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Chapter 1
Introduction

Olaf Kolditz, Uwe-Jens Görke, Hua Shao, Wenqing Wang
and Sebastian Bauer

1.1 Motivation

In nature, processes are coupled strongly with each other. Much progress has been
achieved towards understanding the complicated processes in deep geological dis-
posal of radioactive waste, CO2 subsurface sequences, geothermal applications and
energy storage.

Numerical tools dealing with the coupled thermal, hydraulic, mechanical,
chemical and biological processes have been developed to analyze experimental
outputs, field observations, laboratory tests. One important issue in the development
of numerical codes is of course the code validation andmodel comparison. Therefore,
different international benchmarking projects have been announced for this purpose,
such as DECOVALEX project (1992–2015), CO2Bench, SSBench, and Sim-SEQ.

For long-term performance and safety assessment of nuclear waste isolation in
deep geological formations, an important issue is the need to guarantee the isolation
of an underground repository. To answer this question, radioactive nuclide transport
processes under the coupled conditions involving mechanical stability, thermal load-
ing from the high-level waste, and chemistry in the groundwater should be predicted
numerically to get quantitative assessment of a repository. For these purposes, under-
ground laboratories in the different geological formations have been constructed for
extensive research covering geomechanical, geohydraulic, geochemical investiga-
tions of geological circumstances, geotechnical materials and their interaction.
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2 O. Kolditz et al.

In Europe, underground laboratories have been constructed in recent decades,
e.g. Grimsel Test Site (Switzerland) and Hard Rock Laboratories Äspö (Sweden) in
the granitic rock; Rock laboratories Mont Terri (Switzerland) and Bure (France) in
clay rock. Different field experiments have been conducted for the understanding of
processes under the in situ conditions. To implement experimental data gained from
the in situ test, a multiple-process coupled code is required (Fig. 1.1).

In the course of the quick development of computer technology, numerical codes
with capability to analyze problems in the coupled manner have become possi-
ble. However, the understanding of the complicated coupled processes based on the
experimental data available and implementation of the developed algorithm into the
numerical codes are a major challenge for scientists, which require interdisciplinary
cooperation and interactive procedures.

Quality management and controlling is nowadays a standard tool for production
and development to ensure a high quality of a produced result. A numerical code
dealing with the coupled THMC process is highly complicated software product,

Fig. 1.1 Pore water pressure distribution of Rock Laboratory Mont Terri (Switzerland) after
10years, calculated using code OGS in a 3D total mesh taking geological bedding, fault zone
and geotechnical tunnel into consideration
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since the different processes have different characteristic features, e.g. time and
spatial scales, nonlinearities, and interaction degree, etc. To keep the high quality
of the developed code, benchmark testing is therefore necessary, especially in case
scientists from different disciplinary and different organizations are working on the
same code. Therefore, code verification and validation of selected test cases are doc-
umented, and finally a benchmarking book for code developers (DBB) is produced
and quality-ensured.

1.2 Application Areas

Thecouplingphenomenaof thermal (T), hydraulic (H), andmechanical (M)processes
are important for the analysis of deep geosystems under high temperature, pressure
and stress conditions. Application areas of THM coupled models are e.g. geothermal
energy utilization, nuclear waste disposal, and carbon dioxide storage in the deep
geological formation (Fig. 1.2).

The following slides illustrate that the understanding of THM processes, includ-
ing chemical reactions (C process) is important to a large variety of geotechnical
and geothermal applications. The physical basics are exactly the same for these
applications. Different is simply

• the geological environment and different rock types, i.e. crystalline rocks, volcanic
rocks, sandstones, clay, bentonite, ...

• the geofluids, i.e. water, brines, vapour, methane, carbon dioxide, ...
• the thermodynamic conditions, i.e. temperature, stress, pressure, salinity, ...

There are several concepts concerning host rock for the disposal of hazardous
waste in deep geological media, i.e. crystalline, salt, sediment, and volcanic forma-
tions. Different concepts use different buffer systems as geotechnical barriers for the

Fig. 1.2 Tunnel system (Visualization by B. Zehner)
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waste isolation, i.e. crushed salt, bentonite, and bentonite/sandmixture. THM/C cou-
pled modelling is required for the long-term analysis of possible processes which
might result in a release of contaminants from the repository [1]. In that case it
is important to know, how long it will take until the contaminants return into the
biosphere.

Figure1.3 illustrates the application area: Carbon Capture Storage (CCS). The
idea is to capture the CO2 from the power plants, liquefy it and inject it into the sub-
surface for long-term storage. Two basic concepts for appropriate geological systems
are under proof now: depleted gas reservoirs and deep saline aquifers. After many
years of operationmany former gas reservoirs are depleted. These reservoirs are in an
under pressurized status and can take up large volumes of fluids. Keeping the reser-
voir under pressurized and the impervious cap rocks are important considerations for
storage. THM/C modelling is required in order to calculate the possible fluid storage
capacity and to better understand the highly coupled processes in the CO2 injection
area as well as their consequences for the storage concept [2].

Fig. 1.3 Subsurface reservoir for CO2 storage
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1.3 Scope of This Book

This is the second volume of “Thermo-Hydro-Mechanical/Chemical Processes in
Porous-Fractured Media” [3] presenting new benchmarks and examples for THMC
processes. The theoretical background as well as numerical methods are not repeated
as can be found in the first volume. Access to OGS source code, executables for
different platforms as well as benchmark configuration files are available through
the OGS community webpage www.opengeosys.org.

Figure1.4 depicts the application area: Geothermal energy, which is one of the
alternative future energy resources under consideration. So-called shallow and deep
geothermal systems are distinguished. Shallow systems are already commercially
used e.g. for heating purposes. Deep geothermal reservoirs can be used for electric
power production as high temperatures up to 200C can be produced. THM/C mod-
eling is required to design these geothermal power plants, e.g. in order to optimize

Fig. 1.4 Geothermal reservoir simulation
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production efficiency and reservoir lifetime. The significant cooling of the reservoir
due to fluid reinjection gives rise to thermo-mechanical effects which need to be
controlled in order to avoid reservoir damage [4].

The second application area for coupled process simulation is hydrology. River
basins or catchments are also subject to THMC coupled processes, but include how-
ever a completely different range of thermodynamic conditions than deep geological
systems. Hydrological processes are very complex to describe as they vary highly in
time and space. The evaluation of groundwater recharge is vital to a sustainable water
resources management (so called safe yield). To this purpose, i.e. the understand-
ing of small scale phenomena such as root/soil water interaction is of tremendous
significance [5]. Typically groundwater models are used for management purposes
particularly in semi-arid areas such as the Jordan Valley in the Middle East [6]
(Fig. 1.5).

Because water availability is an important issue in semi-arid and arid regions,
groundwater quality deterioration is a critical concern in many urban areas of the
world. Figure1.6 shows as an example part of a groundwater quality model prepared
for the Nankou basin in the greater Beijing area. The idea of this modelling project
is to identify possible sources of nitrate contamination originating from intense agri-
culture and fertilizer production [8]. Land use and climate changes will impact the

Fig. 1.5 Groundwater model of Western Jordan Valley
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Fig. 1.6 Ammer groundwater model [7]

availability and quality of water resources to a large degree in the future. The mod-
elling should help to develop scenarios for improving the groundwater quality in the
long term. Areas subject to large groundwater extraction are also subject to severe
land subsidence.

A very recent research area for THMC modelling has become energy storage.
The economy and feasibility of renewable energy sources will depend a large degree
on efficient energy storage systems. Figure1.7 shows the numerical simulation of
flow and heat distribution in a solid thermal energy storage block, which will be used
to store solar energy collected during the daytime for use at night (so called solar-
thermics). The long term stability and efficiency of those energy storage devices can
be optimized using THMC modelling (i.e. solving the inverse geothermal problem).
In addition to thermal storage, thermo-chemical concepts are under development,
i.e. storing thermal energy by triggering endothermic reactions and gaining thermal
energy back on demand with the reverse reaction (exothermic).
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Fig. 1.7 Optimizing energy storage concepts [9] and geothermal energy in urban areas
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Chapter 2
Verification Tests

Peter Vogel and Jobst Maßmann

This chapter presents a set of closed form solutions that may serve as THMC test
examples. The material has been arranged in sections of simulation exercises. All
examples have been checked by OGS, FE-meshes and time steps are designed to
reproduce the closed form solutions. The observed deviations are always less than
one percent and are smaller by several orders of magnitude in many cases.

Throughout this chapter we will be concerned with the formal aspects of each
exercise and present the closed form solution of the underlying initial or boundary
value problem. The first four sections focus on single processes. Within each section
we start from 1D problems and move to more advanced levels covering steady-state
and transient problems up to 2D or 3D. Most of the material has been adopted from
standard references. The series representations involved proved to converge rapidly
and to serve well for numerical evaluation.

From section five onwards we will be concerned with coupled processes. Various
transient problems will be solved with the aid of operational calculus; the Laplace
transform solution method turns out to be an appropriate tool. Once that the Laplace
transform is known numerical inversion will be employed to obtain the required
values of the inverse transform.

The numerical method returns values of the function f (t) for that the Laplace
transform

f̄ (s) =
∞∫

0

e−st f (t) dt (2.1)

is known. The method selected subsequently is based on a theorem by Crump [1]:
Let a = max{Re(P);P is a singularity of f̄ } and T > 0. Except from the relative
error E for every t in (0, T ) the value of the invers Laplace transform is given by the
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trigonometric series

f (t) = 2

T
eAt

[
1

2
f̄ (A) +

∞∑
k=1

c(k)

]
, (2.2)

where A = a − ln(E)/T and for k = 1, 2, . . .

c(k) = Re[ f̄ (A + 2kπ i

T
)] cos 2kπ t

T
− I m[ f̄ (A + 2kπ i

T
)] sin 2kπ t

T
. (2.3)

The algorithm outlined above may easily be applied to the various transforms cited
below. The convergence of the trigonometric series has been accelerated as described
in [2].

2.1 Heat Conduction

The examples presented here have either been adopted from Carslaw and Jaeger [3]
or they are based on ideas outlined there. Throughout this section we are concerned
with the evaluation of temperature distributions.

2.1.1 A 1D Steady-State Temperature Distribution, Boundary
Conditions of 1st Kind

The domain is a rectangular beam extending along the positive x-axis. It is composed
of 10× 1× 1 cubic elements of 10m edge size each, the material has been assigned
a thermal conductivity of 1W/(m ·K). Specified temperatures prevail at the beam
ends with prescribed values of T0 = 1 ◦C at x = L = 100m and zero temperature
at x = 0m. The simulation comprises one time step to establish the steady-state
temperature distribution T (x).
The Laplace equation is the governing equation describing the steady-state temper-
ature distribution. It reads

d2T

dx2
= 0 (2.4)

for 1D heat flow along the x-axis, hence, the temperature is given by

T (x) = ax + b. (2.5)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = 0m, therefore,
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T (x) = T0
x

L
. (2.6)

2.1.2 A 1D Steady-State Temperature Distribution, Boundary
Conditions of 1st and 2nd Kind

The domain is a rectangular beam of length L = 100m extending along the
positive x-axis and composed of 10 × 1 × 1 cubic elements. The domain is com-
posed of two groups of materials, thermal conductivities λ1 = 100W/(m ·K) and
λ2 = 300W/(m ·K) have been assigned for x < 2L/5 and x > 2L/5, respec-
tively. A specified temperature T0 = 1 ◦C prevails at x = 0m, the specific heat flow
qth = −1.5W/m2 is prescribed at x = L , which acts as heat source to the domain.
The simulation comprises one time step to establish the steady-state temperature
distribution T (x) (Fig. 2.1).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

d2T

dx2
= 0 (2.7)

for 1D heat flow along the x-axis, hence, the temperature is given by

T (x) =
{

a1x + b1 for x ≤ 2L/5,

a2x + b2 for x > 2L/5.
(2.8)

The constants a1, b1, a2, and b2, have to be determined from the specified boundary
conditions and continuity of temperature and energy flow at the material boundary.
Temperature T0 prevails at x = 0, hence,

b1 = T0. (2.9)

Specific heat flow qth has been assigned at x = L . Then, by Fourier’s law,

qth = −λ2
dT

dx
|x=L = −λ2a2. (2.10)

Continuity of the heat flow at the material boundary (i.e. x = 2L/5) yields

a1λ1 = λ2a2, (2.11)

and via continuity of temperature at the material boundary

b2 + a22L/5 = a12L/5 + b1. (2.12)
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Fig. 2.1 Temperature distribution

The temperature distribution T (x) thus becomes

T (x) =

⎧⎪⎨
⎪⎩

−qth

λ1
x + T0 for x ≤ 2L/5,

−qth

λ2
x + T0 + qth

2L

5

(
1

λ2
− 1

λ1

)
for x > 2L/5.

(2.13)

2.1.3 A 2D Steady-State Temperature Distribution, Boundary
Conditions of 1st Kind

Given length L = 1m the domain represents the square [0, L] × [0, L] in the x-y-
plane. It is discretized by 50×50×1 equally sized hexahedral elements, the material
has been assigned a thermal conductivity of 1W/(m ·K). Prescribed temperatures
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state temperature distribution T (x, y).
The Laplace equation is the governing equation describing the steady-state temper-
ature distribution. It reads

∂2T

∂x2
+ ∂2T

∂y2
= 0 (2.14)

for 2D heat flow in the x-y-plane. With the aid of temperature T0 = 1 ◦C the applied
boundary conditions read
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T (x, 0) = 0 for 0 ≤ x ≤ L ,

T (0, y) = 0 for 0 ≤ y ≤ L ,

T (x, L) = T0
x

L
for 0 ≤ x ≤ L ,

T (L , y) = T0
y

L
for 0 ≤ y ≤ L .

(2.15)

The temperature distribution

T (x, y) = T0
x

L

y

L
(2.16)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.1.4 A 2D Steady-State Temperature Distribution, Boundary
Conditions of 1st and 2nd Kind

Given length L = 1m the domain represents the rectangle [0, 2L] × [0, L] in the
x-y-plane. It is discretized by an irregular mesh of hexahedral elements, the material
has been assigned the thermal conductivity λ = 1W/(m ·K). Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state temperature distribution T (x, y).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

∂2T

∂x2
+ ∂2T

∂y2
= 0 (2.17)

for 2D heat flow in the x-y-plane. With the aid of temperature T0 = 1 ◦C the applied
boundary conditions read

T (x, 0) = T0
L

x for 0 ≤ x ≤ 2L ,

T (x, L) = T0
L

(x + 2L) for 0 ≤ x ≤ 2L ,

T (2L , y) = T0
L

(2L + 2y) for 0 ≤ y ≤ L ,

∂T

∂x
(0, y) = T0

L
for 0 ≤ y ≤ L .

(2.18)

The temperature distribution

T (x, y) = T0
L

(x + 2y) (2.19)
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satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

Data input represents the second kind boundary conditionwith the aid of a specific
heat flow qth assigned at the face x = 0m. By Fourier’s law,

qth = −λ
∂T

∂x
|x=0. (2.20)

Hence, for the present example

qth = −λ
T0
L

= −1 W/m2, (2.21)

specified at the face x = 0m.

2.1.5 A 3D Steady-State Temperature Distribution

Given length L = 1m the domain represents the cube [0, L] × [0, L] × [0, L]
discretized by 5 × 5 × 6 equally sized hexahedral elements, the material has been
assigned a thermal conductivity of 1W/(m ·K). Prescribed temperatures prevail at
the surface of the domain as specified below. The simulation comprises one time step
to establish the steady-state temperature distribution T (x, y, z).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0. (2.22)

With the aid of temperature T0 = 1 ◦C the applied boundary conditions read

T (0, y, z) = T0
(
0 + y

L
+ z

L

)
on the face x = 0,

T (x, 0, z) = T0
( x

L
+ 0 + z

L

)
on the face y = 0,

T (x, y, 0) = T0
( x

L
+ y

L
+ 0
)

on the face z = 0,

T (L , y, z) = T0
(
1 + y

L
+ z

L

)
on the face x = L ,

T (x, L , z) = T0
( x

L
+ 1 + z

L

)
on the face y = L ,

T (x, y, L) = T0
( x

L
+ y

L
+ 1
)
on the face z = L .

(2.23)
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The temperature distribution

T (x, y, z) = T0
( x

L
+ y

L
+ z

L

)
(2.24)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.1.6 A Transient 1D Temperature Distribution, Time-Dependent
Boundary Conditions of 1st Kind

Given length L = 50m the domain is a beam extending from −L to L along the
x-axis, it is subdivided into 200×1×1 equally sized hexahedral elements. Explicitly
assignedproperties of thematerial are thermal conductivityλ = 0.5787037W/(m ·K),
heat capacity c = 0.01J/(kg ·K), and density ρ = 2,500kg/m3. The temperature
T1 · t (T1 = 2 ◦C/d) increases linearly with time t , it is applied at the beam ends
for times t > 0. Starting from zero initial temperature the simulation evaluates the
transient temperature distribution T (x, t) with output after 0.25 days and 0.5 days.

The heat conduction equation is the governing equation describing the transient
temperature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.25)

Introducing the notation

χ = λ

ρc
(2.26)

the present 1D problem is governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (2.27)

the initial condition
T (x, 0) = 0 for − L ≤ x ≤ L , (2.28)

and linearly increasing temperatures imposed at the beam ends

T (−L , t) = T1 · t for t > 0,

T (L , t) = T1 · t for t > 0.
(2.29)

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation
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T (x, t) = T1 · t + T1 · (x2 − L2)

2χ
+ 16 · T1 · L2

χπ3 (2.30)

×
∞∑

n=0

(−1)n

(2n + 1)3
cos

(
(2n + 1)πx

2L

)
exp

(
−χ(2n + 1)2π2 t

4L2

)
.

2.1.7 Transient 1D Temperature Distributions, Time-Dependent
Boundary Conditions of 2nd Kind

The domain is composed of two beams in parallel (Beam1 and Beam2) extend-
ing along the positive x-axis, each L = 25m long and subdivided into 25 ×
1 × 1 cubic elements. Explicitly assigned properties of the material are density
ρ = 2000kg/m3, thermal conductivity λ = 1.1574074W/(m ·K), and heat capac-
ities c1 = 0.01J/(kg ·K) and c2 = 0.02 J/(kg ·K) assigned to Beam1 and Beam2,
respectively. No-flow boundary conditions prevail at the x = 0m faces. A specific
heat flow is prescribed at x = L for times t > 0. It acts as heat source to the domain
and increases linearly with time via qth1 · t , where qth1 = 0.385802W/(d ·m2) has
been assumed. Starting from zero initial temperature the simulation evaluates the
transient temperature distributions with output after 0.045 and 0.09 days (Fig. 2.2).

Let λ denote any of λ1 or λ2. The heat conduction equation is the governing
equation describing the transient temperature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.31)

Introducing the notation

χ = λ

ρc
(2.32)

the present 1D problems are governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (2.33)

the initial condition
T (x, 0) = 0 for 0 ≤ x ≤ L , (2.34)

and the boundary conditions

∂T

∂x
(0, t) = 0 for t > 0,

λ
∂T

∂x
(L , t) = qth1 · t for t > 0.

(2.35)
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Fig. 2.2 Temperature distributions after 0.09 days

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

T (x, t) = 8qth1
√

χ t3

λ

∞∑
n=0

[
i3erfc

(2n + 1)L − x

2
√

χ t
+ i3erfc

(2n + 1)L + x

2
√

χ t

]
, (2.36)

where i3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.

2.1.8 Transient 1D Temperature Distributions, Non-Zero Initial
Temperature, Boundary Conditions of 1st and 2nd Kind

The domain is composed of two beams in parallel (T1-beam and T2-beam) extending
along the positive x-axis, each L = 100m long and subdivided into 100 × 1 × 1
cubic elements. Explicitly assigned properties of the material are thermal conduc-
tivity λ = 0.5787037W/(m ·K), heat capacity c = 0.01J/(kg ·K), and density
ρ = 2,000kg/m3. Prescribed conditions prevail at the beams ends as specified below.
Given temperature T0 = 1 ◦C and



22 P. Vogel and J. Maßmann

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ x ≤ L

10
,

10

3L
x − 1

3
for

L

10
≤ x ≤ 4L

10
,

1 for
4L

10
≤ x ≤ 6L

10
,

3 − 10

3L
x for

6L

10
≤ x ≤ 9L

10
,

0 for
9L

10
≤ x ≤ L ,

(2.37)

the simulation starts from the initial temperature distribution T (x, 0) = T0 · f (x)

and evaluates the transient temperature distribution T (x, t) with output after 0.05
days and 0.1 days.

The heat conduction equation is the governing equation describing the transient
temperature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.38)

Introducing the notation

χ = λ

ρc
(2.39)

the present 1D problems are governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (2.40)

the initial condition

T (x, 0) = T0 · f (x) for 0 ≤ x ≤ L , (2.41)

and the boundary conditions imposed at the beams ends. These boundary conditions
are specified zero temperatures for the T1-beam,

T (0, t) = 0 for t > 0,

T (L , t) = 0 for t > 0, (2.42)

and no-flow boundary conditions for the T2-beam,

∂T

∂x
(0, t) = 0 for t > 0,

∂T

∂x
(L , t) = 0 for t > 0. (2.43)
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Closed form solutions of the above problems are given by Carslaw and Jaeger [3],
who arrive at series representations that read for the T1-beam

T (x, t)/T0 = T 1(x, t)

= 2

L

∞∑
n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

) L∫

0

f (x ′) sin nπx ′

L
dx ′ (2.44)

and for the T2-beam

T (x, t)/T0 = T 2(x, t)

= 1

L

L∫

0

f (x ′) dx ′ + 2

L

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

) L∫

0

f (x ′) cos nπx ′

L
dx ′.

(2.45)

Now, with f (x) as defined above, the integrals involved may be evaluated by ele-
mentary analytical methods. The series representations take the form

T 1(x, t) =
∞∑

n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
sin

nπ

2
sin

nπ

4
sin

3nπ

20
, (2.46)

T 2(x, t) = 1

2
+

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
cos

nπ

2
sin

nπ

4
sin

3nπ

20
. (2.47)

2.1.9 A Transient 2D Temperature Distribution, Non-Zero Initial
Temperature, Boundary Conditions of 1st and 2nd Kind

The domain represents the square [0, L] × [0, L] with an edge size of L = 100m,
located in the x-y-plane and subdivided into 100×100×1 cubic elements. Explicitly
assignedproperties of thematerial are thermal conductivityλ = 0.5787037W/(m ·K),
heat capacity c = 0.01 J/(kg ·K), and density ρ = 2000kg/m3. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. Given temperature
T0 = 1 ◦C and
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Fig. 2.3 Initial temperature distribution

Fig. 2.4 Temperature distribution after 0.04 days

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ x ≤ L

10
,

10

3L
x − 1

3
for

L

10
≤ x ≤ 4L

10
,

1 for
4L

10
≤ x ≤ 6L

10
,

3 − 10

3L
x for

6L

10
≤ x ≤ 9L

10
,

0 for
9L

10
≤ x ≤ L ,

(2.48)

the simulation starts from the initial temperature distribution T (x, y, 0) = T0 · f (x) ·
f (y) (Fig. 2.3) and evaluates the transient temperature distribution T (x, y, t) with
output after 0.02 and 0.04 days (Fig. 2.4).

The heat conduction equation is governing equation describing the transient tem-
perature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.49)
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Introducing the notation

χ = λ

ρc
(2.50)

the present 2D problem is governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
+ ∂2T

∂y2
, (2.51)

the initial condition

T (x, y, 0) = T0 · f (x) · f (y) for 0 ≤ x, y ≤ L , (2.52)

and the applied boundary conditions. These are specified zero temperatures at x = 0
and x = L

T (0, y, t) = 0 for 0 ≤ y ≤ L , (2.53)

T (L , y, t) = 0 for 0 ≤ y ≤ L , (2.54)

and no-flow boundary conditions at y = 0 and y = L

∂T

∂y
(x, 0, t) = 0 for 0 ≤ x ≤ L , (2.55)

∂T

∂y
(x, L , t) = 0 for 0 ≤ x ≤ L . (2.56)

The closed form solution of the above problem is obtained in terms of the 1DT1-beam
and T2-beam solutions given in the context of the previous example

T 1(x, t) =
∞∑

n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
sin

nπ

2
sin

nπ

4
sin

3nπ

20
, (2.57)

T 2(x, t) = 1

2
+

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
cos

nπ

2
sin

nπ

4
sin

3nπ

20
. (2.58)

We will next verify that the closed form solution of the above problem is given by

T (x, y, t) = T0 · T 1(x, t) · T 2(y, t). (2.59)
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Both, T 1(x, t) and T 2(x, t), satisfy the initial condition

T 1(x, 0) = T 2(x, 0) = f (x). (2.60)

Then

T (x, y, 0) = T0 · T 1(x, 0) · T 2(y, 0) = T0 · f (x) · f (y), (2.61)

hence, T (x, y, t) satisfies the initial condition.
Both, T 1(x, t) and T 2(y, t), satisfy the 1D heat conduction equation. Then

1

χ

∂T

∂t
= T0

[
1

χ
T 2

∂T 1

∂t
+ 1

χ
T 1

∂T 2

∂t

]

= T0

[
T 2

∂2T 1

∂x2
+ T 1

∂2T 2

∂y2

]

= ∂2T

∂x2
+ ∂2T

∂y2
,

(2.62)

hence, T (x, y, t) satisfies the differential equation.
Zero boundary temperatures are satisfied by T 1(x, t)

T 1(0, t) = 0 for t > 0, (2.63)

T 1(L , t) = 0 for t > 0, (2.64)

no-flow boundary conditions are satisfied by T 2(y, t)

∂T 2

∂y
(0, t) = 0 for t > 0, (2.65)

∂T 2

∂y
(L , t) = 0 for t > 0. (2.66)

Then

T (0, y, t) = T0 · T 1(0, t) · T 2(y, t) = 0 · T 2(y, t) = 0,
T (L , y, t) = T0 · T 1(L , t) · T 2(y, t) = 0 · T 2(y, t) = 0,
∂T

∂y
(x, 0, t) = T0 · T 1(x, t) · ∂T 2

∂y
(0, t) = T0 · T 1(x, t) · 0 = 0,

∂T

∂y
(x, L , t) = T0 · T 1(x, t) · ∂T 2

∂y
(L , t) = T0 · T 1(x, t) · 0 = 0,

(2.67)

hence, T (x, y, t) satisfies the boundary conditions.
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2.2 Liquid Flow

The same tools that work for the solution of heat conduction problems may also
be applied to liquid flow problems. Here we are concerned with the evaluation of
pressure distributions, for the underlying theory see Freeze and Cherry [5].

2.2.1 A 1D Steady-State Pressure Distribution, Boundary
Conditions of 1st Kind

The domain is a rectangular beam extending along the positive x-axis and composed
of 10 × 1 × 1 cubic elements of 10m edge size each. An isotropic permeability
of 10−15 m2 is assumed for the material. Liquid viscosity is 1mPa · s and gravity is
neglected via zero liquid density. Specified pressures prevail at the beam ends with
prescribed values of p0 = 1MPa at x = L = 100m and zero pressure at x = 0m. The
simulation comprises one time step to establish the steady-state pressure distribution
p(x).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.68)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = ax + b. (2.69)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = 0m, therefore,

p(x) = p0
x

L
. (2.70)

2.2.2 A 1D Steady-State Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

The domain is a rectangular beam of length L = 100m extending along the positive
x-axis and composed of 10 × 1 × 1 cubic elements. The domain is composed of
two groups of permeable materials with isotropic permeabilities k1 = 10−12 m2 and
k2 = 3 × 10−12 m2 for x < 2L/5 and x > 2L/5, respectively. Liquid viscosity is
μ = 1mPa · s and gravity is neglected via zero liquid density. The specified pressure
p0 = 1MPa prevails at x = 0m, the specific discharge q = −1.5 × 10−5 m/s is
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prescribed at x = L, which acts as a source to the domain. The simulation comprises
one time step to establish the steady-state pressure distribution p(x).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.71)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) =
{

a1x + b1 for x ≤ 2L/5,
a2x + b2 for x > 2L/5.

(2.72)

The constants a1, b1, a2, and b2, have to be determined from the specified boundary
conditions and continuity of pressure and specific discharge at thematerial boundary.

Pressure p0 prevails at x = 0, hence,

b1 = p0. (2.73)

Specific discharge q has been assigned at x = L. Then, by Darcy’s law,

q = −k2
μ

dp

dx
|x=L = −k2

μ
a2. (2.74)

Continuity of the specific discharge at the material boundary (i.e. x = 2L/5) yields

a1
k1
μ

= k2
μ

a2, (2.75)

and via continuity of pressure at the material boundary

b2 + a22L/5 = a12L/5 + b1. (2.76)

The pressure distribution p(x) thus becomes

p(x) =

⎧⎪⎨
⎪⎩

−qμ

k1
x + p0 for x ≤ 2L/5,

−qμ

k2
x + p0 + qμ

2L

5

(
1

k2
− 1

k1

)
for x > 2L/5.

(2.77)
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Fig. 2.5 Pressure distribution

2.2.3 A 2D Steady-State Pressure Distribution, Boundary
Conditions of 1st Kind

Given length L = 1m the domain represents the square [0, L] × [0, L] in the x-y-
plane, discretized by 50 × 50 × 1 equally sized hexahedral elements. An isotropic
permeability of 10−15 m2 is assumed for the material. Liquid viscosity is 1mPa · s
and gravity is neglected via zero liquid density. Prescribed pressures prevail at the
lateral boundaries of the domain as specified below. The simulation comprises one
time step to establish the steady-state pressure distribution p(x, y) (Fig. 2.5).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

∂2 p

∂x2
+ ∂2 p

∂y2
= 0 (2.78)

for 2D flow in the x-y-plane. With the aid of pressure p0 = 1MPa the applied
boundary conditions read

p(x, 0) = 0 for 0 ≤ x ≤ L ,

p(0, y) = 0 for 0 ≤ y ≤ L ,

p(x, L) = p0
x

L
for 0 ≤ x ≤ L ,

p(L , y) = p0
y

L
for 0 ≤ y ≤ L .

(2.79)

The pressure distribution

p(x, y) = p0
x

L

y

L
(2.80)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.
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2.2.4 A 2D Steady-State Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

Given length L = 1m the domain represents the rectangle [0, 2L] × [0, L] in the
x-y-plane, discretized by an irregular mesh of hexahedral elements. An isotropic per-
meability k = 10−14 m2 is assumed for the material. Liquid viscosity is
μ = 1mPa · s and gravity is neglected via zero liquid density. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state pressure distribution p(x, y).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

∂2 p

∂x2
+ ∂2 p

∂y2
= 0 (2.81)

for 2D flow in the x-y-plane. With the aid of pressure p0 = 1MPa the applied
boundary conditions read

p(x, 0) = p0
L

x for 0 ≤ x ≤ 2L ,

p(x, L) = p0
L

(x + 2L) for 0 ≤ x ≤ 2L ,

p(2L , y) = p0
L

(2L + 2y) for 0 ≤ y ≤ L ,

∂p

∂x
(0, y) = p0

L
for 0 ≤ y ≤ L .

(2.82)

The pressure distribution

p(x, y) = p0
L

(x + 2y) (2.83)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

Data input represents the second kind boundary conditionwith the aid of a specific
discharge q assigned at the face x = 0m. By Darcy’s law,

q = − k

μ

∂p

∂x
|x=0. (2.84)

Hence, for the present example

q = − k

μ

p0
L

= −10−5 m/s, (2.85)

specified at the face x = 0m.
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Fig. 2.6 Pressure contours

2.2.5 A 3D Steady-State Pressure Distribution

Given length L = 1m the domain represents the cube [0, L] × [0, L] × [0, L] dis-
cretized by 5 × 5 × 6 equally sized hexahedral elements. An isotropic permeability
of 10−10 m2 is assumed for the material. Liquid viscosity is 1mPa · s and gravity is
neglected via zero liquid density. Prescribed pressures prevail at the surface of the
domain as specified below. The simulation comprises one time step to establish the
steady-state pressure distribution p(x, y, z) (Fig. 2.6).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

∂2 p

∂x2
+ ∂2 p

∂y2
+ ∂2 p

∂z2
= 0. (2.86)

With the aid of pressure p0 = 1MPa the applied boundary conditions read

p(0, y, z) = p0
(
0 + y

L
+ z

L

)
on the face x = 0,

p(x, 0, z) = p0
( x

L
+ 0 + z

L

)
on the face y = 0,

p(x, y, 0) = p0
( x

L
+ y

L
+ 0
)
on the face z = 0, (2.87)

p(L , y, z) = p0
(
1 + y

L
+ z

L

)
on the face x = L ,

p(x, L , z) = p0
( x

L
+ 1 + z

L

)
on the face y = L ,
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p(x, y, L) = p0
( x

L
+ y

L
+ 1
)
on the face z = L .

The pressure distribution

p(x, y, z) = p0
( x

L
+ y

L
+ z

L

)
(2.88)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.2.6 A Hydrostatic Pressure Distribution

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The domain is
composed of four groups of isotropic permeable materials, ρ = 1019.368kg/m3

is the liquid density. The simulation setup employs a prescribed zero pressure at
the top and explicitly specified no-flow conditions along the lateral boundaries and
bottom (unless otherwise specified, no-flow boundary conditions will be assigned by
default). The simulation comprises one time step to establish the hydrostatic pressure
distribution p(x, y, z).

The hydrostatic pressure distribution neither depends on the material properties
nor on the coordinates x and y and is given by

p(x, y, z) = ρg(H − z), (2.89)

where g = 9.81m2/s is the magnitude of gravity, and z is the vertical coordinate
extending from 0 to H .

2.2.7 A Transient 1D Pressure Distribution, Time-Dependent
Boundary Conditions of 1st Kind

Given length L = 50m the domain is a beam extending from −L to L along the
x-axis, it is subdivided into 200×1×1 equally sized hexahedral elements. A perme-
ablematerial represents the porousmedium,which contains a liquid of small and con-
stant compressibility. Gravity is neglected via zero liquid density. Explicitly assigned
properties of matrix and liquid are an isotropic permeability k = 10−14 m2 and liquid
viscosity μ = 1.728mPa · s. Porosity φ and liquid compressibility κ have been incor-
porated in the storage φκ = 2.5× 10−10 1/Pa. The pressure p1 · t (p1 = 2× 106 Pa/d)
increases linearly with time t , it is applied at the beam ends for times t > 0. Starting
from zero initial pressure the simulation evaluates the transient pressure distribution
p(x, t) with output after 0.25 and 0.5 days.
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For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

φκ
∂p

∂t
= k

μ
∇ · ∇ p. (2.90)

Introducing the notation

χ = k

φμκ
(2.91)

the present 1D problem is governed by the parabolic equation

1

χ

∂p

∂t
= ∂2 p

∂x2
, (2.92)

the initial condition
p(x, 0) = 0 for − L ≤ x ≤ L , (2.93)

and linearly increasing pressures imposed at the beam ends

p(−L , t) = p1 · t for t > 0,
p(L , t) = p1 · t for t > 0. (2.94)

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

p(x, t) = p1 · t + p1 · (x2 − L2)

2χ
+ 16 · p1 · L2

χπ3 (2.95)

×
∞∑

n=0

(−1)n

(2n + 1)3
cos

(
(2n + 1)πx

2L

)
exp

(
−χ(2n + 1)2π2 t

4L2

)
.

2.2.8 Transient 1D Pressure Distributions, Time-Dependent
Boundary Conditions of 2nd Kind

The domain is composed of two beams in parallel (Beam1 and Beam2) extend-
ing along the positive x-axis, each L = 25m long and subdivided into 25 × 1 × 1
cubic elements. A permeable material represents the porous medium, which con-
tains a liquid of small and constant compressibility. Gravity is neglected via zero
liquid density. Explicitly assigned properties of matrix and liquid are an isotropic
permeability k = 10−14 m2 and liquid viscosity μ = 0.864mPa · s. Porosity φ and
liquid compressibility κ have been incorporated in the storage φκ with values of
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2 × 10−10 1/Pa and 4 × 10−10 1/Pa assigned to Beam1 and Beam2, respectively.
No-flow boundary conditions prevail at the x = 0m faces. A specific discharge is
prescribed at x = L for times t > 0. It acts as a source to the domain and increases
linearly with time via q1 · t , where q1 = 3.85802 × 10−6 m/(s ·d) has been assumed.
Starting from zero initial pressure the simulation evaluates the transient pressure
distributions with output after 0.045 and 0.09 days.

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

φκ
∂p

∂t
= k

μ
∇ · ∇ p. (2.96)

Introducing the notation

χ = k

φμκ
(2.97)

the present 1D problems are governed by the parabolic equation

1

χ

∂p

∂t
= ∂2 p

∂x2
, (2.98)

the initial condition
p(x, 0) = 0 for 0 ≤ x ≤ L , (2.99)

and the boundary conditions

∂p

∂x
(0, t) = 0 for t > 0,

k

μ

∂p

∂x
(L , t) = q1 · t for t > 0.

(2.100)

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

p(x, t) = 8q1
√

χ t3

k/μ

∞∑
n=0

[
i3erfc

(2n + 1)L − x

2
√

χ t
+ i3erfc

(2n + 1)L + x

2
√

χ t

]
, (2.101)

where i3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.
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Fig. 2.7 Initial pressure distributions

2.2.9 Transient 1D Pressure Distributions, Non-Zero Initial
Pressure, Boundary Conditions of 1st and 2nd Kind

The domain is composed of two beams in parallel (p1-beam and p2-beam) extend-
ing along the positive x-axis, each L = 100m long and subdivided into 100 × 1 × 1
cubic elements. A permeable material represents the porous medium, which con-
tains a liquid of small and constant compressibility. Gravity is neglected via zero
liquid density. Explicitly assigned properties of matrix and liquid are an isotropic
permeability k = 10−14 m2 and liquid viscosity μ = 1.728mPa · s. Porosity φ and
liquid compressibility κ have been incorporated in the storage φκ = 2× 10−10 1/Pa.
Prescribed conditions prevail at the beams ends as specified below. Given pressure
p0 = 1MPa and

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ x ≤ L

10
,

10

3L
x − 1

3
for

L

10
≤ x ≤ 4L

10
,

1 for
4L

10
≤ x ≤ 6L

10
,

3 − 10

3L
x for

6L

10
≤ x ≤ 9L

10
,

0 for
9L

10
≤ x ≤ L ,

(2.102)

the simulation starts from the initial pressure distribution p(x, 0) = p0 · f (x) (Fig. 2.7)
and evaluates the transient pressure distribution p(x, t)with output after 0.05 and 0.1
days (Fig. 2.8).

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
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Fig. 2.8 Pressure distributions after 0.1 days

the transient pressure distribution. It reads

φκ
∂p

∂t
= k

μ
∇ · ∇ p. (2.103)

Introducing the notation

χ = k

φμκ
(2.104)

the present 1D problems are governed by the parabolic equation

1

χ

∂p

∂t
= ∂2 p

∂x2
, (2.105)

the initial condition
p(x, 0) = p0 · f (x) for 0 ≤ x ≤ L , (2.106)

and the boundary conditions imposed at the beams ends. These boundary conditions
are specified zero pressures for the p1-beam,

p(0, t) = 0 for t > 0,

p(L , t) = 0 for t > 0, (2.107)

and no-flow boundary conditions for the p2-beam,
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∂p

∂x
(0, t) = 0 for t > 0,

∂p

∂x
(L , t) = 0 for t > 0. (2.108)

Closed form solutions of the above problems are given by Carslaw and Jaeger [3],
who arrive at series representations that read for the p1-beam

p(x, t)/p0 = p1(x, t)

= 2

L

∞∑
n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

) L∫

0

f (x ′) sin nπx ′

L
dx ′ (2.109)

and for the p2-beam

p(x, t)/p0 = p2(x, t)

= 1

L

L∫

0

f (x ′) dx ′ + 2

L

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

) L∫

0

f (x ′) cos nπx ′

L
dx ′.

(2.110)

Now, with f (x) as defined above, the integrals involved may be evaluated by ele-
mentary analytical methods. The series representations take the form

p1(x, t) =
∞∑

n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
sin

nπ

2
sin

nπ

4
sin

3nπ

20
, (2.111)

p2(x, t) = 1

2
+

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
cos

nπ

2
sin

nπ

4
sin

3nπ

20
. (2.112)

2.2.10 A Transient 2D Pressure Distribution, Non-Zero Initial
Pressure, Boundary Conditions of 1st and 2nd Kind

The domain represents the square [0, L] × [0, L] with an edge size of L = 100m,
located in the x-y-plane and subdivided into 100 × 100 × 1 cubic elements. A per-
meable material represents the porous medium, which contains a liquid of small
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and constant compressibility. Gravity is neglected via zero liquid density. Explicitly
assigned properties of matrix and liquid are an isotropic permeability k = 10−14 m2

and liquid viscosity μ = 1.728mPa · s. Porosity φ and liquid compressibility κ

have been incorporated in the storage φκ = 2 × 10−10 1/Pa. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. Given pressure
p0 = 1MPa and

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 ≤ x ≤ L

10
,

10

3L
x − 1

3
for

L

10
≤ x ≤ 4L

10
,

1 for
4L

10
≤ x ≤ 6L

10
,

3 − 10

3L
x for

6L

10
≤ x ≤ 9L

10
,

0 for
9L

10
≤ x ≤ L ,

(2.113)

the simulation starts from the initial pressure distribution p(x, y, 0) = p0 · f (x) · f (y)

and evaluates the transient pressure distribution p(x, y, t) with output after 0.02 and
0.04 days.

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

φκ
∂p

∂t
= k

μ
∇ · ∇ p. (2.114)

Introducing the notation

χ = k

φμκ
(2.115)

the present 2D problem is governed by the parabolic equation

1

χ

∂p

∂t
= ∂2 p

∂x2
+ ∂2 p

∂y2
, (2.116)

the initial condition

p(x, y, 0) = p0 · f (x) · f (y) for 0 ≤ x, y ≤ L , (2.117)

and the applied boundary conditions. These are specified zero pressures at x = 0
and x = L

p(0, y, t) = 0 for 0 ≤ y ≤ L , (2.118)

p(L , y, t) = 0 for 0 ≤ y ≤ L , (2.119)
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and no-flow boundary conditions at y = 0 and y = L

∂p

∂y
(x, 0, t) = 0 for 0 ≤ x ≤ L , (2.120)

∂p

∂y
(x, L , t) = 0 for 0 ≤ x ≤ L . (2.121)

The closed form solution of the above problem is obtained in terms of the 1Dp1-beam
and p2-beam solutions given in the context of the previous example

p1(x, t) =
∞∑

n=1

sin
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
sin

nπ

2
sin

nπ

4
sin

3nπ

20
, (2.122)

p2(x, t) = 1

2
+

∞∑
n=1

cos
nπx

L
exp

(
−χn2π2 t

L2

)

× 80

3(nπ)2
cos

nπ

2
sin

nπ

4
sin

3nπ

20
. (2.123)

We will next verify that the closed form solution of the above problem is given by

p(x, y, t) = p0 · p1(x, t) · p2(y, t). (2.124)

Both, p1(x, t) and p2(x, t), satisfy the initial condition

p1(x, 0) = p2(x, 0) = f (x). (2.125)

Then

p(x, y, 0) = p0 · p1(x, 0) · p2(y, 0) = p0 · f (x) · f (y), (2.126)

hence, p(x, y, t) satisfies the initial condition.
Both, p1(x, t) and p2(y, t), satisfy the 1D pressure conduction equation. Then

1

χ

∂p

∂t
= p0

[
1

χ
p2

∂p1

∂t
+ 1

χ
p1

∂p2

∂t

]

= p0

[
p2

∂2 p1

∂x2
+ p1

∂2 p2

∂y2

]

= ∂2 p

∂x2
+ ∂2 p

∂y2
,

(2.127)

hence, p(x, y, t) satisfies the differential equation.
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Zero boundary pressures are satisfied by p1(x, t)

p1(0, t) = 0 for t > 0, (2.128)

p1(L , t) = 0 for t > 0, (2.129)

no-flow boundary conditions are satisfied by p2(y, t)

∂p2

∂y
(0, t) = 0 for t > 0, (2.130)

∂p2

∂y
(L , t) = 0 for t > 0. (2.131)

Then

p(0, y, t) = p0 · p1(0, t) · p2(y, t) = 0 · p2(y, t) = 0,
p(L , y, t) = p0 · p1(L , t) · p2(y, t) = 0 · p2(y, t) = 0,
∂p

∂y
(x, 0, t) = p0 · p1(x, t) · ∂p2

∂y
(0, t) = p0 · p1(x, t) · 0 = 0,

∂p

∂y
(x, L , t) = p0 · p1(x, t) · ∂p2

∂y
(L , t) = p0 · p1(x, t) · 0 = 0,

(2.132)

hence, p(x, y, t) satisfies the boundary conditions.

2.3 Gas Flow

Because the gas density strongly depends on pressure, the governing equations
become non-linear. We present a few steady-state solutions of isothermal flow prob-
lems, for the underlying theory see Freeze and Cherry [5].

2.3.1 A 1D Steady-State Gas Pressure Distribution, Boundary
Conditions of 1st Kind

The domain is a rectangular beam extending along the positive x-axis and
composed of 40 × 1 × 1 equally sized hexahedral elements. An isotropic perme-
ability of 10−15 m2 is assumed for the material, gas viscosity has been assigned
10−5 Pa · s, gravity is neglected by default. Specified pressures prevail at the beam
ends with prescribed values of p1 = 105 Pa at x = L = 100m and p0 = 2 × 105 Pa
at x = 0m. The simulation comprises one time step to establish the steady-state
pressure distribution p(x).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

d2 p2

dx2
= 0 (2.133)
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for 1D gas flow along the x-axis, hence, the pressure is given by

p(x) = √
ax + b. (2.134)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = 0m, therefore,

p(x) =
√

(p21 − p20)
x

L
+ p20 . (2.135)

2.3.2 A 1D Steady-State Gas Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

The domain is a rectangular beam of length L = 100m extending along the positive
x-axis and composed of 40 × 1 × 1 equally sized hexahedral elements. An isotropic
permeability k = 10−15 m2 is assumed for the material, gas viscosity μ = 10−5 Pa · s
has been assigned, gravity is neglected by default. Prescribed boundary conditions
prevail at the beam ends as specified below. The simulation comprises one time step
to establish the steady-state pressure distribution p(x).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

d2 p2

dx2
= 0 (2.136)

for 1D gas flow along the x-axis, hence, the pressure is given by

p(x) = √
ax + b. (2.137)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = 0m. Pressure p1 = 105 Pa prevails at x = L, hence,

b = p21 − aL . (2.138)

Specific gas flow Q = 0.17Pa · m/s has been assigned at x = 0m. Then, by Darcy’s
law,

Q = − k

μ
p

dp

dx
|x=0 = − k

2μ

dp2

dx
|x=0 = − k

2μ
a. (2.139)

The pressure distribution p(x) thus becomes

p(x) =
√
2Qμ

k
(L − x) + p21 . (2.140)
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5

Fig. 2.9 Pressure distribution

2.3.3 A 2D Steady-State Gas Pressure Distribution

Given length L = 1m the domain represents the square [0, L] × [0, L] in the
x-y-plane, discretized by an irregular mesh of hexahedral elements. An isotropic
permeability k = 10−15 m2 is assumed for the material, gas viscosity μ = 10−5 Pa · s
has been assigned, gravity is neglected by default. Prescribed conditions prevail at
the lateral boundaries of the domain as specified below. The simulation comprises
one time step to establish the steady-state pressure distribution p(x, y) (Fig. 2.9).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

∂2 p2

∂x2
+ ∂2 p2

∂y2
= 0 (2.141)

for 2D gas flow in the x-y-plane. With the aid of pressure p0 = 105 Pa the applied
boundary conditions read

p2(0, y) = p20 for 0 ≤ y ≤ L ,

p2(x, 0) = p20 for 0 ≤ x ≤ L ,

∂p2

∂x
(L , y) = 3

p20
L

y

L
for 0 ≤ y ≤ L ,

∂p2

∂y
(x, L) = 3

p20
L

x

L
for 0 ≤ x ≤ L .

(2.142)

The pressure distribution

p(x, y) = p0

√
1 + 3

xy

L2 (2.143)



2 Verification Tests 43

satisfies the differential equation and the boundary conditions, hence, this is the
closed form solution of the above boundary value problem.

Data input represents the second kind boundary conditions with the aid of a
specific gas flow Q, which acts as a gas source to the domain at the faces x = L and
y = L. By Darcy’s law,

Q = k

μ
p

dp

dx
|x=L = k

2μ

dp2

dx
|x=L = 3k

2μ

p20
L

y

L
(2.144)

at the face x = L, and

Q = k

μ
p

dp

dy
|y=L = k

2μ

dp2

dy
|y=L = 3k

2μ

p20
L

x

L
(2.145)

at the face y = L.

2.3.4 A 3D Steady-State Gas Pressure Distribution

Given length L = 1m the domain represents the cube [0, L] × [0, L] × [0, L] dis-
cretized by 21 × 22 × 23 equally sized hexahedral elements. An isotropic perme-
ability k = 10−15 m2 is assumed for the material, gas viscosity μ = 10−5 Pa · s has
been assigned, gravity is neglected by default. Prescribed 2nd kind boundary condi-
tions prevail at the entire surface of the domain as specified below. The simulation
comprises one time step to establish the steady-state pressure distribution p(x, y, z)
(Fig. 2.10).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

∂2 p2

∂x2
+ ∂2 p2

∂y2
+ ∂2 p2

∂z2
= 0. (2.146)

With the aid of pressure p0 = 105 Pa the applied boundary conditions read

p2(0, 0, 0) = p20,

∂p2

∂x
(0, y, z) = 3

2

p20
L

y

L
on the face x = 0,

∂p2

∂x
(L , y, z) = 3

2

p20
L

y

L
on the face x = L ,

∂p2

∂y
(x, 0, z) = 3

2

p20
L

x

L
on the face y = 0, (2.147)

∂p2

∂y
(x, L , z) = 3

2

p20
L

x

L
on the face y = L ,
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∂p2

∂z
(x, y, 0) = 3

2

p20
L

on the face z = 0,

∂p2

∂z
(x, y, L) = 3

2

p20
L

on the face z = L .

The pressure distribution

p(x, y, z) = p0

√
1 + 3

2

( x

L
· y

L
+ z

L

)
(2.148)

satisfies the differential equation and the boundary conditions, hence, this is the
closed form solution of the above boundary value problem.

Data input represents the second kind boundary conditions with the aid of a
specific gas flow Q. It acts as a gas source to the domain on the faces x = L, y = L,
and z = L and acts as a sink on the remainder. On the face x = L we have by Darcy’s
law

Q = k

μ
p
∂p

∂x
|x=L = k

2μ

∂p2

∂x
|x=L = 3k

4μ

p20
L

y

L
, (2.149)

and similarly for the five other faces.

Fig. 2.10 Pressure contours
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2.4 Deformation Processes

The linear elastic material is subject of the steady-state problems. Our transient
problems focus on the Norton material. For the underlying theory see Jaeger and
Cook [6].

2.4.1 An Elastic Beam Undergoes Axial Load

The domain is a rectangular beam extending along the positive x-axis. It has three
faces located on the coordinate planes and is discretized by 20×2×2 cubic elements
of 0.05m edge size each. The beam is represented by an elastic material. Poisson’s
ratio ν = 0.25 and Young’s modulus E = 10,000MPa have been assigned, gravity is
neglected via zeromaterial density. Faces on the coordinate planes are sliding planes,
the top and the rear face of the beam are free, a tensile stress σ0 = 2MPa is applied
at the x = 1m face. The simulation comprises one time step to establish the stresses,
strains, and displacements.

Let σ denote the stress tensor. The equation of mechanical equilibrium

∇ · σ = 0 (2.150)

is satisfied by zero shear and constant stresses

σ11 = σ0,

σ22 = σ33 = 0.
(2.151)

Then, with principal axes equal to coordinate axes, Hooke’s law gives for the strains

ε11 = 1

E
[σ11 − ν(σ22 + σ33)] = σ0

E
,

ε22 = 1

E
[σ22 − ν(σ11 + σ33)] = −ν

σ0

E
,

ε33 = 1

E
[σ33 − ν(σ11 + σ22)] = −ν

σ0

E
.

(2.152)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x) = σ0

E
x,

uy(y) = −ν
σ0

E
y,

uz(z) = −ν
σ0

E
z.

(2.153)
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2.4.2 An Elastic Plate Undergoes Simple Shear

The domain is a rectangular plate located in the first octant. It has an extent of 10m in
x- and y-direction and is discretized by 8× 8× 2 equally sized hexahedral elements.
The plate is represented by an elastic material. Young’s modulus E = 10,000MPa
andPoisson’s ratio ν = 0.25 have been assigned, gravity is neglected via zeromaterial
density. Load is applied with the aid of prescribed displacements which cover the
entire surface. The simulation comprises two time steps with increasing deformation
as specified below.

The equation of mechanical equilibrium and Hooke’s law yield the Navier
equations describing mechanical equilibrium in terms of the displacement vector
(ux , uy, uz). Employing the notation

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= e (2.154)

the Navier equations read

∂2ux

∂x2
+ ∂2ux

∂y2
+ ∂2ux

∂z2
+ 1

1 − 2ν

∂e

∂x
= 0,

∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
+ 1

1 − 2ν

∂e

∂y
= 0, (2.155)

∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
+ 1

1 − 2ν

∂e

∂z
= 0.

With the aid of slope m the specified boundary conditions are given by

ux (x, y, z) = 0 on the entire surface,
uy(x, y, z) = m x on the entire surface,
uz(x, y, z) = 0 on the entire surface.

(2.156)

The displacement vector

ux (x, y, z) = 0,
uy(x, y, z) = m x,

uz(x, y, z) = 0
(2.157)

satisfies the Navier equations and the specified boundary conditions, hence, this is
the required solution of the above boundary value problem. The only non-zero strain
is

ε12 = ∂uy

∂x
= m, (2.158)

and Hooke’s law yields for the associated stress
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σ12 = E

2(1 + ν)
m. (2.159)

The two time steps have m assigned the values −0.1 and −0.2, respectively.

2.4.3 An Elastic Cuboid Undergoes Load Due to Gravity

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z
coordinate axes. It is discretized by an irregular mesh of hexahedral elements. The
cuboid is represented by four groups of elastic materials, where each has been
assigned density ρ = 3058.104kg/m3, Poisson’s ratio ν = 0.25 and Young’s mod-
ulus E = 10,000MPa. The bottom and the lateral faces are sliding planes, the top
face is free. Gravity is the only load applied, g = 9.81m/s2 is the magnitude of
gravity. The simulation comprises one time step to establish the stresses, strains, and
displacements (Fig. 2.11).

Let σ denote the stress tensor. The equation of mechanical equilibrium

0 = ∇ · σ − (0, 0, ρg) (2.160)

is satisfied by zero shear, if the horizontal stresses σ11 and σ22 are functions of the
vertical coordinate z only and the vertical stress σ33 satisfies

∂σ33

∂z
= ρg. (2.161)

The face z = H is free, hence, integration gives

Fig. 2.11 Vertical stress
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σ33 = ρ(−g)(H − z). (2.162)

Assuming that there is no horizontal displacement anywhere we have for the
horizontal strains

ε11 = ε22 = 0. (2.163)

Then, with principal axes equal to coordinate axes, Hooke’s law gives

0 = σ11 − ν(σ22 + σ33),

0 = σ22 − ν(σ11 + σ33), (2.164)

Eε33 = σ33 − ν(σ11 + σ22).

Solving for σ11, σ22, and the vertical strain ε33 yields

σ11 = σ22 = ν

1 − ν
σ33 = ν

1 − ν
ρ(−g)(H − z),

ε33 = 1

E

(
1 − 2ν2

1 − ν

)
ρ(−g)(H − z) (2.165)

in terms of the vertical coordinate. Integrating the strains with respect to the pre-
scribed fixities yields the displacement vector (ux , uy, uz)

ux = uy = 0,

uz(z) = 1

E

(
1 − 2ν2

1 − ν

)
ρ(−g)

(
H z − 1

2
z2
)

. (2.166)

2.4.4 Stresses Relax in a Deformed Cube of Norton Material

The domain is a single cube with edge size L = 1m located in the first octant. It has
three faces located on the coordinate planes and is discretized by 2 × 2 × 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio ν = 0.27
and Young’s modulus E = 25,000MPa have been assigned, gravity is neglected via
zero material density. Various additional parameters are involved in the rheological
model, details are given below. Faces on the coordinate planes are sliding planes.
The constant vertical displacement w = 0.0012m is applied at the top face for times
t > 0. Starting from an initial setup free of load the simulation evaluates stresses,
strains, and displacements through time with output after 0.1 and 1.1 days.

Let σ denote the stress tensor, I the unit tensor,

σ D = σ − trσ

3
I (2.167)

the stress deviator, and
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σeff =
√√√√3

2

3∑
i=1

3∑
j=1

σ D
i j σ D

ji (2.168)

the v. Mises or effective stress. The rheological model involved yields the funda-
mental stress/strain relationships as a system of differential equations for the creep
strains

∂εcr

∂t
= 3

2

σ D

σeff
(N σ n

eff) (2.169)

and the total strains
εtot = εel + εcr , (2.170)

where εel denotes the elastic strains via Hooke’s law. Both equations have to be
solved with respect to the imposed initial and boundary conditions.

For the present example the behaviour of the Norton material is specified with the
aid of the parameters

n = 5,

N = A exp

(
− Q

RT

)
,

(2.171)

where R = 8.31441 J/(mol ·K) is the gas constant, T is the absolute temperature (we
have T = 273.15K by default), and experimental data obtained from rock salt yield

A = 0.18 1/(d · MPa5),
Q = 54, 000 J/mol.

(2.172)

Note that day is required as unit of time and stresses have to be in MPa.
Due to the example setup the principal axes are identical to the coordinate axes

and the vertical stress is the only non-zero element of the stress tensor. Therefore,

σ =
⎛
⎝ 0 0 0
0 0 0
0 0 σ33

⎞
⎠ , (2.173)

the trace of σ

trσ = σ33, (2.174)

the stress deviator

σ D = σ33

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (2.175)

the v. Mises or effective stress
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σeff = |σ33|
√
3/2

3

√
12 + 12 + 22 = |σ33|, (2.176)

and the time derivative of the creep strains

∂εcr

∂t
= N

2
σ 5
33

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.177)

The entire domain is initially free of creep strains. Hence, integrating with respect
to time t the creep strains become

εcr = N

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

t∫

0

σ 5
33 dt. (2.178)

The elastic strains are obtained from the stress σ via Hooke’s law

εel = σ33

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠ . (2.179)

The total strains in terms of σ33 and the displacements (ux , uy, uz) read

εtot = εel + εcr =
⎛
⎝ ∂ux/∂x 0 0

0 ∂uy/∂y 0
0 0 ∂uz/∂z

⎞
⎠

= σ33

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠+ N

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

t∫

0

σ 5
33 dt.

(2.180)

Due to the simulation setup

εtot
33 = ∂uz

∂z
= w

L
(2.181)

is the specified constant strain along the z-axis. Then

w

L
= 1

E
σ33 + N

t∫

0

σ 5
33 dt. (2.182)

This integral equation is transformed into the ordinary differential equation

0 = 1

E

dσ33

dt
+ Nσ 5

33. (2.183)
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Separation of variables and integration yields

σ33(t) = w

L

E
4
√
4E5(w/L)4Nt + 1

, (2.184)

and the strains ∂ux/∂x and ∂uy/∂y are obtained in terms of σ33(t)

εtot
11 (t) = ∂ux

∂x
= − w

2L
+ 1 − 2ν

2E
σ33(t), (2.185)

εtot
22 (t) = ∂uy

∂y
= − w

2L
+ 1 − 2ν

2E
σ33(t).

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x, t) = x

(
− w

2L
+ 1 − 2ν

2E
σ33(t)

)
,

uy(y, t) = y

(
− w

2L
+ 1 − 2ν

2E
σ33(t)

)
,

uz(z, t) = z
w

L

(2.186)

again in terms of σ33(t) derived above.

2.4.5 A Cube of Norton Material Creeps Under Constant Stress

The domain is a single cube with an edge size of 1m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2× 2× 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio ν = 0.27
and Young’s modulus E = 25,000MPa have been assigned, gravity is neglected via
zero material density. The additional parameters involved in the rheological model
are identical to those of the previous example. Faces on the coordinate planes are
sliding planes. The constant vertical stress σ0 = −20MPa is applied at the top face
for times t > 0. Starting from an initial setup free of load the simulation evaluates
stresses, strains, and displacements through time with output after 10 and 20 days.

The rheological model of the Norton material and its underlying theory have been
sketched just before; we focus on the special features of the present example. Due
to the setup the principal axes are identical to the coordinate axes and the specified
vertical stress is the only non-zero element of the stress tensor. Therefore,

σ =
⎛
⎝ 0 0 0
0 0 0
0 0 σ0

⎞
⎠ , (2.187)
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the trace of σ

trσ = σ0, (2.188)

the stress deviator

σ D = σ0

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (2.189)

the v. Mises or effective stress

σeff = |σ0|
√
3/2

3

√
12 + 12 + 22 = |σ0|, (2.190)

and the time derivative of the creep strains

∂εcr

∂t
= N

2
σ 5
0

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.191)

The entire domain is initially free of creep strains. Hence, integrating with respect
to time t the creep strains become

εcr = N

2
σ 5
0

⎛
⎝−t 0 0

0 −t 0
0 0 2t

⎞
⎠ . (2.192)

The elastic strains are obtained from the stress σ via Hooke’s law

εel = σ0

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠ . (2.193)

The total strains in terms of the displacements (ux , uy, uz) read

εtot = εel + εcr =
⎛
⎝ ∂ux/∂x 0 0

0 ∂uy/∂y 0
0 0 ∂uz/∂z

⎞
⎠ . (2.194)

The strains ∂ux/∂x , ∂uy/∂y, and ∂uz/∂z are thus given by
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εtot
11 (t) = ∂ux

∂x
= −νσ0

E
− N

2
σ 5
0 t,

εtot
22 (t) = ∂uy

∂y
= −νσ0

E
− N

2
σ 5
0 t,

εtot
33 (t) = ∂uz

∂z
= σ0

E
+ Nσ 5

0 t.

(2.195)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x, t) = x

(
−νσ0

E
− N

2
σ 5
0 t

)
,

uy(y, t) = y

(
−νσ0

E
− N

2
σ 5
0 t

)
,

uz(z, t) = z
(σ0

E
+ Nσ 5

0 t
)

.

(2.196)

2.4.6 A Cube of Norton Material Undergoes Tensile Strain
Increasing Linearly with Time

The domain is a single cube with edge size L = 1m located in the first octant. It has
three faces located on the coordinate planes and is discretized by 2 × 2 × 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio ν = 0.27 and
Young’s modulus E = 2.5 × 107MPa have been assigned, gravity is neglected via
zero material density. Except from the stress exponent n, which now has n = 2, the
values of the additional parameters involved in the rheological model are identical
to those of the two previous examples. Faces on the coordinate planes are sliding
planes. The vertical displacement w1 · t (w1 = 0.0001m/d) increases linearly with
time t , it is applied at the top face for times t > 0. Starting from an initial setup free
of load the simulation evaluates stresses, strains, and displacements through time
with output after 1.5 and 3.0 days.

The rheological model of the Norton material and its underlying theory have
already been outlined before; we focus on the special features of the present example.
Due to the setup the principal axes are identical to the coordinate axes and the vertical
stress is the only non-zero element of the stress tensor. Therefore,

σ =
⎛
⎝ 0 0 0
0 0 0
0 0 σ33

⎞
⎠ , (2.197)

the trace of σ

trσ = σ33, (2.198)

the stress deviator
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σ D = σ33

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (2.199)

the v. Mises or effective stress

σeff = |σ33|
√
3/2

3

√
12 + 12 + 22 = |σ33|, (2.200)

and the time derivative of the (positive) creep strains

∂εcr

∂t
= N

2
σ 2
33

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.201)

The entire domain is initially free of creep strains. Hence, integrating with respect
to time t the creep strains become

εcr = N

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

t∫

0

σ 2
33 dt. (2.202)

The elastic strains are obtained from the stress σ via Hooke’s law

εel = σ33

E

⎛
⎝−v 0 0

0 −v 0
0 0 1

⎞
⎠ . (2.203)

The total strains in terms of σ33 and the displacements (ux , uy, uz) read

εtot = εel + εcr =
⎛
⎝ ∂ux/∂x 0 0

0 ∂uy/∂y 0
0 0 ∂uz/∂z

⎞
⎠

= σ33

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠+ N

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

t∫

0

σ 2
33 dt.

(2.204)

Due to the simulation setup

εtot
33 = ∂uz

∂z
= w1

L
t (2.205)

is the specified strain along the z-axis. Then

w1

L
t = 1

E
σ33 + N

t∫

0

σ 2
33 dt. (2.206)
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This integral equation is transformed into the ordinary differential equation

w1

L
= 1

E

dσ33

dt
+ Nσ 2

33. (2.207)

Separation of variables and integration yields

E Nt =
√

L N

4w1
ln

∣∣∣∣
√

w1/(L N ) + σ33√
w1/(L N ) − σ33

∣∣∣∣ , (2.208)

the vertical stress σ33 becomes

σ33(t) =
√

w1

L N
tanh(

√
w1N/L E t), (2.209)

and the strains ∂ux/∂x and ∂uy/∂y are obtained in terms of σ33(t)

εtot
11 (t) = ∂ux

∂x
= −w1

2L
t + 1 − 2ν

2E
σ33(t), (2.210)

εtot
22 (t) = ∂uy

∂y
= −w1

2L
t + 1 − 2ν

2E
σ33(t).

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x, t) = x

(
−w1

2L
t + 1 − 2ν

2E
σ33(t)

)
,

uy(y, t) = y

(
−w1

2L
t + 1 − 2ν

2E
σ33(t)

)
,

uz(z, t) = z
w1

L
t

(2.211)

again in terms of σ33(t) derived above.

2.4.7 A Cube of Norton Material Undergoes Compressive Stress
Increasing Linearly with Time

The domain is a single cube with an edge size of 1m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2× 2× 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio ν = 0.27 and
Young’s modulus E = 25,000MPa have been assigned, gravity is neglected via zero
material density. Except from the stress exponent n, which now has n = 5 again, the
values of the additional parameters involved in the rheological model are identical
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to those of the three previous examples. Faces on the coordinate planes are sliding
planes. The vertical stress σ1 · t (σ1 = −1MPa/d) depends linearly on time t , it is
applied at the top face for times t > 0. Starting from an initial setup free of load the
simulation evaluates stresses, strains, and displacements through time with output
after 15 and 30 days.

The rheological model of the Norton material and its underlying theory have
already been outlined before; we focus on the special features of the present example.
Due to the setup theprincipal axes are identical to the coordinate axes and the specified
vertical stress is the only non-zero element of the stress tensor. Therefore,

σ =
⎛
⎝ 0 0 0
0 0 0
0 0 σ1 · t

⎞
⎠ , (2.212)

the trace of σ

trσ = σ1 · t, (2.213)

the stress deviator

σ D = σ1 · t

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (2.214)

the v. Mises or effective stress

σeff = |σ1 · t |
√
3/2

3

√
12 + 12 + 22 = |σ1 · t |, (2.215)

and the time derivative of the creep strains

∂εcr

∂t
= N

2
(σ1 · t)5

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.216)

The entire domain is initially free of creep strains. Hence, integrating with respect
to time t the creep strains become

εcr = N

12
σ 5
1 t6

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.217)

The elastic strains are obtained from the stress σ via Hooke’s law

εel = σ1 · t

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠ . (2.218)
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The total strains in terms of the displacements (ux , uy, uz) read

εtot = εel + εcr =
⎛
⎝ ∂ux/∂x 0 0

0 ∂uy/∂y 0
0 0 ∂uz/∂z

⎞
⎠ , (2.219)

the strains ∂ux/∂x , ∂uy/∂y, and ∂uz/∂z are thus given by

εtot
11 (t) = ∂ux

∂x
= −νσ1 t

E
− N

12
σ 5
1 t6,

εtot
22 (t) = ∂uy

∂y
= −νσ1 t

E
− N

12
σ 5
1 t6,

εtot
33 (t) = ∂uz

∂z
= σ1 t

E
+ N

6
σ 5
1 t6,

(2.220)

and integration with respect to the fixities at the coordinate planes yields the dis-
placement vector (ux , uy, uz)

ux (x, t) = x

(
−ν σ1t

E
− N

12
σ 5
1 t6
)

,

uy(y, t) = y

(
−ν σ1t

E
− N

12
σ 5
1 t6
)

,

uz(z, t) = z

(
σ1t

E
+ N

6
σ 5
1 t6
)

.

(2.221)

2.5 Mass Transport

The Laplace transform solution method proves to be a powerful tool in solving
mass transport problems. From the variety of closed form solutions available in the
literature we adopted some basic examples from standard references. We made no
attempt to trace back the entire material to its original sources.

2.5.1 Solute Transport Along Permeable Beams, Hydraulic
and Solute Boundary Conditions of 1st and 2nd Kind

The domain comprises four parallel beams of length L = 10m extending along the
positive x-axis, each composed of 200 × 1 × 1 equally sized hexahedral elements
(Fig. 2.12). An isotropic permeability k = 10−11 m2 holds for all beams, porosities
are listed below, the liquid is incompressible with viscosity μ = 1mPa · s. The dif-
fusion coefficient assumes the constant value D = 10−4 m2/s comprising molecular
diffusion and mechanical dispersion. Gravity is neglected via zero liquid density.
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Fig. 2.12 Example setup

Fig. 2.13 Solute distributions after 20,000s

Zero pressure prevails at the beams outlets (x = L). Hydraulic and solute boundary
conditions of 1st and 2nd kind are imposed at the inlets (x = 0m) and are listed
below. Starting from zero initial solute concentration the simulation evaluates the
transient solute distributions with output after 10,000 and 20,000s (Fig. 2.13).

The formal solution proceeds in two steps, first to solve for the pressure and
second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.222)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = ax + b. (2.223)
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Table 2.1 Example overview

Beam11 Beam12 Beam21 Beam22

Porosity φ 0.6 0.4 0.4 0.6

Inlet pressure p0 105 Pa 105 Pa

Specific discharge q 10−4 m/s 10−4 m/s

Inlet concentration 1 1

Solute input j = −φD∇c 5× 10−6 m/s 5× 10−6 m/s

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = 0m. Hence, in case of specified inlet pressure (Beam11
and Beam12)

p(x) = p0
(
1 − x

L

)
(2.224)

and by Darcy’s law

p(x) = μ

k
q L
(
1 − x

L

)
(2.225)

in case of specified specific discharge (Beam21 and Beam22). Employing the data
given above both result in identical pressure distributions and a unique specific dis-
charge q applied to all beams (Table2.1).

We will next focus on the closed form solution of the transport problems, i.e. we
will solve the solute transport equation subject to the imposed initial and boundary
conditions. The solute distributions along Beam11 and Beam21 (c1-distributions)
are based on a 1st kind solute boundary condition. Due to free outflow at x = L these
distributions represent those of a solute in steady linear flow downstream (x > 0)
the source

c1(0, t) = 1 for t > 0. (2.226)

The formal problem is to determine the solution c1(x, t) of the 1D transport equation

∂c1

∂t
+ q

φ

∂c1

∂x
= D

∂2c1

∂x2
(2.227)

subject to the initial condition

c1(x, 0) = 0 for x > 0, (2.228)

and the boundary conditions

c1(0, t) = 1 for t > 0,
lim

x→∞ c1(x, t) = 0 for t > 0. (2.229)
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Applying the Laplace transform with respect to t yields the ordinary differential
equation

D c̄1′′ − q

φ
c̄1′ − s c̄1 = 0, (2.230)

where c̄1 is the transform of c1, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to transformed boundary conditions. This yields

c̄1(x, s) = 1

s
exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + s

D

)]
. (2.231)

Churchill [7] outlines how to obtain the solution c1(x, t) from their transform with
the aid of operational calculus.

looseness-1The solute distributions alongBeam12 andBeam22 (c2-distributions)
are based on a 2nd kind solute boundary condition. Due to free outflow at x =
L these distributions represent those of a solute in steady linear flow downstream
(x > 0) the source

∂c2

∂x
(0, t) = − j

φD
for t > 0. (2.232)

The formal problem is to determine the solution c2(x, t) of the 1D transport equation

∂c2

∂t
+ q

φ

∂c2

∂x
= D

∂2c2

∂x2
(2.233)

subject to the initial condition

c2(x, 0) = 0 for x > 0, (2.234)

and the boundary conditions

∂c2

∂x
(0, t) = − j

φD
for t > 0,

lim
x→∞ c2(x, t) = 0 for t > 0.

(2.235)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

D c̄2′′ − q

φ
c̄2′ − s c̄2 = 0, (2.236)

where c̄2 is the transform of c2, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields
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c̄2(x, s) = − j

φ D s

exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + s

D

)]

q

2φD
−
√

(
q

2φD
)2 + s

D

. (2.237)

The entire solution may now be obtained from the transforms of the solute distri-
butions. The numerical inversion scheme outlined in the introductory section may
easily be applied to give the required values of c1(x, t) and c2(x, t) (Fig. 2.13).

2.5.2 Solute Transport Along Permeable Beams with an Inert,
a Decaying, and an Adsorbing Solute, Time-Dependent
Boundary Conditions of 1st Kind

The domain comprises three parallel beams of length L = 10m extending along
the positive x-axis, each composed of 200 × 1 × 1 equally sized hexahedral
elements (Fig. 2.14). An isotropic permeability k = 10−11 m2 holds for all beams,
porosities have been assigned φ = 0.4. The liquid is incompressible with viscosity
μ = 1mPa · s. The diffusion coefficient assumes the constant value D = 10−4 m2/s
comprising molecular diffusion and mechanical dispersion. Gravity is neglected via
zero liquid density. The decaying solute (half life T ) undergoes first order decay
with decay constant (ln 2)/T = 0.5×10−4 1/s. For the adsorbing solute the adsorbed
mass fraction is related to the solute mass fraction by a linear equilibrium sorption
model. Input data require the distribution coefficient Kd = 6.8× 10−4 m3/kg and the
density of the solid grain (ρs = 2,000kg/m3), for more details see below. Pressure
p0 = 105 Pa prevails at the beams inlets (x = 0m), zero pressure prevails at the
beams outlets (x = L). Along the inlets concentration 1 is specified for times less
than t0 = 15,000s and zero afterward. Starting from zero initial solute concentration
the simulation evaluates the transient solute distributions with output after 10,000
and 20,000s (Fig. 2.15).

Fig. 2.14 Example setup
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Fig. 2.15 Solute distributions after 20,000s

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge q and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.238)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

L

)
, (2.239)

and the specific discharge q is obtained by Darcy’s law

q = k

μ

p0
L

. (2.240)

We will next focus on the closed form solution of the transport problems, i.e. we will
solve 1D solute transport equations

∂c

∂t
+ q

φ

∂c

∂x
= D

∂2c

∂x2
− r(x, t), (2.241)

where r(x, t) depends on the various reactions involved.
Due to free outflow at x = L the distribution of the inert solute (c3-distribution)

represents that of a solute in steady linear flow downstream (x > 0) the source

c3(0, t) =
{
1 for t0 > t > 0,
0 for t > t0,

(2.242)
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and the formal problem is to determine the solution c3(x, t) of the 1D transport
equation

∂c3

∂t
+ q

φ

∂c3

∂x
= D

∂2c3

∂x2
(2.243)

subject to the initial condition

c3(x, 0) = 0 for x > 0, (2.244)

and the boundary conditions

c3(0, t) =
{
1 for t0 > t > 0,

0 for t > t0,
(2.245)

lim
x→∞ c3(x, t) = 0 for t > 0. (2.246)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

D c̄3′′ − q

φ
c̄3′ − s c̄3 = 0, (2.247)

where c̄3 is the transform of c3, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields

c̄3(x, s) = 1 − exp(−t0 s)

s
exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + s

D

)]
. (2.248)

Churchill [7] outlines how to obtain the solution c3(x, t) from their transform with
the aid of operational calculus.

Due to free outflow at x = L the distribution of the decaying solute (c2-
distribution) represents that of a solute in steady linear flow downstream (x > 0)
the source

c2(0, t) =
{
1 for t0 > t > 0,
0 for t > t0,

(2.249)

and formal problem is to determine the solution c2(x, t) of the 1D transport equation

∂c2

∂t
+ q

φ

∂c2

∂x
= D

∂2c2

∂x2
− ln 2

T
c2 (2.250)

subject to the initial condition

c2(x, 0) = 0 for x > 0, (2.251)
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and the boundary conditions

c2(0, t) =
{
1 for t0 > t > 0,

0 for t > t0,
(2.252)

lim
x→∞ c2(x, t) = 0 for t > 0. (2.253)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

D c̄2′′ − q

φ
c̄2′ − (s + ln 2

T
) c̄2 = 0, (2.254)

where c̄2 is the transform of c2, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields

c̄2(x, s) = 1 − exp(−t0 s)

s
exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + ln 2

DT
+ s

D

)]
. (2.255)

Following Churchill [7] again the solution c2(x, t) may be obtained from their trans-
form with the aid of operational calculus.

The transport equation associated to the distribution c1(x, t) of an adsorbing solute
is obtained from a mass balance of solute in the liquid and on the porous matrix. Let
ρl denote the density of the liquid, and let ρs denote the density of the solid grain.
Continuity of solute mass in the liquid yields

∂(φρl c1)

∂t
+ q

φ

∂(φρl c1)

∂x
= D

∂2(φρl c1)

∂x2
− a1(x, t), (2.256)

where a1(x, t) denotes the change of solute mass in the liquid due to interaction
with the porous matrix. On the matrix the solute mass changes due to liquid/matrix-
interaction again

∂[(1 − φ)ρss1]
∂t

= a1(x, t), (2.257)

and the adsorbed mass fraction s1 is related to the solute mass fraction c1 by the
linear equilibrium sorption model

ρss1 = (Kdρs)ρl c1. (2.258)

Introducing the notation

R = 1 + 1 − φ

φ
Kdρs, (2.259)
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yields the formal problem to determine the solution c1(x, t) of the 1D transport
equation

∂c1

∂t
+ q

φR

∂c1

∂x
= D

R

∂2c1

∂x2
(2.260)

subject to the initial condition

c1(x, 0) = 0 for x > 0, (2.261)

and the boundary conditions

c1(0, t) =
{
1 for t0 > t > 0,

0 for t > t0,
(2.262)

lim
x→∞ c1(x, t) = 0 for t > 0. (2.263)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

D

R
c̄1′′ − q

φR
c̄1′ − s c̄1 = 0, (2.264)

where c̄1 is the transform of c1, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields

c̄1(x, s) = 1 − exp(−t0 s)

s
exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + s R

D

)]
. (2.265)

The entire solution may now be obtained from the transforms of the solute distri-
butions. The numerical inversion scheme outlined in the introductory section may
easily be applied to give the required values of c1(x, t), c2(x, t), and c3(x, t).

2.5.3 A Transient 2D Solute Distribution

Given length L = 1m the domain represents the rectangle [0, 2L]×[−0.75L , 0.75L]
located in the x-y-plane and subdivided into 80×60×1 cubic elements. A permeable
material represents the porous medium, with isotropic permeability k = 10−11 m2

and porosity φ = 0.5. The liquid is incompressible with viscosity μ = 1mPa · s,
the diffusion coefficient assumes the constant value D = 3 × 10−6 m2/s comprising
molecular diffusion and mechanical dispersion. Gravity is neglected via zero liquid
density. Pressure p0 = 2 × 104 Pa at the liquid inlet (x = 0m) and zero pressure the
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Fig. 2.16 Solute distribution after 7,000s

liquid outlet (x = 2L) generate steady-state 1D flow along the x-axis. At the liquid
inlet a non-zero solute concentration is specified along a line segment of the y-axis.
Given a = 0.15m and b = 0.25m the specified inlet concentration reads

g(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for y ≤ −b,
b + y

b − a
for − b ≤ y ≤ −a,

1 for − a ≤ y ≤ a,
b − y

b − a
for a ≤ y ≤ b,

0 for b ≤ y.

(2.266)

Starting from zero initial solute concentration the simulation evaluates the tran-
sient solute distribution c(x, y, t) with output after 3,500 and 7,000s (Fig. 2.16).

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge q and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.267)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

2L

)
, (2.268)

and the specific discharge q is obtained by Darcy’s law

q = k

μ

p0
2L

. (2.269)

We will next focus on the closed form solution of the transport problem and solve
the 2D solute transport equation with the aid of successive integral transforms as
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described by Leij and Dane [8]. The formal problem is to determine the solution
c(x, y, t) of the 2D transport equation

∂c

∂t
+ q

φ

∂c

∂x
= D

(
∂2c

∂x2
+ ∂2c

∂y2

)
(2.270)

subject to the initial condition

c(x, y, 0) = 0 for x, y > 0, (2.271)

and the boundary conditions

c(0, y, t) = g(y) for t > 0,
lim

x→∞ c(x, y, t) = 0 for t > 0,

lim
y→∞ c(x, y, t) = 0 for t > 0,

lim
y→−∞ c(x, y, t) = 0 for t > 0.

(2.272)

Applying the Laplace transform with respect to t yields the differential equation

s c̄ + q

φ

∂ c̄

∂x
= D

(
∂2c̄

∂x2
+ ∂2c̄

∂y2

)
, (2.273)

where c̄ is the Laplace transform of c, and s is the transformation parameter. The
boundary conditions become

c̄(0, y, s) = g(y)

s
,

lim
x→∞ c̄(x, y, s) = 0,

lim
y→∞ c̄(x, y, s) = 0,

lim
y→−∞ c̄(x, y, s) = 0.

(2.274)

Applying next the Fourier transform with respect to y yields the ordinary differential
equation

DC̄ ′′ − q

φ
C̄ ′ − (s + Dr2)C̄ = 0, (2.275)

where C̄ is the Fourier transform of c̄, r is the Fourier transformation parameter, and
the prime denotes the derivative with respect to x . The boundary conditions read

C̄(0, r, s) = G(r)

s
,

lim
x→∞ C̄(x, r, s) = 0,

(2.276)

where G(r) is the Fourier transform of g(y). The ordinary differential equation
above has to be solved with respect to the twofold transformed boundary conditions.
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This yields

C̄(x, r, s) = G(r)

s
exp

[
x

(
q

2φD
−
√

(
q

2φD
)2 + s

D
+ r2

)]
. (2.277)

The solution in the x, y, t domain will be obtained from their transforms, the invers
Laplace transformation is carried out first. Knowing (e.g. Abramowitz and Stegun
[9]) the inverse Laplace transform

L−1{exp(−x
√

s/D)} = x exp(−x2/(4Dt))

2(π Dt3)1/2
, (2.278)

it follows with the aid of the property on substitution

L−1
{
exp

(
−x

√
1

D
[( 1

4D
(

q

φ
)2 + Dr2) + s]

)}

= x exp(−x2/(4Dt))

2(π Dt3)1/2
exp

(
−[ 1

4D
(

q

φ
)2 + Dr2] t

)
.

(2.279)

The Fourier transform C(x, r, t) of the solute concentration is thus obtained by the
convolution theorem

C(x, r, t) = x

(4π D)1/2

t∫

0

G(r) exp(−Dr2t ′)
(t ′)3/2 exp

(
− (x − t ′q/φ)2

4Dt ′

)
dt ′. (2.280)

The last step of the solution procedure is the application of the invers Fourier trans-
form. G(r) has the invers g(y), and knowing the invers Fourier transform

F−1{exp(−Dr2t ′)} = exp(−y2/(4Dt ′))
(2Dt ′)1/2

(2.281)

the convolution theorem of the Fourier transformation yields

F−1{G(r) exp(−Dr2t ′)} = (2π)−1/2

∞∫

−∞

g(v)

(2Dt ′)1/2
exp(− (y − v)2

4Dt ′
) dv

=
−a∫

−b

(2π)−1/2

(2Dt ′)1/2
b + v

b − a
exp(− (y − v)2

4Dt ′
) dv

+
a∫

−a

(2π)−1/2

(2Dt ′)1/2
exp(− (y − v)2

4Dt ′
) dv

+
b∫

a

(2π)−1/2

(2Dt ′)1/2
b − v

b − a
exp(− (y − v)2

4Dt ′
) dv. (2.282)
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The integrals involved may be evaluated by elementary analytical methods. The
solution c(x, y, t) of the 2D transport problem takes the form

c(x, y, t) = x

4(π D)1/2
·

t∫

0

exp(− (x − t ′q/φ)2

4Dt ′
)

×
{
[erf( b + y

(4Dt ′)1/2
) − erf(

a + y

(4Dt ′)1/2
)]b + y

b − a

+[exp(−(b + y)2

4Dt ′
) − exp(

−(a + y)2

4Dt ′
)] (4Dt ′)1/2π−1/2

b − a
+[erf( a + y

(4Dt ′)1/2
) + erf(

a − y

(4Dt ′)1/2
)]

+ [erf( b − y

(4Dt ′)1/2
) − erf(

a − y

(4Dt ′)1/2
)]b − y

b − a

+[exp(−(b − y)2

4Dt ′
) − exp(

−(a − y)2

4Dt ′
)] (4Dt ′)1/2π−1/2

b − a

}
t ′−3/2dt ′.

(2.283)

The remaining integral was evaluated numerically, the Romberg integration scheme
may conveniently be employed. For the numerical evaluation of the error function
see [4].

2.6 Hydrothermal Processes

Heat transport in a moving liquid is the subject of this section. Closed form solu-
tions may be obtained from corresponding mass transport problems. We present two
examples, for the underlying theory see Bear [10].

2.6.1 A Transient 1D Temperature Distribution in a Moving Liquid

The domain is a rectanglular beam of length L = 10m extending along the positive
x-axis. It is discretized by 100×1×1 equally sized hexahedral elements. A permeable
material represents the porous medium, with isotropic permeability k = 10−11 m2

and porosity φ = 0.1. The liquid is incompressible and has viscosity μ = 1mPa · s.
Densities, heat capacities, and thermal conductivities of liquid and solid grain are
given below, gravity has explicitly been neglected (Table2.2).

Pressure p0 = 105 Pa at the liquid inlet (x = 0m) and zero pressure the liquid
outlet (x = L) generate steady-state 1D flow along the x-axis. At the liquid inlet
a constant temperature T0 = 10 ◦C is specified for times t > 0. Starting from zero
initial temperature the simulation evaluates the transient temperature distribution
T (x, t) with output after 10,000 and 20,000s (Fig. 2.17).
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Table 2.2 Example overview

Liquid Solid grain

Density ρl = 1000 kg/m3 ρs = 2000 kg/m3

Specific heat capacity cl = 1100 J/(kg ·K) cs = 250 J/(kg ·K)
Thermal conductivity λl = 10 W/(m ·K) λs = 50 W/(m ·K)

Fig. 2.17 Temperature distribution after 20,000s

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge q and second to determine the temperature distribution.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

∂2 p

∂x2
= 0 (2.284)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

L

)
, (2.285)

and the specific discharge q is obtained by Darcy’s law

q = k

μ

p0
L

. (2.286)

We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

(φρl cl + (1 − φ)ρscs)
∂T

∂t
+ (φρl cl)

q

φ

∂T

∂x
= (φλl + (1 − φ)λs)

∂2T

∂x2
. (2.287)
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Introducing the notation

w = φρl cl

φρl cl + (1 − φ)ρscs

q

φ
, (2.288)

χ = φλl + (1 − φ)λs

φρl cl + (1 − φ)ρscs
,

the heat transport equation becomes

∂T

∂t
+ w

∂T

∂x
= χ

∂2T

∂x2
. (2.289)

Due to free outflow at x = L the formal problem is to determine the solution T (x, t)
of the above heat transport equation subject to the initial condition

T (x, 0) = 0 for x > 0, (2.290)

and the boundary conditions

T (0, t) = T0 for t > 0,
lim

x→∞ T (x, t) = 0 for t > 0. (2.291)

Applying the Laplace transform with respect to t yields the ordinary differential
equation

χ T̄ ′′ − wT̄ ′ − s T̄ = 0, (2.292)

where T̄ is the transform of T , s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to transformed boundary conditions. This yields

T̄ (x, s) = T0
s

exp

[
x

(
w

2χ
−
√

(
w

2χ
)2 + s

χ

)]
. (2.293)

The solution may now be obtained from the transform of the temperature distribu-
tion, Churchill [7] outlines how to proceed with the aid of operational calculus. We
note, that the present example is well suited for numerical inversion. The numerical
inversion scheme outlined in the introductory section may easily be applied to give
the required values of the temperature distribution T (x, t) (Fig. 2.17).
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Table 2.3 Example overview

Liquid Solid grain

Density ρl = 1000 kg/m3 ρs = 2000 kg/m3

Specific heat capacity cl = 1100 J/(kg ·K) cs = 250 J/(kg ·K)
Thermal conductivity λl = 0.5 W/(m ·K) λs = 2.0 W/(m ·K)

2.6.2 A Transient 2D Temperature Distribution
in a Moving Liquid

Given length L = 1m the domain represents the rectangle [0, 2L]×[−0.75L , 0.75L]
located in the x-y-plane and subdivided into 80×60×1 cubic elements. A permeable
material represents the porous medium, with isotropic permeability k = 10−11 m2

and porosity φ = 0.1. The liquid is incompressible and has viscosity μ = 1mPa · s.
Densities, heat capacities, and thermal conductivities of liquid and solid grain are
given below, gravity has explicitly been neglected (Table2.3).

Pressure p0 = 2 × 104 Pa at the liquid inlet (x = 0m) and zero pressure the
liquid outlet (x = 2L) generate steady-state 1D flow along the x-axis. At the liquid
inlet a non-zero temperature is specified along a line segment of the y-axis. Given
temperature T0 = 10 ◦C as well as a = 0.15m and b = 0.25m the specified inlet
temperature reads

g(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for y ≤ −b,

T0
b + y

b − a
for −b ≤ y ≤ −a,

T0 for −a ≤ y ≤ a,

T0
b − y

b − a
for a ≤ y ≤ b,

0 for b ≤ y.

(2.294)

Starting from zero initial temperature the simulation evaluates the transient temper-
ature distribution T (x, y, t) with output after 3,500 and 7,000s (Fig. 2.18).

Fig. 2.18 Temperature distribution after 7,000s
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The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge q and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.295)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0
(
1 − x

2L

)
, (2.296)

and the specific discharge q is obtained by Darcy’s law

q = k

μ

p0
2L

. (2.297)

We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

(φρl cl + (1 − φ)ρscs)
∂T

∂t
+ (φρl cl)

q

φ

∂T

∂x
(2.298)

= (φλl + (1 − φ)λs)

(
∂2T

∂x2
+ ∂2T

∂y2

)
.

Introducing the notation

w = φρl cl

φρl cl + (1 − φ)ρscs

q

φ
, (2.299)

χ = φλl + (1 − φ)λs

φρl cl + (1 − φ)ρscs
,

the heat transport equation becomes

∂T

∂t
+ w

∂T

∂x
= χ

(
∂2T

∂x2
+ ∂2T

∂y2

)
. (2.300)

The formal problem is to determine the solution T (x, y, t) of the above heat transport
equation subject to the initial condition

T (x, y, 0) = 0 for x, y > 0, (2.301)

and the boundary conditions



74 P. Vogel and J. Maßmann

T (0, y, t) = g(y) for t > 0,
lim

x→∞ T (x, y, t) = 0 for t > 0,

lim
y→∞ T (x, y, t) = 0 for t > 0,

lim
y→−∞ T (x, y, t) = 0 for t > 0.

(2.302)

The closed form solution of this problem will be obtained with the aid of successive
Laplace and Fourier transforms as described by Leij and Dane [8]. Applying the
Laplace transform with respect to t yields the differential equation

s T̄ + w
∂ T̄

∂x
= χ

(
∂2T̄

∂x2
+ ∂2T̄

∂y2

)
, (2.303)

where T̄ is the Laplace transform of T , and s is the transformation parameter. The
boundary conditions become

T̄ (0, y, s) = g(y)

s
,

lim
x→∞ T̄ (x, y, s) = 0,

lim
y→∞ T̄ (x, y, s) = 0,

lim
y→−∞ T̄ (x, y, s) = 0.

(2.304)

Applying next the Fourier transform with respect to y yields the ordinary differential
equation

χŪ ′′ − w Ū ′ − (s + χr2)Ū = 0, (2.305)

where Ū is the Fourier transform of T̄ , r is the Fourier transformation parameter, and
the prime denotes the derivative with respect to x . The boundary conditions read

Ū (0, r, s) = G(r)

s
,

lim
x→∞ Ū (x, r, s) = 0,

(2.306)

where G(r) is the Fourier transform of g(y). The ordinary differential equation above
has to be solved with respect to the twofold transformed boundary conditions. This
yields

Ū (x, r, s) = G(r)

s
exp

[
x

(
w

2χ
−
√

(
w

2χ
)2 + s

χ
+ r2

)]
. (2.307)

The solution in the x, y, t domain will be obtained from their transforms, the invers
Laplace transformation is carried out first. Knowing (e.g. Abramowitz and Stegun
[9]) the inverse Laplace transform
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L−1{exp(−x
√

s/χ)} = x exp(−x2/(4χ t))

2(πχ t3)1/2
, (2.308)

it follows with the aid of the property on substitution

L−1
{
exp

(
−x

√
1

χ
[( 1

4χ
(w)2 + χr2) + s]

)}

= x exp(−x2/(4χ t))

2(πχ t3)1/2
exp

(
−[ 1

4χ
(w)2 + χr2] t

)
.

(2.309)

TheFourier transformU (x, r, t)of the temperature is thus obtainedby the convolution
theorem

U (x, r, t) = x

(4πχ)1/2

t∫

0

G(r) exp(−χr2t ′)
(t ′)3/2

exp

(
− (x − t ′w)2

4χ t ′

)
dt ′. (2.310)

The last step of the solution procedure is the application of the invers Fourier trans-
form. G(r) has the invers g(y), and knowing the invers Fourier transform

F−1{exp(−χr2t ′)} = exp(−y2/(4χ t ′))
(2χ t ′)1/2

(2.311)

the convolution theorem of the Fourier transformation yields

F−1{G(r) exp(−χr2t ′)} = (2π)−1/2

∞∫

−∞

g(v)

(2χ t ′)1/2
exp(− (y − v)2

4χ t ′
) dv

= T0

−a∫

−b

(2π)−1/2

(2χ t ′)1/2
b + v

b − a
exp(− (y − v)2

4χ t ′
) dv

+ T0

a∫

−a

(2π)−1/2

(2χ t ′)1/2
exp(− (y − v)2

4χ t ′
) dv

+ T0

b∫

a

(2π)−1/2

(2χ t ′)1/2
b − v

b − a
exp(− (y − v)2

4χ t ′
) dv.

(2.312)

The integrals involved may be evaluated by elementary analytical methods. Employ-
ingw and χ as defined above the solution T (x, y, t) of the 2D heat transport problem
takes the form
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T (x, y, t) = T0 x

4(πχ)1/2
·

t∫

0

exp(− (x − t ′w)2

4χ t ′
)

×
{
[erf( b + y

(4χ t ′)1/2
) − erf(

a + y

(4χ t ′)1/2
)]b + y

b − a

+[exp(−(b + y)2

4χ t ′
) − exp(

−(a + y)2

4χ t ′
)] (4χ t ′)1/2π−1/2

b − a

+[erf( a + y

(4χ t ′)1/2
) + erf(

a − y

(4χ t ′)1/2
)]

+ [erf( b − y

(4χ t ′)1/2
) − erf(

a − y

(4χ t ′)1/2
)]b − y

b − a

+[exp(−(b − y)2

4χ t ′
) − exp(

−(a − y)2

4χ t ′
)] (4χ t ′)1/2π−1/2

b − a

}
t ′−3/2dt ′.

(2.313)

The remaining integral was evaluated numerically, the Romberg integration scheme
may conveniently be employed. For the numerical evaluation of the error function
see [4].

2.7 Hydromechanical Coupling

The presence of a fluid pressure affects the mechanical load on the porous matrix.
This interaction constitutes the subject of Biot’s theory, see Biot [11] or see Jaeger
and Cook [6]. We note, that the setup of our time-dependent problems has been
adopted from Kolditz et al. [12].

2.7.1 A Permeable Elastic Beam Deforms Under Steady-State
Internal Liquid Pressure

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
20×2×2 cubic elements. The solid material has been selected elastic with Poisson’s
ratio ν = 0.25, Young’s modulus E = 25,000MPa, and Biot number equal one. An
isotropic permeability of 10−12 m2 and zero porosity is assumed for the material,
liquid viscosity is 1mPa · s and gravity is neglected via zero material and liquid
densities. The face x = 0 is free, all other faces of the beam are sliding planes. The
simulation comprises one time step with pressure p1 = 1MPa at x = L and zero
pressure applied at x = 0.

The formal solutionproceeds in two steps, first to solve for the pressure distribution
p(x) and second to determine stresses, strains and displacements (Fig. 2.19).

The Laplace equation is the governing equation describing the steady-state
pressure distribution. It reads
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Fig. 2.19 X-Displacements

d2 p

dx2
= 0 (2.314)

for 1D flow along the x-axis. The pressure distribution p(x) is given by

p(x) = p1 · x

L
, (2.315)

which satisfies the specified pressure boundary conditions at x = 0 and x = L.
Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified

theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.316)

It is satisfied by zero shear, if the stresses σ22 and σ33 are functions of x only and the
horizontal stress σ11 satisfies

d

dx
(σ11 − p) = 0. (2.317)

The face x = 0 is free of load, hence, integration gives

σ11 = p = p1
x

L
. (2.318)

Due to the y- and z-fixities along the front, rear, top, and bottom, and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E · ε11 = σ11 − ν (σ22 + σ33),

0 = E · ε22 = σ22 − ν (σ11 + σ33), (2.319)

0 = E · ε33 = σ33 − ν (σ11 + σ22),
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and therefore

σ22 = σ33 = ν

1 − ν
σ11 = ν

1 − ν
p = p1

L

ν

1 − ν
x, (2.320)

ε11 = 1

E

(
1 − 2ν2

1 − ν

)
σ11 = p1

E L

(
1 − 2ν2

1 − ν

)
x .

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)

ux (x) = p1
2 E L

(
1 − 2ν2

1 − ν

)
(x2 − L2),

uy = 0,
uz = 0.

(2.321)

2.7.2 A Permeable Elastic Square Deforms Under Constant
Internal Liquid Pressure

The domain represents the unit square [0, 1] × [0, 1] in the x-y-plane. It has three
faces located on the coordinate planes and is discretized by 5 × 5 × 2 equally sized
hexahedral elements. The solid material has been selected elastic with Poisson’s
ratio ν = 0.25, Young’s modulus E = 10,000MPa, and Biot number equal one. An
isotropic permeability of 10−11 m2 and zero porosity is assumed for the material,
liquid viscosity is 1mPa · s and gravity is neglected via zero material and liquid
densities. Top and bottom as well as the lateral faces on the coordinate planes are
sliding planes. The simulation comprises one time step applying a constant liquid
pressure p0 = 0.8MPa at the bottom of the domain.

The formal solutionproceeds in two steps, first to solve for the pressure distribution
and then to evaluate stresses, strains and displacements. However, due to the setup
the pressure p has constant value p0 throughout the entire domain, and we will focus
on the mechanical aspects of the problem.

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.322)

It is satisfied by zero shear and constant stresses. Due to the setup

σ11 = σ22 = p0 (2.323)

and with principal axes equal to coordinate axes, Hooke’s law gives for the strains
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0 = ε33 = 1

E
[σ33 − ν(σ11 + σ22)] = 1

E
(σ33 − 2ν · p0),

ε22 = 1

E
[σ22 − ν(σ11 + σ33)] = (1 − ν − 2ν2)

p0
E

, (2.324)

ε11 = 1

E
[σ11 − ν(σ22 + σ33)] = (1 − ν − 2ν2)

p0
E

.

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)

ux (x) = (1 − ν − 2ν2)
p0
E

x,

uy(y) = (1 − ν − 2ν2)
p0
E

y,

uz = 0. (2.325)

2.7.3 A Permeable Elastic Cube Deforms Under Constant Internal
Liquid Pressure

The domain is a cube with an edge size of 1m. It has three faces located on
the coordinate planes and is discretized by 4 × 4 × 4 cubic elements. The solid
material has been selected elastic with Poisson’s ratio ν = 0.25, Young’s modulus
E = 10,000MPa, and Biot number equal one. An isotropic permeability of 10−10 m2

and zero porosity is assumed for the material, liquid viscosity is 1mPa · s and gravity
is neglected via zero material and liquid densities. The faces on the coordinate planes
are sliding planes. The simulation comprises one time step applying a constant liquid
pressure p0 = 20MPa at the top of the domain.

The formal solutionproceeds in two steps, first to solve for the pressure distribution
and then to evaluate stresses, strains and displacements. However, due to the setup
the pressure p has constant value p0 throughout the entire domain, and we will focus
on the mechanical aspects of the problem.

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.326)

It is satisfied by zero shear and constant stresses. Due to the setup

σ11 = σ22 = σ33 = p0 (2.327)

and with principal axes equal to coordinate axes, Hooke’s law gives for the strains
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ε11 = 1

E
[σ11 − ν(σ22 + σ33)] = (1 − 2ν)

p0
E

,

ε22 = 1

E
[σ22 − ν(σ11 + σ33)] = (1 − 2ν)

p0
E

, (2.328)

ε33 = 1

E
[σ33 − ν(σ11 + σ22)] = (1 − 2ν)

p0
E

.

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)

ux (x) = (1 − 2ν)
p0
E

x,

uy(y) = (1 − 2ν)
p0
E

y, (2.329)

uz(z) = (1 − 2ν)
p0
E

z.

2.7.4 A Permeable Elastic Cuboid Undergoes Static Load Due to
Gravity and Hydrostatic Liquid Pressure

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The domain is
composed of four groups of isotropic permeable materials with zero porosity. Liquid
viscosity is 1mPa · s and ρl = 1019.368kg/m3 is the liquid density. Each of the
material groups has been assigned solid density ρs = 3058.104kg/m3, Poisson’s
ratio ν = 0.25, Young’s modulus E = 10,000MPa, and Biot number equal one. Zero
pressure is applied at the top face z = H . This face is free, all other faces are sliding
planes. The simulation comprises one time step to establish the hydrostatic pressure
distribution as well as the mechanical load.

The formal solutionproceeds in two steps, first to solve for the pressure distribution
and second to determine stresses, strains, and displacements.

The simulation setup employs a prescribed zero pressure at the top (z = H ),
therefore the pressure distribution is hydrostatic, does not depend on the coordinates
x and y and is given by

p(z) = ρl g (H − z), (2.330)

where g = 9.81m/s2 is the magnitude of gravity, and z is the vertical coordinate
extending from 0 to H .

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I) − (0, 0, ρs g). (2.331)
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It is satisfied by zero shear, if pressure p and the horizontal stresses σ11 and σ22 are
functions of the vertical coordinate z only and the vertical stress σ33 satisfies

dσ33

dz
= ρs g + dp

dz
= (ρs − ρl) g. (2.332)

The face z = H is free, hence, integration gives

σ33 = (ρs − ρl) (−g) (H − z). (2.333)

Assuming that there is no horizontal displacement anywhere we have for the hori-
zontal strains

ε11 = ε22 = 0. (2.334)

Then, with principal axes equal to coordinate axes, Hooke’s law gives

0 = σ11 − ν(σ22 + σ33),

0 = σ22 − ν(σ11 + σ33), (2.335)

E ε33 = σ33 − ν(σ11 + σ22).

Solving for σ11, σ22, and the vertical strain ε33 yields

σ11 = σ22 = ν

1 − ν
σ33 = ν

1 − ν
(ρs − ρl)(−g)(H − z), (2.336)

ε33 = 1

E

(
1 − 2ν2

1 − ν

)
(ρs − ρl)(−g)(H − z)

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (ux , uy, uz)

ux = uy = 0, (2.337)

uz(z) = 1

E

(
1 − 2ν2

1 − ν

)
(ρs − ρl)(−g)

(
H z − z2

2

)
.

2.7.5 A Permeable Elastic Beam Deforms Under Transient
Internal Liquid Pressure. Specified Boundary Conditions
are Time-Dependent and of 1st Kind

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 × 1 × 1 and
section 0.6 L <= x <= L composed of 60 × 1 × 1 elements. The solid material has
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been selected elastic with Poisson’s ratio ν = 0.2, Young’s modulus E = 27,000Pa,
andBiot number equal one.An isotropic permeability k = 10−10 m2 and zero porosity
is assumed for the material, liquid viscosity is μ = 1mPa · s, and gravity is neglected
via zero material and liquid densities. The face x = 0 is free, all other faces of the
beam are sliding planes. Zero pressure has been specified at the face x = 0, the
pressure p1 · t (p1 = 100Pa/s) increases linearly with time t , it is applied at the face
x = L for times t > 0. Starting from zero initial pressure the simulation evaluates the
transient pressure distribution p(x, t) as well as stresses, strains, and displacements
with output after 5 and 10 s (Fig. 2.20).

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.338)

It is satisfied by zero shear, if the stresses σ22 and σ33 are functions of x only and the
horizontal stress σ11 satisfies

∂

∂x
(σ11 − p) = 0. (2.339)

With respect to prescribed boundary conditions at x = 0m the last equation yields

σ11 = p. (2.340)

Due to the y- and z-fixities along the front, rear, top, and bottom and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E · ε11 = σ11 − ν (σ22 + σ33),

0 = E · ε22 = σ22 − ν (σ11 + σ33), (2.341)

0 = E · ε33 = σ33 − ν (σ11 + σ22).

In terms of pressure p(x, t) the non-zero stresses and strains take the form

σ22 = σ33 = ν

1 − ν
σ11 = ν

1 − ν
p, (2.342)

ε11 = 1

E

(
1 − 2ν2

1 − ν

)
σ11 = 1

E

(
1 − 2ν2

1 − ν

)
p.

Let (ux , uy, uz) denote the displacement vector and q the specific discharge via
Darcy’s law

q = − k

μ
∇ p. (2.343)

Conservation of momentum yields

∇ · (q + ∂

∂t
(ux , uy, uz)) = 0. (2.344)
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For the present 1D example this reduces to

0 = − k

μ

∂2 p

∂x2
+ ∂

∂t

∂ux

∂x

= − k

μ

∂2 p

∂x2
+ 1

E

(
1 − 2ν2

1 − ν

)
∂p

∂t

(2.345)

the 1D pressure conduction equation, which has to be solved subject to the initial
condition

p(x, 0) = 0 for 0 ≤ x ≤ L , (2.346)

and the boundary conditions

p(0, t) = 0 for t > 0,
p(L , t) = p1 t for t > 0,

(2.347)

arising from the problem setup. Once that the pressure distribution p(x, t) has been
found, the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

χ = k E

μ

/ (
1 − 2ν2

1 − ν

)
(2.348)

the formal problem is to determine the solution p(x, t) of the parabolic equation

∂p

∂t
= χ

∂2 p

∂x2
(2.349)

Fig. 2.20 X-Displacements after 10 s
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subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to t yields the ordinary differential equation

χ p̄′′ − s p̄ = 0, (2.350)

where p̄ is the transform of p, the prime denotes the derivative with respect to x , and
s is the transformation parameter. This equation has to be solved with respect to the
transformed boundary conditions. This yields

p̄(x, s) = p1
sinh(

√
s/χ x)

s2 sinh(
√

s/χ L)
. (2.351)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz), and this also holds for the Laplace transforms.
Because σ11 = p the transform of the only non-zero displacement ux (x, t) becomes

ūx (x, s) = p1
E

(
1 − 2ν2

1 − ν

)
cosh(

√
s/χ x) − cosh(

√
s/χ L)

s2
√

s/χ sinh(
√

s/χ L)
. (2.352)

The entire solution may now be obtained from the transforms of pressure and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of p(x, t) and ux (x, t) (Fig. 2.20).

2.7.6 A Permeable Elastic Beam Deforms Under Transient
Internal Liquid Pressure. Specified Boundary Conditions
are Time-Dependent and of 1st and 2nd Kind

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 × 1 × 1 and
section 0.6 L <= x <= L composed of 60 × 1 × 1 elements. The solid material has
been selected elastic with Poisson’s ratio ν = 0.2, Young’s modulus E = 27,000Pa,
andBiot number equal one.An isotropic permeability k = 10−10 m2 and zero porosity
is assumed for the material, liquid viscosity is μ = 1mPa · s, and gravity is neglected
via zero material and liquid densities. The face x = 0 is free, all other faces of the
beam are sliding planes. Zero pressure has been specified at the face x = 0, the
specific discharge q1 · t (q1 = 7.6 × 10−5 m/s2) increases linearly with time t , it is
applied at the face x = L for times t > 0 and acts as a source to the domain. Starting
from zero initial pressure the simulation evaluates the transient pressure distribution
p(x, t) as well as stresses, strains, and displacements with output after 5 and 10 s
(Fig. 2.21).
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Fig. 2.21 Pressure distribution after 10 s

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.353)

It is satisfied by zero shear, if the stresses σ22 and σ33 are functions of x only and the
horizontal stress σ11 satisfies

∂

∂x
(σ11 − p) = 0. (2.354)

With respect to prescribed boundary conditions at x = 0m the last equation yields

σ11 = p. (2.355)

Due to the y- and z-fixities along the front, rear, top, and bottom and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E · ε11 = σ11 − ν (σ22 + σ33),

0 = E · ε22 = σ22 − ν (σ11 + σ33), (2.356)

0 = E · ε33 = σ33 − ν (σ11 + σ22).

In terms of pressure p(x, t) the non-zero stresses and strains take the form

σ22 = σ33 = ν

1 − ν
σ11 = ν

1 − ν
p, (2.357)

ε11 = 1

E

(
1 − 2ν2

1 − ν

)
σ11 = 1

E

(
1 − 2ν2

1 − ν

)
p.

Let (ux , uy, uz) denote the displacement vector and q the specific discharge via
Darcy’s law
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q = − k

μ
∇ p. (2.358)

Conservation of momentum yields

∇ · (q + ∂

∂t
(ux , uy, uz)) = 0. (2.359)

For the present 1D example this reduces to

0 = − k

μ

∂2 p

∂x2
+ ∂

∂t

∂ux

∂x

= − k

μ

∂2 p

∂x2
+ 1

E

(
1 − 2ν2

1 − ν

)
∂p

∂t

(2.360)

the 1D pressure conduction equation, which has to be solved subject to the initial
condition

p(x, 0) = 0 for 0 ≤ x ≤ L , (2.361)

and the boundary conditions

p(0, t) = 0 for t > 0,
∂p

∂x
(L , t) = q1

μ

k
t for t > 0,

(2.362)

arising from the problem setup. Once that the pressure distribution p(x, t) has been
found, the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

χ = k E

μ

/ (
1 − 2ν2

1 − ν

)
(2.363)

the formal problem is to determine the solution p(x, t) of the parabolic equation

∂p

∂t
= χ

∂2 p

∂x2
(2.364)

subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to t yields the ordinary differential equation

χ p̄′′ − s p̄ = 0, (2.365)

where p̄ is the transform of p, the prime denotes the derivative with respect to x , and
s is the transformation parameter. This equation has to be solved with respect to the
transformed boundary conditions. This yields
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p̄(x, s) = q1
μ

k

sinh(
√

s/χ x)

s2
√

s/χ cosh(
√

s/χ L)
. (2.366)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz), and this also holds for the Laplace transforms.
Because σ11 = p the transform of the only non-zero displacement ux (x, t) becomes

ūx (x, s) = q1
cosh(

√
s/χ x) − cosh(

√
s/χ L)

s3 cosh(
√

s/χ L)
. (2.367)

The entire solution may now be obtained from the transforms of pressure and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of p(x, t) and ux (x, t).

2.7.7 Biot’s 1D Consolidation Problem: Squeezing of a Pressurized
Column Causes the Liquid to Discharge from the Domain

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 × 1 × 1 and
section 0.6 L <= x <= L composed of 60 × 1 × 1 elements. The solid material has
been selected elastic with Poisson’s ratio ν = 0.2, Young’s modulus E = 30,000Pa,
andBiot number equal one.An isotropic permeability k = 10−10 m2 and zero porosity
is assumed for the material, liquid viscosity is μ = 1mPa · s and gravity is neglected
via zero material and liquid densities. Except from the face x = L all faces of
the beam are sliding planes. At the face x = L pressure and mechanical boundary
conditions have explicitly been assigned: a compressive stress of 1,000Pa acts in
negative x-direction and pressure is assigned zero for times t > 0. Starting from initial
equilibrium, i.e. pressure pi = 1,000Pa and zero mechanical stress, the simulation
evaluates the transient pressure distribution p(x, t) as well as stresses, strains, and
displacements with output after 5 and 10 s (Fig. 2.22).

Let σ denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.368)

It is satisfied by zero shear, if the stresses σ22 and σ33 are functions of x only and the
horizontal stress σ11 satisfies

∂

∂x
(σ11 − p) = 0. (2.369)

With respect to the initial and prescribed boundary conditions at x = L the last
equation yields
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Fig. 2.22 X-Displacements after 10 s

p = σ11 + pi . (2.370)

Due to the y- and z-fixities along the front, rear, top, and bottom andwith principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E · ε11 = σ11 − ν (σ22 + σ33),

0 = E · ε22 = σ22 − ν (σ11 + σ33), (2.371)

0 = E · ε33 = σ33 − ν (σ11 + σ22).

In terms of the stress σ11(x, t) the remaining non-zero stresses and strains take the
form

σ22 = σ33 = ν

1 − ν
σ11, (2.372)

ε11 = 1

E

(
1 − 2ν2

1 − ν

)
σ11.

Let (ux , uy, uz) denote the displacement vector and q the specific discharge via
Darcy’s law

q = − k

μ
∇ p. (2.373)

Conservation of momentum yields

∇ · (q + ∂

∂t
(ux , uy, uz)) = 0. (2.374)

For the present 1D example this reduces to
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0 = − k

μ

∂2 p

∂x2
+ ∂

∂t

∂ux

∂x

= − k

μ

∂2σ11

∂x2
+ 1

E

(
1 − 2ν2

1 − ν

)
∂σ11

∂t

(2.375)

the 1D pressure conduction equation, which has to be solved subject to the initial
condition

σ11(x, 0) = 0 for 0 ≤ x ≤ L , (2.376)

and the boundary conditions

∂σ11

∂x
(0, t) = 0 for t > 0,

σ11(L , t) = −pi for t > 0,
(2.377)

arising from the problem setup. Once that the stress σ11(x, t) has been found, the
pressure and the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

χ = k E

μ

/ (
1 − 2ν2

1 − ν

)
(2.378)

the formal problem is to determine the solution σ11(x, t) of the parabolic equation

∂σ11

∂t
= χ

∂2σ11

∂x2
(2.379)

subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to t yields the ordinary differential equation

χ σ̄ ′′
11 − s σ̄11 = 0, (2.380)

where σ̄11 is the transform of σ11, s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields

σ̄11(x, s) = −pi
cosh(

√
s/χ x)

s cosh(
√

s/χ L)
. (2.381)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz), and this also holds for the Laplace transforms. The
transform of the only non-zero displacement ux (x, t) becomes
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ūx (x, s) = − pi

E

(
1 − 2ν2

1 − ν

)
sinh(

√
s/χ x)

s
√

s/χ cosh(
√

s/χ L)
. (2.382)

The entire solution may now be obtained from the transforms of stress σ11 and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of σ11(x, t) and ux (x, t).

2.8 Thermomechanics

Temperature changes cause thermal strains affecting themechanical load. The formal
solution of the subsequent examples always proceeds in two steps: first to solve for
the temperature, and then to evaluate stresses, strains, and displacements. Various
ideas already outlined in previous sections will appear again.

2.8.1 An Elastic Beam Deforms Due to an Instant Temperature
Change

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
20×2×2 cubic elements. The solid material has been selected elastic with Poisson’s
ratio ν = 0.25, Young’s modulus E = 25,000MPa, zero heat capacity, and thermal
expansion α = 3×10−5 1/K. Gravity is neglected via zero material density. The face
x = 0 is free, all other faces of the beam are sliding planes. The simulation starts from
the initial temperature T0 = 0 ◦C and comprises one time step applying an instant
temperature change with temperature T1 = 1 ◦C at x = L and zero temperature T0 at
x = 0.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution T (x) and then to evaluate stresses, strains, and displacements (Fig. 2.23).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

d2T

dx2
= 0 (2.383)

for 1D heat flow along the x-axis, hence, the temperature distribution is given by

T (x) = (T1 − T0)
x

L
+ T0. (2.384)

For the closed form solution of the mechanical problem note, that due to the simula-
tion setup, the entire system is free of shear and the principal axes coincide with the
coordinate axes. The constitutive equations relate the strains ε11, ε22, ε33, (in x-, y-,
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Fig. 2.23 X-Displacements

and z-direction, respectively) and the associated stresses σ11, σ22, and σ33 via

ε11 − α(T (x) − T0) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − α(T (x) − T0) = 1

E
[σ22 − ν(σ11 + σ33)], (2.385)

ε33 − α(T (x) − T0) = 1

E
[σ33 − ν(σ11 + σ22)].

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

σ11 = 0,

ε22 = ε33 = 0. (2.386)

Hence, due to the change in temperature, the remaining non-zero stresses and strains
become

σ22 = −α
E

1 − ν
(T (x) − T0),

σ33 = −α
E

1 − ν
(T (x) − T0), (2.387)

ε11 = α
1 + ν

1 − ν
(T (x) − T0).

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)
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ux (x) = α
1 + ν

1 − ν

T1 − T0
2L

(x2 − L2),

uy = uz = 0.
(2.388)

2.8.2 An Elastic Square Deforms Due to an Instant Temperature
Change

The domain represents the unit square [0, 1] × [0, 1] in the x-y-plane. It has three
faces located on the coordinate planes and is discretized by 5 × 5 × 2 equally sized
hexahedral elements. The solid material has been selected elastic with Poisson’s
ratio ν = 0.25, Young’s modulus E = 25,000MPa, zero heat capacity, and thermal
expansion α = 4× 10−5 1/K. Gravity is neglected via zero material density. Top and
bottom as well as the lateral faces on the coordinate planes are sliding planes. The
simulation starts from the initial temperature T0 = 0 ◦C and comprises one time step
applying an instant temperature change to T1 = 1 ◦C at the bottom of the domain.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution and then to evaluate stresses, strains, and displacements. However, due to
the setup the temperature change has constant value T1 − T0 throughout the entire
domain, and we will focus on the mechanical aspects of the problem.

Due to the simulation setup the entire system is free of shear and the principal
axes coincide with the coordinate axes. The constitutive equations relate the strains
ε11, ε22, ε33, (in x-, y-, and z-direction, respectively) and the associated stresses σ11,
σ22, σ33 via

ε11 − α(T1 − T0) = 1

E
[σ11 − ν(σ22 + σ33)] = 0,

ε22 − α(T1 − T0) = 1

E
[σ22 − ν(σ11 + σ33)] = 0, (2.389)

ε33 − α(T1 − T0) = 1

E
[σ33 − ν(σ11 + σ22)] = 0.

Due to the setup x- and y-direction are free of stress, and the z-direction is free of
strain, therefore,

σ11 = σ22 = 0, (2.390)

ε33 = 0.

Hence, due to the change in temperature from T0 to T1 the remaining non-zero strains
and stresses become

σ33 = −α (T1 − T0) E,

ε11 = ε22 = (1 + ν) α (T1 − T0). (2.391)
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Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)

ux (x) = (1 + ν) α (T1 − T0) x,

uy(y) = (1 + ν) α (T1 − T0) y,

uz = 0.
(2.392)

2.8.3 An Elastic Cube Deforms Due to an Instant Temperature
Change

The domain is a cube with an edge size of 1m. It has three faces located on the
coordinate planes and is discretized by 4× 4× 4 cubic elements. The solid material
has been selected elastic with Poisson’s ratio ν = 0.25, Young’s modulus E =
25,000MPa, zero heat capacity, and thermal expansion α = 5 × 10−5 1/K. Gravity
is neglected via zero material density. The faces on the coordinate planes are sliding
planes. The simulation starts from the initial temperature T0 = 0 ◦C and comprises
one time step applying an instant temperature change to T1 = −40 ◦C at the top of
the domain.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution and then to evaluate stresses, strains, and displacements. However, due to
the setup the temperature change has constant value T1 − T0 throughout the entire
domain, and we will focus on the mechanical aspects of the problem.

Due to the simulation setup the entire system is free of shear, and the principal
axes coincide with the coordinate axes.

σ11 = σ22 = σ33 = 0 (2.393)

are the principal stresses in x-, y-, and z-direction, respectively. The constitutive
equations yield for the associated strains ε11, ε22, and ε33

ε11 − α(T1 − T0) = 1

E
[σ11 − ν(σ22 + σ33)] = 0,

ε22 − α(T1 − T0) = 1

E
[σ22 − ν(σ11 + σ33)] = 0, (2.394)

ε33 − α(T1 − T0) = 1

E
[σ33 − ν(σ11 + σ22)] = 0.

Therefore, due to the change in temperature from T0 to T1 the strains become

ε11 = ε22 = ε33 = α(T1 − T0). (2.395)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (ux , uy, uz)
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ux (x) = α (T1 − T0) x,

uy(y) = α (T1 − T0) y, (2.396)

uz(z) = α (T1 − T0) z.

2.8.4 An Elastic Cuboid Undergoes Load Due to Gravity
and Instant Temperature Change

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The cuboid is
represented by four groups of elastic materials, where each has been assigned density
ρ = 2038.736kg/m3, Poisson’s ratio ν = 0.25, Young’s modulus E = 5,000MPa,
zero heat capacity, and thermal expansion α = 5 × 10−6 1/K. Gravity is applied
in negative z-direction, g = 9.81m/s2 is the magnitude of gravity. The bottom and
the lateral faces are sliding planes, the top face is free. The simulation starts from
the initial temperature T0 = 10 ◦C and comprises one time step applying an instant
temperature change with temperature T1 = 4 ◦C at the top (z = H ) and temperature
T0 at z = 0.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution T (x) and then to evaluate stresses, strains, and displacements.

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

d2T

dz2
= 0 (2.397)

for 1D heat flow along the z-axis, hence the temperature distribution is given by

T (z) = (T1 − T0)
z

H
+ T0. (2.398)

Next we focus on the closed form solution of the mechanical problem. Let σ denote
the stress tensor. The equation of mechanical equilibrium

0 = ∇ · σ − (0, 0, ρ g) (2.399)

is satisfied by zero shear, if the horizontal stresses σ11 and σ22 are functions of z only
and the vertical stress σ33 satisfies

dσ33

dz
= ρ g. (2.400)

The face z = H is free, hence, integration gives

σ33 = ρ(−g)(H − z). (2.401)
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Fig. 2.24 Horizontal stress

Due to the simulation setup there is no horizontal displacement anywhere, hence, for
the horizontal strains

ε11 = ε22 = 0. (2.402)

Then, with principal axes equal to coordinate axes, the constitutive equations give

ε11 − α(T (z) − T0) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − α(T (z) − T0) = 1

E
[σ22 − ν(σ11 + σ33)], (2.403)

ε33 − α(T (z) − T0) = 1

E
[σ33 − ν(σ11 + σ22)].

Solving for σ11, σ22, (Fig. 2.24) and the vertical strain ε33 yields

σ11 = σ22 = −α
E

1 − ν
(T1 − T0)

z

H
+ ν

1 − ν
ρ (−g)(H − z),

ε33 = 1 + ν

1 − ν
α (T1 − T0)

z

H
+
(
1 − 2ν2

1 − ν

)
1

E
ρ (−g)(H − z) (2.404)

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (ux , uy, uz)

ux = uy = 0,

uz(z) = 1 + ν

1 − ν
α(T1 − T0)

z2

2H
+
(
1 − 2ν2

1 − ν

)
1

E
ρ(−g)

(
zH − 1

2
z2
)

.
(2.405)
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2.8.5 An Elastic Beam Deforms Due to a Transient Temperature
Change. Temperature Boundary Conditions are
Time-Dependent and of 1st Kind

The domain is a rectangular beam of length L = 1m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 ≤ x ≤ 0.6 L composed of 10× 1× 1 and section
0.6 L ≤ x ≤ L composed of 60 × 1 × 1 elements. The solid material has been
selected elastic with Poisson’s ratio ν = 0.25, Young’s modulus E = 25,000MPa,
and density ρ = 2,000kg/m3. Thermal conductivity λ = 2.7W/(m ·K), heat capacity
c = 0.45 J/(kg ·K), and thermal expansion α = 3 × 10−4 1/K have been assigned.
Gravity is neglected via explicit assignment. The face x = 0 is free, all other faces of
the beam are sliding planes. Zero temperature has been specified at the face x = 0,
the temperature T1 · t (T1 = 1 ◦C/s) increases linearly with time t , it is applied at the
face x = L for times t > 0. Starting from zero initial temperature the simulation
evaluates the transient temperature distribution T (x, t) as well as stresses, strains,
and displacements with output after 5 and 10 s.

The heat conduction equation is the governing equation describing the transient
temperature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.406)

Introducing the notation

χ = λ

ρc
(2.407)

the present 1D problem is governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (2.408)

the initial condition
T (x, 0) = 0 for 0 ≤ x ≤ L , (2.409)

and the boundary conditions imposed at the beam ends

T (0, t) = 0 for t > 0,
T (L , t) = T1 · t for t > 0.

(2.410)

We will shown next that the solution of the mechanical problem may be obtained in
terms of the temperature distribution.

For the closed form solution of the mechanical problem note, that due to the
simulation setup, the entire system is free of shear and the principal axes coincide
with the coordinate axes. The constitutive equations relate the strains ε11, ε22, ε33,
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(in x-, y-, and z-direction, respectively) and the associated stresses σ11, σ22, and σ33
via

ε11 − αT (x, t) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − αT (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (2.411)

ε33 − αT (x, t) = 1

E
[σ33 − ν(σ11 + σ22)].

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

σ11 = 0, (2.412)

ε22 = ε33 = 0.

Hence, due to the change in temperature, the remaining non-zero stresses and strains
become

σ22 = σ33 = −α
E

1 − ν
T (x, t), (2.413)

ε11 = α
1 + ν

1 − ν
T (x, t).

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)

ux (x) = α
1 + ν

1 − ν

x∫

L

T (x ′, t)dx ′, (2.414)

uy = uz = 0.

Once that the temperature distribution T (x, t) has been found, the entire solution
of the thermomechanical problem may thus be obtained. It is therefore sufficient
to solve the 1D heat conduction equation with respect to the imposed initial and
boundary conditions cited above.

Applying the Laplace transform with respect to time t yields the ordinary differ-
ential equation

χ T̄ ′′ − s T̄ = 0, (2.415)

where T̄ is the transform of T (x, t), the prime denotes the derivative with respect to
x , and s is the transformation parameter. This equation has to be solved with respect
to the transformed boundary conditions. This yields the transform of the temperature
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T̄ (x, s) = T1
sinh(

√
s/χ x)

s2 sinh(
√

s/χ L)
, (2.416)

and the transform of the only non-zero displacement ux (x, t) becomes

ūx (x, s) = α
1 + ν

1 − ν
T1

cosh(
√

s/χ x) − cosh(
√

s/χ L)

s2
√

s/χ sinh(
√

s/χ L)
. (2.417)

The entire solution may now be obtained from the transforms of temperature and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of temperature T (x, t) and the entire
mechanical load.

2.8.6 Elastic Beams Deform Due to a Transient Temperature
Change. Temperature Boundary Conditions are
Time-Dependent and of 2nd Kind

The domain is composed of two beams in parallel (Beam1 and Beam2) extending
along the positive x-axis, each L = 25m long and subdivided into 25 × 1 × 1
cubic elements. The solid material has been selected elastic with Poisson’s ratio
ν = 0.25, Young’smodulus E = 25,000MPa, and density ρ = 2,000kg/m3. Thermal
conductivity λ = 1.1574074W/(m ·K), thermal expansion α = 3×10−4 1/K, and heat
capacities c1 = 0.01 J/(kg ·K) and c2 = 0.02 J/(kg ·K) have been assigned to Beam1
and Beam2, respectively. Gravity is neglected via explicit assignment. The faces
x = L are free, all other faces of the beams are sliding planes. No-flow boundary
conditions prevail at the x = 0m faces. A specific heat flow is prescribed at x = L
for times t > 0. It acts as heat source to the domain and increases linearly with time
via qth1 · t , where qth1 = 0.385802W/(d ·m2) has been assumed. Starting from zero
initial temperature the simulation evaluates the transient temperature distributions
as well as stresses, strains, and displacements with output after 0.045 and 0.09 days
(Figs. 2.25 and 2.26).

The formal solution proceeds in two steps, first to solve for the temperature dis-
tributions and then to evaluate stresses, strains, and displacements.

Let c denote any of c1 or c2. The heat conduction equation is the governing
equation describing the transient temperature distribution. It reads

ρc
∂T

∂t
= λ∇ · ∇T . (2.418)

Introducing the notation

χ = λ

ρc
(2.419)
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Fig. 2.25 Temperature distributions after 0.09 days

Fig. 2.26 X-Displacements after 0.09 days

the present 1D problems are governed by the parabolic equation

1

χ

∂T

∂t
= ∂2T

∂x2
, (2.420)

the initial condition
T (x, 0) = 0 for 0 ≤ x ≤ L , (2.421)

and the boundary conditions
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∂T

∂x
(0, t) = 0 for t > 0,

λ
∂T

∂x
(L , t) = qth1 · t for t > 0.

(2.422)

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

T (x, t) = 8qth1
√

χ t3

λ

∞∑
n=0

[
i3erfc

(2n + 1)L − x

2
√

χ t
+ i3erfc

(2n + 1)L + x

2
√

χ t

]
(2.423)

where i3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.

For the closed form solution of themechanical problemnote, that due to simulation
setup, the entire system is free of shear and the principal axes coincide with the
coordinate axes. The constitutive equations relate the strains ε11, ε22, ε33, (in x-, y-,
and z-direction, respectively) and the associated stresses σ11, σ22, and σ33 via

ε11 − αT (x, t) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − αT (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (2.424)

ε33 − αT (x, t) = 1

E
[σ33 − ν(σ11 + σ22)].

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

σ11 = 0, (2.425)

ε22 = ε33 = 0.

Hence, due to the temperature change T (x, t), the remaining non-zero stresses and
strains become

σ22 = −α
E

1 − ν
T (x, t),

σ33 = −α
E

1 − ν
T (x, t), (2.426)

ε11 = α
1 + ν

1 − ν
T (x, t).

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz)

uz = uy = 0, (2.427)
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ux (x) = α
1 + ν

1 − ν

16qth1χ t2

λ
·

∞∑
n=0

[
i4erfc

(2n + 1)L − x

2
√

χ t
− i4erfc

(2n + 1)L + x

2
√

χ t

]
,

where i4erfc denotes the 4th repeated integral of the complementary error function.
See [4] for its numerical evaluation.

2.8.7 Stresses Relax in a Cube of Norton Material Undergoing an
Instant Temperature Change

The domain is a single cube with edge size L = 1m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2 × 2 × 2
cubic elements. The cube is represented by a Norton material. Poisson’s ratio ν =
0.27, Young’s modulus E = 25,000MPa, zero heat capacity, and thermal expansion
α = 4× 10−5 1/K have been assigned, gravity is neglected via zero material density.
Various additional parameters are involved in the rheological behaviour, details are
given below. Faces on the coordinate planes and the top face are sliding planes.
The simulation starts from an initial setup free of load and an initial temperature
T0 = 27 ◦C. It applies an instant temperature change to T1 = 47 ◦C at the top of the
domain and evaluates stresses, strains, and displacements through time with output
after 0.5 and 2 days.

Let σ denote the stress tensor, I the unit tensor,

σ D = σ − trσ

3
I (2.428)

the stress deviator, and

σeff =
√√√√3

2

3∑
i=1

3∑
j=1

σ D
i j σ D

ji (2.429)

the v. Mises or effective stress. The rheological model involved yields the funda-
mental stress/strain relationships as a system of differential equations for the creep
strains

∂εcr

∂t
= 3

2

σ D

σeff
(N σ n

eff) (2.430)

and the total strains
εtot = εth + εel + εcr , (2.431)

where εth denotes the thermal strains and εel the elastic strains via Hooke’s law.
Both equations have to be solved with respect to the imposed initial and boundary
conditions.
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For the present example the behaviour of the Norton material is specified with the
aid of the parameters

n = 5,

N (T ) = A exp

(
− Q

RT

)
,

(2.432)

where R = 8.31441 J/(mol ·K) is the gas constant, T is the absolute temperature, and
experimental data obtained from rock salt yield

A = 0.18 1/(d · MPa5),
Q = 54, 000 J/mol.

(2.433)

Note that day is required as unit of time and stresses have to be in MPa.
Due to the example setup the principal axes are identical to the coordinate axes

and the vertical stress is the only non-zero element of the stress tensor. Therefore,

σ =
⎛
⎝ 0 0 0
0 0 0
0 0 σ33

⎞
⎠ . (2.434)

the trace of σ

trσ = σ33, (2.435)

the stress deviator

σ D = σ33

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ , (2.436)

the v. Mises or effective stress

σeff = |σ33|1
3

√
3/2
√
12 + 12 + 22 = |σ33|, (2.437)

and the time derivative of the creep strains

∂εcr

∂t
= N (T1)

2
σ 5
33

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (2.438)

The entire domain is initially free of creep strains. Hence, integrating with respect
to time t the creep strains become
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εcr = N (T1)

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠

t∫

0

σ 5
33 dt. (2.439)

Due to the simulation setup the thermal strains read

εth = α(T1 − T0)

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠ , (2.440)

and the elastic strains are obtained from the stress σ via Hooke’s law.

εel = σ33

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠ . (2.441)

The total strains in terms of σ33 and the displacements (ux , uy, uz) read

εtot = εth + εel + εcr =
⎛
⎝ ∂ux/∂x 0 0

0 ∂uy/∂y 0
0 0 ∂uz/∂z

⎞
⎠

= α(T1 − T0)

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

+σ33

E

⎛
⎝−ν 0 0

0 −ν 0
0 0 1

⎞
⎠

+ N (T1)

2

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ .

t∫

0

σ 5
33 dt.

(2.442)

Due to the simulation setup

εtot
33 = ∂uz

∂z
= 0 (2.443)

is the specified zero strain along the z-axis. Then

− α(T1 − T0) = 1

E
σ33 + N (T1)

t∫

0

σ 5
33 dt. (2.444)

This integral equation is transformed into the ordinary differential equation

0 = 1

E

dσ33

dt
+ N (T1)σ

5
33. (2.445)
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Separation of variables and integration yields

σ33(t) = −Eα(T1 − T0)
4
√
4E5[α(T1 − T0)]4N (T1) t + 1

, (2.446)

and the strains ∂ux/∂x and ∂uy/∂y are obtained in terms of σ33(t)

εtot
11 (t) = ∂ux

∂x
= 3

2
α(T1 − T0) + 1 − 2v

2E
σ33(t), (2.447)

εtot
22 (t) = ∂uy

∂y
= 3

2
α(T1 − T0) + 1 − 2v

2E
σ33(t).

Integrating the strains with respect to the specified fixities yields the displacement
vector (ux , uy, uz) in terms of σ33(t) derived above

ux (x, t) = x

[
3

2
α(T1 − T0) + 1 − 2v

2E
σ33(t)

]
,

uy(y, t) = y

[
3

2
α(T1 − T0) + 1 − 2v

2E
σ33(t)

]
,

uz(z, t) = 0.

(2.448)

2.9 Thermo-Hydro-Mechanical Coupling

Both, the presence of a liquid pressure as well as temperature changes affect the
mechanical behaviour of the porous matrix; we present a steady-state and a transient
problem. The underlying theory may be found in the references cited above.

2.9.1 A Permeable Elastic Cuboid Deforms Due to Gravity,
Internal Liquid Pressure, and Instant Temperature Change

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The cuboid is
represented by four groups of elastic materials, where each has been assigned density
ρs = 2038.736kg/m3, Poisson’s ratio ν = 0.25, Young’s modulus E = 10,000MPa,
thermal expansion α = 3 × 10−6 1/K, zero heat capacity, zero porosity, and Biot
number equal one. Liquid density is ρl = 1019.368kg/m3, gravity is applied in
negative z-direction, g = 9.81m/s2 is the magnitude of gravity. Zero pressure is
applied at the top face z = H . This face is free, all other faces are sliding planes.
The simulation starts from the initial temperature T0 = 0 ◦C and comprises one time
step applying an instant temperature increase to T1 = 2.5 ◦C throughout the entire
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domain. The simulation evaluates the pressure distribution, the temperature, and the
mechanical load.

The formal solution proceeds in three steps, first to solve for the temperature, next
to evaluate the pressure distribution p(z), and finally to determine stresses, strains and
displacements. However, due to the setup the temperature change has constant value
T1 − T0 throughout the entire domain, and we will focus on the hydromechanical
aspects of the problem.

The simulation setup employs a prescribed zero pressure at the top (z = H ),
therefore the pressure distribution is hydrostatic, does not depend on the coordinates
x and y and is given by

p(z) = ρl g (H − z). (2.449)

For the closed form solution of the mechanical problem let σ denote the stress tensor
and I the unit tensor. Employing Biot’s simplified theory (i.e. Biot number equal one)
the equation of mechanical equilibrium reads

0 = ∇ · (σ − p I) − (0, 0, ρs g). (2.450)

It is satisfied by zero shear, if pressure p and the horizontal stresses σ11 and σ22 are
functions of the vertical coordinate z only and the vertical stress σ33 satisfies

dσ33

dz
= ρs g + dp

dz
= (ρs − ρl) g. (2.451)

The face z = H is free, hence, integration gives

σ33 = (ρs − ρl) (−g) (H − z). (2.452)

Due to the simulation setup there is no horizontal displacement anywhere, hence, for
the horizontal strains

ε11 = ε22 = 0. (2.453)

Then, with principal axes equal to coordinate axes, the constitutive equations give

ε11 − α(T1 − T0) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − α(T1 − T0) = 1

E
[σ22 − ν(σ11 + σ33)], (2.454)

ε33 − α(T1 − T0) = 1

E
[σ33 − ν(σ11 + σ22)].

Solving for σ11, σ22, and the vertical strain ε33 yields
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Fig. 2.27 Vertical displacements

σ11 = σ22 = −α
E

1 − ν
(T1 − T0) + ν

1 − ν
(ρs − ρl)(−g)(H − z), (2.455)

ε33 = 1 + ν

1 − ν
α(T1 − T0) +

(
1 − 2ν2

1 − ν

)
1

E
(ρs − ρl)(−g)(H − z)

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (ux , uy, uz) (Fig. 2.27).

ux = uy = 0,

uz(z) = 1 + ν

1 − ν
α(T1 − T0)z

+
(
1 − 2ν2

1 − ν

)
1

E
(ρs − ρl)(−g)

(
zH − 1

2
z2
)

.

(2.456)

2.9.2 A Permeable Elastic Beam Deforms Due to Cooling Liquid
Injection

The domain is a rectangular beam of length L = 10m extending along the positive
x-axis. It is discretized by 100 × 1× 1 equally sized hexahedral elements. The solid
material has been selected elastic with Poisson’s ratio ν = 0.25, Young’s modulus
E = 5 × 109 Pa, thermal expansion α = 1 × 10−6 1/K, and Biot number equal one.
An isotropic permeability k = 10−11 m2 and porosity φ = 0.1 is assumed for the
material. The liquid is incompressible and has viscosity μ = 1mPa · s. Densities,
heat capacities, and thermal conductivities of liquid and solid grain are given below
(Table2.4), gravity has explicitly been neglected.



2 Verification Tests 107

Table 2.4 Example overview

Liquid Solid

Density ρl = 1000 kg/m3 ρs = 2000 kg/m3

Specific heat capacity cl = 1100 J/(kg ·K) cs = 250 J/(kg ·K)
Thermal conductivity λl = 10 W/(m ·K) λs = 50 W/(m ·K)

The face x = L is free, all other faces of the beam are sliding planes. Pressure
p0 = 105 Pa at the liquid inlet (x = 0m) and zero pressure the liquid outlet (x =
L) generate steady-state 1D flow along the x-axis. At the liquid inlet a constant
temperature T0 = −10 ◦C is specified for times t > 0. Starting from zero initial
temperature the simulation evaluates the transient temperature distribution T (x, t)
as well as stresses, strains, and displacements with output after 10,000 and 20,000s.

The formal solution proceeds in three steps, first to solve for pressure p(x) and
specific discharge q, next to evaluate the temperature distribution T (x, t), and finally
to determine stresses, strains, and displacements (Figs. 2.28 and 2.29).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d2 p

dx2
= 0 (2.457)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) = p0(1 − x

L
), (2.458)

and the specific discharge q is obtained by Darcy’s law

Fig. 2.28 Temperature distribution after 20,000s
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Fig. 2.29 X-Displacements after 20,000s

q = k

μ

p0
L

. (2.459)

We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

(φρl cl + (1 − φ)ρscs)
∂T

∂t
+ (φρl cl)

q

φ

∂T

∂x
= (φλl + (1 − φ)λs)

∂2T

∂x2
. (2.460)

Introducing the notation

w = φρl cl

φρl cl + (1 − φ)ρscs

q

φ
, (2.461)

χ = φλl + (1 − φ)λs

φρl cl + (1 − φ)ρscs
,

the heat transport equation becomes

∂T

∂t
+ w

∂T

∂x
= χ

∂2T

∂x2
. (2.462)

Due to free outflow at x = L the formal problem is to determine the solution T (x, t)
of the above heat transport equation subject to the initial condition

T (x, 0) = 0 for x > 0, (2.463)

and the boundary conditions

T (0, t) = T0 for t > 0,
lim

x→∞ T (x, t) = 0 for t > 0. (2.464)
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Applying the Laplace transform with respect to t yields the ordinary differential
equation

χ T̄ ′′ − wT̄ ′ − sT̄ = 0, (2.465)

where T̄ is the transform of T , s is the transformation parameter, and the prime
denotes the derivative with respect to x . This equation has to be solved with respect
to the transformed boundary conditions. This yields

T̄ (x, s) = T0
s

exp

[
x

(
w

2χ
−
√

(
w

2χ
)2 + s

χ

)]
. (2.466)

The temperature distribution T (x, t) may now be obtained from their transform,
Churchill [7] outlines how to proceed with the aid of operational calculus.

For the mechanical aspects of the problem we assume that the temperature distri-
bution T (x, t) is already known from the above. Let σ denote the stress tensor and I
the unit tensor. Employing Biot’s simplified theory (i.e. Biot number equal one) the
equation of mechanical equilibrium reads

0 = ∇ · (σ − p I). (2.467)

It is satisfied by zero shear, if the stresses σ22 and σ33 are functions of x only and the
stress σ11 satisfies

∂

∂x
(σ11 − p) = 0. (2.468)

The face x = L is free of load, hence, integration gives

σ11 = p(x) = p0(1 − x

L
). (2.469)

With principal axes equal to coordinate axes, the constitutive equations give for the
strains

ε11 − αT (x, t) = 1

E
[σ11 − ν(σ22 + σ33)],

ε22 − αT (x, t) = 1

E
[σ22 − ν(σ11 + σ33)], (2.470)

ε33 − αT (x, t) = 1

E
[σ33 − ν(σ11 + σ22)].

By the problem setup there is
ε22 = ε33 = 0 (2.471)

due to the y- and z-fixities along the front, rear, top, and bottom of the beam. In terms
of pressure p(x) and temperature T (x, t) the remaining non-zero stresses and strains
become
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σ22 = σ33 = 1

1 − ν

[
νp(x) − αET (x, t)

]
,

ε11 =
(
1 − 2ν2

1 − ν

)
p(x)

E
+ 1 + ν

1 − ν
αT (x, t). (2.472)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (ux , uy, uz). The only non-zero displacement ux (x, t) becomes

ux (x, t) =
(
1 − 2ν2

1 − ν

)
p0
E

(
x − x2

2L

)
+ 1 + ν

1 − ν
α

x∫

0

T (x ′, t)dx ′. (2.473)

The already known Laplace transform T̄ (x, s) of the temperature serves to evalu-
ate the last integral over the temperature distribution. We have for the transformed
integral

L

⎧⎨
⎩

x∫

0

T (x ′, t)dx ′
⎫⎬
⎭ =

x∫

0

T̄ (x ′, s)dx ′

= T0
s

exp

{
x

(
w

2χ
−
√

(
w

2χ
)2 + s

χ

)}
− 1

w

2χ
−
√

(
w

2χ
)2 + s

χ

,

(2.474)

and the last expression, as well as the Laplace transform of the temperature itself,
are well suited for numerical inversion. The numerical inversion scheme outlined
in the introductory section may easily be applied to give the required values of the
temperature T (x, t) and the entire mechanical load (Fig. 2.29).
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Part II
Single Processes



Chapter 3
Groundwater Flow—Theis’ Revisited

Wenkui He

3.1 Problem Definition

Theis’ Problem describes the transient lowering of the water table caused by a
pumping well. In this section, Theis’ Problem is simulated for a homogeneous,
isotropic, confined aquifer numerically in 1.5D, 2D, 2.5D and 3D. The parame-
ters for the simulations can be found in Table3.1. In all the four cases, different
processes i.e. groundwater flow processes and liquid flow processes are applied
for the simulation in order to evaluate the plausibility of the model approaches
GROUNDWATER_FLOW and LIQUID_FLOW in OGS. The governing equa-
tion for groundwater flow process in a confined aquifer is Eq. (3.1) with the primary
variable hydraulic head, whereas that for liquid flowprocess is Eq. (3.2) with pressure
as its primary variable.

Ss
∂h

∂t
= ∇ · (K · ∇h) + q (3.1)

Ss

ρg

∂p

∂t
= ∇ · (

κ

μ
· ∇ p) + q (3.2)

3.2 Theis’ 1.5D and 2.5D

For the simulation of Theis’ problem in 1.5D and 2.5D, axisymmetric coordinate
system is applied. For 1.5D a one dimensional line mesh is applied, whereas for
2.5D a two dimensional mesh with a width of 1m is applied (see Fig. 3.1a, a scale

W. He (B)
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Fig. 3.1 The mesh implemented. a 2D Mesh for Theis’ 2.5D; b 2D Mesh for Theis’ 2D

factor of 5 is taken for the y-direction). In the case of two dimensional groundwater
flow process, Eq. (3.1) is transformed into Eq. (3.3).

Ss
∂h

∂t
= 1

r

∂

∂r
(Krr

∂h

∂r
) + ∂

∂z
(Kz

∂h

∂z
) + q (3.3)

A hydraulic head of 0m is given for the whole domain as the initial condition
for the numerical simulations. Since the aquifer should be infinite in radial extent
in order to fulfill the assumption required by the Theis’ solutions, a relatively huge
study area length of 1,000m is applied. The hydraulic head at the end of radial extent
is set as 0m as the boundary condition.

Since discharge is evenly distributed around the whole surface area of the well
(which can be seen as a cylinder), the source term (with the distribution type
CONSTANT_NEUMANN) applied for Theis’ 2.5D is calculated as follows (‘1’
in the formula represents the length of the 2D mesh in y-direction, i.e. 1m):

q = Q

2πrw · 1 = −7.393E − 3(m · s−1)

In the case of Theis’ 1.5D, the whole well is abstractly represented by a single point,
hence both the radius and the depth of the well are regarded as 1m. The discharge

Table 3.1 Parameters and their values applied for Theis’ problem

Parameter Symbol Value Unit

Pumping rate Q 1.4158E-2 m3/s

Hydraulic conductivity K 9.2903E-4 m/s

Intrinsic permeability κ 1.2391E-10 m2

Storage coefficient S 1E-3 –

Specific storage Ss 1E-3 1/m

Well radius rw 0.3048 m

Study area length rb 1,000 m
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Table 3.2 The density and dynamic viscosity of water at 10 ◦C
Parameter Symbol Value Unit

Density of water (10 ◦C) ρ 999.7026 Kg·m−3

Viscosity of water (10 ◦C) μ 1.308E-03 Pa · s

rate is thereby calculated by:

q = Q

2π · 1 · 1 = −2.253E − 3(m · s−1)

It is worth to mention that in the model approach GROUNDWATER_FLOW, the
value implemented for the key word PERMEABILITY_TENSOR in OGS should
be the value of hydraulic conductivity, i.e.

K = 9.2903E − 4(m · s−1)

whereas the value implemented for the key word STORAGE should be the specific
storage, i.e.

Ss = 1E − 3(m−1)

However, in the model approach LIQUID_FLOW, the value used for the key word
PERMEABILITY_TENSOR is the intrinsic permeability, which is calculated as
follows by using the value of hydraulic conductivity as well as the density and
dynamic viscosity of water at 10 ◦C (see Table3.2).

κ = Kμ

ρg
= 1.2391E − 10(m2)

Whereas the value implemented for the key word STORAGE should be the whole
parameter term on the left hand side of Eq. (3.2), i.e.

Ss

ρg
= 1.02E − 7(Pa−1)

Additionally, in the model approach LIQUID_FLOW the influence of gravity is
considered. Hence the geometries and meshes for both Theis’ 1.5D and Theis’ 2D
are built in x-y plane instead of x-z plane to avoid the influence of gravity.

3.3 Theis’ 2D

The governing equation system for groundwater flow process in 2D is

S
∂h

∂t
= T (

∂2h

∂x2
+ ∂2h

∂ y2
) + q (3.4)
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Table 3.3 Summary of the model concepts for Theis’ problem

Dimension 1.5D 2D 2.5D 3D

Geometry

Concept Radial symmetry Axisymmetry

Key word $AXISYMMETRY – $AXISYMMETRY –

or

Ss
∂h

∂t
= K (

∂2h

∂x2
+ ∂2h

∂ y2
) + q (3.5)

In order to compare the simulation results of 2D approach with other approaches,
the same parameter values, initial conditions and boundary conditions are applied for
the Theis’ 2D. A cake-shaped triangle geometry is chosen for the 2D approach (see
Fig. 3.1b), in which the pumping well is set at the left vertex of the triangle. Since
the angle of the left vertex is set as 10◦, the source term is calculated as follows:

Q1 = 10

360
Q = 3.9329E − 4(m3 · s−1)

3.4 Theis’ 3D

Based on the 2D mesh shown in Fig. 3.1b, a 3D mesh is generated by extruding the
mesh elements into 3D. The 3D mesh is consist of one layer with a thickness of 1m.
Similarly, the parameters used inTheis’ 2Dare applied forTheis’ 3D. Since themodel
approach LIQUID_FLOW considers the gravity of the liquid, there is a pressure
difference between the upper surface and the bottom surface. Hence the average
value of the upper surface and the bottom surface is taken to compare with the results
from Theis’ 1.5D, Theis’ 2D and Theis’ 2.5D. A summary of the model concepts,
implemented geometries and their related key words in OGS are listed in Table3.3.

3.5 Results

All the simulations are performed for a duration of 10days with varying time step
lengths ranging from 10E-5 to 0.9d. The time series of the hydraulic head draw-
down at a distance of 9.639m from the well are extracted from the simulation
results of all the eight cases, and are shown in Fig. 3.2 together with the analyti-
cal solutions. The calculation of the analytical solutions can be found in the work
of Srivastava et al. [1]. ‘GF’ in the graphic represents the simulations with model
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Fig. 3.2 Calculated drawdowns at a distance of 9.639m from the well

approach GROUNDWATER_FLOW, whereas ‘LF’ represents LIQUID_FLOW.
We can find that all the numerical results obtained with different model approaches
are coincident with each other and are agree well with the analytical solutions. Addi-
tionally, the distribution of the hydraulic head at the end of the simulation time
for the 1D as well as 3D mesh are demonstrated in Figs. 3.3 and 3.4, respectively.
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Fig. 3.3 Distribution of the hydraulic head at the end of the simulation time (1D)
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Fig. 3.4 Distribution of the hydraulic head at the end of the simulation time (3D)

In order to show the 3D mesh in Fig. 3.4 clearly, a scale factor of 5 is taken for the
z-direction.

Reference

1. R. Srivastava and A. Guzman-Guzman. Practical approximations of the well function. Ground
Water, 36(5):844–848, 1998.



Chapter 4
Richards Flow

Thomas Kalbacher, Xi Chen, Ying Dai, Jürgen Hesser, Xuerui Wang and
Wenqing Wang

Introduced byRichards [1], theRichards’ equation is used tomathematically describe
water movement in the unsaturated zone. Theoretically, the equation is also a sort
of simplification of the two-phase flow equations of water-air processes in porous
media under the constant gas pressure condition. By considering the water pressure
as the primary variable, the equation takes form

− φρw

∂S

∂pc

∂pw

∂t
+ ∇ ·

(
ρw

krelk
μw

(∇ pw − ρwg)

)
= Qw (4.1)

where φ is porosity, t is time, ρw is the liquid density, μw is the liquid viscosity, pc

is the capillary pressure with pc = −pw, pw is the water pressure, S is the water
saturation, g is gravity acceleration vector, Qw is the source term, krel is the relative
permeability and k is the intrinsic permeability which is related to the hydraulic
conductivity K with

k = μw

ρwg
K (4.2)

In this chapter, the finite element solution of the Richards’ equations is compared
with the semi-analytical one.

4.1 Comparison with Differential Transform Method (DTM)

Xi Chen, Wenqing Wang and Ying Dai

The concept of differential transformation method was first proposed by Zhou [4],
which uses Taylor series for the solution of differential equations in the form of a
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polynomial. For an arbitrary f (x), it can be expended in Talyor series at a specific
point, say x0 as

f (x) =
∞∑

k=0

(x − x0)k

k!
[

dk f

d xk

]
x=x0

(4.3)

The differential transform of f (x) is defined as

F(x) =
[

dk f

d xk

]
x=x0

(4.4)

Consequently, its inverse transform is given as

f (x) =
∞∑

k=0

(x − x0)k

k! F(x) (4.5)

Table4.1 lists the basic properties of the differential transform method (DTM).
Herewith, we apply the DTM to the Richards’ equationwith vanGenuchten [2] water
retention model to derive a semi-analytic solution. For this purpose, we consider the
saturation as the primary variable, and the Richards’ equation can be written as

∂S

∂t
− ∇ ·

(
ρw

krelk
μw

(∇ pc + ρwg)

)
= Qw (4.6)

With the Mualem–van Genuchten parameterization [2, 3] the capillary pressure can
be described as

pc = ρwg

α

[
S−1/m
eff − 1

]1/n
(4.7)

where α [1/m] is a conceptualized parameter related to the air entry pressure, n is a
dimensionless pore size distribution index and m = 1− (1/n). These parameters are
usually used to fit the saturation dependent curves of capillary pressure and hydraulic

Table 4.1 Properties of DTM Original function Transformed function

y(x) = g(x) ± h(x) Y (k) = G(k) ± H(k)

y(x) = ag(x) Y (k) = aG(k)

y(x) = dm g(x)
d xm Y (k) = (k + m)!

k! G(k + m)

y(x) = 1 Y (k) = δ(k)

y(x) = x Y (k) = δ(k − 1)

y(x) = xm Y (k) = δ(k − m)

y(x) = g(x) h(x) Y (k) = ∑k
m=0 H(m)G(k − m)
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conductivity to experimental data. The relative permeability can be given as

krel = S1/2
eff

[
1 − (1 − S1/m

eff )m
]2

(4.8)

The effective saturation is

Seff = S − Sr

Smax − Sr
(4.9)

with Smax and Sr as the maximum and residual saturation.

The example is a one-dimensional infiltration problem based on an experiment
conducted by Abeele et al. [5].

Figure4.1 shows the setup of the problem. The domain is a 6m long cylinder
with a diameter of 3m. A constant infiltration of 2.314e-6m/s is applied on the
top of the domain, while on the bottom the saturation is assumed to be 0.33. The
initial saturation is 0.33 too. The domain is assumed to have a homogeneous material
distribution, and all material parameters are listed in Table4.2.

Inspired by the concept presented in [6], we employ an intermediate variable ζ

for the variable of Eq. (4.3) to enhance the convergence of the Talyor series, which
is

ζ = tanh(a(x − b + ct)) (4.10)

Fig. 4.1 Computational
domain of the numerical
model
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Table 4.2 Material
properties

Symbol Parameter Value Unit

φ Porosity 0.33 –

ks Saturated permeability 2.95e-13 m2

Sr Residual water saturation 0.0 –

Smax Maximum water saturation 1.0 –

α van Genuchten parameter 1.43 1/m

n van Genuchten parameter 1.506 –

where a, b and c are parameters to be determined by initial and boundary conditions.
Consequently, the saturation function S(ζ ) is approximated by the Talyor series as

S(ζ ) =
∞∑

k=0

(ζ − ζ0)
k

k!
[

dk f (ζ )

d ζ k

]
ζ=ζ0

(4.11)

where ζ0 is the initial value. In this example, the first order of the DTM is adopted,
which leads to an approximation of the saturation as

S(ζ ) = S(ζ0) + S̄(0)(ζ − ζ0) (4.12)

Applying the initial condition, the boundary condition with a constant saturation
of 0.33 at the bottom, and the infiltration boundary condition of 2.314e-6 m/s at the
top to Eq. (4.12) with the intermediate variable defined in Eq. (4.10), we get three
equations with three unknowns of a, b and c. Solving the derived three equation, the
parameters in Eq. (4.10) are obtained as

a = 19.8, b = 5.99, c = 2.314e − 6/(0.33(1 − 0.303)) (4.13)

Finally, a semi-analytical solution to this example is derived by applying the
obtained parameters:

S(x, t) = 0.303 + 0.697(tanh(a(x − b + ct)) + 1)/2 (4.14)

The solution is compared against the numerical result obtained by OGS (Fig. 4.2).

4.2 Undrained Heating

Xuerui Wang and Jürgen Hesser

The main purpose of this chapter is the numerical analysis of temperature effects
on pore water pressure in unsaturated porous medium by consideration of cou-
pled thermo-hydraulic (TH) processes using RICHARDS_FLOW approach in OGS.
Under thermal loading, the increase of temperature leads to anexpansion of pore
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Fig. 4.2 Comparison
between OGS solution and
semi-analytical solution
(solid line represents the OGS
solution)

fluids. Due to undrained condition this expansion can cause an increase of pore pres-
sure as well as an increase of the degree of water saturation. Moreover, the increase
of temperature can also lead to a decrease of fluid viscosity. Under undrained con-
ditions, the thermal expansion, characterized by the thermal expansion coefficient is
defined as:

αl = −1

ρ0
(
∂ρl

∂T
) (4.15)

where ρ0 is initial liquid density, ρl is actual liquid density, T is temperature. The
effect of the thermal expansion on pore pressure is considered as an additional term.
This term is multiplied by the partial derivatives of temperature T with respect to
time t in the Richards equation:

φρw

∂S

∂pc

∂pc

∂t
+ φS

∂ρw

∂T

∂T

∂t
+ � ·

(
ρw

krelk
μw

(�pw − ρwg)

)
= Qw (4.16)

In order to evaluate the plausibility of using the RICHARDS_FLOW model,
three reference calculations of heating an undrained and saturated sample have been
carried out. The first two reference calculations consider the same heating test. The
only difference is that one is using RICHARDS_FLOW, the other considers the
LIQUID_FLOWmodel. In the third reference calculation, the advection effects were
neglected to compare the results with the analytical solution. Finally the simulation
of an unsaturated heating test using the RICHARDS_FLOWmodel was carried out.
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Fig. 4.3 Geometry and dimension of the core sample (left) and the 1D calculation model (right)

4.2.1 Definition (1D)

In this example an undrained heating test on a cylindrical core sample (Fig. 4.3, left)
is numerically simulated. Due to the axisymmetric situation and the assump-
tion of homogeneous and isotropic material properties, a one-dimensional model

Table 4.3 Model parameters

Symbol Parameter Value Unit

Porous medium

ρs Density 2700.0 kg · m−3

Ss Specific storage 4.4 · 10−10 Pa−1

k Permeability 3.5 · 10−20 m2 · s−1

φ Porosity 14 %

αs Thermal expansion’s coefficient 4.5 · 10−5 K−1

λs Thermal conductivity 2.0 W · m−1 · K−1

cs Specific heat capacity 800 J · kg−1 · K−1

Fluid

ρl Density 991 kg · m−3

cl Specific heat capacity of water 4280 J · kg−1 · K−1

λl Thermal conductivity of water 0.6 W · m−1 · K−1

v Water viscosity 0.001 Pa · s
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Fig. 4.4 Temperature increase at the bottom

(Fig. 4.3, right) has been set up with 10 elements in the direction of the rotation
axis. The model parameters are listed in Table4.3. The initial temperature of the
whole model was set to 15 ◦C. The boundary conditions are characterized with no
flux boundary. The temperature increases at the bottom from initial 15 to 120 ◦C
(Fig. 4.4) within 2days. The calculations include 48 times steps, each with a length
of 1h.

4.2.2 Heating a Saturated Sample

Within the reference calculations using RICHARDS_FLOW or LIQUID_FLOW,
the initial pore pressure was set to 1 MPa to ensure a full saturated initial condition.
In the calculation using LIQUID_FLOW only the water phase has been considered
and the model remains always in full saturated state. Based on the calculation results
(Fig. 4.5), it can be observed that the temperature increase induced a significant pore
pressure increase from 1 to almost 9 MPa. Because of the advection effects the
increase of pore pressure is nonlinear despite the linear increase of temperature with
time. In the simulation using RICHARDS_FLOW the relationship between capillary
pressure and water saturation is given by the Mualem–van Genuchten function. In
this case the pore size distribution index m is assumed with 0.52 belonging to the
typical value range of opalinus clay. Moreover, the air entry pressure is considered
as constant with 10 MPa. Theoretically, in the case of full saturation the calculated
results using RICHARDS_FLOW model should be identical with the results using
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Fig. 4.5 Comparison of the calculated pore pressure evolution using RICHARDS_FLOW model
with the results using LIQUID_FLOW model

LIQUID_FLOW. A the results comparison (Fig. 4.5) shows that the results from the
two different models are congruent. In the third reference calculation the advection
effects are neglected with the assumption that permeability converges to 0. Equa-
tion4.16 shows a linear dependency of the pore pressure with the temperature, when
saturation is constant to 1 and the Laplace term is always equal to 0. Thus, an increase

Fig. 4.6 Pore pressure evolution as a function of temperature
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in pore pressure of about 8.99 MPa can be analytically calculated when the tempera-
ture rises from 15 to 120 ◦C. With the results in Fig. 4.6, it can be observed that pore
pressure increases linearly with the rise in temperature, and these values match with
analytical results very well.

4.2.3 Heating an Unsaturated Sample

Based on a RICHARDS_FLOW benchmark model of OGS, a numerical simula-
tion of undrained heating in an unsaturated sample has been carried out. Using the
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Fig. 4.7 Distribution of temperature (left) water pressure (middle) water saturation (right) at the
end of simulation (top) and calculated water pressure and saturation at the bottom of model in
comparison with temperature (bottom)
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Mualem–van Genuchten function, the initial capillary pressure was set to 3 MPa to
ensure that the initial saturation is equal to 96%. The main purpose of this bench-
mark model is to analyze the thermal induced expansion of pore water by using
RICHARDS_FLOW model. Therefore, thermal expansion of solid and the vapor
effects by none isothermal conditions are neglected.

4.2.4 Results

Figure4.7 (top) shows the calculated distribution of temperature, water pressure and
degree of water saturation within this model at t = 48 h. During heating, temperature
as well as pore pressure increase gradually. The highest water pressure is 0.175 MPa
and is found at the bottomwhere the temperature is highest.The lowest water pressure
is equal to −0.33MPa and located at the top, where the temperature is lowest. With
the increase of temperature, the degree of saturation rises from 96% to full saturation
in parts of the sample. The increase of water pressure and saturation degree indicates
a pore water expansion which is caused by the heating. Figure4.7 (bottom) illustrates
the development of pore pressure and water saturation as a function of temperature at
the bottom. Here, it can be observed that saturation increases almost linear with the
increase of temperature until full saturation. It can also be seen that the pore pressure
rises faster at a higher saturation degree.

References

1. L.A. Richards. Capillary conduction of liquids through porous mediums. Physics A-J Gen. Appl.
Phys., 1(1):318–333, 1931.

2. M.T. VanGenuchten and P.J. Wierenga. Mass-transfer studies in sorbing porous-media. 1. Ana-
lytical solutions. Soil Sci. Soc. Am. J., 40(4):473–480, 1976.

3. Y. Mualem. New model for predicting hydraulic conductivity of unsaturated porous-media.
Water Resour. Res., 12(3):513–522, 1976.

4. J.K. Zhou. Differential transformation and its applications for electrical circuits. Huazhong
University Press, 1986.

5. W.V. Abeele M.L. Wheeler and B.W. Burton. Geohydrology of bandelier tuff. Los Alamos
National Laboratory report, LA-8962-MS, 1981.

6. H. S. Carslaw and J. C. Jaeger. Conduction of heat in solids. Oxford University Press, London,
2nd edition, 1959.



Chapter 5
Multi-Componential Fluid Flow

Ashok Singh

This chapter deals with mathematical modeling of multi-componential fluid flow
and transport processes in a porous media. Compare to flow of a pure fluid, inter-
action of multi-componential fluid flow with other processes is very complex due
to the variability of material parameters due to change in pressure, temperature and
composition. Numerical simulation helps to understand such complex interaction
is arisen from process coupling or variability in the material parameters. Numerical
simulation also helps for making a precise prediction the consequences of fluid injec-
tion/extraction associated with subsurface. The present modeling is useful for com-
putational investigation of industrial and fundamental problems of mass, momentum
and heat transfer through porous media.

5.1 Basic Equations

This section is concerned with derivation of governing equations for multi-
componential fluid flow and transport processes in a porous media. A porous media
can be considered as a two-phase system which solid phase is immobile and isotropic
material. And the mobile phase is a mixture of different pure fluids filled in the pores
of solid skeleton. In this derivation, the concept of Representative Elementary Vol-
ume (REV—measurement over a smallest volume represents the whole two phase
system) is adopted. In the continuum mechanism, REV concept neglects that a matter
is made of atoms. The size of this REV is restricted by inequality λ ≤ l ≤ L which
provides definition of the Knudsen number Kn = λ

l . λ is the average mean free path
between two molecules and l is the characteristic length (e.g., diameter of pores).

A. Singh (B)

University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
e-mail: asi@iti.sdu.dk

© Springer International Publishing Switzerland 2015
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media: Modelling and Benchmarking, Terrestrial Environmental Sciences,
DOI 10.1007/978-3-319-11894-9_5

131



132 A. Singh

5.1.1 Mass Balance Equation

The mass balance equation of a multi-componential fluid flowing with velocity, v,
in a porous media is given by

∂
(
nρ f

)
∂t

+ ∇ ·
(
ρ f nv

)
= nρ f Q f

ρ (5.1)

Here, v = ∑
k

ω
f
k vk is the averaged velocity shared by each component (Bear [1]).

t is time, superscript f stands for fluid phase, subscript k stands for component.
ω

f
k is the mass fraction of kth components in the mixture, ρ f is mixture density,

k is permeability, n is porosity, μ is viscosity, g is gravity vector and Q f
ρ is fluid

source/sink term.
According to Helmig [2], sum of the diffusive fluid flux over all components is

zero. And the Darcy’s law is used for the advective fluid flux, Fa .

Fa = ρ f w = ρ f nv = −ρ f k
μ

·
(
∇ p − ρ f g

)
(5.2)

Equation (5.1) is expanded in following form

nβ f ρ f ∂p

∂t
− nα

f
T ρ f ∂T

∂t
+

∑
k

nρ f γk
∂ω

f
k

∂t
+ ∇ ·

[
ρ f w

]
= nρ f Q f

ρ (5.3)

Here, thermal expansivity α
f
T = − 1

ρ f

(
∂ρ f

∂T

)
p,ω

f
k

, fluid compressibility

β f = 1
ρ f

(
∂ρ f

∂p

)
T,ω

f
k

and solutal expansivity γk = 1
ρ f

(
∂ρ f

∂ω
f
k

)
p,T,ω

f
i

; i �= k.

5.1.2 Fractional Mass Transport Equation

Consider a reaction which affects mass fraction of kth chemical component in fluid
and solid phases. Rate of this reaction, Rγ , can be decomposed into zero order and
1st order rates.

Rγ = Rγ

(0)︸︷︷︸
zero order

+ Rγ

(1)︸︷︷︸
1st order

; γ = f, s (5.4)

The zero order rate is equivalent to the source/sink term, i.e. Rγ

(0) = ργ Qγ . Whereas,

according to the decay process, 1st order rate is given by relation Rγ

(1) = −λργ ω
γ

k .
Choosing the dispersive mass flux in terms of mass fraction, the mass transport



5 Multi-Componential Fluid Flow 133

equation of the kth component for fluid and solid phases are given by

∂
(

nρ f ω
f
k

)

∂t
+∇·

(
wρ f ω

f
k

)
−∇·

(
nρ f Di j · ∇ω

f
k

)
= −nλρ f ω

f
k +nρ f Q f

ω (5.5)

and

∂
[
(1 − n)ρsωs

k

]
∂t

= −(1 − n)λρsωs
k + (1 − n)ρs Qs

ω (5.6)

The mass fraction of kth chemical component in mixture (ω f
k = m f

k
m f ) and solid

(ωs
k = ms

k
ms ) phases are related via sorption law i.e., ωs

k = f (ω
f
k )ω

f
k . With considering

sorption process, the convective form of the factional mass transport equation is
given by

nρ f R1
∂ω

f
k

∂t
+ ρ f w · ∇ω

f
k − ∇ ·

(
nρ f Di j · ∇ω

f
k

)

+ ω
f
k ρ f

(
nρ f Q f

ρ − n R0λ
)

= nρ f Q f
ω + (1 − n)Qs

ω (5.7)

The retardation coefficient, R0, and its derivative, R1, are given by

R0 = 1 + 1 − n

n

ρs

ρ f
f (ω

f
k ); and R1 = 1 + 1 − n

n

ρs

ρ f

∂
[

f (ω
f
k )ω

f
k

]

∂ω
f
k

The coefficients of hydrodynamic-dispersion tensor are given by

Di j = τ Dδi j + αt |v| δi j + (αl − αt )
vi v j

|v|
Here, δi j is Kronecker delta, τ is tortuosity, D is diffusion coefficient, αt and αl are
transverse- and longitudinal- dispersivity, respectively.

5.1.3 Heat Transport Equation

Consider an open system with a fluid which internal energy is e f and density is
ρ f . According to the first law of thermodynamics, energy balance equation for this
system is expressed as

ρ f De f

Dt
+ ∇ · i f + e f ρ f Q f

ρ = τi j
∂vi

∂x j
(5.8)

where, e f ρ f Qρ is amount of internal energy associated with fluid source/sink term,
Qρ , and i f is the fluid heat conduction flux vector. The stress tensor, τi j

∂vi
∂x j

, can be
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decomposed into pressure term, p∇ · v, and viscous term, v · ∇ p.

ρ f De f

Dt
+ ∇ · i f + e f ρ f Q f

ρ = v · ∇ p − p∇ · v (5.9)

For a thermodynamically open system, enthalpy, h f , is preferred over internal energy,
e f . Hence, Eq. (5.9) is being transformed in terms of fluid enthalpy with using the
mass balance equation.

p∇ · v = − p

ρ f

Dρ f

Dt
+ pQ f

ρ = ρ f
D

(
p

ρ f

)

Dt
− Dp

Dt
+ pQ f

ρ (5.10)

Replacing the pressure term in the Eq. (5.9) by using Eq. (5.10) and relation,
h f = e f + p

ρ f , we have

ρ f Dh f

Dt
+ ∇ · i f = v · ∇ p + Dp

Dt
− h f ρ f Q f

ρ (5.11)

The energy balance equation for solid phase in terms of the internal energy, es , is
given by

ρs Des

Dt
+ ∇ · is = Qs

e (5.12)

Replace the total derivative in Eqs. (5.11) and (5.12) with following thermodynamical
relations.

Dh f

Dt
=

(
1

ρ f
− α

f
T T f

ρ f

)
Dp

Dt
+ c f

p
DT f

Dt

Des

Dt
= cs

v

DT s

Dt
(5.13)

The heat transport equation for fluid and solid phases in terms of respective phase
temperature are

ρ f c f
p

DT f

Dt
+ ∇ · i f = v · ∇ p + α

f
T T f Dp

Dt
− h f ρ f Q f

ρ (5.14)

and

ρscs
v

∂T s

∂t
+ ∇ · is = Qs

e (5.15)

Under the thermal equilibrium (T f ∼= T s = T ), total energy conservation equation
is preferred which is obtained by averaging the Eqs. (5.14) and (5.15) over fluid and
solid phases.
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Table 5.1 Approximation of material parameters for a mixture

1

ρ f
=

∑
k

ω
f
k

ρ
f

k

ρ
f

k = pMk

zk(p, T )RT

β f =
∑

k

vk

v
β

f
k β

f
k = − 1

v

(
∂v

∂p

)
T,ω

f
k

α
f
T =

∑
k

vk

v
α

f
T k α

f
T k = 1

v

(
∂v

∂p

)
p,ω

f
k

1

μ
=

∑
k

ω
f
k

μk(ρk , T )
μk(ρ

f
k , T ) = μ0

k(T ) + �μk(ρ
f

k , T ) + �cμk(ρ
f

k , T )

1

κ f
=

∑
k

ω
f
k

κ
f

k (ρ
f

k , T )
κ

f
k (ρ

f
k , T ) = κ0

k (T ) + �κk(ρ
f

k , T ) + �cκk(ρ
f

k , T )

c f
p = ∑

k ω
f
k c f

pk(ρ
f

k , T ) c f
pk(δ, τ ) = −τ 2

(
φ0

ττ + φττ

) + (1 + δφδ − δτφδτ )
2

1 + 2δφδ + δ2φδδ

Di j = 0.00143T 1.75

p
√

2Mi M j
Mi +M j

[
�

1
3
Vdi

+ �
1
3
Vd j

]

(
ρcp

)
eff

∂T

∂t
+ c f

p ρ f nv · ∇T − ∇ · [
κeff · ∇T

]

= nα
f
T T

∂p

∂t
+ nv · ∇ p − α

f
T T nv · ∇ p + c f

p (T − T0)nρ
f Q f

ρ + QT (5.16)

Here, QT = Qe, and heat conduction flux can be represented according to the
Fourier’s law.

iγ = −κγ · ∇T (5.17)

where κeff, is the effective thermal conductivity tensor of the porous media, with
coordinates defined as κeff = (1 − n)κs + nκ f .

(
ρcp

)
eff is the effective heat capacity

of the porous medium defined by
(
ρcp

)
eff = (1 − n)ρscs

v + nρ f c f
p . Here, specific

heat capacity and thermal conductivity of the fluid mixture are given in Table 5.1.

5.1.4 Equation of State

Tsai and Chen [3] presented the volume translated Peng-Robinson equation of state
(VTPR-EoS). In this EoS, molar volume, vk , is corrected by the translated volume, c.
The translated volume is difference in molar volume obtained by experimental and
computation at the reduced temperature Tr = T/Tc. Because of this translation,
VTPR-EoS approximates the fluid parameters for liquids, gases and supercritical
states.
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p = RT

(vk + c − b)
− a(T )

(vk + c)(vk + c + b) + b(vk + c − b)
(5.18)

Here, R is universal gas constant. a and b are attraction and repulsion parameter,
respectively.

a(T ) = 0.4572
R2T 2

c

pc
[1 + M0(1 − Tr ) + N0(1 − Tr )(0.7 − Tr )]

2

M0 = 0.2047 + 0.8354ωa − 0.1847ω2
a + 0.1667ω3

a − 0.0988ω4
a

b = 0.077796
RTc

pc

c = RTc

pc

[
k1 + k2

(
1 − T 2/3

r

)
+ k3

(
1 − T 2/3

r

)2
]

k1 = 0.00185 + 0.00438ωa + 0.36322ω2
a − 0.90831ω3

a + 0.55885ω4
a

k2 = −0.00542 − 0.51112k3 + 0.04533k2
3 + 0.07447k3

3 − 0.03831k4
3

Here, pc is critical pressure, Tc is critical temperature and ωa is acentric parameter.
Required parameters for VTPR-EoS are given in Table 5.2. A cubic equation based
on VTPR-EoS is obtained by setting vk = zk RT p, in Eq. (5.18).

z3 + Pz2 + Qz + r = 0

P = B − 1 + 3C

Q = −3B2 + 3C2 + 2BC − 2B − 2C + A

r = B3 + C3 + B2 − C2 + BC2 − 3C B2 − 2BC + C A − AB
(5.19)

Here, A = ap
RT , B = bp

RT and C = cp
RT . The cubic equation can be easily solved

using either Newton-Raphson iteration or analytical method for super compressibility

Table 5.2 Constants of the pure fluid

CO2 CH4 N2 H2O Unit

ρc 467.6 162.66 314.0 322 kg m−3

Tc 304.13 190.55 126.20 647.096 K

pc 7,377,300 459,920 338,300 22,064,000 Pa

M 44.01 16.04 28.013 18.015 kg kmol−1

ωa 0.22491 0.011 0.039 0.344 –

Vd 26.9 25.14 18.5 – m3 kmol−1

N0 0.11333 0.08248 0.09967 0.1156 –

M0 0.3849 0.2138 0.0185 0.4756 –

k3 0.28996 0.20978 0.24086 0.0471 –
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factor, zk = zk(p, T ). According to the Katz chart, at temperature below to critical
point cubic equation has only one real root representing the existence of a single
phase. Otherwise, it has two real roots. The maximum root represents gas state,
whereas, minimum root represents either liquid or supercritical state.

5.1.4.1 PVT Derivatives

Two important derivatives, i.e. ∂vk
∂p and ∂vk

∂T are prerequisite to find other fluid and

thermal parameters (particularly, β f
k and α

f
T k). In this section, we provide expression

for these derivative deriving from Eq. (5.18).

(
∂vk

∂T

)
p,ωk

= F − da
dT E

F + 2pEH − 2RTH + a
(

∂vk

∂p

)
T,ωk

= EF

pF + 2pEH − 2RTH + a

with, F = (vk +c)(vk +c+b)+b(vk +c−b), E = vk +c−b, and H = vk +c+b

(
da

dT

)
= −0.4572

R2Tc

pc
2a0 [1 + M(1 − Tr ) + N (1 − Tr )(0.7 − Tr )]

Here, a0 = M0 + N0(1.0 − Tr ) + N0(0.7 − Tr ).

5.1.4.2 Amagt’s Mixing Rule

According to the rule, the molar volume of a mixture is the sum of its component’s
partial volumes, i.e. v = ∑

k
vk . This mixing rule with the real gas law, we have

pv = ∑
k zk(p, T )RT . The expression for mixture density is given by

1

ρ f
=

∑
k

ω
f
k

ρ
f

k

From above relation, expression for the salute expansivity is obtained as

γk =
(

1

ρ f

∂ρ f

∂ω
f
k

)

p,T,ω
f

i

= −ρ
f

k

ρ f
; i �= k
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Fig. 5.1 Comparison of carbon dioxide (left) and water (right) parameters with NIST data for
pressure from 1.0 × 105 Pa to 2.0 × 107 Pa at 318.15 K
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5.1.4.3 Material Functions for Mixture

We computed density, viscosity, heat conductivity and specific heat capacity for
pure fluids according the expression given in the Table 5.1. Figure 5.1 shows that
the computed parameters are in close agreement with corresponding data from the
National Institute of Standards and Technology (NIST).

5.2 Examples

5.2.1 Tracer Test

Tracer is used to characterize the fluid flow through the reservoirs and for estimation
of medium parameters. For example, in oil and gas industries (also in hydrology) it
is used for indicate mean flow velocity, residual saturation, dispersivities, and etc.
For the transport of a contaminant through a porous medium, Genuchten and Alves
[4] provided one dimensional analytical solution which is as follow.

ω f (x, 0 < t ≤ t0) = ω
f

i + (ω
f
0 − ω

f
i )A(x, t)

ω f (x, t ≥ t0) = ω
f

i + (ω
f
0 + ω

f
i )A(x, t) − ω

f
0 A(x, t − t0) (5.20)

with

A(x, t) = 0.5erfc

[
n R0x − vt√

4nτ R0 Dt

]
+ 0.5erfc

[
n R0x + vt√

4nτ R0 Dt

]
exp

( vx

nτ D

)

To consider sorption process in the mass transport, the sorption law can be adapted,
e.g. Henry’s law. Extent to which sorption process affects the tracer transport is
accounted by the retardation factor, R0. Here, D is the binary diffusion coefficient,
ω

f
0 is the mass fraction of the tracer chemical is used for pulse, t0, injection.

Observation points

x=1000 m10m

5m

Tracer injection

Inlet Outlet

Fig. 5.2 Conceptual model geometry
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Table 5.3 Model properties and material parameters

Parameter Symbol Value Unit

Length L 1,000 m

Area A 1 m2

Tortuosity τ 1.0 –

Porosity n 0.1 –

Intrinsic permeability k 1.0 × 10−14 m2

Fluid density ρ f 30 kg m−3

Solid density ρs 2,000 kg m−3

Dynamic viscosity μ 1.0 × 10−5 Pa s

Diffusion coefficient D 1.0 × 10−6 m2 s−1

Sorption coefficient K D 1.0 × 10−4 m3 kg−1

Initial pressure p0 1.01325 × 105 Pa

Constant temperature T0 318.15 K

Tracer injection rate qm 0.82946592 kg per day

Pulse injection time t0 10 day

5.2.1.1 Definition

Problem of tracer transport in one-dimensional porous column is considered. The
pores of the solid skeleton are completely filled with water at a constant pressure
and temperature. The tracer chemical is injected from the inlet within short time
and computed the tracer breakthrough curve (time evolution of tracer mass fraction)
at two different points located at 5 and 10 m from the inlet (see Fig. 5.2). System
properties and material parameters used in the simulation (porous medium as well
as of fluid and solid phases) are summarized in Table 5.3.

5.2.1.2 Model Geometry and Conditions

• Geometry: The porous column is 1,000 m long in x-direction. Inlet and outlet are
located at x = 0 and 1,000 m, respectively.

• IC: At a constant temperature, 318.15 K, we assume that the pores of solid skeleton
are occupied by water at pressure of 1.01325 × 105 Pa.

• BC: Free boundary condition for pressure and tracer mass fraction is prescribed at
the outlet boundary. At the inlet, mass fraction of tracer chemical ω

f
0 = 1 during

pulse tracer injection then altered by free boundary condition.
• ST: From the inlet, the tracer chemical is introduced with rate of 0.83 kg per day

for 10 days.
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Fig. 5.3 Comparison of analytical and finite element solution

5.2.1.3 Numerical Solution

For numerical simulation, the numerical module ‘Multi Componential Flow’ embed-
ded in OGS simulator is utilized. This module solves coupled system of mass bal-
ance and fractional mass transport equations in monolithic way for pressure and
mass fraction of the tracer chemical. For non-linear iterations, it uses the Picard lin-
earization method. Numerical solution is stabilized with mass lumping method. The
model geometry is shown in Fig. 5.2 which is discretized into 1,001 line elements.
To capture a sharp tracer concentration gradient, a variable spatial step size, i.e.
�x = 0.000925289 m is chosen close to the inlet and it is increased to 10 m far away
from it. One year of the reservoir behavior has been simulated using a constant time
step size of one day.

Figure 5.3a, b show the tracer breakthrough curves at the observation points. In
Fig. 5.3a, sorption process is not included, however, Fig. 5.3b clearly showing that
sorption process retards the mass transport significantly. The present finite element
solution is in close agreement with the analytical solution, i.e. Eq. (5.20).

5.2.2 Bottom Hole Pressure

Well control is a technique prevalent in oil and natural gas industries for well drilling
or fluid injection. In this technique, hydrostatic pressure (fluid column) is main-
tained with formation pressure to avoid influx into well. So understanding of the
different pressure is important, particularly, Well Head Pressure (WHP) and Bottom
Hole Pressure (BHP). Hence, in this benchmark, BHP is simulated with simplified
geometry using multi-componential fluid flow approach.

The model geometry is shown in Fig. 5.4. This uses axisymmetric concept
to simplify the model, i.e. one-dimensional porous column in r-direction which
pores are occupied with water at pressure 6.2 × 106 Pa and temperature 318.15 K.



142 A. Singh

Fig. 5.4 Benchmark setup

CO2 Observation point R=1000 m

p0=6.2×106 Pa ,T0 =318.15 K

H
=

27
 m

r0

z

r
R=1000 m

Table 5.4 Model parameters
and geometrical information

Parameter Symbol Value Unit

Radius R 1,000 m

Height H 27 m

Well radius r0 0.1 m

Porosity n 0.25 –

Permeability k 4.6 × 10−14 m2

Density ρ f Table 5.1 kg m−3

Viscosity μ Table 5.1 Pa s

Diffusion coefficient D Table 5.1 m2 s−1

Mass injection rate qm(t) Fig. 5.5 kg s−1

Time step �t 10 h

Simulation time t 19,170 h

From the left point, time dependent injection rate is assigned for CO2 injection.
Required parameters for this numerical simulation are given in Table 5.4. Pressure
evolution during injection operation is computed to show that measured pressure
data (from real site) could be reproduced by numerical simulation.

5.2.2.1 System Geometry and Conditions

• Geometry: The porous column is 1,000 m long in the r-direction. The inlet and
outlet are located at r = 0.1 and r = 1,000 m, respectively.
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Fig. 5.5 BHP evolution at r = 23 m distance from the CO2 injection point

• IC: The pores of the solid skeleton are occupied by water at pressure of 6.2×106 Pa
and temperature of 318.15 K.

• ST: A time dependent mass source term is assigned at the inlet (see Fig. 5.4) for
CO2 injection.

5.2.2.2 Numerical Solution

The geometrical model consists 1,001 line elements. To capture the sharp pressure
gradient close to the inlet, the spatial step size is refined to �r = 0.000925289 m
whereas far from the injection point it is 10 m. The numerical simulation for 19,170 h
has been performed using a constant time step size of ten hours. In Fig. 5.5, the
pressure evolution is presented which is observed at r =23 m from the injection point.

p0 p053 Cm

29
C

mPorous media chamber

(27, 24 Cm)

Treated water injection

Saline water at 101325 Pa, 313.15 K

Fig. 5.6 Semantic of the original experimental
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5.2.3 Plume Migration

Treated wastewater disposal into saline aquifers can rise up to the surface. Due to
this, saline aquifers generally are overlain by treated water layers. To make decision
for using these layers as a potable drinking water source or not, investigation about
plume rising become important. Usually, plume moves away from its source because
of density contrast and widens because of entrainment of the surrounding fluid at
its edges. Experimental (see Fig. 5.6) investigation of buoyant plume movement is
presented by Brakefield [5].

5.2.3.1 Definition

Geometry of the problem is shown in Fig. 5.6. This two-dimensional plane is assumed
a isotropic porous media which pores are completely filled with saltwater at a pressure
of 1.01325 × 105 Pa. Mass rate for treated water (lighter than saltwater) injection is
assigned at the injection point. The density of the treated water varies linear with mass
fraction, i.e. ρ

f
w = ρ

f
w0(1 + γwω

f
w). The density of saltwater is used for reference

density ρ
f
w0 = 1,019 kg m−3.

5.2.3.2 Model Geometry and Conditions

• Geometry: The considered plane is 56 cm long and 29 cm high in x and z-directions,
respectively. From the point (27, 24 cm), treated water is injected.

• IC: At constant temperature, 313.15 K, we assume that the pores of solid skeleton
are occupied by saltwater at pressure of 1.01325 × 105 Pa.

• BC: At the top left and top right point, pressure p0 = 1.01325×105 Pa is assigned.
Elsewhere, free boundary conditions for pressure and treated water mass fraction
are prescribed.

• ST: A 60 ml volume of treated water is injected by syringe into saltwater for 41 s
(Table 5.5).

5.2.3.3 Numerical Solution

The model geometry is discretized into 24,591 quad elements. For numerical simula-
tion, the numerical module ‘multi componential flow’ is utilized. This solves coupled
system of mass balance and fractional mass transport equations in monolithic way
for pressure and mass fraction of treated water. For accuracy, a very fine mesh is used
in the region of plume rising. 2,671 s of plume rising have been simulated using a
constant time step size of ten seconds. For non-linear iterations, the Picard lineariza-
tion method is applied with the mass lumping method for numerical stabilization.
Figure 5.7 shows the development of treated water plume simulated by SUTRA and
SEWAT simulators along with the present finite element solution. It is found that
plume distribution patter from each simulator is very similar at all-time steps.
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Fig. 5.7 Evolution of treated water plume at a 27; b 369; c 685; d 1,385; e 2,631 s after injection
completed

Table 5.5 Simulation parameters

Parameter Symbol Value Unit

Plane area L × H 0.56 × 0.29 cm2

Densities ρ
f
w, ρ

f
s 1.0 × 103, 1.019 × 103 kg m−3

Dynamic viscosity μ 0.001 Pa s

Salution expansivity γw −0.01865 –

Compressibility β f 0.0 Pa−1

Porosity n 0.39 –

Intrinsic permeability k 1.120795 × 10−9 m2

Diffusion coefficient D 1.477 × 10−9 m2 s−1

Dispersivity coefficient αl , αt 0.0005, 0.00005 m

Simulation time t 2,671 s

Injection time tin j 41 s

Time step �t 10 s

Mass injection rate qm 0.032831 kg s−1
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5.2.4 CO2 Leakage Through Abondoned Well

Leakage is a way for fluid to escape from storage. Leakage of geological storaged
CO2 through natural occurring faults and fractures would have different fatal effects
on the nearby environment. So, numerical modeling of the CO2 leakage is an useful
tool for understanding the leakage mechanism. Its understanding helps to estimate
fraction of the stored CO2 that can be retained in a suitable storage for a sufficiently
long period of time. In CO2 capture and storage technology is associated with pressure
pulse that move away from the injection point and it is quicker compare to the front
of advancing CO2. The pressure pulse forces the saline water to leak via naturally
occurred fractures or existing abondened well. And CO2 arrives at the leaky point
late and boyuncy assists CO2 leakage and opposes the saline water leakage. The
leakage rate is measured in terms of the non-dimensional leakage rate defined by

Non-dimensional leakage rate = Fluid flux through observation point

CO2 injection rate
(5.21)

The problem of the advective spreading of CO2 into an aquifer already addressed by
Ebigbo et al. [6]. However, they used multi-phase fluid flow approach with assump-
tions (i) the CO2 and the brine are two separate and immiscible phases (ii) capillary
pressure is negligible. These assumptions help to obtain the similar result using com-
positional fluid flow approach with neglecting the diffusion-dispersion part of mass
transport. We used theirs results in this benchmark for code validation. In this study,
we used dada from MUFTE and ELSA simulators

• ELSA code uniquely addresses the challenge of providing quantitative estimation
of fluid distribution and leakage rate.

• This problem is came in existence by developer of MUFTE code.

5.2.4.1 Definition

The problem of CO2 leakage is modeled using a two-dimensional plane consisting
two layers separated by an aquitard. The bottom layer is considered as CO2 storage
and top layer for freshwater body. Both layers share a common hydraulic parameters.
To be computationally efficient, the aquitard is omitted from numerical simulation.
At a constant temperature, the pores of the solid skeleton of both layers are filled
with water at the hydrostatic pressure condition. In the vicinity of the injection point,
an inclined fracture is incorporated. The non-dimensional leakage rate is defined in
Eq. (5.21) measured at the observation point located at the midpoint of the fracture.
The computed CO2 leakage rate is compared with similar result from ELSA and
MUFTE simulators.
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Fig. 5.8 Leakage scenario [6]

5.2.4.2 Model Geometry and Conditions

• Geometry: A 1,000 m long and 160 m high plane located between 2,860–3,000 m
deep to earth surface. This consists two layers each 30 m thick and a 100 m thick
aquitard. The CO2 injection and observation points are located at (0, −2,970 m)
and (100, −2,920 m), respectively.

• IC: At constant temperature, 318.15 K, pores of both layers are filled completely
with water under hydrostatic pressure condition dp

dz = 10,251.45 Pa m−1 with
reference depth of 2,840 m.

• BC: At both lateral boundaries, hydrostatic pressure similar to initial condition is
assigned. No flow condition is prescribed at top and bottom boundaries.

• ST: CO2 injection rate is 8.87 kg s−1 for 18 months.

5.2.4.3 Numerical Solution

The layers (see Fig. 5.8) are discretized into 15,231 triangular whereas the fracture is
discretized into 52 line elements. The triangular element closed to fracture are densely
distributed is. Within the multi-componential approach, the coupled system of flow
and transport equations is solved numerically using monolithic approach for primary
variables, i.e. pressure and mass fraction of water and CO2. Generalized single step
scheme is used for time discretization with time step �t = 1 Day. For non-linear
iterations the Picard linearization method is applied with the mass lumping method
for numerical stabilization. Negligence of diffusion-dispersion makes difficult to
achieve the desired convergence, but using available techniques (SUPG, FTC, or
MASS LUMPPING) we simulate this benchmark problem (Table 5.6).

Figure 5.9 shows the non-dimensional leakage rate of CO2. To simulate the
problem, OGS uses multi-componential fluid flow approach, whereas, other two
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Table 5.6 Simulation parameters

Parameter Symbol Value Unit

CO2, water density ρ
f

c , ρ
f
w 479,1045 kg m−3

CO2, water viscosity μc, μw 0.3950, 2.535 × 10−4 Pa s

Diffusion D 0.0 m2 s−1

Aquifer permeability ka 2.0 × 10−14 m2

Fracture permeability k f 1.0 × 10−12 m2

Porosity n 0.15

Aquifer depth h 2,840–3,000 m

Aquifer, aquitard thickness �h 30,100 m

Injection rate qm 8.87 kg s−1

Simulation time t 18 Month
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Fig. 5.9 Comparison of computed leakage rate from three different simulators

simulators were used the multi-phase fluid flow approach. This benchmark state that
CO2 leakage rate from both approaches are in close agreement under assumption
made earlier in this benchmark.

5.2.5 Thermo-Chemical Energy Storage

For a given reaction, amount of product(s) and reactant(s) are varied with reaction
time. It also releases/absorbs certain amount of thermal energy, i.e. reaction enthalpy.
Therefore, we present numerical modeling approach for investigation of interphase
mass and heat transfer.
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Consider a CaO bed which pore is filled with N2 gas. On introduction of water
vapor, CaO reacts with water produces Ca(OH)2 and releases heat (�h). This system
can be considered as a two-phase system which solid phase is composed by CaO
and Ca(OH)2 and gas phase is a mixture of water vapor and N2. The reaction rate
of this system is modelled with a trigonometric function such that the solid density
evolution is sinusoidal (amplitude a, angular frequency f

ρ̇s(t) = a f cos( f t) (5.22)

From this reaction rate, the following composition relations can be derived analyti-
cally for solid phase and water vapor densities:

ρs(t) = ρs
0 + a sin( f t) , ρg(t) = ρ

g
0 + a sin( f t) (5.23)

ρV (t) = ρV 0 + a sin( f t) , ωV (t) = ρV (t)

ρg(t)
(5.24)

Here, s and g stand for solid and gas phase. The heat transport equation for this
system is governed by

[
(1 − n)ρscs

p + nρgcgp
] ∂T

∂t
− n

∂p

∂t
= (1 − n)�h

∂ρs

∂t
(5.25)

To obtained the analytical solution of Eq. (5.25), we assumed that �h −→ ∞ and
solid and gas phases are in thermodynamical equilibrium. If the gases are ideal and
mixing is according to the Amagat’s rule, we find

1

M
=

∑
i

ωi

Mi
, βp = 1

p
, αT = − 1

T
, γi = −ρi

ρ
(5.26)

1

ρg
=

∑
i

ωi

ρi
, p =

∑
i

RTρgωi

Mi
; i = V, N (5.27)

Here, V and N stand for water vapor and nitrogen. Taking time derivative of gas
density function in Eq. (5.27), we have

∂p

∂t
=

∑
i

RT ωi

Mi

∂ρg

∂t
+

∑
i

Rρgωi

Mi

∂T

∂t
+

∑
i

RTρg

Mi

∂ωi

∂t
(5.28)

Again time derivative of pressure function of Eq. (5.27) and considering N2
is no-reactive (ρ̇s = ρ̇V = ρ̇), we find

∂p

∂t
=

∑
i

RT

Mi

∂ρi

∂t
+

∑
i

Rρgωi

Mi

∂T

∂t
(5.29)

the energy balance thus reads
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[
(1 − n)ρscs

p + nρg

(
cgp − R

M

)]
∂T

∂t
= (1 − n)

∂ρs

∂t

(
�h − nT R

MV

)
(5.30)

If δ = n R
MV cs

p
, integration yields

n RT

MV
= �h −

(
�h − n RT0

MV

) ⎛
⎝ (1 − n)ρscs

p + nρg
(
cgp − R

M

)
(1 − n)ρs

0cs
p0 + nρg

0

(
cgp0 − R

M0

)
⎞
⎠

−δ

(5.31)

5.2.5.1 Definition

In this example, the behavior of the model when mass transfer occurs between the
phases is verified. Consider a closed off system similar to the one described in the
previous example. The porous body is filled with a mixture of nitrogen and water
vapor modelled as ideal gasses.

5.2.5.2 Model Geometry and Conditions

• Geometry: Water vapor is introduce from inlet of a 10 cm long bed of CaO.
• IC: Pores are filled with N2 (ωN = 0.5) at p0 = 1.0 × 105 Pa and T0 400 K.
• BC: No flow condition is prescribed at inlet and outlet boundaries.
• ST: Injection rate for water vapor 1 × 10−10 kg · s−1 is assigned for one second.

5.2.5.3 Numerical Solution

The exemplary parameter set is listed in Table 5.7. The values are chosen such that
temperature changes due to mass transfer are visible in both phases. The numerical

Table 5.7 Simulation parameters

Parameter Symbol Value Unit

Length L 10 cm

Area A 0.0314 m2

Heat conductivity κs 0.4 W · m−1 · K−1

Permeability k 6.94 × 10−14 m2

Self-diffusion coefficient D0 9.5 × 10−5 m2 · s−1

Dispersivity αl , αt 0.1, 0.01 m

Heat of reaction �h 5.0 × 105 J · kg−1

Time step �t 0.001 s

Simulation time t 1.0 s
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Fig. 5.10 Model setup
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Fig. 5.11 Comparison of present FEM solution with the analytical solutions of a temperature;
b pressure; c water vapor mass fraction; d gas density

model was run with the Multi Componential Flow numerical module with a very
high number for �h. A time step size of 0.001 s was chosen for a time interval of 1 s.
One dimensional line elements were used for its spatial discretisation (Fig. 5.10).

The model correctly reproduced the conditions of thermal equilibrium. During
the initial stage of the reaction the gas loses mass while the solid (not shown) gains
that amount of mass. During the back reaction the opposite effect occurs. An equally
good match is obtained for the temperature profiles (Fig. 5.11a). If no heat of reaction
is released, the gas simply cools down as its density and pressure drop. The solid
phase follows this trend due to the very low density chosen here for demonstration
purposes. In the gas pressure profiles this switch of sign can be observed as well
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Table 5.8 Parameter values for interphase mass transfer verification

n (-) ρs (kg · m−3) ρ
g
0 (kg · m−3) cgp (J · kg−1 · K−1) cs

p (J · kg−1 · K−1)

0.7 1.0 0.659 1,000 1,000

T0 (K) f (Hz) a (kg · m−3) ωV 0 (−) M0 (kmol · kg−1)

400 2π 0.1 0.5 21.919

along with an increasingly non-sinusoidal trend in the pressure profile (Fig. 5.11b).
The numerically obtained water vapor mass fraction and gas density are compared
well with the analytical solution (Fig. 5.11c, d and Table 5.8).
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Chapter 6
Random Walk Particle Tracking

Yuanyuan Sun, Chan-Hee Park, Geraldine Pichot and Joshua Taron

The classical advection-dispersion equation of a conservative solute in porous media
can be written as [1]

∂C

∂t
= −∇ · (vC) + ∇ · (D∇C) (6.1)

where C is the concentration (kgm−3), v is the pore velocity vector (ms−1), D is
the hydrodynamic dispersion tensor (m2 s−1), t is time (s) and ∇ is the differential
operator.

The random walk particle tracking (RWPT) method is issued from stochastic
physics. The stochastic differential equation is [2]

x(ti) = x(ti−1) + v(x(ti−1))�t + Z
√
2D(x(ti−1))�t (6.2)

where x is the coordinate of the particle location, �t is the time step, and Z is a
random number whose mean is zero and variance is unity.

It has been shown that this equation is equivalent to an equation that is slightly
different from the advection-dispersion Eq. (6.1). To be equivalent to Eq. (6.1), the
modified velocity [3] and dispersion tensor [1] are expressed as
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v∗
i = vi +

3∑
j=1

∂Dij

∂xj
(6.3)

Dij = αT |v|δij + (αL − αT )
vivj

|v| + Dd
ii (6.4)

where δij is the Kronecker symbol, αL is the longitudinal dispersion length, αT is
the transverse dispersion length, Dd

ij is the tensor of molecular diffusion coefficient,
and vi is the component of the mean pore velocity in the ith direction.

The equivalent stochastic differential equation to Eq. (6.1) in three-dimensional
problems can be written as [4–6]

xt+�t = xt +
(

vx(xt, yt, zt, t) + ∂Dxx
∂x + ∂Dxy

∂y + ∂Dxz
∂z

)
�t

+√
2Dxx�tZ1 + √

2Dxy�tZ2 + √
2Dxz�tZ3

yt+�t = yt +
(

vy(xt, yt, zt, t) + ∂Dyx
∂x + ∂Dyy

∂y + ∂Dyz
∂z

)
�t

+√
2Dyx�tZ1 + √

2Dyy�tZ2 + √
2Dyz�tZ3

zt+�t = zt +
(

vz(xt, yt, zt, t) + ∂Dzx
∂x + ∂Dzy

∂y + ∂Dzz
∂z

)
�t

+√
2Dzx�tZ1 + √

2Dzy�tZ2 + √
2Dzz�tZ3

(6.5)

where x, y, and z are the coordinates of the particle location, �t is the time step, and
Zi is a random number whose mean is zero and variance is unity.

In Eq. (6.5), the spatial derivatives of the dispersion coefficients are introduced
from the modified velocity [3]. Together with Eq. (6.4), the spatial derivatives of the
dispersion coefficients can be expressed as a function of the derivatives of velocity.
Note that to obtain the derivatives of velocity, velocity has to be continuous mathe-
matically. To this end, we interpolate velocity at any location in an element from the
known velocity at the element nodes.

Since the proposed RWPTmethod makes use of the FEM for velocity estimation,
the derivative of velocitywithin each element is computed as in Fig. 6.1 andwritten as

∂vx
∂x = v(xR)−v(xL)

lx
; ∂vy

∂y = v(yU )−v(yD)
ly

; ∂vz
∂z = v(zN )−v(zS)

lz
∂vx
∂y = ∂vx

∂z = ∂vy
∂z = ∂vy

∂x = ∂vz
∂x = ∂vz

∂y � 0
(6.6)

where xL and xR are intersection points of the element edges with a line parallel to
the global x axis at which velocities are v(xL) and v(xR), yD and yU are intersection
points of the element edges from down to up with a line parallel to the global y axis
at which velocities are v(yD) and v(yU), zS and zN are the intersection points of the
element edges from south to north with a line parallel to the global z axis at which
velocities are v(zS) and v(zN ), and lx, ly, and lz are the length of each intersection
line, respectively.
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Fig. 6.1 Spatial derivatives of velocity for a particle in triangular and quadrilateral elements (V is
velocity)

Thus, the derivatives of the dispersion coefficients are as follows [7]

∂Dxx
∂x = vx

∂vx
∂x

[
αL

(
2
v − v2x

v3

)
− αT

v2y+v2z
v3

]

∂Dxy
∂y = (αL − αT )

[
∂vy
∂y

vx
v − vxv2y

v3
∂vy
∂y

]

∂Dxz
∂z = (αL − αT )

[
∂vz
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vx
v − vxv2z

v3
∂vz
∂z

]

∂Dyy
∂y = vy

∂vy
∂y

[
αL

(
2
v − v2y

v3

)
− αT

v2x+v2z
v3

]

∂Dyx
∂x = (αL − αT )

[
∂vx
∂x

vy
v − vyv2x

v3
∂vx
∂x

]

∂Dyz
∂z = (αL − αT )

[
∂vz
∂z

vy
v − vyv2z

v3
∂vz
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]

∂Dzz
∂z = vz

∂vz
∂z

[
αL

(
2
v − v2z

v3

)
− αT

v2x+v2y
v3

]

∂Dzx
∂x = (αL − αT )

[
∂vx
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vz
v − vzv2x

v3
∂vx
∂x

]

∂Dzy
∂y = (αL − αT )

[
∂vy
∂y

vz
v − vzv2y

v3
∂vy
∂y

]

(6.7)

Because velocity is not derivable at the interface of two adjacent elements in a
nonuniform flow, computing dispersion coefficient derivatives by using a finite ele-
ment approach would yield erroneous values [7]. To prevent these errors, a particle
is coded to have information of an element index and the velocity estimation is con-
tinuous even at the elemental boundaries in this method. Thus, the derivatives of
dispersion coefficients will be computed accordingly. This is an improved approach
from the work by Hoteit et al. [7].
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6.1 Particle Tracking in Porous Medium

6.1.1 Particle Tracking in Porous Medium: 1D Case Study

6.1.1.1 Definition

A one-dimensional homogeneous aquifer is chosen to simulate a soil column exper-
iment conducted by Harter et al. [8]. In the experiment, a constant flow rate was
established, 2.5 pore volumes NaCl—tap water solution and 2.5 pore volumes Cryp-
tosporidium parvum solution (1 × 105 oocysts per mL) were injected respectively,
the outflow was continuously collected. Figure6.2 shows the schematic description
of the experiment.

NaCl—tap water solution is used as a tracer, which experiences only advection
and dispersion. The Cryptosporidium parvum can be classified as a biological col-
loid. Colloids moving in porous media experience advection, dispersion, sorption-
desorption, and filtration.

6.1.1.2 Analytical Solution

For the one-dimensional transport including sorption-desorption and filtration
through a homogeneous medium the following differential equation is applied

10 cm

5.10 cm

B.C. = 937.35Pap

B.C. = 200Pap

I.C. = 200Pap

Fig. 6.2 Schematic of soil column experiment



6 Random Walk Particle Tracking 157

∂C

∂t
+ ρb

n

∂CS

∂t
= vαL

∂2C

∂x2
− v(

∂C

∂x
+ λC) (6.8)

where C is dissolved concentration (kgm−3), CS is sorbed concentration (kgkg−1),
t is time (s), ρb is bulk density (kgm−3), n is porosity (−), v is velocity (ms−1), αL is
longitudinal dispersivity (m), x is distance (m), and λ is filtration coefficient (m−1).

The instantaneous, linear sorption model assumes that

CS = KdC (6.9)

where Kd is the partitioning coefficient (m3 kg−1). The retardation coefficient R is

R = 1 + ρb

n
Kd (6.10)

The dispersion coefficient in the x-direction Dxx (m2 s−1) is

Dxx = vαL (6.11)

The analytical solution for a pulse input is [9]:

C = 1

2
C0

[
exp

(
vx(1 − γ)

2Dxx

)
erfc

(
x − vγt/R

2
√

Dxxt/R

)

+ exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x + vγt/R

2
√

Dxxt/R

)]
(6.12)

for t ∈ (0, τ ), (injection time from 0 to τ )

C = 1

2
C0

[
exp

(
vx(1 − γ)

2Dxx

)
erfc

(
x − vγt/R

2
√

Dxxt/R

)

+ exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x + vγt/R

2
√

Dxxt/R

)

− exp

(
vx(1 − γ)

2Dxx

)
erfc

(
x − vγ(t − τ )/R

2
√

Dxx(t − τ )/R

)

− exp

(
vx(1 + γ)

2Dxx

)
erfc

(
x + vγ(t − τ )/R

2
√

Dxx(t − τ )/R

)]
(6.13)

for t ∈ (τ ,∞) , where

γ =
√
1 + 4vλRDxx/v2 (6.14)
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6.1.1.3 Numerical Solution

The calculation area is simplified to a line with the length of 0.1m. For the numerical
model 100 elements and 101 nodes are included. Head gradient is set by giving two
constant pressures at both left and right boundaries to establish a uniform velocity
field with the value of 7.1md−1.

The number of pore volume (x-axis) is calculated by

PV = vt

L
(6.15)

where v is the seepage velocity, L is the length of the soil column. Considering the
Courant number, the time step size is set by assigning PV to 0.01. In the simulation,
100 particles per time steps are loaded near the left boundary for 250 time steps.

The filtration process is described by using the filtration coefficient. The sorption-
desorption process is described by the two-rate model from Johnson et al. [10]. In
the two-rate model, desorption is governed by two different rate coefficients

N/N0 = Ae−k1t + (1 − A)e−k2t (6.16)

whereN is the number of particles remaining on themedium at time t,N0 is the initial
number of particles on the medium at the time of initial sorption, A is a weighting
factor, and k1 and k2 are the fast and slow sorption rate coefficient, respectively.
Relevant parameters are listed in Table6.1.

6.1.1.4 Results

The tracer experiences only advection and dispersion, which means in Eq. (6.8),
CS = 0, λ = 0. The results of RWPT simulation for the distribution of concentration
over time are compared to those of measured value from the experiment by Harter,
the analytical solution, and the OGS simulation with the mass transport method.

Table 6.1 Model parameters for the column experiment

Symbol Parameter Value Unit

k Permeability 1.114476 × 10−11 m2

αL Longitudinal dispersivity 0.005 m

n Porosity(tracer) 0.5 −
n Porosity(colloid) 0.42 −
A Weighting factor 0.9 −
k1 Fast sorption rate coefficient 0.1 −
k2 Slow sorption rate coefficient 0.001 −
λ Filtration coefficient 5.2 m−1
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Fig. 6.3 Tracer transport with advection and dispersion

The comparison results are shown in Fig. 6.3, where the green curve is the measured
value, the dashed black curve is the simulation result operated with FEM, the blue
curve is the RWPT simulation result, and the red curve is the analytical solution.

In the colloid transport simulation, the number of particles leaving the right bound-
ary is counted each time step. The number is then converted to concentration in order
to obtain the corresponding breakthrough curve over time. The comparison with the
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colloid simulation RWPT
Measured C.parvum

Fig. 6.4 Colloid transport with sorption-desorption and decay
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measured value fromHarter’s experiment is shown in Fig. 6.4, where the green curve
is themeasured value, and the blue curve is theRWPT simulation result. No analytical
solution is available in this kind of situation.

6.1.2 Particle Tracking in Porous Medium: 2D Case Study

6.1.2.1 Definition

A two-dimensional homogeneous aquifer is chosen to verify advective dispersive
transport. The dimension of the model domain is 184m by 64m where the uniform
velocity field is held constant in the x direction (Fig. 6.5).

6.1.2.2 Analytical Solution

The stated problem can be solved with an analytical solution provided by Ogata et
al. [11].

C (x, y, t) = C0A

4πt
√

Dxx + Dyy
exp

[
− (x − x0)2

4Dxxt
− (y − y0)2

4Dyyt

]
(6.17)

where C0 is the initial concentration.

Fig. 6.5 Schematic of 2D homogeneous model
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6.1.2.3 Numerical Solution

The domain is discretized with quadrilateral elements of 0.5m by 0.5m. The
same grid density is also used for converting particle distributions to element
concentrations. The head gradient of one in the x direction is set by assigning two
constant boundary conditions along both the left and right sides, thus obtaining the
uniform velocity field with the value of 0.5md−1.

The initial source load is applied to an area with dimensions of 0.1m by 0.1m
to have an initial concentration of C0 = 1kgm−3. The material properties for this
model setup are given in Table6.2.

6.1.2.4 Results

Transport results of the RWPT method compared with the analytical solution at 20,
40, and 60 days are provided in Fig. 6.6. The solid line is the analytical solution, the
dotted line is the RWPT result. Contour lines are shown for C = 2.6e−4, 1.6e−4,
1.0e−4, and 4e−5. The number of particles used for this simulation is 50,000. This
is significantly less than the number of particles reported by Hassan et al. [12], who
stated that up to 2.5 million particles were necessary to achieve smoothness of the
solution due to oscillations around the contours. As the oscillations observed here
for the method proposed are smaller than reported by Hassan et al. [12], the proposed
method allows a dramatic reduction of around two orders of magnitude in the number
of particles required for a smooth solution.

Table 6.2 Material properties for 2D homogeneous medium

Symbol Parameter Value Unit

k Permeability 1.114× 10−11 m2

αL Longitudinal dispersivity 0.1 m

αT Transverse dispersivity 0.1 m

Fig. 6.6 Transport results of the 2D RWPT method compared with analytical solution
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Fig. 6.7 Particle clouds at different days. a Day 0. b Day 20. c Day 60. d Day 60. e Day 60 for
each particle resolution

In addition, different numbers of particles are used to solve the same problem,
producing several different particle clouds as shown in Fig. 6.7. Figure6.7a–d show
the particle clouds of 50,000 particles at 0, 20, 40, and 60 days, Fig. 6.7e shows
particle clouds of 1,000, 5,000, 10,000, and 50,000 particles at 60 days.

6.1.3 Particle Tracking in Porous Medium: 3D Case Study

6.1.3.1 Definition

A three-dimensional homogeneous cube is chosen to verify advective dispersive
transport. The side length of the cube model domain is 100m. The velocity
field is held constant in the diagonal direction from the bottom left to top right
(Fig. 6.8).
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Fig. 6.8 Schematic of 3D homogeneous model

6.1.3.2 Analytical Solution

The stated problem can be solved with an analytical solution provided by Ogata
et al. [11].

C (x, y, z, t) = C0v

8 (πt)3/2
√

DxxDyyDzz

× exp

[
− (x − x0)2

4Dxxt
− (y − y0)2

4Dyyt
− (z − z0)2

4Dzzt

]
(6.18)

where C0 is the initial concentration.

6.1.3.3 Numerical Solution

The domain is discretized with tetrahedral elements. The same grid density is used
for converting particle distributions to element concentrations. The head gradient is
set by assigning two constant boundary conditions on the diagonal joint points.

The initial source load is applied to an area close to the bottom left of the domain
with an initial concentration ofC0 = 1kgm−3. Thematerial properties for thismodel
setup are given in Table6.3.
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Table 6.3 Material properties for 3D homogeneous medium

Symbol Parameter Value Unit

k Permeability 6.0804× 10−10 m2

αL Longitudinal dispersivity 0.005 m

αT Transverse dispersivity 0.005 m

n Porosity 0.2 −

6.1.3.4 Results

The advection-dispersion of the particles pulse across the cube is shown in Fig. 6.9.
At the beginning, particles are assembled together as they were released from posi-
tions that are very close to each other. As the particles moving along with the
flow, they disperse and form a spherical surface-shaped cloud. When the parti-
cles move to the center of the cube, the area of the spherical surface-shaped cloud
reach to the maximum. After particles across the center of the cube, as the flow-
paths begin to converge, the shape of the particle cloud change to a funnel-shaped
curved surface. Particles move along the diagonal line have the bigger velocities and
shorter pathlines so they reach to the top right corner of the cube earlier than other
particles.

The number of particles that pass the top right corner of the cube is counted at
every time step in order to generate the concentration breakthrough curve. The result

Fig. 6.9 Particle clouds in the cube
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Fig. 6.10 Transport results of the 3D RWPT method compared with analytical solution

of RWPT simulation for the distribution of concentration over time is compared
to the analytical solution. The comparison results are shown in Fig. 6.10, where
the blue curve is the RWPT simulation result, and the red curve is the analytical
solution. The shape of the breakthrough curve is classical and similar to 1D and 2D
simulations. With a relatively large number of particles the problem of fluctuations
in concentration calculation can be overcome.

This benchmark shows that the proposed RWPT method can describe the fluid
flow and solute transport in more details comparing to the traditional finite ele-
ment method.With the post-processing programming one can observe the visualized
results of themovement of every single particle at any time step, and the development
of the particle cloud over time. While with the traditional finite element method one
can only get the result of concentration distribution.

6.2 Particle Tracking in Pore Scale

Physical observations and theoretical treatments of flow in porous media are usually
associatedwith three different length scales: pore-, local-, and field-scales. Dominant
processed and governing equations may vary with scales. In this benchmark, efforts
are taken in order to simulate solute transport in pore scale in a simplified manner.
The governing equation adopted here is the groundwater flow equation based on
Darcy’s law.
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Fig. 6.11 Mesh of 2D box with one grain inside

6.2.1 Particle Tracking in Pore Scale: 2D Case Study

6.2.1.1 Definition

To simulate particles moving in pore scale space, first the problem is simplified into a
two-dimensional case which is a box with only one grain inside. The calculation area
is a rectangular space with a circle in the middle, the void between the circle and the
rectangular is the calculation domain and discretized by triangle mesh (Fig. 6.11).

6.2.1.2 Numerical Solution

Firstly, the proposed RWPT method in this model is testified by assign constant
hydraulic head to the left and right boundaries (Dirichlet boundary condition), and
no-flow boundary conditions to the top and bottom boundaries. Particles are released
froma line that is close to the left boundary.Relative parameters are listed inTable6.4.

6.2.1.3 Results

The particles are moving in the pore space according to the velocity field. Particle
cloud develops over time is show in Fig. 6.12.The shape of the particle cloud is a

Table 6.4 Material properties for 2D pore scale model with one grain inside—advective

Symbol Parameter Value Unit

k Permeability 1× 10−10 m2

Dd Diffusion coefficient 0.0 m2 s−1

n Porosity 1.0 −
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Fig. 6.12 Particles advect in rectangular domain with one grain
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straight line in the beginning, and then is curved a little as it getting closer to the
grain. The velocities in the area surrounding the grain are very small that particles in
this area are moving very slowly. When a particle hit the surface of the grain or the
boundary of the box, it will be captured. Particles pass through the throats between
the grain and the box are accelerated as the velocities in these throats are large.
After passing through the throats, particles spread to form an arc and move on to the
right side boundary. In the zone that is behind the grain no particles are observed
because the flow velocity is relatively small and dispersion is not considered in this
benchmark.

6.2.1.4 Discussion 1

If there is no flow in this domain, and the molecular diffusion coefficient is increased,
then themovements of the particles are dominated by themolecular diffusion process.
Relative parameters are listed in Table6.5.

Particles are released from a line that is close to the left boundary. As there is no
flow, particles are moving randomly in the pore space. Particle cloud develops over
time is show in Fig. 6.13. Some of the particles attach to the surface of the grain or the
boundary of the box. The molecular diffusion coefficient is relative to temperature.
This benchmark is aimed to achieve the effect that particles are moving differently
when temperature changes.

6.2.1.5 Discussion 2

Next, the number of grains in the box is increased from one to six. The void between
the circles and the rectangular is the calculation domain and discretized by triangle
mesh (Fig. 6.14). Dirichlet boundary conditions are set by assign constant hydraulic
head to the left and right boundaries. No-flow boundary conditions are set to the
top and bottom boundaries. Particles are released from a line that is close to the left
boundary. Relative parameters are unchanged as listed in Table6.4.

Particle cloud develops over time is show in Fig. 6.15. Note that in this benchmark,
released particles are displayed in the color of blue.When a particle hits the boundary
and gets attached, it turns to red. But in the next time step, the attached particle still
has the chance to detach andmove again. It is clear that this benchmark is not a simple
combination of six single grains, because they can affect each other. The velocity

Table 6.5 Material properties for 2D pore scale model with one grain inside—diffusive

Symbol Parameter Value Unit

k Permeability 1×10−10 m2

Dd Diffusion coefficient 1×10−8 m2 s−1

n Porosity 1.0 −
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Fig. 6.13 Particles diffuse in rectangular domain with one grain
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Fig. 6.14 Mesh of 2D box with several grains inside

field in this case is with more complexity thus the particle cloud is complicated. But
the particle cloud development obeys the same trend as in the single grain case.

6.2.1.6 Discussion 3

If the grain (circle) is discretized inside (Fig. 6.16), then particles attached to the
surface of the grain can go into the grain and diffuse inside. Different porosity
and permeability coefficient are given to grains and the pore space. Note that the
different colors here represent materials with different properties. Dirichlet boundary
conditions are set by assign constant hydraulic head to the left and right boundaries.
No-flow boundary conditions are set to the top and bottom boundaries. Particles are
released from a line that is close to the left boundary. Relative parameters are listed
in Table6.6.

Particle cloud develops over time is show in Fig. 6.17. The particles in the pore
space are moving according to the velocity field. Note that there’s no flow inside of
the grains, only molecular diffusion. Particles that hit the surface of the grains can go
into the grains andmove inside. Their movements are because of molecular diffusion
thus are random.

6.2.2 Particle Tracking in Pore Scale: 3D Case Study

6.2.2.1 Definition

Similar to the 2D case study, the problem is first simplified into a three-dimensional
case with only one grain in a box. The calculation area is a cube spacewith a sphere in
the center, the void space between the sphere and the cube is the calculation domain
and discretized by tetrahedral mesh (Fig. 6.18).
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Fig. 6.15 Particles transport in rectangular domain with several grains
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Fig. 6.16 Mesh of 2D box with meshed grains inside

Table 6.6 Material properties for 2D pore scale model with six meshed grains inside

Symbol Parameter Value Unit

k Permeability (pore space) 1×10−10 m2

k Permeability (grains) 1×10−12 m2

Dd Diffusion coefficient 1×10−15 m2 s−1

n Porosity (pore space) 1.0 −
n Porosity (grains) 0.1 −

6.2.2.2 Numerical Solution

The proposed RWPT method in this model is testified by assign constant hydraulic
head to the left surface and right surface boundaries (Dirichlet boundary condition),
and no-flow boundary conditions to the top, bottom, front, and back surface bound-
aries. Particles are released from a surface that is close and parallel to the left surface
boundary. Relative parameters are listed in Table6.7.

6.2.2.3 Results

The particles are moving in the pore space according to the velocity field. Particle
cloud develops over time is show in Fig. 6.19. The shape of the particle cloud is a
plain surface in the beginning, then is curved a little as it getting closer to the grain.
The velocities in the area surrounding the grain is very small that particles in this area
are moving very slowly. When a particle hit the surface of the grain or the box, it will
be attached. In the zone that is behind the grain no particles are observed because
the flow velocity is relatively small that no turbulence is happened in that zone.
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Fig. 6.17 Particles transport in rectangular domain with several meshed grains
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Fig. 6.18 Mesh of 3D box with one grain inside

Table 6.7 Material properties for 3D pore scale model with one grain inside

Symbol Parameter Value Unit

k Permeability 1×10−10 m2

D Diffusion coefficient 1×10−15 m2 −1

n Porosity 1.0 −

6.3 Particle Tracking with Different Flow Processes

The accuracy of the velocity field calculation is crucial to the precision of the RWPT
method. In groundwater flow simulation, the velocity field is determined by the
hydraulic head or pressure difference according to Darcy’s law. However, when
the velocity is higher, inertial effects can be significant and need for considera-
tion; the non-linear impact of the pressure difference to the velocity can be described
by Forchheimer flow. The proposed RWPT method is capable to be adopted with
different flow processes since the displacements of the particles are calculated
according to the velocity field, regardless of how it is obtained.

6.3.1 Forchheimer Term

Modeling groundwater flow in porous media typically makes use of Darcy’s law and
equation of mass conservation to establish the groundwater flow equation. For low
velocity flows, Darcy’s law gives a good description of the flows and thus a number of
linear forms have been developed [13, 14]. However, there are circumstances when
the velocities are high that discrepancies occur between the experimental observa-
tions and simulation results obtained according to Darcy’s law.
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Fig. 6.19 Particles advect in cube domain with one grain

Forchheimer flow describes the non-linear form of fluid flow in porous media in a
scale that is smaller than the macro-scale domain size and larger than the micro-scale
pore size. It is an extension of the Darcy’s law when the viscous forces do not prevail
over the inertial forces. A kinetic effect is considered and expressed as an additive
term in the description of pressure difference. The classic form of Forchheimer term
is written as [15]

−∇P = μ

k
q + βρ|q|q (6.19)

where μ[MT−1L−1] is the dynamic viscosity of water, k[L2] is intrinsic permeabil-
ity, q[LT−1] is Forchheimer velocity vector, β[L−1] is Forchheimer coefficient, and
ρ[ML−3] is density of water.

The Forchheimer coefficient β is also known as non-Darcy coefficient. Several
approaches have been applied to obtain the value of β [16–18]. The formulae are
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normally defined for certain flow conditions. There is no general agreement on the
nature of this coefficient. Some of the approaches are based on empirical results and
some on fundamental characterizations of the porous media. Parameters involved in
the calculation of β include permeability, as well as porosity, and tortuosity in some
cases.

6.3.2 Forchheimer Flow in 1D Porous Medium

The 1D homogeneous porous medium benchmark (see Sect. 6.1.1 for description) is
adopted in order to compare different behaviors of flowunderDarcy and Forchheimer
regimes, and their influence on solute transport performance which is simulated with
particle tracking.

6.3.2.1 Governing Equations

Ifwe consider the hydraulic head h = P
ρg +z, where z[L] is elevation head, and neglect

the gravitational effect, then the Forchheimer equation (6.19) can be written as

− ∇h = 1

K
q + β

g
|q|q (6.20)

where K [LT−1] is hydraulic conductivity and K = kρg
μ . In the OGS simulation of

Forchheimer flow, 1
K is referred to as a1 and

β
g as a2, and they are used as coefficients

for the calculation.

−∇h = a1q + a2|q|q (6.21)

The equation of mass conservation that describes the groundwater flow without
source term can be formed as

−∇q = Ss
∂h

∂t
(6.22)

where Ss [L−1] is the storativity (volumetric specific storage), t [T ] is time.
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In 1D case, Eqs. (6.21) and (6.22) can be rewritten as

− ∂h

∂x
= a1q + a2q2 (6.23)

Ss
∂h

∂t
+ ∂q

∂x
= 0 (6.24)

6.3.2.2 Steady State Flow with Dirichlet Boundary Condition

For the steady state flow, constant hydraulic heads are set at the inlet and outlet
boundaries. Relevant parameters for the flow are listed in Table6.8.

Forchheimer velocity can be calculated from Eq. (6.23) that

q =
−a1 +

√
a12 − 4a2

∂h
∂x

2a2
(6.25)

Darcy velocity can be obtained from Eq. (6.23) by assign a2 = 0.
Simulation results of hydraulic head distribution and the comparison of Forch-

heimer velocity and Darcy velocity are shown in Fig. 6.20.
The proposed RWPT method makes use of the velocities obtained from the flow

process, regardless of the flow regimes. 25,000 particles are injected at the inlet
boundary for 2.5 pore volume (PV = vt/L, v = q/n) to simulate non-reactive solute
transport with slug input in 1D steady state flow under Forchheimer and Darcy
regimes respectively. Parameters for the simulation of solute transport are listed in
Table6.9. Note that particles experience not only advection and hydrodynamic dis-
persion, but decay and retardation processes as well in this case. Detailed description
for these processes is referred to in Sect. 6.1.1.

Figure6.21 shows the simulation result of concentration breakthrough curve at
x =0.1m.Note that inRWPTmethod, the concentration is represented by the number
of particles.

Table 6.8 Model parameters for the column experiment—steady state flow

Symbol Parameter Value Unit

hin Hydraulic head(inlet) 0.09555 m

hout Hydraulic head(outlet) 0.02038 m

L Column length 0.1 m

k Intrinsic Permeability 1.114476× 10−11 m2

K Hydraulic conductivity 1.0933× 10−4 ms−1

Ss Volumetric specific storage 0.5 m−1

a1 OGS coefficient (equals to K−1) 9.146612× 103 m−1s

a2 OGS coefficient 108 m−2 s2
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Fig. 6.20 Forchheimer velocity and Darcy velocity in 1D steady state flow

Table 6.9 Model parameters for the column experiment—solute transport

Symbol Parameter Value Unit

αL Longitudinal dispersivity 0.005 m

n Porosity 0.42 −
A Weighting factor 0.9 −
k1 Fast sorption rate coefficient 0.1 −
k2 Slow sorption rate coefficient 0.001 −
λ Filtration coefficient 5.2 m−1

6.3.2.3 Transient Flow with Dirichlet Boundary Condition

For unsteady, nonlinear flow in the 1D homogeneous porous medium, the same
parameters are used as listed in Table6.8. Simulation results of hydraulic head and
velocity distributions under Forchheimer and Darcy regimes at t = 5.1, 10.2, 15.3,
20.4, 25.5, 30.6 s are shown in Fig. 6.23.

Particles are injected at the inlet boundary for 2.5 pore volume (PV = vt/L,
v = q/n) to simulate non-reactive advective-dispersive solute transport with slug
input in 1D transient flow under Forchheimer and Darcy regimes respectively.
Figure6.22 shows the simulation result of concentration breakthrough curve at
x = 0.1m. Note that in RWPT method, the concentration is represented by the
number of particles.
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Fig. 6.21 Particle tracking under Forchheimer and Darcy regimes in 1D steady state flow
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Fig. 6.23 Forchheimer velocity and Darcy velocity in 1D transient flow. a t = 5.1 s. b t = 10.2 s.
c t = 15.3 s. d t = 20.4 s. e t = 25.5 s. f t = 30.6 s

6.3.3 Groundwater Flow Regimes

The applicability limits of Darcy’s and Forchheimer’s regimes of flow are of great
interest. Ruth et al. [19] rearranged the Forchheimer equation (6.19) in the form

− ∇P = μ

k
q + βρ|q|q = 1

k
(1 + βkρq

μ
)μq = 1

k
(1 + Fo)μq = μ

kv
q (6.26)
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and named Fo[−] as Forchheimer number, and kv[L2] as the velocity-dependent per-
meability. The Forchheimer number can be used as a criterion to indicate when the
inertial force can prevail over the viscosity force. The velocity-dependent permeabil-
ity shows that permeability can be treated as a velocity dependent parameter.

Apart from the Forchheimer number, another basic criterion to distinguish
between these two regimes is the range of Reynolds number (Re), which is defined
as the ratio of inertial forces to viscous forces and can be written as

Re = ρqL

μ
(6.27)

where ρ[ML−3] is the density of water, q[LT−1] is the specific discharge, L[L] is the
characteristic linear dimension, and μ[MT−1L−1] is the dynamic viscosity of water.

Darcy flow occurs at low Reynolds number, which means the dominant force in
this situation is viscous force and the flow is comparatively smooth. In Forchheimer
flow the inertial force prevails over the viscous force so the Reynolds number is high.
The upper limit of Reynolds number in Darcy flow is considered to be coincided with
the lower limit of Reynolds number in Forchheimer flow [17, 20–23].

6.4 Particle Tracking in Fractured Porous Media

Fracturesmay be defined through directmeasurement or geo-statistical reproduction.
In the benchmarks of this chapter, both methods will be utilized. Where fractures are
directly measured, the methodology utilizes a laser profiler. Profiles (elevation mea-
surements) are taken of each fracture surface and these are manipulated numerically.
Point-wise fracture aperture is the difference between the top and bottom surfaces
at corresponding locations. Statistically reproduced fractures reproduce roughness
of the aperture (not each surface) in order to achieve a desired mean and standard
deviation. The result is used directly as the fracture aperture in numerical simulations.

For a fracture represented by twoparallel (planar) plates, permeability is a function
of the fracture aperture by the cubic law,

k = b2

12
(6.28)

For a uniformly fractured rock mass, the cubic law takes form as b3/12s , where s is
fracture spacing.

The aperture, b, however, represents only the mechanical state of the fracture.
In reality, observed flow rates are dependent on the hydraulic state of the fracture.
In other words, fracture roughness matters. We therefore distinguish two different
apertures: the so-called “void” aperture, bv and the “hydraulic” aperture, bh. The
void aperture is the mean geometrically measured distance between the two fracture
surfaces, including only those points that are not in contact (as the name implies,
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including only voids). The hydraulic aperture is a correction from this value (bh ≤
bv), with one possibility known as the geometric correction [24],

b3h = exp 〈ln (k)〉 = exp (3 〈ln (bv)〉) (6.29)

where the angled brackets indicate that the mean is taken over the logarithm of the
point-wise void aperture. Therefore, as an approximation to reality, the (effective)
true permeability of a rough fracture is given by,

k = b2h
12

(6.30)

In what follows, we use this permeability to approximate behavior of the fracture
and to generate an analytical solution for (qualitative) comparison to simulations
within rough fractures, where permeability occurs point-wise (and mechanically)
as ki = b2i /12 . Therefore, this is an effective permeability, and shall be used as
an attempt to approximate (or provide reference to) true flow behavior in a rough
fracture from a single bulk property.

Fig. 6.24 RWPT versus
ADE at different stress states.
Two separate simulations are
conducted and overlay one
another. Particle pathlines
(black) and particles (white)
are illustrated, and overlay
contours (red = higher
concentration) generated
from the ADE simulation
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6.4.1 Uncertainty in Flow, Preferential Flow

To examine changes to flow characteristics, we utilize two alternate forms of mass
transport: the classical advection-dispersion equation (ADE) and random walk par-
ticle tracking (Fig. 6.24). The RWPT simulator within OGS is modified to allow a
continuous source of particles (numerically approximate to a Neumann concentra-
tion boundary) for comparison with results from ADE simulations. For comparison,
dispersion is not allowed within the RWPT simulation: particles are only advected
with the flow. Therefore, particles represent the 50% concentration breakthrough
if particles are imagined as concentrations. The plot for each stress state is shown
at a different absolute time, but each corresponds to the same dimensionless time,
tD = v · t/L, where t is current time and L is total flow length, with v calculated from
the mean bh. Therefore, if bh is a good approximation of behavior, the concentration
advance in each plot should be approximately of the same extent. Note that this
is true, but also that the increasing tendency for preferential flow with stress lends
to increasingly less uniform concentration advance: with increasing stress, a given
point in the geometry will record strongly different behavior than its neighbors.
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Chapter 7
Mechanical Processes

Thomas Nagel and Norbert Böttcher

7.1 Theory and Implementation

This section introduces benchmarks to verify the implementation of a pressure
boundary condition for mechanical processes. A traction boundary condition is
given as

[[t]] = 0 → t = σn = t̄ ∀x ∈ ∂�t (7.1)

where the traction t̄ is applied on ∂�t (∂�t ∩ ∂�u = ∅ and ∂�t ∪ ∂�u = ∂�) and
n is the unit outward normal vector on ∂�t .

A pressure load is defined by

t p = pn (7.2)

For the RHS of the weak form of the momentum balance we thus find
∫

∂�t

t · δud� =
∫

∂�t

pn · δud� (7.3)

With N a as the displacement shape function at node a and the vector of nodal dis-
placements ũa the FE approximation

u ≈ û =
∑
nn

N a ũa = Nũ (7.4)
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is introduced. Considering the arbitrary nature of the virtual displacements, the
discretised form of the external virtual work by surface tractions provides the nodal
force vector for a finite element:

f p =
∫

∂�t

pNT nd� (7.5)

The switch from global (x) to local (ξ, ξi ∈ [−1, 1]) coordinates of the integration
domain yields with det J = |∂xi/∂ξ j |

f p =
∫

∂�ξ

p(ξ)NT (ξ)n(ξ) det Jd�ξ (7.6)

The surface normal vector of the element becomes (Fig. 7.1)

n(ξ) =
∂x
∂ξ1

× ∂x
∂ξ2∣∣∣ ∂x

∂ξ1
× ∂x

∂ξ2

∣∣∣
= g1 × g2∣∣g1 × g2

∣∣ (7.7)

In the current implementation, normal vector and surface area are evaluated on the
undeformed geometry only. The pressure load is thus conservative and not follow-
ing the (infinitesimal) deformation of the boundary contour. Further details can be
found in [1].

Finally, for the determination of the forces at a particular node a, the contributions
from all connected elements ec will have to be assembled:

f a =
⊎
ec

f a
p (7.8)

7.2 Deformation of a Steel Tubing

7.2.1 Analytical Solution—Linear Elasticity

The pressure boundary condition was verified by simulating a ring under plane strain
conditions and a sphere. In both cases, the pressure was prescribed on the inner and
outer surfaces and the material was modelled as linearly elastic. The quasistatic
balance of linear momentum

divσ = 0 (7.9)

and Hooke’s law

σ = λ(tr ε)I + 2με (7.10)
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Fig. 7.1 Surface coordinates
and surface normal for the
integration of the pressure
boundary condition

therefore constitute the governing equations with the Lamé constants λ and μ.
The tube example can be solved analytically in cylindrical coordinates (radius

r , polar angle ϕ, axial coordinate z). With the use of the metric tensor having the
covariant coordinates

gi j = diag(1, r2, 1) (7.11)

and by considering plane strain conditions as well as rotational symmetry of both
load and kinematics, the differential equation

0 =
[
1

r
(rur ),r

]
,r

(7.12)

can be found for the radial displacements. Along with the boundary conditions at the
inner and outer surfaces

σrr (r = Ri ) = −pi and σrr (r = Ra) = −pa (7.13)

integration of the differential equation and substitution of the result into Hooke’s law
yields the stresses
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σrr = pi R2
i − pa R2

a

R2
a − R2

i

− (pi − pa)R2
a R2

i

(R2
a − R2

i )r2
(7.14)

σϕϕ = pi R2
i − pa R2

a

R2
a − R2

i

+ (pi − pa)R2
a R2

i

(R2
a − R2

i )r2
(7.15)

σzz = λ(pa R2
a − pi R2

i )

(λ + μ)(R2
i − R2

a)
= 2ν(pa R2

a − pi R2
i )

(R2
i − R2

a)
(7.16)

The radial displacement follow as

ur = R2
i pi (1 + ν)r

E(R2
i − R2

a)

[(
pa

pi

(
Ra

Ri

)2

− 1

)
(1 − 2ν) +

(
pa

pi
− 1

) (
Ra

r

)2
]

(7.17)

7.2.2 Numerical Solution

This benchmark investigates the strength of seamless cold drawn tubes, specifically
standard tubes according to DIN EN 10305. The specific object of interest is a tube
with an inner diameter of 2mm and a wall thickness of 1mm. According to the
DIN standard, the maximum allowed internal pressure of that tube is 522 bar. To
investigate principal stresses and the deformation of the tube cross section, the exact
solutions (7.14)–(7.17) are compared against numerical approximations obtained
usingOpenGeoSys. The aim of the comparison is the verification of the implemented
pressure boundary condition as well as the linear elastic material models.

Shape and size of the tube cross section are displayed in Fig. 7.2a. Due to sym-
metry, the finite element discretization considers only a quarter of the full circle
(Fig. 7.2b). As boundary conditions, the peak pressure of pin = 52.2MPa is applied
at the inner wall, while atmospheric pressure of pout = 0.1MPa is applied from out-
side. Symmetry boundary conditions are applied at the remaining surfaces. The tube

Fig. 7.2 Schematic view and boundary conditions of the tube model. a Cross section of the tubing.
b Model concept and boundary conditions
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Fig. 7.3 Stress distribution and radial displacement along the tube radius. Comparison of exact
solutions and numerical approximations. a Stress distribution. b Radial displacement

is made of E235, a steel with a yield stress of σF = 300MPa and a Young’s modulus
of E = 210GPa. The Poisson’s ratio is assumed to be ν = 0.3. For the numerical
solution, the tube cross section was discretized into 480 quadrilateral elements with
biquadratic shape functions.

In Fig. 7.3a, the principal stresses within the tube’s wall are plotted. The figure
shows both the exact solutions and the numerical approximations. The third principal
stress corresponds to the normal stress in the radial direction (σrr ) and approaches
the pressure of 52.2MPa at the inner boundary, while it drops down to atmospheric
pressure at the outer edge of the domain (see also Fig. 7.4). Since we consider plane
strain conditions, the displacement in z direction is suppressed and the second prin-
cipal stress, corresponding to σzz , is constant over the whole cross section according
to (7.16). Under the present conditions, the maximum principal stress occurs in the
circumferential direction (σθθ) at the inner edge of the tube and amounts to about
85MPa, which is less than 30% of the yield stress of that material.

7.3 Deformation of a Thick-Walled, Hollow Sphere

7.3.1 Analytical Solution—Linear Elasticity

The sphere example can be solved analytically in spherical coordinates (radius r ,
azimutal angle θ ∈ [0, 2π), polar angle ϕ ∈ [0,π]). With the use of the metric tensor
having the covariant coordinates

gi j = diag(1, r2 sin2 ϕ, r2) (7.18)
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Fig. 7.4 Circumferential (left) and radial (right) stress at the cross section of the tube

and by considering spherical symmetry of both load and kinematics, the differential
equation

0 = ur,rr + 2

r
ur,r − 2

r2
ur (7.19)

can be found for the radial displacements. Along with the boundary conditions

σrr (r = Ri ) = −pi and σrr (r = Ra) = −pa (7.20)

the differential equation can be solved. Substitution of the result into Hooke’s law
yields the stresses

σrr = pa R3
a − pi R3

i

R3
i − R3

a

− R3
a R3

i (pa − pi )

(R3
i − R3

a)r3
(7.21)

σϕϕ = σθθ = pa R3
a − pi R3

i

R3
i − R3

a

+ R3
a R3

i (pa − pi )

2(R3
i − R3

a)r3
(7.22)
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The radial displacement follows as

ur = R3
i pi r

E(R3
i − R3

a)

[(
pa

pi

(
Ra

Ri

)3

− 1

)
(1 − 2ν) +

(
pa

pi
− 1

)
1 + ν

2

(
Ra

r

)3
]

(7.23)

7.3.2 Numerical Solution—Linear Elasticity

In 1654, Otto von Guericke, the mayor of Magdeburg (Germany) at that time,
performed a famous experiment to show the effects of air pressure and to prove
the existence of the atmosphere. He took two hollow copper hemispheres, put them
together against each other and evacuated them using a piston pump. Afterwards,
the hemispheres stuck together only by virtue of the surrounding air pressure. Even
two teams of 15 horses were unable to separate both hemispheres (see Fig. 7.5).

In this benchmark test, the stresses and strains inside the copper shells caused by
the pressure difference between its inside and outside will be investigated.

Fig. 7.5 Historical engraving of the Magdeburg hemispheres experiment performed by Otto von
Guericke in 1654. Source Wikipedia
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The investigated hollow sphere has a diameter of 45cm, the thickness of the shell is
5cm (thewall thicknesswas slightly increased compared to von Guericke’s prototype
to clearly observe the non-linear distribution of the stresses). Copper has a Young’s
modulus of E = 125GPa and a Poisson’s ratio of ν = 0.35. The pressure inside the
sphere is assumed to be pin = 1kPa (which is just a guess of the magnitude of a
vacuum that could be produced in 1654) and the outside pressure is set to atmospheric
levels (pout = 1.01325bar). Using cylindrical coordinates and taking advantage of
symmetry, it is sufficient to reduce themodel geometry to a 2D representation of a 90◦
slice of the sphere (see Fig. 7.6b). The geometry is represented by 980 quadrilateral
elements with biquadratic shape functions.

Radial and circumferential stresses in the hollow sphere are plotted in Fig. 7.7a.
The radial stress approaches both inner and outer boundary conditions: σrr = −1 ·
10−3MPa on the inside and σrr = −1 · 10−1MPa on the outside edge of the sphere.

(a) (b)

Fig. 7.6 Schematic view and boundary conditions for the linear elastic deformation of a sphere.
a Schematic view. b Model domain and boundary conditions
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Fig. 7.7 Principal stresses and radial displacement along the sphere wall. Comparison of exact
solutions and numerical approximations. a Principal stresses. b Radial displacement
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The maximum circumferential compressive stress exists at the inside edge of the
sphere with about −0.285MPa, which is far below the yield stress of copper. The
radial displacement of the casing ranges from −0.26µm at the inside to −0.21µm
at the outside of the sphere (see Fig. 7.7b).

7.3.3 Analytical Solution—Elastoplasticity

Now an elasto-plastic material model without hardening is considered for the case
of a thick-walled sphere under internal pressure only:

σrr (r = Ri ) = −p and σrr (r = Ra) = 0

From Eqs. (7.21) and (7.22), the elastic solution in this case follows as

σrr = pR3
i

R3
a − R3

i

[
1 −

(
Ra

r

)3
]

(7.24)

σϕϕ = σθθ = pR3
i

R3
a − R3

i

[
1 + 1

2

(
Ra

r

)3
]

(7.25)

With the definition of the deviatoric stress

σD = σ − 1

3
(σ : I)I (7.26)

and the yield stress σF , the von Mises yield function is given as

ϕ = 1

2
σD : σD − 1

3
σ2

F = 0 (7.27)

Substituting the physical tensor coordinates of the elastic solution into the yield
condition produces

σF = σϕϕ − σrr = 3

2

pR3
i

R3
a − R3

i

(
Ra

r

)3

(7.28)

for the yield stress which, for a given p, has its maximum at r = Ri . Thus, the
minimum pressure pplmin to achieve plastic deformation is

pplmin = 2

3
σF

[
1 −

(
Ri

Ra

)3
]

(7.29)
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For ppl > pplmin, the plastic zone will grow to the radius rp ∈ [Ri , Ra]. In the
interval r ∈ [rp, Ra]we use the elastic solution together with the boundary and yield
conditions

σϕϕ(r = rp) − σrr (r = rp) = σF and σrr (r = Ra) = 0 (7.30)

to find the stresses in the elastic region as

σrr = 2

3
σF

[(
rp

Ra

)3

−
(rp

r

)3]
(7.31)

σϕϕ = σθθ = 2

3
σF

[(
rp

Ra

)3

+ 1

2

(rp

r

)3]
(7.32)

while the radial displacement follows as

ur = 2σF

3E

(
rp

Ra

)3

r

[
(1 − 2ν) + 1 + ν

2

(
Ra

r

)3
]

(7.33)

To obtain the stress distribution in the inner (plastic) region r ∈ [Ri , rp) we use the
linear momentum balance in the radial direction together with the yield condition.
Integration of the resulting differential equation produces

σrr = 2σF ln r + C3 (7.34)

where C3 is found from the stress continuity condition with respect to the elastic
component σrr (r = rp − 0) = σrr (r = rp + 0)

σrr = 2σF ln
r

rp
+ 2

3
σF

[(
rp

Ra

)3

− 1

]
(7.35)

σϕϕ = σθθ = 2σF ln
r

rp
+ 2

3
σF

[(
rp

Ra

)3

+ 1

2

]
(7.36)

With the boundary condition σrr (r = Ri ) = −ppl we find the pressure necessary to
plastify the material in the region r ∈ [Ri , rp):

ppl = 2σF ln
rp

Ri
+ 2

3
σF

[
1 −

(
rp

Ra

)3
]

(7.37)

To compute the radial displacements in the plastic region the associated flow rule is
considered:

ε̇pl = λ̇
∂ϕ

∂σ
(7.38)
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Especially for the von Mises yield surface, we find

ε̇pl = λ̇σD (7.39)

With the additive decomposition of the strains, Hooke’s law in the plastic region reads

σ = λ(I : εel)I + 2μεel (7.40)

= λ[I : (ε − εpl)]I + 2μ(ε − εpl) (7.41)

Taking the trace of that equation leads, in conjunction with tr ε̇pl = 0, to

trσ = (3λ + 2μ)tr ε (7.42)

Substitution of the known stress distributions in the plastic region yields the following
differential equation:

ur,r + 2
ur

r
= (1 − 2ν)σF

E

[
6 ln

r

rp
+ 2

(
rp

Ra

)3
]

(7.43)

Upon integration together with the continuity requirement to the elastic solution at
r = rp, the final solution is

ur = 2(1 − 2ν)σF

3E
r
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3(1 − ν)

2(1 − 2ν)
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r

)3 − 1 +
(
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+ 3 ln

(
r
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)]
(7.44)

If the pressure is now decreased back to zero, residual stresses will remain. Sub-
traction of the elastic solution with p = ppl from the elastoplastic solution in both
regions yields the residual stresses upon unloading.

σrr (ppl) = pR3
i

R3
a − R3

i

[
1 −

(
Ra

r

)3
]

= 2

3
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(7.45)

σϕϕ = σθθ = pR3
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2

(
Ri

r

)3
]

(7.46)

7.3.4 Numerical Solution—Elastoplastic Deformation of a Sphere

For the numerical solution of the elastoplastic sphere problemwe use the samemodel
geometry as in the previous section.Geometry and boundary conditions are displayed
in Fig. 7.6b. In contrast to the previous example, the pressure outside of the sphere
is now disregarded (pout = 0).
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Fig. 7.8 Schematic and finite-element discretization of the sphere model. a Radial displacements.
b Principal residual stresses

The maximum pressure inside the sphere is chosen such that the radius of the
plastic zone rp will extend to the middle of the sphere’s wall, i.e.

rp = 0.5(Ri + Ra) = 0.2 (7.47)

Setting the yield stress of copper to σF = 200MPa, we obtain the required pres-
sure to plastify the sphere from Ri up to rp from Eq. (7.37) to be ppl = 93.102
MPa. Therefore, the inner boundary pressure is increased linearly up to that critical
pressure. Once ppl is reached, the pressure declines to zero at the same rate.

As expected, the critical pressure ppl caused a plastic deformation on the inner
half of the spherical shell. Equations (7.33) and (7.44) can be used to determine the
radial displacement of the shell. In Fig. 7.8a, the red and blue lines show the analytical
solutions of elastic andplastic parts of the radial displacementwhen the inner pressure
equals the critical pressure ppl. Note that the elastic and plastic solutions are valid
only for rp ≤ r ≤ Ra and Ri ≤ r ≤ rp, respectively. The numerical solution,
indicated by black circles in the diagram, follows this distinction accurately. Upon
unloading, residual stresses become apparent. In Fig. 7.8b, the residual principal
stresses are shown. The circumferential residual stress is tensile on the outside of the
spherical shell, compressive on the inside.

7.4 Deformation of an Artificial Salt Cavern

7.4.1 Linear Elastic Material

This example shows a large subterranean salt cavern for gas storage purposes. The
cavern is man-made and has a volume of about 2.4 · 106 m3. Those caverns are
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(a)

(b)

Fig. 7.9 Geometry and boundary conditions (a) and finite element mesh (b) of the model cavern
for the linear elastic material case

usually built in large salt domes as storage facilities for large amounts of fossil fuels
or chemical products.

The model geometry is a column with a length of 1,000m and a radius of 500m,
located at a depth of 1,000m below the surface of earth. In the center of that domain,
an excavation shaped like a pillar with rounded faces represents a simplified cav-
ern (see Fig. 7.9a for detailed schematics). The overall length of the excavation is
325 m and the radius is 50m. The model domain is described in cylindrical coor-
dinates and is discretized by a two-dimensional finite element mesh (see Fig. 7.9b)
consisting of 8,750 biquadratic quadrilateral elements, where smaller elements (with
edge lengths of about 0.3m) are located at the boundary of the cavern. OpenGeoSys
is used to compute stress conditions and displacements within this model domain
(Figs. 7.10, and 7.11).

Since the model domain is located at a depth of 1,000m, the load of the over-
burden is given at the top of the domain by a stress of σ

top
zz = −25MPa. Inside

the cavern, a gas resided at a constant pressure of pcav = 5MPa. The outside
boundary at r = 500 m and the symmetry axis at r = 0 m are fixed in radial
direction, while the bottom of the domain at z = −2,000 m is fixed in vertical
direction.

For this simple test case, the behaviour of the host rock material is assumed to
be linear elastic, with a Young’s modulus of E = 14GPa and a Poission’s ratio of
ν = 0.3. In fact, this simple material model is not referring to realistic salt rock,
its purpose is only to show the general behaviour of a cavern during gas storage
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Fig. 7.10 First principal stress σI (a) as well as von Mises equivalent stress σv (b) of the linear
elastic cavern

Fig. 7.11 Comparison of third principal stress σIII computed by OpenGeoSys (a) and by FEBio (b)

operations. In this case, the gas pressure inside the cavern is low, so that the cavern
walls are displaced in negative r direction by a few centimeters, as can be seen in
Fig. 7.12a. Due to its own weight and the top load, the top of the model domain is
squeezed downwards by about uz = −1.9 m, see Fig. 7.12b.
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Fig. 7.12 Displacement ur in radial direction (a) and uz in vertical direction (b) for linear elastic
material behaviour

To validate the OpenGeoSys results, a model comparison against another FE
simulator was made. Figure7.11 shows the third principal stress distribution in the
domain computed by OpenGeoSys an by FEBio [2]. Both plots show basically the
same results, slight differences can be explained by a much coarser resolution of
themesh that was used for the FEBio simulation: the 3Dmesh uses quarter symmetry
and consists of 277105 nodes and 1563712 linear tetrahedral elements. The minimal
edge length (located at the cavern wall) was about 1 m.

7.4.2 Elastoplastic Material

While the last example considered linear elastic material behaviour, this case investi-
gates plastic deformation beyond an arbitrarily chosen yield stress of σF = 20 MPa
according to the von Mises plasticity model (Fig. 7.13). Otherwise, the model setup
is identical to the last example. Due to the overburden load, the von Mises stress
exceeds the critical yield stress at about the height of the cavern, as displayed in
Fig. 7.14a. Due to the displacement constraints at the model boundary, plastic defor-
mation predominantly occurs at the border of the cavern. The accumulated plastic
strain can be seen in Fig. 7.14b. Therefore, displacements in the radial direction are
larger compared to the elastic example (compare Figs. 7.12a and 7.15a).
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Fig. 7.13 First principal stress σI (a) and third principal stress σIII (b) of the elastoplastic cavern

Fig. 7.14 von Mises equivalent stressσv (a) and accumulated plastic strain εp (b) of the elastoplastic
cavern
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Fig. 7.15 Displacement ur in radial direction (a) and uz in vertical direction (b) for a von Mises
plasticity model
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Chapter 8
Density-Dependent Flow

Marc Walther, Leonard Stoeckl, Jens-Olaf Delfs and Thomas Graf

Density-driven flow still remains to be a demanding challenge for both, the user and
the numerical model. Especially for real-world applications, e.g. regional scale case
studies, or even smaller scale laboratory experiments, proper parametrization is an
ambitious task, that is usually addressed by calibration. Additionally, when spatial
heterogeneity is high, and forces to drive variable-density flow are strong, it may be
hard to acquire convergence of the model. Yet, it is unavoidable to include density
coupling for applications where changes of fluid parameters result in a variation
of the flow conditions. Popular examples include seawater intrusion, or saltwater
upcoming as a result from excessive pumping activity, or when fluid parameters vary
due to changing boundary conditions, e.g. temperature change due to geothermal
gradient, or atmospheric influence on shallow groundwater bodies.

Proper benchmarking is a necessary task to understand complex model behaviour
and ensure correct model propagation capabilities. In the following, we present two
benchmarks to proof applicabilities of OpenGeoSys to simulate density-dependent
flow. The examples include transient development of a freshwater lens and stability
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for thermohaline convection. Relevant governing equations were given in the previ-
ous edition of the book [1] and are not repeated at this point.

8.1 Haline Setups

8.1.1 Development and Degregation of a Freshwater Lens

8.1.1.1 Problem Description

This benchmark shows the capability of OpenGeoSys to represent displacement of
saline water due to an infiltration recharge process from top in a saturated, initially
completely salinized domain. Experimental data from [2] is used to validate the shape
in the development and degregation phase, and maximum penetration depth of the
freshwater lens.

8.1.1.2 Methods and Model Setup

The geometry of the physical model of [2] was a symmetrical trapezoid. The con-
ceptual model for the numerical setup includes the left side of the real-world setup,
dividing themodel at the symmetry line to reduce computational burden (seeFig. 8.1).
Table8.1 shows simulation parameters.

The experimentwas two-folded: (i) starting froman initial state of full salinization,
a constant rechargeq was applied on top of the domain until a steady statewas reached
at time t1; (ii) when the freshwater lens was fully evolved, recharge flux was stopped
and the degregation of the lens was observed. The homogeneous, isotropic domain
was set up using triangular elements with a mean edge length �l ≈ 3 × 10−3 m.
At right and bottom sides, boundary conditions (BCs) are Neumann 2nd-type no-
flow for flow and transport. On the top edge, a 2nd-type recharge rate was applied
uniformlywithq(0 < t ≤ t1) = 1.3×10−5 m·s−1 andq(t > t1) = 0.Mass transport

Fig. 8.1 Model domain and boundary conditions after [2] (not to scale)
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Table 8.1 Benchmark
parameters for freshwater
lens development

Parameter Value

Saltwater head hs (m) 0.0

Porosity ϕ (−) 0.39

Permeability κ (m2) 4.601 · 10−10

Dynamic viscosity μ (Pa · s) 1 · 10−3

Specific storage Ss (−) 1 · 10−4

Freshwater density ρ f (kg · m−3) 997

Saltwater density ρs (kg · m−3) 1,021

Saltwater-freshwater density relation γc (−) 0.02407

Longit./transv. dispersivity αl/t (m) 5 · 10−3/5 · 10−4

Diffusion coefficient Dm (m2 · s−1) 1 · 10−9

BC on top was c = 0 for 0 < t ≤ t1 and switched to no-flow for t > t1. For the left,
inclined edge, constant 1st-type linear pressure gradient p(z) and concentration BC
c = cs = 1 were set.

8.1.1.3 Results

Figure8.2 shows the steady state flow regime at t1. A stable freshwater lens evolved
with a mixing zone visible at the interface between the fresh and saltwater. During
evolution of the lens, recharge applied on top forced saltwater to retreat and flow out
of the domain on the left boundary. Stream tracers show homogeneous flow paths
with only small disturbance in the mixing zone.

On the right side, at the symmetrical line of the domain, the depth of the isoline of
c = 0.5 (black line in Fig. 8.2) is observed over time for formation and recovery of
the lens. The results are compared to experimental data in Fig. 8.3. Generally, numer-

Fig. 8.2 Concentration and flow paths for steady state of freshwater lens
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Fig. 8.3 Depth of freshwater lens (isoline c = 0.5) at right edge of domain

ical results from OpenGeoSys are in good accordance with laboratory observations.
The temporal development of the formation and recovery, as well as total penetra-
tion depth of the freshwater lens are met with deviations in the range of ≤1cm,
which is likely below visual accuracy of laboratory observations. Small deviations
only occur to the end of the recovery experiment, when differences between labo-
ratory and numerical results slightly increase. Despite limited observation accuracy,
deviations might also be due the interpolation technique used for data extraction of
the visualization software ParaView.

8.2 Thermohaline Setups

8.2.1 Stability in Rayleigh Convection

8.2.1.1 Problem Description and Introduction

This benchmark investigates the capability of OpenGeoSys to delineate the bound-
ary between diffusive and convective regimes in a thermohaline double-diffusive
setup. The stability of a density-driven systemcan be defined by theRayleighNumber
Ra as
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Ra� = ρfgκ

μ
· γ� H��

Dm,�

(8.1)

with � as an arbitrary system variable, ρf as fluid density, g as gravity constant, κ as
permeability, μ as dynamic viscosity, γ� as expansion coefficient due to change of
�, H as height of the system,�� as difference of boundary conditions, and Dm,� as
molecular diffusivity of �. Depending on the strength of the convective or diffusive
part (denominator and numerator in Eq.8.1, respectively), a convective or diffusive
regime will evolve in a variable density system.

For a thermohaline system, where density is influenced by both, temperature T
and concentration c, two Ra can be defined for heat and mass transport, RaT and Rac

respectively, extending the regime characterization into a two-dimensional space.
Nield [3] postulated several boundaries to distinguish between stable convective and
diffusive regimes. For the simplest case, one can define the critical Rayleigh Number
Ra′ of the boundary as

Ra′ = RaT + Rac = 4π2 (8.2)

Being able to define the stability of a system a priori may provide valuable infor-
mation for contaminant migration without the need to set up a numerical model.
Also, a thermohaline benchmark evaluates the robustness of a numerical modelling
software, as double diffusive models tend to remain initially stable for a long time
until a small disturbance fastly causes convective motion.

8.2.1.2 Methods and Model Setup

The model setup is a two-dimensional, homogeneous, vertical domain with a spatial
discretization pf �x = �z = 0.25m. The conceptual model, including boundary
and initial conditions, is pictured in Fig. 8.4. Relevant model parameters are listed in
Table8.2. Time step sizes are controlled by an adaptive error-control method.

Horizontal bottom and top boundaries are defined as 1st-type boundary conditions
for heat and mass transport, while �T and �c are defined in the way, that Ra
will have a value close to Ra′. Vertical boundaries are defined as 2nd-type no-flow
conditions. An initial linear gradient distribution is given for all primary variables,
i.e. temperature, concentration, and pressure.

At point Pdist, a disturbance of 10% (as deviation from the initial linear distribution
of temperature and heat) provides a small initial instability. Assuming, the grid has a
fine resolution, possible convection is therefore not initiated by numerical errors. The
latterwould depend on themodel accuracy (including grid level, time stepping, solver
convergence criteria etc.), thus being unrelated to the capabilities of the numerical
model itself to solve the problem.
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Fig. 8.4 Model domain and boundary conditions for thermohaline simulation

8.2.1.3 Results

Figure8.5 plots exemplary a stable diffusive and a stable convective regime. In the
diffusive case, the initial disturbance disperses very fast showing no indication of any
convective fluid motion; the transport is dominated by diffusion. In the convective
case, the sign of the initial disturbance, i.e. ±10%, decides the direction of the
initiated convective flow; the transport is dominated by convection. Both exemplary
simulations reach the stable state within a small number of time steps.

Table 8.2 Parameters used in
thermohaline simulations

Parameter Value

Density solid ρs (kg · m−3) 2,650

Heat capacity solid Cs
p (J · kg−1 · K−1) 800

Thermal conductivity solid λs (W · m−1 · K−1) 1.5

Initial density fluid ρf
0 (kg · m−3) 1,000

Heat capacity fluid C f
p (J · kg−1 · K−1) 4,184

Thermal conductivity fluid λf (W · m−1 · K−1) 0.5

Dynamic viscosity μ (Pa · s) 0.0011

Permeability κ (m2) 2.7 · 10−12

Molecular diffusion coefficient Dm (m2 · s−1) 1 · 10−8

Porosity ϕ (−) 0.3

Haline expansion coefficient γc (−) 0.7

Thermal expansion coefficient γT (K−1) −0.001
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Fig. 8.5 Distribution of normalized temperature, concentration, and velocity, exemplary given as
steady states for RaT = Rac = 1π2 (a diffusive), and RaT = 6π2,Rac = 3π2 (b convective)

Fig. 8.6 Boundary at critical Rayleigh number Ra′ compared to simulation results
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Figure8.6 shows different states along the critical Rayleigh number Ra′ = 4π2.
Simulation results are in close correlation with the theory. Stable diffusive regimes
generally evolve for Ra < Ra′, and stable convective state can be observed for
larger Ra. Small deviations can be found close to the critical Rayleigh number. For
RaT = Rac, the conversion from a diffusive to a convective regime occurs between
2.25π2 < Rai < 2.275π2.
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Chapter 9
Multiphase Flow and Transport with
OGS-ECLIPSE

Wolf Tilmann Pfeiffer, Christof Beyer, Bastian Graupner
and Sebastian Bauer

9.1 Introduction

For the combined simulation of multiphase flow and transport OpenGeoSys has
been coupled with the ECLIPSE simulator package [1]. In this chapter we present
the coupling principle of OGS with ECLIPSE as well as some test cases used to
evaluate the functionality and the performance of the OGS-ECLIPSE simulator.

For the basic principles of multiphase flow and transport within a porous medium
please refer to Chaps. 10 and 12 of [2].

The ECLIPSE simulator package consists of two simulators tailored specifically
for different model scenarios. E100 is a black-oil simulator while E300 is a composi-
tional simulator. Both simulators can use either a fully implicit or a IMPES (implicit
pressure, explicit saturation) scheme for solving the partial differential equations.
As a default E100 utilizes the fully implicit scheme while E300 uses the combined
AIM (adaptive implicit method) approach in which the fully implicit and the IMPES
scheme are used for different areas of the model domain simultaneously.

WhencombiningOGSandECLIPSE, each simulator handles individual processes
(Fig. 9.1). ECLIPSE simulates the flow process while OGS provides the general
framework for the ECLIPSE model and solves for all additional processes, i.e. mass
transport, chemical reactions or heat transport. ECLIPSE and OGS each need a
dedicated grid. Mesh consistency is mandatory between both simulators and non-
neighbour connections are not supported. ECLIPSE uses the corner point gridding
approach, thus the OGS mesh is limited to hexahedral elements. Because both grids
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Fig. 9.1 Schematic overview of the OGS-ECLIPSE interface and its integration into the OGS
process structure

Fig. 9.2 Interpolation scheme used to transfer the data from ECLIPSE to OGS. The position of the
data in ECLIPSE is depicted in blue, OGS in red

have to be identical, the OGS grid creation is automated by a grid conversion tool
and based on the ECLIPSE grid.

Since both simulators work with different numerical schemes (OGS—Finite Ele-
ments, ECLIPSE—Finite Differences) the model data has to be converted between
them (Fig. 9.2). For ECLIPSE the primary variables pressure and saturation are cal-
culated in the grid block center, corresponding to the center of the elements. OGS
calculates these variables at the nodes of the Finite-Element mesh, which are situ-
ated at the corner of the element. Pressure and saturation thus have to be interpolated
from the element centers to the element corners to be available within the OGS data
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structure. Phase velocities are calculated by ECLIPSE at the block faces, and there-
fore have to be converted to the element Gauss points. This is done by first inter-
polating the data to the element nodes and from there to the Gauss points. All data
conversions are done using an inverse volume weighted interpolation scheme. Trans-
ferring the flow data of ECLIPSE to the correct position instead of recalculating it
using the pressure distribution maintains a higher data precision. A detailed descrip-
tion of the OGS-ECLIPSE interface is given in [3]. As of OGS v5.5 the interface is
capable of working with the ECLIPSE E100 simulator as well as the E300 simulator
with the option CO2STORE enabled.

9.2 Test Cases

9.2.1 Two-Phase Flow with Two-Phase Transport

9.2.1.1 Description

The first test case represents the injection of supercritical CO2 into a deep aquifer
initially fully saturated with brine. Additionally to multiphase flow, tracers are trans-
ported in both the gas and the water phase.

A quasi 2D model of 200m length, 0.1m width and a vertical thickness of 20m
is used to simulate the lateral and vertical spreading of the gas phase as well as the
advance of the dissolved tracer fronts. The spatial discretization increases from dx =
0.5mat the injection side of themodel to dx = 34mat the outermodel boundary. The
injection boundary is set to a constant influx of CO2 (BC of 2nd kind) and a constant
gas phase tracer concentration (BC of 1st kind). The outer model boundary is set
to a constant pressure (BC of 1st kind). Initially a hydrostatic pressure distribution
is present in the aquifer. The water tracer is introduced into the model by defining
initial tracer concentrations of 1mol/m3

water at a vertical polyline at x = 14m,
near the injection side of the model. An initial CO2 saturation of 0.025 is assumed
throughout the model. All additional parameters used in the simulation are shown
in Table9.1. Multiphase flow is simulated using ECLIPSE, component transport
is simulated using OGS. A component in OGS (Process MASS_TRANSPORT)
can only be defined in one phase, i.e. for each component in each phase one mass
transport process has to be defined. Constant fluid parameters such as fluid density
and viscosity are assumed. Brooks and Corey formulations are used for both the
kr (S) and the pc(S) functions [4].

9.2.1.2 Results

The model results are show in Fig. 9.3. Both an upward and a lateral spreading of the
CO2 phase can be observed. The lateral movement of the CO2 phase is a result of
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Table 9.1 Model parameters

Parameter Symbol Value Unit

Permeability Kx 2× 10−13 m2

Ky 2× 10−13 m2

Kz 2× 10−14 m2

Porosity n 0.2 –

CO2 injection rate Qin 0.256 m3/s

residual water saturation Sw res 0.25 –

residual CO2 saturation SC O2 res 0.0 –

Brooks and Corey exponent λ 2 –

capillary entry pressure pc entr y 0.05 bar

Density CO2 ρC O2 675 kg/m3

Density brine ρwater 1050 kg/m3

Viscosity CO2 ηC O2 5.5× 10−5 Pa · s
Viscosity brine ηwater 5.1× 10−4 Pa · s
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Fig. 9.3 CO2 saturation (top), gas phase tracer concentration (middle) and water phase tracer
concentration after 50 days of injection
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the injection induced pressure gradient from the injection well to the fixed pressure
model boundary. The vertical movement of the CO2 is due to the gravitational sorting
of the heavier water and the lighter CO2 gas phase. The advance of the gas phase
tracer front corresponds to the movement of the CO2 phase. The initially present
CO2 causes a smearing of the gas phase tracer front as a result of mixing the initially
present tracer free CO2 gas with the tracer enriched injected CO2. The water tracer
only shows slight movement. This small displacement is a result of the water phase
saturation approaching its residual saturation due to the injected CO2, thus reducing
the mobility of the water phase.

9.2.2 Gas Phase Partitioning

9.2.2.1 Description

The second test case resembles a static groundwater body in which a leakage of CO2
from a storage formation below the aquifer occurs. CO2 is added to the model in
dissolved form. Because CO2 is added faster than it is transported away by diffusion,
CO2 accumulates and eventually a CO2 phase will form. This benchmark tests the
interaction of gas phase components between OGS and ECLIPSE.

The model is set up as a two phase model consisting of gas (CO2) and water of
which initially only the water phase is present. Due to the dissolution of CO2 in the
water phase, also mass transport is considered as a process. To simulate this test case
a quasi 2Dmodel of 10m× 1m× 2m is used. Themodel is discretized using 20 cells
in x-direction and 5 cells in z-direction. An isotropic permeability of 2 × 10−13 m2

and a porosity of 0.2 is assumed. The kr (S) and pc(S) relationships are described
using linear functions. Effects of capillary trapping are neglected by defining the
capillary entry pressure as pc entr y = 0bar. Upper and lower model boundaries are
assumed to be closed, on the left and right model boundary constant hydrostatic
pressure is assumed. The dissolved CO2 is introduced into the water phase at the
bottom of the model domain by a constant source term of 100mol/(s · REV ) and
assumed to dissolve instantaneously. Since ECLIPSE uses an equilibrium approach
to distribute the CO2 between the phases, increasing CO2 concentrations in the
water phase eventually lead to out-gassing of the CO2 and thereby to the generation
of a CO2 gas phase. The flow- and transport processes are handled by the E300
simulator with the fully-implicit scheme and the CO2STORE option while OGS is
used to calculate the CO2 source term. When using the CO2STORE option, the fluid
densities and viscosities are calculated by ECLIPSE. The CO2 density is determined
using a modified Redlich and Kwong equation of state while the CO2 viscosity is
calculated based on work by [5, 6]. Water density and viscosity are calculated using
an analytical form presented by [1].
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Fig. 9.4 Temporal evolution of the amount of dissolved CO2 in water and the saturation of the
CO2 phase in the source zone
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Fig. 9.5 Spatial distribution of the dissolved CO2 concentration in water (top) and CO2 phase
generated (bottom) after 50 s

9.2.2.2 Results

The results of the gas phase partitioning test case are shown in Figs. 9.4 and 9.5. The
CO2 is introduced into themodel via thewater phasewhich leads to an increasingCO2
concentration in water. Once the maximumCO2 solubility of about 1000mol/m3

water
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is reached within a cell, the gas saturation increases and a CO2 phase is generated
(Fig. 9.4). From this time on the concentration of CO2 in the water phase stagnates
at the maximum solubility and all additional CO2 is directly transferred into the
gas phase. The timescale and the extent of the phase generation is a function of the
leakage rate. In this case a strongly simplified scenario using a constant leakage rate
of CO2 was assumed, which nevertheless shows the capability of both simulators to
handle such gas phase generation problems.
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Chapter 10
Coupled THM Processes

Fabien Magri, Jobst Maßmann, Wenqing Wang and Katharina Benisch

10.1 HM/THM Processes in a Faulted Aquifer

Hydro-Mechanical (HM) and transient Thermo-Hydro-Mechanical (THM)
simulations in a faulted aquifer are presented. Both 2D and 3D scenarios are illus-
trated. OpenGeoSys (OGS) results are compared with those obtained using ABAQUS
[1], a commercial finite element software with wide material modeling capability,
including coupled hydraulic and mechanical processes in porous media. To some
extent, the results comparison validates OGS numerical capabilities in solving 2D
and 3D HM and THM problems.

10.1.1 Definition

The model geometry is shown in Fig. 10.1. The model is a 900 × 900 m cube includ-
ing a 100 m thick storage aquifer embedded in a sedimentary fill. A 20 m wide fault
with a dip angle of 80◦ cuts all units. The fault is conceptually modeled as an equiv-
alent porous media, i.e. a unit made of solid elements with their own hydraulic and
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Fig. 10.1 Model geometry displaying three different units (sedimentary fill, fault and storage
aquifer) and the boundary conditions of the HM problem. In the 2D simulations, the vertical profile
is referred to the XY reference frame (i.e. depth in the Y direction)

Fig. 10.2 Example of 3D finite element mesh used for HM simulations (62,818 nodes and 359,566
tetrahedral elements) in OGS and ABAQUS
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mechanical physical properties. Both ABAQUS and OGS numerical simulations use
the same 3D mesh. For the HM case, the grid consists of 62,818 nodes and 359,566
tetrahedral elements. Elements near the fault are 10 m wide as shown in Fig. 10.2. For
THM simulations instead, ABAQUS requires hexahedral elements. Here 30 m wide
first order cubes (i.e. 8 nodes) are used to discretize the sedimentary fill, whereas in
the fault the resolution is still 10 m.

10.1.2 Initial and Boundary Conditions

A hydrostatic pore pressure distribution is used to initialize the simulation. For sim-
plicity zero stress field is set over the whole model. In the paragraph “Initial condi-
tions effects”, a simulation importing a stress state as initial conditions is illustrated.
Constant pore pressure (3 × 106 Pa) and stress (7.36 × 106 Pa load) are assumed as
boundary conditions at the top. No flow is set on the remaining sides of the model.
Null displacement conditions are applied normal to the vertical and bottom bound-
aries. A constant pressure of 108 Pa is set in the hanging wall aquifer (i.e. at the left
side of the fault) in order to simulate the overpressure resulting from fluid injection.
Though 108 Pa is not a realistic value it allows to test the software capabilities with
regard to extreme pressures in a heterogeneous system.

10.1.3 Material Properties

Hydraulic and mechanical properties are given in Tables 10.1, 10.2 and 10.3, where
each unit is considered isotropic and homogeneous. The fluid properties are: viscosity

Table 10.1 Material
properties of sedimentary fill

Property Value Unit

Density 2500 kg/m3

Young’s modulus 2.964 × 1010 N/m2

Poisson’s ratio 0.12 −
Permeability 2 × 10−16 m2

Storage coefficient 8.63 × 10−11 Pa−1

Porosity 0.04 −

Table 10.2 Material
properties of storage aquifer

Property Value Unit

Density 2200 kg/m3

Young’s modulus 1.44 × 1010 N/m2

Poisson’s ratio 0.20 −
Permeability 1.5 × 10−13 m2

Storage coefficient 8.36 × 10−11 Pa−1

Porosity 0.19 −
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Table 10.3 Material
properties of fault

Property Value Unit

Density 2200 kg/m3

Young’s modulus 1.44 × 1010 N/m2

Poisson’s ratio 0.20 −
Permeability 1.5 × 10−12 m2

Storage coefficient 1.96 × 10−10 Pa−1

Porosity 0.19 −

=1×10−3 Pa s, density=998 kg m−3. Properties of the sedimentary fill and the storage
aquifer represent sandstones according to data from the book by [2].

10.1.4 Results

The calculated 2D steady state pressure, pore fluid velocity, displacement and stress
fields are illustrated and directly compared with the results obtained with ABAQUS
in the following.

A pressure buildup induced by the highly pressurized hanging aquifer (Fig. 10.3)
develops within the fault owing to its higher hydraulic permeability (Table 10.3). Con-
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y

Fig. 10.3 Pore pressure (Pa) distribution calculated with ABAQUS (left) and OGS (right)

Velocity (m/s)

x

y

x

y

Fig. 10.4 Pore fluid velocity (ms−1) calculated with ABAQUS (left) and OGS (right). Please note
the different scales
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Fig. 10.5 Displacement in the y direction (m) calculated with ABAQUS (left) and OGS (right)
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Fig. 10.6 Y component of the stress field (Pa) calculated ABAQUS (left) and OGS (right)

sequently, the fault acts as a preferential pathway for groundwater flow (Fig. 10.4).
Deep seated fluids can flow therein at velocities ranging between 4×10−6 to
1.4×10−5 m/s (i.e. 0.3 to 1.2 m/day), the peak velocities being observed at the bound-
ary between the storage aquifer and the fault zone. Owing to the no displacement
conditions at the lateral and bottom boundaries, major structural deformations are
observed within the sedimentary fill above the hanging storage aquifer (Fig. 10.5).
The calculated uplift of the surface is 2.58 m, in good agreement with ABAQUS calcu-
lations. The sliding of the hanging wall occurs along the fault plane because of the dif-
ferences in the material properties between the sedimentary fill and fault, in particular
the density and the elastic properties. The physical properties contrast between the
fault and surrounding sediments are also reflected in the calculated stress (Fig. 10.6).
In general, the stress should increase roughly linear with depth due to the increase
of lithostatic pressure with depth. Here, this trend is intensely perturbed by the fault.
Jumps in stress magnitude at both the top and bottom interface of the fault may reach
maximum values of several hundreds of MPa. Abrupt changes in stress magnitude
also occur along the fault sides, as therein the stress reaches its minimal values.
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Fig. 10.7 Initial conditions
effects: displacement in the y
direction (m) calculated using
initial stress and hydraulic
pressure fields. The IC were
derived a priori with a two
time-steps simulation

10.1.5 Initial Conditions Effects

Here the stress and hydraulic pressure calculated with the previously described sim-
ulation are used as IC to verify whether or not the system is at hydro-mechanical
equilibrium. If the mechanical equilibrium between the applied boundary conditions
and the state of stress in the units has been reached, no displacement should be
observed in this test case.

As a first test, a simulation is initialized with stress and hydraulic pressure fields
that were calculated a priori with a two time-steps simulation. The vertical displace-
ment is illustrated in Fig. 10.7. It can be seen that a vertical displacement exists
though in the order of few millimeter (Fig. 10.7), suggesting that the stress field cal-
culated with two time-steps is very close to mechanical equilibrium. An additional
simulation initialized with stress and hydraulic pressure fields calculated with three
iterations display no vertical displacement.

10.1.6 Temperature Effects THM Simulation

Here the results obtained from a transient Thermo-Hydro-Mechanical (THM) sim-
ulation are illustrated. Flow and mechanical boundary conditions are those pictured
in Fig. 10.1. Additionally, a constant temperature of 17 and 44◦ C are set at the
top and bottom boundaries, respectively, leading to a thermal gradient of 30 K/km.

Table 10.4 Thermal properties of the solid and fluid used to simulate 2D and 3D THM problem

Layers Specific heat capacity Thermal conductivity Thermal expansion coefficient

(J kg−1 K−1) (Wm−1 K−1) (K−1)

Solid 900 3 10−5

Fluid 4,280 0.6 −
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Fig. 10.8 Temperature (◦C) calculated with ABAQUS (left) and OGS (right). Temperature increase
(decrease) can be observed in the fold as a result of fluid outflow from the storage aquifer into the fault

For simplicity, the whole model is homogeneous with respect to thermal properties
(Table 10.4). The simulation is conducted for 7.4 × 107 s (856 days) with a time step
size of varying between 105 and 106 s (1 to 10 days). To ensure higher flow motion,
the porosity of the sedimentary fill and fault are increased to 0.2 and 0.43 respectively.
The other physical properties are those given in Tables 10.1, 10.2 and 10.3.

Results of temperature The hanging aquifer is saturated with fluid at 30◦ C approx-
imately. Driven by the imposed pressure gradient, groundwater flows from the stor-
age aquifer to the fault. As a result, fluid moving upward (downward) increases
(decreases) the temperature within the fold, as illustrated by convex (concave)
isotherms in Fig. 10.8.

10.1.6.1 3D Results

The same set of simulations has been run for the 3D cases. OGS results well compare
to those obtained with ABAQUS which validates OGS capabilities in solving 3D
pressure induced stress field (Figs. 10.9, 10.10, 10.11 and 10.12).
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Fig. 10.9 Pore pressure (Pa) distribution calculated with ABAQUS (left) and OGS (right)
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Fig. 10.10 Pore fluid velocity (m/s) calculated with ABAQUS (left) and OGS (right)
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Fig. 10.11 Displacement (m) calculated with ABAQUS (left) and OGS (right)
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Fig. 10.12 Z component of the stress field (Pa) calculated with ABAQUS (left) and OGS (right)
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Fig. 10.13 Temperature (◦C) calculated at 3 × 107 s with ABAQUS (left) and OGS (right). The
star locates the observation point for the comparative graphs in Figs. 10.14 and 10.15

Fig. 10.14 OGS and ABAQUS comparison: temporal trends at the observation point of the tem-
perature (T , in ◦C left axis) and vertical displacement (Uz , in m, right axis)

OGS and ABAQUS results are compared at an observation point (located with
the star in Fig. 10.13) for the simulated period. The temporal trends of vertical dis-
placement (Uz) and temperature (T ) are illustrated in Fig. 10.14. It can be seen that
whereas the vertical displacements calculated with both software match within the
error allowance, heat transport in OGS is more vigorous. The observed differences
can be explained as follow: In ABAQUS, the elastic part of the volumetric behavior
is proportional to the logarithm of the pressure stress (Chap. 19.3.1. ABAQUS User‘s
manual [1]) whereas in OGS we assume that the elastic modulus are constant. There-
fore the important fluid pressure modeled here will induce slightly different stress
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and displacements. In ABAQUS porosity is strain dependent. In this problem, the
calculated strain increases porosity in the fold as flow evolves. Increasing porosity
values lead to higher heat storage which in turn slows down heat flow. By contrast, in
OGS, porosity is constant during all the simulation. OGS and ABAQUS pore pres-
sure and pore velocity perfectly fit (Fig. 10.15). Additionally, results are provided for
an observation point located inside the model at the (x, y, z) coordinates (343, −540,
−400) m (Fig. 10.16).

Fig. 10.15 OGS and ABAQUS comparison: temporal trends pore velocity (v in m/s left axis) and
pressure (P , in Pa, right axis), at the observation point in Fig. 10.13

Fig. 10.16 Temperature (◦C)
calculated at 3 × 107 s with:
OGS. The star locates the
observation point for the
comparative graphs in
Figs. 10.17 and 10.18
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Fig. 10.17 OGS and ABAQUS comparison: temporal trends of pore velocity (v in m/s left axis)
and pressure (P , in Pa right axis) at the observation point in Fig. 10.16

Fig. 10.18 OGS and ABAQUS comparison: temporal trends of the temperature (T , in ◦C left axis)
and vertical displacement (Uz , in m right axis) at the internal observation point in Fig. 10.16
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10.2 Injection Induced Hydromechanical (HM) Processes

Katharina Benisch and Sebastian Bauer

10.2.1 Definition

Injection induced hydromechanical (HM) processes in a non-faulted reservoir are
investigated in this benchmark. It aims at testing and verifying the implementation
of coupled HM processes in OpenGeoSys as well as initial conditions, boundary
conditions and source terms.

10.2.2 Solution

Flow and deformation processes are solved in a staggered scheme. One-way coupling
is used to simulate the impact of fluid flow on deformation processes via the pore
pressure. In a first step, pressure and stress initialization is simulated to calculate
the pressure and stress distribution in the model domain. The initial pore pressure
effect on the stress distribution is neglected to avoid initial displacement. In a second
step, boundary conditions and source terms are added to the model to simulate a
brine injection. The coupled HM process simulation is performed on a 2D and a 3D
model, respectively.

10.2.3 Model Description

10.2.3.1 Model Area and Parameters

The simulation model is shown in Fig. 10.19. It contains two geological formations,
where the lower one (Domain 1) represents a saline aquifer of 6 m thickness which
is used as injection formation in the following simulations. It is overlain by a 50 m
thick cap rock with low permeability (Domain 0). Petrophysical parameters of both
domains as well as the constant fluid properties are listed in Table 10.5.

10.2.3.2 Pressure and Stress Initialization

Hydrostatic pore pressure gradient and total stress gradients in X-, Y- and Z-directions
are initially given as listed in Table 10.6 assuming a compressive (negative) stress
regime. Two different stress gradients are given for domains 0 and 1 resulting from
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Fig. 10.19 Setup of the 2D simulation model showing the two domains as well as the initial pressure
and stress gradients

Table 10.5 Fluid properties and petrophysical parameters

Domain 0 Domain 1

Brine density ρbr (kg/m3) 1173

Brine viscosity μbr (Pas) 1.252×10−3

Brine compressibility κbr (kPa−1) 0.0

Intrinsic permeability K (m2) 3.0×10−20 3.0×10−13

Porosity φ (−) 0.08 0.26

Solid density ρs (kg/m3) 2,650 2,650

Young’s modulus E (kPa) 109 109

Poisson’s ratio ν (−) 0.3 0.3

Table 10.6 Initial pressure and stress gradients

Domain 0 Domain 1

Pore pressure gradient �p (kPa) 11.5071 11.5071

Vertical effective stress gradient �σ ′
zz (kPa) −13.3302 −10.7221

Horizontal effective stress gradient �σ ′
xx,yy (kPa) −5.8779 −4.0533

different rock porosities (see Fig. 10.19 and Table 10.5). Figure 10.20a, b show the
resulting initial pore pressure and effective stress distribution in the model domain. A
displacement of zero is the result of no pore pressure or stress changes (Fig. 10.20c).

10.2.3.3 Injection Induced Deformation Processes

Flow and stress boundaries as well as a source term are added to the model (see
Fig. 10.21) to simulate a brine injection. For the flow process, constant hydrostatic
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Fig. 10.20 2D initialization results. a Initial pore pressure, b initial effective stress field and c initial
displacement

Fig. 10.21 Model setup for brine injection scenario

pressure conditions are set at the right model boundary. Brine is injected at the
left boundary of domain 1 using a constant source term of 1 m/day for 41 days.
Displacement is set to zero at the model bottom (uzz = 0), at the left model boundary
(uxx = 0), as well as within the model domain (uyy = 0) in case of the 3D model.
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Fig. 10.22 2D results of the brine injection scenario after 41 days. a Pore pressure, b effective
stress changes in X-direction and c displacement in X-direction

10.2.4 Results

10.2.4.1 2D Model

Figure 10.22 depicts the simulation results after 41 days. Due to the injection process,
pressure increases by 1.6×106 Pa (9 %) near the injection well and propagates
into the reservoir and also the cap rock (Fig. 10.22a) as no compressibility is
incorporated in the model. The injection induced pressure increase leads to a
positive effective stress change i.e. a dilatation of the rock and a displacement
to the right model boundary across the whole model thickness (Fig. 10.22b, c).
At the right model boundary, effective stress changes are zero as no pore pres-
sure changes occur due to the constant pressure head boundary. The displacement in
X-direction increases towards the model top because of the free moving boundary
there.
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Fig. 10.23 3D simulation results after 41 days. a Pore pressure, b effective stress changes in
X-direction and c displacement in X-direction

10.2.4.2 3D Model

The 2D model is extended to a 3D model by adding one cell of 1 m thickness in
the Y-direction. The initial and boundary conditions as well as the source term are
changed correspondingly to represent the model setup in Fig. 10.21. With that, the
simulation results of the 3D model should agree with those of the 2D model.
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Fig. 10.24 Comparison of the simulation results of OpenGeoSys and GEM. a Pore pressure in the
aquifer, b Pore pressure in the cap rock, c effective stress changes in the aquifer, d effective stress
changes in the cap rock

The simulation results of pore pressure, effective stress changes and displacement
in X-direction after 41 days are plotted in Fig. 10.23. It can be seen that the results
fit the results of the 2D model (Fig. 10.22).

10.2.4.3 Code Comparison

The 3D simulation results of OpenGeoSys are compared to those calculated by
the commercial compositional FD simulator GEM (©ComputerModellingGroup) to
verify the HM coupling process in OpenGeoSys. The same model setup as well as
spatial and time discretization are used for both numerical simulators.

The results of pore pressure and effective stress changes in the X-direction are
compared for two profiles along the X-axis. One profile within the aquifer at 1503 m
depth (Fig. 10.24a, c) and a second profile within the cap rock at 1463 m depth
(Fig. 10.24b, d). Generally, the results of both simulators agree well for the presented
test case. Only small differences can be seen for both pore pressure and effective
stress. Comparing the pore pressures, there is a small shift between the profiles,
which is due to the fact that GEM uses the finite difference method and OpenGeoSys
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the finite element method and results therefore cannot be compared exactly at the
same depth. At the injection well, OpenGeoSys calculates higher injection pressures
than GEM, which may be caused by different methods of implementing source
terms. As a result, the effective stress change at the injection well is higher for
OpenGeoSys.

10.3 AnSichT THM Test Case

Jobst Maßmann (BGR), Sha Li (DBE-TEC), Michael Jobmann (DBE-TEC),
Thomas Nowak (BGR)

In the framework of the AnSichT project a methodology for the safety analysis of a
repository for high level radioactive waste in clay stone is developed [3]. Project
partners are the DBE TECHNOLOGY, Gesellschaft für Anlagen- und Reaktor-
sicherheit (GRS) and the Federal Institute for Geosciences and Natural Resources
(BGR).

One aspect of this project are numerical simulations with the objective of inves-
tigating the integrity of the geotechnical and geological barriers. To ensure the com-
parability of the different codes, a THM test case has been defined.

Considering the thermal expansion of the fluid and the solid phase, the conserva-
tion of fluid volume in a deformable porous media can be written as

�·
(

k
μ

(−�p+ρ f g�z)

)
+S

∂p

∂t
−φβ

f
T

∂T

∂t
−(α−φ)βs

T
∂T

∂t
+α�· ∂u

∂t
= 0. (10.1)

With the intrinsic permeability k, the fluid viscosity μ, the fluid pressure p,
the fluid density ρ f , the vector of gravity g, the specific storage coefficient S, the
porosity φ, the cubic expansion of the fluid and the solid β

f
T and βs

T , respectively, the
temperature T , the Biot coefficient α and the vector of displacements u. The thermal
fluid expansion can be defined by the derivative of fluid density with respect to the
temperature:

β
f

T = ∂ρ f

∂T

1

ρ
f

0

. (10.2)

Several linear and non-linear models are available in the applied computer codes.

10.3.1 Definition

The test case is a 3-D THM problem, considering drilling and heating. This kind
of test case was chosen with regard to the concept of borehole disposal of heat
generating radioactive waste. The geometry is given by a square cuboid, whose



10 Coupled THM Processes 239

Fig. 10.25 Definition of the AnSichT THM test case
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Fig. 10.26 Temperature (T ) and pore water pressure (p) distributions at three different times
calculated with OGS

sides measure 20.0 and 10.0 m, respectively. The centered borehole length is 2.5 m
the diameter equals 0.5 m. The initial and boundary conditions are depicted at one
quarter of the domain in Fig. 10.25. The drilling starts at t = 0.0 d and is completed
at t = 0.2 d. Atmospheric pressure is assumed at the borehole. The heating period
begins at t = 32 d and is completed at t = 365 d. The output variables are evaluated
at 6 points along the x-axis. The material properties are listed in Table 10.7.
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Fig. 10.27 Temperature (T ), water pressure (p) and displacement (ux ) distributions at three dif-
ferent output locations along the x-axis calculated with OGS, FLAC3D and ANSYS

Table 10.7 Material properties

Symbol Parameter Value Unit

ρs Density solid 2533.0 kg/m3

φ Porosity 0.1 −
k Intrinsic permeability 1.0e−19 m2

E Young’s modulus 4000.0 MPa

ν Poisson’s ratio 0.35 −
cs Specific heat capacity solid 1254.74 J/(kg·K)

βs
T Cubic thermal expansion coefficient solid 3.0e−5 1/K

τ s Heat conductivity solid 2.156 W/(m·K)

α Biot’s coefficient 0.6 −
ρ f Density fluid 1200.0 kg/m3

μ Viscosity 1.5 mPa·s
c f Specific heat capacity fluid 4160.0 J/(kg·K)

β
f

T Cubic thermal expansion coefficient fluid 6.0e−4 1/K

τ f Heat conductivity fluid 0.6 W/(m·K)

K f Bulk modulus fluid 2000.0 MPa
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10.3.2 Results

In Fig. 10.26 the distributions of temperature and pore water pressure at three points
in time are depicted. 13 days after the heating has been initiated (t = 45 d), a zone
of increased pore pressure can be observed. This is caused by the thermal expansion
of the fluid in a low permeable medium.

Results of three different numerical codes are presented in Fig. 10.27. ANSYS
[4] and FLAC3D [5] are applied besides OGS. The temporal evolutions of the main
variables are shown at four points along the x-axis. Only minor derivations can be
observed, which are explainable by differences in the discretization and the modeling
approach. For instance, advective heat transport is considered by OGS only.

10.4 Consolidation Under Two-Phase Flow Condition:
Five Spot Example

Wenqing Wang

The example is based on a classic two-phase flow example for benchmark purpose
[6], which describes a sort of water flooding process in porous media, and it is
expended hereby with an elastic deformation.

Assuming that the density of the each phase is constant, the process can be
described by the mass balance equations and the momentum balance equation.
With the capillary pressure pc and the non-wetting phase pressure pnw as two primary
variables, the mass balance equations are given as

nρw ∂Sw

∂pc

∂pc

∂t
− ∇ ·

[
ρw kkw

rel

μw

(∇(pnw − pc) − ρwg
)]

+ Swρw ∂

∂t
∇ · u = Qw (10.3)

− nρnw ∂Sw

∂pc

∂pc

∂t
+ (1 − Sw)n

(
∂ρnw

∂pnw

∂pnw

∂t
+ ∂ρnw

∂pc

∂pc

∂t

)

− ∇ ·
[
ρnw kknw

rel

μnw

(∇ pnw − ρnwg
)] + (1 − Sw)ρnw ∂

∂t
∇ · u = Qnw (10.4)

where nw indicates the non-wetting phase, w indicates the wetting phase, S is satu-
ration, u is the displacement, n is the porosity, ρ denotes the density, Q denotes the
source/sink term, k is the intrinsic permeability, kw

rel and knw
rel represents the relative

permeability of phases, μ denotes the viscosity, and g is the vector of gravity.
While, the momentum balance equation takes the following form

∇ · (
σ − (pnw − Sw pc) I

) + ρg = 0 (10.5)
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where σ is the effective stress of the porous medium, and I is the identity tensor.
The density of the porous medium is composed by three phases, two fluids and
solids ρ = nSwρw + n(1 − Sw)ρnw + (1 − n)ρs with ρs , the solid density. The
unknowns of the momentum equation is the displacement, u, and which is solved
via the constitutive law

σ = Cε

and the strain displacement relationship

ε =
(
(∇u)T + ∇u

)
/2

where C is the stress strain tensor, and the subscript T means transpose.
Due to the symmetry, we take one quarter of the five spot example with a size of

10 × 10 × 1 m3. The fluids that are assumed to be involved in the process are water
(wetting phase) and hydrocarbon (non-wetting phase). The material parameters are
given in Table 10.8. In the original definition of the problem, the capillary pressure is
small and omitted. Since the capillary pressure is adopted as one of the primary vari-
ables in the present mass balance equations, we employ the van Genuchten model as

pc = ρwg

α

[
S−1/mv

eff − 1
]1/nv

(10.6)

where α [1/m] is a conceptualized parameter related to the air entry pressure, nv is
a dimensionless pore size distribution index and mv = 1 − (1/nv), and Seff is the
effective saturation defined as

Seff = Sw − Sw
r

Sw
max − Sw

r
(10.7)

with Sw
max and Sw

r as the maximum and residual saturation. In this example, we set
mv = 0.7, Sw

max = 1, Sw
r = 0, and α = 0.37.

Table 10.8 Material properties of five-spot example

Property Value Unit

Water density 1000 kg/m3

Hydocarbons density 1000 kg/m3

Water viscosity 10−3 Pa s

Hydocarbons viscosity 4 × 10−3 Pa s

Porosity 0.206 –

Intrinsic permeability 10−13 m2

Relative permeability kw
rel = (Sw)2, knw

rel = (1 − Sw)2 –

Capillary-saturation relationship van Genuchten Pa

Young’s modulus 3.5 × 1010 Pa

Poisson ratio 0.3 –
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Fig. 10.28 Mesh and water pressure distribution after 20 days

Initially, the capillary pressure is set to pc
0 = 105018 Pa to represent a very

small water saturation of 0.04, meanwhile the non-wetting phase pressure is given
as pnw

0 = pc
0 Pa to represent that there is no water pressure at the beginning of the

injection/pumping. Besides, the initial effective stresses are all zero by omitting the
gradational force.

Fig. 10.29 Variable distribution after 20 days’ injection. a Water saturation, b Displacement mag-
nitude, c Effective stress σxx , d Effective stress σyy
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At the injection corner, the boundary conditions are prescribed as pc = 0 and
1.5 × 106 Pa, while at the pumping corner, the non-wetting phase pressure is 106 Pa.
The displacement in the normal direction of all surface is restricted to zero. The time
duration of the pumping is 20 days.

The domain is discretized into 1,151 hexahedral elements with 1,875 nodes, which
is demonstrated in Fig. 10.28. Figure 10.28 also shows the calculated water pressure
(calculated by pnw − pw) distribution at 20 days.

After 20 days’ injection, the distribution of other variables is shown in Fig. 10.29a,
b, c and d respectively. Figure 10.29 prompts that there is tensile effective stresses
increasing in the vicinity of the injection well. Since there is not any mechanical
load applied to the domain, the changes of the effective stresses are caused by the
changes of fluid pressures solely. We can see this hydraulic mechanical coupling more
distinctively with the following variable profiles (Fig. 10.30), which are plotted along
one horizontal edge of the domain that starts from the injection well.
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Fig. 10.30 Profiles along one horizontal edge that starts from the injection well. a Water saturation,
b Non-wetting phase pressure, c Horizontal displacement, d Effective stress σxx



10 Coupled THM Processes 245

References

1. Abaqus. Abaqus FEA. Technical report, Dassault Systémes, 2007.
2. J. C. Jaeger, N. G. W. Cook, and R. W. Zimmerman. Fundamentals of Rock Mechanics (4th

Edition). John Wiley & Sons, 2007.
3. M. Jobmann. Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für

ein HAW-Endlager im Tonstein, ANSICHT. Jahresbericht 2012, DBE-Tec, 2013.
4. ANSYS Inc., Minnesota, USA. ANSYS Mechanical, Help System, Mechanical APDL Documen-

tation. Release 14.5.7.
5. ITASCA Consultants, Minnesota, USA. FLAC3D Manuals, 3.1 edition, 2006.
6. K. Aziz and A. Settari. Petroleum reservoir simulation, volume 476. Applied Science Publishers

London, 1979.



Chapter 11
Thermo-Mechanics: Stress-Induced Heating
of Elastic Solids

Norihiro Watanabe, Guido Blöcher, Harald Milsch and Andreas Reinicke

11.1 Theory

This benchmark focuses on stress-induced heating in elastic solids. In the following,
we briefly present governing equations relevant to this coupled thermal and mechan-
ical processes. For details, readers are referred to [1, 2].

From the first law of thermodynamics, an energy balance equation of solid mate-
rials per unit volume can be expressed as [2]

ρ
De

Dt
+ ∇ · (−λ∇T ) − σ : ∇v = Q (11.1)

with density ρ, specific internal energy e, thermal conductivity λ, absolute tempera-
ture T , the stress tensor σ, the solid velocity v, and the source and sink term Q.

The stress induced heating is revealed by expanding the first term in the left hand
side (LHS) of the above equation. The term can be rewritten as

ρ
De

Dt
= ρ

Dh

Dt
+ P

ρ

Dρ

Dt
− D P

Dt
(11.2)

by substituting the specific internal energy with

e = h − P

ρ
(11.3)
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where h is specific enthalpy, and P = −1/3σi i is the hydrostatic part of the stress
tensor. Utilizing the following thermodynamic relations

(
∂h

∂T

)
P

= cp (11.4)

(
∂h

∂P

)
T

= 1

ρ
(1 − βT T ) (11.5)

with the specific heat at constant pressure cp and the volumetric thermal expansion
coefficient βT , the differential of the specific enthalpy is expressed as

dh(P, T ) =
(

∂h

∂T

)
P

dT +
(

∂h

∂P

)
T

d P = cpdT + 1

ρ
(1 − βT T )d P. (11.6)

Therefore, the first term can be expanded as

ρ
De

Dt
= ρcp

DT

Dt
+ P

ρ

Dρ

Dt
− βT T

D P

Dt
(11.7)

in which the last term in the right hand side (RHS) corresponds to the heat source
induced by the pressurization. Using the expression and neglecting the mechanical
work, the energy balance equation is rewritten as

ρcp
DT

Dt
− βT T

D P

Dt
+ ∇ · (−λ∇T ) = Q (11.8)

which explicitly includes the stress-induced heat production. As one can see from
the equation, temperature increase due to the pressurization depends on absolute
temperature and the ratio of the thermal expansion coefficient to heat capacity of
solids, i.e. βT /(ρcp). The latter is material dependent.

For isotropic linear elastic materials, the differential of the pressure can be sub-
stituted by

d P = −Ksd ε̄e = −Ks(d ε̄t − βT dT ) (11.9)

where ε̄e is the volumetric elastic strain, ε̄t is the volumetric total strain, and Ks is the
adiabatic bulk modulus (subscript s is conventionally used for adiabatic condition)
given by

Ks = E

3(1 − 2ν)
(11.10)

with Young’s modulus E and Poisson’s ratio ν. Hence, the energy balance equation
is formulated as
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ρcp
DT

Dt
+ βT T Ks

(
Dε̄t

Dt
− βT

DT

Dt

)
+ ∇ · (−λ∇T ) = Q (11.11)

including the volumetric strain rate instead of the pressurization rate. Using the
Grüneisen parameter [1]

γ = βT Ks

ρcp
, (11.12)

the equation can also be expressed as

DT

Dt
+ γT

(
Dε̄t

Dt
− βT

DT

Dt

)
+ ∇ · (−α∇T ) = Q

ρcp
(11.13)

with the thermal diffusivity α. In [1], the thermal strain rate is neglected, i.e. the
elastic strain rate is approximated by the total strain rate.

Assuming quasi static stress equilibrium, an equation of linearmomentumbalance
in the solid phase can be given as

∇ · σ + ρg = 0 (11.14)

with gravity acceleration vector g. The constitutive equation for stress and strain is
given in an incremental form as

dσ = D : (dε − αT IdT ) (11.15)

where D is the tangential stiffness matrix, ε is the total strain tensor, αT = 1/3βT is
the linear thermal expansion coefficient, and I is the identity tensor.

11.2 Problem Definition

This example considers temperature evolution in a cylindrical sample under uni-
axial compression (Fig. 11.1). The sample has a radius of 2.5cm and a length
of 10cm. The sample temperature is initially homogeneously distributed and can
locally evolve depending on the loading condition and interaction with surround-
ings. In this study, the loading condition is divided into two stages (Fig. 11.2).
In the first 15min, the deformation is carried out slowly by linearly increasing
the loading pressure. In the second stage, the loading stress is kept constant over
another 15min. Initial and boundary conditions of the problem are illustrated in
Fig. 11.1.

In order to demonstrate effects of the stress rate and the system temperature on
the heating process, we test with different loading rates (d F/dt = Fmax/�t with
Fmax = 10, 20, 30MPa and �t = 15min., i.e. d F/dt = 0.67, 1.33, 2MPa/min.) and
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Fig. 11.1 Uniaxial compression of a cylindrical sample under adiabatic condition for a case
T0=25 ◦ C

Fig. 11.2 Time varying loading pressure on the top surface for Fmax=10MPa

with different initial and ambient temperatures (T0 = 25, 50, 75 ◦C). For material
dependence on temperature evolutions, we test the following materials.

• Bentheim sandstone
• Crystalline rock
• Iron
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Table 11.1 Material properties

Bentheim sandstone [3] Crystalline rock Iron

Solid phase Density 2650kg/m3 2640kg/m3 7870kg/m3

Specific heat 730J/(kg K) 990J/(kg K) 450J/(kg K)

Thermal conductivity 7W/(m K) 2.86W/(m K) 80.4W/(m K)

Young’s modulus 25GPa 35GPa 210GPa

Poisson ratio 0.16 0.25 0.29

Linear thermal expansion coefficient 1e-5K−1 1e-5K−1 1.2e-5K−1

Medium (at 25 ◦C) Porosity 23% 1% 0%

Thermal diffusivity 3.62e-6m2/s 1.09e-6m2/s 22.7e-6m2/s

Grüneisen parameter 0.247 0.271 1.69

βT /(ρcp) 2.01e-11Pa−1 1.16e-11Pa−1 1.02e-11Pa−1

Table 11.2 Air properties

Temperature 25 ◦C 50 ◦C 75 ◦C
Density 1.2kg/m3 1.08kg/m3 1kg/m3

Specific heat 1005J/(kg K) 1008J/(kg K) 1010J/(kg K)

Thermal conductivity 0.027W/(m K) 0.0278W/(m K) 0.0297W/(m K)

For all rock samples, we assume effective bulk properties for dry and drained con-
dition, although the Bentheime sandstone has a porosity of approximately 23%.
The effective properties are calculated by taking an arithmetic mean of all phase
properties weighted by their volume fractions. Moreover, all material properties are
assumed to be constant because of little temperature changes in this problem. The
gravity force is also neglected due to the small sample size. Parameters of all the
materials and air are listed in Tables11.1 and 11.2.

11.3 Analytical Solution

[4] presented analytical solutions for temperature evolution in the cylindrical sample,
based on assumptions that thermal strain is negligible and temperature in the heat
production term can be approximated by the constant reference temperature. The
solutions are separately provided for the two stages as follows:

• First stage: constant strain rate (0 ≤ t < t̄)

T (z, t) = T0 − 4

π3 γT0ε̇0(1 − 2ν)
L2

α

∞∑
1n

[
1 − e−n2t/τ1

n3 sin(nπ
z

L
)

]
(11.16)
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• Second stage: constant strain (t̄ ≤ t)

T (z, t) = T0 − 4

π3 γT0ε̇0(1 − 2ν)
L2

α

∞∑
1n

[
1 − e−n2 t̄/τ1

n3 e−n2(t−t̄)/τ1 sin(nπ
z

L
)

]

(11.17)

where n is odd number, γ is the Grüneisen parameter, T0 is the reference temperature
of the undeformed sample, ε0 is the given longitudinal strain rate for the first stage,
ν is Poisson’s ratio, L is the sample length, α is thermal diffusivity, and τ is the time
constant given by τ1 = L2/(π2α).

11.4 Numerical Solution

An axisymmetric FEM model is used to solve the coupled thermal and mechanical
problem in OpenGeoSys. Along the symmetric axis, zero displacement in the radial
direction is additionally imposed as boundary conditions. The domain is spatially
discretized with 100 quadrilateral elements having constant element size of 5mm.
Time step size is homogeneously set to 15s.

11.5 Results

Figures11.3, 11.4 and 11.5 compare analytical and numerical solutions of temper-
ature increments at the vertically middle of the sample (z = L/2) for different

Fig. 11.3 Temperature increase curves for different materials at Fmax = 10MPa, T0 = 25 ◦C
(observed at the vertically middle of the sample)
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Fig. 11.4 Temperature increase curves for different loading rates with Bentheim sandstone at
T0 = 25 ◦C (observed at the vertically middle of the sample)

Fig. 11.5 Temperature increase curves for different initial temperatures with Bentheim sandstone
at Fmax = 10MPa (observed at the vertically middle of the sample)

materials, different loading rates, and different system temperatures. Results are
summarized as follows:

• For all the test cases, during the first 15min, temperatures of all the samples
gradually increase as the loading pressure is increased with the constant rate until
the pressure reaches its maximum. Once the loading pressure is kept constant after
15min, the stress-induced heating stops and the sample temperature starts to drop
down due to heat conduction into surroundings.

• Material dependence of the heating behavior is shown in Fig. 11.3. Temperature
evolves faster in the Bentheim sandstone as βT /(ρcp) of the material is larger than
the other materials (Table11.1).
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• Effects of the stress rate (or the strain rate) and the system temperature on the
heating are presented in Figs. 11.4 and 11.5 for the Bentheim sandstone. Higher
pressurization rate and higher system temperature lead to larger heat production
in a linear fashion. Note that the heating is scaled by absolute temperature, not by
temperature in Celsius degree.

• For this specific problem, the sample temperature can reach equilibrium while
pressurization because of heat conduction into the top and bottom surfaces where
the ambient temperature is imposed.Materials with higher thermal diffusivity have
lower equilibrium temperature (see Iron case in Fig. 11.3). Maximum temperature
increase is ca 0.009K for the crystalline rock which has the lowest thermal diffu-
sivity (Table11.1).

• For all the materials, both analytical and numerical solutions show good agree-
ments, because temperature increase in this study is very low (<0.1K) and the
influence of the thermal strain (<1e-4%) is negligible compared to the elastic
strain (e.g. >0.04% for Benthaim sandstone).
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Chapter 12
Reactive Transport

Christof Beyer, Thomas Nagel and Haibing Shao

12.1 Kinetic Dissolution of Non-aqueous Phase Liquids

Christof Beyer and Sebastian Bauer

Dissolution of organic contaminants from non-aqueous phase liquid (NAPL) source
zones and their spreading in groundwater is an ubiquitous problemespecially in urban
regions. The simulation of kinetic NAPL dissolution processes in OpenGeoSys is
based on a simplified two-phase flow model (water and NAPL) and describes the
transfer of mass betweenwater andNAPL phases by a system of ordinary differential
equations. The two-phase flowmodel is simplified by assuming theNAPLphase to be
present in residual saturation only, and hence being immobile. A change of the NAPL
saturation may occur only through the NAPL dissolution process. In the current
implementation, a pressure-saturation (Pw−Sn) formulation is used for the two phase
flow problem. For the implementation of the two-phase flow and transport equations
please refer to [1].

Conceptually, the NAPL phase consists of all components present in the NAPL.
A NAPL phase may be distributed in different NAPL geometries (pools, blobs of
different shapes and sizes; amount: j = 0, . . . , nj). An individual organic component
can be present in a reference volume at the same time in several NAPL pools and
NAPL blobs of individual initial volume and surface area. The NAPL dissolution
process is modeled as an exchange process between the immobile components in the
NAPL and the corresponding mobile aqueous phase components.
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In general, mass transfer between the NAPL and the aqueous phase for individual
components i can be described by Fick’s 1st law

∂Mi

∂t
= ka

(
Csat

w,i − Cw,i
)

(12.1)

The rate of mass transfer [MT−1] depends mainly on the concentration difference
between the equilibrium concentration Csat

w,i [M L−3] and the actual concentration

Cw,i [M L−3] in the water phase as well as on the mass transfer parameter k [L
T−1] and the water-NAPL contact area a [L2]. Mass transfer results in a change of
concentration of component i in the aqueous phase and the corresponding component
in the NAPL phase geometry j, Cn,j,i [M L−3

NAPL]. To convert the change of mass into
a change of concentration in water, the volumetric fraction of water in the REVmust
be considered, which is given by the product of water saturation Sw and porosity n
and remains constant during the time step, with

nSw

∂Cw,i

∂t
=

∑
j

kjaj

(
Csat

w,j,i − Cw,i

)
(12.2)

Vn,j
∂Cn,j,i

∂t
= −kjaj

(
Csat

w,j,i − Cw,i

)
(12.3)

where Csat
w,i,j, kj and aj must be computed for each individual blob or pool geometry j.

For NAPL mixtures Csat
w,i,j is calculated according to Raoult’s law

Csat
w,j,i = Csat_ pure

w,i γi
Cn,j,i∑
i Cn,j,i

(12.4)

where Csat_ pure
w,i [M L−3

water] is the pure phase aqueous solubility and γi [-] the activity
coefficient of component i in the NAPL.

The mass transfer coefficient k for each blob geometry j can be estimated by
different empirical correlations (see e.g. [2]). Here, a model of [3] is employed

kj = SF

(
ρwvad50

μw

)RE (
μw

Daqρw

)SE Daq

d50
(12.5)

where d50 [L] is the mean grain size diameter, Daq [L2 T−1] is the coefficient of
diffusion in water, SF [-] is the Sherwood-factor and RE [-] and SE [-] are the
Reynolds- and Schmidt-exponents, as the two terms in brackets are the Reynolds-
and Schmidt-numbers, respectively.

The volume fraction ofNAPLblob geometry j,Vn,j [L3
NAPL L

−3
REV ], in the reference

volume is given by
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Vn,j =
∑

i

Mn,j,i

ρi
(12.6)

where Mn,j,i [M L−3
REV ] is the mass of a single component in the reference volume

and ρi [M L−3
component] its pure phase density. Based on assumptions with regard to the

initial geometry of the NAPL distribution (i.e. dimension, number and shape (sphere,
cylinder, pancake, …)) the initial concentration and volume distribution leads to an
approximate initial surface area a0 [L2 L−3

REV ]. For a specific NAPL geometry j, a0j
can be derived from the total mass of NAPL present and the shape and size of the
assumed NAPL geometry (pool, cylindrical or spherical blobs). For spherical blobs,
e.g. an approximation given by [4] can be used

a0j = 3nSn

rb
(12.7)

where rb is the mean radius of the sperical blobs, which can be approximated by
d50/4. The updated surface area at+1 after computation of NAPL dissolution is
quantified from the previous surface area at and the ratio of volumes after (Vt+1)
and before (Vt) NAPL dissolution

at+1
j = at

j

(
Vt+1

n,j

V t
n,j

)ζ

(12.8)

where ζ [-] depends on the assumed geometry of the NAPL distribution and is 2/3
for spherical blobs, 0.5 for cylindrical blobs and 0 for pools, as their surface area
remains almost constant over time.

For a NAPL geometry (i.e. a single pool or blob) consisting of a number of i
components, the total NAPL volume Vn [m3

NAPL m−3
REV ] in the REV is given by

Vn =
∑

i

Ci

ρm
i

(12.9)

where Ci (mol m−3
REV ) is the NAPL components concentration and ρm

i (mol m−3
NAPL)

its molar density, and Sn = Vn/n.

12.1.1 Hansen and Kueper Benchmark

The kinetic dissolution model is validated against an analytical solution by Hansen
and Kueper [5]. The Hansen and Kueper model was developed to quantify the tem-
porally changing composition of a residual multi-component NAPL body in moving
groundwater and the consequent changes of the NAPL constituents concentrations in
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TCM
TCE

PCE

ground water
flow

NAPL source

control plane at downgradient source margin

plume

Fig. 12.1 Conceptualization of the Hansen andKueper analytical solution ([5]): Example of a three
component residual NAPL source zone in a moving groundwater body and source emission

the surrounding groundwater. It is suited for both, pooled configurations and residual
NAPL in blob geometries and—as any analytical model—is based on a number of
simplifying assumptions:

• Themodel predicts theNAPLcomposition aswell as aqueous phase concentrations
at the downstream end of the NAPL source zone (Fig. 12.1).

• Intra-NAPL diffusion is fast in relation to phase partitioning.
• For pools the local equilibrium assumption is employed, i.e. inter-phase mass
transfer is faster than solute transport away from the NAPL.

• Within a zone of residual NAPL, NAPL saturation and mixing are sufficient to
allow the assumption of a uniform concentration composition at the downstream
endof the source zone (perfectlymixed source),which followsRaoult’s law (global
equilibrium assumption).

• The component composition of the NAPL is spatially invariant at a particular
instant in time.

• Dissolution kinetics are fast at all times (equilibrium dissolution).
• NAPL saturation, effective porosity and water flux through the source are constant
in time.

12.1.1.1 Definition

The Hansen and Kueper model for a residual NAPL source zone was represented
as a one-dimensional numerical model of 10m length in x direction using linear
finite elements and a spatial discretization �x = 0.333m. The perfectly mixed
residual NAPL source zone is represented as a zone of blobs at a single node of the
finite element mesh directly downgradient of the left hand side model boundary at
x = 0.333m (Fig. 12.2).

const. qin const. qout

NAPL source, observation point

Fig. 12.2 Representation of the Hansen and Kueper analytical solution ([5]) in a numerical model.
The red dot represents the position of the NAPL blob zone in the linear finite element mesh
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Table 12.1 Physicochemical properties and initial concentrations of the immobile NAPL species

Parameter PCE TCE TCM Total Unit

Molar weight 0.166 0.131 0.154 kg mol−1

Molar density 9770.8 11111.1 12395.3 mol m3

Max. aq. solubility 1.15 10.65 72.86 mol/m3

Concentration 122.14 111.11 30.99 264.24 mol/m3
REV

Volume per m3
REV 0.013 0.010 0.003 0.025 m3

Mass per m3
REV 20.254 14.599 4.767 39.620 kg

The temporally constant flux through the NAPL source is induced by source terms
of qin = −qout = 1.157 · 10−6 m s−1 at the left and right hand side model bound-
aries, respectively (Fig. 12.2). The NAPL consists of the three chlorinated hydrocar-
bon species perchloroethene (PCE), trichloroethene (TCE) and tetrachloromethane
(TCM). Accordingly, three immobile NAPL species plus three correspondingmobile
species are defined in themodel. Table12.1 lists physicochemical parameters and ini-
tial amounts or concentrations, respectively, assumed for the three immobile NAPL
species in this simulation.

Corresponding mobile species in the aqueous phase share the same physicochem-
ical properties. Initial concentrations at the second node of themesh (i.e. at the NAPL
source position) correspond the equilibrium concentrations according toRaoult’s law
and the initialmoles of the immobileNAPLcomponents and assuming activity coeffi-
cients of all three components in the NAPL as 1.0, i.e. CPCE = 0.532,CTCE = 4.478
and CTCM = 8.545mol m−3, respectively. Elsewhere, initial concentrations (as well
as upstream boundary conditions) are set to C = 1.0·10−10 mol m−3. In the NAPL
source Sn = 0.10 and Sw = 0.90, accordingly, while Sw = 1.0 and Sn = 0.0 else-
where. Water phase relative permeability krw [-] is described by the Brooks-Corey
model

krw = (Se)
2+3λ

λ (12.10)

with λ [-] the Brooks-Corey parameter and Se [-] the effective saturation

Se = Sw − Srw

1 − Srw
(12.11)

All other relevant model parameters are summarized in Table12.2.
The initial interfacial area a0 is set to a very large value of 5000.0 m2 m−3

REV in
order to guarantee fast (i.e. quasi equilibrium)NAPLdissolution kinetics, as assumed
by the analytical solution. Also, the geometry exponent ζ is set to a value of 0.0 in
order to keep the interfacial area constant over time. The simulation is run for 3200
time steps of 10,800s length.
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Table 12.2 Model
parameters used for the
Hansen and Kueper
benchmark

Parameter Value Unit

Model length x 10 m

Model length y 1.0 m

Model length z 1.0 m

Element length x 0.333 m

Porosity n 0.25 –

Permeability k 1.54249·10−11 m2

Residual water saturation Srw 0.05 –

Maximum water saturation Ssw 1.0 –

Residual NAPL saturation Srn 0.2 –

λ (Brooks-Corey parameter) 3.86 –

Density of water ρw 999.7 kg m−3

Viscosity of water μw 1.307·10−3 Pa s

Mean grain diameter d50 0.001 m

Sherwood factor SF 1.15 –

Reynolds exponent RE 0.654 –

Schmidt exponent SE 0.486 –

Geometry exponent ζ 0.0 –

Initial interfacial area a0 5000.0 m2 m−3
REV

Initial water pressure (x, t = 0) 98067.0 Pa
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Fig. 12.3 Total amounts of PCE, TCE and TCM in the NAPL phase (left diagram) and corre-
sponding aqueous phase concentrations at the downgradient source zone margin (right diagram)
as functions of time; full lines analytical solution of Hansen and Kueper [5], symbols OpenGeoSys
simulation results

12.1.1.2 Results

Figure12.3 presents the amounts of the the three immobile species PCE, TCE
and TCM in the NAPL phase (left diagram) and the corresponding aqueous phase
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concentrations (i.e. the source emission; right diagram) as functions of time. Full
lines are for the analytical solution, while symbols represent results of the numerical
simulation. The agreement is excellent over a concentration range of several orders
of magnitude. TCM, which has the highest pure phase aqueous solubility is depleted
fastest from the source. TCM and especially PCE depletion requires significantly
longer time periods. Aqueous phase concentrations of PCE drop almost instanta-
neously, once the remaining amount of PCE in the NAPL falls below 0.28mol.

12.2 Kinetic Mineral Dissolution/Precipitation

Christof Beyer and Sebastian Bauer

In OpenGeoSys the simulation of kinetic dissolution or precipitation of a mineral
phase M [ML−3

solid] in a fully saturated porous medium is based on a Lasaga type rate
law ([6, 7])

∂M

∂t
= KtotA|1 − �θ|ηsgn(1 − �θ)(1 − n)−1 (12.12)

where Ktot [ML−2
mineralT

−1] is an overall rate constant, A [L2
mineralL

−3
aquifer] the min-

eral’s reactive surface area, θ and η are empirical exponents, and n [L3
waterL

−3
aquifer]

is porosity, as division by (1−n) is required for unit conversion. sgn is the sign func-
tion, i.e. either −1 for dissolution or +1 for precipitation of the mineral. � is the ion
activity product divided by the equilibrium constant K of the mineral-water reaction

� =
∏n

i=1 γνi
i Cνi

i

K
(12.13)

where γi [-] is the activity coefficient of species Ci (mol kgw−1) and νi [-] the
corresponding stoechiometric coefficient.

Parameter A [L2L−3
aquifer] of Eq. (12.12) for a mineral can be calculated from mea-

sured mineral specific reactive surface areas by multiplication with aquifer bulk
density and the minerals solid volume fraction. Ktot consists of a so called base
mechanism rate constant Kb and optional concentration dependent contributions
from acid, alkaline or other catalysing or inhibiting species mechanisms

Ktot = Kb +
n∑

i=1

Ki
m∏

j=1

γ
βij
ij C

βij
ij (12.14)

where Ki [ML−2T−1] is the ith mechanism’s rate constant and βij is an empirical
exponent for the jth species of the ith mechanism. Temperature dependence of rate
constants Kb or Ki in Eq. (12.14) is calculated by the Arrhenius correction, i.e.
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Ki = Ki
25 exp

(−Ei
a

R

[
1

T
− 1

298.15

])
(12.15)

where Ki
25 [ML−2T−1] is the reaction rate constant of mechanism i at 298.15K, Ei

a
[JM−1] the corresponding activation energy,R [JM−1K−1] the universal gas constant
(i.e. 8.314Jmol−1K−1) and T [K] the absolute ambient temperature. The production
or consumption of aqueous species Ci due to precipitation or dissolution of mineral
M is coupled to Eq. (12.12) via the stoechiometric coefficients νi.

∂Ci

∂t
= νi

∂M

∂t
(12.16)

12.2.1 Simulation of a Kinetic Calcite/Dolomite Dissolution Front

This benchmark is based on a reactive transport problem described in Chap.15.1
of [1], where a 0.5m long one-dimensional column that initially contains calcite is
continuously flushed by a magnesium chlorine solution (Fig. 12.4). The injection of
the magnesium chlorine solution induces a dissolution of the calcite and a temporary
precipitation of dolomite. This benchmark was originally presented by [8].

In contrast to the simlation described in [1], where calcite and dolomite reactions
were simulated as equilibrium reactions, here both are simulated as kinetically lim-
ited. The coupled OpenGeoSys-ChemApp code ([9, 10]) is used for this purpose and
compared against OpenGeoSys-Phreeqc.

12.2.1.1 Numerical Model

The relevant media properties of this benchmark are listed in Table12.3.
Calcite and dolomite kinetics are governed by two mechanisms, respectively,

contributing to the total rate constants, a neutral (or baseterm) and an acidmechanism,
which nonlinearly depend on the activity ofH+. Calcite kinetics is considerably faster
than the dolomite reaction. The surface areas for both minerals are assumed constant
over time for the sake of simplicity. Table12.4 lists the parameters of the kinetic
calcite and dolomite reactions, which were taken from [11].

0.0 m 0.5 m
0.001M
MgCl2 0.002M Calcite

Fig. 12.4 Model domain
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12.2.1.2 Results

The model is run for a period of 210 time steps of 100s length, respectively. Simula-
tion results are compared after 21000s at the end of the simulation (Fig. 12.5), where
solid lines are for the kinetic OpenGeoSys-ChemApp simulation, while dashed lines
with symbols represent the results of the equivalent OpenGeoSys-Phreeqc model.
The kinetics of calcite dissolution, dolomite precpitation and its redissolution result
in smoothed dissolution fronts and lower amounts of precipitated dolomite in com-
parison to the equilibrium reactive transport simulation (cf. [1]). Agreement of results
between OpenGeoSys-ChemApp and OpenGeoSys-Phreeqc is very close, with only
slight differences in the shape of the Mg concentration profile.

Table 12.3 Material
properties for the calcite
dissolution benchmark

Parameter Value Unit

Column length 0.5 m

Effective porosity 0.32 –

Bulk density 1.8 × 103 kg/m3

Longitudinal dispersivity 0.0067 m

Pore velocity 9.375 × 10−6 m/sec

Flow rate 3 × 10−6 m3/sec

Temperature 298.15 K

x x x x x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

x x x x x x x x x

distance [m]

C
O

3-2
, M

g
+2

, C
a+2

, C
l-  [

m
o

l/m
³]

C
al

ci
te

 [
m

o
l/m

³]

D
o

lo
m

it
e 

[m
o

l/m
³]

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

0

0.01

0.02

0.03

0.04

0.05

0

0.0005

0.001

0.0015

0.002

x

O
G

S
/

C
h

em
ap

p
O

G
S

/
P

h
re

eq
c

CO3
-2

Ca+2

Mg+2

Cl-

Calcite
Dolomite
CO3

-2

Ca+2

Mg+2

Cl-

Calcite
Dolomite
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Table 12.4 Parameters for
calcite and dolomite
dissolution kinetics

Parameter Calcite Dolomite Unit

A 3.20 0.32 m2/m2
aquifer

θ 1.0 1.0 -

η 1.0 1.0 -

Ea (neutral) 23500 52200 J/mol

log(K25) (neutral) −5.81 −7.53 mol/m2/s

Ea (acid) 14400 36100 J/mol

log(K25) (acid) −0.30 −3.19 mol/m2/s

Species (acid) H+ H+ –

β 1.0 0.5 –

12.3 Local Thermal Nonequilibrium and Gas–Solid Reactions

Thomas Nagel and Haibing Shao

12.3.1 Introduction

Certain local thermodynamic and transport conditions inside a porous medium can
cause local thermal non-equilibrium (TNEQ) between the solid and fluid phases.
Instead of a mixture energy balance, separate energy balance equations for each
phase are applied and give rise to individual temperature variables for those phases.
Consequently, the heat transfer between the phases can be modelled. In this chapter
the implemented T2HCmodel (where the exponent 2 stands for the two heat transport
equations necessary to account for TNEQ) is benchmarked. Details of the implemen-
tation and further literature can be found in [12].

12.3.2 Interphase Heat Transfer

The objective of this benchmark is to verify the heat transfer implementation between
solid and fluid. Both are given their individual initial temperatures and are allowed to
exchange heat. Consider a porous solid filled with an ideal gas, in this case nitrogen.
The system is homogeneous and completely closed off, i.e. neither mass nor heat
fluxes are allowed across the system boundaries. The solid skeleton is considered
rigid, the porosity constant, chemical reactions are suppressed. Therefore, the density
of the gas inside the medium will not change. Heat sources/sinks, mass transfer,
conductive or convective heat transport are thus not present. The energy balance for
the ideal gas then simply reads
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kG
∂TG

∂t
= hSG(TS − TG) + φ

∂p

∂t
with kα = φαραRcpα with α = S, G

(12.17)

Solid and gas temperature are not independent. The total energy balance reads

kG
∂TG

∂t
+ kS

∂TS

∂t
= φG

∂p

∂t
(12.18)

With the constant gas density ρGR = ρGR0 we find using the ideal gas relation

∂p

∂t
= ρGR0R

M

∂TG

∂t
= p0

TG0

∂TG

∂t
with ρGR0 = p0M

RTG0
(12.19)

Integration of the overall energy equation yields (with Tα0 = Tα(t = 0))

kG(TG − TG0) + kS(TS − TS0) = φG
p0

TG0
(TG − TG0) (12.20)

TS = TS0 + 1

kS

⎛
⎜⎜⎜⎝φG

p0
TG0︸ ︷︷ ︸

:=kp

−kG

⎞
⎟⎟⎟⎠ (TG − TG0) (12.21)

Thus, the solution for TG can be found after some rearrangements to be

TG = 1

(kp − kG − kS)

[
kS(TS0 − TG0)e

−t/τ − kSTS0 + (kp − kG)TG0
]

(12.22)

with τ = kS(kp − kG)

hSG(kp − kG − kS)
(12.23)

The exemplary parameter set is listed in Table12.5. The values are chosen such
that temperature changes due to heat transfer are visible in both phases.

With this parameter set, a time constant τ = 0.124s follows. The simulation time
was thus set to 1 s with a time step size of 0.002s. The spatial discretisation is not of
significance in this homogeneous problem which was simulated using one dimen-
sional elements. Good agreement between the numerically calculated temperature

Table 12.5 Parameter values for interphase heat transfer verification

hSG [W/(m3 K)] φG [-] ρSR [kg/m3] ρGR0 [kg/m3] cpG [J/(kgK)]

1000.0 0.5 1.0 0.436 1012

cpS [J/(kgK)] TG0 [ ◦C] TS0 [ ◦C]
1200 500 200
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Fig. 12.6 Verification of interphase heat transfer. Solid lines denote the analytical solution, crosses
mark the numerical solution. a Solid and gas temperature profiles. b Gas pressure

profiles for both the solid and the gas phase were found (Fig. 12.6a). It can be seen
that a common temperature is reached due to interphase heat transfer that is deter-
mined by the overall heat capacities of both the solid and gas phases. Additionally, in
Fig. 12.6b the gas pressure profile calculated by OGS is compared to the analytical
solution obtained by the ideal gas law.

12.3.3 Interphase Mass Transfer and Heat of Reaction

In this example, the behaviour of the model when mass transfer occurs between the
phases is verified. Consider a closed off system similar to the one described in the
previous example. The porous body is filled with a mixture of nitrogen and vapour
modelled as ideal gasses. To obtain an analytical solution, hSG → ∞ is assumed so
that TG = TS = T . Under the described conditions we add the gas and solid energy
balance

ρGcpG
∂T

∂t
− ∂φGp

∂t
= 0 (12.24)

ρScpS
∂T

∂t
= ∂ρS

∂t
�h (12.25)

to obtain

(ρGcpG + ρScpS)
∂T

∂t
− ∂φGp

∂t
= ∂ρS

∂t
�h (12.26)

Using the ideal gas law, the closed system assumption, and considering nitrogen as
non-reactive we find
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∂φGp

∂t
= RT

MV

∂ρV

∂t
+ R

∂T

∂t

(
ρV

MV
+ ρN

MN

)
︸ ︷︷ ︸

=R ∂T
∂t

ρG
MG

(12.27)

With the mass balance constraint ρ̂S = −ρ̂V = −ρ̂G the energy balance thus reads

(ρGcv̄G + ρScpS)
∂T

∂t
= ∂ρS

∂t

(
�h − R

MV
T

)
(12.28)

For simplicity we now numerically set cpS = cv̄G = c̄ and further note that ρG+ρS =
ρ = const. Integration yields

T = MV

R

[
�h −

(
�h − R

MV
T0

)
e
−(ρS−ρS0)

R
MV c̄ρ

]
(12.29)

To illustrate both the forward and the backward reaction, the reaction rate was
modelled with a trigonometric function such that the solid density evolution was
sinusoidal (amplitude ρ̃, angular frequency ω)

ρ̂S(t) = ρ̃ω cos(ωt) (12.30)

From this reaction rate, the following composition relations can be derived
analytically:

ρSR(t) = ρSR0 + ρ̃ sin(ωt)

1 − φG
, ρGR(t) = ρGR0 − ρ̃ sin(ωt)

φG
(12.31)

ρVR(t) = ρVR0 − ρ̃ sin(ωt)

φG
, xmV (t) = ρVR(t)

ρGR(t)
(12.32)

With the conversion frommass into mole fractions the molar mass of the gas mixture
is found along with the gas pressure (time dependency implicit)

xnV = MN xmV

MN xmV + MV (1 − xmV )
(12.33)

MG(xnV ) = MV xnV + MN (1 − xnV ) (12.34)

p(t) = ρGRRT

MG
(12.35)

The exemplary parameter set is listed inTable12.6. Thevalues are chosen such that
temperature changes due to mass transfer are visible in both phases. The numerical
model was run with the full TNEQ implementation albeit with a very high value
for hSG. Additionally, the heat of reaction was varied to illustrate its effect: �h =
{0.0, 105, 5 · 105} J/kg. A time step size of 0.001s was chosen for a time interval of
1 s. Similar to the previous example, the homogeneity of the considered system does
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Fig. 12.7 Verification of interphasemass transfer. Solid lines denote the analytical solution, crosses
mark the numerical solution. a Gas density. bVapour mass fraction. c Temperature profiles (marked
with the respective reaction enthalpies). dGas pressure profiles (markedwith the respective reaction
enthalpies)

not cause any special requirements for its spatial discretisation. 1D elements were
used.

The model correctly reproduced the conditions of thermal equilibrium. The
numerically obtained gas real density and vapour mass fraction profiles compare
well with the analytical solution (Fig. 12.7a, b). During the initial stage of the reac-
tion the gas loosesmasswhile the solid (not shown) gains that amount ofmass.During
the back reaction the opposite effect occurs. An equally good match is obtained for
the temperature profiles (Fig. 12.7c). If no heat of reaction is released, the gas simply
cools down as its density and pressure drop. The solid phase follows this trend due to
the very low density chosen here for demonstration purposes. The temperature fluc-
tuation is lower when the exothermic heat of reaction �h = 105 J/kg is considered.

Table 12.6 Parameter values
for interphase mass transfer
verification

φG [-] ρSR0 [kg/m3] ρGR0 [kg/m3] c̄ [J/(kgK)]

0.7 1.0 0.659 620.57

TG0 = TS0 [K] ω [Hz] ρ̃ [kg/m3] xmv0 [-]

400 2π 0.1 0.5
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Table 12.7 Relevant material
parameters for the interphase
friction benchmark

φG k μV λGR λSR

0.8 5·10−12 m2 1·10−5 Ns/m2 10W/mK 0.4W/mK

If the heat of reaction is increased even further to �h = 5 · 105 J/kg, the tempera-
ture profile switches signs and follows the opposite trend as the heat released in the
solid phase becomes the dominant effect. In the gas pressure profiles this switch of
sign can be observed as well along with an increasingly non-sinusoidal trend in the
pressure profile (Fig. 12.7d).

12.3.4 Interphase Friction

When a fluid moves through a porous solid, the interphase friction generates heat.
In local TNEQ models, this friction term can either be assigned to the fluid phase as
the convection term φGTGαT grad (φGp) · vG or to the solid phase as the momentum
interaction term p̂G ·wG. The former is done in OGS as part of the advection matrix
calculation, the latter as part of the RHS calculation. For testing purposes it can also
be neglected completely.

Both versions should produce identical results for thermal equilibrium, i.e. when
the interphase heat transfer coefficient hSG is chosen sufficiently high so that solid
and gas temperatures remain virtually identical at all times.

12.3.4.1 Model

A square domain with 400 bilinear quadratic elements was modelled and subjected
to a diagonal flow pattern (once steady state is reached) by applying pressure and
temperature boundary conditions as shown in Fig. 12.8. Ideal gas behaviour was
assumed for the fluid (nitrogen) and the system was sealed with respect to the heat
flux vectors for both phases where no temperature boundary condition is indicated
in Fig. 12.8. The analysis was run until temperature and flow fields had evolved to a
steady state. Relevant material parameters are listed in Table12.7.

12.3.4.2 Results

Themesh and the resultant pressure distribution are shown in Fig. 12.9a. The pressure
gradient drives a diagonal flow pattern and the temperature distribution was plotted
along the dashed line indicated in Fig. 12.9a. The temperature profiles are identical
for the cases where the interphase friction term is added implicitly to the fluid energy
balance or explicitly on the RHS of the solid energy balance (Fig. 12.9b). If the term
is neglected altogether, the gas cools down due to the expansion (pressure drop)
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it undergoes and subsequently cools down the solid with it until a steady state is
reached (Fig. 12.9b). The latter is an unphysical result.

12.3.5 Steady State Heat Conduction with Heat Generation
and Convection Boundary Conditions

12.3.5.1 Model

For each phase (fluid and solid), that is for each energy balance equation used in
the T2HC model, convective boundary conditions were implemented. Convective
boundary conditions specify the heat flux across a surface as

q · n = h(T − T∞) (12.36)

where h is the surface heat transfer coefficient depending on the convective conditions
as well as material pairs, and T∞ is the ambient temperature.

Consider a cylindrical rod with a constant heat source rα per unit mass of phase α
generated by nuclear processes, electric currents or some far field. An axisymmetric
model will be set up. Due to the axial homogeneity of the problem the 2D mesh
(Fig. 12.10a) can further be simplified to a 1D representation (Fig. 12.10b).

Simulationswere run until a steady statewas achieved and the temperature profiles
compared to the analytical solutions derived below. 20 linear elements with a bias
towards the open boundary were used in the 1D simulations. For the 2D simulations,
30 biased elements were employed in the radial direction and 2 in the (gradient-free)
axial direction. Sufficiently small time steps were allowed to ensure convergence.

p = 2 bar

p = 1.5 bar p = 1 bar

T
G0/S0

 = 573 K

p
0
 = 1 bar L = 0.1 mT

G
 = 573 K

T
G
 = 573 K

p = 1.5 bar

Fig. 12.8 Boundary and initial conditions for interphase friction benchmark
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Fig. 12.10 Axisymmetric model representations of the cylindrical rod problem. a 2D mesh. b 1D
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12.3.5.2 Analytical Solution—Cylindrical Coordinates

Consider porous solid filled with a stationary fluid of constant density. Only the
steady state problem involving heat conduction, the heat source and the convection
boundary condition will be solved. We further suppress any heat exchange between
the fluid and the solid phase (volumetric heat transfer coefficient hSG = 0) so that
their temperatures evolve independently. With homogeneous and isotropic thermal
conductivities and volume fractions the problem then reads
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−ραRrα

λαR
= 1

r

d

dr

(
r
dTα

dr

)
(12.37)

Integration yields:

Tα(r) = −ραRrα

4λαR
r2 + C1 ln r + C2 (12.38)

Regularity at r = 0 requires C1 = 0 and leaves C2 to be determined by the boundary
condition:

qα · n
∣∣
r=R = −φαλαR grad Tα|r=R = −φαλαR

dTα

dr

∣∣∣∣
r=R

(12.39)

dTα

dr

∣∣∣∣
r=R

= −hαφα(T |r=R − T∞)

φαλαR
(12.40)

With this, the surface temperature is found as

T |r=R = T∞ + ραRrα

2hα
R (12.41)

The steady state temperature profile thus follows as

Tα(r) = T∞ + ραRrαR2

4λαR

[
1 + 2λαR

Rhα
−

( r

R

)2]
(12.42)

12.3.5.3 Local Thermal Equilibrium

In an additional simulation, the behaviour under local thermal equilibrium was ver-
ified. Consider therefore the case where hSG → ∞, such that Tα = T ∀α and
additionally assume that rG = 0 (only the solid contains a heat source). The analyt-
ical solution then reads

T(r) = T∞ + ρSRrSR2

4λeff

[
1 + 2λeff

Rheff
−

( r

R

)2]
(12.43)

with

λeff = φSλSR + φGλGR (12.44)

heff = φShS + φGhG (12.45)

This problem was only run on a 1D mesh.
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12.3.5.4 Analytical Solution—Cartesian Coordinates

For reasons of additional verification, the above meshes are used for an analysis in
Cartesian coordinates as well (now a plate instead of a rod ismodelled). Starting from
the same equation as above but in Cartesian coordinates with symmetry conditions
at x = 0 and convection boundary conditions at x = L we find:

−ραRrα

λαR
= d2Tα

dx2
(12.46)

Integration yields:

Tα(x) = −ραRrα

2λαR
x2 + C1x + C2 (12.47)

With the symmetry condition Tα,x|x=0 = 0 we find C1 = 0. On the outer surface we
employ the convective boundary condition

qα · n
∣∣
x=L = −φαλαR grad Tα|x=L = −φαλαR

dTα

dx

∣∣∣∣
x=L

(12.48)

dTα

dx

∣∣∣∣
x=L

= −hαφα(T |x=L − T∞)

φαλαR
(12.49)

With this, the surface temperature is found as

T |x=L = T∞ + ραRrα

hα
L (12.50)

The steady state temperature profile thus follows as

Tα(x) = T∞ + ραRrαL2

2λαR

[
1 + 2λαR

Lhα
−

( x

L

)2]
(12.51)

Table 12.8 Geometric,
material and ambient
parameters for the convective
heat transfer boundary
condition under TNEQ

λSR λGR haS haG

0.2W/mK 10W/mK 10W/m2K 1W/m2K

ρSR ρGR rS rG

1000kg/m3 1kg/m3 10W/kg 500W/kg

T∞ R φG

293K 0.05m 0.8
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Fig. 12.11 Axisymmetric model representations of the cylindrical rod problem under local TNEQ
and TEQ conditions (a, c); 2D model representation of the plate problem under TNEQ conditions
(b). a Cylindrical coordinates, TNEQ, b Cartesian coordinates, TNEQ, c Cylindrical coordinates,
TEQ

12.3.5.5 Results

The material parameters chosen for demonstration purposes are listed in
Table12.8. The numerical implementation reproduces the analytical solutions well
(Fig. 12.11). The parabolic profile is clearly visible for the solid temperatures. In case
of local TNEQ, the independent gas temperature profiles are nearly flat due to the
higher heat conductivity in relation to internal heat generation and heat transition to
the boundary (Figs. 12.11a, b). In case of local TEQ, both phases follow the common
temperature profile as expected (Fig: 12.11c).
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Appendix A
Introduction to OpenGeoSys (OGS):
OGS—Overview

This part is mainly from the OGS overview paper [1] and updated with new infor-
mation and results since 2012.

A.1 Background

Coupled process modeling has been considered in various engineering problems
and geo-scientific applications since the computation method was introduced for
problems of soil consolidation, dam construction and oil/gas field exploration in
early 1970. However, substantial progress in experimental and theoretical studies
regarding the fully coupled effects of temperature, hydraulics and mechanics, as well
as chemistry, in fractured porous media was just made in the last two decades due
mainly to demands from the performance and safety assessment of high-level nuclear
waste repositories. Numerical methods and computer codes have been developed
successfully within the international DECOVALEX project (www.decovalex.com).
Meanwhile a wider range of applications associated with THMC coupled problems
such as geothermal reservoir engineering, CO2 and energy storage, construction of
underground repositories etc. can be found in different international conferences, e.g.
GeoProc (http://www.mech.uwa.edu.au/research/geoproc), ComGeo (http://www.
com-geo.org/).

For a long-term performance and safety assessment of a nuclear waste repository
in a deep geological formation, an important issue is to guarantee the isolation of an
underground repository. To answer this question, solute transport processes under the
coupled conditions involving mechanical stability, thermal loading from the high-
level waste, and chemistry in the groundwater should be predicted numerically. Also,
for construction planning of such a complex and the implementation of experimental
data gained from in situ tests, a multiple process coupled code is required.

Through the rapid development of computer technology, complicated geoscien-
tific problems can be analyzed in a coupled manner using modern numerical codes.

© Springer International Publishing Switzerland 2015
O. Kolditz et al. (eds.), Thermo-Hydro-Mechanical-Chemical Processes in Fractured
Porous Media: Modelling and Benchmarking, Terrestrial Environmental Sciences,
DOI 10.1007/978-3-319-11894-9
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However, the understanding of the complicated coupled processes based on the
experimental data available and implementation of the developed algorithm into the
numerical codes are major challenge for scientists, which require interdisciplinary
and interactive cooperation.

Quality management is nowadays a standard tool for production and development
to ensure the high quality of a produced result. A numerical code dealing with the
coupled THMC process is a highly complicated software product since the different
processes have different characteristic features, e.g. time and spatial scales, nonlin-
earities, and interaction degree etc. To maintain a high quality of the developed code,
benchmark testing is therefore necessary, especially in the case that scientists from
different disciplines and organizations are working on the same code. Therefore,
code verification and validation of selected test cases are documented during the
code development, and finally a benchmarking book for the code development is
produced and quality ensured [2].

A.2 Historical Note

Considerable efforts have been made in the past for porous media code development
to address above mentioned problems in geosciences and hydrology, e.g. TOUGH
[3, 4], STOMP [5], HydroGeoSphere [6], FEFLOW [7, 8], SUTRA [9, 10], DUMUX
[11, 12], MIN3P [13], MT3D [14] or in particle hydrodynamics [15]. In the abstract
we describe the continuous development of OGS beginning in the eighties (Fig.A.1).

RockFlow-F/FEFLOW-C

In the mid eighties there was a request by the Federal Institute of Geosciences (BGR)
to the Institute of Hydromechanics (University of Hannover) concerning the devel-
opment of a simulation program for fractured rock. The idea of RockFlow (RF) was
then born and the development of a computer code based on multi-dimensional FEM

Fig. A.1 OGS history
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in order to represent flow processes in complex geological structures. At the same
time at the Academy of Sciences (Chemnitz) the FEFLOW code was being devel-
oped for density-dependent flow processes in porous media [16, 17]. The pioneering
work of RF-1 was done in a series of doctoral dissertations [18–21]. Both codes
FEFLOW and RockFlow were implemented with FORTRAN at that time.

The next stage in the early ninetieswas related to the coupling of the individualRF-
1 modules through file interfaces and the improvement of computational efficiency,
e.g. by introducing an iterative equation solver. RF-2was successfully used in several
application projects in the fields of waste deposition and geothermal energy [22, 23].
A scientific “market” for RF in Applied Geoscience was opened.

RockFlow-C

It was soon determined that the coupling of the different RFmodules via file interface
was inefficient. Moreover, for the use of grid-adaptive methods, dynamic data struc-
tures were necessary. Consequently, in the late nineties a complete re-organization
of RF was started. The implementation of RF-3 was started in C [24, 25]. Major
research topics of the RF group were multi-phase flow [26], grid adaptation [27],
reactive transport [28], and deformation processes [29]. Besides the numerical parts,
geometric modeling and meshing methods became more and more important for
real-world applications [30, 31].

GeoSys/RockFlow-C++

Due to the increasing functionality, the RF code became more and more sophisti-
cated and difficult to handle. Consequently, the introduction of object-oriented meth-
ods was necessary. RF-4 or now GeoSys was (again) completely re-designed and
rewritten in C++ [32, 33]. Several doctoral theses have been completed in the fields
of geotechnical simulation (DECOVALEX project, [34–36]), contaminant hydrol-
ogy (Virtual Aquifer project, [37–39]), geothermal reservoir modelling (Urach Spa
project, [40]). Alongside computational mechanics, progress had been made in the
pre-processing for numerical analysis [41–43]. First GeoSys/RockFlow habilitations
had been completed [44–46]. As mentioned in the beginning, it is impossible to cite
everything. Other important works during the Tübingen time are e.g. [47–49] con-
cerning particle tracking, coupled hydrosystems, and reactive transport simulation.

OpenGeoSys

The new challenge for GeoSys is to continue its development as a distributed
open-source project, i.e. sharing and widening the knowledge, as people from
the OGS group receive offers and move to other places, and as the number
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Fig. A.2 VISLAB application

of GeoSys partners increases. At the Helmholtz Centre for Environmental Research
in Leipzig a new research platform TESSIN is available, which combines high-
performance-computing (HPCLab) and high-end visualization facilities (VISLab,
Fig.A.2, AppendixE). Visualization provides a scientific tool for insight into large
and complex data sets [50]. The graphical-user-interface (GUI) has become a valu-
able tool for visual data management and analysis [51] (AppendixC) A considerable
amount of time is spent to prepare OGS for student teaching and training courses, e.g.
in theHIGRADEgraduate school program. Post-processing becomesmore andmore
important as more and more information becomes available, due to high-resolution
measurement techniques and HPC itself. A first medium-size HPC application has
been realized in geotechnical modeling [52].

Thenext PhDgeneration has grownupwithin the open-source framework showing
the large variety of OGS applicability in hydrology [53], reactive transport processes
[54], groundwater optimization [55], geothermal reservoir analysis [56], as well as
high-resolution modelling of the water uptake in root systems [57].

Since the publication of the volume one of the THMC Benchmark Book several
new PhDs projects have been successfully completed: modelling mixing and reac-
tive transport processes compared with laboratory experiments [58], subsurface flow
and salt transport in the Thuringian basin [59], particle tracking for non-linear flow
processes [60], gas migration in saturated argillaceous rock [61], thermal equations
of state for CO2 [62], application to radionuclide waste disposal concepts (DECO-
VALEX 2011) [63], density-dependent flows at different scales [64].



Appendix A: Introduction to OpenGeoSys (OGS) . . . 281

Fig. A.3 OGS Website

Fig. A.4 OGS partner institutions

Meanwhile OGS in profiting a lot from the community support, e.g. concern-
ing the development of pre- and postprocessing tools, e.g. GINA [65] and MeshIT
developments [66, 67]. OGS has a newWebpage (Fig.A.3)which should attractmore
attention to the open source project and at the same time being a community hub as
well as providing information about recent activities. The current OGS partners are
depicted in Fig.A.4.
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Appendix B
OGS—Software Engineering

Lars Bilke

The OpenGeoSys software development community is distributed all over the world
and people with different backgrounds are contributing code to a complex software
system. The following points have to be addressed for successful software develop-
ment:

• Platform independent code
• A single build system
• A version control system
• A collaborative project web site
• Continuous builds and testing
• Providing binaries and documentation for end users

OpenGeoSys should run on a PC as well as on a computing cluster regardless of
the operating system. Therefore the code should not include any platform specific
feature or library. Instead open source and platform independent libraries like Qt1

for the graphical user interface or VTK2 for visualization algorithms are used so that
developers can simply use the platform or tools they want.

Despite the use of platform independent code and libraries, in the end theremust be
platform specific build settings such as Unix makefiles or project files for integrated
development environments like Visual Studio or Eclipse. These are generated by the
CMake3 build system which is configured using platform independent configuration
files. Also, CMake enables so-called out of source builds which means that all the
generated files are separated from the source code. This makes it easier to manage
the source code in a version control system.

1 Qt: http://qt-project.org.
2 The Visualization Toolkit: http://www.vtk.org.
3 CMake: http://www.cmake.org.
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A source code management and version control system is a definite requirement
for distributed software development. For this purpose subversion4 is used, which
enables developers to work on separate versions (branches) of the software and to
merge those versions at some point to the official one.

The version control system is integrated into an information and collaboration
website based on a wiki5 system. The wiki is used for collecting information such
as tutorials, application examples and case studies. Discussions take place in the
OpenGeoSysmailing list.6

To improve code stability and to verify code correctness a continuous build and
testing system, based on the Jenkins Continuous Integration Server,7 has been estab-
lished. This server is connected to the version control system and does the following
on every code change:

• Compiles (builds) the codeonevery supportedplatform (Linux,Windows,MacOS)
• Runs a comprehensive test suite of over 170 benchmarks
• Verifies the test results
• Runs software development related metrics on the code (like compiler warnings,
code complexity, static analysis tools)

• Generates source code documentation
• Provides binaries for end users and uploads them to www.opengeosys.org
• Informs developers on errors

These points enhance the software development process considerably. Firstly,
platform independence is maintained. Additionally, errors in the source code, and
at which time they were introduced, can be tracked down easily. Lastly, developers
gain access to code analysis tools and up-to-date source code documentation without
the need to install it on their own machines.

FigureB.1 shows an overview of the software engineering workflow and con-
cludes this section.

4 Subversion: http://subversion.tigris.org/.
5 TracWiki: http://trac.edgewall.org/wiki/TracWiki.
6 OGS-Mailinglist: http://groups.google.com/group/ogs6.
7 Jenkins: http://jenkins-ci.org/.

www.opengeosys.org
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Fig. B.1 Overview of the OpenGeoSys software engineering workflow



Appendix C
Data Preprocessing and Model Setup
with OGS

Karsten Rink

The OpenGeoSys software framework contains multiple algorithms for the simula-
tion of (coupled) thermal, hydrological, mechanical and chemical processes using a
large amount of FEM-related functionality and various numerical solvers. However,
it does not provide functionality to actually set up amodel. As a command line tool, it
also does not support data visualization or modification; and even simulation results
cannot be directly verified without the help of other software.

To address these issues, the OpenGeoSys Data Explorer has been developed as
a graphical user interface for OpenGeoSys (Fig.C.1). This framework allows to
visualize and assess input data as well as simulation results in a 3D space. Additional
non-spatial information, such as time series data or borehole stratigraphies attached
to 3D data sets, may be viewed in separate 2D windows. As with the OpenGeoSys
simulation software itself, the Data Explorer is platform independent and employs
the same basic data structures and file formats as the command line tool. In addition,
it does also provide a large number of interfaces for the import of files created
by established geoscientific software products such as the geographic information
system ArcGIS, the groundwater modeling software GMS and, to a certain degree,
complex software solutions used in the mining or petroleum industry such as Petrel
or Gocad. For an overview of supported file formats see TableC.1. Furthermore,
all data sets can be exported to established graphics formats, allowing to create
visualization projects for presenting complex environmental data and simulations in
an easy-to-understand manner (see Appendix E for details).

The Data Explorer supports users when preparing simulations by allowing them
to see how various data sets complement or interact with each other. When hetero-
geneous data sets from different sources are integrated into a model, inconsistencies
between those data sets are a frequently encountered problem. Typical examples
in the scope of hydrological data include the course of rivers not quite matching
the underlying terrain model, subsurface layers penetrating each other or boreholes

© Springer International Publishing Switzerland 2015
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Fig. C.1 The graphical user interface of the Data Explorer showing a number of data sets from a
groundwater recharge study [1]

Table C.1 Overview of existing interfaces

Data type Formats/Programmes

Raster data GeoTIFF, Esri ASCII Raster, NetCDF, JPEG, etc.

Features Esri Shapes, Petrel borehole data, GMS borehole data

Meshes FEFLOW, GMS, GMSH, TetGen, VTK, etc.

Time series data CSV, WaterML

Graphic formats VTK, OpenSG, Unity, VRML

not starting at ground level but instead above or below the surface. The reasons for
such inconsistencies are manifold and can be attributed to different data acquisition
methods (such as remote sensing data scanned from orbit via satellites, borehole logs
created manually using core samples, etc.), data conversion problems, artifacts in the
data (e.g. due to cloud cover or water reflection in satellite data or extreme weather
events at observation sites) or human errors when transferring data. However, if mod-
els for the simulation of processes such as groundwater recharge are based on faulty
or conflicting information they might produce erroneous or deceptive results.

The option to visualize the data in an interactive 3D scene allows to at least roughly
assess the quality of the data and detect inconsistencies, artifacts or missing infor-
mation by visual inspection. The Data Explorer provides a number of visualization
options to support users in this assessment process by allowing the adjustment of a
number of parameters for each data set. Generic parameters such as super elevation
factors, transparency, or the color lookup table used for depicting data sets can be eas-
ily defined. More advanced algorithms include the selection of specific materials or
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stratigraphic layers while concealing the rest of the data set, highlighting certain
features for better visibility, and the calculation of isosurfaces from volumetric
data [2]. In addition, the framework shows the underlying data of visualized objects
(such as point coordinates, mesh element information, etc.) in tabular form in a
separate menu for verifying information based on exact numbers. The Data Explorer
offers several options for modifying data sets to a certain degree. For example, geo-
metric surfaces can be triangulated, polylines can be connected in a user-defined
sequence and data might be converted or mapped to other data sets using a number
of different algorithms. In addition, the material groups of existing models can be
changed, mesh elements can be removed based on a number of criteria and subsets
of existing domains can be extracted based on triangulated surfaces [3].

Finite element meshes can be created from geometry data and, optionally, digital
elevation models. Parameters such as the density of mesh elements and the degree
of adaptive refinement towards selected features can be defined by the user. Point
and line data used during the triangulation process will be integrated into the mesh
structure as mesh nodes or edges, respectively (Fig.C.3a). Initial and boundary con-
ditions can then be created and assigned either to these geometric objects or directly
to mesh nodes (Fig.C.2). For existing meshes it is also possible to check the quality
of all mesh elements with respect to well-establish criteria. Implemented metrics
include the ratio of the longest to shortest element edge or the equiangular skew (i.e.
deviation from the optimal inner angle of an element). Results of such an analysis
are mapped onto the mesh (Fig.C.3a, b, c) and can be further refined using a number
of visualization techniques, incorporating other data sets when required.

Fig. C.2 Example for visualization of FEM related data. Depicted are a number of boundary
conditions for a FEM Mesh along with detailed information about their properties
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Fig. C.3 Mesh quality validation: a Embedding geometric information representing rivers (blue)
andwells (white) into themesh structure.bElement quality based on edge ratio.Red/orange signifies
large differences in edge length, green/blue signifies roughly equilateral elements. c Further analysis
reveals that elements with a large edge ratio are the result of a thin surface layer

Fig. C.4 Visualization of data sets at various stages of the modeling process. a Input data from
geographic information systems (GIS). b 3D surface model based on GIS data. c Subsurface model
with layers interpolated based on borehole data. Different information is displayed for each geolog-
ical layer. d Representation of simulation results using established visualization techniques such as
isosurface and streamtracers
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Once simulation results are available, they can be visualized concurrently with
input andmodel data in theData Explorer. Such an integrated visualization is helpful
for verifying the plausibility of simulation results. Correlations to input data sets
might become visible and a comparison between observed and simulated parameters
is easily accomplished. An overview over the data visualization at various stages of
the modeling process is given in Fig.C.4.

For more information on the topics discussed in this appendix, the interested
reader is referred to articles on model creation [3] and visualization [2] using the
OpenGeoSys Data Explorer. A comprehensive specification of the functionality of
the framework can also be found in the OpenGeoSys Data Explorer User Manual [4]
available from http://www.opengeosys.org together with the simulation software and
user interface.
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Appendix D
GINA-OGS

Herbert Kunz

During the development of the numerical code OpenGeoSys, a program GINA as
a pre- and post-processing tool, was developed by the German Federal Institute for
Geosciences and Natural Resources (BGR). As an OpenGeoSys user, the develop-
ment of GINA has continuously matched the requests of applicants. In the field of
deep geological disposal of radioactive waste, coupled THMC process modelling
is vital for planning and evaluation of experiments in the underground laboratory,
for process understanding, and for long-term safety assessment with the compli-
cated geological and geotechnical geometry (Fig.D.1). With the help of GINA,
time-consuming handling of pre- and post-processing for a FE-simulation is easy.

The main features of this interactive graphical user interface tool GINA are:

Pre-processing

• Geometrical data for FE meshing The geometrical objects (points, polylines, sur-
faces and volumes) can be defined using coordinates input and/or with a mouse,
which are the basic objects in the codeOpenGeoSys formesh generating, definition
of initial and boundary conditions, and results viewing

• Preparing of finite element parameters Necessary parameters and conditions (ini-
tial conditions, boundary conditions, and material properties) can be interactively
defined using keyboard and mouse input

Mesh Generation

Amesh generator for structured meshes in 2D (quad) and 3D (prism and hexahedral)
elements is implemented in GINA. A special feature for the generation of finite
element mesh for a fracture network with surrounding rock mass was developed in
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Fig. D.1 GINA functions and generated mesh of a rock-EDZ-tunnel system

Fig. D.2 Finite element mesh for a coupled fracture network and rock mass model (a) and fracture-
borehole system (b)

the course of the BGR investigation program for fracture flow at Grimsel Test Site
(Switzerland) (Fig.D.2).

For theunstructuredmeshes in 2Dand3D, an interface to theopen source software,
e.g. GMSH (www.geuz.org/gmsh) for unstructured triangle and quad-elements and
TetGen (http://tetgen.berlios.de) for tetrahedral elements, is implemented in GINA.
With the help of the interface, a high quality mesh of 2D and 3D complex structures
can be generated using GMSH and Tetgen based on the geometrical objects in the
code OpenGeoSys.
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Post-processing

Using the post-processing functions, simulation results from the OpenGeoSys can
be visualized and evaluated during model calculation in the following cases:

• Contour, colour, and isoline plots in the 2D domain
• X/Y - diagram versus time or along a polyline
• Convert to mechanical principle stress from stress field and viewing in vector form

Data Interface

To interact with other programs GINA has the following import and export formats:

• Import File Formats: GMSH, TetGen, Tecplot, DXF, ASCII.
• Export File Formats: GMSH, TetGen, JPG, VRML, Excel

Contact Information

For more information, please contact: herbert.kunz@bgr.de



Appendix E
Scientific Visualization and Virtual Reality

Carolin Helbig and Lars Bilke

The first question that appears, when it comes to the matter of spending time for
generating a visualization to represent research results, is: Why all the effort? Is it
really worth it? This article wants to give basic insights into scientific visualization.
With the help of an example workflow, the possibilities of supporting the analysis
of research results are shown. Furthermore, we describe how to use a virtual reality
(VR) environment for presenting visualizations and specify the benefits of its use.

The term Scientific Visualization was introduced in 1987 by the National Science
Foundation (NSF) in the Visualization in Scientific Computing report and defined it
as the use of computer graphics for the analysis and presentation of computed or
measured scientific data [1]. The first image classified as scientific visualization is
from John Snow, who drew a map of London and tagged the houses of the people
who suffered from Cholera, in 1854. With the help of this map, he could detect a
correlation between water supply and the disease incidents. This is meant to be the
first time when someone used graphics for the analysis of a certain question.

Later on, in 1994 H. Senay and E. Ignatius defined scientific visualization as a
tool that “[…] supports scientists and relations, to prove or disprove hypotheses,
and discover new phenomena using graphical techniques. The primary objective in
data visualization is to gain insight into an information space by mapping data onto
graphical primitives” [2]. Because a huge variety of scientific fields play a role in
this process, scientific visualization combines knowledge from various disciplines
and therefore is an interdisciplinary area.

The goals of scientific visualization can be generally classified in three categories.
The first one is the exploration, where nothing is known about the data at the begin-
ning. It is used for getting a first insight into the data and for detecting interesting
areas. The second is the analysis based on one or more hypothesis, which are going to
be proved and at the end verified or falsified.When the exploration and analysis phase
is completed, the visualization can be used for presentation in order to communicate
the results to colleagues, stakeholders, or project leaders.

One domain of scientific visualization deals with the visualization of environ-
mental data. Growing environmental problems in a complex, globalized world are
explored in research projects. Because of an expansion of observation activities, the

© Springer International Publishing Switzerland 2015
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amount of data grows very quickly. Analyzing it can be challenging and leads to an
increasing impact of scientific visualization. In the following, a workflow for visual-
ization of weather and climate data is presented as a showcase. Atmospheric science
is an important area in consideration of the fact that climate change will influence
our environment and living conditions in the future. For that matter, climate simu-
lations are needed to predict possible changes which generate large data sets. The
visual combination of simulation data with observation data, data based on differ-
ent models, or even with models of various fields of science, offered by scientific
visualization brings important benefits for the analysis of research results. It helps
to identify correlations and to study key processes.

To manage the process from heterogeneous simulation and observation raw data
to an interactive visualization, which can be displayed on a desktop computer or
in an interactive virtual reality environment, a workflow that contains a plurality of
preprocessing steps is needed (see Fig.E.1). It includes a set of software applications
and scripts. The outcomes of it are easy-to-understand visualizations of complex
data sets that are the basis for the evaluation and verification of models as well as for
scientific communication and interdisciplinary discussions of the research results.

The workflow includes three steps: data integration, visualization methods and
data composition, and presentation and evaluation. In the first step the data is pro-
vided by a number of sources; they can include research facilities, regional authorities
and in some projects companies. In addition, the data used for the visualization is
very heterogeneous. It consists of raster data (e.g. observed data), multi-dimensional
arrays (e.g. simulation data) and vector data (e.g. borders, observation sites). All
data includes coordinates for geo referencing as well as the corresponding coor-
dinate system and projection. In our example, the simulation data is provided by
the Institute of Physics and Meteorology of the University of Hohenheim as part
of the WESS project [4]. Other data used for the case study include administrative
divisions, river networks, water bodies, political boundaries, and raster data such
as the digital elevation model. For the visualization of atmospheric models, there
are variables from three different compartments: atmosphere, surface and soil. To
analyze atmospheric processes it is necessary to examine the interaction and influ-
ences between these compartments. For including all the data into the visualization

Fig. E.1 The example workflow includes three steps that lead from data integration to the presen-
tation of the visualization. The recommended software is all freely available [3]
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system, some pre-processing like format conversions and coordinate transformations
is necessary. Therefore we used ParaView and the OpenGeoSys Data Explorer.

The second step of the workflow is the development of appropriate visualization
methods for the variables of the data.Choosing the appropriate representation for each
variable and developing a color scheme for the set of variables helps to distinguish
them. Attributes such as color (hue, brightness, and saturation), opacity, and shape
can be used. Combinations of these can also be appropriate. If the resolution of the
data is too high to make every value visible, it can be useful to select only a subset.
This can be done by defining a range for values, choosing values randomly, or by
down-sampling the data. In some cases, even concatenations of these selections are
suitable. FiguresE.2 and E.3 show two examples of the visualization results: The
first one is used to give an overview of the case study area and in the second one
simulation and observation data is visually combined.

The third step of the workflow includes the presentation and evaluation. It is
used for scientific communication and presentation for stakeholders and policy mak-
ers as well as to verify and evaluate research results. Our working environment is

Fig. E.2 The visualization provides an overview that helps to identify interesting structures like
turbulences in (a) and (b). They can be examined in detail in a following step, for example by
extracting a subset of the region [3]
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Fig. E.3 The visual combination of simulation and observation data is used to detect inconsistencies
or even errors like in (a) where one station value is significantly higher than the values at all
neighbor stations. Figure (b) shows the overlapping of the simulated precipitation (isosurfaces) and
the precipitation that was measured at weather stations (spheres) [3]

the TESSIN VISLab of the Helmholtz Centre for Environmental Research—UFZ.
The hardware setup of the VISLab uses a back projection-based stereoscopic visu-
alization environment with an approximately 6 × 3 meter large main screen and
corresponding projections on the floor and two side wings. In order to achieve a high
resolution of nearly 6400 × 1800 pixels, 13 projectors are used to run this system.
Images are generated alternating for the left and the right eye and users wear special
glasses which separate these images, resulting in a real three-dimensional view. For
the stereo separation we can switch between two technologies—active stereo using
shutter glasses and passive stereo using Infitec technology. We use an optical track-
ing system, compensating for movement of the observer. Images are computed such
that correct perspective is maintained. A pointer device allows for interaction with
the virtual environment. Our VR system helps us to better understand complex data
sets as well as to present a challenging scientific question in a comprehensible way.
The advantages of such VR environments for analyzing scientific data have been
extensively studied [5, 6].
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Appendix F
OGS High-Performance-Computing

Wenqing Wang and Thomas Fischer

As described in the previous chapters, the thermo-hydro-mechanical/chemical
(THMC) processes or their coupling in porous media within a specified domain
can be described by partial differential equations (PDEs) for numerical modeling.
Normally in real applications, these PDEs have to be solved numerically due to the
complexity of the material or the geometrical nonlinearity and the irregularity in the
studied geometrical domain.

As a first step of numerical modeling, a PDE has to be linearized by using the
Newton or the Picardmethod if it is nonlinear. The linearized PDE can then be solved
numerically, and the finite element method (FEM) is used for this purpose in OGS.
As an essential procedure for the FEM, the studied geometrical domain has to be
discretized into elements for the local and global assembly of vectors and matrices.
The most resource-consuming tasks in the FEM consist of:

1. Computing entries of local matrices and adding them into a global system of
linear equations—the local and global assembly, respectively.

2. Solving the global system of linear equations.

If the FEM is applied to solve an actual, large-scale problem, such as geothermal
energy storage, CO2 storage, nuclear waste storage and so on, for accurate results,
the amount of computational resources including hardware and time can easily hit
the physical limits of a computer. Therefore, the computational efficiency is a crucial
issue to be taken into consideration when one deals with such real problems.

Nowadays, parallel computing is regarded as a promising and powerful approach
to enhance the computational efficiency due to the dramatic progress in computer
technology accompanied with price-dropping in recent decades.

In principle, there are two programming approaches for parallel computing:
the shared memory approach and the distributed memory approach. In OGS, both
approaches are used. The sharedmemory approach is implemented by usingOpenMP
(http://opemmp.org) to parallelize the loops in one the iterative linear solvers in
OGS. The distributed memory approach is employed for the parallelization of the
most two resource-consuming tasks addressed above. For this purpose, the domain
decomposition method [1] is used to partition computational tasks of the FEM, and
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the parallelization is realized by using the Message Passing Interface standard (MPI,
[2]). The details about our implementation and its verification are described in our
two research papers [3, 4].

F.1 Domain Decomposition Approach

The first step of the parallelization of the FEM is to decompose the mesh into sub-
domains. For parallel computing, each compute core is assigned with the computa-
tion of one sub-domain. Hence, the global system of linear equations (matrix and
right-hand side) is distributed among several compute cores. In our framework, this
distributed system of linear equations is solved by a parallelized Krylov subspace
method [5].

The decomposition has two aims: distribute the work as equally as possible to the
compute cores and minimize the amount of communication between the compute
cores because in most cases, communication results in waiting time.

There are two approaches for decomposing the mesh:

• Partitioning mesh by elements.
• Partitioning mesh by nodes.

Partitioning Mesh by Elements

Partitioningmesh by elements decomposes themesh such that every element belongs
exactly to one sub-domain that is handled by one compute core. The local assembly—
integration over the element—has the advantage that it does not require data commu-
nication from other sub-domains, i.e. for this task there is no communication needed
among the compute cores.

On the other hand, there are element nodes shared by different sub-domains.
In the FEM, each node is associated to a row and a column in the matrix and the
right-hand side vector of the global system of linear equations. Since this system of
linear equations is distributed to different compute cores, the element nodes shared
by different sub-domains need inter-compute-node communication to update the
associated values in the linear solver.

This approach is realized in OGS using MPI. The scalability is verified with a 3D
THM problem on different platforms [3].

Partitioning Mesh by Nodes

Partitioning mesh by nodes decomposes the mesh such that every element node
belongs to exactly one sub-domain. As a consequence, there exist some elements



Appendix F: OGS High-Performance-Computing 309

whose nodes belong to different sub-domains. These nodes are often referred to as
ghost nodes. For the local assembly of elements consisting of at least one ghost
node, i.e. the numerical integration over those elements, the information needed for
the integration has to be computed and stored multiple times.

On the other hand, since mesh nodes are affiliated to exactly one sub-domain,
the partitioning mesh by nodes approach does not need communication to update
the entries within the global system of linear equations. This implies that one can
parallelize the linear solver without any compute node communication for the vectors
that are used in the solver. Under such consideration, the communication load during
the linear solver can be reduced dramatically.

In OGS, this approach is implemented using the matrix and vector routines of
PETSc [6], and the implementation has been investigated by several examples includ-
ing a real application [4].

F.2 Scalability Test with 10k Computer Cores

For the scalability test, a simple steady state problem is solved by the second par-
allelization approach using PETSc. The test domain consists of a cube with the
dimensions 10 × 10 × 10 m3, which is discretized into 15,624,750 hexahedra with
15,437,999 nodes. The domain contains a homogeneous porous medium which has
a permeability of 10−14 m2. The fluid viscosity is 10−3 Pa s. There are different
pressures at two areas in the vicinity of two opposite edges as shown in Fig.F.1. The
boundary values are 106 and 105 Pa, respectively.

One time step is solved for this steady state pressure distribution problem.

Fig. F.1 Pore pressure
distribution in a cubic domain
of homogeneous porous
medium
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Sequential I/O

In this case, the partitioned sub-domain meshes are written in a single ASCII file.
During the execution of the program, the compute core with rank 0 reads the parti-
tioned mesh data from the file. Then this compute core transmits chunks of the data
to the corresponding compute core.

To demonstrate the scalability of the code, several parallel jobs have been con-
ducted on JUQUEEN8 with 512, 2,048, 4,096, and 10,000 cores, respectively. To
solve the system of linear equations, we use the conjugate gradient method in com-
bination with the parallel block Jacobi preconditioner bjacobi of PETSc [5].

The number of iterations for the convergence with a tolerance of 10−7 is around
700 in all these jobs.

The time consumption in different computational tasks of the FEM in all finished
jobs is listed in TableF.1, where the task of equation assembly includes the assembly
of matrices and vectors, and applying the boundary conditions to the system of
linear equations. One can see in TableF.1 that reading the mesh uses most of the
computational time. The reading process is realized by setting one core to read
ACSII sub-domain mesh data and passing the data to the corresponding data by
using MPI_BCast. Obviously, the reading process is not ideally parallelized, and its
enhancement would be to employMPI native reading function and use a binary mesh
file. If many time steps are to be analyzed in a problem, the time necessary to read
the mesh in a simulation will be a small portion of the total run time. Anyway, the
reading of the mesh data only takes place once in a run of the program. FigureF.2
shows the speedup of the equation assembly and the linear solver of the present test.

Parallel I/O

To improve the performance of I/O, the partition toolwas changed in order to enable it
to write all sub-domainmeshes into a single binary file. Then, the reading of themesh
was re-implemented so as to allow multiple processors to read data from a common

Table F.1 Time in seconds used in major computational tasks

Cores Total Mesh reading Assembly Linear solver Others

512 1,370.81 1,171.70 79.75 87.85 39.60

2,048 1,379.22 1,312.49 21.45 21.94 23.83

4,096 1,546.23 1,438.89 13.71 11.55 79.92

10,000 1,802.76 1,624.53 8.49 5.19 161.25

8 JUQUEEN is large supercomputer at the Institute for Advanced Simulation (IAS), Jülich Super-
computing Centre (JSC). In November 2013, JUQUEEN was listed at position 8 of the Top 500
supercomputers.
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Fig. F.2 Relative speedup in the assembly and the linear solver (starts with 512 cores)

Table F.2 Time in seconds used in major computational tasks with the improved mesh reading

Cores Total Mesh reading Assembly Linear solver Others

512 215.27 16.72 79.25 87.81 31.49

10,000 191.43 83.77 8.34 5.14 94.19

file simultaneously. Two tests with 512 and 10,000 partitions are carried out, and the
results show that the time consumed in reading mesh has dropped significantly as
shown in TableF.2.

Remarks

A steady state problem is solved with the PETSc powered parallel OGS software for
the test. If the problem is considered a transient one, and it is solved in n time steps,
we can estimate the speedup of the parallel computing of the entire problem based
on the present test results by the following formula

speedup = 16.720083 + 31.4937 + 79.248473n + 87.81238n

83.765145 + 94.188 + 8.34255n + 5.136329n
. (F.1)

Formula (F.1) is derived based on the data given in TableF.2 and the fact that the
mesh data is only read once in the program. FigureF.3 shows the curve of formula
(F.1). One can see from Fig.F.3 that the speedup approaches its limit of around 12
when the number of the time steps is larger than 300. In other words, we can get
a speedup of 12 if the problem is transient and it has solved more than 300 time



312 Appendix F: OGS High-Performance-Computing

0

2

4

6

8

 10

 12

 14

0  100  200  300  400  500  600  700  800  900  1000
0

2

4

6

8

10

12

14

R
el

at
iv

e 
sp

ee
du

p

Number of time steps

Fig. F.3 Speedup estimations regarding to the number of time steps

steps. Ideally for the maximum number of partitions employed in the present test,
the speed limit is 10,000/512 ≈ 19 if every piece of the computational tasks is
ideally parallelized and if there is no communication overhead at all.

The availability of high-performance-computing (HPC) infrastructures for
research and even more importantly the availability of open-source software for
HPC applications such as simulations of CO2 migration at real reservoir scale

Fig. F.4 Simulated CO2 migration in a real reservoir
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(Fig.F.4, [4, 7]) will provide scientific tools for resolving the paradigm of solving
“complex physics at complex geometries” problems in the near future.
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