
Performance of Migrating Birds Optimization

Algorithm on Continuous Functions

Ali Fuat Alkaya1, Ramazan Algin1, Yusuf Sahin2,
Mustafa Agaoglu1, and Vural Aksakalli3

1 Marmara University, Department of Computer Engineering, Istanbul, Turkey
2 Marmara University, Department of Electrical and Electronics Engineering,

Istanbul, Turkey
3 Istanbul Sehir University, Department of Industrial Engineering, Istanbul, Turkey

{falkaya,ysahin,agaoglu}@marmara.edu.tr,
algin.ramazan@gmail.com, aksakalli@sehir.edu.tr

Abstract. In this study, we evaluate the performance of a recently pro-
posed metaheuristic on several well-known functions. The objective of
this evaluation is to participate in a competition where several meta-
heuristics are compared. The metaheuristic we exploit is the recently
proposed migrating birds optimization (MBO) algorithm. Our contribu-
tion in this study is to develop a novel neighbor generating function for
MBO to be used in multidimensional continuous spaces. After a set of
preliminary tests presenting the best performing values of the parame-
ters, the results of computational experiments are given in 2, 10 and 30
dimensions.

Keywords: migrating birds optimization, continuous functions, single
objective optimization.

1 Introduction

The MBO algorithm is a newly proposed, population-based neighborhood search
technique inspired from the V formation flight of the migrating birds which is
proven to be an effective formation in energy minimization. In the analogy,
initial solutions correspond to a flock of birds. Likewise the leader bird in the
flock, a leader solution is chosen and the rest of the solutions is divided into two
parts. Each solution generates a number of neighbor solutions. This number is
a determiner value on exploration and it corresponds to the speed of the flock.
The higher this value, the more detailed the flock explores its surroundings.

The algorithm starts with a number of initial solutions corresponding to birds
in a V formation. Starting with the first solution (corresponding to the leader
bird) and progressing on the lines towards the tales, each solution is tried to be
improved by its neighbor solutions. If any of the neighbor solutions is better,
the current solution is replaced by that one. There is also a benefit mechanism
for the solutions (birds) from the solutions in front of them. Here we define the

Y. Tan et al. (Eds.): ICSI 2014, Part II, LNCS 8795, pp. 452–459, 2014.
c© Springer International Publishing Switzerland 2014



Performance of Migrating Birds Optimization Algorithm 453

benefit mechanism as sharing the best unused neighbors with the solutions that
follow. In other words, a solution evaluates a number of its own neighbors and
a number of best neighbors of the previous solution and is replaced by the best
of them. Once all solutions are improved (or tried to be improved) by neighbor
solutions, this procedure is repeated a number of times (tours) after which the
first solution becomes the last, and one of the second solutions becomes the
first and another loop starts. The algorithm is terminated after a predetermined
number of neighbors are generated. Pseudocode of our MBO is given in Figure 1.

1. Generate n initial solutions in a random manner and place them on an hypothetical

V formation arbitrarily

2. while termination condition is not satisfied

3. for m times

4. Try to improve the leading solution by generating and evaluating k

neighbors of it

5. for each solution si in the flock (except leader)

6. Try to improve si by evaluating (k-x) neighbors of it and x unused

best neighbors from the solution in the front

7. endfor

8. endfor

9. Move the leader solution to the end and forward one of the solutions

following it to the leader position

10. endwhile 11. return the best solution in the flock

Fig. 1. Pseudocode of the MBO

MBO algorithm has four parameters: number of solutions (n), number of
tours (m), number of neighbor solutions to be generated from a solution (k) and
number of solutions to be shared with the following solution (x). However, due
to the inherent design of the algorithm n value has to be equal to or greater
than 2 ∗ x+ 1.

This new metaheuristic was proposed by Duman et al. [1]. They applied it to
solve quadratic assignment problem instances arising from printed circuit board
assembly workshops. Its performance was compared with those of metaheuris-
tics implemented and compared in two previous studies. These metaheuristics
are simulated annealing, tabu search, genetic algorithm, scatter search, parti-
cle swarm optimization, differential evolution and guided evolutionary simulated
annealing. In this comparison, the MBO outperformed the best performed meta-
heuristic (simulated annealing) in the previous studies by approximately three
percent on the average. In addition, MBO was tested with some benchmark
problem instances obtained from QAPLIB and in most of the instances it ob-
tained the best known solutions. As a result of these tests, it is concluded that
the MBO is a promising metaheuristic and it is a candidate to become one of
the highly competitive metaheuristics. Duman and Elikucuk [2] applied MBO to



454 A.F. Alkaya et al.

solve fraud detection problem. They also proposed a new version of MBO where
a different benefit mechanism is used. They tested the original MBO algorithm
and its new version on real data and compared their performance with that of
genetic algorithm hybridized with scatter search (GASS). Test results showed
that the MBO algorithm and its new version performed significantly better than
the GASS algorithm.

In this study, we exploit MBO to solve problems in continuous environments.
The set of functions used are given in [3] which are tried to be minimized on
2, 10 and 30 dimensional spaces. The search space is [−100, 100]D where D
is the dimension. We believe that defining an effective neighboring function is
much more important than any other modifications on the MBO. In line with
this observation, our contribution in this study is to develop a novel neighbor
generating function for MBO to be used in multidimensional continuous spaces.

In the next section we present an effective neighbor generating function de-
signed for MBO. Section three presents experimental setup which includes pa-
rameter analysis of the MBO algorithm. Section four gives the results where
MBO is run on 30 different functions and various dimensions. Section five gives
the conclusive remarks together with some future work.

2 A Novel Neighbor Generating Function

In order to design a well performing MBO algorithm, an effective neighbor gen-
erating function is essential. To have a more effective exploration plan in the D
dimensional solution space, we used D dimensional spheres (D-spheres for short
throughout this paper). A neighbor of a solution can be obtained only within
the D-sphere around it. A neighbor of a solution can be at most r units away
from the original solution where r is the radius of the D-sphere that surrounds
it. To find the radius of a D-sphere, we firstly calculate the volume allocated to
it using the following formula.

VD = TV/n (1)

where VD is the volume of a D-sphere and TV is the total volume of the
solution space. In order to calculate the radii for the D-spheres in a D dimen-
sional space, the volume of the solution space is divided by n. In this way, we
try to make an effective exploration and fair distribution of volume for all birds
(solutions) to fly around. When the volume of a D-sphere is calculated, we need
to find the radius of the D-sphere. The following inductive formulas give the
volumes of D-spheres.

V1 = 2 ∗ r (2)

V2 = π ∗ r2 (3)

VD = VD−2 ∗ 2 ∗ π/rDforD > 2 (4)

Once the volume for each sphere is calculated, the radii of each sphere can be
easily calculated using Equations(2-4). After calculating the radius of D-sphere,



Performance of Migrating Birds Optimization Algorithm 455

we can develop a method to find a neighbor solution (point) within the sphere
using some trigonometry. The distance that how far will the new solution be
away from the original solution will be a random number in [0, r] where r is the
radius of the sphere.

Additionally, we also need to determine the location (coordinate in each axis)
of the point in the D dimensional space. For this, we used the following set of
trigonometric formula.
xD = l ∗ cos(θD−1)
xD−1 = l ∗ sin(θD−1) ∗ cos(θD−2)
xD−2 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ cos(θD−3)
...
x2 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ ... ∗ sin(θ2) ∗ cos(θ1)
x1 = l ∗ sin(θD−1) ∗ sin(θD−2) ∗ ... ∗ sin(θ2) ∗ sin(θ1)

where l is the distance that how far will the new solution be away from the
original solution, xi is the coordinate of the point in the ith axis and θi is the
angle between ith and (i + 1)th axis. Before using this set of formula θi’s must
be obtained randomly such that θ1 ∈ [0, 2π] and θi ∈ [0, π] for i = 2, . . . , D − 1.
An example for the formulas given above is presented in Figure 2 for D = 3.

Fig. 2. Representation of a point (solution) and the vectors constituting it in three
dimensions

From this setting, one can easily observe that if the number of birds (solutions)
is small, then the volume that they are going to explore will be large whereas
if the number of birds is large, the volume that they are going to explore will
be small. Since we are limited by the number of function evaluation (neighbor
generations) due to the competition rules, with a large number of solutions we
will be able to explore small number of neighbors in smaller regions whereas with
small number of solutions we will be able to explore large number of neighbors
in larger regions. Hence, an efficient value for the n parameter must be found
for the best performance of the algorithm.



456 A.F. Alkaya et al.

3 Experimental Setup

The experiments are run on an HP Z820 workstation with Intel Xeon E5 proces-
sor at 3.0 GHz with 128 GB RAM running Windows 7. The MBO algorithm is
implemented in Java language. The stopping criterion for the MBO algorithm is
a given number of function evaluations which correspond to number of neighbors
generated. Specifically the allowed number of function evaluations is 10000*D.

Table 1. Statistics of 51 runs on 30 different functions when D=2

Function ID min max avg med std

1 40.82 19721.55 1951.86 1113.82 2964.70
2 2.48 4532.26 408.61 98.97 751.68
3 1.67 1.67 1.67 1.67 0.00
4 15.22 4166.54 488.89 227.25 704.77
5 0.17 1.20 0.57 0.59 0.24
6 0.03 3.58 0.95 0.82 0.80
7 0.00 0.01 0.00 0.00 0.00
8 0.91 6.44 3.99 4.17 1.17
9 0.07 0.43 0.26 0.26 0.10
10 0.02 0.39 0.20 0.21 0.10
11 0.01 1.10 0.35 0.23 0.36
12 0.08 1.28 0.55 0.55 0.30
13 0.02 0.08 0.02 0.02 0.01
14 0.23 1.21 0.73 0.75 0.21
15 0.28 2.62 0.98 0.81 0.54
16 0.01 0.15 0.07 0.06 0.04
17 0.01 0.82 0.16 0.12 0.15
18 -861.55 0.00 -840.06 -837.83 5.82
19 0.01 0.28 0.09 0.09 0.06
20 0.39 7.27 2.85 2.97 1.45
21 0.02 1.38 0.51 0.47 0.32
22 0.03 1.44 0.34 0.21 0.34
23 0.32 10.86 7.77 8.34 2.01
24 17.73 7069.62 551.74 261.12 1056.58
25 2.13 2390.53 355.57 138.30 535.51
26 1.33 12.67 2.75 2.03 1.92
27 -41721.46 0.00 -38311.70 -38587.87 2274.27
28 -1.57 0.00 -0.88 -0.87 0.26
29 8.47 17.97 12.75 12.35 2.77
30 0.05 0.84 0.33 0.33 0.16

In order to reveal the best performing parameter values of the MBO on the con-
tinuous functions, we run a set of extensive computational experiments. These pre-
liminary tests are conducted on six functions selected out of 30 given in [3]. Best
performing values for the parameters are as follows:n = 5001, k = 3,m = 1, x = 1.

4 Results

In this section we provide the results of the MBO algorithm on the aforementioned
continuous benchmark functions. One of the results to be delivered as a rule of the
competition is the T 1 and T 2 values. T 1 is the average run time of five runs of the
following piece of MATLAB code in our environment.



Performance of Migrating Birds Optimization Algorithm 457

Table 2. Statistics of 51 runs on 30 different functions when D=10

Function ID min max avg med std

1 20323203.08 109661239.94 61390076.47 63430416.62 18862528.62

2 240.72 1998.77 801.74 755.39 358.08

3 192.16 304.70 247.67 248.40 21.37

4 354.30 2204.80 1001.13 934.47 468.90

5 1.09 1.64 1.35 1.36 0.12

6 477.57 5023.73 1975.59 1786.44 1048.17

7 0.17 1.53 0.84 0.83 0.25

8 7.04 11.55 9.73 9.74 1.01

9 3.22 5.43 4.75 4.91 0.51

10 1.25 2.12 1.72 1.75 0.22

11 11.01 35.33 27.20 28.07 5.30

12 0.66 2.42 1.54 1.60 0.37

13 1.54 2.58 2.13 2.13 0.25

14 5.30 13.38 8.59 8.56 2.05

15 33.46 214.90 120.04 122.06 42.16

16 1.69 3.46 2.71 2.75 0.43

17 578.73 4028.84 1831.87 1830.40 681.23

18 -3470.64 0.00 -2717.47 -2617.14 376.96

19 1.97 8.05 4.56 4.36 1.30

20 5.90 13.83 9.96 9.91 1.73

21 5.10 19.54 13.41 13.80 3.44

22 38.72 213.23 122.00 126.23 38.49

23 29.19 43.87 38.97 39.58 2.96

24 395.74 1997.54 980.50 935.94 390.40

25 217.89 3921.61 1169.83 1048.91 596.34

26 838.83 6476.15 2421.21 2310.05 1154.72

27 -19655.46 0.00 -13727.18 -13385.63 2203.31

28 14.54 15.72 15.14 15.17 0.29

29 21.37 21.38 21.37 21.37 0.00

30 1.08 1.35 1.22 1.23 0.07



458 A.F. Alkaya et al.

Table 3. Statistics of 51 runs on 30 different functions when D=30

Function ID min max avg med std

1 131323505.00 371642428.18 272954269.37 278704299.47 49176717.62

2 370.11 1232.52 730.82 729.31 191.71

3 19702.97 36266.85 28845.16 29096.35 4050.11

4 397.31 2204.13 920.60 891.43 351.70

5 1.04 1.23 1.10 1.10 0.04

6 1607.06 12377.82 7458.20 7420.84 2176.52

7 1.80 3.42 2.80 2.80 0.39

8 10.20 11.89 11.05 11.11 0.46

9 13.70 17.27 15.64 15.67 0.88

10 2.97 4.82 3.96 4.06 0.42

11 81.94 140.23 114.50 117.65 13.35

12 2.77 4.47 3.74 3.74 0.39

13 8.00 10.33 9.18 9.27 0.58

14 6.30 11.09 8.99 9.18 1.14

15 194.15 371.56 298.56 311.88 42.88

16 5.71 8.75 7.47 7.60 0.72

17 35345.91 77582.40 54386.92 55674.38 10061.42

18 -5215.18 0.00 -4565.75 -4527.92 252.22

19 8.43 17.05 11.84 11.86 1.89

20 5.71 9.16 7.86 8.05 0.70

21 20.15 38.43 30.42 30.40 4.19

22 189.36 418.69 316.94 322.05 59.04

23 100.05 116.60 108.54 108.75 3.99

24 603.02 1419.04 951.32 938.95 199.66

25 11240.74 29044.32 19293.43 19268.09 4740.83

26 1980.60 11722.33 7516.65 8055.23 2296.92

27 -6756.60 0.00 -5080.52 -5009.40 753.36

28 54.70 55.72 55.18 55.18 0.28

29 21.61 21.62 21.61 21.61 0.00

30 1.38 1.47 1.43 1.44 0.02



Performance of Migrating Birds Optimization Algorithm 459

for i=1:300000
evaluate(9,rand(30,1)*200-100);

end

T 2 is the average run time of five runs of the function 9 onD=30 in our environ-
ment.

According to our experimental work T 1, T 2 and (T 2-T 1)/T 1 are as follows:

– T 1=29.965
– T 2=73.369
– (T 2-T 1)/T 1=1.448

Table 1, 2 and 3 present the statistics when D=2, 10 and 30, respectively. The
major observation among the tables is that in higher dimensions the performance
of the MBO algorithm gets worse. This is an expected result because the search
space grows much faster than the allowed number of function evaluations.

5 Conclusion

In this study we applied migrating birds optimization algorithm to 30 different
functions on continuous domain. Our contribution in this study is to develop an
effective novel neighbor generation function for MBO. The tests are conducted on
2, 10 and 30 dimensions. Results present that even though MBO is a recently pro-
posed algorithm it is also promising for problems in continuous domain.

References

1. Duman, E., Uysal, M., Alkaya, A.F.: Migrating Birds Optimization: A New Meta-
heuristic Approach and Its Performance on Quadratic Assignment Problem. Infor-
mation Sciences 217, 65–77 (2012)

2. Duman, E., Elikucuk, I.: Solving Credit Card Fraud Detection Problem by the New
Metaheuristics Migrating Birds Optimization. In: Rojas, I., Joya, G., Cabestany, J.
(eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 62–71. Springer, Heidelberg (2013)

3. Website of Fifth International Conference on Swarm Intelligence,
http://www.ic-si.org/competition

http://www.ic-si.org/competition

	Performance of Migrating Birds OptimizationAlgorithm on Continuous Functions
	1 Introduction
	2 A Novel Neighbor Generating Function
	3 Experimental Setup
	4 Results
	5 Conclusion
	References




