too small to admit advanced robots, so Kilobots must be used instead. One, two,
or three Kilobots are used as a team of sweepers. Each Kilobot enters the culvert,
traverses it in search of the mine, and returns to the mouth of the culvert for
recovery, and to communicate whether it found the mine. We represent the mine
and the base station at the mouth of the culvert by two (static) Kilobots. We
place sweeper Kilobots immediately adjacent to the base station on deployment.
The mine continually broadcasts a “Mine Here” message, while the base station
initially broadcasts a “Base Here” message.

https://db.tt/Wc9tBsNd

Optimizing Robotic Team Performance with Probabilistic Model Checking 143

Each sweeper behaves as follows: (i) upon hearing the “Base Here” message
for the first time, it begins moving forward; (ii) if it hears no other messages, it
turns around at a predefined timeout (2 minutes); (iii) at any time, if it hears a
“Mine Here” message or “Mine Found” message it begins transmitting a “Mine
Found” message itself; also, if it hasn’t turned around yet, it does so; (iv) if the
base station hears a “Mine Found” message, it begins transmitting a “Mission
Success” message instead; (v) if a sweeper moving backward hears a “Base Here”
or “Mission Success” message, it assumes it is in the recovery zone, and stops.

Note that while each robot in our scenario has the same intent, it has a dis-
tinct behavior due to its motion characteristic and its release time. In other
words, different robots released at the same time would behave differently, and
the same robot released at a different time would also behave differently. More-
over, our approach also allows for different robots to have different intents, and
perform multiple tasks in sequence or in parallel. This would lead to more com-
plex DTMCs and increased verification time. However, in our experience, prism
is able to handle systems with millions of reachable states.

Metrics. We use the following three measures of success: (i) f : the probability
that at least one Kilobot finds the mine (i.e., transmits “Mine Found”); (ii)
s: the probability that the base station knows about the mine (i.e., transmits
“Mission Success”); and (iii) r: the expected number of Kilobots that return to
the recovery zone, irrespective of whether it found the mine or not. Note that
each of these measures provides valuable information about the mission success
that is not supplied by the other two.

Modeling Kilobots. We first reproduced our scenario physically in the laboratory
using actual Kilobots. We ran the scenario 190 times and noted 7 distinct Kilobot
behaviors. Next, we reproduced these behaviors in the VREP simulator by tuning
the Kilobot model parameters appropriately. Subsequently, all our experiments
were done via simulation. This physical-simulation hybrid approach enabled us to
perform as many experiments as needed while grounding our results on observed
behavior of physical Kilobots.

The Kilobot model in VREP has four parameters, each corresponding to the
speed of a motor. To reproduce the observed behavior of a real Kilobot we first
manually tuned them to appropriate values. Each VREP simulation is com-
pletely deterministic. Next, in order to introduce randomness across different
experiments, we modified these parameters at each simulation step to a value
selected from a normal distribution with mean equal to its tuned value and stan-
dard deviation 25. VREP has a sophisticated physics engine, and our approach
produced simulated behaviors that are observably analogous to actual Kilobots.

Constructing Projection DTMCs. We discretized time at 20s units, and space
into a 3 × 8 2-dimensional grid. Since each Kilobot Gi has a maximum turn
around time of 120s (when it times out), it has 7 projections corresponding to
0s, 20s, 40s, 60s, 80s, 100s, 120s. We constructed each projection 〈Mi, tj〉 by
simulating Kilobot Gi 30 times with a pre-programmed turn around time of tj .
Using the results of these simulations as our evidence E, 〈Mi, tj〉 is constructed
as described in Sec. 3.1.

144 S. Chaki et al.

Table 1. Experiment results (3x8)

Team f∗
̂f ˜fμ ˜f5 ˜f95 s∗ ŝ s̃μ s̃5 s̃95 r∗ r̂ r̃μ r̃5 r̃95

3-2-1 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96 0.91 0.99 2.20 2.17 2.17 1.97 2.38
4-6-1 1.00 1.00 1.00 1.00 1.00 0.97 0.96 0.96 0.91 0.99 1.67 1.23 1.23 1.14 1.33
4-6-2 1.00 1.00 1.00 1.00 1.00 0.47 0.43 0.43 0.29 0.58 0.83 0.70 0.70 0.55 0.89
5-6-2 1.00 1.00 1.00 1.00 1.00 0.50 0.43 0.43 0.28 0.61 0.83 0.72 0.73 0.53 0.91
5-6-7 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.43 0.29 0.29 0.19 0.38
6-1-7 1.00 1.00 1.00 1.00 1.00 0.93 0.96 0.96 0.91 0.99 1.57 1.23 1.24 1.14 1.35
6-5-7 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.20 0.29 0.30 0.19 0.41
7-3-5 1.00 1.00 1.00 1.00 1.00 0.70 0.83 0.83 0.72 0.92 0.70 0.85 0.85 0.73 0.94
7-3-6 1.00 1.00 1.00 1.00 1.00 0.83 0.83 0.84 0.74 0.92 1.17 1.11 1.12 0.95 1.25
7-6-1 1.00 1.00 1.00 1.00 1.00 0.90 0.96 0.96 0.92 0.99 1.63 1.23 1.24 1.13 1.34

Team Selection. To validate our approach we used teams of 3 Kilobots. Since
each team is specified by a set of Kilobots and their deployment order, there
are 210 such possible teams. For practicality, we validated our approach on ten
randomly selected teams as a representative sample. For each team in the sample,
we conducted two experiments, which we describe now in more detail.

Experiment One: Predictions Using Projections. First, we computed the pre-
dicted values of f , s and r by combining the constructed projections 〈Mi, tj〉 as
described in Sec. 2.4 and verifying the resulting DTMC using prism [9]. These

predictions are denoted f̂ , ŝ, and r̂, respectively and shown in the correspond-
ing column of Table 1. To evaluate the accuracy of these predictions, we also
computed the corresponding “observed values” f∗, s∗ and r∗. Specifically, each
observed value (e.g., f∗) is the average of the corresponding success measure
(e.g., f) over 30 simulations of the corresponding team using VREP. During
each team simulation (e.g., team 5-6-2), Kilobots are introduced to the scene
at 20s intervals in the order specified by the team (e.g., G5 → G6 → G2). The
observed values are shown in the corresponding columns of Table 1. Note that,
in each case, the predicted and observed results are close, indicating that our
approach is sound, and that our assumptions do not distort results significantly.

Experiment Two: Error Quantification. Next, we computed (f̃μ, f̃5, f̃95),
(s̃μ, s̃5, s̃95), and (r̃μ, r̃5, r̃95), which correspond, for each measure, to the mean
5th-percentile, and the mean 95th-percentile of the Dirichlet sampling error es-
timation method described in section 3. Each mean was computed using 200
Dirichlet samples. The results are also shown in the corresponding columns of
Table 1. Note that in most cases, the observed results, e.g., f∗, fall within the

90% confidence interval, e.g., between f̃5 and f̃95.
We also experimented with teams of varying size. The average model checking

times were 1.98s, 2.19s, 4.94s, 10.71s, and 42.20s, for team sizes 2 through 6,
respectively. For teams of size 7, prism ran out of memory on our 4G machine.

5 Conclusion

We presented an approach to analytically construct a team of communicating
Markovian robots that achieves a specific task with quantified probability of

Optimizing Robotic Team Performance with Probabilistic Model Checking 145

success. We first construct a set of Discrete Time Markov Chains (DTMCs) that
each capture a specific “projection” of the behavior of an individual robot. Next,
given a specific team, we construct the DTMC for its behavior by combining the
projection DTMCs appropriately. Finally, we compute the performance of the
team using Probabilistic Model Checking. The best team is selected by repeating
this process for multiple candidates. We also show how to quantify the error in
our results due to finite sampling when constructing the projection DTMCs. We
prove the correctness of our approach formally, and also validate it empirically
on a mine detection task by a team of communicating Kilobots. An important
direction for future work is to extend our approach to non-Markovian systems,
and also to quantify the error due to discretization of time and space.

References

1. V-REP: Virtual robot experimentation platform (2014)
2. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Quantitative Verification

of Implantable Cardiac Pacemakers. In: Proceedings of the 33rd Real-Time Sys-
tems Symposium (RTSS 2012), San Juan, PR, USA, pp. 263–272. IEEE Computer
Society (December 2012)

3. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)
4. Ghorbal, K., Duggirala, P.S., Kahlon, V., Ivančić, F., Gupta, A.: Efficient proba-

bilistic model checking of systems with ranged probabilities. In: Finkel, A., Leroux,
J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 107–120. Springer, Heidelberg
(2012)

5. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing (FACJ) 6(5), 512–535 (1994)

6. Heath, J., Kwiatkowska, M.Z., Norman, G., Parker, D., Tymchyshyn, O.: Prob-
abilistic model checking of complex biological pathways. Theoretical Computer
Science (TCS) 391(3), 239–257 (2008)

7. Huang, J.: Maximum likelihood estimation of dirichlet distribution parameters.
Technical report, Robotics Institute, Carnegie Mellon University (2005)

8. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. In: Robotics and Autonomous Systems (2011)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

10. Kwiatkowska, M.Z., Norman, G., Sproston, J.: Probabilistic Model Checking of
Deadline Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal
Aspects of Computing (FACJ) 14(3), 295–318 (2003)

11. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. In: IEEE Intl. Conf on Robotics and Automation (ICRA),
p. 6 (2012)

12. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA,
Available as Technical Report MIT/LCS/TR-676 (1995)

Modelling and Analysis of a Redundant Mobile

Robot Architecture Using AADL

Geoffrey Biggs1, Kiyoshi Fujiwara1, and Keiju Anada2

1 Intelligent Systems Research Institute
National Institute of Advanced Industrial Science and Technology (AIST)

AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
2 aRbot, Inc., Japan

Abstract. As the complexity of robots deployed in the real world
increases, the use of formal specifications in the development of safety-
critical robot systems is becoming increasingly important. A formal spec-
ification gives confidence in the correctness, completeness, and accuracy
of a system design. In this paper, we present a formal specification of a
redundant control architecture for a mobile robot in the form of a model.
The model is created using the Architecture Analysis and Design Lan-
guage (AADL). This formal language allows the model to be analysed
to prove system properties of interest. In this case, we are interested in
proving the response time of the robot to external obstacles and to inter-
nal errors. We present the model and the results of these analyses with
the goal of proving that the architecture is sufficiently safe for use in a
safe robot wheelchair.

1 Introduction

As with any cyber-physical or embedded system, an important part of design-
ing a robot is specifying the architecture of the control system that turns sen-
sor readings and planned actions into controlled motions of the robot. Sensors,
micro-processors, control software, actuators, and the communication buses that
connect them must all be designed to provide sufficient capacity, in each respec-
tive way, to perform their role in the overall control system.

For system correctness, it is not enough to simply design the control system. It
is also necessary to ensure that the design will satisfy the system’s requirements.
When the system being developed is safety-critical, there is a further need to
provide proof that a design is correct and satisfies the system’s functional and
non-functional requirements.

An approach to both ensuring and proving that a design is suitable is the
application of formal methods, including formal specifications of design. The use
of formal methods during the design of cyber-physical and embedded systems
is becoming increasingly common. There have been several noteworthy projects
to produce complete tool chains using formal methods for system design, such
as the TOPCASED project [9]. Their continued growth is an indication of the

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 146–157, 2014.
c© Springer International Publishing Switzerland 2014

Modelling and Analysis of a Redundant Mobile Robot Architecture 147

success they have had in introducing formally-based methodology to fields such
as aerospace and railway development.

Formal methods allow a design to be proven to be correct, in that it contains
no mistakes in specification. For example, designed wiring between components
can be shown to be correct in such terms as the information carried, or that
all necessary connections exist in the design. Formal specifications of behaviour,
for example finite automata, can ensure that the system’s behaviour is defined
for all known inputs. The use of formal methods can reduce the time to de-
velop a system through reduction of other parts of the development process; for
example, the IEC 61508 standard for Functional Safety of Programmable Elec-
trical/Electronic Devices specifically states that the use of formal methods in
design of software reduces the necessary testing that must be performed [2,3].1

Analyses performed using a formal method can even aid in debugging problems
found during implementation, such as solving a bottleneck in system response
by identifying parts of the system that may experience high latencies.

This article describes the application of a formal method during the design
of the control system architecture for a safety-monitoring motorised wheelchair.
The wheelchair applies robot control technology to avoid collisions when pos-
sible and reduce impact forces when not. It also ensures that the wheelchair is
robust to failures and is guaranteed to come to a safe stop in the case of one.
A formal specification language was used to specify the control architecture of
the wheelchair. Formal analyses were performed on this specification to deter-
mine such factors as the latency in responding to the appearance of an obstacle,
the response time to a failure, and the suitability of the chosen micro-controller
hardware. Based on the analyses, we claim that the control system architecture
is correct and sufficient to provide reasonable safety to a user of a motorised
wheelchair under the analysed scenarios.

The next section discusses the formal specification language used in this work.
Following that, the formal model of the control system architecture is given in
Section 3. Analysis results are given in Section 4.

2 AADL

The Architecture Analysis and Design Language (AADL) is a modelling lan-
guage for the formal modelling of embedded system architectures [4]. Its goal
is modelling and formally proving the correctness of cyber-physical and embed-
ded system architectures, allowing the architecture of even extremely complex
systems to be designed accurately It is a declarative language, focusing on struc-
ture rather than behaviour. It supports modelling a system’s software structure,
the structure of the execution hardware, the mapping of software to execution
hardware, and the sensors, actuators and similar devices that provide interfaces
to the external world.

1 The standard requires the use of formal methods at higher safety integrity levels –
see Table A.2 of Part 3 of the standard.

148 G. Biggs, K. Fujiwara, and K. Anada

AADL has a formal semantics and fixed syntax. This means that it is pos-
sible to check a model for correctness. The capacity to specify properties of all
components in the model, including software, processors, and communication
buses, allows a developer to perform model analysis to examine properties of
the system such as execution time or communication bandwidth utilisation. We
describe some analyses in Section 4.

AADL was chosen for this work due to its formality. We have previously used
SysML to model the entire wheelchair system, including its control architecture,
during the design stages [5]. SysML added structure to the design information
that was particularly a benefit in establishing traceability between system re-
quirements and system design; we were able to establish that each functional
requirement relating to necessary features of the system was satisfied. However,
we found that the semi-formal nature of the SysML model limited its usefulness
both for proving design correctness and for analysing properties of the control
architecture. By contrast, AADL’s formality makes such analyses simple. At the
same time, AADL is tightly focused on the embedded control system’s struc-
tural design, whereas SysML can model a wider range of information such as
requirements, testing and behaviour.2

There are several tools available for specifying and analysing AADL models.
In this work, we use the Open Source AADL Tool Environment (OSATE) tool
version 2.0.5 [7]. It provides a compiler for AADL models, syntax and semantic
error checkers, a model correctness checker, and several analysis tools includ-
ing connection analysis, thread execution schedule analysis, and flow latency
analysis.

The next section describes our application of AADL to the design of the
safety-monitoring wheelchair’s control architecture. Our use of the OSATE tool
to perform analyses on this model is described in Section 4.

3 Safe Mobile Robot Architecture Model

A model of the control architecture for a safety-monitoring wheelchair, described
in [8], has been developed using AADL. This architecture is designed to conform
to SIL2 of the IEC 61508 standard for electrical/electronic/programmable elec-
tronic safety-related systems [1]. This section briefly summarises the key points
of the architecture and describes the model.

3.1 Architecture Description

The control architecture modelled in this work is used to control the wheel speed
of a motorised wheelchair. Wheel speed must be controlled in response to velocity
command inputs from an external system, such as a human operating a joystick.

The controller provides two safety aspects. The first aspect is safety against
collisions. Range sensors cover the wheelchair’s entire surroundings, watching for

2 Planned and recently-produced extensions to the AADL standard (known as “an-
nexes”) add support for error modelling and requirements modelling.

Modelling and Analysis of a Redundant Mobile Robot Architecture 149

obstacles. The wheelchair’s velocity is limited appropriately when obstacles are
near. Additionally, a contact sensor detects impacts on the wheelchair, bringing
it to an immediate halt when one is detected.

The second aspect is safety against failures. Redundancy is used in the form
of dual CPUs. They each control a single motor/wheel and run identical soft-
ware (with an exception for configuring one to rotate its motor in the opposite
direction). The two CPUs also continuously monitor each other. If a failure is
detected, such as non-responsiveness or an incorrect response to a command or
sensor input, the partner CPU will halt its own motor.3

The redundant controller architecture has been implemented on real hard-
ware. The execution hardware used is two Renesas SH72AW CPUs, one for each
redundant motor control unit. These run at 160 MHz and have 96 kB of RAM.
Two AC motors are used, one for each wheel/drive unit. Each motor controller/-
motor combination drives a single wheel. Four Hokuyo UAM-01LP-T301 laser
range finders, which are certified to SIL2 of IEC 61508, are used for ranged
sensing, and a fault-tolerant strip switch provides contact sensing.

3.2 AADL Model

This section presents an AADL model of the control architecture described
in Section 3.1. The model describes only the structural architecture of the
wheelchair control system.

The model is organised into several systems and black box devices that are
composed to produce the whole control system. This top-level structure is shown
in Figures 1 (information connections) and 2 (hardware buses). The laser range
finders, touch sensors, and the motors and their related control hardware are
all treated as black boxes with known external interfaces and known activity
periods.4 Note also the presence in the model of several buses, such as the wire
connections to the sensors and the CAN bus connections to the motors. The
presence of execution hardware such as this in the model allows for analysis of
sense-compute-actuate latencies and bus bandwidth utilisation. In this model,
each individual bus has been specified to allow the analysis of bus bandwidth
use.

The two redundant CPUs and the software they execute (named a “control
unit” in the discussion below) are each represented by instances of the same sub-
system design. This sub-system is shown in Figure 3. Each control unit contains
both the software to be executed (the ctrl proc process) and the computing
hardware to execute it. The software itself is divided into five separate tasks,
shown in Figure 4. These each have a role in turning sensor and control inputs
into motor commands while monitoring safety. Each thread’s required real-time
execution deadline and processor budget is specified in the model. Modelling the
software allows for analysis of processor load and deadline achievement.

3 Halting the motor of the failed CPU is achieved through a watchdog timer on the
motor control input of the motor controller and brakes that engage when power is
removed.

4 The activity periods of sensors and actuators are necessary during latency analyses.

150 G. Biggs, K. Fujiwara, and K. Anada

controller_l

partner_status my_status

motor_cmd

partner_rotation

motor_rotation
command
range_fwd_safe
range_fwd_warn
range_rear_safe
range_rear_warn
range_left_safe
range_left_warn
range_right_safe
range_right_warn
contact
estop_input

psu_safe_state

brake_state
release_brake

safe_signal

controller_r

partner_statusmy_status

motor_cmd

partner_rotation

motor_rotation

command

range_fwd_safe
range_fwd_warn
range_rear_safe
range_rear_warn
range_left_safe
range_left_warn
range_right_safe
range_right_warn
contact
estop_input

psu_safe_state

brake_state
release_brake

safe_signal

drive_l

command

brake_release
brake_state
direct_rot_sensor

indirect_rot_sensor

psu_relay_l

safe_signal
safe_state
power_state
estop_input

drive_r

command

brake_release
brake_state
direct_rot_sensor

indirect_rot_sensor

psu_relay_r

safe_signal
safe_state
power_state
estop_input

estop

triggered

contact

contact

range_fwd

safe
warn

range_rear

safe
warn

range_left

safe
warn

range_right

safe
warn

command

redundant_mobile_robot_impl_instance

Fig. 1. The information connections at the top level of the control architecture model

The drive units are similarly represented by two instances of the same sub-
system design, shown in Figure 5. Each drive unit includes an AC motor (which
includes a rotation sensor), a brake, a separate rotation sensor using a different
technology to that used in the in-built sensor of the motor, and the motor control
unit that turns motor torque commands into AC voltages to drive the motor.

The model contains 796 SLOC of AADL.

4 Formal Analysis

The formal semantics of AADL allow a variety of analyses to be performed on
an instantiated model. The limit to what can be analysed is determined by the
available tools and the properties provided in the model. This section describes
some of the analyses performed on the safety architecture model.

Modelling and Analysis of a Redundant Mobile Robot Architecture 151

controller_l

ranger_fwd_bus
ranger_rear_bus
ranger_left_bus
ranger_right_bus

contact_sensor_bus

ext_ctrl_bus

partner_bus

motor_bus1
motor_bus2
brake_bus
safety_bus
power_bus

encoder_bus

estop_bus

controller_r

ranger_fwd_bus
ranger_rear_bus
ranger_left_bus
ranger_right_bus
contact_sensor_bus
estop_bus
ext_ctrl_bus

partner_bus

motor_bus1
motor_bus2
brake_bus
safety_bus
power_bus

encoder_bus

drive_l

can_bus

brake_bus

enc_bus

psu_relay_l

safety_bus
power_state_bus
estop_bus

range_fwd

ranger_bus1
ranger_bus2

redundant_mobile_robot_impl_instance

ext_ctrl_bus_l

range_rear

ranger_bus1
ranger_bus2

range_left

ranger_bus1
ranger_bus2

range_right

ranger_bus1
ranger_bus2

contact

contact_bus1
contact_bus2

estop

estop_bus1
estop_bus2

ext_ctrl_bus_r

estop_bus_l

estop_bus_r

contact_bus_l

contact_bus_r

ranger_right_bus_l

ranger_right_bus_r

ranger_left_bus_l

ranger_left_bus_r

ranger_rear_bus_l

ranger_rear_bus_r

ranger_fwd_bus_l

ranger_fwd_bus_r

can_bus_l

brake_bus_l

safety_bus_l

power_state_bus_l

enc_bus_l

enc_bus_r

can_bus_r

brake_bus_r

safety_bus_r

power_state_bus_r

monitor_bus

drive_r

can_bus

brake_bus

enc_bus

psu_relay_r

safety_bus

power_state_bus

estop_bus

Fig. 2. The buses at the top level of the control architecture model

4.1 Obstacle Response Latency

The response time of an embedded system depends on the latency between
receiving an input and producing an output. In AADL, such latencies can be
modelled and calculated using flows [6]. A flow is a path through a system
specified by the model developer. Typically it is from an input (the source),
through the communication and processing of that input (the path), and to an
output (the sink). Flows may be hierarchically specified, with one flow making
use of sub-flows along its path.

We have used flows to analyse two latencies in the control system that are
important to safety. The first, described below, is the latency of responding to
the detection of an obstacle. The second, described in the next section, is the
latency of one drive unit responding to an error in the opposite side’s drive unit.

The flow of signals through the control system from a range sensor to the
motor controlling a wheel is illustrated in Figures 1 to 5, highlighted in blue.

The results of the latency calculations performed by OSATE for this flow are
given in Table 1. The latency is calculated for the worst case. It includes the

152 G. Biggs, K. Fujiwara, and K. Anada

control_l

partner_status

my_status

motor_cmd

partner_rotation

motor_rotation

command

range_fwd_safe

range_fwd_warn

range_rear_safe

range_rear_warn

range_left_safe

range_left_warn

range_right_safe

range_right_warn

contact

estop_input

psu_safe_state

brake_state

release_brake

safe_signal

range_fwd_bus

range_rear_bus

range_left_bus

range_right_bus

contact_sensor_bus

estop_bus

safety_bus

power_bus

brake_bus

encoder_bus

motor_bus1

motor_bus2

partner_bus

ext_ctrl_bus

software

partner_rotation

range_fwd_safe

motor_rotation

range_fwd_warn

range_rear_safe

range_rear_warn

range_left_safe

range_left_warn

range_right_safe

range_right_warn

contact

estop_input

psu_safe_state

safe_signal

brake_state

partner_status

my_status

command

motor_cmd

release_brake

micon

range_fwd_bus

range_rear_bus

range_left_bus

range_right_bus

contact_sensor_bus

estop_bus

safety_bus

power_bus

brake_bus

encoder_bus

motor_bus1

motor_bus2

partner_bus

ext_ctrl_bus

Fig. 3. The structure of one of the redundant control units, including software and
execution hardware

maximum possible delay from the range sensor (30ms, corresponding to its cycle
time), delays due to sampling and scheduling of software in the processor, the
communication delay across the CAN bus to the motor controller (at a transfer
speed of 1 Mbps), and the response time of the motor controller and motor itself,
excluding physically-limited response time.

The calculated total worst-case latency is 160.064 ms. At the maximum ve-
locity of the robot of 8 km/h, it corresponds to a distance of 0.356 m. At the
more common velocity of 4 km/h, it is 0.178 m.

4.2 Partner Monitoring Latency

The worst-case latency of responding to an error has been calculated. The error
used is the left drive unit responding to a failure in the right drive unit, man-
ifesting as a mis-match between the right encoder reading and what the right
control unit reports for motor rotation. The flow of signals through the control
system from the right rotation sensor to the motor controlling the left wheel is
illustrated in Figures 1 to 5, highlighted in red.

Modelling and Analysis of a Redundant Mobile Robot Architecture 153

software

partner_rotation partner_status
safety_monitor

partner_rotation
range_fwd_safe

motor_rotation

range_fwd_warn
range_rear_safe
range_rear_warn
range_left_safe
range_left_warn
range_right_safe
range_right_warn
contact
estop_input
psu_safe_state

safe_signal

brake_state

partner_status_in

my_status_out
partner_status_out

partner_comms

safe_signal
brake_state
motor_rotation

command_out
command_in

external_intf

motor_cmd
wheel_speed

motor_rotation
motor_ctrl

brake_state

release_brake

command_proc
safe_signal

motion_cmd
proc_motion_cmd

range_fwd_safe

motor_rotation

range_fwd_warn

range_rear_safe

range_rear_warn

range_left_safe

range_left_warn

range_right_safe

range_right_warn

contact

estop_input

psu_safe_state

safe_signal

brake_state

partner_status

my_status

command

motor_cmd

release_brake

Fig. 4. The structure of the software that executes within each microprocessor

control_bus

drive_l

brake_bus

brake

brake_bus

release
state

encoder

encoder_bus

angle

motor

control_bus

control

sensor_bus
rotation_sensor

command

brake_release

brake_state

direct_rot_sensor

indirect_rot_sensor

can_bus

enc_bus

controller

control_bus

command

sensor_bus

direct_rot_sensor

can_bus

motor_control

rotation_sensor

sensor_bus

Fig. 5. The structure of each drive unit

154 G. Biggs, K. Fujiwara, and K. Anada

T
a
b
le

1
.
T
h
e
la
te
n
cy

o
f
re
sp

o
n
d
in
g
to

a
n

o
b
st
a
cl
e,

a
s
ca
lc
u
la
te
d

b
y
O
S
A
T
E
.
T
im

e
co
lu
m
n
s
a
re

th
e
re
a
l-
ti
m
e
d
ea
d
li
n
e,

ti
m
e
d
u
e
to

sa
m
p
li
n
g
d
el
ay
,
ti
m
e
d
u
e
to

co
m
m
u
n
ic
a
ti
o
n
,
a
n
d
a
d
d
it
io
n
a
l
ti
m
e.

M
o
d
el

el
em

en
t
N
a
m
e

D
ea
d
li
n
e
o
r

C
o
n
n
ec
ti
o
n

S
a
m
p
li
n
g
F
lo
w

sp
ec

A
d
d
it
io
n
a
l
T
o
ta
l

d
ev

ic
e

ra
n
g
e
fw

d
0
.0

μ
s

0
.0

μ
s

3
0
.0

m
s

3
0
.0

m
s

3
0
.0

m
s

co
n
n
ec
ti
o
n

ra
n
g
e
fw

d
.w
a
rn

→
co
n
tr
o
l
l.
so
ft
w
a
re
.s
a
fe
ty

m
o
n
it
o
r.
ra
n
g
e
fw

d
w
a
rn

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

3
0
.0

m
s

3
0
.0

m
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.s
a
fe
ty

m
o
n
it
o
r:
o
b
s
fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

2
0
.0

m
s

4
0
.0

m
s

co
n
n
ec
ti
o
n

sa
fe
ty

m
o
n
it
o
r.
sa
fe

si
g
n
a
l
→

co
m
m
a
n
d
p
ro
c.
sa
fe

si
g
n
a
l

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

2
0
.0

m
s

6
0
.0

m
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.c
o
m
m
a
n
d
p
ro
c:
u
n
sa
fe

fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

2
0
.0

m
s

7
0
.0

m
s

co
n
n
ec
ti
o
n

co
m
m
a
n
d
p
ro
c.
p
ro
c
m
o
ti
o
n
cm

d
→

m
o
to
r
ct
rl
.w

h
ee
l
sp

ee
d

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

2
0
.0

m
s

9
0
.0

m
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.m

o
to
r
ct
rl
:c
m
d
fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

1
0
.0

m
s

1
0
0
.0

m
s

co
n
n
ec
ti
o
n

co
n
tr
o
l
l.
so
ft
w
a
re
.m

o
to
r
ct
rl
.m

o
to
r
cm

d
→

d
ri
v
e
l.
co
n
tr
o
ll
er
.c
o
m
m
a
n
d

6
4
.0

μ
s

0
.0

μ
s

0
.0

μ
s

1
0
.0
6
4
m
s

d
ev

ic
e

d
ri
v
e
l.
co
n
tr
o
ll
er
:c
m
d
fl
ow

5
0
.0

m
s

0
.0

μ
s

5
0
.0

m
s

6
0
.0
6
4
m
s
1
0
0
.0

m
s

co
n
n
ec
ti
o
n

co
n
tr
o
ll
er
.m

o
to
r
co
n
tr
o
l
→

m
o
to
r.
co
n
tr
o
l

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

6
0
.0
6
4
m
s
1
6
0
.0
6
4
m
s

d
ev

ic
e

d
ri
v
e
l.
m
o
to
r:
cm

d
fl
ow

si
n
k

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

6
0
.0
6
4
m
s
1
0
0
.0

m
s

T
o
ta
l

1
6
0
.0
6
4
m
s

Modelling and Analysis of a Redundant Mobile Robot Architecture 155

Unfortunately, a bug in the version of OSATE used prevented us from calculat-
ing the latency of the complete path. An exception is triggered when calculating
the latency of the serial link between the two controllers, preventing the latency
calculation from completing. To work around this, we split the flow into two,
one for each side of the partner monitoring link.

The latency of the flow from its source to the my status port of controller r
is given in Table 2. This is the time for the right control unit to produce a status
message. The latency of the flow from the partner status port of controller l to
its sink is given in Table 3. This is the time for the left control unit to detect and
respond to the error. As in the previous analysis, it includes the various delays
and latencies involved in controlling the motor.

The latency of the serial monitoring link between the two controllers has been
calculated as 2.08 ms. This is based on a transmission speed of 38400 bps and a
message size (from the model) of 10 bytes.

Based on the two latency values and the manual calculation of the latency
of the serial monitoring link, the total worst-case latency is 142.186 ms. At the
maximum velocity of the robot of 8 km/h, it corresponds to a distance of 0.316
m. At the more common velocity of 4 km.h, it is 0.158 m.

5 Discussion

The latency analyses of the previous section indicate that the control architecture
provides safety in the two analysed scenarios. However, we say “indicate” here
rather than “prove” due to the problem with the tool mentioned in Section 4.2.
The failure in calculating one of the latencies led us to doubt the calculation
results, and a manual estimate had to be calculated to confirm they are in the
expected range, but even then we do not consider them to be absolute proof.

A formal specification gives confidence in the correctness of the specification.
It does so through correctness checks on the specification for internal consistency
and consistency with the formal model in use. In our case, these checks are per-
formed when the AADL model is compiled; they confirm that the specification
is error-free, but not that the design is error-free.

Analyses on the specification give confidence in the design, and are used to
confirm that the design is error-free with regard to the requirements. In the
analyses presented in this paper, this is the need for the control architecture to
have a sufficiently fast response time.

In both cases, however, we are relying on a tool. Our experience illustrates
the importance of having reliable tools; without a tool that can be trusted to be
correct, a formal specification drops in value. Manually checking for errors and
performing analyses is far less reliable than automated checks and analyses, and
automation is essential for large systems.

Fortunately, AADL is a standardised language. There are several for-cost tools
in existence that may be more reliable than the free OSATE tool. Our experience
shows the need to choose tools carefully, but it does not negate the benefits of
AADL.

156 G. Biggs, K. Fujiwara, and K. Anada

T
a
b
le

2
.
T
h
e
la
te
n
cy

o
f
re
sp

o
n
d
in
g
to

a
n
er
ro
r
(r
ig
h
t
co
n
tr
o
ll
er

si
d
e)
,
a
s
ca
lc
u
la
te
d
b
y
O
S
A
T
E

M
o
d
el

el
em

en
t
N
a
m
e

D
ea
d
li
n
e
o
r

C
o
n
n
ec
ti
o
n

S
a
m
p
li
n
g
F
lo
w

sp
ec

A
d
d
it
io
n
a
l
T
o
ta
l

d
ev

ic
e

d
ri
v
e
r.
m
o
to
r

0
.0

μ
s

0
.0

μ
s

0
.0
0
1
μ
s

0
.0
0
1
μ
s

0
.0
0
1
μ
s

C
o
n
n
ec
ti
o
n

m
o
to
r.
ro
ta
ti
o
n
se
n
so
r
→

co
n
tr
o
ll
er
.r
o
ta
ti
o
n
se
n
so
r

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

0
.0
0
1
μ
s

0
.0
0
1
μ
s

d
ev

ic
e

d
ri
v
e
r.
co
n
tr
o
ll
er
:m

o
t
ro
t
fl
ow

0
.1

μ
s

0
.0

μ
s

0
.1

μ
s

0
.1
0
1
μ
s

0
.1
0
1
μ
s

C
o
n
n
ec
ti
o
n

d
ri
v
e
r.
co
n
tr
o
ll
er
.d
ir
ec
t
ro
t
se
n
so
r
→

co
n
tr
o
l
r.
so
ft
w
a
re
.p
a
rt
n
er

co
m
m
s.
m
o
to
r
ro
ta
ti
o
n

3
2
μ
s

0
.0

μ
s

0
.0

μ
s

3
2
.1
0
1
μ
s

3
2
.1
0
1
μ
s

th
re
a
d

co
n
tr
o
l
r.
so
ft
w
a
re
.p
a
rt
n
er

co
m
m
s:
m
o
tr
o
t
o
u
t
fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

1
0
.0

m
s

1
0
.0
3
2
1
0
1
m
s

T
o
ta
l

2
0
.0
3
2
1
0
1
m
s

T
a
b
le

3
.
T
h
e
la
te
n
cy

o
f
re
sp

o
n
d
in
g
to

a
n
er
ro
r
(l
ef
t
co
n
tr
o
ll
er

si
d
e)
,
a
s
ca
lc
u
la
te
d
b
y
O
S
A
T
E

M
o
d
el

el
em

en
t
N
a
m
e

D
ea
d
li
n
e
o
r

C
o
n
n
ec
ti
o
n

S
a
m
p
li
n
g
F
lo
w

sp
ec

A
d
d
it
io
n
a
l
T
o
ta
l

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.p
a
rt
n
er

co
m
m
s

0
.0

μ
s

1
0
.0

m
s

0
.0

μ
s

1
0
.0

μ
s

1
0
.0

μ
s

C
o
n
n
ec
ti
o
n

p
a
rt
n
er

co
m
m
s.
p
a
rt
n
er

st
a
tu
s
o
u
t
→

sa
fe
ty

m
o
n
it
o
r.
p
a
rt
n
er

st
a
tu
s

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

1
0
.0

μ
s

1
0
.0

μ
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.s
a
fe
ty

m
o
n
it
o
r:
er
ro
r
fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

1
0
.0

m
s

1
0
.0
1
m
s

C
o
n
n
ec
ti
o
n

sa
fe
ty

m
o
n
it
o
r.
sa
fe

si
g
n
a
l
→

co
m
m
a
n
d
p
ro
c.
sa
fe

si
g
n
a
l

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

1
0
.0

m
s

2
0
.0
1
m
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.c
o
m
m
a
n
d
p
ro
c:
u
n
sa
fe

fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

2
0
.0

m
s

3
0
.0
1
m
s

C
o
n
n
ec
ti
o
n

co
m
m
a
n
d
p
ro
c.
p
ro
c
m
o
ti
o
n
cm

d
→

m
o
to
r
ct
rl
.w

h
ee
l
sp

ee
d

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

2
0
.0

m
s

5
0
.0
1
m
s

th
re
a
d

co
n
tr
o
l
l.
so
ft
w
a
re
.m

o
to
r
ct
rl
:c
m
d
fl
ow

1
0
.0

m
s

1
0
.0

m
s

0
.0

μ
s

1
0
.0

m
s

6
0
.0
1
m
s

C
o
n
n
ec
ti
o
n

co
n
tr
o
l
l.
so
ft
w
a
re
.m

o
to
r
ct
rl
.m

o
to
r
cm

d
→

d
ri
v
e
l.
co
n
tr
o
ll
er
.c
o
m
m
a
n
d

6
4
.0

μ
s

0
.0

μ
s

0
.0

μ
s

1
0
.0
6
4
μ
s

7
0
.0
7
4
m
s

d
ev

ic
e

d
ri
v
e
l.
co
n
tr
o
ll
er
:c
m
d
fl
ow

5
0
.0

m
s

0
.0

μ
s

5
0
.0

m
s

6
0
.0
6
4
m
s
6
0
.0
1
m
s

C
o
n
n
ec
ti
o
n

co
n
tr
o
ll
er
.m

o
to
r
co
n
tr
o
l
→

m
o
to
r.
co
n
tr
o
l

0
.0

μ
s

0
.0

μ
s

0
.0

μ
s

6
0
.0
6
4
m
s
1
2
0
.0
7
4
m
s

d
ev

ic
e

d
ri
v
e
l.
m
o
to
r:
cm

d
fl
ow

si
n
k

0
.0

μ
s

0
.0

μ
s

1
.0

μ
s

6
0
.0
6
4
m
s
6
0
.0
1
m
s

T
o
ta
l

1
2
0
.0
7
4
m
s

Modelling and Analysis of a Redundant Mobile Robot Architecture 157

The information stored in the AADL model enables many other analyses
relevant to the correct design of robots. For example, the specification can be
checked for fairness to all entities using a communication bus, based on the rate
of message production of each entity. Such analyses depend on tool support;
future work should focus on producing analysis tools useful to robot systems.

6 Conclusions

In this work, we have used the AADL formal specification language to specify
the design of the redundant control architecture of a safety-monitoring motorised
wheelchair. The formal semantics and syntax of AADL shows that the specifi-
cation is correct.

Using this model, we have formally analysed the control architecture design
to indicate that the worst-case latency of response to sensor input and failure is
sufficiently low. In both cases, the response time is sufficiently short given the
maximum speed of the wheelchair. The dominant factor in safety response speed
can be considered the braking speed of the wheelchair, not the control system
response time.

References

1. Functional safety of electrical/electronic/programmable electronic safety-related
systems. International Electrotechnical Commission (IEC) (2010)

2. Functional safety of electrical/electronic/programmable electronic safety-related
systems Part 2: Requirements for electrical/electronic/programmable electronic
safety-related systems, ch. 7, p. 40. International Electrotechnical Commission (IEC)
(2010)

3. Functional safety of electrical/electronic/programmable electronic safety-related
systems Part 3: Software requirements, ch. 7, pp. 35–36. International Electrotech-
nical Commission (IEC) (2010)

4. Architecture Analysis & Design Language (AADL) (AS5506B). SAE International
(2012)

5. Biggs, G., Sakamoto, T., Fujiwara, K., Anada, K.: Experiences with model-centred
design methods and tools in safe robotics. In: 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 3915–3922 (November 2013)

6. Feiler, P., Hansson, J.: Flow latency analysis with the Architecture Analysis &
Design Language (AADL). Tech. rep., Software Engineering Institute, Carnegie-
Mellon University (2008)

7. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL, ch. 15. Addison-
Wesley, Westford (2012)

8. Fujiwara, K., Nakabo, Y., Anada, K., Biggs, G., Mizuguchi, D.: The prototype hard-
ware of the dependable robotic cart. In: Proceedings of the 2012 JSME Conference
on Robotics and Mechatronics (2012)

9. Topcased, http://www.topcased.org/

http://www.topcased.org/

Fault Avoidance in Development

of Robot Motion-Control Software
by Modeling the Computation�

Yury Brodskiy, Robert Wilterdink, Stefano Stramigioli, and Jan Broenink

Robotics and Mechatronics, Faculty EEMCS,
University of Twente, The Netherlands

y.brodskiy@me.com,

J.F.Broenink@utwente.nl

Abstract. In this article, we present the process of modeling control
algorithms as means to increase reliability of software components. The
approach to developing Embedded Control Software (ECS) is tailored to
Component-Based Software Development (CBSD). Such tailoring allows
to re-use the ECS development process tools in a development process for
robotics software. Model-to-text transformation of the ECS design tool
is extended to model-to-component transformation suitable for CBSD
frameworks. The development process and tools are demonstrated by a
use case.

1 Introduction

The quest for safety and autonomy of a robot is extremely complex, and strongly
connected to concepts of reliability. Robots are designed to perform a variety of
tasks in diversified conditions. However, development of a robotic application is a
complex and error-prone process which requires integration of results from many
engineering domains (software, mechanical, electrical and control engineering).
This is especially important in development of robot motion-control software,
as this part of the system is critical for reliability of robots. Thus, it is crucial
that fault avoidance techniques are exercised to a full possible extent during
development of the software.

Current research in software development for robots is focused on Component-
Based Software Development (CBSD) [18,19]. CBSD supports the development
and reuse of large-grained pieces of robotics software through component-based
software frameworks such as ROS [39], Orocos [20,34], SmartSoft [36,37]. To gain
the advantages provided by a component-based software framework, the software
has to be structured into independent components. This need for structuring of
software has triggered research on the application of Model-Driven Engineering
(MDE) techniques to CBSD.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. FP7-ICT-231940-BRICS (Best Practice in Robotics).

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 158–169, 2014.
c© Springer International Publishing Switzerland 2014

Fault Avoidance in Development of Robot Motion-Control Software 159

In CBSD, models are used to design and analyze the software architecture [38].
Following the concept of separation of concerns as presented in [21], a software
architecture can be described by models formulated in terms of Computation,
Composition, Connection [26], Configuration [18] and Coordination [27], referred
to as 5C. Composition and Connection indicate the software architecture of the
system. Configuration and Coordination describe parametric and discrete states
of the system. Computation stands for the actual algorithm implemented in the
component, for example of a control law such as a PID controller. Modeling the
Computation is not part of the existing CBSD practice.

To make sure that modeling the Computation becomes a part of a well-defined
development process, we combine two relevant development processes – The
Robotic Application development Process (RAP) [29] and the Embedded Con-
trol Software (ECS) design trajectory [15,14]. RAP has been proposed by the
BRICS project as a result of simultaneously tailoring of over 25 different devel-
opment processes to the robotics domain and CBSD. The ECS design trajectory
represents practices in development of software for embedded applications and
explicitly advocates modeling of the algorithm of a software component (con-
troller) [14]. Both development processes use modeling of software to achieve a
higher quality product. Nevertheless, these development processes have different
perspectives on software modeling. We argue that combining these models re-
sults in a uniform description of the software on the modeling level, thus allowing
to gain the benefits from both development processes.

Throughout this article, the combination of these two development processes is
discussed. Relevant terms used in MDE in application to CBSD are adopted from
[21,10]. The dependability related terms are adopted from [1]. The motivation for
modeling the Computation to gain software reliability improvement is presented
in Section 2. The combination of RAP and ECS design trajectory is discussed in
Section 3. The integration of tools used in RAP and the ECS design trajectory
is presented in Section 4. The resulting tool-chain is demonstrated by a use case
presented in Section 5.

2 Modeling the Computation to Increase Software
Dependability

Modeling the Computation is describing the actual algorithm to be implemented.
The result of Modeling the Computation is a computation model. It represents
the mathematical nature of the algorithm. Such model leaves out platform, oper-
ating system, framework or programming-language specific elements. A compu-
tation model can be constructed based on several different meta-models: transfer
functions, logic circuits, Bayesian networks, neural networks, bond graphs.

A computational model serves three purposes:

– A model improves understanding of functioning of the algorithm, thus re-
vealing the points where robustness should be improved.

– A model, supported by simulation tools, can be used to study the behavior
of the algorithm, in an attempt to verify its qualities.

160 Y. Brodskiy et al.

– A model can be automatically transformed to a formulation needed for the
next step in the development process.

These purposes overlap with means of improving a system’s reliability, typical
for a development process: fault prevention, fault removal and fault forecasting
(Figure 1).

Fig. 1. Mapping of reliability means on purposes of a Computation model

A developer models the Computation to obtain a simplified but competent
representation of the algorithm (the model of algorithm). This is achieved by
choosing the modeling language that supports an effective and simple represen-
tation of the algorithm that is being developed, i.e. the chosen modeling lan-
guage is more expressive than a general-purpose implementation language. The
general-purpose language might obscure the design intent due to a vast number
of implementation details, while a model allows to focus on design of the algo-
rithm avoiding implementation issues [38]. The model of algorithm provides a
clear expression of the design intent and thus prevents logic faults. It especially
concerns the class of development, human-made, deliberate, nonmalicious faults
[1] as the trade-offs made at development time are made explicit.

Faults (class of development, human-made, non deliberate, nonmalicious [1])
can be prevented by modeling the Computation with appropriate tool support.
The composition rules, defined by the meta-model, can be used to prevent ille-
gal constructs that would result in faults, which are typical unintended actions
done by mistake. This enforcement of composition rules on model level also pre-
vents faults occurring due to misunderstanding between collaborating teams [13],
which also classify as non-deliberate, human-made faults. Furthermore, appro-
priate tool support allows to automate the transformation of models to formu-
lations needed for next steps in the development process. This allows reducing
significantly the number of human-made faults as the developer is excluded form
the transformation process.

Simulation of the algorithm, one of the purposes of modeling the Computa-
tion, supports both fault removal and fault forecasting means (Figure 1). This
fault removal process is similar to the approach of iteratively refining models,
used in the ECS design trajectory [15,14]. In simulation, a designer has full
control over the system states, outputs and inputs, thus any situation or behav-
ior can be tested, and the response can be verified. An example of such use of
simulations is fault modeling and fault injection [13]. This approach prescribes
building a model of faulty behavior in addition to modeling expected behavior.
This approach can be used to evaluate performance of the proposed fault-tolerant
control. Overall, use of simulateable models simplifies and increases the quality
of the fault removal and fault forecasting processes.

Fault Avoidance in Development of Robot Motion-Control Software 161

3 Modeling the Computation in the Development
Process

Modeling of software in a development process can be done from different per-
spectives (5C as described in [21]), moreover modeling software from each per-
spective leads to improvement in software quality. Thus by modeling software
from all perspectives allows to maximize the benefits from using models in de-
velopment process. A development process has to indicate at which step each
model has to be developed. Furthermore, the steps at which the models are be-
ing synchronized and transformed into implementation have to be indicated such
that inconsistencies in models are avoided.

The development processes noted above (Section 1) use modeling of software
as one of the main activities. Nevertheless, these development processes have
different perspectives on software modeling. The goal of combining these devel-
opment processes is to indicate steps of synchronization and transformation of
models into implementation. That would enable modeling software from all per-
spectives, and development of appropriate tool support as demonstrated later.

Fig. 2. The proposed ECS trajectory combined with architectural elements form RAP

The updated ECS trajectory (Figure 2) combines the modeling procedures of
the ECS trajectory [16] and RAP [29]. Development steps inherited from RAP,
indicated with RAP tag, represent the process of modeling the software architec-
ture. Development steps inherited from ECS, indicated with ECS tag, represent
the process of modeling the algorithm of the application. Steps, indicated by
both tags, are prescribed by both RAP and ECS, and require information about
the algorithm and the software architecture. By combining modeling processes
of RAP and ECS the information about algorithm and software architecture
is captured inform of models before the Software Implementation step. These

162 Y. Brodskiy et al.

models are complimentary to each other as they contain different type of infor-
mation about the software system. The combination of these models represents a
uniform model of a software component, which covers all 5 aspects of a software
system (5C [21]).

To maintain synchronization between models from RAP and ECS two addi-
tional interlinks (the dashed lines nr. 1 and nr. 2 (Figure 2)) between architecture
design and algorithm design are added. These interlinks indicate information flow
during modeling and emphasize the iterative style of model development.

Line nr. 1 (Figure 2) indicates that the constraints imposed by the runtime
architecture have to be taken into account during Algorithm design. The analysis
of the effects of the run-time architecture on the algorithm performance allows
to forecast possible failures and develop algorithms that tolerate these.

Line nr. 2 (Figure 2) indicates that a detailed knowledge about algorithm
functioning is required for building the efficient component architecture. For
example, a component architecture built without that knowledge might result
in unreasonable communication requirements (such extreme band-with or un-
achievable small latency). Inclusion of component architecture into Algorithm
Design step allows to identify these issues at the modeling stage and can lead to
restructuring the component architecture.

At the Software Implementation step, the models of the algorithm (Com-
putation or Coordination aspects developed in the Algorithm Design step) are
combined with the model of software architecture (Configuration, Connection,
Composition aspects developed in the Runtime Architecture Design step). The
automation of this Software Implementation step is discussed in Section 4.

4 Tool Integration

The goal of the tool integration is, as indicated by the design trajectory (Fig-
ure 2), to facilitate combining the models of a component resulted from RAP
and ECS steps. Moreover, if these models contain sufficient information about
all of the 5 aspects of a software system (5C), the Software Implementation step
can be automated, such that the models are transformed into forms/artifacts
necessary in the consecutive steps of the development process.

Table 1. Tools and their focus in modeling

Configuration & Connection & Composition Computation & Coordination

BRIDE[9] MatLAB[30]
SmartSoft[36] 20-sim[23]
OpenRTM[33] LabView[31]
Proteus[35] OpenModelica[32]
TERRA[3] Dymola[24]

The development process (Figure 2) can be used with a number of tools that
provide similar functionality such as presented in Table 1.

To exemplify the tool integration, the tools BRIDE and 20-sim are used as
suggested by the authors of RAP [29] and the ECS design trajectory [15].

Fault Avoidance in Development of Robot Motion-Control Software 163

The BRIDE toolchain [9] has been developed in the project BRICS to sup-
port RAP. It facilitates the design of components and component compositions
for robotic application deployment. It offers graphical editors to model compo-
nents using the BRICS Component Model (BCM) [21], with model-to-model
transformations to the software frameworks Orocos RTT [34,22] and ROS [39].

20-sim was developed for the design of mechatronic systems and supports the
ECS design trajectory as development methodology. It embodies the concept
of concurrent design of mechanical, electrical and control parts of the system.
20-sim provides modeling primitives for designing the Computation. It can be
used for both modeling of control algorithms and physical systems behaviour.
20-sim allows a graphical approach to hierarchical structuring of algorithms.

4.1 CBSD- and Computation-Model Integration

The transformation of any Computation meta-model into a component meta-
model used by the CBSD tools (like BRIDE) results in a model reduction since
the concepts of computation are not supported by such tools. To preserve the
computation elements a second artifact is generated – the code (Figure 3). The
combination of the generated code and the model completely represent a single
component which can be used in the next phase of the development process, i.e.
Realization.

Fig. 3. Model-to-component transformation

The integration between BRIDE and 20-sim is structured as a 2-step process
[12]. First 20-sim transforms the Computation model into a code and a model
of the component (Figure 3). Second, the model of the component is analysed
and, by using predefined rules, a BRIDE model of the component is generated.
The newly generated model contains information about the Communication and
Configuration (component interface). The Coordination and Computation of the
component are only encoded in the component implementation as BRIDE does
not offer primitives to describe these concepts.

164 Y. Brodskiy et al.

5 Use Case Application

5.1 BRICkS Stacking Application

The use case is motion control for the KUKA youBot [4,11] mobile manipulator.
The resulting set of software components is termed as motion stack. These are
implemented using the methodology described above. Orocos RTT was used as
target component-based software framework.

Based on Figure 2 some of the steps can be performed in parallel. The Physical
System Modeling step can be preformed in parallel to the Functional Architec-
ture Design step. The Component Architecture Design, Run-time Architecture
Design and Algorithm Design steps have circular dependency, and therefore re-
quire an iterative approach. The Software Implementation and Realization steps
are preformed sequentially.

The Physical SystemModeling step is presented in detail in [25], and a detailed
description of the algorithms is presented in [12,10]. The focus of this paper is the
architectural design (Section 5.2), the effect of architecture on algorithm (Section
5.3) and automated transformation of the models into components (Section 5.4).

5.2 Architecture Design

The architecture design is done in three steps, each increase the level of detail
at which the system is described.

A generic functional architecture of a motion stack [12] is presented in Figure 4.
The proposed organization of the software specifies the granularity of the algo-
rithms and provides a standard functional decomposition into components. This
standardisation of component functions enables further harmonization of the com-
ponent interfaces, which is a requirement for introducing variation points [17]. As
a result, an exchange of a component for one with a different behavior should not
require modifying the motion control structure nor any component internals.

Figure 5 depicts the component-level architecture of the motion stack in the
form of a data-flow diagram, based on its functional decomposition. The pre-
sented architecture is an example of a variability solution.

A run-time architecture is required to define how components are executed
with their time and concurrency relations. A run-time architecture can introduce
various effects that will affect the algorithm performance. For example, message
passing between components can introduce time delays, or message losses. To
verify the algorithm’s robustness and tolerance of such effects, the robot model
has to include them. Time delay elements (z−1) indicate possible time delays in
the signal exchange, that has been used in algorithm verification.

5.3 Algorithm Design

Algorithm Design (Modeling the Computation) goes in parallel with the design
of the architecture. The effects that are introduced by the architecture are used
to model and identify unexpected behaviours. Knowledge about the algorithm

Fault Avoidance in Development of Robot Motion-Control Software 165

Fig. 4. Conceptual architecture Fig. 5. Architecture of implementation

performance is used to modify the component architecture and generate deploy-
ment constraints.

The algorithm design requires a competent model of the system that will
be controlled. In the use case, a model developed in [25] was used to verify
performance and robustness of the algorithms in a simulation.

The data-flow diagram, shown in Figure 5, has resulted from the architecture
design route. Each block of this diagram has to become a software component
in the real system and has been filled in with required algorithm according to
its task, details of the algorithms are reported in [10].

When the responses of the system meet the task requirements, such model is
ready for the Software Implementation step.

5.4 Software Implementation

The parts of the motion stack were implemented as components in the Orocos
RTT framework. The data-flow diagram (Figure 5) illustrates the component-
level architecture of the motion stack, where blocks in the diagram stand for
software components, except z−1 which model the effects of communication (la-
tency).

The block at the firmware and drivers level (denoted YouBotModel in Fig-
ure 5) implements the communication to the firmware of the youBot actuators
and sensors. This component contains operating-system specific and hardware-
specific code, and is written in a general purpose language (C++).

The blocks at the “trajectory planner” level of the given application are the
Coordination-type components. The Coordination-type components are most ef-
ficiently expressed in a FSM, therefore, a DSL for a FSM was used to design the
actual trajectory planner components [28]. The existing life-cicle state machine

166 Y. Brodskiy et al.

of an Orocos-RTT component has been extended to include states required for
the application. The Coordination was modeled using rFSM [28], a textual mod-
eling language for FSM. The component Configuration and Communication were
modeled using BRIDE. The model designed with rFSM is part of the working
system, it is executed using a run-time interpreter based on Lua.

Other blocks in the data-flow diagram (Figure 5) are ’pure’ Computation
components. These components are implemented using the model-to-component
transformation, as described in Section 4.

The generated component is imported into BRIDE, where Communication
and Configuration perspectives can be further refined to connect the generated
component into the system. Detailed instructions on using code generation pro-
cess are presented by [12].

A composition model of the application is finalized using BRIDE. The models
of computation are transformed into component models usable by BRIDE. These
models are combined with the models components that were developed in BRIDE
to obtain composition model.

6 Testing the Methodology

The methodology and the youBot motion stack software, resulting from applying
our method, have been tested for reusability and reliability, in three different
occasions, namely three BRICS events.

In the first event, the BRICS research Camp 3 [6], the youBot motion stack
was used to test re-usability of the components developed using the proposed
methodology. The software was provided to students, research camp participants,
with only brief explanation of the algorithmic aspects of the system; the Compu-
tation and Coordination model were presented. The students have successfully
used concepts of modeling of Computation and Coordination to adapt the pro-
vided system to their tasks, which demonstrates ease of re-use of the developed
components. Two groups of 4 students were using the proposed methodology to
modify the provided youBot motion stack using our tool-chain. Moreover, one of
the groups modified their own development tools according to our methodology
to develop a sequence control for solving their exercises.

In the second event, Automatica 2012 [7], the youBot motion stack was used
to test reliability of the components with respect to inter-component communi-
cation faults. The algorithms were shown to work with communication over a
congested WiFi [12]. The software was subjected to prolonged active use, with
frequent interruptions for inspection and parametric changes, which were done
for demonstration purposes. The setup was performing flawlessly for the whole
week of the trade fair (5 days 8 hours a day). Comparable research software is
rarely capable of withstanding such stress testing on first-time use.

At the third event, BRICS research Camp 5 [8] re-usability and reliability of
the components were further tested. The software has been given for modification
to the BRSU RoboCup@work team, after a brief introduction similar to Research
camp 3 student teams. The RoboCup team has successfully modified parts of

Fault Avoidance in Development of Robot Motion-Control Software 167

the motion stack and uses this software for robot control during completions.
This also confirms that components developed using the proposed methodology
can be easily re-use for different applications with high level of reliability.

The software integration developed in Section 4 is available as open source
[40,41] and is being used in other projects of our lab such as for example [5].

7 Conclusions

The combination of both approaches, the CBSD method (RAP) advocated by
BRICS and the ECS design trajectory, results in uniform coverage of modeling
perspectives (5C) for a software component, and thus results in more reliable
robotic components and applications.

The proposed approach contributes to software quality improvement as fol-
lows:

– Automated model-to-code transformations reduce faults during implemen-
tation of the algorithm by excluding human factor from the process.

– Modeling enables the designer to focus on the chosen aspects of the sys-
tem (e.g. algorithm or architecture), instead of implementation details, and
thereby increasing quality of the resulted software.

– Simulation of the algorithm allows to examine hypothetical/dangerous situ-
ations using fault modeling techniques, such as sensor failures, which can be
used for development of fault tolerance algorithms.

The methodology tests have shown that algorithms verified in simulation have
a high success rate on a real setups, which confirms results reported by [14].

To achieve the uniform coverage of modeling perspectives, two different mod-
eling tools had to be used. Each tool focuses on a different engineering role. Two
tools were used as an example of the approach, BRIDE and 20-Sim. BRIDE
is used to model architecture of the system, and 20-sim is used to model the
algorithm.

The presented model-based tool integration shows that tools can easily be
combined on the component level. A model-to-model transformation is used to
export the component interface of a 20-Sim sub-model to an Orocos-RTT com-
ponent model. The Orocos-RTT component model is used in BRIDE to design
the deployment of a robotic application. The advantage of directly generating
the executable component from 20-Sim is that the target component meta-model
is not required to support an equivalent Computation meta-model because the
algorithm code is directly generated for the target framework. The software in-
tegration developed in Section 4 is available as open source code [40,41] and is
being used in other projects such as for example [5]. The integration approach
is generic such that other tools can be integrated in a similar way.

Future work is further developed the tool-chain getting beyond prototype
stage.

The developed tool chain requires creation of separated components for each
modeling language being used. The template of Generic Architecture Component

168 Y. Brodskiy et al.

(GAC) presented by [2] demonstrates the need to combine Coordination and
Computation primitives in a single component. The tool-chain can be modified
to accommodate that requirement.

References

1. Aviezienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Tax-
onomy of Dependable and Secure Computing. IEEE Trans. on Dependable and
Secure Computing 1(1), 11–33 (2004)

2. Bezemer, M.M.: Cyber-Physical Systems Software Development. Ph.D. thesis, Uni-
versity of Twente (2013)

3. Bezemer, M.M., Wilterdink, R.J.W., Broenink, J.F.: CSP-Capable Execution
Framework. Communicating Process Architectures 68, 157–175 (2011)

4. Bischoff, R., Huggenberger, U., Prassler, E.: KUKA youBot - a mobile manipulator
for research and education. In: Proc IEEE Int’l Conf on Robotics and Automation,
pp. 1–4 (May 2011)

5. de Boer, H.: Modeling and Control of the Philips Robot Arm. Msc thesis, University
of Twente (2012)

6. BRICS: BRICS Research camp 3 (2011),
http://www.best-of-robotics.org/3rd_researchcamp/MainPage

7. BRICS: BRICS - European Research Project - demonstration booth. 5th Interna-
tional Trade Fair for Automation and Mechatronics (May 2012)

8. BRICS: BRICS Research camp 5 (2012),
http://www.best-of-robotics.org/5th_researchcamp/MainPage

9. BRICS: BRIDE - the BRIcs Development Environment (January 2013),
http://www.best-of-robotics.org/bride

10. Brodskiy, Y.: Robust autonomy for interactive robots. University of Twente, En-
schede (2014)

11. Brodskiy, Y., Dresscher, D., Stramigioli, S., Broenink, J.F., Yalcin, C.: Design princi-
ples, implementation guidelines, evaluation criteria, and use case implementation for
robust autonomy. Tech. Rep. D61, The BRICS Project (nr 231940) (January 2011)

12. Brodskiy, Y., Wilterdink, R., Broenink, J.F., Stramigioli, S.: Collection of methods
for achieving robust autonomy. Tech. rep. (2013)

13. Broenink, J.F., Fitzgerald, J.F., Gamble, C.J., Ingram, C., Mader, A.H., Marincic,
J., Ni, Y., Pierce, K.G., Zhang, X.: D2.3 — Methodological Guidelines 3. Tech.
rep., The DESTECS Project (CNECT-ICT-248134) (December 2012)

14. Broenink, J.F., Groothuis, M.A., Visser, P.M., Bezemer, M.M.: Model-Driven
Robot-Software Design Using Template-Based Target Descriptions. In: ICRA 2010
Workshop on Innovative Robot Control Architectures for Demanding (Research)
Applications, pp. 73–77. IEEE (May 2010)

15. Broenink, J.F., Groothuis, M.A., Visser, P.M., Orlic, B.: A model-driven approach
to embedded control system implementation. Control, 137–144 (January 2007)

16. Broenink, J.F., Ni, Y.: Model-driven robot-software design using integrated mod-
els and co-simulation. In: Int’l Conf. Embedded Computer Systems, pp. 339–344
(2012)

17. Brugali, D., Gherardi, L., Biziak, A., Luzzana, A., Zakharov, A.: A Reuse-Oriented
Development Process for Component-Based Robotic Systems. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 361–374.
Springer, Heidelberg (2012)

http://www.best-of-robotics.org/3rd_researchcamp/MainPage
http://www.best-of-robotics.org/5th_researchcamp/MainPage
http://www.best-of-robotics.org/bride

Fault Avoidance in Development of Robot Motion-Control Software 169

18. Brugali, D., Scandurra, P.: Component-based Robotic Engineering Part I: Reusable
building blocks. Robotics Automation Mag. 16(4), 84–96 (2009)

19. Brugali, D., Shakhimardanov, A.: Component-Based Robotic Engineering
(Part II): Systems and models. Robotics Automation Mag. 17(1), 100–112 (2010)

20. Bruyninckx, H.: Open Robot Control Software: the OROCOS project. In: Proc
IEEE Int’l Conf on Robotics and Automation, pp. 2523–2528. IEEE (2001)

21. Bruyninckx, H., Hochgeschwender, N., Klotzbucher, M., Soetens, P., Kraetzschmar,
G., Brugali, D., Garcia, H., Shakhimardanov, A., Paulus, J., Reckhaus, M., Gher-
ardi, L., Faconti, D.: The BRICS Component Model: a Model-Based Development
paradigm for complex robotics software systems. In: Proc of Annual ACM Sym-
posium on Applied Computing, vol. 28, pp. 1758–1764. ACM (2013)

22. Bruyninckx, H., Soetens, P., Koninckx, B.: The real-time motion control core of
the Orocos project. In: Proc IEEE Int’l Conf on Robotics and Automation, vol. 2,
pp. 2766–2771. IEEE (September 2003)

23. Controllab Products, B.V.: 20-sim (2013), http://www.20sim.com
24. Dassault Systemes AB: Dymola (2013)
25. Dresscher, D., Brodskiy, Y., Breedveld, P., Broenink, J.F.: Modeling of the youBot

in a serial link structure using twists and wrenches in a bond graph. In: Proc
SIMPAR 2010 Workshop, Darmstadt, pp. 385–400 (2010)

26. Hochgeschwender, N., Gherardi, L., Shakhimardanov, A., Kraetzschmar, G., Bru-
gali, D., Bruyninckx, H.: A Model-based Approach to Software Deployment in
Robotics. In: Proc IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems.
IEEE/RJS (November 2013)

27. Klotzbucher, M., Biggs, G., Bruyninckx, H.: Pure Coordination using the Coordi-
nator – Configurator Pattern. CoRR abs/1303.0 (2013)

28. Klotzbucher, M., Bruyninckx, H.: A Lightweight Real-Time Executable Finite
State Machine Model for Coordination in Robotic Systems. Tech. rep. (2007)

29. Kraetzschmar, G., Shakhimardanov, A., Paulus, J., Hochgeschwender, N., Reck-
haus, M.: Deliverable D-2.2: Specifications of Architectures, Modules, Modularity,
and Interfaces for the BROCRE Software Platform and Robot Control Architec-
ture Workbench. Tech. rep., BRICS FP7 project deliverable (2010)

30. MathWorks: MatLAB (2013), http://www.mathworks.com
31. National Instruments: LabView (2013)
32. Open Source Open Modelica Consortium: OpenModelica (2013)
33. OpenRTM Project: OpenRTM Project (2013)
34. Orocos Project: Smarter control in robotics & automation (January 2013),

http://www.orocos.org

35. Proteus Project: Proteus (2013)
36. Schlegel, C.: SmartSoft: Components and toolchain for robotics (January 2013),

http://smart-robotics.sourceforge.net

37. Schlegel, C., Worz, R.: The software framework {SmartSoft} for implementing
sensorimotor systems. In: Proc IEEE/RSJ Int’l Conf on Intelligent Robots and
Systems, vol. 3, pp. 1610–1616 (1999)

38. Schmidt, D.C.: Model-driven engineering. Computer, 25–31 (2006)
39. Willow Garage: ROS project (January 2013)
40. Wilterdink, R.J.W., Brodskiy, Y., Broenink, J.F.: Eclipse 20-sim update site

(February 2013), http://www.ce.utwente.nl/20sim/updates/
41. Wilterdink, R.J.W., Brodskiy, Y., Tadele, T.S., Broenink, J.F.: 20-Sim C-code

generation templates and model-to-model transformations (2013),
https://git.ce.utwente.nl/20sim

http://www.20sim.com
http://www.mathworks.com
http://www.orocos.org
http://smart-robotics.sourceforge.net
http://www.ce.utwente.nl/20sim/updates/
https://git.ce.utwente.nl/20sim

Robotic Engineer’s Specifications

for a Well-Fitted Model-Driven Control
Architecture for Robots

Éric Moliné, Nicolas Morette, Cyril Novales, and Pierre Vieyres

PRISME Laboratory, UPRES n◦4229, Université d’Orléans,
63 Av. de Lattre de Tassigny, 18000 Bourges, France

{name.surname}@univ-orleans.fr

Abstract. This paper gives an overview of reflections about more gene-
ric robotic architectures models and their associated tools. The objective
of our work is not to define a new robot software but rather to specify
common robotic requirements for future component-based models. These
models could be used as a common-base by the robotic sub-communities
whatever the purpose their different robots have been designed for, what-
ever the targeted hardware, the chosen frameworks or the host operating
systems. Even if we are not yet strongly familiar with the specificities
of the Model-Driven Architecture (MDA) and with the Domain-Specific
Language (DSL), we are self-convinced by the powerful benefits that
these two fields could bring to robotics and to robotic architecture mod-
els. In this paper, we discuss about the characteristics a robotic archi-
tecture model should own to be efficiently designed by software model
engineers and easily but efficiently used by robot engineers.

Keywords: Model-Driven Robotic Architecture, Component-based
Robot Architecture, Robotics Designer, Robot.

1 Introduction

Being at the crossing point of various research fields, robotics is a fast growing
domain that can address lots of applications. At the first ages of the robotics, a
single researcher (or engineer) had the capabilities to design a full robotic soft-
ware architecture well-adapted to a particular purpose. Nowadays, the scale and
the scope of robotics have so widely grown that no one can imagine that only
one single person may support a large-scale robot architecture design, software
development and integration effort. Even if most of the designed robotic archi-
tectures of these last decades came from robotics background [1,6,7,9,10,12,14]
there is another domain dealing with the general issue of the architecture mod-
eling and that cannot be ignored: the software engineering field. Our starting
assumption is that for the design of a new robotic system, the role of each actor
shall be clearly identified as well as the efficient tools they will use.

Especially from a robotics business point of view, a full team is required to
support large-scale robot architecture design, software development and integra-
tion effort. So the key of development success is in the distribution of roles and

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 170–181, 2014.
c© Springer International Publishing Switzerland 2014

Robotic Engineer’s Specifications 171

expertise, as it is already done in others domains such as video game. Moreover,
as robotic system has to cope with an open-ended surrounding environment,
the consequences are that it is impossible for robotic experts to identify all the
situations and to code adequate configuration and/or reactions for all of them.
As a first analysis of the main roles, we have identified three actors: the robotic
expert, the robotic architecture designer and the software model engineer.

The robotic expert is the expert in charge of writing and of implementing the
algorithms for a given robotic system. The required code can either be a driver-
level software, a perception processing algorithm (low-level data processing) or
a more abstract reasoning algorithm based on a more complex and abstracted
representation of the surrounding environment. The robotic expert provides a
strong expertise in his domain, such as 3D perception, navigation, grasping, etc.,
when implementing specific functions.

The robotic designer ’s role is to identify functions the designed robotic system
must have to fully answer a specific need. He also has to insure that the global
behavior of the system takes into account all the bindings between functions.
He can be considered as the robotic system integrator or the global architect of
the system. Robotic experts and robotic designers are both roboticians but in
charge of different tasks during the development process.

Finally the last actor is the software model engineer. Even if he is not deeply
aware of the robotic domain constraints, his added value is to provide the robotic
designer with powerful and useful tools well adapted to the definition of a spe-
cific robotic model. Figure 1 presents their respective contributions and rela-
tionships. Section 2 presents the benefits of software engineering approaches in
recent robotics applications and their limitations from a robotic designer’s point
of view.

Robot

Software model engineers

Robotic designers

Meta Model

Do not master

Design

C
an

 p
ro

vi
de

 c
on

ce
pt

s,
pr

in
ci

pl
es

, t
oo

ls

to
 m

od
el

 ro
bo

tic
 so

ftw
ar

e
ar

ch
ite

ct
ur

es

Robotics Model

Define

Robotic experts Software Architecture

Model to Code
Transformation

Adapted to a specific target
(robot, middleware and operating system)

Code and implement
algorithms

issues
How to express needs in terms of
characteristics for the robotic model ?

Model to Model
Transformation

or
Simulator ROBOTICIANS

Fig. 1. The interaction scheme among the three robotic identified actors

172 É. Moliné et al.

2 Model-Driven Architectures and Domain-Specific
Language

During the development process, software model engineers have the expertise to
provide a real benefit to roboticians such as a better software reusability and
scalability, whatever the targeted hardware, the chosen frameworks or the robot
host operating systems. Recently, model-based approach and domain specific
languages have become extensively studied for robotic applications. Recent in-
ternational conferences reflect this growing popularity, such as Simulation, Mod-
eling, and Programming for Autonomous Robots (SIMPAR) or Domain-Specific
Languages and Models for Robotic Systems (DSLROB) that both started in
2009.

Romero-Garcés and al. present [11] how the use of DSL and MDA has im-
proved their component-oriented framework called RoboComp and how they
have reduced the number of human-made errors while optimizing the develop-
ment time. Schlegel and al. propose [13] a model-driven design process that
covers all the life cycles of robotic systems from development to deployment
through evolution and maintenance. This process starts from the development
of a meta-model, with a high level of abstraction to finally end at a completely
executable architecture on a specific real-time robot. Here, the different steps
are to refine the platform independent model (PIM), where information on the
middleware, operating system, programming languages and other properties are
unknown, into a platform specific model (PSM) and then into a platform spe-
cific implementation (PSI) where robotic experts can write their code. Then
the final step consists in the deployment of the components. The Model-Driven
Architecture (MDA) methodology allows the developer to automatically refine
their models thanks to Model to Model transformations (M2M) or Model to Text
transformations (M2T) in order to obtain the source code. With the same objec-
tive of improving and facilitating the development of robotic applications, Ortiz
and al. created “C-Forge” [8] with its model loader that directly interprets mod-
els, while Dhouib and al. introduced a DSL called RobotML (Robotic Modeling
Language) [4] which aims robotic designers to specify missions, environments
and robot behaviors. RobotML provides a tool chain for robotic systems devel-
opment that is an extension to the Eclipse-based UML modeling tool Papyrus.
The authors report that the use of RoboML allows designers to spend more time
on design than on dealing with low level details; moreover, the architecture is
made explicit and switching to a new target platform is much easier.

In on hand, even if roboticians should require what they want, they are often
not able to express it precisely according to computer sciences. On the others
hand, even if they know how quality software systems should be developed in
various application domains, software model engineers are not the domains ex-
pert and therefore they may misunderstand some of the roboticians’ needs and
some of specific concepts of robotics are too abstruse for them. The proposed
meta-models for a robotic development may use concepts that are useless for
roboticians, while forgetting to include useful notions for robotics. Another dif-
ficulty comes from technologies, notions and languages used by software model

Robotic Engineer’s Specifications 173

engineers that are too abstruse for roboticians. In the French research project
Proteus , RobotML-based model was used but it did not take into account the
needs of synchronism between the different components of the architecture. The
lack of adequacy between the robotic needs and the software engineering tools
drawn from our experience as members of the Proteus1 project motivated us to
draft specifications of a generic robotic model strengthening the bridge between
robotics and software engineering. Section 3 presents the main advantages of the
most used middlewares and frameworks in robotics.

3 Generic Robotic Model

A first criterion for the generic robotic model is that it has to be a usable and
understandable model for robotic designers and engineers. For this reason a
component-based model has been chosen, as the notion of components is widely
used in robotics [2,3] and enables modularity and reusability needed for efficiency
in robotics. Each component has an interface for communication and data ex-
change with other components and the full interaction of components provides
the robotic system with the behaviors or functionality needed to address a spe-
cific mission. Orocos2 is a framework that proposes a complete and reliable solu-
tion to address the development of real-time robotic applications. Nevertheless its
lack of a suitable GUI to implement the different functions cannot help to clearly
identify the role of the robotic designer. Since 2009, a middleware has encoun-
tered a quick and wide success in the robotic communities as a large acceptance:
the open source robotics platform ROS developed by Willow Garage [10]. ROS is
here to route data (called ros topic) from producer components (called here ros
node) to consumer components that have subscribed to the needed data. ROS
success can be explained by the fact that the philosophy of its designers matches
the roboticians’ needs: a peer-to-peer communication layer, tools-based, multi-
lingual, thin (reusability) and before all free open-source. Nevertheless, while
ROS provides an interesting hardware abstraction, it is not dealing with real-
time constraints. Conversely, the ContrACT development environment proposed
by LIRMM laboratory[9] is based on an asynchronous supervision process and
an applicative real time scheduler that performs a fine grain decomposition of
complex synchronous robotic algorithms into individual real-time modules. This
approach allows an accurate management of real-time constraints execution and
of reactions to constraints violation when problems such as CPU saturation
occur.

The notion of component is also strongly linked with the notion of data and
data flow, as it is important to define how the components are using information
and how they communicate. Widely used solutions to define communication are
based on the publisher/subscriber paradigm. Hence, we propose in this paper a
specification book from roboticians’ requirements. Due to previous discussions
in this section, the specifications shall respect the following criteria:

1 http://www.anr-proteus.fr/
2 http://www.orocos.org/

http://www.anr-proteus.fr/
http://www.orocos.org/

174 É. Moliné et al.

– being suitable with a component based model,
– having in each component a consumption policy to manage input data,
– having in each component a trigger policy to run code,
– having a markup data policy giving meta data information to the data itself.

4 Specification Book for a Robotic Component-Based
Model

Typically, when a robotician describes the component-based control architec-
ture for a robot, these components represent different processes that may run
together to perform the targeted application. These components exchange the
input/output data by “links” (simulink-like charts). Each component contains a
sequential algorithm written in a dedicated language (C++, Python. . .). Each
component produces (or provides) output data, that are required by other com-
ponent as input data. A virtual “wire” modeling the data flow links the provider-
component and the consumer-component. Thus each component presents three
parts: one part that receives the data, one part that processes the data, and one
part that produces output data. The part that processes the data is typically the
algorithm: it uses the received input data and is also triggered by some of these
input data. Some of the inputs are stamped as synchronous or asynchronous
to manage the policy to run the algorithm. The production of output data is
made along the algorithm run. Thus, instead of having a component with input
and output ports, we propose to split it in three units: the Input Management
Unit (IMU), the Component Core Unit (CCU) and the Ouput Management Unit
(OMU), (Fig. 2).

COMPONENT

(a)

ALGO

INPUT

MANAGEMENT

UNIT

COMPONENT

CORE

UNIT

O

M

U

(b)

Fig. 2. Standard component view (a) and our proposed component model (b)

The CCU contains the algorithm, i.e. the code. By definition, the algorithm
is sequential and needs input data with its own specified type; it produces data,
also with its own specified type. It is written in a language (mainly C/C++).
The goal is to keep this code with its own input/output format and its own code
lines. It thus becomes reusable in other components in other robotic applications.
The IMU performs two tasks: its first task is to receive, to store and to convert
input data for the CC Unit. Its second task is to manage the trigger policy of
the CCU algorithm. Finally, the task of the OMU is to produce the data to be
sent to others components.

Robotic Engineer’s Specifications 175

4.1 IMU – Collect and Store: Policy of Consumption

The first task of the IMU is to collect the input data: when an input arrives, the
IMU stores it in a buffer. The data becomes available to be used by the algorithm
of the Component Core Unit (CCU). The CCU can then pick this data to use
it in its code. As we assume the components as independent algorithms running
in parallel, we must consider that data are produced and consumed at different
times. In theory, all algorithms of components can be performed instantaneously,
and consume the input data when they are produced. But practically, it is not
yet possible: the CPU(s) have time processing limitations, and even when we use
a real time OS, all algorithms cannot be performed simultaneously. This implies
it cannot be sure that data are consumed by a subscriber component instanta-
neously when a provider component produces it. Thus, data must be stored and
buffered somewhere between the production time and the consumption time.
This task is performed by the IMU. For each input data, the IMU constructs a
dedicated buffer with its own policy of consumption.

Classical FIFO and LIFO formalism can be used to extract data from the
buffer. FIFO is for “first in / first out” and means that the oldest data which
has been inputted in the buffer is the first data to be read. LIFO is for “last in
/ first out” and means that the last data which has been inputted in the buffer
is the data which must be used by the CCU. Once a data has been read -and
therefore used by the CCU- there is no longer need to store it in the buffer, thus
data is removed. Concerning the LIFO policy of data consumption, a “clear older
data” option is also available. Indeed, in some cases it is not useful for the CCU to
process previous data as only significant is the last one. Situations like emergency
obstacles avoidance only need the latest information from proximetry sensors or
obstacles detection components. With the clear older data option activated, once
the last data has been read, the entire buffer is emptied.

In this work, we propose a third formalism called CYFO for “Chose Your first
Out”. It allows defining different sub-policies to subsample data. The underlying
idea is that the components are able to choose in the buffer the most appropriate
data. Also, as for LIFO, a “clear older data” option is also available for CYFO
policy. In some cases only the latest data since a chosen date or a particular
event are useful. With the clear older data option activated, once the chosen
data has been read, all the older data in the buffer are removed.

The size of the buffer size can be finite by being n time the size of the data;
or it can be limitless but this latter case can lead to an infinite loop during
running of the component. In most of the cases, the size is chosen according to
the frequency of production of data regarding to the frequency of consumption
of those data by the CCU. It is quite easy to fill a buffer of a finite size. Data are
stocked one after the others as long as the buffer limit is not overpassed. When
this occurs, and in order to allow the latest one to be stored, oldest data are
removed even if they were not yet processed: this situation if often called data
overflow.

To specify the “Policy of Consumption” we have design a graphical model
(Fig. 3). The buffer is represented as a suite of boxes and their respective labels.

176 É. Moliné et al.

LIFO/FIFO/CYFO over the buffer specify the way the CCU read data stored
in the buffer. The box with a number represents the size of the buffer; infinite
pattern means no limitation. The box with Clr label -when it exists- specifies
that data older than the one read are deleted in LIFO/CYFO buffer.

∞

FIFO

9

CYFO

5

LIFO

Clr

Fig. 3. Example of Graphical Policy of Consumption. From left to right: Infinite Buffer
with FIFO policy; Buffer with LIFO policy, a size of 5 and the clear older data option
on; Buffer with CYFO policy and a size of 9.

The IMU performs also the transtyping of the input data in the type of the
data needed by the code of the CCU. That allows the use of any algorithm in
the CCU without changing the code of this algorithm. The only modification is
to add the transtyping of input data inside the IMU; this subpart of the IMU is
called the parser.

4.2 IMU – Trigger the CCU: Policy of Triggering

The second task of the IMU allows us to define when data is available for the
CCU; or more precisely, when the Component Core Unit can consume an input
data. Typically, two methods of consumption are considered:

– When the algorithm needs it, it consumes the data; it extracts data from the
input buffer with the previous policy of consumption (LIFO, FIFO, CYFO).
This data is consumed as synchronous data.

– When data arrives from the provider component, this triggers the algorithm
that begins to run. These data are consumed as asynchronous data.

Distinguish which input data must be synchronous or asynchronous corre-
sponds to the Policy of Triggering of the IMU. By default it is assumed that
every input data is synchronous; this means that when the algorithm in the
CCU is running, it uses the input data as soon as it needs it. But as CCU is run
as a cycle it is important to define when the core begins each cycle. Therefore
roboticians need one or more ways to trigger the cycle of an algorithm.

One Data Is Specified as Asynchronous. The process is simple in theory:
when an asynchronous Data-i1 is provided, that triggers the CCU and the cy-
cle of the algorithm begins. Unlike standards models (cf. RTMaps [5], Orocos),
robotician may need to trigger on another type of event than only one asyn-
chronous data.

Several Data Is Specified as Asynchronous. This asynchronism can be
composed with two Boolean operators: OR(+) and AND(×).

Robotic Engineer’s Specifications 177

1. Data-i1 + Data-i2: the core is triggered either by Data-i1, or by Data-i2.
The algorithm starts using the respective data as long as one of the two
is updated. The respective other data (Data-i1 or Data-i2) thus become
synchronous data in this cycle.

2. Data-i1 × Data-i2: the core is triggered when the two data have been up-
dated. That means it waits for the second data to start the algorithm.

Lag Operator. Lag(t, i1) means that the Data-i1 will be taken into account
after a time lag of t milliseconds after its production. Cycle operator. Finally,
we may have a CCU that is not triggered by an external input. It may be run in
a regular cycle, for example every 40 ms (including the process time). Cycle(t)
means that the process is trigged every t milliseconds.

Trigger Function and Graphical Representation. We have designed a
graphical representation for policy of triggering. Asynchronous input, Lag and
Cycle are represented as symbols, laid after the input data buffers (Fig. 4). For
the lag symbol, the value inside the box represents the lag-time in milliseconds.
For the cycle symbol, the value inside the box represents the cycle-time in mil-
liseconds. The asynchronous function is written in the “Trigger” box, at the
bottom of the IMU, with Boolean operators (+ and ×).

CYCLE OPERATOR

LAG OPERATOR

ASYNCHRONOUS
OPERATOR

IMU

Lag(50, Input 2)

4

LIFO

∞

CYFO

Input 1

Input 2

TRIGGER

IMU

Cycle (100)

10

FIFO

Input 1

TRIGGER

Fig. 4. Graphical policy of triggering. The different operators (left) and some examples.

4.3 CCU: Container for the Algorithm

This Core Unit is the algorithm. It contains the sequential code that may be
run in cycle. It got its own inputs and outputs, with its own format. We do not
modify this format inside the CCU; the IMU provides the input data in this
custom format, assuming the transtyping. The policy of consumption and the
policy of triggering are not made inside this unit (but in the IMU also). Thus,
the CCU only contains the code of the algorithm, allowing the robotician to use
any code previously programmed by him or not.

4.4 OMU: Transtype and Tag the Output Data

The OMU has a simple task: transtype the output data of the CCU algorithm
to produce data with the respect of the data-flow protocol (Sect. 5). OMU adds
also other fields to the data, such as time, component id, etc. Once again, the
algorithm of the CCU is not in charge of this part, and we can use any type
of code in a component, the adaptation is made in the OMU. Similarly to the
IMU, a parser is also present here to produce output data from the Component
Core Unit with the XML formalism.

178 É. Moliné et al.

4.5 The Entire Component: IMU+CCU+OMU

Thus, the component is designed with three units (Fig. 5):

– The Core Component Unit (CCU) contains the algorithm, written with stan-
dard code.

– The Input Management Unit (IMU) interfaces the input data for the algo-
rithm, specifying the Consumption Policy and the Trigger Policy.

– The Output Management Unit (OMU) interfaces the output data for the
data flow between the components.

With these three units we can discriminate the different functionalities of the
component. The algorithm code can be used “as it is” without major modifi-
cations. The policies are implemented by the robotician inside the Input Man-
agement Unit, separately from the code. The two policies - consumption and
trigger - are clearly separated, and graphically represented, without any am-
biguity. Moreover, they are linked and dedicated to each component. Most of
robotic middleware use the same buffer, in the output data, that implies to link
the consumption policy of each component that subscribe to it. In our specifica-
tion, the storage of data in a buffer is performed by each component in its IMU;
it allows each subscriber component to choose its own consumption policy.

IMU CCU

Input 2 x Input3

D
A
T
A

P
A
R
S
E
R

4

LIFO

∞

CYFO

5

FIFO

Output 1

Output 2

D
A
T
A

P
A
R
S
E
R

Input 1

Input 2

Input 3

OMU

TRIGGER

Fig. 5. The component based model with the IM, CC and OM Units

5 Data

As in other component-based models, roboticians may define the data-flow be-
tween the components. Although a communication services is also available, ROS
middleware provides to the community the major part of its system: ROS topics.
The node distribution of consumer/provider of data allows the different threads
to communicate on the net substrate, splitting the communication service on one
standalone or several distant machines, and allowing heterogeneous software to
share data. The ROS-data type predefined all the robotics data, giving de facto
standard that was missing previously in the community. But these data, as well
defined they can be, are fixed in their type and their composition. A component
must wait a data with its fitted type. Robotic data, like in other technical domains,
is various and highly dependent of the used hardware and software; the intercon-
nection, and a fortiori data flow in a component-based model, become versatile
from one robotic application to another. Then a way to interconnect heteroge-
neous hardware and software is to include the data description inside the data.

Robotic Engineer’s Specifications 179

5.1 XML Data

We propose to use markup data, which means that the structure of the data
contains meta-information on the data itself. XML markup formalism is a good
solution to perform the job: in addition of the value(s) of the data, we can in-
tegrate the type(s), the unit(s), the name(s), the provider, the timestamp, ttl,
etc to the data itself. All these information, taken into account inside each com-
ponent IMU, allows the interoperability of components, software and hardware.
The IMU of a component can extract from a markup data the good data needed
by its CCU. If the provider -and the provided data- changes, robotician just
need to add a new transtyping function in the parser subpart of the IMU. To
the best of our knowledge, there is no such approach in robotic data modeling.
Usually, data is just a collection of bytes with no direct link to physical informa-
tion and it can be interpreted by the “subscriber” only when it knows what kind
of data the “publisher” is sending. Using a XML representation of data means
to multiply the weight of a data by a non-negligible coefficient, but the gain for
a component-based model of a robot application is very large:

– We intrinsically obtain the afferent information of the data; its unit, its
timestamp, its producer, its type, etc.

– All these information are explicitly described, allowing interoperability be-
tween data providers and data subscribers. Subscribers can change their data
provider without any major correction.

– Explicit xml data description allows sending this data “alone” on a broadcast
net, without any interface.

– We do not need an end-to-end link between a data provider component
and a data subscriber component. We can use broadcast net substrate for
communication.

– We can embed “classical” data by a dedicated parser component to perform
inter-connection with other middleware.

Thus, the balance between pro (previously listed gains) and cons (only the
size/weight) let us no doubts. The gains will offer advantages and possibilities
unknown in traditional models. Process such kind of “heavy” data was solved in
the internet communication, and we think that it can be the same in robotics.

5.2 Streamed Data and Shared Data

The data-flow in our model specification uses only streamed data. This kind of
data is produced by a component and then sends to others component which
needs it; and each component uses this data freely, without modifying the original
data. In robotics, we also need shared data: they are usually associated to a
notion of “blackboard”. The most significant robotic example of a shared data is
a map. One or several components can build and modify this shared map, part
by part; and several components can read this map. Sending a entire map in
streamed data each time a component change a part of it is not feasible as there
would be too many data to send. In our model specification, we have not yet

180 É. Moliné et al.

integrated shared data. For the moment, we substitute the shared data entity
by a component which works as map server: it receives the request to modify or
read part of the map by its inputs, and serves the data by its outputs.

6 Discussion and Conclusion

The specifications that we propose to build a model for robot applications de-
sign allows the use of the robotician’s well-known component based model, with
separation of the roles. The robotic designer builds a global architecture with
different components and let the robotic expert to fill the cores of these compo-
nents. The robotic designer manages the data flow and the coordination of the
components thanks to their IMU and may plan a general time organization of
the whole robotic application. He manages the xml data type, the IMU inputs,
the OMU outputs and the trigger of the components. The robotic expert can
code the different algorithms of the CCU or can reuse or link existing codes.
Thus, he has to manage the component internal parser to fit the input/output
data to the code. Of course, a negotiation can be held between two roboticians
on the frontiers of their own fields: IMU and OMU. Morevover, when there are
more than two actors, the sharing of the work and the coordination become eas-
ier; and this graphical representation of a robotic application let all the actors
to understand it both in its globality and in its detail.

The specifications of the robotic model are only a graphical representation of
components and data. As robotician experts, our goal is to give a pertinent robot
description to the software engineering experts in order to produce a MDA. This
MDA must be able, at least, to generate an empty skeleton of the architecture in
a given robotic middleware (or several), letting robotic experts to fill the CCU
with the code of the algorithm, as developed in the proteus project [4].

We do not consider any differences between “structural data” (standard data
flow between components) and “organizational data” (data coming from a su-
pervisor to control a component). The use of xml meta-data let the possibility to
integrate these two kind of data in the xml-data by adding some markups. When
looking at the data xml structure and the way IMU/OMU work, it is close to
a broadcast network working: the IMU/OMU work as net-card and data has a
net-type structure. As future work, we propose to use an IPv4 or IPv6 for rout-
ing of data. Nowadays the technology of these types of net (non-deterministic)
enables to work over the Gigabit per second, giving sufficient baud rate for a
robotic application. Moreover, the integration of QoS in IPv6 net may guarantee
some local determinist behaviors. A specific dynamic data connection between
the components was not considered; the fact that during the run, components
subscribe or unsubscribe to data (provider). From the “broadcast net” point of
view, a “point to point connection” between a data provider component and a
data subscriber component does not exist. Due to the local data buffering in
each subscriber component IMU, the data provider just has to send its output
data to the net substrate. The subscriber components just have to read this
data (and store it with their IMU consumption policy): subscriber component
becomes de facto no more a subscriber, but a consumer, free to read and use the

Robotic Engineer’s Specifications 181

provided data. As no subscription is needed, the term of subscriber component
disappears and is replaced by the term of consumer component. Similarly to a
broadcast net, we do not care if there are one more - or one less - system that
uses the data.

References

1. Albus, J.: Drcs: A reference model architecture for demo iii. National Institute of
Standards and Technology, Gaithersburg, MD, NISTIR 5994 (1997)

2. Brugali, D., Scandurra, P.: Component-based robotic engineering (part i)[tutorial].
IEEE Robotics & Automation Magazine 16(4), 84–96 (2009)

3. Brugali, D., Shakhimardanov, A.: Component-based robotic engineering (part ii).
IEEE Robotics & Automation Magazine 17(1), 100–112 (2010)

4. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 149–160. Springer, Heidelberg (2012)

5. Dulac, N., Delaunay, C., Michel, G.: Real time, multisensor, advanced prototyp-
ing software. In: Third National Workshop on Control Architectures of Robots,
Bourges (2008), http://www.bourges.univ-orleans.fr/CAR08

6. Jaulmes, R., Moliné, E.: Hng: A robust architecture for mobile robots systems.
In: Bruyninckx, H., Prĕučil, L., Kulich, M. (eds.) European Robotics Symposium
2008. STAR, vol. 44, pp. 123–131. Springer, Heidelberg (2008)

7. Joyeux, S., Alami, R., Lacroix, S., Alexandre, Lampe, o.: Simulation in the laas
architecture. In: International Conference on Robotics and Automation-Workshop
on Software Development in Robotics (2005)

8. Ortiz, F.J., Insaurralde, C.C., Alonso, D., Sánchez, F., Petillot, Y.R.: Model-driven
analysis and design for software development of autonomous underwater vehicles.
Robotica, 1–20 (2014)

9. Passama, R., Andreu, D., et al.: Contract: a software environment for develop-
ing control architecture. In: 6th National Conference on Control Architectures of
Robots (2011)

10. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3, p. 5 (2009)

11. Romero-Garcés, A., Manso, L., Gutierez, M.A., Cintas, R., Bustos, P.: Improv-
ing the lifecycle of robotics components using domain-specific languages. arXiv
preprint arXiv:1301.6022 (2013)

12. Rosenblatt, J.: Damn: A distributed architecture for mobile navigation, in pro-
ceedings of the 1995 aaai spring symposium on lessons learned from implemented
software architectures for physical agents, h. hexmoor & d. kortenkamp (1995)

13. Schlegel, C., Steck, A., Brugali, D., Knoll, A.: Design abstraction and processes in
robotics: From code-driven to model-driven engineering. In: Ando, N., Balakirsky,
S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 324–335. Springer, Heidelberg (2010)

14. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The claraty ar-
chitecture for robotic autonomy. In: IEEE Proceedings on Aerospace Conference,
vol. 1, pp. 1–121. IEEE (2001)

http://www.bourges.univ-orleans.fr/CAR08

High Performance Relaying of C++11 Objects

across Processes
and Logic-Labeled Finite-State Machines

Vlad Estivill-Castro, René Hexel, and Carl Lusty

Machine Intelligence and Pattern Analysis Laboratory (MiPal)
Griffith University, Nathan, QLD 4111, Australia

Abstract. We present gusimplewhiteboard, a software architecture
analogous to ROS:services and ROS:messages, that enables the construc-
tion and extremely efficient inter-process relaying of message-types as
C++11 objects, All gusimplewhiteboard objects reside in shared memory.
Moreover, our principle is to use idempotent message communication,
in direct contrast to previously released platforms for robotic-module
communication, that are based on an event-driven subscriber model
that queues and multi-threads. We combine this with compiled, time-
triggered, logic-labeled finite state machines (llfsms) the are executed
concurrently, but scheduled sequentially, in an extremely efficient man-
ner, removing all race conditions and requirements for explicit synchro-
nisation. Together, these tools enable effective robotic behaviour design,
where arrangements of llfsms can be organised as hierarchies of machines
and submachines, enabling composition of very complex systems. They
have proven to be very powerful for Model-Driven Development, capable
of simulation, validation, and formal verification.

1 Introduction

Since its inception, the blackboard control architecture [17], has become ubiqui-
tous as a mechanism to integrate cognitive processes, behaviours, and problem-
solving. It has also become central to agent architectures and publish/subscribe
patterns among the software engineering community. Over and above the pub-
lisher/subscriber pattern, a blackboard allows a further level of decoupling by
being data-centric (rather than component-centric). The provider may supply
information for unknown (possibly inactive) consumers without the need to be
aware of a consumer’s interface, only the interface to the blackboard is necessary.

From a software architecture perspective, the flexibility of a blackboard is
also incorporated into the notion of a broker, enabling a sender to issue what we
will refer to as add Message(msg : T), a non-blocking call that may optionally
include additional information, e.g. a sender signature, a timestamp, or an event
counter that records the belief the sender has of the currency of the message.
There are essentially two modes for retrieving a message.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 182–194, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Interprocess Relay of C++11 Objects 183

subscribe(T, f): The receiver subscribes to messages of a certain type T (of an
implied class) and essentially goes to sleep. Subscription includes the name
f of a function. The blackboard will notify the receiver of the message msg
every time someone posts for the given class T by invoking f(msg) (usually
queued in a type T specific thread). This is typically called Push technology.

get Message(T): The receiver issues a get message to the blackboard that sup-
plies the latestmsg received so far for the type T . This is usually called Pull.

The type identifies the communication channel, and in ROS’ Push technology is
named a ROS::topic. The modules posting (publishing) or getting (subscribing
to) messages are called nodes. The data structures available for messages
(and described in msg files) are restricted to a simplified message descrip-
tion language, because ROS aims at supporting cross-programming-language
communication. This architecture is common in robotic systems and other
robotic projects have produced similar infrastructures: Carmen (carmen.sf.net),
Microsoft Robotics Studio (msdn.microsoft.com/en-us/robotics/), MIRA [6],
MOOS (www.robots.ox.ac.uk/˜mobile/MOOS/wiki/pmwiki.php), Orca

(orca-robotics.sf.net), Orocos (www.orocos.org), Player (playerstage.sf.net),
and YARP (http://eris.liralab.it/yarp/).

Such robotic-system architectures organise many modules under different
paradigms. One of them is the sense-decide-act cycle. Here, sensors post in-
formation onto the blackboard. This information may be processed by decision
makers (even as complicated as planners) that then publish commands to actua-
tor modules. The blackboard enables very flexible information processing about
the state of the world that is supplied by sensors. For example, if sensors are
noisy, then an intermediate filter (such as a Kalman filter) can be placed in be-
tween the raw posting of the sensor and the decision maker. This mechanism can
be extended to a whole pipeline of publishers and subscribers between the sensor
data and the final actuators. The features of gusimplewhiteboard include:

1. Completely C++11 and POSIX compliant; thus, platform independent: used
on Mac OS X (Mountain Lion), LINUX 13.10, Aldebaran Nao 1.14.3,
Webots 7.1, the Raspberry Pi (www.raspberrypi.org), and Lego NXT.

2. Released as a ROS:catkin package (mipal.net.au/downloads.php).
3. Extremely fast performance for add Message and get Message, intra-process

as well as inter-process.
4. Completely OO-compliant. The classes that can be used are not restricted,

the full data-structure mechanisms of C++11 are available.
5. Very clear semantics that removes lots of issues of concurrency control.

2 Challenges of Inter-module Communication

Control modules in charge of robot behaviour rely heavily upon predictable com-
munication latency. Even very standard algorithms in robotics, like the Kalman
filter, would be significantly less effective if the time between the reading of an
observation and the execution of the filtering step was randomly perturbed. The

http://carmen.sf.net
http://msdn.microsoft.com/en-us/robotics/
http://www.robots.ox.ac.uk/~{}mobile/MOOS/wiki/pmwiki.php
http://orca-robotics.sf.net
http://www.orocos.org
http://playerstage.sf.net
http://eris.liralab.it/yarp/
http://www.cyberbotics.com
http://www.raspberrypi.org
http://mipal.net.au/downloads.php

184 V. Estivill-Castro, R. Hexel, and C. Lusty

motion model would not be able to make sufficiently accurate predictions, and
the integration of information provided by the next observation with the pre-
diction would be jeopardised. Similarly, issuing commands to actuators heavily
depends on the issuer having reasonably accurate information of the position of
the actuator at the time of issuing the next command. If sensor information or
control commands are unboundedly delayed, the safety of actions can be seri-
ously compromised. Thus, the emergence of compliant actuators is not enough:
the software architecture is equally responsible for safe operation.

Delays not only depend on the type of channel used by the blackboard ar-
chitecture, but also the determinism (or lack thereof) of the concurrency model
used. Our software architecture proposes to schedule publishers and subscribers
sequentially (see Section 3). In such a model, the use of subscribe can be min-
imised or avoided. The use of Push technology (for example ROS) results in
the classical producer-consumer problem (or bounded-buffer problem) of multi-
process synchronisation and its associated challenges (e.g. critical sections, and
message queues). Throughout, the call-back function f must be fast enough
to terminate and be ready to process the next invocation. Deadlocks, live-locks,
starvation, or similar concurrency issues can result in catastrophic consequences.
But even in the best of scenarios, a traditional, multi-threaded operating system
cannot usually guarantee a schedule that will meet deadlines for all tasks; hence,
there is simply no guarantee when an specific event will be handled. With this
in mind, it is somewhat surprising that the robotics community is adopting this
approach by endorsing ROS which for inter-process communciation uses the net-
work stack to relay messages (wiki.ros.org/ROS/TCPROS), and even nodelets
(that only work within the same process) use a subscribe and queuing mech-
anism. In fact, the issues of using networking infrastructure as the transport
layer has prompted some developers to state that ROS was originally intended
for a single host, and not necessarily suitable for distributed communication [14].
However, others (MOOS, Microsoft Robotics Studio, naoqi non-local modules,
etc.) have also built on top of TCP/IP, nondeterministic, multi-threaded pro-
cessing and/or event-handling of the underlying operating systems; and thus face
the very same challenges.

3 Arrangements of Logic-Labeled Finite-State Machines

We now present clfsm, our compiler and scheduler for arrangements of llfsms .
Since Harel’s seminal work [16], finite-state machines (FSMs) have become ubiq-
uitous models of system behaviour. Finite-state machines guide coding and
model-based system development [29,30]. Among the software engineering com-
munity, FSMs machines are ubiquitous. Studies have demonstrated that, jointly
with class-diagrams, state-charts are the top most used UML artefact [7,27].
FSMs are the best understood tool for model-driven development in software
engineering [24]. For modelling the behaviour of robots, variants of FSMs have
also become fundamental. Augmented FSMs are the basis of the subsumption [4]
and reactive software architectures [23]. In RoboCup, several teams and their
research groups use FSMs to model and implement behaviours [18,22,25,28].

http://wiki.ros.org/ROS/TCPROS

Efficient Interprocess Relay of C++11 Objects 185

Tools for deploying systems using FSMs include the robotics simulator Webots
(offering BotStudio) [26], StateWORKS [30] and MathWorks R© StateFlow, ROS
has a tool named smach [3] (wiki.ros.org/smach), Qt’s State Machine Framework
(qt-project.org/doc/qt-5/statemachine-api.html) that is based on the W3C’s
state chart XML (SCXML) (www.w3.org/TR/scxml/), the rFSM [18] framework
in Lua, and the boost library Meta State Machine and StateChart templates.

Key characteristics of clfsm include the following.

1. Complete POSIX and C++11 compliance.
2. Open source catkin ROS package release (mipal.net.au/downloads.php).
3. Transitions are labeled by Boolean expressions (not events), facilitating for-

mal verification and eliminating all need for concerns about event queues.
4. Transition labels are arbitrary C++11 Boolean expressions, enabling reason-

ing into what may otherwise seem a purely reactive architecture.
5. Handling of machines constructed with states that have UML 2.0 (or

SCXML) OnEntry, OnExit, and Internal sections with clear semantics.
6. Guaranteed sequential ringlet schedule for the concurrent execution of FSMs

(removing the need for critical sections and synchronisation points).
7. Efficient execution as the entire arrangement runs as compiled code without

thread switching.
8. Being agnostic to communication mechanisms between machines, allowing,

for example use with ROS:services and ROS:messages – however, we recom-
mend the use of our class-oriented gusimplewhiteboard.

9. Mechanisms for sub-machine hierarchies and introspection to implement
complex behaviours. FSMs can be suspended, resumed, or restarted, as well
as queried as to whether they are running or not.

10. Formal semantics that enables simulation, validation, and formal verification.
11. Associated tools such as (MiEditLLFSM and MiCASE) that enable rapid de-

velopment of FSM arrangements.

Some details of these characteristics as well as examples of their use will
follow. The corresponding download includes full documentation and exam-
ples. Videos illustrating the tools (youtu.be/gN6rIveCWNk) and using ROS

(youtu.be/AJYA2hB4i9U) are available online.

4 The Logic-Labeled Finite-State Machine Model

Each llfsm consists of a set S of states, and a transition table T : S × E → S.
There is a distinguished state s0 ∈ S, named the initial state. Our llfsms are of
the synchronous type [16]. The set E are expressions. This is a very important
distinction from all other approaches where events label transitions (the domi-
nant UML approach). The use of Boolean expression to label transitions has a
series of advantages: it simplifies semantics, facilitates scheduling and handling
of concurrency [9,10,12] and enables validation and formal verification [11]. This
produces rapid development and simulation of robot behaviours [5].

http://www.cyberbotics.com
http://wiki.ros.org/smach
http://qt-project.org/doc/qt-5/statemachine-api.html
http://www.w3.org/TR/scxml/
http://mipal.net.au/downloads.php
http://youtu.be/gN6rIveCWNk
http://youtu.be/AJYA2hB4i9U

186 V. Estivill-Castro, R. Hexel, and C. Lusty

Since any C++11 expression can label a transition, we can incorporate reason-
ing and deliberative architectures in what otherwise would be a reactive archi-
tecture. Thus, it is possible to include an entire reasoning system, for example
using Prolog and invoke it from C++11 using standard APIs. This approach was
used for poker hands [2] and to build a poker playing robot. We have found
DPL, a common sense non-monotonic logic, very useful for declarative aspects.
For example, DPL can be used for expressing the soccer off-side rule in a way
similar to the original FIFA specification [1], or describing when it is dangerous
for an elderly lady to face a stranger [1]. The C++11 llfsm mechanism has been
shown to suitably integrate planning incorporating Planning Domain Definition
Language (PDDL) planners [8]. Fig. 1 illustrates the power of merging reason-
ing with the C++11 statements in state activities using a simplified example of a
vision pipeline. Here, a blob (of orange pixels) reported by the vision module is
analysed for its fitness to correspond to a ball. The C++11 arithmetic enables the
calculation of values such as the ratio of orange pixels to other pixels in the blob.
The DPL rules determine that blobs whose orange-colour density is not higher
than a threshold are not to be considered balls. Other conditions include how
close the blob matches a square as opposed to an elongated rectangle1. Figure 2
shows a feedback loop control for keeping the ball in sight.

On Entry
toleranceRatio=2; densityTolerance=3;
badProportionXY= blob.sizeX()/blob.sizeY() > toleranceRatio;
badProportionYX= blob.sizeY()/blob.sizeX() > toleranceRatio;
badDensityVsDensityTolerance = (blob.area() / blob.numPixels()) >
densityTolerance;

On Exit

Internal

BLOB_FOUND

BALL_FOUND

is_it_a_ball

%%%%%%%%%%% BallConditions.d

name{BALLCONDITIONS}.

input{badProportionXY}. input{badProportionYX}.

input{badDensityVsDensityTolerance}.

BC0: {} => is_it_a_ball.

BC1: badProportionXY => ~is_it_a_ball. BC1 > BC0.

BC2: badProportionYX => ~is_it_a_ball. BC2 > BC0.

BC3: badDensityVsDensityTolerance => ~is_it_a_ball. BC3 > BC0.

output{b is_it_a_ball, "is_it_a_ball"}.

Fig. 1. A state with calculation and a Decisive Plausible Logic (DPL) theory that defines
when a blob is a ball

Fig. 2. A simple ball tracker

The semantics for T (si, et) = sj is that when the machine is in state si ∈ S
and et evaluates to true, the machine will move to the state sj . Without loss of

1 We are thankful to Francisco Mart́ın-Rico from the SPiTeam for this example.

Efficient Interprocess Relay of C++11 Objects 187

expressivity, the transitions are considered in sequence (as in MathWorks R© and
StateFlow with SymLink), that is, T (si, et) = sj will transition to state sj if et
evaluates to true and no prior es (∀s < t) evaluates to true in T (si, ·).

The OnEntry section is executed upon arrival from a different state, while
actions in the OnExit section are executed iff a transition fires. Thus, the ac-
tions in these two sections are executed once and only once. The third section
(like UML’s do) is executed only if none of the transitions fires. When the in-
ternal actions are completed, the cycle repeats with evaluating the sequence of
expressions of the transitions out of the state. One pass over the cycle is a ringlet.

Variables and Machine Communication. The compiler is completely agnos-
tic of custom libraries or communication mechanisms. Variables can be created
in any C++11 context. Importantly, variables can be created at the state level
(intra-state-variables), or at the machine level, exclusive to one and only one
llfsm instance and its states.

Concurrency Model. In one ringlet execution there is only one read operation
at the beginning, by which a local copy of each external variable is made before
the execution of any section or the evaluation of any expression labelling any
transition. This read operation is a snapshot phase (similar to rFSM evaluation
contexts, in order to avoid open environment [18] inconsistencies). That is, the
execution context of a ringlet for external variables remains the same throughout.
At the end of the ringlet, a write reflects external variables. While the ringlet
dispatcher will ensure ringlet atomicity for concurrent llfsm , the snapshot phase
will also ensure a consistent view of the world outside the FSM arrangement,
such as external events (e.g. new sensor readings). If no transition fires and the
internal actions complete, then a new ringlet commences.

An ensemble of llfsms is executed in a round-robin fashion from one ringlet
of one llfsm to the next. Thus, the llfsm arrangement is a single sequential
execution, executed by one thread. While event-driven execution of ringlets is
possible, the evaluation of logic expressions is predominantly state-based. This
is also reflected in the convention to use idempotent whiteboard messages for
communication. Moreover, time-driven guards such as after() and after ms()

allow the designation of precise state times and an execution style that follows
the principles of the time-triggered architecture [20].

The use of a deterministic schedule for the arrangement brings several advan-
tages over a nondeterministic, multi-threaded approach. From the design point of
view, open concurrency (where the management of switches between threads is
left to the system) puts an unnecessary cognitive load on the behaviour designer
as it opens all sorts of needs for synchronisation, and vigilance of nondeter-
ministic communication delays. Burdens include managing critical sections and
fairness as well as avoiding deadlocks, live-locks, and starvation (not to mention
the associated complexity of CPU context switch overhead, and other system
overhead). Our model enables formal correctness verification of models. Model-
checking on concurrent threads, by contrast, quickly becomes infeasible for all
but the most trivial tasks, as it must consider the combinatorial explosion of all

188 V. Estivill-Castro, R. Hexel, and C. Lusty

possible state combinations in the system. For robotic systems and embedded
systems where there are strict timing requirements, sequential execution is su-
perior to the multiplication of threads [25]. The models produced with llfsms
can be verified using public domain model-checking technology (NuSMV) within
a matter of seconds [13,5], but using behaviour trees – which spawn parallel
threads – requires several days of CPU time [15].

Scalability. Composition of machines is not only essential for abstraction, but
it is a very powerful encapsulation mechanism when building complex (deeply
nested) state machines. Complex models can be created by composing simple
llfsms into more complex behaviours, and those in turn, into still more complex
behaviours; clfsm supports Brooks’ famous subsumption architectures [4], with-
out prescribing strict, hierarchical dependencies. In fact, an entire multi-agent
system can be built this way. Here is how the clfsm tool supports subsumption
architectures or similar organisations.

Each llfsm has a single designated state, the SUSPEND state, that has an
(implicit) transition to this state from each of the machine’s states. This tran-
sition is the first one evaluated in every sequence of outgoing transitions and
checks whether the machine shall be suspended. The libclfsm run-time library
provides the suspend() function which allows a machine to suspend another.
When the token of execution arrives at the machine named in the suspend,
the OnEntry section of SUSPEND gets executed. Implicit transitions from the
SUSPEND state back to the each state also exist that are labelled with the des-
tination state’s name. A transition to the previously running state, the resume
state, gets triggered by the resume() libclfsm call. Alternatively, restart()
can be used to unsuspend a machine and restart it from its initial state. Thus,
SUSPEND acts like any other state, with exactly the same semantics (e.g. the
machine will execute its Internal section while suspended). Any state can be
designated the SUSPEND state (an empty one is create by clfsm if none exists).
Based on this, hierarchical control of machines that, in turn, start other ma-
chines, can be achieved by explicitly suspending sub-machines in the OnEntry
section of SUSPEND (by issuing suspend() calls to all sub-machines).

In addition to controlling the suspension of llfsms , libclfsm provides an
is suspended() introspection predicate that can be used as a transition label
(or as part of any other Boolean expression in the C++11 code) to detect whether
a given machine is suspended or not.

5 The gusimplewhiteboard Implementation

gusimplewhiteboard is a library that implements a decentralised, distributed
access pattern without the need to initiate a broker (in ROS, ROS:roscore is
a pre-requisite and must be running before any nodes can communicate). To
use gusimplewhiteboard, a module simply needs to include the corresponding
headers and link against the library. The first module to execute on a host creates
the corresponding data structures for the blackboard in shared memory.

For example, to issue a message for debugging purposes, one can use a prede-
fined message type Print. The module must then includes two public files.

Efficient Interprocess Relay of C++11 Objects 189

#include "gugenericwhiteboardobject.h"
#include "guwhiteboardtypelist generated.h"

Then, to add Message to the blackboard, one declares (in the guWhiteboard

name space), a blackboard singleton instance for the object (using a known
blackboard type) by appending t to the type name:

Print t print;

Now, we can use a setter (or, for convenience, the overloaded function call
operator ()) to actually post a message (a std::string for Print):

print("Hello, blackboard");

To observe the effects of the module we provide a tool guWhiteboardMonitor to
inspect the messages as they are posted to the blackboard2. The monitor makes
visible the effect of the print by displaying the following output.

Type: Print Value: Hello, blackboard

To construct the classes for objects to become known to the blackboard, a
default constructor, the assignment operator, and a description() serialisation
method that returns a std::string, are required. The header file of newly
defined classes must be placed in a well-known directory with some pre-processor
directives and the class name must be associated with its type(s) in a well-known
file3. With this, any module can construct blackboard objects of that class. E.g.,
a class Ball Belief could describe the coordinates of the centre of an orange
blob (likely to be the ball) in the reference framework of the camera image. The
following C++11 code constructs an object of such a class.

Ball Belief a ball(50,30);

The gusimplewhiteboard approach to add Message comprises two statements,
first declaring the handler, then adding the object to the blackboard.

Ball Belief t wb ball; wb ball.set(a ball);

This is much simpler than the analogous construction of a publisher in ROS (there
is no need to explicitly register as a node and obtain a NodeHandle as well as
requesting to obtain a ROS:Publisher object).

Introspection. We already mentioned guWhiteboardMonitor, a tool that
makes use of description(). Readers familiar with ROS may also be aware
of the versatility provided by being able to publish messages of a certain topic
onto the communication mechanism through rostopic pub. Our corresponding
tool is gusimplewhiteboardposter. This tool is based on the requirement that
pre-existing classes, as well as new user-defined classes that want to support in-
trospection, need to implement a method called from string(). This method,
at a minimum, deserialises an instance of the class previously serialised by the
description() method (but may include arbitrarily versatile parsing of more
user-friendly input strings). It should be noted that this is optional and its im-
plementation only impacts on gusimplewhiteboardposter.

2 This is analogous to ROS’s rostopic echo. By default, the guWhiteboardMonitor

displays every object posted, but it is possible to specify a type and the effect is
analogous to rostopic echo displaying the data published on a ROS:topic.

3 Again, this is analogous to the ROS construction of a msg description.

190 V. Estivill-Castro, R. Hexel, and C. Lusty

Getting Messages from the Blackboard. As discussed before, the preferred
approach of our software architecture is a synchronous type of concurrency,
analogous to a time-triggered architecture (as opposed to an event-driven ar-
chitecture). It is well documented in the literature [19,21] that the reliability of
time-triggered systems is significantly easier to determine than event-driven sys-
tems. Time-triggered systems handle peak-load situations by design. The band-
width of communications and message rate is constant across low, regular, and
peak load situations. Event-driven systems are inherently unpredictable, they
can collapse during peak loads or event showers, and no analytical guarantees
can be given for their performance in worst-case scenarios.

In a round-robin scheduling of modules interested in a message, a module that
has the execution token (the module that has the CPU) can request information
from the blackboard. Besides including the corresponding header files for the
user-defined class, the actual code to achieve this is also very simple.

Ball Belief t wb ball;
Ball Belief ball = wb ball.get(); // or alternatively: ball = wb ball();

This Pull approach always retrieves the most recent information, i.e. the last
information that was published. For ease of implementation of event-triggered
subscribers, gusimplewhiteboard provides a class analogous to the Push ap-
proach, the whiteboard watcher. A module that wishes to become a subscriber
carries out a subscribe(T, f) operation as follows.

whiteboard watcher *watcher;
watcher = new whiteboard watcher();
SUBSCRIBE(watcher, class T, subscriber class, subscriber class ::f);

The semantics of such a subscription (e.g., the semantics of ROS:subscriber)
is fixed size queuing followed by the invocation of the callback function sub-
scriber class ::f (using libdispatch, https://libdispatch.macosforge.org).
There is limited queuing of messages and, for the reasons outlined earlier, in
our own code we deprecate the use of event-triggered queuing in favour of time-
triggered handling of idempotent messages.

6 Putting gusimplewhiteboard into Practice

Our gusimplewhiteboard has proven a very efficient and effective communi-
cation infrastructure of objects defined by fully fleshed C++11 classes. In com-
bination with clfsm, they provide a very flexible control architecture [2] that
minimises concurrency concerns and has facilitated the rapid development of
complex, high-level behaviours through composition of modules and llfsms .
Moreover, C++11’s static type system enables far more secure software develop-
ment. Libraries and modules have been developed for image processing, sensor
noise filtering, localisation and navigation, object tracking, and motor control,
for Naos, as well as for the ePuck, and simulators such as Webots. Fig. 3 on the
next page shows the power of fully C++11 compliant messages with clfsm. The
two states implement a feedback loop for an ePuck to follow a line. The code
in between #ifdef DEBUG and #endif demonstrates that even pre-processing

https://libdispatch.macosforge.org
http://www.cyberbotics.com

Efficient Interprocess Relay of C++11 Objects 191

Fig. 3. Two states that use gusimplewhiteboard services to perform a feedback loop
to control an ePuck that follows coloured lines

directives are handled and thus, debugging and monitoring information can be
relayed to the blackboard, and reviewed by guWhiteboardMonitor. As per con-
trol theory, the sensing and estimation of the discrepancy between the desired
system output and the sensor reading is encapsulated in the FEEDBACK state.
The statements

WEBOTS NXT camera t camera data ptr;
cameraWidth = camera data ptr.get().width();

retrieve the camera object from the blackboard using the camera data ptr han-
dler for a known message of the WEBOTS NXT camera class. We can Pull the
object and obtain an attribute in one go, e.g. camera data ptr.get().width().

delta = camera data ptr.get().get channel(theChannel).secondParameter()
- cameraWidth/2;

obtains a sensor message of the WEBOTS NXT bridge class. This demonstrates
the use of sophisticated class composition allowed by C++11 (as opposed to the
ROS:msg restrictions). Finally, delta stores the measured error, followed by the
computation of the desired motor target speeds. The SET MOTORS SPEED
state simply constructs a local WEBOTS NXT bridge object and posts it to
the whiteboard. You can see a video of this state machine in action at
http://youtu.be/F8K4V78vUbk

Of course gusimplewhiteboard can be considered an alternative to the event-
driven blackboard control architectures developed by the robotics community.
Our approach aims at establishing components for which formal verification
is possible. However, its presentation here is not meant to be a replace-
ment for ROS:roscore, ROS:services, or ROS:nodelets, but a complement.

http://youtu.be/F8K4V78vUbk

192 V. Estivill-Castro, R. Hexel, and C. Lusty

In fact, we have a gusimplewhiteboard-ROS bridge that enables relaying of
data across ROS:core and gusimplewhiteboard: since one of the basic ROS:msg
types is String.msg and classes known to gusimplewhiteboard implement the
description()method as a serialisation to string and the from string()meth-
ods as a materialisation from a string, the bridge is a publisher/subscriber across
ROS:roscore and gusimplewhiteboard that relays messages.

The capacity of clfsm and gusimplewhiteboard in day-to-day use is remark-
able. We currently run 27 llfsms on board Alderbaran’s Nao robot to implement
the behaviour of MiPal ’s soccer player. We cross-compile the machines to native
code before they are set-up for execution on the robot. Among those 27, there is
one machine that follows the states of the SPL-league game controller, providing
an unambiguous, formal interpretation of the standard platform league rules.

Performance. We have implemented a comparison catkin package, benchmark-
ing gusimplewhiteboard posting and ROS topic publishing. Thus, the compiler
used is the same and so are the optimisation flags. The benchmark has been
tested with several computers, but the data shown is from a late 2013 Mac Pro,
3 GHz 8-Core Intel Xeon E5, 32 GB memory 1867 MHz DDR3 ECC RAM. The
data type is very simple, it is a Boolean value using std msgs::Bool in the case of
ROS and the boolean type from C++11 for the gusimplewhiteboard. Larger, more
complicated types make ROS even slower. For example, for an add Message, the
gusimplewhiteboard delivers 411,895,543 messages per second while ROS only
manages 47,925. Moreover, ROS seems to be affected by kernel and networking
constraints, e.g., a bottleneck in the number of messages per second the kernel
can push through locally. The delays in ROS have been documented before [6],
but our catkin benchmark here shows at least 50 times faster performance (and
in the CPUs on board of robots, the gap would be larger).

gusimplewhiteboard ROSmacports Hydro
get Message 0.0024 μs ROS:subscribe() 20.14 μs
add Message 0.0120 μs ROS:publish() 20.87 μs

7 Conclusion

The released clfsm ROS package contains simple examples that demonstrate the
construction and execution of llfsms . Our videos demonstrate an arrangement of
6 llfsmsthat make a Nao avoid obstacles. The tools for building this behaviour
were used in a third year undergraduate course and students could construct this
behaviour within a single, two hour laboratory session. This provides evidence of
the flexibility and rapid prototyping and development that can be achieved with
clfsm. The full construction of this behaviour also appears in the download and
documentation of the MiEditLLFSM state machine editor. Compositions of
machines have also been used to create higher levels of navigation and planning
for the ePuck in the Webots simulator (also a student lab session), using a
feedback loop control approach to construct a coloured-line follower.

http://www.cyberbotics.com

Efficient Interprocess Relay of C++11 Objects 193

References

1. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning
on board a sony AIBO. In: Lima, P. (ed.) Robotic Soccer, ch.3, pp. 45–70. I-Tech
Education and Publishing, Austria (2007)

2. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Architecture for hybrid
robotic behavior. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B.
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 145–156. Springer, Heidelberg (2009)

3. Bohren, J., Cousins, S.: The SMACH high-level executive [ROS News]. IEEE
Robotics & Automation Magazine 17(4), 18–20 (2010)

4. Brooks, R.A.: Intelligence without reason. In: 12th ICJAI 1991, Sydney, pp. 569–595
(1991)

5. Coleman, R., Estivill-Castro, V., Hexel, R., Lusty, C.: Visual-trace simulation of
concurrent finite-state machines for validation and model-checking of complex be-
haviour. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012.
LNCS, vol. 7628, pp. 52–64. Springer, Heidelberg (2012)

6. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.-M.: MIRA - middle-
ware for robotic applications. In: 2012 IEEE/RSJ IROS, Portugal, pp. 2591–2598
(2012)

7. Erickson, J., Siau, K.: Can UML be simplified? practitioner use of UML in separate
domains. In: 12th EMMSAD 2007, vol. 365, pp. 87–96. CEUR (2007)

8. Estivill-Castro, V., Ferrer-Mesters, J.: Path-finding in dynamic environemnts with
PDDL-planners. In: 16th Int. Conf. Advanced Robotics (ICAR), Montevideo
(2013)

9. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines semantics,
simulation, and model checking. In: Int. Conf. on Model-Driven Engineering and
Software Development MODELSWARD, pp. 182–189. SCITEPRESS, Barceloan
(2013)

10. Estivill-Castro, V., Hexel, R.: Module isolation for efficient model checking and its
application to FMEA in model-driven engineering. In: 8th ENASE Evaluation of
Novel Approaches to Software Engineering, pp. 218–225. INSTCC, Angers (2013)

11. Estivill-Castro, V., Hexel, R.: Correctness by construction with logic-labeled finite-
state machines – comparison with Event-B. In: 23rd Australasian Software Engi-
neering Conf., Sydney. IEEE Computer Soc. CPS (2014)

12. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient modelling of embed-
ded software systems and their formal verification. In: 19th Asia-Pacific Software
Engineering Conf (APSEC 2012), pp. 428–433. IEEE Computer Soc., CPS (2012)

13. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Failure mode and effects analy-
sis (FMEA) and model-checking of software for embedded systems by sequential
scheduling of vectors of logic-labelled finite-state machines. In: 7th Int. IET System
Safety Conf., Edinburgh, UK, Paper 3.a.1 (2012)

14. Garber, L.: Robot OS: A new day for robot design. Computer 46(12), 16–20 (2013)
15. Grunske, L., Winter, K., Yatapanage, N., Zafar, S., Lindsay, P.A.: Experience with

fault injection experiments for FMEA. Software, Practice and Experience 41(11),
1233–1258 (2011)

16. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM T. on
Software Engineering Methodology 5(4), 293–333 (1996)

17. Hayes-Roth, B.: A blackboard architecture for control. In: Distributed Artificial
Intelligence, San Francisco, pp. 505–540 (1988)

18. Klotzbuecher, M.: rFSM v1.0-beta6, http://www.orocos.org/rfsm

http://www.orocos.org/rfsm

194 V. Estivill-Castro, R. Hexel, and C. Lusty

19. Kopetz, H.: Should responsive systems be event-triggered or time-triggered? IEICE
Transactions on Information and Systems 76(11), 1325 (1993)

20. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. of the IEEE 91(1),
112–126 (2003)

21. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Transactions on Programming Languages and Systems 6, 254–280 (1984)

22. Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M.: Designing agent behavior with
the extensible agent behavior specification language XABSL. In: Polani, D., Brown-
ing, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020,
pp. 114–124. Springer, Heidelberg (2004)

23. Mataric, M.J.: The Robotics Primer. MIT Press (2007)
24. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven archi-

tecture. Addison-Wesley, Reading (2002)
25. Merz, T., Rudol, P., Wzorek, M.: Control system framework for autonomous robots

based on extended state machines. In: ICAS 2006, Silicon Valley, vol. 14 (2006)
26. Michel, O.: Webots: Professional mobile robot simulation. J. Advanced Robotics

Systems 1(1), 39–42 (2004)
27. Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used UML diagrams? a

preliminary survey Technical report, Universitá di Genova, Italy (DIBRIS) (1998)
28. Risler, M., von Stryk, O.: Formal behavior specification of multi-robot systems us-

ing hierarchical state machines in XABSL. In: AAMAS 2008-Workshop on Formal
Models and Methods for Multi-Robot Systems, Estoril (2008)

29. Samek, M.: Practical UML Statecharts in C/C++, 2nd Edition: Event-Driven
Programming for Embedded Systems. Newnes (2008)

30. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with
Finite State Machines: A Practical Approach. CRC Press, NY (2006)

A Survey on Domain-Specific Languages in Robotics

Arne Nordmann1,2, Nico Hochgeschwender3, and Sebastian Wrede1,2

1 Cognitive Interaction Technology Excellence Cluster (CITEC), Bielefeld University, Germany
2 Institute for Robotics and Cognition (CoR-Lab.), Bielefeld University, Germany

3 Department of Computer Science, Bonn-Rhein-Sieg University, Germany

Abstract. The design, simulation and programming of robotics systems is chal-
lenging as expertise from multiple domains needs to be integrated conceptually
and technically. Domain-specific modeling promises an efficient and flexible con-
cept for developing robotics applications that copes with this challenge. It allows
to raise the level of abstraction through the use of specific concepts that are closer
to the respective domain concerns and easier to understand and validate. Further-
more, it focuses on increasing the level of automation, e.g. through code gen-
eration, to bridge the gap between the modeling and the implementation levels
and to improve the efficiency and quality of the software development process.
Within this contribution, we survey the literature available on domain-specific
(modeling) languages in robotics required to realize a state-of-the-art real-world
example from the RoboCup@Work competition. We classify 41 publications in
the field as reference for potential DSL users. Furthermore, we analyze these con-
tributions from a DSL-engineering viewpoint and discuss quantitative and quali-
tative aspects such as the methods and tools used for DSL implementation as well
as their documentation status and platform integration. Finally, we conclude with
some recommendations for discussion in the robotics programming and simula-
tion community based on the insights gained with this survey.

1 Introduction

Model-driven and domain specific development methods are recognized to cope with
the challenges of building complex heterogeneous systems in domains such as aerospace,
telecommunication and automotive [1] which face similarly complex integration and
modeling challenges as advanced robotics. In the last years, this approach was actively
adapted to the robotics domain to handle the complexity of robotics systems and help
with the separation of concerns regarding the functional architecture and software archi-
tecture. One goal is to support the development and ease design space exploration. This
requires to support the entire experimental toolchain ranging from purely functional
modeling to software architectural and technical aspects such as software deployment.

The purpose of this survey is to report on the state of the art in domain-specific lan-
guages in robotics, and provide an overview on sub-domains relevant for programming
and simulation of robotics applications that are already supported through domain-
specific modeling methods. Similar surveys, yet for a wider scope, have been conducted
by Biggs and MacDonald [2] as well as Van Deursen et al. [1]. One targeted audience of
this survey is the potential DSL users, the domain experts looking for method and tool
support in their domain. This survey provides means to assess availability and usability

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 195–206, 2014.
c© Springer International Publishing Switzerland 2014

196 A. Nordmann, N. Hochgeschwender, and S. Wrede

of the DSLs to formulate their experimental or system hypotheses and generate repro-
ducible experiments. We also target DSL developers and system integrators in robotics,
to provide an overview on the state of the art, common solutions and best practices, and
foster scientific exchange and community building inside the domain.

The paper starts with a short introduction to the core concepts of domain-specific
modeling in Section 2 and defines a minimal set of methodological requirements on
DSL approaches to be included in the systematic review. Subsequently, Section 3 analy-
ses the targeted domain and exemplifies the use of domain-specific modeling techniques
along a reference example from the RoboCup@Work competition. Section 4 explains
how the literature survey was conducted along a defined protocol, while Section 5 clas-
sifies and quantitatively assesses the found literature, also providing an overview of
several non-functional aspects. On that basis, Section 6 discusses some of these as-
pects along key publications and identifies best practices both for DSL engineering
and DSL-related publications and documentation. Section 7 summarizes the survey and
propose recommendations for further community development (exchange among re-
searchers) and discusses requirements for re-use of knowledge provided with domain-
specific models in the area of simulation and programming of robotic applications.

2 Domain-Specific Languages

In order to perform a systematic review on domain-specific modeling for simulation
and programming of robotics applications, a necessary prerequisite is to define what we
consider a domain-specific (modeling) language and what we don’t. According to van
Deursen et al. [1], a DSL is defined as a “programming language or executable specifi-
cation language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain”. The ab-
stractions and notations must be “natural/suitable for the stakeholders who specify that
particular concern” [3]. These definitions already highlight two fundamental character-
istics of well-designed DSLs: their expressive power targeted a specific domain and the
definition of formal notations intuitively understandable for domain experts while being
machine processable, eventually yielding executable models of robotics applications.

Model-driven software development with DSLs aims to extract agreed-upon syntax
and semantics from the problem domain, e.g., by reviewing existing code examples and
APIs, through the analysis of formal descriptions found in the literature or the appli-
cation of further analysis patterns [4]. Based on the results of these domain analysis
steps, the identified abstractions and desired notations can be realized as a DSL. In-
stead of hiding the domain concepts in a compilation unit implemented with traditional
programming techniques, the DSL approach provides the specific abstractions at the
model level. In contrast to General Purpose Languages (GPL) such as C++, Java, or
Python, DSLs usually contain only a restricted set of notations and abstractions. Com-
pared to external DSLs that define their own syntax and semantics, so-called internal
DSLs are embedded in extensible general purpose languages such as Lua, Racket or
Ruby. They extend the syntax and potentially the semantics of the host language with
domain-specific notations and abstractions. This adds the expressive power of the DSL

A Survey on Domain-Specific Languages in Robotics 197

to the GPL. While internal DSLs typically rely on (and are bound to) the execution
semantics of their host language, external DSLs are transformed to a format that directly
allows execution on a target platform or interpretation, e.g., through a virtual machine.

Similarly, Domain-specific Modelling Languages (DSML) that use graphical nota-
tions must be differentiated from general purpose modeling languages such as UML or
SysML. While it is still possible to add domain-specific abstractions to these languages,
e.g. using UML Profiles (cf. MARTE [5] to describe and analyze real-time systems),
adding domain-specific notation to graphical modeling languages is much harder.

In order to efficiently implement and apply a DSL approach for the development
of robotics systems and to fully exploit its benefits, DS(M)Ls are typically realized in
toolchains tailored to model-driven development such as the Eclipse Modelling Pro-
ject [6]. These so-called language workbenches such as MPS [7] offer extensive sup-
port for the development of the DSLs themselves and for the actual system modeling
tasks performed by a language user. DSLs developed in these environments facilitate
the users modeling tasks typically with textual and/or graphical editors with rich code
completion and dynamic constraint checking. Furthermore, these environments provide
extensions points to plug-in required model-to-model (M2M) and model-to-text (M2T)
transformations in order to generate code from system models that integrates with the
overall environment used for the development of a robotics application.

The above mentioned aspects comprise fundamental characteristics that need to be
addressed in a DSL approach. Hence, the DSL approaches considered in this survey i)
must provide a language definition or meta-model, e.g. Ecore or (E)BNF, ii) must be
textual (internal or external) or graphical languages, iii) must provide an example of
their concrete syntax (notation), iv) should1 explain how a mapping to a target tech-
nology is achieved. While these criteria are formulated from a software engineering
perspective, the most important criteria to decide whether a paper or article is included
in the systematic review is whether or not it targets a relevant concern in the robotics
domain. In order to allow for a more fine-grained mapping of DSL-related publica-
tions that conform to the criteria introduced above to the robotics domain the following
section identifies a set of relevant sub-domains along a reference example that we con-
sider particularly relevant and mature in the context of simulation and programming of
robotics systems.

3 Domain Analysis

To exemplify the domain of this survey we use the Precision Placement Test (PPT)
from the RoboCup@Work competition. It is a new competition in RoboCup that targets
the use of robots in industrial scenarios where robots cooperate with human workers
and machines for complex tasks ranging from manufacturing, assembly, automation,
and parts-handling up to general logistics. The PPT exemplifies the complexity and
huge variability of competences and capabilities required to develop today’s robot ap-
plications. We consider this example to represent the current state of the art involving
mature robotics disciplines so that we expect to find consolidated knowledge in the

1 This relaxation allows to include purely analytical approaches in the review, which we also
consider relevant contributions.

http://www.robocupatwork.org/

198 A. Nordmann, N. Hochgeschwender, and S. Wrede

(a) PPT platform used in RoboCup@Work (b) Kinematics DSL example [10]

form of DSLs. In the following we will explain the PPT and also synthesize a core set
of subdomains2 which are relevant in solving the task and later used for classification
of the surveyed publications. We are aware that this list is non-conclusive, but focus on
these for the sake of brevity.

The main objective of the PPT is to assess the robot’s ability to grasp and place ob-
jects into object-specific cavities (see Fig. 1a). The objects are taken from a set of (a pri-
ori known) standardized industrial objects such as screws, nuts, bolts and profiles. For
the test a single robot is placed in front of a service area which stores the objects to be
manipulated. The objective is to pick each object and place it in the corresponding cav-
ity. Once the objects are picked up and placed or the time is over the task ends. To simu-
late and solve the problem one usually first needs to know the Robot Structure 1 of
the target robot platform. This comprises representation of the actual physical realiza-
tion of robot platforms (e.g., mobile base and manipulator) in terms of their mechanical
structure and kinematic as well as dynamic properties. This subdomain roughly corre-
sponds to Part B of Springer Handbook of Robotics (Robot Structures). Furthermore,
Coordinate Representations and Transformations 2 between parts of the robot and

its environment are required to enable computation of position, force, and velocity
of the robot joints. This subdomain roughly corresponds to Part A in the Handbook
of Robotics (Robotics Foundations). Exemplary DSL representatives for this subdo-
main are URDF [8] and the work of Frigerio et al. [9], shown in Fig. 1b. In general,
the PPT demands advanced Perception 3 and Reasoning and Planning 4 abil-
ities, namely to recognize and match objects and the correct cavities. Further, precise
Manipulation and Grasping 5 abilities are required, namely to grasp and place the

object in such a manner that it fits into the cavity. These subdomains roughly corre-
spond to Part C (Sensing and Perception), Part A Chapter 9 (AI Reasoning Methods for
Robotics), and Part D Chapter 28 (Grasping) in the Handbook of Robotics.

For each sub-task (object/cavity detection/recognition and object manipulation) there
are several options to approach the problem which all require Coordination 6 primi-
tives such as finite-state machines. For instance, the placement of objects in the cavities
can be achieved through first perceiving and computing the position of the cavities and
then generating a plan yielding a pose where the object can be dropped in the cavity.
A more control-based approach is to compute an approximately position of the cavity

2 Subdomains will be marked in the format Name # where # is a continuing number.

A Survey on Domain-Specific Languages in Robotics 199

and then placing the object on the arena and sliding the object into the cavity by means
of force-feedback. This approach demands advanced Motion Control 7 abilities
in order to cope with uncertainties in the environment and fulfill constraints such as
force-limits which corresponds to roughly to Part A Chapter 7 (Force Control) in the
Handbook for Robotics. Example DSLs for this task are TFF [11] and iTaSC [12]. The
presented capabilities all need to be integrated in an overall Architecture 8 with

Components 9 as the basic building blocks which are preferable re-usable also for
other applications. This domain corresponds roughly to Part A Chapter 8 (Robotic Sys-
tems Architectures and Programming) in the Handbook of Robotics.

4 Process

The selection of the publications for this survey focused on publications that developed
domain-specific languages (DSL) to conceptualize aspects of the introduced domain
or support certain research or engineering aspects. To find these, we scanned relevant
robotics and software conference proceedings for a set of keywords. For the actual
selection process we defined two inclusion criteria (IC) and two exclusion criteria (EC):

Table 1. Inclusion criteria (IC) and exclusion criteria for publications in this survey

IC1 In proceedings of the International Conference on Intelligent Robots and Systems (IROS),
International Conference on Robotics and Automation (ICRA), International Confer-
ence on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR),
Robotics: Science and Systems Conference (RSS), workshop on Software Development
and Integration in Robotics (SDIR) or the workshop on Domain-Specific Languages in
Robotics (DSLRob) and search matching one of the keywords “domain-specific lan-
guage”, “domain-specific modeling language”, “generative programming”, “specifica-
tion language”, “description language”, or “code generation”.

IC2 in proceedings of the Code Generation Conference (CG) and the International Conference
on Generative Programming: Concepts & Experiences (GPCE) and search matching one
of the keywords “robot” and “robotics”.

EC1 DSL does not model or support aspects of the introduced domain.
EC2 Either is no DSL or publication not complying with our definition from section 2, e.g.

notation not documented via grammar or example.

IC1 included 208 publications after removing duplicates, IC2 included additional 2
publications, adding up to a total of 210 publications. We consider all publications from
IC1 to pass EC1, as they passed through a review process of robotics conferences. EC2
filtered 169 publications, leading to a total of 41 publications that will be analyzed and
discussed in the remainder of this survey.

5 Analysis

This section assesses technical aspects across the publications in this survey. The publi-
cations are analyzed along their subdomains according to Section 3 and regarding their
temporal distribution as well as their utilized tool or method.

200 A. Nordmann, N. Hochgeschwender, and S. Wrede

Subdomains. A first analysis we did was grouping DSLs and their publications by com-
mon semantics, abstractions and use-cases according to the domain example introduced
in Section 3. This is intended to serve as a map for potential DSL users as well as foster
discussion and reuse of languages and the underlying models for DSL developers. The

Table 2. Overview of the surveyed DSLs and their subdomains: � = in focus, � = partially

Subdomain(s)

1 2 3 4 5 6 7 8 9
Struct. Transf. Perc. Plan. Manip. Coord. Ctrl. Arch. Comp.

Muehe2010 � �
Akim2010 � �
Reckhaus2010 �
Frigerio2011 � � �
Trojanek2011 � �
Anderson2011 �
Romero2011 �
Ingles2010 �
Angerer2012 � �
Klotzbuecher2012 �
Laet2012 �
Nordmann2012 � � �
Buchmann2013 � � �
Hochgeschw2013 �
Blumenthal2013 �
Dantam2012 �
Kilgo2012 �
Dhouib2012 � � �
Brugali2012 � � �
Vanthienen2013 �
Klotzbuecher2011 � �
Loetzsch2006 � �
Steck2011 �
Anderson2012 � �
Haas2012 �
Dai2002 �
Manikonda1995 � �
Kunze2011 � �
Kanayama2000 � �
Rosa2007 �
Graves1999 �
Tousignant2012 �
Murray1992 � �
RuggGunn1994 �
KressGazit2010 � � �
Ljungkrantz2007 � �
Thomas2013 � �
Ferstenberg1986 �
Bordignon2010 �

http://cor-lab.org/robotics-dsl-zoo#Muehe2010
http://cor-lab.org/robotics-dsl-zoo#Akim2010
http://cor-lab.org/robotics-dsl-zoo#Reckhaus2010
http://cor-lab.org/robotics-dsl-zoo#Frigerio2011
http://cor-lab.org/robotics-dsl-zoo#Trojanek2011
http://cor-lab.org/robotics-dsl-zoo#Anderson2011
http://cor-lab.org/robotics-dsl-zoo#Romero2011
http://cor-lab.org/robotics-dsl-zoo#Ingles2010
http://cor-lab.org/robotics-dsl-zoo#Angerer2012
http://cor-lab.org/robotics-dsl-zoo#Klotzbuecher2012
http://cor-lab.org/robotics-dsl-zoo#Laet2012
http://cor-lab.org/robotics-dsl-zoo#Nordmann2012
http://cor-lab.org/robotics-dsl-zoo#Buchmann2013
http://cor-lab.org/robotics-dsl-zoo#Hochgeschw2013
http://cor-lab.org/robotics-dsl-zoo#Blumenthal2013
http://cor-lab.org/robotics-dsl-zoo#Dantam2012
http://cor-lab.org/robotics-dsl-zoo#Kilgo2012
http://cor-lab.org/robotics-dsl-zoo#Dhouib2012
http://cor-lab.org/robotics-dsl-zoo#Brugali2012
http://cor-lab.org/robotics-dsl-zoo#Vanthienen2013
http://cor-lab.org/robotics-dsl-zoo#Klotzbuecher2011
http://cor-lab.org/robotics-dsl-zoo#Loetzsch2006
http://cor-lab.org/robotics-dsl-zoo#Steck2011
http://cor-lab.org/robotics-dsl-zoo#Anderson2012
http://cor-lab.org/robotics-dsl-zoo#Haas2012
http://cor-lab.org/robotics-dsl-zoo#Dai2002
http://cor-lab.org/robotics-dsl-zoo#Manikonda1995
http://cor-lab.org/robotics-dsl-zoo#Kunze2011
http://cor-lab.org/robotics-dsl-zoo#Kanayama2000
http://cor-lab.org/robotics-dsl-zoo#Rosa2007
http://cor-lab.org/robotics-dsl-zoo#Graves1999
http://cor-lab.org/robotics-dsl-zoo#Tousignant2012
http://cor-lab.org/robotics-dsl-zoo#Murray1992
http://cor-lab.org/robotics-dsl-zoo#RuggGunn1994
http://cor-lab.org/robotics-dsl-zoo#KressGazit2010
http://cor-lab.org/robotics-dsl-zoo#Ljungkrantz2007
http://cor-lab.org/robotics-dsl-zoo#Thomas2013
http://cor-lab.org/robotics-dsl-zoo#Ferstenberg1986
http://cor-lab.org/robotics-dsl-zoo#Bordignon2010

A Survey on Domain-Specific Languages in Robotics 201

Fig. 2. Temporal distribution of the publications in this survey ranging from 1986 to 2013

categorization is given in Table 2 and references the subdomains introduced in Sec-
tion 3. The table is an initial version, though, that we intend to update continuously
and maintain online3, enriched with the aspects discussed in the remainder of this sur-
vey. The left-most column of Table 2 references this online table, as space constraints
unfortunately don’t allow citation of all surveyed publications.

The initial grouping by subdomains seems reasonable, as the assignment of most
of the DSLs and publications to subdomains was quite straight-forward. However, the
number of publications per subdomain varies significantly. Whereas we found no DSLs
in the subdomain of Manipulation and Grasping 5 , Coordination 6 for example
seems to be quite well-covered as over 20 publications entirely or partially belong to
this subdomain. The Robot Structure 1 and Motion Control 7 subdomains are
also well-covered with roughly 10 publications each. These numbers may indicate how
well-explored or even stable a discipline or subdomain is.

Temporal Distribution. Model-driven and domain-specific approaches are on the rise
in robotics, we plotted the temporal distribution of the publications in this survey, as
shown in Fig. 2. The distribution clearly supports a positive trend of DSLs in robotics
respectively their publications, especially since around the year 2010 with several pub-
lications per year. This is equivalent to the start of the DSLRob workshop, the numbers,
however, clearly exceed the number of DSLRob publications per year, proving that this
is also a trend on general robotics conferences.

Methods / Tools. This section analyzes the methods and tools that were used for de-
velopment of the surveyed DSLs, as far as this is assessable via the publications or
referenced documentation. This comprises tool support for developing external DSLs,
as well as development of internal DSLs, as shown in Fig. 3.

The majority of DSLs assessed with this survey is realized as an external DSL. Al-
though different tools and methods are being used, Fig. 3 shows that the Eclipse Mod-
eling Project [6] (EMP) seems to be quite widely used. It therefore seems to be a good
integration point and opportunity for DSL compatibility in this domain. Some pub-
lications mentioned the extensive EMP tool-support explicitly as a big advantage of

3 http://cor-lab.org/robotics-dsl-zoo

http://cor-lab.org/robotics-dsl-zoo
http://cor-lab.org/robotics-dsl-zoo

202 A. Nordmann, N. Hochgeschwender, and S. Wrede

Fig. 3. Tools and methods used for the DSLs in this survey

developing DSLs inside the Eclipse framework [13, 14], or the possibility of language
re-use [15], as approaches within EMP share the same representation (Ecore). 7 publi-
cations in this survey developed their DSLs as internal DSL, for example in Lisp [16],
and Lua [12]. 7 of the assessed publications developed DSLs and their tool-chain man-
ually and without the aforementioned tool support, e.g. with custom parsers and tools.

6 Discussion

This section highlights different aspects of the surveyed DSLs as well as their publica-
tions that we think are important for i) language developers to enable language re-use,
interoperability and discussing the core concepts, as well as ii) language users to allow
assessing the availability and usability of the DSLs. We show different approaches to ex-
tract best practices in terms of documentation, accessibility and evaluation of robotics
DSLs to make suggestions to the community. The need for this became clear during
analysis of the publications for this survey, as lots of the aspects discussed here were
largely undocumented and/or hard to access.

Accessibility and Documentation. An important factor for re-use of DSLs, scientific
exchange and community building around DSLs in robotics is their accessibility and
documentation. This comprises several factors like technical accessibility (e.g. down-
load of the language or models), licensing, and documentation of the DSL, its usage
and execution context. Only a subset of the DSLs in this survey is documented in a way
that would allow interfacing with it, e.g. with a documented meta-model [14, 17, 18].
While some publications give hints on the meta-model or show parts of it [19, 13], sev-
eral publications document their meta-model mostly through exemplary models. Some
DSLs are available for download as open-source software [18, 8, 20].

A good way to promote re-use of s DSL is to provide tutorials and examples of its
usage, as download together with software frameworks and dependencies (if necessary),
as done for example by [21, 8]. Laet et al. propose their semantics for standardization
in the context of the robotics engineering task force [22].

Artifacts and Use-Case. To assess the intended use of the DSLs, we looked at the
artifacts generated (if any) and the context they are used in. While the DSL can be
used to generate visualizations of systems, e.g. the system architecture [23] or plat-
forms [8], the main use-case for DSLs is to generate executable code to perform ex-
periments or provide supporting routines. DSLs within the identified subdomains often

A Survey on Domain-Specific Languages in Robotics 203

cover similar use-cases. The Robot Structure 1 subdomain for example primarily
targets controllers and platform as well as simulation support. Frigerio et al. [18] and
Laet et al. [16] target kinematics and dynamics controllers that can be embedded in
motion control systems. Bordignon et al. [24] exemplify the usage by generating code
to simulate the specified robot platform in a particular simulation framework.

Artifact generation from DSLs becomes especially powerful and suited for re-use
if the toolchain supports different M2M and M2T transformations. Either to generate
different artifacts like visualization, computational routines and glue code [23], or exe-
cutable code for different programming languages or software platforms [10, 11, 25].

Evaluation. Evaluation of a DSL-based approach in their intended use-case is not only
interesting from a developer’s perspective, but also serves as a foundation for a decision
from a user’s perspective. A number of the surveyed publications evaluated the seman-
tics or the generated artifacts. A surprising yet positive outcome of the analysis was,
that quite a number of the DSLs in this domain are evaluated not only in simulation, but
on real hardware [26, 14, 18, 13], and even on different platforms [19, 11].

We can roughly differentiate two different kinds of evaluation approaches: qualitative
and quantitative evaluation. Qualitative evaluation is often done by conceptual discus-
sions based on examples, e.g. portability of the semantics to different platforms [14, 19,
11]. Laet et al. [21] for example model some typical use-cases and show how common
errors can be avoided by using its proposed semantics.

Özgür [27] lists four different quantitative benefits and corresponding metrics, that
can be used to evaluate a model-based approach and can serve as a best practice:

1. Efficiency can be evaluated in terms of performance and memory utilization. Frige-
rio et al. [9] for example benchmarked the generated C++ code in its intended use-
case, being forward and inverse kinematics and dynamics on different numbers of
degrees-of-freedom.

2. Scalability in terms of compilation time and system size.
3. Productivity in terms of size, effort or number of change requests. Examples are

Ringert et. al [28] and Romero-Garces et. al [29]. Both evaluate the usage of a
DSL from the developers perspective against classical approaches by means of em-
pirical software engineering. Non-functional aspects they covered comprise time
spent for learning of the technologies, effort for fixing bugs, component re-use and
complexity of understanding re-used software artifacts. [11] conducted hardware
experiments on a PR2 and a KUKA LWR and analyzed the necessary number of
lines of code for platform-independent and robot/framework specific code.

4. Reliability, e.g. in terms of defects introduced in a period of time.

Platform. An important aspect of the generated artifacts and the model transformations
is how tightly they are coupled to a certain platform. “Platform” in this context means
the technical execution context, so the software framework, and all additional tools or
libraries necessary to use the DSL or the generated artifacts.

First of all we have to differentiate between the DSL being used in a interpretation vs.
a generation manner. Interpretation of a DSL is always being tied to a (DSL-specific)
interpreter (e.g. [30]). For DSLs that are used in a generation manner, we differentiate
between three classes of platform-dependency:

204 A. Nordmann, N. Hochgeschwender, and S. Wrede

1. Proprietary solutions like KRL [31] and RAPID [32] that are targeted to a single
platform and don’t target openness or platform independence at all.

2. Generation of artifacts that are tied to or dependent on a library stack, software
framework or runtime environment [13, 17, 33]. Some of the DSLs in this survey
target a certain framework or environment, but come with exchangeable generators
to explicitly allow re-use of the DSL and its concepts in different frameworks or en-
vironments as discussed above. Klotzbücher et al. [11] make the platform explicit,
by distinguishing between platform-independent and platform-specific models.

3. Transformation of the DSL code directly to a general purpose language (e.g. Ada
[14] or C++ [10]) being the most platform-independent option by reducing platform
dependencies to a minimum, which provides clear advantages. It is easier portable,
even to embedded systems [14], easier to re-use and eases scientific exchange. It
also reduces assumptions about the platform from within the DSL.

DSL Development Process. Mernik et al. [4] discuss that the identification and formal-
ization of domain-specific abstractions is an important decision pattern for DSL devel-
opment. However, to reuse, refine or to define new abstractions one needs to perform
activities known in the area of knowledge representation such as domain and problem
assessment and expert consultation. Unfortunately, in the assessed papers very little is
written about the process how the abstractions have been identified, e.g. based on an
ontology [25], a formalism [16] or a domain analysis [23]. One reason may be that the
DSL developers are very often simultaneously also the DSL users and domain experts.
Hence, assessing the domain is performed in an ad-hoc and implicit manner. To bring
forward the DSL development in robotics we argue that robotic DSL papers should
report also about the process of how and on which basis one developed certain domain-
specific abstractions.

7 Synopsis

We surveyed the available literature on domain-specific (modeling) languages used for
design, simulation and programming of robotics systems. The quantitative analysis sup-
ports that DS(M)Ls are a current active research field for simulation and programming
of robots, however, compatibility and re-use of different DSLs and approaches is still
an issue. Yet the Eclipse Modeling Project may serve as an integration platform for
DSLs in robotics as it is already widely used. We further discussed, how different ap-
proaches to documentation, evaluation and platform-dependency affect the availability
and usability of a DSL. We intend this survey to serve the robotics DSL community
to foster exchange between DSL developers as well as providing an orientation for po-
tential DSL users. Following the idea of the EMF Concrete Syntax Zoo4 we intend to
continuously maintain the survey as an online Robotics DSL Zoo5 and invite the com-
munity to provide feedback and contribute. Future iterations of this survey will com-
prise further conference proceedings and include journal publications.

4 http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
5 http://cor-lab.org/robotics-dsl-zoo

http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
http://www.emftext.org/index.php/EMFText_Concrete_Syntax_Zoo
http://cor-lab.org/robotics-dsl-zoo
http://cor-lab.org/robotics-dsl-zoo

A Survey on Domain-Specific Languages in Robotics 205

Acknowledgement. This work was supported by a grant of the Cluster of Ex-
cellence Cognitive Interaction Technology (CITEC) at Bielefeld University. Nico
Hochgeschwender received a PhD scholarship from the Graduate Institute of the Bonn-
Rhein-Sieg University.

References

[1] van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliog-
raphy. ACM Sigplan Notices (2000)

[2] Biggs, G., MacDonald, B.: A Survey of Robot Programming Systems. In: Australasian
Conference on Robotics and Automation (2003)

[3] Völter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L., Visser, E.,
Wachsmuth, G.: DSL Engineering Designing, Implementing and Using Domain-Specific
Languages (2013)

[4] Mernik, M., Heering, J., Sloane, A.M.: When and how to Develop Domain-Specific Lan-
guages. ACM Computing Surveys 37(4), 316–344 (2005)

[5] Gérard, S., Selic, B.: The UML – MARTE Standardized Profile. In: The International Fed-
eration of Automatic Control, Seoul, Korea, pp. 6909–6913 (2008)

[6] Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Addison-Wesley Professional (2009)

[7] JetBrains. Meta Programming System
[8] Ioan Sucan. Unified Robot Description Format (URDF)
[9] Frigerio, M., Buchli, J., Caldwell, D.G.: Code Generation of Algebraic Quantities for Robot

Controllers. In: International Conference on Intelligent Robots and Systems, pp. 2346–2351
(October 2012)

[10] Frigerio, M., Buchli, J., Caldwell, D.G.: A Domain Specific Language for Kinematic Mod-
els and Fast Implementations of Robot Dynamics Algorithms. In: Workshop on Domain-
Specific Languages and Models for Robotic Systems (2011)

[11] Klotzbücher, M., Smits, R., Bruyninckx, H., De Schutter, J.: Reusable Hybrid Force-
Velocity controlled Motion Specifications with executable Domain Specific Languages. In:
International Conference on Intelligent Robots and Systems, pp. 4684–4689 (2011)

[12] Vanthienen, D., Klotzbücher, M., De Schutter, J., De Laet, T., Bruyninckx, H.: Rapid ap-
plication development of constrained-based task modelling and execution using Domain
Specific Languages. In: International Conference on Intelligent Robots and Systems (2013)

[13] Angerer, A., Smirra, R., Hoffmann, A., Schierl, A., Vistein, M., Reif, W.: A Graphical Lan-
guage for Real-Time Critical Robot Commands. In: Workshop on Domain-Specific Lan-
guages and Models for Robotic Systems, Tsukuba (2012)

[14] Trojanek, P.: Model-Driven Engineering Approach to Design and Implementation of Robot
Control System. In: Workshop on Domain-Specific Languages and Models for Robotic Sys-
tems (2011)

[15] Blumenthal, S., Bruyninckx, H.: Towards a Domain Specific Language for a Scene Graph
based Robotic World Model. In: Workshop on Domain-Specific Languages and Models for
Robotic Systems (2013)

[16] De Laet, T., Schaekers, W., de Greef, J., Bruyninckx, H.: Domain Specific Language for
Geometric Relations between Rigid Bodies targeted to Robotic Applications. In: Workshop
on Domain-Specific Languages and Models for Robotic Systems (2012)

[17] Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A New Skill Based
Robot Programming Language Using UML/P Statecharts. In: International Conference on
Robotics and Automation (2013)

206 A. Nordmann, N. Hochgeschwender, and S. Wrede

[18] Frigerio, M., Buchli, J., Caldwell, D.G.: Model based code generation for kinematics and
dynamics computations in robot controllers. In: Workshop on Software Development and
Integration in Robotics, St. Paul, Minnesota, USA (2012)

[19] Reckhaus, M., Hochgeschwender, N.: A Platform-Independent Programming Environment
for Robot Control. In: Workshop on Domain-Specific Languages and Models for Robotic
Systems (2010)

[20] Lötzsch, M., Risler, M., Jungel, M.: XABSL – A Pragmatic Approach to Behavior Engi-
neering. In: International Conference on Intelligent Robots and Systems, pp. 5124–5129
(2006)

[21] De Laet, T., Bellens, S., Bruyninckx, H., De Schutter, J.: Geometric Relations between
Rigid Bodies (Part 2): From Semantics to Software. IEEE Robotics and Automation Mag-
azine (September 2012)

[22] De Laet, T., Bellens, S., Smits, R., Aertbelien, E., Bruyninckx, H., De Schutter, J.: Geomet-
ric Relations between Rigid Bodies (Part 1): Semantics for Standardization. IEEE Robotics
and Automation Magazine (June 2012)

[23] Nordmann, A., Wrede, S.: A Domain-Specific Language for Rich Motor Skill Architec-
tures. In: Workshop on Domain-Specific Languages and Models for Robotic Systems,
Tsukuba (2012)

[24] Bordignon, M., Schultz, U.P., Stoy, K.: Model-Based Kinematics Generation for Modular
Mechatronic Toolkits. In: International Conference on Generative Programming and Com-
ponent Engineering, p. 157 (2010)

[25] Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a Domain-Specific
Language to Design, Simulate and Deploy Robotic Applications. In: Noda, I., Ando, N.,
Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 149–160. Springer,
Heidelberg (2012)

[26] Thomas, U., Finkemeyer, B., Kröger, T., Wahl, F.M.: Error-Tolerant Execution of Complex
Robot Tasks based on Skill Primitives. In: International Conference on Automation and
Robotics, Taipei, Taiwan (2003)

[27] Özgür, T.: Comparison of Microsoft DSL Tools and Eclipse Modeling Frameworks for
Domain-Specific Modeling in the Context of the Model-Driven Development. Master,
Blekinge Institute of Technology (2007)

[28] Ringert, J.O., Rumpe, B., Wortmann, A.: A Case Study on Model-Based Development
of Robotic Systems using MontiArc with Embedded Automata. In: Dagstuhl-Workshop
MBEES: Modellbasierte Entwicklung eingebetteter Systeme IX (2013)

[29] Romero-Garcés, A., Manso, L.J., Gutierrez, M.A., Cintas, R., Bustos, P.: Improving the
Lifecycle of Robotics Components using Domain-Specific Languages. In: Workshop on
Domain-Specific Languages and Models for Robotic Systems (2013)

[30] Mühe, H., Angerer, A., Hoffmann, A., Reif, W.: On reverse-engineering the KUKA Robot
Language. In: Workshop on Domain-Specific Languages and Models for Robotic Systems
(2010)

[31] KUKA System Software 5.5 - Operating and Programming Instructions for System Integra-
tors. Technical report, KUKA Roboter GmbH (2009)

[32] RAPID Overview. Technical report, ABB Robotics Products
[33] Steck, A., Schlegel, C.: SMART TCL: An Execution Language for Conditional Reactive

Task Execution in a Three Layer Architecture for Service Robots. In: Int. Workshop on
DYnamic languages for RObotic and Sensors systems (DYROS), pp. 274–277 (2010)

Towards Rule-Based Dynamic

Safety Monitoring for Mobile Robots

Sorin Adam1, Morten Larsen1, Kjeld Jensen2, and Ulrik Pagh Schultz2

1 Conpleks ApS, Struer, Denmark
2 University of Southern Denmark, Odense, Denmark

Abstract. Safety is a key challenge in robotics, in particular for mobile
robots operating in an open and unpredictable environment. To address
the safety challenge, various software-based approaches have been pro-
posed, but none of them provide a clearly specified and isolated safety
layer. In this paper, we propose that safety-critical concerns regarding the
robot software be explicitly declared separately from the main program,
in terms of externally observable properties of the software. Concretely,
we use a Domain-Specific Language (DSL) to declaratively specify a set
of safety-related rules that the software must obey, as well as correspond-
ing corrective actions that trigger when rules are violated. Our prototype
DSL is integrated with ROS, is shown to be capable of specifying safety-
related constraints, and is experimentally demonstrated to enforce safety
behaviour in existing robot software. We believe our approach could be
extended to other fields to similarly simplify safety certification.

1 Introduction

Safety is a key challenge in robotics, in particular for domains such as precision
agriculture where large, mobile robots operate in an open and unpredictable en-
vironment [1]. Safety is typically addressed by a combination of physical safety
systems [2], the use of a safety-aware control algorithm [3], and the use of a
software architecture that maps safety-critical program parts to a specific sub-
system [4]. In an effort to address the safety challenge, various software archi-
tectures have been suggested for agricultural robotic vehicles [5, 6], but none of
them provide specification and isolation of the safety-critical parts of the soft-
ware. This increases the risk that programming errors will cause violations of
those safety properties of the robot that are dependent on the correctness of the
software. Moreover, faulty or erratically behaving hardware poses an additional
safety risk: software built on implicit assumptions regarding the reliability of
the hardware must monitor the system to ensure that these assumptions remain
valid, failure to do so may compromise safety.

Mainstream robotic middleware such as Orocos [7] and ROS [8] allows soft-
ware to be built in terms of reusable and individually tested components that can
be deployed in separate execution environments, but do not provide any explicit
means of expressing safety-related concerns. Model-driven software development
approaches allow controllers to be automatically assembled from well-specified

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 207–218, 2014.
c© Springer International Publishing Switzerland 2014

208 S. Adam et al.

components with explicit invariants that can be monitored at runtime, but typ-
ically provide a component-centric view that does not address the performance
and safety of the system as a whole [9, 10]. Specific components can include
invariants that specify assumptions about the hardware, but there is no com-
prehensive, implementation-independent specification of the hardware platform.
In the specific case of safety, we observe that safety concerns may cross-cut the
component structure of the system, for example enforcing a stop after a bump
sensor has triggered could involve different software components (one for the
sensor, one for the motion actuators).

We propose that safety-critical concerns regarding the robot software be ex-
plicitly declared separately from the main program, in terms of the overall func-
tionality of the software. Rather than addressing the individual functionality of
specific components, we address the functionality of the system as a whole in
terms of externally observable properties of individual components, their com-
munication, and the state of the surrounding execution environment.The main
contribution of our work is the proposal and proof-of-concept experiments of a
simple yet expressive rule-based language for enforcing safety constraints on ex-
isting ROS-based software. This paper presents the initial language design and
prototype implementation, and experimentally documents the effectiveness of
the solution through a series of experiments that test safety-oriented scenarios
both involving software and hardware failures.

The rest of this paper is organised as follows: Section 2 discusses robot safety
and model-driven software development, after which Section 3 presents our main
contribution, Section 4 documents the experimental validation of our approach
and discusses limitations, last Section 5 concludes.

2 Robot Safety and Modeling

2.1 Robot Safety

A robot has to be safe and reliable [11]. In the context of our work, robot safety
concerns all elements of the robot and its immediate environment in which one
or more errors may constitute a threat to nearby humans, animals, facilities and
the robot itself. Faults in control architectures for mobile robots can be cate-
gorised as [12]: Environment (such as unpredictable environmental changes); En-
vironmental Awareness divided into sensing faults (due to sensor or perception
algorithm limitations) and action faults (unexpected outcomes of actuations);
Autonomous System divided into decision making faults (lack of knowledge
leading to inadequate decision making), hardware faults (sensors, actuators,
embedded hardware) and software faults (with regards to software design, im-
plementation and runtime execution). From a technical point of view, we aim
to provide a system-wide supervision system that dynamically detects software
faults; detection of hardware faults is supported to the extent that the fault is
detectable from software. In this respect, our approach is similar to Blanke et al,
where manually implemented supervision modules are used at different levels to
increase safety and reliability in an autonomous robot conducting maintenance

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 209

tasks in an orchard [13]. In our work, we aim to automatically implement all parts
of the supervision infrastructure based on declarative rules, but currently limit
the supervision to deal with safety (not reliability). Unlike more general-purpose
runtime monitoring systems based on temporal logic, we focus on providing a
simple specification language easily accessible to non-experts.

2.2 Commercial Applications and Legal Regulations

We are interested in commercial applications of mobile robots within the agricul-
tural sector. In Europe, from the regulatory point of view, robots are currently
treated like any other commercial machine and thus have to comply with three
European Directives: 2006/95/EC, 2001/95/EC, and 2006/42/EC. One group
of the stated requirements concerns safety, usually evaluated by performing a
safety risk assessment and reduction by using a standard like ISO 12100:2010.
Therefore, the safety risk assessment is the primary source for the safety require-
ments of the robot. Standards like ISO 13849 provide guidance for establishing
safety performance levels (PL) for the safety-related controllers. However, the
safety PLs refer only to qualitative aspects of the software development, and are
not concerned with quantitative aspects like latency, performance or reaction
time. The standards demand, for higher safety PLs, increased software quality,
and thus extensive code reviews, testing and documentation, all adding up to
the project cost and delaying the release date. Moreover, the safety certification
requirements can make the effort of releasing a new revision comparable with
that of releasing of a new product.

2.3 Software Safety

Safety-critical software can be implemented in a general-purpose language and
then verified automatically, and fault-tolerance can be improved using tradi-
tional techniques for software reliability, such as n-version programming [14].
Alternatively, using model-driven software development driven by a metamodel,
the software can be specified in a high-level formalism from which an implemen-
tation satisfying the required properties can be automatically derived [15, 16].
Formal modeling enables analysis of more abstract properties, such as the safety
of a robot, to be formally verified [17]. Automatic generation has the added
benefit of accelerating software development [18–20, 10]. In this work we use a
simple metamodel to describe existing ROS software, enabling both static anal-
ysis of the integrity of the software [21], as well as correctly programming in a
high-level domain-specific language that targets this existing software, which is
the subject of this paper.

2.4 Analysis

A commonly attributed reason for the popularity of ROS is the large amount
of freely available software for the platform, in the form of reusable compo-
nents (nodes). Indeed, the use of components as reusable building blocks is

210 S. Adam et al.

fundamental to many approaches for model-driven software development for
robotics [20, 10]. To ensure correct runtime functionality in a component, its
execution can be monitored according to predefined invariants that essentially
specify a contract for the dynamic behaviour of the component [9]. In all cases,
the required safety-related behaviour may be specific to the application (e.g.,
the maximal speed at which the robot may move), may concern system-wide
properties (e.g., a correlation of sensor values from multiple sensors), and may
entail system-level reactions (e.g., an emergency stop of the robot). Since robot
safety ultimately is a system-level property, we believe it is essential to enable
the programmer to specify safety in terms of the robot software as a whole.
Making this safety specification separate from the functionality facilitates veri-
fying that the safety specification conforms to safety requirements, provided we
guarantee that the robot software always follows the safety specification. In this
paper, we propose to program the functionality-providing part of the software
using standard ROS nodes, and to automatically program the safety-enforcing
part based on declarative rules.

3 Rule-Based Dynamic Safety Monitoring

We propose a software architecture for implementing the safety-related func-
tionality of the robot software separated from the main functionality, driven
by a domain-specific language (DSL) for declaratively specifying the safety re-
quirements. In more detail, safety rules, for example identified when performing
the risk assessment, are described at a high level using the Rule-Based Safety
Specification (RuBaSS) DSL. RuBaSS provides a simple and declarative syntax,
making the task of implementing the safety-related requirements more accessible
to robotics experts with a lower degree of software engineering expertise. The risk
of errors is reduced, as the RuBaSS declaration drives the automatic generation
of all safety-related code. Our approach directly enables an implementation-
independent reuse of the safety-related part of a robot controller between dif-
ferent releases, since the RuBaSS declaration does not need to change when the
underlying software changes (except that names shared between RuBaSS rules
and component interfaces must be kept consistent). Moreover, the infrastructure
can be reused in a range of products: the code generator can be directly reused
whereas low-level interfaces to sensors and actuators will be specific to each
robot. Safety-related customisation for the products is thus mainly achieved at
the higher level, using the safety language.

The implementation of the low-level hardware interfacing and the code gener-
ation part of RuBaSS is naturally the responsibility of a skilled software develop-
ment team, this division of roles is a normal consequence of introducing a more
structured approach to robotics software development [20]. To further enhance
robustness of the safety layer, and hence the overall safety of the robot, devel-
opment of the code generator and execution supporting platform could be done
by separate teams, targeting different programming languages. The decision for

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 211

Fig. 1. Process overview

the implementation languages will normally be platform dependent, so different
robotics platforms could favour certain languages. For example, for ROS-based
robots, the safety-related code generation could target C++ and Python; in this
paper, for simplicity we only implement a single prototype based on Python, in
the future we expect to also support C++.

3.1 Overview

We consider that safety in robotic systems is a cross-cutting feature that interacts
with many different parts of the system, so we propose to specify safety-related
concerns in a separate declaratively programmed subsystem. This approach en-
ables runtime isolation of the safety-related part from the rest of the robot
application: although not currently implemented, the safety-related constraints
can execute in a different context, for example using off-the-shelf virtualisation
techniques, or on different hardware. Fig. 1 shows the overall workflow of using
RuBaSS. The developer derives a RuBaSS from an informal safety specification
and can access information from a system model which provides information on
components (topics and nodes), thereby providing static consistency checks of
the specification. The RuBaSS compiler generates a runtime safety component
which monitors the specified properties of the software system.

The use of a DSL enables the total system cost to be optimised, since the same
specification can be automatically redeployed by using different code generators.
For example, the safety-related functionality may be executed as a regular ROS
node during development, and then during field testing be redeployed to run on
a dedicated, high-reliability hardware platform with modest processing power
requirements, while the rest of the robot software executes on an inexpensive,
less reliable hardware platform. The safety-related language we propose relies on
the modularity offered by frameworks like Orocos and ROS, where the software
functionality is divided into several intercommunicating parts implemented in
dedicated components. We currently only support components that communi-
cate using topic-based publish-subscribe, support for other communication pat-
terns is considered future work. Monitoring of internal component state is not
supported, if needed we expect that an approach similar to Lotz et al could be
used [9].

212 S. Adam et al.

1 action primitive stop ;
2 entity dr iv e sy s t em : encoder node , actuator node ; {
3 r u l e s : // simple example compri s ing one ac tua tor
4 a c t u a t o r e r r a t i c :
5 ((topic / cmd v e l l e f t . l i n e a r . x > 0 .02m/s
6 or topic / cmd v e l l e f t . l i n e a r . x < −0.02m/s)
7 and topic / e n c od e r l e f t . data == 0) for 0 .4 sec ; }
8 i f (d r iv e sy s t em . a c t u a t o r e r r a t i c for 1 sec) then { stop ; } ;

Fig. 2. RuBaSS example (prettyprinted): enforcing stop on erratic behaviour

3.2 The Language

A simple example of the RuBaSS language is presented in Fig. 2 (a more ex-
tensive set of rules is used for the experiments later in the paper). The listing
demonstrates the main features of the language. RuBaSS code is written in a
safety description file containing two key parts: entities that group nodes together
based on their functionality, and the behaviour section where the safety require-
ments are described. The safety-related actions the robot can execute can be
triggered from the behaviour section; in this example the primitive action stop

is declared, a complete set of actions can be imported from a robot-specific li-
brary. If the stop action is invoked by the rules, the robot stops (primitive actions
are implemented in the underlying robot firmware). The entity section describes
the drive system as being composed of two nodes: the encoder node and the
actuator node. For this entity only one rule is exemplified: actuator erratic.
This rule collects three different conditions under a common name using logical
operators expressed in words. The rule is fulfilled when the actuator is unre-
sponsive. RuBaSS also accepts temporal conditions, e.g., a logical expression is
assessed and has to remain true for a continuous period of time. The behavioural
section is where robot actions are associated with selected event occurrences. In
the example, the actuator is declared to be “erratic” if there is a command and
the encoders are not reporting any movement. Since this condition can occur
during normal operation, e.g., due to reaction delays, a temporal condition is
added specifying that the command and lack of movement must be present for
more than 0.4 seconds. In summary, the entity rules define concrete safety-related
events, the behavioural part of the specification concerns what action to take
when based on combinations of these events.

In general, RuBaSS supports multiple entities and multiple compound rules
defined inside every entity. The rules can be constructed around nodes or topics.
Nodes can be supervised in terms of liveness, CPU and memory usage, whereas
topics can be supervised in terms of publishing frequency and constraints on the
data exchanged. The behaviour section associates actions to logical combinations
of rules. All conditions, both for rules and behaviours, can be time-quantified
using the for operator, and all constants can include physical units; units are
currently only for documentation, statically checking their consistency using a
component model that annotates physical units to components is future work.

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 213

3.3 Target Platform and Code Generation

A proof of concept of RuBaSS, generating Python code, has been implemented.
Python has been chosen due to its ease of use and previous experience with
Python and ROS; for production code C++ would be a better choice for target
language, since it can both execute on a standard laptop and be executed on an
embedded system with few resources. (Since having multiple implementations is
advantageous for safety-critical systems, the Python-generated code could run on
a PC-class controller together with the embedded code on a low-end controller.)

In order to ease the code generation, a Python library implementing classes
for representing rules, entities, topic and node monitoring has been developed.
A rule object stores the result of each rule evaluation in a timestamped buffer,
making the result of the rule accessible for a given time interval. The topic
monitoring class also stores the received ROS messages in a timestamped buffer.
Each of the classes implement a loop method allowing the rule to be evaluated,
and in the case of a topic, the average frequency to be calculated. The loop
method is called on each object at a specific interval, currently 0.1 seconds (10
Hz), but can be set as high as the computer performance allows.

The need to access past data of the left hand side of the operator, compli-
cates the generation of the code for the for operator. The solution used is to
implement a buffering scheme in the rule and topic monitoring classes. However,
the expression may be composed of a number of sub-expressions, for which past
results should be kept. To solve this problem, we analyse the RuBaSS program
before code generation and replace the left-hand side expression of a for with
a reference to an intermediate rule containing the original left-hand side expres-
sion. Each time a rule is evaluated, the timestamped result is stored in a buffer
used to remove old rule results outside of the time limit of the for expression.

4 Experiments

Experiments have been conducted using two different robots running different
software: a physical Frobit robot and the standard, simulated iClebo Kobuki
robot from the ROS distribution. The Frobit [22] is a small, low-cost robot
designed for rapid prototyping; it is differentially steered and the low-level inter-
face resembles that of many tracked and wheeled field robots; it is running the
standard deployment of the FroboMind ROS-based software framework for field
robots [5] on an i3 PC with 3Gb RAM running Ubuntu 12.04. The Kobuki is
similar to the Frobit but has a different low-level interface and runs the standard,
different and independently developed ROS-based control software, demonstrat-
ing the generality of our approach.

The experiments have been conducted using a specially written ROS test
node, illustrated in Fig. 3. The node consists of a common part implement-
ing the launch of the test cases and another containing the test-case-specific
code for test environment (physical or simulated). For the Frobit, the test node
is able to physically interrupt control lines of the wheels encoders and motors

214 S. Adam et al.

Fig. 3. Robot setup. Frobit hardware setup (left) and Kobuki setup (right).

through an Arduino-type board communicating with the test program via a serial
connection. As the Arduino board is able to control the motors, the RuBaSS
stop command is implemented using this board. For the Kobuki, the velocity
commands coming from the robot’s controller are altered by the test program to
simulate a misbehaviour. In all cases we measure the time between when a fault
has been introduced and when the safety-related node sends the stop command.
All experiments have been repeated ten times.

A set of safety rules extracted from the risk assessment performed for com-
mercial robots developed at Conpleks1 have been implemented using the DSL.
For the Frobit experiments, RuBaSS was used to implement rules supervising
the wheels encoders, and limiting the linear speed of the robot (in total 3 entities
and 9 rules). For the Kobuki experiments, the rules enforce a maximum linear
and spinning speed for the robot, a maximum processor load for the ROS node
controlling the robot, as well as the area the robot is allowed to move in (in total
1 entity and 4 rules).

4.1 Hardware Failure Experiments

For the Frobit, a number of experiments have been performed simulating a sin-
gle fault or combination of wheels encoders not working or motors misbehaving.
In all tests, the robot has been manually controlled using a remote control (a
Nintendo Wii game controller) and specific faults, such as an encoder failure,
were manually triggered using the test node. The experimental scenarios, im-
plemented in the dedicated ROS test node, were running on the same hardware
platform as the rest of the robot.

We tested combinations of the following failures: (1) Left or right wheel en-
coder not working (denoted Ex): The control line for the left and/or right wheel
of the quadrature encoder has been interrupted. (2) Left, right, or both motors
running at full speed (denoted Mx): The H-bridge controller of one or both mo-
tors have been wired in such a way that the motor has been forced to run at full
speed, but the direction of movement (forward or backwards) was still under the
control of the robot. (3) Combined simulated faults, with left or right motor full
speed and right or left wheel encoder not working.

1 The GrassBots grass-cutting robot [23] and the FIXFeeder mink-feeding robot [24]
from Conpleks ApS.

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 215

Table 1. Experimental results. All times are in seconds. E indicates encoder failure,
M indicates motor speed exceeded, in both cases left or right.

Frobit Ideal Avg SD Min Max

ER 1.40 2.07 0.35 1.41 2.66
EL 1.40 1.87 0.24 1.60 2.34
MR 0.50 0.82 0.13 0.61 1.02
ML 0.50 1.71 0.30 0.92 2.13
MLR 0.50 0.86 0.31 0.58 1.56
ML + ER 0.50 0.72 0.10 0.58 0.93
MR + EL 0.50 0.74 0.18 0.57 1.11

Kobuki Ideal Avg SD Min Max

Boundary 0.00 0.07 0.02 0.03 0.09
Max speed 1.00 1.23 0.42 0.91 2,00
Max spin 0.70 8.15 1.89 4.66 10.32
(Exp=0.2) 0.20 0.17 0.03 0.12 0.21
(Exp=0.0) 0.00 0.17 0.04 0.11 0.22
CPU 1.50 1.71 0.14 1.51 1.95

4.2 Simulated Experiments

Several experiments have been performed using the simulated Kobuki robot:
leaving a predefined area, exceeding the linear or spinning speed, and ROS-node
CPU overload. All the tests were executed by indicating a target goal for the
robot, leaving the planner to decide a route and control the robot. The same
dedicated test ROS node has been used as for the Frobit, interfacing to the
simulator by having the node monitor and modify the velocity and odometry
information exchanged between the simulator and the robot.

We performed the following experiments: (1) Boundary exceeded: The robot
target position has been set outside the predefined safety area, forcing the con-
troller to violate the safety rules when driving the robot towards the target. The
time interval between the moment when the border has been touched by the
robot and when the stop command was issued by the safety ROS node has been
measured. (2) Maximum linear or spin speed exceeded: The velocity commands
issued by the controller have been modified by the test node: with every new
velocity command received, an increasingly drifting amount has been added to
the linear or spin velocity field value of the commands sent to the simulated
robot. The test case measured the delay between the moment when the sent
velocity command exceeds the maximum allowed linear or spin speed defined by
the safety rules and when the stop command have been sent by the safety node.
(3) CPU overload: The test node simulated a temporary software misbehaviour
of one of the ROS nodes by executing a CPU-intensive loop for a determined pe-
riod of time. The test case measured the time between when the CPU intensive
loop was entered and when the safety node issued the stop command.

4.3 Results

The data obtained are shown in Table 1 for both the Frobit and Kobuki ex-
periments. The columns in the table refer to the ideal minimum expected time
according to the safety rules (Ideal), average time over the 10 repeated exper-
iments (Avg), standard deviation (SD), minimum (Min) and maximum (Max)
reaction time of the safety-related node measured during the experiments. For
the Kobuki, the “maximum spinning speed exceeded” experiment has been re-
peated with the RuBaSS rules reacting to the speed being continuously exceeded
for 0.7 seconds, 0.2 seconds and 0 seconds (instant reaction).

216 S. Adam et al.

4.4 Discussion

All the tests performed were successful: the robot stopped when expected to stop.
However, for the Frobit experiments, in the cases of right and left encoder error,
the average reaction time was significantly higher than the ideal one. The reason
is the way the temporal rule works: the condition has to be true continuously
for the specified amount of time. Any change in the monitored values will reset
the rule, and thus will delay triggering the action. In case of the wheel encoders,
one line of the quadrature encoders was interrupted which generated some noise
at the output. Similarly, there is a significant difference in reaction time when
the right or left motor was forced to run at full speed. Even though the robot
was not able to control the speed of one of the wheels, the rotation direction was
still left under the control of the robot. In the left motor running at full speed
experiments, the control algorithm of the robot changed the rotation direction
of the left wheel several times, inducing a brake effect on the wheel, and delaying
the fulfilment of “continuous speed exceeded for 0.4 seconds.” In the simulator
experiments the minimum measured reaction time is, in some cases, lower than
the minimum ideal reaction time; The reason is the lack of real-time in event
publishing and event handling, and the unsynchronised messages published by
the ROS nodes. Conversely, the results of the tests when maximum spinning
speed is exceeded are far from the minimum ideal value. Here, the robot has been
instructed to spin at a value different from the one calculated, diverting from
the planned route, and triggering the controller error correction mechanisms.
The rule used requires the condition to be true continuously for 0.7 seconds, so
even if the maximum spinning speed was exceeded momentarily, the triggering
condition was not fulfilled as the controller tried to compensate. The recorded
time presented in the table includes successful robot controller error corrections,
and therefore is much longer that the ideal minimum one. A similar behaviour
was seen in the case of the linear speed being exceeded, but at a much lower scale,
giving a lower standard deviation. When the reaction time was set to 0.2 seconds,
the robot did not have time to react to the introduced spinning error: the topics
were publishing new messages every 0.1 seconds (10 Hz), so two consecutive cases
of exceeding the maximum spinning were enough to trigger the safety rule. In the
case when the safety rule was changed to react to any single case of exceeding the
maximum spinning speed, due to the fact that the robot software is not reacting
in real-time to the events but with a delay of approximately 0.1 seconds, the
end results of the experiment are not significantly different from the case when
0.2 seconds reaction time was tested. The CPU load safety rule implementation
detects if ROS nodes running in separate threads are overloaded. The usage of
this kind of rule is limited, since the same processor is used for both assessing
the rule conditions and running the ROS node code. To address those limitations
we plan to monitor a heartbeat signal in the supervised ROS nodes and measure
its frequency on another processor [25].

In the experiments only a complete stop action has been used as the reaction
to any safety rule violation. That was done for simplicity of the implementa-
tion, but is obviously not the best action in all real-life scenarios. An improved

Towards Rule-Based Dynamic Safety Monitoring for Mobile Robots 217

fault-handling based on diagnosis and fault isolation will be addressed in a fu-
ture work together with improving the RuBaSS language to statically detect
overlapping safety rules or potential contradictions. We note that for the imple-
mentation of safety-related rules using our DSL to take place without modifying
the existing source code, we are dependent on the interfaces of the robot (e.g.,
the exposed interfaces between the different ROS nodes). If the needed informa-
tion is not available on the exposed interfaces, the appropriate ROS nodes of the
robot would have to be modified to publish it.

5 Conclusion

We have shown that it is possible to use RuBaSS to generate the implementa-
tion of the safety rules identified during a safety risk assessment, covering both
hardware faults (e.g., encoders or motors not working) and misbehaviour of the
software controlling the robot (e.g., the robot leaving the designated working
area or CPU overload). RuBaSS has a simple syntax, making it easy to ex-
press the safety rules, and enabling the generation of runtime safety monitoring
code, as our initial proof-of-concepts experiments demonstrate. Moreover, based
on our initial experience, we find that addressing safety issues of robots with
RuBaSS is efficient and easily customisable, even with partial access to source
code. A systematic and realistic validation of RuBaSS is considered future work,
we expect that the language, the software architecture and the implementation
need to be significantly extended to be useful for realistic scenarios.

References

1. Kohanbash, D., Bergerman, M., Lewis, K.M., Moorehead, S.J.: A safety architec-
ture for autonomous agricultural vehicles. In: American Society of Agricultural and
Biological Engineers Annual Meeting (July 2012)

2. Griepentrog, H., Andersen, N., Andersen, J., Blanke, M., Heinemann, O., Madsen,
T., Nielsen, J., Pedersen, S., Ravn, O., Wulfsohn, D.L.: Safe and reliable: further
development of a field robot. In: Henten, E., Goense, D., Lokhorst, C. (eds.) Pre-
cision Agriculture 2009, pp. 857–866. Wageningen Academic Publishers (2009)

3. Bouraine, S., Fraichard, T., Salhi, H.: Provably safe navigation for mobile robots
with limited field-of-views in unknown dynamic environments. In: 2012 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 174–179 (May 2012)

4. Griepentrog, H., Jæger-Hansen, C., Ravn, O., Andersen, N., Andersen, J., Nakan-
ishi, T.: Multilayer controller for field robots - high portability and modularity to
ease implementation. Paper presented at LAND.TECHNIK - AgEng 2011 (2012)

5. Jensen, K., Bøgild, A., Nielsen, S., Christiansen, M., Jørgensen, R.: Frobomind,
proposing a conceptual architecture for agricultural field robot navigation. Paper
presented at CIGR 2012 (2012)

6. Nebot, P., Torres-Sospedra, J., Martnez, R.J.: A new hla-based distributed control
architecture for agricultural teams of robots in hybrid applications with real and
simulated devices or environments. Sensors 11(4), 4385–4400 (2011)

7. Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE ICRA
2001 Proceedings, vol. 3, pp. 2523–2528 (2001)

218 S. Adam et al.

8. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3(2) (2009)

9. Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software compo-
nents: Increasing robustness of service robotic systems. In: Proceedings of the 15th
International Conference on Advanced Robotics, pp. 285–290. IEEE (2011)

10. Gherardi, L., Brugali, D.: Modeling and reusing robotic software architectures: the
hyperflex toolchain. In: IEEE International Conference on Robotics and Automa-
tion (ICRA) (to appear, 2014)

11. Dhillon, B.S.: Robot reliability and safety. Springer (1991)
12. Crestani, D., Godary-Dejean, K.: Fault tolerance in control architectures for mobile

robots: Fantasy or reality? In: 7th National Conference on Control Architectures
of Robots, Nancy, France (2012)

13. Blanke, M., Blas, M.R., Hansen, S., Andersen, J.C., Caponetti, F.: Autonomous
robot supervision using fault diagnosis and semantic mapping in an orchard. In:
Fault Diagnosis in Robotic and Industrial Systems, pp. 1–22. iConcept Press Ltd.
(2012)

14. Powell, D., Arlat, J., Deswarte, Y., Kanoun, K.: Tolerance of design faults.
In: Jones, C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing. LNCS,
vol. 6875, pp. 428–452. Springer, Heidelberg (2011)

15. Schlegel, C., Steck, A., Brugali, D., Knoll, A.: Design abstraction and processes in
robotics: From code-driven to model-driven engineering. In: Ando, N., Balakirsky,
S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS (LNAI),
vol. 6472, pp. 324–335. Springer, Heidelberg (2010)

16. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley (2006)

17. Yakymets, N., Dhouib, S., Jaber, H., Lanusse, A.: Model-driven safety assessment
of robotic systems. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS (2013)

18. Bordignon, M., Stoy, K., Schultz, U.: Generalized programming of modular
robots through kinematic configurations. In: Proceedings of IROS 2011: The 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3659–
3666 (2011)

19. Schultz, U., Bordignon, M., Stoy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29(1), 35–57 (2011)

20. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-
usage in service robotics. In: Proceedings of Generative Programming and
Component-Based Engineering (GPCE). ACM (2011)

21. Larsen, M., Adam, S., Schultz, U., Jørgensen, R.N.: Towards automatic consistency
checking of software components in field robotics. In: RHEA 2014: Second Interna-
tional Conference on Robotics and Associated High-technologies and Equipment
for Agriculture and Forestry (May 2014)

22. Larsen, L.B., Olsen, K.S., Ahrenkiel, L., Jensen, K.: Extracurricular activities tar-
geted towards increasing the number of engineers working in the field of precision
agriculture. In: XXXV CIOSTA & CIGR V Conference, Billund, Denmark (July
2013)

23. Conpleks ApS: Grassbots, https://www.youtube.com/watch?v=KMjEUrB5C5I
24. Conpleks ApS: Fixfeeder, https://www.youtube.com/watch?v=q8h63rYoNQ0
25. Jensen, K., Larsen, M., Nielsen, S.H., Larsen, L.B., Olsen, K.S., Jørgensen, R.N.:

Towards an open software platform for field robots in precision agriculture.
Robotics 3(2), 207–234 (2014)

https://www.youtube.com/watch?v=KMjEUrB5C5I
https://www.youtube.com/watch?v=q8h63rYoNQ0

A Proposed Software Framework Aimed

at Energy-Efficient Autonomous Driving
of Electric Vehicles

José-Luis Torres Moreno1, José-Luis Blanco Claraco1,�, Mauro Bellone2,
Francisco Rodr̀ıguez3, Antonio Gimènez1, and Giulio Reina2

1 Dept. of Engineering, Universidad of Almeŕıa, 04120 Almeŕıa, Spain
jlblanco@ual.es

2 Dept. of Engineering for Innovation, Universitá del Salento, 73100 Lecce, Italy
3 Dept. of Computer Sciences, Universidad of Almeŕıa, 04120 Almeŕıa, Spain

Abstract. This paper describes the development of an electric car pro-
totype, aimed at autonomous, energy-efficient driving. Starting with an
urban electric car, we describe the mechanical and mechatronics add-ons
required to automate its driving. In addition, a variety of exteroceptive
and proprioceptive sensors have been installed in order to obtain accu-
rate measurements for datasets aimed at characterizing dynamic models
of the vehicle, including the complex problem of wheel-soil slippage. Cur-
rent and voltage are also monitored at key points of the electric power
circuits in order to obtain an accurate model of power consumption, with
the goal of allowing predictive path planners to trace routes as a trade-off
between path length and overall power consumption. In order to handle
the required variety of sensors involved in the vehicle, a MOOS-based
software architecture has been developed based on distributed nodes that
communicate over an onboard local area network. We provide experimen-
tal results describing the current stage of development of this platform,
where a number of datasets have been already grabbed successfully and
initial work on dynamics modeling is being carried on.

Keywords: Autonomous vehicles, Mobile robotics, Software architec-
ture.

1 Introduction

While autonomous driving in realistic situations remains a challenging problem,
the DARPA challenge [1] and the Urban Challenge in 2004 and 2007 [2] have
clearly shown that such a challenge could reasonably be addressed according to
the recent progresses in the field of perception and autonomous navigation for
unmanned vehicles. The Carnegie Mellon University Tartan Racing team won
the urban challenge in 2007 using a hierarchical control system for planning and
sensing [3]. The keystone of their winning approach is the convenient combi-
nation between on-board mechatronic system and software architecture. Their

� Corresponding author.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 219–230, 2014.
c© Springer International Publishing Switzerland 2014

220 J.-L. Torres Moreno et al.

vehicle incorporates a variety of lidar, radar and visual sensors to safely navi-
gate urban environments, as well as a software architecture decomposed into five
broad areas: mission planning, motion planning, behavior generation, perception
and world modeling. Another team, the VisLab group, achieved 15, 926 km of
autonomous driving in 2010, driving from Parma (Italy) to Shangai (China) us-
ing a Piaggio Porter Electric Power van [4, 5]. The sophisticated vision system
that equips the VisLab’s van including cameras and laser scanners allowed the
autonomous driving even in critical scenarios and challenging roads [6].

Although autonomous vehicle technology is not completely mature yet, it has
been attracting economic and industrial interest for years, and commercial cars
include increasing levels of autonomy year after year. On one hand, social impli-
cations of such a huge revolution will change our way to see the transportation
systems increasing the quality of our life. On the other hand, vehicles will have
to be equipped with a large number of sensors that are still expensive and, most
importantly, safety and reliability are mandatory, still open requirements.

Current experimental autonomous vehicles require sophisticated control algo-
rithms as well as a large number of sensors, hence the need to employ a number
of embedded computers and specific software architectures aimed at distributed
sensing and processing capable of real-time performance. A variety of such ar-
chitectures can be found in the literature and the industry. For example, the
MIT DARPA Urban Challenge Team developed a set of libraries and tools for
message passing and data marshalling called Lightweight Communications and
Marshalling (LMC) [7]. Their work was targeted at real-time systems such as
the experimental vehicle employed for the challenge. In such situations, high-
bandwidth and low latency are critical issues. Recently, the Robotics Operative
System (ROS) [8], a new software architecture for mobile robotics, is getting
increasingly popular among research labs and industries. ROS provides both, a
middleware for structured communications between processing nodes and a set
of ready-to-use software nodes for many specific tasks usually found in robotics.

Our electric car architecture is based on Open Mobile Robot Arquitecture
(OpenMORA) [9], originally developed by MAPIR lab, University of Málaga,
and at present also co-maintaned by the authors of this work. OpenMORA relies
on two open-source frameworks: MOOS [10], and Mobile Robot Programming
Toolkit (MRPT) [11]. MOOS is a middleware for distributed robotic architec-
tures based on the publish-subscribe (pub/sub) pattern. It comprises a core C++
library and a set of tools for managing and monitoring so-called communities
of distributed modules. Key advantages of MOOS against other alternatives are
its simplicity and its suitability to attain sub-millisecond round-trip message
passing. At the core of MOOS is the idea of a minimalist data-type middleware
(i.e. only double numbers and text strings are allowed to be exchanged between
modules), hence that transmitting complex data types (e.g. laser scans or im-
ages) over MOOS implies custom implementations of data marshalling. For that
purpose we use MRPT, which provides data structures for the most common
autonomous vehicle sensors along with efficient serialization and deserialization
mechanisms. MRPT is also employed for low-level interfacing with most sensors,

A Software Framework Aimed at Energy-Efficient Autonomous Driving 221

(a)

1

32 2 5

6 7

8 9

4

(b)

Fig. 1. (a) Autonomous car prototype, with visible sensors marked in red, and (b)
close-ups of the rest of sensors. Labeled devices are: (1) Sick LMS-200, (2) PGR Flea3
USB3 cameras, (3) GPS antenna, (4) embedded computers in the car trunk, (5) IMU
system, (6) steering-wheel actuator and encoder, (7) rear wheels encoders, (8) voltage
and (9) current sensors.

performing sequential Monte-Carlo (SMC) vehicle localization [12] and provid-
ing autonomous reactive navigation control [13]. Together, MOOS and MRPT
have a small footprint and allow modules to be written in C++ and run in a
number of platforms and operative systems (i.e. Windows, OSX, GNU/Linux,
GNU/kFreeBSD).

The rest of the paper is organized as follows. Section 2 describes our custom
autonomous car prototype including its sensors system, then section 3 introduces
the proposed software architecture. We finalize with Section 4 providing on-road
experiments and drawing some conclusions.

2 Prototype Description

An electric car prototype has been developed at the Automatic, Robotics and
Mechatronics (ARM) research group at University of Almeŕıa with the ultimate
scientific objective of studying novel localization, mapping and energy-efficient
path planning techniques. The prototype, presented in Figure 1, consists of a
urban electric car that has been adapted for automated control. Table 1 provides
a summary of its most relevant mechanical and electric characteristics. The
prototype features a 48 volt DC-motor and 8 gel-batteries, selected thinking
of the future requirements of energy efficiency. Its batteries system ensures an
autonomy of 90 km at a maximum travel speed of about 45 km/h. In its current
form, the prototype features both: full manual control, or autonomous mode. For
the implementation of such automatic control, the car required the installation

222 J.-L. Torres Moreno et al.

Table 1. Summary of vehicle mechanical and electrical characteristics

Mechanic characteristics Value

length × width × height 2680 × 1525× 1780 mm
Track 1830 mm
Front/rear wheelbase 1285/1260 mm
Weight without/with batteries 472/700 kg

Electric characteristics Value

DC motor XQ 4.3 4.3 kW
Batteries (gel technology) 8× 6 V −210 Ah
Autonomy 90 km

of a large number of sensors and actuators as well as a computer architecture
capable of properly handling all the dataflow in real time (refer to section 3).
Figure 2 shows an illustrative scheme of the embedded computers and sensors
architecture. Two embedded computers PC1 and PC2 constitute the processing
core of the vehicle, gathering information from each sensor and giving control
commands to each actuator.

During the prototype construction, the first task carried out was the automa-
tion of typically human-actuated signals, namely: steering and throttling. The
former was addressed by implementing a so-called steering-by-wire system, which
consists of a 12 volt DC-motor coupled to the steering column by means of an
electromagnetic clutch. Such system is governed by a custom microcontroller-
based steering controller which controls the motor by means of a PWM signal.
Furthermore, the controller reads back the angular position of the steering col-
umn by means of an incremental optical encoder attached to it. In order to allow
recovering the manual steering mode, the controller is capable of uncoupling the
motor and the steering column by actuating over the electromechanical clutch.

Regarding the automatic propulsion, we generate a throttle signal equivalent
to that one generated at the gas pedal. This is easily achieved by actuating on
the propulsion DC-motor controller via an analog signal from the NI-DAQ board
connected to PC2. As a way to watch and characterize the power supplied by
this motor, we monitor the current and voltages at the rotor, the stator and the
main battery terminals. The motor controller allowed manual selecting between
forward and reverse drive and also between two working regimes (dubbed “sport”
and “economy”) by means of switches in the front panel of the vehicle. Now those
connections have been replaced by electronics which is controlled via digital
outputs from the DAQ system.

Once the problem of automating the vehicle controls is overcome, the rest of
sensors aim to different control strategies, state observers, fault-tolerance sys-
tems or supervisory tasks. Among the kind of the control tasks which can be
performed on the prototype, one can distinguish between low and high level
controllers. The mission oriented philosophy of the implemented architecture
makes possible to reuse some low-level controllers for higher supervisory tasks

A Software Framework Aimed at Energy-Efficient Autonomous Driving 223

as path planning or obstacle avoidance. Some examples of these low-level con-
trollers comprise the cruise control system or the low-level steering controller
running on the custom microcontroller-based platform.

Fig. 2. Hardware equipment lay-out

A description of sensors layout can be found in Figure 2 while their proper-
ties are summarized in Table 2. Next, we give further details on the hardware
components installed in our prototype:

Computers: PC1 is the host computer, it features a quad core 2 GHz processor
running a 64bit Ubuntu operating system. Its tasks comprise the execution of
MOOS core and the acquisition of wheel encoders, the communication with the
low-level steering controller and cameras images processing. PC2 runs Windows
7 operating system and acquires current/voltage signals as well as actuates over
the throttle setpoint via a NI-DAQ board as well as the throttling signals. More-
over, this computer is responsible for the management of the GPS device and
the IMU.

The single board computer (SBC) PC3 is a Raspberry Pi connected to the
rest of computers in the architecture via Ethernet protocol. It has been prepared
to execute several algorithms of control and state observers. Moreover, due to
its emplacement in the front part, this is the computer which is connected to
the laser scanner. The choice of a SBC for these task is based on the principle of
delegating each process to the cheapest (in terms of both, economy and power
consumption) hardware platform capable of executing it in a reliable way.

224 J.-L. Torres Moreno et al.

Table 2. List of sensors, I/O devices and computers

Label Type Model

IMU Inertial sensor Xsens MTI 300
GPS GPS Hemisphere R100
ENC1,2 Wheel encoders 2 × Phidgets Optical Rotary Encoder ISC3004
ENC3 Steering-wheel encoder SICK Optical Rotary Encoder DFS61
CR,L stereo camera 2 × Flea3 FL3-U3-13E4C-C
Laser Laser Range Finder SICK LMS 200
A1,2,3, 3’ Current transducer 4 × Hall-effect LEM sensors
V1,2,3 Voltage transducer 3 × Phoenix Contact

DAQ1 I/O device NI-USB-6211
DAQ2 I/O device Phidgets Encoder High-Speed
ST Controller Prototype

PC1 Ubuntu O.S. Adapted PC
PC2 Windows 7 O.S. Industrial PC
PC3 Raspbian Raspberry Pi

Since we mostly use open source software for the cameras and vision systems,
whereas the pre-existing sensors were acquired on the NI-DAQ board, we have
chosen to preserve past architecture and, at the same time, add new features on
the car as an independent architecture. This allows also to change every module
independently at every advance of our research. The usage of the Windows OS
in one of the computers comes after carefully evaluating the support of NI-
DAQ C++ libraries under different driver versions and GNU/Linux distributions
without finding any with an acceptable level of functionality and reliability.

Sensors: The Xsens MTI-300 IMU is connected to PC2 via USB, and collects
the vehicle angular position and velocity along with its acceleration on x,y,z
axes at a frequency up to 2 kHz. The differential GPS R100 by Hemisphere
ensures the localization of the vehicle within a tolerance of 2 cm thanks to RTK
correction techniques. It is connected to PC2 through two RS-232 ports, for both
data communication and correction via 3G Internet access. The SICK LMS Laser
attached to the front part of the vehicle scans up to 180 degrees at a frequency of
18 Hz and a range of 81 m. A specifically developed controller converts the RS-
432 signal to USB aimed to the communications with the PC3. The ENC1 and
ENC2 Phidgets Optical Rotary Encoder ISC3004 mounted at the rear wheels
offer a resolution of 360 pules per revolution (ppr) which allows to implement a
low-cost efficient odometry system. However, the ENC3 encoder attached to the
steering column consists of the SICK DFS61 model with a resolution of 10000
ppr since the requirements of precision of the steering angle determination. The
CL and CR PGR Flea3 USB3 cameras attached to the upper front left and right
part of the vehicle respectively comprises the computer vision system controlled
by PC1 at a frequency up to 80 kHz. Regarding the power consumption of the
vehicle, three voltmeters (V1, V2 and V3) and ampere-meters (A1, A2 and
A3) measure the voltage and current in the rotor, the field and the batteries.

A Software Framework Aimed at Energy-Efficient Autonomous Driving 225

Additionally, the ampere-meter A3’ detects the sense of the current from the
batteries in order to identify when the regenerative braking system is actuating.

I/O Devices: DAQ1 is a National Instrument USB-6211 acquisition board
with 16 analog inputs (16-bit, 250 kS/s), 2 analog outputs (16-bit, 250 kS/s),
4 digital inputs and 4 digital outputs and 2 32-bit counters. It is connected to
PC1. On the other hand, DAQ2 is a Phidgets Encoder HighSpeed 4-Input board
which acquires the signals from the encoder of the rear wheels and communicates
with the PC2 via USB. Finally, the ST device refers to the steering controller
box which is connected to the PC1 via USB.

3 The MOOS-Based Software Architecture

This section introduces the MOOS-based [10] distributed software architecture
that has been developed for interfacing all vehicle’s sensors and actuators. The
fundamental processing element in MOOS is a module, an independent process
that publishes and subscribes to variables. Several modules typically subscribe
to the same variable whereas one normally finds only one publisher for each vari-
able (although the latter is not a strict rule and the opposite makes sense in some
situations), forming processing pipelines. A central hub called MOOSDB is in
charge of assuring that all publishers reach all subscribers, which may be running
on different computers across the local network. At present our distributed sys-
tem comprises two embedded computers and one single-board-computer (SBC)
(Raspberry PI-B), all of them interconnected through 1000Mbs Ethernet. Sub-
millisecond communication delays and the usage of a local Network Time Pro-
tocol (NTP) server assures the accurate synchronization between timestamps of
data gathered in different computers, a crucial issue for either grabbing datasets
for offline processing or for closing control loops online.

Upon this MOOS middleware, we have designed a set of C++ modules which
communicate to each other uniquely by means of message-passing under a pub/
sub pattern. As customary in software engineering, our approach comprises a
layered structure, beginning at the lowest level where modules directly interface
hardware, and up to the higher levels where modules become more platform-
independent. In fact, our guiding idea is allowing the transparent replacement of
all the modules that interface the real vehicle with a physics (multibody dynam-
ics) simulator, thus easing and boosting development of high-level algorithms
and controller prototypes. At present such simulator is under development, thus
in the following we focus on the specific modules designed for the vehicle proto-
type.

A sketch of the lower layers of our architecture is provided in Figure 3. Starting
our description from the bottom up, we find a first layer containing all physical
devices (labeled ”hardware” in the figure). Next, we have the two lower layers
of the software architecture itself, namely: (i) Drivers layer and (ii) the vehicle-
abstraction layer (VAL). In the former layer we find software modules, each one
in charge of interfacing a specific device. Modules in this layer are generic and

226 J.-L. Torres Moreno et al.

VAL
U_THROTTLE

NIDAQ

R_STEER_ANG

SteerController
LowLevel

eCARM
fwd/rev

pedal fwd/rev sport/eco

eCar
Odometry

PH
YS

IC
AL

 C
O

M
M

U
N

IC
AT

IO
N

CONTROL LAYER

Phidgets
Encoders

ODOMETRY
LIN_SPEED

Fig. 3. Layered structure of the proposed software architecture. Refer to section 3 for
details.

reusable, in the sense of being agnostic about the semantic or relevance of each
sensed or output signal. In our present implementation this layer contains: (i)
a module to read from the XSens MT4 Inertial Measuring Unit (IMU) placed
at the vehicle center of mass, whose more relevant output for this work is the
instantaneous rate of change in yaw (ωz); (ii) an interface to the two rear wheels
quadrature encoders, which ultimately provide wheel odometry (dead reckoning)
and the linear and angular velocities of the vehicle (disregarding slippage); and
(iii) the interface to a National Instruments DAQ providing several analog and
digital inputs and output, from which only the outputs directly related to throttle
control are displayed in Figure 3 for conciseness.

Upwards in the architecture we reach the VAL. The goal of this layer is pro-
viding a uniform interface (i.e. set of MOOS variables) that isolate the specific
vehicle being used from high-level controllers. Therefore, we find two kinds of

A Software Framework Aimed at Energy-Efficient Autonomous Driving 227

0 50 100 150 200 250 300 350 400

-50

0

50

100

150

200

Trajectory GPS (m)

Fig. 4. GPS registered signal

modules in this layer: (i) non-generic hardware drivers (e.g. the ”SteerController”
module which interfaces our custom microcontroller-based steering wheel con-
troller), whose output have a semantic closely related to the robotic platform,
and (ii) converters between generic sensor signals and meaningful variables (e.g.
from encoder velocity in ticks per second to vehicle linear velocity).

We decided that the following variables are sufficient for modeling and con-
trolling an Ackermann-like vehicle:

– R STEER ANG (Input): Desired reference or setpoint for the steering angle.
– U THROTTLE (Input): Desired normalized throttle in the range [−1, 1], with

negative values implying reverse gear.
– DELTA S (Output): The actual instantaneous steering angle.
– OMEGA Z (Output): Instantaneous yaw rate of the vehicle, as measured by

the IMU.
– ODOMETRY LIN SPEED (Output): Current linear speed of the vehicle, accord-

ing to rear wheels encoders.

Upon these layers there also exist other high-level modules in charge of, for
example, robust vehicle localization and reactive navigation, which lie outside of
the scope of the present paper.

4 Preliminary Experimental Results and Discussion

So far, experiments carried out with the proposed prototype consist of grabbing
datasets as the car is driven along fixed paths. As an example of such datasets,

228 J.-L. Torres Moreno et al.

0 20 40 60 80 100 120 1405

0

5

ste
er

ing
 a

ng
le

[d
eg

]

time (s)

(a) Steering angle

0 20 40 60 80 100 120 140

(b) Vehicle yaw position

0 20 40 60 80 100 120 14030

20

10

0

10

20

30

time (s)

ya
w

ra
te

 [d
eg

/s]

(c) Vehicle yaw rate

0 20 40 60 80 100 120 1402

0

2

4
mot
bat
fie

Po
we

r [
kW

]

time (s)

(d) Power consumption/regeneration

Fig. 5. Experimental results

A Software Framework Aimed at Energy-Efficient Autonomous Driving 229

Figure 4 shows the GPS signal regarding one of the paths followed in a particular
experiment. This experiment consisted in the drive of the vehicle through a
straight road of about 500 m, car speed ranges between 0 and of 10 m/s. The
first part of the experiment consists of a straight line maneuver. The vehicle
accelerated from a state of repose, and then was stopped again. The second part
belongs to a double lane change, which reproduces typical real driving conditions.
Finally, a slalom maneuver is performed in the last part of the experiment. Figure
5(a) represents the steering angle as the manual input signal as long as Figures
5(b)-(c) show the vehicle response in terms of its yaw angle and rate respectively.
As can be seen, even when the steering angle attends to severe driving conditions
as those of the third part of the experiment, the signals from the IMU fit perfectly
to such a fast transient response. Regarding the power consumptions Figure 5(d)
represents the energy consumption of rotor and field of the motor as well as the
power supplied by the batteries. It can be seen the high requirements when
the vehicle accelerates from an initial state of repose, whereas some part of the
kinetic energy is returned to the batteries when the vehicle decelerates.

To conclude, the experience gained with this work demonstrates that the mid-
dleware MOOS, together with the proposed architecture built upon it, perfectly
fits the demanding requirements of a distributed control architecture for an elec-
tric vehicle. To end this section, a word is in order regarding the several lines
of work that remain open at present. One of them consists of contrasting the-
oretical models for slippage with experimental results, given different kinds of
terrain and driving conditions. Another open challenge is exploring robust data
fusion techniques to achieve a ground-truth 6D vehicle localization (position and
attitude) as it moves at high speed. We are experimenting with fusion of stereo
visual odometry, inertial data from the IMU and the wheels encoders. Finally,
estimating the state of charge of the vehicle batteries is also a goal related to
energy-efficient driving, a process that will require grabbing datasets that in-
clude currents, voltages and temperature measurements for the gel batteries. It
is clear that all these open fronts deserve much future work after the design and
construction of the presented vehicle prototype.

Acknowledgment. This work has been partially funded by the Spanish
“Ministerio de Ciencia e Innovación” under the contract “DAVARBOT” (DPI
2011-22513) and the grant program JDC-MICINN 2011, as well as by the An-
dalusian Regional Government grant programs FPDU 2008 and FPDU 2009,
co-funded by the European Union through the European Regional Development
Fund (ERDF).

References

1. Thrun, S., et al.: Stanley: The Robot That Won the DARPA Grand Challenge.
In: Buehler, M., Iagnemma, K., Singh, S. (eds.) DARPA 2005. STAR, vol. 36,
pp. 1–43. Springer, Heidelberg (2007)

2. Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L.,
Frazzoli, E., Huang, A., Karaman, S., et al.: The darpa urban challenge (2009)

230 J.-L. Torres Moreno et al.

3. Urmson, C., Bagnell, J.A., Baker, C.R., Hebert, M., Kelly, A., Rajkumar, R.,
Rybski, P.E., Scherer, S., Simmons, R., Singh, S., et al.: Tartan racing: A multi-
modal approach to the darpa urban challenge. Technical Report 967, Robotics
Institute (2007)

4. Bertozzi, M., Broggi, A., Cardarelli, E., Fedriga, R.I., Mazzei, L., Porta, P.P.:
VIAC Expedition Toward Autonomous Mobility. Robotics and Automation Mag-
azine 18(3), 120–124 (2011) ISSN: 1070-9932

5. Broggi, A., Medici, P., Zani, P., Coati, A., Panciroli, M.: Autonomous vehicles
control in the VisLab Intercontinental Autonomous Challenge. Annual Reviews in
Control 36(1), 161–171 (2012) ISSN: 1367-5788

6. Broggi, A., Buzzoni, M., Felisa, M., Zani, P.: Stereo obstacle detection in chal-
lenging environments: the VIAC experience. In: Procs. IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems, San Francisco, California, USA, pp. 1599–1604
(September 2011)

7. Huang, A., Olson, E., Moore, D.: LCM: Lightweight communications and mar-
shalling. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (October 2010)

8. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

9. MAPIR lab (University of Málaga), ARM group (University of Almeŕıa): Open
Mobile Robot Arquitecture (OpenMORA) (June 2014),
http://sourceforge.net/projects/openmora

10. Newman, P.M.: MOOS-mission orientated operating suite. Technical Report 2299,
Massachusetts Institute of Technology (2008)

11. Blanco, J.L., et al.: Mobile Robot Programming Toolkit (MRPT),
http://www.mrpt.org/

12. Blanco, J.L., González, J., Fernández-Madrigal, J.A.: Optimal filtering for non-
parametric observation models: applications to localization and slam. The Inter-
national Journal of Robotics Research 29(14), 1726–1742 (2010)

13. Blanco, J.L., González-Jiménez, J., Fernández-Madrigal, J.A.: Extending obsta-
cle avoidance methods through multiple parameter-space transformations. Au-
tonomous Robots 24(1) (2008)

http://sourceforge.net/projects/openmora
http://www.mrpt.org/

Structured Design and Development

of Domain-Specific Languages in Robotics�

Sven Schneider, Nico Hochgeschwender, and Gerhard K. Kraetzschmar

Department of Computer Science, Bonn-Rhein-Sieg University,
Grantham-Allee 20, 53757 Sankt Augustin, Germany

{sven.schneider,nico.hochgeschwender,gerhard.kraetzschmar}@h-brs.de
http://inf.h-brs.de/

Abstract. Robot programming is an interdisciplinary and knowledge-
intensive task. All too often, knowledge of the different robotics do-
mains remains implicit. Although, this is slowly changing with the rising
interest in explicit knowledge representations through domain-specific
languages (DSL), very little is known about the DSL design and devel-
opment processes themselves. To this end, we present and discuss the
reverse-engineered process from the development of our Grasp Domain
Definition Language (GDDL), a declarative DSL for the explicit speci-
fication of grasping problems. An important finding is that the process
comprises similar building blocks as existing software development pro-
cesses, like the Unified Process.

1 Introduction

Robot programming is a challenging and complex exercise, which is very often
prone to errors. We argue, that the main reason for the complexity and difficulty
lies in the fact that robot programming is a knowledge-intensive exercise and that
this knowledge often remains implicit. For example, to program a robot to grasp
an object for the sake of transportation already demands knowledge about many
diverse domains, such as the environment where the robot is operating in, the
object to be grasped, the robot platform itself and its grasping abilities, and the
goals and constraints of the task. Fortunately, the importance of explicit knowl-
edge representations is attracting growing interest from the robotics community.
This is important, in order to make robot programs more consistent, determinis-
tic, and reusable. On the one hand, approaches, such as KnowRob [18], are based
on ontologies and enable the sharing and reasoning of knowledge obtained from
different sources, to achieve the task at hand. On the other hand, approaches
based on the Model-Driven Engineering (MDE) paradigm [16], exploit the knowl-
edge for systematic software development and are already adopted by mature
domains such as avionics, automotive, and telecommunication. In MDE, the

� The authors gratefully acknowledge the on-going support of the Bonn-Aachen
International Center for Information Technology. Nico Hochgeschwender received
a PhD scholarship by the Graduate Institute of the Bonn-Rhein-Sieg University
which is gratefully acknowledged.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 231–242, 2014.
c© Springer International Publishing Switzerland 2014

http://inf.h-brs.de/

232 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

Fig. 1. Diagram of the meta-modeling approach (based on [10], p. 4685)

concept of meta-modeling is used, to digest, develop, and consolidate abstrac-
tions describing a certain domain. To support this process, MDE introduces
several levels of abstractions (see Fig. 1). Ranging from a higher to a lower level
of specificity or detail in the knowledge of a domain [4]. Most importantly, on
the M2 level, the domain knowledge, in terms of domain concepts with con-
crete names, relations among each other, and properties are formalized. In the
MDE paradigm, an M2 model can be represented by a domain-specific language
(DSL), which represents the knowledge of the properties and relationships in the
model with a terminology and syntactical constructs that practitioners in the
domain are familiar with [4]. In general, the MDE approach is very appealing,
as the metamodels of a domain are stable, whereas the concrete domain models
can differ a lot. Thus, design and development of software by and for reuse is
enhanced.

Recently, the MDE approach and DSLs have gained popularity in robotics.
Several DSLs for different aspects of the robotics domain are available. Rang-
ing from DSLs to express force-velocity controlled robot tasks [10] to coordinate
transformations and kinematic structures [8]. However, a sound domain analy-
sis and conceptualization is a necessity, in order to find the right abstractions,
which suit the domain best and which later form the building blocks of a DSL.
Unfortunately, we know very little about the DSL design and development pro-
cess itself. The vast majority of DSL articles focus on the language itself and
not on how the DSL has arisen from a domain analysis. We argue that in or-
der to make progress with DSL development in robotics, we need to know what
the workflows, activities, and stakeholders of DSL design and development are.
In particular, as robotics is an interdisciplinary domain, which contains sub-
domains which are well consolidated (e.g., math or coordinate representations)
and more emerging subdomains such as perception, manipulation, and planning.
Answering these questions will eventually help also to identify best practices, de-
velopment patterns and guidelines which are applicable for future DSL projects
in robotics.

Structured Design and Development of Domain-Specific Languages 233

In this paper, we present the lessons learned which we gained while designing
and developing a DSL called Grasp Domain Definition Language (GDDL) [17].
One major lesson learned is a reverse-engineered process model for the design
and development of DSLs in robotics. We present and discuss the process itself
and how the process has been applied to the development of GDDL.

2 Overview of GDDL

GDDL is a declarative DSL for specifying grasping knowledge, as well as grasping
problems in a grasp planner-independent representation. With this approach, it
resembles the Planning Domain Definition Language (PDDL) [9] for automated
task planning. GDDL decomposes the overall grasping domain into subdomains
for representing objects, hands and tasks. Additionally, a composition subdomain
enables the specification of grasps as a composite of the previous three subdo-
mains. During the design, two cross-cutting subdomains were identified, namely,
the units subdomain for specifying physical units and the geometry subdomain,
which captures the semantics of geometric object relations, such as position, ori-
entation or pose. As the subdomains themselves are not the scope of this paper,
we only present excerpts of those subdomains in the DSL development process.

Originally, GDDL was motivated by the problem of data labeling in many
existing machine learning approaches for grasping, such as presented in [2]. In-
stead of labeling a large amount of randomly generated grasps, a domain expert
should specify the criteria for a good grasp once. Then, grasps should be labeled
automatically based on these specifications. Mernik et al. [14] call this approach
“task automation”. From this initial scope, GDDL developed into a more ver-
satile language, which also covers fields beside pure data labeling. Currently, it
allows the explicit and formal specification of grasping knowledge, which enables
the verification of user-provided grasp data. Therefore, GDDL can be used as a
“front-end” for configuring different grasp planners.

GDDL features a full-fledged integrated development environment (IDE)
which is based on the Eclipse Xtext1 framework. The domain metamodels are
specified in the Eclipse Modeling Framework’s (EMF)2 Ecore fromat. Different
use cases have been implemented with GDDL, on simulated and real robotic
platforms, such as a Care-O-bot 3 with a Schunk Dextrous Hand (SDH) or a
KUKA youBot. In our implementation, the GraspIt! [15] simulator was extended
to interpret GDDL and plan grasps based on GDDL specifications.

3 DSL Development Process

Following this overview of GDDL, we describe a generic DSL development pro-
cess, which we reverse-engineered by analyzing the different phases of the GDDL
development. For each phase, examples from GDDL are provided.

1 http://www.xtext.org/
2 http://www.eclipse.org/modeling/emf/

http://www.xtext.org/
http://www.eclipse.org/modeling/emf/

234 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

3.1 Process Concepts

The process involves three types of stakeholders, which have different interests
in and expectations about the project. Each stakeholder contributes to the de-
velopment process during different phases.

Domain Experts. They want to solve some problem in their domain and see
the potential that a DSL improves the solution or simplifies the task. Thus,
they are also the main users of the developed DSL. While the domain ex-
perts have a sound understanding of their domain, they are not necessarily
software developers. For GDDL, a domain expert is interested in specifying
knowledge about manipulation and grasping, so that a robot can apply this
knowledge. Often, the understanding of a single domain is not sufficient to
solve the problem, as exemplified by the different aspects of manipulation
and grasping in the previous section.

Subdomain Experts. They have very good knowledge about a field which
is related to the domain experts’ problem. Thus, in certain phases, they
contribute knowledge about this subdomain to the DSL development. For
instance, in robotic grasping, there are researchers with a strong background
in evaluating and simulating contacts between objects and fingers, while
others focus on the representation of objects, reaching from kinematics to
affordances.

DSL Developers. They are the software developers in the process and usually
do not have a background in the previous domains. Therefore, they cooperate
with the previous two experts, to get an insight into their domains, but also
to extract the relevant domain knowledge. The developers then formalize
this knowledge into metamodels. Based on these metamodels, they design
and implement the DSL tooling.

In the development of GDDL, these roles were taken on by the same person.
However, in a more complex project, different and potentially multiple persons
represent the stakeholders. The interaction between these stakeholders in differ-
ent project phases forms the DSL development process, which consists of the
following concepts:

Activities represent work that is performed by one or more of the stakeholders
to solve a task. Usually, activities require input from previous process phases
and produce output for other activities.

Artifacts are the output of an activity. Depending on the activity, artifacts in-
clude developed software or textual and graphical documents which describe,
for instance, use cases, requirements or reviews. Each artifact is stored in a
repository.

Models are a special type of an artifact in the DSL development process, which
represents formalized domain knowledge. The MDE paradigm describes one
approach to represent models in a hierarchical manner.

Structured Design and Development of Domain-Specific Languages 235

Legend

Activity
Information flow

Artifacts M2 Models M1 Models

Description
of

Use Cases

Extraction
of

Subdomains

Analysis
of

Subdomains

Use Cases Subdomain

Requirements
Identification of

Common
Concepts

Informal Concept
Description

Formalization
of

Concepts

Metamodels
Development

of
Tooling

Tools

Use Case
Models

Implementation
of

Use Cases

Analysis
of

Models

Fig. 2. Diagram of the development process

3.2 Process Flow Phases

Fig. 2 depicts our reverse-engineered DSL development process. In this section
we explain and motivate each step in the process along recurring examples from
the GDDL development. To this end, we have selected three different subdo-
mains, namely, a) the units subdomain, b) the geometry subdomain; and c) an
excerpt from the hand subdomain for representing grasp semantics. The latter
assigns semantic properties, like grasp stability or grasp shape, to given hand
configurations.

Description of Use Cases. The domain expert describes several applications
or use cases which demonstrate a) the diversity and variability; and b) the
commonalities in the domain of his problem. The resulting use cases are stored
in a repository for further analysis in the next activity. In GDDL such use cases
include rather simple tasks, like grasping an object for transportation or pouring
liquid from a glass, to more complex tasks, such as cutting with a knife or
spraying liquid with a spray bottle. These tasks are targeted at robots with
different hands.

Extraction of Subdomains. In the following activity, the domain expert anal-
yses the use cases, to find groups of common and relevant features: the subdo-
mains. The analysis is either guided by the expert’s prior domain knowledge or
research, for instance, based on existing scientific literature surveys. A decompo-
sition into subdomains allows the domain expert, for example, to easier identify
aspects that concern more than one domain. Such aspects are extracted from
the special-purpose domains into reusable general-purpose domains. All identi-
fied subdomains and associated material are saved in the subdomain repository.

236 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

An initial extraction of subdomains in grasping is proposed by Cutkosky in [5].
The proposed subdomains contain the hand, the object and the task. In later it-
erations and subdomain refinements of GDDL, two general-purpose subdomains
have been identified, the units and the geometry subdomains. A lot of research
in robotic grasping is also aimed at the contact evaluation between a hand or a
finger and an object (see e.g. [3]), which makes this field a candidate for a further
subdomain. Similarly, in many manipulation tasks, the environment should also
be considered by the robot, as demonstrated, for example by [1].

Additionally, a thorough domain analysis reveals hidden assumptions which
can be found in many domains and which are only known to the domain experts.
The domain analysis leading to GDDL’s metamodels, for instance, has shown
that grasping does not just concern an object and a hand. Instead, grasping
always has a purpose that is defined in a task. However, many research efforts
assume, that the task is simple, such as transporting or holding objects, but
don’t specify this assumption explicitly.

Analysis of Subdomains. In the next phase, the domain expert in coopera-
tion with the subdomain expert, investigates each subdomain in the subdomain
repository in more detail. One outcome of this investigation is, that the subdo-
main extraction was too coarse and further subdomains should be added. This
leads to a further iteration of the subdomain extraction activity, now taking
into account the refined structure of subdomains. Another possible outcome is
a collection of requirements for each subdomain based on existing subdomain
knowledge or state of the art analysis through scientific literature research.

In grasping and manipulation, two commonly found concepts are positions and
orientations of bodies w.r.t. other bodies. Examples of functional requirements
(FR) for the geometry subdomain are:

FR1. The robot shall compute positions of a body w.r.t. another body.
FR2. The user shall specify positions of a body w.r.t. another body.
FR3. The robot shall efficiently calculate orientations between two bodies.
FR4. The user shall naturally specify orientations between two bodies.

Similarly, non-functional requirements (NFR) are specified, such as

NFR1. A textual editor shall be provided to the user.
NFR2. The keywords of the language shall be highlighted in the editor.
NFR3. Syntax errors shall be listed in a separate editor window.

Additionally, it was decided, to rely on existing, specialized grasp planners, such
as GraspIt! [15], for the hand-object contact evaluation at run-time. Similarly,
also the environment should be taken into account only at run-time, by validat-
ing, that generated grasps result in collision free motions during grasping.

Identification of Common Concepts. This activity is handled only by the
subdomain expert. The subdomain expert investigates the functional require-
ments which he gets from the metamodel requirements repository and derives

Structured Design and Development of Domain-Specific Languages 237

Fig. 3. On the right side, an excerpt of a grasp taxonomy is shown (see [5], p. 273).
Different concepts, which are identified in the domain analysis phase, are highlighted
by the colored boxes. The left side shows a metamodel for grasp taxonomies, where the
concepts are formalized. The grasp taxonomy on the right side conforms to this grasp
taxonomy metamodel.

concepts. A concept represents a commonality or category within a domain. After
the subdomain expert has identified the concepts, he documents them, so that
a common terminology emerges. The resulting informal descriptions are stored
in a repository. For each concept, they contain elements such as, a lexicographic
explanation or an exemplifying diagram, a graphical or textual ontology which
represents the relation to other concepts, a list of known limitations or examples
of this concept.

For instance, from the previously-defined functional requirements, the follow-
ing concepts are derived:

– The positions in FR1 and FR2 can be represented by the same, common
concept, called PositionVector.

– The orientations in FR3 and FR4 should be represented by two different
concepts, for instance, Quaternion and RollPitchYawAngle.

Another example of concept identification is depicted in Fig. 3. It shows a grasp
taxonomy which is one approach for representing grasp semantics. On the right
side of the figure, different concepts of grasp taxonomies are highlighted. Based
on [5], a grasp taxonomy can be described informally as, for instance:

238 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

– A grasp taxonomy is a “hierarchical tree of grasps” [5].

– The layers are derived from the influence of the object geometry and the
task. Higher layers focus more on the object shape, while lower layers also
include detailed task information.

– Known limitations are, that grasp taxonomies are incomplete and often tai-
lored to specific tasks or objects.

Formalization of Concepts. In the following phase, namely the concept for-
malization, the DSL developer receives the informal descriptions and transforms
them to formal metamodels. Existing frameworks for the specification of meta-
models are, for instance, the Object Management Group’s (OMG) Meta-Object
Facility (MOF)3, the EMF’s Ecore or the Web Ontology Language (OWL)4.
While the DSL developer performs the main work in this phase, he also receives
support from the subdomain expert, for example, to clarify ambiguities in the
informal descriptions. During the formalization, the DSL developer chooses one
of the following approaches:

Definition. New metamodels are defined, if no proper metamodels exist. This
will usually be the case for the core metamodels of a domain. In GDDL,
this includes the metamodels for describing tasks, objects and hands (beside
the kinematics and dynamics description), which were defined from scratch.
With the system of units (SI), an informally described metamodel for rep-
resenting physical units already exists. Based on [7] and the Boost.Units5

library, a formal units metamodel was defined for GDDL. The left side of
Fig. 3 depicts another example of a formal metamodel for grasp taxonomies.
This metamodel is derived from the informal concept description of grasp
taxonomies.

Refinement. Existing metamodels are refined, in case there are metamod-
els from related projects which already cover the subdomain partially. In
GDDL, the existing, formalized Task-Frame Formalism (TFF) metamodel
by Klotzbücher et al. [10] was refined, by extending it with the units meta-
model. Similarly, the geometry metamodel, which is formally described in [6],
was extracted from the existing C++ implementation and then refined by the
units metamodel.

Reuse. If a metamodel for a subdomain already exists, for example, as part
of a standard, or from another project, it is reused unchanged. An exam-
ple of metamodel reuse in GDDL is the Unified Robot Description Format
(URDF)6 for describing kinematic and dynamic properties of robotic hands
and objects.

3 http://www.omg.org/spec/MOF/2.0/
4 http://www.w3.org/TR/owl2-overview/
5 http://www.boost.org/doc/libs/1_55_0/doc/html/boost_units.html
6 http://ros.org/wiki/urdf

http://www.omg.org/spec/MOF/2.0/
http://www.w3.org/TR/owl2-overview/
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_units.html
http://ros.org/wiki/urdf

Structured Design and Development of Domain-Specific Languages 239

Category returns grasp_taxonomy :: Category
: name=ID ’:’ ’Category ’ ’{’

(’description ’ ’:’ description=STRING)?
(’identifier ’ ’:’ id=INT)?
(grasps +=Grasp | children += Category)*

’}’
;

GDDL Grammar Excerpt

Fig. 4. Excerpt of GDDL’s Xtext grammar for representing a category in a grasp tax-
onomy. This grammar is aligned with the Category concept of the metamodel in Fig. 3,
i.e. a category consists of exactly one name, an optional description and identifier, and
references any number of children categories and grasps.

Development of Tooling. Only the DSL developer is responsible for the tool-
ing development. The input to this activity are, on the one hand, the domain
metamodels from the metamodel repository and, on the other hand, the non-
functional requirements from the metamodel requirements repository. The meta-
models form the basis of the textual DSL’s grammar or the items visualized in
a graphical editor. Based on the non-functional requirements, the type, layout,
structure and constraints of the editor are specified. The developed tools, such
as the editors for specifying M1 models, and also the application-specific gen-
erators for generating M0 representations of the models are stored in the tool
repository.

The non-functional requirements NFR1–NFR3 for GDDL specify that a
text editor with syntax highlighting and the possibility to visualize syntax er-
rors should be developed. Due to these (and other) requirements, we chose the
Eclipse-based framework Xtext for the editor implementation. Fig. 4 shows an
excerpt of GDDL’s formal grammar, from which Xtext generates a full-fledged
IDE. The grammar is aligned with GDDL’s metamodels. In addition to the
IDE, the DSL developer of GDDL also implemented an interface for GraspIt!,
to interpret GDDL specifications.

Implementation of Use Cases. In this phase, the domain expert and the sub-
domain expert implement their use cases with the developed tools. The results
are M1 use case models which are then either input to a) runtime components
directly as configuration; or b) code generators (which are also part of the tools
repository) for generating M0 representations of the models, such as code, de-
ployment or configuration files.

In GDDL, such models describe, for example, specific hands like a SDH or a
youBot gripper, objects like a spray bottle, as well as, various tasks from trans-
portation to tool-use. Fig. 5 shows a simple textual model of Cutkosky’s grasp

240 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

cutkosky_taxonomy: GraspTaxonomy by "Mark�R.�Cutkosky" {
description: "A�simple�grasp�taxonomy"

power: Category {
description: "emphasis�on�security ,�stability"

prehensile: Category {
description: "clamping�required"

lateral_pinch: Grasp {
description: "Lateral�Pinch"
identifier: 16

Example {
author: "Thomas�Feix"
description: "Lateral"
image: "http :// grasp.xief.net/images_grasps/i_16_1"

} } } }
}

Simple Grasp Taxonomy

Fig. 5. Example of a grasp taxonomy in GDDL. The specification conforms to GDDL’s
metamodel which is shown in Fig. 3.

taxonomy (see Fig. 3). The syntax of this excerpt conforms to the previously ex-
plained grasp taxonomy grammar, and therefore also to the grasp taxonomymeta-
model. When the domain expert provides the implemented use case models to
GraspIt!, the simulator plans grasps, which are compliant with the specified
models.

Analysis of Models. In the final phase, the domain and subdomain experts
investigate the modeled use cases and the created tools. If the models describe
the use cases sufficiently well and the experts are satisfied with the tools, the
process terminates. Otherwise, deficits, missing functionality or newly found
commonalities between the subdomains are identified and serve as input for new
metamodel requirements. They are included in the next process iteration.

An example of new functional requirements can be found in the design pro-
cess of GDDL. Initially, a simple, custom kinematics description format was
designed. However, this resulted in additional work for the integration with ex-
isting libraries. Consequently, the format was replaced by the existing URDF
metamodel in another iteration. An example of other non-functional require-
ments can be derived by investigating the shown grasp taxonomy model (see
Fig. 5). Currently, the grammar is tailored to programmers as it uses a C-like
syntax with many braces. Such a representation is not suitable for grasping ex-
perts with limited programming experience. Instead, a graphical editor for grasp
taxonomies could be a solution for them.

4 Discussion and Related Work

As our DSL development process has been reverse-engineered, a comparison with
more traditional and general development processes found in Software and

Structured Design and Development of Domain-Specific Languages 241

Systems Engineering is worthwile. Interestingly, the process described here, con-
tains comparable key building blocks and terminology, as the well-known Unified
Process (UP) [13]. In both cases, the building blocks, such as activities, iterations,
stakeholders, and cycles are crucial to describe who, when, and why some activity
is performed. In addition, activities such as the creation of use cases is similar to
the UP. However, onemain difference remains: the major artifacts aremetamodels
and not executable source code. Therefore, activities like unit testing are not that
straightforward to implement in theDSLdevelopmentprocess, as comparable tech-
niques, such as model-based testing are not (yet) mature enough. As our process
uses established concepts, we argue that it is worthwhile to investigate whether
it is possible to model the process itself as it still contains a sufficient amount of
domain-specific aspects such as the concrete sequence and type of activities.

Kolovos et al. [11] have identified the three stakeholders a) the system/soft-
ware engineer, who aligns with the DSL developer in our process and develops the
tooling, b) the developer, who uses the tools to develop M1 models; and c) the cus-
tomer, who evaluates the developed M1 models. While only the system/software
engineer has an equivalent in our process, the authors also outline an “end-user pro-
gramming” approach, which combines the developer and the customer. This latter
approach has also been identified in our reverse-engineered development process.

Just as in software development, reusability is an important requirement in
metamodeling that helps to increase model quality and decrease development
time. While some metamodels have been reused or refined in the GDDL de-
velopment, this often included copying or recreating metamodels from scientific
literature. Preferably though, metamodels should be shared in an online meta-
model repository from which they can be downloaded easily. This leads to the
conclusion, that the robotics DSL community has not progressed so far, that
excessive metamodel reuse is possible.

5 Conclusion

In this paper we have presented and exemplified a DSL development process
which was reverse-engineered from the development of GDDL, our DSL for ex-
plicitly specifying complex robotic grasping tasks. Our process resembles well-
known software development processes such as the UP. We plan to apply this
process to the development of new DSLs and, while doing so, will also investigate
if the process matches DSLs for purposes other than the initial goal of GDDL,
i.e. task automation. In addition, we plan to investigate the integration of our
proposed DSL process model into an overall robot software development process
such as the BRICS Robot Application Development Process [12].

References

1. Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., Kuffner, J.: Grasp planning
in complex scenes. In: Proc. IEEE-RAS International Conference on Humanoid
Robots (2007)

242 S. Schneider, N. Hochgeschwender, and G.K. Kraetzschmar

2. Bohg, J., Welke, K., Lon, B., Do, M., Song, D., Wohlkinger, W., Madry, M., Aldma,
A., Przybylski, M., Asfour, T., Mart, H., Kragic, D., Morales, A., Vincze, M.: Task-
based grasp adaptation on a humanoid robot. In: 10th IFAC Symposium on Robot
Control (2012)

3. Borst, C., Fischer, M., Hirzinger, G.: Grasp planning: How to choose a suitable
task wrench space. In: Proc. IEEE International Conference on Robotics and Au-
tomation (2004)

4. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gher-
ardi, L., Brugali, D.: The BRICS component model: A model-based development
paradigm for complex robotics software systems. In: Proc. ACM Symposium on
Applied Computing (2013)

5. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manu-
facturing tasks. IEEE Transactions on Robotics and Automation 5, 269–279 (1989)

6. De Laet, T., Bellens, S., Smits, R., Aertbelien, E., Bruyninckx, H., De Schutter,
J.: Geometric relations between rigid bodies: Semantics for standardization. IEEE
Robotics & Automation Magazine 20, 84–93 (2012)

7. Foster, M.P.: Disambiguating the si notation would guarantee its correct parsing.
Proceedings of the Royal Society 465, 1227–1229 (2009)

8. Frigerio, M., Buchli, J., Caldwell, D.G.: Code generation of algebraic quantities
for robot controllers. In: Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (2012)

9. Ghallab, M., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D.,
Wilkins, D.: PDDL - the planning domain definition language. Tech. rep., Yale
Center for Computational Vision and Control (1998)

10. Klotzbücher, M., Smits, R., Bruyninckx, H., De Schutter, J.: Reusable hybrid force-
velocity controlled motion specifications with executable domain specific languages.
In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(2011)

11. Kolovos, D.S., Paige, R.F., Kelly, T., Polack, F.A.C.: Requirements for domain-
specific languages. In: Proc. 1st ECOOP Workshop on Domain-Specific Program
Development, DSPD 2006 (2006)

12. Kraetzschmar, G.K., Shakhimardanov, A., Paulus, J., Hochgeschwender, N., Reck-
haus, M.: Specifications of architectures, modules, modularity, and interfaces for
the brocre software platform and robot control architecture workbench. BRICS
project deliverable D2.2 (2010)

13. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley Pro-
fessional (2003)

14. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys 37, 316–344 (2005)

15. Miller, A., Allen, P.K.: Graspit!: A versatile simulator for robotic grasping. IEEE
Robotics & Automation Magazine 11, 110–122 (2004)

16. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

17. Schneider, S., Hochgeschwender, N., Kraetzschmar, G.K.: Declarative specification
of task-based grasping with constraint validation. In: Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (to appear, 2014)

18. Tenorth, M., Beetz, M.: Knowrob: A knowledge processing infrastructure for
cognition-enabled robots. International Journal of Robotics Research 32, 566–590
(2013)

ROS-I Interface for COMAU Robots

Stefano Michieletto1, Elisa Tosello1, Fabrizio Romanelli2, Valentina Ferrara2,
and Emanuele Menegatti1

1 Intelligent Autonomous Systems Lab. (IAS-Lab.)
Department of Information Engineering (DEI), University of Padova

Via Gradenigo 6a, 35131 Padova, Italy
{michieletto,toselloe,emg}@dei.unipd.it

http://robotics.dei.unipd.it
2 Research & Development Group in Motion

and Control of Comau Robotics
Via Rivalta 30, 10095 Grugliasco, Italy

{fabrizio.romanelli,valentina.ferrara}@comau.com
http://www.comau.com

Abstract. The following paper presents the ROS-I interface developed
to control Comau manipulators. Initially, the Comau controller allowed
users to command a real robot thanks to motion primitives formulated
through a Comau motion planning library. Now, either a ROS or a non
ROS -compliant platform can move either a real or a virtual Comau robot
using any motion planning library. Comau modules have been wrapped
within ROS and a virtual model of a Comau robot has been created.
The manufacturer controller has been innovatively used to drive both
the real and the simulated automata.

Keywords: ROS, Industrial, Manipulators, Simulation.

1 Introduction

Nowadays industrial robots have to perform complex tasks at high speeds and
have to be capable of carrying out extremely precise and repeatable operations
in an industrial environment; however, robot manufacturers left their controllers
closed to the user who wants to improve their capabilities and to extend their
computational power. On the other hand, the scientific community asks for a
more open system in order to apply its researches on an industrial product,
and this process must be carried out in a very short period. Moreover indus-
trial robots are designed with several requirements such as industrial standards,
safety regulations, user-friendly interface approach and cost reductions which
are not easy to combine with an open approach. Therefore there is a thriving
research activity on these new topics which involves both industrial robotics and
applications.

There were several attempts to open industrial controller such as in [11]
and [4]. In the late 1991 Comau Robotics began its effort to implement Open
features with the third generation controller (C3G); this was a first experience

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 243–254, 2014.
© Springer International Publishing Switzerland 2014

http://robotics.dei.unipd.it
http://www.comau.com

244 S. Michieletto et al.

on the open control [5], but later this became the basis for more powerful im-
plementations which gave the possibility to develop the forth generation open
controller called C4G Open. This system architecture allowed to give the robot
new features and capabilities such as sensory feedback control [9].

The next challenge in industrial robotics was to increase ease of use, flexibil-
ity and integrability of the open controller; in this context, Comau saw in the
ROS-I project the natural evolution of the Open control, where a standard in-
terface, compliant with industrial use and reliable, was mandatory. Other robot
manufactures are involved in the ROS-I program1: ABB, Adept, Fanuc, Uni-
versal Robot and Motoman. Only Motoman released production ready code. In
the other cases the software is not yet production ready code and it has only
some levels of unit-testing. For Adept and Fanuc only joint position streaming
is supported, with the controller currently overriding commanded velocity with
a constant one. Trajectory downloading, velocity or force control are note yet
supported. For ABB only trajectory streaming is supported [14]. The Motoman
driver controller interface, instead, provides a more high-performance interface
for controlling Motoman robots, and it meets qualitative criteria for being used
in production systems. The controller plans the movements using an existing
ROS-compliant motion planning library: MoveIt2. And it provides a low-level
control of joint position, velocity, and path timing. Being ROS non real-time,
the computational load decreases robot speeds down to 20% and 70% of robot
capabilities. Following the Motoman example, this paper presents the ROS-I
interface developed to control Comau manipulators. The stack contains:

– ROS nodes implementing the communication with C4G Open (the Comau
industrial robot controller);

– the Comau Smart5 SiX robot model in the Universal Robot Description File
(URDF3) format for the simulated representation of the automata;

– the Open realistic Robot Library (ORL) (the Comau motion planning li-
brary).

These tools allow either a ROS or a non ROS -compliant platform to move either
a real or a virtual Comau Smart5 SiX robot. Both a position and a velocity
controller are supported and motion commands can be issued using both ORL
and any other ROS-compliant motion planning library. As above mentioned,
other manufactures offer packages suitable only for MoveIt. Moreover, in our case
both the real and the simulated automata are driven using C4G Open. Being it
real-time, the faithful control of the robot and its 100% speed are guaranteed.

The rest of the paper is organized as follows. In Section 2 existing standard
and open architectures will be presented together with an overview of the ROS-
Industrial standards. The integration of ROS-I within the Comau C4G Open
controller will be discussed in Section 3, followed by the experimental setup and
tests of Section 4. Conclusions and future works will be depicted in Section 5.

1 http://rosindustrial.org/
2 http://moveit.ros.org/
3 http://wiki.ros.org/urdf

http://rosindustrial.org/
http://moveit.ros.org/
http://wiki.ros.org/urdf

ROS-I Interface for COMAU Robots 245

2 Overview

2.1 Open Control Architecture

The Open Robot Controller is a software and hardware control architecture
which allows the easy and safe integration of the Robot Control Unit with an
external Personal Computer. The integration helps programming the automa-
tized robotic cell and lets the extraction of data from external sensors.

C4G Standard Controller. The standard COMAU C4G controller consists
of a modular architecture with three different hierarchical hardware levels (see
Figure 1).

Fig. 1. Standard architecture for the Comau C4G robot controller

The first level is the System Master Processor (SMP+) control board. At
this level, all high level processes take place: interpretation of user programs,
management of operator interfaces, network communications, trajectory gener-
ation, computation of dynamic model and management of assigned tasks, colli-
sions detection, system diagnostics, high hierarchical level centralized adjustment
process, axes synchronizing control, management of all I/O devices. The second

246 S. Michieletto et al.

level is the Model Predictive Control (MPC) board, inside: fine interpolation
of the manipulator trajectory, robot position adjustment, real time system di-
agnostics, master-slave axes management. The lower level is the Digital Signal
Processing (DSP) board, inside: control of electric motor currents and torque
generation process for individual axes control, power stage management, posi-
tion sensor and acquisition of motor angular measurements, high speed digital
and analogical I/O management. The system architecture is based on a real time
communication. It has a frame rate of 1ms on an Ethernet network that uses an
UDP protocol, between the SMP+ board (client) and the MPC board (server).

Comau C4G Open Controller. The standard C4G controller does not allow
sensors and devices connections to the robot. This restriction has been over-
come opening the robot controller: a second server process has been inserted
introducing an external PC in the network (see Figure 2). The PC adds power
to the Robot Control Unit simplifying the implementation of complex manufac-
turing applications: programming automated robotics cells is easier and external
sensors integration is possible. In this way, writing custom applications where
standard control processes and trajectory generation interact with external sen-
sors, devices or PCs is feasible. Mixing trajectories between open and standard
modalities is also possible, together with the possibility of programming the
robot using different open modalities such as: additional and absolute position
control, additional current control, trajectory management and modification of

Fig. 2. Open Control architecture for the Comau C4G robot controller

ROS-I Interface for COMAU Robots 247

pre-planned trajectory. Different Open architectures have been presented in sev-
eral European Projects (SME Robot4 and ARFLEX5) to correct a real trajectory
using vision systems or to integrate an inertial navigation tool. The C4G Open
Control is based on GNU/Linux Operating System and the real-time is achieved
by using the Real-Time Application Interface (RTAI) [6] module to extend the
standard kernel with real-time capabilities. On the other hand, in order to pro-
vide a real-time communication layer, C4G Open architecture uses Real-Time
networking (RTnet) [1] stack, an open source hard real-time network protocol
compatible with RTAI.

2.2 Open Realistic Robot Library

The Open realistic Robot Library (ORL) has been developed in order to perform
operations on a virtual robot without having it. The motivation behind the
realization of this library is that C4G Open forces the user to program at a low
level in motor round references. The ORL allows the user to program at a high
level in order to let him develop custom applications with C4G Open (or C5G
Open, if we consider the new controller Comau is developing). The library allows
to perform the following operations:

– Initialization of the virtual robot on Linux (complete Comau robot family)
starting from a real configuration file

– Computation of Direct and Inverse Kinematics, for each Comau robot
– Error management of position and joint ranges
– Integration of Comau Trajectory Generator and Interpolator
– Computation of the Dynamic Model and Jacobian

All these operations are realistic, i.e. they describe what the robot would do if
they were performed via the Comau standard programming language (PDL2) on
the real robot. Performing direct/inverse kinematics allows the user to control
the real robot workspace in advance (e.g. joint stroke-ends, Cartesian avoided
positions). Routines for the direct motor rounds control are included, together
with motion functions able to convert and manage degrees or Cartesian refer-
ences.

2.3 ROS-Industrial

Creating robust and general-purpose robot software is hard. Every task and every
environment has its own encoding and there is not a homogeneous solution to all
its instances. The Robot Operating System (ROS) [12] is an open-source project
that aims to develop a common framework for robotics applications thanks to
collaborations among single individuals, laboratories, and institutions. It is a set
of tools, libraries, and conventions collected to simplify the creation of complex
and robust robot behaviors across a wide variety of robotic platforms. ROS is

4 http://www.smerobot.org/
5 http://www.arflexproject.eu/

http://www.smerobot.org/
http://www.arflexproject.eu/

248 S. Michieletto et al.

utilized by the research community for service robotics applications, but its tech-
nology can be applied to other application areas, including industrial robotics.
For this purpose, ROS-Industrial has been developed . It extends ROS capabil-
ities, such as advanced perception and path/grasp planning, enabling industrial
robotic applications previously technically infeasible or cost prohibitive. ROS
high-level functionalities are combined with the low-level reliability and safety
of industrial robot controllers creating a robust, reliable, and hardware-agnostic
software.

3 Integration

As already stated, a real time communication channel is necessary to obtain a
proper interaction between the Comau C4G controller and the external PC pro-
viding additional capabilities. The communication is based on a real time thread
providing robot status information from the external PC to the robot controller
and viceversa. In this work, we extended the basic real time thread by devel-
oping several parallel threads in order to decouple the real time communication
process from the data provided in input, to control the robot, and in output,
to give back its status. With this aim, existing modules were wrapped in ROS.
The current ROS version is used: Hydro. As both the ROS framework and C4G
Open support the Ubuntu Linux distribution, its 13.04 version is used, main-
taining RTAI and RTnet to satisfy the C4G Open requirements. The wrapper
maintains existing features. The user can still

– directly program the robot using the PDL2 language;
– use ORL functions to formulate robot motion primitives that the C4G con-

troller will then convert into the equivalent machine code.

In addition, the user can now impose motion directives in the form of ROS
commands: a ROS message with the motion request is sent to the system,
ROS redirects the message to the motion library, and the latter answers with a
ROS message containing the motion primitives the controller needs to move the
robot. ROS integration makes ORL a simple form of the system: the library has
to be considered as any other motion planning library and for this reason, at
any time the user can replace it with any other ROS compliant motion library,
e.g., MoveIt.

A TCP/IP connection was implemented to give non ROS compliant frame-
works the possibility to interface to the proposed system. This type of protocol
provides reliable, ordered and error-checked delivery of data. The ordered data
transfer guarantees the robot to execute the motion primitives in the same or-
der specified by the user. Reliability ensures the retransmission of lost packets
and the consequent execution of all motion primitives. As result, the robot will
executes all the desired motion commands in the desired order.

Enforcing a robot to directly execute a specific task can be inefficient. The non-
tested task can be impracticable: the imposed goal can be unreachable because
of the robot joints limits; or it can cause damages: the robot can collide with

ROS-I Interface for COMAU Robots 249

the surrounding world. For the same reasons, testing an application directly on
the real robot can be expensive in terms of time and money. Performing tests
in a simulated environment is the solution. A virtual model of a Comau robot
was created, its use is guaranteed within any ROS compliant simulator (e.g.,
Gazebo [8] or VRep [7]); and a plug-in allowing the robot control inside Gazebo
was developed.

A description of the process adopted to make the system usable both in the
simulated and in the real environment follows.

3.1 Simulation

With the aim of replicating the motion of a Comau robot inside a ROS compliant
simulator, a virtual model of a Comau Smart5 Six robot was developed. The
virtual representation involves the creation of a package containing the robot
meshes and the URDF file describing the geometry, kinematics and dynamics
of the robot, such as joints masses and inertial matrices. In order to control the
robot virtual model within the Gazebo simulation environment, the following
tools have been developed: a plug-in connecting the Comau robot controller
to Gazebo, and a wrapper for ORL. The latter ensures the same trajectories
interpolation both for the virtual and the real robot, that results in the same
robot movements execution both in the virtual and in the real world.

3.2 Real Robot

In order to command the real robot using ROS, the following problem must be
faced: the robot communication is hard real-time (it has a frame rate of 2 ms) and
ROS is non real-time. A communication node was developed. It includes both
a real-time and a normal priority thread. The former establishes the connection
between the controller and the real robot. The latter provides the controller
with the motion data: if a ROS compliant platform aims at controlling the robot
sending it specific motion directives, then the thread will deliver these motion
commands to the controller in the form of ROS messages. If a non ROS compliant
processor has the same request, the thread will send the motion primitives to
the controller in the form of TCP/IP messages. Performed tests show that the
proposed structure ensures the absence of robot/controller connection errors
and lets the user to control the robot both through a real and a non real -time
platform.

The Comau system is now compliant with the current ROS version and lets
users to control both a real robot and its simulated counterpart by using the
same motion controller. Figure 3 compares the initial and the obtained system.

4 Experiments

The system has been developed in order to fulfill the specifications due to differ-
ent Robot Learning from Demonstration (RLfD) [3] [2] studies we are conducting

250 S. Michieletto et al.

Fig. 3. The developed system including the initial structure (red) and the integration
with ROS (blue)

(a) Human demo (b) Simulated experiment

Fig. 4. The first experiment: use of a position controller

in our laboratory. The adopted RLfD frameworks involve challenging conditions
in terms of different tasks, objectives, interpolation algorithms, and motion con-
trollers. These aspects are all crucial in a dynamic industrial environment, in
which the aims are heterogeneous and related to the goal to be reached.

In the analysed cases, humans teach to a Comau Smart5 SiX manipulator how
to achieve simplified industrial movements. The system is structured as follows:
a human performs a task; an RGB-D sensor acquires the scene. A skeleton track-
ing algorithm extracts the useful information from the acquired data (positions
and orientations of skeleton joints). This information is given as input to the
motion re-targeting system that remaps the skeleton joints into the manipulator
ones. The collected data are used to train a Gaussian Mixture Model (GMM) in
order to retrieved a generalize motion trajectory by applying a Gaussian Mix-
ture Regression (GMR). Subsequently, the robot motion controller interprets
the generated trajectory to make the manipulator reproduce robot movements

ROS-I Interface for COMAU Robots 251

(a) Human demo (b) Real experiment

Fig. 5. The second experiment: use of a velocity controller

similar to the human ones. Motion commands are imprinted using ROSmessages.
Experiments were performed both in virtual and real world, and two different
scenarios were treated, each one by utilizing different motion planning libraries.

The first scenario consists of the displacement of a piece. A human demon-
strator moves a box along a line from the beginning to the end of a 45 cm long
table; the manipulator reproduces the same task both in the real world and in
simulation (depicted in Figure 4). More details can be found in [10]. The task
requires very accurate robot movements, so that the manipulator is controlled by
setting joint positions. The interpolation of robot motion is computed by ORL,
that offers high reliable functions to command a robot in position. Accuracy
and repeatability tests were performed by measuring the different displacements
performed on a box. In the real world the robot moves the same box as the actor,
and the table is replaced with a white paper sheet situated on the floor. On 25
attempts, the system obtained an average displacement of 54.332 +/- 0.7547667.
Instead, in simulation the virtual box has the same characteristics of the real
one, while the table is longer and larger in order to avoid singularities when the
box reaches the end of the table. In this case, the accuracy is even better with
an average of 45.011 +/- 0.402 cm. The simulated replica is then faithful to the
real human demonstration and the real robot displacement has a gap of about
10 cm. The alteration is due to the different frictional forces: the material of the
support surface used in the real experiment has a friction coefficient lower then
that of the tables used for the demonstration and for the simulated representa-
tion. Having a lower friction coefficient facilitates displacements. Finally, both
the real and the virtual variances are negligible: small existing variations are due
to sensors and motors noises or to an imprecise manual positioning of the box
at the beginning of every test.

The second scenario simplifies the arrest of a piece before its extraction from
the conveyor belt. A subject stops a Lego Mindstorms NXT6 robot performing
a uniform rectilinear motion on a 60 cm long table after 20 s from the motion
start. The action can be interpreted as the block of an object after a certain

6 http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

http://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

252 S. Michieletto et al.

Fig. 6. Robot joint positions and velocities during the second test

event. A velocity controller is required in order to make the robot moving within
a certain time interval. A custom interpolator has been used to compute the
velocities with respect to the joint positions [13]. It is worth to notice that no
other element has been changed in the system. Figure 6 shows positions and
velocities of the three joints controlled by our framework during the experiment.

In the real reproduction, a Pioneer7 robot with a box on its top moves at
constant velocity in front of the manipulator robot, the latter has to “stop”
the former within a certain period of time blocking the box situated on its
top (depicted in Figure 5). In the simulated environment, robot movements are
tested and ROS commands are formulated in order to coordinate the start of the
two robots. The experiment does not require measurements because precision is
not required. The robot stopped the box in time in all the 25 performed trials.

The analysis of the proposed cases shows that the created ROS-I interface is
reliable: motion commands are imprinted using ROS messages and robots prop-
erly perform the imposed tasks. This means that no message was lost or received
in disorder. Robots movements match both in the virtual and in the real world,
proving the proper utilize of a unique controller in both realities. Finally, mov-
ing the robots using two different motion libraries evinces the versatility of the
proposed system by testing different controllers as easily replaceable modules.

7 http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

ROS-I Interface for COMAU Robots 253

Moreover, users are not required to use the Comau motion planning library, but
they can use any open-source or customized library.

5 Conclusions

The paper presented the method used to extend the Comau SpA controlling
system. The initial system was composed of a robot controller, the C4G Open,
and a motion planning library, ORL. The latter was used to send the former
the motion commands robots needed to move. The final system preserves these
characteristics; in addition, it is ROS-compliant, it lets the user to control both
a real robot and its simulated counterpart using the same controller, and it lets
him to replace the Comau motion planning library with any library of the same
type. To test the system, a Comau Smart5 SiX robot was asked to perform two
different tasks, both in simulation and in the real world and both using ROS
commands. The former involved the displacement of a static box and required
the development of a position controller. The latter considered the capture of a
moving object and a velocity controller was used for its attainment. The exper-
iments choice is easily justifiable: it permits to test the system using two types
of motion planning libraries. In fact, the position controller requires the sending
of position commands to move the robot; ORL includes this function and for
this reason it can be used in the experiment. The velocity controller, instead,
needs velocity commands. ORL does not includes this function and an ad-hoc
motion planning library must be developed and used. Experiments showed that
both the real and the virtual robot performed the same movements during the
execution of both assignments. This proves that using the same controller in
both environments guarantees the same trajectories interpolation. The detected
movements precision proves the good functioning of the system itself, the proper
development of the ROS-I interface and the possibility to use any type of motion
planning library. Having a ROS-I interface makes the Comau system reusable
by the entire ROS community, and having a replaceable motion planning library
is an essential characteristic to make the system freely accessible and usable not
only at an industrial but also at a research level.

The developed code has been released as a Open Source software8 in order to
foster research in the field.

As future work authors aim to extend the implementation to the new Comau
motion controller, the C5G Open. In this way, Comau will maintain its ROS
compatibility solving existing C4G Open limitations. Developing a ROS-I inter-
face for the C5G Open will lead to an innovative product leader both in the
research environment and in the industrial context. Nowadays more and more
flexible and smart applications will be able to use it, integrating sensors and
complex algorithms.

8 At the moment of writing, the source code is in the develop branch of the fol-
lowing GitHub repositories: https://github.com/iaslab-unipd/c4g_controller,
https://github.com/iaslab-unipd/smart5six_description,
https://github.com/iaslab-unipd/smart5six_gazebo_plugin

https://github.com/iaslab-unipd/c4g_controller
https://github.com/iaslab-unipd/smart5six_description
https://github.com/iaslab-unipd/smart5six_gazebo_plugin

254 S. Michieletto et al.

Acknowledgement. This work was funded as part of the research project
Fibremap9 by the European Commission in FP7 ICT under Grant No. 608768.

References

1. Rtnet a flexible hard real-time networking framework. In: 10th IEEE International
Conference on Emerging Technologies and Factory Automation, Italy (2005)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: Robotics and autonomous
systems. A Survey of Robot Learning from Demonstration 57(5), 469–483 (2009)

3. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demon-
stration. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 1371–1394.
Springer, Secaucus (2008)

4. Blomdell, A., Bolmsjo, G., Brogardh, T., Cederberg, P., Isaksson, M., Johans-
son, R., Haage, M., Nilsson, K., Olsson, M., Olsson, T., Robertsson, A., Wang, J.,
Department of Automation of Lund University: Extending an industrial robot con-
troller: implementation and applications of a fast open sensor interface. Robotics
and Automation Magazine 12 (2005)

5. Dogliani, F., Magnani, G., Sciavicco, L.: An open architecture industrial controller.
Newsl. of IEEE Robotics and Automation Soc. 7(3), 19–21 (1993)

6. Dozio, L., Mantegazza, P.: Real time distributed control systems using rtai. In:
Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Hakodate, Hokkaido, Japan, May 14-16 (2003)

7. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual robot experimentation
platform V-REP: A versatile 3D robot simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

8. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Proc. of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2004), pp. 2149–2154 (2004)

9. Lippiello, V., Villani, L., Siciliano, B.: An open architecture for sensory feedback
control of a dual-arm industrial robotic cell. Industrial Robot: An International
Journal 34(1), 46–53 (2007)

10. Michieletto, S., Chessa, N., Menegatti, M.: Learning how to approach indus-
trial robot tasks from natural demonstrations. In: IEEE Workshop on Advanced
Robotics and its Social Impacts (2013)

11. Oonishi, K.: The open manipulator system of the mhi pa-10 robot. In: Proceeding
of International Symposium on Robotics (1999)

12. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: Ros: an open-source robot operating system (2010)

13. Tosello, E., Michieletto, S., Bisson, A., Pagello, E., Menegatti, E.: A learning from
demonstration framework for manipulation tasks. In: 45th International Sympo-
sium on Robotics (ISR 2014) and 8th German Conference on Robotics (ROBOTIK
2014) (2014)

14. Venator, E.: Hardware and software architecture of abby: An industrial mobile
manipulator. In: 9th IEEE International Conference on Automation Science and
Engineering (August 2013)

9 http://fibremap.eu/

http://fibremap.eu/

Robot Unit Testing�

Andreas Bihlmaier and Heinz Wörn

Institute for Anthropomatics and Robotics (IAR),
Intelligent Process Control and Robotics Lab. (IPR),

Karlsruhe Institute of Technology (KIT),
76131 Karlsruhe, Germany

{andreas.bihlmaier,woern}@kit.edu

Abstract. We introduce Robot Unit Testing (RUT) as a methodology
to bring modern testing methods into robotics. Through RUT the range
of robotics software that can be automatically tested is extended beyond
current practice. A robotics simulator is used to bridge the gap between
well automated tests that only check a robot’s software and time consum-
ing, inherently manual tests on robots of alloy and circuits. An in-depth
realization of RUT is shown, which is based on the Robot Operating Sys-
tem (ROS) framework and the Gazebo simulator due to their prominence
in robotics research and inherent suitability for the RUT methodology.

1 Introduction

Software testing, not as merely a good practice, but rather as a software develop-
ment paradigm, has (re)gained widespread popularity. In particular test-driven
development (TDD) is as a core concept of agile software engineering meth-
ods. Regardless of whether TDD provides a benefit compared to other types of
software development processes (cf. [10]), the importance of test coverage for
complex software systems is not called into question. Unit testing together with
integration and regression testing is an enabler for high quality and long-term
supportability of large scale software systems. Therefore, it is hardly surprising
that the Robot Operating System (ROS) relies on and encourages unit, integra-
tion and regression testing. To state a few benefits of testing as regarded by the
ROS community1: faster incremental code updates, more reliable refactoring,
better code design and prevention of recurring bugs.

However, something crucial is missing from these tests – in ROS and other
robotic frameworks: robots. As we try to show in the following, this does not
have to be the case. Of course, in contrast to the universal Turing machine, there
is (so far) no universal physical machine. Additionally, the physical machine
must be unbreakable or to be exact infinitely many times breakable. In Robot
Unit Testing there is an additional gap between all tests passing and the system
working correctly. If the test coverage of a software is high and all tests pass, one

� This research was carried out with the support of the German Research Foundation
(DFG) within project I05, SFB/TRR 125 “Cognition-Guided Surgery”.

1 http://wiki.ros.org/UnitTesting

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 255–266, 2014.
c© Springer International Publishing Switzerland 2014

http://wiki.ros.org/UnitTesting

256 A. Bihlmaier and H. Wörn

is justified to believe the software will work correctly, but it is not guaranteed.
The additional gap in RUT stems from an additional artificiality, test data is
not real data and simulated robots are not real robots. Yet, if our proposed RUT
methodology is implemented there will remain gaps, but the current gaping abyss
will narrow.

The following section (Sec. 2) concerns the current best practices in automated
software testing. The further text is divided into two major parts, the first one
(Sec. 3) details what we mean by Robot Unit Testing, its methodology. The
second part (Sec. 4) applies RUT to ROS enabled robots, translates the abstract
terminology of the first part into ROS terms, fills in details and provides results.
A short summary (Sec. 5) concludes our presentation of RUT.

Fig. 1. The real KUKA LWR4+ and its simulated counterpart are clearly distinguish-
able in this image. They can not be said to be equivalent. However, from the viewpoint
of our proposed Robot Unit Testing methodology, they are sufficiently similar in order
to avoid breaking one of them by automated breaking of the other one.

2 Automated Software Testing

This section will not mention any manual testing methods, such as program
inspection, walkthroughs or reviews. Although we find these to be valuable tools,
manual methods are not our concern here. We bring up Robot Unit Testing as
a methodology that enables automated testing of robots.

In the following short overview of automated testing, we follow the recently
updated classic presentation by Myers et al. [8]. Because we do not introduce
a new software-only testing methodology, such as the material discussed in this
section and due to the limit space, no extensive state of the art for software
testing is provided here. The purpose is to shortly introduce the most important
aspects and vocabulary of testing (cf. [11]) necessary for the following sections.

First, tests can be distinguished by whether the internal workings of software
components are known and exploited for testing. In case they are, one speaks
of white box testing. Otherwise, it is called black box testing. Different software

Robot Unit Testing 257

metrics apply for the two cases. The most important difference is that white box
testing allows to precisely state the statement, condition and other types of cov-
erage about the tested code. The next categorization separates functional from
non-functional (e.g. stress) testing. Furthermore, one can distinguish between
the scope included in a single test. While unit testing examines small fragments
of the system, integration testing pertains to their interaction. The last termi-
nological distinction that has to be introduced concerns the testing purpose.
Common purposes include the early detecting of problems, the verification of
the API contract and the avoidance of regressions through changes. All these
are within reach of robotics research once the RUT methodology is utilized.

Complementary to testing as a technique there are testing methodologies that
systematise testing into engineering. The most important methodologies for the
paper at hand are test-driven development (TDD) and continuous integration
(CI). TDD is about writing tests even before the code that is required to make
them succeed [1]. CI is not as clearly defined, but all variants have in common
that there must be a high degree of automated software build processes together
with extensive test coverage [4].

We conclude this condensed survey of automated software testing methodol-
ogy with two remarks: First, the testing mindset reckons software development as
an iterative process and the test coverage provides the much needed non-formal
loop invariant for the iteration. Second, testing is all about greater – justified –
confidence in software quality. The following section explains why we deem RUT
to be a crucial missing link in current robot software engineering.

3 The RUT Methodology

Sir the Simple Robot

To make the description more vivid, we’ll assume a SImple Robot Sir made up of
a manipulator, its arm, and a camera sensor, its eye. The scenario for the robot
is to recognize a certain landmark, the red button, approach the landmark from
its surface normal and continue a few millimeters, i.e. press it. Sir’s arm can be
controlled by specifying a Cartesian pose, which is converted to joint positions.
The joint positions are interpolated and finally sent to the black box motor
control unit. Sir’s eye observes the world as a video stream of two megapixel
color images at 30 frames per second seen as originating from a black box. Each
image is preprocessed and compared against a database of known objects, if a
match is found the object’s position is known by Sir.

Requirements I: Robotics Simulator

Robot Unit Testing rests on the assumption that modern real-time robotics
simulations are able to substitute real sensors and actuators sufficiently well.
The plausibility of this assumption now rests on the notion of “sufficient” that
we adopt. Sufficient here means that average robots in average environments

258 A. Bihlmaier and H. Wörn

doing averagely difficult tasks are simulated with an accuracy that makes them
succeed or fail with the same average probability as in the real scenario. Here
probability does not necessarily have to be interpreted in a frequentist manner,
rather it can be seen as a degree of belief (cf. [5]). The point being, if the
simulated robot can perform a kind of task reliably, so should the real robot and
vice versa. It does not matter whether the simulation is accurate enough to also
pass this test for other kinds of tasks. Therefore, no quantitative criterion for
geometric, kinematic or dynamic realism has to be met in order to utilize and
profit from RUT. We will come back to this point later in the section.

Requirements II: Robot Software

As will be shown, what is important for RUT are well designed robot software
architectures. The robot software must permit to reroute the data flow to actu-
ators and from sensors, ideally at several layers of abstraction. It is not strictly
necessary, yet clearly preferable, if the rerouting function is available without
directly changing the software, i.e. being a runtime instead of compile time op-
tion. In our example, the commands to Sir’s arm position could be accessed as
target pose, target joint position and interpolated joint position. Sir’s accessible
sensor data would consist of the video stream and the stream of detected object
positions. Fortunately, this kind of flexible robot software is not a desirable ex-
ception anymore, but rather the state of the art in academia and becoming a
standard in industry.

Bringing Things Together: The Big Picture

There are two ideas at the core of the Robot Unit Testing methodology: First, to
redirect the actuator and sensor data at the lowest feasible level of abstraction
to a robotic simulator. Second, to write unit tests that interact with the robot
at the highest feasible level of abstraction.2 Fig. 2 shows the general structure
of RUT.

Again in the example, Sir is simulated at the level of interpolated joint posi-
tions and rendered camera images. In other words the simulator interface receives
interpolated joint positions and sends rendered camera images. The unit tests
control Sir by Cartesian poses, whose calculation is based on detected object
positions.

Get Out of the Rut: Benefits of RUT

Obviously, neither using a robotic simulator nor writing tests are recent inven-
tions in robotics research or software engineering, still thus far their full potential

2 We do not presuppose a layered architecture or any specific architecture for that
matter. We use the terms high and low level to refer to the semantic level of data,
i.e. in our usage of these terms a Cartesian pose is on a higher level than a vector of
joint positions of some kinematic.

Robot Unit Testing 259

Fig. 2. The figure illustrates how Robot Unit Testing is related to the software and
hardware components of the real robot. The shaded area highlights the software com-
ponents utilized by both the real robot and its unit tests.

lies idle. What we want to contribute to with the notion of Robot Unit Testing
is a systematic and sound presentation of a new methodology in robotics re-
search and engineering. Its benefits are a novel level of automated test coverage
for robots – as entities of software embedded in sensors and actuators. We pro-
pose to test robots, not just their isolated (software) components. Once a RUT
framework is in place, we expect the same level of quality increase that tightly
integrated testing brings to complex software systems (cf. [7]).

To elaborate on the new level of test coverage, we want to point out that all
software components of the real robot under test besides very low level hardware
components take part in RUTs. In case of Sir the tested components include the
high level interface code, inverse kinematics, interpolator, image preprocessing
and object detection. The only components left untested are the motor controller
and camera firmware, which are usually black boxes in the real world, too. This
large test coverage does not have to go along with large or complicated RUT
code, as will be discussed later on.

Bringing Things Together: The Details

To recapitulate, the interface we write RUTs against is the highest level of ab-
straction offered by the robot software. The interface to the robotics simulator is
the lowest available level of abstraction. RUTs should obey general rules estab-
lished in the software testing community and conversely avoid its anti-patterns.
One anti-pattern is particularly noteworthy: Avoid to build up system state.
Each RUT should be executable on its own, not dependent on others and should
also not interfere with them. This will be achievable with any robot framework
defined as suitable for RUT above. Ideally the tests can be run in parallel by
rerouting each test instance to a different robotics simulator instance. If this is
not supported, it must only be ensured that the simulators state is completely
reset between the sequentially running tests.

260 A. Bihlmaier and H. Wörn

RUTs can be written to test a single robot function – our notion of “unit”
in robotics – or a complete robot skill or task capability. What the test checks
in order to determine success or failure is completely up to the purpose of the
particular test. In testing terminology the success or failure condition is often
referred to as the test oracle. A RUT can monitor actuator and sensor data in a
very close or a rather coarse manner. In case of Sir, we can initialize its arm in
a known pose and send a single motion command. Depending on what invariant
the test should guarantee about Sir, we can compare each position of each joint
in each simulation period to our ground truth. Alternatively, we may only care
about whether Sir’s arm reached its goal position after a specified amount of
time. If the invariant is about Sir’s kinematics we would most likely select the
former, if we are currently modifying this robot subsystem the latter one seems
more useful. To test Sir’s button pressing skill, the RUT would initialize an
environment with a red button at a known location and execute the skill. Again,
depending on the test’s purpose, it could suffice to test whether Sir’s arm stops in
a button press position. The complete RUT would consist of placing Sir and the
red button in a known position, starting the skill and monitoring Sir’s simulated
arm position to check it against the correct final pose. This is everything required
to ascertain that no later modification – anywhere in Sir’s system – introduces
a regression with respect to all involved actuator and sensor systems.

Here the point has come to say more about required simulation realism and
accuracy. We only required the simulation to be sufficiently similar for a certain
kind of task, so that this task will work similarly well on the real and simulated
robot. For the RUT of Sir’s button pressing skill two accuracy requirements must
be met. Geometrical accuracy on the one hand and visual accuracy on the other
hand. Sir’s simulated kinematic must be accurate enough for the following to
hold: For all relevant button positions the delta between simulated and real final
pose is small enough to count as a button press in both cases. An analogous
proposition must hold for Sir’s visual perception. That is, the simulated scene
must – for the relevant button positions – be visually close enough to the real one
in order for the button to (wrongly) count as detected in reality and simulation.
This vague notion (“relevant positions”, “count as”) is not a shortcoming of our
approach, but part of the RUT methodology. Ground truth is always relative to
what we judge to be sufficiently close to our use cases. As robotics simulators
become more accurate, the RUT coverage can increase and include cases pre-
viously inaccessible to RUT. However, our point is that current simulators are
already perfectly suited to facilitate RUT now. As long as the RUT methodology
is minded, adopting Robot Unit Testing can provide a justified higher level of
confidence in the quality of robot software development.

Cost of RUT in Terms of Additional Components and Effort

Talking about benefits of a methodology must be accompanied by elaborating
on the costs of adopting it. In the following section, we’ll detail element by ele-
ment what it takes to implement RUT on ROS in terms of components, models
and effort. Beforehand, we give a more abstract presentation of the requirements

Robot Unit Testing 261

together with a glance to what state of the art robotics frameworks and simu-
lators already provide. The difference between the two is the cost to implement
RUT.

Considering Fig. 2, we can discern four necessary elements: Code to imple-
ment each test case, simulation models, simulated actuators with an appropriate
interface and simulated sensors with an appropriate interface. In the previous
subsection, we have already elaborated on the test code. As should be the case in
non-robot testing, simple tests only require a few lines of code: Create input data,
call the interface with the input data and compare the result with a reference.
Since we use the robot’s high level interface, the only open question relates to
getting the test results. In some cases the result is directly provided by the robot
software, e.g. whether Sir sees a certain object. In other cases the result is a state
of the simulated world. Fortunately, the simulated world is fully observable from
the RUTs point of view – of course not from the simulated robot. Thus, no sub-
stantial effort is required to query this world state. Simulation models represent
the next element. It can require a substantial amount of work to produce these.
Yet, in our experience most of the work is typically already done. Either because
the robots are already simulated or at least CAD models are available. Often the
CAD models were already created in order to built the robot in the first place.
The last two elements, namely simulated actuators and sensors with the appro-
priate interface, can be dealt with together. All the major robotics simulators
such as Gazebo3, MORSE4 and V-Rep5 provide a variety of simulated actuators
and sensors. Most actuators and sensors can already be accessed through the
standard interface of common robot software frameworks. On the other hand it
can take substantial work to remedy a situation, where the simulated item is not
available or does not provide the required interface. To summarize, the effort re-
quired to adopt RUT is very low if the robot under test is already simulated for
other purposes or at least a visualization exists. Otherwise, the effort increases
along the dimensions of uncommon actuators and sensors, uncommon robotics
simulators and uncommon robot frameworks.

4 RUT for ROS

The Robot Operating System (ROS) [9] is a well known and prevalent frame-
work for modular and distributed robot software. This section describes our
implementation of Robot Unit Tests for ROS. There are several open-source
robotics simulators with ROS support available. We selected the Gazebo simu-
lator because it seems to be the one currently favored by the ROS community.
Furthermore, the simulator used in the DARPA virtual robotics challenge (VRC)
is closely based on Gazebo [6]. In the remainder of the section, our goal is to
relate everything generally said about methodology to the tangible implementa-
tion.

3 http://gazebosim.org/
4 http://www.openrobots.org/wiki/morse/
5 http://www.coppeliarobotics.com/

http://gazebosim.org/
http://www.openrobots.org/wiki/morse/
http://www.coppeliarobotics.com/

262 A. Bihlmaier and H. Wörn

Robots under Test

Our example implementation was done to test the software stack for two
lightweight robot arms, the KUKA LWR4+ and the Universal Robots UR5,
and their attached sensors. An industrial camera and an endoscope camera to-
gether with optics used for minimally invasive surgery (MIS) are mounted to
the arms, shown in Fig. 1. To keep the presentation short and concise, the com-
ponent graph of Sir the SImple Robot used as example in the previous section,
has a lot in common with the actual ROS software. Fig. 3 shows the annotated
graph of the actual ROS nodes.6

Fig. 3. The extended ROS graph used as example for simple and complex Robot Unit
Tests is shown. Edges are annotated with the ROS message types or the protocol
passed between the nodes. All solid framed nodes are part of the system independent
of whether RUT is integrated.

Initial Effort Required for RUT

All solid framed nodes in Fig. 3 depict software that is required independently
of simulation and RUT. Only the Gazebo model plugins for the two robot arms
are supplements. In our case, they expose the respective vendor specific binary
protocol interface and convert received commands to movements of the Gazebo
joints and vice versa.

It is important to understand why we required, according to our RUT method-
ology, that one should go down to the level of vendor specific binary protocols
and when one can and should stay at a higher interface level: Due to our specific
demands in surgical robotics, the ros2fri and ur topicdriver node are our own
implementation to ROS-ify the robot arms. Therefore, we wanted the RUTs to
include this part of the robot as well – following the RUT rule to test robots, not
components. Had our test purpose been different, we could have used a generic
joint model plugin already provided by Gazebo. In this case there would have
been no additional code required to start with RUTs.

6 We assume the reader to be familiar with ROS terminology, otherwise please refer
to the above cited reference or http://wiki.ros.org/ROS/Concepts

http://wiki.ros.org/ROS/Concepts

Robot Unit Testing 263

All nodes required for the industrial camera are provided by the ROS commu-
nity. We regarded them together with the camera firmware as black boxes outside
our test domain. Therefore, the RUT methodology suggests sensor msgs/Camera
as the appropriate interface. This is fortunate because the ROS sensors plugins
for Gazebo provide exactly this interface to the simulated camera.

Thus, the only elements missing for RUT are the simulation models for Gazebo.
To create these in the form of meshes together with a URDF7 or SDF8 descrip-
tion, can take substantial effort. However, since the advent of ROS Industrial9

the models are already available for a large number of (industrial) robots. This
is the case for the UR5. Even if this doesn’t apply to a certain robot, such as the
LWR4+, there is a good chance that the model must be created anyway. The
same model formats are required for visualization with rviz10. Making this an-
other case where RUT does not involve additional effort. To sum up, most of the
required RUT elements are already available for a robot that is well integrated
with ROS. Let’s put them to a novel use in RUTs.

A Basic RUT

A basic, yet essential, Robot Unit Test for the robot arms is to test self-collision
free reachability of poses. The simulated environment is initialized with a certain
robot arm configuration, i.e. world to base transformation and robot joint posi-
tions. Referring to the node names in Fig. 3, the test input is a Cartesian pose
to the safe cartesian nodes. The test result consists of two outputs: Detected
collisions and the final pose of the simulated robot arm. For poses reachable by
the arm, a test counts as successful if and only if no collision occurs and the
arm reaches the target pose after a specified amount of time and stops there.
For an unreachable pose, we define success as the arm not moving at all. De-
pending on the context, other definitions are conceivable, such as stopping in
the point closest to the target pose that is reachable. Whether a pose should be
reachable, i.e. the ground truth, is either tested with the real robot or validated
through a human observer. We only test poses – together with environments,
whose ground truth has been once verified, either one way or the other, to be
correct. All these poses together make up the test data for this particular RUT.
As usual in testing, effort and coverage increases with a larger set of test data.

ROS Tools

Before describing a more complex RUT, a note on tool support provided by ROS.
Rostest11 is an extension to ROS launch files, that takes care of starting up all
the required nodes together with the simulator. Furthermore, a combination

7 The Unified Robot Description Format, cf. http://wiki.ros.org/urdf
8 The Simulation Description Format, cf. http://gazebosim.org/sdf.html
9 http://rosindustrial.org/

10 http://wiki.ros.org/rviz
11 http://wiki.ros.org/rostest

http://wiki.ros.org/urdf
http://gazebosim.org/sdf.html
http://rosindustrial.org/
http://wiki.ros.org/rviz
http://wiki.ros.org/rostest

264 A. Bihlmaier and H. Wörn

of ROS command-line tools started from the launch file, especially rostopic,
already provides most of the necessary test infrastructure. We will soon release
code to the community that provides a similarly generic interface to check for
certain events in the Gazebo simulation, e.g. something reaches a certain pose.
Combined, with the include capability of launch files, each RUT only consists of
four lines: Include the other launch file to start everything up, parametrize the
simulated world, send a target pose, begin checking for success or failure.

An Extended RUT

To show the capabilities of RUT regarding complex tests, a short description
about testing a continuous real-time image stitching node [2][3] on the same
robots follows. The stitching node only uses the camera video as input because
the algorithm trades image processing requirements against movement restric-
tions. Traditional software-only unit tests and ROS node test are used to ensure
some of the image (pre)processing and performance invariants. Nevertheless, ul-
timately the camera video – the camera being attached to the arm’s flange –
depends on the arm trajectory. At this point we leave behind the state of the
art in testing and enter the new realm of RUT. In the RUT methodology, we
now have to consider what deviation from the current result should be brought
to our attention through a failed test. The stitching result is a panorama image.
Should we compare it to one of a correct run? No, or at least not if we do not
want to define a new ground truth for every change in the simulators rendering
pipeline.

The question to be answered according to our methodology is: What exactly
is the test’s purpose? It is not to check rendering details of the simulated camera
image. Rather, we want to assert the robot’s skill (cf. what we said about Sir in
the previous section) of continuous stitching. We made sure the task is of a kind,
where the simulation is accurate enough. Which means that the rendered camera
images provide a sufficiently similar level of detail, e.g. edge and ORB features, to
suffice for the robot’s skill under test. Having gone through these methodological
considerations, a test emerges that is easy to implement and robust to changes we
do not care about: An integral part of stitching the images together, is calculating
their relative offsets based on extracted features. If the assumptions to do RUT
were satisfied in the first place, the offsets will be sufficiently stable and can be
used as test oracle. After following through the RUT methodology, we can test all
components involved into this non-trivial robot skill by a few lines of code that
compare image offsets. The recent effort to create tools that automatically and
continously execute ROS tests [12], based on the Jenkins continous intergration
server12, further facilitate adoption by the robotics community.

Results

By now the methodology of Robot Unit Testing as theory and practice should
have become clear. Therefore, it is time to evaluate the claimed benefits for

12 http://jenkins-ci.org

http://jenkins-ci.org

Robot Unit Testing 265

robotics research and robot software development. As it is often the case in
software engineering, we provide qualitative results because their quantification
would not bring further insight at this point in time. Once we arrived at the
mindset behind what is written down in this paper as RUT methodology, we
can clearly see the following improvements: Finding more bugs and finding them
earlier. Introducing less regressions through code changes, or to be more precise
finding regressions before deploying the new version to the real robot and having
to hit the emergency stop button. Hence, less testing is required on the real robot,
which is inherently manual if one doesn’t want to risk breaking it. We can allow
us to have greater confidence during development cycles. As long as all RUTs
give us green light, we can postpone the manual testing of the new version. On
that account we gain development speed – without having to fear that everything
fails once we conduct the manual tests.

The proponents of test-driven development make a point that writing software
in a way that facilitates testing is a best practice in itself. We affirm their position
from our own experience. Previous versions of our ROS interface, consisted of less
independent nodes. For example the intermediate nodes in Fig. 3 were integrated
with their parent nodes. In terms of functionally the inverse kinematics did not
have a public interface to the joint space interpolator. We refactored the nodes
because this eased writing RUTs. This only superficially sounds like inverted
reasoning. The objective is high quality robot software in order to obtain reliable
robots. But in the process of ensuring long-term quality through writing RUTs,
the very means tend to further their objective.

5 Conclusions

We presented Robot Unit Testing as a novel methodology based on existing
technologies that advances the state of software development for robots. The goal
and ultimate purpose is to extend the reach of automated tests beyond software
components to whole robots, seen as entities of software embedded in sensors and
actuators. Robot unit tests comprise all software components of the real robot
down to the level selected as simulator interface. As explicitly shown in our RUT
implementation for ROS, this level can be as low as vendor specific interfaces.
In this case everything above what is a black box in hardware is included in
the tests. Implementing the methodology for ROS is not only valuable in itself
and to give a more detailed account, but our results also warrant to claim the
benefits of RUT. We conclude our presentation of RUT by stating once more
that it will make a difference to start doing continuous, automated testing of
robots instead of robot components.

266 A. Bihlmaier and H. Wörn

References

1. Beck, K.: Test-Driven Development By Example. Addison-Wesley, Amsterdam
(2002)

2. Bihlmaier, A., Wörn, H.: Automated endoscopic camera guidance: A knowledge-
based system towards robot assisted surgery. In: Proceedings for the JointConference
of ISR 2014 (45th International Symposium on Robotics) Und ROBOTIK 2014 (8th
German Conference on Robotics), pp. 617–622 (2014)

3. Bihlmaier, A., Wörn, H.: Ros-based cognitive surgical robotics. In: Workshop
Proceedings of 13th Intl. Conf. on Intelligent Autonomous Systems (IAS 2013),
pp. 253–255 (2014)

4. Duvall, P.M.: Continuous Integration. Addison-Wesley (2007)
5. Hjek, A.: Interpretations of probability. In: Zalta, E.N. (ed.) The Stanford Ency-

clopedia of Philosophy. Winter 2012 edition (2012)
6. Levi, N., Kovelman, G., Geynis, A., Sintov, A., Shapiro, A.: The DARPA virtual

robotics challenge experience. In: 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), pp. 1–6. IEEE (2013)

7. Lewis, W.E., Dobbs, D., Veerapillai, G.: Software Testing and Continuous Quality
Improvement, 3rd edn. CRC Press, Boca Raton (2008)

8. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley
and Sons, New Jersey (2011)

9. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software, vol. 3 (2009)

10. Rafique, Y., Misic, V.B.: The Effects of Test-Driven Development on External
Quality and Productivity: A Meta-Analysis. IEEE Transactions on Software Engi-
neering 39(6), 835–856 (2013)

11. Saha, G.K.: Understanding Software Testing Concepts. Ubiquity, 2:1 (February
2008)

12. Weisshardt, F., Kett, J., de Freitas Oliveira Araujo, T., Bubeck, A., Verl, A.: En-
hancing software portability with a testing and evaluation platform. In: Proceedings
for the Joint Conference of ISR 2014 (45th International Symposium on Robotics)
Und ROBOTIK 2014 (8th German Conference on Robotics), pp. 219–224 (2014)

IMI2S: A Lightweight Framework

for Distributed Computing

Salvatore M. Anzalone, Marie Avril, Hanan Salam, and Mohamed Chetouani

Institut des Systmes Intelligents et de Robotique,
Universit Pierre et Marie Curie

Pyramide, T55/65
CC 173, 4 Place Jussieu

75005 Paris, France

Abstract. An increasing number of applications require the integra-
tion of heterogeneous hardware and software components. Due to the
high levels of complexity that such integrations demand, several solution
have been proposed in the state of art of software engineering. This pa-
per introduces the IMI2S framework: a distributed computing software
platform aimed to cope with such levels of complexity by simplifying the
functional decomposition of the problems through the implementation
of highly decoupled, efficient and portable software. We will present the
design issues addressed in the development of the IMI2S framework. We
will show through two case studies its flexibility and its general efficacy.

Keywords: Software frameworks, distributed computing, multimodal
perception, sensor networks, social signal processing, robotics framework.

1 Introduction

Recent years have shown a continuous growth in the number of complex
applications that rely on the processing of huge amount of data perceived
from different sensors. Domotics[9], surveillance systems[2,3], entertainment
appliances[1],medicals[5], robotics[4], are just few examples of applications that
use multimodal sensed data to extract relevant information about the environ-
ment and to consequently control specific appliances.

From the point of view of software engineering, the challenges that systems
characterized by high levels of complexity arouse, are many. Heterogeneous sys-
tems, that can be directly connected to a single machine or that are actually
spread over the environment through a network, should be able to communicate
in a standardized way, access in a concurrent way to the same data, process it in
real-time using different algorithms, control through a standard interface all the
hardware systems and the algorithms parameters. A framework able to simplify
the management of such complex scenarios is needed.

Several approaches present in the state of art of distributed systems are use-
ful to engage these kind of problems. CORBA[15], “Common Object Request
Broker Architecture”, as instance, has been proposed as multi-language and

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 267–278, 2014.
c© Springer International Publishing Switzerland 2014

268 S.M. Anzalone et al.

multi-platform framework to distribute objects across a network. In its approach,
CORBA objects are shared objects that can be referenced by any process active
in a network, regardless by the execution host. In this vision a centralized bro-
ker process, the CORBA Orb, will maintain the information about them, about
their life cycle, their exposed methods and properties. CORBA objects will share
their methods through a remote procedures call system, while, through an inter-
face definition language, strong types will assure coherence of data during the
communications. While CORBA still remains an important milestone on the
development of distribute frameworks, it failed its original mission of becoming
a standard due to partial support by programming languages, a steep learning
curve, and several design flaws, such as the specific design for low latencies net-
works, the absence of threading support, the unencrypted traffic subjected to
eavesdropping and man-in-the-middle attacks, and other technical issues.

Aside by general purpose frameworks as CORBA or as Microsoft DCOM[10], a
strong contribute on distributed computing has been produced by research in sig-
nal processing and in robotics. From the point of view of signal processing, such
frameworks are useful to create pipelines of algorithms able to extract and fuse
between them high level information. Relevant software solutions are NMM[11],
“Network Media Manager”, proposed by Motama, originally proposed to man-
age in real-time multimedia streams, or SSI[18], “Social Signal Interpretation”,
from the University of Augsburg, specifically developed for real-time human be-
havior analysis. Both frameworks are effective on facilitating and speeding up
the development process in case of feed-forward pipelines, however the imple-
mentation of feedback mechanisms and signalling results complicated. SSI, in
particular, suffers also of high levels of coupling.

In robotics the need of distributed computing has always been an impor-
tant and still open issue. Such systems require not only feedforward and feed
backward streaming mechanism, but also synchronous and asynchronous com-
munication, multi-threading, runtime object inspection and, in the best case,
they should allow developers to work with the same tools in both simulated
and real environments. Important improvements have been offered by the expe-
riences at the RoboCup[17], in particular by the “Standard Platform League”:
all the teams worked with the same robotic platform, a team of four Sony Aibo
quadruped robots, focusing just on the software aspects. Among the notable so-
lutions proposed, the “GermanTeam” team tried to deal with the software and
hardware capabilities of the Aibo platform by building a robust and extensible
framework[14]. Algorithms ran sequentially on two parallel processes, one dedi-
cated for actuators control, another one for high level processing, while a third
process was responsible for logging, debugging and runtime inspection through
the network.

Beside the Robocup systems, another still popular framework is the “Player/
Stage Project” client/server architecture for robot control and simulation[8].
Player acts as an abstraction level to standardize all the robot hardware inter-
faces while the robot hardware can be real or simulated through Stage.

IMI2S: A Lightweight Framework for Distributed Computing 269

Moreover, using CORBA as middleware, Orocos[6], “Open Robot Control
Software”, provides an object oriented infrastructure for modules concurrently
running that are able to exchange streamed data through strongly typed ports.
Orocos objects share methods, properties, commands and events and, as CORBA
objects, can be deployed anywhere in the network. Orocos represents an impor-
tant attempt to define a standard for robotics platform, but, despite the many
efforts this remains a distant goal: the many existent robotics frameworks still
remain strictly tighten to their own particular robotic platforms.

In any case, communities of developers are grown up around each frame-
work, sharing code, experiences and a common, long-term vision. The ones built
around YARP[12], “Yet Another Robot Platform”, and around ROS[13], “Robot
Operating System”, are just two notable examples of successful communities de-
veloping on robotics framework. The YARP framework has been mainly designed
as specific platform for the iCub robot. While developed by Willow Garage for
their own robotic platforms, ROS always had a more standardizing vocation: now
ROS is actually one of the most used frameworks for robotic applications. Both
frameworks share a similar centralized name-server, but differ on the commu-
nications approaches: while YARP follows the observer pattern, ROS supports
both classic remote procedure calls and streaming via “Publisher/Subscriber”
pattern.

In this paper we propose the “Interaction, Multimodal Integration and So-
cial Signals” (IMI2S) framework: a new, lightweight framework for distributed
computing. All the cited platforms share similar concepts and basic ideas, im-
plemented using slightly different software solutions. IMI2S framework tried to
pick the best practices shown by all these previous experiences while considering
their main issues. The result is a very thin software layer that allows developer
to build highly decoupled, efficient, and portable software. Following, we will
show the detail of the design of this framework; some cues related to its imple-
mentation; its effectiveness and its flexibility on tackling problems in different
scenarios, by presenting its use in two cases of study.

2 System Design

An analysis of the features of the software built upon the existing frameworks
shows a large variety of algorithms and application, from robotics control systems
to signal processing to multiple sensors information gathering and coordination.
However, all these applications share a similar level of high complexity and the
similar necessity of a functional decomposition of problems to its basic issues.
The IMI2S framework works as useful tool for developers to exploit a func-
tional decomposition of complex problems. Developers will implement complex
solutions using simple, small and basic operative units that are able to interact
between them. Such basic modules are executed as independent computational
units able to solve a particular problem. Input and outputs of different modules
are then connected between them in order to exploit the main, complex problem.

270 S.M. Anzalone et al.

The requirements that have been chosen as main features of the presented
framework1 are:

* Modularity: as already stated, the main goal of this framework is to allow
developers to easily break complex problems into simpler tasks. This is achieved
by introducing the concept of “Module” as independent, low-coupled computa-
tional unit that is able to solve a particular problem. Each module is able to
communicate with other modules in a network and share its results through a
peer to peer approach. A “Publisher/Subscriber” communication pattern assure
a low coupling functional design of the modules. No broker or any kind of “cen-
tral server” solution will be used: the developer will take care of the existence of
modules in the network, of connection to correct addresses and of the validation
of data exchanged.

* Efficiency: the framework is thin and lightweight, able to support both off-line
and real-time data analysis. This essentiality is achieved through low memory
usages and simplicity of the framework control algorithms. The efficiency will
also be part of the communication layer, that will be characterized by a protocol
with low over-heads.

* Portability: particular choice for this framework is its characteristic of in-
teroperability between platforms and languages. Algorithms and data structures
used in the framework core are common to many languages, while libraries used
are multi-language and multi-platform. Accordingly, the framework is portable
among Windows and Unix platforms, and can be implemented in C/C++,
Python and Java. Modules built upon the framework core can take advantage
of the features coming from the huge amount of existing systems, devices and
libraries that belongs to each different platform, while maintaining the ability of
communicating each other.

* Maintainability: the functional decomposition proposes the individuation of
basic, independent tasks. But as solving basic task, such modules are reusable in
different contexts. Moreover, since such modules should be very specialized on
solving particular problems, it will be easy to extend them or to test completely
overturned algorithms able to solve the same problem. IMI2S framework is also
open source: this will facilitate the reviewing process and its update with new
features.

* Usability: past experiences, such as CORBA or Microsoft Robotics Studio,
shown how a good framework can fail its usage in extensive scales, due to its
complexity and the difficulty found on its learning. The framework proposed is
easy to learn and thin enough to be easily included in any development processes.

3 System Implementation

The implementation choices of IMI2S framework have been guided by the stated
features of modularity, efficiency, portability, maintainability and usability. All

1 Following the standard ISO/IEC 9126 and ISO/IEC 25010:2011.

IMI2S: A Lightweight Framework for Distributed Computing 271

the implementation issues are similar regardless the language or the operative
system in which the platform is implemented. Without losing in generalization,
we will refer from here to the implementation issues of such framework using
an object oriented language, upon a Unix-like platform. The core subject of
the platform is the “Module”, the computational unit in which basic tasks are
accomplished. This is implemented as a multi-thread process that refers to a
“ModuleHandler” object that will maintain all the information related to the
module itself, such as its name, its status, its networking connections. Commu-
nication between modules is achieved through a “NetworkHandler”: here, the
0MQ library has been chosen as convenient multi-platform and multi-language
library able to implement all the low level communication related to the Pub-
lisher/Subscriber pattern.

According to this pattern, senders publish messages broadcasting the data to
all the receivers, if any, connected. Publishers send such messages without any
knowledge of the receivers. On the other side, one or more receivers can subscribe
to publishers; then they will wait to retrieve message when they will be published.
The network handler is able to instantiate and maintain the status of “Publisher”
and “Subscriber” objects. Each module is free to instantiate any publisher and
any subscriber needed. Publishers objects are used to send messages on demand.
Subscribers objects, instead, will create threads that will wait the arrival of
new message from publishers; data will be then available through an opportune
callback function defined on the instantiation of the subscriber object itself.

Message exchanged between modules use a standard XML format described
through a set of XSD schemas. Such XSD schemas are used to validate ex-
changed data and to generate classes for automatic binding for serialization and
deserialization of data. Convenient tools that allow this code synthesization are
PyXB2, Python based implementations, or CodeSynthesis XSD3, for C/C++
based, platform-independent implementations.

The XSD schemas define a hierarchy of message types. The root this hierarchy
is the type “Message”, characterized by a timestamp, an index and a state that
can be conveniently used by developers. All the data types exchanged between
modules inherit their properties from the type Message (see Figure 1). Common
message types exchanged are: “Point”, defined by a triplet of floats (x, y, z) as a
common point in a 3D space; “Euler”, defined by a triplet of floats (alpha, beta,
gamma) as eulerian angles in a 3D space; “Quaternion”, defined by a quadruplet
of floats (x, y, z, w) as quaternion angles in a 3D space. Other used message types
are: “Pose”, defined by a Point schema and an Euler schema; “Matrix”, defining
a 2D matrix by its columns, its rows, its type (according to the OpenCV matrix
types), and its data, encoded in base64 format. Developers can extend the set
of known message types by inheriting them from the type “Message” into new
XSD schemas.

All the message types have a temporal reference. It is demanded to the de-
veloper a wise use of timing for a correct synchronization between the modules.

2 PyXB website: http://pyxb.sourceforge.net/
3 Code Synthesis XSD website: http://www.codesynthesis.com/products/xsd/

http://pyxb.sourceforge.net/
http://www.codesynthesis.com/products/xsd/

272 S.M. Anzalone et al.

Fig. 1. Hierarchy of commonly used message types described in the XSD schemas

The best approach suggested and used in the IMI2S framework is the synchro-
nization of the hosts in the network with a main time server through the use
of the Network Time Protocol. In such way developers are free to use the main
clock of each host to obtain a time reference for synchronization issues.

4 Performances and Case Studies

The performances and the limitations of the IMI2S framework have been studied
by matching measures related to timings and memory usage with similar mea-
sures collected using the ROS framework and the YARP framework. In order
to investigate how the behavior of the framework could change in accord to its
different implementation and, in particular, with the different libraries used, two
version of IMI2S have been developed. These implementation use two different
XML libraries for serialization and deserialization of the data, CodeSynthesis
XSD and CodeSynthesis XSDe4. Results are shown in 2. More in the detail, Fig-
ure 2a shows the publishing time, the time employed by the frameworks to create
and to send a message through the communication channel, in accord with the
size of the data that should be sent. It is possible to see how the performances of
IMI2S are strictly dependent by the XML serialization library used. The use of
the XSDe library assures a level of performances similar to that produced by the
YARP framework, until 4096kBytes of data. Figure 2a shows the interprocess
communication latency, the time spent by two processes using the same frame-
work to create, send, receive and deliver a message, in accord with the size of the
data sent. Also in this case the implementation of the IMI2S framework through
the XSDe library almost matches the performances of YARP, until 2048kBytes
of data sent. Figure 2c shows the memory consumption of each framework dur-
ing the transmission of packets of increasing sizes, from 1kByte to 8192kBytes.
The memory usage of the IMI2S framework implemented using the XSDe li-
brary has comparable performances to the YARP framework. In all the three

4 Code Synthesis XSDe website: http://www.codesynthesis.com/products/xsde/

http://www.codesynthesis.com/products/xsde/

IMI2S: A Lightweight Framework for Distributed Computing 273

cases the ROS framework outperforms both YARP and the XSDe based IMI2S
framework, while the XSD based IMI2S system fails all the comparison.

In the next sections we will show the flexibility and the modularity of the
IMI2S framework through the presentation of its usage in the context of two
human-interaction application scenarios: a cultural study, in which the interac-
tion happens between a human and a virtual agent; a medical study, in which
the interaction occurs between two humans. Following, we will present both sce-
narios and we will show how the IMI2S framework is enough flexible and efficient
to successful engage both problems.

(a) Publishing time (b) Interprocess latency time

(c) Memory usage

Fig. 2. The performances of the imi2s framework implemented through two XML
libraries, matched against Yarp and Ros frameworks

4.1 Human-Agent Interaction

In this case of study the IMI2S framework is applied in the context of the project
A1:1 (Avatar one to one scale)5. This project focuses on the engagement of
people in a museum (Historial de Vende situated at Lucs-sur-Boulogne, France),
through the interactions with a virtual, human-sized character. The experimental
setup is composed by a big screen in which the avatar acts, some exhibits as focus
of attention (“Soldier bending his arc”) and the user that interacts with the
avatar (see Figure 3).

5 Project A1:1 website: http://projectavatarfr.wordpress.com

http://projectavatarfr.wordpress.com

274 S.M. Anzalone et al.

Fig. 3. On the left: the experimental setup of the A1:1 project. On the right: visitor’s
view in the experimental scene.

To successful accomplish this interaction, the virtual agent should be equipped
with communication skills that would permit him to understand the actions and
intentions of the visitor. In other words the agent should be able to interpret
the verbal and nonverbal cues of the user. The agent would thus be able to
properly act/react with/to the user properly and would efficiently accomplish
his assigned task of passing the cultural information to the interested users. In
this context, the presented framework is used to detect the social cues of the
visitor and to control the agent accordingly. In addition, these cues are also used
to interpret higher level signals, such as concentration or attention, that will be
then fused to infer the engagement of the human partner in the interaction with
the avatar[16]. Knowing the engagement level of the user, the avatars behavior
would be designed to react consequently, engaging more or less the user in accord
to his perceived interest, and finally understand when the user totally disengages
from the interaction.

As shown in Figure 4, the presented framework is used to create a pipeline to
extract high level features and to detect the engagement level of the users. First
of all, the acquisition module is used (now, an RGB-D sensor is used, however
other multimodal sensors could be integrated) to acquire the users image, depth,
skeleton and audio data in an online interaction with the agent. These outputs
are then used by a first low level features extraction set of modules: the proxemics
module will generate features such as the distance between the hands; the face
tracker that will take as input the RGB image from the kinect module, will
calculate the head pose and facial feature points; the speaking activity module
that will use as its input the audio messages from the same module, will output
the speaking turn taking features; from the skeleton data, the posture module
will predict the posture of the user. Moving to higher level modules, in the same
chain of processing, the outputs of the first level modules are used to extract
information such as the Action units, from face tracking module, and head and
body gestures, from the posture module. The emotion, such as happiness with a
smile or boring, can be deduced in a third level by the Emotion module as we see
from the figure. Finally higher level deductions as concentration and attention
are computed from all the output of the lower level modules: higher and lower
level feature are fused together to infer the engagement state of the visitor.

IMI2S: A Lightweight Framework for Distributed Computing 275

Fig. 4. Use of the presented framework in a human-agent interaction project

4.2 Human-Human Interaction

One of the objectives of the Synchrony, Early Development and Psychopathol-
ogy (Syned-Psy) project is to characterize synchrony/dys-synchrony in mother
infant interaction occurring in situations of severe emotional neglect6. Synchrony
is defined as a dynamic and reciprocal adaptation of interactive partners behav-
iors, in a dyadic and temporal point of view. As a matter of fact, in human
behavior, early development and infant/caregiver interactions are paradigmatic
interactive situation in which synchrony is a key process. In this context, syn-
chrony means that infant and the caregiver have simultane-ous behaviors. It
also means that the infant and the caregiver move fluidly from one state to
the next. In sum, synchronic maternal behaviors are related to efficient mother
infant interactions whereas dyssynchronic ones qualify improper mother infant
interactions[7]. As complex phenomenon, synchrony characterization requires the
perception and understanding of social and communicative signals (speech, lin-
guistic cues, prosody, gesture, emotions) and also a continuous adaptation. Thus,
the IMI2S framework has been used as convenient computational tools to detect
and extract significant behaviors in the interactions. Such characterizations will
be used and compared with results of traditional psychological analysis to help
psychiatrists in their diagnostics and to understand early interactions dynamics.
During a visit for a medical monitoring with psychologists, mother and child
are invited to play together around a small table with toys. Here, two Microsoft
Kinect are placed in a convenient place in front of each participant (see Fig-
ure 5). Two computers record data received from Kinects (RGB image, depth
image, skeleton and audio data) in order to perform an offline processing.

The IMI2S framework is used to extract high level interactive features, such
as engagement from heads distance, joint attention or intrusion from shoulders
orientation and hands distance. The definition of these features are determined

6 Syned-Psy Project ANR reference number: ANR-12-SAMA-0006.

276 S.M. Anzalone et al.

Fig. 5. Top view of the experimental room. The yellow chair is the sit for the child,
the green for the mother).

with the help of psychologists, who decompose high level behavioral features into
a collection of low level ones.

The modularity of the framework offered the possibility to use solutions that
are already developed for A1:1 project. However, compared to the project A1:1,
this scenario presents more challenges, since two RGB-D sensors and two users
will be studied: data acquired by the these sensors, that are actually placed in
two different location of the room, should be roto-translated and merged in order
to share a common Cartesian space; then, a similar elaboration performed in the
A1:1 project can be carried out for each human partner present in the scene.

Figure 6 presents the pre-processing pipeline for skeleton data coming from
the two displaced RGB-D sensors. Skeleton data of mother and child from both
sensors is corrected to belong to the same Cartesian space; each skeleton is then
labeled, identifying the two users in the scene, the mother and the child. Finally,
data is merged in a unique stream, inconsistent skeletons are suppressed (for
example if the tracked skeleton is misplaced) and data is smoothed through
average filtering. Thanks to this pre-filtering pipeline, the features extraction
can be done with the existing modules developed for the A1:1 project.

Fig. 6. Use of the presented framework for multi-sensors, multi-users pre-treatment

IMI2S: A Lightweight Framework for Distributed Computing 277

5 Conclusion and Future Works

In this paper we introduced the IMI2S framework, a distributed computing
soft-ware platform designed to support our vision of modularity, efficiency, porta-
bility, maintainability and usability. We shown the general efficiency of the frame-
work by presenting how its performances are comparable to the performances
of state of art frameworks, such as YARP. We shown also the flexibility that
the low coupling of the framework offers by presenting its usage in two differ-
ent cases of study. Results obtained incite us to pursue our development of the
IMI2S framework by adding new functionalities and by promoting the creation
of a community around it.

Future works include its usage in other different contexts, such as social signals
extraction for autism spectrum disorder assessment, but also for the control of
robotic frameworks, such as Aldebarans Nao. Emphasizing on its portability and
efficiency characteristics, we plan its implementation also in embedded systems
such as Raspberry Pi and Arduino.

Acknowledgments. The work was partially funded by the European Commis-
sion, through the Project Michelangelo (FP7-ICT No. 288241), and by French
National Agency of Research, through the Projects Syned-Psy (ANR-12-SAMA-
0006) and the French National Program “Investissements dAvenir pour le
dveloppement de lconomie numrique”.

References

1. Anzalone, S.M., Cinquegrani, F., Sorbello, R., Chella, A.: An emotional humanoid
partner. In: Linguistic and Cognitive Approaches to Dialog Agents (LaCATODA
2010) at AISB (2010)

2. Anzalone, S.M., Menegatti, E., Pagello, E., Sorbello, R., Yoshikawa, Y., Ishiguro,
H.: A multimodal people recognition system for an intelligent environment. In:
Pirrone, R., Sorbello, F. (eds.) AI*IA 2011. LNCS, vol. 6934, pp. 451–456. Springer,
Heidelberg (2011)

3. Anzalone, S.M., Menegatti, E., Pagello, E., Yoshikawa, Y., Ishiguro, H., Chella,
A.: Audio-video people recognition system for an intelligent environment. In: 2011
4th International Conference on Human System Interactions (HSI), pp. 237–244.
IEEE (2011)

4. Anzalone, S.M., Yoshikawa, Y., Ishiguro, H., Menegatti, E., Pagello, E., Sorbello,
R.: Towards partners profiling in human robot interaction contexts. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 4–15. Springer, Heidelberg (2012)

5. Anzalone, S.M., Tilmont, E., Boucenna, S., Xavier, J., Jouen, A.-L., Bodeau, N.,
Maharatna, K., Chetouani, M., Cohen, D.: How children with autism spectrum
disorder behave and explore the 4-dimensional (spatial 3d+ time) environment
during a joint attention induction task with a robot. Research in Autism Spectrum
Disorders 8(7), 814–826 (2014)

6. Bruyninckx, H.: Open robot control software: the orocos project. In: Proceedings
of 2001 IEEE International Conference on Robotics and Automation, ICRA, vol. 3,
pp. 2523–2528. IEEE (2001)

278 S.M. Anzalone et al.

7. Feldman, R.: Parent–infant synchrony biological foundations and developmental
outcomes. Current Directions in Psychological Science 16(6), 340–345 (2007)

8. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proceedings of the 11th International
Conference on Advanced Robotics, vol. 1, pp. 317–323 (2003)

9. Ghidoni, S., Anzalone, S.M., Munaro, M., Michieletto, S., Menegatti, E.: A dis-
tributed perception infrastructure for robot assisted living. In: Robotics and Au-
tonomous Systems (2014)

10. Horstmann,M., Kirtland,M.: Dcom architecture.Microsoft Corporation (July 1997)
11. Lohse, M., Repplinger, M., Slusallek, P.: Network-integrated multimedia middle-

ware. Services, and Applications, Department of Computer Science, Saarland Uni-
versity, Germany, Diss. (2005)

12. Metta, G., Fitzpatrick, P., Natale, L.: Yarp: Yet another robot platform. Interna-
tional Journal of Advanced Robotic Systems 3(1) (2006)

13. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3 (2009)

14. Röfer, T., Laue, T., Burkhard, H.D., Hoffmann, J., Jüngel, M., Göhring, D.,
Lötzsch, M., Düffert, U., Spranger, M., Altmeyer, B., et al.: Germanteam robocup
2004 (2004)

15. Schmidt, D.C., Levine, D.L., Mungee, S.: The design of the tao real-time object
request broker. Computer Communications 21(4), 294–324 (1998)

16. Sidner, C.L., Lee, C., Kidd, C.D., Lesh, N., Rich, C.: Explorations in engagement
for humans and robots. Artificial Intelligence 166(1), 140–164 (2005)

17. Sorbello, R., Cinquegrani, F., Chella, A., Anzalone, S.M.: A new architecture
based on a simulation environment for four legged and humanoid robots. In: 13th
IEEE/IFAC International Conference on Methods and Models in Automation and
Robotics, MMAR 2007 (2007)

18. Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., André, E.: The social
signal interpretation (ssi) framework: multimodal signal processing and recognition
in real-time. In: Proceedings of the 21st ACM International Conference on Multi-
media, pp. 831–834. ACM (2013)

Are Middlewares Ready

for Multi-robots Systems?

Stefan-Gabriel Chitic, Julien Ponge, and Olivier Simonin

Université de Lyon, INSA-Lyon, CITI-INRIA,
69621, Villeurbanne, France

{stefan.chitic,julien.ponge,olivier.simonin}@insa-lyon.fr

Abstract. Autonomous robot fleets are complex systems that require
the interaction and communication between heterogeneous hardware and
software. Despite many years of work in robotics, there is still a lack of
established software architecture and middleware, in particular for large
scale multi-robots systems. Many research teams are still writing specific
hardware orientated software that is very tied to a robot. This vision
makes sharing modules or extending existing code difficult. A robotic
middleware should be designed to abstract the low-level hardware ar-
chitecture, facilitate communication and integration of new software. In
this paper, we present and compare seven existing middlewares capa-
ble of being used in multi-robot systems. We also present two dedicated
cloud based multi-robots platforms. After this analysis, we discuss why
a cloud of robots and not a cloud for robots is more suitable in a fleet
context.

Keywords: Multi-robot systems, Middleware, Robotic cloud.

1 Introduction

An autonomous robot fleet refers to multiple robots (two at least) capable of
sharing data and performing one or several tasks together. It can also include
mobile or fix connected objects and sensors cooperating together to achieve a
common goal. A robot is a complex and heterogeneous system that requires com-
munication and interaction between robot components (various sensors, actua-
tors and software components). The research in distributed artificial intelligence
has shown that the division of tasks reduces the complexity and the difficulty of
a problem, even if this requires coordination mechanisms [8]. The same concept
can be applied into the robotic world. There is a great need of having large scale
multi-robot systems capable of splitting tasks of a greater problem. There is also
a need of information sharing between robots and external objects. The commu-
nication inside a fleet can be done using a centralized network infrastructure like
WiFi Access Points or in a decentralized architecture using Ad-hoc networks.
Robots have a great potential in many new applications as they offer new ap-
proaches to problems like surveillance tasks, search and rescue missions in area
where personal access may not be possible or hostile, etc.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 279–290, 2014.
c© Springer International Publishing Switzerland 2014

280 S.-G. Chitic, J. Ponge, and O. Simonin

Multi robots systems can increase their computation power using external
architectures like data-grids [25] or clouds for robots. The main advantage of a
cloud of robots is the decreased time of computation as it is parallelized, since the
computation is parallelized into a data-center with many CPU working on the
same task. This approach has also it’s down-side, since each robotic system has
to communicate and share data with a centralized system hosted in a data-center
using Internet network.

Despite many years of work in robotics, there is still a lack of a software archi-
tecture and well-accepted family of middlewares [23]. A family of middlewares is
composed of softwares and tools sets that act as an abstraction and integration
layer between an network or operating system and applications. The developed
software is tied to the architecture and hardware being used. This makes sharing
modules and algorithms almost impossible in practice.

However, there is a convergence trend between the robotic and the middleware
world, in order to build efficient middleware solutions for robotics. This trend
is true with ROS1 establishes a more typical loosely-coupled, layered software
architecture as found in traditional general-purpose software engineering.

A family fo robotic middlewares should manage heterogeneity of the hard-
ware, facilitate the communication inside and outside a robot, improve soft-
ware quality, reduce time and costs in order to build new applications, allow
robots to be self-configuring, self-adaptive and self-optimizing to environnement
changes. Combining component and service-oriented programming greatly sim-
plifies the implementation of highly-adaptive, constantly-evolving applications
[9]. Robots should be capable of auto-provisioning (auto-discover and self-install
of the software modules and libraries used by the other robots in the fleet) and
self-profiling.

There already exists middlewares that try to achieve parts of the desired
needs. Most of them are designed for single robot contexts and they can also
be used in a fleet context, but there also exist new cloud based approaches de-
signed for multi-robot goals. This paper discusses the needs of having a family
of middlewares in large scale multi-robot systems and how it facilitates software
development. We compare the different existing solutions presenting the advan-
tages and down-sides of the existing middleware based on several criteria that
cover the architecture and infrastructure of each framework. We also present two
cloud for robots solutions.

The paper is structured as follows: Section 2 defines the challenges a multi-
robot middleware encounters. Section 3 describes the existing solutions. Section
4 presents our comparative criteria. Section 5 compares the main solutions based
on these challenges. Section 6 presents the existing cloud solutions for robotic
fleet and Section 7 synthesizes the analysis of existing solutions. Section 8 con-
cludes the paper.

1 Robot Operating System [22].

Are Middlewares Ready for Multi-robots Systems? 281

2 Challenges for Middleware in Robotic Systems

Why a Middleware for Robotics? Middlewares are important components
in the process of developing, deploying and operating software. Nowadays, robots
are used in a fleet context, being capable of having a global environment per-
ception and a communication inside the fleet and with external communicating
objects like sensors, network and service gateways, mobile devices with wireless
capabilities [18]. The robots may be ubiquitous and heterogeneous. All the de-
vices and the robots themselves are made of a diversity of hardware controlled
by a variety of software developed in different programming languages using
multiple standards and protocols to communicate.

One of the challenges is software modularity as presented in [7]. The robotic
applications development need to embrace a more software-oriented modular
vision. The development process should be simplified by integrating higher-
layers of abstraction with application interfaces (APIs) [18]. Also, the middle-
ware should support plug-and-play mechanism for new developed modules, being
capable of hot swapping new packages.

Furthermore, it should be able of sharing modules and knowledge with repos-
itories such as RoboEarth [24] (see section 6).

Infrastructure and Communication. The modules should run on any in-
frastructure, which implies that the middleware should propose a hardware ab-
straction layer in order to facilitate the reuse of the modules. The middleware
should make the robot aware of its capabilities by automatically discovering the
sensors and actuators. Those capabilities should be organized in robotic services
that should be broadcast to allow each robot to know what its team members
are capable of. This automatic resource and service discovery and configura-
tion mechanisms will increase the potential of each robot. Since the robots can
move independently and are dynamic, they need to self-organize2 inside the
fleet in a decentralized network. Moreover, due to the mobility of robots, the
fleet can divide itself at a communication layer but keeping the same fleet con-
figuration at an application layer, so the members should self-adapt to the new
fleet-configuration [26].

The middleware should provide a system of information sharing and collabo-
ration among all involved components offering communication support and in-
teroperability [4]. It should make this system transparent to the developer by
masking the low level communication with a more human-compressible language.

The middleware should also provide collaboration support among the robots
making sure that all robots share the same values of shared information. Also it
should provide APIs that will make the development of multi-robot collaborating
applications easier.

2 A process where some form of global order or coordination between robots arises out
of the local interactions between them (e.g. a leader election using a peer to peer
biding system).

282 S.-G. Chitic, J. Ponge, and O. Simonin

Down-Sides. Even the most challenging middleware might have problems.
As mentioned in [23], the fact of having a hardware abstraction layer hiding
the heterogeneity of sensors and actuators has its down-sides. The specificity
of sensors, their positions, their limits, their failures and robots shapes increase
the complexity of a controlling software. Extrapolating and/or integrating these
assumptions makes the middleware more complex and more prone to failures.
While in classical cloud environment the network could be considered almost
reliable, this is hardly the case in a robotic fleet. The middleware should not
try to catch a network failure exception, but instead accept that the network
is temporary unreachable and operate in a degraded mode until the network
communication is reestablished. The same logic should be applied also in case
of hardware failure since robots usually run in hazardous environment.

Taking everything into account, the challenges for a multi-robot middleware
are high. There are lots of techniques and research done in cloud middleware
that can be applied into a fleet context. However there is a lot of differences
between a cloud and a fleet due to mobility and communication limits inside a
fleet. Up to now, many attempts into creating a promising middleware for robots
have been done.

Next sections will present and compare the most relevant middlewares and
cloud platforms for robotic fleets.

3 Existing Middlewares

In this section we are going to present the most used middleware with appli-
cability in a fleet. A complete survey of all the middleware for mono robot is
clearly impossible because of the large number of existing middleware and release
of new ones. To reduce the number presented in the paper, we first considered
their compatibility in a multi-robots environment and the number of citations.
Even more, we are not taking into consideration the real time systems, since we
believe that hard real time systems need specialized APIs from the hardware
layer to dedicated operating system to application layer. Based on our crite-
ria, we have selected seven most used robotics middleware:Player/Stage, ROS,
Miro, MRDS, Marie, Orca and Pyro. We should keep in mind that there are
also other available middlewares like: Claraty, OpenRTMaist [2], OPRoS [10],
Carmen, Orocos [5], ERSP, RoboFrame, WURDE, Aseba, Skilligent, SmartSoft,
iRobotAware, Yarp, Spica, Babel, DROS, IRSP, K- MIDDLEWARE, OpenRDK,
OpenJAUS, ORCCAD, RIK, MRPT, MissionLab, Webots, etc. Some of these
middleware are also compared from mono-robot perspective in the section 4 of
[16] and section 2 of [17].

The following summary gives an overview of each selected software including a
description of it, the compatible robotic platforms and the most relevant features.

Player/Stage. [14] project is designed to provide an infrastructure, drivers and
a collection of dynamically loaded device-shared libraries for robotic applications.
It is one of the first middleware that emerged for robotic systems and there are

Are Middlewares Ready for Multi-robots Systems? 283

other middlewares that wrap Player. It doesn’t consider a robot as a single
entity, but instead it treats each device separately, being a repository server
for actuators, sensors and robots. The main features of Player are the device
repository server, the variety of the programming languages, the socket based
transport protocol, modularity and open-source.

The middleware is composed of 2 components: Player and Stage. Player is
the middleware itself and Stage is a simulator. The platform that can run the
Player/Stage middleware include: MobileRobots, Segway, Acroname, K-Team
robots, iRobot’s RFLEX-based, Botrics and Evolution Robotics.

ROS. (Robot operating system) [20] is a recent flexible middleware for robot
applications. It is a collection of tools, libraries, and conventions that aim at
simplifying the task of creating complex and robust robot behavior across a wide
variety of robotic platforms. It provides hardware abstraction, device drivers,
visualizers, message-passing, package management.

ROS comes with a series of libraries containing often-needed robotic services
like SLAM, Autonomous navigation of a Known Map, object follower, etc. ROS
is designed to be cross-platform.

The platforms that support ROS include PR2, Turtlebot, Kobuki, Husky and
Dr. Robot Jaguar V4 with Manipulator Arm, and more.

Miro. [13] is a distributed, object orientated middleware developed to improve
the software development process by increasing the integrability of heteroge-
neous software, the modularity and the portability of robot applications. It
was developed in C++ for Linux based on the Common Object Request Bro-
ker Architecture (CORBA). This allows cross-platform interoperability making
the middleware applicable to a distributed multi-robots context.

The platforms that can support Miro include: iRobot B21, MobilieRobots
Pioneer. Miro is very flexible and can easily be extended to support new devices
and robot applications.

Microsoft Robotics Developer Studio. (MRDS) [12] is a Windows-based
middleware for robot control and simulation from Microsoft.

Visual Programming Language, which is a key component of MRDS, is a
graphical development environment that uses a service and activity catalog.

MRDS is aimed at academic, hobbyist and commercial developers, and han-
dles a wide variety of robot hardware like Eddie Robot, ABB Group Robotic,
CoroWare CoroBot, Lego Mindstorms NXT, iRobot Create, Parallax Boe-Bot
etc.

Marie. (Mobile and Autonomous Robotics Integration Environment) [6] is a
middleware designed to allow the integration and distribution of software for
robotic systems. It uses the Adaptive Communication Environment (ACE) com-
munication framework. The centralized component provided by the middleware
called Mediator Design Pattern (MDP) allows software components to connect
to MARIE.

284 S.-G. Chitic, J. Ponge, and O. Simonin

MARIE can run on MobileRobots Pioneer 2. Its main features is the interop-
erability and re-usability of robotic software modules.

Orca. [1] is a open-source middleware for developing component-based systems.
It provides the mechanics to create building-blocks which can be pieced together
to form arbitrarily complex robotic systems.

To implement a distributed component-based system, CORBA was chosen in
Orca first version, but was rapidly changed with Ice, a new approach to object-
oriented middleware.

The platform that can run the Orca middleware include: MobileRobots, Seg-
way, K-Team robots, iRobot’s RFLEX-based, Evolution Robotics.

Pyro. (Python Robotics) [19] goal is “to provide a programming environment
for easily exploring advanced topics in artificial intelligence and robotics with-
out having to worry about the low-level details of the underlying hardware a
robot programming environment”. It wraps Player/Stage middleware so that
any component written for this system is also available to Pyro.

There are many libraries for Pyro that provide specific robotic services. The
middleware is compatible with MobileRobots Pioneer, Sony Aibo and all robots
supported by Player/Stage.

4 Comparative Criteria

We are going to compare the seven robotic frameworks presented above from a
software engineering point of view because the middleware concept first emerged
from this area and there are lots of knowledge that can be transfered into robotic
applications. We have grouped the comparative criteria into two major groups:
Architecture and Infrastructure. Each major group is composed of different cri-
teria relevant to the group.

The Architecture evaluates the impact that the framework has over the host
operating system and is composed of:

Vendor Locking - the middleware operating system dependence. This criteria
expresses the portability of a system across multiple platforms and systems.

Durable Data Storage Services - tools that allow to persist data from sensor
and other robots from the fleet. The data persistence layer is important for
saving mission results, for experimental data validations, for off-line data
processing as well as for sensor data replay in a simulator.

Robustness to Failures - the detection of a software failure, any degraded
model to run and the afterwards recovery process. The fact that a middleware
is aware of failures is essential for the robotic applications. Furthermore, it is
important that robots continue performing their tasks in a degraded mode
until the system has recovered form the failure.

Are Middlewares Ready for Multi-robots Systems? 285

The Infrastructure evaluates tools and APIs provided by the middleware and is
composed of:

Management and Monitoring - tools provided to manage, debug, configure
and monitor the middleware components. Since robots are complex devices,
it is important to facilitate the supervisor task by offering a complete vision
of the sensors, actuators and other components status of each robot.

Multi Robot Coordination Services - tools to make consensus over net-
work shared values, to elect a leader or to assign specific robotic tasks. In-
side a robotic fleet, it is important to have management tools to distribute
algorithms in order to reduce the complexity of the robotic applications de-
velopment.

Communication - The communication is very important between different
components of a robot in order to allow it to successfully perform its task,
as well as inside a fleet in order to allow robots to interact with others.

5 Middleware Comparison

This section analyzes each middleware based on the criteria presented in the
above section. Each major group is represented in a separate subsection that
includes a table that summaries the subsection. The evaluation is relative to all
the middlewares. A +++ represents that all criteria requirements are satisfied, a +

represents that most of the requirements are present, a ∼ shows the fact that
the criteria is partially satisfied and a - represents that criteria is not fullfield.

Table 1. Architecture

Middleware Vendor locking Durable data
storage services

Robustness to failures

Player/Stage Linux, Windows + (Blackboard) +

ROS Repositories: Ubuntu, De-
bian. From source: generic
Linux, Windows, MacOS

+++ (Rosbags) +

Miro Linux ∼ +

MRDS Windows ∼ +

Marie Linux ∼ +

Orca Linux ∼ +

Pyro Linux ∼ - (Neither degraded mode,
nor component isolation)

5.1 Architecture

Table 1 summaries the Architecture group. It is composed of Vendor locking,
Durable data storage services and Robustness to failures.

286 S.-G. Chitic, J. Ponge, and O. Simonin

Vendor Lock-In. Since the robots inside of a fleet can have heterogeneous
operating systems, the vendor criteria is very important in the choice of a mid-
dleware. Besides MRDS which runs only on Windows, the other middleware run
on Linux. Player/Stage and ROS are cross-platform.

Durable Data Storage Services. ROS and Player are the only middlewares
that provide durable data storage services. Topics and service messages can be
persisted in rosbags. The other frameworks do not provide any native API to
save sensor information.

Robustness to Failures. None of the middlewares have a special dedicated
degraded mode and nodes cannot be restarted automatically after failure. Be-
sides Pyro, all the middlewares provide component isolation3. ROS needs an
IP address at the initialization to run roscore. Once all the nodes are started,
roscore crash won’t affect the other nodes.

5.2 Infrastructure

Table 2 summaries the Infrastructure criteria. It has the following columns:Man-
agement and monitoring, Multi robot coordination services and Communication.

Management and Monitoring. Besides Miro and Orca which provide nei-
ther monitoring nor management interfaces, the rest of the middlewares include
graphical monitoring software. MRDS uses Visual Studio as IDE. ROS has mul-
tiple management tools and a QT graphical dashboard monitoring.

Multi Robot Coordination Services. None of the middlewares provide na-
tive multi robot coordination services. Player/Stage includes third-party coor-
dination algorithms developed for it. ROS, Miro, MRDS, Orca, Marie and Pyro
delegate the coordination services to the application layer.

Communication. Communication between the infrastructure layers in Player/
Stage and Pyro are done using direct socket connections as their primary method
of communication. Miro data sharing is assigned to CORBA’s IIOP. Marie uses
shared memory and sockets. MRDS and ROS dispose of high level messaging
APIS that support both synchronous and asynchronous communication.

Based on the above tables, ROS appears to be the most suitable middleware
for multi-robot systems, followed by MRDS. Both of them are fulfilling totally
or partially almost all the criteria. In the following section, we present another
emerging approach, cloud for robots.

3 Component isolation or sand-boxing is a security mechanism for separating running
process. The code and data spaces are also separated for each process.

Are Middlewares Ready for Multi-robots Systems? 287

Table 2. Infrastructure

Middleware Management
and monitoring

Multi robot
coordination services

Communication

Player/Stage ∼ + (Third-party
coordination)

∼

ROS +++ (Dashboard and
management)

∼ +++ (Sync. & async.)

Miro - (None) ∼ ∼
MRDS +++ (Visual Studio

plugins)
∼ +++ (Sync. & async.)

Marie ∼ ∼ ∼
Orca - (None) ∼ ∼
Pyro ∼ ∼ ∼

6 Existing Robotic Cloud Platforms

Besides the middleware orientated vision that has started to grow in the robotics
world, another software vision emerges in the robotic fleet context: the robotic
cloud. A robotic cloud is mostly formed of robots, communicating objects and
other hardware infrastructure elements that share information and resources in a
transparent way for the developer. The main advantage besides the information
sharing is an increased computation power by parallelizing the processes and
a decrease in on board hardware complexity on each robot. We are going to
present the two cloud platforms that we are aware of at the moment, DAvinCi
[3] and Rapyuta [11]. They are both using ROS middleware.

6.1 DAvinCi

DAvinCi [3] is a framework that provides advantages like scalability, parallelism
and sharing infrastructure of a Software as a Service (Saas) cloud platform for
robotic services inside a fleet. It can be used in scenarios where there are multiple
robots performing in parallel a task. The collected data is merged in a cloud
environment and then resent to each robot.

It is based on ROS as messaging middleware on the robotic component of the
system and Hadoop [27] cluster for cloud component. The assumption made by
the platform is that each robot is WiFi enabled and the infrastructure includes
a centralized WiFi access point and a gateway linking the robotic fleet to the
cloud services.

We remark the strong dependencies on a pre-existing cloud infrastructure
and a centralized WiFi access that reduce the environment applicability of the
system, as well as the overhead generated of wrapping ROS binary messages into
HTTP requests.

288 S.-G. Chitic, J. Ponge, and O. Simonin

6.2 Rapytua

Rapytua [11] is a open source Platform as a Service(PaaS) that provides a
customizable computing cloud based environment. It is also known as “the
RoboEarth Cloud Engine” because it facilitates robots access to the RoboEarth
[21] knowledge repository.

Rapytua is composed of an elastic computing model that dynamically allo-
cates computing environments for robots. This allows robots to share services
and information. The computing environments are implemented using Linux
Container. The platform is ROS compatible and it benefits of a well-established
ROS protocol, allowing all ROS packages to run directly.

We can note the overhead of using JSON to serialize ROS binary messages and
the dependencies on a WiFi centralized access. On the other hand, the platform
is not linked to a specific cloud platform which makes the system portable.

7 Discussion

None of the presented middlewares are fully suitable for a large scale multi-robot
system. In our opinion, ROS is the emerging middleware with the most potential
to evolve into one of the most used framework for robotic fleets. It still needs
work since it has no multi-robot coordination system and no automated testing
environment, but it has already the advantage of having a large community that
develop new packages for it. Another key element of ROS is its communication
mechanism. It support both synchronous and asynchronous communications and
can easily be customized with new message types. It has a large database of
drivers making a very good abstraction of the hardware layer. New modules and
packages can be developed and integrated quickly. It is very permissive for the
developers allowing them to code in different programming languages.

The advantages of a robotic fleet are the parallelizations of tasks that reduces
the time needed to accomplish them, the information sharing and the robustness to
failure. If a robot fails during a task, the task canbe reassigned to another fleetmem-
ber [15]. In this context, newdistributed software infrastructures areproposed.The
concept of cloud for robots is emerging, allowing them to communicate with exter-
nal cloud infrastructure and deport heavy computing operations aswell as allowing
them to interact with the Internet of things. The down-side of the existing infras-
tructure for this new concept is the communication infrastructure that supposes: a
centralized WiFi access. This reduces the use cases of robotic fleets that may also
be used in uncontrolled environments without a communication infrastructure.

We consider that a fleet of robots can be organized as a cloud of robots
and not a cloud for robots. There is a lot of work in multi-robot systems to
automatically distribute tasks of a greater problem. Our vision is to bring all
the benefits of a cloud environment into the robotic fleet by allowing robots to
share information, resources, computation power across heterogeneous devices
with different computational power. The robot will correspond to a machine in
the cloud. We plan to use ROS and/or MRDS as a communication layer with
the robots internal components and research a new middleware overlay, capable

Are Middlewares Ready for Multi-robots Systems? 289

of working with other middleware, as well as for fleet management, multi-robot
coordination, resource sharing and tasks parallelization.

We need to take into account the problematics of a cloud systems that sup-
poses the communication are always stable and apply them into a unstable com-
munication environment generated by the mobility of robots. The framework
should work in both centralized or ad-hoc infrastructure. Furthermore, we need
to take into consideration a degraded mode where the robot is isolated from
the rest of the fleet in terms of communications and by performing the task
independently until meeting its fleet.

8 Conclusion

In this paper, we have presented the challenges that a robotic middleware has to
encounter nowadays in a multi-robot system. We surveyed seven classic middle-
ware for robotics and discussed some of the main issues from a software engineer-
ing point of view. We have compared their capabilities in term of multi-robot
requirements such as communication, cooperation services and robustness. After
defining deferent criteria we summarized the advantages and the limitation of
each selected middleware. We have identified two middlewares, ROS and MRDS,
as the most adapted for a multi-robot context.

In addition, we have considered two cloud solutions for robotics with their
downsides. We propose another vision that consists in defining a cloud of robots
and not a cloud for robots. In this perspective, we started to work with ROS
which appears in our analysis as the most suitable middleware for robotic fleets.

References

1. Alexei Makarenko, A.B., Kaupp, T.: On the benefits of making robotic soft-
ware frameworks thin. In: POn the Benefits of Making Robotic Software Frame-
works Thin IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2007), San Diego CA, USA, October 29-November 02 (2007)

2. Ando, N., Suehiro, T., Kotoku, T.: A software platform for component based RT-
system development: OpenRTM-aist. In: Carpin, S., Noda, I., Pagello, E., Reg-
giani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 87–98.
Springer, Heidelberg (2008)

3. Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F.,
Kumar, A.S., Meng, K.D., Kit, G.W.: Davinci: A cloud computing framework for
service robots. In: 2010 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 3084–3089. IEEE (2010)

4. Biggs, G., Ando, N., Kotoku, T.: Native robot software framework inter-operation.
In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.)
SIMPAR 2010. LNCS, vol. 6472, pp. 180–191. Springer, Heidelberg (2010)

5. Bruyninckx,H.: Simulation,modeling and programming for autonomous robots: The
open source perspective. In: Carpin, S., Noda, I., Pagello, E., Reggiani,M., von Stryk,
O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, p. 1. Springer, Heidelberg (2008)

6. Côté, C., Létourneau, D., Rai’evsky, C., Brosseau, Y., Michaud, F.: Using MARIE
for mobile robot component development and integration (April 2007)

7. Elkady, A., Sobh, T.: Robotics middleware: A comprehensive literature survey and
attribute-based bibliography. Journal of Robotics (2012)

290 S.-G. Chitic, J. Ponge, and O. Simonin

8. Ferber, J.: Multi-Agent Systems. An Introduction to Distributed Artificial Intelli-
gence. Addison Wesley, London (1999)

9. Frénot, S., LeMouël, F., Ponge, J., Salagnac, G.: Various Extensions for the Ambient
OSGi framework. In: Adamus Workshop in ICPS, Berlin, Allemagne (July 2010)

10. Han, S., Sook Kim, M., Park, H.S.: Open software platform for robotic services.
IEEE Transactions on Automation Science and Engineering 9(3), 467–481 (2012)

11. Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: The roboearth
cloud engine. In: Robotics and Automation, ICRA (2013)

12. Johns, K., Taylor, T.: Professional Microsoft Robotics Developer Studio. Wrox
Press Ltd., Birmingham (2008)

13. Kraetzschmar, G.K., Utz, H., Sablatnög, S., Enderle, S., Palm, G.: Miro - mid-
dleware for cooperative robotics. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.)
RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 411–416. Springer, Heidelberg (2002)

14. Kranz, M., Rusu, R.B., Maldonado, A., Beetz, M., Schmidt, A.: A player/stage
system for context-aware intelligent environments (2006)

15. Legras, F., Glad, A., Simonin, O., Charpillet, F.: Authority sharing in a swarm of
UAVs: Simulation and experiments with operators. In: Carpin, S., Noda, I., Pagello,
E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325,
pp. 293–304. Springer, Heidelberg (2008)

16. Manso, L., Bachiller, P., Bustos, P., Núñez, P., Cintas, R., Calderita, L.: Robo-
Comp: A tool-based robotics framework. In: Ando, N., Balakirsky, S., Hemker, T.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 251–262.
Springer, Heidelberg (2010)

17. Mart́ınez, J., Romero-Garcés, A., Manso, L., Bustos, P.: Improving a robotics
framework with real-time and high-performance features. In: Ando, N., Balakirsky,
S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 263–274. Springer, Heidelberg (2010)

18. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review of middleware for networked
robots. International Journal of Computer Science and Network Security (5) (2009)

19. Pyro. Website (2012), http://pyrorobotics.com/?page=
PyroModuleIntroduction/

20. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on
Open Source Software, vol. 3 (2009)

21. RobotEarth. A worldwide web for robots (2014), http://roboearth.org/
22. ROS. Robot operating system (2014), http://www.ros.org/
23. Smart, W.D.: Is a common middleware for robotics possible? In: Proceedings of

the IROS 2007 Workshop on Measures and Procedures for the Evaluation of Robot
Architectures and Middleware. Citeseer (2007)

24. Tenorth, M., Perzylo, A.C., Lafrenz, R., Beetz, M.: The roboearth language: Rep-
resenting and exchanging knowledge about actions, objects, and environments. In:
2012 IEEE International Conference on Robotics and Automation (ICRA), pp.
1284–1289. IEEE (2012)

25. Torkestani, J.A.: A highly reliable and parallelizable data distribution scheme for
data grids. Future Generation Computer Systems 29(2), 509–519 (2013); Special
section: Recent advances in e-Science

26. Valle, D., Nuno, E., Basañez, L., Arana-Daniel, N.: Consensus of networks of non-
identical robots with flexible joints, variable time-delays and immeasurable veloc-
ities. In: IROS, pp. 5878–5883 (2013)

27. Xu, G., Xu, F., Ma, H.: Deploying and researching hadoop in virtual machines
(August 2012)

http://pyrorobotics.com/?page=PyroModuleIntroduction/
http://pyrorobotics.com/?page=PyroModuleIntroduction/
http://roboearth.org/
http://www.ros.org/

Declarative Specification

of Robot Perception Architectures

Nico Hochgeschwender1,2, Sven Schneider1,
Holger Voos2, and Gerhard K. Kraetzschmar1

1 Bonn-Rhein-Sieg University, Computer Science, Sankt Augustin, Germany
nico.hochgeschwender@h-brs.de

2 University of Luxembourg, SnT Automation Research Group, Luxembourg

Abstract. Service robots become increasingly capable and deliver a
broader spectrum of services which all require a wide range of perceptual
capabilities. These capabilities must cope with dynamically changing re-
quirements which make the design and implementation of a robot percep-
tion architecture a complex and tedious exercise which is prone to error.
We suggest to specify the integral parts of robot perception architec-
tures using explicit models, which allows to easily configure, modify, and
validate them. The paper presents the domain-specific language RPSL,
some examples of its application, the current state of implementation
and some validation experiments.

1 Introduction

Service robots operating in industrial or domestic environments are expected to
perform a wide variety of tasks in different places with often widely differing
environmental conditions. This poses many challenges for the perception-related
parts of the control software (here referred to as robot perception archi-
tecture (RPA)), which includes recognizing and tracking manipulable and non-
manipulable objects, furniture, people, faces, and recognizing gestures, emotions,
sounds, and speech.

Designing a single set of perception components that performs all these per-
ceptual tasks simultaneously, robustly, and efficiently would require enormous
effort and would result in unmanageable complexity. To meet the challenges of
service robotics we need concepts, methods, and tools for designing and devel-
oping RPAs in a very flexible manner. Ultimately the robot should be able to
adjust to the wide range of situations autonomously (e.g. by dynamically select-
ing a set of perceptual components into an RPA configuration for a particular
task). Fig. 1 illustrates the concept, where the components shown in red com-
pose the RPA configuration active when the pose of a person is required. To
do so, explicit knowledge representation about its available perception capabili-
ties/functionalities (as depicted in Fig. 1) are required.

However, many RPA design decisions remain nowadays implicit. These deci-
sion concern the robot platform, robot’s tasks, and the environment in which the

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 291–302, 2014.
c© Springer International Publishing Switzerland 2014

292 N. Hochgeschwender et al.

robot operates. Some examples include the selection and configuration (e.g. res-
olution and data frequency) of sensors, the selection and parameterization of fil-
ters and feature detectors (see also [1]), and the selection, configuration and/or
training of classifiers. Also, the domain experts connect all these perceptual com-
ponents into a coherent RPA. We argue that implicit design decisions are a major
cause for the inflexibility of today’s RPAs as if any of the implicit assumptions is
changing, the task to adapt the RPA remains challenging and is prone to errors.

ResultsRobot Perception ArchitectureSensors

Webcam

...

Kinect
3d

Camera

Laser
Range
Finder ROI

Euclidean
Cluster

Random
Forest

Classifier
Segment.

...

Person
Pose

Object
Pose

Person
Id

SIFT
Features

Canny
Edge

Detection

Gaussian
Filter

Poisson
Surface
Reconst.

Neural
Gas

RANSAC
Local

Surface
Normals

Decision
Tree

...

...

...

Fig. 1. The design space of Robot Perception Architectures (RPAs) includes the fol-
lowing constituents: i) heterogenous sets of sensors (blue boxes), ii) processing compo-
nents (black boxes), iii) task-relevant information and knowledge (brown boxes), and
iv) perception graphs (red visualized path)

Providing RPAs with the aforementioned cabilities requires to model the de-
sign decisions in an explicit and computable manner [2]. In the work presented
here, the Model-Driven Engineering [2] approach is adopted for the design and
development of RPAs as it enables modeling for and by reuse. More precisely,
we introduce a set of meta-models and a corresponding domain-specific lan-
guage (DSL) which enables the declarative and explicit specification of the inte-
gral parts of RPAs (see Sec. 2). We also show how concrete domain models are
reused in an architecture facilitating the demand-driven selection and execution
of perception graphs stored in a (model) repository (see Sec. 3).

2 RPSL: Robot Perception Specification Language

In the following we introduce the meta-models (abstract syntax) of the RPSL
which is a textual domain-specific language (DSL) [2]. The RPSL allows to
specify the integral parts of RPAs in an explicit manner. To identify the domain
abstractions required to specify RPAs a domain analysis was performed on ex-
isting RPAs [3] which have been integrated on various robot platforms. Ranging
from people detection, recognition and tracking to object recognition, pose es-
timation and categorization the assessed functionalities cover a wide range of
perceptual capabilities required for today’s service robots. Several core domain
concepts were identified and described, namely components, algorithms, and

Declarative Specification of Robot Perception Architectures 293

perception graphs. These domain concepts correspond roughly to the structural
constituents of RPAs as shown in Fig. 1. We also identified conceptual spaces as
a cross-cutting domain. We apply a MDE approach using the Eclipse Modeling
Framework (EMF)1. Each domain is specified in the form of an Ecore model.
Based on the Ecore models, we developed a DSL using the Xtext framework2.

Example: Color-Based Region Growing Segmentation. To exemplify the domain
abstractions introduced with RPSL we use a standard segmentation method
commonly applied in robotics, namely color-based region growing segmenta-
tion [4]. An example of the output of the system is shown in Fig. 2. Here, a
scene with industrial objects such as screws and nuts is segmented. We assume
the following setup: i) A RGB-D camera provides a 3D point cloud with RGB
information at a resolution of 640 × 480 pixels. ii) Another component imple-
ments the color-based region growing segmentation. The component takes the
whole point cloud as an input and provides a list of segmented regions, based
on a certain configuration such as color range and minimum/maximum number
of points per segmented region.

(a) Before Segmentation (b) After Segmentation

Fig. 2. Example of the color-based region growing segmentation

2.1 Modeling Components

We propose component-based development for RPAs similar to [5]. The core idea
is to use components as building blocks and to design RPAs by composing com-
ponents with clearly defined interfaces. Component-based development fosters
structured design and development and is nowadays the predominant software
development approach in robotics [6].

The Component Meta-Model (CMM) (see Fig. 3) borrows the core struc-
tural elements, such as components and ports, from the BRICS Component
Model (BCM) [6] and has been enriched through RPA-specific aspects. The
main objective of the CMM is to model Components, the basic building blocks
of RPAs. Each Component contains Ports of type InputPort and OutputPort,
which serve as endpoints for communication between Components. Comparable

1 http://www.eclipse.org/modeling/emf/
2 http://www.eclipse.org/Xtext/

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/

294 N. Hochgeschwender et al.

ComponentModel

(from Algorithm Model)
Algorithm

0 … *

1

(from Conceptual Space
Model)

Prototype

port_type

1

0 … *

SensorComponent

name : EString
doc: EString

Component

ProcessingComponent

InputPort

name : EString
doc: EString

Port

OutputPort

0 … *

0 … * QoS

property

0 … 1

(from Conceptual Space
Model)

Concept

port_prototype

0...*

Fig. 3. The Component Meta Model (CMM)

to robot software frameworks such as Orocos RTT and others3 Ports are typed.
In RPSL, the type is modeled using the conceptual space meta-model (CSMM)
presented in Sec. 2.3. Based on our domain analysis [3] we identified and dis-
tinguish between two types of Components, namely SensorComponents and
ProcessingComponents.

SensorComponents are used to model sensors (e.g. cameras and laser range
finders) and ProcessingComponents are used to model purely computational
components which implement functionalities such as filters and feature detec-
tors. ProcessingComponents link to an Algorithmmodeled using the algorithm
meta-model (see Sec. 2.2). Nowadays, some sensors preprocess data internally
(e.g. noise filtering) before the sensor data is delivered. Thus, SensorComponents
might link to an Algorithm as well. Each Component has properties such as
configuration parameters, which are specific to the actual functionality (e.g. the
minimum number of points per region for the region-growing segmentation), and
Quality of Service (QoS) characteristics, such as worst case execution time.
Similarly to Ports, the QoS characteristics and properties are modeled using
the CSMM. Components are the basic first-class primitives in our meta-model.
Currently, we do not support composition of components on a CMM level; hierar-
chies will be introduced later with the Perception Graph Meta-Model (PGMM)
(see Sec. 2.4). Ports of Components are solely intended for data exchange among
Components and not for configuration concerns (e.g. configuration ports found
in other component models [7]). This design decision implies that the domain
expert needs to specify all components together with particular configuration
values. This approach fosters the modeling of feasible configuration values for
components, as the domain expert is led to provide them. This also provides the
possibility (if needed at a later stage) to reduce the design space (e.g. through
grouping components).

3 See [7] for a discussion on Component Models found in robotics.

Declarative Specification of Robot Perception Architectures 295

2.2 Modeling Algorithms

The main objective of the AlgorithmMeta-Model (AMM) (see Fig. 4) is to model
meta-information about the algorithms which are integrated in components4.

AlgorithmModel

name : EString
doc: EString
complexity: COMPLEXITY

Algorithm

property

- CONSTANT
- DOUBLE_LOG
- LINEAR
- EXPONENTIAL
- N_LOG_STAR_N
- ANYTIME

<<enumeration>>
COMPLEXITY

AlgorithmImplementation

1

(from Conceptual Space
Model)

Prototype

0 … *

name : EString
doc: EString

Category

0 … *

subCategory

Fig. 4. The Algorithm Meta Model (AMM)

We distinguish between Algorithm and AlgorithmImplementation, where
AlgorithmImplementation models a particular implementation of an
Algorithm. Each Algorithm belongs to a Category (e.g. filter, feature de-
scriptor) and provides information about its Complexity. Grouping algorithms
in certain categories is feasible and best practice. In fact, every major com-
puter vision and perception library, such as PCL [8] or OpenCV [9], is orga-
nized in categories sharing some properties. The distinction in Algorithm and
AlgorithmImplementation is useful because it enables the domain expert to
model different implementations of a particular algorithm. The color-based re-
gion growing algorithm, for instance, could either be implemented näıvely on the
CPU, while another implementation is optimized for GPUs. Both implementa-
tions are specializations of the same Algorithm (e.g. RegionGrowing), but have
different properties such as precision.

2.3 Modeling Conceptual Spaces

RPAs are producing heterogenous output spanning multiple levels of abstrac-
tions and ranging from raw sensor data and subsymbolic representations to
symbolic information. The type of output depends on the task of the robot
and on other functional components demanding the information. For example,
in a pick-and-place scenario a decision making component might be interested in
the types/names (symbolic information) of present objects, whereas a grasping
component demands information about the pose of an object. Hence, a knowl-
edge representation approach which enables us to model data produced by RPAs

4 Please note, we do not model the algorithms themselves, e.g. in terms of steps and
procedures.

296 N. Hochgeschwender et al.

on various levels of abstractions is required. In [10], Gärdenfors introduced Con-
ceptual Spaces (CS) as a knowledge representation mechanism, which is used
here and extended for RPSL. A CS contains the following constituent parts:

– A Conceptual Space is a metric space where Concepts are defined as
convex regions in a set of domains (e.g. the concept Color).

– A Domain includes a set of Domain Dimensions5 that form a unit and
are measurable (e.g. the domain dimension Red of the RGB color model).

– An Instance is a specific vector in a space (e.g. the RGB color red with the
values 255 (red), 0 (green), and 0 (blue)).

– A Prototype is an Instance which encodes typical values for a Concept.

The vector-based representation of the CS framework allows to apply similarity
measures such as Euclidian distance to decide to which concept an instance be-
longs. In [11], Chella et al. showed that the CS framework enables the systematic
integration of different knowledge representations as required in robotics. Fur-
ther, the CS representation facilitates computationally efficient implementations
based on the vector-based approach.

The Conceptual Space Meta-model (CSMM))(see Fig. 5) is a formalization of
the CS framework as an Ecore model. In RPSL its purpose is to model the in-
put and output of computational components of RPAs. Additionally, we use it to
model QoS and general properties of Components and Algorithms. The CSMM
contains several Concepts, where Concepts may contain subConcepts thereby
supporting hierarchical concept structures. For each Domain a DomainDimension

is defined. According to Gärdenfors, a DomainDimension is measurable. As RPAs
deal with different types of data we introduce four DomainDimensions based
on the work of Stevens [12], namely NominalDimension, OrdinalDimension,
IntervalDimension, and RatioDimension. Each dimension permits to apply a
set of logical and mathematical operators suitable to model different data.

Example: The color-based region growing segmentation component produces
a list of regions. For each region the points belonging to it, the number of
points, and the average RGB value of the points in the region are stored. We
model a region as a Concept named Region referring to three Domains, namely
PointCloud, NumberOfPoints, and AvgColor. We now exemplify the AvgColor

domain which is decomposed into four DomainDimensions each of them of type
IntervalDimension. Three of them are used to model the RGB color model and
one for the standard deviation σ of the color distribution of the region. Each
IntervalDimension for the RGB color model is equipped with an Interval

ranging from 0 to 255 and of type Integer whereas the range for σ is from 0
to 1 and of type Double. Furthermore, a prototype is defined, which declares
typical values for each Domain. For instance, depending on the configuration of

5 In [10], a domain dimension is named quality dimension. For the sake of avoiding
confusion with the term Quality of Service, we renamed it domain dimension.

Declarative Specification of Robot Perception Architectures 297

name : EString
doc: EString

Concept

name : EString
DomainDimension

ConceptualSpaceModel

name: EString
Domain

0 … *

concept

1 … *

 1 concept

dimension

subConcept

interval: Interval
IntervalDimension

NominalDimensionOrdinalDimension

0 … *

RatioDimension

1 … *

domain

name: EString
Prototype

1
value: EObject
InstanceElementinstanceDimension

1 … *

Fig. 5. Excerpt of the Conceptual Space Meta Model (CSMM). For the sake of read-
ability some elements are not shown: the set of mathematical operators applicable on
each domain dimension, the Interval class for the IntervalDimension, and the full
set of attributes for each dimension class.

the algorithm the NumberOfPoints would be an IntervalDimension with an
interval from 50 (minimum number of pixels per region) to 10, 000.

2.4 Modeling Perception Graphs

The Perception GraphMeta-Model (PGMM) (see Fig. 6) enables the composition
of components (see Sec. 2.1) in a directed acyclic graph (DAG) of components. A
PerceptionGraph (PG) consists of two types of Elements (where Element refers
to exactly one Component), namely Nodes which have at least one successor and
Leafs without successor. To explicitly model successors, Nodes are connected
through Connections, which have one InputPort and one OutputPort and refer
to exactly one Element. Hence, we ensure that we do not connect two InputPorts
or OutputPortswith each other. The PGMM enables the domain expert to model
PGs which can easily be reused. Ranging from simple filtering pipelines to more
elaborated PGs with multiple input, output and processing branches.

2.5 Modeling Constraints

Once domain concepts are represented as meta-models, we can also define con-
straints on concrete domain models conforming to these meta-models. Simi-
larly to [13], we use the Object Constraint Language (OCL)6 to model two
types of constraints, namely atomic and composition constraints. Here, atomic
constraints are valid for single meta-models whereas composition constraints
appear when we compose meta-models (e.g. CSMM and PGMM in Sec. 2.4).

6 http://www.omg.org/spec/OCL/2.3.1/

http://www.omg.org/spec/OCL/2.3.1/

298 N. Hochgeschwender et al.

PerceptionGraphModel

name : EString
doc: EString

PerceptionGraph

1 … *

0 … *

(from Component
Model)

Component

1 … *

Leaf

name : EString
doc: EString

Element

Node

1

Connection

1

(from Component
Model)

OutputPort
(from Component

Model)

InputPort

1

1

Fig. 6. The Perception Graph Meta Model (PGMM)

Beside atomic constraints, such as ensuring non-empty names and IDs, we
check the following composition constraints: i) Each Element of type Leaf

in a PerceptionGraph refers to a Component with at least one OutputPort.
This ensures that a PerceptionGraph always provides an output. ii) Each
PerceptionGraph does not have any directed cycles. This ensures the DAG
property.

2.6 Modeling Demand

So far, we have modeled the integral parts of RPAs. To allow for demand-driven
selection of PGs, we need abstractions to express demands. For that, we intro-
duce the concept of a Request, which encodes an expected piece of information
which is to be provided as the output of a PerceptionGraph. As inputs and out-
puts are modeled with the CSMM, a Request needs to know which Concepts

are available in our architecture (see also Fig. 8). We introduce the concept of a
PrototypeRequest. A PrototypeRequest consists of i) the prototype, which is
a concrete instance of a concept (i.e. all properties have a specific value), ii) a
distance, which determines how close values must be to the prototype, and iii)
a distance measure. An example of a PrototypeRequest is shown in Fig. 7. The
general idea of a ProtoypeRequest is that a client (the component expressing
the demand) defines an expected value for each DomainDimension of a Concept

which is later used to compute the most suitable PG. The suitability is defined
by the Request in terms of Similarity which contains a Metric (e.g. a Eu-
clidian distance or Jaccard distance) and a corresponding distance value which
is interpreted as the maximally-allowed deviation. Assuming the Request can
be fulfilled, the client expects some sort of data which is specified in the Data

entry. Here, we support either one sample or a list of samples (in our example a
list of Regions).

Declarative Specification of Robot Perception Architectures 299

from myconcepts import Region as R

PrototypeRequest segmentedRegions {
Prototype regionPrototype {
R.AvgColor .Red = 220
R.AvgColor .Green = 20
R.AvgColor .Blue = 60
// ...

}

Similarity similarity {
Metric m = SIMILARITY_METRIC.EUCLIDIAN_DIST
Distance d = 0

}

Data data {
List_of Region

}
}

Fig. 7. An excerpt of a PrototypeRequest modeled with the Request DSL for the
segmentation example

3 RPSL Run Time Environment

To validate the abstractions introduced by the RPSL and to realize the demand-
driven selection and execution of previously modeled PGs we implemented the
RPSL run time architecture shown in Fig. 8. During design time, a domain
expert uses an editor to model concrete domain models of PerceptionGraphs

using previously modeled Components and Concepts. The PerceptionGraphs

and Concepts are stored in dedicated repositories which are accessible at run
time by the run time architecture, which is bound to receive several requests
each of which encodes a demand for a concrete piece of information that can be

Legend
Run Time

Activity
Model

Information flow

Dependencies
Repository

Component
Model

Perception
Graph
Model

Conceptual
Space
Model

Perception
Graph
Editor

Request
ModelRequest

ModelRequest
ModelAlgorithm

Model

Perception
Graph

Selection

Perception
Graph

Execution

Perception Graph
Repository

Concept
Repository

Design Time RPSL Run Time Architecture

Tool

Fig. 8. The RPSL Run Time Architecture

300 N. Hochgeschwender et al.

provided by a stored PerceptionGraph. This demand is modeled with the ab-
stractions introduced in Sec. 2.6. Based on the request and the models stored in
the repositories we need to select and execute a PerceptionGraph (see activities
in Fig. 8). Demand-driven selection and execution of perception graphs is ben-
eficial for two reasons: First, it is not necessary anymore to deploy PGs before
they are actually required at run time as for many tasks the sequence which PG
needs to be active is not known a priori. In particular, for resource-constrained
robots (e.g. micro air vehicles) this is advantagous as the use of resources like
memory can be optimized. Second, requests are made explicit, which faciliates
step-wise development and systematic testing of RPAs.

Algorithm 1. Selection of a perception graph based on a request

Input: Request R, set of perception graphs PG = {pg1, pg2, ..., pgi}
Output: Set of candidates C = {{c1, c2, ..., ci} where C ⊂ PG

for all Output oi in PG do
if Concept CR of R matches the concept Ci of oi then

if R is of type PrototypeRequest and oi includes Prototype pi then
// Compute similarity dist. with given measure between CR and pi
di ← R.similarity.m(CR, pi)
if di <= R.distance then

C ← C ∪ pgi

Perception Graph Selection and Execution. To select a PG matching a partic-
ular Request, we apply Algorithm 1 which iterates over each PG stored in the
repository and assesses the outputs it provides. As a result, a Request can yield
any of the following situations: i) no PG matches, ii) exactly one PG matches,
iii) several PGs match. In the case of a PrototypeRequest, the PG with the
shortest distance is executed.

Implementation and Experiments. The architecture shown in Fig. 8 is work
in progress, implemented in Java and Ruby, and will be released soon as open
source.7 For each meta-model presented in Sec. 2, we already provide an Eclipse-
based textual editor which enables the specification and storage of domain
models. The run time system of the RPSL architecture contains two main mod-
ules: PG selection and PG execution. The selection module realizes the
platform-independent algorithm described above, whereas the execution mod-
ules is platform-dependent. The modeled PGs are independent of a particular
framework in which the PGs are implemented. For execution of the PGs, the PG
primitives are mapped to framework-specific primitives. So far, we have a direct
mapping to ROS nodes implementing the PGs, but we plan to realize this step
with a Model-2-Model transformation from the PGMM to a framework-specific
meta-model. To assess the overall approach, we modeled several PGs ranging
from smaller examples such as the different variants of the region growing PG

7 https://github.com/nicoh/RPSL

https://github.com/nicoh/RPSL

Declarative Specification of Robot Perception Architectures 301

to more complex PGs, such as combined region of interest, segmentation, and
shape-extraction PGs. For each PG we also tested corresponding Requests. It
is possible to select a PG which matches the Request even in a repository which
is unstructured (different PGs stored for different purpose).

4 Discussion and Related Work

To the best of our knowledge the presented approach is the first which applies
the MDE approach to the design and development of RPAs. Although MDE
approaches are becoming popular in robotics, they mainly focus on subdomains
such as coordinate representations [14].

The CSMM turned out to be a general-purpose meta-model which is appli-
cable not only to describe the input and output of components but also their
properties and QoS characteristics. We intend to consider this information also
in the selection process to select the fastest or most reliable PG. To which ex-
tend this information will be reflected in the Request remains open and will be
investigated in ongoing work. To model these non-functional properties we will
also investigate the meta-models proposed in [15].

Even though with PrototypeRequests we can already select PGs we foresee
the implementation of different types of Requests such as ConstraintRequests.
Here, a ConstraintRequestwould define constraints (e.g. inequality constraints
such as >, <= etc.) on DomainDimension which is beneficial when several PGs
provide the same concept at their output, but their characteristics differ (e.g. dif-
ferent Intervals for the same DomainDimension).

To define acceptable names and terms for the Concepts is crucial for the usage
of the proposed approach. Hence, we will investigate ontologies proposed in other
projects such as [16]. In contrast to the work by Moisan et al. [1], our approach
does not depend on a feature-model representation as it is mainly driven by the
integral architectural parts of RPAs.

We also plan to enrich the PG execution through deployment models [13]
such that PGs can be deployed on platforms which increase the performance.

5 Conclusion

This paper presented the Robot Perception Specification Language (RPSL)
which enables the explicit specification of RPAs. We showed how to model and
store ready-to-use perception graphs and to efficiently select the most appropri-
ate perception graph at run time.

Acknowledgement. Nico Hochgeschwender is recipient of a PhD scholarship
from the Graduate Institute of the Bonn-Rhein-Sieg University, which he grate-
fully acknowledges.

302 N. Hochgeschwender et al.

References

1. Moisan, S., Rigault, J.-P., Acher, M., Collet, P., Lahire, P.: Run time adaptation
of video-surveillance systems: A software modeling approach. In: Crowley, J.L.,
Draper, B., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 203–212. Springer,
Heidelberg (2011)

2. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Com-
puter 39(2), 25–31 (2006)

3. Hochgeschwender, N., Schneider, S., Voos, H., Kraetzschmar, G.K.: Towards
a robot perception specification language. In: Proceedings of the 4th Interna-
tional Workshop on Domain-Specific Languages and Models for ROBotic Systems
(DSLRob) (2013)

4. Zhan, Q., Liang, Y., Xiao, Y.: Color-based segmentation of point clouds. Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 38, 248–252 (2009)

5. Biggs, G., Ando, N., Kotoku, T.: Rapid data processing pipeline development using
openrtm-aist. In: 2011 IEEE/SICE International Symposium on System Integra-
tion (SII), pp. 312–317 (2011)

6. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G., Gher-
ardi, L., Brugali, D.: The brics component model: A model-based development
paradigm for complex robotics software systems. In: Proceedings of the 28th An-
nual ACM Symposium on Applied Computing, SAC 2013, pp. 1758–1764. ACM,
New York (2013)

7. Shakhimardanov, A., Hochgeschwender, N., Kraetzschmar, G.K.: Component mod-
els in robotics software. In: Proceedings of the Workshop on Performance Metrics
for Intelligent Systems, Baltimore, USA (2010)

8. Rusu, R.B., Cousins, S.: 3D is here: Point cloud library (pcl). In: Proceedings of
the International Conference on Robotics and Automation (ICRA) (2011)

9. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
10. Gärdenfors, P.: Conceptual spaces - the geometry of thought. MIT Press (2000)
11. Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision.

Artif. Intell. 89(1-2), 73–111 (1997)
12. Stevens, S.S.: On the Theory of Scales of Measurement. Science 103, 677–680 (1946)
13. Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraetzschmar, G., Bru-

gali, D., Bruyninckx, H.: A model-based approach to software deployment in
robotics. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3907–3914 (November 2013)

14. Nordmann, A., Hochgeschwender, N., Wrede, S.: A survey on domain-specific lan-
guages in robotics. In: Brugali, D., Broenink, J., Kroeger, T., MacDonald, B. (eds.)
SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 193–204. Springer, Heidelberg (2014)

15. Ramaswamy, A.K., Monsuez, B., Tapus, A., et al.: Solution space modeling for
robotic systems. Journal for Software Engineering Robotics (JOSER) 5(1), 89–96
(2014)

16. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 149–160. Springer, Heidelberg (2012)

A Modeling Framework for Software

Architecture Specification and Validation

Nicolas Gobillot, Charles Lesire, and David Doose

ONERA, The French Aerospace Lab.,
2 Avenue Edouard Belin, 31055 Toulouse, France

{firstname.lastname}@onera.fr

Abstract. Integrating robotic systems into our everyday life needs that
we prove that they will not endanger people, i.e. that they will behave
correctly with respect to some safety rules. In this paper, we propose
a validation toolchain based on a Domain Specific Language. This DSL
allows to model the software architecture of a robot using a component-
based approach. From these models, we provide tools to generate deploy-
able components, as well as a two-step validation phase. This validation
first performs a real-time analysis of the component architecture, leading
to an evaluation of the software architecture schedulability. Then we can
check the validity of some behavioral property on the components.

1 Introduction

Nowadays, computer-based systems occupy an increasing place in our everyday
or professional life. Robots for instance were absent of our houses in the 80’s
but today tasks performed by such machines are increasing. In the early days,
only simple tasks were given to robots due to different limitations: robots were
mechanically limited by their heavy materials, their sensors and actuators were
big and inaccurate and their processors were slow (HERO 1 or PUMA2). Thanks
to miniaturisation, mechanical parts are lighter, electronic circuits are smaller
and processors are powerful enough to perform complex tasks (Da Vinci Surgical
System3 or Curiosity4). To make these robots usable in our everyday life, we need
to ensure that they respect some safety rules, especially regarding their damaging
capabilities. Safety has been considered regarding several aspects of robotics:

– collision avoidance, adapting the robot movements in presence of obstacles
(e.g., [13] generates safe velocity bounds based on environment geometry;
[16] conceives a mechanical system able to detect contact at an early stage);

– human interaction, where human behaviors are anticipated to avoid collisions
while interacting with people (e.g., [23] in manufacturing places, [29] that
tracks pedestrian behaviors);

1 http://www.hero-1.com/Broadband/
2 http://www.digplanet.com/wiki/Programmable Universal Machine for

Assembly
3 http://www.davincisurgery.com/index.php
4 http://mars.jpl.nasa.gov/msl/mission/rover/

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 303–314, 2014.
c© Springer International Publishing Switzerland 2014

http://www.hero-1.com/Broadband/
http://www.digplanet.com/wiki/Programmable_Universal_Machine_for_Assembly
http://www.digplanet.com/wiki/Programmable_Universal_Machine_for_Assembly
http://www.davincisurgery.com/index.php
http://mars.jpl.nasa.gov/msl/mission/rover/

304 N. Gobillot, C. Lesire, and D. Doose

– fault detection and tolerance, where software/hardware reconfigurations or
mode changes are controlled depending on what happens in the environment
(e.g., [15] use invariant monitoring and change robot’s mode accordingly; [19]
uses a hierarchical decomposition of actions to switch between alternatives);

– controller synthesis, where the robot behavior is guaranteed by construction
of the movement or action policy (e.g., [9] for continuous control of non-linear
robots; [20] that verifies an action policy while learning it).

Another specificity in robot development is its fast evolution. This fast evolu-
tion leads to short development cycles of several month unlike in aeronautics or
in the nuclear field which have development cycles of tenths of years. Due to this
we need fast and accurate methods and tools to guarantee that the robots will
always have a safe behavior. In order to have fast development cycles, we need to
reuse hardware and software parts between robots and design these parts with
maximum modularity.

To help the software robot developer, modern designs are made of two parts:
a middleware and a component-based architecture. The middleware provides op-
erating system and hardware abstractions. The middleware typically proposes
an Application Programming Interface to develop and deploy tasks and threads
without taking into account the operating system and thus the hardware speci-
ficities. Among robotic-oriented middlewares, we can cite OROCOS [27] as a
real-time focused middleware, ROS [21] that provides a large amount of already
developed components, and Gen

oM3 [18] that provides a component generator
with a component modeling language.

A component-based design pattern allows the software architect to build a
robotic architecture by assembling existing software components (see [5,6] for
a survey on component-based software engineering in robotics). These software
components are made of two parts: their communication interface and their inter-
nal behavior. Communications are driven by connecting ports or by service calls
between two or more components. The component’s behavior is often defined by
a state-machine, that allows to define several operational modes, including some
degraded mode to be robust to sensor or software failures.

In this paper, we propose an evolution of the Mauve Domain Specific Language
(DSL) [17] to specify robotic architectures through an extensive use of models.
These models are then used to generate the executable codes run on the real
robots. From this DSL, we then provide methods and tools to analyze and check
the validity of functional and temporal properties leading to robot safety.

2 Experimental Setup

We will illustrate our approach using a concrete robotic experiment. This case
study uses a Pioneer 3-DX robot (P3DX) from Adept Mobile Robots (Fig. 1).
The P3DX is a wheeled robot equipped with an internal computer which serves
as a controller interface. Its stock capabilities allows it to move around through
its wheel speed controller and avoid some obstacles using its sonar range finders.

A Modeling Framework for Software Architecture Specification 305

Its motors are sufficiently powerful to move around outdoors on reasonably rough
terrains and its small size allows it to find its way in corridors. Our P3DX
platform is equipped with a Hokuyo UTM-30LX laser scanning range finder
and an Asus Xtion Pro Live depth and color camera. In this case study, our
robot has to navigate safely in unknown and dynamic environments. We then
need some navigation functions (including localization and mapping), a path
planning algorithm to compute paths to follow, and a control function to follow
correctly this path. We also want our robot to detect and track specific objects
identified by color patterns.

Fig. 1. The P3DX platform equipped with a Hokuyo laser and a laptop for processing

The objective of this work is to propose first a design process for software ar-
chitectures of autonomous robots, based on a DSL (section 3), and then to prove
some aspects of the robot safety using tools leaning upon this DSL (section 4).

3 The Mauve DSL

This section presents the Mauve DSL for specifying and conceiving software
architectures for autonomous robots. This DSL is an extension of [17]. It is
based on four layers: codels, that correspond to the computational aspects of the
software, components, that are elementary blocks of the software, architecture,
where components are instantiated and connected, and deployment, where the
execution policy of the architecture is defined depending on the target.

3.1 Codels

A codel (term taken from [18]) stands for an elementary code and represents
any computational part of a component. The Mauve DSL does not provide any
means to implement the codel (which could be implemented in any language; for
code generation and analysis, we only support C and C++). The Mauve DSL
provides instead a language for specifying the codels, that will then be called from
components. Listing 1.1 shows the specification of codels implementing detection
of an object of interest (Detect), and tracking of this object on images (Track).
They both take an image as input, and provide the pose of the object.

306 N. Gobillot, C. Lesire, and D. Doose

Code 1.1. Codels from an image detection and tracking algorithm

1 codel Detect(img: Img): Pose
2 codel Track(img: Img): Pose

3.2 Components

According to [28], a component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties.

Therefore, in order to help composition and modularity, we decompose the
specification of a component into a shell (or interfaces) and a core (or function-
ality). In order to perform some validation of the component and architecture
behavior, we also define some contracts that indicate the conditions of use of the
component.

Component’s Shell. The shell of a component defines its interface, i.e. its
inputs and outputs. We propose three types of interfaces: properties, which are
component parameters, generally set at instantiation or deployment time (e.g.,
the max velocity of a platform); data ports, similar to the push pattern of [24],
are used to publish data from/to a component; they are typed and oriented;
operations, similar to the query pattern of [24], are used to call functions or send
requests to components.

Specifying a shell is then done by listing the properties of a component (with
a type and possibly a default value), its ports (with a type and a direction – in
or out), and its operations (same way as codel signature). Values of properties,
as well as connections of ports and operations, are not done at the moment of
specifying a component shell. Instead, they are defined when instantiating and
connecting components (architecture specification step).

Listing 1.2 shows the shell specification of the detection and tracking compo-
nent. It has one property, cameraType, used to configure properly the compo-
nent, e.g. by mapping the camera type value to resolution and focal length of
the sensor. Default value refers to a Asus Xtion depth sensor. The component
also has one input port imgPort to get an image stream (typically from a sensor
component) and one output port objectPort exposing the pose of the detected
and tracked object.

Code 1.2. Shell of the detection and tracking component

1 shell DT_Shell {
2 property cameraType: string default "Xtion"
3 input port imgPort : Img
4 output port objectPort: Pose
5 }

Component’s Core. The core of a component defines its behavior. It can
be described on two ways: first by mapping provided operations to codels, and
second, by specifying a state-machine. Using a state-machine representation has

A Modeling Framework for Software Architecture Specification 307

some advantages, among which clearly separating the different functionalities
of the component, and providing some states to handle errors, then increasing
the robustness or reconfiguration skills of the architecture. A state-machine is
defined by a set of states and a set of transitions connecting the states. Each
state represents a step in the functional behavior. The whole functionality is
achieved by a sequence of states connected with transitions. The execution of
each state is decomposed into several blocks, following the same approach as in
UML state charts for instance:

– entry, defining instructions called only when a state is entered;
– run, called each time a state is active;
– exit, called when a state is exited (through a transition);
– handle, called when no transition is taken;

In each block, it is possible to write some instructions provided by Mauve, such
as reading or writing on ports, calling codels, or calling remote operations. In
each state, possible transitions are specified by a label, a guard, and a destination
state. Listing 1.3 shows the core of the detection and tracking component. Its
state machine is made of four states:

– Initialize (line 3), in which some algorithm data structures are prepared;
– Cleanup (line 6), in which data are cleaned;
– Detecting (line 9), in which the input port is read, the detecting algorithm

is called, and the resulting pose is published on the output port;
– Tracking (line 18), similar for the tracking algorithm.

Transitions are guarded by events that will come either from the component
itself ([pose] on line 16 checks that a pose has been returned by Detect) or
triggered from other components.

Code 1.3. State-machine example using the detection and tracking codels

1 core DT_Core (DT_Shell) {
2 statemachine {
3 initial state Initialize {
4 transition toDetecting [not initialize] -> Detecting
5 }
6 state Cleanup {
7 transition toInitialize [not cleanup] -> Initialize
8 }
9 state Detecting {

10 run {image = read imgPort }
11 handle {
12 pose = Detect(image);
13 write pose in objectPort
14 }
15 transition toCleanup [cleanup] -> Cleanup
16 transition toTracking [pose] -> Tracking
17 }
18 state Tracking {
19 run {image = read imgPort }
20 handle {
21 pose = Track(image);
22 write pose in objectPort
23 }
24 transition toDetecting [pose] -> Detecting
25 }
26 }
27 }

308 N. Gobillot, C. Lesire, and D. Doose

Component’s Contracts. Contracts are meant to represent the condition of
use of a component, and the result or behavior we could expect when execut-
ing this component. The shell of the component already specifies a contract: it
declares the inputs needed by the component, and the type of data published
by the component. The Mauve DSL provides complementary instructions to
specify functional properties of the components. These properties represent an
abstraction of the behavior of the component. For instance, the role of the guid-
ance component is to follow a path while avoiding obstacles. For this component
the most important feature regarding safety is to avoid collisions. Listing 1.4
shows how this property is expressed as a contract on the guidance component:
the robot has to stop (speed command sent on speedPort must be equal to
0) whenever something is detected (read from the scanPort) within a safety
distance (defined as a component property).

Code 1.4. Contract on the Guidance component

1 shell Guidance_Shell {
2 codel minRange (scan: Scan): double
3 property robotType: string default "unicycle "
4 property safetyMargin: double default 0.5
5 input port scanPort : Scan
6 output port speedPort: Speed
7

8 contract emergencyStop:
9 [minRange (read scanPort) < safetyMargin ⇒ write 0 in speedPort]

3.3 Architecture

Creating a functional software layer for autonomous robots settles on reusing and
composing basic component blocks. The architecture design step consists in in-
stantiating some components (defined using the previous language instructions),
and possibly define some properties. Then these components are connected to-
gether, specifying the configuration of the communication. For instance, it is
where we can specify that a connection between two ports is buffered, and spec-
ify the management policy of the buffer (size, circular or not).

We developed a Navigation, Guidance and Control component-based archi-
tecture meant to be run on mobile robots [12], that we modified, improved, and
adapted to the match the Mauve DSL presented in this paper. It results in the
architecture of Fig. 2, made of eight components (drawn as circles): components
for sensor (Camera and Laser) and actuator (Robot) interfaces; the Navigation,
Guidance and Control components managing movements; a SLAM component to
build a map and navigate in it; and finally the Detection and Tracking com-
ponent.

This architecture is specified using the Mauve DSL. Listing 1.5 shows a piece
of the architecture specification where two components are instantiated: camera
and detectTrack, and the ports of the two components are connected.

Code 1.5. Part of the architecture specification

1 instance camera: Camera {}
2 instance detectTrack: DT_Core {}
3 port camera.imgPort data detectTrack.imgPort

A Modeling Framework for Software Architecture Specification 309

Camera
Detect.
& Track.

Laser SLAM Navigation Guidance Control

Robot
image stream

scan

scan

object position

map path relative speeds

actuator commands raw odometry

odometry

Fig. 2. Simplified component-based architecture running on the robot

3.4 Deployment

The deployment is the target-specific part of a real-time software development.
It will map the components and architecture specification to the final target
(environment, platform) in order to be executed. The deployment is decomposed
into several layers: the hardware, also called target, corresponds to the actual
platform used for experiments, i.e. sensors, computer units, etc. Using the Mauve
DSL, architecture components properties can be set to indicate which platform
is used, e.g., by defining the device port on which the camera is connected; the
middleware is a layer over the operating system providing a set of features that
makes development easier. For the moment, the only supported middleware is
Orocos [27], and therefore we do not provide any mean to choose the middleware.

In order to be able to analyze the deployed architecture, and more specif-
ically its real-time characteristics, we impose that each component is mapped
to at most one thread. When deploying the components, we then associate to
each component an activity indicating the execution behavior of the component.
This activity allows to define the period of the component, its priority, and its
deadline. These properties will then be mapped to Orocos components activi-
ties, resulting in properties of the corresponding OS threads. We can also set
the affinity of a component, i.e. the core on which the component will run if
executing on a multi-core platform.

Listing 1.6 shows a part of a deployment where the robot component has a
period and a deadline of 100ms, a priority of 0. Furthermore, we can specify
the execution time of codels (codel command takes 16ms to execute), used for
real-time analysis (see section 4.1).

Code 1.6. Part of a deployment specification

1 deployment {
2 command = 16..16
3 activity robot {
4 priority = 0
5 period = 100
6 deadline = 100
7 }

3.5 Execution

Along with the Mauve DSL, we provide a code generation toolchain that, for each
Mauve component, generates the code of an Orocos component linked with the

310 N. Gobillot, C. Lesire, and D. Doose

corresponding codels library; and for each Mauve architecture plus deployment,
generates the code of an Orocos script that deploys the architecture (loads the
components, instantiate them, connects them, . . .) The result is then directly
executable on the specified platform.

3.6 Why a New DSL?

A lot of software modeling DSLs for robotics can be found in the literature.
In [14] the robot’s software architecture is modeled in three main layers: the
functional architecture, the component architecture and the runtime architec-
ture. The functional architecture expresses the functionality needed in an archi-
tecture. The component architecture details the software implementation of the
architecture’s functionality. Lastly the runtime architecture defines the deploy-
ment of the components on the robot’s operating system. This framework also
generates roslaunch files for ROS [21]. [10] uses an UML-based language called
RobotML, based on an ontology to reuse as much as possible robotic knowledge.
This knowledge is split into five packages: robotic system, system environment,
data types, robotic mission and platform. Afterwards the robotic architecture is
defined using the RobotML packages, and it is possible to generate executable
code for several robotic middlewares, among which is Orocos. V3CMM [1] sepa-
rates the robotic architecture in three abstraction levels: Computation Indepen-
dent Models, Platform-Independent Models and Platform-Specific Models. Once
the architecture is set-up, a model-to-model transformation is used to provide
UML models, and then executable code through a model-to-text transformation
to the Ada 2005 programming language. In this paper, we have described the
Mauve DSL. Mauve relies on more or less the same concepts than other DSLs.
The aim of Mauve is to not only provide architectural abstraction, simple soft-
ware design and code generation but also to systematically perform validation
and analysis based on these models. It hence seemed difficult to reuse an existing
DSL, as we needed to specify new concepts (or to prevent the use of existing
concepts).

Two major works are using DSLs for architecture specification along with a
validation process: SmartSoft [25] models the architecture and the components
through model layers. It provides real-time specific parameters to allow a static
analysis of the architecture through CHEDDAR [26]. Regarding the real-time
analysis, we propose to reason on the component models to have a more accurate
estimation of architecture schedulability. Moreover, we are concerned with other
analysis than just real-time analysis. BIP [2] is a modeling language that comes
with safety properties and deadlock freedom analysis tools. The safety properties
ensure that no unexpected behavior will ever happen thanks to global state ex-
ploration. The deadlock analysis goes through a structural analysis to guarantee
the software will keep its nominal execution. The major drawback of using this
paradigm is that generated code is tied to their own execution engine (behaving
as a scheduler), and real-time analysis is not dealt with.

A Modeling Framework for Software Architecture Specification 311

4 Validation Tools

The main objective of our work is to perform some validation of the executed
software architecture for an autonomous robot. We therefore lean upon the mod-
eling framework presented above in order to reason on the architecture behavior.
Regarding the presented experimental case study, it is for instance important for
the P3DX robot to ensure that it will not collide with any object in the envi-
ronment. Proving this safety constraint relies on several concerns: we first need
to prove that a logical property is true, by reasoning on the contracts provided
by the components. Second, we need to check that all component will be able to
execute in time. This last property is called schedulability.

4.1 Real-Time Analysis

The aim of the real-time analysis is to a priori check the schedulability of the
architecture on a specific system, before deploying it on the real system. Usually
the schedulability of a system is defined by the schedulability of all the tasks
involved in the system. We do not detail in this paper all the models and com-
putations for the analysis to happen, as it is a bit out of the scope of the paper,
but we give a brief explanation of the whole process.

When specifying the deployment of the architecture using the Mauve DSL, we
map components to real-time tasks on the system, with tasks parameters such
as period, deadline, and priority. Classical schedulability methods directly use
these parameters, along with an estimation of the computation time of each task,
to compute the Worst Case Response Time (WCRT) of a task. If the WCRT of
a task is lesser than its period, the task is said schedulable.

We have adapted this process to use models of components, in order to perform
a more accurate computation of the WCRT. We transform component models
into Periodic State-Machines (PSM), on which each transition is labeled with the
time taken to go from one state to another, computed from the state blocks, the
execution times of codels, and the interactions between components (e.g., when
a component calls an operation on another component). The execution time
of each codel is obtained using Worst Case Execution Times (WCET) analy-
sis. We tried two approaches depending on the codels: a static analysis, using
Otawa [22], where the binary code is directly analyzed to estimate the number
of cycles a function will take to execute; and a statistical analysis based on exe-
cution runs of the component. For now we made only basic statistics to deduce
an experimental WCET, but we are currently working on using extreme-value
theory to have a mathematically sound estimation (with a given probability)
of the WCET. We then modified the classical WCRT computation algorithm
to take into account tasks state-machines (PSMs) and component interactions.
It results in a new evaluation, called WCRT+, which is still pessimistic (hence
safe) but more accurate than the classical approach.

Table 1 presents the results of the schedulability analysis of our robotic ar-
chitecture. The lower the priority value, the higher the priority of the compo-
nent. The WCET value corresponds to the WCET of the most time-consuming

312 N. Gobillot, C. Lesire, and D. Doose

transition of the PSM. The WCRT and WCRT+ columns are respectively the
“classical” and our state-machine based evaluations. The WCRT+ computation
method proves the schedulability of the architecture whereas the typical method
indicates the Navigation component may not be schedulable.

Table 1. Real-time characteristics of the architecture’s components

component priority WCET WCRT WCRT+ deadline

Robot 0 16 16 16 100
Control 1 3 19 19 100
Guidance 2 12 31 31 100
Laser 3 22 53 53 150
SLAM 4 30 83 83 150
Camera 5 10 93 93 250
Detection and Tracking 6 30 237 237 250
Navigation 7 30 338 297 300

4.2 Checking Behavioral Properties

Previous section shows how we used the component and architecture models
to accurately compute the deadline (and the schedulability) of the deployed
components. Enforcing these deadlines is needed for a good behavior of the
robot. However it is not sufficient to guarantee the correctness of this behavior.
In this section, we propose to analyze the correctness of this behavior by studying
the evolution of the components (and their state machines) along the time.

For the moment, the properties that we are able to manage rely on observa-
tion points: we can specify instructions or states on which we want to elaborate
a property. For instance, we can express, using these observation points, that a
component will eventually enter in state A, or that when component guid en-
ters state running, then component control will eventually enter state running
before 10 time units (see listing 1.7).

Code 1.7. Specification of a property

1 property latency = guid.running leadsto control .running within [0, 10]
2 assert latency

Formally, these properties are expressed using a temporal logic that accepts
Dwyer’s patterns [11] extended with timed data. Verifying such properties is
quite complex in general, as we must analyze both the control flow of the archi-
tecture but also the interactions between components (leading to task preemp-
tion). We then developed a specific validation process that directly uses temporal
information coming from the real-time analysis presented in section 4.1. For that,
the Mauve model of the components and architecture, along with the properties
we want to analyze, are transformed into Timed Petri Nets using the RT-Fiacre
language [3]. The resulting model is then analyzed using Tina [4], which either
validates the property or provides a counter example as a timed execution of the
system.

A Modeling Framework for Software Architecture Specification 313

5 Conclusion and Perspectives

In this paper, we have presented a robotic architecture modeling framework
based on the Mauve DSL. It allows to model robotic software architectures
from the algorithms to a real-time deployment thanks to four layers: the codels
specification, the component modes, the specification of the architecture and,
finally, the deployment. From these models, Mauve is able to generate C++
executable code designed for Orocos-RTT [27]. Along with the Mauve DSL, we
have provided tools to first analyze the real-time correctness of the architecture,
and second to check the validity of some behavioral properties.

For future developments, we plan to improve the validation toolchain by ana-
lyzing not only behavioral properties but also properties that contain data, such
as the contract defined in listing 1.4. To do that, we will rely on well known
tools for codel analysis, such as Frama-C [8] and Coccinelle [7]. Finally, we plan
to apply our design and validation process to other kind of robots, like hybrid
leg-wheel robots and quadcopters.

References

1. Alonso, D., Vicente-chicote, C., Ortiz, F., Pastor, J., Alvarez, B.: V3CMM: a 3-
View Component Meta-Model for Model-Driven Robotic Software Development.
Journal of Software Engineering for Robotics (JOSER) 1, 3–17 (2010)

2. Basu, A., Gallien, M., Lesire, C., Nguyen, T.H., Bensalem, S., Ingrand, F., Sifakis,
J.: Incremental Component-Based Construction and Verification of a Robotic Sys-
tem. In: ECAI, Patras, Greece (2008)

3. Berthomieu, B., Bodeveix, J., Farail, P., Filali, M., Garavel, H., Gaufillet, P.,
Lang, F., Vernadat, F.: Fiacre: an intermediate language for model verification
in the TOPCASED environment. In: Embedded Real Time Software and Systems
(ERTSS), Toulouse, France (2008)

4. Berthomieu, B., Vernadat, F.: Time Petri Nets Analysis with TINA. In: Int. Conf.
on Quantitative Evaluation of Systems (QEST), Riverside, CA, USA (2006)

5. Brugali, D., Scandurra, P.: Component-Based Robotic Engineering. Part I:
Reusable Building Blocks. IEEE Robotics and Automation Magazine 16(4) (2009)

6. Brugali, D., Shakhimardanov, A.: Component-Based Robotic Engineering. Part II:
Systems and Models. IEEE Robotics and Automation Magazine 17(1) (2010)

7. Brunel, J., Doligez, D., Hansen, R.R., Lawall, J.L., Muller, G.: A foundation for
flow-based program matching using temporal logic and model checking. In: ACM
Symposium on Principles of Programming Languages, Savannah, GA, USA (2009)

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C, A Software Analysis Perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidel-
berg (2012)

9. DeCastro, J.A., Kress-Gazit, H.: Guaranteeing reactive high-level behaviors for
robots with complex dynamics. In: IROS, Tokyo, Japan (2013)

10. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a Domain-
Specific Language to Design, Simulate and Deploy Robotic Applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 149–160. Springer, Heidelberg (2012)

314 N. Gobillot, C. Lesire, and D. Doose

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Software Engineering, Los Angeles, CA, USA (1999)

12. Gobillot, N., Lesire, C., Doose, D.: A Component-Based Navigation-Guidance-
Control Architecture for Mobile Robots. In: ICRA – SDIR Workshop, Karlsruhe,
Germany (2013)

13. Haddadin, S., Khoury, A., Rokahr, T., Parusel, S., Burgkart, R., Bicchi, A., Albu-
Schaffer, A.: A truly safely moving robot has to know what injury it may cause.
In: IROS, Vila Moura, Portugal (2012)

14. Hochgeschwender, N., Gherardi, L., Shakhirmardanov, A., Kraetzschmar, G.K.,
Brugali, D., Bruyninckx, H.: A model-based approach to software deployment in
robotics. In: IROS, Tokyo, Japan (2013)

15. Jiang, H., Elbaum, S., Detweiler, C.: Reducing failure rates of robotic systems
though inferred invariants monitoring. In: IROS, Tokyo, Japan (2013)

16. Lens, T., von Stryk, O.: Investigation of safety in human-robot-interaction for a
series elastic, tendon-driven robot arm. In: IROS, Vila Moura, Portugal (2012)

17. Lesire, C., Doose, D., Cassé, H.: MAUVE: a Component-based Modeling Frame-
work for Real-time Analysis of Robotic Applications. In: ICRA – SDIR Workshop,
Saint-Paul, MN, USA (2012)

18. Mallet, A., Pasteur, C., Herrb, M.: GenoM3: Building middleware-independent
robotic components. In: ICRA, Anchorage, AK, USA (2010)

19. Nakamura, A., Nagata, K., Harada, K., Yamanobe, N., Tsuji, T., Foissotte, T.,
Kawai, Y.: Error recovery using task stratification and error classification for ma-
nipulation robots in various fields. In: IROS, Tokyo, Japan (2013)

20. Pathak, S., Pulina, L., Metta, G., Tacchella, A.: Ensuring safety of policies learned
by reinforcement: Reaching objects in the presence of obstacles with the iCub. In:
IROS, Tokyo, Japan (2013)

21. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software, Kobe, Japan (2009)

22. Rochange, C., Sainrat, P.: OTAWA: An Open Toolbox for Adaptive WCET Anal-
ysis. In: IFIP Workshop on Software Technologies for Future Embedded and Ubiq-
uitous Systems (SEUS), Waidhofen, Austria, pp. 35–46 (2010)

23. Rybski, P., Anderson-Sprecher, P., Huber, D., Niessl, C., Simmons, R.: Sensor
fusion for human safety in industrial workcells. In: IROS, Vila Moura, Portugal
(2012)

24. Schlegel, C.: Communication Patterns as Key Towards Component-Based
Robotics. International Journal of Advanced Robotic Systems 3(1) (2006)

25. Schlegel, C., Steck, A., Brugali, D., Knoll, A.: Design Abstraction and Processes
in Robotics: From Code-Driven to Model-Driven Engineering. In: Ando, N., Bal-
akirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS,
vol. 6472, pp. 324–335. Springer, Heidelberg (2010)

26. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. ACM SIGAda Ada Letters 24, 1–8 (2004)

27. Soetens, P., Bruyninckx, H.: Realtime hybrid task-based control for robots and
machine tools. In: ICRA, Barcelona, Spain (2005)

28. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (2002)

29. Tamura, Y., Le, P.D., Hitomi, K., Chandrasiri, N.P., Bando, T., Yamashita, A.,
Asama, H.: Development of pedestrian behavior model taking account of intention.
In: IROS, Vila Moura, Portugal (2012)

Reverse Engineering of Middleware

for Verification of Robot Control Architectures

Ali Khalili1,2, Lorenzo Natale2, and Armando Tacchella1

1 DIBRIS, Università degli Studi di Genova
Via Opera Pia 13, 16145 Genova, Italy

Ali.Khalili@edu.unige.it, Armando.Tacchella@unige.it
2 iCub Facility, Istituto Italiano di Tecnologia (IIT)

Via Morego, 30, 16163 Genova, Italy
Lorenzo.Natale@iit.it

Abstract. We consider the problem of automating the verification of
distributed control software relying on publish-subscribe middleware. In
this scenario, the main challenge is that software correctness depends
intrinsically on correct usage of middleware components, but structured
models of such components might not be available for analysis, e.g., be-
cause they are too large and complex to be described precisely in a cost-
effective way. To overcome this problem, we propose to identify abstract
models of middleware as finite-state automata, and then to perform ver-
ification on the combined middleware and control software models. Both
steps are carried out in a computer-assisted way using state-of-the-art
techniques in automata-based identification and verification. Our main
contribution is to show that the combination of identification and verifi-
cation is feasible and useful when considering typical issues that arise in
the implementation of distributed control software.

1 Introduction

Publish-subscribe middleware such as ROS [15] and YARP [6] are becoming
increasingly common in control architectures of modern robots. The main ad-
vantage of using middleware is that control modules can communicate seam-
lessly among each other and with device-specific APIs, possibly across different
computing platforms. While operational scenarios for autonomous robots are
becoming increasingly complex — see, e.g., the DARPA robotics challenge [13]
— the issue of dependability at all levels of a robot’s architecture is getting more
attention. In particular, if robots must be operated safely, control architectures
must be verified against various requirements, which include also software spe-
cific properties, like deadlock or race avoidance. However, the task of verifying
control software built on top of some middleware cannot be accomplished un-
less a precise model of the middleware is available, because a seemingly correct
control code can easily lead the robot to unwanted states if middleware primi-
tives are misused. An example of such case is when a sender assumes buffered
communication to a receiver, but the channel is configured without buffering; if

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 315–326, 2014.
c© Springer International Publishing Switzerland 2014

316 A. Khalili, L. Natale, and A. Tacchella

the sender expects acknowledgment for every message, but some message is lost,
then a deadlock condition may ensue.

Insofar a component of a control architecture is assigned precise semantics, for-
mal correctness verification is made possible, and many control software fallacies
can be spotted at design time. However, developing a formal model can be diffi-
cult for large and complex middleware like ROS or YARP. A viable solution to
this problem is to adopt automata-based identification techniques – see, e.g., [16]
for a comprehensive list of references. The key idea is that the internal structure
of a middleware component can be inferred by analyzing its interactions with an
embedding context. Identification algorithms supply the component with suit-
able input test patterns to populate a “conjecture” automaton by observing the
corresponding outputs; then, they check whether the conjecture is behaviorally
equivalent to the actual component. When such an abstract model of the original
component is obtained, it can be used as a stub to verify software components
relying on it. This is where automata-based verification enters the scene. Given
the inferred models of middleware components, and a model of the control soft-
ware relying on them, Model Checking [14,4] techniques provide an automated
way to check behavioral properties about the composition of the models. In this
way, confidence in a correct implementation of the overall control architecture
is increased, and problems can be spotted before they cause expensive or even
dangerous failures during robot’s operation.

To demonstrate the effectiveness of our approach, we considered some rela-
tively simple, yet significant, examples of control code built on top of YARP [6].
Our choice is dictated by several reasons, including a deep knowledge of the
platform, and a fairly large installed base due to the adoption of YARP as
the standard middleware of the humanoid iCub [12]. Moreover, YARP is a
publish-subscribe architecture quite similar to other middleware widely used in
the robotics community such as ROS. From the implementation point of view,
YARP is a set of libraries written in C++ consisting of more than 150K lines of
code. The purpose of YARP is to support modularity by abstracting algorithms
and the interface to the hardware and operating systems. YARP abstractions
are defined in terms of protocols. One of the main features of YARP is to sup-
port inter-process communication using a “port” abstraction. Our case studies
focus mostly on the identification of various concrete mechanisms underlying
this abstraction, e.g., buffered vs. non-buffered ports, and then to check control
code relying on such implementations. Practical identification of different kinds
of abstract models of YARP ports is enabled by our tool AIDE (Automata
IDentification Engine)1. Model checking the composition of control code and
middleware is accomplished with the state-of-the-art tool SPIN [8]. The results
obtained combining AIDE and SPIN, albeit still preliminary, show that our ap-
proach is promising for the identification and verification of control-intensive
parts of the code, i.e., those parts where the complexity of the code raises from
control flow rather than data manipulation.

1 AIDE, developed in C#, is an open-source software: http://aide.codeplex.com

http://aide.codeplex.com

Reverse Engineering of Middleware for Verification 317

The remainder of this paper is organized as follows. In Section 2, a short sum-
mary of background and the related works will be provided. Section 3 introduces
and motivates our YARP-based case studies. Section 4 presents our experiments
on identification and verification. Finally, some concluding remarks and possible
directions of future works are given in Section 5.

2 Background

We define an interface automaton (IA) as a quintuple P = (I, O,Q, q0,→) where
I is a set of input actions, O is a set of output actions, Q is a set of states, q0 ∈ Q
is the initial state of the system,→⊂ Q×(I∪O)×Q is the transition relation, and
the sets O, I and Q are finite, non-empty and mutually disjoint. Our definition
of IA is the same given in [1], which does not take into account the possibility of
formalizing hidden actions. Since we wish to infer IAs as models of middleware
components, we can neglect such actions without losing generality in our context.
The set of all actions A = I ∪O is the action signature of the automaton. Given
a state q ∈ Q and an action a ∈ A, we define the next state function δ : Q→ 2Q

as δ(q, a) = {q′|q a−→ q′}, where we write q
a−→ q′ to denote that (q, a, q′) ∈→.

An action a ∈ A is enabled in a state q ∈ Q if there exists some q′ ∈ Q such
that q

a−→ q′, i.e., |δ(q, a)| ≥ 1. A state q ∈ Q wherein all inputs are enabled is
input-enabled, and so is an automaton wherein all states are input-enabled. An
input-enabled IA is also known as I/O automaton [11]. Given a state q ∈ Q, the
set out(q) ⊆ Q of observable actions is the set of all actions a ∈ O where a is
enabled in q. If out(q) = ∅, then q is called suspended or quiescent. According
to [5], an execution fragment of the automaton is a finite alternating sequence

of states and actions u0, a0, u1, . . . , un such that ui ∈ Q, ai ∈ A and ui
ai−→ ui+1

for all 0 ≤ i < n.

Automata-Based Inference. Automata-based identification (also, automata learn-
ing) can be divided into two wide categories, i.e., passive and active learning.
In passive learning, there is no control over the observations received to learn
the model. In active learning, the target system can be experimented with, and
experimental results are collected to learn a model. Whenever applicable, ac-
tive learning is to be preferred because it is computationally more efficient than
passive learning – see [9] for details. Furthermore, active learning is not af-
fected by a potential lack of relevant observations because it can always query
for them. However, active learning requires that the target system is available
for controlled experimentation, i.e., it cannot be performed while the target is
executing. The basic abstraction in active learning as introduced by Angluin
in [2], is the concept of Minimally Adequate Teacher (MAT). In our case, it is
assumed that a MAT exists and it can answer two types of questions, namely
output queries and equivalence queries. An output query amounts to ask the
MAT about the output over a given input string, whereas equivalence queries
amount to compare a conjecture about the abstract model of a system with the
system itself. The result of equivalence queries is positive if the model and the

318 A. Khalili, L. Natale, and A. Tacchella

system are behaviorally equivalent, and it is a counterexample in the symmetric
difference of the relations computed by the two automata, otherwise. In practice,
since the system is unknown, equivalence queries must be approximated by, e.g.,
model-based testing. Our tool AIDE is a collection of learning algorithms for
several abstract models, including IAs. In particular, we use the Mealy machine
inference algorithm L+

M [16] together with the approach presented in [1] to iden-
tify IAs. This model of identification is particularly suited in contexts where the
behavior of the system is jointly determined by its internal structure, and by the
inputs received from the environment – also called tester.

Formal Verification. Automata-based verification — see, e.g., [3] — encompasses
a broad set of algorithms and related tools, whose purpose is to verify behav-
ioral properties of systems represented as automata. In particular, we consider
algorithms and tools for Model Checking [14,4]. The basic idea behind automata-
based verification technique is to exhaustively and automatically check whether
a given system model meets a given specification. In this approach, a property
is specified usually in terms of some temporal logic, and the system is given as
some kind of automaton. In this work, we use SPIN [8], a generic verification
system that supports design and verification of asynchronous process systems. In
SPIN, the models are specified in a language called PROMELA (PROcess MEta
LAnguage), and correctness claims can be specified in the syntax of standard
linear temporal logic (LTL). Several optimization techniques, including partial
order reduction, state compression and bit-state hashing are developed to im-
prove performance of verification in SPIN. Details on the encoding of IA into
SPIN are given in Section 4. Here, we give a short overview on how verification
works in SPIN and similar tools. In SPIN, the global behavior of a concurrent
system is obtained by computing an asynchronous interleaving product of au-
tomata, where each automaton corresponds to a single process. This means that,
in principle, SPIN considers every possible interleaving of the atomic actions
which every process is composed of. Technically, such product is often referred
to as the state space or reachability graph of the system. To perform verification,
SPIN considers claims specified as temporal formulas. Typical claims include,
e.g., safety claims like “some property is always/never true”, or liveness claims
like “every request will be acknowledged”. Claims are converted into Büchi au-
tomata, a kind of finite state automata whose acceptance condition is suitable
also for infinite words. The (synchronous) product of automata claims and the
automaton representing the global state space is again a Büchi automaton. If
the language accepted by this automaton is empty, this means that the original
claim is not satisfied for the given system. In other case, it contains precisely
those behaviors which satisfy the original formula. Actually, the reachability
graph is not computed up front because, if n is the number of state variables,
the computation would be exponential in n. Rather, the composition of the two
automata is performed “on the fly”, starting from the initial set of states of the
system, and then considering the reachable ones given the process descriptions
and the potential interleaving. SPIN terminates either by proving that some
(undesirable) behavior is impossible or by providing a counterexample match.

Reverse Engineering of Middleware for Verification 319

1: Initialize buffered ports Q1 and Q2

2: Connect Q1 to Q′
1

3: while true do
4: for i = 1 to N do
5: Write message m to Q1

6: end for
7: Read message from Q2

8: end while

1: Initialize buffered ports Q′
1 and Q′

2
2: Set the reading mode of Q′

1 as strict
3: Connect Q′

2 to Q2

4: while true do
5: for i = 1 to N do
6: Read message m from Q′

1
7: end for
8: Create a message and write it to Q′

2
9: end while

Fig. 1. Case study 1: An example code Planner (left) and Controller (right)

3 Case Studies

Our motivation for this work is to to enable verification techniques for robot
control software which uses middleware modules. In this section, we introduce
two case studies. We focus on variations of the well-known producer-consumer
paradigm. The reason is that similar situations are commonly found in robotic
applications where loosely coupled modules are interconnected through publish-
subscribe middleware and run concurrently.

Case Study 1. We consider two software components that exchange messages
with loose synchronization. A practical example is a Planner (P1) that generates
a set of N via points for a Controller (P2). The latter takes responsibility to
execute each requests, in a variable amount of time. The Planner does not
wait for execution of the individual commands but rather sends all N messages
to the Controller and then waits for a synchronization packet that signals the
termination of the whole sequence. In a publish-subscribe architecture this can
be achieved using two channels. The Planner uses the first channel (between
Q1 and Q′

1) to send via points to the Controller, then waits for a message
that acknowledges execution of the sequence from the Controller through the
second channel (between Q2 and Q′

2). Since there is no synchronization, the
buffering policy in the connections can affect the correct behavior of the system.
In this application, the programmer assumes that connections are configured to
queue at least N messages. This may or may be not true in YARP where, by
default, connections are configured to drop messages to reduce communication
latencies2. The programmer therefore must override the default configuration of
the connections to ensure that messages are queued and never dropped. Pseudo
code for this scenario is given in Figure 1. Given this code, we can see that,
if messages are dropped in the connections, a deadlock occurs. In practice, the
robot may not only fail to follow the desired trajectory, but due to interpolation
in the Controller, it may even end up in unsafe configurations.

Case Study 2. In publish-subscribe architectures, sensory information and com-
mands travel on distinct channels. It is therefore common for components to
receive information from multiple sources and synchronize their activities on

2 This policy may seem counter-intuitive but it is fundamental for closed-loop control.

320 A. Khalili, L. Natale, and A. Tacchella

1: P1
2: Initialize buffered ports Q1

3: Connect Q1 to Q′
1

4: for i = 1 to N1 do
5: //Do the job
6: Send message m to Q1

7: end for

1: P2
2: Initialize buffered ports Q2

3: Connect Q2 to Q′
2

4: for i = 1 to N2 do
5: //Do the job
6: Send message m to Q2

7: end for

1: P3
2: Initialize buffered ports Q′

1 and Q′
2

3: Set the reading mode of Q′
1 and Q′

2 as strict
4: for i = 1 to N3 do
5: Read message m1 to Q′

1
6: Read message m2 to Q′

2
7: //Do the job
8: end for

Fig. 2. Case study 2: An example of two producers (P1 and P2) and one consumer
(P3) which are using YARP buffered port for their communication

data received from such connections. In this scenario, the consumer receives
data from two producers. A practical example is a grasping application. Here
the Tracker (P1) identifies the 3D position of the object in the work space (for
example using stereo vision in the form of (x, y, z)). This information reaches
the Controller (P2) through the connection between Q1 and Q′

1 which in turn
computes the torque commands to the motors. Another component (P3) reads
sensory data from a Force/Torque sensor placed in the kinematic chain, and
publishes it on a separate channel. The Controller relies on this information to
detect collisions and control the force exerted at the end-effector (connection
between Q2 and Q′

2). The programmer of the Controller must decide how to
read data from both connections. The crucial point is that these connections
can become inactive. These might happen when no valid target is detected by
the Tracker, or in situation where the Tracker was closed by the user or died
unexpectedly. By default, YARP defines that readers wait for data on a port
(blocking behavior). This allows tight synchronization and reduces latencies. An
inexperienced programmer may read data from both channels using the default
mode introducing an unexpected deadlock when Tracker does not produce data.
The pseudo-code of this scenario is presented in Figure 2. The connection be-
tween P1 and P2 to P3 is implemented using buffered ports with strict mode. To
simulate the behavior where one of the producers stops sending data we added
a counter Ni to the main loop of each process. We verify the effects of different
relative values of Ni on the overall behavior.

In both the case studies describe above, we consider a combination of identi-
fication and verification to be detailed in Section 4. However, we would like to
point out that identification alone is often useful to strengthen middleware, by
helping the discovery of corner bugs that are elusive in common usage patterns.
Out of many identification experiments that we conducted with YARP in our
preliminary work, we show in Figure 3 the result of one which turned out as a
report in the YARP bug-tracking system. In this example, we consider applying
an interrupt method on a port. Interrupting a port is supposed to unblock any
blocked thread waiting for the port. The model in Figure 3 is the one identified

Reverse Engineering of Middleware for Verification 321

Fig. 3. The identified model of a port with one reader, one writer, and one thread which
interrupts the write port. The expected model would feature the dotted transition —
from state 1 into state 5 — but the actual model identified by AIDE and implemented
in YARP has the solid ones instead. Transitions labeled with “?” and “!” represent
input and output actions, respectively.

by AIDE for one port reader, one port writer, and a thread which interrupts
the writing port. The model shows that interrupting a write port has been im-
plemented so that it unblocks future writes, but it waits for completion of the
current one, which was not the expected behavior. Indeed, this specific behavior
was not documented, and never occurred in YARP practical applications, so it
went unnoticed so far.

4 Experiments

Considering YARP port components as the system under learning (SUL) to be
modeled as IA, we use AIDE to identify abstract models with different parame-
ters. The configuration of components in the inference procedure is presented in
Figure 4. As we mentioned in Section 2, the basic inference algorithm is L+

M [16],
and it is implemented in the module “MM Learning Algorithm” where “MM”
stands for “Mealy Machine”. The algorithm relies on a software component,
called “MM Oracle” in Figure 4, whose task is to approximate the behavior of
a MAT on a real system. Together, these two modules are the core of a Mealy
machine inference program — “MM Learner” in Figure 4. Since we wish to
identify YARP models as IAs, we connect a further component — “IA Transla-
tor” in Figure 4 — which implements the approach presented in [1] to identify
IAs on top of a Mealy machine learning algorithm. All these modules are part
of AIDE, and they collectively perform the task of “IA learner”. The “System
Wrapper” component (in C++) bridges between the abstract alphabet on the
learner side, and the concrete alphabet of the SUL. It manages different threads,

322 A. Khalili, L. Natale, and A. Tacchella

Fig. 4. Components of the learning procedure. The connections are (i) queries asked to
the MAT (MM Oracle), (ii) bi-directional translation of interface automata and Mealy
machines, (iii) actions and events of the system, (iv) the TCP connection to remote
system-wrapper, (v) the abstraction/concretization made by the system wrapper.

handles the method calls in each thread, and the abstraction of messages —
“bottles” in YARP terminology. To connect the wrapper to AIDE, we built
a “Wrapper Proxy” which uses TCP/IP connections to facilitate identifying
systems remotely, possibly across different computing architectures.

4.1 Identification of Ports in YARP

Configuration of Ports. Considering a port connection, we examine different pa-
rameters which affect its behavior. In the case of a (standard) YARP port in
a scenario with one sender and one receiver, the type of communication is of a
“send/reply” type, wherein the sender and the receiver are tightly coupled. In
the case of buffered ports, the sender and the receiver enjoy more decoupling, in
the sense that YARP takes care of the lifetime of the objects being transmitted
through the port and it makes a pool of them, growing upon need. By default, a
buffered port keeps the most recent message only. Therefore, messages that come
in between two successive calls to read, might be dropped. If the so called “strict”
mode is enabled, YARP will keep all received messages — like a FIFO buffer.
Notice that, in this mode, the state space of the abstract automaton would be
infinite. Therefore, to learn this model with AIDE, we limit the system to send
no more than N packets, i.e., we assume that the buffer will not exceed the
maximum size of N messages. In addition to a standard “Read” method which
exists in normal ports, a non-blocking read feature is also available in buffered
ports. Identification results for ports in various configurations are presented in
Table 1 (top)3. We have also extended the alphabet of buffered ports to include
non-blocking reading from the port for both strict and non-strict mode of read-
ing — these two experiments are presented with an “*” in Table 1. The reported
measures include number of states |Q| and transitions |T | of the identified model,
number of output (“#MM”) and equivalence (“#EQ”) queries in the learning
algorithm, number of experiments on the SUL, and total time spent on learn-
ing. The behavior of a normal port is similar to a non-strict buffered port. In

3 All the experiments in this Section have been carried out on a Sony Vaio laptop with
Core2Duo 2.26GHz CPU and 4GB of RAM on Ubuntu 12.04.

Reverse Engineering of Middleware for Verification 323

Table 1. The result of inference for different models in YARP port component (top),
and inference for different maximum size of buffer (N) in YARP buffered port (bottom).
In the topmost table, for buffered ports, we consider N = 3.

Model |Q| |T | #MM #EQ #Experiments Time (s×1000)

port 4 5 18 1 33 0.6
buffered port (non-strict) 4 6 35 2 50 1.0
buffered port (strict) 8 11 132 4 180 2.0
buffered port (non-strict)* 4 8 63 2 114 2.5
buffered port (strict)* 8 16 224 4 323 12.0

Size |Q| |T | #MM #EQ #Experiments Time (s×1000)

1 4 5 18 1 32 1.0
2 6 8 54 3 86 2.1
3 8 11 132 4 180 2.0
4 10 14 225 6 260 10.0
5 12 17 504 7 396 17.0
6 14 20 987 8 531 31.0

normal ports, both reading from port and writing to it are blocking, whereas in
non-strict buffered port, writing is not a blocking primitive: if the buffer is not
empty, the second write will overwrite the previous message. In buffered ports
with strict mode enabled, writing to the port is non-blocking, but the difference
compared to non-strict mode is that the buffer does not drop older packets and it
acts as a first-in-first-out buffer. In this case, the state space of the model would
be infinite, and thus the buffer should be limited to a maximum size for finite
state identification to work. These behavioral differences account for the different
number of states and transitions in the identified models, as reported in Table 1.
We have also considered the effects of increasing the maximum buffer size (N)
in buffered ports when the reading mode is set to be strict. These results are
shown in Table 1 (bottom). For N = 1, the observed model is the same as normal
ports, and by increasing the size, the size of the model grows gradually. Notice
that, if e(N) denotes the number of experiments as a function of buffer size N ,
then we see that e(N) grows more than proportionally with n. The CPU time
spent for identification grows even faster due to some overheads in our current
implementation. In particular, the capability of resetting the SUL is required by
the identification algorithm. In our case, resetting the SUL includes releasing
all the resources of the system, i.e., ports and threads working with them, and
initializing the system again. This operation is performend in the system wrap-
per, and, in all our experiments, more than 95% of the total identification time
is spent to reset the SUL. We expect that working on this bottleneck should
enable us to experiment with larger buffer sizes, and also to infer a more accu-
rate growth estimate for e(n). Another issue which might affect the efficiency
is the TCP/IP connection through the Wrapper Proxy, whereas calling YARP
functions directly in AIDE would slightly decrease the identification time.

324 A. Khalili, L. Natale, and A. Tacchella

Technical Remarks. Since the inferred models are deterministic, identical queries
should produce the same answer. Therefore, we can cache the queries to avoid
expensive repetitions. This is done by storing a tree of execution traces which
can be exploited to avoid an experiment on a system whenever the correspond-
ing query is a prefix of another one which has been already executed. In our
implementation, the cache query is used as a filter between the MAT and the
SUL, which makes it transparent from the MAT’s point of view. Our reports
above include only the actual number of queries on the system. Furthermore, in
all of our experiments, less than 0.5% of the identification time was spent in the
learning algorithm. The most time-consuming parts are network communication,
system reset, and thread management. As we have mentioned above, one reason
for such inefficiencies is that the wrapper uses several delays to make sure it is
obtaining the correct result, since obtaining even one wrong observation in the
output or equivalence queries would result in failing to learn a correct model.

4.2 Verification

The conversion of IAs inferred by AIDE into a PROMELAmodel is accomplished
as follows. Every model is translated into one process type which communicates
with two unbuffered channels — to simulate synchronous communication. These
are InChannel and OutChannel, and their task is to receive input actions from
environment, and emit output events correspondingly. To make the composition
flexible, the input and output channels are the parameters of the process type.
At any time, the next state is determined by the received input action (or the
emitted event) and all the transitions are performed as atomic actions. In ad-
dition to PROMELA, AIDE is able to export inferred automata in DOT graph
format, C++ and the input language of other model checkers. The model of
programs which use the ports are translated into automata as well. Here, the
translation is manual, but in principle, it could be done in an automated fash-
ion. Finally, the composition of the inferred model with the code model is done
automatically by SPIN.

Case Study 1. The results of verification, including the number of generated
states by the model checker, the consumed memory, time and result of verifica-
tion, are reported in Table 2 (top). Considering the identified model of a buffered
port with non-strict mode of reading, SPIN finds a deadlock in the model after
exploring 39 states, although the whole state space has about 16K states. In fact
the problem arises if the client sends packets too quickly through a YARP port
configured for non-strict mode. In this case, there is a concrete chance that the
server misses some of the packets, and a deadlock occurs. For strict mode, we
consider a specific size of buffer N , namely N = 1 and N = 6.

Case Study 2. As before, we perform verification for buffered port with strict
mode of reading. The results are presented in Table 2 (bottom). We examined
different values for N1, N2 and N3 and the size of buffer. As shown in the Table,
when N1 = N2 = N3 all processes finish successfully. But if either N1 or N2

Reverse Engineering of Middleware for Verification 325

Table 2. Results of SPIN for the first case study (top) and second case study (bottom).
In the topmost table, for buffered port, non-strict mode of reading and strict mode of
reading for (N = 1 and N = 6). In the bottommost table, different Ni’s and size of
buffer. The last row is the result of model checking with non-blocking read from Q′

1.

Model #States Memory(MB) Time(s) Conclusion

Buffered Port (non-strict) 38 128 0.01 deadlock
Buffered Port (strict, N = 1) 15K 129 0.04 OK
Buffered Port (strict, N = 6) 42K 132 0.09 OK

N1 N2 N3 Size #States Time(s) Memory(MB) Conclusion

100 100 100 1 8K 0.02 129 OK
90 100 100 1 790 0.01 128 deadlock
100 100 100 6 128K 0.33 140 OK
90 100 100 6 1930 0.02 128 deadlock
200 200 200 6 519K 3.29 176 OK
180 200 200 6 3820 0.04 129 deadlock
90∗ 100 100 6 19M 91.00 1300 OK

are less than N3, P3 will be stuck as expected. Indeed, in situations where P1

may finish sooner than P3, the solution would be to change reading from Q′
1

(line 5 in Figure 2) to a non-blocking read. Using the corresponding model and
the maximum buffer size of 6, SPIN can prove the non-existence of deadlock in
91 CPU seconds — last row of Table 2 (bottom).

5 Conclusion

In this paper, we show how to exploit automata-based inference and verifica-
tion techniques to identify port components of YARP middleware, and to verify
control software build on top of them. Since YARP is the middleware of choice
in the humanoid iCub, AIDE can enable the adoption of precise techniques for
testing and verification of relevant components in iCub’s control architecture.

To the best of our knowledge, this is the first time that a combination of
identification and verification techniques is applied successfully in robotics. Sim-
ilar contributions appeared in a series of works by Doron Peled and others —
see, e.g., [7] for the most recent work — with hardware verification as the main
target. However, our approach is more general since it decouples identification
techniques from verification techniques, and it enables the combination of dif-
ferent flavors of such techniques.

Considering the current limitations of our work, we see (non)determinism and
scalability as the two main issues. As for nondeterminism, it is well known that
middleware can respond in different ways according to external events which are
never completely under control. The algorithms that we have considered here
assume that the middleware is behaving deterministically, which might turn out
to be an unrealistic assumption. However, in a recent contribution [10], we have
shown how to deal with nondeterminism when learning Mealy machines, and
we expect to be able to extend this result also to IAs. Scaling to more com-
plex components is a challenge for our future research agenda. In spite of harsh

326 A. Khalili, L. Natale, and A. Tacchella

computational-complexity results, both identification and verification tools have
a record of success stories in dealing with industrial-sized systems. Furthermore,
AIDE already enables developers to check their code against common errors
such as, e.g., incorrect port flagging, and it has also been useful in supplying
YARP creators with corner bugs that helped them to improve some basic func-
tionality of platform. We expect that improving the bottlenecks due to resetting
the system, i.e., managing ports and related threads in the system wrapper, will
improve the capacity of our techniques.

References

1. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

3. Baier, C., Katoen, J.: Principles of model checking. MIT Press, Cambridge (2008)
4. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS) 8(2), 263 (1986)

5. De Alfaro, L., Henzinger, T.: Interface automata. ACM SIGSOFT Software Engi-
neering Notes 26(5), 109–120 (2001)

6. Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robotics
and Autonomous Systems 56(1), 29–45 (2008)

7. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking. Logic Journal of
IGPL 14(5), 729–744 (2006)

8. Holzmann, G.J.: The SPIN model checker: Primer and reference manual, vol. 1003.
Addison-Wesley, Reading (2004)

9. Kearns, M., Vazirani, U.: An introduction to computational learning theory. MIT
Press (1994)

10. Khalili, A., Tacchella, A.: Learning nondeterministic mealy machines. In: Pro-
ceedings of the 12th International Conference on Grammatical Inference (ICGI)
(to appear, 2014)

11. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, pp. 137–151. ACM (1987)

12. Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C.,
Rosander, K., Lopes, M., Santos-Victor, J., et al.: The iCub Humanoid Robot: An
Open-Systems Platform for Research in Cognitive Development. Neural Networks:
The Official Journal of the International Neural Network Society (2010)

13. Pratt, G., Manzo, J.: The DARPA Robotics Challenge [Competitions]. IEEE
Robotics & Automation Magazine 20(2), 10–12 (2013)

14. Queille, J., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS,
vol. 137, pp. 337–351. Springer, Heidelberg (1982)

15. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software, vol. 3 (2009)

16. Shahbaz, M.: Reverse Engineering Enhanced State Models of Black Box Software
Components to Support Integration Testing. Ph.D. thesis, Institut Polytechnique
de Grenoble, Grenoble, France (2008)

An Extensible Software Architecture
for Composing Motion and Task Planners

Zakary Littlefield�, Athanasios Krontiris, Andrew Kimmel, Andrew Dobson,
Rahul Shome, and Kostas E. Bekris

Computer Science Department, Rutgers University, Piscataway, NJ 08554, USA
kostas.bekris@cs.rutgers.edu

Abstract. This paper describes a software infrastructure for developing and com-
posing task and motion planners. The functionality of motion planners is well
defined and they provide a basic primitive on top of which it is possible to de-
velop planners for addressing higher level tasks. It is more challenging, however,
to identify a common interface for task planners, given the variety of challenges
that they can be used for. The proposed software platform follows a hierarchical,
object-oriented structure and identifies key abstractions that help in integrating
new task planners with popular sampling-based motion planners. Examples of
use cases that can be implemented within this common software framework in-
clude robotics applications such as planning among dynamic obstacles, object
manipulation and rearrangement, as well as decentralized motion coordination.
The described platform has been used to plan for a Baxter robot rearranging sim-
ilar objects in an environment in an efficient way.

1 Introduction and Related Work

The basic motion planning problem for kinematic systems is a traditional, well studied
problem in robotics, for which a variety of solutions have been proposed, many of them
based on sampling-based algorithms [1]. Such algorithms have also been extended in
the context of planning with significant dynamics, planning for high-dimensional chal-
lenges involving kinematic chains, or planning under uncertainty. The maturity of the
motion planning field also led to the development of software platforms that facilitate
the use of such state-of-the-art solutions in different application domains [2, 3, 4, 5].

One of the most interesting challenges, however, relates to integrating such motion
planners with task planning, i.e., the high-level reasoning for completing tasks that re-
quires symbolic, combinatorial or discrete planning. Integrating task and motion plan-
ning is receiving increasing attention in the related literature recently [6, 7, 8, 9]. The
architecture proposed in this paper focuses on providing a reusable, extensible software
platform for integrating task with motion planners. The focus is mostly on providing
the communication primitives for composing motion planning primitives.

Some examples that relate to this objective include the following:

• Manipulation: Multi-modal motion planning [10, 11] and rearrangement of obstacles
in the environment [12].

� Zakary Littlefield’s work was supported by a NASA Space Technology Research Fellowship.
Any conclusions expressed here are of the authors and do not reflect the sponsors’ views.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 327–339, 2014.
c© Springer International Publishing Switzerland 2014

328 Z. Littlefield et al.

• State × Time Planning: Planning among dynamic obstacles [13]; Sensor-based task
planning [14, 15]; Exploration and coverage of an environment [16].

• Multi-agent Challenges: Motion coordination [17, 18]; Adversarial challenges, such
as pursuit-evasion [19].

• Task Sequencing: Multi-goal challenges, including Traveling Salesman Problems and
switching goals [20].

There are also many challenges that might involve multiple aspects of the above
tasks. For instance, a scenario where multiple manipulators are operating in the same
workspace and need to coordinate in order to relocate a large object may require many
levels of reasoning. Rather than having users write a single, highly complex task planner
to achieve this, it is desirable to allow the composition of task planners instead out of
individual modules, allowing for reuse of existing task planning capabilities.

The goal of the proposed infrastructure is to provide a straightforward framework for
integrating task and motion planners so that they can be used across multiple application
domains. In such a framework, motion planners can be freely exchanged without affect-
ing task-level reasoning, and task planners can be composed in a general, hierarchical
manner to solve complex challenges.

While having such a unified structure for task planning is desirable, it is also in-
herently challenging, primarily because task planning is application specific and there
is such a wide variety of application domains. Creating an interface for task planning
which can be used for all conceivable applications is infeasible; however, composing
task planners in a hierarchical fashion allows for a simple, generalizable interface. This
work utilizes abstractions referred to as task specifications and queries to facilitate this
interface.

The proposed software infrastructure, referred to as PRACSYS is an extension of a
previous effort by the authors [21]. In the previous version, the focus was on the intro-
duction of controllers and planners. In this version, integrating planners to solve task
planning challenges is the main objective. This has distinctive characteristics in com-
parison to related software efforts, while at the same time it can be integrated with many
of them. PRACSYS offers a robust infrastructure for task planning, as well as a control
framework unavailable in other motion planning platforms, such as the Open Motion
Planning Library (OMPL) [2] and MoveIt! [5]. Other packages such as Gazebo [22] of-
fer simulation capabilities, but they do not offer the planning capabilities of PRACSYS.
The Reflexxes motion library [23] also focuses on control, generating trajectories in
real-time while integrating sensing information, but does not focus on longer-horizon
planning components. PRACSYS also supports planning over controllers, due to its
unique architecture, which is not afforded by the aforementioned packages.

2 General Architecture of PRACSYS
PRACSYS consists of several different components, which operate as different pro-
cesses and are responsible for different aspects of the overall infrastructure. The Robot
Operating System (ROS) is the middle-ware that allows for the different components
to communicate with each other through message passing, loads the necessary input
parameters and provides compatibility with other software packages [24]. The overall
architecture of PRACSYS is shown in Figure 1.

An Extensible Software Architecture for Composing Motion and Task Planners 329

The simulation node performs the simulation of the physical world, including
obstacles, and receives sensing data. It is able to detect whether undesirable collisions
occur for different states of the simulated world. Furthermore, it provides a hierarchi-
cal tree of control systems, which simulate both the physical robots and other moving
systems in the world as well as controllers that operate over them. This hierarchy sup-
ports the construction and composition of low-level controllers to perform control, as
detailed in the authors’ previous work [21]. The purpose of controllers is to perform
reactive control given access to the state of the systems under them in the hierarchy and
potential access to sensing data. At the lower level of the simulation hierarchy, there
are always physical “plants”, i.e., robots that receive controls and update their state ac-
cordingly. In situations that the software infrastructure is not used to directly plan for a
physical system, the simulation module takes the role of the ground-truth model of
the world. Through message passing, this module can transmit the ground-truth state of
the simulated world to the other models of PRACSYS, such as the sensing and the
planning nodes.

Fig. 1. The major inter-node interactions in
PRACSYS

The planning node is responsible for
performing the high-level logic of task
and motion planning, which is discussed
in detail in this paper. The planning
node uses an internal representation of the
world called a “world model”, which in-
ternally performs simulation in order to
achieve longer-horizon planning, in con-
trast to the short-horizon controllers of the
simulation node. It receives the true
state of the world from either a ground
truth simulation node or from the sensing node. The sensing node can ei-
ther simulate a sensor given information from the simulation node or it can directly
communicate with a real world sensor to generate the corresponding data.

The communication in PRACSYS facilitates the interactions between the nodes. The
simulation node is often responsible for publishing ground truth information for
planning and sensing purposes, as well as for visualizing the world. The planning
node sends computed trajectories and planning structures to visualization, and
forwards plans to simulation for execution. The visualization node provides
a user interface to validate results and allows for interactive applications. PRACSYS can
run with or without a visualization node. PRACSYS also contains a set of core
functions which resides in a utilities package, which is used by all of the nodes.

3 Integration of Motion and Task Planners

The planning node is designed to easily compose planners in a hierarchical fashion.
At the top of the hierarchy lies the planning application, which can access task plan-
ners. Task planners address specific high-level tasks and can internally call other task
planners. Motion planners exist at the lowest level of the hierarchy and have a specific
interface. Both task and motion planners are extensions of abstract planners and both

330 Z. Littlefield et al.

have access to planning modules, which correspond to useful primitives, such as sam-
pling of states and controls, as well as steering functions. Planners and modules can
access the world model, which encapsulates the control systems operating in the world.

Fig. 2. Hierarchy of planning

The interactions between the different
classes of the planning node are illus-
trated in Figure 2. The arrows in the fig-
ure imply that the class from where the
arrow originates has access to and calls func-
tions of the class the arrow points towards.
Task planners can be composed to perform
more complex tasks; for instance, a naviga-
tion task and manipulation task can be used
by a higher-level task planner to perform
a retrieval task using a mobile manipulator.
The leaves of the planning hierarchy are al-
ways motion planners, which actually select
the controls that the underlying control sys-

tems of the world model will use. To do so, they make use of the planning modules,
which provide them access to the world model, which is detailed in Section 3.1. The
interface between planning modules and task planners with the world model are via
direct function calls. For instance, the world model can be queried to check if a state
results in an undesirable collision. It also provides access to sensing, which is described
in Section 3.2.

The planners interface one with another through the use of task specifications and
queries, both detailed in Section 3.3. Specifications are used to inform lower-level plan-
ners what are the parameters of the task to be solved. Two planners can be stacked one
on top of the other, only if the lower level one addresses task specifications requested by
the higher level one. For example, motion planning specifications are of a specific type
and inform a motion planner what low-level modules to use when building the planning
data structure (e.g., a roadmap or a tree), and identify a stopping criterion. Queries are
similarly passed from higher-level to lower-level planners. The latter are responsible to
fill the query with the requested information and return it to the higher-level planner.
For example, a motion planning query contains a start state-goal state pair, and the mo-
tion planner is responsible for returning the feasible trajectory and plan which brings
the system from the start to the goal.

3.1 World Model and Simulator

In order to properly perform planning, the evolution of the environment and the control
systems in it need to be modeled. This is encompassed by the world model abstraction.
The world model includes an internal simulator, which can be structured to model the
controllers and underlying dynamics of agents. The simulators employed by the world
model are the same found in the simulation node. This internal simulator provides
the capability of collision checking and potentially simulating complex physical phe-
nomena through the use of the Bullet physics engine [25].

An Extensible Software Architecture for Composing Motion and Task Planners 331

The world model abstraction allows for the definition of a state space and a control
space used by the planning process. The state space represents the necessary informa-
tion in order to fully specify a snapshot of the world in terms of the relevant kinematic
and dynamic parameters of the involved moving or movable systems. The control space
provides the input to the simulator that allows it to modify the state over time. These
abstractions provide the ability to store states and controls so that the world model can
be placed into a desired configuration from a planner or a planning module.

Fig. 3. An example of different planning
contexts that can be created. Each planning
context consists of a planning space, object
space, and an inactive space. Each of these
spaces has a different meaning to the task
planners in PRACSYS.

These definitions also allow diverse op-
tions for task planners to create different
planning contexts for the motion planners to
plan in. A planning context consists of dif-
ferent divisions of the underlying simulator’s
state and control space, and is comprised
of three subspaces: a planning space, object
space, and inactive space as shown in Fig-
ure 3. The planning space is the subset of a
space that a motion planner would plan over,
such as the state space of a robot manipu-
lator. The object space consists of all sys-
tems that are not directly “controlled” by the
planner, but still are considered for collisions
and may move during the simulation. A task
planner can change the state of such systems
(e.g., when an object is grasped and moves according to the motions of a manipulator)
and inform the world model, or they can have their own controllers that handle their
evolution over time (e.g., in the case of dynamic obstacles). Finally, the inactive space
consists of all the systems that may be present in the simulation but are not consid-
ered by the planning process. These may be used by other motion planners in the task
planning hierarchy.

In most situations, these spaces are direct subsets of the full state space. Nevertheless,
the true planning space may be difficult for motion planners to directly work with. Con-
sider the case of physically simulated systems, where a car-like robot is composed of a
chassis and four wheels. In the physics engine, 60 DOFs will be needed to keep track
of the parameters of the involved 5 rigid bodies. Nevertheless, most planners would
operate over a lower-dimensional projection of that planning space. In these situations,
an embedded space can be used. This space transforms a higher dimensional space into
a lower dimensional given a proper mapping function.

3.2 Integration of Sensing with Planning

Sensing is an important aspect of the PRACSYS framework, and for many applications
it plays a vital role in determining the planning contexts, e.g., when a robot uses a sensor
to detect the other moving systems in the scene. The sensing framework is comprised
of a set of extendable primitives, through which a wide variety of sensing contexts is
supported. An example of sensing primitives, along with an example interaction with
the simulation node, is shown in Figure 4. The primitives are as follows:

332 Z. Littlefield et al.

• Sensors: They perceive the state of the world. Sensors can either be simulated, such
as detecting the configurations or geometries of objects in the simulation, or they can
represent actual physical sensors, such as a RGB-D camera generating point cloud
data. This is possible through the use of the ROS architecture, since a “sensor” class
can simply use external communication through ROS topics and services to query its
physical counterparts. A sensor has an individual update frequency, which represents
how often it measures the world, and consequently updating its representation.

• Sensing Information: This primitive represents how a controller uses the information
derived from the sensors’ measurements. A controller may have one or more Sensing
Infos (SI), each of which has pointers to individual sensors, which it uses to construct
specific information for use by the controller. For example, a controller might need
to reason about the proximity of other objects in the world, and thus would need to
access both a configuration sensor and a geometry sensor to build such information.

• Sensing Model: It owns all the sensors and manages the interactions between exter-
nal nodes, such as simulation, with the other sensing primitives. It is responsible for
checking when sensors need to fire (which corresponds to sensors taking a measure-
ment), as each sensor has a specific firing frequency, as well as checking how often
each SI calculates new information.

Fig. 4. An example sensing framework which interacts with the simulation node. Each controller
in the simulation has sensing information, with the simulator owning a concatenation of all con-
troller’s sensing information. The simulation informs the sensing model that it has a new simu-
lation state, with which the model fires any sensors that are ready to measure. The simulation is
automatically updated by any new sensor readings in the corresponding sensing infos.

Sensing is seamlessly integrated into planning through the use of the world model,
which owns a simulation tree and thus inherently can update SIs after calling the sens-
ing model. Planning contexts, which determine which parts of the simulation tree are
active, also determine which SIs are actively updating. Since the sensing model must
be informed that it is time to sense, task planners have full control over the information
that sensing reasons over, as well as how to use the information obtained from sensing.

An Extensible Software Architecture for Composing Motion and Task Planners 333

3.3 Queries and Specifications

This section describes the task specifications and queries that are used as the interface
between task planners and motion planners. Specifications describe the problem that a
planner lower in the hierarchy needs to solve. Queries give the initial and final condi-
tions of the problem and will be returned with the answer constructed by the planner
below. Figure 5 depicts these exchanges between the planners through appropriate in-
terface.

Fig. 5. The interface between planners in
the planner hierarchy. First, a planner must
receive a planning specification from its
parent planner (1). Then, the planner can
setup its internal data structures using that
specification (2). Finally, after allowing
the planner execution time (3), queries can
be linked and resolved (4,5).

The higher level planner, a task planner,
builds a problem specification for the lower
level planner, which can be either a task or
a motion planner. The problem specification
contains information that a planner needs in
order to set up and solve a problem, which
generally allows some preprocessing to occur.
The information that is given in the specifica-
tion by the higher level planner has to match
with the information that is expected by the
lower level planner. The problem specification
may define different modules, such as local
planners, validity checkers, samplers, distance
metrics and/or stopping criteria. These mod-
ules are mandatory when the planner below is
a motion planner and the corresponding prob-
lem specification is called a motion planning
specification. Depending upon the application, a motion planner can receive additional
information like seed states for the search structure it maintains, commonly a tree or a
graph in the case of sampling-based motion planning.

Once a problem has been already set up according to the problem specification, a
query is the request made to a planner to solve a specific instance of that problem. The
query is the last interface between the planners in the different levels. A typical query
includes the initial and the final configuration for the problem instance. If the planner
below is also a task planner, then the query passed to this task planner might be used to
construct a new query for underlying planners. In the case of a motion planning query,
the query contains the initial state of the system and the goal state(s) that the system has
to reach. It then returns the path (sequence of states) and the plan (sequence of controls)
that will bring the system to the goal. Similar to problem specifications, the information
contained in the query has to correspond to what the lower level planner expects.

4 Use-Cases

4.1 Rearrangement Using Baxter

One important property of this framework is the ability to stack planners in order to reuse
them (both task and motion planners). The rearrangement manipulation framework, uses
a stack of two task planners and two motion planners (Figure 7). In this problem a robotic

334 Z. Littlefield et al.

arm is used to rearrange geometrically similar and interchangeable objects. The follow-
ing bottom-up description showcases the reusability of the components.

Fig. 6. Each motion of the manipu-
lator (blue arrows) correspond to a
plan computed by a motion planner.
The compilation of these individual
steps result to move an object to a
different pose.

The problem of moving a manipulator can be
solved using a motion planner (e.g. PRM∗). A typ-
ical motion planner builds a data structure (e.g., a
graph) and then computes a path on this data struc-
ture to connect the start to the goal configuration.
The motion planner is able to plan either for tran-
sit or transfer motions. The transfer motion planner
plans in a space comprising of the state space of
the manipulator as the active space and the object
it is grasping as the object space, whereas the tran-
sit motion planner only deals with the manipulator,
which is not grasping any object. All other objects
form the inactive space. The use of the two motion
planners is shown in Figure 7. The framework can
specify the different state spaces by using the plan-
ning context, explained earlier in the paper (Fig. 3).
The calls to the two motion planners differ because
of the different planning modules that are defined in the corresponding specifications.
A manipulation task planner can utilize these motion planners in order to solve a higher
level task, which is to use a manipulator to move an object from an initial pose to a final
pose. Nevertheless, in order to achieve this task, the planner needs to solve the transit
to the first pose, transfer to the second pose with the object in hand and transit back to a
safe position (Fig. 6). The problem specification for this planner will have information
about the modules that can be used, the stopping criteria for the algorithm, extra infor-
mation that the manipulator needs to be able to grasp the objects, but most importantly
the different planning contexts that the planner needs for the completion of the task.
The query for the manipulation planner will request for a path and a plan that will move
an object from an initial pose to a target pose. The manipulation task planner given the
information from its input problem specification can build the problem specifications
for the motion planners.

Fig. 7. The hierarchy of planners used in the rear-
rangement problem

The high level task is the rearrange-
ment of multiple objects using the ma-
nipulator. The manipulator task planner
resides under the rearrangement task
planner (Figure 7). After setting up the
problem specification of the manipu-
lation task planner, the rearrangement
task planner can request from the ma-
nipulation task planner the computed
plan for moving the object from one
pose to another. The query comprises
of the initial pose of an object as the
start state and the final pose of that

An Extensible Software Architecture for Composing Motion and Task Planners 335

Fig. 8. Snapshots of the dynamic obstacle use case executing the plan found by the motion plan-
ner. The problem is to move from the leftmost lane and pass the car in front of it. The screen
shots are progressively zoomed in toward the intersection where many cars are entering at the
same time. The path of the selected car is shown in the image.

object as the goal state of the problem. The rearrangement task planner reasons about
moving objects between different poses in order to solve the rearrangement problem.
This higher level task planner combines all the plans that will rearrange the objects
from the initial to the final arrangement. The final plan can be transmitted using ROS
messages to a real system, such as Baxter, in order to execute it.

4.2 Planning among Dynamic Obstacles

One of the main uses for the world model abstraction is using controllers in the planning
loop. In this use case, the behavior of dynamic obstacles is defined through the use of
a controller. Then, the goal is to find a motion plan for a simple car-like system among
these moving obstacles. Here, a simple kinematic model is used to simulate cars moving
in straight lines, but can be modeled more accurately given more complex controllers.

Fig. 9. The world model structure for
this example. The car’s state space is
the only part considered for the planning
space, while all of the dynamic obstacles
are considered objects that the controller
handles, but the motion planner doesn’t
need to know about.

Figure 9 details the organization of the world
model into its planning space and object space.
Since the motion planner doesn’t need to explic-
itly model the movement of the moving obsta-
cles, they can be considered for collisions only,
and the controller will control the evolution of
their states. There is no need to include an inac-
tive space for this task because there is only one
planning context that needs to be considered,
and the task is a simple motion planning prob-
lem. The only requirement for this planning con-
text is that the state of these obstacles is stored
during the motion planner’s execution. This is
done by using a simple embedded space, which

for correctness maintains the full state of the world model’s internal simulator, but hides
it from the motion planner.

The choice of the controller for the obstacles is arbitrary in this setup. Anything that
understands how to control the moving obstacles can be placed here, thereby allowing
many different behaviors to be modeled. For this experiment, the controllers for the
dynamic obstacles are known apriori, therefore the true controller exists in both the
ground-truth simulation and the planning’s world model.

336 Z. Littlefield et al.

Fig. 10. (Top Row) Snapshots of the local scalability experiment running 250 agents using sensing
and local collision avoidance techniques. (Bottom Row) Snapshots of decentralized multi-agent
coordination experiments in two different environments.

4.3 Decentralized Multi-robot Coordination

Scalability is an important requirement, and PRACSYS aims towards this along two
directions: (a) the number of agents that can be modeled on a single machine, and
(b) the number of communicating processes the architecture is able to support. To test
the local scalability of PRACSYS, an experiment with 250 agents attempting to swap
places with one another was used, as shown in Figure 10. On a single computer with a
3.1 GHz Intel i3 processor and 8GB of RAM, this experiment was capable of running in
real time at 50 frames-per-second, which also includes the overhead of each individual
robot running a local collision avoidance technique while utilizing a proximity sensor.

Given this collision avoidance capability, a decentralized multi-robot coordination
challenge was constructed, which utilized every component of PRACSYS. The chal-
lenge involved multiple robots moving in highly-constraining scenarios with each agent
attempting to reach some goal location. This required each robot to operate in a replan-
ning framework, where each agent individually sensed its environment and queried its
own planning node to recompute a solution path every 0.5 seconds. The overall structure
of the experiment is shown in Figure 11. Beginning at the simulation node, a hierarchi-
cal system tree was used, where one branch consisted of: consumer controller over
a velocity obstacle controller over a holonomic disk plant. The consumer controller
translates the trajectories from planning into relevant controls for the velocity obsta-
cle controller [26], which generates collision-free controls. For some time t during the
experiment, each disk agent sends an update of the simulation state to planning - this
involved the agent utilizing sensing, along with generating a query asking planning to
compute a solution trajectory to some goal location. While the planning node answers
this new query, the robot begins executing its trajectory at t to reach a state at t + 1.

An Extensible Software Architecture for Composing Motion and Task Planners 337

Fig. 11. The interaction between planning and simulation for a decentralized, multi-agent robot
coordination challenge

Each robot runs its own individual planning node, where: given an updated state of
the world (i.e., through sensing on simulation) at some time t, the task planner generates
an appropriate planning context to represent the world model, and uses the sensing in-
formation to construct a planning query containing the proximity information of other
agents (i.e., the sensed agents’ positions and velocities). This query informs the motion
coordination task planner (MCTP) which parts of the environment were heavily con-
gested. The MCTP then uses the trajectory at t and simulates where the robot would
end up at t + 1. It uses this newly predicted state, changes the motion planner’s prob-
lem specification so as to compute a trajectory from t + 1 to t + 2 that would minimize
conflicts with other robots. Once such a solution trajectory is computed by the motion
planner, this trajectory is sent back to the simulation side via a ROS topic.

5 Discussion

This paper describes a software infrastructure for integrating task and motion plan-
ners. By taking advantage of the hierarchical nature of real-world tasks, the creation of

338 Z. Littlefield et al.

hierarchical task planners makes software construction natural. PRACSYS provides this
infrastructure, along with the necessary modules of a simulator, motion planners, and
sensing primitives.

The infrastructure of PRACSYS is a useful tool for developing new types of task plan-
ners. The interaction with other software packages, such as with OMPL and Gazebo
[2, 22], can result in even more powerful solutions. OMPL provides many different
motion planning algorithms, which the community has used in many different applica-
tions. The addition of a task planning infrastructure makes OMPL and any other motion
planning package extendable and more able to address more complex challenges.

References

[1] Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun,
S.: Principles of Robot Motion. The MIT Press (2005)

[2] Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics
and Automation Magazine 19(4), 72–82 (2012)

[3] Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online open-source
programming system. In: International Conference on Robotics and Automation (ICRA),
Rome, Italy, pp. 3711–3716 (2007)

[4] Diankov, R., Kuffner, J.J.: OpenRAVE: A Planning Architecture for Autonomous Robotics.
Technical report, CMU-RI-TR-08-34, The Robotics Institute, CMU (2008)

[5] Sucan, I., Chitta, S.: MoveIt! http://moveit.ros.org
[6] Hauser, K., Latombe, J.C.: Integrating task and PRM motion planning: Dealing with many

infeasible motion planning queries. In: ICAPS Workshop on Bridging the Gap Between
Task and Motion Planning (2009)

[7] Koenig, S.: Creating a Uniform Framework for Task and Motion Planning: A Case for
Incremental Heuristic Search. In: ICAPS Works. on Action and Motion Planning (2010)

[8] Lozano-Perez, T., Kaebling, L.: Integrated Task and Motion Planning in Belief Space (2013)
[9] Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., Kavraki, L.E.: SMT-Based Synthesis of

Integrated Task and Motion Plans for Mobile Manipulation. In: ICRA (2014)
[10] Hauser, K., Ng-Thow-Hing, V.: Randomized Multi-Modal Motion Planning for a Humanoid

Robot Manipulation Task. IJRR (2011)
[11] Kaelbling, L., Lozano-Pérez, T.: Integrated Robot Task and Motion Planning in the Now.

CSAIL Technical Report (2012)
[12] Stilman, M., Kuffner, J.J.: Planning Among Movable Obstacles with Artificial Constraints.

In: WAFR (2006)
[13] Ayan, N.F., Kuter, U., Yaman, F., Goldman, R.P.: HOTRiDE: Hierarchical ordered task

replanning in dynamic environments. In: ICAPS Workshop on Planning and Plan Execution
for Real-World Systems (2007)

[14] Gaschler, A., Petrick, R.P., Kröger, T., Knoll, A., Khatib, O.: Robot task planning with
contingencies for run-time sensing. In: ICRA Workshop on Combining Task and Motion
Planning (2013)

[15] Olawsky, D., Krebsbach, K., Gini, M.: An analysis of sensor-based task planning. Technical
report (1995)

[16] Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in un-
known non-convex environments. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G.,
Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic
Systems. STAR, vol. 83, pp. 61–75. Springer, Heidelberg (2013)

http://moveit.ros.org

An Extensible Software Architecture for Composing Motion and Task Planners 339

[17] Bekris, K.E., Tsianos, K.I., Kavraki, L.E.: Safe and distributed kinodynamic replanning for
vehicular networks. Mobile Networks and Applications 14(3), 292–308 (2009)

[18] Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: A decentralized architecture for
multi-robot systems based on the null-space-behavioral control with application to multi-
robot border patrolling. Journal of Intelligent & Robotic Systems 71(3-4), 423–444 (2013)

[19] Stiffler, N.M., O’Kane, J.M.: A Sampling Based Algorithm for Multi-Robot Visibility-
Based Pursuit-Evasion. In: IEEE Intl. Conf. on Intelligent Robots and Systems (2014)

[20] Saha, M., Sanchez-Ante, G., Latombe, J.C., Roughgarden, T.: Planning multi-goal tours for
robot arms. Int. J. Robotics Research 25(3), 207–223 (2006)

[21] Kimmel, A., Dobson, A., Littlefield, Z., Krontiris, A., Marble, J., Bekris, K.E.: PRACSYS:
An Extensible Architecture for Composing Motion Controllers and Planners. In: Noda, I.,
Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 137–148.
Springer, Heidelberg (2012)

[22] Koenig, N., Hsu, J., Dolha, M.: Willow Garage, Gazebo: http://gazebosim.org/
[23] Kröger, T.: Opening the door to new sensor-based robot applications—The Reflexxes Mo-

tion Libraries. In: ICRA (2011)
[24] Willow Garage, Robot Operating System (ROS), http://www.ros.org/wiki/
[25] Bullet Physics Engine, http://bulletphysics.org
[26] van den Berg, J., Lin, M., Manocha, D.: Reciprocal Velocity Obstacles for Real-Time Multi-

Agent Navigation. In: IEEE ICRA (2008)

http://gazebosim.org/
http://www.ros.org/wiki/
http://bulletphysics.org

A Component-Based Meta-Model and Framework
in the Model Driven Toolchain C-Forge�

Francisco J. Ortiz, Diego Alonso, Francisca Rosique, Francisco Sánchez-Ledesma,
and Juan A. Pastor

Division of Systems and Electronic Engineering (DSIE)
Universidad Politécnica de Cartagena, Campus Muralla del Mar, 30202, Spain

francisco.ortiz@upct.es

Abstract. This paper describes a Component-Based Meta-Model (WCOMM)
and framework (FraCC) as part of a complete Model-Driven Software
Development process and toolchain: C-Forge. The approach given in the design
of WCOMM and FraCC is presented highlighting the differences with other
similar approaches. To illustrate the use of C-Forge, the development of a control
architecture for the robots in project MISSION is presented.

Keywords: MDSD, component-based robotic framework, toolchain.

1 Introduction and Motivation

Component Based Software Engineering (CBSE) [1] paradigm is promoting in robotics
the encapsulation of proven solutions into reusable building blocks, considering
components as something beyond a compiled module or library. However, many times,
the lack of support for development of components and their integration into the global
robotic system has limited its adoption. Robotic software is no longer constructed
from scratch, but rather there are a number of specialized software toolkits, libraries,
middleware and frameworks that provide developers with different levels of support and
infrastructure for the development, maintenance and execution of robotics applications.
However, the higher the supporting infrastructure, the deeper the knowledge of the
software and its configuration details the developers must have. On the other hand, most
of these solutions do not define a clear and well-supported development process that
combines generation and evolution of software code and evaluation of requirements,
including early model analysis.

Beyond the success of libraries and robotic middleware, recent works [2,3] and
specialized workshops (SIMPAR, SDIR, MORSE) illustrate a clear interest to formalize
the software development process for robotics by providing developers with model-
driven and component-based designs processes supported by toolchains. The Model-
Driven Software Development (MDSD) [4] paradigm raises the level of abstraction
of the development process by allowing domain experts to express domain concepts
in their designs. Thus, the complexity of middleware, frameworks or any other

� This work has been partially supported by the Region of Murcia’s Government Project
MISSION-SICUVA (ref. 15374/PI/10) Spanish CICYT project ViSel-TR (ref. TIN2012-
39279) and the Spanish MEC FPU Program (grant AP2009-5083).

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 340–351, 2014.
c© Springer International Publishing Switzerland 2014

mailto:francisco.ortiz@upct.es

A Component-Based Meta-Model and Framework 341

software artefacts can be hidden by carefully choosing the correct abstractions. These
models are independent of the implementation technologies, so that best software
engineering practices (including early validation and verification activities) can be
feasibly applied. Model-driven technologies also provide support for automatically
transforming models [5] into other representations, either models or text (normally
source code). For these benefits, the robotics community is increasingly interested in
MDSD and highlights the need of formal models that allow developers the reuse of
designs and architectural elements independently of the implementation platform, as
well as the toolchains that support the generation and validation of models and code [6].

The main contributions of this paper are (1) the description of a component-based
framework, FraCC, with a White Box Component Meta Model (WCOMM) and a
toolchain, C-Forge, that makes possible to integrate it in an MDSD development
process, (2) the description of the features that distinguish our proposal from other
similar approaches, and (3) the application of C-Forge to a case study to illustrate,
the benefits of combining MDSD and CBSE in a toolchain. The case study considers
the development of the control software of several autonomous vehicles developed in
the context of the national project MISSION.

There is a particular focus on illustrating the main differences of our approach
compared with others similar in the literature, in particular: (1) the proposal of
WCOMM as white-box components with explicit behaviour and activities (2) the
ability to express at model level orthogonality and concurrent behavior of the
component (3) the direct execution of models linked to source code thanks to a FraCC
model loader (4) the deployment of WCOMM and FraCC models with a flexible
assignation of concurrent tasks to threads and processes. FraCC take into account non-
functional aspects of the design such as task scheduling, concurrency management, and
distributed communication. Among other advantages, this enables FraCC to carry out
schedulability analysis.

Section 2 presents an overview of the C-Forge toolchain. Section 3 reviews key
CBSE and MDSD aspects of current development technologies for robotics compared
to those proposed by our approach. Section 4 discusses details of the MDSD process the
C-Forge applied to the MISSION case of study. The last Section presents conclusions
and future research directions.

2 Overview of C-Forge Toolchain

C-Forge is a toolchain built on top of the Eclipse IDE and its MDSD plug-ins Xtext,
GMF and Epsilon. It provides full support for the development of component-based
software applications, from modelling to execution. C-Forge integrates two main
elements (shown in Fig. 1): (1) a White-box COmponent MetaModel (WCOMM),
which embodies a component model for describing component-based applications, and
(2) a C++ framework, entitled FraCC, that provides the required run-time support for
executing WCOMM models with different deployment configurations. It also provides
three model transformations (A, B and C in Fig. 1). Transformations (A) and (B)
generate the artefacts FraCC needs to execute a WCOMM application (mainly, C++

templates for user code and a deployment model that describes how the application

342 F.J. Ortiz et al.

is executed, see Section 2.2). One of the main characteristics of our approach is that,
thanks to the modelling primitives provided by WCOMM and the way FraCC organises
and executes WCOMM components, the user has full control over the concurrency
characteristics of the application (mainly, number of threads, their computational load
and timing properties, see Section 2.2). Model transformation (C) exploits this feature
to generate an analysis file for the Cheddar schedulability analysis tool [7], so that the
user can check whether the final application will meet its real-time requirements.

WCOMM

C++ user code

FraCC

Cheddar analysis model
Model loader:
application execution

compile

BA

C

Messages &
Activity shells

Components with
finite state machine

Architecture

Deployment model:
assignment of regions
to threads, processes
and nodes

.so libraries

Fig. 1. The C-Forge development process

2.1 The White-Box Component Meta-Model (WCOMM)

WCOMM components are modelled as white-boxes. That is, the user models both the
component structure (the component boundary, its ports, message types, etc.) and its
behaviour (mainly, how the component react to the messages it receives from other
components or from the results of internal computations). Components are connected
by linking compatible ports, i.e., ports that receive messages sent by the port they are
connected to, and vice-versa, though WCOMM allows connecting ports that can receive
more messages than those that are sent by the port they are connected to. According to
OMG’s MARTE specification [8], WCOMM ports can be classified as flow-oriented,
non-atomic (messages can have parameters of any type), bi-directional, and behavioural
(messages can fire events in the component FSM) ports. Messages are asynchronous no-
reply, which makes possible to support any communication scheme and assures a low
coupling between components. The structural view of the application architecture is
modelled as a set of components and the connections through their ports.

A Component-Based Meta-Model and Framework 343

Component reactive behaviour is modelled in WCOMM by means of a Finite-State
Machine (FSM) with hierarchical and orthogonal regions, inspired by those defined
in UML 2. Orthogonal regions are a powerful modelling concept, allowing the users
to model potentially concurrent parts of the component behaviour (which can be
sequentially or concurrently executed by FraCC). Transitions are triggered by events,
which can be produced by both message reception and internal computation. States in
WCOMM can contain one activity shell, which is a wrapper of the concrete algorithm
that will be executed when the state becomes the region’s active state. These shells
only define the messages the activity receives and sends to other activities or ports.
The algorithmic code will be implemented by the user in further steps. Messages serve
not only as the mechanism to share information among components, but also as links
between the structure and behaviour parts of a component. When an activity is added to
a state, the user can decide whether it will be periodic or sporadic.

The C-Forge support for WCOMM is composed of three tools (see WCOMM box
in Fig. 1): (i) A textual editor for modelling data-types, messages and activity shells;
(ii) A graphical tool for modelling simple components (structure and behaviour); (iii) A
graphical tool to define complex components, e.g., the structural view of an application
architecture as a set of connected components. The modelling of applications is a
pure CBSE process at this stage. Therefore, the user does not have to know the
implementation details of the platform that will ultimately support the execution.

2.2 The FraCC Framework

FraCC is a C++ framework that provides the required run-time support for executing
WCOMM components. We say “execute” because, unlike other approaches, we do
not generate implementation code, but rather FraCC provides a model loader that
directly loads WCOMM models and according to them instantiates FraCC classes.
Two additional artefacts are needed to complete application execution: the C++ code
of the algorithms embedded in WCOMM activities, and a description of how FraCC
must execute the components’ regions. C++ code templates, where the user must add
the application-specific code, are generated from WCOMM activities by a model
transformation (A in Fig. 1). The user code is then compiled into a dynamic library and
loaded by the model loader when needed. FraCC imposes some restrictions to the code
contained in an activity, e.g., infinite loops are forbidden, and activities cannot spawn
threads or create mutexes. Thus, the approach provides a clear separation of concerns,
differentiating component modelling from activities implementation.

FraCC allows developers to explicitly control the concurrency of the application,
and to perform a schedulability analysis by using a deployment model, generated by
a model transformation (B in Fig. 1) from WCOMM models. This transformation
generates a default deployment that can be modified through a C-Forge tool. This
model enables users to distribute the application in threads, processes and nodes, by
assigning components to processes and regions to threads. Any assignment is possible
(for instance, assigning regions of different components to the same thread) as long
as all component regions are assigned to threads of the same process. Regions are,

344 F.J. Ortiz et al.

therefore, the corner stone of the approach, connecting both tools: they model part of
the component behaviour in WCOMM, and are the unit of workload assignment in
FraCC. Regarding the communication mechanism, FraCC uses POSIX message queues
when regions are assigned to processes residing in the same node, and communication
software otherwise.

A model transformation (C in Fig. 1) generates a file for the Cheddar schedulability
analysis tool [7] from the WCOMM and deployments models [9]. Appropriate changes
can then be made to the applications models based on the analysis outcomes. FraCC
deployment model therefore provides a clear separation between architecture and
execution, allowing user to define and test different execution schemes for the same
application architecture.

3 Differentiating Aspects of C-Forge Toolchain

This section describes the main innovative features of C-Forge, WCOMM and
FraCC compared to some of the most referenced methodologies for robotics software
engineering. Table 1 shows the considered component-based toolchains, classifying
them into two main groups depending on whether they are supported by MDSD
technologies. As stated in [2], ROS1 and YARP2 could not be considered in a strict sense
component-based frameworks, since they lack an explicit component model, but they
have been included ass they are widely used in robotics. General purpose distribution
middleware is also included in Table 1.

Table 1. Classification of component-based toolchains and middleware technologies

MDSD Toolchain Other tool support

Robotic
Component

Based
Software

Tool support C-Forge SmartSoft BRICS RobotML RTMaps OPROS - no -

Component
Model

WCOMM SmartSoft BCM RobotML RTMaps OPROS ORCA

MD transfor. +
Execution
framework FraCC SmartSoft OROCOS RTMaps OPROS ORCA

Robotic
Middleware

Tool support ROS
No tool supp. YARP

Middleware Distribution ACE / TAO omniORB ICE

Solid arrows in Table 1 represent model transformations that generate the
implementation code in each toolchain. The input of each transformation is an
application described in terms of the component model. The output is executable
code for the execution framework targeted by the toolchain. Though input models
are independent of the implementation technologies, in practice, the development

1 ROS homepage: http://www.ros.org
2 YARP homepage: http://eris.liralab.it/yarp/

http://www.ros.org
http://eris.liralab.it/yarp/

A Component-Based Meta-Model and Framework 345

of transformations is an intensive work and most MDSD-toolchains choose a
single implementation technology. RobotML and BCM (BRICS Component Model)
are examples of how the same component based application can target different
frameworks. There is a plus sign between FraCC and WCOMM expressing a key point
of our approach: we do not use transformations to generate executable code, but instead
FraCC loads directly WCOMM models to instantiate its classes accordingly and links
the activity shells to user code corresponding to activities implementation. This makes
possible the reconfiguration of the application at execution time.

Although WCOMM, Smartsoft and RobotML do not transform directly to ROS, they
all have gateways to ROS modules. Dotted arrows indicate that an execution framework
uses a general purpose communication middleware.

[10] offers an exhaustive survey on existing component models in robotics software
frameworks. In order to let the reader know how WCOMM+FraCC incorporate features
considered in this survey we summarized it in Table 2 considering only the execution
frameworks and including (1) three new component models (FraCC, Smartsoft and
RTMaps3), and (2) new features related to concurrency and real-time support, which
are inherent to robotic applications.

Table 2. Comparative of component models primitives in execution frameworks. The darker the
cell, the lower the compliance with the property.

FraCC SmartSoft OROCOS RTMaps OPROS ORCA ROS

Type of
Comp. Ports

Data / implicit
behaviour

Data Data / Event /
Config.

Data Data / Event
/ Method

~ Data Publ. /
Subscribe

~ Data Publ. /
Subscribe

Type of
Comp. Intface

~ Behaviour
msgs

Services
req/reply

Services
req/reply

NO ~ Method
Port (cli/ser)

Publish /
Subscribe

Services
req/reply

Data Types
support

YES
(typed msgs)

YES
(comm.object)

YES
(standard)

YES
(ROS-like)

NO YES
(BROS guide)

YES
(robot specific)

Connector /
Connection

NO / YES NO / YES YES / YES NO / YES NO / YES NO / NO NO / NO

Internal Life
Cycle FSM

3 states 3 states 9 states - Info not
available -

6 states 2 states NO

Funct.
Algorithm

User defined NO User defined NO NO 3 states NO

Deployment
of the comp.

Flexible Depl.
and threading.

Smart tasks periodic / non
period. activity

Own control
of threads

NO Thread by
MiddW ICE

NO

Concurrency
& RT

Concurrency
+ RT

RT RT RT NO NO NO

3 RTMAPS homepage: http://www.intempora.com/

http://www.intempora.com/

346 F.J. Ortiz et al.

Component, Connectors, Interfaces and Data Types
At the component level, WCOMM allows designing separately the entire structure and
behaviour of components, as well as the defining types of activities (activity shells) that
can be assigned to states and linked to user code. This inclusion of activities as part of
the model is not considered in other approaches. These aspects favour that the structure
and the reactive behaviour of the components as well as the algorithms executed by
them can evolve separately.

Most component models differentiate data ports from service ports or interfaces,
while WCOMM defines a single port type. Each component can interpret the same
message as mere data or as a service request depending on its FSM. The semantics
of communications between WCOMM components is, by default, asynchronous no-
reply, because it makes no assumptions about the behaviour of other components.
Other communication semantics, such as synchronous reply, can be implemented in the
FSM. We think that the asynchronous approach provides independence of execution and
favours the low coupling between components, although it could introduce additional
complexity in the FSM when synchronous reply semantics is needed.

Regarding component’s execution model, BCM comprises three FSMs: (1) the life
cycle FSM, which defines the different stages from the creation to the finalization of the
component, is present in all component-based approaches; (2) the functional algorithm
FSM, to specify the behaviour/algorithm of a component (WCOMM components are
white-boxes with explicit behaviour expression; and (3) the interface FSM, which
defines constraints on the execution order of the operations specified by the interface.
These constraints are implicit in the functional FSM of WCOMM components.

Concurrency, Component Deployment and Real Time Issues
One of the most differentiating aspects of our approach in our opinion is the
concurrency management and flexible deployment of the application. By means of
the orthogonal regions, it is possible to define potential internal concurrency in the
WCOMM components (see Fig. 4 in Section 4.4). The transformation that generates
the deployment model hides all the distribution complexity to application developers.
The deployment model allows distributing the execution of the orthogonal regions in
different threads. This allows grouping the activities performed by different components
according to their timing requirements, since regions of different components can be
assigned to the same thread. The tool chain hides all the complexity of creating and
managing processes and threads, as well as their synchronization and communications
mechanisms, but at the same tame allows developers to define their number, the
activities that they should execute and their periods of execution.

Regarding real-time issues, the application timing requirements can be explicitly
defined in the WCOMM models at the level of activity. The FraCC design and the
way the regions are mapped to threads allow a model transformation to generate a
schedulability analysis file for the Cheddar tool to verify that the considered deployment
meets the deadlines. We measure the execution time of the activities in a isolation,
and then use this data in conjunction with the deployment model, the information
of the operating system scheduler and the information of the framework behavior to
generate a schedulability analysis model that serves as input to the Cheddar analyzer.
If a deployment is not schedulable, the developer can modify it. If no deployment is

A Component-Based Meta-Model and Framework 347

schedulable, the developer can: (1) modify the application architecture, and (2) change
the algorithms implementations.

4 Applied Design Process with C-Forge for Robotic Applications

4.1 The Robotic Platforms in Project MISSION

C-Forge has been used to develop the robotic control software in the project
“Comprehensive framework for software development of autonomous underwater
vehicles based on models, components and frameworks (MISSION)”. This project
started from a previously developed Remote Operated underwater Vehicle. To ease the
testing of the functionality, we used two terrestrial vehicles with the same hardware
that the AUV. Fig. 2 shows the common hardware architecture for all the robots: (a) the
NI LabVIEW Robotics Starter Kit, DaNI, (b) a robotized golf cart, VEGO, developed
by the authors in a previous project and (c) the underwater vehicle. As can be seen
in Fig. 2, the CompactRIO executes low level control routines and sensor acquisition,
while higher level control tasks have been implemented using C-Forge to run in an
on-board embedded PC with a wireless internet link to the remote HMI.

LabVIEW: Low Level Controller

FraCC connector

C FORGE: High Level Controller

CRIO connector

Onboard Embedded PC

TCP/IP
PAC - CRIO

C FORGE:
Remote HMI

Wireless
TCP/IP

PAC - MPC5200 400-MHz
processor - Wind River
VxWorks real-time OS
www.ni.com/compactrio/

Embedded PC Nuvo-
1300af-620M (Intel®
Core™ i7-620M)

Fig. 2. Common hardware architecture

Fig. 3 shows a three-tier component-oriented architecture modelled with a graphical
tool included in C-Forge. A top layer for mission planning communicates with the
central execution component (C_MissionSequencer) which sequences the tasks to the
lower tracking and obstacle avoidance layer in contact with the CRIO connector. This
architectural diagram is a computational model itself that can be refined, executed and
transformed into other models (e.g., analysis models), or to executable code. Due to
space limitations and the focus of the conference, this article gives more importance
to the explanation of how to use C-Forge to develop a robotics application rather than
the detailed explanation of the application itself. A closer look for another underwater
vehicle development can be found in a recent publication [9].

348 F.J. Ortiz et al.

C_UserInterface C_MissionPlanner

C_MissionSequencer

C_PathTracker

C_PathPlanner

C_ObstAvoider

C_CRIO_Connector

C_Localizer

POut_Plan

PIn_Plan

PIn_OAGoal

PIn_PosePIn_LIDARPOut_Goal

PIn_Goal

POut_UserGoal

POut_LIDAR POut_Pose

PIn_UserGoal

PIn_RealPath

POut_RealPath

PIn_PathDeviation
POut_PathDeviation

PIn_PosePIn_LIDAR

POut_RealPose

PIn_RealPose

POut_Mission
PIn_Mission

POut_MissionSts
PIn_MissionSts

PIn_PlanSts

POut_PlanSts
PIn_LocalizeReport

POut_Report PIn_Path

POut_Path

PIO_ReqPath
PIO_ReqPath

POut_CurrentPath
PIn_CurrentPath

PIn_TrackSts

POut_TrackSts

Fig. 3. General component-oriented architecture for robots in MISSION

4.2 The Design of Simple Components

Each component in Fig. 3 is a WCOMM simple component with its behaviour defined
by means of a FSM including orthogonal regions when needed, and the activity shell for
each state (Fig. 4). Application data types and messages are specified by using a textual
tool along with the graphical tool to define simple components. The whole process is
iterative and incremental until the final design of each component is reached, with a
clear definition of ports’ messages. As shown on the right of Fig. 4, the designer has
a graphical palette that allows him/her to define component ports, along with regions,
states, transitions, events, etc. In this phase, the ports are initially empty, they will be
completed in accordance with messages when the input and output pins are added to
activities. Each pin represents a typed message in the activity, which can be associated
with data in ports or with an event that will generate a transition in a FSM. By joining
graphically these pins to ports, messages will appear in the corresponding port.

As an example, Fig. 4 shows the component C_MissionSequencer which contains
three concurrent regions. Messages in ports can provide the components with
information but also generate an event, e.g., event misEnd in the port POut_PlanSts.
These regions process in parallel the three tasks to be performed by the component:
(1) R_ProcessingCmds processes the mission commands and reports arriving
from C_MissionPlanner and C_Localizer. It also reports states of lower layers;
(2) R_MissionSequencer interprets and sequences the execution of every task included
in the mission, e.g. requiring a new path plan to C_PathPlanner; (3) R_MotionMonitor
monitors the current movement of the vehicle, in normal or in emergency states. Once
the models of all simple components are completed, the application model itself is
refined to include them, as shown in Fig. 3.

4.3 Detailed Implementation and Flexible Deployment with FraCC

Once finished the WCOMM model, according to the workflow of Fig. 1, the user
executes the model to text transformation (A) to generate the C++ skeletons of the

A Component-Based Meta-Model and Framework 349

Fig. 4. Design of the C_MissionSequencer component. Graphical links from Pin to Port messages
are displayed only when editing the state, the rest remain hidden.

software code corresponding to the “shell” of the activities (including the access code to
input and output messages and events). The developer fills in methods init(), onEntry(),
onExit(), doCode() (see Fig. 5), using methods get_XX() and set_XX() to access the
information in input and output pins. The method doCode() is executed while the FSM
is in the state associated to the activity. It represents a step of the executed algorithm.

Fig. 5. Code excerpt for activity A_ProcessingCmds. The skeleton of the class where the user
adds the code is generated by the model-to-text transformation (A) in Fig. 1.

Fig. 5 exemplifies how the developer codifies the A_ProcessCmds algorithm. The
definition of AUVCAMsgs is automatically generated by the toolchain. Once completed,
the code is compiled as dynamic libraries. These libraries can independently evolve
since they are linked to the model (not embedded in it). This separation of concerns
provides great flexibility since the code and the models can be maintained separately.

350 F.J. Ortiz et al.

The second step of the workflow is a model-to-model transformation to obtain the
FraCC deployment model with a default configuration that includes a single process
per node and a single thread per component containing the component regions. The
developer can modify this configuration as needed. Initially, the MISSION Control
Architecture is distributed on two computers: (1) a tele-operation station computer
which is the operator control unit (including the components C_MissionInterface
and C_MissionPlanner without hard RT requirements), and (2) an on-board control
computer (AUV) with the rest of components. Therefore, the default deployment is
divided into two nodes with one processor in each one, as shown in Fig. 6.

Fig. 6. Deployment model and schedulability analysis with Cheddar

Finally, from this default deployment, an automatic transformation generates a
temporal model to carry out an early verification of the RT requirements of the on-
board components by using Cheddar analysis tool. For a detailed discussion, see [9].

5 Conclusions and Future Work

In this paper we have presented a description of C-Forge: a model-driven and
component-oriented toolchain. The explanation of the design process has been
illustrated with its application to the development of control software for different
autonomous mobile robots of the national project MISSION. Compared to other
toolchains, the main innovating aspects could be summarized as:

– WCOMM components are white-boxes with explicit support to define potential
concurrency inside components at the model level. The behaviour of the component
is modelled by FSM but with the novelty of including an activity inside each state

A Component-Based Meta-Model and Framework 351

to model the shell of an algorithm, which will be developed by the user in further
steps, allowing to evolve independently. Communication among components is
performed by typed asynchronous no-reply messages through compatible ports,
thus assuring a low coupling among components.

– The run-time support for executing WCOMM components is provided by the C++

framework FraCC, which includes a model loader that directly interprets WCOMM
models and execute applications by loading the previously compiled activities code.

– FraCC have been designed to provide the user with explicit control over
application concurrency, in terms of both the number of threads and their temporal
characteristics, so that compliance with them can be verified.

– The separation between architecture and deployment enables application develop-
ers to generate, analyze and test various deployment scenarios without changing
the component definitions and the structural view of the application architecture.

Future investigation will include the RT analysis of the execution of tasks
from additional AUV capabilities required by other missions. A study on potential
combinations of deployment configurations will also be considered in order to analyse
resource management in AUV systems.

References

1. Crnkovic, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A classification framework for
software component models. IEEE Trans. Software Eng. 37(5), 593–615 (2011)

2. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
communication patterns as key for a robotics component model. In: Introduction to Modern
Robotics, pp. 119–150. iConcept Press (2012)

3. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-specific
language to design, simulate and deploy robotic applications. In: Noda, I., Ando, N., Brugali,
D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 149–160. Springer, Heidelberg
(2012)

4. Bézivin, J.: On the unification power of models. Journal of Systems and Software 4(2),
171–188 (2005)

5. Mens, T., van Gorp, P.: A taxonomy of model transformation. Electronic Notes in Theoretical
Computer Science 152, 125–142 (2006)

6. Bruyninckx, H., Hochgeschwender, N., Gherardi, L., Klotzbücher, M., Kraetzschmar, G.,
Brugali, D.: The brics component model: A model-based development paradigm for complex
robotics software systems. In: Proc. of the 28th Annual ACM Symposium on Applied
Computing, pp. 1758–1764. ACM Press (2013)

7. Singhoff, F., Plantec, A., Dissaux, P., Legrand, J.: Investigating the usability of real-time
scheduling theory with the cheddar project. Journal of Real Time Systems 43(3), 259–295
(2009)

8. OMG_MARTE. Uml profile for marte: Modeling and analysis of real-time embedded
systems v1.1 (2011)

9. Ortiz, F., Insaurralde, C., Alonso, D., Sánchez, F., Petillot, Y.: Model-driven analysis and
design for software development of autonomous underwater vehicles. In: Robotica, pp. 1–20
(April 2014)

10. Shakhimardanov, A., Hochgeschwender, N., Kraetzschmar, G.: Component models in
robotics software. In: Proc. of the Performance Metrics for Intelligent Systems Workshop,
PerMIS 2010 (2010)

Merging Partially Consistent Maps

Taigo Maria Bonanni, Giorgio Grisetti, and Luca Iocchi

Dept. of Computer, Control and Management Engineering
Sapienza University of Rome

Via Ariosto 25, 00185, Rome, Italy
{bonanni,grisetti,iocchi}@dis.uniroma1.it

Abstract. Learning maps from sensor data has been addressed since
more than two decades by Simultaneous Localization and Mapping
(SLAM) systems. Modern state-of-the-art SLAM approaches exhibit ex-
cellent performances and are able to cope with environments having the
scale of a city. Usually these methods are entailed for on-line operation,
requiring the data to be acquired in a single run, which is not always
easy to obtain. To gather a single consistent map of a large environ-
ment we therefore integrate data acquired in multiple runs. A possible
solution to this problem consists in merging different submaps. The lit-
erature proposes several approaches for map merging, however very few
of them are able to operate with local maps affected by inconsistencies.
These methods seek to find the global arrangement of a set of rigid bod-
ies, that maximizes some overlapping criterion. In this paper, we present
an off-line technique for merging maps affected by residual errors into a
single consistent global map. Our method can be applied in combination
with existing map merging approaches, since it requires an initial guess
to operate. However, once this initial guess is provided, our method is
able to substantially lessen the residual error in the final map. We vali-
dated our approach on both real world and simulated datasets to refine
solutions of traditional map merging approaches.

1 Introduction

To autonomously execute complex tasks such as object delivery, house cleaning,
etc., mobile robots need to know their operating environment. This is usually
addressed by the Simultaneous Localization and Mapping (SLAM) problem, that
provides an estimate of the map and of the robot trajectory based on the robot
measurements.

SLAM has been object of research for more than two decades, and effective
solutions are available [21],[18],[9],[22],[16],[19]. The most common sensor used
to build robotic maps is the laser scanner, and existing approaches can effectively
be used to construct maps.

Regardless the technique employed, unless one uses some sort of absolute sen-
sor like a GPS, even the most effective methods might fail when the environment
size becomes too big. Acquiring data for SLAM is an error-prone procedure that
requires attention to obtain satisfying results. Often the operator forgets to visit

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 352–363, 2014.
c© Springer International Publishing Switzerland 2014

Merging Partially Consistent Maps 353

(a) Consistent SLAM result of a first
mapping session

(b) Consistent SLAM result of a sec-
ond mapping round

(c) Standard map merging approach
on rigid bodies

(d) Our map merging approach
based on deformable bodies

Fig. 1. Motivating example of our approach. a), b) are the input graphs. The global
map shown in c) is affected by inconsistencies that are corrected by our algorithm, as
shown in d).

certain locations during data acquisition, or makes mistakes that challenge the
SLAM engine he is using (e.g. in a VisualSLAM session one might enter in a
room with poor light conditions).

Furthermore, typical SLAM systems require to operate on data gathered in a
single session. In other words they require a continuous trajectory to produce a
consistent map. If the environment changes, a new map needs to be computed
from new data. This results in the need of performing tedious and error prone
data acquisition sessions, each time the environment changes. A branch of liter-
ature addresses this problem by employing a team of robots, instead of a single
one, thus addressing the multi-robot SLAM problem. Alternatively one might
merge different local maps, acquired at different points in time. If the sole aim
is to get the map, the latter approach has obvious advantages, since it requires
less resources. Furthermore, in case the environment changes, new data have to
be acquired only in the changed portion, and be subsequently integrated in the
global map, after removing the outdated local map.

In this paper, we present a novel approach for merging partially consistent
maps. Typical map merging methods regard the maps as rigid bodies. A solu-
tion for map merging is a set of rigid transformations between the maps that
maximizes their consistent overlap. This has the obvious limitation of not deal-
ing with noise that might affect the local maps, and result in artifacts. This
error is always present and comes from the process used to estimate the input

354 T.M. Bonanni, G. Grisetti, and L. Iocchi

maps. Conversely, our method operates on maps that are regarded as network of
springs and masses. We reduce the problem of merging two maps to the problem
of deforming two networks onto each other so that the residual energy of the
system is minimal. This corresponds to finding the configuration of the nodes
in the two networks that best preserves the original layout of the input maps.
Notice that the algorithm presented in this work is orthogonal to existing map
merging methods, and can be used to refine their solutions when the input maps
are affected by substantial error.

In case one uses the well known graph-based formulation of SLAM [8], such
a network is already provided as a pose graph. If the map is only available as
an occupancy grid or an image, we detail how to obtain a feasible pose graph
using Voronoi diagrams. By operating on graphs, our method benefits from a
reduced dimensionality, thus achieving efficient computation while preserving the
details of the input data. In Figure 1 we provide a motivating example for our
work. Fig, 1a) and 1b) are the SLAM results of two different mapping session,
performed in the same environment. We want to merge these maps into a single
one, possibly minimizing the error. Since each map is affected by residual errors,
combining them through a single rigid transformation propagates the error in the
global map, as shown in Fig. 1c). Instead, our approach, illustrated in Fig. 1d),
can achieve the goal by deforming the maps onto each other. This has the dual
effect of increasing the global consistency and of providing a consistent map for
navigation.

2 Related Work

State-of-the-art solutions to map merging are based on image registration tech-
niques. The partial maps are regarded as tiles of an image that should be com-
posed to form the global map. Erinc et al., [7], present an anytime merging
technique based on appearance maps, exploiting image similarity to find candi-
dates. Other approaches, [20], [5], are based on the spectral analysis of the Hough
transforms of the maps to merge. These methods aim at finding the position of
each local map with respect to the frame of the global map. A shortcoming of
this class of algorithms is their sensitivity to errors in the local maps. When these
local maps are subject to deformations, a set of pure rigid transformations is not
sufficient to compute a globally consistent map. Our method is orthogonal to
these approaches. In our current implementation we did not focus on providing
an initial alignment between the maps. This task can be solved by using one of
the methods above. Conversely, our approach seeks to maximize the consistency
of partially aligned maps, by warping them onto each other.

Map merging has been addressed also in the context of multi-robot SLAM.
Léon et al. proposed an approach based on particle filters. Their SLAM sys-
tem merges the maps of different robots by using the map estimated by one
robot as a measurement in the filter of another robot. Carlone et al., [4], present
an approach using an estimation kernel to compute the relative transformation
among robots, without any a-priori knowledge. Leung et al., in [15], presented a

Merging Partially Consistent Maps 355

decentralized and distributed algorithm for cooperative SLAM, based on a set
of rules for the interchange of information. Cunningham et al., in [6], presented
an approach called Decentralized Data Fusion (DDF) for the generation of a
common map called condensed map built after the marginalization of shared
landmarks. Lazaro et al., [14], presented a multi-robot SLAM approach based on
condensed measurements for the exchange of information among robots. These
methods are designed to operate within a full SLAM pipeline which requires to
cope with on-line aspects and to deal with communication issues. In the con-
text of multi-agent systems, Jennings et al. [12] presented a distributed mapping
approach that relies on an approximation of generalized Voronoi graphs, built
during the mapping procedure, and a simple distance-based metric for matching
portions of graph. Topological approaches address the problem framing it as a
graph isomorphism, where one wants to find the set of equivalences between
nodes and edges of different subgraphs [3]. Along this line of research, Huang et
al. [11], presented an approach merging topological maps inspired to maximal
common subgraph problem. After building an initial set of matching hypotheses
among vertices of the graphs, these hypotheses are then discarded or confirmed
considering geometric features of the environment. These methods, however re-
quire a symbolic representation of the map, which is not provided by common
SLAM engines.

In summary, existing map merging methods aim at getting a global alignment
between local maps, but they are highly sensitive to noise in the input. Multi
robot SLAM systems are able to deal with this problem, but they are rather
complex and, in order to operate correctly, they require the data to be acquired
at the same time. In this paper we present an approach to generate a globally
consistent map out of noisy local maps.

3 Graph-Based Map Merging

Our approach is an off-line procedure for merging partially consistent local maps
having a limited overlap. The most suitable representation for our purpose is to
model the maps using graphs of measurements, as in the graph-based SLAM
formalization [8]. To align the maps into a globally consistent one, we iteratively
deform one of them onto the other, connecting robot poses, which belong to
different graphs, if the observations made at these nodes are similar.

The remainder of this section is organized as follows. In Section 3.1, we detail
our formalization of maps as deformable bodies. Since graphs of measurements
from SLAM are not always available, we propose a method for the extraction of
deformable networks out of occupancy grid maps in Section 3.2. Subsequently,
in Section 3.3, we address how the inter-graph data association is carried out.

3.1 Map Representation

According to the graph-based SLAM formalization, we represent a deformable
map as a graph of the form: G = 〈X , C〉. Each node x ∈ X is associated to

356 T.M. Bonanni, G. Grisetti, and L. Iocchi

a robot pose in the environment. Each edge e = 〈xi,xj〉 ∈ C expresses spatial
relationships among poses, either from the robot motion or by correlating similar
observations of the environment. Since the nodes of this graph are robot poses,
they are also called pose graphs.

The energy or log likelihood of a configuration of nodes can be formulated
as follows. Let x = (x1, . . . ,xn)

T be a vector of poses, where xi describes the
pose of node i. Let zij and Ωij be respectively the mean and the information
matrix of an edge between the node i and the node j. In energetic terms, zij
can be seen as equilibrium point of a spring with stiffness Ωij connecting the
masses located at xi and xj . If this edge represents a virtual measurement, its
equilibrium point is the transformation that makes the observation acquired
from i maximally overlap with the observation acquired from j. Let ẑij(xi,xj)
be the relative transformation between the two nodes. For a given configuration
the energy lij of a measurement zij is therefore

lij ∝ [zij − ẑij(xi,xj)]
TΩij [zij − ẑij(xi,xj)]. (1)

Let e(xi,xj , zij) be a function that computes the distance from the two poses
to the equilibrium point. For simplicity of notation, we will encode the indices
of the measurement in the indices of the error function

eij(xi,xj) = zij − ẑij(xi,xj). (2)

Minimizing the energy of the graph consists in finding the configuration of
the nodes x∗ that minimizes the energy of all the edges

F(x) =
∑

〈i,j〉∈C
eTijΩijeij , (3)

thus, it seeks to solve the following equation:

x∗ = argmin
x

F(x). (4)

A graph-based SLAM engine will already provide a graph in a minimal energy
configuration. However, when merging two graphs, the individual solutions might
not be globally optimal due to the addition of constraints between different
graphs. Thus, to find the most likely configuration, we need to compute a new
assignment of poses that minimizes the following equation:

F(X) =
∑

〈i,j〉∈C1

eTijΩijeij +
∑

〈i,j〉∈C2

eTijΩijeij +
∑

〈i,j〉∈C12

eTijΩijeij (5)

Here C1 and C2 are respectively the edges in the first and the second graphs,
while C12 are the edges connecting the first and the second graph. To solve this
problem we use the open source g2o optimization package [13]. The effects of
potential outliers is reduced by using Dynamic Covariance Scaling [1] to lessen
the contribution of edges that disagree with their neighbors.

Merging Partially Consistent Maps 357

3.2 Obtaining the Representation from Grid Maps

If we have only sets of grid maps, we can still generate the required pose graphs,
complete of measurements, by using Voronoi diagrams. The Voronoi diagram
can be straightforwardly extracted as the locus of points in the free space that
are equidistant from at least two occupied cells in the map. On grid maps,
the Voronoi diagram provides also a good estimate of the topology of the envi-
ronment and a plausible trajectory for the robot. The pose graph is computed
sampling points of the diagram and correlating nearby nodes according to its
connectivity. Finally, the observations are obtained by ray-tracing the obstacles
of the grid map to the sampled poses, simulating the behavior of a laser scanner.
The typical output of the procedure is shown in Figure 2.

(a) Input grid map (b) Extracted Voronoi dia-
gram

(c) Output graph of mea-
surements

Fig. 2. Extracting the Voronoi Diagram out of an input grid map, we are able to
generate a graph of measurements compliant with our graph matcher

3.3 Data Association among Partially Consistent Maps

In this section we describe our graph-merging procedure. The input of our al-
gorithm are two graphs Gr and Gm, respectively the reference graph and the
matchable graph. The output is a set of edges M connecting vertices of Gr to
vertices of Gm. We assume that the two graphs have been partially overlayed
in a region around an initial node xr of the matchable graph. We progressively
deform the matchable graph, towards the reference, according to a breadth first
visit. Each time we expand a node xc in the current graph, we seek for neigh-
bors in the reference and we attempt to match the observations through a data
association routine. If the results of the observation matching are satisfactory,
we initialize the position of the expanded node according to the one provided by
the matching procedure. This will make the two corresponding observations in
the two different maps overlapping, and we add the corresponding edge toM.

Subsequently, we schedule for expansion all the neighbors of xc in Gm, and we
set their position based on the newly computed position of xc and the connecting
edge. The pseudo-code for this procedure is shown in Algorithm 1.

358 T.M. Bonanni, G. Grisetti, and L. Iocchi

Notice that the algorithm is independent from the sensor used. The only
requirement is to provide a function tryMatch(n,xc) that attempts to register
the observation made from two nodes, and if found, returns the corresponding
transformation. In our current implementation the function tryMatch(n,xc) is
implemented by a scan-matching routine.

Algorithm 1. Graph Merge

Require: Gr: reference graph, Gm: current graph, xm : initial vertex in Gm, Δ: mini-
mum distance for matching, minScore: minimum score to accept a match.

Ensure: M : edges connecting vertices of Gr to vertices of Gm.

M := ∅; {Initialize the output set of measurements}
xm.setParent(xm);
queue.pushBack(xm);
while ! queue.empty() do

xc = queue.front(); {Extract the first node of the matchable graph}
queue.popFront();
N = findNeighbors(Gr,xc); {Find the neighbors of xc in the reference graph}
S := ∅; {clear the set of matching results}
for all n ∈ N do {Try to match each neighbor and put the results in S}

if |n− xc| < Δ then
S.add(tryMatch(n,xc));

end if
end for
s = bestMatch(S); {Pick up the best match}
if s.score() > minScore then

M.add(edge(xc,n, s.transform())); {Create a new edge and add it to M}
xc = n⊕ s.transform(); {Initialize xc applying the transform of s to n}

end if
for all xn ∈ neighborsOf(xc) do

if xn.parent() == null; then
xn.setParent(xc);
e = edgeBetween(xc, xn);
xn = xc ⊕ e.transform();
queue.pushBack(xn);

end if
end for

end while

4 Experiments

We evaluated our approach on real and simulated robot systems, and through
synthetic experiments. Experiments with raw real data show the applicability of
our system to a practical scenario, while synthetic experiments characterize the
performance of our method with varying parameters.

Merging Partially Consistent Maps 359

(a) First graph (b) Second graph (c) Global map

Fig. 3. This figure illustrates the behavior of our algorithm on the Bremen University
dataset. a), b) are the input pose graphs, representing different portions of the same
environment. c) shows the merged pose graph.

4.1 Raw Data Experiments

Our scenario consists in a mobile robot equipped with a laser range finder and
a test environment. We acquired the datasets in different, but partially over-
lapping, portions of the environment. We processed each dataset with a graph-
based SLAM engine to obtain the corresponding pose graph. We then compute
two solutions, one obtained using our approach, and another derived via a gradi-
ent descent algorithm. Finally, the computed solutions are compared evaluating
their entropy, [2]. To analyze the behavior of the algorithm when working on grid
maps, obtainable using also non graph-based SLAM engines like GMapping [9],
we computed an occupancy grid map out of each pose graph. From each grid
map, we recompute a pose graph as described in Section 3.2, and we seed them
as input to our algorithm.

We conducted the experiments above using a real robot in our building (Dis-
Basement). In addition, we used some public datasets [10] to generate realistic
maps. We then used the Stage simulator to record multiple datasets of the same
environment. Table 1 summarizes the results of our experiments, while Figure 3
shows a typical result. In all cases we analyzed the final solution of our system
provided a lower entropy than the baseline, thus a more consistent map.

4.2 Synthetic Experiments

We found that the dominant aspect influencing the behavior of our system is
the error affecting the local maps solutions. To quantify this effect, we generated
a set of synthetic pose graphs of a robot moving in a Manhattan world. We
generated edges between nearby poses and we corrupted them with Gaussian

360 T.M. Bonanni, G. Grisetti, and L. Iocchi

Table 1. Analysis of the entropy of reconstructed global maps. We compare the result
of a gradient descent-based technique, second column, against the approach presented
in this paper, third column. In bold, we highlight the best result, for each dataset used
for the validation.
A more detailed description, together with the datasets, can be found at:
www.dis.uniroma1.it/~bonanni/datasets

Dataset Single Rigid Graph-Based
Transformation Map Merging

Dis-Basement-Small 2039.99 1538.54

Dis-Basement-Big-Real 2144.23 2090.17

Dis-Basement-Big-Voronoi 4059.91 3856.92

Dis-F1-Real 5639.96 5528.97

Dis-F1-Voronoi 5928.52 5778.84

UBremen-Real 3436.44 3308.56

Table 2. Analysis of the absolute trajectory error at increasing levels of gaussian
noise. For the translational error, we perturbed both the x, and y axes. In bold, we
highlight the best result, at the given noise configuration. Our approach, fourth column,
offers better performance with respect to the alignment obtained by a single rigid
transformation, third column.

Translational Rotational Rigid Transformation Deformable Bodies
error [x, y] (m) error (deg) ATE ATE

[0.05, 0.01] 2 469.074 10.2425

[0.1, 0.01] 2 721.868 42.5413

[0.15, 0.01] 2 719.509 150.515

[0.2, 0.01] 2 877.672 243.552

[0.25, 0.01] 2 989.12 523.802

[0.05, 0.02] 2 402.974 9.49795

[0.1, 0.02] 2 682.997 32.4582

[0.15, 0.02] 2 893.562 62.5047

[0.2, 0.02] 2 1029.25 296.88

[0.25, 0.02] 2 1130.6 394.299

[0.05, 0.03] 2 336.44 10.4215

[0.1, 0.03] 2 593.754 30.4705

[0.15, 0.03] 2 825.884 59.5759

[0.2, 0.03] 2 1058.69 310.821

[0.25, 0.03] 2 1329.29 421.79

noise. The noise in the edges models the errors in the matching procedure used
by a SLAM algorithm, and affects the final solution. Given two partial pose
graphs, we compute the ideal merged graph by adding all the edges between
nearby nodes in the two input graphs and we optimize the final result. This
result is the best we can do with the noisy input data, and serves us as a baseline.
The ideal edges are computed from the ground truth accessible by the simulator.

www.dis.uniroma1.it/~bonanni/datasets

Merging Partially Consistent Maps 361

(a) Reference trajectory without
noise

(b) Matchable trajectory without
noise

(c) Reference trajectory with noise (d) Matchable trajectory with
noise

(e) Standard map merging ap-
proach

(f) Our approach based on de-
formable bodies

Fig. 4. This figure shows a synthetic experiment where we evaluate our approach on
a simulated Manhattan world. a), b) show the ground truth trajectories of the robot.
c), d) show the outcome of a graph-based SLAM algorithm on these trajectories. The
residual error results in inconsistencies. e), f) show the result of a standard map merging
procedure that just overlays the maps with a single transformation and of our approach.

Figure 4 shows the typical pose graphs used in these experiments. In addition
to the sensor noise, we also characterized the potential failures of the matching
routine used in the tryMatch() function of Algorithm 1. The chances of success
of a scan matcher depend mostly on how good is the initial guess. We simulated
a scan matcher, by implementing a tryMatch() function that, having access to

362 T.M. Bonanni, G. Grisetti, and L. Iocchi

the ground truth, reports a solution only if the relative transform of the nodes
passed as argument is close to the ground truth. Furthermore, we corrupt the
resulting transformations, by adding Gaussian noise.

We evaluate the quality of the solution of the graph matching by measuring
the Absolute Trajectory Error (ATE), [23], between the ideal solution and the one
computed by our algorithm. For sake of comparison, we also compute the ATE
of the best solution that can be found by a single rigid transformation, by using
the Iterative Closest Point algorithm, ICP, [17], between corresponding nodes.
In all cases the ATE of the merged map using our approach was substantially
smaller than the baseline obtained by rigid body transformation. As expected,
the quality of the solution decreases as the error residual increases, and the
estimate is mostly affected by the rotational part of the error.

5 Conclusion

In this paper we presented a generic approach to merge maps described as pose
graphs. In case the maps are available as grid maps we provided a technique to
extract plausible pose graphs based on Voronoi diagrams. Our method is able to
cope with residual errors affecting the input maps, and to remove the artifacts
that a standard map merging method leaves in. We validated our approach on
real world datasets, and we characterized its sensibility to the noise in the input
solutions by simulation, although a more detailed evaluation and a more precise
comparison with other existing methods is in progress. Future work is mainly
focused at extending the approach to the 3D case, since it represents the new
horizon of different modern SLAM techniques.

Acknowledgments. This work has partly been supported by the European
Commission under FP7-600890-ROVINA.

References

1. Agarwal, P., Tipaldi, G.D., Spinello, L., Stachniss, C., Burgard, W.: Robust map
optimization using dynamic covariance scaling. In: Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA) (May 2013)

2. Blanco, J.L., Fernández-Madrigal, J.A., Gonzalez, J.: An entropy-based measure-
ment of certainty in rao-blackwellized particle filter mapping. In: 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3550–3555. IEEE
(2006)

3. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications.
In: Proc. Vision Interface, vol. 2000, pp. 82–88 (2000)

4. Carlone, L., Ng, M.K., Du, J., Bona, B., Indri, M.: Rao-blackwellized particle filters
multi robot slam with unknown initial correspondences and limited communication.
In: 2010 IEEE International Conference on Robotics and Automation (ICRA),
pp. 243–249. IEEE (2010)

5. Carpin, S.: Fast and accurate map merging for multi-robot systems. Autonomous
Robots 25(3), 305–316 (2008)

Merging Partially Consistent Maps 363

6. Cunningham, A., Paluri, M., Dellaert, F.: Ddf-sam: Fully distributed slam using
constrained factor graphs. In: 2010 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 3025–3030. IEEE (2010)

7. Erinc, G., Carpin, S.: Anytime merging of appearance-based maps. Autonomous
Robots 36(3), 241–256 (2014)

8. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based
slam. Magazine on Intelligent Transportation Systems 2(4), 31–43 (2010)

9. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Trans. on Robotics 23(1), 34–46 (2007)

10. Howard, A., Roy, N.: The robotics data set repository, Radish (2003),
http://radish.sourceforge.net/

11. Huang, W.H., Beevers, K.R.: Topological map merging. The International Journal
of Robotics Research 24(8), 601–613 (2005)

12. Jennings, J., Kirkwood-Watts, C., Tanis, C.: Distributed map-making and navi-
gation in dynamic environments. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, pp. 1695–1701. IEEE (1998)

13. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general
framework for graph optimization. In: Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA) (2011)

14. Lazaro, M., Paz, L., Piniés, P., Castellanos, J., Grisetti, G.: Multi-robot slam using
condensed measurements. In: 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 1069–1076. IEEE (2013)

15. Leung, K.Y.K., Barfoot, T.D., Liu, H.H.: Distributed and decentralized cooperative
simultaneous localization and mapping for dynamic and sparse robot networks.
In: 2011 IEEE International Conference on Robotics and Automation (ICRA),
pp. 3841–3847. IEEE (2011)

16. Lu, F., Milios, E.: Globally consistent range scan alignment for environment map-
ping. Autonomous Robots 4, 333–349 (1997)

17. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching
2D range scans. Journal of Intelligent and Robotic Systems 18(3), 249–275 (1997)

18. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solu-
tion to simultaneous localization and mapping. In: Proc. of the National Conference
on Artificial Intelligence (AAAI), Edmonton, Canada, pp. 593–598 (2002)

19. Olson, E., Leonard, J., Teller, S.: Fast iterative optimization of pose graphs with
poor initial estimates. In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), pp. 2262–2269 (2006)

20. Saeedi, S., Paull, L., Trentini, M., Seto, M., Li, H.: Map merging using hough peak
matching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4683–4688. IEEE (2012)

21. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial realtionships in
robotics. In: Cox, I., Wilfong, G. (eds.) Autonomous Robot Vehicles, pp. 167–193.
Springer (1990)

22. Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., Durrant-Whyte, H.: Si-
multaneous localization and mapping with sparse extended information filters.
Int. Journal of Robotics Research 23(7/8), 693–716 (2004)

23. Wulf, O., Nuchter, A., Hertzberg, J., Wagner, B.: Ground truth evaluation of large
urban 6d slam. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS 2007, pp. 650–657. IEEE (2007)

http://radish.sourceforge.net/

Lower Limb Stiffness Estimation

during Running: The Effect
of Using Kinematic Constraints

in Muscle Force Optimization Algorithms

Roberto Bortoletto1, Enrico Pagello1, and Davide Piovesan2

1 Intelligent Autonomous Systems Laboratory (IAS-Lab.), University of Padua,
Department of Information Engineering, Via G. Gradenigo 6/b, 35131 Padova, Italy

{roberto.bortoletto,epv}@dei.unipd.it
2 Biomedical Program, Mechanical Engineering Department,

Gannon University, 109 University Square, PMB #3251, Erie, PA 16541, USA
piovesan001@gannon.edu

Abstract. The focus of this paper is on the effect of muscle force op-
timization algorithms on the human lower limb stiffness estimation. By
using a forward dynamic neuromusculoskeletal model coupled with a
muscle short-range stiffness model we computed the human joint stiff-
ness of the lower limb during running. The joint stiffness values are calcu-
lated using two different muscle force optimization procedures, namely:
Toque-based and Torque/Kinematic-based algorithm. A comparison be-
tween the processed EMG signal and the corresponding estimated mus-
cle forces with the two optimization algorithms is provided. We found
that the two stiffness estimates are strongly influenced by the adopted
algorithm. We observed different magnitude and timing of both the esti-
mated muscle forces and joint stiffness time profile with respect to each
gait phase, as function of the optimization algorithm used.

Keywords: joint stiffness, muscle force, optimization algorithms.

1 Introduction

During the last two decades the interest in understanding the physiological basis
of human and animal movement has resulted in an extensive range of experi-
ments. The study of human movement has been improved through the introduc-
tion of muscle-driven dynamic simulations. This approach includes mathematical
models of muscle activation and contraction dynamics and allows for the calcu-
lation of muscle forces, fiber lengths, and other parameters that cannot be easily
measured in-vivo. Muscle-driven simulations have been used in a wide variety
of applications, including the analysis of human walking [1–3], running [4], and
pathological gait [5]. Biomechanical models have been used in several studies to
predict the muscle forces and joint torques along with human body motion. One
of the first muscle’s mathematical models was proposed by Hill [6]. Gordon et al.
[7] refined such model by incorporating the dependence between changes in mus-
cle force as function of muscle lengths and contraction speeds. Zajac extended

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 364–375, 2014.
c© Springer International Publishing Switzerland 2014

The Influence of Muscle Forces on Lower Limb Stiffness 365

the Hill’s model introducing a muscle-tendon model [8], which is known as Hill-
type muscle force model. The prediction of muscle force can be also calculated
independently from a model by means of optimization algorithms. Such algo-
rithms are usually based on a cost function that depends directly on a physical
parameters such as force variance, energy, muscle stress, to name a few [9–11].
When accomplishing a task, that require both the following of a trajectory and
the exertion of a force, humans need to modulate not only the generated mus-
cle forces, but also the corresponding limb stiffness. During unimpaired gait,
depending on the terrain, one might either walk in a relaxed manner or stiffen
up to increase stability. Several studies have been proposed to estimate the hip
[12], knee [13, 14] and ankle [15] joint stiffness to characterize the mechanical
properties of the whole limb [16–18]. Moreover, a preliminary study about the
incidence of the adopted muscle-tendon model on the joint stiffness estimation
has been proposed in [19].

This paper targets two main research topics: the use of forward dynamic
neuromusculoskeletal modeling to estimate muscle forces, joint moments, and
joint kinematics from biological signal, and the use of muscle short-range stiffness
to estimate human lower limb joint stiffness. In particular, the aim of this study is
to evaluate how the adoption of different muscle force optimization algorithms,
based on the inclusion or exclusion of kinematic constraints, affects the lower
limb stiffness estimation during running.

2 Methods

In this study we performed a series of simulations that coupled a 3D human
musculoskeletal model of the lower limb with a model of muscle stiffness, to
estimate leg’s joint stiffness during running. The algorithm to compute joint
stiffness is dependent on the value of the computed muscle force. We com-
pared the stiffness values obtained in simulation using two different muscle force
optimization procedures, that we call Torque-based Muscle Force computation
and Torque/Kinematic-based Muscle Force computation. The musculoskeletal
model that we used is freely available with the OpenSim1 platform. It includes
seven body segments for each leg: pelvis, femur, patella, tibia-fibula, talus, foot,
and toes. Each foot includes the calcaneus, navicular, cuboid, cuneiformis, and
metatarsal. Each arm is represented by humerus, ulna, radius, and hand. The
joint definitions are derived by [20, 21] and the anthropometry by [22]. The phys-
iological parameters of muscles are in accordance to mean values reported in [23].
92 muscle-tendon actuators represent the main muscle groups: 43 for each leg,
and 6 lumbar muscles. The arm joints are actuated by ideal torque motors. The
experimental dataset used here is freely available within the ”Muscle function of
overground running across a range of speeds”2 section of the SimTk.org3. The
website is a public repository for data, models, and computational tools related

1 OpenSim Project Overview: https://simtk.org/home/opensim
2 Project’s page: https://simtk.org/home/runningspeeds
3 Repository’s home page: https://simtk.org/xml/index.xml

https://simtk.org/home/opensim
https://simtk.org/home/runningspeeds
https://simtk.org/xml/index.xml

366 R. Bortoletto, E. Pagello, and D. Piovesan

to physics-based simulation of biological systems. These data were originally col-
lected with the purpose to better understand how the leg muscles coordinate mo-
tion of the body segments during running. A detailed description of the adopted
experimental protocol is available in [24]. We considered the Electromyographic
(EMG), Motion Capture (MC) and Ground Reaction Forces (GRFs) data re-
ferred to a male subject (age, 19 years; mass, 75.9 Kg; height, 1.82 m; leg length,
1.00 m) that at the time of testing were not suffering from any musculoskeletal
injury likely to adversely affect their sprinting ability. Among the data we con-
sidered a medium-paced running speed at 5.20 ms−1. The raw data, available
in .c3d format4, were processed in Matlab to extract the information relative to
the kinematic, the GRFs and the EMG signals of the subject. The kinematic
and GRFs data were used in OpenSim to scale the musculoskeletal model to
the anthropometry of the real subject, and to compute the joint angle values by
solving the Inverse Kinematics (IK) problem. Then, using the Residual Reduc-
tion Algorithm5 (RRA) we optimized the model adjusting the mass distribution
and joint kinematics to make them consistent with GRFs. The next step was to
solve the Inverse Dynamics (ID) problem to compute the joint torques. At this
point, the force generated by each muscle was estimated by adopting the two op-
timization techniques: Torque-based Muscle Force computation (subsection 2.1)
and Torque/Kinematic-based Muscle Force computation (subsection 2.2), which
do not involve the use of a specific muscle model, but only information about the
Maximum Isometric Force (MIF) exertable by each muscle. The waveforms of
the EMG signals were used to highlight the similarities and differences between
the obtained estimates, compared with the experimental data.

2.1 Torque-Based Muscle Force Computation

The Torque-based Muscle Force computation procedure is based on the use of
an optimization which estimates the distribution of muscle forces for a specific
set of joint torques. The cost function is the sum of the squared muscle forces
(Eq.1), expressed as a fraction of the MIF for each muscle. A set of constraints
was considered such that the resulting muscle forces summed to the specific
joint torque (Eq.2), and muscle forces were positive and less than or equal to
the achievable MIF (Eq.3).

u = min

M∑
i=1

(
Fm,i

F 0
m,i

)2

(1)

τj =
M∑
i=1

rij × Fm,i i = 1, 2, ...,M ; j = 1, 2, ..., N (2)

0 ≤ Fm,i ≤ F 0
m,i (3)

4 C3D File Format Specification: http://www.c3d.org
5 http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+RRA+Works

http://www.c3d.org
http://simtk-confluence.stanford.edu:8080/display/OpenSim/How+RRA+Works

The Influence of Muscle Forces on Lower Limb Stiffness 367

where Fm,i is the muscle force of the i-th muscle and F 0
m,i is the corresponding

MIF, rij is the posture-dependent moment arm for the i-th muscle relative to the
j-th joint, and τj is the torque about the j-th joint. The sum over M elements
corresponds to the number of muscle-tendon actuator crossing the hip, knee and
ankle joint in the model. N is the number of Degrees of Freedom (DOFs). The
data related to F 0

m,i, rij , and τj were taken from the musculoskeletal model and
from the simulation executed within OpenSim. In which the ID problem was
solved taking into account the GRFs. Given these data as input and minimizing
the cost function with respect to the constraints we obtained the corresponding
muscle forces Fm,i. The Torque-based Muscle Force computation procedure was
performed in Matlab environment.

2.2 Torque/Kinematic-Based Muscle Force Computation

The Torque/Kinematic-based Muscle Force computation algorithm represents
the procedure available within OpenSim to compute the muscle excitation and
the corresponding muscle force. It is based on the use of the Computed Muscle
Control (CMC) tool [25]. We extracted the information related to the muscle
force by executing the CMC in order to compute the muscle excitation levels
that drives the generalized coordinates of the dynamic musculoskeletal model
towards the desired trajectory. The available implementation is based on the
combination of Proportional-Derivative (PD) control and Static Optimization
(SO) that allow to conduct a standard forward dynamic simulation. A detailed
description of the CMC tool operating principles is available in [26]. We report
here only the main concepts with particular reference to the computation of the
muscle forces. In this study, the SO toolbox is used by CMC to resolve the net
joint torques and moments into individual muscle forces subject to the following
muscle activation-to-force condition:

M∑
i=1

am,iF
0
m,irij = τj ∀j (4)

where M is the number of muscles, am,i is the activation level (0 < am,i ≤ 1),
F 0
m,i is the MIF, and rij is the moment arm of the i-th muscle about the j-th

joint. τj is the joint torque acting about the j-th joint. In CMC, an objective
function J combines the sum of squared muscle activations augmented by a set
of equality constraints (Cj = 0) that requires the desired accelerations to be
achieved within the tolerance set for the optimizer (Eq.5).

J =

M∑
i=1

(am,i)
2
; Cj = q̈∗j − q̈j ∀j (5)

where M is the number of muscles and am,i is the activation level (0 < am,i ≤
1). This setup is equivalent to having an ideal force generators in which the
model accelerations q̈j are driven toward the desired accelerations q̈∗j , where qj

368 R. Bortoletto, E. Pagello, and D. Piovesan

respresents the j-th model coordinate. The desired accelerations are computed
using the following PD control law:

q̈∗(t+ T) = q̈exp(t+ T) + kv[q̇exp(t)− q̇(t)] + kp[qexp(t)− q(t)] (6)

where qexp are the experimentally-derived coordinates, q̈∗ are the desired ac-
celerations, and q are the model coordinates. kv = 30 and kp = 900 are the
feedback gains on velocity and position errors, which were experimentally set.

It is worth noting that, by assuming 0 ≤ Fm,i ≤ F 0
m,i in Torque-based Muscle

Force computation and 0 < am,i ≤ 1 in Torque/Kinematic-based Muscle Force
computation, then Eq.4 is equivalent to Eq.2, and Eq.5 is equivalent to Eq.1.
This because, the ratio Fm,i/F

0
m,i always varies between 0 and 1. On the other

hand, the introduction of the kinematic constraints (Cj = q̈∗j − q̈j ∀j) in Eq.5,
encompassing the coordinate accelerations, significantly diversifies the two ap-
proaches considered here. This is especially true since we are analyzing dynamic
movement such as running in its different phases and not simply static poses.

2.3 Stiffness Estimation

The adopted muscle model is known in literature as Thelen2003Muscle [27],
which is the name of its implementation within the OpenSim. The model is based
on the Hill-type muscle model, which represents a muscle-tendon unit through
three elements: a contractile element (CE), a parallel element (PE), and a se-
ries element (SE). While CE is responsible for the active force, PE accounts for
the muscle passive behavior and SE represents the tendon. Thelen2003Muscle
is a parametric-based implementation capable of representing the muscle me-
chanical response by considering the following physiological parameters: MIF,
Optimal Muscle Fiber Length (OMFL), Tendon Slack Length (TSL), Maximum
Contraction Velocity (MCV), and Pennation Angle (PA). Given the normalized
muscle force obtained either within CMC or with our dedicated algorithm, the
muscle fiber length was estimated by means of Force-Length relationship for
each muscle embedded in the OpenSim’s Muscle model. The force-length curves
modeled the effects of active/passive muscle components. In particular, the ac-
tive force-length curve was described using natural cubic splines [8], while the
passive force-length curve was described using exponential functions [27]. The
tendon length was estimated by subtracting the fiber length to the whole-muscle
length derived from the path geometry and joint angles within the simulation.

Finally, the short-range muscle stiffness was estimated using the model de-
veloped by Cui et al. [28], and already adopted by Perreault et al. [29] for the
estimation of the endpoint stiffness of the human arm. The model assumes that
the short-range stiffness of a muscle-tendon unit, Kmt (Eq.7), results from the
stiffness of the muscle fibers, Km, in series with the stiffness of the tendon, Kt.

Kmt =
KmKt

Km +Kt
(7)

Km is a function of the muscle force Fm and OMFL lm0 , up to a dimensionless
scaling constant. Kt is defined by the ratio between the tendon force and the

The Influence of Muscle Forces on Lower Limb Stiffness 369

tendon elongation, which is given by the difference between the tendon length lt
and the TSL lts. By using the estimated muscle forces and the muscle short-range
stiffness, we computed the corresponding joint stiffness taking into account the
kinematic relationship between changes in joint angles and changes in muscle-
tendon length (Eq.8).

Kj = JT K̃mtJ +
∂JT

∂θ
F̃m (8)

where J is the Jacobian matrix relating changes in muscle joint angles to changes
in muscle length, K̃mt is a diagonal matrix with the stiffness for each muscle in
the model, F̃m is the vector of muscle forces, and θ is the vector of joint angles.
The partial derivative of the Jacobian matrix with respect to joint angles ac-
counts for how angle dependent changes in muscle moment arms influence joint
stiffness. It is worth noting that Kj is a 3× 3 matrix in which the diagonal ele-
ments represent the hip, knee and ankle joint stiffness, while the other elements
represent the stiffness relationship existing between hip and knee, hip and ankle,
knee and ankle. In particular, not having tri-articular muscles, in this study the
hip-ankle stiffness relationship is zero. A comparison between the obtained joint
stiffness using the two different muscle force optimization algorithms has been
considered to show how the choice of a specific algorithm, for the estimation of
force, affects the result we get in the computation of stiffness.

3 Results

The set of results, provided here, shows significant differences in the muscle
force estimates obtained by adopting either the Torque-based Muscle Force com-
putation or the Torque/Kinematic-based Muscle Force computation procedure.
A first evaluation has been done by performing a cross-correlation analysis be-
tween muscle forces estimated with both Torque-based Muscle Force computation
and Torque/Kinematic-based Muscle Force computation procedures, and the pro-
cessed EMG signal (Fig. 1). The obtained cross-correlation sequences were nor-
malized so that the autocorrelations at zero lag were identically 1.0. The results
show that, for the muscles most involved in the analyzed movement (i.e. Gastroc-
nemius, Vasti, Rectus Femoris and Bicep Femoris), the cross-correlation related
to the Torque-based Muscle Force computation is higher than that obtained for
the Torque/Kinematic-based Muscle Force computation procedure.

Fig. 2 shows a comparison between the processed EMG signal of such repre-
sentative muscles and their estimated forces. It is clear that most of the time the
Torque-based Muscle Force computation (blue line) tracks EMG signal better
than the Torque/Kinematic-based Muscle Force computation (green line), which
gives large forces also when there is not EMG signal. This makes the latter
less likely to be appropriate. During the optimization stage, through which the
muscle force is computed, it may also happen that a high value of the EMG
signal does not correspond to an equally high developed muscle force (Fig. 2,
Right Rectus Femoris). This behavior may be due to a configuration of the
muscle for which, despite the activation level, the fibers length is either very

370 R. Bortoletto, E. Pagello, and D. Piovesan

Fig. 1. Maximum values of the cross-correlation functions computed between
muscle forces estimated with both Torque-based Muscle Force computation and
Torque/Kinematic-based Muscle Force computation procedures, and the processed
EMG signal

stretched or very contracted and does not allow the generation of an appropri-
ate force with respect to the OMFL. Recall that the MIF is generated only at the
OMFL. Future study should take into consideration methods to estimate muscle
forces that better track the corresponding EMG profiles. Corresponding differ-
ences also arise in the stiffness values obtained by adopting either Torque-based
Muscle Force computation or Torque/Kinematic-based Muscle Force computa-
tion procedure. As depicted in Fig.3 there is a misalignment of the peaks of the
stiffness time profiles with respect to the different phases of movement. We can
notice a delay between the instants in which the foot impacts the ground and the
instant in which the stiffness peaks generated by either approach occurs. Notice
that Torque/Kinematic-based Muscle Force computation has an average delay
of 112 ms compared to the 82 ms of Torque-based Muscle Force computation.
Furthermore, the former produces stiffness peaks with a much larger ampli-
tude compared to the latter. The stiffness peaks for both knee and ankle occurs
almost synchronously within each model. Furthermore, we can notice that the
width of stiffness peaks are different between algorithms. For example, the graph
of the knee stiffness shows that the knee is contracted for a longer time in the
Torque/Kinematic-based Muscle Force computation. The ratio of hip/knee stiff-
ness at the peak is different for the two approaches: 1.28 (Torque-based Muscle
Force computation), 1.86 (Torque/Kinematic-based Muscle Force computation).

The Influence of Muscle Forces on Lower Limb Stiffness 371

The second ratio is bigger indicating a predominancy of hip stiffness over the
other joints. Similar considerations hold true for the left lower limb joints.

Fig. 2. Processed EMG signal profiles compared to estimated muscle forces with
Torque-based Muscle Force computation and Torque/Kinematic-based Muscle Force
computation procedures. The labels stand for Left Foot-Off (lFO), Left Foot-Strike
(lFS), Right Foot-Off (rFO), and Right Foot-Strike (rFS).

The inter-joint stiffness estimated in this work for each combination of two
joints was found to be symmetric. Furthermore the inter-joint stiffness between
hip and ankle was negligible. Thus, only two inter-joint stiffness time profiles
are shown in Fig. 4. These results are an indication that all the algorithms were

372 R. Bortoletto, E. Pagello, and D. Piovesan

implemented properly. Indeed, since the stiffness is a positive definite tensor it is
expected to be simmetric. Moreover, due to the absence of tri-articular muscles
connecting the ilium with the foot the hip-ankle component must be zero.

Fig. 3. Right Lower Limb Joint Stiffness estimated values: Hip, Knee, and Ankle. The
x-axis reports the time-samples, while y-axis expresses the joint stiffness [Nm/rad].
The labels stand for Left Foot-Off (lFO), Left Foot-Strike (lFS), Right Foot-Off (rFO),
and Right Foot-Strike (rFS).

The Influence of Muscle Forces on Lower Limb Stiffness 373

The inter-joint stiffness is not negligible for the pair ankle-knee and knee-
hip. However, the magnitude of these stiffness time-profiles is smaller than those
proper of the joints.

Fig. 4. Right Lower Limb Intra-Joint Stiffness estimated values: Hip-Knee Stiffness
Relation, and Knee-Ankle Stiffness Relation. The x-axis reports the time-samples, while
y-axis expresses the intra-joint stiffness [Nm/rad]. The labels stand for Left Foot-Off
(lFO), Left Foot-Strike (lFS), Right Foot-Off (rFO), and Right Foot-Strike (rFS).

4 Conclusions

In this paper, two different whole-muscle force optimization algorithms are uti-
lized to estimate the lower limb muscle-tendon forces and the corresponding
joint stiffness during the running of an unimpaired individuals. It is important
to note that the purpose of this study was not to determine which algorithm is
better for the estimation of muscle forces, but the goal was to determine how
different algorithms may affect the estimation of joint stiffness. Indeed, results
show that the choice of the optimization algorithm influences the estimation of

374 R. Bortoletto, E. Pagello, and D. Piovesan

the muscle-tendon stiffness and of the corresponding joint stiffness. The adopted
modeling and simulation techniques highlight how it is possible to estimate the
joint stiffness decomposing the computation into two stages, where the assump-
tion of a muscle-tendon model is actually required only in the computation of
the geometrical parameters such as the muscle lengths and moment arms. At
the same time, there are a number of open questions related to the possibility of
estimating the stiffness during the execution of the movement and not only in
relation to particular limb poses. Further studies are needed in order to provide
a more precise modeling of the muscle-tendon unit capable of describing how
the behavior and the parameterization of the muscle-tendon unit changes as a
function of the posture. Future research will focus on providing a better char-
acterization of the existing relationships between muscle models, muscle-tendon
force optimization algorithms and stiffness estimation procedures.

Acknowledgements. This research has been supported by Consorzio Ethics
through a grant for research activity on the project Rehabilitation Robotics, and
by the Faculty research grant at Gannon University.

References

1. Anderson, F.C., Pandy, M.G.: Dynamic Optimization of Human Walking. ASME
J. Biomech. Eng. 123(5), 381–390

2. Ackerman, M., van der Bogert, A.J.: Optimality Principles for Model-Based Pre-
diction of Human Gait. J. Biomech. 43(6), 1055–1060

3. Arnold, E.M., Delp, S.L.: Fibre Operating Lengths of Human Lower Limb Muscle
During Walking. Philos. T. R. Soc. B. 366(1570), 1530–1539

4. Hamner, S.R., Seth, A., Delp, S.L.: Muscle Contributions to Propulsion and Sup-
port During Running. J. Biomech. 43(14), 2709–2716

5. Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L.: Muscle Contribu-
tions to Support and Progression During Single-Limb Stance in Crouch Gait. J.
Biomech. 43(11), 2099–2105

6. Hill, A.V.: The Heat of Shortening and the Dynamic Constants of Muscle. Proc.
R. Soc. Lond. B (1938)

7. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with
sarcomere length in vertebrate muscle fibres. J. of Phys. 184, 170–192 (1966)

8. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to
biomechanics and motor contro. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

9. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait
are pratically equivalent. J. Biomech. 34(2), 153–161 (2001)

10. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estima-
tion of muscle forces exerted during movements. Clinical Biomechanics 22, 131–154
(2007)

11. Monaco, V., Coscia, M., Micera, S.: Cost function tuning improves muscle force
estimation computed by static optimization during walking. In: Conf. Proc. IEEE
Eng. Med. Biol. Soc. (2011)

12. Shamaei, K., Sawicki, G.S., Dollar, A.M.: Estimation of Quasi-Stiffness of the Hu-
man Hip in the Stance Phase of Walking. PloS One 8(12) (2013)

The Influence of Muscle Forces on Lower Limb Stiffness 375

13. Pfeifer, S., Vallery, H., Hardegger, M., Riener, R., Perreault, E.J.: Model-based esti-
mation of knee stiffness. IEEE Trans. on Bio-medical Engineering 59(9), 2604–2615
(2012)

14. Shamaei, K., Sawicki, G.S., Dollar, A.M.: Estimation of quasi-stiffness of the human
knee in the stance phase of walking. PloS One 8(3) (2013)

15. Shamaei, K., Sawicki, G.S., Dollar, A.M.: Estimation of quasi-stiffness and propul-
sive work of the human ankle in the stance phase of walking. PloS One 8(3) (2013)

16. Piovesan, D., Pierobon, A., DiZio, P., Lackner, J.R.: Experimental Measure of Arm
Stiffness During Single Reaching Movements with a Time-Frequency Analysis. J.
Neurophysiol. 110(10), 2484–2496 (2013)

17. Piovesan, D., Casadio, M., Morasso, P., Giannoni, P.: Arm stiffness during assisted
movements following stroke: the influence of visual feedback and training. IEEE
Trans. Neural Syst. Rehabil. Eng. 21(3), 454–465 (2013)

18. Piovesan, D., Pierobon, A., DiZio, P., Lackner, J.R.: Measuring Multi-Joint Stiff-
ness during Single Movements: Numerical Validation of a Novel Time-Frequency
Approach. PLoS ONE 7(3), e33086 (2012)

19. Bortoletto, R., Pagello, E., Piovesan, D.: How different human muscle models affect
the estimation of lower limb joint stiffness during running. Accepted for publication
in Proc. of Workshop on Neuro-Robotics for Patient-Specific Rehabilitation, July
18 (2014), IAS-13 Conf., Padua, July 15-19 (2014)

20. Yamaguchi, G.T., Zajac, F.E.: A planar model of the knee joint to characterize the
knee extensor mechanism. J. Biomech. 22, 1–10 (1989)

21. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An In-
teractive Graphics-Based Model of the Lower Extremity to Study Orthopaedic
Surgical Procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767

22. Anderson, F.C., Pandy, M.G.: A Dynamic Optimization Solution for Vertical
Jumping in Three Dimensions. Comput. Methods Biomech. Biomed. Engin. 2(3),
201–231 (1999)

23. Ward, S.R., Eng, C.M., Smallwood, L.H., Lieber, R.L.: Are current measurements
of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467,
1074–1082 (2009)

24. Dorn, T.W., Schache, A.G., Pandy, M.G.: Muscular startegy shift in human run-
ning: dependence of running speed on hip and ankle muscle performance. The J.
of Exp. Biol. 215, 1944–1956 (2012)

25. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of move-
ment using computed muscle control. J. of Biomec. 36, 321–328 (2003)

26. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward
dynamic simulations of human walking from experimental data. J. Biomech. 39(6),
1107–1115 (2006)

27. Thelen, D.G.: Adjustment of Muscle Mechanics Model Parameters to Simulate
Dynamic Contractions in Older Adults. J. Biomech. Eng. 125(1), 70 (2003)

28. Cui, L., Perreault, E.J., Maas, H., Sandercock, T.G.: Modeling short-range stiffness
of feline lower hindlimb muscles. J. Biomech. 41, 1945–1952 (2008)

29. Hu, X., Murray, W.M., Perreault, E.J.: Muscle short-range stiffness can be used
to estimate the endpoint stiffness of the human arm. Journal of Neurophysiol-
ogy 105(4), 1633–1641 (2011)

On the Benefits of Component-Defined

Real-Time Visualization of Robotics Software

Max Reichardt, Gregor Zolynski, Michael Arndt, and Karsten Berns

Robotics Research Lab., Department of Computer Science,
University of Kaiserslautern, Gottlieb-Daimler-Straße,

67663 Kaiserslautern, Germany
{reichardt,zolynski,arndt,berns}@cs.uni-kl.de

http://rrlab.cs.uni-kl.de

Abstract. The idea of component-defined visualization is introduced
and benefits for different challenges in robotics software development are
discussed – including system maintenance, component integration, and
identification of critical behavior or malfunction. Design considerations
for integration in state-of-the-art robotic software frameworks are pre-
sented – with an open source implementation for the Finroc framework
as a proof-of-concept. Its use in two very different autonomous systems is
illustrated. Experiments with these systems indicate that the proposed
approach has in fact relevant advantages.

Keywords: Autonomous mobile robots, Framework design, Program-
ming environments, Software visualization, System maintenance.

1 The Idea of Component-Defined Visualization

In the domain of process automation, visualization of system components on
possibly large control panels has a long tradition. Subsystem state is displayed
in a dedicated and intuitive way. An operator can identify critical situations and
failures at a glance. Advantages are so significant that considerable resources are
invested in this area.

Related to this idea, we propose an increased level of integrated component
visualization in tools and frameworks for development of complex robot control
software. We claim and show that this helps to cope with some of the major
challenges in robotics software development.

Robot control systems are typically constructed from a set of interconnected
components based on some robotic framework, toolkit, or middleware.1 Many
frameworks include tools to visualize connected components as a graph. In our re-
search on large behavior-based networks with possibly many hundreds of nodes,
a tool extension that visualizes the behavior meta signals in real-time [6] has
proven valuable over many years. In particular, it helps understanding how a
network of such components behaves and interacts. Usefulness of a suitable
visualization is, however, not limited to behavior components. There are two
approaches to visualize further types:

1 For simplicity, the term “framework” will be used in the remainder of this document.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 376–387, 2014.
c© Springer International Publishing Switzerland 2014

http://rrlab.cs.uni-kl.de

Component-Defined Real-Time Visualization of Robotics Software 377

1. Tools “know” how to visualize all relevant components (tool-defined)
2. Components specify how they are visualized (component-defined)

The component-defined approach was chosen, as it has the advantages of lower
coupling and increased flexibility, since all the components’ internal data is ac-
cessible. The basic idea is the following: Each component provides a visualization
that should – as tellingly as possible – illustrate its current state and what it is
doing. This can be, for instance, displayed as a kind of animated thumbnail in the
component graph. The idea is somewhat related to the concept of a toString()
method that provides a suitable string representation for any relevant object.

1.1 Related Challenges in Robotics Software Development

Maintaining robotics software of considerable complexity is an important topic
in industry and research groups. At university groups, keeping systems maintain-
able across multiple generations of PhD students is a major challenge. To make
matters worse, spending time on software quality is typically not rewarded – as
long as systems run sufficiently robust and efficient for experiments. At our lab,
the larger projects’ source trees consist of roughly 0.5 million SLOC2 developed
in-house and up to around 1600 components. Due to the complexity, it is often
tempting to take rash decisions on rebuilding major parts of existing systems or
to abandon them completely. We believe that the proposed idea of consequent
component-defined visualization can make a noticeable difference in this regard.
As we show in Chap. 5, it helps developers to explain what an unfamiliar system
is doing – and why.

Finding bugs in robot control systems and increasing their robustness is an-
other laborious activity. Even with well-tested components, problems can occur
under specific environmental conditions or when components are reused across
many projects and updates alter their behavior in a subtle way. Brugali et al. [3]
discuss many challenges with respect to software reuse in robotics. Similar to the
visualization in the domain of process automation, we believe that a dedicated
visualization of each component supports identifying critical and faulty behavior
– in single components as well as their integration and interaction. Again, experi-
ments in Chap. 5 support this hypothesis. The advantages are likely largest when
integrating components developed by third parties – due to the system integra-
tor’s more limited knowledge about their precise behavior. The visualization can
be a supplement to their documentation and diagnostics interfaces.

1.2 Other Benefits and Possible Drawbacks

A factor not to be underestimated, is the potential increase of aesthetics in tool
support. In our experience, this has an impact on developers’ attitudes towards
a framework and the interest in trying things out. In live demonstrations of a
robot, showing the fully animated component network on a big screen arguably
looks impressive and simplifies explaining.

2 Physical Source Lines of Code as generated using David A. Wheeler’s ’SLOCCount’.

378 M. Reichardt et al.

If a framework provides support for constructing and connecting components
at runtime, the effect of each change is immediately visible to the developer. If
the visualization is furthermore provided by ordinary data ports (or topics), a
framework’s existing mechanisms can be used to record it to hard disk. This is a
powerful combination for testing and debugging. Apart from that, components’
visualizations can often be reused in dedicated graphical user interfaces.

The most obvious drawback with this approach is the development overhead
for implementing a suitable visualization for individual components. Notably,
several of our existing components were already creating visualization output
before. In addition, visualization functionality can often be reused.

Another possible drawback is the runtime overhead that the visualization
causes. As computational efficiency is a critical factor especially for mobile sys-
tems, it is important to retain the possibility to deactivate all visualization-
related functionality. Apart from that, an efficient implementation is desirable.

2 Related Work

In the vast majority of software frameworks for robotics, applications are con-
structed from reusable components. Well-known solutions include ROS [7], Oro-
cos [11], and OpenRTM-aist [1] – with tools such as rxgraph or RtcLink for
visualization of connected components in a graph. In addition, it is often pos-
sible to display and modify component properties, parameters, or the current
port values. We provide an overview on the state of the art in framework design
in [8]. To our knowledge, no framework currently supports component-defined
real-time visualization in its component model or tooling that visualizes the
component graph. There are several solutions, though, that visualize component
meta-information. Lotz et al., for instance, propose runtime monitoring of com-
ponents [5]. Component status can be obtained from dedicated diagnose ports
and is visualized e.g. via traffic lights.

Collet and MacDonald present a generic tool-defined visualization approach
focussed on augmented reality [4]. Benefits for debugging systems are highlighted
and evaluated. Discussions include a systematic requirements analysis.

Some authors propose visual programming in order to ease development es-
pecially for non-programmers. Well-known approaches include LEGO NXT-G,
the Visual Programming Language (VPL) in Microsoft Robotics Developer Stu-
dio3 and more general tools such as MatLab/Simulink and LabView. To our
knowledge, none of these solutions employs this kind of visualization approach.

Looking outside the domain of robotics, procedural graphics generators such
as Nodewerk and NeoTextureEdit4 greatly benefit from online visualization of
the effect network configuration. They were one of the inspirations that led to
the development a similar visualization mode for our tools.

3 http://www.microsoft.com/robotics/
4 http://nodewerk.com/ and http://neotextureedit.sourceforge.net/

http://www.microsoft.com/robotics/
http://nodewerk.com/
http://neotextureedit.sourceforge.net/

Component-Defined Real-Time Visualization of Robotics Software 379

Update()

Parameters

Server
Ports

Client
Ports

Inputs Outputs

Visualization visualization-low

visualization-mid

visualization-high

Fig. 1. Basic component model with optional, dedicated visualization outputs. Visu-
alization information can be attached to any output – e.g. using tags.

3 Design Considerations

We target a simple design requiring only minor changes to current frameworks.
Visualizations of components can be fairly complex (e.g. if images or maps are
involved), thus costly to transfer and process. High update rates are desirable
nevertheless – even for many connected tools. Considering these requirements,
publishing visualization data using the publisher/subscriber pattern used in
data ports of most frameworks was chosen – a simple and scalable solution.
A client/server solution polling visualization data may be more flexible, but it
is more complex to implement and typically causes more overhead and delay.

Apart from that, tools may display visualizations in different sizes – e.g. almost
fullscreen on mouse-over. Always transferring maximum details would waste re-
sources. Therefore, components must be able to provide visualization data in
different levels of detail – corresponding to the displayed size. How many lev-
els of detail should be supported is a tradeoff between many factors including
simplicity, flexibility, and efficiency. We opted for three: Low, Medium, and High.

Furthermore, a decision on the visualization data format is required. Bitmaps
and vector graphics are generic and universal choices. Supporting both is ad-
vantageous. Dedicated data types increase efficiency – e.g. for point clouds this
can be relevant. If the same data types are allowed that components also use
for publishing their data, a components’ visualization data might actually be
identical to one of its existing outputs. For example, the high-detail visualiza-
tion of a camera component can actually be its full-resolution image output. In
cases like these, it saves resources to use existing output ports for visualization
instead of creating new ones. The option to define a default viewport is advanta-
geous in this context, as visualization size might be too small to clearly display
all of the data. If a framework allows to assign custom tags or annotations to
outputs, an implementation can be very simple – even with dynamic compo-
nent interfaces. For example, outputs could be tagged with [visualization-low],
[visualization-mid], and [visualization-high]. Notably, a framework does not need
to be adapted for this step – only components (add tags) and relevant tools.

In other cases, new ports for visualization need to be added. In order not to
clutter a component’s existing interfaces with ports only needed for visualization,

380 M. Reichardt et al.

they are created as dedicated visualization ports and added to a separate interface
(see Fig. 1). As mentioned in Sect. 1.2, component-defined visualization causes
computational overhead and an option to deactivate it is considered important.
Using preprocessor directives is not a good option, because they clutter code with
#ifdefs (detrimental to e.g. maintainability) and require recompilation to acti-
vate – e.g. for debugging. Therefore, we opted for a runtime option that speci-
fies whether visualization ports are to be created. If not, computational overhead
is minimal – typically one additional if-condition per component. Notably, the
runtime option can easily be turned into a compile-time constant. If dedicated
visualization is only generated and published if ports are actually connected, com-
putational overhead is also minimal as long as there are no subscribers. This, how-
ever, requires a framework that provides this information.

Finally, extensibility is an important factor to keep in mind. In the proposed
design, components can easily provide additional static information via tags or
annotations – e.g. visualization shape or layout. Further outputs are also viable.

4 Implementation

We created an implementation of this design for the Finroc framework [9],
which our research group and partners employ in a range of autonomous sys-
tems – such as offroad vehicles, indoor vehicles, climbing robots, and a humanoid
– notably including commercial systems available for purchase.5 Finroc’s key
features include a slim and highly modular framework core as well as a zero-copy,
lock-free, real-time transport for intra-process communication. It can run on plat-
forms without an operating system. Intra-process runtime construction, support
for multiple component models, composite components, dynamic component in-
terfaces, and good integrability with solutions based on other frameworks or
standards are further notable features. Our implementation can be downloaded
from http://www.finroc.org/ and is part of the Finroc 14.08 stable release.

Notably, less than 50 SLOC in Finroc’s tComponent base class are sufficient
to add convenient support for component-based visualization:

1. An enumeration for the available levels of detail
2. A method SetVisualizationPort to tag outputs to be used for visualization
3. A port wrapper class tVisualizationOutput for dedicated visualization

outputs – together with a runtime parameter that determines whether visu-
alization ports are created

Recurring, reusable visualization functionality – e.g. plotting signals, creating
thumbnails – is placed in a separate library rrlib component visualization.

In order to display component-defined real-time visualization in the compo-
nent graph, a new view Component Visualization was added to the Finstruct
tool (see Fig. 2). It is a subclass of the standard component graph view and
retains the functionality to add, connect, and remove components at applica-
tion runtime – as well as expanding composite components. Visualization size

5 See e.g. http://robotmakers.de/en/references/

http://www.finroc.org/
http://robotmakers.de/en/references/

Component-Defined Real-Time Visualization of Robotics Software 381

Fig. 2. Finstruct: Application visualization, inspection, and construction. On the
right, the component graph of artos’ control group is shown.

can be adjusted and a suitable level of detail is chosen automatically. Currently,
any data type implementing Finroc’s “Paintable” interface can be used for
visualization. Colors of nodes and background can be adjusted.

5 Applications and Experiments

In order to evalute the proposed approach, experiments with subsystems of two
autonomous mobile systems were conducted: the indoor robot artos [2] and the
bucket excavator thor [10]. Fig. 2 shows the component graph of artos’ control
group, which is responsible for sensor processing and navigation. Fig. 6 shows
the same graph with component-defined visualization enabled. Fig. 7 contains
both variants for thor’s perception subsystem for trailer detection.

5.1 Mobile Robot Control Analysis

During this experiment, the subject group of twelve people was presented the
main control group of artos in a controlled simulation environment. All par-
ticipants used the Finstruct tool to explore the system. Half of the group (six
people) had the new visualization feature enabled, i.e. they could directly see
the visualized state of the components.

The subjects were given the following task while being recorded on camera:
“Please look at the robot control group and describe what you see and what you
think the purpose of the components is.” The statements and the time they took

382 M. Reichardt et al.

0 50 100 150 200 250 300

GraphFromFileLoader

GraphPathPlanner

PathTraversal

Odometry

LaserScanner + Xtion

UltrasonicProcessing

Safety Behaviors

Joystick

Xtion filter

DiffDriveKinematics

Multiplexer

Ultrasonic Filter

LocalPlanner

Time in seconds

With Visualization

Without Visualization

0

10

20

30

40

N
u
m
b
er

o
f
a
sp

ec
ts

m
en

ti
o
n
ed

Fig. 3. Mentioning of different aspects by the subjects and total number of aspects
named over time

to answer of the subjects were manifold. All mentioned aspects of the control
system were collected. For evaluation, they were plotted in a scatterplot (see the
left axis of Figure 3) against the time of mentioning by the probands, regardless
of the correctness of the explained purposes. On the right axis the cumulative
total number of mentioned aspects (of all probands) is plotted (both groups had
the same size, so no normalization needed to be applied to the data).

Two interesting findings can be deduced from this plot. First, the presence of
visualization does not seem to influence the total number of aspects mentioned.
Both cumulative graphs have roughly the same shape and slope. As the probands
just had to mention and not correctly explain the exact internal workings of the
components, this observation is not further surprising.

Second, the visualization does seem to influence the perception of the com-
ponents, as the answers show a difference in what the subjects are mentioning
and describing first. In the graph, the lower six aspects are the ones that have
been visualized in this experiment (divided by the thin dashed line). It can be
clearly seen by the distribution of points that these aspects are mentioned early
if the visualization is activated. On the other hand, the non-visualized aspects
(upper six rows) are more likely to be mentioned early when no visualization is
active. This arouses the suspicion that visualized components draw much atten-
tion towards them and away from non-visualized components that may of course
nevertheless be important. When designing visualizations for components this
psychological aspect should be taken into account.

In the second part of the experiment (after having described the purpose
of the components), a hardware failure (a broken ultrasonic sensor returning
a short value) was simulated and the subjects were asked to find out why the

Component-Defined Real-Time Visualization of Robotics Software 383

Proband Vis. Time (m:s)
1 – 4:35
2 � 0:03
3 – 4:04
4 � 0:08
5 – 3:10
6 � 0:51
7 – – 6

8 � 0:27
9 � 1:25
10 � 0:26
11 – 3:18
12 – 4:50

(a) Problem solving durations

0-100 100-200 200-300

0

1

2

3

4

Time in seconds

N
u
m
b
e
r
o
f
R
e
su

lt
s With Visualization

Without Visualization

(b) Times to find the failure in the system

Fig. 4. Results of the second part of the experiment

robot ceased moving (they were able to interactively control the robot in the
simulation environment and were told that there is a “hardware” problem in the
simulated hardware). The time the probands took to find the correct cause was
recorded and is depicted in Fig. 4.

Analyzing the results, it can be clearly seen that in this scenario, the visual-
ization can drastically reduce the time to find the failed ultrasonic sensor. One
may argue that this is an artificial scenario. However, a similar problem was
recently encountered with the real artos. Sensors receiving no echo in a new
environment, erroneously returned small instead of large distances. Now, with
component-based visualization such a failure could be detected faster.

5.2 Understanding Unknown Systems

In this experiment, the participants were shown a part of thor’s perception
group. They were asked a series of questions related to a few of the components.

1. What are the inputs of the Point Cloud Collector?
2. What is the input and the function of Height Analysis?
3. What are the inputs and the function of Height Difference?
4. What is the function of Thresholded Difference?
5. What is the function of Grown Difference?
6. What are the inputs and the outputs of Steep/Flat Splitter?
7. What is the purpose of the processing chain from 2 to 6?
8. What are the outputs of Heightmap Max/Min (flat)?

Again, the subjects were divided into two groups – only one using the compo-
nent visualization view. Both test groups consisted of persons of varying familiar-
ity with Finroc. Some of them immediately knew how to obtain the necessary
information. Others needed more time to navigate their way through the tool.
Each person was asked the questions listed above, one by one, ensuring the
correct answer was given before the next question came up.

In Fig. 5, each line stands for one experiment, showing the answered ques-
tions vs. time taken. The graphs for the two groups are separated into positive

6 The participant did not find the cause after five minutes.

384 M. Reichardt et al.

[min]

Q8
with component visualization

Q1

Q8
only classic visualization

Q1 1 2 5 10 15

Fig. 5. Time taken to answer the questions

and negative y direction. The dashed lines show the “optimum”time, where we
just read the questions and the explanations aloud. The results indicate that
answering the questions using component visualization yields a consistent (gen-
erally quicker) timing between subjects of differing competency, whereas using
the classic visualization the time needed varies greatly.

5.3 Computational Overhead

The computational overhead introduced with component-defined visualization
was measured in the two presented systems. As can be seen in Table 1, overhead
is not measurable when visualization outputs are present, but not connected.
When visualization is active, resource consumption increases only slightly.

Table 1. Measurement of Computational Overhead

THOR Control ARTOS Control
Visualization absent disconnected connected absent disconnected connected
CPU 201.0% 201.0% 201.0% 80.0% 80.0% 83.0%
Memory 784.9MB 785.5MB 794.7MB 32.7MB 32.7MB 33MB
Cycle time 84ms 84ms 90ms 16ms 16ms 17ms

6 Conclusion, Discussion, and Outlook

Overall, we see component-defined visualization as one of many promising mea-
sures to increase software quality of robotic components and systems – arguably
with a relevant impact on maintainability. The experiments indicate that the
proposed software visualization approach can help to understand unknown sys-
tems. Furthermore, there are bugs that can be found quicker than without. The
approach can be realized efficiently with minimal changes to an existing frame-
work – with negligible computational overhead.

Whether to add visualization support to individual components is always a
tradeoff between implementation effort and benefits. Notably, we found bugs in
existing components doing this. Especially for very generic components, it can
be hard to come up with a suitable visualization though.

Component-Defined Real-Time Visualization of Robotics Software 385

Sensor

Output

Sensor

Input

Controller

Input

Controller

Output

Asus Xtion

Rotation +

Ceiling Filter

Behaviors

Backward

(Layer 0)

Backward

(Layer 1)

BasicDifferentialDriveBehaviors

Forward

(Layer 0)

Forward

(Layer 1)

SafetyBehaviors

Turn Left

(Layer 0)

Turn Left

(Layer 1)

Turn Right

(Layer 0)

Turn Right

(Layer 1)

DifferentialDriveKinematicsWithTwist

GraphFromFileLoader

GraphPathPlanner

JoystickToTwist

Laser Scanner and Depth

Camera to Sectormap

Local Pathplanner

Multiplexer

Odometry

PathTraversal

CurrentCurrent

UltrasonicProcessing

Fig. 6. artos’ control group with visualization

386 M. Reichardt et al.

Sensor

Output

Sensor

Input

Controller

Input

Grown

Difference

Height

Analysis

Height

Difference

Heightmap

Max (flat)

Heightmap

Min (flat)

Point Cloud

Collector

Sensor

Buffer

(Left)

Sensor

Buffer

(Right)

Steep/Flat

Splitter

Thresholded

Difference

Trailer

Detection 3D

(b) Component graph

Sensor Output

Sensor Input

Controller Input

Grown Difference

Height Analysis

Min MaxMin Max

Height Difference

Heightmap Max (flat) Heightmap Min (flat)

Laser (Left) Laser (Right)

Point Cloud Collector

Steep/Flat Splitter

Thresholded Difference

Trailer Detection 3D

(c) Real-time visualization

(a) Bucket excavator thor

Fig. 7. Trailer detection in the excavator’s perception group

Component-Defined Real-Time Visualization of Robotics Software 387

Combining component-defined visualization with existing tool-defined
approaches is a promising area for future work. Furthermore, experiments with
more participants will lead to additional insights. Technically, tools with interac-
tive component visualization views are desirable – allowing e.g. transformations
or to hide elements. As visualizations vary in complexity, displaying all com-
ponents in the same size is not optimal. Components could provide hints on
a suitable size. In the current implementation, visualizing many components at
high frame rates may require considerable network bandwidth. Data compression
– e.g. video codecs for bitmaps – can improve this significantly.

Acknowledgments. Funding by the German Ministry of Education and Re-
search (grant 01IC12S01W, project SINNODIUM) is gratefully acknowledged.
We thank our colleagues and students for participating in the experiments.

References

1. Ando, N., Suehiro, T., Kotoku, T.: A software platform for component based RT-
system development: OpenRTM-aist. In: Carpin, S., Noda, I., Pagello, E., Reg-
giani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 87–98.
Springer, Heidelberg (2008)

2. Armbrust, C., Koch, J., Stocker, U., Berns, K.: Mobile robot navigation support
in living environments. In: 20. Fachgespräch Autonome Mobile Systeme (AMS),
pp. 341–346. Springer, Kaiserslautern (2007)

3. Brugali, D., Scandurra, P.: Component-based robotic engineering part i: Reusable
building blocks. IEEE Robotics Automation Magazine 16(4), 84–96 (2009)

4. Collett, T.H.J., MacDonald, B.A.: An augmented reality debugging system for
mobile robot software engineers. Journal of Software Engineering for Robotics
(JOSER) 1(1), 18–32 (2010)

5. Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software com-
ponents: Increasing robustness of service robotic systems. In: 15th International
Conference on Advanced Robotics (ICAR 2011), Tallinn, pp. 285–290 (2011)

6. Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems
using the behavior-based control architecture iB2C. Robotics and Autonomous
Systems 58(1), 46–67 (2010), doi:10.1016/j.robot.2009.07.027

7. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software in Robotics, Kobe, Japan (2009)

8. Reichardt, M., Föhst, T., Berns, K.: Design principles in robot control frame-
works. In: Horbach, M. (ed.) Informatik 2013. Lecture Notes in Informatics (LNI),
pp. 2765–2779. GI, Koblenz (2013)

9. Reichardt, M., Föhst, T., Berns, K.: On software quality-motivated design of a real-
time framework for complex robot control systems. Electronic Communications of
the EASST Software Quality and Maintainability (60) (2013)

10. Schmidt, D., Proetzsch, M., Berns, K.: Simulation and control of an autonomous
bucket excavator for landscaping tasks. In: IEEE International Conference on
Robotics and Automation (ICRA), Anchorage, pp. 5108–5113 (2010)

11. Soetens, P.: A Software Framework for Real-Time and Distributed Robot and
Machine Control. Ph.D. thesis, Department of Mechanical Engineering, Katholieke
Universiteit Leuven, Belgium (2006)

A Primate-Inspired Autonomous Navigation

Algorithm Using the Cognitive Mechanism
of Mental Rotation

Michael J. Pettinati and Ronald C. Arkin

Georgia Institute of Technology, College of Computing, Atlanta, GA, 30332, USA
mpettinati3@gatech.edu, arkin@cc.gatech.edu

Abstract. Though significant progress on autonomous navigation has
been made, the natural world offers interesting examples of navigational
techniques that are worth exploring and understanding. The cognitive
mechanism of mental rotation has been revealed in numerous cognitive
and neuroscientific experiments; its reason for existence and evolution,
however, has yet to be thoroughly understood. It is speculated that this
mechanism may assist primates in navigation. This paper explores how
mental rotation can be used in navigation by developing an autonomous
robotic navigation algorithm that draws inspiration from the mechanism.
This algorithm was tested on a robot tasked with navigating to a spec-
ified goal location contained within the agent’s initial view. The testing
suggests that mental rotation can be used as an asset in navigation.

Keywords: mental rotation, robotic navigation, mental imagery.

1 Introduction

Autonomous navigation is a problem with a set of robust and efficient solutions
[1,2]. The fact that these solutions are sufficient for many applications does
not imply that autonomous navigation is a domain where no further progress
needs to be made. The natural world offers interesting examples of alternative
navigational techniques that are worth taking the time to understand and may
offer insights that supplement or enhance existing algorithms.

Evolution has fashioned primates into adept and efficient navigators [3,4]. The
ability of nonhuman primates (and human children) to use mapping is limited,
therefore, other mechanisms must have evolved in primates to allow for successful
navigation [5]. Many studies have identified the mechanism of mental rotation,
an ability that allows primates to “envision” a reorientation of an object/scene
[6,7,8]. There has been speculation that this mechanism contributes in some
way to the navigational capabilities of primates, but there have been few studies
conducted to verify these speculations.

The goal of this ONR-funded project is to understand what mental rota-
tions might contribute to the ability of primates to navigate by implementing
an autonomous navigation algorithm that draws inspiration from the ability of
mental rotations, incorporating this algorithm into our existing robotic specifi-
cation software, MissionLab [9]. In theory, given the view of a scene from a goal

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 388–399, 2014.
c© Springer International Publishing Switzerland 2014

A Primate-Inspired Autonomous Navigation Algorithm 389

location and a view of the scene from the robot’s current location, an agent can
use “mental” rotations to visualize the current view at a three-dimensional ori-
entation that is aligned with its goal’s three-dimensional orientation. This view
will allow the agent to accurately assess the translational and rotational offset
between the current position and goal position.

It is posited that this research could provide the foundation for a navigation
algorithm that supports advice giving in robotic navigation. If an agent did not
“know” its goal view a priori, something/someone external to the agent could
provide a high level description of its goal by relating its relative position and
orientation to known objects in the scene. The agent could then use these ob-
jects to define the scene and travel appropriately using the biologically-inspired
algorithm introduced below. For example, if an agent had to fetch something
from a file cabinet in an office within an office building, it might have a map to
the office, but it might not know the precise layout of every office in the building.
If the agent knew what a file cabinet looks like, upon arriving at the office, it
could identify the file system (if there are multiple, one could be specified to the
agent) and navigate to the appropriate position relative to the file cabinet using
an algorithm like the one described here to carry out its task.

2 Related Work

Research has shown that although human children and nonhuman primates are
robust navigators, they do not use maps or precise distances to navigate to a
location [3,5]. It is suggested that they instead use mental transformations to
overcome changes in perspective and to make general assessments about the
direction in which they must move to reach a certain location. Research by
Kosslyn et. al. [10] affords more concrete evidence for the use of mental images
in humans through neuroimaging studies.

Hutcheson and Wedell [11] discuss how, when humans are immersed in an
environment and navigating to a certain location, they tend to use these qual-
itative, abstract representations to navigate as opposed to using more precise
distances or explicit directions; Menzel et al. [4] observed a similar tactic with
a nonhuman primate. The Bonobo being observed had to travel from a start
location to a designated goal; it did not take a rigid trajectory but varied its
path [4]. Starting position did not affect its ability to successfully navigate, im-
plying it possesses the ability to mentally encode the “entire spatial layout” of
the area, and can mentally manipulate this encoding to localize itself and travel
appropriately [5].

Mental rotation must be differentiated from the cognitive process of
perspective-taking spatial abilities and visual servoing or homing techniques.
Hegarty and Waller [12] show an explicit distinction between cases where an
observer is mentally manipulating a scene or scene object to view it differently
and cases where the observer is mentally viewing the scene from a different view-
point. They [12] state that humans may use both of these skills, but most people
have a strong preference for one or the other. As expressed by Arkin [13], visual

390 M.J. Pettinati and R.C. Arkin

servoing is distinct from the navigational approach described here in that the
visual approach described in this paper is a more deliberative approach. Our
approach, described in more detail below, will derive the appropriate naviga-
tion direction using abstract representations of the scene rather than working
with image features. The three-dimensional, structured representations of the
scenes used by our algorithm allow for correspondence between elements of like
form in the different scenes (models of identifiable objects or object parts) as
opposed to corresponding image features. In the context of advice-giving, full
object recognition and semantic labeling will be required.

The evidence presented above has made a case that primates can maintain
abstract mental images and manipulate these representations. The navigation
approach introduced below has an agent rotating a “mental” visual represen-
tation of an object in order to inform its motion. It has also been theorized
that mental rotation could be accomplished through the manipulation of propo-
sitional logic statements [13], which has received less support than the visual
analog approach. We use the visual analog approach.

Stein [14] presents the idea of a robotic system using “mental” simulation
in order to guide itself toward a goal location. Stein’s [14] system, MetaToto,
used an extended simulation where the agent would “imagine” what its sensors
would experience at various locations on a floor plan and build a world model.
This project is not as deliberative as MetaToto. This work explores a biologically-
inspired, semi-reactive navigation algorithm that makes use of a process inspired
by mental rotation to continually inform/update the movement of the robotic
agent.

3 Navigation Algorithm

3.1 Algorithm Formation

This lab has previously developed a navigational procedure that explored the
mechanism of mental rotation [13,15,16]. This system used depth information
in order to construct occupancy grids that represented the current view of the
scene and the goal view of the scene. Figure 1 shows a view for the robotic
agent, the depth image capturing that view, as well as the occupancy grid that
was generated from that depth information. The points composing the generated
occupancy grids had discrete states of occupied or unoccupied, projecting the
scene onto the two dimensional depth and width space.

At the outset of its mission, the agent generated the occupancy grid given
the depth image for both its goal and its current location. The agent used a
discrete number of “mental” transformations on the current occupancy grid in
an attempt to match it to the goal occupancy grid. The correspondence between
the two occupancy grids was scored for each transformation. A motion vector
was derived from the transformation that resulted in the closest correspondence
between the two occupancy grids [13,15]. After the robot had moved a short,

A Primate-Inspired Autonomous Navigation Algorithm 391

specified distance, it would capture the depth information at its new current loca-
tion, generate the occupancy grid representation at this new location, and repeat
the process until the occupancy grids sufficiently corresponded without requir-
ing “mental” transformations1. This algorithm had the depth imagery projected
onto the ground plane, which is not biologically plausible. To be biologically
plausible, the algorithm must work directly within the view of the scene [16].

The neuroscience literature discussing mental rotation is often focused on
the rotation of simple objects, not entire scenes. The work done by Aretz and
Wickens [6] and by Bläsing et. al. [7] each note a certain amount of fragility
in the mechanism of mental rotation. The work presented by Khooshabeh and
Hegarty [8] found that in order to overcome this fragility many humans will
segment a scene/complex object into distinct parts and mentally rotate these
parts individually. This paper’s navigation algorithm begins by segmenting the
view into discrete planar segments that can be acted on individually.

3.2 Segmentation Algorithm

An overview of the segmentation algorithm used in navigation is presented here;
for more depth on its theory, see Erdogan et. al. [17] and Srinivasan and Dellaert
[18]. The segmentation algorithm takes as its input RGBD images; these images
are captured via the Microsoft Kinect. To begin, these images are smoothed using
a bilateral, edge-preserving filter. In order to decrease the size of the algorithm’s
search space when labeling planar segments, the pixels composing the images are
grouped into related, atomic regions known as superpixels. Pixels are uniquely
assigned to a superpixel; the pixels are grouped into superpixels based on three
different factors: spatial proximity, color, and disparity. The result of performing
this “oversegmentation” on the goal views of the two different scenes introduced
below are shown as part of Figure 2. The noisiness of the oversegmentations
seen is largely due to the limited smoothing of the input RGBD images from the
Kinect. The neighborhood in which the bilateral filter smoothed was restricted
to allow for the agent’s direction to be updated more regularly. As long as the
segment(s) the agent is using for navigation is/are consistently recovered, the
surrounding noise can be ignored successfully.

Once the oversegmentation has completed, the superpixels are grouped prob-
abilistically using the Rao-Blackwellized Markov Chain Monte Carlo (MCMC)
algorithm presented by Srinivasan and Dellaert [18]. Each segmentation consists
of a set of planar segments where each planar segment is a set of superpixels.
There are eight hundred segmentations generated by the algorithm, and the most
commonly occurring segmentation is returned as the three-dimensional represen-
tation of the view. The chosen segmentations for the two tested goal views are
shown in Figure 2.

1 A video demonstrating these results is available at:
http://www.cc.gatech.edu/ai/robot-lab/brc/movies/brc_video.mp4

http://www.cc.gatech.edu/ai/robot-lab/brc/movies/brc_video.mp4

392 M.J. Pettinati and R.C. Arkin

Fig. 1. A) The image of the scene. B) The depth image captured at that view. C) The
occupancy grid generated from the depth information.

Fig. 2. A) View of scene at goal location for both tested scenes. B) Oversegmentation
of goal image for both tested scenes. C) Final segmentation of goal image for both
tested scenes. The first test scene appears in the top row. The bottom row contains
the second test scene.

3.3 Navigation Algorithm

A high level overview of the navigation algorithm appears in Figure 3. The algo-
rithm is provided with a conception (RGBD image) of the goal. The algorithm
immediately captures an RGBD image of its current view using an onboard Mi-
crosoft Kinect. It is able to generate a probable planar segmentation, similar
to those seen in Figure 2, for both the goal view and the current view using
the segmentation algorithm described above. The algorithm must now match
segments in the goal view with the corresponding segments in the current view
to try to align them using a process inspired by mental rotation. The two views
have different segment sets and many of the segments are inconsequential to
the scene; therefore, the segments that truly define the scene such as the box
in the first scene’s goal view or the white board in the second scene’s goal view
must be identified as segments that the algorithm will use to move the agent to
the goal. Ultimately, this process will be automated, however, currently in this
bootstrap phase a human user identifies the segments “key” to the goal view

A Primate-Inspired Autonomous Navigation Algorithm 393

and the corresponding segments in the initial current view. After this bootstrap
step is complete, the agent navigates to its target goal location autonomously.

A human hand-matching the “key” segments for the agent is a shortcoming of
this algorithm; however, the bootstrap step will be a focal point of the research
moving forward. In the context of advice-giving, something external to the agent
will still be identifying what is “key” to the agent for navigation (though not
identifying it in either scene). The agent will have to be given or generate a model
of the object(s) described by the person assisting it and identify and match these
objects for itself in the starting view and goal view.

Immediately following this bootstrap step, the algorithm considers each pair
of corresponding segments in turn. It computes the average normal vector for
the planar segment in both images. The estimated average normal vector for
each plane segment is computed by estimating the normal at each pixel in the
given segment using PCL’s normal estimation [19] and averaging each pixel
normal in the segment. The algorithm attempts a discrete number of rotations
to align the current normal vector with the goal normal vector. In a process
attempting to mimic mental rotation, the normal vector of the current segment
is gradually rotated around each of the three axes. After each rotation, the inner
product between the current view segment’s normal vector and the goal view
segment’s normal vector is computed. The maximum value of this computation
corresponds to the mental rotation that most closely aligns the orientation of the
current view and goal view. The algorithm estimates the offset of the segment
in the current view from its position in the goal by using the mental rotation
(i.e. using the rotation matrix that aligned the normal vectors) to “visualize” the
segment at the same orientation as the goal and determine the three-dimensional
spatial distance between the center point of the segment in the goal view and the
rotated center point of the segment in the current view. The algorithm makes
this assessment for each of the corresponding planes designated as “key” in the
scene and finds the average rotation and average estimated offset.

Due to the limited field of view of the Microsoft Kinect, the algorithm is
not going to simply send the agent in the direction of the goal. If the agent
is oriented and does not simply have to move in depth to reach the goal, the
algorithm recommends the agent moves left/right (whichever direction is advised
by the comparison stage) as quickly (as much) as possible to avoid being turned
away from the segments later in the navigation when they can be more easily
lost from view. If the agent is not oriented with its goal view orientation, then
the algorithm will orient the agent to avoid losing segments in the periphery of
the agent’s view. These decisions assumed the agent could “see” all segments
used to navigate when oriented at the start and goal locations. After making
this assessment, the algorithm sends the angle that points the agent in the
appropriate direction. A depth difference between the goal view and current
view is also sent.

Once the robot begins to move, the system captures its new current view
and uses the segmentation algorithm described above. As Arkin [20] suggests,
finding the segments that correspond in the goal view and this new current

394 M.J. Pettinati and R.C. Arkin

view is a less complex problem than the bootstrap step. This feedforward step
uses information about the robot’s motion, the robot’s speed and the angle
just given to the system, as well as information about the positions of “key”
segments in the previous current view to find a correspondence between the
segments in the new current view and the goal view. The navigation algorithm
considers each segment in the new current view and attempts to inversely map
these segments to the previous current view based on the speed of the robot and
its most recent direction to see if the segments fall within regions occupied by
“key” segments in the previous current view. To limit the number of segments
considered, the algorithm only considers segments that are approximately at
the estimated depth of the matching segment. After the segments in the new
current view that correspond to “key” segments in the goal view have been
identified, the algorithm uses the process inspired by mental rotations to make an
assessment about the agent’s orientation and the appropriate direction in which
it should move. This process is going to continue until the agent reaches the
depth of the goal location. The navigation concludes at the goal depth because
the agent cannot turn ninety degrees without losing the segment(s) being used
for navigation.

Data: RBGD goal image
begin

Bootstrap Step

capture first current view RGBD image
perform planar segmentation on start view and goal view
identify goal view segments and match them to corresponding start view segments
for each key segment do

estimate rotation between segment in current view and segment in goal view
get approximate offset between current view segment and goal view segment

end
compute average rotation and offset between current view segments and goal view
segments
send appropriate motion vector to robotic agent

end
begin

Feedforward Step

while true do
capture new current image
match key segments in new current to those in goal
for each key segment do

estimate rotation between segment in current view and segment in goal view
get approximate offset between current view segment and goal view segment

end
if at goal depth then

send angle to orient the agent/zero goal depth
kill/stop the agent

end
send appropriate motion vector to robotic agent

end
end

Fig. 3. Overview of navigation algorithm

4 Results/Analysis

The algorithm was tested on a Pioneer 2-DX robotic platform. The testing was
designed to demonstrate the ability of the algorithm to guide the robotic agent
from a variety of starting locations and orientations to a specified goal location

A Primate-Inspired Autonomous Navigation Algorithm 395

and orientation. The successful navigation of a robotic agent using this algo-
rithm would lend support to the idea that mental rotation can serve primates in
navigation, and it would provide a foundation for the referenced advice-giving
algorithm.

Two different scenes were tested (Figure 2A). Thirty trials were run on each
scene. There were three, ten trial experiments conducted for each scene. Each
of the ten trial experiments was run with the robotic agent starting at a certain
location and orientation and navigating toward the goal location defined for that
scene. A trial was only deemed successful if the agent was within 0.5m of the
goal location, and the difference between the agent’s final orientation and the
goal orientation was no more than 10◦. The distance from the goal location was
measured from the robot center to the goal location. Due to the limited range of
the Kinect, trials were restricted to situations where the agent’s starting locations
were 4.5m from the scene or less. Because the segmentation algorithm extracted
planar segments, each trial included at least one planar element that was “key”
to the scene to ensure reliable segmentation so the average normal vector would
accurately represent orientation.

Figure 4 shows the finite state acceptor (FSA) defined for the robotic agent in
MissionLab. The robot’s behaviors/states are the circular symbols and the trig-
gers for these behaviors are rectangles. In this mission, the agent stops (MENTA-
LALIGNED is true) when the navigation algorithm indicates that the agent is
oriented and an acceptable depth difference has been reached; the robotic agent
has reached the goal location at this point. The MoveMentalDirection behavior
is triggered whenever the agent still has to travel to reach its goal; the behavior
uses the heading computed by the navigation algorithm to move in the appro-
priate direction toward the goal. The OrientAtGoalDepth behavior is triggered
when the agent cannot translate without going beyond the goal yet still must
orient itself properly.

Fig. 4. FSA for robotic agent

396 M.J. Pettinati and R.C. Arkin

4.1 Original Scene Revisited

The first test scene (Figure 2A) contains 3 different objects: a television box, an
overturned crate, and a trash barrel. The front of the box was identified as the
“key” planar segment that the agent used to navigate in all trials. The depth
of this surface was uniform, 2.0m. The agent was pointed directly at the center
of the box when the goal RGBD goal image was captured. The results for the
thirty trials run at this scene are summarized in Table 1 below. The horizontal
displacement is negative if the robot stopped to the goal’s left and positive to
the right. The difference in depth from the goal was positive if the agent went
beyond the goal and negative if the agent stopped before the goal. The rotational
offset is positive if the agent finished oriented to the right of the goal orientation.

Table 1. Results: Scene 1. Location: (horizontal, depth). Location 1: (0.5, -2.0), ori-
ented; Location 2: (-0.75, -2.5), oriented; Location 3: (-0.25, -2.0), rotated 20◦ to the
left. Trials where the algorithm failed to navigate using segments contained within the
scene have been excluded from the average computations.

Location Success
Percentage

Avg. Rotational
Offset
from Goal
Orientation

Avg.
Depth
from Goal

Avg.
Horizontal
Displacement
from Goal

Avg.
Distance
From Goal

Location 1 (avg.
out of 9 trials)

70% 7◦ ± 4.74◦ 13.08cm ±
8.25cm

16.49cm ±
8.25cm

21.96cm ±
8.25cm

Location 2 (avg.
out of 8 trials)

70% 1.38◦ ± 7.48◦ 12.21cm ±
10.09cm

-6.63cm ±
15.44cm

22.65cm ±
4.47cm

Location 3 90% 6.8◦ ± 4.66◦ 8.65cm ±
10.83cm

-4.18cm ±
7.83cm

13.48cm ±
9.44cm

The agent successfully navigated toward and stopped (approximately) at the
goal in 77% of trials for the original scene. When the algorithm accurately kept
track of the segment corresponding to the television box for the extent of the
trial, however, the agent successfully attained the goal in 92% of trials (23/25
cases). This consistency shows that, when an agent can accurately track an
object, it is using to navigate, mental rotation can effectively be used to aid in
navigation. The feedforward step of the algorithm can be attributed, at least in
part, to 71% (5/7 cases) of failure in the first test scene.

The feedforward step of the navigation algorithm failed to identify a matching
segment contained within the scene, for at least a portion of the trial, in 10.0% of
all cases during the testing of the first scene. The algorithm found no matching
segment in one case and human intervention was required to stop the agent. The
matching segment was not found because it was not contained within the depth
range considered by the feedforward step of the algorithm. The estimation of
where the segment should appear in depth was inaccurate. In the other cases,
the depth at which the algorithm was looking for the box segment was again
incorrect and an incorrect segment, not related to the scene, was matched with
the box. The robotic agent navigated away from the goal entirely, treating this
improper segment as the segment corresponding to the box.

All of the initial RGBD image captures during the testing of this scene oc-
curred at or beyond 4m. The box was located 2m beyond the goal location, and

A Primate-Inspired Autonomous Navigation Algorithm 397

the agent had to travel at least 2m in depth to reach the goal. This distance is
at the edge of the range that the Kinect can be depended upon to accurately
assess depth.

The notion that the noise from the Kinect poses an issue is supported by the
6.7% of cases where the algorithm failed to align the agent’s orientation to its goal
orientation due to incorrectly matching the box segment with another segment
contained within the goal view. In one case, superpixels from the background and
foregroundmerged with the “key” objects in the scene causing a misidentification
to occur. In the other case, an early misidentification took the agent off course.
Though the algorithm correctly identified the box in its next iteration and kept
track of the box throughout the rest of the trial, the agent was unable to recover
and the trial resulted in failure.

In the two cases (6.7% of all cases) where the agent did not “succeed”, as
defined above, and the feedforward step cannot be attributed to the failure, the
agent stopped within 0.5m of the goal location. The agent failed during these
two trials because it did not appropriately orient itself at the conclusion of the
trial even though the algorithm had instructed it to do so. The algorithm should
capture a final image to ensure that the agent has oriented itself.

4.2 More Complex Scene

The goal view of the second tested scene is shown as part of Figure 2A. This
second round of testing was meant to reveal more about the capabilities of the
navigation algorithm itself by placing the agent at starting positions where the
Kinect would provide less noisy RGBD images. In this complex environment,
there were numerous objects that were decidedly non-planar meaning that the
segmentation could not be trusted to be consistent. There were planar objects
at varying depths in the background of the scene. The segment the agent used
to navigate, the whiteboard, was partially obscured by chair arms, and it was
not at a constant depth. At the goal, the whiteboard was not entirely contained
within the agent’s view, while the starting location was always far enough back
for the agent to be able to view the whiteboard in its entirety. The results for
all three locations are summarized in Table 2, which is shown below.

The results of these thirty trials support the notion that mental rotation can
be used for navigation. The agent succeeded in 90% of trials (27/30 cases) for
this scene compared to 76.67% of trials (23/30 cases) in the other scene. This is
likely due to the fact that the robot started closer to the scene and noise from
the Kinect did not play a role. The feedforward step only failed once out of the
thirty trials. In this one case, the feedforward step identified a segment composed
of the floor directly below the whiteboard and the small barrel to the side of the
whiteboard as the whiteboard segment. The agent failed to come within 0.5m of
the goal in the second scene twice (in 6.67% of all trials). In these two trials, the
agent failed to orient itself when it first began to move (though the algorithm
accurately assessed the angle it needed to turn to align). It oriented itself with
the next update, but the agent was unable to move quickly enough to the left
or right without losing track of the segment being used to navigate to reach the

398 M.J. Pettinati and R.C. Arkin

goal location. Ultimately, in order to overcome the Kinect’s limited field of view,
different hardware will have to be used, or the algorithm will have to incorporate
a memory that “remembers” the segment’s position, even if it is not within view,
so it can be identified when the agent needs to confirm its relative position.

Table 2. Results: Scene 2. Location: (horizontal, depth). Location 1: (0.5, -1.5),
rotated 10◦ to the right; Location 2: (-0.75, -1.75), rotated 15◦ to the right; Location
3: (0.0, -2.25), oriented.

Location Success
Percentage

Avg. Rotational
Offset
from Goal
Orientation

Avg.
Depth
from Goal

Avg.
Horizontal
Displacement
from Goal

Avg.
Distance
From Goal

Location 1 80% -1.5◦ ± 6.09◦ 4.34cm ±
11.74cm

34.19cm ±
10.19cm

36.6cm ±
9.47cm

Location 2 90% -1.4◦ ± 5.41◦ 16.89cm ±
14.03cm

-30.47cm ±
12.45cm

37.73cm ±
11.93cm

Location 3 100% -0.4◦ ± 4.65◦ 13.26cm ±
10.03cm

9.7cm ±
15.48cm

21.09cm ±
12.86cm

5 Conclusions and Future Work

This paper has shown how a process inspired by the cognitive mechanism of
mental rotation, a mechanism shown to be present in higher order primates, can
be successfully incorporated into an autonomous robotic navigation algorithm.
The algorithm introduced allowed the robotic agent to navigate in an informed
way toward a goal location without doing any explicit planning. Navigation dur-
ing almost all trials in which the agent was able to keep track of the segment it
was using to navigate was sufficiently robust. Shortcomings in the feedforward
aspect of the algorithm can likely be addressed by designing a more computa-
tionally efficient algorithm that is able to update more often and able to better
smooth noisy input images. Future work also includes using an algorithm like the
one described here in the context of advice giving. An agent can be informed to
recognize particular objects and can be directed relative to these objects. Once
the objects in the scene are recognized a procedure like the one described above
can be used to successfully navigate. The process inspired by mental rotation
will require rotating the entire object and using correpsondence between object
features to assess orientation alignment rather than using normal vectors.

The navigation tasks presented above were simple in nature and had to be
largely restricted due to the limitations of the Microsoft Kinect as a sensor. The
navigation algorithm has been enhanced since these trials to allow for multi-
waypoint navigation where waypoints were composed of multiple “key” seg-
ments. Though not yet rigorously tested, there have been successful demonstra-
tions of this algorithm on the Pioneer 2-DX robotic platform. This improvement
allows for testing in more complex, real-world environments; it helps to overcome
the depth measurement limitations of the Microsoft Kinect.

Acknowledgments. The Office of Naval Research, under grant 00014-11-1-
0593, supported this research. The authors would also like to thank Professor
Frank Dellaert and Natesh Srinivasan for their contributions to this project.

A Primate-Inspired Autonomous Navigation Algorithm 399

References

1. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge
(2005)

2. Arkin, R.C.: Behavior-based Robotics. MIT Press, Cambridge (1998)
3. Menzel Jr., E.W., Menzel, C.R.: Do Primates Plan Routes? Simple Detour Prob-

lems Reconsidered (2007)
4. Menzel, C.R., Savage-Rumbaugh, E.S., Menzel Jr., E.W.: Bonobo (Pan paniscus)

spatial memory and communication in a 20-hectare forest. International Journal
of Primatology 23(3), 601–619 (2002)

5. Lourenco, S.F., Huttenlocher, J.: Using geometry to specify location: implications
for spatial coding in children and nonhuman animals. Psycholog. Res. 71(3), 252–
264 (2007)

6. Aretz, A.J., Wickens, C.D.: The mental rotation of map displays. Human Perfor-
mance 5(4), 303–328 (1992)

7. Bläsing, B., de Castro Campos, M., Schack, T., Brugger, P.: Mental rotation of
primate hands: human-likeness and thumb saliency. Experiment. Brain Res. 221(1),
93–105 (2012)

8. Khooshabeh, P., Hegarty, M.: Representations of Shape during Mental Rotation.
In: AAAI Spring Symposium: Cognitive Shape Processing (March 2010)

9. MacKenzie, D., Arkin, R.C., Cameron, J.: Multiagent Mission Specification and
Execution. Autonomous Robotics 4(1), 29–57 (1997)

10. Kosslyn, S.M., Thompson, W.L., Ganis, G.: The case for mental imagery. Oxford
University Press (2006)

11. Hutcheson, A.T., Wedell, D.H.: From maps to navigation: The role of cues in
finding locations in a virtual environment. Memory & Cognition 40(6), 946–957
(2012)

12. Hegarty, M., Waller, D.: A dissociation between mental rotation and perspective-
taking spatial abilities. Intelligence 32(2), 175–191 (2004)

13. Arkin, R.C.: The Role of Mental Rotations in Primate-inspired Robot Navigation.
Cognitive Processing 13(1), 83–87 (2012)

14. Stein, L.A.: Imagination and situated cognition. Journal of Experimental &Theo-
retical Artificial Intelligence 6(4), 393–407 (1994)

15. Arkin, R.C., Dellaert, F., Devassy, J.: Primate-inspired Mental Rotations: Impli-
cations for Robot Control. In: Proc. IEEE International Conf. on Robotic sand
Biomimetics (2012)

16. Arkin, R.C., Dellaert, F., Srinivasan, N., Kerwin, R.: Primate-inspired vehicle nav-
igation using optic flow and mental rotations. In: SPIE Defense, Security, and
Sensing, p. 87560M. International Society for Optics and Photonics (May 2013)

17. Erdogan, C., Paluri, M., & Dellaert, F.: Planar segmentation of RGBD images
using fast linear fitting and markov chain monte carlo. In: 2012 Ninth Conference
on Computer and Robot Vision (CRV), pp. 32–39. IEEE (May 2012).

18. Srinivasan, N., Dellaert, F.: A Rao-Blackwellized MCMC Algorithm for Recovering
Piecewise Planar 3D model from Multiple View RGBD Images. To Appear IEEE
International Conference on Image Processing (October 2014)

19. PCL: Normal Estimation Using Integral Images,
http://pointclouds.org/documentation/tutorials/

normal estimatio using integral images.php
20. Arkin, R.C.: Towards cosmopolitan robots: Intelligent navigation in extended

man-made environments. Doctoral Dissertation. Univ. of Massachusetts, Amherst,
pp. 178–216 (1987)

http://pointclouds.org/documentation/tutorials/normal_estimatio_using_integral_images.php
http://pointclouds.org/documentation/tutorials/normal_estimatio_using_integral_images.php

The Cognitive Interaction Toolkit – Improving

Reproducibility of Robotic Systems Experiments

Florian Lier1, Johannes Wienke1,2, Arne Nordmann1,2, Sven Wachsmuth1,
and Sebastian Wrede1,2

1 Cognitive Interaction Technology, Center of Excellence
2 Research Institute for Cognition and Robotics, CoR-Lab.

Bielefeld University, Bielefeld, Germany
{flier,jwienke,anordman,swachsmu,swrede}@techfak.uni-bielefeld.de

http://www.cit-ec.org,http://www.cor-lab.de

Abstract. Research on robot systems either integrating a large number
of capabilities in a single architecture or displaying outstanding perfor-
mance in a single domain achieved considerable progress over the last
years. Results are typically validated through experimental evaluation or
demonstrated live, e.g., at robotics competitions. While common robot
hardware, simulation and programming platforms yield an improved ba-
sis, many of the described experiments still cannot be reproduced easily
by interested researchers to confirm the reported findings. We consider
this a critical challenge for experimental robotics. Hence, we address
this problem with a novel process which facilitates the reproduction of
robotics experiments. We identify major obstacles to experiment repli-
cation and introduce an integrated approach that allows (i) aggregation
and discovery of required research artifacts, (ii) automated software build
and deployment, as well as (iii) experiment description, repeatable exe-
cution and evaluation. We explain the usage of the introduced process
along an exemplary robotics experiment and discuss our approach in the
context of current ecosystems for robot programming and simulation.

Keywords: Software Engineering, Experimental Robotics, Development
Process, Semantic Web, Continuous Integration, Software Deployment.

1 Introduction

Research on autonomous robots and human-robot interaction with systems that
integrate a large number of skills in a single architecture achieved considerable
progress over the last years. Reported research results are typically validated
through experimental evaluation or demonstrated live at robotics competitions
such as the DARPA Robotics Competition, RoboCup or RockIn. Given the
complexity of these systems, many of the described experiments cannot easily
be reproduced by interested researchers to confirm the reported findings [3]. We
consider this a critical shortcoming of research in robotics since replicable exper-
iments are considered good experimental practice in many other research disci-
plines. Despite this observation, robotics has already made significant progress

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 400–411, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cit-ec.org, http://www.cor-lab.de

The Cognitive Interaction Toolkit 401

towards better reproducibility [3]. This trend can mainly be attributed to the
following developments. Firstly, diverse “off-the-shelf” robots have become avail-
able that ideally only need to be unboxed and powered-on, e.g., the PeopleBot [1],
PR2 [6], NAO [9], or iCub [13]. These are often available in simulation. Secondly,
there are open source and community-driven software ecosystems, established
frameworks and libraries available, such as ROS [14], OPRoS [10] or Orocos [5]
which support researchers by providing sophisticated software building blocks.
Lastly, dedicated activities towards systematic benchmarking of robotic systems
have been carried out in terms of toolkits for benchmarking and publicly avail-
able data sets, e.g. the Rawseeds Project [4].

From our point of view, these are promising developments that foster repro-
ducibility in terms of hardware as well as software aspects. However, besides these
initiatives, there are also more fundamental methodological issues that prevent
reproducibility of robotic system experiments. For instance, Amigoni et al. [2]
already point out deficiencies in experimental methodology.This includes the
frequently neglected impact on experiments caused by the relationship between
individual components and the whole system, as well as the way how publica-
tions need to be written in order to improve reproducibility. We identified the
four following issues that are critical with respect to sustainable reproducibility
of robotic system experiments:

i) Information Retrieval and Aggregation: Publications and associated arti-
facts relevant for reproduction (software components, data sets, documenta-
tion and related publications) are often distributed over different locations,
like digital libraries or diverse websites. Hence, already the discovery, iden-
tification and aggregation of all required artifacts is difficult. Furthermore,
this kind of information is typically not available in a machine interpretable
representation.

ii) Semantic Relationships: Often, crucial relationships between artifacts are
unknown or underspecified, e.g.: which specific versions (master or 1.33.7)
of software components in combination with which data set, hardware or
experiment variant was in use for a particular study?

iii) Software Deployment: Most current systems are realized using a component-
based architecture [15,10,7,17] and usually not all components are written
in the same language. Consequently, they do not make use of the same build
infrastructure1, binary deployment mechanism, and execution environment.
Therefore, it is an inherently complex and labor-intensive task to build and
distribute a system in order to reproduce experimental results. This becomes
even more complex when experiments require software artifacts from more
than one ecosystem because there is usually no cross-ecosystem integration
model.

iv) Experiment Testing, Execution and Evaluation: Advanced robotics experi-
ments require significant efforts spent on system development, integration
testing, execution, evaluation and preservation of results. This is particular
costly if many of these tasks are carried out manually, which is intriguing,

1 CMake, Catkin, setuptools, ant, maven, etc.

402 F. Lier et al.

as established methods from software engineering are available to automate
these tasks, e.g., based on the continuous integration (CI) paradigm. To the
best of our knowledge, so far, these techniques were not widely adopted by
the general community for the iterative design, automated execution and
ensured repeatability of robotics experiments.

To tackle these issues we introduce an approach for reproducible robotics ex-
perimentation based on an integrated software toolchain for system developers
and experiment designers. Currently, it supports (robotics) software and sim-
ulation environments while physical robots/entities will be introduced in later
versions. This toolchain is described in Section 2 and combines state of the art
technologies like web-based catalogs and continuous integration methods into a
consistent process that facilitates the reproduction process of robotic systems
and experiments. After describing the toolchain, we will briefly outline the repli-
cation process for a simulation experiment in Section 3 and conclude with a
discussion of well-known robotics ecosystems with regard to their support for
reproducible experimentation in Section 4.

2 The CITk Toolchain: Concepts and Components

In order to address the aforementioned issues of current robotics research, we
have developed an integrated toolchain which accompanies the complete develop-
ment, reproduction and modification process of robotics systems: the Cognitive
Interaction Toolkit (CITk). The CITk consists of a set of software tools which
are connected by an underlying software development and reproduction process.
This process defines how users interact with our toolchain and has been inspired
by current best practices from research and development, especially in robotics.
Hence, it ties together existing tools and concepts in an integrated fashion. The
general starting point for new users is a web-based catalog. It enables them to
browse and search for software components or complete systems and their related
artifacts like publications and provides them with the necessary information for
the reproduction of these systems. Hence, it addresses the information retrieval
and aggregation requirement (i) by means of semantic relationships between the
different constituting parts of a complete system and its reproduction process
(issue ii). From this catalog, a user who wants to reproduce a system, is directed

Web Catalogue

Recipe Repo

Cont. Integration

Cont. Deployment

DEVELOPER

Add entities / systems and link artifacts

Add build recipes

Entities / systems are built and tested

Entities / systems are deployed

USER

Discover all relevant artifacts at once
Checkout build description for local distribution
Review and assess local/global test results

Make direct use of globally deployed system
Trigger new local/global tests

Cont. Evaluation

Entities / systems are evaluated

Review evaluation add new tests or metrics

A
gg

re
ga

tio
n

Fig. 1. Cognitive Interaction Toolkit: toolchain and developer workflow

The Cognitive Interaction Toolkit 403

towards a build infrastructure which allows to consistently and conveniently
reproduce a system based on the CI methodology. Here, we have developed a
new, build system independent, solution to easily bootstrap systems based on a
CI server by using a generator approach, which reduces the required knowledge
and manual work to a minimum (cf. issue iii). Finally, after deploying a system
as a software distribution, the web catalog informs the user about tests and
experiments that have been performed with the system. A novel state-machine-
based testing tool enables users to consistently reproduce these experiments,
thereby resolving issue iv. Throughout the whole process, the web catalog forms
a central information point for the user. Moreover, tools included in the CITk
process are connected with this catalog to either retrieve the required information
or push them back in case a system has been modified or even newly created.
This fact is visualized in Figure 1. In the following subsections we will describe
the fundamental building blocks of the CITk in detail.

2.1 Information Aggregation and Retrieval

In order to realize a web-based catalog which allows convenient information
retrieval, we implemented the data model depicted in Figure 2 by extending
the Content Management System Drupal2. Since Drupal already supports the
concept of entities, we were able to translate our data model into so-called Dru-
pal nodes. A Drupal node provides a container for diverse attributes which are
named fields. Fields eventually contain the actual content of a node, such as
title, content authors, links to other nodes, files, or text fields (e.g. version).
We implemented all required node types according to our data model within
the catalog. An exemplary node type for a component can be visited here
https://toolkit.cit-ec.uni-bielefeld.de/node/238. Each component, as
well as other node types, assembles basic meta information about the represented
entities, such as repository location, wiki pages, component maintainer etc. More-
over, related nodes are linked to the component. For instance a corresponding

System

Component

Data SetPublicationDocumentation Hardware

System
Version

Component
Version

Documentation
Version

consumes

has
produces

has

produces

describes

consists of

has

consists of

produces

has

ArtifactCI Job

references references

has

has

Fig. 2. Cognitive Interaction Toolkit: conceptual data model

2 https://drupal.org

https://toolkit.cit-ec.uni-bielefeld.de/node/238
https://drupal.org

404 F. Lier et al.

publication, version number, component releases, systems, or data sets. Finally,
nodes and their fields are semantically enriched to increase machine interpretabil-
ity by attaching RDF terms to them, e.g., from DOAP3 and Dublin Core.

Links between different node types form aggregations of nodes. A prominent
example of a node aggregation is the system version type which corresponds to a
software distribution for a system to reproduce. Here, a system version node as-
sembles required components, interrelated experiments (cf. Section 2.3), manuals,
how-tos, and of course data sets and publications. In order to prevent redundant
labor with respect to user provided content, most of the catalog’s content is im-
ported from the entities’ origin locations. Thus, we import required information
about a publication by using the Mendeley API and the PUB MODS [18] inter-
face for instance. A user only needs to provide a URL pointing to his/her pub-
lication and a corresponding node is created automatically. The same strategy
is used to add artifact and build job nodes, here the Jenkins REST-like4 API is
utilized. Besides manual creation/import of entries, content can also be added by
using the catalog’s REST API and client application5. In parallel to the import
features, catalog content can be either rendered as HTML including RDFa, pure
RDF or JSON to improve automated harvesting and interpretation by search
engines or client applications. In a first user-study [11] we demonstrated that our
approach of referencing/importing existing sources delivers benefits of re-using
data and is perceived as efficient. Furthermore, the web catalog is perceived as
useful to help researchers to accomplish their individual goals by providing in-
formation in this manner. The overall required effort for importing, respectively
adding artifacts, was considered low. The beta version of the catalog is publicly
available at https://toolkit.cit-ec.uni-bielefeld.de.

2.2 Automated Build and Deployment

While the data model of the web-based catalog already describes the composition
of system components, it lacks information on how to technically reproduce a
referenced version of a system and its components, e.g. by deploying and execut-
ing it. For this purpose, a controlled build process is essential to achieve re-use
and reproducability of experimental setups in robotics. Such a build process
comprises two distinct aspects: a) the build system of individual components,
and b) the composition of individual component builds into deployable software
distributions. For the first aspect, existing ecosystems in robotics often come
with custom build systems in order to facilitate the aspect of creating software
distributions. For instance, ROS provides Catkin as the build system and NAOqi
promotes qiBuild. Both solutions have chosen CMake, a standard build system
for cross-platform C++ builds, as their basis. While such a solution is straight-
forward, it comes with several drawbacks: First, developers have to learn a new
technology, which sometimes results in refusal to integrate at all. Second, estab-
lished build systems, especially for other languages than C++, are locked out.

3 https://github.com/edumbill/doap
4 https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
5 http://opensource.cit-ec.de/projects/citk

https://toolkit.cit-ec.uni-bielefeld.de
https://github.com/edumbill/doap
https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API
http://opensource.cit-ec.de/projects/citk

The Cognitive Interaction Toolkit 405

{
"name": "openrave",
"templates": ["cor-lab", "cmake-cpp"],
"variables": {

"description": "Open Robotics Automation Virtual Environment...",
"keywords": ["library", "robotics", "simulation"],
"repository": "https://github.com/rdiankov/openrave.git",
"branches": ["master", "latest_stable"],
"git.wipe-out-workspace?": false,

}
}

Fig. 3. Recipe for the OpenRAVE [8] toolkit component. Required fields are component
name, the project templates (specifying to use a CMake build system in this case),
references to the available code branches as well as a URL to the source code repository.
Further fields can be used to augment the automatic dependency analysis or customize
the build process.

And third, software components developed with such a tailored build system are
heavily locked into a specific environment, which prevents the use outside of this
environment.

For the aspect of composing software distribution, existing solutions like
Catkin, in an abstract view, act as a build script that respects the dependencies
of the individual software components by building them in the correct order.
While this is sufficient to deploy a software distribution and manually re-trigger
the installation of certain components, it does not automatically facilitate the
ongoing system development process. For this use case, CI with its emphasis on
incremental development and automated testing and reporting is an established
technology. However, CI is usually maintained in parallel to the distribution
deployment process and as a consequence, build instructions are duplicated be-
tween these two distinct processes. Moreover, consistently maintaining a large
number of jobs for CI servers that manage a complete software distributions is
a complex task that requires a considerable amount of knowledge.

CITk addresses the aforementioned issues by applying a generator-based so-
lution. A newly implemented generator uses minimalistic descriptions of the
different software components that belong to a distribution and generates jobs
for a CI server, Jenkins in our case. From the descriptions (which augment the
data model, cf. Figure 3 for an example) and an automatic repository analy-
sis the dependencies and required build steps are derived. Afterwards, the CI
server jobs are generated along user-defined build templates and uploaded to a
Jenkins instance. Since templates can be added on the fly, new build systems
can be added easily without restricting component developers to certain choices.
Moreover, different jobs for either deploying a distribution or supporting the
ongoing development can be automatically generated from the same knowledge
base, preventing the aforementioned duplication of knowledge. The generated
jobs and distributions are optionally synchronized back to the web catalog. Since
setting up an appropriate Jenkins server with the required plugins takes some
time, we provide pre-packaged installations for new users. As a result, we can
use an established technology like the CI server for deploying complete software

406 F. Lier et al.

systems without knowledge duplication, which results in an improved maintain-
ability. Operating system (OS) dependencies like Debian packages are currently
aggregated manually for specific OS distributions. In the future, we will evaluate
how to include them in the model to improve consistency and posisiblities for
automation.

2.3 Experiment Execution and Evaluation

Besides gathering information about a system and deploying it, a successful re-
production and interaction with the system also includes repeating tests and
experiments. This is necessary to ensure the intended responses of complex in-
teractive systems that operate autonomously. It is well-known that sound exper-
iments imply a well-defined experimental protocol. Unfortunately, experiment
execution and testing are mostly carried out manually and are thus infrequent
and prone to user induced errors. This is especially the case because test setups
are usually complicated and require a high level of technical understanding from
the operator.

 [environment]
 PREFIX = /tmp/oncilla-sim-0.2/
 WEBOTS_HOME = /usr/local/
 CCA_SHARE = $PREFIX/share/cca-oncilla0.4/examples/

 [component-1]
 name = webots
 command = webots
 path = $WEBOTS_HOME/bin/
 execution_host = localhost
 check_execution = True
 check_type = pid, stdout
 timeout = 1, 10
 blocking = True, True
 ongoing = True, False
 criteria = webots started

 [component-2]
 name = sine
 command = python $CCA_SHARE/SineMovement.py
 path = /usr/bin/
 ...

 [run]
 name = Oncilla-Sim-0.2-Trajectory
 run_order = ('webots', 'sine'),
 run_execution_duration = 20
 result_assessment_order = ('proc_data', 'plot', 'show_plot'),
 result_assessment_execution_duration = 10

Experiment specification.ini

Translation into State Machine

FSMT Execution Environment

Experiment Execution

Start
comp. 1

Start
comp. 2

Start
comp n

ok

ok

exit
err

exit
err

exit
err

Start
assess 1

Start
assess n

exit

exit

ok

Report results
Save logsok

Shutdown

exit

Fig. 4. Simplified conceptual overview of FSMT

Thus, we suggest to convey the concept of an experiment protocol to the or-
chestration of software components involved in an experiment and to execute,
test and evaluate software intensive experiments in an automated manner. For
this purpose, we introduce Finite State Machine Based Testing (FSMT)6, a
software tool that implements the aforementioned suggestions based on finite
state machines that defines the experiment execution. FSMT [12] supports au-
tomated bootstrapping, evaluation and shutdown of a software system used in
an experiment. In order to realize this, it provides definition of environment
variables, executable and parameter specification, hierarchical state-based invo-
cation of components, and status (health) checks. A FSMT experiment speci-
fication includes three mandatory blocks: environment description, component

6 http://opensource.cit-ec.de/projects/fsmt

http://opensource.cit-ec.de/projects/fsmt

The Cognitive Interaction Toolkit 407

definition and the run and assessment state (cf. Figure 4). In the [environment]
block an experimenter may assign experiment-specific values to variables, these
are appended to the existing set of environment variables. Components are speci-
fied in [component-*] blocks. Here, paths, executables (scripts), and status check
conditions are defined, e.g., whether the PID of a specific process is present
within a given time frame. Furthermore, FSMT may check the stdout and stderr
of components for a given prompt, again, within a specified time frame. Based
on the result of multiple status checks, FSMT will block further execution of the
state machine or, in case a criterion is not satisfied, stop the experiment to pre-
vent subsequent failures. In the [run] state, the actual experiment is conducted,
which means that all required components of a system are running (verified) and
data is recorded. The recorded data may consist of system specific containers,
such as a rosbag7 or component logs that are recorded for all components by
FSMT. In the assessment state, the recorded data is evaluated by assessment
components. Here, experimenters may provide scripts or binaries to evaluate
data gathered in each run or trial, e.g., plot specified data points. The presented
formalization of an experiment protocol allows to consistently reproduce test
results in an automated fashion. This makes it a perfect candidate for CI and
enables inexperienced experimenters to run tests and experiments consistently.
Currently, FSMT supports sequential as well as parallel execution/evaluation of
components. However, since it is based on a generic state-machine based exe-
cution environment (SCXML), additional conditions like retrying or looping are
planned as well as distributed execution.

3 Use-Case: System and Experiment Reproduction

After describing the overall structure and components of the CITk approach, we
will now outline a typical use case in order to demonstrate the steps required to
reproduce a system that has been modeled in the catalog. The reader is encour-
aged to follow these steps on his/her own Linux computer. In our example, a user
wants to reproduce experiments with the Oncilla quadruped robot [16] in a simu-
lation environment. The first step for the user is to browse our online catalog and
to load the page describing the system, which is https://toolkit.cit-ec.uni-
bielefeld.de/systems/oncilla-quadruped-simulation. This page contains
a general description of the system as well as a set of links to specific versions
of the system. The user will continue to the version he/she wants to reproduce
(0.2 in our case) to get details about the included software components as well
as required dependencies for the Linux computer. Hence, the first step is to in-
stall the required dependencies using the package management tool of the Linux
distribution8. Afterwards, he/she follows the link to the build generator recipes
comprising the system and downloads the required recipes. In order to generate
CI server jobs from the recipes a Jenkins installation as well as our generator are

7 http://wiki.ros.org/rosbag
8 We use as many standard software components from recent Linux distributions as
possible.

https://toolkit.cit-ec.uni-bielefeld.de/systems/oncilla-quadruped-simulation
https://toolkit.cit-ec.uni-bielefeld.de/systems/oncilla-quadruped-simulation
http://wiki.ros.org/rosbag

408 F. Lier et al.

required. Download instructions for a pre-packaged environment are included on
the website and the user follows these instructions to install the environment on
his/her computer. After starting the local Jenkins instance, the generator needs
to be invoked to configure the CI server with the jobs for the distribution. The
last step is to start the installation process and to open the web page of the
local Jenkins instance and to start the orchestration job for the distribution.
After this job has finished, the system is reproduced on the user’s computer.

Now, the user can focus on reproducing the experiments that have been de-
fined for and deployed with the system. These experiments are available as con-
figuration files for the FSMT testing framework. FSMT and the configurations
have just been installed as parts of the software distribution for the system.
The web catalog for the system version lists the available experiments and each
experiment comes with a description of how to execute it. In our case this is
merely a command line to launch FSMT. The user executes the described com-
mands and FSMT reports the results through a report (xunit for instance) and
the process return code. After the experiment has been executed successfully,
the resulting output, e.g., in form of a plot, can be found on the user’s com-
puter (as well as all required logs and data files). Besides the FSMT report, the
generated plot can be compared to a reference plot from the catalog entry of
the experiment. If everything worked correctly, the system is reproduced on the
user’s computer and he/she can start to modify it according to his/her needs or
define new experiments based on the existing system.

4 Related Work and Discussion

In order to relate our approach to exiting work, we will quantitatively examine
the prominent ROS and iCub ecosystems with respect to support for system
reproducibility based on the four issues we have identified in the introduction:
i) information retrieval and aggregation, ii) semantic relationships, iii) software
deployment, and iv) experiment testing, execution and evaluation. In the iCub
ecosystem, a wiki9 is the primary source of information. The wiki lists different
kinds of information, such as links to user manuals, source code repositories, pa-
pers, related (software) projects and summer schools. The main types of artifacts
are iCub modules, applications and tutorials. The corresponding documentation
is automatically parsed from source code (Doxygen). However, there are no ex-
plicit descriptions of existing “demo” systems (versions respectively) as a whole
and their included components. Subsequently, system artifact aggregation and
interlinking is not provided. Nevertheless, existing iCub applications and mod-
ules are assembled and well documented. The iCub ecosystem can be either built
from source or by using pre-built binaries for Debian/Ubuntu Linux distributions
and Windows. This means that systems are implicitly modeled by package de-
pendency resolution. Furthermore, a central CI server10 provides an overview of

9 http://eris.liralab.it/wiki/Main_Page
10 http://dashboard.icub.org/

http://eris.liralab.it/wiki/Main_Page
http://dashboard.icub.org/

The Cognitive Interaction Toolkit 409

the current state of iCub related software. The build system for the iCub ecosys-
tem is based on CMake. With respect to system experiments, the wiki features
an example of checking whether a system installation has been successful or not,
which can be valued as a basic system experiment. In this example, multiple
iCub components are started manually and a provided data set can be replayed.
However, based on the example documentation it remains unclear how to assess
the outcome of the system installation check. Additionally, there is no support
for automated execution or evaluation.

In the ROS ecosystem, a wiki11 is also the main source of information. It con-
tains structured information about installation, tutorials, distributions, robots,
packages, libraries, papers, books, events and more. While there are no explicit
system descriptions, ROS features system distributions including a set of ver-
sioned ROS stacks. Therefore, systems are also implicitly modeled as stacks or
meta packages. Fortunately, ROS provides extra wiki sites for a few publica-
tions that aggregate source code, data sets and usage examples (for a specific
distribution) to reproduce the results published in the attached papers. Fur-
thermore, there are wiki pages per distribution, stack and (meta) package, i.e.,
for pr2 common12. These pages contain basic information, e.g., maintainer, li-
cense, website, source code location and links to related/included packages. Basic
interlinks between artifacts, i.e., stacks, related packages, dependencies, docu-
mentation and source code locations are supported (cf. http://wiki.ros.org/
turtlesim) — semantic linking is currently not supported. In recent versions,
ROS introduced its own new build system called Catkin that is based on CMake.
By using Catkin, developers can easily setup and deploy their own ROS compo-
nents and even add them to a ROS distribution. ROS also provides a CI build
farm to which developer packages can be added via ROS-bloom13, a release au-
tomation tool. In order to start ROS-based systems automatically, ROS features
roslaunch, a tool for launching multiple ROS nodes locally and remotely. In a
roslaunch file, rostests can be integrated. Therefore, ROS features a mechanism
to automatically start and test a stack or package. Explicit experiment descrip-
tions are currently not present in the ROS ecosystem.

In general it appears to be a good practice to publish information about
robotics software and the corresponding ecosystem on a structured website. Un-
fortunately, the assembled information is often not complete with respect to
system reproducibility due to a lack of explicit system descriptions, aggregation
of all necessary artifacts and the specification of an experimental procedure in
both examined ecosystems. Since ROS already features websites which assemble
at least source code and data sets for a specific publication, we are confident that
this way of information provision is beneficial. However, semantic linking and
thus machine interpretability of artifacts is broadly neglected in the examined
ecosystems. Systems and system versions are modeled implicitly, but are not
visible/marked as such on the websites. Moreover, systems are not associated

11 http://wiki.ros.org/
12 http://wiki.ros.org/pr2_common
13 http://wiki.ros.org/bloom

http://wiki.ros.org/turtlesim
http://wiki.ros.org/turtlesim
http://wiki.ros.org/
http://wiki.ros.org/pr2_common
http://wiki.ros.org/bloom

410 F. Lier et al.

with an experiment protocol or course of action. Not surprisingly, CI plays an
important role in both ecosystems but is not considered for local usage, e.g., for
decentralized development, testing and distribution. In case of ROS this means
that a developer must comply to the ROS release cycle time and server capac-
ity. However, the sponsorship of an automated build infrastructure and tools
to automatically create build jobs (cf. ROS-bloom and Section 2.2) reduces the
amount of expert knowledge and is thus also considered beneficial. In contrast to
our approach, ROS and iCub distributions can be installed via source builds (not
recommended as stated in the ROS wiki) but also via binary distributions that
simplify and speed up installation time. On the other hand, binary packages often
raise typical issues such as requiring root permissions for installation, the install
prefix is fixed and creating binary packages for diverse operating systems and
flavors is a huge effort. With respect to build systems both ecosystems are based
on CMake, which facilitates cross-platform compatibility, but also, in contrast
to CITk, restricts the number of integrable third-party build tools. This is es-
pecially crucial because robotic systems/experiments often incorporate artifacts
from more than one ecosystem. Finally, experiment specification, orchestration,
automated execution and evaluation is not supported by either ROS or the iCub
infrastructure.

5 Conclusion

We introduced an approach for reproducible robotics experimentation based on
an integrated software toolchain for system developers and experimenters. It
combines state-of-the-art technologies into a consistent process that facilitates
the reproduction of robotic systems and experiments. We briefly outlined the
replication process for a simulation experiment and discussed the benefits of the
approach in comparison to well-known robotics ecosystems and their support for
reproducible experimentation. Future work will focus on providing the complete
toolchain as open source to the community, extending the build generation with
classical continuous integration and deployment features for local development
and extension towards modeling hardware components and versions as part of a
system description.

Acknowledgements. This research and development project is funded as part
of the Center of Excellence Cognitive Interaction Technology (CITEC) at Biele-
feld University and by the German Federal Ministry of Education and Research
(BMBF) within the Leading-Edge Cluster Competition “it’s OWL” (intelligent
technical systems OstWestfalenLippe) and managed by the Project Management
Agency Karlsruhe (PTKA).

References

1. PeopleBot datasheet, http://www.mobilerobots.com/Libraries/Downloads/
PeopleBot-PPLB-RevA.sflb.ashx (visited: May 19, 2014)

2. Amigoni, F., Reggiani, M., Schiaffonati, V.: An insightful comparison between exper-
iments in mobile robotics and in science. Autonomous Robots 27(4), 313–325 (2009)

http://www.mobilerobots.com/Libraries/Downloads/PeopleBot-PPLB-RevA.sflb.ashx
http://www.mobilerobots.com/Libraries/Downloads/PeopleBot-PPLB-RevA.sflb.ashx

The Cognitive Interaction Toolkit 411

3. Amigoni, F., Schiaffonati, V., Verdicchio, M.: Good experimental methodologies
for autonomous robotics: From theory to practice. In: Amigoni, F., Schiaffonati, V.
(eds.) Methods and Experimental Techniques in Computer Engineering. Springer
Briefs in Applied Sciences and Technology, pp. 37–53. Springer International Pub-
lishing (2014)

4. Bonarini, A., et al.: RAWSEEDS: Robotics advancement through web-publishing
of sensorial and elaborated extensive data sets. In: IROS 2006 Workshop on Bench-
marks in Robotics Research, vol. 6 (2006)

5. Bruyninckx, H.: Open robot control software: the orocos project. In: Proceedings
of IEEE International Conference on Robotics and Automation, ICRA, vol. 3,
pp. 2523–2528. IEEE (2001)

6. Cousins, S.: ROS on the PR2 [ROS Topics]. IEEE Robotics Automation Maga-
zine 17(3), 23–25 (2010)

7. Cousins, S., Gerkey, B., Conley, K.: Sharing software with ros [ROS Topics].
Robotics & Automation Magazine 17(2), 12–14 (2010)

8. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute (August 2010)

9. Gouaillier, D., et al.: Mechatronic design of NAO humanoid. In: Proc. Int. Conf.
on Robotics and Automation, pp. 769–774 (2009)

10. Jang, C., et al.: OPRoS: A new component-based robot software platform. ETRI
Journal 32(5), 646–656 (2010)

11. Lier, F., et al.: Facilitating research cooperation through linking and sharing of
heterogenous research artifacts. In: Proc. 8th Int. Conf. on Semantic Systems, pp.
157–164. ACM (2012)

12. Lier, F., Lütkebohle, I., Wachsmuth, S.: Towards automated execution and eval-
uation of simulated prototype HRI experiments. In: Proc. 2014 ACM/IEEE Int.
Conf. on Human-robot Interaction, pp. 230–231. ACM (2014)

13. Metta, G., et al.: The iCub humanoid robot: An open platform for research in
embodied cognition. In: Proc. 8th Workshop on Performance Metrics for Intelligent
Systems, pp. 50–56. ACM, New York (2008)

14. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3 (2009)

15. Soetens, P.: A software framework for real-time and distributed robot and machine
control. PhD thesis, Katholieke Universiteit Leuven, Faculteit Ingenieursweten-
schappen, Departement Werktuigkunde (2006)

16. Sproewitz, A., et al.: Oncilla robot, a light-weight bio-inspired quadruped robot for
fast locomotion in rough terrain. In: Symposium on Adaptive Motion of Animals
and Machines, pp. 63–64 (2011)

17. Wienke, J., Wrede, S.: A middleware for collaborative research in experimental
robotics. In: 2011 IEEE/SICE Int. Symposium on System Integration, Kyoto,
Japan. IEEE (2011)

18. Wiljes, C., Jahn, N., Lier, F., Paul-Stueve, T., Vompras, J., Pietsch, C., Cimiano,
P.: Towards linked research data: An institutional approach. In: 3rd Workshop on
Semantic Publishing, vol. 994, pp. 27–38 (2013)

Enhancing Humanoids’ Walking Skills

through Morphogenesis Evolution Method

Nicolas Jouandeau1 and Vincent Hugel2

1 LIASD, Paris 8 University, France
n@ai.univ-paris8.fr

2 Robotics Department, Toulon-Var University, France
vincent.hugel@univ-tln.fr

Abstract. This paper presents an evolution method used to modify
the morphology of humanoids to make them more efficient in a specific
direction of walking. Starting from the NAO’s model used in the 3D Sim-
ulation Soccer League, the walking specializations are based on 5 to 8
parameters that are being evolved. A black-box optimization process is
run and guided by a decision-making function that defines the outcome
of the humanoid evolution process. The simulation results lead to four
optimized morphological profiles, each of them specialized for either for-
ward, or lateral, or diagonal walk, or in-place turn respectively. These
results could be used to build heterogeneous humanoids inside a team of
soccer players.

1 Introduction

The tuning of gait parameters thanks to automatic procedure has been widely
studied. Mimicking humans and using machine learning algorithms are the most
common ways to tune walking parameters. Starting from a set of parameters,
short modifications are applied iteratively to improve the set of parameters,
according to a fitness function. Hebbel et al. [1] successfully used different Evo-
lution Strategies to design a fast forward walker. Following the process of muta-
tion/selection, they proposed solutions to avoid local optima by only selecting
children that differ from their parents and to explore more evolution branches
over developing multiple parents. Niehaus et al. [2] used Particle Swarm Opti-
mization to design an omni-directional walk. The omni-directional property is
synthesized into five walking direction sets. As the gait is modelled with a 14
parameter set, the robot uses parameter values that are defined for the synthe-
sized walking direction. Different speeds result from this approach. Moving left,
backward and diagonally forward are equivalent. Compared to these first three
directions, moving diagonally backward is slower and moving straight forward
is faster. MacAlpine and Stone [3] proposed the use of a uniform-velocity omni-
directional walk. The optimization process is achieved with Covariance Matrix
Adaptation Evolution Strategy [4] that is able to adapt the next generation
according to previous generations’ results. The evaluation of walking parame-
ter sets is guided by goToTarget trials, that consist of a sequence of moves to

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 412–423, 2014.
c© Springer International Publishing Switzerland 2014

Morphogenesis Evolution Method 413

different targets along different directions. Travelled distance, spent time and
number of falls are taken into account to define a reward of the tested 14 pa-
rameters. To keep the advantage provided by fast forward walking and accurate
positioning in the field, they added a Sprint parameter set and a Positioning
parameter set. Results are developed over 5 reward policies that produce dif-
ferent forward/backward/sideways walking speeds. Farchy et al. [5] introduced
Grounded Simulation Learning to reduce the gap between simulation and real
application in humanoid walking optimization. The simulation process includes
simulation server modification to fit simulation and application results, although
models are slightly different. Simulation tests use the original NAO version and
application tests use the last NAO version with longer legs.

The different techniques in the related work listed above lead to significant
results on skill design optimization. However most of the optimization tech-
niques depend on the optimization problem itself. As we look for a single uniform
optimization technique without any preliminary step of parameters definition,
particle swarm optimization techniques were discarded due to the definition of
population size and selection operator that clearly influence the optimization
effectiveness and thus require more optimization iterations. Previous work on
learning methods also proposed to change reward weights over time to reduce
the number of optimization iterations. As we study multiple skill optimization
with different metrics, learning methods were also discarded. Therefore the main
contribution of this paper is to present a unified humanoid enhancement process
through an evolution method that is defined as generic, so that it allows enhanc-
ing different skills for different moves using different morphological models.

Jouandeau and Hugel [6] introduced an optimization process that is applied to
both morphological characteristics and walking parameters [7,8]. They improved
the forward walking speed by tuning 2 morphological and 3 functional param-
eters using the Confident Local OPtimization [9] (CLOP) process. Two poli-
cies were finally proposed to define a best-first agent and a best-average agent.
Results showed improvements of the morphological model as the optimization
process produced faster humanoid walkers, with more realistic, safe and precise
walk. The authors also used the same optimization framework to increase kick-
ing skills of humanoids [10]. For a kick move, they applied a skill optimization
process to different subsets of parameters of kicking parameters. Results shows
that sequential sub-process optimization can lead to better results.

The developments described in this paper extend the above concept of simul-
taneous tuning of leg morphology and walking parameters to build humanoids
with enhanced walking skills in a specific direction. 5 to 8 parameters are being
evolved to optimize 4 different walking specializations, that are forward walk,
lateral walk, diagonal walk, and in-place turns.

This paper is organized as follows. Section 2 describes the walking gaits that
were used for the proposed approach. Section 3 describes the proposed opti-
mization process according to four desired walking specializations. The pro-
cess produces simultaneous evolution of morphological parameters and walking

414 N. Jouandeau and V. Hugel

parameters to enhance walking skills. Section 4 describes and discusses the ob-
tained results. Section 5 concludes.

2 Walking Gaits

In this study walking gaits were based on the Zero Moment Point (ZMP) tech-
nique [11] applied to the 3D-LIP model [12] that is represented by a single
inverted pendulum with a massless telescopic leg that connects the supporting
foot and the Center Of Mass (COM) of the entire robot. The height of the COM
is kept constant, and there is no torque between the ground and the supporting
foot. The robot is assumed to walk on a horizontal plane, with alternating single
support phases. The double support phase is thus instantaneous.

The equations that govern the relationship between the position (xG, yG, zG)
of the COM and the ZMP – named P ∗ – are given by [12]:

ẍG =
g

zG
(xG − xP∗) (1)

ÿG =
g

zG
(yG − yP∗) (2)

where g is the gravity.
In our approach the ZMP is kept fixed for each single support phase. This leads
to a hyperbolic shape of the COM trajectory for each step, also called walking
primitive:

xG(t) = (x
i(n)
G − xP∗) cosh(t/TC)

+TC ẋ
i(n)
G sinh(t/TC) + xP∗ (3)

ẋG(t) = (x
i(n)
G − xP∗) sinh(t/TC)/TC

+ẋ
i(n)
G cosh(t/TC) (4)

where n is the step number, x
i(n)
G and ẋ

i(n)
G are respectively the COM initial

x-position and the COM initial x-velocity of step n, and TC =
√

zG
g . The same

holds for yG(t) and ẏG(t).

3 Gait and Morphological Optimizations

This section presents the evolution process proposed to improve displacement
capabilities of humanoids. The optimization process modifies the morphological
characteristics and the walking parameters. It is applied to 4 typical moves:
forward translation, lateral translation, diagonal translation, and rotation, to
create players with self-adapted morphologies. This section also details different
scoring functions for these moves.

Morphogenesis Evolution Method 415

3.1 Evolution Process

Using the black box optimizer CLOP, the evolution process is run with a list
of input parameters, minimum and maximum values for each parameter and a
pick-out function to qualify results. The set L defines input parameters with
their minimum and maximum values. During the evolution process, results are
collected in the history setH. For each evolution iteration, a new set of parameter
values are chosen from L according to H. Each evolution iteration is processed
over 10 trials, to produce average evaluation values. At the end of each evolution
iteration, the fitness function pickOut states if the result is better, equivalent or
worse than the best known result. Then parameters converge to best evolution
values. This evolution process is presented in Alg. 1. It can be applied to different
types T that defines the content of all sets.

Algorithm 1. evolution < T >(n, L, pickOut)
1: (ν′, H) ← (∅, ∅)
2: for i = 0 to n do
3: p ← newParams < T >(H, L)
4: (ν) ← multipleTrials < T >(p)
5: (ν′, h) ← pickOut < T >(ν, ν′)
6: insert < T >((p , h), H)
7: end for
8: return paramsFrom < T >(ν′)

The pickOut function returns three possible values that correspond to better,
equivalent and worse results. At each iteration, a new set of parameters p is
chosen. ν′ stands for best acceptable results. Each CLOP iteration implies that
a new tuple (p,h) is inserted in H. If n is too small, ν′ could remain empty,
which means that no solution is found over n iterations. As presented in Alg. 1
line 1, the process is started from scratch. At the end, the best parameters that
correspond to the results ν′ are returned.

3.2 Evaluation of Evolution

A list of constant values are required for the evaluation of the evolution. The
SUCCESS RATE (that is equal to 0.75) defines the rate of trials achieved
without falling. The XY RATIO (that is equal to 0.1) represents the maximal
lateral drift allowed, and Y X RATIO (that is equal to 0.1) the maximal lon-
gitudinal drift allowed. The DIAG RATIO (that is equal to 1.1) qualifies the
maximal drift allowed in a diagonal move between longitudinal and lateral dis-
tances travelled. α and β (that are equal to 3 and 1) are introduced to compare
averages related to the normal distributions used in the process. γ (that is equal
to 0.7) is a ratio to compare standard deviations and to quantify stability.

Our evolution process for humanoids is based on the optimization of 4 types
T that correspond to 4 different basic moves : 3 translations and 1 rotation. For

416 N. Jouandeau and V. Hugel

Algorithm 2. pickOut < T >((s, m, σ), (s′, m′, σ′))
1: if s < SUCCESS RATE then return REJECT ;
2: if type = FORWARD then
3: if my/mx > XY RATIO then return REJECT ;
4: return translationPickOut (m, σx, m

′, σ′
x);

5: end if
6: if type = LATERAL then
7: if mx/my > YX RATIO then return REJECT ;
8: return translationPickOut (m, σy, m

′, σ′
y);

9: end if
10: if type = DIAGONAL then
11: if my/mx > DIAG RATIO or mx/my > DIAG RATIO then
12: return REJECT ;
13: end if
14: e ← sqrt (σx+σy)
15: e′ ← sqrt (σ′

x+σ′
y)

16: return translationPickOut (m, e, m′, e′);
17: end if
18: if type = ROTATION then
19: if (m2

x +m2
y) > MAX then return REJECT ;

20: if optimize accuracy then return RPO accuracy (target, m, σ, m′, σ′);
21: if optimize time then return RPO time (m, σ, m′, σ′);
22: end if

each move, < T > defines type value (used in Alg. 2 lines 4, 10, 16 and 24) and
eventually a target value (used in Alg. 2 line 29 specially in an accuracy test). The
3 translations are selected among the 8 discrete walking directions : moving along
the longitudinal axis (forward and backward), moving sideways (right or left) and
moving diagonally (forward or backward, left or right). Since backward walking
patterns are not frequently used, only the 5 forward translational moves, namely
left, diagonal left, forward, diagonal right and right, were selected for the process.
The rotation move is a self-rotating move on the spot. Each translation-move
optimization is based on a single policy. Because the default rotation that was
tuned manually is already effective – fast, large steps and no fall –, it appears to
be close to its optimum parameter values. This is the reason why the optimization
process for rotation moves is associated with two possible policies, the first policy
fosters better accuracy, and the second policy fosters reduced execution time.

The main core of the evaluation function is presented in Alg. 2. Inside each
set ν from Alg. 1 :

– the subset m defines average values of longitudinal step length, lateral step
length, turning step angle and execution time.

– the subset σ defines standard deviations values related to the average values.
– the subset s defines the success rate of the experiments.

Therefore, ν (respect. ν′) set in Alg. 1 is replaced with its subsets (s,m,σ)
(respect. (s′,m′,σ′) in Alg .2).

Morphogenesis Evolution Method 417

The evaluation function is used for all moves, calling a more specialized sub-
function if preliminary tests are passed successfully. First of all, as tested in
Alg. 2 line 1, a miminum success rate s is needed. Therefore, depending on the
type of move, the function checks :

– The lateral drift while translating forward, in Alg. 2 line 3.
– The longitudinal drift while translating sideways, in Alg. 2 line 7.
– The shift between translation axes while translating in diagonal, in Alg. 2

line 11.
– The drift while self rotating on the spot, in Alg. 2 line 19.

For the evaluation of translations the same translationPickOut function is
called with the same average results – named m and m′ – but with different
criteria:

– Translating forward uses σx and σ′
x that define the standard deviations of

forward translation on the x-axis, in Alg. 2 line 4.
– Translating sideways uses σy and σ′

y that define the standard deviations of
sideways translation on the y-axis, in Alg. 2 line 8.

– Translating in diagonal uses distances – named e and e′ – that define the
standard deviations of the achieved distance, in Alg. 2 line 16.

As rotation is already very effective, the optimization of rotation moves in
Alg. 2 is associated with two possible policies, the one fostering accuracy (line
20) or the other one reduced execution time (line 21). Accuracy optimization is
achieved according to a specific target that defines the desired rotation angle.

Details of the respective evaluation functions are explained in the next section.

3.3 Specialized Evaluations

Specialized evaluations regroup: The translation evaluation function, detailed
in Alg. 3 ; The rotation evaluation function that checks the resulting accuracy,
detailed in Alg. 4 ; The rotation evaluation function that checks the resulting
speed, detailed in Alg. 5.

Algorithm 3. translationPickOut (m, e, m′, e′)
1: if m′ == UNDEFINED then return ACCEPT ;
2: d ← sqrt (m2

x +m2
y);

3: d′ ← sqrt (m′2
x +m′2

y);
4: if d < d′ − αe′ then return REJECT ;
5: if d < d′ − βe′ then return EQUIV ALENT ;
6: if e < γe′ then return ACCEPT ;
7: if d < d′ then return EQUIV ALENT ;
8: return ACCEPT ;

418 N. Jouandeau and V. Hugel

All these evaluation functions make use of the three constant values α, β and
γ: α is the nearness factor: if the new result is not close enough to the best
known result, parameters are considered to lead to a worst instead of a best
known result ; β is the equivalence factor: the test is similar to the nearness
factor test with a different threshold. The result is now EQUIV ALENT with
this factor whereas it is REJECT with α. Because we compare averages and
standard deviations resulting from two experiments, it is logical to ensure that
β < α ; γ is the width factor: if the new result is more stable, then it is better.

Algorithm 4. RPO accuracy (target, m, σ, m′, σ′)
1: if m′ == UNDEFINED then return ACCEPT ;
2: if | mθ − target | > | m′

θ − target |+ ασ′
θ then return REJECT ;

3: if | mθ − target | < | m′
θ − target | − βσ′

θ then return EQUIV ALENT ;
4: if σθ < γσ′

θ then return ACCEPT ;
5: if | mθ − target | > | m′

θ − target | then return EQUIV ALENT ;
6: return ACCEPT ;

As these functions are iteratively used, the constant values contribute to the
convergence speed of the evolution.

Algorithm 5. RPO time (m, σ, m′, σ′)
1: if m′ == UNDEFINED then return ACCEPT ;
2: if mtime < m′

time − ασ′
time then return REJECT ;

3: if mtime < m′
time − βσ′

time then return EQUIV ALENT ;
4: if σtime < γσ′

time then return ACCEPT ;
5: if mtime < m′

time then return EQUIV ALENT ;
6: return ACCEPT ;

3.4 Parameters Influence and Trials

The optimization process can be seen as a nature-inspired growth since it makes
morphological parameters of the legs and locomotion parameters evolve simul-
taneously. The first column of Tab. 1 and Tab.2 contains the morphological leg
parameters and the walking parameters with upper/lower bounds.

The morphological leg parameters are listed first in these two tables. These
parameters are related to the morphology of the leg:

– ThighRelHip2 Z stands for the semi-length of the femur. The change of
this parameter value changes the cural index of the leg, which is the ratio
of the tibia length with the femur length. The cural index is one of the key
parameters in human morphology since it is useful for the comparison of the
different bipeds that colonized the Earth since the appearance of the first
hominids. The tibia length is kept fixed.

Morphogenesis Evolution Method 419

– Hip1RelT orso X is the half length between hips. This parameter can be
tuned to build a larger or a narrower pelvis for the humanoid robot. A
larger pelvis can increase the reachable space of the legs below the trunk
and reduce collisions between legs. This parameter is expected to influence
the quality of the walking patterns that involve sideways moves.

– ratio flexion is the leg flexion ratio, which is defined as the ratio of the hip
height from the ground over the total length of the leg when stretched. A
change of the flexion ratio has an influence on the way the robot walks, i.e
with knees more or less flexed.

The walking parameters are listed below the morphological parameters in Tab. 1
and Tab.2. The walking parameters can be varied to tune the walking skills of
the robot in order to get a quick and well-balanced gait:

– offset MidAnkles 2 Torso I stands for the horizontal distance between the
middle of the ankles and the torso center. This parameter allows to balance
the weight of the torso with respect to the flexed legs. The COM is considered
to be fixed with respect to the torso, and its coordinates inside the torso
coordinate frame are calculated automatically in the standing position as a
function of the morphological parameters. This is an usual approximation in
the case of the LIP-3D model.

– height lift is the maximal height of leg lift-off.
– xlength step max is the maximal forward step length.
– ylength step max is the maximal sideways step length.
– theta step max is the maximal turning step angle.
– dist between feet p points is the distance between ankles in the rest posi-

tion. This distance can be adjusted for the robot to walk with the feet more
or less apart from each other. This walking parameter is expected to be
influenced by the pelvis size.

4 Experiments and Results

The simulation software is composed of 5 different parts, i.e. rcssserver3d [13,14],
the client agent rcssagent3d-like, a coach (that is responsible for starting trial),
the CLOP framework [9] and utilities that link everything.

Table 1 indicates the parameters that were used for each walking gait opti-
mization. Table 2 contains the optimized parameters resulting from each of the
5 experiments (that were run according to the 5 evaluation functions) :

– Moving straight ahead, called Fwd. trial.
– Moving sideways , called Lat. trial.
– Moving diagonally forward, called Diag. trial.
– Rotating accurately, called Rot. trial with Opt.1 on Accuracy parameters.
– Rotating fast, called Rot. trial with Opt.1 on Time parameters.

Table 3 contains the evaluation values, namely s, mtime, mx, my, mθ and the
related deviations σx, σy and σθ for each experiment.

420 N. Jouandeau and V. Hugel

Tables 2 and 3 recall the default values of the parameters before optimization.
These default values are related to the walking gaits that were tuned manually
using expert’s knowledge. The default values are useful to be compared to the
optimized values obtained.

All experiments change morphological parameters and technical skills simul-
taneously to fit morphology and walking parameters to maximize values while
minimizing other shifting values. As we aim at building a best-first agent, we
only use the Opt.1 policy [6], that defines the best last trial of the evaluation
function. Each optimization is achieved with 500 CLOP iterations. Each CLOP
iteration is performed over 10 trials. Final results are also calculated over 10
trials.

According to the results listed in Tab. 3 :

– While moving forward straight ahead : Fwd. Opt.1 morphology is 1.62 times
faster than the Dflt one (from ratio of mx values in Tab. 3). Fwd. Opt.1
morphology is 1.29 times more stable than the Dflt one (see parameter s in
Tab. 3).

– While rotating : Rot. Opt.1 on Accuracy morphology is 3.44 times slower
than the Dflt one (from ratio of mtime values in Tab. 3). Rot. Opt.1 on
Time morphology is equivalent to the Dflt one (similar values for mtime in
Tab. 3).

– While moving sideways : Lat. Opt.1 morphology is 1.78 times faster than
the Dflt one (from ratio of my values in Tab. 3).

– While moving on diagonal : Diag. Opt.1 morphology is 1.51 times faster
than the Dflt one (from ratio of mx and my values in Tab. 3).

Table 1. All parameters bounds and trial policies

Bounds and trials Min Max Fwd. Rot. Lat. Diag.
Morphological parameters :
ThighRelHip2 Z -0.09 -0.02 X X X X
Hip1RelTorso X -0.01 -0.10 X X X X
ratio flexion 0.60 0.95 X X X X
Walking skills parameters :
offset MidAnkles 2 Torso I 0.001 0.030 X X X X
height lift 0.025 0.080 X X X X
xlength step max 0.020 0.150 X X
ylength step max 0.020 0.150 X X
theta step max 0.020 0.785 X
dist between feet p points 0.020 0.200 X X X

Table 3 shows that the new two rotation morphologies (Rot. Opt.1 on Accu-
racy and Rot. Opt.1 on Time) are not better than the Dflt one. This results is
not surprising because the rotation gait was carefully designed in the original
morphology as explained in section 2, and because the rotation gait is less sen-
sitive to dynamical effects along the longitudinal direction that is more prone to
falling. Therefore none of these new rotation morphologies were selected. the het-
erogeneous team. The three remaining morphologies (Fig. 1) present interesting

Morphogenesis Evolution Method 421

Table 2. Resulting parameter values

Trial Fwd. Rot. Lat. Diag.
Parameters Dflt Opt.1 Opt.1 Opt.1 Opt.1 Opt.1

on Accuracy on Time
Morphological parameters :
ThighRelHip2 Z -0.040 -0.079 -0.082 0.080 -0.061 -0.065
Hip1RelTorso X -0.055 -0.022 -0.096 -0.058 -0.083 -0.062
ratio flexion 0.728 0.902 0.657 0.775 0.809 0.857
Walking skills parameters :
offset MidAnkles 2 Torso I 0.011 0.020 0.006 0.024 0.013 0.009
height lift 0.030 0.063 0.066 0.069 0.044 0.036
xlength step max 0.080 0.125 0.050
ylength step max 0.060 0.121 0.094
theta step max 1.047 0.205 0.757
dist between feet p points 0.110 0.079 0.027 0.123 0.146

Table 3. Results for each trial

Trial Fwd. Rot. Lat. Diag.
Param. Dflt Opt.1 Dflt Opt.1 Opt.1 Dflt Opt.1 Dflt Opt.1

on Accuracy on Time
s 0.70 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mtime 2.807 9.643 3.058
mx 4.422 7.168 0.018 0.023 0.012 0.084 0.078 1.840 2.843
my 0.304 0.553 0.041 0.053 0.025 2.021 3.588 1.942 2.860
mθ 0.123 0.187 5.973 6.161 6.030 0.062 0.060 0.083 0.248
σx 0.046 0.075 0.010 0.023 0.015 0.031 0.048 0.064 0.250
σy 0.234 0.534 0.032 0.036 0.015 0.053 0.046 0.106 0.287
σθ 0.066 0.173 0.068 0.125 0.159 0.021 0.048 0.047 0.131

Table 4. Results of 3 parameter sets for each trial

Trials Fwd. Lat. Diag.
Param. Fwd. Rot.* Lat. Dgn. Fwd. Rot.* Lat. Dgn. Fwd. Rot.* Lat. Dgn.
s 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mtime 1.339 1.380 1.398
mx 7.168 0.035 0.428 1.091 4.737 0.045 0.078 2.423 2.918 0.026 0.418 2.843
my 0.553 0.042 1.961 2.465 0.540 0.049 3.588 2.634 0.201 0.053 3.023 2.860
mθ 0.187 2.232 0.397 0.747 0.270 1.789 0.060 0.119 0.112 2.182 0.237 0.248
σtime 0.001 0.003 0.001
σx 0.075 0.020 0.071 0.046 0.094 0.014 0.048 0.155 0.033 0.015 0.144 0.250
σy 0.534 0.033 0.067 0.053 0.407 0.029 0.046 0.158 0.074 0.039 0.054 0.287
σθ 0.173 0.003 0.052 0.028 0.236 0.010 0.048 0.072 0.064 0.004 0.009 0.131

Fig. 1. Fwd., Diag. and Lateral morphologies

422 N. Jouandeau and V. Hugel

properties because they enhance the displacement capabilities, either forward,
sideways or diagonally (see mx and my values in bold font in Tab. 3).

However it is necessary to check that each of the three selected morphologies
is still compatible with the walking gaits in the other directions, i.e. other than
the enhanced direction. Table 4 summarizes such results. It shows that the three
optimized morphologies are compatible with the gaits in the other directions.
In the checking experiments the angle in the rotation gait was limited to 2π/3.
In addition since the lateral morphology increased the lateral step up to the
maximal bound, it was necessary to limit the diagonal step to maintain the foot
trajectory inside the working volume of the leg. Therefore the diagonal step was
limited to 0.08m.

If we observe the values of the morphological parameters listed in Tab. 2, we
can notice that the Lat. and Diag. morphologies have a wider pelvis compared to
the Dflt morphology and the Fwd. Opt.1 morphology (see Hip1RelT orso X pa-
rameter). The pelvis is even wider in the Lat. morphology to enable a larger side-
ways step, i.e. 0.121m compared to 0.94m with the Diag. values. In addition we
can notice that all three morphologies have longer thighs (see ThighRelHip2 Z
parameter), and that the flexion ratio is also larger, which means that all new
robots will walk in a more high-legged way. This way of walking reminds the
human walk where legs get stretched and flexed alternately. The third observa-
tion concerns the height of foot lift off. This height is reduced for the Lat. and
the Diag. morphologies. Actually it was noticed that the lateral walk was more
sensitive to lift-off height. This is due to ground impacts of the swinging leg that
cause oscillations of the torso in the frontal plane, and these oscillations can
be dangerous and make the robot fall if the amplitude increases too much. The
reduction of the lift-off height is useful to prevent leg impacts from triggering
undesired oscillations.

Thanks to this study it is possible to build a new team with heterogeneous
players where:

– Strikers built on the Fwd. parameter set could be both faster sprinters and
nicely reactive due to their fast rotation speed.

– Midfields built on the Diag. parameter set could be good at breaking oppo-
nents attack.

– Defenders and goalie built on the Lat. parameter set) could be good at
intercepting the ball or the opponent trajectory.

The next developments will aim at testing teams of heterogeneous soccer players
during soccer game plays.

5 Conclusion

We introduced an optimization process that is especially designed for the si-
multaneous evolution of humanoids’ morphological characteristics and walking
parameters. The optimization process is essentially guided by a fitness function
that distinguishes among better, equivalent and worse results. Three morpho-
logical profiles have been produced to create three agents that appear to be

Morphogenesis Evolution Method 423

more effective than the previous agents that were tuned manually by expert
users. Actually the process leads to morphologies well suited for forward walk,
lateral walk and diagonal walk. This process will be applied to the building of a
heterogeneous humanoid team with new models designed according to specific
skills.

References

1. Hebbel, M., Kosse, R., Nistico, W.: Modeling and Learning Walking Gaits of Biped
Robots. In: IEEE-RAS Int. Conf. on Humanoid Robots 2013, 1st Workshop on
Humanoid Soccer Robots, HSR 2006

2. Niehaus, C., Röfer, T., Laue, T.: Gait Optimization on a Humanoid Robot using
Particle Swarm Optimization. In: Second Workshop on Humanoid Soccer Robots,
IEEE-RAS 7th Int. Conf. on Humanoid Robots, HSR 2007 (2007)

3. MacAlpine, P., Stone, P.: Using Dynamic Rewards to Learn a Fully Holonomic
Bipedal Walk. In: Adaptive Learning Agents Workshop (ALA 2012) (2012)

4. Hansen, N.: The CMA Evolution Strategy: A Tutorial (2011),
https://www.lri.fr/~hansen/cmatutorial.pdf

5. Farchy, A., Barrett, S., MacAlpine, P., Stone, P.: Humanoid Robots Learning to
Walk Faster: From the Real World to Simulation and Back. In: Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2013) (2013)

6. Jouandeau, N., Hugel, V.: Simultaneous evolution of leg morphology and walking
skills to build the best humanoid walker. In: IEEE-RAS Int. Conf. on Humanoid
Robots 2013, 8th Workshop on Humanoid Soccer Robots, HSR 2013 (2013)

7. Hugel, V., Jouandeau, N.: Walking Patterns for Real Time Path Planning Simula-
tion of Humanoids. In: 21st IEEE Int. Symposium on Robot and Human Interactive
Communication (IEEE RO-MAN 2012) (2012)

8. Hugel, V., Jouandeau, N.: Automatic generation of humanoid s geometric model
parameters. In: 17th Annual RoboCup Int. Symposium (RCUP 2013) (2013)

9. Coulom, R.: CLOP: Confident Local Optimization for Noisy Black-Box Parameter
Tuning. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp.
146–157. Springer, Heidelberg (2012)

10. Jouandeau, N., Hugel, V.: Optimization of Parametrised Kicking Motion for Hu-
manoid Soccer Player. In: IEEE-RAS Int. Conf. on Autonomous Robot Systems
and Competitions (ICARSC 2014) (2014)

11. Vukobratovic, M., Borovac, B.: Zero-moment point - thirty five years of its life.
Int. J. of Humanoid Robotics 1(1), 157–173 (2004)

12. Kajita, S.: Humanoid Robot, Ohmsha Ltd., 3-1 Kanda Nishikicho, Chiyodaku,
Tokyo, Japan (2005)

13. Obst, O., Rollmann, M.: Spark – A Generic Simulator for Physical Multi-agent Sim-
ulations. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES
2004. LNCS (LNAI), vol. 3187, pp. 243–257. Springer, Heidelberg (2004)

14. SimSpark, a generic physical multiagent simulator system for agents in three-
dimensional environments, http://simspark.sourceforge.net/

https://www.lri.fr/~hansen/cmatutorial.pdf
http://simspark.sourceforge.net/

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 424–437, 2014.
© Springer International Publishing Switzerland 2014

Stability Analysis of Densest Packing
of Objects Using Partial Order Representation

of Feasible Procedural Sequences

Hiromu Onda

Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),

AIST Tsukuba Central 2, 305-8568, Japan
onda@ni.aist.go.jp

Abstract. This paper examines the process involved in separately packing
goods of several kinds into a container. During such a process, the volume of
each kind of good (“block”) must be optimized to minimize container size. For
this optimization, densest packing procedures can be used to determine the fea-
sibility of packing by a robot. This paper analyzes packing procedures generat-
ed automatically using partial order representation of feasible procedures,
which determines stable and feasible procedures by considering that process
planning affects the stability, contact forces, and torques of the target packing
pattern and its transient piles.

1 Introduction

This paper analyzes feasible procedural order and stability of densest packing of cy-
lindrical objects. Discrete geometry algorithms and results are applied to the planning
and packing procedure for goods of several kinds into a box in robotics, as in, for
example, packing for home delivery.

Automation of packing for the distribution of goods in logistics is an attractive but
challenging problem for robotics. In packing for home delivery, ordered goods of
several kinds are packed separately into separate areas in a container (Fig. 1) [1].
Because container sizes are generally fixed, the size of the box chosen is approx-
imated according to the volume of ordered goods. For example, the container boxes
used for delivery by SG Holdings [2], a Japanese logistics company, are of five dif-
ferent size types, with different costs according to the type. The types are 60 size, 80
size, 100 size, 140 size, and 160 size. In actuality, “60 size” signifies a box with a
total dimension (length, width, and height) of up to 60 cm. It can accommodate a
weight of up to 2kg. The company provides boxes for each type: a 100 size box is 32
cm in length, 43 cm in width, and 25 cm in height. To minimize the box size, the
volume of goods of each kind (“block”) should be optimized. Minimization of the
“block” into which objects are packed is a densest packing problem, which has been
studied in discrete geometry and operations research.

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 425

Fig. 1. Packing for home delivery

This problem predominantly incorporates object geometry [3, 4]. However, pack-
ing procedures and stability have to be considered in order to determine the feasibility
of packing by a robot.

In an earlier study [12], packing procedures were generated automatically, and a
feasibility check in the form of dynamic simulations, which considered robot load capaci-
ty, arrangement of “blocks,” and packing procedures, was conducted to assess pattern
stability. This type of procedure differs from the conventional densest packing problem.

In packing or piling processes, some transient patterns may be unstable and unfeas-
ible when obtained using certain procedures; therefore, procedures should be chosen
and planned carefully. Although [12] addressed the densest packing of objects applied
to robotics, and pointed out its importance, the subject was insufficiently handled.

The phenomenon can be found even in some simple packing scenarios. Its causes
include construction history and history effect, which are well known in Physics,
where the effect of forces and torques on a pile and its consequent stability has been
analyzed [5]. In robotics, this “history effect” in packing and piling has not been ad-
dressed adequately despite its importance in planning the packing and piling order.
For example, one might assume that cylinders are stacked in piles via a procedural
sequence such as that depicted in Fig. 2. Because step 6 is omitted in this figure it is
not known which cylinder 4 or 7, was chosen in step 6. However, different procedural
sequences result in different forces and torques on the pile. The value of rL in the pile,
the reaction force from the left wall of the container to the pile, is not determined
uniquely by equations because of friction.

Fig. 2. Example of a procedural sequence

Our proposed method can reduce the
volume of block 3 and modify its
shape to minimize the size of the box
needed to contain it.

426 H. Onda

Fig. 3. Densest packing and simple strategy packing in a fixed size box

This phenomenon is analyzed in Section 4. The italic numbers to the upper-left of
the figure denote the ordinal numbers of the procedural sequence. Here, the packing
pattern of nine circles is carried out in nine steps.

One would think that dynamic simulation would easily enable us to simulate and
estimate the stability mentioned above, because it is useful and powerful today. In our
case, however, it would only provide a small amount of useful information if the
geometry of the objects is not carefully approximated and if contact detection be-
tween them is not addressed sufficiently and appropriately. Cylinders are usually
approximated as prisms in ordinary dynamics simulation engines. This means that the
circles are approximated by polygons in a cross section. If circles in a pile have no
stable state, but polygons in a pile might. Therefore, such dynamic simulation is not
directly applicable and might even be considered careless if used for stability analysis.

Ordinary dynamics simulators such as ODE [6], Bullet[6], and OpenHRP [7] that
approximate cylindrical surfaces using polyhedral surfaces or triangular patches are
not useful for the analyses described herein without certain special care because oscil-
lating phenomena can occur even under circumstances in which the cylinder should
be rolling in one direction. Moreover, a result stating that a pile is stable might be
given even when the pile is actually unstable and incapable of maintaining the state.
Following derivation of an analytic solution from equations, this paper gives a range
of solutions for stability analysis.

Two main cases in which the procedural sequence affects the stability of a transient
pile or the target packing pattern are reported in this paper. The two cases are as follows:

A carefully chosen procedure can construct a stable pile if every variable (reaction
force and friction force) is within its permissible range (Case A).

Different procedures can be used to construct the “same” stable pile having different
forces and torques under certain conditions. (Case B).

This paper addresses the problem of stability depending on selected procedures,
and the method used to determine an appropriate procedural sequence. Two repre-
sentative cases are described in Section 2. The packing problem for stability pre-
sented herein is formulated in Section 3 and the effect of the applied procedural
sequence and the positioning of the robot on stability analyzed. The results of a simu-
lation conducted as a feasibility check are presented in Section 4.

One contribution of this paper is that it shows the importance of process planning
in terms of how it affects the stability and feasibility of construction of transient
piles of a target packing pattern. A “history effect” persists in a transient pile. This
effect must be addressed in process planning for packing. Another contribution is a
procedural sequences analytical algorithm for stable construction. By appropriately

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 427

considering the stability and feasibility of transient packing processes using symbolic
computation, feasible procedural sequences can be planned more precisely and subtly,
even under varied specifications and conditions.

1.1 Densest Packing and Related Work

One might regard the difference between optimal packing and conventional packing
as small and a maximum of one unit at best. Unfortunately, the difference may not be
negligible. For example, 15 cylinders can be packed into a box using the solution for
the corresponding densest packing problem. If the box is packed with cylinders con-
ventionally, 9–12 cylinders (Figs. 3(b)–3(d)) can be contained in it. However, more
efficient packing can be realized if densest packing is utilized and the performance of
applicable technologies incorporated. Packing problems are a class of optimization
problems. Several papers in the field of robotics incorporate such studies. Kawakami
et al. attempted 3D bin packing using a genetic algorithm [8], which corresponds to
sub-problem A in Section 2 of this paper.

The densest packing problem has been examined in many studies [3, 4, 9–11] in the
field of discrete geometry and operations research. One earlier study [12] dealt with the
densest packing of objects applied to robotics and the importance of physical proper-
ties such as robot load capacity, arrangement of “blocks,” and packing procedures.

Using the formulation of conventional packing problems directly to actualize pack-
ing by a robot is difficult because the actual packing process is too complicated and
difficult to solve in limited time. Appropriate abstractions of this problem according
to practical requirements are required. Motion planning, though useful, occasionally
takes too much time. Task planning identifies promising plans as candidates in its
abstraction level. Like motion planning, dynamic simulation takes too much time and
so it is better applied to appropriately reduce the number of candidates identified by a
task planner. Consequently, more realistic and appropriate abstracted formulations are
necessary. In this paper, suction pads and a vacuum gripper are assumed to be used
because of ease of gripping from the top of the object by suction without considering
a space for the gripper’s fingers [12].

2 Cases in Which Procedural Sequence Affects Stability

Our method can enable appropriate selection of procedural sequences such that objects
are positioned accurately and the pile is stable. For instance, a particular procedural se-
quence makes a pattern stable and maintains variables in a permissible range, but another
procedural sequence may render it unstable and put some variables out of the range.

Merely selecting an acceptable procedural sequence can result in changes in pile
stability from a stable one (Fig. 4(a) for critical static friction coefficient μ) to an un-
stable one (Fig. 4(b) for critical μ; a fourth circle is added, creating instability).

In another case (Case B), the same pile may have a different stability depending on
the selected procedural sequence.

Let us look at the simple pile construction example shown in Fig. 5. Respective
circles are labeled b–j, contacts between circles are labeled 1–16, and contacts

428 H. Onda

between circles and walls are labeled w1–w4, with L and R. For clarity, labels w1–
w4, with L and R on the left side of the figure are not shown. A normal component of
reaction force from the floor is shown as rwj (j = 1, 2, 3, 4); fwj (j = 1, 2, 3, 4) is the
friction force from the floor. In addition, integer i is the index number of circle–circle
contact, ri is a normal component of reaction force, fi denotes a friction force, and mg
represents the weight of a circle.

The right side of the figure shows the equilibrium conditions of the forces acting
on circle g. For clarity, tangential friction forces are not shown. For example, f8, f14,
fw1, and fL should be included, but they are omitted from the right side of the figure.
Using equilibrium conditions, the permissible range of variables is calculable. The
permissible range of FL in the pile in Fig. 5 is calculable as Eq. A, as described in
Section 4.

Fig. 4. Example of procedural sequences

If an appropriate procedural sequence is selected in Case A, then all variables can
be made within the permissible range for equilibrium conditions (Case A definition).
When a target packing pattern or a transient pile pattern is given, all the procedural
sequences for stable construction of the pattern are calculated using a possible subset
of all procedures. For Case A, an appropriate procedural sequence can be selected
from the possible subset of all procedural sequences.

Equations for equilibrium conditions are constructed and parameterized for all se-
lected possible procedures by using “S-chain." Using these equations, the stability of
a pile realized by the procedures can be estimated if parameters such as the cylinder
mass and friction coefficients are changed.

Fig. 5. Example of a pile

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 429

Following this analytic model, i.e., if a set of equations for equilibrium conditions
for the target packing pattern or the transient pile patterns is prepared manually in
advance, the stability condition presented above, which depends on procedural se-
quences, is calculable and can be checked automatically.

3 Packing Procedure Dependency

3.1 Formalizing the Packing Problem

This section presents an overview of packing tasks to realize a target pattern using
skill primitives for automated packing of objects by robots. For automated packing, it
is necessary to plan the target pattern of packed objects, plan packing processes and
motions, and program manipulation skill primitives to be realized by robots [12].

We first plan a target pattern of packed objects, in which we consider specifica-
tions of how the packing should be done. For example, if the densest packing of ob-
jects into a given container or region should be done, then the main specification will
be that the densest pattern of objects be planned.

Next, we plan object packing processes, in which we decide which objects should
be selected and where they should be positioned. Although this process depends on the
robot used to do the packing, it is important to devise a packing process method that is
as independent of the robot as possible because calculating motion planning is computa-
tionally expensive. Furthermore, these requirements must be addressed during planning
because packing specifications sometimes present conflicting requirements.

Fig. 6. Example of packing environment

We also require skill primitives to accomplish the packing. These skill primitives
are used in accordance with the result of this process planning: a sequence of
these primitives. The environment outlined for our scenario is depicted in Fig. 6 (left-
side) [13]. Objects are packed in a certain section in a container. In this case, the con-
tainer is placed at a flow rack, which is often tilted for ease of access to each object
in the container. When dealing with different arrangements for identical blocks, dif-
ferent packing problems are solved with respect to the direction of gravity. There are
therefore horizontal cases, vertical cases, and intermediate cases: horizontal cases
include h-case1 and h-case2; vertical cases include v-case1, v-case2, and v-case3;

430 H. Onda

intermediate cases include i-h-case1, i-h-case2, i-v-case1, i-v-case2, and i-v-case3.
The respective cases are portrayed in Fig. 6 (right-side). If the container is placed at a
tilted flow rack, it is i-h-case1, which approximately corresponds to v-case1 under
smaller gravity. The intermediate cases were not examined in the previous study re-
ported in [12]. We assume positioning uncertainty δ (approximately 3 mm, uniform
distribution) from the sensing of the cylinder position using a vision sensor and con-
trol error of positioning using a manipulator [14].

3.2 Applying Solutions to Densest Packing Problems

Packing procedures include basic operations [12] using constraints from the walls and
floor, as described below (Fig. 7). A sequence of these basic operations BO1–BO3 enables
a robot to position cylinders in precise locations by selection and placement.

Fig. 7. Basic operations and Auxiliary operation AO1(gravity is (0, 0, -g))

 [BO1] places a cylinder in a corner between a wall and the floor. [BO2h] places a cy-
linder on the floor so that it is touched by another cylinder that has already been placed on
the floor by basic operations. [BO2v] places a cylinder on a wall so that it is in contact
with another cylinder that has already been positioned there by basic operations. [BO3]
places a cylinder on top of the cylinders that have already been placed using basic opera-
tions. The auxiliary operation [AO1] places a cylinder within the assumed robot position-
ing uncertainty δ. The details of the basic operations can be found in [12].

3.3 Stability Affected by Applied Procedural Sequence

In a packing process against gravity, the force and torques in each proceeding process
is calculated using the equations of each equilibrium pile condition at the process.
Following this formalization, using a computer algebra system called maxima [15],
the following solutions are obtained µ 0 is assumed in this result of the example Fig. 5): r1 r2 r3 r4 r8 r11 √3 r5 r6 0 r7 r9 r10 r12 2√3 r13 r15 √3

 Stability Analysis of Denses

The static friction coeffic
ble or unstable. The critica
equations from an emptyset

Given the target of a pac
tions exist for a given patter
exists. We address the prob
stable target patterns can be

4 Simulation and

In this section, we apply th
pattern presented in Fig. 8 a
al sequence found as output
of a transient pile or a targ
Figs. 8(a) and 8(b) present
each state is calculable usin

The contact forces and t
cient is not zero or if the his

4.1 Pile Stability of Exa

Here, a pile is defined as a p
is defined as the stability o
case in Fig. 6). In this sectio
in actual tasks. Two piles,
other procedural sequence b
step in the procedural seque
The notation is similar to t
algorithm in this paper is ou

t Packing of Objects Using Partial Order Representation

r14 √32 0, i 1, … , N 1 rw4 2mg, rw2 rw3 52 mg 0, 1, … , 4

cient μ is a parameter that indicates whether the pile is
al condition of μ is the μ that transforms the solution
t (no solution) to a certain solution.
cking pattern or a pile, we address scenarios in which so
rn of procedural sequences and others in which no solut

blem of finding appropriate procedural sequences by wh
e achieved.

Results

he algorithm to a problem. More specifically, we use
as input to the algorithm and obtain the resulting proced
t. This section also explains the dependence of the stabi
get pattern on the procedural sequence in a packing ta
different stability states in transient piles. The stability

ng the equilibrium equations.
torques are not uniquely determined if the friction coe
story of packing affects the stability.

Fig. 8. Example of piles

ample

pattern in a packing process under gravity and pile stabi
of that pattern under gravity (e.g., vertical or intermed
on, pile stability is considered because stability is a prob
one stacked using procedural sequence a), Pile A, and
b), Pile B, are presented in Fig. 8. Pile B fails at the th
ence if the friction coefficient is smaller than 2 3
that in Fig. 5. In this case, the procedural sequence by
utput, which is the procedural sequence in Fig. 8(a).

431

sta-
n of

olu-
tion
hich

the
dur-
ility
ask.
y of

effi-

ility
diate
lem
the

hird
.

the

432 H. Onda

4.2 Different Stable States of Another Example

Two piles, one stacked using a different procedural sequence c), Pile C, and another
using procedural sequence d), Pile D, are presented in Fig. 8 (right-side). In the figure,
the procedural sequence of Pile C from steps 1–7 is the same as the sequence of Pile
D from steps 1–7. Piles C and D have different stable states. Cylinder h is pulled from
the pile in Fig. 5. The pile at step 10 in Pile C is tolerant and stable if cylinder h is
pulled under the following condition. The notation is similar to that in Fig. 5. Cylinder
h is pulled in the state of the tenth state of the procedural sequence in Fig. 8 (right-
side). Therefore, the following equations hold: r9 r10 r14 r15 rw2 0 f9 f10 f14 f15 fw2 0

The problem is one of assessment of the stability of the eleventh state of procedural
sequences c) and the ninth state of procedural sequences d). The solution can be esti-
mated by comparing the difference of the two states of the two procedural sequences.
Forces and torques in Piles C and D differ. To reduce the algebraic complexity, we
assume that the circle–floor and circle–wall contact are smooth. For this pile we as-
sume that it has been built in such a fashion that the normal and frictional forces at
contact points one and seven vanish, as r1 f1 r7 f7 0

The forces and torques of Pile C at the tenth step are as follows: r2 r3 √ , r4 r5 √ , r6 √ r8 2 , r11 √ , r12 √ r13 √ 5 , r16 √ , 1 √3 rw3 3√3 , rw4 2√3 ,

None of the normal reactions for the following is negative: 1310√3 2011√3

However, outside of this range, one normal reaction is negative at least. Therefore
the system has physical equilibrium states only if force satisfies the inequalities.
(In fact, our calculations indicate that one of the results in the work by Grindlay and
Opie [5] is in error.) In the eleventh step of procedural sequences c), cylinder h is
returned to the same position. The forces and torques are the same as the ones in the
tenth step. The forces and torques differ from those in the ninth step of procedural
sequences d).

4.3 Algorithm for Determining Procedural Sequence

An algorithm is used to determine the procedural sequence. The circles in the target pack-
ing pattern are labeled 1–N and the algorithm determines the circle labeled k to be put on

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 433

the current pile and added to the RESULT sequences from the feasible candidates. If the
last circle of the pile can be put on the current pile, then the RESULT sequences are output
as results.

Algorithm: Determining appropriate procedures for constructing a stable pattern

Input:

Position of the centers of circles of the target pattern of N cylinders:

(Xi, Yi), i = 1, …, N

List of N cylinders: item-list

Position and orientation of the block (rectangular parallelepiped area in the container) into which the cy-

linders are placed: (Xb, Yb, Zb, Rb, Yb, Pb)

Block shape (length of each edges of the block): (Lx, Ly, Lz)

Access direction: z is the default value.

Output:

RESULT: (pj1, ..., p jN), a sequence of procedures

Iterative process:

for item in item-list do

if root-p(item, conditions-list) then append(item, root-item-list)

else if s-chain(item, conditions-list) then append(item, s-chain-item-list)

else return(ERROR)

S-Chain = create-S-chain (root-item-list, s-chain-item-list, conditions-list)

if FeasibilityCheck(S-Chain) then

 Append(RESULTLIST, SP) ; append SP to RESULTLIST if SP is feasible

end

def FeasibilityCheck (seq)
begin
 for i from 1 to (length of seq)
 if FourierElim(Equations[TransientPattern]) then
 T
 else NIL
end

Algorithm: create-S-chain (root-item-list, s-chain-item-list, conditions-list);

calculate the subset (S-chain) of all the (candidates of) sequences of procedures for constructing a “stable”

pattern

Input:

Positions of the centers of circles of the target pattern of N cylinders:

(Xi, Yi), i = 1, …, N

Position and orientation of the block (rectangular parallelepiped area in the container) into which the cy-

linders are put: (Xb, Yb, Zb, Rb, Yb, Pb)

Block shape (length of each edges of the block): (Lx, Ly, Lz)

Access direction: z is the default value.

The S-chain definition (Necessary and sufficient conditions to be S-chain): conditions-list = (condition1,

condition2, …, condition Ns)

434 H. Onda

Output:

s-chain-item-list: S-chain, all the (candidates of) sequences of procedures for constructing a “stable” pat-

tern. This “stability” is defined in the S-chain definition.

Iterative process:

for item in item-list do

if root-p(item, conditions-list) then append(item, root-item-list)

else if s-chain(item, conditions-list) then append(item, s-chain-item-list)

else return(ERROR)

return s-chain-item-list

end

FourierElim is similarly defined as a function of maxima, which solves nonlinear
inequalities using a Fourier–Motzkin elimination algorithm and a preprocessor that
converts some nonlinear inequalities that involve the absolute value, minimum, and
maximum functions into linear equations. Additionally, the preprocessor handles
some expressions that are products or quotients of linear terms [15].

4.4 S-chain

The S-chain is introduced for two reasons. One reason is that some data structures and
tools for management of transient patterns of pattern and procedure order are needed for
the analysis herein. The other reason is to reduce the input dataset. If the input dataset is
not reduced, i.e., it generates every permutation of N, which is of factorial complexity, the
complexity of this algorithm would be prohibitively large. It would make the algorithm
infeasible even for moderate sizes of N. For example, even in a small n = 8 case, the per-
mutation of n = 8 is large, i.e., it is 8! = 40320. The maxima program is too slow to run
40320 times. S-chain, “support” of which is defined for intermediate case (i-v-case1), has
only 32 candidates—significantly less than 40320.

The definition of S-chain is as follows:
Let A denote the set of n items, each of which has its index i , 1, … , . A a i , … , a i

The S-chain is a family of subsets of A such that all elements are “supported” ac-
cording to a certain definition of “support.” For example, assume that the definition of
“support in horizontal case” is such that a circle is designated as a supported circle
when it has contact with more than two of {the root circles, walls, or supported
circles}. If the centers of three circles, one of which is supported and two of which are
supporting, are approximately on the same line, this support is not good support.
Therefore such support is excluded from the S-chain by a certain threshold. Figure
9(a) presents an example of an S-chain (n = 8, horizontal case, 1088 candidates of
procedural sequences. The maxima program is not needed in horizontal cases.). Al-
though it may be difficult to see the details in the figure because of its size, the shape
of the graph and its complexity are obvious. Each node of the graph in Fig. 9(a) is a
“supported” subset of A. Directly above each node has just one more element (i.e., a

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 435

cylindrical object) than those of the node below it. These nodes are linked if newly
added cylindrical objects are “supported” by any part of the remainder of the cylin-
drical objects. The top of the nodes denotes the target pattern, which is a subset and
includes all eight cylindrical objects as its elements. Each node at the bottom denotes
a subset that includes only each root cylinder, which corresponds to a root circle in
2D. In this case, the root circles are four circles at the four corners of the container.

The S-chain has a partial order defined in the natural way because it is represented
by a family of subsets. This partial order representation of S-chain can effectively be
used to analyze the order of procedures from every subset that include only a corres-
ponding “root circle” to the target pattern and transient patterns.

As another example, assume that the definition of “support in intermediate case” is
designated as a supported circle when the circle is in contact with more than two of
{root circles, walls, or supported circles}. These are candidates of a stably supported
circle pattern if the center of the supported circle is horizontally between the centers of
supporting circles and vertically above the centers of those. Figure 9(b) presents an
example of the S-chain (n = 8, intermediate case, 32 candidates of procedural se-
quences). Each node of the graph in Fig. 9(b) is a “supported” subset of A. Directly
above each node has just one more element (i.e., a cylindrical object) than those of the
node below it. These nodes are linked if newly added cylindrical objects are “sup-
ported” by any part of the remainder of the cylindrical objects. The top of the nodes
denotes the target pattern, which is a subset and includes all the cylindrical objects as its
elements. In this case it is {a1, a2, b1, c1, c2, d1, d2, d3}. Each node at the bottom de-
notes a subset that includes only each root. In this case, these are {a1} and {a2}, which
are the two circles at the bottom corners. An example of S-chain is {{a1}, {a1, a2}, {a1,
a2, b1}, {a1, a2, b1, c1}, {a1, a2, b1, c1, d1}, {a1, a2, b1, c1, c2, d1}, {a1, a2, b1, c1,
c2, d1, d2}, {a1, a2, b1, c1, c2, d1, d2, d3}}, which is shown also in Fig. 9(b).

Fig. 9. Example of S-Chain

436 H. Onda

5 Conclusions

This paper analyzed the procedural sequence and stability of a target packing pattern
and its transient piles. Further, it introduced a calculation method for procedural
sequence candidates. In order to broaden the application to robotics the results of
discrete geometry and OR, these should be considered. Cases in which different pro-
cedural sequences affect the stability of the given target packing pattern and its tran-
sient piles were described. The problem of determining the appropriate sequence in
such a scenario was also addressed.

We presented a rather simple case (in which contact points are easily determined;
all cosine and sine values appearing in the equations are equal to 1/2, √3/2 , 0, or 1)
for clarity of description. Application to a more general case is not very complicated
because the circle center positions are calculated in advance. The contact points be-
tween circles and the normal components’ direction of reaction forces can be deter-
mined readily from the position data. Fig. 10 presents optimal patterns of the densest
circle packing from n = 1 to n = 30. Therefore, contact points between the circles and
their sine and cosine of the equations of the more general pattern are calculable using
the position data of circle centers of the more general pattern. These equations are
resolved by maxima in the same manner as that described herein.

We assume cylindrical or approximately cylindrical objects. Although this assump-
tion might be regarded as overly strong, it is not a bad idea to assume that packing
objects are cylindrical or rectangular parallelepiped because it is a common practice
to wrap fragile objects and general shaped objects in cushioning wrap or paper to
prevent their breakage or damage, or to put these objects into a small box to stabilize
them in a container, thereby strengthening the container structure (e.g., apples in the
box in Fig. 1). Differently sized cylinders, objects with more general shapes, and three
dimensional packing will be dealt with in future work. In this case, an appropriate
definition for “support” of S-chain will be important.

Fig. 10. Patterns of 30 densest packing procedures

 Stability Analysis of Densest Packing of Objects Using Partial Order Representation 437

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
24500248.

References

1. http://www.oisix.com/ (in Japanese), http://www.daichi.or.jp
(in Japanese)

2. http://www.sagawa-exp.co.jp/service/material/box/ (in Japanese)
3. Dowsland, K.A., Dowsland, W.B.: Packing problems. European Journal of Operational

Research 56(1), 2–14 (1992)
4. Castillo, I., Kampas, F.J., Pinte, J.D.: Solving circle packing problems by global optimiza-

tion: Numerical results and industrial applications. European Journal of Operational Re-
search 191, 786–802 (2008)

5. Grindlay, J., Opie, A.H.: Contact force distribution in a pile of rigid disks. Physical Re-
view E 51(1), 718–723 (1995)

6. ODE: Open Dynamics Engine, http://ode.org/, Bullet Physics Engine:
http://bulletphysics.org/wordpress/

7. Kanehiro, F., Hirukawa, H., Kajita, S.: OpenHRP: Open Architecture Humanoid Robotics
Platform. International Journal of Robotics Research 23(2), 155–165 (2004)

8. Kawakami, T., Minagawa, M., Kakazu, Y.: Auto Tuning of 3-D Packing Rules Using Genetic
Algorithms. In: Proc of Int. Workshop. on Intelligent Robots and Systems (IROS 1991),
pp. 1319–1324 (1991)

9. Specht, E.: Packomania, http://www.packomania.com
10. Birgin, E.G., Martınez, J., Ronconi, D.: Optimizing the packing of cylinders into a rectangular

container: A nonlinear approach. European Journal of Operational Research 160, 19–33
(2005)

11. Lopez, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of
containers. European Journal of Operational Research 214, 512–525 (2011)

12. Onda, H.: Formulation of packing problem applying densest packing algorithms to plan-
ning of packing for robot. In: Proc. of IECON 2012, pp. 2693–2700 (2012)

13. Onda, H., Harada, K., Yoshimi, T., et al.: Specification, planning and manipulation for
packing by robot. In: Proc. of RSJ 2012 (2012) (in Japanese)

14. Hasegawa, T., Suehiro, T., Takase, K.: A model-based manipulation system with skill-
based execution. IEEE Trans. on RA 8(5), 535–944 (1992)

15. Maxima 5.30.0 manual, http://maxima.sourceforge.net/docs/manual

Team Size Optimization

for Multi-robot Exploration

Zhi Yan, Luc Fabresse, Jannik Laval, and Noury Bouraqadi

Ecole des Mines de Douai,
59508 Douai, France

{firstname.lastname}@mines-douai.fr

Abstract. This paper analyzes and discusses the problem of optimizing
the size of a team of robots for multi-robot exploration. We are concerned
with the number of robots for a given exploration task that minimizes
both exploration time and cost. Minimizing time means that the explo-
ration should be done as fast as possible. Minimizing cost means that
the number of robots and their energy consumption should be as low
as possible. To solve this problem, we report in this paper, on a series
of exploration simulations based on ROS and MORSE using a cluster
of computers. The simulated code is exactly the same as that which
would run on the actual robots. Such a simulation infrastructure is cru-
cial to “quickly” execute experiments with different parameters such as
the number of robots or their initial positions.

Keywords: Multi-robot systems, exploration, simulation, ROS, MORSE.

1 Introduction

The problem of multi-robot exploration is a primary research topic within
multi-robot systems. It requires a group of robots to explore an unknown envi-
ronment in cooperation, and usually also needs the construction of a map of this
environment.

In recent years, the manufacturing of the robot has been considerably de-
veloped. Therefore, finding a suitable robot team size for exploration missions
becomes a meaningful question. For example, in case of an earthquake, robots
can help rescuers to evaluate the damage to the interior of a building. In this
case, it is important to do this evaluation as quickly as possible. Consequently, a
multi-robot system is a solution. The question is how many robots do we need in
such system. Having only a few robots will require a long exploration time and
the risk of failure is important: if one robot stops its exploration, a large part of
the system is impacted. If rescuers deploy many robots, the system’s robustness
is increased, but the robots may take too much time to explore because they
have to avoid a lot of other teammate robots.

In this paper, we address the issue of team size optimization using realistic
simulations based on the robotic middleware ROS (Robot Operating System) [8]
and the 3D simulator MORSE [4]. We show how to determine the optimal size

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 438–449, 2014.
c© Springer International Publishing Switzerland 2014

Team Size Optimization for Multi-robot Exploration 439

of a team of robots in order to complete an exploration mission in the shortest
time possible and with the lowest cost. We consider two metrics to measure the
optimal size of the robot team:

– The time metric. It is the total time required to complete an exploration
mission.

– The cost metric. It is the sum of energy consumed by all robots in the team.

The remainder of the paper is organized as follows: Section 2 describes an
overview of related work; Section 3 describes our multi-robot exploration sys-
tem; Section 4 describes our evaluation metrics to the team size optimization
problem. Section 5 describes the experimental results obtained with our system.
We discuss this work in Section 6, and conclude the paper with Section 7.

2 Related Work

Yamauchi [10] introduced an approach for robotic exploration based on the con-
cept of frontiers. In this approach, a robot can build a grid map with information
obtained from laser and sonar sensors, detect the frontier which is the region
on the boundary between open space and unexplored space in the map, then
navigate to the nearest accessible frontier. By using the proposed approach, a
Nomad 200 mobile robot was able to map the open spaces quickly, mapping an
environment with 45 feet long and 25 feet wide in about half an hour.

Yamauchi [11] then extended this frontier-based approach to multi-robot sys-
tems. He constructed a decentralized system in which each robot has its own
global grid map representing its knowledge about the environment. Whenever
a robot arrives at a new frontier, it constructs a local grid map representing
its current surroundings. This local map is integrated with the robot’s global
map, and also broadcasted to all of the other robots. Then each robot integrates
the local map received from its teammates with its global map. This strategy
requires robots to know their relative positions at the beginning of exploration,
and use dead reckoning alone for position estimation so as to properly blend
the local map and the global map. A limitation of the proposed approach is
that robots may waste time by navigating to the same frontier since there is no
coordination.

Burgard et al. [2] designed a coordination component based on the approach of
Yamauchi. This component applies a probabilistic method which takes the cost
of reaching a frontier and its utility into account simultaneously. The cost is given
by the distance of traveling to a frontier (by using a value iteration algorithm)
and the utility is given by the size of the unexplored area that a robot can cover
from this frontier using its sensors. Whenever a frontier is assigned to a robot,
the utility of the visible unexplored area of this frontier is reduced to all its
teammates, making all other robots explore different areas. Their experimental
results show that the coordinated robots can accomplish an exploration task
significantly faster than uncoordinated robots.

Howard [5] described a multi-robot simultaneous localization and mapping
(SLAM) approach by using a particle filter. The proposed approach is able to

440 Z. Yan et al.

handle the case in which the initial position of robots are unknown. They start
mapping with only one robot (whose initial pose is arbitrary) and wait until
this first robot encounters other robots before incorporating their data into the
global map.

Stachniss [9] presented their work on collaborative mapping with teams of
mobile robots. Their multi-robot mapping system needs to place the robots in
nearby locations. Robots also need to know the relative initial poses of their team
members. During exploration, robots within communication range can exchange
maps. We have implemented this solution in our simulated multi-robot mapping
system.

Lass et al. [6] surveyed several evaluation metrics for multi-agent systems.
They classified the metrics along two axes: the effectiveness or performance of
metrics and the types of data they represent. Measures of effectiveness quantify
the system’s ability to complete its task in a given environment, while measures
of performance are quantitative mesures of some secondary performance charac-
teristics, usually being resource consumption of the system, such as bandwidth
usage, energy consumption, communication range or task runtime.

3 Multi-robot Exploration System

Our robots rely on laser sensing for both localization and mapping. We use the
ROS (Robot Operating System) middleware for communication both between
control software and simulated robots. We also use ROS for inter-robot commu-
nication and more specifically for map sharing.

3.1 Single-Robot Setup

The main functions are achieved by the following packages:

– gmapping: This package is provided by ROS, which realizes the function of
laser-based SLAM. It is used for mobile robot localization. Specifically, it
sends pose data to the explore package.

– explore: The original package is provided by ROS which realizes the frontier-
based exploration approach. It has been modified by our research team to
be compatible with multi-robot systems. Specifically, a subscriber has been
added to receive the map generated from the map fusion package, so as to
update the robot’s current exploration map.

– map fusion: This package is realized by our research team, which merges
multiple exploration maps by considering the relative initial position of the
robots, then transfers the fused map to the explore package.

– move base: This package is provided by ROS, which navigates the robot to
a goal location.

The relationships between the packages are illustrated in Figure 1.

Team Size Optimization for Multi-robot Exploration 441

Fig. 1. Our distributed multi-robot exploration system relies on the ROS middleware
and the MORSE 3D simulator. Each robot is simulated by a computer that runs 4
ROS nodes.

3.2 Multi-robot Communication

After preparing a single robot with exploration capabilities, the next problem
we had to solve is the communication in our multi-robot system. Our current
exploration system is a decentralized one, in which each robot can make its own
decisions according to the local information with limited communication. In or-
der to cooperate, we introduce some level of communication between neighboring
robots [12]. To simulate network range, we introduce a discovery algorithm based
on distance between simulated robots. Algorithm 1 illustrates our connection es-
tablishment process for roboti.

Algorithm 1. Communication Connection for roboti
1: Querying all published ROS topics
2: Subscribing to robot pose topics
3: if ∃robotj ∈ exploration team : distBetween(robotj − roboti) <

max comm distance then
4: Establishing connection with robotj
5: end if

In order to have a quite realistic simulation at least regarding the scale fac-
tors, we set a value that indicates the maximum communication distance (i.e.
max comm distance) for our multi-robot system, but the impact of obstacles on
communication is currently ignored. Moreover, to calculate the distance between
two robots, we supposed that the relative initial positions of robots are known.

442 Z. Yan et al.

3.3 Multi-robot Mapping

Each robot in our simulated multi-robot system needs to exchange the grid map
with its teammates in order to perform exploration mission cooperatively. Our
current map fusion algorithm is lightweight and straightforward, by still suppos-
ing that the relative initial positions of robots are known (see Algorithm 2).

Algorithm 2. Map Fusion for roboti
1: δ ← (roboti.init pose− robotj .init pose)×map scale
2: roboti.fused map ← roboti.map
3: for all grid in roboti.fused map do
4: if grid = NO INFORMATION then
5: grid ← robotj .mapgrid.pose+δ

6: end if
7: end for

3.4 Multi-robot Motion Planning

In our current implementation, map exchange is the only cooperative task done
by the robot team. Each robot decides autonomously where to go based on
its own grid map. Once the robot has updated its current map, it will select
the nearest frontier and move towards it. This solution is not optimal, because
different robots may go to explore the same frontier, resulting into redundant
and useless exploration and possibly obstructing pathways.

Figure 2 shows three Pioneer 3-DX robots equipped with a SICK LMS500 laser
scanner during an exploration mission. The left half of the figure is derived from
the 3D simulator MORSE, and the right half is derived from the 3D visualization
tool RVIZ [1].

4 Evaluation Metrics

Our goal is to find the optimum size of a robot team (denoted by n) for the
purpose of exploring a given terrain. Optimization targets identify the shortest
exploration time (denoted by time) and the lowest energy cost (denoted by cost).
The cost refers to the total of energy consumed by a robotic team to perform an
exploration mission. We supposed that the energy consumption is proportional
to the distance traveled of all the robots in the team. For example, a team of
two robots that move forward 10 meters each, consumes 20 units of energy.

cost(n) =

n∑
i=1

(distanceT raveled(roboti)) (1)

Team Size Optimization for Multi-robot Exploration 443

Fig. 2. Three Pioneer 3-DX robots explore an unknown environment cooperatively. In
the right part of the figure: the map shown results from fusing local maps provided by
three robots; the green arrow indicates the exploration goal (a frontier); the blue arrows
indicates the potential exploration targets (frontiers); and the red sphere indicates the
loop closure.

Due to the complexity of multi-robot exploration problem, the time and en-
ergy cost of a fleet of robots depend not only on the number of robots n, but it
is also influenced by several other parameters:

– Robot characteristics. Absolute performances (e.g. exploration time) vary
depending on these characteristics. More importantly, repeatability of ex-
periments depends on the homogeneity of used robots. A fleet built out of
heterogeneous robots with different capabilities, may lead to very different
results from a test run to the others for various reasons such as simply the
relative position of robots. This is why we prefer using a homogeneous robot
team.

– Terrain properties. These include:
• Terrain size. More robots are required to quickly explore a large area
than a smaller one.

• Obstacles density and shapes. In an environment with many obstacles,
there is less space to explore. On the other hand, navigation may be more
complicated, especially with concave obstacles where deadlocks can occur
or when multiple robots are located in the same area.

• Landforms. The exploration of a large single area takes probably less
time than an environment that is decomposed into a number of open
areas, but connected with narrow corridors. In the latter, it is likely that
robots might obstruct one another.

– Robot initial positions. Depending on the environment and obstacles, lo-
cation of robots at start up, the exploration runtime and/or the energy
consumption may be significantly impacted.

– Coordination strategies. For a given set up (terrain, robotic fleet, and initial
conditions), results may significantly vary depending on the implemented
coordination strategies. As a result, the optimal size of the fleet can be used
as an objective value to compare different coordination solutions.

444 Z. Yan et al.

– Wireless range. Cooperation often requires communication which in turn
depends on the wireless range. While the wireless range can impact a team’s
performance, this can be mitigated by path planning strategies that take
into account robotic network connectivity [3,7].

– Dynamicity of the environment. If the environment is changing (e.g. building
collapses) or if they are other mobile entities (e.g. human rescuers or other
robots), exploration time and associated costs can vary for different test runs.
Path planning and obstacle avoidance strategies interfere with coordination
resulting in an NP-hard optimization problem.

5 Experiments

5.1 Simulation Infrastructure

For our experiments we used the 3D robotics simulator MORSE. Our simula-
tions are run on a cluster computer that copes with the important amount of
computations required for the multi-robot 3D simulation. The cluster consists
of 70 computing nodes and a master node (entry point). Each computing node
contains multiple processors varying from 8 to 12, and RAM varying from 16
Go to 48 Go.

This configuration gives us the possibility to launch the robots simultaneously,
but each robot has an initialization phase that takes a different amount of time.
It means that the robots start the exploration at different moments, as in actual
multi-robot systems where robots are turned on by human operators.

5.2 Setup

As explained in the previous section, the multi-robot exploration is complex due
to the number of parameters to be considered. In the following experiment, we
decided to fix several parameters and focus our question on the optimal number
of robots needed to explore an environment.

Regarding robots characteristics, we work with a homogeneous fleet of robots.
We used simulated Pioneer 3-DX robots equipped with a SICK LMS500 laser
scanner providing 180 sample points with 180 degrees field of view and a maxi-
mum range of 30 meters. The maximal speed of the robot is fixed to 1.2 meter
per second and 5.24 radians per second. The odometry is considered as perfect.
The robots exchange the exploration map once every 5 seconds and the maximal
distance for communication is fixed to 200 meters. This distance value is to avoid
the problem of communication between the robots which is not the topic of this
paper.

The simulation terrain is an enclosed space, manually generated in Blender
(the 3D engine for MORSE). It is 80 meters long and 80 meters wide, and
contains several fixed obstacles (a maze-like space, see Figure 3). The distance
between walls (or width of corridors) is fixed to 8 meters. Besides, the environ-
ment is static, meaning that the exploration robots are the only mobile entities.

Team Size Optimization for Multi-robot Exploration 445

For measuring the duration and the energy consumption, we run simulations
until the full terrain is covered. Actually, we have considered that the exploration
is finished when 99% of the map is discovered.

5.3 Robot Initial Positions

We run three series of simulation each corresponding to an experiment with
specific initial positions for the robots. Figure 3 shows the initial position for the
three experiments.

Experiment A: Blind exploration without any prior knowledge on the terrain.
The robots are placed along a vertical line starting from the top left corner of
the terrain to the bottom left corner. The first robot is placed on the top left
corner, then the other robots are placed every 4 meters from the previous one.
We run simulations in this experiment with fleet sizes ranging from 1 robot, and
up to 14 robots.

Experiment B: Exploration with knowledge of maze entry points (1 robot/entry
point). The robots are placed at the entry points of the maze terrain. One
simulation is run with 2 robots, one robot on top left corner and one on bottom
left corner. The second simulation is run with 3 robots, the third robot is placed
on the middle left border, at a maze entry point.

Experiment C: Exploration with knowledge of maze entry points (2 robots/entry
point). The robots are placed at the same entry points like in the second experi-
ment, but we placed 2 robots at each position. It means that we run simulations
with 4 and 6 robots.

5.4 Results and Interpretation

Figure 4 shows the results of our simulation experiments with different sizes of
robot teams. We performed 5 runs for each team size, and display the median
value of these 5 runs. The figure contains two sets of experimental data cor-
responding to the exploration time and the exploration cost. The abscissa in
the plot denotes the team size, and the ordinate denotes the time (exploration
duration) or the cost (total energy consumption).

From the figure we can see that, in general, the more robots in a team the less
exploration time is needed, while the changes in the exploration cost is slightly
more complex. But it does not mean the more the number of robots, the better.
The best results occur here with 12 robots. The exploration time and cost are
both minimized with a fleet size of 12 robots.

With the simple share of maps, exploration time and cost are highly dependent
on the initial positions of the robots. To verify this hypothesis, we conducted 2
additional experiments (i.e. experiments B and C). In Figure 4, the results of
experiment B are shown by red diamonds and the results of experiment C are
indicated by blue triangles. Obviously, with some knowledge of the terrain, one

446 Z. Yan et al.

Experiments A
blind

Experiments B
1 robot per entry point

Experiments C
2 robots per entry points

multiple
dead-ends

Fig. 3. Simulated environment (a maze-like space) and simulated Pioneer 3-DX robot
equipped with a SICK LMS500 laser scanner in the simulator MORSE. The figures
show the initial robot pose in the 3 different experiments A, B and C.

can choose better initial positions for the robots. As a result, exploration time
and cost are significantly decreased with respect to the experiment A.

In our experiments there was no cooperation between robots, except exchang-
ing maps. Thus, robots might block the path of each other during exploration,
and waste time by replanning their own local paths. This results in a longer ex-
ploration time and increased exploration cost when robots are too close to each
other as in experiment A.

Moreover, the terrain properties are also an important factors affecting the
experimental results. Our simulated environment is quite large and complex: it
contains a significant number of dead ends. Typically in the top right corner of
the maze (Figure 3), the robots need more time to plan their trajectories than
in other areas of the terrain. We can suspect that the total time and cost are
also bound to the terrain properties.

6 Discussion and Future Work

This work was started by considering the parameter of the number of robots, and
subsequently the parameter of initial positions of robots was also considered. The
other variables are fixed to ensure that they do not interfere in the experiment.
We consider five main variables that should be discussed and integrated for
future work.

Team Size Optimization for Multi-robot Exploration 447

●

● ●

●

●

●

● ● ●

●
●

●

●

●

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Number of robots

T
im

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14

● experiment A: blind
experiment B: 1 robot per entry point
experiment C: 2 robots per entry point

(a)

●

●

●

●

●

●

● ●

●

●

● ●

●

●

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Number of robots

C
o
s
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

● experiment A: blind
experiment B: 1 robot per entry point
experiment C: 2 robots per entry point

(b)

Fig. 4. Exploration time and cost

448 Z. Yan et al.

– Robot characteristics: we consider in this paper only one kind of robot and
that all robots have the same characteristics. In realistic situations, the
robots may be different in terms of configuration (different version of the
same robot), or in terms of the kind (an exploration could be executed well
with robots coupled with drones, or biped robots).

– Environment: in this experiment, we consider only one map, that is a kind
of maze. We would like to run experiments with other kinds of terrains to
compare results.

– Communication issues: for the experiment, we explicitly defined the commu-
nication distance to a large number (higher than the size of the map), which
avoid the problem of communication between two robots. We need in future
work to vary this parameter.

– The odometry precision: we do not consider the odometry noise in this paper.
We will integrate it in future work. This usually needs more complex and
efficient map fusion algorithms.

– Multi-robot cooperative map building algorithms: cooperation is highly de-
sirable for multi-robot systems. The infrastructure that we have built for
this study will be useful to try and compare other algorithms.

7 Conclusions

In this paper, we considered the optimization problem of the fleet size for multi-
robot exploration. Our concern is, how many robots should be used for an ex-
ploration mission, so as to minimize both the exploration duration time and its
cost. It is not easy to address this question due to the complexity of multi-robot
systems. To provide a first answer, we conducted three series of simulations in
a maze-like terrain. While they confirmed that adding more robots is usually
better, they also show that the performance of the system can be significantly
improved by selecting better initial positions.

To perform our experiments, we had set up an ROS-based infrastructure that
runs on a cluster computer. It includes several essential nodes such as SLAM,
map fusion, frontier-based exploration and motion planning. We plan to extend
this infrastructure by introducing support for coordinated motion planning. Our
goal is to build a test bed for evaluating different coordination algorithms in
different conditions.

Acknowledgment. This work is part of the SUCRé project that is supported
by Région Nord Pas-de-Calais.

References

1. rviz, http://wiki.ros.org/rviz/
2. Burgard, W., Moors, M., Fox, D., Simmons, R.G., Thrun, S.: Collaborative multi-

robot exploration. In: Proc. IEEE ICRA 2000, San Francisco, CA, USA, pp. 476–481
(April 2000)

http://wiki.ros.org/rviz/

Team Size Optimization for Multi-robot Exploration 449

3. Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed con-
straint reasoning applied to multi-robot exploration. In: Proceedings of ICTAI
2009, 21st IEEE International Conference on Tools with Artificial Intelligence, pp.
159–166 (2009)

4. Echeverria, G., Lemaignan, S., Degroote, A., Lacroix, S., Karg, M., Koch, P.,
Lesire, C., Stinckwich, S.: Simulating complex robotic scenarios with MORSE. In:
Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628,
pp. 197–208. Springer, Heidelberg (2012), http://morse.openrobots.org

5. Howard, A.: Multi-robot simultaneous localization and mapping using particle fil-
ters. The International Journal of Robotics Research 25, 1243–1256 (2006)

6. Lass, R.N., Sultanik, E.A., Regli, W.C.: Metrics for multiagent systems. In: Per-
formance Evaluation and Benchmarking of Intelligent Systems, pp. 1–19. Springer
(2009)

7. Le, V.T., Bouraqadi, N., Stinckwich, S., Moraru, V., Doniec, A.: Making networked
robot connectivity-aware. In: Proceedings of ICRA (International Conference on
Robotics and Automation), Kobe, Japan (May 2009)

8. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Proc. IEEE
ICRA 2009 Workshop on Open Source Software, Kobe, Japan (May 2009)

9. Stachniss, C.: Robotic Mapping and Exploration. Springer (2009)
10. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proc.

IEEE CIRA 1997, Monterey, CA, USA, pp. 146–151 (July 1997)
11. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. ACM

Agents 1998, St. Paul, MN, USA, pp. 47–53 (May 1998)
12. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coor-

dination. International Journal of Advanced Robotic Systems 10 (December 2013)

http://morse.openrobots.org

Automatic Evaluation of Task-Focused Parallel Jaw
Gripper Design

Adam Wolniakowski1, Konstantsin Miatliuk1, Norbert Krüger2,
and Jimmy Alison Rytz2

1 Automation and Robotics Deptartment, Bialystok University of Technology, Poland
dagothar@gmail.com, k.miatliuk@pb.edu.pl

2 The Maersk Mc-Kinney Moller Institute, Faculty of Engineering,
University of Southern Denmark, Denmark
{jimali,norbert}@mmmi.sdu.dk

Abstract. In this paper, we suggest gripper quality metrics that indicate the per-
formance of a gripper given an object CAD model and a task description. Those,
we argue, can be used in the design and selection of an appropriate gripper when
the task is known. We present three different gripper metrics that to some degree
build on existing grasp quality metrics and demonstrate these on a selection of
parallel jaw grippers. We furthermore demonstrate the performance of the met-
rics in three different industrial task contexts.

1 Introduction

The successful execution of grasping in a robotics system is essential in industrial ap-
plications where grasp failure can result in anything from an expensive reduction in
throughput to destruction of parts or invaluable fabrication hardware. With the gripper
being the only workpiece that physically interacts with the environment, it is obvious
that its design characteristics are of influence to successful grasping.

Moreover, robot systems that rely on sensors for object detection and pose estimation
introduce increased uncertainties in the system, that will influence grasp success and
thereby add additional demands to the robustness of the gripper design.

The design of a gripper includes the selection of the proper gripper kinematics and
dynamics. Several of the relevant parameters are depicted in Fig. 1, where a parallel
jaw kinematic structure is used. Designing a gripper from scratch is a time-consuming
mechanical task and everything but the gripper jaw design are in practice determined
by the selection of an off-the-shelf gripper product from one of many companies.

The gripper jaw design is important, since the jaws are the parts of the gripper that
are in contact with graspable objects. Several gripper design guidelines [4,3] and papers
on gripper design optimization [20,2] have been written to ease, or to better understand
how to design a good gripper for a given object and task. However, gripper jaw design
remains a cumbersome experts task, that requires special engineering knowledge and
often several iterations between designer and floor operator are required to reach a good
design.

Hence, a tool for automatically computing optimal gripper designs will be of a huge
value to the industrial world of automation, essentially saving weeks of experts work

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 450–461, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 451

Fig. 1. A limited parameterization of a gripper design. The kinematic design (to the left) is typ-
ically determined from off-the-shelf products whereas the gripper jaw design (to the right) is
custom designed to allow better grasping of one or multiple specific objects.

whenever a new part needs to be automatically handled. Such a technology may ide-
ally increase flexibility in automation and change the hesitation that todays small and
medium sized enterprises have toward automation.

In this paper, we take a step toward automatic gripper design by introducing three
statistical gripper metrics for evaluating gripper performance. These metrics express
different properties of a gripper such as how often it succeeds in grasping (success
probability), from how many directions a gripper may successfully grasp an object
(coverage) and how firmly the gripper holds the object (wrench). These properties have
different relevance in different contexts and the relative weighting of these three met-
rics therefore needs to be chosen context specific. For example, when grasping objects
placed unstructured in a box, it is important to be able to grasp from many different
direction due to collisions with environment. Or when moving with high accelerations
the object should be firmly grasped by the gripper.

Our method evaluates gripper designs by using a combination of existing design
guidelines and advances within grasp quality metrics [17,12]. We present gripper met-
rics that can be automatically computed in a dynamic simulator and used during the
selection of a specific gripper design. Most gripper designs from simple parallel jaw
grippers to advanced dexterous hands can be evaluated in a dynamic grasp simulator.
However, in this work we have focused on parallel jaw grippers since they are widely
applied in industrial applications.

In this paper, our contributions are:

– a gripper metric which is based on success probability and dynamic grasp simula-
tion.

– a method for including environmental context into the gripper evaluation.
– a method to include existing grasp quality metrics into the gripper evaluation.

In the next section, Sect. 2 we present related work in the areas of automated grip-
per design computation, gripper design evaluation and grasp quality metrics. Sect. 3
presents an overview of our method based on gripper quality metrics and our experi-
mental evaluation of it. The gripper quality metrics are then described in more detail in

452 A. Wolniakowski et al.

Sect. 4 and our method is then evaluated and discussed on a selection of gripper designs
in Sect. 5. Finally we conclude the paper in Sect. 6.

2 Related Work

The difficulty of designing robot grippers has motivated the formulation of several grip-
per design guidelines [4,3,13]. One of the difficulties implied in these works is that de-
sign objectives may conflict, e.g., having a design which is both light and rigid. The
design objectives include amongst others: small gripper footprint, exterior and interior
chamfering, small weight, secure grasping, small finger length, avoiding tool changes
and aligning grasped objects.

Furthermore, reviews on the gripper design problem are presented in [2,1]. In [2] a
general overview of early gripper designs and control are presented, whereas grippers
designed specifically for handling fruits where presented in [1].

In this work, we present a method for evaluation of a specific gripper parameteriza-
tion which compared to previous approaches is not as fast to compute but instead much
more generic, accurate and enables inclusion of context. This is mainly achieved by
relying on evaluating grasps using a dynamics based grasp simulator. Such a tool can
easily include large parts of the task context in the evaluation of the gripper, which more
accurately captures the actual task in which the gripper is to be used. Furthermore, the
accuracy over kinematic simulations are also gained due to increased modeling param-
eters such as friction and motor control.

Early work on the evaluation of gripper mechanism was based on Merit Indexes
that described the mechanical effectiveness (Grasp Index G.I.) of a gripper [6] and
the Capability Index (C.I.), the latter describing the capability of a gripper in relation
to the object dimensions. In [14] these Merit indexes are used in the optimization of
the kinematic design of a gripper. The Merit indexes are fast to compute but they are
limited to kinematic evaluation and cannot distinguish between changes in the gripper
jaw surface.

Changing the surface of gripper jaws can improve how well a gripper aligns ob-
jects during grasping. Aligning objects enables more secure grasps but also enables
more accurate placement. Gripper jaw design for object alignment was investigated
in [20,21,19,8]. In [19] they define a modular gripper surface based on trapezoidal
segments for which they present an algorithm that can optimize the gripper design
such that a specific alignment of the object is obtained when it is grasped from the
top. The work in [8] presents a semi-automatic design of gripper jaws for aligning ob-
jects and additionally demonstrates that the jaws can be accurately tested in a dynamic
simulation.

Another use of dynamic simulation was presented in [5], where the kinematic design
of an under–actuated 2 finger gripper was optimized by first generating a database of
grasps using simulation with a fully actuated gripper, which secondly was used to opti-
mize the under–actuated gripper such that it would be able to execute the same grasps
as defined in the grasp database. Our use of simulation is a bit similar, however, we
define statistical gripper metrics that are computed based on generated grasp databases
which then can be used to compare the performance between grippers.

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 453

Fig. 2. Computation of gripper quality metrics

To summarize, our work defines suitable gripper qualities based on evaluating grasp
qualities over a set of feasible grasps. Compared to previous work, we pursue a sta-
tistical approach relying heavily on dynamic simulation, grasp quality metrics and we
include contextual information in the evaluation of the gripper. The inclusion of con-
text was demonstrated to be of importance in [15] when evaluating grasp quality. For
computing optimal gripper designs, we believe that context is equally important and
therefore our method also relies on a description of the context – namely the task
specification.

3 System Overview

In this section, we present an overview of our method that is used to compute the quality
of a robotic gripper. The method relies on dynamic grasp simulation to evaluate grasps
using a specific gripper design.

The method is depicted in Fig. 2, where the inputs to our method (encapsulated in
Fig. 2B) are an object model, a gripper design and a task specification.

– The object model consists of a CAD model with associated dynamic properties
such as friction, center of mass and inertia.

– The gripper design consists of a collection of CAD models of the gripper, together
with the gripper kinematics and dynamics: max gripping force, max gripper veloc-
ity, surface friction, inertia and center of mass.

– The task specification defines the actual grasping scenario. This includes the local
environment model and an approach direction (see Fig. 3).

The first step in our method (see Fig. 2B) is to compute a database of grasp targets
that to a reasonable resolution covers all possible grasps of the object within the task
specification. This computation is essentially a sample based grasp planner that, in our
case of parallel jaw grippers, base the sampling on nearly parallel surfaces. However,
we want to stress that the metrics we propose are generic and can also be applied to
other grippers, only the initial sampling strategy would need to be adapted to a novel
gripper. The grasp planner used in this work is based on finding near parallel surface

454 A. Wolniakowski et al.

Fig. 3. Scenes used for gripper evaluation. These are in order: a) the belt picking scene
with a rotor cap object, b) the belt picking scene with a Dolt object, c) the table picking scene
with a cylindrical object. The arrows present the gripper approach direction defined in the task
description.

patches, please see [12] for further details. The grasp target sampling generates two
databases: targets and samples. The grasps in the samples-database are the ideal par-
allel gripper grasps which only need two nearly parallel surfaces to make a grasp. The
targets-database is a subset of the samples-database, such that any grasp pose from the
samples database are added to the target database only if the gripper can be placed in
the grasping pose without being in collision with the object.

The databases are filtered which serves both as downsampling and as rough un-
biasing in SE31.

The next step is to further validate all filtered grasp targets and quantify their grasp
quality. The validation is performed in simulation using RobWork [10], where the object
is grasped from each grasp target in the filtered database. The simulation includes the
static environment described in the task specification. A grasp is deemed successful, if
the following conditions are met after the simulated grasp has been executed:

1. the object remains in the gripper with wrench quality exceeding a specified lower
limit wmin,

2. no collisions with fixed obstacles in the scene occurred,
3. the interference (i.e. a measure of negative interaction of gripper with the environ-

ment, explained below) at the end of the experiment does not exceed a specified
interference limit imax.

The wrench quality represents the robustness of specific grasp, and it is introduced
in more detail in Sect. 4.3.

The interference is introduced as a measure of unwanted gripper interaction with
movable objects in the scene (e.g. neighbours of the target objects). Interference is cal-
culated as a total sum of differences between the poses of all movable objects from
before (Pstart) and after (Pend)grasping:

I =
nob jects

∑
i=0

|Pend−Pstart | (1)

1 3-dimensional Special Euclidean group representing translation and rotation.

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 455

Successful grasps are added to the successes database. If a grasp failed due to in-
terference limit violation (the third condition), then it is added to the interferences
database. Otherwise, the grasp become part of the failures database.

A small fraction of simulations becomes unstable due to limitations of the physical
engine. The results of these simulations are discarded. Typically, failures happen in no
more than 10% of simulations.

The gripper quality metrics are computed after performing all grasp simulations,
based on the numerical results of the simulations and the populations of the databases:
successes, interferences and failures. The sizes of the results databases are denoted as
Nsuccesses, Ninter f erences and Nf ailures, respectively.

The output (see Fig. 2D) are three continuous values that each describe a gripper
quality: success probability, coverage and average wrench space. Success probability
is a measure that captures the average probability of successfully grasping the object
from the grasping space, constrained by the task specification. The coverage metric
evaluates how large the success space is compared to using a conceptual idea of an
ideal gripper. The ideal gripper is an infinitely thin (and thus not generating collisions)
gripper that is able to grasp successfully at every nearly parallel surface patch pairs
on the object surface. The ideal gripper therefore acts as a hypothesis for defining the
possible grasping space which can then be compared to the actual success grasp space
to define coverage.

A large coverage is especially interesting for tasks where possible collisions with
the surroundings may reduce the number of executable grasps, e.g., in bin picking – in
which objects are placed in an extremely unstructured environment, randomly oriented
and blocking and obstructing each other, thus requiring a large versatility in possible
approaches. Finally, the wrench space metric captures the average force closure of the
successful grasp space. For each of the grippers, we are interested in obtaining a se-
lection of few good grasps (in terms of robustness) from multitude of those that were
generated. Thus, additionally the average wrench quality is computed for the top 20%
best grasps (best in terms of wrench space measurement).

4 Gripper Quality Metrics

In this section, we describe how the three gripper quality metrics are defined and how
we calculate these based on the output of the grasp target sampling and the dynamic
simulation. It should be noted that these three measures evaluate different characteristics
of the gripper performance which we later will demonstrate in Sect. 5.1. As said already
above, the relative importance of these characteristics is context– and task–dependent.

4.1 Success Ratio

This metric should capture the overall success ratio of grasps in the targets database for
the specified task context. The actual success ratio naturally depends on which grasps
are selected for execution in the real world scenario. However, as an approximation, the
overall success rate of all the simulated grasps is sufficient.

456 A. Wolniakowski et al.

The success rate S is evaluated directly in a dynamic grasp simulation, where the
static environment and the interference objects are included. The success ratio is then
calculated as S = Nsuccesses

Nf ilteredtargets
, where Nsuccesses is the number of successfully executed

grasps from the filtered targets database and Nf ilteredtargets is the number of grasps in the
filtered grasp database.

4.2 Coverage Index

The coverage metric should measure from how many different directions an object can
be grasped. The need for this metric originates from identifying the possibility that
a few very high quality grasps might not be sufficient to compute grasps in highly
cluttered scenes, simply because objects in the environment may collide with the gripper
and thereby strongly limit the successful grasp space. In general, a gripper with a high
coverage is very maneuverable within the task constraints which may enable a higher
real success rate and faster execution.

The coverage evaluation is based on comparing the grasp success space of the actual
gripper with the grasp success space of an abstract, infinitely thin and unbreakable
gripper. Such an ideal gripper only requires two nearly parallel surfaces on opposite
sides of the object to perform a successful grasp.

The coverage is computed as the ratio between the number of possible grasps of the
specific gripper and the number of possible grasps of the ideal gripper. Since we assume
linear correlation between number of grasps and grasp volume due to the un-biasing of
the filtering approach, we may infer that the coverage ratio defines the size of the grasp
success space relative to the ideally possible success space. The complete success space
is only dependent on the object and not the gripper, thereby enabling comparison across
grippers.

Thus, coverage is calculated as C =
Ngripper
Nideal

=
Nsuccesses+Ninter f erences

Nf ilteredsamples
. Notice that

Nf ilteredsamples represents the un-biased (filtered) grasp space of the ideal gripper. The
Ngripper define all successful grasp targets when not considering failures due to
inference.

4.3 Wrench Index

The wrench index should capture the overall quality of all successfully executed grasps.
Where the quality reflects the size of the minimum wrench that can make a specific
grasp fail.

We use the Grasp Wrench Space (GWS) measure which was originally introduced
in [9]. The GWS measure calculate the minimum wrench wi that is able to disturb a
grasp. Hence, larger wi makes a better grasp. Please see [12] for more details on the
implementation.

The wrench index is, in the context of the gripper quality, given as the average wrench
of all successful grasps performed by the gripper. It is common for a gripper to have
a small number of exceptionally high quality grasps at specific parts of the object,
while the remaining grasps have much lower quality. Hence, an average quality over
all sucessful grasps might not be sufficient to distinguish between grippers. To better

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 457

a) b) c) d) e) f) g)

standard chamfered flat square std. w/ cut. chf. w/ cut. clumsy

dimensions 100x20x25 100x20x25 100x25x5 100x10x10 100x20x25 100x20x25 100x20x50
chamfering – 25x45◦ – – – 25x45◦ –
cutout – – – – 10x120◦ 10x120◦ –
force 50 N 50 N 50 N 50 N 50 N 50 N 50 N

Fig. 4. Selected gripper designs used for evaluation. These are in order: a) standard gripper, b)
chamfered gripper, c) flat gripper, d) square gripper, e) standard gripper with cutout, f) chamfered
gripper with cutout, g) clumsy gripper. Dimensions are presented in millimeters.

evaluate a selection of few good grasps generated for the gripper, the average wrench of
the top 20% (by wrench measure) of successful grasps is also calculated and provided
as an additional result.

The obtained wrench metric values are denoted as W for the average wrench of the
successful grasps, and W20 for the average wrench of top 20% grasps. The wrench met-
rics is calculated as the sum of the wrench of all successfully executed grasps divided
by the number of successful grasps.

5 Experiments

In this section, we present our experimental results that demonstrate our quality metric
on 8 different grippers in 3 different scene contexts. All experiments have been com-
puted in the dynamic simulator RobWork [10].

We first introduce the experimental setup in Sect. 5.1, namely the grippers, the scenes
used and their properties. Then we present the computed gripper qualities for each
gripper-scene pair in Sect. 5.2 and finally, in Sect. 5.3, we demonstrate how repetitive
computations of the metrics behave.

5.1 Experimental Setup

The experimental setup consists of three scenes with a predefined direction of grasp
approach (see Fig. 3), and a set of parallel jaw grippers with several hand-designed jaw
shapes (see Fig. 4).

For each of the {scene, gripper} combinations, 10 experiments were performed, each
with N = 10000 grasp targets to sample. The number of actually simulated grasp targets
is reduced to around 1000 due to the grasp filtering in the sampling process.

Scenes. The scenes used in the experimental setup are presented in Fig. 3. Three differ-
ent objects were chosen for the picking task, two objects from industrial applications,
i.e. the rotor cap and the Dolt object (top and middle row in Fig. 3). The cylindrical

458 A. Wolniakowski et al.

object (bottom row in Fig. 3) was picked to include a simple primitive shape. All of the
objects are defined to weigh 1 kg, and the surfaces were assigned the friction properties
of plastic.

In both the rotor cap and the Dolt object picking scenarios, three objects are placed
in a line on a flat belt surface, 75 mm from one another. The target is the object in the
middle, and grasps are performed from one of the sides of the belt, with 45 degrees
allowed deviation from that direction.

In the table picking scene, nine cylinders are placed on a 3x3 square grid with 75
mm cell size. The target is the cylinder in the middle, and grasps are performed from
the top, with 45 degrees allowed deviation from vertical (see Fig. 3). For all the scenes,
the gravitational acceleration was defined to 9.81m/s2.

Grippers. Seven different grippers are used in the experimental evaluation, see Fig. 4.
The grippers have been selected such that they include commonly encountered features
eg. chamfering and presence of cutout.

Each of the grippers has a parallel-jaw kinematic structure with both fingers coupled
to a single Degree of Freedom (DoF). Hence, fingers cannot move independently. For
all the grippers, the maximum opening distance between the jaws was set to 10 cm. The
grippers are presumed to use the same gripper actuation mechanism, thus for all the
designs the maximum closing force was defined to be 50 N. The fingers were defined
to be made of plastic for the purposes of friction in the simulation.

5.2 Gripper Evaluations

The gripper evaluations were performed for all scenes and grippers introduced
in Sect. 5.1. The results of the experiments for each of the {scene, gripper} combi-
nations were averaged and are presented in Fig. 5 for Rotor cap scene, Dolt object
scene, and cylindrical object scene.

Bars in the upper part of the figure present the different gripper metrics: success ratio
S, coverage C, average wrench W and top wrench W20. All quality visualizations (the
bars) have been scaled relative to the best quality in the same particular experiment e.g.
all experiments on a single scene but with varying grippers. Top wrench W20 is presented
as a light-blue bar overlaying the average wrench W bar in deep blue. Numerical data
is presented in the tables in the bottom part of each figure.

As expected the best gripper design vary strongly depending on both the scene and
the task context.

For the rotor cap picking scene (see Fig. 5A), the flat gripper (Fig. 5A-c), performs
best in success ratio and coverage. It is surpassed however by a chamfered cut (Fig. 5A-
f) gripper in terms of average and top wrench index, which is expected due to the cut.
The flat gripper provides the smallest footprint which makes it possible to easily avoid
collisions and interference, and yet the contact surface is still big enough to retain the
object robustly.

In the Dolt object picking scene (see Fig. 5B), the best results were achieved with the
square gripper (Fig. 5B-d), which offers the highest coverage and success ratios. The
small gripper frame provides high maneuverability and allows to exploit the existence

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 459

a) b) c) d) e) f) g)

standard chamfered flat square std. w/ cut. chf. w/ cut. clumsy

S
uc

ce
ss

ra
ti

o
C

ov
er

ag
e

W
re

nc
h

av
g.

/t
op

S
uc

ce
ss

ra
ti

o
C

ov
er

ag
e

W
re

nc
h

av
g.

/t
op

S
uc

ce
ss

ra
ti

o
C

ov
er

ag
e

W
re

nc
h

av
g.

/t
op

Fig. 5. The results of evaluation for gripper designs a-g for the scenes A-C

of the Dolt object features, i.e. cuts on the side, for better grasping. The second best
gripper design was the chamfered cut gripper (Fig. 5B-f), with slightly lower success
and coverage, but providing much higher top wrench, due to presence of cutout which
improves secure grasps on the object.

The cylinder picking scene (see Fig. 5C) provides an unique challenge by putting
the target object in a confined space between neighboring objects. Grasping from the
top only exposes a small percent of the surface of the object. This also voids the benefit
of having a prismatic cutout in the gripper, as for the vertical direction of approach,
the cutouts are not aligned with the cylindrical object. The contact area for grippers
with cutouts is thus effectively smaller, which becomes apparent in the average wrench
score for those grippers. The best gripper designs for the cylinder scene were the flat
(Fig. 5C-c) and square (Fig. 5C-d) designs, both with a small foot-print, and for this
specific task they both provide a virtually identical contact surface area.

In general it can be noted that the presence of chamfers is reflected effectively in the
success level for the gripper. Moreover, as expected, the coverage score of the gripper is
greatly influenced by the gripper footprint and the overall gripper dimensions. Wrench
index reflects both the contact surface area, and the force closure ability of the gripper’s
shape.

460 A. Wolniakowski et al.

5.3 Metric Separability

It is crucial that the quality metrics are independent and that they are not influenced by
the sampling and filtering approaches. We performed five repetitive evaluations of the
quality measures and found that the metrics are clustered in the 3 dimensional quality
space with largest variations in coverage. It was also apparent that the clusters where
individually separable.

We observed the same behavior of the repetitive quality evaluations on the dolt and
cylinder scenes.

6 Conclusion

In this paper, we have presented three statistical metrics covering different aspects im-
portant for the evaluation of a gripper. This metric heavily relies on dynamic grasp sim-
ulation for computing grasp quality and for dynamically evaluating grasp performance
in terms of interference and grasp success.

We demonstrated the use of these metrics, by applying eight different parallel jaw
gripper designs to three different scenes. The results were discussed in Sect. 5.2 and the
metrics tend to agree with expert design choices eg. gripper designs with cuts will pro-
vide more stable grasps and chamfering increase success ratio due to lower interference
with surrounding obstacles.

We also demonstrated that the three metrics are independent and we performed repet-
itive calculations to show that the random and biased sampling does not significantly
influence the outcome of the quality measures.

In future work, we will investigate how to use our gripper quality metrics to automat-
ically compute the best possible gripper design for a given task – utilizing, for example,
a gradient descent method in the gripper quality space obtained by combining proposed
metrics into an objective function. We will also apply our method to a larger variety of
kinematic designs and finally we will extend on the concept of the task specification.

Acknowledgments. The research leading to these results has received funding from the
European Community’s Seventh Framework Programme FP7/2007-2013 (Programme
and Theme: ICT-2011.2.1, Cognitive Systems and Robotics) under grant agreement no.
600578, ACAT.

The research has furthermore received founding from the Danish Council for Strate-
gic Research under the grant agreement no. 12-131860, CARMEN.

References

1. Blanes, C., Mellado, M., Ortiz, C., Valera, A.: Review. Technologies for robot grippers in
pick and place operations for fresh fruits and vegetables. Spanish Journal of Agricultural
Research 9(4), 1130–1141 (2011)

2. Boubekri, N., Chakraborty, P.: Robotic grasping: gripper designs, control methods and grasp
configurations – a review of research. Integrated Manufacturing Systems 13(7), 520–531
(2002)

Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design 461

3. Causey, G.: Guidelines for the design of robotic gripping systems. Assembly Automa-
tion 23(1), 18–28 (2003)

4. Causey, G.C., Quinn, R.D.: Gripper design guidelines for modular manufacturing. In: Pro-
ceedings of 1998 IEEE International Conference on Robotics and Automation, vol. 2,
pp. 1453–1458. IEEE (1998)

5. Ciocarlie, M., Allen, P.: Data-driven optimization for underactuated robotic hands. In: 2010
IEEE International Conference on Robotics and Automation (ICRA), pp. 1292–1299. IEEE
(2010)

6. Cuadrado, J., Naya, M.A., Ceccarelli, M., Carbone, G.: An optimum design procedure for
two-finger grippers: a case of study. IFToMM Electronic Journal of Computational Kinemat-
ics 15403(1), 2002 (2002)

7. Ellekilde, L.-P., Jørgensen, J.A., Kraft, D., Krüger, N., Piater, J., Petersen, H.G.: Applying a
learning framework for improving success rates in industrial bin picking. In: Proceedings of
the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8 (2012)

8. Ellekilde, L.-P., Petersen, H.G.: Design and test of object aligning grippers for industrial ap-
plications. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5165–5170. IEEE (2006)

9. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on
Robotics and Automation (ICRA) (May 1992)

10. Jorgensen, J.A., Ellekilde, L.-P., Petersen, H.G.: RobWorkSim - an open simulator for sensor
based grasping. In: Proceedings of Joint 41st International Symposium on Robotics (ISR
2010), Munich, pp. 1–8 (2010)

11. Jørgensen, J.A., Petersen, H.G.: Grasp synthesis for dextrous hands optimised for tactile
manipulation. In: Proceedings for the Joint Conference of ISR 2010, pp. 1–6. VDE-Verlag
(June 2010)

12. Kraft, D., Ellekilde, L.-P., Jørgensen, J.A.: Automatic grasp generation and improvement for
industrial bin-picking. In: Röhrbein, F., Veiga, G., Natale, C. (eds.) Gearing Up and Accel-
erating Cross-Fertilization between Academic and Industrial Robotics Research in Europe,
2nd edn. STAR, vol. 94, pp. 155–176. Springer, Heidelberg (2014)

13. Krenich, S.: Multicriteria design optimization of robot gripper mechanisms. Solid Mechanics
and Its Applications, vol. 117, pp. 207–218. Springer, Netherlands (2004)

14. Lanni, C., Ceccarelli, M.: An optimization problem algorithm for kinematic design of mech-
anisms for two-finger grippers. Open Mechanical Engineering Journal 3, 49–62 (2009)

15. Rytz, J.A., Ellekilde, L.-P., Kraft, D., Petersen, H.G., Krüger, N.: On transferability of grasp-
affordances in data-driven grasping. In: Proceedings of the RAAD 2013 22nd International
Workshop on Robotics in Alpe-Adria-Danube Region (August 2013)

16. Stulp, F., Theodorou, E., Buchli, J., Schaal, S.: Learning to grasp under uncertainty. In: IEEE
International Conference on Robotics and Automation (ICRA), pp. 5703–5708 (2011)

17. Suárez, R., Roa, M., Cornella, J.: Grasp quality measures. Technical report, Technical Uni-
versity of Catalonia (2006)

18. Weisz, J., Allen, P.K.: Pose error robust grasping from contact wrench space metrics. In:
IEEE International Conference on Robotics and Automation (ICRA), pp. 557–562. IEEE
(2012)

19. Zhang, M.T., Goldberg, K.: Designing robot grippers: optimal edge contacts for part align-
ment. Robotica 25(03), 341 (2006)

20. Zhang, T.: Optimal Design of Self-aligning Robot Gripper Jaws. PhD thesis, AAI3044755
(2001)

21. Zhang, T., Cheung, L., Goldberg, K.: Shape tolerance for robot gripper jaws. In: IROS,
pp. 1782–1787 (2001)

Automatic Verification

of Autonomous Robot Missions

Matthew O’Brien1, Ronald C. Arkin1 Dagan Harrington2, Damian Lyons2,
and Shu Jiang1

1 School of Interactive Computing, Georgia Tech, Atlanta, GA 30332, USA
{mjobrien,arkin,sjiang}@gatech.edu

2 Computer & Information Science, Fordham University, Bronx, NY 10458, USA
{dharrington5,dlyons}@fordham.edu

Abstract. Before autonomous robotics can be used for dangerous or
critical missions, performance guarantees should be made available. This
paper overviews a software system for the verification of behavior-based
controllers in context of chosen hardware and environmental models.
Robotic controllers are automatically translated to a process algebra.
The system comprising both the robot and the environment are then
evaluated by VIPARS, a verification software module in development,
and compared to specific performance criteria. The user is returned a
probability that the performance criteria will hold in the uncertainty of
real-world conditions. Experimental results demonstrate accurate verifi-
cation for a mission related to the search for a biohazard.

Keywords: mobile robots, formal verification, performance guarantees,
automatic translation.

1 Introduction

Mission assurance by providing formal methods for assessing performance guar-
antees is a well identified need and crucial area of research for autonomy. This is
essential in missions that must get the job done right the first time where there is
no tolerance for failure. We have been focusing in particular on addressing search
and remediation tasks for countering Weapons of Mass Destruction (C-WMD),
e.g., biological, chemical, radiological or nuclear agents that might be posed by
terrorist activities.

A variety of methods, historically based on model checking (e.g., [4],[9]) have
been developed for robot performance guarantees and synthesizing provably cor-
rect controllers that have met with some success. But there remain problems
associated with the scalability of these methods and their utility in continu-
ous valued domains, typical of robotic sensing and actuation [10]. Our research,
conducted for the Defense Threat Reduction Agency (DTRA), takes a different
approach, utilizing process algebras as the basis for the representation as opposed
to the temporal logics so often used in model checking. We feel this provides a
better match for the requirements of real-time autonomy, and have had success

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 462–473, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Verification of Autonomous Robot Missions 463

in its application on a range of robotic missions: single robot waypoint [11],
multi-robot bounding overwatch [14] and search and explore [7].

To accomplish this we have had to bridge the gap from automatically gen-
erated robot control software that is represented in the Configuration Network
Language (CNL), a component of the MissionLab Mission Specification System
used in our research [18]. This CNL code must then be processed by our veri-
fication module (VIPARS Verification in Process Algebra for Robot Schemas)
to yield the performance guarantees and predictions necessary for informing the
operator regarding the likelihood of success of her mission. Thus CNL must
be translated to PARS (Process Algebra for Robot Schemas). Until now this
translation has been performed manually, but as described in this paper this
central task linking the control software to the verification module is now au-
tomatically translated, providing end-to-end operational capability. This paper
describes how that transformation has been implemented and tested.

2 Related Work

Formal verification of systems is critical when failure creates a high cost, such
as life or death scenarios. A variety of software validation techniques have been
developed for applications from airplanes to medical devices. If the use of robots
is to expand to similarly critical applications, verification techniques must be
developed to meet this challenge. The embodied nature of robot software brings
several additional complications. The real world is dynamic, unstructured, and
continuous; making modeling difficult. In addition, information about the world
provided by sensors is incomplete and noisy. The problem of adapting verification
techniques for this domain has been approached in several ways.

One of the main methods of software verification is model checking [6],[19]. In
model checking, the system is represented as a finite state automaton and formal
specification in a modal logic. All states are explored and compared against the
formal specifications or properties. The continuous nature of a robots workspace
creates a state space far too large for traditional methods. This is commonly
referred to as state explosion, and is a major focus of research in model checking.
One technique applied to this problem is symmetry reduction. By determining
symmetries, the number of states that must be checked can be reduced. Under
ideal conditions, significant reductions can be made. Identifying symmetries may
be a difficult task however, and is often dependent on the programming language
used [19].

An alternative approach is to synthesize a valid controller given a robot model
and a set of specifications. Linear temporal logic (LTL), or a restricted subset of
LTL, GR(1), has been used to represent specifications in a way that allows for
automatic generation of controllers [4],[9]. Effective motion planning has been
demonstrated with this technique. Like model checking, these LTL based con-
troller synthesis techniques can suffer from state explosion under certain cir-
cumstances. In addition, it is not clear if LTL techniques can extend to more
sophisticated missions outside the realm of motion planning.

464 M. O’Brien et al.

This paper presents yet another approach to verification. Process algebras
(PA) model parallel or distributed systems and reason about their properties
through algebraic techniques [3]. While originally developed for software sys-
tems, applications range from robotics to biology [8],[5]. Process Algebra for
Robot Schemas (PARS) is a specification language capable of representing soft-
ware, hardware, and the environment as interacting processes [10]. The following
sections overview the software system in development to utilize PARS, the meth-
ods of verification, and results from physical implementation.

3 Methods

3.1 System Overview

In the complete robot mission design system, an operator specifies the robot
controller in MissionLab. This controller is compiled first into configuration net-
work language (CNL), an internal language of MissionLab. This CNL code is
then translated to PARS. The operator also specifies models of the robot and
environment, as well as desired performance criteria. VIPARS evaluates the com-
plete system and returns the results to the operator, creating a feedback loop.
If performance is unacceptable the operator refines his or her design. This may
entail revising the controller or selecting new hardware for implementation. Once
the criteria are satisfied, MissionLab creates an executable for the selected plat-
form. Figure 1 shows an overview of this architecture.

Fig. 1. Overview of system archiecture

Automatic Verification of Autonomous Robot Missions 465

3.2 MissionLab and CNL

MissionLab is a software package developed in the GT Mobile Robotics Lab.
MissionLab allows users to design missions and robotic controllers graphically,
allowing for quick implementation of control schemes without the need for pro-
gramming experience or concern with low-level details. It incorporates simula-
tion of missions as well as the ability to compile controllers for execution on
hardware. The Configuration Network Language (CNL) is one representation of
robotic controllers used in MissionLab. CNL is a superset of C++ developed to
separate a behaviors implementation from its integration with other behaviors
[16].

In CNL, all behaviors for any robotic controller are specified as assemblages of
more primitive nodes. Currently, all implemented behaviors are schema-based,
from the AuRA architecture [1]. Any node may have a variety of inputs, but
only a single output. Primitive nodes only take input from sensors. Assemblages
of these nodes are constructed by feeding the output of these primitives into new
nodes. Through various arbitration schemes, a single output command is deter-
mined and sent to the robot for execution. The implementation of a CNL nodes
internal processing is done via traditional C++. See Figure 2 for an example
network.

Fig. 2. Part of a CNL node network. Nodes, such as MoveTo, take input from more
primitive nodes. The node COOP performs vector summation from all of its inputs,
creating a new behavior. The node IsAtGoal is a trigger, tracking conditions to change
states. The Finite State Automaton (FSA) selects the output of one behavior for exe-
cution on the robot.

3.3 PARS

Process algebras are specification languages that allow for formal verification of
concurrent systems. Process Algebra for Robot Schemas (PARS) is a language
developed to adapt these techniques to robotic systems [10]. PARS is capable
of representing a robotic controller, hardware, the environment, and the inter-
actions between them. A process P is called with initial parameters u1,u2,,un,
resulting values v1,v2,,vq, input ports i1,i2,,im, and output ports o1,o2,,op.

466 M. O’Brien et al.

P 〈u1, u2, , un〉(i1, i2, , im)(o1, o2, , op)〈v1, v2, , vq〉 (1)

Table 1. The basic PARS processes

Process Stop Condition Abort Condition

Delay〈t〉 After time t If forced by #

Ran〈d〉〈v〉 Returns random sample v
from a distribution d

If forced by #

In〈p〉〈v〉,Out〈p, v〉 Performs input and output
of value v on port p

If forced by #

Cond〈op, a, b〉 a = b, a �= b, a > b, etc . . . Otherwise

All PARS processes are formed by composition of several basic processes
shown in Table 1. This is achieved by three operators. The sequential/condi-
tional operator (;) allows the next process to start if the first process stops, but
not if it aborts. For example, a simple process may take in a value on one port,
and afterwards output this value on a second port.

Pass = In〈port1〉〈value〉;Out〈port2〉〈value〉 (2)

In addition the concurrent composition (|) and the disabling composition
(#) operators allow for processes to run simultaneously. The disabling com-
position will abort all other processes when one process terminates (stops or
aborts). The concurrent composition operator will allow all processes to termi-
nate independently. This notation is sufficient to build complex behaviors via as-
semblages of simpler processes, analogous to the methodology in MissionLab. A
simple example mission constructed with only sequential composition is shown in
Figure 3.

Mission<w, i> = Goto<w(i)> ; Neq<i , n> ; Mission<w, i+1>
Goto<a> = TurnTo<a> ; MoveTo<a>
MoveTo<g> = In<p><r> ; Neq<r , g> ; Out<v , u(g−r)> ; MoveTo<g>
TurnTo<g> = In<p><r> ; Out<h , d(g−r)>

Fig. 3. Simple PARS Mission

A final critical ability for PARS is looping. Tail-recursion, a process calling
itself at the end of its execution, is the method chosen. The Mission process in
Figure 3 provides an example of tail-recursion. The restriction of all processes
to tail-recursion can allow for more efficient verification (see Section 3.5).

Automatic Verification of Autonomous Robot Missions 467

3.4 Translation

The automation of the translation of a robot controller into PARS is a critical
step to creating a usable software system. By automating the translation of a
robot controller to PARS, and incorporating the VIPARS verification module
into MissionLab, a nave user could leverage the formal verification techniques
in the field. In addition to improving usability, automation ensures the accuracy
and reliability of the final translation. Translation can be a challenging problem.
In a model-checking approach the first step is the translation of the program to
be verified into a transition system, the formal structure in which verification
occurs. However, this translation into a transition system is one of the key points
at which state-space explosion can occur [2].

Two sets of lexes (lexical analyzers) and grammars are required to parse a
CNL file. The first set is for the CNL code; which defines the CNL network and
structures a nodes definition. The final set parses the C++ code inside a node
definition. This is only required for the switch statement inside the FSA node.
Therefore a subset of the C++ grammar, along with some unique tokens, is
adequate. The common compilation tools Flex and Bison were used to produce
the final scanner and parser.

MissionLab is a behavior-based programming environment where users create
complex actions from a library of primitive nodes. A matching library of PARS
implementations was created. The translator inputs the PARS definition of any
node used by the robot controller into the final PARS file. These processes are
later called inside the Mission process in a similar manner to how functions are
defined and called in programming languages.

The heart of the translation from CNL to PARS is the creation of the Mission
process. PARS code matching the structure of the FSA must be created. This
structure can be, in general, any finite state automaton. A PARS implementa-
tion of a switch statement was created to represent any mission. However, many
missions are linear in nature, and the more complex Mission process structure
is not required. By checking certain properties of the triggers in the FSA node,
the translation software can determine if a mission is linear, and select the ap-
propriate Mission process design. An example linear mission structure in PARS
is below in Figure 4. This structure was utilized for the experimental verification
described in section 4.

Mission (cPOS) (cVEL) = Behavior1 (cPOS) (cVEL) |
Trigger1 ; Behavior2 (cPOS) (cVEL) |
Trigger2 ; Behavior3 (cPOS) (cVEL) |
Trigger3 ; Behavior4 (cPOS) (cVEL) .

Fig. 4. Linear mission process

This initial mission structure is a high level representation of the controller.
As discussed before, in MissionLab the highest-level behaviors are assemblages of

468 M. O’Brien et al.

more primitive nodes. The PARS processes representing lower-level CNL nodes
must be created as well. Before the translation software creates a process for
a high level behavior in PARS, any additional primitive processes required are
created first. For some CNL nodes, this is hardcoded, while for others the number
and type of input nodes can vary. The PARS operators needed to coordinate
these new processes are also created at this time. As each process calls for the
creation of lower level processes, the node network is traversed from top to
bottom, creating PARS code that accurately matches the original node network
defined in CNL. Figure 5 provides a simple demonstration of this process.

Fig. 5. Initial steps taken to create the complete controller from the PARS implemen-
tation of a simple mission FSA. In this example all new processes are executed with
concurrent composition, but in general any PARS operators can be selected.

3.5 VIPARS and Validation

The entire system to be verified by VIPARS can be expressed, generally, as:

SY S = Env〈initparams〉(vel)(pos)|Mission〈initparams〉(pos)(vel). (3)

Which is the concurrent, communicating composition of any number of Con-
trollers (i.e., Mission) and Environment models (i.e., Env). The SYS process
in (3) represents a very simplistic situation where the Mission process takes as
input a position and outputs a velocity. The Environment process (which cur-
rently includes the robot hardware) concurrently inputs a velocity and outputs
a position. A simple environment process is broken down in equation (4) to pro-
vide an example. Initially, three processes run in parallel. At〈r〉 represents the

Automatic Verification of Autonomous Robot Missions 469

current robot position r in VIPARS. Odo〈r〉 represents the odometry sensor,
which repeatedly transmits current location information with a normal sensor
noise distribution Φ. The Delay〈t〉 process ends this group after time t. After
words the current velocity, from port v, is combined with the actuator’s normal
noise distribution Θ to update the robots position. While this is a simple kine-
matic model, more complex models can include dynamics, battery life, or other
properties of the hardware and real world.

Env = (Delay〈t〉#Odo〈r〉#At〈r〉);Ran〈Θ〉〈z〉; In〈v〉〈u〉;Env〈r +(u+ z)t〉 (4)

Odo = Ran〈Φ〉〈e〉;Out〈p, r + e〉; 〈r〉Odo〈r〉 (5)

Recall that the robot program must operate and interact with a continuous,
unstructured and dynamic environment. This effectively rules out a purely state-
based method for verification, such as model checking, where the well-known
state-space explosion problem leads to intractable state graphs. We leverage the
reactive, recurrent nature of behavior-based robot programs (a behavior-based
robot will continually respond to a fixed set of affordances in the environment)
to isolate regularities in the combined state-space of Env and Mission. This
regularity allows verification to be carried out in a very efficient manner. To make
clear the method by which we extract and analyze these periodic regularities in
the state-space, first recall that PARS supports iteration in the form of tail-
recursion (TR):

T 〈v〉〈...〉 = P 〈v〉〈u〉;T 〈...〉〈f(v, u)〉. (6)

The process T in (6) is TR iff its body, P, is a sequential composition of
non-recursive processes. In standard TR fashion, input parameters (v) are trans-
formed by some function f, for each successive execution of the process. In [15],
we developed an interleaving theorem, a relation between parallel and sequen-
tial operations in a process algebraic framework, which allows us to express a
parallel, communicating composition of TR processes as a single TR process:

SY S = P1|P2| . . . |Pm = S(P1, P2, . . . , Pm);SY S (7)

where S(P1, P2, . . . , Pm) is the System Period process that is constructed from
an analysis of the scope and communication structure of component processes
in Sys. This allows us to recast the analysis of the recurrent system to the anal-
ysis of some sequential ordering (using a Maximum Likelihood approach in the
case that SYS contains processes with probabilistic behavior) period processes
S(P1, P2, . . . , Pm).

Once the periodic nature of the concurrent system is determined, VIPARS
produces a set of equations called flow-functions by analyzing the port con-
nectivity and TR-transformations of variables for each Pi ∈ S(P1, P2, . . . , Pm).
These flow-functions relate values in the network of the kth time step to values
in the network of the (k+1)th time step [12]. The flow functions are used to
build a Dynamic Bayesian Network (DBN), and verification is carried out by

470 M. O’Brien et al.

applying a filtering algorithm to the DBN and monitoring for achievement of
the performance specification. For a more detailed discussion on this verification
process, the authors recommend [14].

The VIPARS system computes within the network of flow-functions and as-
sesses whether performance criteria are met, given the environment model(s) and
controller(s) provided by the operator [13]. The VIPARS verification module pro-
vides output in the form of: (1) A Boolean answer of whether the performance
criteria are met, and (2) detailed output that allows for iterative refinement of
the controller. The environment models can be culled from libraries of robot and
sensor models. The current work of automatic translation drastically reduces the
need for operator intervention in the MissionLab + VIPARS verification system.

4 Validation

To evaluate the verification, experimental results from a physical implementation
are compared to the predicted (verification) results from VIPARS. The metric
used for comparison is the success rate of a mission. The general procedure,
given a mission, is to first develop an appropriate controller in MissionLab.
This controller will both be compiled to a hardware executable for the robot,
and translated into PARS for verification. Appropriate models of the chosen
hardware platform are imported to the VIPARS system. Performance criteria
(such as a time limit and spatial accuracy) are selected and given to VIPARS
as well. Results from the VIPARS verification and the physical experiment are
compared.

A mission related to the search for a biohazard has been selected. This missions
were previously verified with manual CNL to PARS translations in [7]. Here, we
reproduce those results using automatic translations. A Pioneer 3-AT was the
chosen hardware platform.

4.1 The Search Mission

This mission simulates the search for a target, in this case a potential biologi-
cal weapon. The controller used is shown in Figure 6. The robot explores until
the target is found. A camera was used for detection of the target and a SICK
laser scanner for obstacle detection and avoidance. In this test, the target was
represented as an orange bucket. Once detected, the robot moves to the tar-
get and stops. No counter-measure actions were simulated. This provides the
opportunity to test random search behavior as well as object detection within
the framework of VIPARS. A time limit of 60 seconds to locate the target was
chosen as the performance criteria.

The mission was executed on a physical system 106 times. Due to the random-
ized search pattern, a large number of trials were used to yield accurate results.
Failures occurred when the search pattern did not explore near the target within
the time limit.

Automatic Verification of Autonomous Robot Missions 471

Fig. 6. MissionLab controller for the search mission, shown as it is displayed in the
Cfgedit graphical programming tool

4.2 Results

The primary method of validation is the comparison between empirical success
probabilities and the predicted success probabilities. Table 2 lists the results for
the mission. While the original manual translation showed strong results, 85%
versus 83% success rate, the new results still showed qualitative improvement,
matching the experimental validation at 83%.

Assuming the null hypothesis is that the probability of success is actually
85%, and the alternative hypothesis that it is smaller, one can use a z-statistic
proportion test and calculate a value of z = 0.58, and P (Z < z) = 0.28%.
Therefore we cannot claim that the improvements are statistically significant,
even though the prediction is more accurate. We can conclude that the validity
and significance of the VIPARS performance guarantee, originally demonstrated
in [7], still holds.

Table 2. Final probability results for the mission

Mission Total Runs Experimental
P(Success)

VIPARS Manual
P(Success)

VIPARS Auto
P(Success)

Explore 106 83% 85% 83%

The automatic translation produced exactly the same PARS structure for
this mission as the manual translation. However, the verification results reported
here differ slightly. The most important contribution to this difference is that the
automatic translation used a set of PARS processes built to more directly model
the CNL nodes than processes used in the manual translation. The quality of the
verification therefore depends on the accuracy with which the PARS primitives
model their corresponding CNL nodes.

472 M. O’Brien et al.

Selecting a small set of relatively low-level behaviors simplifies the reliance
on this correspondence. This takes advantage of the behavior-based controller
design. Simple nodes in CNL can be implemented directly in PARS, and the
complex behavior can be modeled by implementing the CNL network structure
in PARS. An alternate approach is to separately verify these PARS processes.
This has the advantage of allowing high-level behaviors that may not easily
decompose into simple primitive processes. Both options will be considered in
ongoing work.

5 Conclusion

The system described in this paper allows a user to design a robot controller
graphically, select hardware for implementation, and evaluate the effectiveness
of the system in a chosen environment against specific performance criteria. This
information can be used in multiple ways: to refine controller design, to evaluate
hardware choices, and to inform the operators decision to execute the mission.

Experimental results were used to validate the verification software. The cor-
respondence between empirical and predicted success probabilities was shown to
be very accurate. In addition, these predictions were made with automatically
generated PARS files; removing the need for any manual translation.

Some readers may observe that with appropriate models of a robot and the en-
vironment, one could run randomized simulations to achieve similar probabilistic
results. This would be analogous to sample-based planning, but for verification.
The method described in this paper is, in contrast, deterministic and returns
complete results (such as the probability of being at any location) without mul-
tiple executions of the mission. For many classes of problems, this will more
accurate and efficient.

The research presented is being extended in several directions to better test
the capabilities and limits of the VIPARS system. Development and testing for
multi-agent teams, both homogeneous and heterogeneous, has begun. Testing
with two Pioneer 3-ATs has been performed, and future plans include introduc-
ing a quad-rotor into the team. SLAM will be utilized in the future to verify
with more recent navigation techniques. Finally, the translation software and
VIPARS system will be fully incorporated into MissionLab. User studies will be
performed to demonstrate that with this system, a nave user can leverage the
formal verification tools when designing a mission [18].

Acknowledgments. This research is supported by the Defense Threat Reduc-
tion Agency, Basic Research Award #HDTRA1-11-1-0038.

References

1. Arkin, R., Balch, T.: AuRA: Principles and practice in review. Journal of Experi-
mental & Theoretical Artificial Intelligence 9(2-3), 175–189 (1997)

2. Baeir, C., Katoen, J.: Introduction to Model Checking. MIT Press, Cambridge
(2008)

Automatic Verification of Autonomous Robot Missions 473

3. Baeten, J.: A brief history of process algebra. Theoretical Computer Science 335,
131–146 (2005)

4. Belta, C.: Synthesis of provably-correct control and communication strategies for
distributed mobile systems. In: ICRA Workshop on Formal Methods, Anchorage,
Alaska (2010)

5. Guerriero, M.L., Heath, J.K., Priami, C.: An automated translation from a narra-
tive language for biological modelling into process algebra. In: Calder, M., Gilmore,
S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg
(2007)

6. Jhala, R., Majumdar, R.: Software Model Checking. ACM Computing Sur-
veys 41(4), 21, 53 (2009)

7. Jiang, S., Arkin, R., Lyons, D., Liu, T.-M., Harrington, D.: Performance guarantees
for C-WMD robot missions. In: 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), pp. 1–8 (2013)

8. Karaman, S., Rasmussen, S., Kingston, D., Frazzoli, E.: Specification and planning
of UAV missions: a Process Algebra approach. In: American Control Conference,
St. Louis, MO, June 10-12 (2009)

9. Kress-Gazit, H., Fainekos, G.E., Pappas, G.: Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

10. Lyons, D., Arkin, R.: Towards performance guarantees for emergent behavior. In:
IEEE International Conference on Robotics and Automation, vol. 4, pp. 4153–4158
(2004)

11. Lyons, D., Arkin, R., Nirmal, P., Jiang, S., Liu, T.-M., Deeb, J.: Getting it right the
first time: Robot mission guarantees in the presence of uncertainty. In: Intelligent
Robots and Systems (IROS), pp. 5292–5299 (2013)

12. Lyons, D., Arkin, R., Jiang, S., Liu, T.-L., Nirmal, P., Deeb, J.: Performance Ver-
ification for behavior-based Robot Missions. In: AAMAS ARMS 2013 Workshop
on Autonomous Robotics and Multirobot Systems, St. Paul, MN (May 2013)

13. Lyons, D., Arkin, R., Jiang, S., Nirmal, P., Liu, T.-L.: A Software Tool for the De-
sign of Critical Robot Missions with Performance Guarantees. In: Conf. on Systems
Engineering Research (CSER 2013), Atlanta, GA (March 2013)

14. Lyons, D., Arkin, R., Jiang, S., Harrington, D., Liu, T.-L.: Verifying and Validating
Multirobot Missions (submitted, 2014), Available via GT Mobile Robot Lab
http://www.cc.gatech.edu/ai/robot-lab/online-publications/

GIRTFT IROS 2014 v5.pdf (accessed June 10, 2014)
15. Lyons, D., Arkin, R., Nirmal, P., Jiang, S.: Designing Autonomous Robot Mis-

sions with Performance Guarantees’. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Algarve, PT (2012)

16. MacKenzie, D.: The configuration network language user manual. In: Georgia Tech
Mobile Robot Lab (1996), http://www.cc.gatech.edu/aimosaic/robot-lab/
research/MissionLab/mlab manual-7.0.pdf (accessed June 10, 2014)

17. MacKenzie, D., Arkin, R., Cameron, J.: Multiagent mission specification and exe-
cution. Autonomous Robots 4(1), 29–52 (1997)

18. MacKenzie, D., Arkin, R.: Evaluating the Usability of Robot Programming
Toolsets. International Journal of Robotics Research 4(7), 381–401 (1998)

19. Simmons, R., Pecheur, C., Srinivasan, G.: Towards automatic verification of au-
tonomous systems. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 2, pp. 1410–1415 (2000)

20. Ding, X.C., Kloetzer, M., Chen, Y., Belta, C.: Automatic Deployment of Robotic
Teams. IEEE Robotics & Automation Magazine 18(3), 75–86 (2011)

http://www.cc.gatech.edu/ai/robot-lab/online-publications/GIRTFT_IROS_2014_v5.pdf
http://www.cc.gatech.edu/ai/robot-lab/online-publications/GIRTFT_IROS_2014_v5.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf
http://www.cc.gatech.edu/aimosaic/robot-lab/research/MissionLab/mlab_manual-7.0.pdf

Probabilistic 2D Acoustic Source Localization

Using Direction of Arrivals
in Robot Sensor Networks

Riccardo Levorato and Enrico Pagello

University of Padua, Department of Information Engineering (DEI), IAS-Lab.
Via Ognissanti 72, I-35131 Padova, Italy

{riccardo.levorato,enrico.pagello}@dei.unipd.it
http://robotics.dei.unipd.it

Abstract. This paper explores the 2D Audio Localization using only
the Direction of Arrivals (DOAs) of a fixed acoustic source coming from
an audio sensors network and proposes a new method for estimating the
position of the source using a Gaussian Probability over DOA approach
(G-DOA) in the 2D space. This new method was thought for Robotic
purposes and introduces a new perspective of the Audio-Video synergy
using Video Sensor Localization in the environment for extrinsic Audio
Sensor Calibration. Our approach achieves more precise solutions using
more sensors and shows better results compared to the analytic Weighted
Least Square method (WLS-DOA). Test results using Microsoft Kinect
as DOA-sensors within the ROS framework show that the algorithm is
robust, modular and can be easily used for robot applications.

Keywords: Acustic Source Localization (ASL), Direction Of Arrival
(DOA), Multi-Sensor Network, Robot Audition, Kinect, ROS.

1 Introduction and State of the Art

Sound spectrum analysis is a very important skill for those who live in an en-
vironment in which all the noises are helpful for enhancing the knowledge of
what happens in the surroundings. One of the most important acoustic skills is
the Acoustic Source Localization (ASL). Mammals, for example, have only two
hears that physically permit to estimate only the DOA of an acoustic source
using interaural time differences and interaural level differences. However, this
method is not always correct because it can be ambiguous (i.e. Cone of Confu-
sion). Fortunately this problem can be solved only by tilting the head, moving
the pinnas or the whole body [1]. Estimating the distance of the acoustic source
requires further skills that take in consideration also sound reflections and echoes
(i.e. bats echolocation) [2].

In the acoustic field, a DOA sensor consists of an array of at least two micro-
phones. Common tested acoustic sources are speakers [3], gun shots and human
screams [4], clap hands, and so on. There are various techniques for calculating
the DOA of an acoustic source such as Angle of Arrival (AoA), Time Difference

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 474–485, 2014.
c© Springer International Publishing Switzerland 2014

http://robotics.dei.unipd.it

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 475

of Arrival (TDOA), Frequency Difference of Arrival (FDOA), and other similar
techniques [5][6]. Recently there was an increasing use of sensors networks, that
can share audio and video data in a cooperative way, achieving more precise
knowledge of the environment. In an Audio Sensor Network (ASN), by knowing
the position and pose of each DOA sensor, it is possible to better estimate the
position of the acoustic source by sharing and synchronizing the DOA estima-
tions [3][7][8]. In 2D space, ASL with only two DOA sensors is trivial because
it is possible to estimate the position of the acoustic source by the simple inter-
section of two lines, which can give either one solution (the intersection point)
or no solution (two parallel lines). Problems arise when there are more than two
DOA sensors: each of them has an error prone estimation of the DOA of the
acoustic source and most of the times the intersection of all the lines doesn’t
exist. A method that takes in consideration all DOA estimations from all DOA
sensors will give a better estimation of the acoustic source because it will take
in consideration the informations coming from all sensors.

In the state of the art there are a lot of works that deal with audio localization
[3-11]. Many of them focuses on various techniques that use all the signals coming
from all the microphones and try to localize sources fusing all data. In a robotic
environment, this approach is not applicable because it is difficult to convey all
audio signals in an unique CPU for making all calculations and, over all, syn-
chronize all audio signals in time [9]. Furthermore, the big amount of audio data
travelling over the network could create a bottleneck effect and create latency
for other important shared data. To solve this problems, a smart approach can
be the one that elaborates groups of consistent data, shares the obtained partial
results and finally fuses them. In this way each group of microphones in a DOA
sensor can estimate the DOA of the acoustic source respectively to its position.
Knowing the position of all DOA sensors, it is possible to fuse data into a gen-
eral reference system and use a convenient method to find an estimation of the
source position. This approach was thought to fit with mobile robots with micro-
phones on board that will have to estimate their position with a Simultaneous
localization and mapping (SLAM) technique.

Following this topic, Hawkes et Al. [10] proposed an analytic Weighted Least
Square method (WLS-DOA) that minimizes the distance of the estimated point
to the estimated DOA line and achieves good results in 3D space. In his Phd
thesis, Pertilä [5] also focused on DOA-Based Localization and introduced a new
approach that tries to eliminate the sensors with bad acoustic DOA estimations
starting from the WLS-DOA method of [10].

Although it was shown that this method performed better than WLS-DOA
in outlier situations, we found that it is error prone, because in some situations
it can discard the DOA sensors that are better than others. A proof of the fail
of this method can be easily given if we consider the example in Fig. 1: we can
see that the Robust DOA-Based Localization solution (in magenta) is very far
from the real one (in blue). On the other hand the WLS-DOA (in green) and our
G-DOA approach (in red) solutions are closer to the real solution. This is due to
the fact that the DOA estimations of sensors s1, s2 and s3 intersect very close

476 R. Levorato and E. Pagello

to each other (near the R-DOA solution), not considering that only sensors s1
and s5 are the only good estimations and the others s2, s3 and s4 are outliers.
The main key of this problem is because it is not advisable to discard any of the
sensors because the real position of the source is unknown and it is not possible
to detect which DOA sensors are outliers if they have the same probability error
to be outliers. Furthermore, the simple WLS-DOA approach can also lead to
errors because a WLS-DOA estimation is considered as a line without a precise
direction. As an example, in Fig. 1, even if sensor s2 DOA estimation is pointing
towards the south-east, the WLS-DOA approach considers also the northwest
direction (and in fact R-DOA fails also for this reason).

Fig. 1. Robust DOA-Based Localization Failure Example

In our approach we use all the DOA sensors and propose a novel approach
that is based on the probability error over the angle of the DOA estimation.
The difference with WLS-DOA approach is that G-DOA will minimize the angle
(instead of the distance) of the estimated point to the estimated DOA. This
new approach is not affected by the angle ambiguity problems of the WLS-DOA
approach. Another contribute of this paper is a new concept of Audio-Video data
fusion. More specifically, Audio Localization will be strictly correlated to Video
Calibration: working with mobile robots it would be very hard to calibrate at
each instant the relative position of all microphones of all moving robots with
non-invasive techniques (i.e. using an acoustic high-frequency periodic signal
as audio reference). For this reason, using SLAM techniques and knowing the
relative position of the microphones with respect to the ’visual’ sensors, will help
robots to share also audio informations. The paper is structured as follows: firstly
in section 2 the DOA-Based Localization problem is formalized; new approach
details are shown in section 3. Sections 4 and 5 deal with the validation and
its respective results. Finally the results are commented and discussed and the
conclusions are presented with an anticipation of the future work.

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 477

2 DOA-Based Localization Problem

Let S be a set of DOA sensors, with |S| = Ns ≥ 1. In this scope, a DOA sensor
s ∈ S consists in a microphones array able to compute and estimate the DOA of
a generic acoustic source r with respect to the intrinsic reference system of s. Let
spk = [sxk, s

y
k]

T ∈ R2 and sok ∈ (−π, π] represent respectively the 2D position and
orientation of kth sensor, k ∈ [1, Ns], with respect to the 2D Cartesian reference
system (world). A DOA estimation from sk is an angle αk ∈ (−π, π] radians. The
problem consists in finding the best estimation of the acoustic source position
r = [rx, ry]T ∈ R2 assuming that all spk and sok are known a priori and all αk

are estimated using an arbitrary DOA estimation method (Fig. 2).

Fig. 2. DOA - Based Localization Problem

For simplicity, the following assumptions are considered:

– all sensors are connected together within a network and can share data;
– all DOA estimations are synchronized in time;
– there is only one fixed (not moving) acoustic source at time;
– the precision of all αk estimations depends only on the accuracy of each

DOA sensor and on the DOA estimation methods used;
– echoes and sound reflection effects are not considered.

478 R. Levorato and E. Pagello

3 Gaussian Probability over DOA Approach

Each real DOA estimation αk has an intrinsic error that depends mainly on the
accuracy of the kth sensor. This error can be modelled as a Gaussian probability
error in the angle domain with zero mean and variance σk using only values in
the range φ ∈ [−π, π]. The angular probability sensor model Mk is defined as
follows:

Mk ∼ N (0, σk)[−π,π] =
1

σk
√
2π

e
− φ2

2σ2
k , φ ∈ (−π, π] (1)

At this step it is needed a change of domain from the angular domain to the
Cartesian coordinate system G = (n×n) ∈ Z2. G can be thought as a spatial 2D
grid with a fixed spatial range [m] and a fixed precision parameter prec [m] such
that n = range/prec. For each generic point q = [qx, qy]T ∈ G it is calculated
the angle βq

k that considers spk as vertex and it is included between a first line
that passes through spk and q and a second line given by the axis syk (Fig. 3):

βq
k = atan2(qy − syk, q

x − sxk)− sok , q ∈ G ∧ k ∈ [1, Ns] (2)

with:

atan2(y, x) = 2 arctan

√
x2 + y2 − x

y
, atan2(y, x) ∈ (−π, π] (3)

Fig. 3. Representation of all considered angles in a DOA sensor

The probability Gk(q) for each point q in the grid G is given by evaluating
each angle βq

k in the angular probability sensor model Mk with respect to the
DOA estimation αk:

Gk(q) =Mk(β
q
k − αk) =

1

σk
√
2π

e
− (β

q
k
−αk)2

2σ2
k , q ∈ G ∧ k ∈ [1, Ns] (4)

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 479

All results of operations among angles in Eq. (2) and Eq. (4) take a value in the
range (−π, π]. The graphical representation of a single DOA sensor estimation
probability over the Cartesian plane can be seen in Fig. 4.(a) where red and blue
regions have higher and lower likelihoods respectively. At this point all the Gk(q)
are multiplied point-wise obtaining the multiplication of all the probabilities of
all sensors G(q) in the 2D space domain (Fig. 4.(b)).

G(q) =
Ns∏
k=1

Gk(q) =
Ns∏
k=1

[
1

σk
√
2π

e
− (atan2(qy−s

y
k
,qx−sx

k
)−so

k
−αk)2

2σ2
k

]
,q ∈ G (5)

In Eq. (5) it is used the product instead of the sum for the fact that if the
likelihoods from different DOA sensors are independent, the intersection of sets
equals their product, as stated in [5].

(a) G1 of sensor s1 (b) G with four sensors

Fig. 4. G over G. Red and blue regions have higher and lower likelihood respectively.

Finally, the point in G with the maximum value of G is the estimation of the
solution r̂ ∈ G with the proposed Gaussian Probability over DOA approach:

r̂ = argmax
G

G (6)

It is worth noting that even though the probability axiom P (Ω) = 1 is no
longer satisfied in Eq. (1), the omission of this axiom will not compromise the
correctness of the procedure. Dealing with multiplication (and not with sums) of
probabilities (Eq. (5)), all unused values can be omitted because are not useful
and because multiplication of numbers ∈ [0, 1] still takes a value ∈ [0, 1]. On the
other hand it is important to set a priori experimental validated variances σk
in order to represent correctly each angular probability sensor model Mk. The
algorithm has always a computational complexity of Θ(n2).

480 R. Levorato and E. Pagello

4 Validation

The localization performance metric used is the Distance Error (DE) that is
distance between the estimated source and the real source positions in meters.
The validation is divided in two parts: the first part deals with a general simula-
tion of the DOA-Based problem which aim is the investigation of the properties
of the presented approach. The second part is the real test part that is also
accompanied by a simulation test to validate the simulation tool.

4.1 Simulation

Simulation was an helpful tool to compare the localization performances of our
approach to the traditional Weighted Least Square method (WLS-DOA) [10].
The simulation scenarios consisted in groups of Ns DOA sensors in a virtual
room G. At each iteration, all sensors positions and orientations were positioned
randomly in G. All tests had only one acoustic source at time positioned ran-
domly in G too. For all simulations it has been assumed that all sensors were
similar so they had the same probability error over the DOA estimation and
hence same σk sim. Each DOA estimation was modified from the real one, for
simulation purposes, using the probability model Mk with the fixed σk sim for
all k. The simulation was repeated tsim times for each group of sensors. The
cardinality of the sensor group was varied in the range [3, Ns max]. As previ-
ously said, the case with Ns = 2 was not considered for the two reasons that the
solution is the trivial intersection of the only two existing DOAs and all other
methods give reasonably the same result. Simulation code was implemented in
MATLAB.
The simulation parameters used for validation are listed in Tab. 1:

Table 1. Simulation Parameters

range [m] prec [m] σk sim tsim Ns max

10 0.001 0.1 10000 20

The validation metrics calculated for all Ns ∈ [3, Ns max] for both G-DOA
and WLS-DOA approaches were the following:

– mean value of all DEs;
– variance value of all DEs;
– min and maximum value of all DEs;

Finally it was calculated the difference between the mean value of all DEs
∀Ns ∈ [3, Ns max] for further investigating the difference between the two ap-
proaches.

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 481

4.2 Real Test

We also tested the algorithms in a small real environment. We used three Mi-
crosoft Kinect1 as DOA-sensors. Microsoft Kinect has one RGB-camera, a 3D
depth sensor and four microphones positioned as shown in Fig. 5. Each DOA
estimation came from HARK software2 developed in ROS3 with an error of
±0, 0873 [rad] = 5◦ [11]. For the sensor calibration, we used the ROS software
developed in our laboratory4 [12] that helped us to easily calibrate and find the
extrinsic parameters among Kinect RGB-cameras. Starting from this calibra-
tion, we translated each RGB-camera reference point to the reference point of
the DOA estimation given by HARK with respect to the world. The reference
point of the DOA estimation given by HARK is exactly the center point over
the x axis of the Kinect as it is shown in Tab. 2. Since Kinect microphones are
all positioned in a line, DOAs can only be estimated in the plane xz as a rotation
over the y axis. Real tests code was implemented in C++ under ROS.

Fig. 5. Kinect sensors - Microphones (A-D) and RGB-camera - positions in 3D. Kinect
RGB Reference System is shown with red arrows. The black dashed line represents the
center of the Kinect with respect to the x.

Table 2. Kinect sensors - Microphones (A-D) and RGB-camera - positions over x axis

Mic A [m] RGB Sensor [m] Center [m] Mic B [m] Mic C [m] Mic D [m]

-0.1150 -0.0140 0 0.0350 0.0750 0.1150

The real test consisted in setting three Kinects in a line with the positions
and orientations shown in Tab. 3 and clapping hands in different positions. A
total of twenty different positions with rx ∈ [−1, 1], ry ∈ [0.5, 2] and a step of
0.5 [m] are visible in Fig. 8. We used σk = 0.1 ∀k ∈ [1, 3]. Another simulation
was done using the same parameters used in the real test in order to compare
the results.
1 http://www.xbox.com/kinect
2 http://winnie.kuis.kyoto-u.ac.jp/HARK
3 http://www.ros.org
4 https://github.com/iaslab-unipd/multisensor_calibration

http://www.xbox.com/kinect
http://winnie.kuis.kyoto-u.ac.jp/HARK
http://www.ros.org
https://github.com/iaslab-unipd/multisensor_calibration

482 R. Levorato and E. Pagello

Table 3. Sensors positions and orientations in real test

Sensor Type k sxk [m] syk [m] sok [rad]

Kinect 1 -1.05296 0.897504 0

Kinect 2 0 0 0

Kinect 3 0.0314011 0.0343866 0

The parameters for the G-DOA simulation are listed in Tab. 4 and the number
of samples collected for each test number is shown in Tab. 5.

Table 4. Simulation Parameters for Comparison with real test

range [m] prec [m] σk tsim Ns max

10 0.01 0.1 1000 3

Table 5. Number of samples for each real test position

Test Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of samples 25 19 23 24 19 25 29 23 37 31 40 29 34 36 43 54 38 54 59 53

5 Results

In Fig. 6.(a) we see that G-DOA performs better in mean than WLS-DOA ap-
proach and the error diminishes as the number of sensors grows in the environ-
ment. Furthermore, observing the difference of results of the two methods as the
number of the DOA sensors augments (in dashed blue), it is possible to see that
there is an almost constant difference that is about 10 cm. On the other hand,
the WLS-DOA variance performs better than G-DOA variance (Fig. 6.(b)). This
fact can be explained looking to Fig. 6.(c-d): G-DOA maximum DEs are higher
than WLS-DOA ones but its minimum DEs are lower. This means that G-DOA
has an higher accuracy but lower precision with respect to WLS-DOA.

Looking to real tests results and its related simulation results shown in Fig.
7.(a-b) it is possible to see that G-DOA performs always better than WLS-DOA
both in mean and in variance and that real results does not differ so much to
the ones of its relative simulation. This can be addressed to the fact that in this
specific case there are only three sensors and in the simulation results of Fig.
6.(a-d) G-DOA performed always better than WLS-DOA in the case Ns = 3. It
is evident that errors becomes bigger as the distance between the acoustic source
and the sensors grows both in real and in simulation. This is visible looking at
results of Test Numbers [1, 5, 11, 16, 20] in Fig. 7 and 8 that correspond to lateral
positions in G. This phenomenon reflects the fact that the distance between the
real DOA and a position q increases as q moves away from the vertex of a fixed
angle (Fig. 4.(a)). Finally, from the simulation and real test results in Fig. 7(a-b)
we can say that simulation was a reliable and useful tool that helped a lot in
investigating and stress the properties of both approaches.

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 483

4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of sensors Ns

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA
G-DOA

Difference

(a) Mean

4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

Number of sensors Ns

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA
G-DOA

(b) Variance

4 6 8 10 12 14 16 18 20
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

Number of sensorsNs

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA
G-DOA

(c) Min values

4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

Number of sensorsNs

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA
G-DOA

(d) Max values

Fig. 6. Simulation results of G-DOA vs. WLS-DOA

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

Test Number

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA Real Test
WLS-DOA Simulation
G-DOA Real Test
G-DOA Simulation

(a) Mean

0 2 4 6 8 10 12 14 16 18 20
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Test Number

D
ist

an
ce

E
rr

or
(D

E
)

[m
]

WLS-DOA Real Test
WLS-DOA Simulation
G-DOA Real Test
G-DOA Simulation

(b) Variance

Fig. 7. Real test results of G-DOA vs. WLS-DOA

484 R. Levorato and E. Pagello

Fig. 8. Real Tests results. WLD-DOA and G-DOA position estimations are in green
and red respectively. Source and sensors positions are in blue and red respectively. The
axis represents are consistent to the world and their scale is measured in meters.

Probabilistic 2D ASL Using Direction of Arrivals in Robot Sensor Networks 485

6 Conclusions and Future Work

In this paper we proposed a new method for Audio Source Localization (ASL)
using a Gaussian probability over DOA (G-DOA). Video calibration for micro-
phones arrays calibration is also a new ad hoc approach for calibrating micro-
phones arrays in a robotic environment. We tested it both in simulation and
real environments and showed that G-DOA performs better than WLS-DOA.
Further work will focus on speeding up the G-DOA algorithm that takes the
most of the time in the product of Eq. (5) in order to expand it to the 3D space.

Acknowledgements. This research has been supported by Telecom Italia
S.p.A. with the grant “Service Robotics”.

References

1. Wallach, H.: The role of head movements and vestibular and visual cues in sound
localization. Journal of Experimental Psychology 27, 339–368 (1940)

2. Griffin, D.R.: Listening in the dark: the acoustic orientation of bats and men. Yale
University Press (1958)

3. Omologo, M., De Mori, R.: Acoustic Transduction. In: Spoken Dialogue with Com-
puters. Academic Press (1998)

4. Valenzise, G., Gerosa, L., Tagliasacchi, M., Antonacci, E., Sarti, A.: Scream and
gunshot detection and localization for audio-surveillance systems. In: IEEE Con-
ference on Advanced Video and Signal Based Surveillance, AVSS 2007, pp. 21–26
(September 2007)

5. Pertilä, P.: Acoustic Source Localization in a Room Environment and at Moderate
Distances - [PhD Thesis]. Tampere University of Technology (2009)

6. Salvati, D.: Acoustic Source Localization Using Microphone Arrays - PhD Thesis.
Department of Mathematics and Computer Science - University of Udine (2012)

7. Aarabi, P.: The fusion of distributed microphone arrays for sound localization.
EURASIP Journal on Advances in Signal Processing (2003)

8. Di Biase, J.H., Silverman, H.F., Brandstein, M.: Robust localization in reverberant
rooms. In: Microphone Arrays: Signal Processing Techniques and Applications.
Springer (2001)

9. Ward, D.B., Lehmann, E.A., Williamson, R.C.: Particle filtering algorithms for
tracking an acoustic source in a reverberant environment. IEEE Transactions on
Speech and Audio Processing 11(6), 826–836

10. Hawkes, M., Nehorai, A.: Wideband source localization using a distributed acoustic
vector-sensor array. IEEE Trans. Sig. Proc. 51, 1479–1491 (2003)

11. Nakadai, K., Takahashi, T., Okuno, H.G., Nakajima, H., Hasegawa, Y., Tsujino,
H.: Design and implementation of robot audition system “hark” – open source
software for listening to three simultaneous speakers. Advanced Robotics 24(5-6),
739–761 (2010)

12. Basso, F., Levorato, R.: Online calibration for networks of cameras and depth
sensors. In: OMNIVIS: The 12th Workshop on Non-classical Cameras, Camera
Networks and Omnidirectional Vision - 2014 IEEE International Conference on
Robotics and Automation (ICRA 2014) (2014)

Control and Omni-directional Locomotion

of a Crawling Quadruped

Douwe Dresscher, Michiel van der Coelen, Jan Broenink,
and Stefano Stramigioli

Robotics and Mechatronics, Faculty EEMCS,
University of Twente, 7500 AE Enschede, Netherlands
D.Dresscher@ieee.org, J.F.Broenink@utwente.nl

Abstract. Traversing unstructured environments, (statically stable)
legged robots could be applied effectively but, they face two main prob-
lems: the high complexity of the system and the low speed of locomotion.
To address the complexity of the controller, we apply a control layer
that abstracts the legged robot to an omni-directional moving mass. In
this control scheme, we apply the gait generator as proposed by Es-
tremera and de Santos. We present theory to determine the theoretically
maximum achievable velocity of a quadruped and compare the (omni-
directional) maximum velocity of the selected gait generator with this
optimum to validate its performance. For our use case the theoretically
maximum achievable velocity is 1 ms−1; in simulations we achieve a ve-
locity for straight movement of maximum 0.75 ms−1. Normal turns with
a radius larger than 0.45 m are possible at a velocity of at least 0.1 ms−1;
the performance of crab turns is too unpredictable to be useful. The gait
generator as proposed by Estremera and de Santos is partially capable
of supporting omni-directional movement at satisfactory velocities.

1 Introduction

Traversing unstructured environments, (statically stable) legged robots can be
superior to their wheeled and tracked counterparts. However, so far only few
have made it to practical applications.

Two main problems that have prevented statically stable legged locomotion
from being applied effectively are: the high complexity of the system and the low
speed of locomotion [3,6].

To limit the mechanical complexity of the system, we assume a quadrupedal
robot: four is the minimum amount of legs required for statically stable locomo-
tion [4]. To address the complexity of the controller, we present a control scheme
where we apply separation of concerns to reduce the complexity. Our approach
is a port-based approach which provides a control layer that abstracts the legged
robot to an omni-directional moving mass (an admittance) as shown in Fig. 1.
By applying a force to the abstracted robot, the resulting velocity of the robot
can be controlled (for instance with an impedance controller [1,7]) as shown in

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 486–497, 2014.
c© Springer International Publishing Switzerland 2014

Control and Omni-directional Locomotion of a Crawling Quadruped 487

Mass

Impedance

Legged robot

controller

Fig. 1. Abstraction of a legged robot to an omni-directional moving mass that can
then, for instance, be controlled by an impedance controller

Fig. 1. This scheme requires a gait controller that ensures that the legs move to
support the motion of the robot.

The gait generator as proposed by Estremera and de Santos [2] is capable
of generating a gait based on the omni-directional velocity of the robot body
and is, for this reason, particularly suitable to be used in the proposed control
scheme.

In addition, we present theory to determine the theoretically maximum achiev-
able velocity of a quadruped and compare the speed performance of the selected
gait generator with this optimum to validate its performance.

This paper is structured as follows: in Sec. 2, the use case for supporting the
theory and evaluating the performance of the gait generator is described. In
Sec. 3, the proposed controller structure is presented and explained, including
a summary of the gait generator. In Sec. 4, we present theory on the maximum
velocity of a quadruped and treat how this applies to the use case. In Sec. 5,
the speed performance of the simulated gait generator is presented. In Sec. 6,
the simulation results are compared with the theoretical optima and in Sec. 7,
conclusions are drawn.

2 Use Case

In this work, we employ a use case to clarify theory and evaluate the speed
performance of the gait generator. The use case is a quadrupedal robot of which
a top view is shown in Fig. 2a and the legs have a configuration as shown in
Fig. 2b. The workspace of a leg in the x-y plane is called the reachable area (also
shown in Fig. 2a).

Throughout this work, we assume that the mass of the legs is negligible com-
pared to the mass of the base. To account for possibly destabilising effects caused
by unmodelled behaviour, a safety margin is used. This safety margin is shown
as a circle round the Center of Mass (CoM) in Fig. 2a.

For simplicity reasons, a rectangular motion profile is assumed for a step
from a starting foothold to a target foothold, P, as shown in Fig. 3. The ground

488 D. Dresscher et al.

1

2 3

leg 4

CoM

main body

x

y

z

reachable area

foot4pivot4,0

0.4m

0.4m

0.4m
0.1m

135◦

(a) A top-down perspective of the robot-
model. pivot4,0 is where leg 4 with a setup
shown in Fig. 2b is connected to the main
body. CoM refers to the center of mass of
the robot.

z

x

y

z
y

y

pivot#,0 pivot#,1

pivot#,2

foot#

leg #

(b) The leg-setup of the provided robot-
model. There are three degrees of free-
dom. n denotes the leg-number [1..4].

Fig. 2. The robot model

starting foothold target foothold

V1

V2

V3

ground

ground clearance

z

0

1 2

P

Fig. 3. A step profile. A foot is lifted from point 0 to point 1 with speed V1. The speed
between point 1 and 2 is V2. The landing from point 2 to the final foothold P is done
at speed V3.

clearance is assumed to be 0.1m and the velocity at which a leg moves (V1=V2=
V3 in Fig. 3) 5 ms−1.

3 Controller Structure: Separation of Concerns

As stated in Sec. 1, we use our controller structure to create a layer that abstracts
the legged robot to an omni-directional moving mass. To achieve this several
facilities are required as is also shown in Fig. 4:

1. The force that has to be exerted on the robot body needs to be translated
to forces that are to be exerted by the legs. (Generalised inverse Jacobian
relations)

Control and Omni-directional Locomotion of a Crawling Quadruped 489

2. A controller to control the feet over a step trajectory when required (Feet
controllers)

3. The step trajectory needs to be generated (Feet trajectory generators)
4. The legs need to be moved such that the movement of the robot body is

supported. (Gait generator)
5. Forces to be exerted by the legs need to be translated to forces to be exterted

in the joints (Jacobian relations)

Jacobian

4. Gait

Robot

+
+

relations

Joint

Joint

2. Feet
controllers

Feet

Feet

3. Feet
trajectory
generators

inverse
Jacobian
relations

Generalised

Robot

Robot

torques

velocities

5.forces

velocities

generator 1.actuation
force

velocity
Abstraction
boundary

Fig. 4. The abstraction layer with its components

In this work, we assume the feet controllers and feet trajectory generators to
be straightforward, and thus we focus on the gait generator.

3.1 Gait Generator

In this Section, we give a short summary of the gait generator.

Two Basic Notions. Two basic notions are used in the summary of the gait
generator: the “Kinematic Margin” and the “Transfer Distance”.

The Kinematic margin (KM) refers to the distance the CoM can travel in its
forward direction until a specific leg is at its physical limit [5]. It is a scalar value
that can be visually represented by a line with a length of KM in the direction
opposite to the CoM movement and starting at the foot as is shown in Fig. 5.
During movement of the CoM, the foot of a leg is assumed to stay in the same
location while the rest of the leg moves with the CoM.

The kinematic margin is dependent on the reachable area that is defined by
the limits of the leg. The reachable area for the robot model as described in
Sec. 2 is shown in Fig. 5. The CoM moves in the direction of the CoM velocity,

490 D. Dresscher et al.

which causes the reachable area to translate in the same way. After KM meters,
the foot will transition out of the reachable area. A minimum value for KM,
KMmin, is used to denote the smallest kinematic margin among all legs.

pivotn,0

x

y

z

COM velocity

KM

footn

KM

Fig. 5. Visualization of the Kinematic margin (KM)

The Transfer Distance, TD, is the distance that the CoM will travel during
the transfer of the foot to P [2]. The minimum value for TD, TDmin, is the
distance that the CoM will travel when the foot is only moved up and down
(also see Fig. 3).

State Machine. The gait generator is built around a state machine as shown
in Fig. 6 where, during normal operation, three states (S0, wait; S1, Calculate
and; S2, Transfer) are executed sequentially based on three conditions (T01, The
next leg can be lifted; T12, Foothold selection successful and; T20, leg transfer
complete).

S1S0

S2

S

T12T20

T01TS0

Inputs Outputs

Gait generator

T10

Fig. 6. The main gait-generator state-machine

The output of the gait generator is a leg index for a leg that should be moved
and the position where the foot should be placed, the inputs are:

– the location of all feet.
– the location and velocity of the center of mass projection on the xy-plane.

Control and Omni-directional Locomotion of a Crawling Quadruped 491

– an indication that the current transfer of a leg has finished.

The three states - S0, S1 and S2 - will now be discussed in detail.

State 0: Wait This is the starting state for the state-machine. All feet are on
the ground. A check is made for the ability to lift a leg with stability. A leg is
selected based on an order of leg preference:

Order of leg preference =
[
Priority leg, lowest KM, . . . , highest KM

]
Here, the first entry is a preferred leg to be transferred that has been determined
in the previous state 1. After this, all legs are prioritised based on their kinematic
margin: the leg that will reach its kinematic limit sooner has a higher priority.

When the leg preference is determined, the highest priority leg is tested for
its ability to be lifted based on the following rule: When the leg is lifted, the
center of mass needs to be supported by the other three legs.

When the velocity and forward direction of the vehicle are constant, it is
possible to generate a wave gait. A wave gait has superior stability properties
[4] and is therefore desirable. In the case of a constant velocity and forward
direction of the vehicle, only the highest priority leg is considered for lifting to
enforce a wave gait. If the velocity has changes, the other legs are considered for
lifting in sequence of priority.

The selected leg is named ”LT” (Leg to be Transferred). When LT can be
lifted with stability - T01 - the state machine transitions to state 1.

State 1: Calculate In this state the next position for the leg to be transferred
is calculated. To find a suitable foothold position, several areas are iteratively
combined. These areas are named O, D, A, B and C and they are combined
(Fig. 7) as follows: First, area O and D are combined.

search area

example area X example area Y X + Y Combined area

Fig. 7. An example of combining two limiting areas for the footholds named X and Y.
The resulting Combined area on the far right shows the collection of all footholds that
appear in X as well as Y.

Area O makes sure that placing the leg LT at P does not restrict the next
step to be smaller than the current. Area O also takes care that the foothold P
is in the workspace of the leg. It can be interpreted as: After placing the foot of
LT at P, it should have a KM which is at least TP higher than KMmin. Area D

492 D. Dresscher et al.

can be interpreted as: the footholds that can be reached while the CoM is still
in the current support pattern. This condition has to be met in order for the
robot to remain stable during the transition of the leg.

If this results in valid footholds, an NLT (Next Leg to be Transferred) is
selected based on the following priority:

NLT preference =
[
Next leg in wave gait, lowest KM, . . . , highest KM

]
and areas A, B and C are applied. Area A is used to evaluate if leg NLT can
be moved if leg LT is placed at position P. Area A can be interpreted as: The
point where LT can be placed such that the CoM can travel at least TDmin in
distance before it either exits the support patters or leg LT reaches its kinematic
limit. Area B can be interpreted as follows: it consists of the points P, where can
LT can be placed such that the next leg to be transferred, NLT, can be lifted
before any of the legs reach their kinematic limit. When a wave-gait leg order
is used, knowledge is available about the next three (and further) legs that will
be lifted. Area C consist of the points where LT can be placed such that there
is enough space for three following feet to be moved.

If this does not result in valid footholds, the next leg in the priority sequence
is selected as NLT and the step is repeated. If it does result in valid footholds,
the algorithm can proceed.

Often, more than one suitable foothold is available after combining the areas.
To select a foothold from this set of suitable footholds, a criterion can be used.
For this work, we use a simple criterion namely: The maximum kinematic margin
of the leg (Fig. 8).

x

y

z

COM velocity

current foot position

Valid target footholds

Highest KM target

Fig. 8. Foothold selection in the gait generator. The foothold with the highest KM is
selected.

If state 1 successfully selects a suitable foothold - T12 -, the state machine
goes to state 2. In the case that state 1 fails to find a suitable foothold - T10 - ,
the state machine returns to state 0.

State 2: Transfer In this state the leg is moved to the target position and the
state machine wait until the transition is completed. When the transition is
completed, the state machine goes to state 0.

Control and Omni-directional Locomotion of a Crawling Quadruped 493

4 Locomotion Speed

In this section, we treat a theory on the theoretically maximum achievable loco-
motion speed of a crawling quadruped (straight movement only). For this theory,
we assume that a crawl gait is used (LF-RR-RF-LR, [4]).

Ideally, a quadruped is designed such that the rear leg that is maximally
moved forward can reach the same position as the corresponding front leg that
is maximally moved backward. When this is the case, we get consecutive support
patterns as shown in Fig. 9. In this image, l is the maximum step size of a leg.

l l

LR LF

RFRR

LR LF

RFRR

lLR LF

RFRR

lLR LF

RFRR l

LR LF

RFRR

0.5l
0.5l

1. 2. 3. 4. 1.

Fig. 9. Consecutive support patterns for a crawl gait when a rear leg, maximally
moved forward, can reach a front leg, maximally moved backward. The black filled
circles indicate support legs and the white filled circles indicate the leg that is going
to make the next step. The black triangles indicate the current support pattern.

Assuming that the CoM travels through the center of the support patterns,
in a straight line, two legs have to be moved while the CoM travels 0.5l meters.
This results in a maximum velocity of the CoM of:

Vmax =
l

4 ∗ tstep (1)

Where Vmax is the maximum velocity of the CoM, l is the maximum step size
and tstep is the time it takes to make a step of length l.

It is important to realise that the body of the robot moves when a step is
made. For this reason, the actual size of a step is equal to the distance that the
body travelled plus the distance that the foot travelled with respect to the body:

l = lstep + tstep ∗ Vmax (2)

such that, the actual maximum CoM velocity becomes:

Vmax =
lstep

3 ∗ tstep (3)

In reality, a rear leg that is maximally moved forward often can not reach the
same position as the corresponding front leg that is maximally moved backward.
This is also the case for our use case. This results in consecutive support patterns
as shown in Fig. 10. In this image, l is the maximum step size of a leg, d is the

494 D. Dresscher et al.

l l

LR LF

RFRR

LR LF

RFRR

lLR LF

RFRR

lLR LF

RFRR l

LR LF

RFRR

a

1. 2. 3. 4. 1.

d

Fig. 10. Consecutive support patterns for a crawl gait when a rear leg, maximally
moved forward, can not reach a front leg, maximally moved backward, by a distance d.
The black filled circles indicate support legs and the white filled circles indicate the leg
that is going to make the next step. The black triangles indicate the current support
pattern.

distance between a rear leg’s foremost position and a front leg’s rearmost position
and a is the distance that the CoM can travel while two legs are moved.

The distance a is shorter than 0.5 ∗ l, namely: a = 0.5 ∗ (l − d). This results
in a maximum velocity of:

Vmax =
l − a

4 ∗ tstep =
lstep − a

3 ∗ tstep (4)

For our use case we have:

– lstep = 0.51 m
– tstep = 0.14 s
– a = 0.08 m

such that we can theoretically achieve a locomotion velocity of:

Vmax =
lstep − a

3 ∗ tstep =
0.51− 0.08

3 ∗ 0.14 = 1 ms−1 (5)

5 Simulation Results

In this section, we present the simulation results of the locomotion velocity with
the simulated gait generator. To simulate the gait generator, a simplified robot
model and controller structure are assumed. First of all, we assume that the
robot is moving with a fixed velocity and that the “feet trajectory generators”
and “Feet controllers” control the feet to move from their starting position to
a desired foothold P in tstep = (lstep + 0.2)/5 (see also Sec. 2) where lstep is
the size of the step. With these assumptions, the controlled system reduces to
Fig. 11. To test the maximum velocity of the gait generator for omni-directional
movement, simulation runs of 25 s were done to verify stability of the gait for:

1. Straight movement with various crab angles (Fig. 12a).
2. Turning movement, normal and crab-like with various turning radii (Fig.

12b and Fig. 12c).

Control and Omni-directional Locomotion of a Crawling Quadruped 495

Gait generator Robot model

Robot velocity

Fig. 11. An overview of the simplified system

v

crab angle

(a) Straight motion

Turning
radius

(b) Normal curve

Turning
radius

(c) Crab-like curve

Fig. 12. Motion types that are used to test the maximum velocity of the gait generator
for omni-directional movement

0 0.4 0.8

Forward direction

(a) Straight motion under
various crab angles

0

0.05

0.1

0.15

0.2

0.25

0.3

0.5 1 1.5 2

V
el
o
ci
ty
,
m
s−

1

Turn radius, m

(b) Normal turn with var-
ious radii.

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16

0.5 1 1.5 2

V
el
o
ci
ty
,
m
s−

1

Turn radius, m

(c) Crab turn with various
radii.

Fig. 13. Simulation results with wave gait (blue) and with random gait (red)

The simulation results are shown in Fig. 13.
Since the simulation does not include any dynamic effects, no safety margin

was used on the CoM location (Sec. 2). Doing so is expected to give the best
performance: it is expected that including a safety margin causes a more conser-
vative, and thus slower, gait to be generated. Furthermore, the starting position
of the CoM in the support patters was moved 0.1 m to the rear as shown in
Fig. 14. This is expected to cause the direction-dependent performance in the
velocity of the gait.

496 D. Dresscher et al.

0.1 m

Fig. 14. In the simulations, the CoM was placed 0.1m to the rear with respect to the
support patterns (initial condition)

6 Evaluation

In theory, we showed that we could achieve a velocity of 1 ms−1 for straight mo-
tion in the forward direction, with a wave gait. In simulations we have achieved
velocities up to 0.75 ms−1 (Fig. 13a) with a wave gait, but not in the forward di-
rection. In the forward direction we achieved 0.4 ms−1 (Fig. 13a). These results
are in the same range as the results of Estremera and de Santos [2] for straight
motion and 40% and 75%, respectively of the theoretically maximum achievable
velocity.

It is shown in the simulations that, for straight motion, the overall velocity
with a wave gait is significantly better than with a random gait, the latter
showing a poor performance.

For strait motion we see a dependency on the crab angle, as expected. The
high maximum velocity when moving at a crab angle of π/4 is curious. We
noticed that the initial conditions have a significant effect on the ability of the
gait generator to start a gait; we expect that this high velocity is due to a “lucky
coincidence” of initial conditions.

The simulations show stable results for making a normal turn at a velocity of
at least 0.1ms−1 at a radius of more than 0.45m (Fig. 13b). The performance for
crab turns is too unpredictable to be useful (Fig. 13c). For turns, the performance
of the wave gait is significantly worse than the random gait.

7 Conclusions

In this work, we have presented a controller structure in which we applied sep-
aration of concerns to address the complexity. In this controller we apply the
gait generator of Estremera and de Santos [2]. We have presented theory on the
maximum achievable velocity with a statically stable crawl gait and tested the
maximum velocity of the gait generator for omni-directional movement resulting
in 75% of the theoretical maximum.

The performance of the gait generator is strongly dependent on the crab angle.
The highest performance is achieved at a crab angle of π/4.

Control and Omni-directional Locomotion of a Crawling Quadruped 497

Normal turns at low velocities are possible but crab turns show poor
performance.

The gait generator is partially capable of supporting omni-directional move-
ment at satisfying velocities.

We want to apply the results of this paper in the control strategy by restricting
the motion of the robot to velocities where the gait generator has a good per-
formance. Furthermore, future work includes synthesis of the other components
in the control strategy and experiments on a quadruped setup.

References

1. Arevalo, J.C., Garcia, E.: Impedance control for legged robots: An insight into the
concepts involved (2012)

2. Estremera, J., de Santos, P.G.: Generating continuous free crab gaits for quadruped
robots on irregular terrain. IEEE Transactions on Robotics 21(6), 1067–1076 (2005)

3. Hardarson, F.: Locomotion for difficult terrain. Tech. rep., Royal Institute of Tech-
nology, Stockholm (1997)

4. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits.
Mathematical Biosciences 3, 331–351 (1968)

5. McGhee, R.B., Iswandhi, G.I.: Adaptive locomotion of a multilegged robot over
rough terrain. IEEE Transactions on Systems, Man and Cybernetics 9(4), 176–182
(1979)

6. Seeni, A., Schafer, B., Rebe, B.: Robot Mobility Concepts for Extraterrestrial Sur-
face Exploration. Tech. rep., Institue of Robotics and Mechatronics, International
space university, Wesseling, Illkirch Graffenstaden (2008)

7. Yoneda, K., Iiyama, H., Hirose, S.: Sky-hook suspension control of a quadruped
walking vehicle. In: Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, pp. 999–1004. IEEE (1994)

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 498–508, 2014.
© Springer International Publishing Switzerland 2014

Embodiment Sensing for Self-generated Zigzag Turning
Algorithm Using Vision-Based Plume Diffusion

Jouh Yeong Chew, Takumi Yoshihara, and Daisuke Kurabayashi

Department of Mechanical and Control Engineering, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, 152-8552 Tokyo, Japan

{jychew,y.takumi,dkura}@irs.ctrl.titech.ac.jp

Abstract. Biomimetic Chemical Plume Tracing (CPT) problem is complex be-
cause it couples nonlinearity of biological systems with uncertainty of
time-varying plume diffusion. A vision-based simulator is proposed to decouple
these difficulties to facilitate multiple runs under controlled environment. This
enables identification of efficient biological CPT algorithm. The simulator is
used to simulate Embodiment Sensing (ES), i.e. sensing using physical attributes
of animals. Wings and antennae of silk moth are used for ES, and evaluated for
CPT using vision-based simulator. Results suggest (1) vision-based plume field
mimics actual plume diffusion in terms intermittency, and (2) similar perfor-
mance as that for surge-cast algorithm. The contribution is two-fold, (1)
vision-based plume diffusion simulator decouples uncertainty of plume diffusion
from nonlinearity of biological system to facilitate biomimetic CPT study, and
(2) feasibility of using physical attributes of silk moth to achieve good CPT
performance.

Keywords: Embodiment sensing, Bilateral sensing, Chemical plume tracing,
Surge-cast, Vision-based plume diffusion.

1 Introduction

Efficient Chemical Plume Tracing (CPT) is important in search and rescue, security
and safety operations by tracing and locating the source [1,2]. Research is ongoing
with numerous methods being proposed for CPT. Amongst these, are methods using
gas sensor networks [3], distributed robotics [4], fluid dynamics [5], and biomimetic
algorithms [6,7,8,9,10,11,12]. CPT solutions based on biological systems are
well-received because animals exhibit excellent olfaction as natural instinct. For ex-
ample, foraging by ants [6] and mating by silk moths [7,8],[12,13].

However, most of these methods achieved limited performance. Previous studies
reported the mediocre efficiency of the chemotaxis algorithm in identifying the plume
source [10], and a separate study suggested the need to improve time and distance to
target [13]. These limitations are reasonable due to the complex and intermittent nature
of plume diffusion [11],[14]. In addition, there are limited details on how animals
achieve efficient CPT in turbulent and time-varying environment because of the non-
linearity of biological systems [12].

 Embodiment Sensing for Self-generated Zigzag Turning Algorithm 499

Thus, it seems reasonable to solve the two difficulties independently. However,
plume diffusion models are coupled with CPT algorithm in some of the previous stu-
dies, such as in infotaxis [9]. Other studies model the randomness of plume diffusion
and use it for comparing different CPT algorithms [15]. This restricts performance in
actual plume field, which is time-varying and provides ambiguity in identifying bio-
logical CPT algorithm, raising doubts on smooth shifting to real applications. This is
one of the reasons some studies use experimental robotics to evaluate CPT algorithms
[11],[16]. However, experimental robotics may not be the best choice when consider-
ing time and cost because large amount of data is required for correctly evaluating
biological CPT behavior in a controlled environment.

A method to (1) decouple nonlinearity of biological systems from uncertainty of
plume diffusion, and (2) facilitate multiple runs under controlled environment is de-
sired to correctly identify the biological CPT algorithm. This paper proposes a novel
method to achieve these functionalities. Biological CPT algorithm is evaluated through
simulation using actual plume diffusion in laminar flow, which is recorded from a wind
tunnel and processed using simple image processing methods to retain mass concen-
tration gradient of its diffused particles. The simulator is used to realize Embodiment
Sensing (ES) for silk moth’s CPT, where its antennae and wings are used for detecting
chemical particles. This is unlike casting, surge-cast and surge-spiral algorithms
[11],[16] that use corrective algorithms with wind direction sensor.

There are numerous contributions from this proposal: (1) vision processing methods
are used to retain intermittent diffusion of actual plume, which facilitates independent
evaluation of biological CPT behavior, (2) it is possible to conduct multiple trials under
similar environment with minimal cost and time compared to experimental robotics, (3)
the difference in between simulation and real time experiment is minimized, allowing
smooth shifting from simulations to real time applications, and (4) it is feasible to use
ES to realize good result that is similar to previous algorithms.

2 Time-Variant Plume Diffusion Based on Image Subtraction

Study on CPT is not easy because its navigation path is dependent on intermittent [9]
and highly time-variant [15] plume diffusion, which indirectly represents its target. The
localized and random behavior of the plume presents additional uncertainty in the effort
to decipher biological CPT algorithm. In this paper, vision processing method is used to
obtain actual plume diffusion for the simulation platform to independently evaluate
biological CPT behavior of the silk moth. This method reduces difference between
actual and simulated plume and allows better observation on biological CPT behavior.

However, vision processing to detect plume diffusion is also not easy. This is pri-
marily because of the translucent nature of plume. Although non-translucent plume can
be used to represent plume diffusion, it is neither a trivial task to obtain infinitesimal
pixels that represent mass concentration of diffused plume particles in the time domain.
In addition, use of filters and morphological operations, has to be careful selected to
retain these values. Thus, image subtraction method is used to extract actual plume
diffusion. In short, it serves as foreground detector to detect time-variant plume and is
advantageous compared to other foreground detectors because it extracts translucent

500 J.Y. Chew, T. Yoshihara, and D. Kurabayashi

plume and its infinitesimal pixels using minimum filters. This is feasible because the
camera is stationary in a controlled environment, where only the plume travels.

Results are obtained by processing plume diffusion video offline. The primary reason
is to use the same diffusion to investigate different CPT state variables of the moth. It is
possible to conduct the procedure online because a region of interest (ROI) can be used
to reduce the area for processing. Figure 1(a) shows one of the frames obtained from the
video before the plume starts, i.e. t = 0 [s]. The resolution is 720x1280 pixels with an
ROI of 200x800 pixels. Figure 1(b) shows experimental setup of the simple wind tunnel.
Downwind speed in the x-axis is controlled by adjusting speed of the ventilator fan.
Stimulus air inlet is controlled by a solenoid valve using parameters in Fig.1(c), i.e.
activation duration d, and activation frequency f. An overhead camera captures the
environment of the wind tunnel. Both are connected to a computer.

Plume source is fixed at ROI(100,1) and video sampling rate is 30 [fps], yielding dt
= 1/30 [s] between each frame. The other parameters are (a) stimulus frequency, f = 2
[Hz], (b) ratio of pixel to millimeter, scale = 1, (c) u = 0.625 [m/s], and the plume is
produced by titanium tetrachloride (TiCl4) because of its opaqueness which enables
visible plume diffusion. Algorithm 1 is used to process frames recorded from the setup
to represent time-variant plume diffusion at ith time-step as DFi in the simulator. Bas-
ically, this section minimizes plume diffusion difference between simulator and actual
environment. Next, it is feasible to decipher biological CPT algorithm.

Algorithm 1. Extraction of plume diffusion field based on image subtraction method

1. Mass concentration of diffused plume particles at ith time step is represented by
8-bit unsigned integers of grayscale image pixels with resolution (jxk)

2. Region where plume travels is an ROI measuring (pxq), where and
3. g frames at t = 0 [s] are averaged as the reference frame, 1 ∑
4. Frame at ith time step is grabbed from the video and represented as fi
5. Corresponding plume diffusion at ith time step is given by
6. “Open” morphological operation removes salt and pepper noise in . The set

operation [17], B is the disk-shaped structuring element.

3 Embodiment Sensing for CPT

Male silk moth exhibits efficient CPT for mating and thus, is a suitable subject of study.
It does not exhibit voluntary motion and is elicited by pheromone that is released by
conspecific female. This provides clear relationship between olfactory input and be-
havioral output [12]. In previous studies [11],[15], experiments were conducted in wind
tunnel to evaluate the performance of different CPT algorithms, i.e. surge-cast,
surge-spiral and casting. Wind direction sensor was used to check the direction of wind
when the plume is lost. However, from the perspective of embodiment intelligence, it is
reasonable to use silk moth’s physical features in Fig.1(d) to achieve efficient CPT.
There are two distinctive features, i.e. antennae and wings, and their roles on CPT
performance are evaluated using the simulator. This argument is further strengthen by
the recent study [7], which suggested moth uses bilateral olfaction for navigation.

 Embodiment Sensing for Self-generated Zigzag Turning Algorithm 501

Fig. 1. (a) Video frame at t = 0 [s] (not to scale), (b) experimental setup of the wind tunnel, (c)
parameters of stimulus input, and (d) distinctive features of silk moth

A separate study suggested the pair of wings is used for “sniffing” [18]. In the next
subsections, these features are added to the simulation model for further investigation.

3.1 Antennae for Bilateral Sensing

This section proposes CPT algorithm using bilateral sensing. Binary plume information
is used to obtain preliminary observation of its role. It is possible to extend the idea for
gradient based bilateral sensing because plume diffusion field processed by Algorithm
1, represents particle mass concentration as 8-bit unsigned integers of each pixel for
future work. The Self-generated Zigzag Turning (SZT) CPT behavior [8], which con-
sists of sequential surge-zigzag-loop locomotion is slightly modified in this study. A
small change in heading angle is added during surge and the modified SZT is referred
to as MSZT in this paper. Figure 2 illustrates different cases of stimulation, where (a)
and (c) represents states when either left or right antenna is stimulated. Stimulation of
both antennae is represented by (b). This idea is supported by [12], where an inverse
model is used to detect stimulus input timing based on locomotion data. The surge
motion is trained using locomotion data with angular velocity smaller than 0.20 [rad/s].
The system achieved estimation accuracy higher than 70% that justifies the proposal.

3.2 Wings for “Sniffing”

It is worthy to note silk moths flap their wings and yet, they do not fly when stimulated.
[18] suggested that this behavior is part of CPT sensing, where flapping wings create
air velocity that is approximately 15 times higher than its walking speed to carry phe-
romone from anterior to posterior. The decreasing pheromone interception rate due to
higher air velocity, is overwhelmed by higher number of pheromone carried to anten-
nae per unit time. This enables moth to sample a larger area than the width of its an-
tennae. This study considers the “sniffing” effect and proposes stimulation method as
in Fig.3. The moth is stimulated by left and right ROI, which together, forms a

502 J.Y. Chew, T. Yosh

cone-shaped region in front
to create the “sniffing” effec
is the width of the antenna
information to obtain prelim
future work.

Fig. 2. Bilateral sensing for
realize ES

4 Simulation and

Subsection 4.1 discusses th
and the physical agent for e

4.1 Modified Self-gener

The proposed algorithm com
agent is elicited by pheromo
depending on bilateral stim
0.5 [s], followed by zigzag
1.9 and 2.1 [s], respectively
If the moth is elicited durin
uses no additional sensor s
rithms to reacquire the plu
silk moth’s embodiment int
focuses on plume tracking,
This also allows comparison

4.2 Simulation Platform

Simulation of ES with MSZ
section. Simulation environ
posed on navigation field F
of plume image. Plume sou
and travels downwind to th
ever, plume diffusion over
[Hz], is included for illustr
note, (1) decreasing gradien

hihara, and D. Kurabayashi

t of the antennae, covering area larger than the one in Fi
ct. The angle ϕ represents diverging angle of the cone an
ae. Activation of each region is represented by its bin
minary results and gradient-based activation is feasible

r surge motion to Fig. 3. ROI for “sniffing”

Experimental Design

e MSZT algorithm. Settings of the simulation environm
experiment, is discussed in 4.2 and 4.3, respectively.

rated Zigzag Turning Algorithm

mbines ES with MSZT behavior. When ROI of the phys
one particles as in Fig.3, it moves straight with the ψ an

mulation shown in Fig.2. As in Fig.4, this state continues
g turning, where the first, second and third turn takes
y. The final state loops for 3600 until a new source is fou
ng this sequence, it will reset the behavior. The algorit
such as the wind direction sensor, and no corrective al
ume. The primary objective is to investigate feasibility
telligence for sensing and CPT. At this moment, CPT stu
, notwithstanding source declaration and plume searchi
n with [11] that has the similar focus.

m

ZT algorithm in vision-based plume field is discussed in
nment is illustrated in Fig.5. At ith time step, DFi is sup
. Origin starts at top left corner, based on coordinate syst

urce is fixed at F(200,200), where F(200,200) = ROI(100
he right. Figure 5 is the simulation frame at t = 0 [s]. Ho

n time steps, i.e. ∑ for n = 1000 [s] and f
ration and elaboration. Based on S in Fig.5, it is worthy
nt, (2) intermittent plume, at downwind position, which

ig.2
nd L
nary

for

ment

ical
ngle,
 for
1.2,

und.
thm
lgo-
y of
udy
ing.

this
per-
tem
0,1)
ow-
= 1
y to
h is

 Embodimen

consistent with the descript
downwind position that is
design of the wind tunnel,
sion-based plume with the a

Initial agent position is F
cuses on plume tracking beh
high variance which could a
clear results for ES in visio
navigates close to the plum
declaration, integrity of sim
algorithm is simulated in th
created using different f an
Thus, it is possible to ascert
when f is low or when ther
Results for ψ 5.0 ° , L

Fig. 4. MSZT

4.3 Design of Physical A

Simulation results are verifi
in the same wind tunnel. CP
ethanol (C2H6O) is used as
Catalytic Combustion gas s
tured and sold by New Co
responds to the CPT behavi
“sniffing” is shown in Fig
Sensors are placed in two in
is drawn from robot’s anter
[18]. Higher velocity carrie
effect is similar to enlarged

5 Results and Disc

Section 5.1 discusses valid
representing actual plume d
of proposed algorithm. 5.3 d

nt Sensing for Self-generated Zigzag Turning Algorithm

tion by previous studies [11],[14]. There was turbulenc
close to the outlet. This is reasonable due to the sim
and is acceptable because it reflects the similarity of

actual plume diffusion.
F(200,1000), which is in the plume because this study
havior. At this stage, plume search is excluded to elimin

arise from randomized search techniques [11]. This provi
on-based plume. Source declaration is done when the ag
me source, i.e. within radius r. Despite using ideal sou
mulation results for plume tracking is not affected. MS
hree different vision-based plume diffusion fields. They
nd determines amount of stimulus in the navigation p
tain the performance of ES in challenging environments,
re is less amount of stimulus on the way to plume sour
L=20.0 [mm], and ϕ 45.0 ° , are shown in section 5.

Fig. 5. Simulation environment

Agent

ied by localization of physical agent using same parame
PT robot is modified from e-puck EPFL education robot
s chemical source. Figure 6(a) shows the robot with t
sensors, which are activated by C2H6O. They are manuf
osmos Electric Co. Ltd. The differential-driven robot c
ior of the silk moth. Design to enable bilateral sensing

g.6(b), which corresponds to highlighted area in Fig.6
ndividual tubes with ventilation fans at the end of each.
rior to posterior at higher velocity, which is consistent w
es more chemical particles per unit time to the sensors. T
ROI in Fig.3 and localization results are shown in sectio

cussion

dity of vision-based plume diffusion and its efficiency
diffusion. 5.2 focuses on simulation and experiment res
discusses results in 5.2 compared to previous study.

503

e at
mple
f vi-

fo-
nate
ides
gent
urce
SZT

are
ath.
 i.e.
rce.
.

eters
and
two
fac-
cor-
and

6(a).
Air

with
This
n 5.

for
ults

504 J.Y. Chew, T. Yoshihara, and D. Kurabayashi

Fig. 6. (a) CPT robot, and (b) design for ES

5.1 Vision-Based Plume Diffusion

These parameters are used to obtain plume diffusion from wind tunnel. Original reso-
lution, i.e. (jxk) = (720x1280), is reduced to (pxq) = (200x800), and g = 10. Figure 7(a)
shows grayscale image after step 1-2 of Algorithm 1 prior to stimulus input, i.e. f0. (b)
shows f20 for f =2 [Hz]. Two localized plumes are highlighted. One is concentrated near
the source and the other is dispersed in the middle. (c) and (d) are the same except that
the former is in grayscale and the latter in color. (c) shows pixels with infinitesimal
values in highlighted area. These pixels are shown as contour plot in (d) and compared
to (b). Both (b) and (d) seem to correspond to each other, implying infinitesimal pixels
belong to diffused plume.

Figure 8(a) shows ∑ for n = 60, which suggests DFi consists of salt and
pepper noise. (b) shows image after “open” operation. Despite significantly better
results, there are some white dots. This is acceptable to avoid eroding infinitesimal
pixels that represent mass concentration of diffused plume particles. Results suggest
plume diffusion can be represented by 8-bit unsigned integers. This representation is
significant for infinitesimal mass concentration when plume diffuses and its translu-
cency increases in time domain, as in Fig.7. In short, it is feasible to use Algorithm 1 to
obtain time-varying plume diffusion that is almost similar to captured image for si-
mulating biological CPT behavior. This reduces uncertainty of time-varying plume
diffusion and allows smooth shifting from simulation to real applications.

5.2 Simulation and Experiment of Single Source Localization

This subsection shows simulation and experiment results for single source localization
using proposed algorithm. Agent’s velocity is fixed at 30 [mm/s] and parameters in
section 4.2 are used to navigate to the source, where r = 20 [mm]. Three varying vi-
sion-based plume diffusion environments are used, i.e. continuous stimulus input, f = 2
[Hz], and f = 1 [Hz]. This evaluates performance of proposed algorithm in challenging
environments when amount of stimulus in navigation path varies with f. Five trials are
run for each condition for simulations and experiments. Results are summarized in
Fig.9.

The evaluation parameters are, (1) success rate, (2) time from initial position to
plume source T, and (3) distance overhead D, which is ratio of traveled distance over
upwind distance [11]. Evaluation of D reflects CPT efficiency and allows comparison
with previous study. When the agent did not successfully reach the plume source within
1000 [s], T and D are N/A. Fig.9(a) shows success rate of simulation and experiment

 Embodiment Sensing for Self-generated Zigzag Turning Algorithm 505

Fig. 7. (a) ROI of f0 prior to stimulus input, (b) f20, and DF20 for (c) grayscale (d) color plot

Fig. 8. S when n = 60, (a) no morphological operation, and (b) with “open” operation

results. Similarly, T and D is given in (b) and (c), respectively. Each cluster of bars
consists of three components, which represent results for different stimulus input
environment, i.e. continuous, 2 [Hz], and 1 [Hz].

Success rate, T, and D for different stimulus input environment show similar pattern,
where it performs the best for continuous, and followed by 2 [Hz] and 1 [Hz]. This
pattern is reasonable, considering amount of stimulus present in the wind tunnel. As in
the case of 1 [Hz], which is considered the extreme case in this paper, lower amount of
stimulus in the environment increases probability of agent losing the plume. It is worth
noting that the proposed algorithm does not consider any corrective algorithm and
additional sensors to reacquire the plume because the objective is to evaluate plume
tracking ability of ES. Despite that, performance for continuous and 2 [Hz] in both
simulations and experiments is good. Next, this result is compared with those in pre-
vious study, i.e. surge-cast algorithm, to evaluate the feasibility of CPT based on ES.

5.3 Discussion

Section 5.1 suggests vision-based plume diffusion from Algorithm 1 mimics actual
diffusion in terms of gradient and plume intermittency at downwind position. This is
consistent with previous studies [11],[14]. It is also able to detect infinitesimal pixels
that represent mass concentration of diffused plumes. Vision-based plume diffusion
model decouples nonlinearity of biological systems from uncertainty of plume diffu-
sion and facilitates multiple runs under controlled environment to identify effect of ES
for CPT. This minimizes uncertainty of plume diffusion compared to actual environ-
ment and allows smooth shifting from simulation to real application.

506 J.Y. Chew, T. Yoshihara, and D. Kurabayashi

Fig. 9. (a) Success rate, (b) T, (c) D, for simulations and experiments, and (d) Comparison of
proposed algorithm with surge-cast algorithm

It is worth looking into the cause of significant difference between simulation and
experiment, i.e. 60% against 0% in Fig.9(a). This is caused by downwind airflow
during localization experiment, which is not considered when modeling the “sniffing”
feature. If agent’s heading is in crosswind direction, chemical particles are carried by
stronger downwind airflow. However, if agent’s heading is in the upwind direction, it is
easier to draw in chemical particles, and ventilation effect is boosted by downwind
airflow that is in the same direction, thus increasing effectiveness of drawing in more
chemical particles. This is evident when T and D in Fig.9(b) and (c) shows only slightly
better performance for continuous compared to 2 [Hz] in experiments.

Comparison of proposed algorithm with previous CPT algorithms [11] is possible
using success rate and D. Localization results for surge-cast algorithm, which per-
formed the best in [11], is reproduced in Fig.9(d). Success rate on left axis is
represented by bars and D on right axis is represented by line. Cases E, F, and G are
results for surge-cast algorithm when agent travels different crosswind distance to
reacquire plume using wind direction sensor [11]. The last case represents experiment
result of using continuous stimulus input, as in Fig.9(a) to (c). This is similar to sti-
mulus input in [11].

Results suggest success rate of proposed algorithm is close to that of E and F. In
terms of D, proposed algorithm performed better. In general, results in Fig.9(d) suggest
similar performance when compared with surge-cast algorithm. However, it is worth
noting this is achieved using only ES with MSZT algorithm. There is no corrective

 Embodiment Sensing for Self-generated Zigzag Turning Algorithm 507

algorithm and wind direction sensor to reacquire the plume. Thus, preliminary results
of ES suggest its feasibility for improving CPT algorithms. In short, reliability of
vision-based plume diffusion model and its advantages is discussed in the first para-
graph of this subsection. Then, comparison is made to determine feasibility of ES for
CPT relative to previous algorithms.

6 Conclusion

Vision-based plume diffusion model provides a platform to experiment with different
CPT parameters to decipher biological CPT algorithm. This method is promising
because it retains infinitesimal mass concentration of diffused particles. Preliminary
simulation and experiment results suggest its potential for improving CPT perfor-
mance. Similar performance as those of other algorithms, i.e. surge-cast, casting, and
surge-spiral, are achieved. For future work, it is practical to further confirm results
using extensive experiments, improve the “sniffing” design, and investigate the use of
plume diffusion gradient to realize efficient biological CPT.

Acknowledgements. The authors would like to thank Professor Ryohei Kanzaki for
allowing access to the wind tunnel in his laboratory for recording plume diffusion
videos. This study was partially supported by Grants-in-Aid for Scientific Research,
MEXT Japan [25420212].

References

1. Settles, G.S.: Sniffers: Fluid dynamic sampling for olfactory trace detection in nature and
homeland security. J. Fluids Eng. 127, 189–218 (2005)

2. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: A new
application of chemical sensors. Biological Bulletin 200, 222–226 (2001)

3. Trincavelli, M., Coradeschi, S., Loutfi, A.: Classification of odors with mobile robots
based on transient response. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
pp. 4110–4115. IEEE Press, New York (2008)

4. Liu, Z.Z.: Odor source localization using multiple plume-tracking mobile robots. Ph.D
dissertation, Dept. Mech. Eng., Univ. Adelaide, Australia (2010)

5. Zarzhitsky, D., Spears, D., Thayer, D., Spears, W.: Agent-based chemical plume tracing
using fluid dynamics. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.)
FAABS 2004. LNCS (LNAI), vol. 3228, pp. 146–160. Springer, Heidelberg (2005)

6. Meng, Q.H., Yang, W.X., Wang, Y., Li, F., Zeng, M.: Adapting an ant colony metaphor for
multi-robot chemical plume tracing. Sensors 12, 4737–4763 (2012)

7. Ando, N., Emoto, S., Kanzaki, R.: Odor-tracking capability of a silkmoth driving a mobile
robot with turning bias and time delay. Bioinspir. Biomim. 8, 1–14 (2013)

8. Kanzaki, R., Sugi, N., Shibuya, T.: Self-generated zigzag turning of Bombyx Mori males
during pheromone-mediated upwind walking. Zool. Sci. 9, 515–527 (1992)

9. Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching
without gradients. Nature 445, 406–409 (2007)

10. Russell, R.A., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of reactive
robot chemotaxis algorithms. Robotics and Autonomous Systems 45, 83–97 (2003)

508 J.Y. Chew, T. Yoshihara, and D. Kurabayashi

11. Lochmatter, T., Martinoli, A.: Tracking odor plumes in a laminar wind field with
bio-inspired algorithms. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental
Robotics. STAR, vol. 54, pp. 473–482. Springer, Heidelberg (2009)

12. Chew, J.Y., Kurabayashi, D.: Quantitative analysis of the silk moth’s chemical plume
tracing locomotion using a hierarchical classification method. J. Bionic Eng. 2, 268–281
(2014)

13. Li, W., Farrell, J.A., Pang, S., Arrieta, R.M.: Moth-inspired chemical plume tracing on an
autonomous underwater vehicle. IEEE Transactions on Robotics 22, 292–307 (2006)

14. Pang, S., Farrell, J.A.: Chemical Plume Source Localization. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics 36, 1068–1080 (2006)

15. Li, J.G., Yang, J., Cui, S.G., Geng, L.H.: Speed limitation of a mobile robot and metho-
dology of tracing odor plume in airflow environments. Procedia Eng. 15, 1041–1045 (2011)

16. Harvey, D.J., Lu, T.F., Keller, M.A.: Comparing insect-inspired chemical plume tracking
algorithms using a mobile robot. IEEE Trans. Robot. 24, 307–317 (2008)

17. Serra, J.: Image analysis and mathematical morphology. Academic Press, USA (1983)
18. Loudon, C., Koehl, M.A.R.: Sniffing by a silkworm moth: wing fanning enhances air

penetration through and pheromone interception by antennae. Journal of Experimental
Biology 203, 2977–2990 (2000)

Handling of Asynchronous Data Flow
in Robot Perception Subsystems

Maciej Stefańczyk and Tomasz Kornuta

Warsaw University of Technology, Institute of Control and Computation Eng.
Nowowiejska 15/19 00-665 Warsaw, Poland
{M.Stefanczyk,T.Kornuta}@ia.pw.edu.pl

Abstract. Robot perception subsystems typically form complex net-
works, with boxes representing computations and arrows presenting the
exchanged data. Taking into account that data acquired from robot sen-
sors may arrive with different frequencies, as well as that computations
may by performed on different processor cores, a problem of handling
of asynchronous data flows appears. Hence appropriate tools facilitat-
ing the implementation are highly demanded. In this article we propose
a solution to the aforementioned problem, enabling the activation of a
conditional behaviour of a given computational block, depending on the
presence of data in its input buffers. Theoretical considerations led to the
implementation of these mechanisms in a component-oriented framework
for development of robot perception subsystems: DisCODe. Operation
of the solution was verified on an exemplary perception subsystem using
RGB-D camera.

Keywords: robot, perception, component, framework, DisCODe, asyn-
chronous data flow.

1 Introduction

1.1 Motivation of the Work

Service robots are designed to work in human-oriented environment. To cope
with unstructured and dynamic nature of such an environment, the robots must
be equipped with a multitude of sensors and modules able to aggregate and
process the received data. Those measurements can be acquired from diverse
sensors, typically having different work-cycles. Such an example is the fusion of
data acquired from an RGB-D camera and a laser range finder, as described
in [1]. Besides that, the data processing and aggregation might consist of several
complex procedures, executed in an appropriate order. This is especially visible
in the case of machine vision-based perception subsystems. Additionally, in order
to fulfil the real-time requirements and to make implementation easier and more
modular, it is a common practice to use multi-threading. Those facts imply
that the data processing and aggregation typically form quite complex graphs.
Hence mechanisms for the implementation of computational blocks, facilitating
the synchronization of asynchronously incoming data, are highly desirable.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 509–520, 2014.
c© Springer International Publishing Switzerland 2014

510 M. Stefańczyk and T. Kornuta

1.2 Article Structure

The article is structured as follows. Section 2 describes the problem of handling of
asynchronous data flow and presents how the state-of-the-art robotic frameworks
cope with it. In section 3 we present the proposed solution and put the emphasis
on data synchronisation and selection of proper activation function according
to available (fresh) data. Next we present the DisCODe framework followed by
description of examples validating our approach. Article ends with conclusions
and future work plans presented in section 4.

2 Problem Formulation

2.1 Asynchronous Data Flow Handling

Aggregation of sensory data requires a series of computations, sometimes very
complex. That is why decomposition of whole process into smaller, easier to
define and implement blocks is necessary. Apart from mere definition of those
blocks, one has to define connections between them to pass data. Whole per-
ception process can be thus presented as a graph, in which nodes represent
computational blocks and data flow between them is presented with arcs. De-
noting set of computational blocks as B and connections between them as C,
perception task T is defined as:

T = 〈B,C, f〉, where C ⊂ B ×B and f : C → N, (1)

where f determines the multiplicity of connections between given two blocks.
Figure 1 shows exemplary processing pipeline. Particular blocks and connections
are denoted with indices.

B1

B4 B5 B6

B2 B3

C1

C3

C2 C4

C6 C7

C5

Fig. 1. Exemplary computational flow

There can be two buffer types defined for each j-th computational block Bj :
input xBj and output yBj. Additionally, each block can have internal buffer
(memory) mBj for storing data during processing. Computational block opera-
tion in i-th step can be defined in a form of transition function fj , which, based
on data read from input and internal buffers, computes the result and stores it
in output buffers and/or updates the internal memory (fig. 2):[

mBi+1
j , yB

i+1
j

]
:= fj

(
mBi

j , xB
i
j

)
. (2)

Handling of Asynchronous Data Flow 511

xBj,1

xBj,n

xBj,2

fj

mBj
yBj,1

yBj,v

yBj,2

Fig. 2. General structure of j-th computational block

The presence of multiple input buffers of a given computational block imposes
that it might possess different working modes, depending on the data available.
Hence decomposition of transition function into set of simpler functions, acti-
vated in a case when required data is present, can greatly improve description
of variant system behaviours. Subset xBj,κ =

[
xBj,k[1],x Bj,k[2], . . .

]
denotes a

subset of input buffers from the set xBj , consisting of buffers that must contain
(fresh) data required for the correct evaluation of k-th variant of transition func-
tion. Analogically, yBj,κ denotes a subset of output buffers yBj which values will
be computed by k-th function. This leads to following definition of k-th variant
transition function (fig. 3):[

mBi+1
j , yB

i+1
j,κ

]
:= fj,k

(
mBi

j , xB
i
j,κ

)
, k = 1, . . . , nfj , (3)

where nfj is the number of variant functions of j-th computational block.

xBj,1

xBj,n

x
B

j,
κ

xBj,k[1]

xBj,k[2]
fj,k

mBj

yBj,1

yBj,v

y
B

j,
κ

yBj,k[1]

yBj,k[2]

Fig. 3. The structure of j-th computational block with k-th variant transition function
dependent elements highlighted

512 M. Stefańczyk and T. Kornuta

When variant functions are defined, next step is to define their activation
condition. Assuming, that for carrying computations input buffers must contain
data, activation condition of variant function (3) can be defined as a predicate:

P i
j,k

(
xB

i
j,κ

)
= ∃
(
xB

i
j,k[1]

)
∧ ∃
(
xB

i
j,k[2]

)
∧ . . . , (4)

where ∃ operator returns true, when fresh data (i.e. not used in evaluation of
any other function) is available in buffer. The aforementioned condition (4) is
necessary for determination whether the computation can be performed or not,
but does not indicate the order of the execution of variant functions in the case
when more than one of them can be activated. We describe the possible solutions
of the stated problem in the selected state-of-the-art robotic frameworks in the
following section.

2.2 Related Work

Orocos. In OROCOS (Open RObot COntrol Software) [2], there are no spe-
cialized methods aiding variant data processing, i.e. the programmer on his own
is responsible for creation of the proper mechanisms of queueing and for calling
the required transition functions. State of input buffers can be checked using
either callback functions connected with new data arriving to buffer, or inside
updateHook() method, which is called in every execution loop of a component.
The biggest problem is to differentiate between data in ports used in the same
updateHook() or in previous component step, which is sometimes useful. It is not
possible to fully remove data from buffer without extending Orocos mechanisms.

Ecto. In Ecto framework [3] the basic processing unit is called Cell. Each Cell
has a set of input and output buffers called Tendrils. The whole cell is equivalent
to single transition function, taking all input Tendrils as an input, and producing
output on all outputs. The function is called if and only if all of the input buffers
are filled with data. In that kind of architecture, the whole problem described in
this article is moved from component level to a task level, where some alternative
variants of the processing pipelines can be implemented. As a result some Cells
must be duplicated and slightly changed for each set of possible input buffers,
which could result in poor code maintainability due to duplication. On the other
hand, such an assumption that activated Cell always returns data on every of
its output together with the requirement on Plasms (i.e. tasks in Ecto) being
directed, acyclic graphs, has another benefit: the computation order of all Cells
constituting the given Plasm can be automatically determined once, at the start
of the system.

ROS. Robot Operating System (ROS) [4] offers more advanced synchronisation
mechanisms for calling transition functions for handling data incoming to a given
processing block (called Node) through communication channels (Topics). In
ROS it is possible to define a single callback function, dependent on multiple

Handling of Asynchronous Data Flow 513

topics, which will be activated when messages in associated topics will fulfil
the particular requirements. Those rules of activation can be set manually by
programmer; however, there are also two predefined conditions: the function
is called if all received messages have exactly the same timestamp, or when it
differs at most by a defined interval. However, the order of execution in the case
of several processing modes (transition functions) is undefined. And even more
– it is not possible to simply check whether data from the message passed to
a function was already used in any other function during same processing step.
This behaviour significantly hinders the implementation of alternative processing
pipelines in ROS.

3 Proposed Solution

3.1 DisCODe Framework

The core of DisCODe framework (Distributed Component Oriented Data Pro-
cessing) was written in C++, and its implementation utilizes mostly three main
paradigms: component-oriented programming [5], reflection [6] and generic pro-
gramming [7]. Combination of aforementioned paradigms resulted in creation of
mechanisms allowing to decompose virtually any perception process into directed
graph of independent, but cooperating, components. Components are grouped
into separate component libraries (DCL – DisCODe Component Library), each
connected with some specific subset of sensory data processing. Mechanisms of
loading components, passing data between them, executing actions and man-
aging execution threads are provided by framework, along with additional tools
prepared to speed up creation process of new components and libraries and, also,
manage running perception tasks and dynamically change their properties.

Output PortInput Port

Data Pipe

Component
name

Component

Executor

Subtask

Data Pipe

Executor
name

k

Execution order Subtask
name

Component type

Fig. 4. Graphical representation of the major elements of the DisCODe task

As it was mentioned before, steps of perception tasks are implemented as sep-
arate components, managed by various execution threads (called executors) and
communicating with each other via data streams. Fig. 4 introduces the graphical

514 M. Stefańczyk and T. Kornuta

notation corresponding to those elements. Such a decomposition simplifies task
parallelization, which could e.g. speed up the whole process. There are, how-
ever, no mechanisms enabling automatic decomposition into processing threads.
Hence the user must explicitly define (in task definition file) number of threads
and assign components executed in them. Above executors, in task hierarchy,
there are subtasks. It is a mechanism for organization and managing execution
threads, which allows to start and stop groups of components, thus effectively
change processing pipeline at runtime. It enables robot control subsystem to
change behaviours of perception subsystem according to current needs.

3.2 Transition Function Activation

Every component can possess a set of input data ports (to receive data) and
output ports (to send processing results). Actual processing is done inside tran-
sition functions (fig. 5), which takes selected input ports as an arguments and
produces values for output ports. Activation of selected function depends on
data availability in input ports and function priority.

Output PortInput Port

Data Pipe

Function
name

p

Component Transition function

Function priority

Data Pipe

Argument

Component
name

k

Execution order

Result

Fig. 5. Major elements of the DisCODe component

It is possible, that data available in ports makes multiple functions possible
to activate, that is why priorities of functions (in the context of components)
were set, with some assumptions:

– it is not allowed to define more than one function dependent on the same
subset of input ports,

– priority depends on number of input ports for function – the more ports
function depends on the higher priority is set.

Based on those assumptions, priorities can be set automatically in many cases,
requiring manual intervention only in few cases, when the same number of input
ports is used across multiple functions. This can be achieved by defining relative
priorities during component definition. At this point, with functions sorted by
priorities, operation of the component can be presented as an automation, in
which activation conditions are checked until one method is activated. In most
of the cases, function will consume data from input ports, thus disabling them
from further checking in other functions. There is, however, possibility to de-
fine function dependent on some port, which doesn’t use those data, just taking

Handling of Asynchronous Data Flow 515

some action when it is available. In this case, data is still available in port, al-
lowing other functions depending on this port to be activated during the same
component processing loop. If there are no more functions ready to be acti-
vated, execution thread moves to next component or suspends until new data is
available (if there are no components to be activated).

Whole process described earlier abstracts from all aspects of scheduling on OS
level. To prevent starvation (known problem in multi-threaded software) during
single processing loop in component each function is tried once to activate (in
order depending on priorities), and after checking all functions system moves to
another component. There is, however, no automatic mechanism for scheduling
components inside single execution thread. Task of proper ordering (defined in
task file) lies on the user completely.

3.3 Example: Multimodal Segmentation

As an example of task, in which aforementioned approach is used, we present
multimodal segmentation of dense depth maps with associated color informa-
tion [8]. The aim of this task is to segment objects in image composed from
multiple pictures, aligned with each other, e.g. RGB image, depth map, normal
map. The necessity of using multiple criterions for assigning points to clusters is
clearly visible on fig. 6. Using only colour will make it impossible to differentiate
white objects lying on paper, using only depth will make it hard to distinguish
between objects lying one on top of another, and using only normal direction
as a discriminator would result in merging objects with same direction of walls,
but placed far from each other.

(a) (b) (c)

Fig. 6. Sample input images for multimodal segmentation: (a) RGB image (b) depth
map (c) normal map

Our point similarity function (5) has four parameters, defining how close each
of components has to be in both pixels, TC , TD and TN , where C stands for
normalized RGB color, D for depth and N for normal vector, respectively:

S(px, py) = FUN

(
dC(px, py)

TC
,
dD(px, py)

TD
,
dN (px, py)

TN

)
(5)

516 M. Stefańczyk and T. Kornuta

The final value can be calculated by substituting FUN with either sum or max
function, each giving slightly different results. Distances are calculated by asso-
ciated d functions. Color comparison is done by calculating Euclidean distance
between the normalized RGB values (i.e. R/L, G/L, B/L, where L means lumi-
nance) of both points, and TC is the maximum allowed difference. The position
distance of points is calculated also as an Euclidean distance between their 3D
coordinates, and TD is expressed in meters. Normal vectors are compared by
angle between them, with TN being maximum allowed angle deviation.

onColor 4

Labelling

3

2

onColorDepthNormals 1

in_depth

in_normals

out_img

in_color

onColorDepth

onDepthNormals

onDepth 5

Fig. 7. Structure of the Labelling component

In presented task, main component responsible for actual labelling of points
to cluster them into segments, is called Labelling. Its structure is shown on
fig. 7. Three main input ports receive different modalities of processed image:
RGB, depth and normal map. There are also five transition functions, dependent
on different subsets of input ports. Those functions, in order from the highest
priority, are as follows:

– processColorDepthNormals – all modalities are available, thus we use
most advanced labelling technique,

– processColorDepth – normal map is unavailable, for example standard
input from Kinect,

– processDepthNormals – no RGB image is unavailable, for example scans
from tilting laser with computed normal vectors,

– processColor – only RGB image is available, processing falls back to stan-
dard color image labelling,

– processDepth – only depth image is available, processing works as depth
discontinuity detector.

Handling of Asynchronous Data Flow 517

(a) (b) (c)

Fig. 8. Sample output images with labels for multimodal segmentation: (a) only color
image is available (b) only depth images are available (c) color, depth and normal maps
available

Cases with normal image available without depth image are left, because every
time, if we have normals computed, those are based on depth image, thus depth
would be also available.

Visualisation

in_img

Processing

CvBasic:CvWindow
Window 1Labelling

Depth:Labelling

3

in_color

DepthEst

out_img

Depth:DepthNormalEstimator

2Kinect
CameraNUI:CameraNUI

1

out_color

in_depth

in_normalsin_depth out_img

out_depth

Fig. 9. Task responsible for display of point clouds acquired from the Kinect sensor

All functions of presented component produce the same type of output – image
with pixels colored according to labels for every pixel. This image is then used as
an input in actual segmentation, which produces a set of segments extracted from
input data based on given labels. Figure 8 presents sample results for different
inputs available (thus different functions were called). It is worth noting, that
functions in presented component are designed in a way, that only one at a time
can be called and there is no possibility of producing output image more than
once, as it could badly influence further processing (many differently labelled
images available at the same time). Structure of whole segmentation task is
presented on fig. 9. Color image aquired by Kinect camera is directly passed to
Labelling component, depth image is passed to both Labelling and DepthEst,
which estimates normal vectors, passed as third input to Labelling. Labelled
image is then simply displayed.

3.4 Robotic Applications

The presented above task is rather simple and was created only as an example
use case for Labelling component. A proper, more complex application of this

518 M. Stefańczyk and T. Kornuta

component was mobile robotics [9]. The incorporation of depth in applications
such as detection of objects for automated cleaning tasks gave good results and
improved overall robotic task performance for example by locating unreachable
objects without the need of driving near them (fig. 10). The advantage of uti-
lization of the developed mechanisms for automatic mode (transition function-
based) switching was that when the depth information was not available (even
temporary, due to e.g. improper lighting conditions) the whole task switched
automatically into standard, color based mode, and the continued recognition
until the depth map is restored.

(a) (b)

Fig. 10. Results of filtering objects detected in color image using depth information;
(a) depth image, (b) result after filtering out objects placed too high above floor

(a) (b) (c)

(d) (e)

Fig. 11. Selection of the dice to be acquired: (a) image retrieved from the camera, (b)
image with the contours extracted, (c) selection of the dice, (d) determination of the
possible grasping poses, (e) the gripper holding the acquired dice

Handling of Asynchronous Data Flow 519

Besides that, DisCODe, playing the role of a vision subsystem of MRROC++
based controllers [10,11], has been successfully used in a number of robotic sys-
tems. Worth noting examples include: a robot playing a game of dice (where the
DisCODe-based vision subsystem was responsible for the analysis of the game
state as well as for the localization of dices for their subsequent grasping, as
presented in fig. 11), construction of desired structures out of a set of bricks or
a system proactively recognizing operator hand postures [12] (fig. 12).

(a) (b) (c) (d)

Fig. 12. Stages of the active hand pose recognition: (a-c) approach the hand-like object,
(d) pose identification

4 Conclusion

The article focused on data processing in complex systems, such as robots per-
ception subsystems. We proposed to decompose the processing pipelines into a
network of computational blocks and indicated a problem of variant data pro-
cessing appearing in the case of asynchronously incoming data. Based on the
short survey of state-of-the-art robotic frameworks we proposed a solution im-
plemented in the DisCODe framework. The developed solution was successfully
utilized in several perception subsystems, however, in this paper we focused on
one of them: multimodal segmentation of RGB-D images.

It is worth noting that prioritization is not the only possible mechanism for
selection of transition functions based on data availability in buffers. In partic-
ular, we also considered an approach in which user would have to define the
full automata describing functions called for every possible combination of data
presence/absence in all buffers. It would be, however, rather cumbersome. For
the component with five inputs, functions should be assigned to each of the
25 = 32 combinations. In the case of automatic prioritization, user has to re-
solve manually only few ambiguities (the same number of buffers as input to
function).

Acknowledgments. Authors acknowledge the support of National Science
Centre, Poland via the grant number DEC-2012/05/D/ST6/03097. The authors
would like to thank to Tomek Pokorski and Kasia Wasak for their help and the
permission to use the images taken during the execution of the selected robotic
applications using DisCODe framework.

520 M. Stefańczyk and T. Kornuta

References

1. Stefańczyk, M., Banachowicz, K., Walęcki, M., Winiarski, T.: 3D camera and lidar
utilization for mobile robot navigation. Journal of Automation Mobile Robotics
and Intelligent Systems 7(4), 27–33 (2013)

2. Bruyninckx, H.: The real-time motion control core of the OROCOS project. In:
Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 2766–2771. IEEE (September 2003)

3. Willow Garage: Website of the Ecto framework for perception (2011),
http://ecto.willowgarage.com

4. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: An open-source Robot Operating System. In: Proceed-
ings of the Open-Source Software Workshop at the International Conference on
Robotics and Automation, ICRA (2009)

5. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. Addison-Wesley Professional (2002)

6. Sobel, J.M., Friedman, D.P.: An introduction to reflection-oriented programming
(1996)

7. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Professional (2001)

8. Stefańczyk, M., Kasprzak, W.: Multimodal segmentation of dense depth maps and
associated color information. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J.,
Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 626–632. Springer,
Heidelberg (2012)

9. Stefańczyk, M., Bojar, K., Kasprzak, W.: Utilization of depth and color informa-
tion in mobile robotics. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak,
M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 845–854. Springer, Hei-
delberg (2013)

10. Zieliński, C., Szynkiewicz, W., Winiarski, T., Staniak, M., Czajewski, W., Kornuta,
T.: Rubik’s cube as a benchmark validating MRROC++ as an implementation tool
for service robot control systems. Industrial Robot: An International Journal 34(5),
368–375 (2007)

11. Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot program-
ming framework. International Journal of Robotics Research 29(4), 386–413 (2010)

12. Kornuta, T., Zieliński, C.: Behavior-based control system of a robot actively rec-
ognizing hand postures. In: 15th IEEE International Conference on Advanced
Robotics, ICAR, pp. 265–270 (June 2011)

http://ecto.willowgarage.com

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 521–532, 2014.
© Springer International Publishing Switzerland 2014

Design of a Healthcare Sensor Managing System
for Vital Sign Measuring Devices

Min Ho Lee, Ho Seok Ahn, Kevin Wang, and Bruce A. MacDonald

Department of Electrical and Computer Engineering,
CARES, University of Auckland, Auckland, New Zealand

mlee242@aucklanduni.ac.nz,
{hs.ahn,kevin.wang,b.macdonald}@auckland.ac.nz

Abstract. In this paper, we present a healthcare sensor managing system that
manages healthcare sensor devices in a distributed environment. It is an
independent system, but can cooperate by wireless communication with client
systems, such as robots and smart phones. We have designed five key concepts
of our sensor managing system including plug and play, status managing,
scheduling of requests, expandability, and compatibility. We have developed a
sensor managing system based on our design concepts, and applied this system
to a healthcare application. It consists of three parts: a healthcare robot system,
a sensor manager system, and sensor device systems. It can be applied in
various use case scenarios for heterogeneous devices, between single and
multiple clients. To verify the efficiency of our system, we report functionality
experiments focusing on each of the five key concepts.

Keywords: Healthcare robot system, vital sign measuring system, sensor
managing system, healthcare robot, caring of older adults, health condition
management.

1 Introduction

The global population of older adults is on the rise in many parts of the world [1].
Many researchers are developing healthcare technologies to address this increasing
need to support people. Wearable physiological monitoring systems monitor the
health status of the human user who wears the system, for example, AMON, and
CodeBlue [2-3]. Most of these systems use wireless sensor networks, and some health
monitoring systems are already commercialized, but have not been applied to robot
systems. Robots are also being included in healthcare system design. Some robot
systems help people with physical aspects of healthcare, for example RIMAN helps
nurses or family members to lift patients safely [4]. Some robots are used for helping
people with dementia [5] and autism [6], and some robots have the role of doctors or
nurses under remote teleoperation by the doctor or nurse [7-8].

In our previous work, we have developed a homecare service robot that includes a
medication reminding function for the elderly and a caregiver robot which guides how
to measure vital signs, illustrated in Fig. 1 [9-11, 25]. We undertook clinical trials in

522 M.H. Lee et al.

real environments, such as hospitals, rest homes, and a retirement village [11-13, 26-28].
In our study, we found that robots are effective for giving healthcare service to the
elderly although the acceptance of robot’s reactions is different for cultural
background, gender, age, and job [14-17]. Moreover our healthcare robot and
applications are helpful to older adults. Especially, medication schedule reminding
helps older adults to take medicine on time, which is important for maintaining their
health. Measuring vital signs also helps people to manage their health conditions in
their homes.

Our healthcare robot carries some healthcare sensor devices which measure
essential vital signs data such as blood pressure, blood oxygen, and pulse rate. But
there are some limitations to using healthcare sensor devices, for example, a
healthcare robot cannot carry large and heavy healthcare sensor devices and may not
be able to supply enough power to operate healthcare sensor devices. To solve these
problems, we designed and developed an independent sensor managing system, which
manages all healthcare sensor devices without any wired connection to the healthcare
robot system. The sensor managing system is an independent system including
functions such as checking status of all devices, detecting and registering new
devices, and scheduling of requests. The healthcare robot is an assistant for human
users and sends the requests of human users to the sensor managing system through
wireless communication. Then, the sensor managing system controls the appropriate
healthcare sensor device by checking the status, sending commands, and receiving
data. We can easily add or remove various healthcare sensor devices without
considering the healthcare robot. It can also be operated by other client systems such
as smart phones or tablets.

This paper is organized as follows. In Section 2, we introduce the design of a
sensor managing system. In Section 3, we explain the implementation of our
healthcare sensor managing system. In Section 4, we present experiments and
evaluations. Finally, we conclude this paper in Section 5.

Fig. 1. A human user measures his vital signs using the healthcare sensor managing system
with the guidance of a healthcare robot. The measured vital sign data is sent to a medical server
via the healthcare robot and caregivers can check the health condition by observing the data.

 Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices 523

2 Design of Sensor Managing System

2.1 Key Concepts

The main focus of our design is to create a generic sensor managing system for
various sensor devices in a distributed environment. The sensor managing system is
able to dynamically identify and classify the type of sensor devices. For this, our
design includes the following functions.

1) Plug and Play: When a sensor device is newly connected, the sensor
managing system should recognize the new connection, and make it
available for using without additional set up procedures by users. It is a
general plug and play function supported by modern operating systems, such
as Microsoft Windows [18].

2) Status Managing: When sensor devices have been registered by the sensor
managing system, the sensor managing system periodically checks and keeps
track of the status of all sensor devices, which are connected within the
network, without the intervention of human users.

3) Scheduling of Requests: The system should be able to dynamically allocate
services of available devices to the users of the system, at appropriate
measurement times. It also supports access of services from multiple clients
and schedules the services according to requests.

4) Expandability: The system should be able to manage various devices of
different combinations; multiple heterogeneous typed devices, and different
devices of the same type.

5) Compatibility: The use of the sensor managing system should not be specific
to a single platform but rather should function with devices and clients of all
platforms by considering healthcare standards for EHR (electronic health
records) such as HL7 [19].

2.2 System Architecture

Fig. 2 shows the sensor managing system that consists of three sub-systems each of
which function in a distributed system: client systems, a sensor manager system, and
sensor device systems. The user interacts with a client system to use and control the
sensor device systems. Then, the client system sends requests to the sensor manager
system using the predefined Application Program Interface (API), which is supported
by the sensor manager system. The sensor manager system has the list of available
devices, maintained by periodically polling for devices, and sends the requests from
the clients to the appropriate sensor device.

The client system has the role of channeling between the user application and the
sensor manager system, and service robots and tablets can be used as the client
systems. Therefore, the client system should have interaction functions including
input and output methods as well as communication functions for sending the requests
from human users to the sensor manager system and obtaining the results. The main
communication between the client system and the sensor manager system requires
working consistently across multiple platforms, so we use web sockets [20], which

524 M.H. Lee et al.

provide full duplex communication over a single TCP connection and allow the client
to be independent of any platform, making it scalable. Then the client system makes a
request call for services using APIs via the sensor manager system. In the
communication, data security is not considered at this moment, but we have a plan to
use https or encryption in the near future.

The sensor manager system manages the status of each connected device. The
sensor manager system uses Robotics Operating System (ROS), which is a well-
known robotic framework includes various communication methods as well as
intelligent packages for robot, as the underlying method of communication between
each component because it is simply adapted on embedded Linux system as well as
qualified in various systems [21]. ROS communication can work in two ways; by
either setting up publisher and subscriber objects, or by creating a service object
where clients can make a service call to the server object. The manager module of the
sensor manager system manages various types of sensor devices by keeping track of
run-time status of devices that have been registered. It also tracks the connection
status of each device.

The ROS bridge layer [22] in the sensor manager system acts as the bridge
between the web communications and ROS environment through web sockets,
allowing our sensor management system to interact with the client systems of various
platforms, which can function in both local and distributed environments. Likewise
the option of using a web socket implementation is not only restricted to the client,
but also can be applied to implementation of the sensor device component as well.
The sensor device system handles the device driver logic of the sensor device, on
extracting the low level data from the sensor devices. The port scanner module allows
plug and play features by recognizing devices connected to the port. To communicate
with the sensor manager system, the sensor device system uses the Message Handling
module which is based on using ROS service calls.

Fig. 2. System architecture of the sensor managing system, and its components. The client is
the user defined application to communicate with the system. The sensor manager keeps track
of statuses of various devices and the sensor device contains the device logic to extract the raw
data.

 Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices 525

The APIs are called by the clients to the sensor manager system to control the
sensor devices. The APIs are designed for two purposes; to manage the acquisition of
devices and to control devices. For acquisition, either a Request (or Terminate) call is
issued to allocate (or deallocate) the sensor device to the client. Once a successful
allocation has been made, the sensor manager returns the details of the allocated
device. The selection process can be classified by stating the details of the device
which are defined by message types. Firstly in order to request a device, the user must
specify the type field to declare which type of sensor they want. Then the manager
tries to find the best matching solution based on other fields such as the bid field
which specifies the device id.

3 Healthcare Sensor Managing System

3.1 Overall System

We have implemented a healthcare sensor managing system based on our sensor
manager architecture, which is introduced in Section 2. We use a mobile service robot
as a client system, and it interacts with human users by speaking and displaying
information on a touch screen. We developed the sensor manager system and the
sensor device systems using real healthcare sensor devices, which are used in
healthcare environments.

(a) (b)

Fig. 3. HealthBot systems. (a) Previous HealthBot, which carries vital signs measurement
devices on its tray. Power cables for vital sign measurement devices are connected. (b) New
version of HealthBot, which uses the healthcare sensor managing system. These devices are
controlled by the requests from the healthcare robot through wireless communication.

526 M.H. Lee et al.

Fig. 3(a) shows our previous healthcare robot system, HealthBots, a kiosk type
robot, which is currently used in the Gore family doctor’s practice in the South Island
of New Zealand. This system works well, as we found in our previous trials [11-13],
but has some limitations. It carries healthcare sensor devices and connects them
directly to the HealthBot. It is useful to patients who have some difficulty moving
since it carries the healthcare sensor devices to them, but there are limitations to this
movement due to the power cables to supply power to the healthcare sensor devices.
While these issues can be resolved by providing onboard power, this solution must be
applied for each vital signs device.

Fig. 3(b) shows our new healthcare robot system with the sensor managing system.
It is the same robot as our previous work, but does not carry any healthcare sensor
devices on the robot. Instead, HealthBot communicates with the sensor managing
system to measure and obtain the vital signs of human users. In this system, we can
use a wider variety of healthcare sensor devices, such as height and weight
measurement devices, which are large and heavy to carry. The measured results are
recorded by our medical server system, RoboGen. Then, users and family members as
well as clinicians including doctors, nurses, and psychologists can access the user data
and monitor the health condition of human users easily through the RoboGen
webpage.

3.2 Client Systems

We used the same HealthBot shown in Fig. 3 as the client system of the healthcare sensor
managing system. HealthBot is a kiosk type mobile robot, powered by a 24V Li-Polymer
battery, and consists of a camera, a Pan-Tilt enabled touch screen, speakers,
microphones, ultrasonic sensors, bumper sensors, a laser scanner and two single board
computers. User responses were received via the touch screen and HealthBot responds to
participants with synthesized speech, visual output on the screen, and movements.
HealthBot’s synthetic speech is generated through a diphone concatenation type
synthesis implemented with Festival speech synthesis system [23] and used a New
Zealand accented diphone voice developed at the University of Auckland [24].

3.3 Sensor Manager System

The main role of the sensor manager system is managing the status of the healthcare
sensor devices, and scheduling the requests from the HealthBot. We chose a
BeagleBone system in a ROS environment for the embedded platform because it is an
effective prototype development platform able to run an operating system and ROS.
The sensor manager system runs the ROS-master, ROS-bridge, and the manager
module of the system. ROS-master maps names and low level registration such as IP
address and host to each component in the ROS environment, tracking
publishers/subscribers and services. ROS-bridge converts the ROS messages to web
socket messages in JSON format (and vice-versa) to establish communication
between manager and the client. The manager module keeps track of all the devices in
a tree-map structure by first classifying them into different sensor types and then by
IDs. The sensor manager system can be placed anywhere that provides access to the
network, or can be carried on the HealthBot.

 Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices 527

3.4 Sensor Device System

The main role of the sensor device systems is controlling healthcare devices
according to the requests from the sensor manager. We measure three kinds of vital
sign from three types of measurement devices shown in Fig. 3(b). TABLE 1 shows
the devices used in our system. Each of the different types of vital sign measurement
device provides the results of a different context, where the PulseCor BP device
returns diastolic, systolic and heart rate measurements, while the Masimo SPO2
device returns the oxygen saturation rate in the blood and the heart rate. The
OxySmart SPO2 device is portable as well as inexpensive, so it is useful for an
individual house environment. Each vital sign measurement device is connected to the
BeagleBone sensor device system. The sensor device system can be placed anywhere
available to access the network.

Table 1. Specification of Vital Sign Measurement Devices

Name of device
Measurable vital signs

Blood Pressure Blood Oxygen Pulse rate

PulseCor BP O - O

Masimo SPO2 - O O

OxySmart SPO2 - O O

4 Experiments and Evaluations

4.1 Experimental Environment and Scenario

In the experiments, we applied the proposed healthcare sensor managing system to the
HealthBot system shown in Fig. 3(b), and evaluated the performance of the key
functionalities developed in Section 3. We monitored the procedure of each device
measurement test, and measured the latency, then compared the results with our
previous system. TABLE 2 shows the specifications of the HealthBot computer used
for processing, and BeagleBone, which is used for the healthcare sensor managing
system. The BeagleBone has a much lower specification than the computer in the
HealthBot, but it is enough to process the managing function.

Table 2. Specification of Experimental Platforms

Category HealthBot BeagleBone

Processor (CPU) Intel Core2 Duo 2.4GHz ARM Cortex A8 720MHz

Memory (RAM) 1.95GB 256MB

Operating System MS Windows XP Professional Angstrom Linux v2012.05

528 M.H. Lee et al.

4.2 Experimental Results and Evaluations

4.2.1 Plug and Play
Fig. 4 shows the procedure of plug and play for sensor devices in the healthcare
sensor managing system. The plug and play function was developed by scanning
ttyUSB interfaces of the sensor device system. When a healthcare sensor device is
connected to the sensor device system, the sensor device system recognizes the new
connection, and reports it to the sensor manager system. Then, the sensor manager
system classifies the device by type, and registers the device on the available list.
Finally, the sensor manager system sends the feedback including the service ID of the
sensor device to the sensor device system.

We measured the latency of the plug and play process over 5 iterations shown in
TABLE 3. It took less than 3 seconds on average over 5 iterations for the whole
procedure on three sensor devices. More specifically it took about 1 second (about
35% of the whole latency) for the system processing, and it is quite fast in the
embedded system comparing with our previous system, which uses the HealthBot
system that took approximately 1.5 seconds on average over 5 iterations without
wireless latency. This is mainly because it is dependent on the BeagleBone board’s
ability to detect the tty interface rather than being dependent on the devices so the
time of detection shouldn’t differ from device to device.

Fig. 4. The sequence of the plug and play process. 1) New connection of sensor device. 2)
Recognizing new connection. 3) Reporting new connection. 4) Registering new sensor device.
5) Returning of feedback.

Table 3. Latency of Plug And Play (average over 5 iterations)

Sensor Devices Whole System Wireless

PulseCor BP 2.97 0.91 2.06

Masimo SPO2 2.80 0.90 1.90

OxySmart SPO2 2.68 1.05 1.63

4.2.2 Status Managing
Fig. 5 shows the procedure for managing status of sensor devices, which are on the
available list. It is a periodic routine procedure of the sensor manager system. The
sensor manager system sends a status checking request to the sensor device system,
like a ping. Then the sensor device system checks the status of the connected sensor

 Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices 529

device, whether it is active or not, and reports the status of the sensor device to the
sensor manager system. The sensor manager system repeats this procedure every 10
seconds as well as when the operation request is received.

TABLE 4 shows the latency of the status managing process over 5 iterations. It
took about 2 seconds on average over 5 iterations for the whole procedure on three
sensor devices. We can see that the latency from these status managing is almost
purely wireless latency. The total latency is smaller than the previous result as the
response message (step #2 of Fig. 4) is just a simple ACK message, which doesn’t
require much computation. The latency is mainly due to wireless communication,
which is over 99% of the whole latency. Similar results were shown for all devices as
the procedure of the status managing function is independent of devices themselves.

Fig. 5. The sequence of the status managing process. 1) Sending status checking request
periodically. 2) Responding the status checking request.

Table 4. Latency of Status Managing (average over 5 iterations)

Sensor Devices Whole System Wireless

PulseCor BP 2.013 0.003 2.01

Masimo SPO2 1.773 0.003 1.77

OxySmart SPO2 1.525 0.005 1.52

4.2.3 Device Operation
Fig. 6 shows the procedure of the device operation function. When the client system
requests using a sensor device, the sensor manager allocates the device to the client by
checking the availability of the devices, and sends the operating request to the sensor
device system. If there is no available sensor device on the list, the sensor manager
system reports to the client system that there is no available device. When the sensor
device system gets the request, it measures the vital signs of the human user, and
returns the results to the sensor manager system. Finally, the sensor manager reports
the results to the client.

TABLE 5 shows the latency of the device operation process over 5 iterations. The
device time, which includes initialization and measurement of vital signs, is different
for sensor devices, and it is over 50% of the whole latency. It took less than 0.1
second for the system processing, and about 2 seconds for wireless communication
similar to other experiments. It is reasonable latency for measuring vital sign data,
compared to our previous system.

530 M.H. Lee et al.

Fig. 6. The sequence of the device operation process. (a) With homogeneous typed devices. (b)
With heterogeneous typed devices. 1) Requesting of using sensor device. 2) Checking available
sensor device. 3) Requesting of operation. 4) Measuring vital sign. 5) Returning of the results.
6) Reporting the results.

Table 5. Latency of Device Operation (average over 5 iterations)

Sensor Devices Whole System Wireless Device

PulseCor BP 55.05 0.04 2.01 53

Masimo SPO2 4.06 0.03 2.03 2

OxySmart SPO2 50.1 0.05 1.96 3

5 Conclusions

We have designed a sensor managing system architecture and implemented the design
for a healthcare sensor managing system, for the HealthBots. The main purpose of
designing the new sensor managing system is separating the sensor system from the
HealthBot, physically, electrically, and in terms of software components. The sensor
managing system is an independent system, and communicates with not only the
robot, but also any systems connected within the network. In addition, the sensor
device system can be placed anywhere accessible to the network. For these purposes,
we designed the sensor managing system by considering five key concepts: plug and
play, status managing, scheduling of requests, expandability, and compatibility.

We developed the healthcare managing system based on the designed architecture,
and applied it to HealthBots, which is the healthcare robot system developed by the
CARES (Center for Automation and Robotics Engineering Science) in the University
of Auckland. We used three kinds of vital sign measuring devices to measure blood
pressure, pulse rate and blood oxygen saturation, which are essential health
information for healthcare. We monitored the procedure of each function, and
measured the latency to compare it with our previous system. From the experiment

 Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices 531

results, we verified the efficiency of the sensor managing system. Some issues should
be improved in our future work; especially we should reduce the latency for wireless
communication. In addition, our sensor managing system is designed for supporting a
multi-client environment, and this aspect should be evaluated in the future. We will
show our sensor manager system can be applied to a tablet without the robot system
in the future.

References

1. United Nations, World population aging, United Nations Publications, New York (2002)
2. Anliker, U., Ward, J.A., Lukowicz, P., Tröster, G., Dolveck, F., Baer, M., Keita, F.,

Schenker, E., Catarsi, F., Coluccini, L., Belardinelli, A., Shklarski, D., Alon, M., Hirt, E.,
Schmid, R., Vuskovic, M.: AMON: A wearable multiparameter medical monitoring and
alert system. IEEE Transactions on Information Technology in Biomedicine 8(4), 415–427
(2004)

3. Shnayder, V., Chen, B., Lorincz, K., Fulford Jones, T.R.F., Welsh, M.: Sensor networks
for medical care. Division Eng. Appl. Sci. Harvard Univ., Cambridge, MA, Tech. Rep.
TR-08–05 (2005)

4. Mukai, T., Onishi, M., Odashima, T., Hirano, S., Luo, Z.: Development of the tactile
sensor system of a human–interactive robot ‘RI-MAN’. IEEE Transactions on Robotics
24(2), 505–512 (2008)

5. Wada, K., Shibata, T., Musha, T., Kimura, S.: Robot therapy for elders affected by
dementia. IEEE Engineering in Medicine and Biology Magazine 27(4), 53–60 (2008)

6. Cabibihan, J.-J., Javed, H., Ang Jr., M., Aljunied, S.M.: Why Robots? A Survey on the
Roles and Benefits of Social Robots in the Therapy of Children with Autism. International
Journal of Social Robotics 5, 593–618 (2013)

7. Iftikhar, M., Mariappan, M.: Otorob (Ortho Robot) with Docmata (Doctor’s Eye): Role of
Remote Presence in Developing Countries. In: International Conference on Advances in
Human-oriented and Personalized Mechanisms, Technologies, and Services, pp. 51–56
(2009)

8. Ito, K., Sugano, S., Iwata, H.: Development of attachable tele-echography robot by a
bystander at injury scene. In: International Conference on Mechatronics and Automation,
pp. 1270–1275 (2010)

9. Datta, C., Yang, H.Y., Kuo, I.-H., Broadbent, E., MacDonald, B.A.: Software platform
design for personal service robots in healthcare. In: IEEE International Conference on
Robotics, Automation and Mechatronics, pp. 156–161 (2013)

10. Datta, C., Yang, H.Y., Tiwari, P., MacDonald, B.A.: A Healthcare Robot for Monitoring
Adverse Drug Reactions in Older People. In: International Conference on Ubiquitous
Robots and Ambient Intelligence, pp. 10–11 (2012)

11. Jayawardena, C., Kuo, I., Datta, C., Stafford, R.Q., Broadbent, E., MacDonald, B.A.:
Design, implementation and field tests of a socially assistive robot for the elderly:
HealthBot Version 2. In: International Conference on Biomedical Robotics and
Biomechatronics, pp. 1837–1842 (2012)

12. Stafford, R.Q., MacDonald, B.A., Jayawardena, C., Wegner, D.M., Broadbent, E.: Does
the Robot Have a Mind? Mind Perception and Attitudes Towards Robots Predict Use of an
Eldercare Robot. International Journal of Social Robotics 6(1), 17–32 (2014)

532 M.H. Lee et al.

13. Kuo, I.H., Rabindran, J.M., Broadbent, E., Lee, Y.I., Kerse, N., Stafford, R.M.Q.,
MacDonald, B.A.: Age and gender factors in user acceptance of healthcare robots. In:
International Symposium on Robot and Human Interactive Communication, pp. 214–219
(2009)

14. Ahn, H.S., Choi, J.Y.: Can We Teach What Emotions a Robot should Express? In: IEEE
International Conference on Intelligent Robots and Systems, pp. 1407–1412 (2012)

15. Ahn, H.S., Lee, D.-W., Choi, D., Lee, D.-Y., Hur, M., Lee, H.: Uses of Facial Expressions
of Android Head System according to Gender and Age. In: IEEE International Conference
on Systems, Man, and Cybernetics, pp. 2300–2305 (2012)

16. Ahn, H.S., Lee, D.-W., Choi, D., Lee, D.-Y., Hur, M., Lee, H.: Appropriate Emotions for
Facial Expressions of 33-DOFs Android Head EveR-4 H33. In: IEEE International
Symposium on Robot and Human Interactive Communication, pp. 1115–1120 (2012)

17. Ahn, H.S., Lee, D.-W., Choi, D., Lee, D.-Y., Hur, M., Lee, H.: Difference of Efficiency in
Human-Robot Interaction According to Condition of Experimental Environment. In: Ge,
S.S., Khatib, O., Cabibihan, J.-J., Simmons, R., Williams, M.-A. (eds.) ICSR 2012. LNCS,
vol. 7621, pp. 219–227. Springer, Heidelberg (2012)

18. Ahn, H.S., Baek, Y.M., Sa, I.-K., Na, J.H., Kang, W.-S., Choi, J.Y.: Design of
Reconfigurable Heterogeneous Modular Architecture for Service Robot. In: IEEE
International Conference on Intelligent Robots and Systems, pp. 1313–1318 (2008)

19. http://www.hl7.org.nz/about
20. Peter, L., Greco, F.: Html5 web sockets: A quantum leap in scalability for the web. SOA

World Magazine (2010)
21. Quigley, M., et al.: ROS: An open-source Robot Operating System. In: ICRA Workshop

on Open Source Software (2009)
22. Crick, C., Jay, G., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: Ros for non-ros

users. In: International Symposium on Robotics Research (2011)
23. Black, A.W., Taylor, P., Caley, R.: The festival speech synthesis system (2012),

http://www.cstr.ed.ac.uk/projects/festival
24. Watson, C.I., Teutenberg, J., Thompson, L., Roehling, S., Igic, A.: How to build a New

Zealand voice. In: Proceedings of the New Zealand Linguistic Society Conference (2009)
25. Ahn, H.S., Kuo, I.-H., Datta, C., Stafford, R., Kerse, N., Peri, K., Broadbent, E.L.,

MacDonald, B.A.: Design of a Kiosk Type Healthcare Robot System for Older People in
Private and Public Places. In: Brugali, D., Broenink, J., Kroeger, T., MacDonald, B. (eds.)
SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 578–589. Springer, Heidelberg (2014)

26. Broadbent, E., Tamagawa, R., Kerse, N., Knock, B., Patience, A., MacDonald, B.: Retirement
home staff and residents’ preferences for healthcare robots. In: IEEE International Symposium
on Robot and Human Interactive Communication (ROMAN 2009), pp. 645–650 (2009)

27. Ahn, H.S., Santos, M.P.G., Wadhwa, C., MacDonald, B.A.: Development of Brain
Training Games for a Healthcare Service Robot for Older People. In: International
Conference on Social Robotics, pp. 1–11 (2014)

28. Stafford, R.Q., Broadbent, E., Jayawardena, C., Unger, U., Kuo, I.H., Igic, A., Wong, R.,
Kerse, N., Watson, C., MacDonald, B.A.: Improved robot attitudes and emotions at a
retirement home after meeting a robot. In: IEEE International Symposium on Robot and
Human Interactive Communication, pp. 82–87 (2010)

Kinesthetic Teaching in Assembly Operations –

A User Study

Arne Muxfeldt, Jan-Henrik Kluth, and Daniel Kubus

Institut für Robotik und Prozessinformatik,
Technische Universität Braunschweig, Germany

{amu,jkl,dku}@rob.cs.tu-bs.de
http://www.rob.cs.tu-bs.de/

Abstract. Kinesthetic teaching is a commonly employed method for
programming robots using the Programming by Demonstration (PbD)
paradigm. It is widely regarded as an intuitive approach to robot pro-
gramming, which can be performed by shop-floor workers. Much research
in this area has focused on pick-and-place tasks while demanding as-
sembly tasks have received less attention so far. Nonetheless, in various
contributions kinesthetic teaching is utilized to gain insight into human
assembly strategies by deriving trajectories, mating forces, etc. To evalu-
ate the discrepancies between kinesthetic teaching and manual assembly
in the context of industrial assembly tasks, we conducted a user study
with 78 participants featuring four different tasks. Our results confirm
the ease of learning attributed to kinesthetic teaching but also suggest
that trying to transfer human assembly strategies using this method may
suffer from a substantial flaw.

Keywords: User study, kinesthetic teaching, programming by demon-
stration, physical human-robot interaction, assembly tasks, robot pro-
gramming.

1 Introduction

The increase in life expectancy among European populations, also known as the
Ageing of Europe, requires to adapt industrial production environments to the
ageing workforce. This process involves a higher degree of automation as well
as robot assistance functions for non-ergonomic tasks. Welding and painting, for
example, are already highly automated in the automotive industry. In contrast,
demanding assembly tasks, which involve - for instance - snap fitting or tight
tolerances, are mainly performed manually today. Many of these tasks, however,
demand high mating forces or require postures that prove harmful to health in
the long run. Therefore, assistive robots relieving workers from these wearisome
tasks are required. To facilitate programming and utilize process knowledge of
shop-floor workers, PbD is often used with assistive robots. Similar considera-
tions apply to robots processing small lot sizes in small and medium enterprises.
The PbD paradigm includes a multitude of different approaches [2], e.g., ap-
proaches relying on motion capturing techniques or kinesthetic teaching. The

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 533–544, 2014.
c© Springer International Publishing Switzerland 2014

http://www.rob.cs.tu-bs.de/

534 A. Muxfeldt, J.-H. Kluth, and D. Kubus

latter method is based on human workers guiding the robot by physical con-
tact [1].

Kinesthetic teaching is said to be an intuitive approach to robot programming
that can be learned easily by shop-floor workers. However, little information
quantifying this aspect can be found in the literature.

Several approaches apply kinesthetic teaching to extract and transfer human
assembly strategies to robots. However, there is no justification that the assembly
strategies and parameters extracted from kinesthetic teaching will correspond
to the strategies and parameters employed in manual assembly. Compared to
manual assembly, the reduced tactile feedback as well as the occurring inertia
and friction when guiding the robot suggest that there will in fact be signifi-
cant discrepancies regarding assembly strategies and parameters. If so, the idea
of extracting human assembly strategies by kinesthetic teaching should be re-
evaluated.

To shed some more light on the latter surmise as well as the claimed ease
of learning, we performed a user study with 78 participants and four different
assembly tasks. We focus on the duration of an assembly operation as our key
performance measure. In particular, we consider the following four hypotheses:

1. Learning Effect by Repeated Execution: Executing a task or several
tasks that resemble each other repeatedly reduces the required time signifi-
cantly.

2. Manual Assembly Performance Cannot Be Achieved by Kines-
thetic Teaching: The duration for completing a task required in manual
assembly cannot be achieved when guiding the robot.

3. Performance in an Assembly Task Depends on Personal Attributes:
The required time varies with age, spatial sense, previous knowledge and per-
sonal attitude towards technical devices.

4. Correlation between Performance in Manual Assembly and Kines-
thetic Teaching: Participants performing well in manual assembly will also
perform well in the kinesthetic teaching trials.

The remainder of this paper is organized as follows: First, we describe re-
lated work regarding the application and evaluation of kinesthetic teaching ap-
proaches. In Sect. 3 we describe our setup and outline the user study, including
the definition of a performance measure based on the duration of the experi-
ment. Subsequently, we present our results in Sect. 4. More detailed results can
be found in [11]. Finally, we conclude the paper in Sect. 5.

2 Related Work

PbD is widely used, especially for programming robots with redundant kinemat-
ics. Argall et al. composed a survey of various methods in PbD [2]. Especially
kinesthetic teaching has been used for many different purposes. Kormushev et
al. used kinesthetic teaching to teach different positions and an additional haptic
device to teach forces [7]. In contrast Delson et al. used the taught positions and

Kinesthetic Teaching in Assembly Operations 535

forces to automatically generate a program for a robot. Their approach was to
remove irrelevant parts of the taught trajectory by checking whether each part
is in a specified range of acceptable forces and trajectories [5].

More frequently than in industrial robotics, PbD is used in the domain of
humanoid robots because it seems logical and intuitive to transfer human mo-
tions to humanoid robots. Billard et al. used kinesthetic teaching to speed up
the learning process of a humanoid. Furthermore, teaching is regarded as a user
friendly human-robot-interface [3]. Schou et al. showed the influence of kines-
thetic teaching onto industrial robotics. They used kinesthetic teaching in com-
bination with task level programming to create a helpful tool for production
floor operators [13].

To our knowledge no user study focusing explicitly on the differences between
manual assembly operations and operations in a kinesthetic teaching process has
been conducted so far.Wrede et al. performeda study to compare a formof assisted
kinesthetic teaching to an unassisted case for a redundant robot. They also intro-
duced a new human-robot-interface based on kinesthetic teaching and machine
learning [14]. Pais et al. presented another user study in the context of PbD. Their
focus was to evaluate the user friendliness of a tactile user interface but they did
not consider the influence of their interface on the interaction with the robot [12].

Our findings suggest that both motions and parameters derived by kinesthetic
teaching will differ significantly from those found in manual operations - which
has been overlooked by the previously mentioned studies and approaches.

A possible alternative to prevent potential distortions is to use motion cap-
turing instead of kinesthetic teaching like Dillmann et al. did [6]. But motion
capturing is a costly process and might fail for typical industrial assembly tasks
where occlusions and clutter occur frequently [10].

3 Experimental Setup

In the following section we describe our setup including the used parts, sensors
and the robot. Afterwards we outline our design of the study including com-
position, questionnaire and participants. Finally, we introduce a performance
measurement based on contact phases.

Hardware. In Fig. 1 and Fig. 2 the experimental setup is shown. The robot (2),
specifically a KUKA Lightweight Robot (LWR IV+) [4], was mounted upside
down to minimize interference. All assembly tasks were executed on a basis
platform (5) on top of a JR3 50M31A-I25 force torque sensor (1). Below the
platform an overload protection device (6) is visible which was used to prevent
potential damages due to sensor overload.

Using the force torque sensor, it was possible to capture forces and torques for
all assembly methods. During the usage of the robot, the end effector pose was
additionally acquired directly via the KUKA Fast Research Interface. An optical
tracking system (3), the Polaris Accedo by Northern Digital Inc., was used to
capture the pose during executing tasks in combination with the handle (see

536 A. Muxfeldt, J.-H. Kluth, and D. Kubus

Fig. 1. The experimental setup

Fig. 2. Detailed View

Fig. 3. Robot

Fig. 4. Hand

Fig. 5. Handle

(a) Peg (b) Spline (c) DIN rail (d) Bracket

Fig. 6. The four assembly tasks

paragraph Assembly Methods). Both sources were transformed into a common
coordinate system. Additionally, the participants were recorded on video with
a camera (4) during the entire experiment. The whole setup was surrounded
by a black curtain in order to generate reproducible environment settings with
minimal disturbance from outside for each participant.

Assembly Task. The study is based on four assembly tasks which are: to insert
a peg into a hole (in the following addressed as Peg), to insert a spline shaft into
a base (Spline), to mount a clip with a socket on a DIN rail (DIN rail) and to
assemble a mounting bracket to the associated base (Bracket). Pictures of all
tasks are given in Fig. 6 and detailed engineering drawings of all used parts can
be found in the technical report [11].

Assembly Methods. In order to perform the assembly tasks, three different
methods (Robot, Hand and Handle), which are presented in Fig. 3 to Fig. 5, were
used. For the first method the assembly part was attached to the robot, which
was controlled in a gravity compensation mode. This mode does not compen-
sate inertia and friction completely. The robot was equipped with two handles at

Kinesthetic Teaching in Assembly Operations 537

the end effector enabling full control of orientation and position by a human
operator. The second method was using the hand directly, also referred to as
manual assembly. For the third method the assembly part was attached to a
handle. This method was supposed to be an intermediate method which allows
limited tactile feedback in the assembly but less interference from inertia or
damping than a robot. Neglecting inertia and friction, the methods Handle and
Robot differ merely with respect to their interface (two handed vs. one handed).

Order of Experiments. To detect learning effects, different combinations and
orders of assembly tasks and methods were performed. To avoid an exponential
blow-up, the possible permutations had to be limited. The tasks (Peg, Spline,
DIN rail, Bracket) were performed in the mentioned and reversed order. For
the assembly methods, two orders (Hand, Robot, Handle) and (Robot, Hand,
Handle) were investigated. Each participant performed only one of these com-
binations. For each task the participants cycled through the different methods
before switching the task. The term experiment is used for a specific combina-
tion of method and task like Robot/Peg. Each of the twelve experiments was
performed five times in a row by each participant.

Participants. The total number of participants is 78. Two thirds of them are
between 14 and 39, and the remaining third between 44 and 71 years old. 38
are female, 40 male. Nearly half of the participants are university graduates or
students. We cannot assume that these participants describe a representative
sample of the population.

Contact Phases. We employ the length of the contact time per experiment to
classify the performance of an assembly operation. The detection of the initial
contact and the loss of contact are based on the measured force values. If the
measured force is above the sensor noise level for at least 0.1 seconds it is assumed
that the current state is in contact. No contact is assumed if the measured force
is in the range of the sensor noise for at least 1.0 seconds. These values are
based on observations using the video recordings and a frequency analysis of
participant motion (see Sect. 4). The goal of this definition is to distinguish
between a deliberate loss of contact and a loss because of external factors like a
rebound of the assembly part on the surface. Using this definition of a contact
phase up to 97% of the experiments had one single contact phase. This means,
after establishing initial contact, the participants rarely lost contact deliberately
to retry the whole process.

4 Results

Boxplot Visualization. In the following presentation of the results, box plots
are used. If the data points followed a Gaussian distribution, the dotted lines
would cover 99.3% of the samples [9]. However, our data is not always distributed

538 A. Muxfeldt, J.-H. Kluth, and D. Kubus

P
eg

Spline

D
IN

rail

B
racket

0

2

4

6

8
D
u
ra

ti
o
n

o
f
a
ll

c
o
n
ta

c
ts

(s
)

(a) Hand

P
eg

Spline

D
IN

rail

B
racket

0

2

4

6

8

(b) Handle

P
eg

Spline

D
IN

rail

B
racket

0

2

4

6

8

(c) Robot

Fig. 7. Duration of contact in the fifth trial for each combination of assembly method
and task

normally. If not mentioned otherwise, the number of data points in each box
corresponds to 78 – the number of participants. Plots are scaled such that the
dotted lines are always visible, but not necessarily every outlier.

Complexity of Assembly Tasks. For each of the combinations of our four as-
sembly tasks with the three methods (experiment), we evaluate the total contact
duration. In Fig. 7 the results of the last of five trials are visualized. In Fig. 7(a)
and Fig. 7(b), it can be seen that the four assembly tasks have roughly an in-
creasing duration from task Peg to the task Bracket. This progression suggests
that the difficulty of the tasks also increases in that order.

When using the robot, the contact duration is longer and more scattered
compared to using the hand or the handle. This observation suggests that the
parameters of the assembly strategy using the robot differ from the natural
strategy. There is also a significant difference in the order of complexity in the
assembly tasks Spline and DIN rail. This might be due to the increased lever
when using the robot.

Learning Effect. Regarding the learning effect by repeating the same experi-
ment, there is a distinctive decrease in duration from the first to the second trial.
The following trials only improve the duration by a small amount. Fig. 8 shows
the relative duration of the second to the fifth trial of the task Peg. For each
participant, the durations of the last four trials are divided by the duration of the
first trial yielding a contact duration normalized to the first trial. For example,
a participant who requires six seconds in the first trial and only three seconds in
the second trial would score 0.5 in the second trial. Using this figure the individ-
ual relative changes can be identified. The largest relative improvement occurs
in the method Robot where the median improves by about 43%. The improve-
ment from the first to the second execution in the method Hand is only about

Kinesthetic Teaching in Assembly Operations 539

#2 #3 #4 #5
0

1

2
R
e
la
ti
v
e
d
u
ra

ti
o
n

(a) Hand

#2 #3 #4 #5
0

1

2

(b) Handle

#2 #3 #4 #5
0

1

2

(c) Robot

Fig. 8. Relative duration (to first trial) of contact phases for assembly task Peg

23%. These observations confirm the ease of the learning attributed to kinesthetic
teaching.

Note that due to the relative visualization, the variance in the first trial is set
to zero but is still included because the relative durations of the following trials
show higher variances accordingly. The other assembly tasks exhibit a similar
development and are omitted due to space restrictions.

Figure 9 shows the results for the experiment Robot/Peg of only that half of
the participants who started with the peg task. This subset is further divided into
two groups with about 20 persons: A group who used the robot first (Fig. 9(c)
& (d)) and a group who performed manual assembly first (Fig. 9(a) & (b)).
Consequently, this experiment was the first one for participants in (c) & (d)
and the second one for participants in (a) & (b) (following their experiment
Hand/Peg).

1 2 3 4 5

0

10

20

30

Trial #

D
u
ra

ti
o
n

o
f
c
o
n
ta

c
ts

(s
)

(a) Hand first,
Peg first, slow

1 2 3 4 5

Trial #

(b) Hand first,
Peg first, fast

1 2 3 4 5

Trial #

(c) Robot first,
Peg first, slow

1 2 3 4 5

Trial #

(d) Robot first,
Peg first, fast

Fig. 9. Experiment Robot/Peg : Comparison of the development of ‘fast’ and ‘slow’
participants and influence of method order

Both of these groups are further divided into the 50% fastest (Fig. 9(b) & (d))
and the remaining (Fig. 9(a) & (c)) group, according to their result in the first
trial of the experiment Robot/Peg. Therefore, each box in the plots is comprised
of 10-12 data points, meaning participants.

540 A. Muxfeldt, J.-H. Kluth, and D. Kubus

It is interesting to see that the median duration in the last trial of all four
groups is similar (2.7 s, 2.4 s, 2.6 s, 3.8 s) compared to the standard deviation.
This means that after five trials of the experiment Robot/Peg members of each
group can achieve a similar result (regarding duration) even if they did not have
previous knowledge of the task (group that used the robot first) or had shown
bad performance in the first trial.

Statistical Tests. As mentioned in the introduction it was expected that the
results of the experiments would depend on the one hand on individual attributes
like technical affinity and spatial sense, and on the other hand on demographic
data like age. This data was acquired by using a questionnaire which contains
standardized questions to measure the self-assessed technical affinity and images
of 3d-tasks for the spatial sense. Statistical tests are used to test correlations
between all recorded attributes.

We cannot apply standard ANOVA as the random variables are not dis-
tributed normally. However, we can use the Kruskal–Wallis one-way analysis
of variance - a nonparametric version of ANOVA, which does not rely on the
normal distribution assumption [8]. The test checks the null hypothesis that
two or more sets of samples are from the same distribution. The alternative
hypothesis is that not all samples are from the same distribution.

In our case, we use the contact duration, the average mating force, and the
length of the assembly path as samples. The partition into groups is based on var-
ious factors including technical affinity, spatial sense, age, education, and other
demographic parameters. The tests are conducted on data of individual exper-
iments (like the experiment Robot/Peg) because as already shown the results
are different for each combination. The test results show no general conclusive
dependency on any of the tested group partitions. Several tests reject the null
hypothesis at a 5% significance level but these rejections only occur in single
experiments. Therefore, no significant general influential factors can be found.

As an example, the influence of spatial sense on the contact duration is visu-
alized in Fig. 10. Depicted is the cumulative relative frequency that a member
of a group has successfully finished the task after the given time. The three
groups are created based on the individual spatial sense score and are approxi-
mately equal in size. In the left case of that figure (experiment Robot/Peg), the
Kruskal–Wallis test does not result in a significant rejection of the null hypothe-
sis, in the right case it is rejected at the 5% significance level, meaning that the
samples are not drawn from the same distribution.

Correlation between the Assembly Methods Hand and Robot. To verify
the hypothesis that participants showing good results in the Hand experiments
also achieve good results in the Robot experiments, the participants are divided
into two groups. For each participant and for each assembly task, the median
duration of their five Hand trials is calculated. Then the median of these medians
is taken as the separator between the two groups. Note that these two groups
contain no information about the order of assembly tasks or methods.

Kinesthetic Teaching in Assembly Operations 541

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Duration of Contact (sec)

C
u
m
.
R
e
la
ti
v
e
F
re
q
u
e
n
c
y

Robot/Peg

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Duration of Contact (sec)

Robot/Bracket

Spatial Sense

Low

Medium

High

Fig. 10. Probability of being below a certain contact duration based on spatial sense
classifications of the participants

Looking at the two groups and comparing the median contact duration of
the Robot experiments, only in the task Bracket there is a significant difference
between the groups, meaning that persons who complete Hand trials faster are
not in general faster in completing Robot experiments. The results of the Kruskal-
Wallis tests are p = 0.5 (Peg), p = 0.2 (Spline), p = 0.6 (DIN rail) and
p = 0.05 (Bracket). Apart from the bracket, all cases suggest that the division
of the groups is not significant at a 5% level, meaning that there is in general no
conclusive evidence for a correlation between the contact duration in Hand and
Robot experiments.

Differences between Assembly Methods. In order to compare different
assembly methods, force torque data is used since only this type of data was
recorded for all assembly methods. Comparing the applied forces reveals signif-
icantly different distributions. In Fig. 11(a) the relative frequencies of forces for
the task Peg executed with each method are shown. Each line represents a sum
of histograms from all relevant trials in which the forces were normalized to the
maximum force applied by each participant (over all three methods). Addition-
ally, the bin counts of each of these histograms were normalized with respect to
the duration of the corresponding trial to ensure equal influence of each trial.

The first major difference is the measured maximum force. Using the robot,
higher mating forces were applied to the parts compared to the methods Hand
and Handle. This might be due to physical effects like the higher inertia and
friction loss in the robot joints. However, the method Handle shows a similar,
but less pronounced, behavior which indicates that the decreased tactile feedback
has a dominant influence. Other possible factors are the different points of force
application and the deteriorated vision due to the robot. The different shapes
of the distributions are another striking difference. For the methods Hand and
Handle the distributions decrease monotonically whereas the method Robot has
a long phase of nearly constant relative frequency after an initial drop.

542 A. Muxfeldt, J.-H. Kluth, and D. Kubus

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0001

0.001

0.01

0.1

1

Normalized Force

R
e
la
ti
v
e
F
re
q
u
e
n
c
y

Hand/Peg

Handle/Peg

Robot/Peg

(a) Relative frequencies of forces for different methods executing task Peg

0 1 2 3 4 5 6
0

2

4

6

8

·10−2

Frequency (Hz)

re
l.

|F
o
rc
e
|(

N
) Hand/All Tasks

Handle/All Tasks

Robot/All Tasks

(b) Force amplitude spectrum during participants motion

Fig. 11. Comparison of different assembly methods

For each assembly method, the force data of all participants and all experi-
ments is used to perform a Fast Fourier Transform (FFT). Figure 11(b) shows
the mean of all FFTs per assembly method. Before the mean is calculated, the
amplitude of each FFT is normalized by using the integral of the correspond-
ing FFT. Without this normalization, participants who mainly use high forces
would have a greater influence on the final shape. The steady force component
of the method Robot is the highest and the corresponding plot has the steepest
downward slope. This might be due to the high inertia of the robot and the
friction losses in the robot joints resulting in a mechanical low-pass. In contrast
to the method Robot the shapes of the methods Hand and Handle are similar
in shape. One interesting detail is that the shape of the method Handle is a bit
higher than the shape of the method Hand, except for very low frequencies.

5 Summary and Conclusion

Revisiting our hypotheses from the introduction, we would like to summarize
important findings of the study. Substantial evidence for rapid learning effects
could be found confirming the ease of learning attributed to kinesthetic teaching.
Surprisingly, neither a general correlation between the performance in manual
assembly and in kinesthetic teaching nor a clear dependency on personal at-
tributes could be observed.

A learning effect exists, especially regarding the first and the second execu-
tion. The effect is larger in the experiments involving the robot. More complex

Kinesthetic Teaching in Assembly Operations 543

assembly tasks could require more repetitions. A learning effect also occurs when
executing the same assembly task by different assembly methods. Participants
who assemble manually before guiding the robot perform better in their first
robot trial concerning the same task. However, this performance gain decreases
gradually and cannot be observed in the final trial. After several repetitions of
a specific task, participants achieve similar performance. This observation indi-
cates that kinesthetic teaching is a suitable method for programming robots by
shop-floor workers.

Solving an assembly task manually results overwhelmingly often in the best
performance regarding required contact duration and applied forces. The rela-
tive complexity difference between tasks observed in manual assembly cannot
generally be transferred to kinesthetic teaching.

There was no conclusive evidence that the performance in an assembly task
depends on personal attributes in general. Merely a slight dependence on spatial
sense could be found.

Participants who show good performance in manual assembly do not neces-
sarily perform well when guiding the robot. No general statistical evidence for
a correlation between the performance in kinesthetic teaching and in manual
assembly could be observed.

Furthermore, our study suggests that human assembly strategies cannot be ex-
tracted easily via kinesthetic teaching. Comparing manual assembly with kines-
thetic teaching, substantial differences in required contact duration, applied
forces, and movement frequencies can be observed. Thus, deriving human as-
sembly strategies by kinesthetic teaching is likely to yield significantly distorted
results. To extract and transfer human assembly strategies to robots using kines-
thetic teaching, the effects caused by the reduced tactile information as well as
the inertia and friction losses of the robot have to be considered to quantify their
influence.

Currently, we are deriving assembly strategies based on the data recorded dur-
ing this user study. By comparing the strategies derived from manual assembly
with those from kinesthetic teaching, the observation that kinesthetic teaching
is not a viable option to transfer human assembly strategies to robots will be
supported. Moreover, the comparison will give important clues on how guiding
the robot influences and alters assembly strategies found in manual assembly.

References

1. Akgun, B., Cakmak, M., Yoo, J.W., Thomaz, A.L.: Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective. In: Proceedings
of the Seventh Annual ACM/IEEE International Conference on Human-Robot
Interaction, HRI 2012, pp. 391–398. ACM, New York (2012)

2. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning
from demonstration. Robotics and Autonomous Systems 57(5), 469–483 (2009)

3. Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demon-
stration. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics,
pp. 1371–1394. Springer, Heidelberg (2008)

544 A. Muxfeldt, J.-H. Kluth, and D. Kubus

4. Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schäffer, A., Beyer, A.,
Eiberger, O., Haddadin, S., Stemmer, A., Grunwald, G., et al.: The kuka-dlr
lightweight robot arm-a new reference platform for robotics research and man-
ufacturing. In: 2010 41st International Symposium on Robotics (ISR) and 2010
6th German Conference on Robotics (ROBOTIK), pp. 1–8. VDE (2010)

5. Delson, N., West, H.: Robot programming by human demonstration: adaptation
and inconsistency in constrained motion. In: Proceedings of the 1996 IEEE Inter-
national Conference on Robotics and Automation, vol. 1, pp. 30–36 (1996)

6. Dillmann, R., Asfour, T., Do, M., Jäkel, R., Kasper, A., Azad, P., Ude, A., Schmidt-
Rohr, S., Lösch, M.: Advances in robot programming by demonstration. KI -
Künstliche Intelligenz 24(4), 295–303 (2010)

7. Kormushev, P., Calinon, S., Caldwell, D.G.: Imitation Learning of Positional and
Force Skills Demonstrated via Kinesthetic Teaching and Haptic Input. Advanced
Robotics 25(5), 581–603 (2011)

8. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. Jour-
nal of the American statistical Association 47(260), 583–621 (1952)

9. MathWorks: Matlab Documentation - Boxplot (2014),
http://www.mathworks.de/de/help/stats/boxplot.html

(accessed July 22, 2014)
10. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based

human motion capture and analysis. Computer Vision and Image Understand-
ing 104(2-3), 90–126 (2006), special Issue on Modeling People: Vision-based un-
derstanding of a person’s shape, appearance, movement and behaviour

11. Muxfeldt, A., Kluth, J.H.: User study on different assembly tasks. Tech. Rep.
07-14-1, Technische Universität Braunschweig, Institut für Robotik und Prozessin-
formatik (2014), http://www.rob.cs.tu-bs.de/content/03-research/
01-projects/69-userstudy/TechnicalReport.pdf

12. Pais, L., Billard, A.: Tactile interface user-friendliness evaluated in the context of
robot programming by demonstration. In: HRI Workshop on Advances in Tactile
Sensing and Touch Based Human-robot Interaction (2012)

13. Schou, C., Damgaard, J., Bogh, S., Madsen, O.: Human-robot interface for in-
structing industrial tasks using kinesthetic teaching. In: 2013 44th International
Symposium on Robotics (ISR), pp. 1–6 (October 2013)

14. Wrede, S., Emmerich, C., Grünberg, R., Nordmann, A., Swadzba, A., Steil, J.J.:
A user study on kinesthetic teaching of redundant robots in task and configuration
space. Journal of Human-Robot Interaction 2(Special Issue: HRI System Studies),
56–81 (2013)

http://www.mathworks.de/de/help/stats/boxplot.html
http://www.rob.cs.tu-bs.de/content/03-research/01-projects/69-userstudy/TechnicalReport.pdf
http://www.rob.cs.tu-bs.de/content/03-research/01-projects/69-userstudy/TechnicalReport.pdf

A Constraint Based Motion Optimization System
for Quality Inspection Process Improvement�

Nicolò Boscolo1, Elisa Tosello2, Stefano Tonello1, Matteo Finotto1,
Roberto Bortoletto2, and Emanuele Menegatti2

1 IT+Robotics Srl, Strada Prima 11, 35129 Padova, Italy
{nicolo.boscolo,stefano.tonello,matteo.finotto}@it-robotics.it

2 Intelligent Autonomous Systems Laboratory,
University of Padova, via Gradenigo 6a, 35131 Padova, Italy
{elisa.tosello,emg,bortolet}@dei.unipd.it

Abstract. This paper presents a motion optimization system for an industrial
quality inspection process where a vision device coupled with a manipulator robot
arm is able to perform quality and completeness inspection on a complex solid
part. In order to be deployed in an industrial production plant, the proposed sys-
tem has been engineered and integrated as a module of an offline simulator, called
WorkCellSimulator, conceived to simulate robot tasks in industrial environments.
The novelty of the paper concerns the introduction of time constraints into the
motion planning algorithms. Then, these algorithms have been deeply integrated
with artificial intelligence techniques in order to optimize the inspection cycle
time. This integration makes the application suitable for time-constrained pro-
cesses like, e.g., autonomous industrial painting or autonomous thermo-graphic
detection of cracks in metallic and composite materials.

1 Introduction

A manufactured product must adhere to a defined set of quality criteria. It must be
designed and built according to safety standards specified in the purchasing documen-
tation, and it has to be free of defects and non-conformities. Quality control (QC) [8] is
a procedure intended to ensure the observation of these requirements. In order to imple-
ment an effective QC program, an enterprise must first decide which specific standards
the product must meet; then the sequence/type of QC actions must be determined, for
instance the visual inspection to detect defects, such as cracks or surface blemishes.
Typically, companies that engage in quality inspection have a team of workers who fo-
cus on inspecting products. Some studies show that manual inspection faces numerous
problems [2]: human experts require intensive training, and even between well-trained
individuals, results tend to be observer-dependent. [6], [10], and [12] state that the ac-
curacy of human visual inspection declines with dull, endlessly routine jobs, that means
a 100% quality assurance is often unfeasible. Inspection tasks can be dangerous other
than difficult: workers may be required to handle materials hazardous. For example, de-
tection of cracks in metallic and composite parts in the automotive and aircraft industry

� This research has been funded by the European Unions 7th Framework (FP7/2007-2013) under
grant agreement No. 284607, Thermobot[1] project.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 545–553, 2014.
c© Springer International Publishing Switzerland 2014

546 N. Boscolo et al.

requires magnetic particle inspection: an ecologically undesirable and injurious to hu-
man health. Automated visual inspection is an alternative. Automation leads to several
advantages [5], including:

– Freeing humans from a dull and routine;

– Saving human labor costs;

– Performing inspection in unfavorable environments;

– Reducing demand for highly skilled human inspectors;

– Matching high-speed production with high-speed inspection.

In order to maximize the aforementioned benefits, experts have to select the auto-
mated strategy that better affect the performance of production processes in terms of
production cost, cycle time, and production quality. The choice can be complicated be-
cause these impacts vary from one inspection strategy to another. Thus, simulation can
be used to compare different strategies and select the most appropriate one [7].

In this paper, a motion optimization system for an industrial quality inspection pro-
cess is presented. A robot with a vision system on its end-effector has to fully examine a
complex solid part, e.g., for detecting cracks. Employing an automated inspection sys-
tem is useful if the robot correctly inspects the part performing a time-saving coverage
path. The novelty of the paper is the use of a minimum path covering algorithm able to
comply with time constraints.

In this way, even time limited industrial quality inspection processes can be analyzed;
e.g., in the autonomous thermo-graphic detection of cracks, a manipulator robot coupled
with a thermo-camera inspects a 3D component.

In order to save time during the inspection strategy setup, the authors decided to
simulate the process. With this aim, the proposed system has been engineered and
integrated as a module of an offline simulator, called WorkCellSimulator [11]. The
software, developed by IT+Robotics, is able to simulate robots tasks in industrial envi-
ronments allowing the definition of specific automated cells for customized production
processes, the robot off-line programming, the examination of robots and work cell ma-
chineries proper functioning, and the plan transfer into the real world. For a correct
product inspection, WorkCellSimulator enables the user to reproduce the scene and to
select the inspection points over the product. The system checks the points validity:
every point must be collision free and reachable by the robot. Points not satisfying the
requirements are removed and the remaining ones are ordered to form the minimum
coverage path the robot will follow during the inspection.

The remainder of the paper is organized as follows: Section 2 contains an overview
of the WorkCellSimulator planning procedure, exposing the adopted approaches for the
path and motion planning, the collision avoidance and the ATSP1 algorithm used to sort
the inspection zones and to obtain the minimum coverage path. Section 3 reports the
experiments performed on a practical case: the thermo-graphic detection of cracks, and
Section 4 concludes the paper and outlines the future work.

1 Asymmetric Travelling Salesman Problem.

A Constraint Based Motion Optimization System 547

2 Proposed Architecture

Given a 3D model of the inspected product, WorkCellSimulator guides the user from
the definition of the workcell (robot and other components) to the selection of set of the
visually inspected zones over the product. Then, the simulation core computes a sub-
optimal valid path which takes in account the time constraints extracted from the defined
zones. In a second stage, the simulator solves the motion planning problem related to
the path generated in the previous step. Concluding, the motions are translated in the
robot controller language and sent to the machine.

2.1 Data Workflow

When the 3D model of the product is imported, an oriented point cloud is created. This
redundant set of points will represent the feasible robot positions where the robot is able
to acquire images which will be used for cover the desired inspection with the selected
camera device. The points set is redundant in order to take more acquisitions of the
same surface. Each point is composed of three translations (X ,Y,Z) (in millimetres)
and three rotations (Rx,Ry,Rz) (in radians) representing the coordinates of the robot
end-effector taking the product as the reference system. The simulator core verifies
each point: points can be valid (i.e. reachable and not colliding), not reachable (robot
joints limits do not let the robot reaching the point) or colliding (if the robot reaches
the point, it will collide with the surrounding world). In the last two cases, they are
discarded from the trajectory and only the remaining points are exploited to plan the
path.

Fig. 1. System workflow overview. In (1) the product is imported and divided in zones (2). Then
in (3-4), the motion planner coupled with the ATSP solver will compute the path.

548 N. Boscolo et al.

Usually the product is not completely inspected, only the most relevant and sensible
parts are checked. For this reason the system permits to the user to select and group in
zones the points over the product. Each zone represents a space region to inspect. As
in the case of crankshaft, usually the zones are not placed one next to another. Then,
the robot needs to compute some extra movements to reach one zone from another.
These transitional movements increase the time of the inspection critically if not well
managed. The times required for moving from one zone to another can change if the
zones ordering change. Subsequently, the simulator attempts to reduce these times mod-
eling them as a feature to be optimized. Inside the simulator the problem is treated as a
complete graph. Formalizing, the nodes represent the zones and the edges are weighted
with the time required by the robot to drive between a couple of zones. Using the mo-
tion planning module, the simulator will compute the time cost to go from one zone
to another, the edge cost. The graph is used as input for the ATSP solver, which will
generate a time-saving sequence to cover all the inspection zones.

2.2 ATSP Solver and Heuristics

The solver used in this work is the Concorde TSP solver one of the most advanced
and fastest TSP solvers using branch-and-cut where the Chained Lin-Kernighan [3]
heuristic has been implemented and used in the described application. The Concorde
TSP Solver is written in the ANSI C programming language and has been used to
obtain the optimal solutions to the full set of 110 TSPLIB [9] instances, the largest
having 85,900 cities.

Fig. 2. Costs matrix representing the robot time needed to travel from one zone to another

As described in Subsection 2.1 the graph represents what the robot trajectory time is
in moving from one zone to another. The manipulator dynamics are stressed by different
and not manageable mechanic actors, like the friction. Then, the time of moving from
zone A to zone B is different from performing the symmetric action (see Figure 2). For
this reason our problem has been modeled as the Asymmetric TSP where each pair of
nodes has two edges connecting each other where edge costs are different. Despite this,
the Concorde is coded for the symmetric traveling salesman problem (TSP) and some
related network optimization problems. To reformulate the ATSP as a TSP, for each
zone a dummy zone (e.g, for Zone A a dummy zone Zone A*) is added. Between each
zone and its corresponding dummy zone a negative or very small distance with cheap
value is used. This ensures that each zone always occurs in the solution together with its
dummy zone. The original distances are used between the zones and the dummy zones,

A Constraint Based Motion Optimization System 549

where each zone is responsible for the distance going to the zone and the dummy zone
is responsible for the distance coming from the zone. The distances between all zones
and the distances between all dummy zones are set to infeasible, it means that a very
large value is selected for these distances in order to make them unelectable from the
solver.

2.3 Motion Planning

The aim of the offline motion planning architecture is find the correct robot arm joint
values in order to avoid collisions between from one task and the following one. The
planning and the optimization are performed over a configuration space of the robot
kinematic (joint positions) and dynamic variables (joints velocity and acceleration) in
order to plan a motion. A valid robot joints configuration is called key-point and it
corresponds to a collision free placement of the robot in its physical workspace. The
temporal sequence of these key-points is called the trajectory. The planners will add
other configurations among each couple of key-points with the aim of avoiding colli-
sions. The collision checking between two configurations is performed using a linear
interpolation of the robot motions. Each algorithm performs a backward configuration
search: from the last key-point to the first one. The software architecture core can be
split in three steps as shown in the Figure 3.

Fig. 3. Motion planning architecture overview

Fig. 4. Representation of smooth perturbation action. The middle points are moved towards the
straight line.

550 N. Boscolo et al.

In the first step, the trajectory feasibility is checked. The algorithm checks if each
trajectory keypoint corresponds to a configuration reachable by the robot and it is not
colliding. If the first step ends in a good way, the motion planners are executed in a
hierarchical order, from the most simple and fast to the most effective but slower. A
planner is executed only if the previous one fails to find a solution following this order:

1. Naive. Given the configuration sequence, the algorithm will check if each couple of
points is connectible2 otherwise it will try to add a point between them. Typically
the middle point of three points, may include a collision or the three points are not
connectible, then the algorithm will attempt to reposition this point editing each
single point dimension with various correction factors.

2. Bisection. This algorithm uses a logic that is similar to the previous one with the
following two main different features:

(a) A middle point dimension is moved using perturbation of random points over
a normal distribution.

(b) When a collision free middle point is found, the connectible test is performed.
But in this case each segment (first-middle and middle-second key-points) is
treated recursively using a divide and conquer technique.

3. ARW. The Adaptive Random Walks algorithm is part of the Probabilistic Roadmap
Methods. The proposed algorithm turns out to be simple to implement, and the
solution it produces can be easily and efficiently optimized. Furthermore, the al-
gorithm can incorporate adaptive components in order to be adapted to particular
problems. Proofs of the theoretical soundness of the algorithm are provided in [4].

After the kinematic evaluation, the optimization algorithms will edit the key-points in
order to make a smoother robot trajectory. All the algorithms that optimize the trajectory
will be computed:

1. Smooth. When the feasible motion path has been computed, it is not rare that the
final path has been filled with redundant points that makes the robot motions jerky.
In order to avoid motion that stress robot mechanics and increase the motion time,
several actions are performed:

– If two points are connectible and the are some middle points, the lasts will be
deleted.

– Given each consecutive 3-tuple points, the middle one is moved using a per-
turbation method. The perturbation pushes the middle point straight to the line
connecting the first and the third point (Figure 4).

2. Collision Aware Smooth. At this point, the motion plan is smooth, collision free but
discrete. The resulted trajectory is smooth and time saving, but it does not consider
the distance from the objects. This smooth planner keeps key-points to a minimum
distance without loosing the trajectory smooth property built from the previous plan
step.

2 Two key-points are connectible if the robot motions needed to reach the second point starting
from the first one are collision free.

A Constraint Based Motion Optimization System 551

3 Results and Case Study

The system has been evaluated on the Thermobot [1] test product shown in Figure 5.
The first test focuses on the reliability of the system, where the zones over the prod-
uct are labeled with consecutive numbers (see Figure 5). After the system computation,
the output sequence is a reasonable one, 4-3-2-1, where the robot should spend 4.599
seconds to transitional movements. The worst case is the sequence 3-1-2-4, with a tran-
sitional trajectories time of 5.654 seconds. On average, this will save half second for
each inspected product. This appears to be a good result considering the large number
of pieces made in a factory.

Fig. 5. Zones over a mechanical engine part: the crankshaft

The second set of tests focus on the performance of the motion planning architecture
provided by the WorkCellSimulator. A good performance of the motion planning mod-
ule is a must in order to compute the cost matrix for the ATSP solver (see Figure 2).
The architecture is compared with a successful single shot algorithm, the ARW. Several
trials with different trajectory sizes (Figures 6, 7) have been performed. Further, Figure
8 shows that the WorkCellSimulator motion planning architecture (hierarchical set of
algorithms and heuristics) has higher performance than a single algorithm. That is be-
cause the mixed policy built inside the simulator is more flexible than a general purpose
algorithm like ARW. Looking deeply, the standard deviation of the computational times
is straightforward that the architecture is more stable in terms of response times. Which
is a strong requirement for applications used in industrial processes.

Fig. 6. WorkCellSimulator planning architecture performance in different size trajectories

552 N. Boscolo et al.

Fig. 7. ARW performance in different size trajectories

Fig. 8. Comparison between a classic single planner (ARW) and WorkCellSimulator motion plan-
ning architecture

4 Conclusions and Future Works

The paper presented the development and validation of a motion optimization system
for the manufacturing quality inspection process. A robot equipped with a vision sys-
tem has to cover a complex solid part. To correctly simulate the task execution, Work-
CellSimulator was integrated with a module able to plan the minimum coverage of the
path according to predefined temporal constraints. As a result, given a set of inspection
points and a time within which they must be inspected, the system checks the points
validity (i.e. every point must be reachable by the robot, and not cause collisions) and
deletes those which do not satisfy such requirements. The ATSP algorithm orders the
remaining points and forms the minimum coverage path observing the time constraints.
The computed path is the trajectory the robot has to follow to inspect the product.

The use case proves that the system is able to select the most suitable inspection
strategy according to the process cycle time.

As future work, we envision to be able to implement dynamic planning. It will in-
clude a dynamic path planning, collision avoidance and on-line simulation. In detail, an
on-line work-cell simulation will be implemented in order to simulate the path of the
robot in real time and to make continuously available information about potential col-
lisions so that a dynamic adaptation of the planned motion will be possible. When the
work cell is equipped with a system able to forward dynamic feedback to the simulator,
the dynamic planning will adapt the motion of the robot according to this feedback; in

A Constraint Based Motion Optimization System 553

the detection of cracks, for example, if the vision system provides feedback to the sim-
ulator, the latter will dynamically and locally adapt the collision-free path of the robot
in order to optimize the image quality.

References

1. Thermobot project, http://thermobot.eu/
2. Govindaraju, M., Mital, A., Subramani, B.: A comparison between manual and hybrid meth-

ods in parts inspection. Integrated Manufacturing Systems 9, 344–349 (1998)
3. Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman prob-

lems. INFORMS Journal on Computing 15(1), 82–92 (2003)
4. Carpin, S., Pillonetto, G.: Motion planning using adaptive random walks. IEEE Transactions

on Robotics 21(1), 129–136 (2005)
5. Chin, R.T., Harlow, C.A.: Automated visual inspection: A survey. IEEE Transaction on

Pattern Analysis and Machine Intelligence PAMI-4(6), 557–573 (1982)
6. Coren, S., Girgus, J.S.: Visual spatial illusions: Many explanations. Science 179, 503–504

(1973)
7. Liangsiri, J., Corstack, H.-A., Höfling, M.: Simulation in quality management an approach

to improve inspection planning, Schottland, September 5-8 (2004)
8. Radford, G.S.: The Control of Quality in Manufacturing. Ronald Press Co., New York

(retrieved November 16, 2013), OCLC 1701274
9. Reinelt, G.: TSPLIB—A traveling salesman problem library. ORSA Journal on Comput-

ing 3(4), 376–384 (1991)
10. Schoonard, J.W., Gould, J.D.: Field of view and target uncertainty in visual search and in-

spection. In: Human Factors (February 1973)
11. Tonello, S., Zanetti, G.P., Finotto, M., Bortoletto, R., Tosello, E., Menegatti, E.: WorkCell-

Simulator: A 3D simulator for intelligent manufacturing. In: Noda, I., Ando, N., Brugali,
D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 311–322. Springer, Heidelberg
(2012)

12. Wang, J.S.C.: Human reliability in visual inspection. Quality (September 1974)

http://thermobot.eu/

Dealing with Conflicting Requirements in Robot

System Engineering: A Laboratory-Based Course

Luca Gherardi1, Davide Brugali2, and Andrea Luzzana2

1 ETH Zürich, Switzerland
lucagh@ethz.ch

2 University of Bergamo, Bergamo, Italy
{andrea.luzzana,brugali}@unibg.it

Abstract. This paper presents a project-based laboratory for senior-
level students in computer engineering that is based on the LEGO Mind-
storms kits extended with a set of off-the-shelf microcontrollers and
custom electronics. It is organized in an integrated set of projects, which
individually cover a subset of typical issues and challenges involved in
the development of a complete robotic system. The pedagogical goal is
to equip students with an understanding of how engineering of complex
projects is a multi-dimensional decision making process and with team-
work and self-learning skills.

1 Introduction

Robustness, versatility, low-cost, performance, and reusability are examples of
conflicting requirements that make the process of engineering robotic systems a
difficult and challenging endeavour [3]. Robotic system engineers should master
highly heterogeneous technologies in order to exploit and integrate them in a
consistent and effective way. Thus, from an educational point of view, robot
system engineering is both a challenge and an opportunity [10].

Teaching robotic system engineering is challenging because Robotics is an ex-
perimental science that plays the role of integrator of the most advanced results
in a large variety of research fields and thus is highly dependant on the evolution
of the underlying technologies. Teaching robotic system engineering should there-
fore focus on providing students with the skills (1) to identify stable and varying
aspects in the domain of robotic systems, (2) to analyze conflicting requirements
arising from the need to exploit and integrate heterogeneous technologies, and
(3) to perform careful multidimensional modelling and design of complex systems
where properties are emerging from the interaction of constituent parts.

Learning robotic system engineering is an opportunity to discover how theo-
retical concepts in a variety of scientific disciplines typically learned in different
classes can be applied in practice, and how synergies among disparate techno-
logical fields can be exploited to build complex systems [2].

Aim of this paper is to present a project-based laboratory that senior-level
students in computer engineering take before graduation at the Computer science
Department at the University of Bergamo. It is an optional laboratory that
follows a compulsory half-year course in Robotics.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 554–565, 2014.
c© Springer International Publishing Switzerland 2014

Dealing with Conflicting Requirements in Robot System Engineering 555

The pedagogical goal of this laboratory is to equip students with an under-
standing of how engineering of complex systems is a multi-dimensional decision
making process, which consists in analyzing and eliciting conflicting require-
ments, identifying alternative designs, selecting, implementing, and verifying
tradeoff solutions, and how complexity incorporates not only technological is-
sues, but also the human organization.

For this purpose, the laboratory has been structured as a Problem-Based
Learning (PBL) course, where students are assigned an open-ended engineering
problem [9], which: a) requires more information than is initially available, b)
admits multiple solution paths, c) changes as new information is obtained, d)
requires collaboration among students. The laboratory described in this paper
has several elements of novelty compared with the state of the art.

First, it covers a larger set of topics than other project-based courses (e.g. [7]),
as it allows students to face an integrated set of challenges related to mechani-
cal design, wireless communication protocol design, motor control, sensor data
processing, microcontroller programming, and PC programming. This is highly
appreciated by students since the curriculum in computer engineering at the
University of Bergamo can be customized by including courses in mechatronics,
and mechanical engineering.

Second, it addresses the various phases of the robot engineering process, from
requirements elicitation and analysis, to system design and subsystem devel-
opment, up to system integration and validation. A similar approach has been
documented in [4], where a course in design and implementation of a small robot
is described. The small robot is much simpler than the kind of robotic system
developed during the project-based laboratory described in this paper.

Third, it uses the LEGO kit not for its simplicity as in [12], [5], [11], and [6]
but for its versatility [13]. Indeed, the LEGO RCX has been replaced by a more
powerful low cost microprocessor in order to control a larger number of motors
and sensors than it is allowed by the RCX or the NXT devices.

Fourth, it is organized in an integrated set of projects, which individually
cover the issues and challenges involved in the development of a specific subsys-
tem of the complete robotic system. Each project is assigned to a small group
of students, who have to complete their assignment taking into account the
requirements of their subsystem and the constraints imposed by the other sub-
systems. This organization allows students to learn the importance of proper
documentation of project results both as users and providers. In contrast, the
courses described in the literature (e.g. [14], [6]) are typically organized as a set
of simple and independent projects.

The paper is organized as follows. Section 2 summarizes the curriculum in
computer science offered at the University of Bergamo. Section 3 presents the
laboratory assignment and describes the LEGO robotic system that has been
developed during the laboratory. Section 4 presents the organization of the labo-
ratory in terms of student groups and activities. Section 5 illustrates the system
engineering challenges faced by the students. Finally Section 6 reports on the
lesson learned and on the project evaluation, and draws the relevant conclusions.

556 L. Gherardi, D. Brugali, and A. Luzzana

2 Course Description

The University of Bergamo offers a computer engineering degree organized in
two levels (3 years and 2 years long). The project-based laboratory, presented in
the paper is complementary to the course of Robotics, which is offered during
the first semester of the last year of the second level degree, is mandatory in the
Mechatronics and Industrial Informatics curricula and optional in the Networked
Information Systems curriculum.

The objective of the Robotics course (9 CFUs)1 is to provide an introduction
to the fundamental concepts, models, and algorithms to develop software control
systems for autonomous mobile manipulation robots. The key topics include: (a)
robot kinematics, (b) motor control, (c) robot perception (laser, sonar, 2D-3D
camera), (d) motion planning and navigation, (e) control and software architec-
tures with a specific focus on reusing open source libraries. The course spans
over 12 weeks in the first semester; it is made of lectures of 3 hours each, that
are given twice a week for a total of 24 lectures.

Before the Robotics course, students follow several courses in computer sci-
ence, control, electronics, and mechatronics, which provide the required back-
ground for the project-based laboratory described in this paper, such as: (a)
high level programming languages (36 CFU), (b) embedded, real-time, and dis-
tributed system programming (15 CFU), (c) digital control and system identifi-
cation (21 CFU), (d) multi-body systems modeling and design (6 CFU).

3 The LEGO Mobile Manipulator

The overall goal of the project-based laboratory, declared to the students dur-
ing the first day, was the following. “The final objective is the design and the
realization of a mobile manipulator. The rover must be able to move towards a
desired position (expressed in terms of x, y, θ with respect to the initial pose
reference frame) while the arm to reach any pose in its 3D workspace (expressed
in terms of joint positions). The human operator specifies the rover and arm
target positions through a graphical user interface running on a standard PC.
The effectiveness of the design should be evaluated in terms of robustness by
defining a stress test for the hardware, versatility by analyzing the shape of the
workspace, and performance by analyzing position accuracy and repeatability.”

The assignment didn’t specify any specific kinematic model, neither for the
rover nor for the arm. The students were also free to decide the more appropriate
localization mechanism to be used for computing the rover position (e.g. odom-
etry, visual based), the number of computational nodes, and the distribution of
functionality among the computational nodes.

The result of the laboratory-based course is the mobile manipulator robot de-
picted in Figure 1 (left). The robot is composed of an omnidirectional wheeled

1 University Formative Credit (CFU):1 CFU correspond to 25 hours of study including
homeworks.

Dealing with Conflicting Requirements in Robot System Engineering 557

ICR

Robot
Center

V

ω

Tleft Tright

X

Y

Castor
wheel

Fig. 1. The mobile manipulator (left) and the rover kinematic model (right)

rover and a 6 degrees of freedom (DOF) arm. The rover and the arm are con-
trolled by two onboard microcontrollers that communicate with a remote PC
workstation. The workstation executes a GUI that allows the user to specify a
target position of the arm joints and a target position of the rover with respect
to a global reference frame. A simple navigation algorithm localizes the robot
using images captured by a ceiling camera, computes the trajectory (turn on
place and move forward) from the current position to the target position and
sends velocity commands to the rover MCU.

The robot has been built using six LEGO Mindstorms kits. In total, ten DC
motors (9V, 300 mA), twelve rotary encoders with a resolution of 16 steps per
revolution, and eight contact sensors were used. The motors allow a no-load
maximum rotation speed of 360 rpm and a stall torque of 5.5 Ncm.

The LEGO RCX computational unit has been replaced by a more powerful
STR32 microcontroller (MCU). The MCU interfaces the LEGO motors and sen-
sors through custom electronic boards developed by the students during another
course project. All the devices are power supplied by 3 cells LiPo batteries with
a nominal voltage of 11.1 V and 2 A/h capacity. The MCU communicates with
a remote PC over an 802.15.4 wireless network provided by Maxstream ZigBee
modules [8] which establish a broadcast wireless connections offering a bitrate
of 115200 bit/s.

3.1 The Robot Kinematics

The kinematic structure of the omnidirectional nonholonomic rover (see right
part of Figure 1) is based on two separate differential drive subsystems (Tleft

and Tright), linked to a rigid platform by two passive steering axis, and a castor
wheel. Each subsystem has a couple of actuated wheels coupled with a rotary
encoder providing speed feedback and a third rotary encoder measuring the
angular position of the steering axis.

The desired motion of the robot is specified by the linear velocity vector V
and the rotational speed ω expressed in the robot reference frame (X,Y). These
two parameters identify an unique instantaneous center of rotation (ICR) around

558 L. Gherardi, D. Brugali, and A. Luzzana

which the robot will move. When the ICR position changes, the wheels of each
differential drive subsystem are actuated with opposite velocities in order to
rotate it on place so that the wheels axes intersect at the new ICR. Then, each
wheel is actuated in order to reach a reference speed.

The kinematic structure of the robotic arm is that of a typical 7-DOF robotic
arm, where the first axis is replaced by the underlying rover. The last three joints
intersect in a single point (wrist center) in order to satisfy the Pieper condition
and simplify the closed form solution of the inverse kinematics.

Each one of the six joints is actuated by a LEGO motor and mounts a rotary
encoder to measure the angular position. A contact sensor, acting as a limit
switch, is used to obtain the home position of the joint at startup. The arm
MCU executes six separated closed loop position controllers.

4 Laboratory Organization

The objective of the project-based laboratory was to allow students to face the
challenge of developing a complex system. Here, according to the etymology,
complex does not mean complicated but interlaced. Indeed, the development of
the LEGO robot described in Section 3 provides food for thought along two
interlaced dimensions: spatial and temporal.

The spatial dimension is concerned with the modular structure of the robotic
system (the rover, the arm, the onboard and the offboard computation). Con-
sidered the number of students, the development of the entire robot was broken
down by the instructors into four projects (depicted in Figure 2), which were
defined according to following principle: the projects (a) had to lead to the
development of composable building blocks, so that they could be carried out
concurrently, and (b) had to be interdependent, so that they could stimulate the
discussion and the interaction between the groups.

The first two projects were assigned to groups of three students with a specific
interest in mechatronics, while the other two projects to groups of four students
with an interest in industrial informatics or information systems. Each project
spanned a total of twelve weeks. Students carried on their projects during the
sessions attended by the tutors (four hours per week) and met in the laboratory
at least two additional times per week.

The temporal dimension is concerned with the development process, which
requires the students to analyze, disentangle, and negotiate conflicting require-
ments, to revise design decisions according to ongoing work by other students,
and to integrate heterogeneous technologies. The projects were structured in
four phases, according on the typical design stages of mechatronic projects [14].

During the first phase (Requirement elicitation and Technology assessment),
the four groups were invited to internally discuss the project assignment, to
devise the requirements for the subsystem to be developed, to discuss these
requirements with the other groups, to survey the available literature, and to
get the necessary software tools.

Dealing with Conflicting Requirements in Robot System Engineering 559

Lego rovers survey Kinematics model analysis
Getting started with the

toolchain
Open source libraries study

Double differential drive
prototype and kinematics

3-DOF arm prototype
Axes position and wheels

velocity control
Marker localization

Double differential drive
with sliding contacts

3-DOF wrist and
kinematics

ICR control and
communication

Localization based
navigation and GUI

Integration

2 weeks

3 weeks

4 weeks

3 weeks

Project 1
Rover development

Project 2
Manipulator development

Project 3
MCU programming

Project 4
Workstation programming

Fig. 2. The projects steps and dependencies (dashed arrows)

During the second and third phase (Subsystem design and prototyping), re-
spectively, each group designed and developed a first prototype and the final
version of its subsystem.

The fourth phase (System integration and evaluation) was for the integration
of the system. It required the groups to coordinate their efforts in order to solve
any inconsistencies in the software and in the hardware.

While the organization of the spatial dimension was fixed, the students had the
possibility to discuss with the instructors the organization of activities carried
out during the four development phases defined along the temporal dimension.

5 System Engineering Challenges

The students of the four projects faced several development challenges that al-
lowed them to realize the complexity of system engineering and to learn the im-
portance of negotiating conflicting requirements. The challenges can be grouped
according to the development phases: requirement analysis, design and imple-
mentation, and integration. They are described in the next three subsections.

5.1 Challenge 1: Developing Feasible Requirements

During the first phase, the students faced the issue of analyzing the project as-
signment and eliciting the required functionality. The project assignment reflects
a typical problem in system engineering: the customer needs are normally de-
scribed as a wish list. In particular, the project assignment generically indicates
that the robot has to be a mobile manipulator and that it has to be able to reach
a pose in the 3D environment specified by the user.

The students of Project 1 analyzed different kinds of LEGO rovers docu-
mented in literature (such as [5]). The ambition of creating a kind of LEGO
rover never developed before motivated the students to design an omnidirec-
tional robot. Furthermore, the ominidirectional kinematics model would greatly
satisfy the versatility requirement specified in the project assignment.

After a survey of the literature, the students quickly realized that omnidirec-
tional rovers typically use Swedish wheels, which are not included in the LEGO

560 L. Gherardi, D. Brugali, and A. Luzzana

Mindstorms kit and cannot be easily built using LEGO bricks. They understood
that in this case Versatility and Reusability are conflicting requirements.

Similarly, the students of Project 2 surveyed the literature on manipulator
kinematic models. In order to satisfy the Versatility requirement, they evaluated
the possibility to build a 7-DOF arm such as the Kuka LWR (3 DOF for the
shoulder, 1 DOF for the elbow, and 3 DOF for the wrist). The students realized
that such a robot would be difficult to build with LEGO bricks and moreover it
would be an excessive weight for the rover. They understood that in this case
Versatility and Robustness are conflicting requirements.

The two groups understood that the kinematics of the mobile manipulator
had to be specified jointly. A viable alternative for building an omnidirectional
rover has been identified by taking inspiration from [1]: the students of Project
1 decided to design a double differential drive rover, which is feasible reusing
LEGO bricks and provides both stability and traction power (four motors for
traction and steering). In order to take into account the payload limitations of
the rover, the students of Project 2 decided to develop an arm with only 2 DOF
for the shoulder since the missing DOF is provided by the rover.

The two groups discussed this choice with the students of Project 3, who
emphasized the complexity of developing the control software for the double
differential drive due to the need to synchronize and coordinate the motion of the
two traction systems. They also pointed out that this issue would have affected
the performance (position accuracy and repeatability) of both the rover and the
arm. Here students understood that in this case Robustness and Performance
are conflicting requirements.

The students of Project 1 raised a concern about the possibility to estimate the
rover motion using only odometry due to the limited resolution of the encoders
and the difficulty in controlling the double-differential rover. Two solutions were
considered: using an onboard webcam to track visual markers placed on the floor
in known positions or mounting the webcam on the ceiling in order to track a
visual marker on the rover. Both solutions would satisfy the Performance re-
quirement. The former solution would better satisfy the Versatility requirement,
since the workspace would not be limited by the field of view of the camera
mounted on the ceiling, but was immediately discarded because the students
of Project 3 pointed out the limitations of the onboard MCU, which does not
have enough power to process camera images. Here students understood the
importance of Resource constraints in the design of embedded systems.

Students of Project 3 discussed with their colleagues of Project 4 about how
to distribute the functionality of the robot between the MCUs and the work-
station taking into account the low bitrate of the wireless communication and
the different characteristics of the computational units. The MCU can perform
real-time tasks by reacting to hardware interrupts in a very short time but has a
limited computational power. On the contrary, the workstation PC has a high-
frequency CPU but no efficient I/O mechanisms. Thus, the students agreed to
implement the wheels closed-loop speed controller and ICR controller on the

Dealing with Conflicting Requirements in Robot System Engineering 561

rover MCU, the joints closed-loop position controller on the arm MCU, and the
image processing and GUI on the workstation.

5.2 Challenge 2: Integrating Heterogeneous Technologies

During the second and third phase, the students faced the issue of designing and
implementing the four subsystems. In particular, they realized that the LEGO
Mobile Manipulator is a good example of heterogeneous structures where prop-
erties (Robustness, Versatility, Performance) are emerging from the interaction
of constituent parts and cannot be confined into individual subsystems.

The students of Project 2 faced several design issues due to the limited reso-
lution of the encoders and the gears backlash. In particular they had to consider
two conflicting requirements: position accuracy and repeatability. The former
can be achieved by mounting the encoder between the motor shaft and the re-
duction gearbox of the joint. The latter, which is more important in industrial
applications, can be achieved by mounting the encoder between the reduction
gearbox and the joint shaft. The students understood that the performance of
the robotic arm results from the specific integration of the mechanical subsystem
and the sensor subsystem. Indeed, they realized that the position uncertainty
due to the limited resolution of the encoder is higher than the gear backlash,
thus repeatability could not be improved by mounting the encoder on the joint
axis, while it was much easier to mount it on the motor axis.

Students of Project 2 realized that it was crucial to place the three motors
of the wrist as much as possible close to the base of the arm in order to have a
lower weight on the joints. This requirement could be met by building a complex
differential transmission gearbox. As a result the joints of the wrist couldn’t be
moved independently requiring the definition of the transformation from joints
velocity to speed of the motors. The students of Project 2 and Project 3 under-
stood that systems engineering typically involves design decisions, whose effects
are not local to individual subsystems but span over interconnected systems.
Indeed, the design of the differential transmission implied a significant higher
effort to implement the axis controllers on the MCU of the arm.

The students of Project 3 and Project 4 discussed the specification of a shared
serial communication protocol between the MCUs and the remote workstation.
They agreed on the packet length and structure, the commands identifiers and
parameters, and the units of measurement of the exchanged data. The students
understood the importance of separating the common interface between two
interdependent functionalities from their specific implementations. Indeed, the
students of the two groups could focus on the implementation of the functionality
for motion control on the MCU and for navigation on the workstation indepen-
dently. In particular, the students of Project 3 implemented the functions to
read the encoders, to generate the PWM output for the motors, and to read
the serial communication peripheral. The students of Project 4 implemented a
simple GUI for sending commands to the rover and to the arm, using software
libraries learned in previous courses. They also implemented a simple naviga-
tion algorithm that periodically localizes the rover using the ARTK+ library,

562 L. Gherardi, D. Brugali, and A. Luzzana

computes the straight line between the rover current position and the target
position, and generates the velocity commands to turn the rover on place and
to drive it toward the target.

5.3 Challenge 3: Revising Requirements and Design Decisions

The development of the LEGO Mobile Manipulator has been a highly itera-
tive process as is typical in complex systems engineering. The students had to
solve some design problems that emerged only when they started testing and
integrating the various subsystems.

The first prototype of the double differential drive had a notable limitation:
the traction subsystems weren’t able to steer more than 180 degrees because of
the cables used for transmitting signals and power between the MCU, the motors
and the encoders. Thus the students considered the possibility to improve the
prototype in order to remove the steering limitation. They understood that the
interface between the mechanical subsystem and the electronic subsystem was
not well defined. They realized that a sliding contact along the turning axis of
each traction system was needed. They faced here two conflicting requirements:
Performance and Reusability, i.e they had to increase the steering capability of
the rover using material available in the laboratory. The chosen approach was to
build two sliding contacts using only LEGO bricks and copper wires. The rotor
is made up of eight coaxial pulleys mounted on the revolving axis. Eight copper
cables are rounded on each pulley and come out from the bottom of the rotor
in order to be connected to two motors and two encoders. The stator is made
up of sixteen coaxial vertical supports, which tense eight copper cables around
the pulleys. These cables come out from the top of the stator in order to be
connected to the MCU.

Once assembled, the LEGOmobile manipulator robot has been tested in order
to validate the overall system and identify design errors. The following problems
have been identified and solved during this phase:

– The load of the rover was higher than expected and not well balanced. As
a consequence, the castor wheel was not able to turn adequately when the
rover had to change direction. This problem has been mitigated by better
distributing the load of the batteries.

– Oscillations in the motors movements led to a flickering motion of the rover.
This problem has been addressed by better tuning the PI parameters of the
wheel speed controllers.

– Several data packets were transmitted incorrectly during the communication
between the workstation and the two MCUs on the robot. Students realized
that the wireless communication in broadcast mode was unreliable and de-
cided to implement a protocol that checks for corrupted packets in order to
retransmit them.

– The marker localization algorithm was highly sensitive to the scene illumi-
nation due to the limited capability of the low-cost webcam. They suggested
to use an additional light source to improve the scene illumination.

Dealing with Conflicting Requirements in Robot System Engineering 563

By integrating their subsystems and evaluating the resulting system, students
had an additional opportunity to learn about the constraints that characterize
systems engineering.

6 Evaluation and Concluding Remarks

Students were required to submit a technical documentation of their achieve-
ments at the end of each phase using the Trello (http://trello.com) collab-
oration tool, which provided each group of students with an individual project
board and each student with an individual account. This system allowed the
instructor to track the contribution of each student to the project development
and assess the student learning (50% of the score). The documentation has been
evaluated for completeness and adequacy of the bibliographic references and for
the accuracy of the technical description of the proposed solution (e.g. the use
of standard modeling languages, such as UML for documenting the software).
The rest of the grade was based on oral questions designed to check to what
extent students contributed to the project, their role in the group, and their un-
derstanding of the system requirements, the motivations underlying the design
choices, and the correlation between design choices and system behaviour during
the experimental evaluation of the robotic system functionality.

The analysis of the documentation and the oral exam clearly indicates that
the students learned three fundamental lessons emerging from the challenges
they faced during the development of the LEGO mobile manipulator.

The first lesson learned is that a careful analysis of the informal user’s require-
ments (i.e. project assignment) and of the technical specifications (i.e. LEGO kit)
must be performed in order to develop a good set of feasible requirements taking
into account the resources available to the project (material, time, knowledge).

The second lesson learned is that robotic systems engineering is inherently
complex due to the interdisciplinary skills required, the heterogeneous technolo-
gies involved, and the difficulty in characterizing the interactions among systems
and subsystems.

The third lesson learned is that developing robotic systems is a highly iterative
process that may require to revise initial requirements and design decisions. Even
if the initial problem has been carefully decomposed in subproblems (the four
projects), their individual solutions (the four subsystems) may not fit together
particularly well at first.

The project-based laboratory has been introduced for the first time in the
2008-2009 session as complementary to the Robotic course. Beside the specific
skills acquired through the project development, the positive effects of the lab-
oratory on the student learning achievement can be measured indirectly by ob-
serving their grades attained for the Robotics course in each session.

As indicated in Table 1, in contrast to previous editions of the Robotics course,
more students have passed the exam right after the end of the course and the
average grades were higher. These results indicates that the project-based lab-
oratory allowed the students to gain a better understanding of the theoretical

http://trello.com

564 L. Gherardi, D. Brugali, and A. Luzzana

Table 1. Student attainment of the Robotics course before and after the introduction
of the project-based laboratory

Metric 2001-2008 2009-2013

Mean success rate (%) 73 87

Mean score (min 18, max 30) 25 27

concepts presented in the Robotics course. In addition the instructors observed
a more regular and involved students’ partecipation during the classes.

With regard to the pedagogical objectives illustrated in Section 1, the devel-
opment of LEGO robot has presented both strengths and weaknesses.

The proposed project-based laboratory offered the students the opportunity
to appreciate the multidisciplinary nature of robotics, and to investigate the close
relationship between software and hardware design. It is easily scalable and can
be offered to larger classes. For example, a fifth group of students could develop
a perception system, which uses the LEGO light sensor to drive the rover along
a visual path on the floor. A sixth group of students could use the same sensor
to recognize colored spots on a wall. In this case, the sensor could be mounted
on the arm. In both cases, additional conflicting requirements would emerge.

At the same time, the limitations of the LEGO kit generated a sense of frustra-
tion in the students, who got excited about creating an entire robot from scratch
but got disappointed about the high technological gap between the project-based
laboratory and other theoretical courses in their curriculum. More specifically,
the groups who developed the rover and the arm used a trial-and-error method
of direct implementation of the chosen kinematics model since the mechanical
properties of LEGO bricks (gears, wheels, pulley, joints) were not available for
performing a model-based design and evaluation of transmission efficiency, back-
lash, and wear as they learned in previous courses. In contrast, the students who
programmed the MCU followed the Ziegler-Nichols empirical method to tune
the PI parameters of the position and speed controllers

The validity of the approach has been evaluated by requesting the students
to fill an anonymous questionnaire, which is common to all the courses of the
Faculty of Engineering at the University of Bergamo. Table 2 summarizes the
results, which reports the mean and the spread of the scores for the project-
based laboratory presented in this paper and the mean of the scores for all the
courses of the Faculty of Engineering (the maximum score was ten). Overall the
project-based laboratory has been successful, as demonstrated by the high scores
of the first three questions. Students found it appropriate to have this course in
their curriculum, they were highly motivated to contribute to the success of the
team work, and considered the topic very interesting. The workload has been
perceived to be in line with other courses. Most students found unusual the lack
of a textbook and the need to search for adequate material by themselves.

Dealing with Conflicting Requirements in Robot System Engineering 565

Table 2. Scores of the evaluation questionnaires

Question Mean Spread Mean (Faculty)

Curriculum Organization 7.9 1.5 7.4

Motivation 8.4 0.7 7.3

Interest in the topic 8.1 1.4 7.2

Workload adequacy 7.1 1.2 7.0

Teaching material adequacy 7.0 2.7 8.0

Assessment Method 7.2 1.7 7.9

References

1. Borenstein, J.: Experimental results from internal odometry error correction with
the omnimate mobile robot. IEEE Transactions on Robotics and Automation 14(6),
963–969 (1998)

2. Brugali, D.: Exploiting the synergies between robotics and software engineer-
ing: A project-based laboratory. In: Global Engineering Education Conference
(EDUCON). IEEE (2014)

3. Brugali, D., Gherardi, L., Biziak, A., Luzzana, A., Zakharov, A.: A reuse-oriented
development process for component-based robotic systems. In: Noda, I., Ando,
N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628,
pp. 361–374. Springer, Heidelberg (2012)

4. Crisman, J.: System design via small mobile robots. IEEE Trans. Educ. (1996)
5. Kim, S., Jeon, J.: Introduction for freshmen to embedded systems using lego mind-

storms. IEEE Trans. Educ. 52(1), 99–108 (2009)
6. Kim, Y.: Control systems lab using a lego mindstorms nxt motor system. IEEE

Trans. Educ. 54(3), 452–461 (2011)
7. Lee, C., Su, J., Lin, K., Chang, J., Lin, G.: A project-based laboratory for learning

embedded system design with industry support. IEEE Trans. Educ. (2010)
8. Maxstream XBee ZigBee, http://www.digi.com/
9. O’Grady, M.J.: Practical problem-based learning in computing education. Trans.

Comput. Educ. 12(3), 10:1–10:16 (2012)
10. Padir, T., Chernova, S.: Guest editorial special issue on robotics education. IEEE

Transactions on Education 56(1), 1–2 (2013)
11. Papadimitriou, V., Papadopoulos, E.: Putting Low-Cost Commercial Robotics

Component to the Test. IEEE Robotics & Automation Magazine 14, 99–110 (2007)
12. Ruiz del Solar, J.: Robotics-centered outreach activities: An integrated approach.

IEEE Trans. Educ. 53(1), 38–45 (2010)
13. Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., Fiorini, P.: A review of robotics

kits for tertiary education. In: Proc. Int. Workshop Teaching Robot. Teaching
Robot., Integr. Robot. School Curric., Riva del Garda, Italy (2012)

14. Tutunji, T., Saleem, A., Rabbo, S.A.: An undergraduate mechatronics project
class at philadelphia university, Jordan: Methodology and experience. IEEE Trans.
Educ. 52(3), 365–374 (2009)

http://www.digi.com/

Using Augmented Measurements

to Improve the Convergence of ICP

Jacopo Serafin and Giorgio Grisetti

Dept. of Computer, Control and Management Engineering,
Sapienza University of Rome, Via Ariosto 25, 00185, Rome, Italy

{serafin,grisetti}@dis.uniroma1.it

Abstract. Point cloud registration is an essential part for many robotics
applications and this problem is usually addressed using some of the ex-
isting variants of the Iterative Closest Point (ICP) algorithm. In this
paper we propose a novel variant of the ICP objective function which is
minimized while searching for the registration. We show how this new
function, which relies not only on the point distance, but also on the
difference between surface normals or surface tangents, improves the reg-
istration process. Experiments are performed on synthetic data and real
standard benchmark datasets, showing that our approach outperforms
other state of the art techniques in terms of convergence speed and ro-
bustness.

Keywords: Point Cloud Registration, ICP, Surface Normals.

1 Introduction

Registering two point clouds is a building block of many robot applications such
as simultaneous localization and mapping (SLAM), object recognition and de-
tection, augmented reality and many others. This problem is commonly solved
by variants of the Iterative Closest Point (ICP) algorithm proposed by Besl and
McKay [1]. ICP tries to find a transformation that minimizes the distance of
a set of corresponding points in the two clouds. At each iteration ICP refines
the estimate of the transformation by alternating a search and an optimization
routine. Given the current transform, the search looks for corresponding points
in the two clouds. The optimization computes the transformation that results
in the minimum distance between the corresponding points found by the search
step. ICP is a very successful scheme and several variants of increasing perfor-
mances have been proposed. If the correspondences are free from outliers and
the measurements are affected by low noise, the transformation can be found
directly by applying the Horn formula [3].

The whole concept at the base of ICP is that, at each iteration, an improved
transformation with respect to the previous one is found. Such a transformation
represents the new initial guess for the heuristic used to find the correspondences
and allows to determine better associations at the next iteration. Accordingly, re-
searchers focused on seeking for heuristics that provide “good” correspondences.

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 566–577, 2014.
c© Springer International Publishing Switzerland 2014

ICP Augmented Measurements 567

The original idea of picking up the closest points [1] has been progressively
refined to consider features, curvature and other characteristics of the points.
Pomerlau et al. [5] provided an excellent overview on these different variants.

ICP and its variants require multiple iterations because it does not exist an
heuristic that provides the exact correspondences. Since the optimization re-
quires linear time in the number of correspondences, the bottleneck of the com-
putation is represented by the heuristic that has to compute them.

The main drawback of ICP in its original formulation is the assumption that
the points in the two surfaces are exactly the same. This is clearly not true
as the point clouds are obtained by sampling a set of points from the surface
observed by the sensor. If the observer position changes, the chances that two
points in the clouds are the same is very low. This is particularly evident at
low sampling resolutions. Aware of this aspect, Magnusson et al. [4] proposed
to approximate the surface with a set of Gaussians capturing the local statistics
of the surface in the neighborhood of a point. In that representation, called
the Normal Distrubution Transform (NDT), the correspondence search uses the
Mahalanobis distance instead of the Euclidean one and the optimization tries to
minimize it.

Similarly, Segal et al [6] proposed a refined version of ICP called Generalized
ICP (GICP). The core idea behind this algorithm is to account for the shape of
the surface which surrounds a point by approximating it with a planar patch.
In the optimization, two corresponding patches are aligned onto each other, ne-
glecting the error along their tangent direction. This can be straightforwardly
implemented by minimizing the Mahalanobis distance of corresponding points,
where the covariance matrix of a measurement is forced to have the shape of a
disk aligned with the sampled surface. Thanks to the better rejection of false
correspondences based on the surface normal cue and the more realistic objec-
tive function, NDT and GICP exhibit a substantially more stable convergence
behavior.

In fact, within ICP and its variants, the optimization and the correspondence
search are not independent. If the optimization is robust to outliers and exhibits
a smooth behavior, the chances that it finds a better solution at the subsequent
step increases. In this way an improvement is obtained at each iteration until
a good solution is found. Despite NDT and GICP, the authors are unaware of
other methods that improve the objective function.

Since point clouds are the effects of sampling a surface, the local characteristics
of this surface play a role in the optimization. From this point of view, the
objective function has to express some distance between surface samples, and the
optimization algorithm has to determine the optimal alignment between these
two set of samples. A surface sample, however, is not fully described just by 3D
points, but it requires additional cues like the surface normal, the curvature and,
potentially, the direction of the edge. Both NDT and GICP minimize a distance
between corresponding points, while they neglect additional cues that can indeed
play a role in determining the transformation and in rejecting outliers.

568 J. Serafin and Giorgio Grisetti

In this paper we propose a novel variant of the objective function which is
optimized while searching for the transformation. This function depends not only
on the relative point distance, but also on the difference between surface normals
or tangents in case the point lies on an edge. We provide an iterative form for the
optimization routine and we show through experiments performed on synthetic
data and standard benchmark datasets that our approach outperforms other
state of the art techniques, both in terms of convergence speed and robustness.

2 ICP

The problem of registering two point clouds consists in finding the rotation
and the translation that maximizes the overlap between the two clouds. More
formally, let Pr = {pr

1:Nr} and Pc = {pc
1:Nc} be the two set of points, we want to

find the transformation T∗ that minimizes the distance between corresponding
points in the two scenes:

T∗ = argmin
T

∑
C

χ2
ij︷ ︸︸ ︷(

pc
i −T⊕ pr

j

)T
Ωij

(
pc
i −T⊕ pr

j

)︸ ︷︷ ︸
eij(t)

. (1)

In Eq. 1 the symbols have the following meaning:

– T is the transform that is updated at each step i of the iterative algorithm
with the one found at iteration i− 1;

– Ωij is an information matrix that takes into account the noise properties of
the sensor or of the surface;

– C = {〈i, j〉1:M} is a set of correspondences between points in the two clouds.
〈i, j〉 ∈ C means that the point pr

j in the cloud Pr corresponds to the point
pc
i in the cloud Pc;

– eij(t) is the error function that computes the distance between the point
pc
i and the corresponding point pr

j in the other cloud after applying the
transformation T;

– χ2
ij is the Ωij-norm of the error eij(t);

– ⊕ is an operator that applies the transformation T to a point p. If we use
the homogeneous notation for transformations and points, ⊕ reduces to the
matrix-vector product.

In general, the correspondences between two point clouds are not known. How-
ever, in presence of a good approximation for the initial transform, they can
be “guessed” through some heuristic like nearest neighbour. In its most gen-
eral formulation, ICP iteratively refines an initial transform T by searching for
correspondences and finding the solution of Eq. 1. Such a new transformation
is then used in order to compute the new correspondences. Eq. 1 describes the
objective function used in the optimization of ICP, NDT and GICP. In the case
of ICP, Ωij is a diagonal matrix potentially scaled with a weight representing

ICP Augmented Measurements 569

the confidence about the correctness of a correspondence. NDT computes the
covariances Σi directly from the point cloud and it measures the distances by
using the mean of the Gaussians rather than the points as shown in Eq. 2.

T∗ = argmin
T

∑
C

(
μc
i −T⊕ pr

j

)T
Σ−1

i

(
μc
i −T⊕ pr

j

)
. (2)

In GICP, Ωij = Σ−1
i depends only on the ith point pc

i and its neighborhood.
The covarianceΣi is enforced to have a disk shape and to lie on the surface from
where pc

i was sampled. In all cases, the difference pc
i−T⊕pr

j is a 3D vector that
measures the offset between two 3D points and the domain of the error function
is "3.

Since an increase in the dimensionality of the points makes the whole system
more observable, less correspondences are required for the optimization process.
By characterizing each point with other quantities to which a transform can
be applied, we can achieve such an increase in the dimensionality. We propose,
for this reason, the use of normals for quasi-planar regions and/or tangents for
regions of high curvature.

3 Extended ICP

In this section we describe the extension of the model of ICP in order to consider
also normals and tangents of the surface. We first illustrate the general concept
and, subsequently, we focus on the case in which a local surface has either a
normal, a tangent or none of the two. We conclude the section by sketching an
algorithm to carry on the optimization.

3.1 Extending the Measurements

Let ni be the normal of a point pi belonging to a certain surface, and τ i its
tangent if the point is part of an edge, we can then extend Eq. 1 as follows:

T∗ =argmin
T

∑
C

(
pc
i −T⊕ pr

j

)T
Ωp

ij

(
pc
i −T⊕ pr

j

)
+

∑
C

(
nc
i −T⊕ nr

j

)T
Ωn

ij

(
nc
i −T⊕ nr

j

)
+

∑
C

(
τ c
i −T⊕ τ r

j

)T
Ωτ

ij

(
τ c
i −T⊕ τ r

j

)
.

(3)

Here nc
i , n

r
j and Ωn

ij represent respectively the normal of the point pc
i and

pr
i, and the information matrix of the correspondence among the two normals.

Similarly, τ c
i , τ

r
j and Ωτ

ij are the tangents and the information matrix of the
correspondence among the two tangents. We recall that, if T is a transformation
described by a rotation matrix R and a translation vector t, the ⊕ operator has
different definitions depending on its arguments:

T⊕ x =

{
R · x+ t if x is a point
R · x if x is a tangent or a normal

(4)

570 J. Serafin and Giorgio Grisetti

A Mahalanobis distance between two point clouds can be measured by consider-
ing also the distances of corresponding normals and corresponding tangents after
applying the transformation T, as shown in Eq. 3.

By defining an extended point p̄ as a vector consisting of a point p, its normal
n and its tangent τ , we have a straightforward modification of the ⊕ operator
as

p̄ =
(
p, n, τ

)T
T⊕ p̄ =

(
Rp+ t, Rn, Rτ

)T
. (5)

Eq. 3 can be, then, compactly rewritten in terms of extended points as

T∗ = argmin
T

∑
C

(
p̄c
i −T⊕ p̄r

j

)T
Ω̄ij

(
p̄c
i −T⊕ p̄r

j

)
, (6)

where Ω̄ij = diag(Ω
p
ij , Ω

n
ij , Ω

τ
ij) summarizes the contribution of Ωp

ij , Ω
n
ij and

Ωτ
ij . The function diag(a1, . . . , ak) stands for a diagonal matrix whose entries,

starting from the upper left corner, are a1, . . . , ak . If the point is not sampled
from a locally planar surface nor from an edge, a reasonable distance metric is
the Euclidean distance. For these points, we fall back to the ICP case, which
is enclosed in Eq. 6 by setting the information matrices of the tangent and the
normal to the null matrix: Ωn

ij = Ωτ
ij = 0.

When measuring the distance between two planar patches, it is reasonable
to neglect displacements along the tangent direction of the plane, while errors
along the normal direction should be more severely penalized. Additionally, the
normals of the two planes should be as close as possible. However, this constraint
cannot be enforced when using only 3D points. To obtain this behavior from the
error function, we can impose Ωp

ij
−1

to be a disc lying on the surface around pc
i ,

as done in [6]. Since the tangent is not defined in a planar patch, we set Ωτ
ij = 0.

Additionally, we set the covariance matrix Ωn
ij
−1 of the normal to have a shape

which is elongated in the normal direction. In this way the error between the
normals introduces a strong momentum that “forces” them to have the same
direction.

Conversely, when measuring the distance between two edges, it is reasonable
to slide them onto each other along the tangent direction. This behavior can
be obtained by enforcing Ωp

ij
−1

to have a prolonged shape and to lie along the
tangent direction. The tangents τ , instead, can be used to penalize two edges
not lying on the same direction by setting Ωτ

ij to have a shape which is elongated
in the direction of τ . Since an edge has no normal, Ωn

ij has to be set to 0.
The reader might notice that tangents and normals are mutually exclusive.

Since the contributions of the tangent and the normal components to the χ2
ij

have the same matrix dimensions, we can further simplify the extended point
p̄ by partitioning it into an affine part p, and in a linear part l. The former is
subject to translations and rotations, the latter only to the rotation. In this way
it is possible to reduce the dimension of the error function and to speed up the
calculation without loss of generality. We therefore define a compact form for an
extended point p̃ as

p̃ =
(
p, l
)T

T⊕ p̃ =
(
Rp+ t, Rl

)T
. (7)

ICP Augmented Measurements 571

Table 1. This table summarizes the components of the information matrix used in
our algorithm, depending on the type of the structure around a point. Rni and Rτi

are two rotation matrices that bring the y axis respectively along the direction of the
normal ni, or the tangent τ i. ε is a small value (10−3 in our experiments).

Case Ωp
ij Ωn

ij Ωτ
ij

planar Rnidiag(
1
ε
, 1, 1)RT

ni
Rnidiag(

1
ε
, 1
ε
, 1)RT

ni
0

edge Rτidiag(
1
ε
, 1
ε
, 1)RT

τi 0 Rτidiag(
1
ε
, 1
ε
, 1)RT

τi

none I 0 0

According to the new formalism, the objective function in Eq. 6 becomes

T∗ = argmin
T

∑
C

(
p̃c
i −T⊕ p̃r

j

)T
Ω̃ij

(
p̃c
i −T⊕ p̃r

j

)︸ ︷︷ ︸
ẽij(T)

, (8)

where Ω̃ij = diag(Ω
p
ij , Ω

l
ij), and the information matrices must be modified

according to Table 2

Table 2. This table summarizes the components of the information matrix for our
algorithm when using a reduced representation

Case li Ωp
ij Ωl

ij

planar ni Rnidiag(
1
ε
, 1, 1)RT

ni
Rnidiag(

1
ε
, 1
ε
, 1)RT

ni

edge τ i Rτidiag(
1
ε
, 1
ε
, 1)RT

τi Rτidiag(
1
ε
, 1
ε
, 1)RT

τi

none 0 I 0

3.2 Carrying on the Optimization

In this section we present the procedure for the minimization described in Eq. 8
by using a strengthened least squares procedure. The input of this algorithm
are two sets of extended points p̃c

1:n and p̃c
1:m, a (noisy) set of candidate corre-

spondences C = 〈i, j〉1:M and the information matrix Ω̃ij , computed according
to Table 2. The aim of this procedure is to find the transform T∗ that minimizes
the following objective or cost function

T∗ = argmin
T

∑
C

ẽij (T)
T
Ω̃ij ẽij (T)︸ ︷︷ ︸
χ̃2
ij

. (9)

Each correspondence contributes to the overall cost function by the scalar term
χ̃2
ij .

572 J. Serafin and Giorgio Grisetti

As is well know, the minimizing T∗ of Eq. 9 can be found by iteratively solving
the following linear system:

H ·ΔT = −b , (10)

where H =
∑

C J
T
ijΩ̃ijJij is the Hessian matrix, b =

∑
C J

T
ijΩ̃ij ẽij is the coeffi-

cient vector and Jij is the Jacobian of the error function. At each iteration we
compute an improved transform T′ from the previous transform T by using H
and b. By solving the linear system in Eq. 10 we determine a perturbation ΔT
which is applied to the previous transform T in order to reduce the error. The
transform T′ of the next iteration is thus computed as

T′ = ΔT⊕T′ . (11)

For readers interested in further details on the derivation of Eq. 10 we suggest
the work by Kümmerle et al. [2].

In our approach, a perturbation ΔT is defined as a vector composed of two
parts (Δt Δq)T where Δt = (Δtx Δty Δtz) is a translation vector and Δq =
(Δqx Δqy Δqz) is the imaginary part of the normalized quaternion used to
represent an incremental rotation. If Δt = 0, the perturbation is the 4-by-4
identity matrix. Under this parameterization, the Jacobian Jij with respect to
the local perturbation ΔT is computed as

Jij =
∂eij
(
ΔT⊕T(n)

)
∂ΔT

∣∣∣∣∣
ΔT=0

=

(−I 2[T⊕ pr
j]×

0 2[T⊕ lrj]×

)
, (12)

where [x]× is the cross product matrix of the vector x. In practice, by exploiting
the block structure and the sparsity of the Jacobian, it is possible to compute
efficiently the linear system in Eq. 10.

In order to be robust to the presence of outliers, which usually significantly
contribute to the error, the proposed scheme has to be further modified. To
reduce the contribution of these wrong terms, we scale the information matrix
of each correspondence whose χ2 is greater than an acceptance threshold by a
factor γij .

γij =

{
1 if χ2

ij < K
K
χ2 otherwise

(13)

Even if the correct correspondences are rejected at the beginning of the iterative
process, these will be considered again as the system converges towards a better
solution, since their χ2 will decrease.

In order to smooth the convergence it can be also added a damping factor to
the linear system in Eq. 10. In practice, ΔT is found by solving the damped
linear system (H+λI)ΔT = −b, since it prevents the solution to take too large
steps that might be caused by nonlinearities or wrong correspondences.

3.3 Optimization Summary

In this subsection we wrap-up the ideas discussed above and we provide the
sketch of an iterative algorithm the optimization of Eq. 8. At each iteration our

ICP Augmented Measurements 573

algorithm computes an improved estimate T′ from the current estimate T by
executing the following steps:

1. Compute the information matrices Ω̃ij according to Table 2;
2. Compute the error vector ẽij as shown in Eq. 8;
3. Compute the Jacobian Jij according to Eq. 12;
4. Compute the χ̃2

ij as in Eq. 9 and the scaling factor γij from Eq. 13;
5. Compute a scaled version of the Hessian and of the coefficient vector as:

H =
∑
C

γijJ
T
ijΩ̃ijJij b =

∑
C

γijJ
T
ijΩ̃ij ẽij ; (14)

6. Solve the linear system of Eq. 10 to find an improved perturbation ΔT;
7. Compute the improved transformation T′ as in Eq. 11.

4 Experiments

We validated our approach both on real and synthetic data. The real world
experiments were conducted on publicly available benchmarking datasets, and
they show the performances of our optimization algorithm when included in a full
ICP system. The experiments on synthetic data, instead, allow to characterize
the behavior of our approach under different levels of sensor noise and outlier
ratios. Comparisons with NDT are not showed since it performs similarly to
GICP because they rely on analogous representations of the points.

4.1 Real World Experiments

For the real world experiments we used the benchmarking datasets by Stuerm et
al. [7]. Each dataset consists in a sequence of depth and RGB images acquired
with a calibrated RGBD camera in a reference scene. Note that even if our
approach is not restricted to the use of depth images, we decided to use these
datasets since they are labeled with the ground truth of the transformations. We
do not make use of the RGB channels.

In order to provide the input data to the algorithm illustrated in the previ-
ous section, we processed the point cloud P generated from each depth image
by extracting the local surface characteristics from the neighborhood of each
point pi . This process is performed by computing the parameters of a Gaussian
N (μi,Σi) and taking all points that lie within a fixed ball centered in pi, as

μi =
1

|Pi|
∑

pk∈Pi

pk Σi =
1

|Pi|
∑

pk∈Pi

(pk − μi)
T (pk − μi) , (15)

where Pi is the set of all points in P that are closer than a fixed distance from
pi.

For determining if a point lies on a corner, an edge or a flat surface, we an-
alyze the eigenvalues of its covariance matrix Σi. If all eigenvalues have more

574 J. Serafin and Giorgio Grisetti

or less the same magnitude, we assume the point is on a corner. If one of the
eigenvalues is smaller with respect to the other two, we assume the point lies
on an edge. Finally, if one of the eigenvalues is smaller of some order of magni-
tude with respect to the others then we assume the point is on a planar patch.
This discrimination is necessary to compute the correct information matrices,
according to Table 2.

Given two clouds to be aligned, we search the correspondences using a line
of sight criterion over the depth images, we reject the correspondences whose
normals are too different and we execute one iteration of optimization. Notice
that ICP and GICP are special cases that can be captured by our algorithm just
by modifying the way in which the information matrices are computed. To focus
our analysis on the objective function we left all parts of the system unchanged,
including the correspondence selection. This represents an advantage for plain
ICP, since normally it does not rely on the normals in order to reject wrong
associations.

For each dataset, we incrementally aligned one frame to the previous one.
For each iteration of the alignment, we compared the difference between the
current solution and the ground truth. Each attempted alignment produced a
plot which shows the evolution of the rotational and translational error. For
compactness, we provide in this paper only the average error plots obtained by
averaging all errors of a run1. The reader who is interested in the individual plots
of each alignment, can find them at http://www.dis.uniroma1.it/~serafin/
publications/icp-augmented-measurements.

In order to measure the robustness of the alignments to wrong initial guesses
we performed several runs of the experiments by considering a frame each N .
Table 3 shows the average evolution of the rotational and the translational error
on three different datasets and at different frame skips.

The plotted results point out that our novel objective function in general per-
forms better than the other approaches, in particular in terms of convergence
speed. This is true especially for the rotational part of the error since it is in-
fluenced directly by the normals. Also in the case where no frame was skipped
(first column of Table 3), GICP required twice the number of iterations to con-
verge to the results of our approach. Moreover, ICP and GICP showed much less
robustness to frame skipping (second and third column of Table 3).

4.2 Experiments on Synthetic Data

We conducted experiments on synthetic data in order to assess the effects of
the inliers and of the sensor error on our optimization function. To this end we
generated a scene consisting of about 300k 3D points with normals and tangents.
Then, we computed the correct correspondences and ideal measurements and we
corrupted them. This process has been performed by injecting a variable fraction
of random outliers and perturbing the measurements by adding Gaussian noise

1 With run we denote all the alignment over a single dataset with a certain frame skip
rate.

http://www.dis.uniroma1.it/~serafin/publications/icp-augmented-measurements
http://www.dis.uniroma1.it/~serafin/publications/icp-augmented-measurements

ICP Augmented Measurements 575

Table 3. Average evolution of the translational and rotational error for three different
datasets at varying frame skip rates. Our approach is labeled “nicp” in the captions of
the images.

frame skip rate: 1 frame skip rate: 10 frame skip rate: 20

d
a
ta
se
t:

fr
1
/
3
6
0

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.18
 0.2

 0.22
 0.24
 0.26
 0.28

 0.3
 0.32
 0.34
 0.36
 0.38

 0 2 4 6 8 10
ro

ta
tio

na
l e

rr
or

 [
ra

d]

iteration

icp
gicp
nicp

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

d
a
ta
se
t:

fr
1
/
d
es
k
2

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

d
a
ta
se
t:

fr
1
/
ro
o
m

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26
 0.28

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 2 4 6 8 10

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 0.055

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7

 0 2 4 6 8 10

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

576 J. Serafin and Giorgio Grisetti

Table 4. Average evolution of the translational and rotational error at different outlier
ratios and levels of noise affecting the measurements of the point (standard deviation,
in meters) and the normals (standard deviation in degrees). Our approach is labeled
“nicp” in the captions of the images.

outliers: 10% outliers: 50% outliers: 90%

n
o
is
e:

0
.1
[m

],
0
◦

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 10

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

n
o
is
e:

0
.1
[m

],
5
◦

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 10

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

n
o
is
e:

0
.3
[m

],
2
0
◦

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.1

 1

 10

 0 10 20 30 40 50

ro
ta

tio
na

l e
rr

or
 [

ra
d]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

 0.01

 0.1

 1

 10

 0 10 20 30 40 50

tr
an

sl
at

io
na

l e
rr

or
 [

m
]

iteration

icp
gicp
nicp

ICP Augmented Measurements 577

to the points and normal estimates. For each setting we ran our approach, ICP
and GICP, and we plotted the evolution of the translational and rotational error.
The results are shown in Table 4.

Overall the experiments on synthetic data reflect the behavior of the real
world ones. Shortly, using additional information in the error function makes
the approach more robust and accelerates the convergence. This is particularly
true at high rates of outliers and sensor noise. Not surprisingly, instead, noise in
the normals lowers the performances. In the unrealistic scenario in which every
normal is affected by a 20◦ error at 90% of outliers the translational estimate
becomes less accurate than GICP, but it still converges to a reasonable solution.

5 Conclusions

In this paper we proposed a novel optimization function to register point clouds
using an ICP based algorithm that takes into account an augmented measure-
ment vector. Statistical comparative experiments on real and synthetic data
show that our approach performs better than other state of the art methods
both in terms of convergence speed and robustness. As expected, the normals
and the tangents of the surfaces showed an improvement in particular in the ro-
tational part of the error, while keeping the translational one similar to the other
approaches. A further enhancement could be obtained by finding an additional
measurement, related to the translation, to be considered in the minimization
of the cost function.

Acknowledgments. This work has partly been supported by the European
Commission under FP7-600890-ROVINA.

References

1. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (1992)

2. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based
slam. IEEE Intelligent Transportation Systems Magazine 2(4), 31–43 (2010)

3. Horn, B.K., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute ori-
entation using orthonormal matrices. Journal of the Optical Society of America
(1988)

4. Magnusson, M., Duckett, T., Lilienthal, A.J.: Scan registration for autonomous min-
ing vehicles using 3D-ndt. Journal on Field Robotics (2007)

5. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on
real-world data sets. Autonomous Robots (2013)

6. Segal, A.V., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proc. of Robotics: Science
and Systems, RSS (2009)

7. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for
the evaluation of rgb-d slam systems. In: Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, IROS (2012)

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 578–589, 2014.
© Springer International Publishing Switzerland 2014

Design of a Kiosk Type Healthcare Robot System
for Older People in Private and Public Places

Ho Seok Ahn1, I-Han Kuo2, Chandan Datta1, Rebecca Stafford3, Ngaire Kerse4,
Kathy Peri5, Elizabeth Broadbent3, and Bruce A. MacDonald1

1 Department of Electrical and Computer Engineering, CARES,
University of Auckland, Auckland, New Zealand

{hs.ahn,chandan.datta,b.macdonald}@auckland.ac.nz
2 Department of Computing, Unitec Institute of Technology, Auckland, New Zealand

ikuo@unitec.ac.nz
3 Department of Psychological Medicine, CARES,
University of Auckland, Auckland, New Zealand

{r.stafford,e.broadbent}@auckland.ac.nz
4 Department of General Practice and Primary Health Care, CARES,

University of Auckland, Auckland, New Zealand
n.kerse@auckland.ac.nz

5 School of Nursing, CARES, University of Auckland, Auckland, New Zealand
k.peri@auckland.ac.nz

Abstract. In this paper, we introduce a healthcare robot system for older people
and its experiments in private and public spaces. We designed a healthcare
robot system and healthcare functionalities, and conducted a long-term study in
a real environment. Our healthcare robot system consists of three parts: a kiosk
type service robot platform, a healthcare software system with healthcare
service modules, and a medical server system. 1) The kiosk type service robot
platform is used for giving helpful information to older people through a touch
screen. 2) The healthcare software system is designed to enable easy
modification of healthcare service modules according to the purpose of the
robot. 3) The medical server system stores health information of older people
for managing their health conditions. For validating our software design and
implementation in real environments, we deployed this healthcare robot system
in private and public places of a retirement village. In these experiments, older
people interacted with the robots and used healthcare functionalities for over 12
weeks. During the experiments, the robots sent records of the interactions to our
medical server. The server provides this information to clinicians who are
supervising the older peoples’ health status. When the experiments were
completed, the participants completed questionnaires. The results showed that
older people in private places used the healthcare service for checking their
health conditions, and older people in public places like to use the entertainment
services. We confirmed that our kiosk type robot can help older people as well.

Keywords: Healthcare robot system, caring of older adults, health condition
management, healthcare service, private homes, rest home lounges.

 Design of a Kiosk Type Healthcare Robot System for Older People 579

1 Introduction

Our society is rapidly moving toward an aged society with the older population rising
sharply [1-2], which is a big concern for care service providers in the future [3-4].
Older people will be troubled with illness as a result of a degenerative loss of brain
function [5]. Therefore, they will require long-term care, but it will be challenging to
provide care due to the lack of care staff [6-9]. Animal therapy is one of the
successful solutions to help older people in care facilities [10-11], but they may carry
infectious diseases, and may bite or cause physical damage [12]. Instead of live
animals, companion and assistant robots have been used, such as the therapeutic robot
PARO, a baby harp seal robot intended to have a calming effect on patients in
hospitals and nursing homes, similar to animal-assisted therapy [13-14]. The doglike
robot AIBO developed by SONY achieved success in the robotics market [15].
People, who live alone as well as older people, feel happy when caring for and living
with AIBO. Robots can also help older people by providing assistance with daily life
and in managing people’s conditions. Researchers have developed several types of
companion and assistant robot systems and found that companion and assistant robots
can have positive effects on both psychological and physical outcomes [16-19].

In our previous research, we have designed an assistant robot system to provide
companionship and healthcare support to older people. We have studied how to
improve quality of life and health conditions of older people through several long-
term studies. Our first long-term study was an acceptability study with 53 participants
from 2008 to 2009. This study found that robots are acceptable to older adults [20]. In
our second long-term study, we deployed robots in a retirement village from 2010 to
2011. We asked residents and staff at a retirement village what they would like a
robot to do and look like so we could design a dedicated healthcare robot
appropriately [21, 30]. We developed a healthcare robot system HealthBots to do
some of these tasks. We tested HealthBots in a cross-sectional study at a retirement
village, and found that staff and residents could interact with the robot and that
peoples’ attitudes towards robots improved after meeting it [22]. After improving
some aspects of HealthBots, we carried out a two-week observational study in the
lobby of the retirement center to test aspects of feasibility and acceptance [24]. We
carried out a range of experiments in private and public spaces in a retirement village
and hospital from the fourth quarter of 2011 as our third long-term study [5, 12, 23,
31]. This study included six investigations, and five kinds of robot platforms such as
PARO, Guide, Charlie, iRobi, and Friend robots: 1) A cross-over randomized trial in
the independent units, 2) A non-randomized trial in the lounge areas of the rest homes
and hospitals, 3) An observational study in the public areas, such as Reception, Café
and Medical center, 4) An interview study with Paro and Guide robot in the dementia
unit with residents, staff and relatives, 5) A randomized trial of Paro in the hospital
and rest home, and 6) fall monitoring of the older people in daily life. We used
Charlie and iRobi robots as healthcare robot platforms in the first study, and Charlie
and Guide robots as healthcare robot platforms in the second study.

This paper focuses on the design of the healthcare robot system with the Charlie
platform and Charlie experiments in the first and second investigation of our third
long-term study. Fig. 1 shows the use of Charlie for measuring the vital signs of an

580 H.S. Ahn et al.

older adult in a rest home. Charlie has healthcare functionalities including measuring
vital signs, Skype calls, a brain fitness game, and some entertainment functions. Our
healthcare robots manage the health status of older people by helping them to measure
their vital signs and sending the results to the medical server for giving their medical
information to doctors. In addition, older adults interact with the healthcare robots,
play a brain fitness game, and watch music videos. The interaction histories are
recorded in the medical server for analysis by clinicians. For validating the software
design and implementation of HealthBors and its services in real environments, we
conducted the studies at Selwyn Village in New Zealand, which has several levels of
care including hospitals, rest homes, and private apartments. We have deployed three
Charlie systems in private apartments in the first investigation, and two Charlie
systems in public spaces (one at each at a rest home and a hospital) for over 12 weeks
in the second investigation. Participants complete questionnaires rating the healthcare
robot system.

Fig. 1. An older adult measures his blood pressure through our healthcare robot, Charlie, in a
rest home. The robot helps older people to measure their vital signs without the aid of
caregivers, nurses or family members, and records the data for healthcare providers to check.

2 Healthcare Robot System: HealthBots

2.1 Overview of Healthcare Robot System

We developed a healthcare robot system with a service robot platform, a software
system with service modules, and a medical server system. We can use several kinds
of service robot platforms as a healthcare robot system in HealthBots according to the
users and purpose. Fig. 2 shows the Healthbots system overview with a kiosk type
robot Charlie. Older adults can measure their vital signs, such as blood pressure. They
also interact with healthcare robots for using healthcare service functions such as a
brain fitness game and entertainment. The measured vital sign results and interaction
records are sent to our medical server system, and then clinicians can review them for
managing the health conditions of the older adults.

 Design of a Kiosk Type Healthcare Robot System for Older People 581

Fig. 2. Overview of the healthcare robot system, Healthbots. Robots help older adults in various
spaces and send information such as vital signs and interaction records to the medical server,
RoboGen. Doctors and psychologists access the medical server and check the health status of
the older adults.

Fig. 3. The kiosk type robot platform, Charlie. It consists of a camera, a Pan-Tilt enabled touch
screen, speakers, microphones, ultrasonic sensors, bumper sensors, a laser scanner, two single
board computers and a 24V Li-Polymer battery.

2.2 Kiosk Type Service Robot Platform

The kiosk type robot platform Charlie is shown in Fig. 3. The robot platform is from
Yujin robotics in South Korea and is originally designed as a serving robot in cafes
and restaurants, and for assisting teachers in schools; it has a friendly appearance and
tray for carrying items. Charlie is a differential drive mobile robot 1.2 meters high,
powered by a 24V Li-Polymer battery, and consists of a camera, a rotatable touch
screen, speakers, microphones, ultrasonic sensors, bumper sensors, a laser range
finder and two single board computers. User responses were received via the touch
screen and HealthBot responds to participants with synthesized speech, visual output
on the screen, and movements. The touch screen helps the older people who have
hearing or speaking difficulties by showing messages or pictures. Charlie’s synthetic
speech is generated through a diphone concatenation type synthesis implemented with
Festival speech synthesis system [25] and used a New Zealand accented diphone
voice developed at the University of Auckland [26]. Expression was added to the

582 H.S. Ahn et al.

synthetic speech through an intonation modeling technique [27] called ‘Say Emotional’.
For map building and navigation, Charlie uses the StarGazer robot localization system
[28]. The system requires small passive silver dot landmarks installed on the ceiling of
the robot work-space at approximately one meter separation. A map of the area was built
using the built-in map building module of the robot.

2.3 Healthcare Software and Service Modules

The HealthBots should have several healthcare service modules according to the
purposes of deployment, users and places. This means that healthcare service modules
should be modified easily without any changes of the HealthBots software
architecture. In addition, various experts from health psychology, gerontology, health
informatics as well as engineers should be able to modify the behavior scenario of
HealthBots according to the requirements of experiments. For these reasons, we
designed a behavior scenario based HealthBots software architecture comprising three
logical layers as shown in Fig. 4: a hardware layer, a middleware layer, and a
behavior layer [33].

The hardware layer is for the hardware systems of HealthBot, which consist of the
operating system and two different types of hardware: proprietary and non-proprietary.
Proprietary hardware is the hardware associated with the basic robot platform, such as
two single board computers and controllers. Non-proprietary hardware is the hardware
added for healthcare service modules, such as the blood pressure meter, blood oxygen
saturation meter, blood glucose meter, cameras, microphones, etc.

The middleware layer consists of three parts: a robot middleware, service modules,
and a behavior execution engine. The robot platform has a ROCOS framework
developed by Yujin robotics as a robot middleware. The behavior execution engine starts
and stops the service modules by commands from the behavior layer. The service
modules communicate with several web-services for information retrieval and update,
and are integrated with third-party applications for providing added functionality.

Fig. 4. Overview of the healthcare software system. It consists of three layers: a hardware layer,
a middleware layer, and a behavior layer.

 Design of a Kiosk Type Healthcare Robot System for Older People 583

The behavior layer consists of a number of behavior scenario files, which are
different according to the purpose of system and experiments. The behavior scenario
files describe robot behavior as a finite state machine, which can easily be modified
by various experts from health psychology, gerontology, and health informatics as
well as by engineers. The front-end of the application with the selected behavior
scenario is developed using Flash/ActionScript 3.0 and the back-end is developed
using C++.

In this study, Charlie has three service modules: a blood pressure service module,
an entertainment service module which contains music videos, and pictures, and a
web surfing function. A brain fitness game service module plays brain games,
developed by Dakim [29].

2.4 Medical Server System: RoboGen

We developed a medical server system, RoboGen [32], for storing health information
including vital signs measurement records and records of interactions between
HealthBots and their users. It hosts a website application portal for carers to log in
and monitor on data from users of HealthBots. Users and family members as well as
specialists such as doctors, nurses, and psychologists can access the user data through
the RoboGen website. This central data server is built using the Microsoft ASP .NET
and MVC framework and a Microsoft SQL server. The robot connects to RoboGen
through web-services.

3 Experimental Method

3.1 Overview of Experiments

We had two different investigations with five Charlie robots by deploying in three
different parts of Selwyn village in New Zealand: private apartments for the first
investigation, a rest home and a hospital for the second investigation, and a total of 99
older adults used the robots (6 older adults in the private apartments, 60 older adults
in the rest home, and 33 older adults in the hospital). Selwyn village is a non-profit
retirement complex in Auckland, New Zealand. The 26 acre village has around 650
residents, and provides progressive care from independent living units through
hospital and dementia care [22]. For the recruitment of participants, we presented our
research, and residents who were interested in using robot were recruited voluntarily
for these experiments.

The first investigation was done in private apartments with Charlie and iRobi
robots, which were described on other publications [31]. In the experiments with
Charlie in the first investigation, 6 older adults were recruited, and 3 older adults were
given individual Charlie robots in their apartments for 6 weeks. The robots were then
moved to 3 different apartments for another 3 residents.

The second investigation was done in a lounge of the rest home and the hospital
with Charlie and Guide robots, which were described on other publications [5]. For
the experiments with Charlie in the rest home, we deployed one Charlie robot in a

584 H.S. Ahn et al.

lounge of the rest home, which accommodates 110 residents and employees 47 staff,
and 60 older adults were recruited. For the experiments with Charlie in the hospital,
we deployed another Charlie robot in a lounge to the hospital, which accommodates
67 residents and employees 51 staff, and 33 older adults were recruited. We continued
our experiments in the rest home and the hospital for twelve weeks. After each
interaction, users were able to rate the functionalities of the healthcare robot system.

Table 1. Instructions and Wording of the Appropriate Healthcare Functionalities and the
Suitability of using Kiosk type Healthcare Robot System Questionnaire. BP means the blood
pressure measurement service module, EN means the entertainment service module, and BG
means the brain fitness game service module.

Measure Scale instructions Items

Usage of
healthcare
service module
(same in BP,
EN, BG)*

 Please circle the number
that best corresponds to
how useful you find the
healthcare service
module. I think this
service is …

0 1 2 3

Poor Acceptable Good Excellent

User
satisfaction
about the robot
in private space
(1 question)

Q1. Please circle the
number that best
corresponds to how much
you enjoyed using the
robot today.

0 1 2 3 4
Not at

all
A little Moder

-ately
Quite a

lot
Very
much

User
satisfaction
about the robot
in public space
(4 Questions)

Q1. Please circle the
number that best
corresponds to how much
you enjoyed using the
robot.

0 1 2 3 4
Not at

all
A little Moder

-ately
Quite a

lot
Very
much

Q2. Please circle the
number that best
corresponds to how useful
you found the robot.

0 1 2 3 4
Not at

all
A little Moder

-ately
Quite a

lot
Very
much

Q3. Please circle the
number that best
corresponds to how you
would rate your
interaction with the robot.

0 1 2 3 4

Not at
all

A little Moder
-ately

Quite a
lot

Very
much

 Q4. Please circle the
number that best
corresponds to how much
you would like to interact
with the robot again.

 0 1 2 3 4

Not at
all

A little Moder
-ately

Quite a
lot

Very
much

 Design of a Kiosk Type Healthcare Robot System for Older People 585

3.2 Procedure

We demonstrated how to use the robots to interested staff and residents two weeks
prior to starting the experiments. Staff managers were provided the duty phone
number of the researchers to contact if there were any issues with the robots. Research
assistants were available at the village to respond to any issues.

For the first investigation in the private apartments, participants were able to
interact with the Charlie within their apartments as much or as little as they liked over
the six week period. Six residents used Charlie robots. At first three participants used
Charlie for six weeks, and then the other three participants used Charlie for six weeks.
At the end of each interaction, participants had the opportunity to complete
questionnaires on the robot about their satisfaction with each service module and their
overall evaluation.

For the second investigation in the rest home and hospital, participants were able to
interact with Charlie as much or as little as they liked over a twelve week period.
When they interacted with Charlie, they entered their personal information so that
their identity was known. At the end of each interaction, participants had the
opportunity to complete questionnaires on the robot about their satisfaction with each
service module and their overall evaluation. Some participants also completed written
questionnaires about their quality of life, depression and perceptions of the robots,
which are not the focus of this paper.

4 Experimental Results and Evaluations

As well as validating the HealthBots software design and implementation by a real,
long term deployment in older care facilities, on multiple, heterogeneous robots, there
are two aims of the analyses of the data gathered: 1) to determine the appropriate
healthcare robot functions in the two different locations, 2) to evaluate the suitability
of this healthcare robot system in the two different locations. Other papers on the
results of the experiments conducted at this time at the village are published or in
submission [5, 12, 20-24, 30-34].

4.1 Appropriate Healthcare Robot Functions According to Location

Firstly, six participants who were not familiar to robot used our HealthBots system
including three main services, such as the blood pressure measurement, entertainment
contents, and the brain fitness game, over a 12 week period, and we confirmed that
the HealthBots software design and its services work well in real environments.
Secondly, we found the appropriate healthcare functionalities according to the place
the robot was deployed by measuring the usage of healthcare service modules. The
instructions and wording of the rating questions on the robot are shown in Table 1.
The items were the same in all service modules such as blood pressure measurement,
entertainment, and brain fitness. Participants were asked how useful they found the
healthcare service using a scale from 0 (Poor) to 3 (Excellent), after people used
healthcare service modules. The questions were displayed on the robot itself and
people answered by touching their selected answer on the screen. Then, Charlie sent
the results to Robogen for storage.

586 H.S. Ahn et al.

Fig. 5 shows the average score of each healthcare service module according to its
location. We found that participants liked to use three healthcare services overall, but
there were differences according to the location. The participants in the private
apartments were satisfied with the blood pressure measurement service and the brain
fitness game service than entertainment service. Especially, the use of the
entertainment service decreased as time went on. It may be that as older adults living
independently are not in an environment that monitors their blood pressure every day,
so they wanted to check their blood pressure in their homes. On the other hand, the
participants in the public spaces were satisfied with the entertainment service. There
were some differences between the participants in the rest home and the hospital. The
participants in the rest home were satisfied with the brain fitness game service and
entertainment service more than those in the hospital. On the other hand, the
participants in the hospital were satisfied with the blood pressure measurement
service more than those in the rest home.

Fig. 5. The average score of each healthcare service module according to place. BP means the
blood pressure measurement service module, EN means the entertainment service module, and
BG means the brain fitness game service module. The data for the public space was obtained
from the participants in the rest home and hospital, and used for comparing with the results of
the private space.

4.2 Suitability of Using Our Healthcare Robot System According to Location

We evaluated the suitability of using the kiosk type healthcare robot system according
to the place by measuring the user satisfaction with the robot. Questionnaires were
different for different places; one question to the participants in the private apartments
and four questions to the participants in the public spaces such as the rest home and
the hospital. Instructions and wording of the questionnaire for each place are shown in
Table 1. The questions were asked on the Charlie’s touch-screen. Then, Charlie sent
the results to the Robogen server for storage. Fig. 6 shows the average score on each
question about the user satisfaction with the robot according to the location. The
participants in the public spaces were satisfied with using the kiosk type robot, but the
participants in the private apartments did not give high scores although they enjoyed
using Charlie.

 Design of a Kiosk Type Healthcare Robot System for Older People 587

Fig. 6. The average score of each question about the user satisfaction about the robot according
to place. Q1 is how much the user enjoys using the robot. Q2 is how useful the user found the
robot. Q3 is how user would rate his interaction with the robot. Q4 is how much user would like
to interact with the robot again. The data for the public space was obtained from the
participants in the rest home and hospital, and used for comparing with the results of the private
space.

5 Conclusions

We completed a 12-week study on appropriate services of a healthcare robot system
for older people in private and public spaces. We designed the healthcare robot
system, HealthBots, and deployed it to Selwyn village, which had several levels of
care as well as various care facilities such as hospitals, rest homes, and private
apartments. We used three Charlie robots in the private apartments, two Charlie
robots in the public places, the rest home and the hospital, for the long-term studies.
From the results, we found some important points, in addition to verifying that our
software system was deployed and working on multiple, heterogeneous robots for a
long period in different field environments. Older people in the private places (their
own homes) used the healthcare service mostly for checking their health conditions.
Older people in the public places used the entertainments functions most, especially in
the rest home. We expect that the entertainment contents should be updated often
when a robot is used for a long time to avoid the user becoming bored with the
content. A kiosk type robot platform is quite good for the healthcare robot platform,
but may be more acceptable in rest-home and hospital lounges than in private homes,
which may be due to its size. In future work, we will study a cost benefit analysis
when healthcare robot systems are employed in a family doctor’s practice and in
peoples’ homes in the community.

Acknowledgment. This work was jointly supported by the Robot Pilot Project
program of the Korea Ministry of Knowledge and Economy (MKE), Korea Institute
for Robot Industry Advancement (KIRIA) and the New Zealand Ministry of Business,
Innovation and Employment IIOF (13635). We thank Electronics and
Telecommunications Research Institute (ETRI), Yujin Robot, ED, Isan, our
colleagues from the University of Auckland HealthBots research team, and the
residents and staff of Selwyn Village.

588 H.S. Ahn et al.

References

1. Lutz, W., Sanderson, W., Scherbov, S.: The coming acceleration of global population
ageing. Nature 451(7179), 716–719 (2008)

2. United Nations Population Division, World Population Aging: 1950-2050,
http://www.un.org/esa/population/publications/worldageing195
02050 (accessed February 19, 2012)

3. Super, N.: Who will be there to care? The growing gap between caregiver supply and
demand. National Health Policy Forum, George Washington University, Washington, DC
(2005)

4. United Nations Population Division, World Population Ageing 2009 (2012),
http://www.un.org/esa/population/publications/WPA2009/WPA200
9_WorkingPaper.pdf

5. Robinson, H., MacDonald, B.A., Kerse, N., Broadbent, E.: Suitability of Healthcare
Robots for a Dementia Unit and Suggested Improvements. Journal of the American
Medical Directors Association 14(1), 34–40 (2012)

6. Jacobzone, S.: Coping with aging: International challenges. Health Aff. 2000 19, 213–225
(2000)

7. Slama, C.A., Bergman-Evans, B.: A troubling triangle. An exploration of loneliness,
helplessness, and boredom of residents of a veterans home. Journal of Psychosocial
Nursing and Mental Health Services 38(12), 36–43 (2000)

8. Jongenelis, K., Pot, A.M., Eisses, A.M., Beekman, A.T., Kluiter, H., Ribbe, M.W.:
Prevalence and risk indicators of depression in elderly nursing home patients: The AGED
study. Journal of Affective Disorders 83, 135–142 (2004)

9. Rossen, E.K., Knafl, K.A.: Older women’s response to residential relocation: Description
of transition styles. Qualitative Health Research 13(1), 20–36 (2003)

10. Raina, P., Waltner-Toews, D., Bonnett, B., Woodward, C., Abernathy, T.: Influence of
companion animals on the physical and psychological health of older people: An analysis
of a one-year longitudinal study. Journal of the American Geriatrics Society 7(3), 323–329
(1999)

11. Baun, M.M., Johnson, R.A., Fine Aubrey, H.: Human-animal interaction and successful
aging. In: Handbook on Animal-assisted Therapy: Theoretical Foundations and Guidelines
for Practice, pp. 283–299 (2010)

12. Robinson, H., MacDonald, B.A., Kerse, N., Broadbent, E.: The Psychosocial Effects of a
Companion Robot: A Randomized Controlled Trial. Journal of the American Medical
Directors Association 14(9), 661–667 (2013)

13. Shibata, T., Ohkawa, K., Tanie, K.: Spontaneous Behavior of Robots for Cooperation –
Emotionally Intelligent Robot System. In: IEEE International Conference on Robotics &
Automation (ICRA 1996), pp. 2426–2431 (1996)

14. Ahn, H.S., Choi, J.Y., Lee, D.-W.: A Behavior Combination Generating Method for
Reflecting Emotional Probabilities using Simulated Annealing Algorithm. In: IEEE
International Symposium on Robot and Human Interactive Communication (ROMAN
2011), pp. 192–197 (2011)

15. Fujita, M.: On activating human communications with pet-type robot AIBO. Proceedings
of the IEEE 92(11), 1804–1813 (2004)

16. Reiser, U., Connette, C., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Jacobs, T.,
Parlitz, C., Hagele, M., Verl, A.: Care-o-bot 3-creating a product vision for service robot
applications by integrating design and technology. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1992–1998 (2009)

 Design of a Kiosk Type Healthcare Robot System for Older People 589

17. Ahn, H.S., Lee, D.-W., Choi, D., Lee, D.-Y., Lee, H., Baeg, M.-H.: Development of an
Incarnate Announcing Robot System using Emotional Interaction with Humans.
International Journal of Humanoid Robotics 10(2), 1–24 (2013)

18. Suga, K., Sato, M., Yonezawa, H., Naga, S., Shimizu, J., Morita, C.: Change in the
concentration of salivary IgA by contact of elderly subjects with a pet robot. International
Journal of Analytical Bio-Science 25, 251–254 (2002)

19. Wada, K., Shibata, T., Musha, T., Kimura, S.: Effects of robot therapy for demented
patients evaluated by EEG. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2005), pp. 1552–1557 (2005)

20. Kuo, I.H., Rabindran, J.M., Broadbent, E., Lee, Y.I., Kerse, N., Stafford, R.M.Q.,
MacDonald, B.A.: Age and gender factors in user acceptance of healthcare robots. In:
IEEE International Symposium on Robot and Human Interactive Communication
(ROMAN 2009), pp. 214–219 (2009)

21. Broadbent, E., Tamagawa, R., Kerse, N., Knock, B., Patience, A., MacDonald, B.A.:
Retirement home staff and residents’ preferences for healthcare robots. In: IEEE
International Symposium on Robot and Human Interactive Communication (ROMAN
2009), pp. 645–650 (2009)

22. Stafford, R.Q., Broadbent, E., Jayawardena, C., Unger, U., Kuo, I.H., Igic, A., Wong, R.,
Kerse, N., Watson, C., MacDonald, B.A.: Improved robot attitudes and emotions at a
retirement home after meeting a robot. In: IEEE International Symposium on Robot and
Human Interactive Communication, pp. 82–87 (2010)

23. Jayawardena, C., Kuo, I., Datta, C., Stafford, R.Q., Broadbent, E., MacDonald, B.A.:
Design, implementation and field tests of a socially assistive robot for the elderly:
HealthBot Version 2. In: RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics, pp. 1837–1842 (2012)

24. Stafford, R.Q., MacDonald, B.A., Jayawardena, C., Wegner, D.M., Broadbent, E.: Does
the Robot Have a Mind? Mind Perception and Attitudes Towards Robots Predict Use of an
Eldercare Robot. International Journal of Social Robotics 6(1), 17–32 (2014)

25. Black, A.W., Taylor, P., Caley, R.: The festival speech synthesis system (2012),
http://www.cstr.ed.ac.uk/projects/festival

26. Watson, C.I., Teutenberg, J., Thompson, L., Roehling, S., Igic, A.: How to build a New
Zealand voice. In: Proceedings of the New Zealand Linguistic Society Conference (2009)

27. Igic, A., Watson, C.I., Teutenberg, J., Broadbent, E., Tamagawa, R., MacDonald, B.A.:
Towards a flexible platform for voice accent and expression selection on a healthcare
robot. In: Australasian Language Technology Association Workshop (2009)

28. Hagisonic, Localization System StarGazer for Intelligent Robots (2012),
http://www.robotshop.com/media/files/pdf/stargazer_user_manu
al_ver_04_080417(english).pdf

29. http://www.dakim.com/
30. Broadbent, E., Tamagawa, R., Patience, A., Knock, B., Kerse, N., Day, K., MacDonald,

B.A.: Attitudes towards health care robots in a retirement village. Australasian Journal on
Ageing 31(2), 115–120 (2012)

31. Datta, C., Yang, H.Y., Kuo, I.-H., Broadbent, E., MacDonald, B.A.: Software platform
design for personal service robots in healthcare. In: IEEE International Conference on
Robotics, Automation and Mechatronics, pp. 156–161 (2013)

32. Datta, C., Tiwari, P., Kuo, I., MacDonald, B.A.: End user programmingto enable closed-
loop medication management using ahealthcare robot. In: Australasian Conference on
Robotics & Automation (2011)

33. Jayawardena, C., Kuo, I.-H., Broadbent, E., MacDonald, B.A.: Socially Assistive Robot
Health Bot: Design, Implementation, and Field Trials. IEEE Systems Journal (2014)

Erratum: Automatic Evaluation of Task-Focused Parallel
Jaw Gripper Design

Adam Wolniakowski1, Konstantsin Miatliuk1, Norbert Krüger2,
and Jimmy Alison Rytz2

1 Automation and Robotics Department, Bialystok University of Technology, Poland
dagothar@gmail.com, k.miatliuk@pb.edu.pl

2 The Maersk Mc-Kinney Moller Institute, Faculty of Engineering,
University of Southern Denmark, Denmark
{jimali,norbert}@mmmi.sdu.dk

D. Brugali et al. (Eds.): SIMPAR 2014, LNAI 8810, pp. 450–461, 2014.
© Springer International Publishing Switzerland 2014

DOI 10.1007/978-3-319-11900-7_50

Part of the acknowledgement for the paper starting on page 450 of this volume was
inadvertently omitted. The full acknowledgement should read as follows:

Acknowledgments. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007-2013
(Programme and Theme: ICT-2011.2.1, Cognitive Systems and Robotics) under grant
agreement no. 600578, ACAT.
 The research has furthermore received founding from the Danish Council for
Strategic Research under the grant agreement no. 12-131860, CARMEN.
 The research has also received funding from a project MB/WM/21/2013 realised
by Białystok University of Technology.

The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-319-11900-7_38

Author Index

Adam, Sorin 207
Ahn, Ho Seok 521, 578
Ajayi, Michael Oluwatosin 122
Alami, Rachid 62
Almeida, Jose 98
Alonso, Diego 340
Anada, Keiju 146
Anzalone, Salvatore M. 267
Arkin, Ronald C. 388, 462
Arndt, Michael 376
Avril, Marie 267

Bardaro, Gianluca 74
Bascetta, Luca 74
Bekris, Kostas E. 327
Bellone, Mauro 219
Berns, Karsten 376
Biggs, Geoffrey 146
Bihlmaier, Andreas 255
Blanco Claraco, José-Luis 219
Bonanni, Taigo Maria 352
Bortoletto, Roberto 364, 545
Boscolo, Nicolò 545
Bouraqadi, Noury 438
Broadbent, Elizabeth 578
Brodskiy, Yury 158
Broenink, Jan 158, 486
Brugali, Davide 554
Buch, Jacob Pørksen 86

Chaki, Sagar 134
Chetouani, Mohamed 267
Chew, Jouh Yeong 498
Chitic, Stefan-Gabriel 279
Cucci, Davide Antonio 74

Datta, Chandan 578
Dias, André 98
Dias, Nuno 98
Di Natale, Marco 49
Djouani, Karim 122
Dobson, Andrew 327
Doose, David 303
Dresscher, Douwe 486
Drumwright, Evan M. 1

Ellekilde, Lars-Peter 86
Estivill-Castro, Vlad 182

Fabresse, Luc 438
Ferrara, Valentina 243
Ferreira, Emmanuel 62
Finotto, Matteo 545
Fiore, Michelangelo 62
Fujiwara, Kiyoshi 146

Gherardi, Luca 554
Giampapa, Joseph 134
Gimènez, Antonio 219
Gobillot, Nicolas 303
Grisetti, Giorgio 352, 566

Hamam, Yskandar 122
Hanheide, Marc 13
Harrington, Dagan 462
Hempe, Nico 110
Hexel, René 182
Hochgeschwender, Nico 195, 231, 291
Hsu, John M. 37
Hugel, Vincent 412

Iocchi, Luca 352

Jensen, Kjeld 207
Jiang, Shu 462
Jouandeau, Nicolas 412

Karg, Michael 13
Kermorgant, Olivier 25
Kerse, Ngaire 578
Khalili, Ali 315
Khambhaita, Harmish 13
Kimmel, Andrew 327
Kluth, Jan-Henrik 533
Kornuta, Tomasz 509
Kraetzschmar, Gerhard K. 231, 291
Kraft, Dirk 86
Krontiris, Athanasios 327
Krüger, Norbert 450
Kubus, Daniel 533
Kunze, Lars 13
Kuo, I-Han 578

592 Author Index

Kurabayashi, Daisuke 498
Kyle, David 134

Larsen, Morten 207
Laursen, Johan Sund 86
Laval, Jannik 438
Lee, Min Ho 521
Lefèvre, Fabrice 62
Lehoczky, John 134
Lemaignan, Séverin 13
Lesire, Charles 303
Levorato, Riccardo 474
Lier, Florian 13, 400
Lima, Pedro 98
Littlefield, Zakary 327
Lusty, Carl 182
Lütkebohle, Ingo 13
Luzzana, Andrea 554
Lyons, Damian 462

MacDonald, Bruce A. 521, 578
Matteucci, Matteo 74
Menegatti, Emanuele 243, 545
Miatliuk, Konstantsin 450
Michieletto, Stefano 243
Milliez, Grégoire 13, 62
Moliné, Éric 170
Morelli, Matteo 49
Morette, Nicolas 170
Muxfeldt, Arne 533

Natale, Lorenzo 315
Nordmann, Arne 195, 400
Novales, Cyril 170

O’Brien, Matthew 462
Onda, Hiromu 424
Ortiz, Francisco J. 340

Pagello, Enrico 364, 474
Parmer, Gabriel 1
Pastor, Juan A. 340
Peri, Kathy 578
Peters, Steven C. 37
Petersen, Henrik Gordon 86
Pettinati, Michael J. 388

Piovesan, Davide 364
Ponge, Julien 279

Reichardt, Max 376
Reina, Giulio 219
Rodr̀ıguez, Francisco 219
Romanelli, Fabrizio 243
Rosique, Francisca 340
Rossmann, Juergen 110
Rytz, Jimmy Alison 450

Salam, Hanan 267
Sánchez-Ledesma, Francisco 340
Schneider, Sven 231, 291
Schultz, Ulrik Pagh 86, 207
Serafin, Jacopo 566
Shome, Rahul 327
Silva, Eduardo 98
Simonin, Olivier 279
Sørensen, Lars Carøe 86
Stafford, Rebecca 578
Stefańczyk, Maciej 509
Stramigioli, Stefano 158, 486

Tacchella, Armando 315
Taylor, James R. 1
Tonello, Stefano 545
Torres Moreno, José-Luis 219
Tosello, Elisa 243, 545

van der Coelen, Michiel 486
Vieyres, Pierre 170
Voos, Holger 291

Wachsmuth, Sven 400
Wang, Kevin 521
Waspe, Ralf 110
Wienke, Johannes 400
Wilterdink, Robert 158
Wolniakowski, Adam 450
Wörn, Heinz 255
Wrede, Sebastian 195, 400

Yan, Zhi 438
Yoshihara, Takumi 498

Zolynski, Gregor 376

	Preface
	Organization
	Table of Contents
	Simulation
	Making Time Make Sense in Robotic Simulation
	Introduction
	1 Background
	1.1 Conventional Robotic Simulation Paradigm: The CallbackModel
	1.2 Simulation Components
	1.3 Temporal Requirements
	1.4 System Scheduling toward Temporally Consistent Simulation

	2 OS Facilities for Temporally Consistent Simulation
	2.1 Timing Facilities
	2.2 System Scheduling
	2.3 Interprocess Communication

	3 Time Consistent Simulator Design
	3.1 Hierarchical Scheduling and Threads
	3.2 Coordinator Design
	3.3 Client Process

	4 Experimental Validation
	4.1 Predator and Prey Behavior
	4.2 Time Consistent System and Callback-Based-Systems
	4.3 Experimental Specifications
	4.4 Experimental Results

	5 Future Work
	References

	Simulation and HRI Recent Perspectiveswith the MORSE Simulator
	1 Introduction
	2 HRI Simulation: Five Scenarios
	2.1 Situation Assessment for HRI and Simulated Feedback
	2.2 An Expectations Framework for Domestic Robot Assistants
	2.3 Preliminary Testing of Human-Aware Navigation Planner
	2.4 Data Acquisition through Automatic Scene Generation
	2.5 Automated Execution of Prototype HRI Experiments

	3 Discussion: Towards Unification
	4 Conclusion
	References

	A Dynamic Simulatorfor Underwater Vehicle-Manipulators
	1 Introduction
	2 Description and Simulation of a Submerged Object
	2.1 Dynamic Model
	2.2 Implementation

	3 Low-Level PID Control
	4 Integration
	4.1 File Synchronization
	4.2 Node Interactions

	5 Experiments
	6 Conclusion
	References

	Extending Open Dynamics Engine for the DARPA Virtual Robotics Challenge
	1 Introduction
	2 Literature Review
	3 Modeling and Fidelity Considerations
	4 Open Dynamics Engine
	4.1 Unconstrained Rigid Body Dynamics
	4.2 Articulation and Contact Constraints
	4.3 Discretization
	4.4 Constraint Error Correction
	4.5 Constraint ForceMixing and Spring-Damper
	4.6 Coulomb’s Friction Approximation Constraints

	5 Modifications to Projected Gauss-Seidel Solver within Open Dynamics Engine
	5.1 Contact Constraint Correction with Position Projection (Split Impulse)
	5.2 Convergence Acceleration by Static and Dynamics Invariant Inertia Ratio Reduction
	5.3 Implicit Joint Spring Dampers
	5.4 PGS Row Ordering and Residual Smoothing
	5.5 Warm Starting PGS

	6 Conclusions
	References

	Simulating Human-Robot Interactionsfor Dialogue Strategy Learning
	1 Introduction
	2 MORSE as HRI Simulator
	2.1 Why MORSE for HRI?
	2.2 Scenario Implementation
	2.3 Actions Library

	3 Integration with Robotic System
	3.1 SPARK for Spatial Reasoning
	3.2 Robotic System

	4 Learning Dialogue Strategies
	4.1 Dialogue Management
	4.2 Architecture
	4.3 Experimental Setup and Results

	5 Summary and Future Work
	References

	A Simulation Based Architecturefor the Development of an Autonomous AllTerrain Vehicle
	1 Introduction
	2 The Quadrivio ATV
	2.1 The Hardware Architecture
	2.2 The Software Architecture

	3 The Simulation Environment
	3.1 The Simulator
	3.2 The Vehicle Model
	3.3 The Sensor Models

	4 Experimental Evaluation
	5 Conclusions
	References

	Applying Simulation and a Domain-SpecificLanguage for an Adaptive Action Library
	1 Introduction
	2 State of the Art
	3 Simulation and DSL for an Adaptive Action Library
	3.1 Action Library
	3.2 Simulation
	3.3 Domain-Specific Language

	4 Demonstrating the System Concept
	5 Conclusion
	References

	Simulation Environment for Multi-robotCooperative 3D Target Perception
	1 Introduction
	2 Multi-robot Cooperative Perception Framework
	2.1 UCoT – Uncertainty Based Multi-robot Cooperative Triangulation

	3 Simulation Environment
	4 Results
	5 Conclusions and Future Work
	References

	Combining Complex Simulationswith Realistic Virtual Testing Environments –The eRobotics-Approach for Semantics-BasedMulti-domain VR Simulation Systems
	1 Introduction
	2 Related Work
	2.1 Current Mobile Robotic VR Simulation Systems
	2.2 Semantic World Models and Semantic Data Rendering

	3 The eRobotics Approach
	4 A Novel Multi-domain VR Simulation System Architecture
	4.1 Database Structure
	4.2 Optimizing Semantic Data for Rendering Purposes
	4.3 Generating Realistic Virtual Environments with Semantic Data Interpretation
	4.4 Rendering-Based Simulation Support

	5 Applications
	6 Conclusion and Future Prospects
	References

	Modeling
	Analysis of Knee-Ankle Orthosis Modelling:An Inverse Dynamics ApproachUsing Adaptive Coupled Oscillator
	1 Introduction
	2 Knee-Ankle Orthosis System
	3 CPGDesign
	3.1 Adaptive Frequency Oscillator (AFO)
	3.2 Coupled AFO

	4 MathematicalModel
	4.1 Dynamic Model
	4.2 Coupled AFO (Joints Coupling)
	4.3 Signal Estimator
	4.4 Torque Estimator
	4.5 Human Torque

	5 Numerical Simulation
	5.1 Reference Trajectories and Physiological Parameters
	5.2 Results
	5.3 Discussion

	6 Conclusions and Future Works
	References

	Optimizing Robotic Team Performancewith Probabilistic Model Checking
	1 Introduction
	2 Modal DTMC and Verification
	2.1 Modal DTMC
	2.2 Modal DTMC Verification
	2.3 DTMC Projection
	2.4 Combining Projections

	3 Error Quantification
	3.1 Constructing an Approximation
	3.2 Distribution Definitions
	3.3 Constructing Distributions

	4 Experimental Results
	5 Conclusion
	References

	Modelling and Analysis of a Redundant MobileRobot Architecture Using AADL
	1 Introduction
	2 AADL
	3 Safe Mobile Robot Architecture Model
	3.1 Architecture Description
	3.2 AADL Model

	4 Formal Analysis
	4.1 Obstacle Response Latency
	4.2 Partner Monitoring Latency

	5 Discussion
	6 Conclusions
	References

	Fault Avoidance in Developmentof Robot Motion-Control Softwareby Modeling the Computation
	1 Introduction
	2 Modeling the Computation to Increase Software Dependability
	3 Modeling the Computation in the Development Process
	4 ToolIntegration
	4.1 CBSD- and Computation-Model Integration

	5 Use Case Application
	5.1 BRICkS Stacking Application
	5.2 Architecture Design
	5.3 Algorithm Design
	5.4 Software Implementation

	6 Testing the Methodology
	7 Conclusions
	References

	Robotic Engineer’s Specificationsfor a Well-Fitted Model-Driven ControlArchitecture for Robots
	1 Introduction
	2 Model-Driven Architectures and Domain-Specific Language
	3 Generic Robotic Model
	4 Specification Book for a Robotic Component-Based Model
	4.1 IMU – Collect and Store: Policy of Consumption
	4.2 IMU – Trigger the CCU: Policy of Triggering
	4.3 CCU: Container for the Algorithm
	4.4 OMU: Transtype and Tag the Output Data
	4.5 The Entire Component: IMU+CCU+OMU

	5 Data
	5.1 XML Data
	5.2 Streamed Data and Shared Data

	6 Discussion and Conclusion
	References

	Programming
	High Performance Relaying of C++11 Objectsacross Processesand Logic-Labeled Finite-State Machines
	1 Introduction
	2 Challenges of Inter-module Communication
	3 Arrangements of Logic-Labeled Finite-State Machines
	4 The Logic-Labeled Finite-State Machine Model
	5 Thegusimplewhiteboard Implementation
	6 Putting gusimplewhiteboard into Practice
	7 Conclusion
	References

	A Survey on Domain-Specific Languages in Robotics
	1 Introduction
	2 Domain-Specific Languages
	3 Domain Analysis
	4 Process
	5 Analysis
	6 Discussion
	7 Synopsis
	References

	Towards Rule-Based DynamicSafety Monitoring for Mobile Robots
	1 Introduction
	2 Robot Safety and Modeling
	2.1 Robot Safety
	2.2 Commercial Applications and Legal Regulations
	2.3 Software Safety
	2.4 Analysis

	3 Rule-Based Dynamic Safety Monitoring
	3.1 Overview
	3.2 The Language
	3.3 Target Platform and Code Generation

	4 Experiments
	4.1 Hardware Failure Experiments
	4.2 Simulated Experiments
	4.3 Results
	4.4 Discussion

	5 Conclusion
	References

	A Proposed Software Framework Aimedat Energy-Efficient Autonomous Drivingof Electric Vehicles
	1 Introduction
	2 Prototype Description
	3 The MOOS-Based Software Architecture
	4 Preliminary Experimental Results and Discussion
	References

	Structured Design and Developmentof Domain-Specific Languages in Robotics
	1 Introduction
	2 Overview of GDDL
	3 DSL Development Process
	3.1 Process Concepts
	3.2 Process Flow Phases

	4 Discussion and Related Work
	5 Conclusion
	References

	ROS-I Interface for COMAU Robots
	1 Introduction
	2 Overview
	2.1 Open Control Architecture
	2.2 Open Realistic Robot Library
	2.3 ROS-Industrial

	3 Integration
	3.1 Simulation
	3.2 Real Robot

	4 Experiments
	5 Conclusions
	References

	Robot Unit Testing
	1 Introduction
	2 Automated Software Testing
	3 The RUT Methodology
	4 RUT forROS
	5 Conclusions
	References

	IMI2S: A Lightweight Frameworkfor Distributed Computing
	1 Introduction
	2 System Design
	3 System Implementation
	4 Performances and Case Studies
	4.1 Human-Agent Interaction
	4.2 Human-Human Interaction

	5 Conclusion and Future Works
	References

	Are Middlewares Readyfor Multi-robots Systems?
	1 Introduction
	2 Challenges for Middleware in Robotic Systems
	3 Existing Middlewares
	4 Comparative Criteria
	5 Middleware Comparison
	5.1 Architecture
	5.2 Infrastructure

	6 Existing Robotic Cloud Platforms
	6.1 DAvinCi
	6.2 Rapytua

	7 Discussion
	8 Conclusion
	References

	Architectures
	Declarative Specificationof Robot Perception Architectures
	1 Introduction
	2 RPSL: Robot Perception Specification Language
	2.1 Modeling Components
	2.2 Modeling Algorithms
	2.3 Modeling Conceptual Spaces
	2.4 Modeling Perception Graphs
	2.5 Modeling Constraints
	2.6 Modeling Demand

	3 RPSL Run Time Environment
	4 Discussion and Related Work
	5 Conclusion
	References

	A Modeling Framework for SoftwareArchitecture Specification and Validation
	1 Introduction
	2 Experimental Setup
	3 The Mauve DSL
	3.1 Codels
	3.2 Components
	3.3 Architecture
	3.4 Deployment
	3.5 Execution
	3.6 Why a New DSL?

	4 Validation Tools
	4.1 Real-Time Analysis
	4.2 Checking Behavioral Properties

	5 Conclusion and Perspectives
	References

	Reverse Engineering of Middlewarefor Verification of Robot Control Architectures
	1 Introduction
	2 Background
	3 Case Studies
	4 Experiments
	4.1 Identification of Ports in YARP
	4.2 Verification

	5 Conclusion
	References

	An Extensible Software Architecture for Composing Motion and Task Planners
	1 Introduction and Related Work
	2 General Architecture of PRACSYS
	3 Integration of Motion and Task Planners
	3.1 World Model and Simulator
	3.2 Integration of Sensing with Planning
	3.3 Queries and Specifications

	4 Use-Cases
	4.1 Rearrangement Using Baxter
	4.2 Planning among Dynamic Obstacles
	4.3 DecentralizedMulti-robot Coordination

	5 Discussion
	References

	A Component-Based Meta-Model and Framework in the Model Driven Toolchain C-Forge
	1 Introduction and Motivation
	2 Overview of C-Forge Toolchain
	2.1 The White-Box Component Meta-Model (WCOMM)
	2.2 The FraCC Framework

	3 Differentiating Aspects of C-Forge Toolchain
	4 Applied Design Process with C-Forge for Robotic Applications
	4.1 The Robotic Platforms in Project MISSION
	4.2 The Design of Simple Components
	4.3 Detailed Implementation and Flexible Deployment with FraCC

	5 Conclusions and Future Work
	References

	Methods and Tools
	Merging Partially Consistent Maps
	1 Introduction
	2 Related Work
	3 Graph-Based Map Merging
	3.1 Map Representation
	3.2 Obtaining the Representation from Grid Maps
	3.3 Data Association among Partially Consistent Maps

	4 Experiments
	4.1 Raw Data Experiments
	4.2 Synthetic Experiments

	5 Conclusion
	References

	Lower Limb Stiffness Estimationduring Running: The Effectof Using Kinematic Constraintsin Muscle Force Optimization Algorithms
	1 Introduction
	2 Methods
	2.1 Torque-Based Muscle Force Computation
	2.2 Torque/Kinematic-Based Muscle Force Computation
	2.3 Stiffness Estimation

	3 Results
	4 Conclusions
	References

	On the Benefits of Component-DefinedReal-Time Visualization of Robotics Software
	1 The Idea of Component-Defined Visualization
	1.1 Related Challenges in Robotics Software Development
	1.2 Other Benefits and Possible Drawbacks

	2 Related Work
	3 Design Considerations
	4 Implementation
	5 Applications and Experiments
	5.1 Mobile Robot Control Analysis
	5.2 Understanding Unknown Systems
	5.3 Computational Overhead

	6 Conclusion, Discussion, and Outlook
	References

	A Primate-Inspired Autonomous NavigationAlgorithm Using the Cognitive Mechanismof Mental Rotation
	1 Introduction
	2 Related Work
	3 Navigation Algorithm
	3.1 Algorithm Formation
	3.2 Segmentation Algorithm
	3.3 Navigation Algorithm

	4 Results/Analysis
	4.1 Original Scene Revisited
	4.2 More Complex Scene

	5 Conclusions and Future Work
	References

	The Cognitive Interaction Toolkit – ImprovingReproducibility of Robotic Systems Experiments
	1 Introduction
	2 The CITk Toolchain: Concepts and Components
	2.1 Information Aggregation and Retrieval
	2.2 Automated Build and Deployment
	2.3 Experiment Execution and Evaluation

	3 Use-Case: System and Experiment Reproduction
	4 Related Work and Discussion
	5 Conclusion
	References

	Enhancing Humanoids’ Walking Skillsthrough Morphogenesis Evolution Method
	1 Introduction
	2 Walking Gaits
	3 Gait and Morphological Optimizations
	3.1 Evolution Process
	3.2 Evaluation of Evolution
	3.3 Specialized Evaluations
	3.4 Parameters Influence and Trials

	4 Experiments and Results
	5 Conclusion
	References

	Stability Analysis of Densest Packing of Objects Using Partial Order Representation of Feasible Procedural Sequences
	1 Introduction
	1.1 Densest Packing and Related Work

	2 Cases in Which Procedural Sequence Affects Stability
	3 Packing Procedure Dependency
	3.1 Formalizing the Packing Problem
	3.2 Applying Solutions to Densest Packing Problems
	3.3 Stability Affected by Applied Procedural Sequence

	4 Simulation and Results
	4.1 Pile Stability of Exa ample
	4.2 Different Stable States of Another Example
	4.3 Algorithm for Determining Procedural Sequence
	4.4 S-chain

	5 Conclusions
	References

	Team Size Optimizationfor Multi-robot Exploration
	1 Introduction
	2 Related Work
	3 Multi-robot Exploration System
	3.1 Single-Robot Setup
	3.2 Multi-robot Communication
	3.3 Multi-robot Mapping
	3.4 Multi-robot Motion Planning

	4 Evaluation Metrics
	5 Experiments
	5.1 Simulation Infrastructure
	5.2 Setup
	5.3 Robot Initial Positions
	5.4 Results and Interpretation

	6 Discussion and Future Work
	7 Conclusions
	References

	Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design
	1 Introduction
	2 Related Work
	3 SystemOverview
	4 Gripper Quality Metrics
	4.1 Success Ratio
	4.2 Coverage Index
	4.3 Wrench Index

	5 Experiments
	5.1 Experimental Setup
	5.2 Gripper Evaluations
	5.3 Metric Separability

	6 Conclusion
	References

	Automatic Verificationof Autonomous Robot Missions
	1 Introduction
	2 Related Work
	3 Methods
	3.1 System Overview
	3.2 MissionLab and CNL
	3.3 PARS
	3.4 Translation
	3.5 VIPARS and Validation

	4 Validation
	4.1 The Search Mission
	4.2 Results

	5 Conclusion
	References

	Probabilistic 2D Acoustic Source LocalizationUsing Direction of Arrivalsin Robot Sensor Networks
	1 Introduction and State of the Art
	2 DOA-Based Localization Problem
	3 Gaussian Probability over DOA Approach
	4 Validation
	4.1 Simulation
	4.2 Real Test

	5 Results
	6 Conclusions and Future Work
	References

	Control and Omni-directional Locomotionof a Crawling Quadruped
	1 Introduction
	2 Use Case
	3 Controller Structure: Separation of Concerns
	3.1 Gait Generator

	4 Locomotion Speed
	5 Simulation Results
	6 Evaluation
	7 Conclusions
	References

	Embodiment Sensing for Self-generated Zigzag Turning Algorithm Using Vision-Based Plume Diffusion
	1 Introduction
	2 Time-Variant Plume Diffusion Based on Image Subtraction
	3 Embodiment Sensing for CPT
	3.1 Antennae for Bilateral Sensing
	3.2 Wings for “Sniffing”

	4 Simulation and Experimental Design
	4.1 Modified Self-gener rated Zigzag Turning Algorithm
	4.2 Simulation Platform
	4.3 Design of PhysicalAgent

	5 Results and Discussion
	5.1 Vision-Based Plume Diffusion
	5.2 Simulation and Experiment of Single Source Localization
	5.3 Discussion

	6 Conclusion
	References

	Handling of Asynchronous Data Flowin Robot Perception Subsystems
	1 Introduction
	1.1 Motivation of the Work
	1.2 Article Structure

	2 Problem Formulation
	2.1 Asynchronous Data Flow Handling
	2.2 Related Work

	3 ProposedSolution
	3.1 DisCODe Framework
	3.2 Transition Function Activation
	3.3 Example: Multimodal Segmentation
	3.4 Robotic Applications

	4 Conclusion
	References

	Systems and Applications
	Design of a Healthcare Sensor Managing System for Vital Sign Measuring Devices
	1 Introduction
	2 Design of Sensor Managing System
	2.1 Key Concepts
	2.2 System Architecture

	3 Healthcare Sensor Managing System
	3.1 Overall System
	3.2 Client Systems
	3.3 Sensor Manager System
	3.4 Sensor Device System

	4 Experiments and Evaluations
	4.1 Experimental Environment and Scenario
	4.2 Experimental Results and Evaluations

	5 Conclusions
	References

	Kinesthetic Teaching in Assembly Operations –A User Study
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Results
	5 Summary and Conclusion
	References

	A Constraint Based Motion Optimization System for Quality Inspection Process Improvement
	1 Introduction
	2 Proposed Architecture
	2.1 DataWorkflow
	2.2 ATSP Solver and Heuristics
	2.3 Motion Planning

	3 Results and Case Study
	4 Conclusions and Future Works
	References

	Dealing with Conflicting Requirements in RobotSystem Engineering: A Laboratory-Based Course
	1 Introduction
	2 Course Description
	3 The LEGO Mobile Manipulator
	3.1 The Robot Kinematics

	4 Laboratory Organization
	5 System Engineering Challenges
	5.1 Challenge 1: Developing Feasible Requirements
	5.2 Challenge 2: Integrating Heterogeneous Technologies
	5.3 Challenge 3: Revising Requirements and Design Decisions

	6 Evaluation and Concluding Remarks
	References

	Using Augmented Measurementsto Improve the Convergence of ICP
	1 Introduction
	2 ICP
	3 Extended ICP
	3.1 Extending the Measurements
	3.2 Carrying on the Optimization
	3.3 Optimization Summary

	4 Experiments
	4.1 Real World Experiments
	4.2 Experiments on Synthetic Data

	5 Conclusions
	References

	Design of a Kiosk Type Healthcare Robot System for Older People in Private and Public Places
	1 Introduction
	2 Healthcare Robot System: HealthBots
	2.1 Overview of Healthcare Robot System
	2.2 Kiosk Type Service Robot Platform
	2.3 Healthcare Software and Service Modules
	2.4 Medical Server System: RoboGen

	3 Experimental Method
	3.1 Overview of Experiments
	3.2 Procedure

	4 Experimental Results and Evaluations
	4.1 Appropriate Healthcare Robot Functions According to Location
	4.2 Suitability of Using Our Healthcare Robot System According to Location

	5 Conclusions
	References

	Author Index

