
Chapter 5
Multi-Componential Fluid Flow

Ashok Singh

This chapter deals with mathematical modeling of multi-componential fluid flow
and transport processes in a porous media. Compare to flow of a pure fluid, inter-
action of multi-componential fluid flow with other processes is very complex due
to the variability of material parameters due to change in pressure, temperature and
composition. Numerical simulation helps to understand such complex interaction
is arisen from process coupling or variability in the material parameters. Numerical
simulation also helps for making a precise prediction the consequences of fluid injec-
tion/extraction associated with subsurface. The present modeling is useful for com-
putational investigation of industrial and fundamental problems of mass, momentum
and heat transfer through porous media.

5.1 Basic Equations

This section is concerned with derivation of governing equations for multi-
componential fluid flow and transport processes in a porous media. A porous media
can be considered as a two-phase system which solid phase is immobile and isotropic
material. And the mobile phase is a mixture of different pure fluids filled in the pores
of solid skeleton. In this derivation, the concept of Representative Elementary Vol-
ume (REV—measurement over a smallest volume represents the whole two phase
system) is adopted. In the continuum mechanism, REV concept neglects that a matter
is made of atoms. The size of this REV is restricted by inequality λ ≤ l ≤ L which
provides definition of the Knudsen number Kn = λ

l . λ is the average mean free path
between two molecules and l is the characteristic length (e.g., diameter of pores).
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5.1.1 Mass Balance Equation

The mass balance equation of a multi-componential fluid flowing with velocity, v,
in a porous media is given by

∂
(
nρ f

)

∂t
+ ∇ ·

(
ρ f nv

)
= nρ f Q f

ρ (5.1)

Here, v = ∑

k
ω

f
k vk is the averaged velocity shared by each component (Bear [1]).

t is time, superscript f stands for fluid phase, subscript k stands for component.
ω

f
k is the mass fraction of kth components in the mixture, ρ f is mixture density,

k is permeability, n is porosity, μ is viscosity, g is gravity vector and Q f
ρ is fluid

source/sink term.
According to Helmig [2], sum of the diffusive fluid flux over all components is

zero. And the Darcy’s law is used for the advective fluid flux, Fa .

Fa = ρ f w = ρ f nv = −ρ f k
μ

·
(
∇ p − ρ f g

)
(5.2)

Equation (5.1) is expanded in following form
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ρ (5.3)

Here, thermal expansivity α
f
T = − 1

ρ f

(
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)

p,ω
f
k

, fluid compressibility
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(
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)

T,ω
f
k

and solutal expansivity γk = 1
ρ f

(
∂ρ f

∂ω
f
k

)

p,T,ω
f

i

; i �= k.

5.1.2 Fractional Mass Transport Equation

Consider a reaction which affects mass fraction of kth chemical component in fluid
and solid phases. Rate of this reaction, Rγ , can be decomposed into zero order and
1st order rates.

Rγ = Rγ

(0)︸︷︷︸
zero order

+ Rγ

(1)︸︷︷︸
1st order

; γ = f, s (5.4)

The zero order rate is equivalent to the source/sink term, i.e. Rγ

(0) = ργ Qγ . Whereas,

according to the decay process, 1st order rate is given by relation Rγ

(1) = −λργ ω
γ

k .
Choosing the dispersive mass flux in terms of mass fraction, the mass transport
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equation of the kth component for fluid and solid phases are given by

∂
(

nρ f ω
f
k

)

∂t
+∇·

(
wρ f ω

f
k

)
−∇·

(
nρ f Di j · ∇ω

f
k

)
= −nλρ f ω

f
k +nρ f Q f

ω (5.5)

and

∂
[
(1 − n)ρsωs

k

]

∂t
= −(1 − n)λρsωs

k + (1 − n)ρs Qs
ω (5.6)

The mass fraction of kth chemical component in mixture (ω f
k = m f

k
m f ) and solid

(ωs
k = ms

k
ms ) phases are related via sorption law i.e., ωs

k = f (ω
f
k )ω

f
k . With considering

sorption process, the convective form of the factional mass transport equation is
given by

nρ f R1
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f
k − ∇ ·
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nρ f Di j · ∇ω

f
k

)

+ ω
f
k ρ f

(
nρ f Q f

ρ − n R0λ
)

= nρ f Q f
ω + (1 − n)Qs

ω (5.7)

The retardation coefficient, R0, and its derivative, R1, are given by

R0 = 1 + 1 − n

n

ρs

ρ f
f (ω

f
k ); and R1 = 1 + 1 − n

n

ρs

ρ f

∂
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f (ω
f
k )ω

f
k

]

∂ω
f
k

The coefficients of hydrodynamic-dispersion tensor are given by

Di j = τ Dδi j + αt |v| δi j + (αl − αt )
vi v j

|v|
Here, δi j is Kronecker delta, τ is tortuosity, D is diffusion coefficient, αt and αl are
transverse- and longitudinal- dispersivity, respectively.

5.1.3 Heat Transport Equation

Consider an open system with a fluid which internal energy is e f and density is
ρ f . According to the first law of thermodynamics, energy balance equation for this
system is expressed as

ρ f De f

Dt
+ ∇ · i f + e f ρ f Q f

ρ = τi j
∂vi

∂x j
(5.8)

where, e f ρ f Qρ is amount of internal energy associated with fluid source/sink term,
Qρ , and i f is the fluid heat conduction flux vector. The stress tensor, τi j

∂vi
∂x j

, can be
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decomposed into pressure term, p∇ · v, and viscous term, v · ∇ p.

ρ f De f

Dt
+ ∇ · i f + e f ρ f Q f

ρ = v · ∇ p − p∇ · v (5.9)

For a thermodynamically open system, enthalpy, h f , is preferred over internal energy,
e f . Hence, Eq. (5.9) is being transformed in terms of fluid enthalpy with using the
mass balance equation.

p∇ · v = − p

ρ f

Dρ f

Dt
+ pQ f

ρ = ρ f
D

(
p

ρ f

)

Dt
− Dp

Dt
+ pQ f

ρ (5.10)

Replacing the pressure term in the Eq. (5.9) by using Eq. (5.10) and relation,
h f = e f + p

ρ f , we have

ρ f Dh f

Dt
+ ∇ · i f = v · ∇ p + Dp

Dt
− h f ρ f Q f

ρ (5.11)

The energy balance equation for solid phase in terms of the internal energy, es , is
given by

ρs Des

Dt
+ ∇ · is = Qs

e (5.12)

Replace the total derivative in Eqs. (5.11) and (5.12) with following thermodynamical
relations.

Dh f

Dt
=

(
1

ρ f
− α

f
T T f

ρ f

)
Dp

Dt
+ c f

p
DT f

Dt

Des

Dt
= cs

v

DT s

Dt
(5.13)

The heat transport equation for fluid and solid phases in terms of respective phase
temperature are

ρ f c f
p

DT f

Dt
+ ∇ · i f = v · ∇ p + α

f
T T f Dp

Dt
− h f ρ f Q f

ρ (5.14)

and

ρscs
v

∂T s

∂t
+ ∇ · is = Qs

e (5.15)

Under the thermal equilibrium (T f ∼= T s = T ), total energy conservation equation
is preferred which is obtained by averaging the Eqs. (5.14) and (5.15) over fluid and
solid phases.
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Table 5.1 Approximation of material parameters for a mixture
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+ nv · ∇ p − α

f
T T nv · ∇ p + c f
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f Q f

ρ + QT (5.16)

Here, QT = Qe, and heat conduction flux can be represented according to the
Fourier’s law.

iγ = −κγ · ∇T (5.17)

where κeff, is the effective thermal conductivity tensor of the porous media, with
coordinates defined as κeff = (1 − n)κs + nκ f .

(
ρcp

)
eff is the effective heat capacity

of the porous medium defined by
(
ρcp

)
eff = (1 − n)ρscs

v + nρ f c f
p . Here, specific

heat capacity and thermal conductivity of the fluid mixture are given in Table 5.1.

5.1.4 Equation of State

Tsai and Chen [3] presented the volume translated Peng-Robinson equation of state
(VTPR-EoS). In this EoS, molar volume, vk , is corrected by the translated volume, c.
The translated volume is difference in molar volume obtained by experimental and
computation at the reduced temperature Tr = T/Tc. Because of this translation,
VTPR-EoS approximates the fluid parameters for liquids, gases and supercritical
states.
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p = RT

(vk + c − b)
− a(T )

(vk + c)(vk + c + b) + b(vk + c − b)
(5.18)

Here, R is universal gas constant. a and b are attraction and repulsion parameter,
respectively.

a(T ) = 0.4572
R2T 2

c

pc
[1 + M0(1 − Tr ) + N0(1 − Tr )(0.7 − Tr )]

2

M0 = 0.2047 + 0.8354ωa − 0.1847ω2
a + 0.1667ω3

a − 0.0988ω4
a

b = 0.077796
RTc

pc

c = RTc

pc

[
k1 + k2

(
1 − T 2/3

r

)
+ k3

(
1 − T 2/3

r

)2
]

k1 = 0.00185 + 0.00438ωa + 0.36322ω2
a − 0.90831ω3

a + 0.55885ω4
a

k2 = −0.00542 − 0.51112k3 + 0.04533k2
3 + 0.07447k3

3 − 0.03831k4
3

Here, pc is critical pressure, Tc is critical temperature and ωa is acentric parameter.
Required parameters for VTPR-EoS are given in Table 5.2. A cubic equation based
on VTPR-EoS is obtained by setting vk = zk RT p, in Eq. (5.18).

z3 + Pz2 + Qz + r = 0

P = B − 1 + 3C

Q = −3B2 + 3C2 + 2BC − 2B − 2C + A

r = B3 + C3 + B2 − C2 + BC2 − 3C B2 − 2BC + C A − AB
(5.19)

Here, A = ap
RT , B = bp

RT and C = cp
RT . The cubic equation can be easily solved

using either Newton-Raphson iteration or analytical method for super compressibility

Table 5.2 Constants of the pure fluid

CO2 CH4 N2 H2O Unit

ρc 467.6 162.66 314.0 322 kg m−3

Tc 304.13 190.55 126.20 647.096 K

pc 7,377,300 459,920 338,300 22,064,000 Pa

M 44.01 16.04 28.013 18.015 kg kmol−1

ωa 0.22491 0.011 0.039 0.344 –

Vd 26.9 25.14 18.5 – m3 kmol−1

N0 0.11333 0.08248 0.09967 0.1156 –

M0 0.3849 0.2138 0.0185 0.4756 –

k3 0.28996 0.20978 0.24086 0.0471 –
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factor, zk = zk(p, T ). According to the Katz chart, at temperature below to critical
point cubic equation has only one real root representing the existence of a single
phase. Otherwise, it has two real roots. The maximum root represents gas state,
whereas, minimum root represents either liquid or supercritical state.

5.1.4.1 PVT Derivatives

Two important derivatives, i.e. ∂vk
∂p and ∂vk

∂T are prerequisite to find other fluid and

thermal parameters (particularly, β f
k and α

f
T k). In this section, we provide expression

for these derivative deriving from Eq. (5.18).

(
∂vk

∂T

)

p,ωk

= F − da
dT E

F + 2pEH − 2RTH + a
(

∂vk

∂p

)

T,ωk

= EF

pF + 2pEH − 2RTH + a

with, F = (vk +c)(vk +c+b)+b(vk +c−b), E = vk +c−b, and H = vk +c+b

(
da

dT

)
= −0.4572

R2Tc

pc
2a0 [1 + M(1 − Tr ) + N (1 − Tr )(0.7 − Tr )]

Here, a0 = M0 + N0(1.0 − Tr ) + N0(0.7 − Tr ).

5.1.4.2 Amagt’s Mixing Rule

According to the rule, the molar volume of a mixture is the sum of its component’s
partial volumes, i.e. v = ∑

k
vk . This mixing rule with the real gas law, we have

pv = ∑
k zk(p, T )RT . The expression for mixture density is given by

1

ρ f
=

∑

k

ω
f
k

ρ
f

k

From above relation, expression for the salute expansivity is obtained as

γk =
(

1

ρ f
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∂ω
f
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f
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= −ρ
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ρ f
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Fig. 5.1 Comparison of carbon dioxide (left) and water (right) parameters with NIST data for
pressure from 1.0 × 105 Pa to 2.0 × 107 Pa at 318.15 K
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5.1.4.3 Material Functions for Mixture

We computed density, viscosity, heat conductivity and specific heat capacity for
pure fluids according the expression given in the Table 5.1. Figure 5.1 shows that
the computed parameters are in close agreement with corresponding data from the
National Institute of Standards and Technology (NIST).

5.2 Examples

5.2.1 Tracer Test

Tracer is used to characterize the fluid flow through the reservoirs and for estimation
of medium parameters. For example, in oil and gas industries (also in hydrology) it
is used for indicate mean flow velocity, residual saturation, dispersivities, and etc.
For the transport of a contaminant through a porous medium, Genuchten and Alves
[4] provided one dimensional analytical solution which is as follow.

ω f (x, 0 < t ≤ t0) = ω
f

i + (ω
f
0 − ω

f
i )A(x, t)

ω f (x, t ≥ t0) = ω
f

i + (ω
f
0 + ω

f
i )A(x, t) − ω

f
0 A(x, t − t0) (5.20)

with

A(x, t) = 0.5erfc

[
n R0x − vt√

4nτ R0 Dt

]
+ 0.5erfc

[
n R0x + vt√

4nτ R0 Dt

]
exp

( vx

nτ D

)

To consider sorption process in the mass transport, the sorption law can be adapted,
e.g. Henry’s law. Extent to which sorption process affects the tracer transport is
accounted by the retardation factor, R0. Here, D is the binary diffusion coefficient,
ω

f
0 is the mass fraction of the tracer chemical is used for pulse, t0, injection.

Observation points

x=1000 m10m

5m

Tracer injection

Inlet Outlet

Fig. 5.2 Conceptual model geometry
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Table 5.3 Model properties and material parameters

Parameter Symbol Value Unit

Length L 1,000 m

Area A 1 m2

Tortuosity τ 1.0 –

Porosity n 0.1 –

Intrinsic permeability k 1.0 × 10−14 m2

Fluid density ρ f 30 kg m−3

Solid density ρs 2,000 kg m−3

Dynamic viscosity μ 1.0 × 10−5 Pa s

Diffusion coefficient D 1.0 × 10−6 m2 s−1

Sorption coefficient K D 1.0 × 10−4 m3 kg−1

Initial pressure p0 1.01325 × 105 Pa

Constant temperature T0 318.15 K

Tracer injection rate qm 0.82946592 kg per day

Pulse injection time t0 10 day

5.2.1.1 Definition

Problem of tracer transport in one-dimensional porous column is considered. The
pores of the solid skeleton are completely filled with water at a constant pressure
and temperature. The tracer chemical is injected from the inlet within short time
and computed the tracer breakthrough curve (time evolution of tracer mass fraction)
at two different points located at 5 and 10 m from the inlet (see Fig. 5.2). System
properties and material parameters used in the simulation (porous medium as well
as of fluid and solid phases) are summarized in Table 5.3.

5.2.1.2 Model Geometry and Conditions

• Geometry: The porous column is 1,000 m long in x-direction. Inlet and outlet are
located at x = 0 and 1,000 m, respectively.

• IC: At a constant temperature, 318.15 K, we assume that the pores of solid skeleton
are occupied by water at pressure of 1.01325 × 105 Pa.

• BC: Free boundary condition for pressure and tracer mass fraction is prescribed at
the outlet boundary. At the inlet, mass fraction of tracer chemical ω

f
0 = 1 during

pulse tracer injection then altered by free boundary condition.
• ST: From the inlet, the tracer chemical is introduced with rate of 0.83 kg per day

for 10 days.
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Fig. 5.3 Comparison of analytical and finite element solution

5.2.1.3 Numerical Solution

For numerical simulation, the numerical module ‘Multi Componential Flow’ embed-
ded in OGS simulator is utilized. This module solves coupled system of mass bal-
ance and fractional mass transport equations in monolithic way for pressure and
mass fraction of the tracer chemical. For non-linear iterations, it uses the Picard lin-
earization method. Numerical solution is stabilized with mass lumping method. The
model geometry is shown in Fig. 5.2 which is discretized into 1,001 line elements.
To capture a sharp tracer concentration gradient, a variable spatial step size, i.e.
�x = 0.000925289 m is chosen close to the inlet and it is increased to 10 m far away
from it. One year of the reservoir behavior has been simulated using a constant time
step size of one day.

Figure 5.3a, b show the tracer breakthrough curves at the observation points. In
Fig. 5.3a, sorption process is not included, however, Fig. 5.3b clearly showing that
sorption process retards the mass transport significantly. The present finite element
solution is in close agreement with the analytical solution, i.e. Eq. (5.20).

5.2.2 Bottom Hole Pressure

Well control is a technique prevalent in oil and natural gas industries for well drilling
or fluid injection. In this technique, hydrostatic pressure (fluid column) is main-
tained with formation pressure to avoid influx into well. So understanding of the
different pressure is important, particularly, Well Head Pressure (WHP) and Bottom
Hole Pressure (BHP). Hence, in this benchmark, BHP is simulated with simplified
geometry using multi-componential fluid flow approach.

The model geometry is shown in Fig. 5.4. This uses axisymmetric concept
to simplify the model, i.e. one-dimensional porous column in r-direction which
pores are occupied with water at pressure 6.2 × 106 Pa and temperature 318.15 K.
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Fig. 5.4 Benchmark setup

CO2 Observation point R=1000 m

p0=6.2×106 Pa ,T0 =318.15 K

H
=

27
 m

r0

z

r
R=1000 m

Table 5.4 Model parameters
and geometrical information

Parameter Symbol Value Unit

Radius R 1,000 m

Height H 27 m

Well radius r0 0.1 m

Porosity n 0.25 –

Permeability k 4.6 × 10−14 m2

Density ρ f Table 5.1 kg m−3

Viscosity μ Table 5.1 Pa s

Diffusion coefficient D Table 5.1 m2 s−1

Mass injection rate qm(t) Fig. 5.5 kg s−1

Time step �t 10 h

Simulation time t 19,170 h

From the left point, time dependent injection rate is assigned for CO2 injection.
Required parameters for this numerical simulation are given in Table 5.4. Pressure
evolution during injection operation is computed to show that measured pressure
data (from real site) could be reproduced by numerical simulation.

5.2.2.1 System Geometry and Conditions

• Geometry: The porous column is 1,000 m long in the r-direction. The inlet and
outlet are located at r = 0.1 and r = 1,000 m, respectively.
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• IC: The pores of the solid skeleton are occupied by water at pressure of 6.2×106 Pa
and temperature of 318.15 K.

• ST: A time dependent mass source term is assigned at the inlet (see Fig. 5.4) for
CO2 injection.

5.2.2.2 Numerical Solution

The geometrical model consists 1,001 line elements. To capture the sharp pressure
gradient close to the inlet, the spatial step size is refined to �r = 0.000925289 m
whereas far from the injection point it is 10 m. The numerical simulation for 19,170 h
has been performed using a constant time step size of ten hours. In Fig. 5.5, the
pressure evolution is presented which is observed at r =23 m from the injection point.

p0 p053 Cm

29
C

mPorous media chamber

(27, 24 Cm)

Treated water injection

Saline water at 101325 Pa, 313.15 K

Fig. 5.6 Semantic of the original experimental
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5.2.3 Plume Migration

Treated wastewater disposal into saline aquifers can rise up to the surface. Due to
this, saline aquifers generally are overlain by treated water layers. To make decision
for using these layers as a potable drinking water source or not, investigation about
plume rising become important. Usually, plume moves away from its source because
of density contrast and widens because of entrainment of the surrounding fluid at
its edges. Experimental (see Fig. 5.6) investigation of buoyant plume movement is
presented by Brakefield [5].

5.2.3.1 Definition

Geometry of the problem is shown in Fig. 5.6. This two-dimensional plane is assumed
a isotropic porous media which pores are completely filled with saltwater at a pressure
of 1.01325 × 105 Pa. Mass rate for treated water (lighter than saltwater) injection is
assigned at the injection point. The density of the treated water varies linear with mass
fraction, i.e. ρ

f
w = ρ

f
w0(1 + γwω

f
w). The density of saltwater is used for reference

density ρ
f
w0 = 1,019 kg m−3.

5.2.3.2 Model Geometry and Conditions

• Geometry: The considered plane is 56 cm long and 29 cm high in x and z-directions,
respectively. From the point (27, 24 cm), treated water is injected.

• IC: At constant temperature, 313.15 K, we assume that the pores of solid skeleton
are occupied by saltwater at pressure of 1.01325 × 105 Pa.

• BC: At the top left and top right point, pressure p0 = 1.01325×105 Pa is assigned.
Elsewhere, free boundary conditions for pressure and treated water mass fraction
are prescribed.

• ST: A 60 ml volume of treated water is injected by syringe into saltwater for 41 s
(Table 5.5).

5.2.3.3 Numerical Solution

The model geometry is discretized into 24,591 quad elements. For numerical simula-
tion, the numerical module ‘multi componential flow’ is utilized. This solves coupled
system of mass balance and fractional mass transport equations in monolithic way
for pressure and mass fraction of treated water. For accuracy, a very fine mesh is used
in the region of plume rising. 2,671 s of plume rising have been simulated using a
constant time step size of ten seconds. For non-linear iterations, the Picard lineariza-
tion method is applied with the mass lumping method for numerical stabilization.
Figure 5.7 shows the development of treated water plume simulated by SUTRA and
SEWAT simulators along with the present finite element solution. It is found that
plume distribution patter from each simulator is very similar at all-time steps.
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Fig. 5.7 Evolution of treated water plume at a 27; b 369; c 685; d 1,385; e 2,631 s after injection
completed

Table 5.5 Simulation parameters

Parameter Symbol Value Unit

Plane area L × H 0.56 × 0.29 cm2

Densities ρ
f
w, ρ

f
s 1.0 × 103, 1.019 × 103 kg m−3

Dynamic viscosity μ 0.001 Pa s

Salution expansivity γw −0.01865 –

Compressibility β f 0.0 Pa−1

Porosity n 0.39 –

Intrinsic permeability k 1.120795 × 10−9 m2

Diffusion coefficient D 1.477 × 10−9 m2 s−1

Dispersivity coefficient αl , αt 0.0005, 0.00005 m

Simulation time t 2,671 s

Injection time tin j 41 s

Time step �t 10 s

Mass injection rate qm 0.032831 kg s−1
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5.2.4 CO2 Leakage Through Abondoned Well

Leakage is a way for fluid to escape from storage. Leakage of geological storaged
CO2 through natural occurring faults and fractures would have different fatal effects
on the nearby environment. So, numerical modeling of the CO2 leakage is an useful
tool for understanding the leakage mechanism. Its understanding helps to estimate
fraction of the stored CO2 that can be retained in a suitable storage for a sufficiently
long period of time. In CO2 capture and storage technology is associated with pressure
pulse that move away from the injection point and it is quicker compare to the front
of advancing CO2. The pressure pulse forces the saline water to leak via naturally
occurred fractures or existing abondened well. And CO2 arrives at the leaky point
late and boyuncy assists CO2 leakage and opposes the saline water leakage. The
leakage rate is measured in terms of the non-dimensional leakage rate defined by

Non-dimensional leakage rate = Fluid flux through observation point

CO2 injection rate
(5.21)

The problem of the advective spreading of CO2 into an aquifer already addressed by
Ebigbo et al. [6]. However, they used multi-phase fluid flow approach with assump-
tions (i) the CO2 and the brine are two separate and immiscible phases (ii) capillary
pressure is negligible. These assumptions help to obtain the similar result using com-
positional fluid flow approach with neglecting the diffusion-dispersion part of mass
transport. We used theirs results in this benchmark for code validation. In this study,
we used dada from MUFTE and ELSA simulators

• ELSA code uniquely addresses the challenge of providing quantitative estimation
of fluid distribution and leakage rate.

• This problem is came in existence by developer of MUFTE code.

5.2.4.1 Definition

The problem of CO2 leakage is modeled using a two-dimensional plane consisting
two layers separated by an aquitard. The bottom layer is considered as CO2 storage
and top layer for freshwater body. Both layers share a common hydraulic parameters.
To be computationally efficient, the aquitard is omitted from numerical simulation.
At a constant temperature, the pores of the solid skeleton of both layers are filled
with water at the hydrostatic pressure condition. In the vicinity of the injection point,
an inclined fracture is incorporated. The non-dimensional leakage rate is defined in
Eq. (5.21) measured at the observation point located at the midpoint of the fracture.
The computed CO2 leakage rate is compared with similar result from ELSA and
MUFTE simulators.
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Fig. 5.8 Leakage scenario [6]

5.2.4.2 Model Geometry and Conditions

• Geometry: A 1,000 m long and 160 m high plane located between 2,860–3,000 m
deep to earth surface. This consists two layers each 30 m thick and a 100 m thick
aquitard. The CO2 injection and observation points are located at (0, −2,970 m)
and (100, −2,920 m), respectively.

• IC: At constant temperature, 318.15 K, pores of both layers are filled completely
with water under hydrostatic pressure condition dp

dz = 10,251.45 Pa m−1 with
reference depth of 2,840 m.

• BC: At both lateral boundaries, hydrostatic pressure similar to initial condition is
assigned. No flow condition is prescribed at top and bottom boundaries.

• ST: CO2 injection rate is 8.87 kg s−1 for 18 months.

5.2.4.3 Numerical Solution

The layers (see Fig. 5.8) are discretized into 15,231 triangular whereas the fracture is
discretized into 52 line elements. The triangular element closed to fracture are densely
distributed is. Within the multi-componential approach, the coupled system of flow
and transport equations is solved numerically using monolithic approach for primary
variables, i.e. pressure and mass fraction of water and CO2. Generalized single step
scheme is used for time discretization with time step �t = 1 Day. For non-linear
iterations the Picard linearization method is applied with the mass lumping method
for numerical stabilization. Negligence of diffusion-dispersion makes difficult to
achieve the desired convergence, but using available techniques (SUPG, FTC, or
MASS LUMPPING) we simulate this benchmark problem (Table 5.6).

Figure 5.9 shows the non-dimensional leakage rate of CO2. To simulate the
problem, OGS uses multi-componential fluid flow approach, whereas, other two
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Table 5.6 Simulation parameters

Parameter Symbol Value Unit

CO2, water density ρ
f

c , ρ
f
w 479,1045 kg m−3

CO2, water viscosity μc, μw 0.3950, 2.535 × 10−4 Pa s

Diffusion D 0.0 m2 s−1

Aquifer permeability ka 2.0 × 10−14 m2

Fracture permeability k f 1.0 × 10−12 m2

Porosity n 0.15

Aquifer depth h 2,840–3,000 m

Aquifer, aquitard thickness �h 30,100 m

Injection rate qm 8.87 kg s−1

Simulation time t 18 Month
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Fig. 5.9 Comparison of computed leakage rate from three different simulators

simulators were used the multi-phase fluid flow approach. This benchmark state that
CO2 leakage rate from both approaches are in close agreement under assumption
made earlier in this benchmark.

5.2.5 Thermo-Chemical Energy Storage

For a given reaction, amount of product(s) and reactant(s) are varied with reaction
time. It also releases/absorbs certain amount of thermal energy, i.e. reaction enthalpy.
Therefore, we present numerical modeling approach for investigation of interphase
mass and heat transfer.
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Consider a CaO bed which pore is filled with N2 gas. On introduction of water
vapor, CaO reacts with water produces Ca(OH)2 and releases heat (�h). This system
can be considered as a two-phase system which solid phase is composed by CaO
and Ca(OH)2 and gas phase is a mixture of water vapor and N2. The reaction rate
of this system is modelled with a trigonometric function such that the solid density
evolution is sinusoidal (amplitude a, angular frequency f

ρ̇s(t) = a f cos( f t) (5.22)

From this reaction rate, the following composition relations can be derived analyti-
cally for solid phase and water vapor densities:

ρs(t) = ρs
0 + a sin( f t) , ρg(t) = ρ

g
0 + a sin( f t) (5.23)

ρV (t) = ρV 0 + a sin( f t) , ωV (t) = ρV (t)

ρg(t)
(5.24)

Here, s and g stand for solid and gas phase. The heat transport equation for this
system is governed by

[
(1 − n)ρscs

p + nρgcgp
] ∂T

∂t
− n

∂p

∂t
= (1 − n)�h

∂ρs

∂t
(5.25)

To obtained the analytical solution of Eq. (5.25), we assumed that �h −→ ∞ and
solid and gas phases are in thermodynamical equilibrium. If the gases are ideal and
mixing is according to the Amagat’s rule, we find

1

M
=

∑

i

ωi

Mi
, βp = 1

p
, αT = − 1

T
, γi = −ρi

ρ
(5.26)

1

ρg
=

∑

i

ωi

ρi
, p =

∑

i

RTρgωi

Mi
; i = V, N (5.27)

Here, V and N stand for water vapor and nitrogen. Taking time derivative of gas
density function in Eq. (5.27), we have

∂p

∂t
=

∑

i

RT ωi

Mi

∂ρg

∂t
+

∑

i

Rρgωi

Mi

∂T

∂t
+

∑

i

RTρg

Mi

∂ωi

∂t
(5.28)

Again time derivative of pressure function of Eq. (5.27) and considering N2
is no-reactive (ρ̇s = ρ̇V = ρ̇), we find

∂p

∂t
=

∑

i

RT

Mi

∂ρi

∂t
+

∑

i

Rρgωi

Mi

∂T

∂t
(5.29)

the energy balance thus reads
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[
(1 − n)ρscs

p + nρg

(
cgp − R

M

)]
∂T

∂t
= (1 − n)

∂ρs

∂t

(
�h − nT R

MV

)
(5.30)

If δ = n R
MV cs

p
, integration yields

n RT

MV
= �h −

(
�h − n RT0

MV

) ⎛

⎝
(1 − n)ρscs

p + nρg
(
cgp − R

M

)

(1 − n)ρs
0cs

p0 + nρg
0

(
cgp0 − R

M0

)

⎞

⎠

−δ

(5.31)

5.2.5.1 Definition

In this example, the behavior of the model when mass transfer occurs between the
phases is verified. Consider a closed off system similar to the one described in the
previous example. The porous body is filled with a mixture of nitrogen and water
vapor modelled as ideal gasses.

5.2.5.2 Model Geometry and Conditions

• Geometry: Water vapor is introduce from inlet of a 10 cm long bed of CaO.
• IC: Pores are filled with N2 (ωN = 0.5) at p0 = 1.0 × 105 Pa and T0 400 K.
• BC: No flow condition is prescribed at inlet and outlet boundaries.
• ST: Injection rate for water vapor 1 × 10−10 kg · s−1 is assigned for one second.

5.2.5.3 Numerical Solution

The exemplary parameter set is listed in Table 5.7. The values are chosen such that
temperature changes due to mass transfer are visible in both phases. The numerical

Table 5.7 Simulation parameters

Parameter Symbol Value Unit

Length L 10 cm

Area A 0.0314 m2

Heat conductivity κs 0.4 W · m−1 · K−1

Permeability k 6.94 × 10−14 m2

Self-diffusion coefficient D0 9.5 × 10−5 m2 · s−1

Dispersivity αl , αt 0.1, 0.01 m

Heat of reaction �h 5.0 × 105 J · kg−1

Time step �t 0.001 s

Simulation time t 1.0 s
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Fig. 5.10 Model setup

Time (s)

T
em

p
er

at
u

re
, T

 (
K

)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 130
0

35
0

40
0

45
0

50
0

Present FEM solution
Analytical solution

(a)

P
re

ss
u

re
,p

 (
P

a)

9.
0E

+
04

1.
2E

+
05

Present FEM solution
Analytical solution

(b)

Time (s)

Time (s)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Time (s)

W
at

er
va

po
r

m
as

s
fr

ac
tio

n
ω

v
(-

)
0.
3

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

0.
65

Present FEM solution
Analytical solution

(c)

G
as

de
n

si
ty

ρg
(-

)

0.
45

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

0.
8

0.
85

Present FEM solution
Analytical solution

(d)

Fig. 5.11 Comparison of present FEM solution with the analytical solutions of a temperature;
b pressure; c water vapor mass fraction; d gas density

model was run with the Multi Componential Flow numerical module with a very
high number for �h. A time step size of 0.001 s was chosen for a time interval of 1 s.
One dimensional line elements were used for its spatial discretisation (Fig. 5.10).

The model correctly reproduced the conditions of thermal equilibrium. During
the initial stage of the reaction the gas loses mass while the solid (not shown) gains
that amount of mass. During the back reaction the opposite effect occurs. An equally
good match is obtained for the temperature profiles (Fig. 5.11a). If no heat of reaction
is released, the gas simply cools down as its density and pressure drop. The solid
phase follows this trend due to the very low density chosen here for demonstration
purposes. In the gas pressure profiles this switch of sign can be observed as well
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Table 5.8 Parameter values for interphase mass transfer verification

n (-) ρs (kg · m−3) ρ
g
0 (kg · m−3) cgp (J · kg−1 · K−1) cs

p (J · kg−1 · K−1)

0.7 1.0 0.659 1,000 1,000

T0 (K) f (Hz) a (kg · m−3) ωV 0 (−) M0 (kmol · kg−1)

400 2π 0.1 0.5 21.919

along with an increasingly non-sinusoidal trend in the pressure profile (Fig. 5.11b).
The numerically obtained water vapor mass fraction and gas density are compared
well with the analytical solution (Fig. 5.11c, d and Table 5.8).
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