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Chapter 1
Introduction

Olaf Kolditz, Uwe-Jens Gorke, Hua Shao, Wenqing Wang
and Sebastian Bauer

1.1 Motivation

In nature, processes are coupled strongly with each other. Much progress has been
achieved towards understanding the complicated processes in deep geological dis-
posal of radioactive waste, CO; subsurface sequences, geothermal applications and
energy storage.

Numerical tools dealing with the coupled thermal, hydraulic, mechanical,
chemical and biological processes have been developed to analyze experimental
outputs, field observations, laboratory tests. One important issue in the development
of numerical codes is of course the code validation and model comparison. Therefore,
different international benchmarking projects have been announced for this purpose,
such as DECOVALEX project (1992-2015), CO;Bench, SSBench, and Sim-SEQ.

For long-term performance and safety assessment of nuclear waste isolation in
deep geological formations, an important issue is the need to guarantee the isolation
of an underground repository. To answer this question, radioactive nuclide transport
processes under the coupled conditions involving mechanical stability, thermal load-
ing from the high-level waste, and chemistry in the groundwater should be predicted
numerically to get quantitative assessment of a repository. For these purposes, under-
ground laboratories in the different geological formations have been constructed for
extensive research covering geomechanical, geohydraulic, geochemical investiga-
tions of geological circumstances, geotechnical materials and their interaction.
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In Europe, underground laboratories have been constructed in recent decades,
e.g. Grimsel Test Site (Switzerland) and Hard Rock Laboratories Aspo (Sweden) in
the granitic rock; Rock laboratories Mont Terri (Switzerland) and Bure (France) in
clay rock. Different field experiments have been conducted for the understanding of
processes under the in situ conditions. To implement experimental data gained from
the in situ test, a multiple-process coupled code is required (Fig. 1.1).

In the course of the quick development of computer technology, numerical codes
with capability to analyze problems in the coupled manner have become possi-
ble. However, the understanding of the complicated coupled processes based on the
experimental data available and implementation of the developed algorithm into the
numerical codes are a major challenge for scientists, which require interdisciplinary
cooperation and interactive procedures.

Quality management and controlling is nowadays a standard tool for production
and development to ensure a high quality of a produced result. A numerical code
dealing with the coupled THMC process is highly complicated software product,

1.8E+06
1.6E+06
| 1.4E+06

1 1.2E+06
1.0E+06
B8.0E+05
6.0E+05
4.0E+05
2.0E+05
0.0E+00

Fig. 1.1 Pore water pressure distribution of Rock Laboratory Mont Terri (Switzerland) after
10years, calculated using code OGS in a 3D total mesh taking geological bedding, fault zone
and geotechnical tunnel into consideration
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since the different processes have different characteristic features, e.g. time and
spatial scales, nonlinearities, and interaction degree, etc. To keep the high quality
of the developed code, benchmark testing is therefore necessary, especially in case
scientists from different disciplinary and different organizations are working on the
same code. Therefore, code verification and validation of selected test cases are doc-
umented, and finally a benchmarking book for code developers (DBB) is produced
and quality-ensured.

1.2 Application Areas

The coupling phenomena of thermal (T), hydraulic (H), and mechanical (M) processes
are important for the analysis of deep geosystems under high temperature, pressure
and stress conditions. Application areas of THM coupled models are e.g. geothermal
energy utilization, nuclear waste disposal, and carbon dioxide storage in the deep
geological formation (Fig. 1.2).

The following slides illustrate that the understanding of THM processes, includ-
ing chemical reactions (C process) is important to a large variety of geotechnical
and geothermal applications. The physical basics are exactly the same for these
applications. Different is simply

o the geological environment and different rock types, i.e. crystalline rocks, volcanic
rocks, sandstones, clay, bentonite, ...

e the geofluids, i.e. water, brines, vapour, methane, carbon dioxide, ...

e the thermodynamic conditions, i.e. temperature, stress, pressure, salinity, ...

There are several concepts concerning host rock for the disposal of hazardous
waste in deep geological media, i.e. crystalline, salt, sediment, and volcanic forma-
tions. Different concepts use different buffer systems as geotechnical barriers for the

Fig. 1.2 Tunnel system (Visualization by B. Zehner)
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waste isolation, i.e. crushed salt, bentonite, and bentonite/sand mixture. THM/C cou-
pled modelling is required for the long-term analysis of possible processes which
might result in a release of contaminants from the repository [1]. In that case it
is important to know, how long it will take until the contaminants return into the
biosphere.

Figure 1.3 illustrates the application area: Carbon Capture Storage (CCS). The
idea is to capture the CO, from the power plants, liquefy it and inject it into the sub-
surface for long-term storage. Two basic concepts for appropriate geological systems
are under proof now: depleted gas reservoirs and deep saline aquifers. After many
years of operation many former gas reservoirs are depleted. These reservoirs are in an
under pressurized status and can take up large volumes of fluids. Keeping the reser-
voir under pressurized and the impervious cap rocks are important considerations for
storage. THM/C modelling is required in order to calculate the possible fluid storage
capacity and to better understand the highly coupled processes in the CO, injection
area as well as their consequences for the storage concept [2].

Fig. 1.3 Subsurface reservoir for CO; storage
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1.3 Scope of This Book

This is the second volume of “Thermo-Hydro-Mechanical/Chemical Processes in
Porous-Fractured Media” [3] presenting new benchmarks and examples for THMC
processes. The theoretical background as well as numerical methods are not repeated
as can be found in the first volume. Access to OGS source code, executables for
different platforms as well as benchmark configuration files are available through
the OGS community webpage www . opengeosys .ord.

Figure 1.4 depicts the application area: Geothermal energy, which is one of the
alternative future energy resources under consideration. So-called shallow and deep
geothermal systems are distinguished. Shallow systems are already commercially
used e.g. for heating purposes. Deep geothermal reservoirs can be used for electric
power production as high temperatures up to 200 C can be produced. THM/C mod-
eling is required to design these geothermal power plants, e.g. in order to optimize

Fig. 1.4 Geothermal reservoir simulation
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production efficiency and reservoir lifetime. The significant cooling of the reservoir
due to fluid reinjection gives rise to thermo-mechanical effects which need to be
controlled in order to avoid reservoir damage [4].

The second application area for coupled process simulation is hydrology. River
basins or catchments are also subject to THMC coupled processes, but include how-
ever a completely different range of thermodynamic conditions than deep geological
systems. Hydrological processes are very complex to describe as they vary highly in
time and space. The evaluation of groundwater recharge is vital to a sustainable water
resources management (so called safe yield). To this purpose, i.e. the understand-
ing of small scale phenomena such as root/soil water interaction is of tremendous
significance [5]. Typically groundwater models are used for management purposes
particularly in semi-arid areas such as the Jordan Valley in the Middle East [6]
(Fig. 1.5).

Because water availability is an important issue in semi-arid and arid regions,
groundwater quality deterioration is a critical concern in many urban areas of the
world. Figure 1.6 shows as an example part of a groundwater quality model prepared
for the Nankou basin in the greater Beijing area. The idea of this modelling project
is to identify possible sources of nitrate contamination originating from intense agri-
culture and fertilizer production [8]. Land use and climate changes will impact the

Fig. 1.5 Groundwater model of Western Jordan Valley
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Fig. 1.6 Ammer groundwater model [7]

availability and quality of water resources to a large degree in the future. The mod-
elling should help to develop scenarios for improving the groundwater quality in the
long term. Areas subject to large groundwater extraction are also subject to severe
land subsidence.

A very recent research area for THMC modelling has become energy storage.
The economy and feasibility of renewable energy sources will depend a large degree
on efficient energy storage systems. Figure 1.7 shows the numerical simulation of
flow and heat distribution in a solid thermal energy storage block, which will be used
to store solar energy collected during the daytime for use at night (so called solar-
thermics). The long term stability and efficiency of those energy storage devices can
be optimized using THMC modelling (i.e. solving the inverse geothermal problem).
In addition to thermal storage, thermo-chemical concepts are under development,
i.e. storing thermal energy by triggering endothermic reactions and gaining thermal
energy back on demand with the reverse reaction (exothermic).



8 0. Kolditz et al.

Fig. 1.7 Optimizing energy storage concepts [9] and geothermal energy in urban areas
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Chapter 2
Verification Tests

Peter Vogel and Jobst MaSmann

This chapter presents a set of closed form solutions that may serve as THMC test
examples. The material has been arranged in sections of simulation exercises. All
examples have been checked by OGS, FE-meshes and time steps are designed to
reproduce the closed form solutions. The observed deviations are always less than
one percent and are smaller by several orders of magnitude in many cases.

Throughout this chapter we will be concerned with the formal aspects of each
exercise and present the closed form solution of the underlying initial or boundary
value problem. The first four sections focus on single processes. Within each section
we start from 1D problems and move to more advanced levels covering steady-state
and transient problems up to 2D or 3D. Most of the material has been adopted from
standard references. The series representations involved proved to converge rapidly
and to serve well for numerical evaluation.

From section five onwards we will be concerned with coupled processes. Various
transient problems will be solved with the aid of operational calculus; the Laplace
transform solution method turns out to be an appropriate tool. Once that the Laplace
transform is known numerical inversion will be employed to obtain the required
values of the inverse transform.

The numerical method returns values of the function f(¢) for that the Laplace

transform
o0

f() =/e*”f(t)dl 2.1)

0

is known. The method selected subsequently is based on a theorem by Crump [1]:
Let a = max{Re(P);P is a singularity of f} and T > 0. Except from the relative
error E for every ¢ in (0, T') the value of the invers Laplace transform is given by the
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trigonometric series
F = 2e | Ly + i k) 2.2)
=—e"| = c .
T 2 Py ’
where A =a — In(E)/T and fork = 1,2, ...

2k 2kt _ 2k . 2kmt
)] cos - - Im[f(A+ T )] sin 7 (2.3)

c(k) = Re[ f(A +

The algorithm outlined above may easily be applied to the various transforms cited
below. The convergence of the trigonometric series has been accelerated as described
in [2].

2.1 Heat Conduction

The examples presented here have either been adopted from Carslaw and Jaeger [3]
or they are based on ideas outlined there. Throughout this section we are concerned
with the evaluation of temperature distributions.

2.1.1 A 1D Steady-State Temperature Distribution, Boundary
Conditions of Ist Kind

The domain is a rectangular beam extending along the positive x-axis. It is composed
of 10 x 1 x 1 cubic elements of 10 m edge size each, the material has been assigned
a thermal conductivity of 1 W/(m-K). Specified temperatures prevail at the beam
ends with prescribed values of 7o = 1°C at x = L = 100m and zero temperature
at x = Om. The simulation comprises one time step to establish the steady-state
temperature distribution 7 (x).

The Laplace equation is the governing equation describing the steady-state temper-
ature distribution. It reads

d°T 2.4)
dx? '
for 1D heat flow along the x-axis, hence, the temperature is given by
T(x) =ax + b. (2.5)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = Om, therefore,
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T(x) = TO%. (2.6)

2.1.2 A 1D Steady-State Temperature Distribution, Boundary
Conditions of Ist and 2nd Kind

The domain is a rectangular beam of length L = 100m extending along the
positive x-axis and composed of 10 x 1 x 1 cubic elements. The domain is com-
posed of two groups of materials, thermal conductivities Ay = 100 W/(m - K) and
A2 = 300W/(m-K) have been assigned for x < 2L/5 and x > 2L/5, respec-
tively. A specified temperature 7p = 1 °C prevails at x = Om, the specific heat flow
gin = —1.5W/m? is prescribed at x = L, which acts as heat source to the domain.
The simulation comprises one time step to establish the steady-state temperature
distribution 7 (x) (Fig.2.1).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

d*t
— = 2.7
e 2.7
for 1D heat flow along the x-axis, hence, the temperature is given by
by f <2L/5,
T(x) = aix +by forx <2L/ 2.8)
arx + by forx > 2L/5.

The constants ay, by, az, and by, have to be determined from the specified boundary
conditions and continuity of temperature and energy flow at the material boundary.
Temperature T prevails at x = 0, hence,

by = To. (2.9)

Specific heat flow ¢, has been assigned at x = L. Then, by Fourier’s law,

dr
Gih = —h2——lx=1L = —A2aa. (2.10)
dx

Continuity of the heat flow at the material boundary (i.e. x = 2L/5) yields
airl = Aaz, (2.11)
and via continuity of temperature at the material boundary

by +a2L /5 = a12L/5 + by. (2.12)
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Fig. 2.1 Temperature distribution
The temperature distribution 7 (x) thus becomes
—Ciﬂx +T for x < 2L/5,
T (x) an . 211N s (2.13)
- — | — - — or x > .
A2x+ U = ()»2 )»1) x /

2.1.3 A 2D Steady-State Temperature Distribution, Boundary
Conditions of 1st Kind

Given length L = 1 m the domain represents the square [0, L] x [0, L] in the x-y-
plane. It is discretized by 50 x 50 x 1 equally sized hexahedral elements, the material
has been assigned a thermal conductivity of 1 W/(m-K). Prescribed temperatures
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state temperature distribution 7' (x, y).
The Laplace equation is the governing equation describing the steady-state temper-

ature distribution. It reads
°r + il =0 (2.14)
ax2  9y? '

for 2D heat flow in the x-y-plane. With the aid of temperature 7y = 1°C the applied
boundary conditions read
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T(x,00)=0 forO<x <L,
TO,y)=0 forO0<y<L,

T(x,L)=T0% for0<x <L, 2.15)

T(L,y) = To% for0 <y <L.

The temperature distribution
XYy
Tx,y)=Ty—= 2.16
.y =Top 7 (2.16)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.1.4 A 2D Steady-State Temperature Distribution, Boundary
Conditions of Ist and 2nd Kind

Given length L = 1 m the domain represents the rectangle [0, 2L] x [0, L] in the
x-y-plane. It is discretized by an irregular mesh of hexahedral elements, the material
has been assigned the thermal conductivity A = 1 W/(m - K). Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state temperature distribution 7' (x, y).
The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads
P T 0 2.17
a2 T i (2.17)

for 2D heat flow in the x-y-plane. With the aid of temperature 7y = 1 °C the applied
boundary conditions read
To

T(x,0) = fx for0 <x <2L,

T
T(x,L) = 2(x+2L) for0<x<?2L,

L (2.18)
To :
TQRL,y) = Z(ZL +2y) forO0<y<L,
To
L

aT
—(0,y) = for0<y<L.
0x

The temperature distribution

Ty
T(x,y) = f(x +2y) (2.19)
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satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

Data input represents the second kind boundary condition with the aid of a specific
heat flow g;j, assigned at the face x = Om. By Fourier’s law,

oT
qih = —A—lx=0. (2.20)
0x

Hence, for the present example
qih = —Az =—1W/m~, (2.21)

specified at the face x = Om.

2.1.5 A 3D Steady-State Temperature Distribution

Given length L = 1m the domain represents the cube [0, L] x [0, L] x [0, L]
discretized by 5 x 5 x 6 equally sized hexahedral elements, the material has been
assigned a thermal conductivity of 1 W/(m-K). Prescribed temperatures prevail at
the surface of the domain as specified below. The simulation comprises one time step
to establish the steady-state temperature distribution 7 (x, y, 7).

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

CT L OT LT (2.22)
ax2  9yr o 8z2 '

With the aid of temperature 7y = 1°C the applied boundary conditions read

TO,y,2)=Tp (O—i— % + %) on the face x = 0,
T(x,0,2) = Tp (% 10+ %) on the face y = 0,
T(x,7,0) =Ty (3 + 2 +0) onthe face z = 0,
L L (2.23)
y Z :
T(L,y,z) =Ty (1 + T + Z) on the face x = L,
Tx,L,z) =Ty (% + 14+ %) on the facey = L,
Tx,y,L)=Ty (% + % + 1) on the face z = L.
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The temperature distribution

x y z
Ty =To (7 +%+7) 224
x,y,2)=Tp 3 + 7 + 7 (2.24)
satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.1.6 A Transient 1D Temperature Distribution, Time-Dependent
Boundary Conditions of 1st Kind

Given length L = 50m the domain is a beam extending from —L to L along the
x-axis, it is subdivided into 200 x 1 x 1 equally sized hexahedral elements. Explicitly
assigned properties of the material are thermal conductivity A = 0.5787037 W/(m - K),
heat capacity ¢ = 0.01J/(kg-K), and density p = 2,500kg/m>. The temperature
Ty -t (T1 = 2°C/d) increases linearly with time z, it is applied at the beam ends
for times ¢ > 0. Starting from zero initial temperature the simulation evaluates the
transient temperature distribution 7 (x, #) with output after 0.25 days and 0.5 days.

The heat conduction equation is the governing equation describing the transient
temperature distribution. It reads

oT
pcg =\AV.VT. (2.25)
Introducing the notation
A
X =— (2.26)
Jole

the present 1D problem is governed by the parabolic equation

19T  9°T
- =—, (2.27)
x ot  9x2
the initial condition
T(x,00=0 for —L<x<L, (2.28)
and linearly increasing temperatures imposed at the beam ends
T(—L,t)y=T;-t fort >0,
(2.29)

T(L,t) =T;-t fort>D0.

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation
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Ty -x2—=L%» 16-Ty- L2

Tx,0) =T -1+ Y + = (2.30)
(=1 n+ Drx 5 ot
Zé Qn+13° ( 2L )e ( x@n+ 1w 4L2)

2.1.7 Transient 1D Temperature Distributions, Time-Dependent
Boundary Conditions of 2nd Kind

The domain is composed of two beams in parallel (Beaml and Beam?2) extend-
ing along the positive x-axis, each L = 25m long and subdivided into 25 x
1 x 1 cubic elements. Explicitly assigned properties of the material are density
p = 2000kg/m3, thermal conductivity A = 1.1574074 W/(m-K), and heat capac-
ities ¢; = 0.01J/(kg-K) and ¢; = 0.02J/(kg-K) assigned to Beam1 and Beam?2,
respectively. No-flow boundary conditions prevail at the x = Om faces. A specific
heat flow is prescribed at x = L for times # > 0. It acts as heat source to the domain
and increases linearly with time via gy - ¢, where g1 = 0.385802 W/(d - m?) has
been assumed. Starting from zero initial temperature the simulation evaluates the
transient temperature distributions with output after 0.045 and 0.09 days (Fig.2.2).

Let A denote any of A or A>. The heat conduction equation is the governing
equation describing the transient temperature distribution. It reads

oT
pc— = AV - VT. (2.31)
ot
Introducing the notation
A
X=— (2.32)
pc

19T  9°T
- =, (2.33)
X ot dx2
the initial condition
Tx,00)=0 forO<x <L, (2.34)
and the boundary conditions
oT
—(0,1) =0 for t > 0,
dx

3T (2.35)
Aa—(L, t) =g -t fort > 0.
X
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Fig. 2.2 Temperature distributions after 0.09 days

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

/3 X _
T(x, 1) = WT)U Z |:i3erfc(2n—;1# + i3erfc(2n—;1¢:| , (2.36)
= Xt Xt

where i 3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.

2.1.8 Transient 1D Temperature Distributions, Non-Zero Initial
Temperature, Boundary Conditions of 1st and 2nd Kind

The domain is composed of two beams in parallel (T1-beam and T2-beam) extending
along the positive x-axis, each L = 100m long and subdivided into 100 x 1 x 1
cubic elements. Explicitly assigned properties of the material are thermal conduc-
tivity A = 0.5787037 W/(m - K), heat capacity ¢ = 0.01J/(kg-K), and density
p = 2,000kg/m?>. Prescribed conditions prevail at the beams ends as specified below.
Given temperature 7o = 1°C and
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' L
0 for 0 <x < —,
10
10 1 L AL
— X — = for—fxf—,
3L 73 10 10
AL 6L
x)=11 for — <x < —
F) 0= =10
sl el oL
_— — r— E—
3 0SS 10
9L
0 for — <x <L,
10

(2.37)

the simulation starts from the initial temperature distribution 7'(x,0) = Ty - f(x)
and evaluates the transient temperature distribution 7 (x, #) with output after 0.05

days and 0.1 days.

The heat conduction equation is the governing equation describing the transient

temperature distribution. It reads
oT
pc— = AV . VT.
ot

Introducing the notation
A
X=—
pc
the present 1D problems are governed by the parabolic equation
10T 0°T

x ot ax2’
the initial condition

Tx,00=Tp- f(x) forO0<x <L,

(2.38)

(2.39)

(2.40)

(2.41)

and the boundary conditions imposed at the beams ends. These boundary conditions

are specified zero temperatures for the T1-beam,

T0,t) =0 fort > 0,
T(L,t)=0 fort >0,

and no-flow boundary conditions for the T2-beam,

oT
—(0,1) =0 fort >0,
0x
oT

—(L,t) =0 fort > 0.
0x

(2.42)

(2.43)
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Closed form solutions of the above problems are given by Carslaw and Jaeger [3],
who arrive at series representations that read for the T1-beam

T1(x,1)
:%Zsin?exp( xn’n? )/f(x)sm d/ (2.44)
n=1

and for the T2-beam

T(x,1)/To

T(x,1)/To = T2(x,1)

—/f( Ndx'+ = Zcm—exp( )(nrr )/f(x)cos

(2.45)

Now, with f(x) as defined above, the integrals involved may be evaluated by ele-
mentary analytical methods. The series representations take the form

o0
nmwx t
T1(x,t) = E in — 22
(x,1) n_lsm T exp( xn“mw L2)

80 3
X ——— sin n sin nr sin ﬂ, (2.46)
3(n)? 2 4 20

1 = t
T2(x,t) = 3 + Zcos ? exp ( annz—)
n=1

80 3
X ———— COS n sin n sin n—n 2.47)
3(nm)? 2 4 20

2.1.9 A Transient 2D Temperature Distribution, Non-Zero Initial
Temperature, Boundary Conditions of 1st and 2nd Kind

The domain represents the square [0, L] x [0, L] with an edge size of L = 100m,
located in the x-y-plane and subdivided into 100 x 100 x 1 cubic elements. Explicitly
assigned properties of the material are thermal conductivity A = 0.5787037 W/(m - K),
heat capacity ¢ = 0.01J/(kg-K), and density p = 2000kg/m?>. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. Given temperature
Ty = 1°C and
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0 for 0 <x<£,
10
10 1 4L
—x—= for — <x<—,
3L 3 1 10
4L 6L
x)=11 for — <x < — 2.48
S ) or .5 =X = o (2.48)
10 6L 9L
3——x for— <x< s
3L 10 10
9L
for — <x <L
0 or 10_x s

the simulation starts from the initial temperature distribution 7' (x, y, 0) = Ty - f(x) -
f(y) (Fig.2.3) and evaluates the transient temperature distribution 7 (x, y, ) with
output after 0.02 and 0.04 days (Fig.2.4).

The heat conduction equation is governing equation describing the transient tem-
perature distribution. It reads

oT
’OCE = AV .VT. (2.49)
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Introducing the notation

A
Y= (2.50)
pc

the present 2D problem is governed by the parabolic equation

13T 9T 9T
= == (2.51)
x ot 9xZ = 9y?

the initial condition
T(x,y,0)=To- f(x)- f(y) for 0<x,y <L, (2.52)

and the applied boundary conditions. These are specified zero temperatures at x = 0
andx =L

T0,y,1)=0 forO0<y<L, (2.53)
T(L,y,t)=0 for0<y<L, (2.54)

and no-flow boundary conditionsat y =0and y = L
aT
8—(x,0, t)=0 for0<x <L, (2.55)
y
oT
a—(x,L,t):O forO <x <L. (2.56)
y

The closed form solution of the above problem is obtained in terms of the 1D T1-beam
and T2-beam solutions given in the context of the previous example

o]
nmwx t
T1(x,t) = sin— e —yn?n?—
(x,1) nE_l 2 XP( xnm LZ)

80 . nm . nm . 3nm
X W si -5 sin e sin =0 (2.57)
) 1 ad nmwx L
T2(x,t) = §+ZCOST exp| —xn°mw 17
n=1
0 cos n sin nr sin ?m—ﬂ (2.58)

We will next verify that the closed form solution of the above problem is given by

Tx,y,t)=Ty-Tl(x,1)-T2(y,1). (2.59)
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Both, T'1(x, t) and T2(x, 1), satisfy the initial condition
T1(x,0) =T2(x,0) = f(x).

Then

T(x,y,0)=Tp-Tl(x,0) - T2(y,0) =To - f(x) - f (),

hence, T (x, y, t) satisfies the initial condition.

(2.60)

(2.61)

Both, T'1(x, tr) and T2(y, t), satisfy the 1D heat conduction equation. Then

10T 1, __0T1 1, 0T2
=T | —T2—+ —-T1—
X

x ot a  x ot
=T T2ale +T182T2
=0 9x2 3y2
9T 9T
Toax2 o 9y’

hence, T (x, y, t) satisfies the differential equation.
Zero boundary temperatures are satisfied by 7'1(x, 1)

T10,t) =0 fort >0,
T1(L,t) =0 fort >0,

no-flow boundary conditions are satisfied by T2(y, r)

0T2
—(0,71) =0 fort >0,
dy

aT?2
——(L,t) =0 fort >0
dy

Then

TO,y,t) =To-T10,1t)-T2(y,t) =0-T2(y,1t)
T(L,y,1) =To-TIL,1)-T2(y, 1) =0-T2(y,1)

=0,
=0,

oT aT2
a—(x,O, t) =Tp-T1l(x,t)- a—(O, t) =Ty-Tl(x,t)-0=0,

9 T2
G, L,y=Ty-Tl(x,t) - —(L,t) =Ty - T1(x,1)-0 =0,
ay ay

hence, T (x, y, t) satisfies the boundary conditions.

(2.62)

(2.63)
(2.64)

(2.65)

(2.66)

(2.67)
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2.2 Liquid Flow

The same tools that work for the solution of heat conduction problems may also
be applied to liquid flow problems. Here we are concerned with the evaluation of
pressure distributions, for the underlying theory see Freeze and Cherry [5].

2.2.1 A 1D Steady-State Pressure Distribution, Boundary
Conditions of Ist Kind

The domain is a rectangular beam extending along the positive x-axis and composed
of 10 x 1 x 1 cubic elements of 10m edge size each. An isotropic permeability
of 1079 m? is assumed for the material. Liquid viscosity is 1 mPa-s and gravity is
neglected via zero liquid density. Specified pressures prevail at the beam ends with
prescribed values of pg = 1 MPaatx = L = 100 m and zero pressure at x = 0 m. The
simulation comprises one time step to establish the steady-state pressure distribution
p(x).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d’p

for 1D flow along the x-axis, hence, the pressure is given by
p(x) =ax +b. (2.69)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = Om, therefore,

px) = po%- (2.70)

2.2.2 A 1D Steady-State Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

The domain is a rectangular beam of length L = 100 m extending along the positive
x-axis and composed of 10 x 1 x 1 cubic elements. The domain is composed of
two groups of permeable materials with isotropic permeabilities k; = 10712 m? and
ky = 3 x 107"2m? for x < 2L/5 and x > 2L/5, respectively. Liquid viscosity is
w = 1 mPa-s and gravity is neglected via zero liquid density. The specified pressure
po = 1MPa prevails at x = Om, the specific discharge ¢ = —1.5 x 107> m/s is
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prescribed at x = L, which acts as a source to the domain. The simulation comprises
one time step to establish the steady-state pressure distribution p(x).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads 5

d’p

— =0 2.71

2 (2.71)
for 1D flow along the x-axis, hence, the pressure is given by

aix +by  forx <2L/S,

arx +by forx > 2L/5. 2.72)

p(x) = [

The constants ay, by, a2, and by, have to be determined from the specified boundary
conditions and continuity of pressure and specific discharge at the material boundary.
Pressure pg prevails at x = 0, hence,

b1 = po. 2.73)

Specific discharge ¢ has been assigned at x = L. Then, by Darcy’s law,

g=-2 __ 2, (2.74)
1%

a|l— = —aj, (275)
M

and via continuity of pressure at the material boundary
by + ap2L /5 = a12L/5 + b;. (2.76)
The pressure distribution p(x) thus becomes

_%“x T o for x < 2L/5,
1
P =1 gu 2L (1 1

2.77)
— — —) forx > 2L/5.
2
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Fig. 2.5 Pressure distribution

2.2.3 A 2D Steady-State Pressure Distribution, Boundary
Conditions of Ist Kind

Given length L = 1 m the domain represents the square [0, L] x [0, L] in the x-y-
plane, discretized by 50 x 50 x 1 equally sized hexahedral elements. An isotropic
permeability of 10~!> m? is assumed for the material. Liquid viscosity is 1mPa-s
and gravity is neglected via zero liquid density. Prescribed pressures prevail at the
lateral boundaries of the domain as specified below. The simulation comprises one
time step to establish the steady-state pressure distribution p(x, y) (Fig.2.5).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads ) )

Y, ¥p =0 (2.78)
9x2  9y?
for 2D flow in the x-y-plane. With the aid of pressure pg = 1MPa the applied
boundary conditions read

px,0)=0 forO<x <L,

p0,y)=0 forO<y <L,
px,L)= po% forO<x <L, (2.79)

p(L,y)=po% for0<y<L.

The pressure distribution
xy

,Y) = po—= 2.80
p(x,y) POy 7 (2.80)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.
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2.2.4 A 2D Steady-State Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

Given length L = 1m the domain represents the rectangle [0, 2L] x [0, L] in the
x-y-plane, discretized by an irregular mesh of hexahedral elements. An isotropic per-
meability k& = 107'"“m? is assumed for the material. Liquid viscosity is
@ = 1mPa-s and gravity is neglected via zero liquid density. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. The simulation
comprises one time step to establish the steady-state pressure distribution p(x, y).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

S+ =0 2.81)

for 2D flow in the x-y-plane. With the aid of pressure pyo = 1MPa the applied
boundary conditions read

Po

px,0) = fx for0 <x <2L,
px,L) = @(x+2L) for0 <x <2L,
L (2.82)
Po ’
p(ZL,y)=f(2L+2y) forO0 <y <L,
ap Po
Lo,y =2 for0<y<L.
8x( ) 2 or0<y=
The pressure distribution
0
plr.y) = 20 +2y) (2.83)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

Data input represents the second kind boundary condition with the aid of a specific
discharge ¢ assigned at the face x = Om. By Darcy’s law,

g =——>—lx=o0. (2.84)
o ox
Hence, for the present example

k
g=——"2=-10"% mys, (2.85)

specified at the face x = Om.
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Fig. 2.6 Pressure contours

2.2.5 A 3D Steady-State Pressure Distribution

Given length L = 1 m the domain represents the cube [0, L] x [0, L] x [0, L] dis-
cretized by 5 x 5 x 6 equally sized hexahedral elements. An isotropic permeability
of 10719m? is assumed for the material. Liquid viscosity is 1 mPa-s and gravity is
neglected via zero liquid density. Prescribed pressures prevail at the surface of the
domain as specified below. The simulation comprises one time step to establish the
steady-state pressure distribution p(x, y, z) (Fig.2.6).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads 52 52 52

p p p
With the aid of pressure pg = 1 MPa the applied boundary conditions read

p0,y,2) = po <0+ R + %) on the face x = 0,

L
p(x,0,2) = po (% +0+ %) on the face y = 0,
p(x,y,0) = po (% + % + 0) on the face z = 0, (2.87)
p(L,y,2) = po (1 + =+ %) on the face x = L,
px,L,z) = po (% +14 %) on the face y = L,
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X Y
p(x,y, L) = po (z + I + l) on the face z = L.
The pressure distribution
=po (2 +2 i) 2.88
p(x,y,2) po(L+L+L (2.88)

satisfies the Laplace equation and the boundary conditions, hence, this is the closed
form solution of the above boundary value problem.

2.2.6 A Hydrostatic Pressure Distribution

The domain is a cuboid of height H = 30 m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The domain is
composed of four groups of isotropic permeable materials, p = 1019.368 kg/m?
is the liquid density. The simulation setup employs a prescribed zero pressure at
the top and explicitly specified no-flow conditions along the lateral boundaries and
bottom (unless otherwise specified, no-flow boundary conditions will be assigned by
default). The simulation comprises one time step to establish the hydrostatic pressure
distribution p(x, y, z).

The hydrostatic pressure distribution neither depends on the material properties
nor on the coordinates x and y and is given by

px,y,2) = pg(H — 2), (2.89)

where ¢ = 9.81m?/s is the magnitude of gravity, and z is the vertical coordinate
extending from 0 to H.

2.2.7 A Transient 1D Pressure Distribution, Time-Dependent
Boundary Conditions of 1st Kind

Given length L = 50m the domain is a beam extending from —L to L along the
X-axis, it is subdivided into 200 x 1 x 1 equally sized hexahedral elements. A perme-
able material represents the porous medium, which contains a liquid of small and con-
stant compressibility. Gravity is neglected via zero liquid density. Explicitly assigned
properties of matrix and liquid are an isotropic permeability k = 10~'* m? and liquid
viscosity u = 1.728 mPa - s. Porosity ¢ and liquid compressibility « have been incor-
porated in the storage ¢« = 2.5 x 10710 1/Pa. The pressure p; -t (p; = 2 x 10°Pa/d)
increases linearly with time ¢, it is applied at the beam ends for times ¢ > 0. Starting
from zero initial pressure the simulation evaluates the transient pressure distribution
p(x, ) with output after 0.25 and 0.5 days.
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For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

9 k
ol —Lv.vp. (2.90)
at %
Introducing the notation
k
= (2.91)
duk

the present 1D problem is governed by the parabolic equation

1ap 9%p
2.92
x ot ax2’ (2.92)
the initial condition
p(x,00=0 for —L <x <L, (2.93)
and linearly increasing pressures imposed at the beam ends
p(—L,t) =p;-t fort >0,
p(L,t) =p;-t fort>0. (2.94)

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

(x2—=L%» 16-p;-L?
p.ty=pi 1+ 2 > + X”;B (2.95)
o0

-1H" 2n+ Drx t
Z n +1)3 ( 7L )exp (—X(Zn—i—])znzm).

=0

2.2.8 Transient 1D Pressure Distributions, Time-Dependent
Boundary Conditions of 2nd Kind

The domain is composed of two beams in parallel (Beaml and Beam?2) extend-
ing along the positive x-axis, each L = 25m long and subdivided into 25 x 1 x 1
cubic elements. A permeable material represents the porous medium, which con-
tains a liquid of small and constant compressibility. Gravity is neglected via zero
liquid density. Explicitly assigned properties of matrix and liquid are an isotropic
permeability k = 10~'*m? and liquid viscosity u = 0.864mPa-s. Porosity ¢ and
liquid compressibility x have been incorporated in the storage ¢« with values of
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2 x 107191/Pa and 4 x 107!91/Pa assigned to Beam1 and Beam2, respectively.
No-flow boundary conditions prevail at the x = Om faces. A specific discharge is
prescribed at x = L for times ¢ > 0. It acts as a source to the domain and increases
linearly with time via ¢ - 7, where g; = 3.85802 x 10~%m/(s - d) has been assumed.
Starting from zero initial pressure the simulation evaluates the transient pressure
distributions with output after 0.045 and 0.09 days.

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

qb/ca—p = EV -Vp. (2.96)
at %
Introducing the notation
k
X =" (2.97)
Pk

the present 1D problems are governed by the parabolic equation

lop d*p
2.98
x ot ax2’ (2.98)
the initial condition
p(x,00)=0 forO0<x <L, (2.99)
and the boundary conditions
d
Lo,y =0 forr>0,
dx
(2.100)
ko
——p(L t)=qy-t fort>0.
i ox

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

8q1\/)(l (2n+l)L 3 @2n+ 1)L +x
px, 1) = ZO[ e Y 1 Perfe N ],(2.101)

where i3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.
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Fig. 2.7 Initial pressure distributions

2.2.9 Transient 1D Pressure Distributions, Non-Zero Initial
Pressure, Boundary Conditions of 1st and 2nd Kind

The domain is composed of two beams in parallel (pl-beam and p2-beam) extend-
ing along the positive x-axis, each L = 100m long and subdivided into 100 x 1 x 1
cubic elements. A permeable material represents the porous medium, which con-
tains a liquid of small and constant compressibility. Gravity is neglected via zero
liquid density. Explicitly assigned properties of matrix and liquid are an isotropic
permeability kx = 10~ m? and liquid viscosity x4 = 1.728 mPa-s. Porosity ¢ and
liquid compressibility « have been incorporated in the storage ¢x = 2 x 10710 1/Pa.
Prescribed conditions prevail at the beams ends as specified below. Given pressure
po = 1 MPa and

L
— 10’
10 1 L 4L

3L 3 0-"-10°

AL 6L
Feo 0= 10

10 6L 9L
3L 10 — 10’

L
0 f0r9—§x L,
10

IA

(2.102)

w2
I
|
=
g
|
A
=
IA

IA

the simulation starts from the initial pressure distribution p(x, 0) = po- f (x) (Fig.2.7)
and evaluates the transient pressure distribution p(x, ) with output after 0.05 and 0.1
days (Fig.2.8).

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing



36 P. Vogel and J. Mamann

0.€.0
1.E+5
2.E+5
SHaes
T Haes
g 5.E+5
% 6.E+5
D': 7.€+5
8.E+5
9.E+5
1 E«6
Fig. 2.8 Pressure distributions after 0.1 days
the transient pressure distribution. It reads
a k
ol — Ly .vp. (2.103)
at %
Introducing the notation
k
X =— (2.104)
Pk
the present 1D problems are governed by the parabolic equation
1ap  9°
~»_%pr (2.105)
x ot 9x2
the initial condition
px,0)=po- f(x) forO0<x<L, (2.106)

and the boundary conditions imposed at the beams ends. These boundary conditions
are specified zero pressures for the pl-beam,

p0,1) =0 fort >0,
p(L,t) =0 fort >0, (2.107)

and no-flow boundary conditions for the p2-beam,
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9
0.1y=0 fors >0,
ox
3
8i’(L, =0 fors>0. (2.108)
X

Closed form solutions of the above problems are given by Carslaw and Jaeger [3],
who arrive at series representations that read for the pl-beam

p(x,t)/po = pl(x,1)

:%Zsin? exp( xn’m? )/f(x)sm x' (2.109)
n=1

and for the p2-beam

p(x,1)/po = p2(x,1)

/f(x)d + — Zcos—xexp( Xnn )/f(x)cos

dx’.
(2.110)

Now, with f(x) as defined above, the integrals involved may be evaluated by ele-
mentary analytical methods. The series representations take the form

o0
nwx t
1(x,t) = sin —— exp [ —yn?n?—
plx, 1) ;:1 2 p( X L2)

80 .onm . nm . 3nw

% n N 2111
3z " 2 4 20 @11D

- t
p2x,t) = 3 + nglcos ? exp (—annzﬁ)
80 3
X ——— cosE sinE sinn—n. (2.112)
3(nm)? 2 4 20

2.2.10 A Transient 2D Pressure Distribution, Non-Zero Initial
Pressure, Boundary Conditions of 1st and 2nd Kind

The domain represents the square [0, L] x [0, L] with an edge size of L = 100m,
located in the x-y-plane and subdivided into 100 x 100 x 1 cubic elements. A per-
meable material represents the porous medium, which contains a liquid of small
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and constant compressibility. Gravity is neglected via zero liquid density. Explicitly
assigned properties of matrix and liquid are an isotropic permeability k = 10~4 m?
and liquid viscosity u = 1.728 mPa-s. Porosity ¢ and liquid compressibility «
have been incorporated in the storage ¢k = 2 x 10719 1/Pa. Prescribed conditions
prevail at the lateral boundaries of the domain as specified below. Given pressure
po = 1 MPa and

L
0 for 0 <x< —,
10
10 1 L 4L
—x—= for — <x<—,
3L 3 10 10
4L 6L
=11 for — <x < — 2.113
fx) or .5 <X = o ( )
10 6L 9L
3——x for— <x<—,
3L 10 10
oL
0 for — <x <L,
10

the simulation starts from the initial pressure distribution p(x, y, 0) = po- f(x)- f(y)
and evaluates the transient pressure distribution p(x, y, t) with output after 0.02 and
0.04 days.

For liquids of small and constant compressibility Darcy’s law and continuity
equation yield the pressure conduction equation as the governing equation describing
the transient pressure distribution. It reads

ad k
ol — Ly .vp. (2.114)
at %
Introducing the notation
k
X = (2.115)
Pk

the present 2D problem is governed by the parabolic equation

19 a2 92
_fpP TP (2.116)
x ot 3xZ  9y?

the initial condition
px,y,0)=po- f(x)- f(y) forO<x,y <L, (2.117)

and the applied boundary conditions. These are specified zero pressures at x = 0
andx =L

p0,y,1)=0 forO0<y=<L, (2.118)
p(L,y,t)=0 forO<y=<L, (2.119)



2 Verification Tests 39

and no-flow boundary conditions aty =0and y = L

9
a—p(x,o, HN=0 for0<x<1L, (2.120)
y

9
8—p(x,L,t)=O for0<x <L. (2.121)
y

The closed form solution of the above problem is obtained in terms of the 1D p1-beam
and p2-beam solutions given in the context of the previous example

o0
nmwx t
1(x,1) = sin —— exp | —xn’7w?—
pl(x, 1) nE_l i3 p( xn )

80 3
X ——— sinE sinE sin n—n, (2.122)
3(n)? 2 4 20

1 o nmwx 2 ot
p2(x,t) = 3 +nz_1:cosT exp (—Xn b4 ﬁ)

80 3
x — _ cos 2% sin 2% gin 22 (2.123)
3(nm)? 2 4 20

We will next verify that the closed form solution of the above problem is given by
p(x,y, 1) =po-pl(x,t)- p2(y, ). (2.124)
Both, pl(x,t) and p2(x, 1), satisfy the initial condition
pl(x,0) = p2(x,0) = f(x). (2.125)
Then
p(x,¥,0) = po- plx,0) - p2(y,0) = po - f(x)- f(y), (2.126)

hence, p(x, y, t) satisfies the initial condition.
Both, pl(x,t) and p2(y, 1), satisfy the 1D pressure conduction equation. Then

10 1 _apl 1 _op2
Lop _ L ,op0 1 3p2
X ot X R at X 5 Jt
0 pl 0" p2
= 22— 1 2.127
Po [p a2 TP ay2] ( )
_ %p  9%p
Toax2 0 gy?’

hence, p(x, y, t) satisfies the differential equation.
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Zero boundary pressures are satisfied by p1(x, r)

pl0,¢t) =0 fort >0, (2.128)
pl(L,t) =0 fort >0, (2.129)

no-flow boundary conditions are satisfied by p2(y, t)

ap2
ai(o,t)=o for t > 0, (2.130)
y
ap2
P2 y=0 fort>0. (2.131)
ay
Then

p,y,t) = po-pl©,1)-p2(y,t) =0-p2(y,1) =0,

p(L,y,t) =po-pl(L,t)-p2(y,t) =0-p2(y,1) =0,

ap ap2

8f(x,0,t) =po-pl(x,t)-7(0,t) =po-plx,1)-0=0, (2.132)

y y

9 ap2

P L.ty =po-plx, 1) L2(L.1) = po- pl(x.1)-0 =0,

ay ay

hence, p(x, y, t) satisfies the boundary conditions.

2.3 Gas Flow

Because the gas density strongly depends on pressure, the governing equations
become non-linear. We present a few steady-state solutions of isothermal flow prob-
lems, for the underlying theory see Freeze and Cherry [5].

2.3.1 A 1D Steady-State Gas Pressure Distribution, Boundary
Conditions of Ist Kind

The domain is a rectangular beam extending along the positive x-axis and
composed of 40 x 1 x 1 equally sized hexahedral elements. An isotropic perme-
ability of 107 m? is assumed for the material, gas viscosity has been assigned
1073 Pa-s, gravity is neglected by default. Specified pressures prevail at the beam
ends with prescribed values of p; = 10° Paatx = L = 100m and py = 2 x 10°Pa
at x = Om. The simulation comprises one time step to establish the steady-state
pressure distribution p(x).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

d2p2
dx?

=0 (2.133)
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for 1D gas flow along the x-axis, hence, the pressure is given by
px) = vax +b. (2.134)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = Om, therefore,

2.3.2 A 1D Steady-State Gas Pressure Distribution, Boundary
Conditions of 1st and 2nd Kind

The domain is a rectangular beam of length L = 100 m extending along the positive
x-axis and composed of 40 x 1 x 1 equally sized hexahedral elements. An isotropic
permeability k = 10~1° m? is assumed for the material, gas viscosity u = 107> Pa-s
has been assigned, gravity is neglected by default. Prescribed boundary conditions
prevail at the beam ends as specified below. The simulation comprises one time step
to establish the steady-state pressure distribution p(x).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

d2p2
dx?

=0 (2.136)

for 1D gas flow along the x-axis, hence, the pressure is given by
px) = +ax +b. (2.137)

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = Om. Pressure p; = 10° Pa prevails at x = L, hence,

b=p}—alL. (2.138)

Specific gas flow Q = 0.17Pa- m/s has been assigned at x = Om. Then, by Darcy’s
law,
k dp k dp?

k
L TR S A N 2.1
0 Mpdxl 0 o dxl 0 ZMa (2.139)

The pressure distribution p(x) thus becomes

2
px) = \/%(L -x)+ pl. (2.140)
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Fig. 2.9 Pressure distribution

2.3.3 A 2D Steady-State Gas Pressure Distribution

Given length L = 1m the domain represents the square [0, L] x [0, L] in the
x-y-plane, discretized by an irregular mesh of hexahedral elements. An isotropic
permeability k = 10~1° m? is assumed for the material, gas viscosity u = 107> Pa-s
has been assigned, gravity is neglected by default. Prescribed conditions prevail at
the lateral boundaries of the domain as specified below. The simulation comprises
one time step to establish the steady-state pressure distribution p(x, y) (Fig.2.9).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

82[72 32p2
0x2 9y?

=0 (2.141)

for 2D gas flow in the x-y-plane. With the aid of pressure py = 10° Pa the applied
boundary conditions read

p*0.y) = p§ for0<y<L,

p(x,0) = p3 for0<x <L,

ap? Py (2.142)
—(L,y)=3—= for0<y<L,

ox Lo =3 for0=y=

9 2 2

Py =302 o<y <L.

ay L L

The pressure distribution

p(x, y) = po./1 +3% (2.143)
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satisfies the differential equation and the boundary conditions, hence, this is the
closed form solution of the above boundary value problem.

Data input represents the second kind boundary conditions with the aid of a
specific gas flow Q, which acts as a gas source to the domain at the faces x = L and
y = L. By Darcy’s law,

k dp k dp? 3k p3y
=—p ===t =7 2.144
o Mpdxl L 2del L= L L ( )
at the face x = L, and
o=k, _ _ kdp2| 3k phx (2.145)
_p,pdy y=L_2/,L dy yzL_Z,uLL '

at the face y = L.

2.3.4 A 3D Steady-State Gas Pressure Distribution

Given length L = 1 m the domain represents the cube [0, L] x [0, L] x [0, L] dis-
cretized by 21 x 22 x 23 equally sized hexahedral elements. An isotropic perme-
ability k = 10~ m? is assumed for the material, gas viscosity ;4 = 107> Pa-s has
been assigned, gravity is neglected by default. Prescribed 2nd kind boundary condi-
tions prevail at the entire surface of the domain as specified below. The simulation
comprises one time step to establish the steady-state pressure distribution p(x, y, z)
(Fig.2.10).

Darcy’s law and continuity equation yield the Laplace equation governing the
square of the steady-state gas pressure distribution. It reads

=0. 2.146
0x2 + dy ( )

With the aid of pressure py = 103 Pa the applied boundary conditions read

p*(0,0,0) = p2,
2

3 3 pg

%(O,y,z)=§%% on the face x = 0,

9 2 3 2

%(L,y,z)zi%% on the facex = L,

ap> 3pd

L(X,O,Z)—fﬁf on the face y = 0, (2.147)
ay 2L L

9 2 3 2

L(X,L,Z)zf@i on the face y = L,

dy 2L L
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9 2 3 2
%(X,y,()):E% on the face z = 0,
P 2 3 2
%(x,y,L):z% on the face z = L.

The pressure distribution

3
p(X,)’,Z):pO\/l'i‘—(Z'Z 2 (2.148)

Xy z
(L ovi)
satisfies the differential equation and the boundary conditions, hence, this is the
closed form solution of the above boundary value problem.

Data input represents the second kind boundary conditions with the aid of a
specific gas flow Q. It acts as a gas source to the domain on the facesx = L, y = L,
and z = L and acts as a sink on the remainder. On the face x = L we have by Darcy’s

law
_k _ap k ap? 3k

A |x=L |x=L =

0=yl =50 . (2.149)

=3,

Y
T

and similarly for the five other faces.
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Fig. 2.10 Pressure contours
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2.4 Deformation Processes

The linear elastic material is subject of the steady-state problems. Our transient
problems focus on the Norton material. For the underlying theory see Jaeger and
Cook [6].

2.4.1 An Elastic Beam Undergoes Axial Load

The domain is a rectangular beam extending along the positive x-axis. It has three
faces located on the coordinate planes and is discretized by 20 x 2 x 2 cubic elements
of 0.05m edge size each. The beam is represented by an elastic material. Poisson’s
ratio v = 0.25 and Young’s modulus E = 10,000 MPa have been assigned, gravity is
neglected via zero material density. Faces on the coordinate planes are sliding planes,
the top and the rear face of the beam are free, a tensile stress oy = 2MPa is applied
at the x = 1 m face. The simulation comprises one time step to establish the stresses,
strains, and displacements.
Let o denote the stress tensor. The equation of mechanical equilibrium

V.o=0 (2.150)
is satisfied by zero shear and constant stresses

o11 = 00,
2.151
02 =033 = 0. ( )

Then, with principal axes equal to coordinate axes, Hooke’s law gives for the strains

: [ (022 +033)] = =2
= —|O — V(O = —

€11 E 11 22 033 Ea
1

€n = E[Uzz — (o +o33)] = —V%), (2.152)
(o3 — (o1 + 0] = —v 2

€33 = —[033 — V(0o o) = —v—.

33 E 33 11 22 E

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, iy, u)

00
uy(x) = Exy
00

uy(y) = VY (2.153)
00
u(z) = —-v—z.
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2.4.2 An Elastic Plate Undergoes Simple Shear

The domain is a rectangular plate located in the first octant. It has an extent of 10m in
x- and y-direction and is discretized by 8 x 8 x 2 equally sized hexahedral elements.
The plate is represented by an elastic material. Young’s modulus £ = 10,000 MPa
and Poisson’s ratio v = 0.25 have been assigned, gravity is neglected via zero material
density. Load is applied with the aid of prescribed displacements which cover the
entire surface. The simulation comprises two time steps with increasing deformation
as specified below.

The equation of mechanical equilibrium and Hooke’s law yield the Navier
equations describing mechanical equilibrium in terms of the displacement vector
(ux, uy, uz). Employing the notation

ouy  Ouy  Ouy

— 4+ —=e (2.154)
ox ay 0z
the Navier equations read
Puy  %uy  9uy 1 de
=90

0x2 + 0y? + 072 + 1 —2vdx
Puy | Fuy Oy 1 B, (2.155)

9x2 9y? 9z2  1-—2vay

2u,  %u.  0%u, 1 de

ax2 2 a2 T 1-2vaz
With the aid of slope m the specified boundary conditions are given by
uy(x,y,z) =0 on the entire surface,
uy(x,y,z) = mx on the entire surface, (2.156)

u;(x,y,z) =0 on the entire surface.

The displacement vector

MX(X,)},Z) =0,
uy(x,y,z) =mx, (2.157)
MZ(X’ va) :0

satisfies the Navier equations and the specified boundary conditions, hence, this is
the required solution of the above boundary value problem. The only non-zero strain
is

duy

€p = —==m, (2.158)
0x

and Hooke’s law yields for the associated stress
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E

o1 = EZE'I-:;-;;i m.

(2.159)

The two time steps have m assigned the values —0.1 and —0.2, respectively.

2.4.3 An Elastic Cuboid Undergoes Load Due to Gravity

The domain is a cuboid of height H = 30m and edges parallel to the x-y-z
coordinate axes. It is discretized by an irregular mesh of hexahedral elements. The
cuboid is represented by four groups of elastic materials, where each has been
assigned density p = 3058.104kg/m>, Poisson’s ratio v = 0.25 and Young’s mod-
ulus £ = 10,000 MPa. The bottom and the lateral faces are sliding planes, the top
face is free. Gravity is the only load applied, g = 9.81m/s? is the magnitude of
gravity. The simulation comprises one time step to establish the stresses, strains, and
displacements (Fig.2.11).

Let o denote the stress tensor. The equation of mechanical equilibrium

0=V-o—(0,0, pg) (2.160)

is satisfied by zero shear, if the horizontal stresses o and o7, are functions of the
vertical coordinate z only and the vertical stress o33 satisfies

0033

— = pg. (2.161)
9z

The face z = H is free, hence, integration gives
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-7.5E+5
-6.0E+5
-4.5E+5

-3.0E+5

Vertical stress (Pa)

-1.5E+5

0.0€.0

Fig. 2.11 Vertical stress
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033 = p(=g)(H —2). (2.162)

Assuming that there is no horizontal displacement anywhere we have for the
horizontal strains

€11 =€ =0. (2.163)

Then, with principal axes equal to coordinate axes, Hooke’s law gives

0 =011 —v(on + 033),
0 = 022 — v(o11 + 033), (2.164)

Ee33 = 033 — v(011 + 022).

Solving for o1, 022, and the vertical strain €33 yields

v Vv
o] =0 = 1 033 = —— P(—g)(H - Z)’
—v 1—v
1 212
€33 = E (1 1 )p(—g)(H —2) (2.165)
—V

in terms of the vertical coordinate. Integrating the strains with respect to the pre-
scribed fixities yields the displacement vector (uy, uy, u;)

uy =uy =0,

1 202 1
Mz(Z) = E (1 — 1 Ev) ,0(—8) (HZ — 5Z2) . (2166)

2.4.4 Stresses Relax in a Deformed Cube of Norton Material

The domain is a single cube with edge size L = 1 m located in the first octant. It has
three faces located on the coordinate planes and is discretized by 2 x 2 x 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio v = 0.27
and Young’s modulus £ = 25,000 MPa have been assigned, gravity is neglected via
zero material density. Various additional parameters are involved in the rheological
model, details are given below. Faces on the coordinate planes are sliding planes.
The constant vertical displacement w = 0.0012m is applied at the top face for times
t > 0. Starting from an initial setup free of load the simulation evaluates stresses,
strains, and displacements through time with output after 0.1 and 1.1 days.
Let o denote the stress tensor, I the unit tensor,

ol =g %"1 (2.167)

the stress deviator, and
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(2.168)

Oeff =

the v. Mises or effective stress. The rheological model involved yields the funda-
mental stress/strain relationships as a system of differential equations for the creep
strains b
de” 30
=-—(No} 2.169
9 3 O'eff( Ueff) ( )

and the total strains
€ =€ + €, (2.170)

where €/ denotes the elastic strains via Hooke’s law. Both equations have to be
solved with respect to the imposed initial and boundary conditions.

For the present example the behaviour of the Norton material is specified with the
aid of the parameters

n =25,

N = Aexp (_%)’ (2.171)

where R = 8.31441J/(mol - K) is the gas constant, T is the absolute temperature (we
have T' = 273.15K by default), and experimental data obtained from rock salt yield

A =0.18 1/(d- MPad),

Q = 54,000 J/mol. (2.172)

Note that day is required as unit of time and stresses have to be in MPa.
Due to the example setup the principal axes are identical to the coordinate axes
and the vertical stress is the only non-zero element of the stress tensor. Therefore,

00 0
o=1000 |, (2.173)
00 o33
the trace of o
tro = 033, (2.174)
the stress deviator
. -1 00
aD=% 0 -10], (2.175)
0 0 2

the v. Mises or effective stress
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3/2
our = Il 2V 2422 = fo), (2.176)
and the time derivative of the creep strains
-1 00
de” N
; =Zoh( 0 -10]). (2.177)
! 002

The entire domain is initially free of creep strains. Hence, integrating with respect
to time ¢ the creep strains become

t

0
10 /0353dt. (2.178)
2 0

-1 0

Y I -
0 0

The elastic strains are obtained from the stress o via Hooke’s law

o —v 0 0
ed:% 0 —vo0). (2.179)
0 01

The total strains in terms of 033 and the displacements (u,, uy, u;) read

duy/ox 0 0
€ =€l + e = 0  duy/dy O
0 0 du;/oz
—v 00 -1 00\ ! (2.180)
033 5
=F 0 —\)0 +? 0 _10 /U33dt.
0 01 0 02/
Due to the simulation setup
ou w
o= £ = 2.181
€33 0z L ( )
is the specified constant strain along the z-axis. Then
1 1
w
T=gont N/a353 dr. (2.182)
0

This integral equation is transformed into the ordinary differential equation

0= == +Noi. (2.183)



2 Verification Tests 51

Separation of variables and integration yields

E
o33(t) = — , (2.184)
L JAES(w/L)*Nt + 1
and the strains du, /dx and du,/dy are obtained in terms of 033(¢)
ou w 1—2v
() = T =~ + —om ). (2.185)
ou w 1—2v
) = ==+ om0,

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, uy, u;)

w 1—2v
ux(x,t):x(—i—k E 033(t)),

w 1—2v
uy(y, 1) =y(—i+ 3E ass(t)), (2.186)
uZ(th) =Z%

again in terms of 033(¢) derived above.

2.4.5 A Cube of Norton Material Creeps Under Constant Stress

The domain is a single cube with an edge size of 1 m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2 x 2 x 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio v = 0.27
and Young’s modulus £ = 25,000 MPa have been assigned, gravity is neglected via
zero material density. The additional parameters involved in the rheological model
are identical to those of the previous example. Faces on the coordinate planes are
sliding planes. The constant vertical stress op = —20MPa is applied at the top face
for times ¢ > 0. Starting from an initial setup free of load the simulation evaluates
stresses, strains, and displacements through time with output after 10 and 20 days.

The rheological model of the Norton material and its underlying theory have been
sketched just before; we focus on the special features of the present example. Due
to the setup the principal axes are identical to the coordinate axes and the specified
vertical stress is the only non-zero element of the stress tensor. Therefore,

000
o=1000 ], (2.187)
00 og
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the trace of o

tro = oy, (2.188)
the stress deviator
o -1 00
aD:?O 0 -10], (2.189)
0 02
the v. Mises or effective stress
J3/2
Oefr = |og| 3/ V12412422 = |0y, (2.190)
and the time derivative of the creep strains
. -1 00
o€’ N
; =5(;§ 0 -10]). (2.191)
! 0 02

The entire domain is initially free of creep strains. Hence, integrating with respect
to time ¢ the creep strains become

N -+ 00
€ = > Jlo-r0]. (2.192)
0 0 2

The elastic strains are obtained from the stress o via Hooke’s law

I —v 00
=20 o). (2.193)
0 01

The total strains in terms of the displacements (i, uy, u;) read

duy/dx 0 0
€10 = ¥l 4+ €7 = 0 duy/dy 0 . (2.194)
0 0 du;/oz

The strains du, /dx, du,/dy, and du,/dz are thus given by
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AO=G0="F 27"
ouy Vo N

Eé%t(l) — 87; — _?0 _ E gt, (2.195)
ou o

€lol (1) = 87; = EO + Nojt.

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, iy, u)

uy o) = y (=220 ﬁas,) , (2.196)

00 5
u(z,1) =z (f + Nog z) .

2.4.6 A Cube of Norton Material Undergoes Tensile Strain
Increasing Linearly with Time

The domain is a single cube with edge size L = 1 m located in the first octant. It has
three faces located on the coordinate planes and is discretized by 2 x 2 x 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio v = 0.27 and
Young’s modulus E = 2.5 x 10’ MPa have been assigned, gravity is neglected via
zero material density. Except from the stress exponent n, which now has n = 2, the
values of the additional parameters involved in the rheological model are identical
to those of the two previous examples. Faces on the coordinate planes are sliding
planes. The vertical displacement w; - r (w; = 0.0001 m/d) increases linearly with
time ¢, it is applied at the top face for times ¢ > 0. Starting from an initial setup free
of load the simulation evaluates stresses, strains, and displacements through time
with output after 1.5 and 3.0 days.

The rheological model of the Norton material and its underlying theory have
already been outlined before; we focus on the special features of the present example.
Due to the setup the principal axes are identical to the coordinate axes and the vertical
stress is the only non-zero element of the stress tensor. Therefore,

00 0
o=(00 0 |, (2.197)
00 o33
the trace of o
tro = 033, (2.198)

the stress deviator
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o -1 00
aD:% 0 -10], (2.199)
0 02
the v. Mises or effective stress
3/2
e = o VAV + 1242 = o, (2.200)
and the time derivative of the (positive) creep strains
. -1 00
o€’ N
; = ok [ 0 -10]). (2.201)
! 0 02

The entire domain is initially free of creep strains. Hence, integrating with respect
to time ¢ the creep strains become

0 1
10 / o3y dt. (2.202)
2 0

N—IO

0 —
0 0

The elastic strains are obtained from the stress o via Hooke’s law

o —v 0 0
eez:% 0 —v0). (2.203)
0 01

The total strains in terms of o33 and the displacements (u,, uy, u;) read

duy/ox 0 0
€ =€ 4 €7 = 0  duy/dy O
0 0 du;/0z
—v 00 -1 0 0\ ¢ (2.204)
033 2
:? 0 —vo0 +E 0 —-10 /O’33dt.
0 01 0 02/
Due to the simulation setup
d

ey = al; = =L (2.205)

is the specified strain along the z-axis. Then

t

wq 1

Tt=gontN / 0% dt. (2.206)
0
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This integral equation is transformed into the ordinary differential equation

wi 1 doss
T =% ar + No2 033 (2.207)

Separation of variables and integration yields

vwl/(LN + 033 (2.208)
4w1 vwl/(LN — 033 '

ENt =

the vertical stress o33 becomes

o33(t) = /Z)T]v tanh(y/w N/L E 1), (2.209)

and the strains du, /dx and du,/dy are obtained in terms of 033(¢)

Uy w1 1—2v
el = = t 2.210
(1) = o = 2t g o33(1), ( )
ou w1 1—2v
)= —2 = —— 1).
5 (1) = L t+ 5E 033(1)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, iy, u;)

1—2v
uy(x,t) =x( Lt 033(0),

2L 2E
wG.0 =y (-2 + 2o @211)
IR 2L 2FE ’

uZ(th) =z—1

again in terms of 033(¢) derived above.

2.4.7 A Cube of Norton Material Undergoes Compressive Stress
Increasing Linearly with Time

The domain is a single cube with an edge size of 1 m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2 x 2 x 2 cubic
elements. The cube is represented by a Norton material. Poisson’s ratio v = 0.27 and
Young’s modulus E = 25,000 MPa have been assigned, gravity is neglected via zero
material density. Except from the stress exponent n, which now has n = 5 again, the
values of the additional parameters involved in the rheological model are identical
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to those of the three previous examples. Faces on the coordinate planes are sliding
planes. The vertical stress o1 - ¢ (01 = —1MPa/d) depends linearly on time ¢, it is
applied at the top face for times ¢ > 0. Starting from an initial setup free of load the
simulation evaluates stresses, strains, and displacements through time with output
after 15 and 30 days.

The rheological model of the Norton material and its underlying theory have
already been outlined before; we focus on the special features of the present example.
Due to the setup the principal axes are identical to the coordinate axes and the specified
vertical stress is the only non-zero element of the stress tensor. Therefore,

00 O
o=[00 O , (2.212)
000 -t
the trace of o
tro = o - t, (2.213)
the stress deviator
ot -1 00
aDle 0 —10], (2.214)
0 02
the v. Mises or effective stress
V3/2
Oeff = |07 - t] 3/ V12412 422 = |0y - 1], (2.215)
and the time derivative of the creep strains
-1 00
de" N
; =S 0 -10]. (2.216)
! 0 02

The entire domain is initially free of creep strains. Hence, integrating with respect
to time ¢ the creep strains become

N -100
e":Eofl6 0 —10]). (2.217)
0 02

The elastic strains are obtained from the stress o via Hooke’s law

o1 —v 00
=" 0 —vo). (2.218)

E-\o 01
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The total strains in terms of the displacements (i, uy, u;) read

duy/ox 0 0
€ = ¢l 4 € = 0  duy/dy O , (2.219)
0 0 du;/dz

the strains du, /dx, du,/dy, and du/dz are thus given by

ou Vot N

dro=r = "
ou voit N

€30 = Byy - El — o (2.220)
ou; ot N

0 === ot

and integration with respect to the fixities at the coordinate planes yields the dis-
placement vector (uy, uy, uz)

voit N
Uy(x,t) :x(— ——Glstf’),

E 12
voit N
uy(y,1) =y (_T - l—aftG) , (2.221)
ot N
i) =2 (% + Goir?).

2.5 Mass Transport

The Laplace transform solution method proves to be a powerful tool in solving
mass transport problems. From the variety of closed form solutions available in the
literature we adopted some basic examples from standard references. We made no
attempt to trace back the entire material to its original sources.

2.5.1 Solute Transport Along Permeable Beams, Hydraulic
and Solute Boundary Conditions of 1st and 2nd Kind

The domain comprises four parallel beams of length L = 10m extending along the
positive x-axis, each composed of 200 x 1 x 1 equally sized hexahedral elements
(Fig.2.12). An isotropic permeability k = 10~'! m? holds for all beams, porosities
are listed below, the liquid is incompressible with viscosity u = 1 mPa-s. The dif-
fusion coefficient assumes the constant value D = 10~*m?/s comprising molecular
diffusion and mechanical dispersion. Gravity is neglected via zero liquid density.
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Beam?2?2 Beam?2! Beam12 Beami1

Fig. 2.12 Example setup
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Fig. 2.13 Solute distributions after 20,000 s

Zero pressure prevails at the beams outlets (x = L). Hydraulic and solute boundary
conditions of Ist and 2nd kind are imposed at the inlets (x = Om) and are listed
below. Starting from zero initial solute concentration the simulation evaluates the
transient solute distributions with output after 10,000 and 20,000s (Fig.2.13).

The formal solution proceeds in two steps, first to solve for the pressure and
second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d’p

o= (2.222)

for 1D flow along the x-axis, hence, the pressure is given by

p(x) =ax +b. (2.223)



2 Verification Tests 59

Table 2.1 Example overview

Beaml 1 Beam12 Beam21 Beam22
Porosity ¢ 0.6 0.4 0.4 0.6
Inlet pressure po 10° Pa 10° Pa
Specific discharge g 10~%m/s 10~*m/s
Inlet concentration 1 1
Solute input j = —¢pDVc 5 x 1079 m/s 5x 10 m/s

The free constants, a and b, have to be determined from the specified boundary
conditions at x = L and x = O m. Hence, in case of specified inlet pressure (Beam1 1
and Beam12)

X
P =po (1- Z) (2.224)
and by Darcy’s law
_H _x
px) = gL (1 L) (2.225)

in case of specified specific discharge (Beam21 and Beam22). Employing the data
given above both result in identical pressure distributions and a unique specific dis-
charge ¢ applied to all beams (Table2.1).

We will next focus on the closed form solution of the transport problems, i.e. we
will solve the solute transport equation subject to the imposed initial and boundary
conditions. The solute distributions along Beam11 and Beam21 (cl-distributions)
are based on a 1st kind solute boundary condition. Due to free outflow at x = L these
distributions represent those of a solute in steady linear flow downstream (x > 0)
the source

c1(0,7) =1 fort > 0. (2.226)

The formal problem is to determine the solution c1(x, ¢) of the 1D transport equation

dcl g adcl 92cl
—+2—=D 2.227
ot + ¢ 0x ax2 ( )

subject to the initial condition
cl(x,0) =0 forx >0, (2.228)
and the boundary conditions

cl(0,7r) =1 forr >0,

lim ¢l(x,7) =0 fort > 0. (2.229)
x—>00
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Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation
D&l — %51’ —5él =0, (2.230)

where ¢l is the transform of cl, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to transformed boundary conditions. This yields

; _! a _ f_a i)
clx,s) = sexp |:x (2¢D 2qu) + D } (2.231)

Churchill [7] outlines how to obtain the solution ¢1(x, #) from their transform with
the aid of operational calculus.

looseness-1 The solute distributions along Beam12 and Beam22 (c2-distributions)
are based on a 2nd kind solute boundary condition. Due to free outflow at x =
L these distributions represent those of a solute in steady linear flow downstream

(x > 0) the source

) ;
0= forr>o0. (2.232)
ax oD

The formal problem is to determine the solution ¢2(x, r) of the 1D transport equation

a2 qdc2 92c2

—+-—-——=D 2.233
ot + ¢ ox ax2 ( )
subject to the initial condition
c2(x,0) =0 forx > 0, (2.234)
and the boundary conditions
ac2 Jj
— (0,1 = ———fort >0,
dx oD (2.235)
lim c2(x,t) = 0 forr > 0.
X—> 00

Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation
D& — %52’ —s@2=0, (2.236)

where ¢2 is the transform of ¢2, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields
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4 Ly S
; ool (55155 * 5)]
Ds s ’
¢ L —_ L)Z + —
20D\ 24D D
The entire solution may now be obtained from the transforms of the solute distri-

butions. The numerical inversion scheme outlined in the introductory section may
easily be applied to give the required values of c1(x, r) and c2(x, t) (Fig.2.13).

c2(x,s) = —

(2.237)

2.5.2 Solute Transport Along Permeable Beams with an Inert,
a Decaying, and an Adsorbing Solute, Time-Dependent
Boundary Conditions of Ist Kind

The domain comprises three parallel beams of length L = 10m extending along
the positive x-axis, each composed of 200 x 1 x 1 equally sized hexahedral
elements (Fig.2.14). An isotropic permeability & = 10~'' m? holds for all beams,
porosities have been assigned ¢ = 0.4. The liquid is incompressible with viscosity
w = 1 mPa-s. The diffusion coefficient assumes the constant value D = 10~% m?/s
comprising molecular diffusion and mechanical dispersion. Gravity is neglected via
zero liquid density. The decaying solute (half life 7') undergoes first order decay
with decay constant (In2)/7T = 0.5 x 10~* 1/s. For the adsorbing solute the adsorbed
mass fraction is related to the solute mass fraction by a linear equilibrium sorption
model. Input data require the distribution coefficient K; = 6.8 x 10~*m?/kg and the
density of the solid grain (p; = 2,000kg/m?), for more details see below. Pressure
po = 10° Pa prevails at the beams inlets (x = 0m), zero pressure prevails at the
beams outlets (x = L). Along the inlets concentration 1 is specified for times less
than 7y = 15,000 s and zero afterward. Starting from zero initial solute concentration
the simulation evaluates the transient solute distributions with output after 10,000
and 20,000s (Fig.2.15).

decay adsorb

inert

Fig. 2.14 Example setup



62 P. Vogel and J. Mamann

Concentration
o
o

Fig. 2.15 Solute distributions after 20,000s

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge ¢ and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads )

d°p

—L =0 2.238

dx? ( )
for 1D flow along the x-axis, hence, the pressure is given by

Py =po (1- 7). (2.239)

and the specific discharge ¢ is obtained by Darcy’s law

g= ko (2.240)
n L

We will next focus on the closed form solution of the transport problems, i.e. we will

solve 1D solute transport equations

dc q dc 9%c
— 4+ -—=D— —r(x,1), 2.241
or Tgox - Doy 0 (2.241)
where r(x, t) depends on the various reactions involved.
Due to free outflow at x = L the distribution of the inert solute (c3-distribution)
represents that of a solute in steady linear flow downstream (x > 0) the source

1 fortg>1t>0,

0 fort > 1, (2242)

c3(0,1) = |
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and the formal problem is to determine the solution ¢3(x, ¢t) of the 1D transport
equation
dc3 g dc3 9%c3

4+ I " _D 2.243
at + ¢ ox dx2 ( )
subject to the initial condition
c3(x,0) =0 forx >0, (2.244)
and the boundary conditions
1 forz >t >0,
30, 1) = orfo=1= (2.245)
0 fort > 19,
lim ¢3(x,t) =0 fort > 0. (2.246)
X—> 00

Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation

D& — %53/ _5&3 =0, (2.247)

where ¢3 is the transform of ¢3, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields

B(x, 5) = M exp [x (2¢LD - (MLD)2 + % ] . (2.248)

Churchill [7] outlines how to obtain the solution ¢3(x, #) from their transform with
the aid of operational calculus.

Due to free outflow at x = L the distribution of the decaying solute (c2-
distribution) represents that of a solute in steady linear flow downstream (x > 0)

the source
1 forty>1t>0,

0 fort > 1, (2249)

c2(0,1) = ‘

and formal problem is to determine the solution c¢2(x, ¢) of the 1D transport equation

a2 g dc2 92¢2  In2

oes - 2 2250
o g ox ax: T (2.250)

subject to the initial condition

c2(x,0) =0 forx >0, (2.251)
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and the boundary conditions

1 for ¢ t>0,
20, =4 = t= (2.252)
0 fort > 19,
lim ¢2(x,t) =0 forr > 0. (2.253)
X—>00

Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation

In2
D&Y — %52’ (s + “7) 2 =0, (2.254)

where ¢2 is the transform of ¢2, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields

F2x. s) = Mexp [X(&ZD \/(ZM))Z ln; + ls))] (2255

Following Churchill [7] again the solution c2(x, ) may be obtained from their trans-
form with the aid of operational calculus.

The transport equation associated to the distribution c1(x, ¢) of an adsorbing solute
is obtained from a mass balance of solute in the liquid and on the porous matrix. Let
o1 denote the density of the liquid, and let p; denote the density of the solid grain.
Continuity of solute mass in the liquid yields

@pich) | g 9@pich) _ 3> @pich)

5 P = o2 —ay(x, 1), (2.256)

where a;(x, t) denotes the change of solute mass in the liquid due to interaction
with the porous matrix. On the matrix the solute mass changes due to liquid/matrix-
interaction again

A — P)pssl] _

Py ai(x, 1), (2.257)

and the adsorbed mass fraction s1 is related to the solute mass fraction c1 by the
linear equilibrium sorption model

pss1 = (Kqps)picl. (2.258)

Introducing the notation

1 —
R=1+ 7¢de5, (2.259)
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yields the formal problem to determine the solution c1(x, ¢) of the 1D transport
equation
dcl g dcl _ D d*cl

— = 2.260
at  ¢R dx R 9x2 ( )
subject to the initial condition
cl(x,0) =0 forx >0, (2.261)
and the boundary conditions
1 forz >t >0,
c1(0, 1) = orfo=1= (2.262)
0 fort > 19,
lim cl(x,t) =0 for t > 0. (2.263)
X—> 00

Applying the Laplace transform with respect to ¢ yields the ordinary differential

equation
D
Zar— L _sa=o, (2.264)
R R

where ¢l is the transform of c1, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields

Fl(x,s) = M exp [x(zgz) - /(MLD)Z n Sg)} . (2265)

The entire solution may now be obtained from the transforms of the solute distri-
butions. The numerical inversion scheme outlined in the introductory section may
easily be applied to give the required values of c1(x, 1), ¢2(x, 1), and ¢3(x, 1).

2.5.3 A Transient 2D Solute Distribution

Given length L = 1 m the domain represents the rectangle [0, 2L] x [—0.75L, 0.75L]
located in the x-y-plane and subdivided into 80 x 60 x 1 cubic elements. A permeable
material represents the porous medium, with isotropic permeability k = 107! m?
and porosity ¢ = 0.5. The liquid is incompressible with viscosity @ = 1mPa-s,
the diffusion coefficient assumes the constant value D = 3 x 10~%m?/s comprising
molecular diffusion and mechanical dispersion. Gravity is neglected via zero liquid
density. Pressure pg = 2 x 10* Pa at the liquid inlet (x = Om) and zero pressure the
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Concentration
o
P

Fig. 2.16 Solute distribution after 7,000 s

liquid outlet (x = 2L) generate steady-state 1D flow along the x-axis. At the liquid
inlet a non-zero solute concentration is specified along a line segment of the y-axis.
Given a = 0.15m and b = 0.25m the specified inlet concentration reads

0 for y < —b,
b
+y for —b <y < —a,
b—a
gy) =11 for —a<y<a, (2.266)
b—
Y fora <y <b,
b—a
0 forb < y.

Starting from zero initial solute concentration the simulation evaluates the tran-
sient solute distribution c(x, y, ) with output after 3,500 and 7,000s (Fig.2.16).

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge ¢ and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d’p

i 0 (2.267)

for 1D flow along the x-axis, hence, the pressure is given by

X
P =po (1-57)- (2.268)
and the specific discharge ¢ is obtained by Darcy’s law

k
g= 20 (2.269)
u2L
We will next focus on the closed form solution of the transport problem and solve
the 2D solute transport equation with the aid of successive integral transforms as
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described by Leij and Dane [8]. The formal problem is to determine the solution
c(x, y, t) of the 2D transport equation

dc q dc 9%c 9%
—+-—-—=D|—+ — 2.270
ot ¢ 0x (8x2 + Byz) ( )

subject to the initial condition
c(x,y,00=0 forx,y >0, (2.271)
and the boundary conditions

c0,y,1) =g(y) forr>0,

lim c(x,y,t) = 0 fort > 0,
X—> 00
lim c(x,y,t) = 0 fort >0, (2.272)
y—00
lim c(x,y,t) = 0 fort > 0.
y—>—00

Applying the Laplace transform with respect to ¢ yields the differential equation

_ qdc 92c 9%

where ¢ is the Laplace transform of ¢, and s is the transformation parameter. The
boundary conditions become

0,y =59
s
lim ¢c(x,y,s) = O,
3000 Y (2.274)
lim ¢(x,y,s) = O,
y—>00
0.

lim c¢(x,y,s) =
y—>—00

Applying next the Fourier transform with respect to y yields the ordinary differential
equation

DC” — % C' —(s+ Dr’)¢ =0, (2.275)

where C is the Fourier transform of ¢, r is the Fourier transformation parameter, and
the prime denotes the derivative with respect to x. The boundary conditions read

; GO
cO.ns) == (2.276)
ILIIgOC(x,r,s) = 0,

where G(r) is the Fourier transform of g(y). The ordinary differential equation
above has to be solved with respect to the twofold transformed boundary conditions.
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This yields

Cx,r,s) = @ exp |:x (24&% — \/(Z(ISLD)Z + % + rz)] . (2.277)

The solution in the x, y, t domain will be obtained from their transforms, the invers
Laplace transformation is carried out first. Knowing (e.g. Abramowitz and Stegun
[9]) the inverse Laplace transform

X exp(—x2/(4Dt))

—1 _
L™ {exp(—x+/s/D)} = S D)2 , (2.278)
it follows with the aid of the property on substitution
L [exp (—x\/%[(iﬂf +Dr?) + s])]
¢ (2.279)

_ xexp(—x%/(4D1)) (

1
2 D)2 a5 O ’) '

4D ¢

The Fourier transform C (x, r, t) of the solute concentration is thus obtained by the
convolution theorem

Clx,r,t) =

X / G(r) exp(—Dr2t’) - 7'q)$)?
o | T 4D’
0

) dr’. (2.280)

The last step of the solution procedure is the application of the invers Fourier trans-
form. G(r) has the invers g(y), and knowing the invers Fourier transform

exp(—y?/(4Dt"))

—1 2.\
F~{exp(—Dr-t)} = 2D

(2.281)
the convolution theorem of the Fourier transformation yields

0 -y
apiyi2 P 4

FYG(r) exp(—Dr?t")} = 2n)~1/? / ) dv

—00

(e 2oty (y—v)?

= - d
QD2 p—a P Tpy Y
—b

a
Qm)~1/2 ( (v —v)?
epiyi2 P 4y

—a

)dv

/ ey Pbh—v  (y-v)?

2D b —a exp( D7 )dv. (2.282)
a
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The integrals involved may be evaluated by elementary analytical methods. The
solution c(x, y, t) of the 2D transport problem takes the form

1

c(x,y, 1) = 74(]12)1/2 . /exp(—i(x _4tD/C§,/¢)2)
0
+ [exp(;(;;;,y 7 exp(;(;l—): t,y Y (4Dt21_/22_1/2 (2.283)
+[erf(W) + erf(m)]b_
+[erf((4Dﬂ)yl/2)2 - erf(«fm')yl/z)ib—z e
+[eXP(%) - eXp(_(ZD_t,y) )](4Dtb)_/z / ]t/‘mdt’.

The remaining integral was evaluated numerically, the Romberg integration scheme
may conveniently be employed. For the numerical evaluation of the error function
see [4].

2.6 Hydrothermal Processes

Heat transport in a moving liquid is the subject of this section. Closed form solu-
tions may be obtained from corresponding mass transport problems. We present two
examples, for the underlying theory see Bear [10].

2.6.1 A Transient 1D Temperature Distribution in a Moving Liquid

The domain is a rectanglular beam of length L = 10m extending along the positive
x-axis. Itis discretized by 100 x 1 x 1 equally sized hexahedral elements. A permeable
material represents the porous medium, with isotropic permeability & = 107! m?
and porosity ¢ = 0.1. The liquid is incompressible and has viscosity © = 1 mPa-s.
Densities, heat capacities, and thermal conductivities of liquid and solid grain are
given below, gravity has explicitly been neglected (Table 2.2).

Pressure po = 10° Pa at the liquid inlet (x = Om) and zero pressure the liquid
outlet (x = L) generate steady-state 1D flow along the x-axis. At the liquid inlet
a constant temperature Tp = 10°C is specified for times ¢ > 0. Starting from zero
initial temperature the simulation evaluates the transient temperature distribution
T (x, t) with output after 10,000 and 20,0005 (Fig.2.17).
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Table 2.2 Example overview

Liquid Solid grain
Density 1 = 1000 kg/m? ps = 2000 kg/m3
Specific heat capacity ¢y = 1100 J/(kg-K) cs = 250 J/(kg-K)
Thermal conductivity X =10 W/(m-K) Xs =50 W/(m-K)

Temperature (C)
w [=-] ~ o [ e w n -0

—_—
o

Fig. 2.17 Temperature distribution after 20,000 s

The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge ¢ and second to determine the temperature distribution.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

(o5}

2
8—;2’ —0 (2.284)

for 1D flow along the x-axis, hence, the pressure is given by

) =po(1-3). (2.285)

and the specific discharge ¢ is obtained by Darcy’s law

_km

=1 (2.286)

q

We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

T T 92T
@pici + (1= $)pc) o + (¢P161)%a = @+ (=)o (2287)
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Introducing the notation

w = Ppici g (2.288)
ppici + (1 — @) pscs @
gl (1= )y
ppicr + (1 — P)pges
the heat transport equation becomes
aT AT 3T
X—5- (2.289)

o TVx T X2

Due to free outflow at x = L the formal problem is to determine the solution 7 (x, t)
of the above heat transport equation subject to the initial condition

T(x,00=0 forx >0, (2.290)
and the boundary conditions

T@O,t) =Ty for t >0,
lim T(x,1) =0 for ¢ > 0. (2.291)
X—>00
Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation

xT" —wT' —sT =0, (2.292)

where T is the transform of T, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to transformed boundary conditions. This yields

T(x,s) = ?exp |:x (% — /(%)2 + %)] . (2.293)

The solution may now be obtained from the transform of the temperature distribu-
tion, Churchill [7] outlines how to proceed with the aid of operational calculus. We
note, that the present example is well suited for numerical inversion. The numerical
inversion scheme outlined in the introductory section may easily be applied to give
the required values of the temperature distribution 7 (x, ¢) (Fig.2.17).
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Table 2.3 Example overview

Liquid Solid grain
Density o1 = 1000 kg/m? 05 = 2000 kg/m3
Specific heat capacity ¢y = 1100 J/(kg-K) ¢y = 250 J/(kg-K)
Thermal conductivity X =0.5 W/(m-K) Ay = 2.0 W/(m-K)

2.6.2 A Transient 2D Temperature Distribution
in a Moving Liquid

Given length L = 1 m the domain represents the rectangle [0, 2L] x [—0.75L, 0.75L]
located in the x-y-plane and subdivided into 80 x 60 x 1 cubic elements. A permeable
material represents the porous medium, with isotropic permeability & = 10~ m?
and porosity ¢ = 0.1. The liquid is incompressible and has viscosity © = 1 mPa-s.
Densities, heat capacities, and thermal conductivities of liquid and solid grain are
given below, gravity has explicitly been neglected (Table 2.3).

Pressure py = 2 x 10*Pa at the liquid inlet (x = Om) and zero pressure the
liquid outlet (x = 2L) generate steady-state 1D flow along the x-axis. At the liquid
inlet a non-zero temperature is specified along a line segment of the y-axis. Given
temperature 7p = 10°C as well as @ = 0.15m and b = 0.25m the specified inlet
temperature reads

0 for y < —b,
b

To Rt for —b <y < —a,
b—a

gy =17 for —a <y <a, (2.294)

b—

Ty Y fora <y <b,
b—a

| 0 forb < y.

Starting from zero initial temperature the simulation evaluates the transient temper-
ature distribution 7 (x, y, ) with output after 3,500 and 7,000s (Fig.2.18).

Temperature (C)

Fig. 2.18 Temperature distribution after 7,000 s
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The formal solution proceeds in two steps, first to solve for pressure p(x) and
specific discharge ¢ and second to determine the solute distributions.

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.
It reads

d’p

for 1D flow along the x-axis, hence, the pressure is given by
X
P =po (1-57)- (2.296)

and the specific discharge ¢ is obtained by Darcy’s law

k
== (2.297)
u2L
We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

oT
(ppoic; + (1 — @) psc v) + (¢Plcz)$af (2.298)
82 82
(¢kz+(l—¢>)k)( 3o )
y

Introducing the notation

bpict q
- =z 2.299
ppict + (1 — @)pscs ¢ ( )

Pr + (1 —P)As
ppicr + (1 — d)pscy”
the heat transport equation becomes

aT AT 3T T
—=x|-—=+-—)- 2.300
FET X(8x2+8y2) (2.300)

The formal problem is to determine the solution 7 (x, y, t) of the above heat transport
equation subject to the initial condition

T(x,y,00=0 forx,y>0, (2.301)

and the boundary conditions
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T©,y,t) =g(y) fort>D0,
lim T(x,y,t) = fort > 0,
X—>00
lim T(x,y,t) = 0 fort >0, (2.302)
y—>00
= 0 fort > 0.

lim T(x,y,t)
y—>—00

The closed form solution of this problem will be obtained with the aid of successive
Laplace and Fourier transforms as described by Leij and Dane [8]. Applying the
Laplace transform with respect to ¢ yields the differential equation

- oT 3T 9T
T A 2.303
S X(8x2+8y2) ( )

where T is the Laplace transform of 7, and s is the transformation parameter. The
boundary conditions become

T(0,y,s) = —g(y),
_ s
lim T(x,y,s) = O,
X—00 _( Y (2.304)
lim T(x,y,s) = 0,
y—00
0.

lim T(x, V,8) =
y—>—00

Applying next the Fourier transform with respect to y yields the ordinary differential
equation . ) )
)(U’/—wU/—(s—Fxrz)U:O, (2.305)

where U is the Fourier transform of 7, r is the Fourier transformation parameter, and
the prime denotes the derivative with respect to x. The boundary conditions read

0. r.s) = Gr)
8= : : (2.306)

lim U(x, r,s)
X—>00

where G(r) is the Fourier transform of g(y). The ordinary differential equation above
has to be solved with respect to the twofold transformed boundary conditions. This

yields
Geers) = 20 exp [x (ﬂ B P SR )] . (2.307)
s 2x 2x X

The solution in the x, y, t domain will be obtained from their transforms, the invers
Laplace transformation is carried out first. Knowing (e.g. Abramowitz and Stegun
[9]) the inverse Laplace transform
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x exp(=x*/(4x1)

—1 _
L™ {exp(=x+/s/x)} = O L (2.308)
it follows with the aid of the property on substitution
—1 r 1 2 2
L exp | —x ;[(E(w) + xr°) + sl
(2.309)

xexp(—x*/(4x1)) 1
= —2(7[)”3)1/2 exp (—[H(w)2 + sz] t) .

The Fourier transform U (x, r, t) of the temperature is thus obtained by the convolution
theorem

t
X / G (r) exp(—xr?t’) ( (x — F'w)?
xp | —

Ulr,r ) =
Cr = G2 / )32 axr

) dr'. (2.310)

The last step of the solution procedure is the application of the invers Fourier trans-
form. G (r) has the invers g(y), and knowing the invers Fourier transform

exp(—y?/(4xt))

F—l{exp(—xrzﬂ)} — oL (2.311)
the convolution theorem of the Fourier transformation yields
_ - (v) (y —v)?
PG ep—xr)) = o2 [ S8 e dy
—00
—a
=T Mb—i—vex (—(y_v)2)dv
O ) axiN 2 —a P Ty
- (2.312)
T Qm)~!/? ( (y - v)z)d
exn(—
0 (2Xt1)1/2 Xp 4Xt/ v
b
Qn)y12b—v (y —v)?
Tt - .
+1o (2xt’)1/2b—anp( 4xt’ )dv

The integrals involved may be evaluated by elementary analytical methods. Employ-
ing w and x as defined above the solution T (x, y, #) of the 2D heat transport problem
takes the form
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t

T(x,y,1) = 4(:;(% . /exp(—(x;Xt;:U)z)
‘[erf(ﬁ) = erf((fﬂ%)]l;i_z
lexed _(4;’y)2) oo _(2;’”2)] (4Xt2 ZZZ — (2.313)
[erf(ﬁ) + ()
+[erf<(4 )~ el t,)fﬂ)] =
+ [exp(W) - e L R Ji-sar.

The remaining integral was evaluated numerically, the Romberg integration scheme
may conveniently be employed. For the numerical evaluation of the error function
see [4].

2.7 Hydromechanical Coupling

The presence of a fluid pressure affects the mechanical load on the porous matrix.
This interaction constitutes the subject of Biot’s theory, see Biot [11] or see Jaeger
and Cook [6]. We note, that the setup of our time-dependent problems has been
adopted from Kolditz et al. [12].

2.7.1 A Permeable Elastic Beam Deforms Under Steady-State
Internal Liquid Pressure

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
20 x 2 x 2 cubic elements. The solid material has been selected elastic with Poisson’s
ratio v = 0.25, Young’s modulus E = 25,000 MPa, and Biot number equal one. An
isotropic permeability of 10~!2m? and zero porosity is assumed for the material,
liquid viscosity is 1mPa-s and gravity is neglected via zero material and liquid
densities. The face x = 0 is free, all other faces of the beam are sliding planes. The
simulation comprises one time step with pressure p; = 1MPa at x = L and zero
pressure applied at x = 0.

The formal solution proceeds in two steps, first to solve for the pressure distribution
p(x) and second to determine stresses, strains and displacements (Fig.2.19).

The Laplace equation is the governing equation describing the steady-state
pressure distribution. It reads
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— =0 (2.314)
for 1D flow along the x-axis. The pressure distribution p(x) is given by

px) =pi- (2.315)

N~ =

which satisfies the specified pressure boundary conditions at x =0 and x = L.
Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(oc—pl. (2.316)

It is satisfied by zero shear, if the stresses 022 and o33 are functions of x only and the
horizontal stress o satisfies

d
d—(611 —-p)=0. (2.317)
X

The face x = 0 is free of load, hence, integration gives

X
on=p=pg- (2.318)

Due to the y- and z-fixities along the front, rear, top, and bottom, and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E €11 =011 —v (02 +033),
0=E-ep=0pn—v(og+033), (2.319)

0=E-e33 =033 —v (011 +022),
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and therefore

v v pr v

1—v011=1—vp_f1—v

1 212 P1 212
en=—1\1- op=—1(1- X.
E 1—v EL 1—v

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, uy, u;)

2
e (x) = 2 (1 = %) (2 — L?),

X, (2.320)

02 =033 =

(2.321)

2.7.2 A Permeable Elastic Square Deforms Under Constant
Internal Liquid Pressure

The domain represents the unit square [0, 1] x [0, 1] in the x-y-plane. It has three
faces located on the coordinate planes and is discretized by 5 x 5 x 2 equally sized
hexahedral elements. The solid material has been selected elastic with Poisson’s
ratio v = 0.25, Young’s modulus £ = 10,000 MPa, and Biot number equal one. An
isotropic permeability of 10~!' m? and zero porosity is assumed for the material,
liquid viscosity is 1 mPa-s and gravity is neglected via zero material and liquid
densities. Top and bottom as well as the lateral faces on the coordinate planes are
sliding planes. The simulation comprises one time step applying a constant liquid
pressure py = 0.8 MPa at the bottom of the domain.

The formal solution proceeds in two steps, first to solve for the pressure distribution
and then to evaluate stresses, strains and displacements. However, due to the setup
the pressure p has constant value p( throughout the entire domain, and we will focus
on the mechanical aspects of the problem.

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(c—-pl. (2.322)
It is satisfied by zero shear and constant stresses. Due to the setup
o1 = 022 = pPo (2.323)

and with principal axes equal to coordinate axes, Hooke’s law gives for the strains
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1 1
0=e3;3= E[Uaa — (o1 +on)]l = E(033 —2v - po),

1
en=glon—vint+on)l=0-v- 21)2)%, (2.324)

1 Po
€11 = — —v =(1—v—-2%)=
n=x [o11 — v(o22 +033)] = ( ) 3
Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, iy, u;)

wy(x) = (1 — v — 21)2)%)(,

uy(y) = (1—v— M)%y,
u, = 0. (2.325)

2.7.3 A Permeable Elastic Cube Deforms Under Constant Internal
Liquid Pressure

The domain is a cube with an edge size of 1m. It has three faces located on
the coordinate planes and is discretized by 4 x 4 x 4 cubic elements. The solid
material has been selected elastic with Poisson’s ratio v = 0.25, Young’s modulus
E = 10,000 MPa, and Biot number equal one. An isotropic permeability of 10710 m?
and zero porosity is assumed for the material, liquid viscosity is 1 mPa-s and gravity
is neglected via zero material and liquid densities. The faces on the coordinate planes
are sliding planes. The simulation comprises one time step applying a constant liquid
pressure po = 20 MPa at the top of the domain.

The formal solution proceeds in two steps, first to solve for the pressure distribution
and then to evaluate stresses, strains and displacements. However, due to the setup
the pressure p has constant value pg throughout the entire domain, and we will focus
on the mechanical aspects of the problem.

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(e—-pl. (2.326)
It is satisfied by zero shear and constant stresses. Due to the setup
o1 = 02 = 033 = pPo (2.327)

and with principal axes equal to coordinate axes, Hooke’s law gives for the strains
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€11 = l[6711 —v(on +033)] = (1 — 21))@,
E o E

1

en = zlon —vou +ox)] = (1 -20) 2, (2.328)
1

€33 = E[Gss —v(oir +op)]=010- 2\0%-

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, iy, u;)

ne() = (1-20) 2,
uy(y) = (1 — ZU)%y, (2.329)

Uy (2) = (1 — 2U)%z.

2.7.4 A Permeable Elastic Cuboid Undergoes Static Load Due to
Gravity and Hydrostatic Liquid Pressure

The domain is a cuboid of height H = 30 m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The domain is
composed of four groups of isotropic permeable materials with zero porosity. Liquid
viscosity is 1mPa-s and p; = 1019.368kg/m? is the liquid density. Each of the
material groups has been assigned solid density p; = 3058.104kg/m?3, Poisson’s
ratio v = 0.25, Young’s modulus £ = 10,000 MPa, and Biot number equal one. Zero
pressure is applied at the top face z = H. This face is free, all other faces are sliding
planes. The simulation comprises one time step to establish the hydrostatic pressure
distribution as well as the mechanical load.

The formal solution proceeds in two steps, first to solve for the pressure distribution
and second to determine stresses, strains, and displacements.

The simulation setup employs a prescribed zero pressure at the top (z = H),
therefore the pressure distribution is hydrostatic, does not depend on the coordinates
x and y and is given by

p@)=pg(H —2), (2.330)

where g = 9.81m/s? is the magnitude of gravity, and z is the vertical coordinate
extending from 0 to H.

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V.-(6—-pI)—(0,0, ps g). (2.331)
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It is satisfied by zero shear, if pressure p and the horizontal stresses o1; and o7, are
functions of the vertical coordinate z only and the vertical stress o33 satisfies

do d
5 g+ Lo — s (2.332)
dz dz

The face z = H is free, hence, integration gives
033 = (ps — p1) (—8) (H — 2). (2.333)

Assuming that there is no horizontal displacement anywhere we have for the hori-
zontal strains
€11 = € =0. (2.334)

Then, with principal axes equal to coordinate axes, Hooke’s law gives

0 =011 —v(on +033),
0 = 022 — v(o11 + 033), (2.335)

E €33 = 033 — v(0o11 +022).

Solving for 011, 027, and the vertical strain €33 yields

Ol =0n = 053 = (o — p(=g)(H —2), (2.336)
—v 1—v
L= 22 o — o - o
633—E(_1_v) Ps — p(—8& —Z

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (i, iy, u;)

iy = uy =0, (2.337)

1 (1 212 g L
u:(x) = \1- 12 V) (ps —pz)(—g)( 7= 3)-

2.7.5 A Permeable Elastic Beam Deforms Under Transient
Internal Liquid Pressure. Specified Boundary Conditions
are Time-Dependent and of 1st Kind

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 x 1 x 1 and
section 0.6 L <= x <= L composed of 60 x 1 x 1 elements. The solid material has
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been selected elastic with Poisson’s ratio v = 0.2, Young’s modulus £ = 27,000 Pa,
and Biot number equal one. An isotropic permeability & = 1071 m? and zero porosity
is assumed for the material, liquid viscosity is © = 1 mPa-s, and gravity is neglected
via zero material and liquid densities. The face x = 0 is free, all other faces of the
beam are sliding planes. Zero pressure has been specified at the face x = 0, the
pressure pp -t (p1 = 100Pa/s) increases linearly with time ¢, it is applied at the face
x = L fortimes ¢ > 0. Starting from zero initial pressure the simulation evaluates the
transient pressure distribution p(x, r) as well as stresses, strains, and displacements
with output after 5 and 10s (Fig. 2.20).

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(o—pl. (2.338)

It is satisfied by zero shear, if the stresses o2, and o33 are functions of x only and the
horizontal stress o satisfies

a
87(0“ - p)=0. (2.339)
X
With respect to prescribed boundary conditions at x = Om the last equation yields
o11 = p. (2.340)

Due to the y- and z-fixities along the front, rear, top, and bottom and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E-€11 =011 —v (o +033),
0=E-en =02 —v(o +033), (2.341)
0=FE-e3 =033 —v (o1 +02).

In terms of pressure p(x, r) the non-zero stresses and strains take the form

L oi=——p, (2.342)
l1—v 1—v

1 | 212 1 . 202
= — — o = — bt .
‘N=x 1—v)°" T E 1—v) 7

Let (uy,uy,u;) denote the displacement vector and ¢ the specific discharge via
Darcy’s law

022 =033 =

g=—--vp. (2.343)

k
u

Conservation of momentum yields

a
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For the present 1D example this reduces to

0 kd*p 9 du,
wox2 9t ox
ok 2p 1 ! 22\ ap (2.345)
woxz E 1—v/] ot

the 1D pressure conduction equation, which has to be solved subject to the initial
condition
p(x,00=0 forO<x<L, (2.346)

and the boundary conditions

p0,)= 0 fort > 0, (2.347)
p(L,t)=pit fort >0, ’
arising from the problem setup. Once that the pressure distribution p(x, ) has been
found, the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

2
x="E (1 _ ) (2.348)
% 1—v

the formal problem is to determine the solution p(x, ) of the parabolic equation

ap 82p
E;;' — E;;;i' (:Z.3‘1S))
-0.0050

— H-0.0030
£
2 4-0.0010
1]
£
O H-0.0005
O
% 0.0002
&
>

-0.0001

0.0000

Fig. 2.20 X-Displacements after 10s
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subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to ¢ yields the ordinary differential equation

xp' —sp=0, (2.350)

where p is the transform of p, the prime denotes the derivative with respect to x, and
s is the transformation parameter. This equation has to be solved with respect to the
transformed boundary conditions. This yields

5(x. 5) = sinh(y/s/ x x)
PR = Py Ginh (s Tx L)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy,uy,u;), and this also holds for the Laplace transforms.
Because 011 = p the transform of the only non-zero displacement u, (x, ) becomes

(2.351)

(2.352)

212 ) cosh(+/s/x x) —cosh(/s/x L)

iy (x,5) = 24 (1 -
o E 1 s2./s/x sinh(y/s/x L)

—V

The entire solution may now be obtained from the transforms of pressure and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of p(x, r) and u, (x, r) (Fig.2.20).

2.7.6 A Permeable Elastic Beam Deforms Under Transient
Internal Liquid Pressure. Specified Boundary Conditions
are Time-Dependent and of 1st and 2nd Kind

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 x 1 x 1 and
section 0.6 L <= x <= L composed of 60 x 1 x 1 elements. The solid material has
been selected elastic with Poisson’s ratio v = 0.2, Young’s modulus £ = 27,000 Pa,
and Biot number equal one. An isotropic permeability k = 10~!9 m? and zero porosity
is assumed for the material, liquid viscosity is © = 1 mPa- s, and gravity is neglected
via zero material and liquid densities. The face x = 0 is free, all other faces of the
beam are sliding planes. Zero pressure has been specified at the face x = 0, the
specific discharge ¢; - (g1 = 7.6 x 107> m/s?) increases linearly with time 7, it is
applied at the face x = L for times ¢ > 0 and acts as a source to the domain. Starting
from zero initial pressure the simulation evaluates the transient pressure distribution
p(x,t) as well as stresses, strains, and displacements with output after 5 and 10s
(Fig.2.21).
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Fig. 2.21 Pressure distribution after 10s

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(o—pD. (2.353)

It is satisfied by zero shear, if the stresses o2, and o33 are functions of x only and the
horizontal stress o1 satisfies

0
a—(cm -p)=0. (2.354)
X
With respect to prescribed boundary conditions at x = Om the last equation yields
o1 = p. (2.355)

Due to the y- and z-fixities along the front, rear, top, and bottom and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E-€11 =011 —v (02 +033),
0=E-en =020 —v(on +033), (2.356)
0=FE-e33 =033 —v (011 +022).

In terms of pressure p(x, t) the non-zero stresses and strains take the form

v v
o111 =
1-— 1—v

v
L(, 202 L(, 202
en=—|1- on=—=|1- .
) 1—v ) 1—v p
Let (uy,uy,u;) denote the displacement vector and ¢ the specific discharge via
Darcy’s law

0y =033 = D, (2.357)
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q=——Vp. (2.358)
m
Conservation of momentum yields
a
V-(qg+ E(”x» Uy, uz)) = 0. (2.359)

For the present 1D example this reduces to

kd%p 9 du,
_ k@p 1 2P \op |
wox? E 1—v) ot

the 1D pressure conduction equation, which has to be solved subject to the initial
condition
p(x,00=0 forO0<x<L, (2.361)

and the boundary conditions

p0,1) =0 fort > 0,

a—p(L, 1) = qlﬁt fort > 0, (2.362)
ax k
arising from the problem setup. Once that the pressure distribution p(x, ) has been
found, the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

E 21?2
(= FE (1 - ) (2.363)
% 1—v

the formal problem is to determine the solution p(x, 7) of the parabolic equation

b _ 3%

_,or 2.364
ot Lox2 (2.364)

subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to ¢ yields the ordinary differential equation

xp'—sp=0, (2.365)
where p is the transform of p, the prime denotes the derivative with respect to x, and

s is the transformation parameter. This equation has to be solved with respect to the
transformed boundary conditions. This yields
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Br, s) = i 1 SmS/X X) (2.366)

k s2/s/x cosh(\/s/x L)

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy,uy,u;), and this also holds for the Laplace transforms.
Because o) = p the transform of the only non-zero displacement u, (x, t) becomes

cosh(y/s/x x) — cosh(y/s/x L)
s3cosh(y/s/x L) '
The entire solution may now be obtained from the transforms of pressure and

x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of p(x, r) and u,(x, ).

iy(x,s) =qi (2.367)

2.7.7 Biot’s 1D Consolidation Problem: Squeezing of a Pressurized
Column Causes the Liquid to Discharge from the Domain

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 <= x <= 0.6 L composed of 10 x 1 x 1 and
section 0.6 L <= x <= L composed of 60 x 1 x 1 elements. The solid material has
been selected elastic with Poisson’s ratio v = 0.2, Young’s modulus £ = 30,000 Pa,
and Biot number equal one. An isotropic permeability & = 107! m? and zero porosity
is assumed for the material, liquid viscosity is © = 1 mPa- s and gravity is neglected
via zero material and liquid densities. Except from the face x = L all faces of
the beam are sliding planes. At the face x = L pressure and mechanical boundary
conditions have explicitly been assigned: a compressive stress of 1,000Pa acts in
negative x-direction and pressure is assigned zero for times ¢ > 0. Starting from initial
equilibrium, i.e. pressure p; = 1,000Pa and zero mechanical stress, the simulation
evaluates the transient pressure distribution p(x, t) as well as stresses, strains, and
displacements with output after 5 and 10s (Fig.2.22).

Let o denote the stress tensor and I the unit tensor. Employing Biot’s simplified
theory (i.e. Biot number equal one) the equation of mechanical equilibrium reads

0=V-(o0c—pl. (2.368)

It is satisfied by zero shear, if the stresses o2, and o33 are functions of x only and the
horizontal stress o satisfies

ad
—(o11 — p) =0. (2.369)
ax

With respect to the initial and prescribed boundary conditions at x = L the last
equation yields
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p =011+ pi. (2.370)

Due to the y- and z-fixities along the front, rear, top, and bottom and with principal
axes equal to coordinate axes, Hooke’s law gives for the strains

E €11 =011 — v (o2 +033),
0=E-epn =02 —v(o+033), (2.371)
0=EFE-e33 =033 —v (o1 +022).
In terms of the stress oy (x, ¢) the remaining non-zero stresses and strains take the
form

Vv
022 =033 = 1—

1 ) 202
€ = — — 011.
11 E 1—v 11

Let (uy,uy,u;) denote the displacement vector and ¢ the specific discharge via
Darcy’s law

ol11, (2.372)
v

g=—-—Vp. (2.373)
%

Conservation of momentum yields
0
V.(q+ E(um uy,uz)) = 0. (2.374)

For the present 1D example this reduces to
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k 92 90
0=~ 5 o on
_ _E 820'11 + i _ 21)2 80'11 (2375)
T ax? E 1—v) ot

the 1D pressure conduction equation, which has to be solved subject to the initial
condition

011(x,00=0 for 0<x <L, (2.376)

and the boundary conditions

9 0= 0 0
5 On= or ¢ > 0, (2.377)
o11(L,t) = —pi fort > 0,

arising from the problem setup. Once that the stress o1 (x, t) has been found, the
pressure and the remaining non-zero stresses and strains may be obtained.

It is therefore sufficient to solve the pressure conduction equation with respect to
the imposed initial and boundary conditions. Introducing the notation

E 212
4= FE (1 -2 ) (2.378)
% 1—v

the formal problem is to determine the solution oy (x, r) of the parabolic equation

30‘11 32011
—_— X )
Jt ax

(2.379)

subject to the initial and boundary conditions cited above. Applying the Laplace
transform with respect to ¢ yields the ordinary differential equation

x oy —sai =0, (2.380)

where &1 is the transform of oy, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields

1 ees) =y SONATED)
onlx,s) = p’scosh(«/STXL).

Integrating the strains with respect to the fixities at the sliding planes yields the

displacement vector (uy, uy, u;), and this also holds for the Laplace transforms. The
transform of the only non-zero displacement u, (x, t) becomes

(2.381)
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(2.382)

pi | 212 sinh(y/s/x x)
( - v) s/s/x cosh(\/s/x L)

The entire solution may now be obtained from the transforms of stress o; and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of o1 (x, 1) and u, (x, t).

2.8 Thermomechanics

Temperature changes cause thermal strains affecting the mechanical load. The formal
solution of the subsequent examples always proceeds in two steps: first to solve for
the temperature, and then to evaluate stresses, strains, and displacements. Various
ideas already outlined in previous sections will appear again.

2.8.1 An Elastic Beam Deforms Due to an Instant Temperature
Change

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
20 x 2 x 2 cubic elements. The solid material has been selected elastic with Poisson’s
ratio v = 0.25, Young’s modulus E = 25,000 MPa, zero heat capacity, and thermal
expansion o« = 3 x 107> 1/K. Gravity is neglected via zero material density. The face
x = Ois free, all other faces of the beam are sliding planes. The simulation starts from
the initial temperature 7p = 0°C and comprises one time step applying an instant
temperature change with temperature 77 = 1°C at x = L and zero temperature 7p at
x=0.
The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution 7 (x) and then to evaluate stresses, strains, and displacements (Fig.2.23).
The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads
T 2.383
i (2.383)
for 1D heat flow along the x-axis, hence, the temperature distribution is given by
nm:m—m%+m. (2.384)

For the closed form solution of the mechanical problem note, that due to the simula-
tion setup, the entire system is free of shear and the principal axes coincide with the
coordinate axes. The constitutive equations relate the strains €11, €22, €33, (in X-, y-,
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and z-direction, respectively) and the associated stresses o1, 022, and 033 via
1
€11 —a(T(x) —To) = E[G“ —v(o22 + o33)],
1
€ —a(T(x) — To) = —[o22 — v(o11 +033)], (2.385)

E

1
€33 —a(T(x) = Tp) = E[fm —v(oy +022)].

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

o11 =0,
€)) = €33 = 0. (2.386)

Hence, due to the change in temperature, the remaining non-zero stresses and strains
become

E
o3 =07 (T'(x) — Top),
—V
033 = —a fu (T (x) — To), (2.387)
1
(= @ (T~ To).
—V

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, iy, u)
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1—v 2L 7 (2.388)

2.8.2 An Elastic Square Deforms Due to an Instant Temperature
Change

The domain represents the unit square [0, 1] x [0, 1] in the x-y-plane. It has three
faces located on the coordinate planes and is discretized by 5 x 5 x 2 equally sized
hexahedral elements. The solid material has been selected elastic with Poisson’s
ratio v = 0.25, Young’s modulus E = 25,000 MPa, zero heat capacity, and thermal
expansion o« = 4 x 10~ 1/K. Gravity is neglected via zero material density. Top and
bottom as well as the lateral faces on the coordinate planes are sliding planes. The
simulation starts from the initial temperature Ty = 0°C and comprises one time step
applying an instant temperature change to 77 = 1°C at the bottom of the domain.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution and then to evaluate stresses, strains, and displacements. However, due to
the setup the temperature change has constant value 77 — Ty throughout the entire
domain, and we will focus on the mechanical aspects of the problem.

Due to the simulation setup the entire system is free of shear and the principal
axes coincide with the coordinate axes. The constitutive equations relate the strains
€11, €22, €33, (in X-, y-, and z-direction, respectively) and the associated stresses o1,
022, 033 via

1

en —a(hh —Ty) = E[U” — (o2 +033)] =0,
1

en —a(Ty —Ty) = E[Gzz —v(o11 +033)] =0, (2.339)
1

€33 —a(Ty —Tp) = 5[033 —v(o11 +0o2)]=0.

Due to the setup x- and y-direction are free of stress, and the z-direction is free of
strain, therefore,

o11 =02 =0, (2.390)
€33 = 0.

Hence, due to the change in temperature from 7j to 7} the remaining non-zero strains
and stresses become

033 = —U (Tl - TO) E,
€1 =¢en=~U0+v)a(T) —Ty). (2.391)
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Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, uy, u;)

ux(x) =1 +v)a (i — 7o) x,
uy(y) =1 +v)a (T — Ty, (2.392)
u;, =0.

2.8.3 An Elastic Cube Deforms Due to an Instant Temperature
Change

The domain is a cube with an edge size of 1 m. It has three faces located on the
coordinate planes and is discretized by 4 x 4 x 4 cubic elements. The solid material
has been selected elastic with Poisson’s ratio v = 0.25, Young’s modulus E =
25,000 MPa, zero heat capacity, and thermal expansion « = 5 x 107> 1/K. Gravity
is neglected via zero material density. The faces on the coordinate planes are sliding
planes. The simulation starts from the initial temperature 7y = 0°C and comprises
one time step applying an instant temperature change to 77 = —40°C at the top of
the domain.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution and then to evaluate stresses, strains, and displacements. However, due to
the setup the temperature change has constant value 77 — Ty throughout the entire
domain, and we will focus on the mechanical aspects of the problem.

Due to the simulation setup the entire system is free of shear, and the principal
axes coincide with the coordinate axes.

o011 =0 =033 =0 (2.393)

are the principal stresses in x-, y-, and z-direction, respectively. The constitutive
equations yield for the associated strains €;, €27, and €33

e —a(l1 —To) = %[011 —v(on +o33)] =0,
€ —a(lh —To) = é[dzz — (o1 +o3)] =0, (2.394)
€33 —a(Ty — Tp) = %[033 —v(o1 +022)]=0.

Therefore, due to the change in temperature from Ty to T the strains become

€11 = e = €33 = a(T — Tp). (2.395)

Integrating the strains with respect to the fixities at the coordinate planes yields the
displacement vector (uy, iy, u)
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uy(x) =a (T — Tp) x,
uy(y) =a(Ty — Tp) y, (2.396)
u,(z) =a (Il — Ty z.

2.8.4 An Elastic Cuboid Undergoes Load Due to Gravity
and Instant Temperature Change

The domain is a cuboid of height H = 30 m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The cuboid is
represented by four groups of elastic materials, where each has been assigned density
o = 2038.736kg/m3, Poisson’s ratio v = 0.25, Young’s modulus £ = 5,000 MPa,
zero heat capacity, and thermal expansion & = 5 x 107% 1/K. Gravity is applied
in negative z-direction, g = 9.81 m/s? is the magnitude of gravity. The bottom and
the lateral faces are sliding planes, the top face is free. The simulation starts from
the initial temperature Ty = 10°C and comprises one time step applying an instant
temperature change with temperature 77 = 4°C at the top (z = H) and temperature
Toatz = 0.

The formal solution proceeds in two steps, first to solve for the temperature dis-
tribution 7 (x) and then to evaluate stresses, strains, and displacements.

The Laplace equation is the governing equation describing the steady-state tem-
perature distribution. It reads

— =0 (2.397)
for 1D heat flow along the z-axis, hence the temperature distribution is given by
T@) = (T = To)7 + To. (2.398)

Next we focus on the closed form solution of the mechanical problem. Let o denote
the stress tensor. The equation of mechanical equilibrium

0=V-0—(0,0,pg) (2.399)

is satisfied by zero shear, if the horizontal stresses o1 and o9, are functions of z only
and the vertical stress o33 satisfies

dozz

=po. 2.400
= P ( )

The face z = H is free, hence, integration gives

033 = p(—g)(H — 2). (2.401)
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Due to the simulation setup there is no horizontal displacement anywhere, hence, for
the horizontal strains
€11 = €2 =0. (2.402)

Then, with principal axes equal to coordinate axes, the constitutive equations give
€11 —a(T(x) — Ty = é[du —v(o22 +033)],
e —a(T(z) —To) = %[022 —v(o1 +033)], (2.403)
€33 —a(T(z2) —To) = %[033 —v(o1 + o)l

Solving for 011, 022, (Fig.2.24) and the vertical strain €33 yields

Z v
o11 =02 al—v(l O)H+1—vp( 8)( 2),
1+v b4 v2 1
_ T —T) = +(1- Zp(—g)(H — 2.404
€33 1_vot(l 0)H+< l—v)E’O( 8)( 2) ( )

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (uy, uy, u;)

uy =uy =0,
I+v 22 22\ 1 1 ,\ (2.405)
T —To)— +|1— —p(— H--7").
1_v<>t(1 0)2H+( 1_U)E/O( g)(z 22)

uy(z) =
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2.8.5 An Elastic Beam Deforms Due to a Transient Temperature
Change. Temperature Boundary Conditions are
Time-Dependent and of 1st Kind

The domain is a rectangular beam of length L = 1 m extending along the positive
x-axis. It has three faces located on the coordinate planes and is discretized by
hexahedral elements with section 0 < x < 0.6 L composed of 10 x 1 x 1 and section
0.6L < x < L composed of 60 x 1 x 1 elements. The solid material has been
selected elastic with Poisson’s ratio v = 0.25, Young’s modulus £ = 25,000 MPa,
and density p = 2,000 kg/m?. Thermal conductivity A = 2.7 W/(m - K), heat capacity
¢ = 0.45J/(kg-K), and thermal expansion @ = 3 x 10~* 1/K have been assigned.
Gravity is neglected via explicit assignment. The face x = 0 is free, all other faces of
the beam are sliding planes. Zero temperature has been specified at the face x = 0,
the temperature 77 -t (77 = 1°C/s) increases linearly with time ¢, it is applied at the
face x = L for times r > 0. Starting from zero initial temperature the simulation
evaluates the transient temperature distribution 7 (x, r) as well as stresses, strains,
and displacements with output after 5 and 10s.

The heat conduction equation is the governing equation describing the transient
temperature distribution. It reads

oT
pc; =AV.-VT. (2.406)
Introducing the notation
A
X =— (2.407)
pc

197 9°T
= 2.408
x ot dx2 ( )
the initial condition
T(x,00)=0 for0<x <L, (2.409)
and the boundary conditions imposed at the beam ends
TO,r) = 0 fort > 0,
T(L,t)y=T;-t forr>0. (2.410)

We will shown next that the solution of the mechanical problem may be obtained in
terms of the temperature distribution.

For the closed form solution of the mechanical problem note, that due to the
simulation setup, the entire system is free of shear and the principal axes coincide
with the coordinate axes. The constitutive equations relate the strains €1, €22, €33,
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(in x-, y-, and z-direction, respectively) and the associated stresses o711, 022, and 033
via

1

e —al(x,t) = E[U“ —v(o2 +033)],
1

e —al(x,t) = E[Gzz —v(o11 +033)], (2.411)
1

€33 —al(x,t) = 5[033 —v(o11 +o2)].

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

o1 =0, (2.412)

€n = €33 = 0.

Hence, due to the change in temperature, the remaining non-zero stresses and strains
become

02) = 033 = —O(l T(x,t), (2.413)
—V
1
€] =« e T(x,1).
1—v

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, uy, u;)

1 X
() = o7 J_r ]‘j / T 1)dx', (2.414)

L

uy =u; =0.

Once that the temperature distribution 7 (x, #) has been found, the entire solution
of the thermomechanical problem may thus be obtained. It is therefore sufficient
to solve the 1D heat conduction equation with respect to the imposed initial and
boundary conditions cited above.

Applying the Laplace transform with respect to time ¢ yields the ordinary differ-
ential equation

xT"'—sT =0, (2.415)

where T is the transform of T (x, t), the prime denotes the derivative with respect to
x, and s is the transformation parameter. This equation has to be solved with respect
to the transformed boundary conditions. This yields the transform of the temperature
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- inh (/.
T(r,s) = T SRS/ (2.416)
s2sinh(y/s/x L)
and the transform of the only non-zero displacement u, (x, r) becomes
1 h(y/ —cosh(y/s/x L
(. s) = a +lecos (3/s/x x) —cosh(y/s/x ). (2.417)

1—v s2 /sy sinh(y/s/x L)

The entire solution may now be obtained from the transforms of temperature and
x-displacement. The numerical inversion scheme outlined in the introductory section
may easily be applied to give the required values of temperature 7 (x, ¢) and the entire
mechanical load.

2.8.6 Elastic Beams Deform Due to a Transient Temperature
Change. Temperature Boundary Conditions are
Time-Dependent and of 2nd Kind

The domain is composed of two beams in parallel (Beam1 and Beam?2) extending
along the positive x-axis, each L = 25m long and subdivided into 25 x 1 x 1
cubic elements. The solid material has been selected elastic with Poisson’s ratio
v = 0.25, Young’s modulus £ = 25,000 MPa, and density p = 2,000 kg/m3. Thermal
conductivity A = 1.1574074 W/(m - K), thermal expansion & = 3 x 10~* 1/K, and heat
capacities ¢; = 0.01J/(kg-K) and ¢, = 0.02J/(kg - K) have been assigned to Beam1
and Beam?2, respectively. Gravity is neglected via explicit assignment. The faces
x = L are free, all other faces of the beams are sliding planes. No-flow boundary
conditions prevail at the x = Om faces. A specific heat flow is prescribed at x = L
for times ¢ > 0. It acts as heat source to the domain and increases linearly with time
via g1 - t, where g1 = 0.385802 W/(d - m?) has been assumed. Starting from zero
initial temperature the simulation evaluates the transient temperature distributions
as well as stresses, strains, and displacements with output after 0.045 and 0.09 days
(Figs.2.25 and 2.26).

The formal solution proceeds in two steps, first to solve for the temperature dis-
tributions and then to evaluate stresses, strains, and displacements.

Let ¢ denote any of ¢; or ¢;. The heat conduction equation is the governing
equation describing the transient temperature distribution. It reads

aT
pes- =V VT. (2.418)

Introducing the notation
A
X =— (2.419)
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the present 1D problems are governed by the parabolic equation

-2 (2.420)

the initial condition
T(x,00=0 forO0<x<1L, (2.421)

and the boundary conditions
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oT
—(0,1) =0 fort > 0,
0x
(2.422)
oT
A—(L,t) =g -t fort > 0.
0x

The closed form solution of the above problem is given by Carslaw and Jaeger [3],
who arrive at the series representation

/3 X _
T(x,t) = Sqthl% Z |:i3erfc(2n_;l% + i%rfc%] (2.423)

n=0

where i3erfc denotes the third repeated integral of the complementary error function.
See [4] for its numerical evaluation.

For the closed form solution of the mechanical problem note, that due to simulation
setup, the entire system is free of shear and the principal axes coincide with the
coordinate axes. The constitutive equations relate the strains €11, €22, €33, (in X-, y-,
and z-direction, respectively) and the associated stresses o1, 022, and 033 via

1

enn —al(x,t) = E[U” — (o2 +033)],
1

en—al(x,1) = E[Uzz —v(o11 + 033)], (2.424)
1

€3 —al(x,1) = E[cm —v(o11 + o)l

Due to the setup the x-direction is free of stress, y- and z-direction are free of strain,
therefore,

o1 =0, (2.425)

€n = €33 =0.

Hence, due to the temperature change T (x, r), the remaining non-zero stresses and
strains become

o = —a T(x,1),
1—v
033 = —al T(x,1), (2.426)
—v
1
€1 = o +vT(x,t).
1—v

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, uy, u;)

u; =uy =0, (2.427)
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1+v16 ? - 2n+ 1)L — 2n+ L
o) = a2 10T S g G DE X e Gt DEF X
1—v A 2./ xt 2/ xt

n=0

where i“erfc denotes the 4th repeated integral of the complementary error function.
See [4] for its numerical evaluation.

2.8.7 Stresses Relax in a Cube of Norton Material Undergoing an
Instant Temperature Change

The domain is a single cube with edge size L = 1 m located in the first octant. It
has three faces located on the coordinate planes and is discretized by 2 x 2 x 2
cubic elements. The cube is represented by a Norton material. Poisson’s ratio v =
0.27, Young’s modulus E = 25,000 MPa, zero heat capacity, and thermal expansion
o = 4 x 1073 1/K have been assigned, gravity is neglected via zero material density.
Various additional parameters are involved in the rheological behaviour, details are
given below. Faces on the coordinate planes and the top face are sliding planes.
The simulation starts from an initial setup free of load and an initial temperature
To = 27°C. It applies an instant temperature change to 77 = 47°C at the top of the
domain and evaluates stresses, strains, and displacements through time with output
after 0.5 and 2 days.
Let o denote the stress tensor, I the unit tensor,

ol =g — 1y (2.428)

the stress deviator, and

= Z ool (2.429)

the v. Mises or effective stress. The rheological model involved yields the funda-
mental stress/strain relationships as a system of differential equations for the creep

strains b

e 30
=—-——(Nod 2.430
9 3 O'eff( Ueff) ( )

and the total strains
€ =€l 4 € + €, (2.431)

where €'" denotes the thermal strains and € the elastic strains via Hooke’s law.
Both equations have to be solved with respect to the imposed initial and boundary
conditions.
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For the present example the behaviour of the Norton material is specified with the
aid of the parameters

n =35,
_ _2
N(T)_Aexp( RT)’

where R = 8.31441J/(mol - K) is the gas constant, T is the absolute temperature, and
experimental data obtained from rock salt yield

(2.432)

A =0.181/(d - MPa’)
’ 2.4
Q = 54,000 J/mol. (2:433)
Note that day is required as unit of time and stresses have to be in MPa.
Due to the example setup the principal axes are identical to the coordinate axes
and the vertical stress is the only non-zero element of the stress tensor. Therefore,

00 0
o=|000 |. (2.434)
00 033
the trace of o
tro = 033, (2.435)
the stress deviator
o -1 00
ol = % 0 -10], (2.436)
0 02

the v. Mises or effective stress
1
Oeff = |033|§\/3/2\/12+12+22= lo33], (2.437)

and the time derivative of the creep strains

100
oe” N (T

NI s (o 0. (2.438)
o1 2 0 5

The entire domain is initially free of creep strains. Hence, integrating with respect
to time ¢ the creep strains become
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0 1
10 / o3y dt. (2.439)
2 0

Ny (O

eL'V

0 —

00
Due to the simulation setup the thermal strains read
100

éh=am -1 {010}, (2.440)
001

and the elastic strains are obtained from the stress o via Hooke’s law.

—v 00
ee’=% 0 —vo). (2.441)
0 01

The total strains in terms of o33 and the displacements (uy, u,, u,) read

duy/dx 0 0
elor — ¢gth +€el 1€ = 0 3I/ty/3y 0
0 0  du;/oz
100
=a(l1—Tp) [ 010
001
i b 00 (2.442)
+2 [0 —vo
0 01
-1 00 !
N(T
+ (21) 0 —10 ./0353dt.
0 02/
Due to the simulation setup
ou
tot <
=—=0 2.443
€33 9z ( )
is the specified zero strain along the z-axis. Then
| 1
—a(T) —Ty) = £33 + N(T])/o353 dt. (2.444)
0

This integral equation is transformed into the ordinary differential equation

1 doss
0=——=+ N(T1)o3s. (2.445)
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Separation of variables and integration yields

—FEa(T) — T;
o33 (1) = o — To) , (2.446)
VAES[a(T) — To)*N(Ty) t + 1
and the strains du, /dx and du,/dy are obtained in terms of 033 (¢)
ou 3 —2v
tot _ X —_ = _
€7@ = o 2a(T1 To) + ¥ 033(1), (2.447)
() = duy _ §oz(T —Ty) + ! _2”0 @)
2W=573 1 0 2g 0B

Integrating the strains with respect to the specified fixities yields the displacement
vector (uy, iy, u;) in terms of 033(¢) derived above

3 v
uy(x,t) =x [Ea(ﬂ —Tp) + 0330)} ,

2E

(2.448)

3
uy(y,1) =y [Ea(ﬂ —To) + v033(f)} ,

u.(z,t) =0.

2.9 Thermo-Hydro-Mechanical Coupling

Both, the presence of a liquid pressure as well as temperature changes affect the
mechanical behaviour of the porous matrix; we present a steady-state and a transient
problem. The underlying theory may be found in the references cited above.

2.9.1 A Permeable Elastic Cuboid Deforms Due to Gravity,
Internal Liquid Pressure, and Instant Temperature Change

The domain is a cuboid of height H = 30 m and edges parallel to the x-y-z coordinate
axes. It is discretized by an irregular mesh of hexahedral elements. The cuboid is
represented by four groups of elastic materials, where each has been assigned density
Ds = 2038.736kg/m3, Poisson’s ratio v = 0.25, Young’s modulus £ = 10,000 MPa,
thermal expansion @ = 3 x 107 1/K, zero heat capacity, zero porosity, and Biot
number equal one. Liquid density is p; = 1019.368kg/m?, gravity is applied in
negative z-direction, g = 9.81m/s? is the magnitude of gravity. Zero pressure is
applied at the top face z = H. This face is free, all other faces are sliding planes.
The simulation starts from the initial temperature 7y = 0°C and comprises one time
step applying an instant temperature increase to 73 = 2.5°C throughout the entire
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domain. The simulation evaluates the pressure distribution, the temperature, and the
mechanical load.

The formal solution proceeds in three steps, first to solve for the temperature, next
to evaluate the pressure distribution p(z), and finally to determine stresses, strains and
displacements. However, due to the setup the temperature change has constant value
T\ — Ty throughout the entire domain, and we will focus on the hydromechanical
aspects of the problem.

The simulation setup employs a prescribed zero pressure at the top (z = H),
therefore the pressure distribution is hydrostatic, does not depend on the coordinates
x and y and is given by

p(2) =p g (H —2). (2.449)

For the closed form solution of the mechanical problem let o denote the stress tensor
and I the unit tensor. Employing Biot’s simplified theory (i.e. Biot number equal one)
the equation of mechanical equilibrium reads

0=V.-(6—pI)—(0,0, ps g). (2.450)

It is satisfied by zero shear, if pressure p and the horizontal stresses o1 and o are
functions of the vertical coordinate z only and the vertical stress o33 satisfies

do d
5 e+ L= —p g (2.451)
dz dz

The face z = H is free, hence, integration gives

033 = (ps — p1) (—8) (H — 2). (2.452)
Due to the simulation setup there is no horizontal displacement anywhere, hence, for
the horizontal strains

€11 =€ =0. (2.453)
Then, with principal axes equal to coordinate axes, the constitutive equations give
e —a(l1 —To) = é[an —v(on +033)],
€ —a(lh —To) = é[azz —v(o11 + o), (2.454)
€33 —a(T1 —To) = %[033 —v(oi1 + o)l

Solving for o1, 022, and the vertical strain €33 yields
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v
on=on=-ar— (T =T + (o= p)(=8)(H —2). (2.455)
1+v 212

1
€33 a(Ty —Ty) + (1 - ) —(ps — p)(—g)(H — 2)
v/) E

1—

—V

in terms of the vertical coordinate. Integrating the strains with respect to the fixities
at the sliding planes yields the displacement vector (i, uy, u;) (Fig.2.27).

+v
— voz(Tl —To)z

. 202\ 1 g Lo
+( —1_V)E(ps—pz)(—g)(z —52)-

2.9.2 A Permeable Elastic Beam Deforms Due to Cooling Liquid
Injection

(2.456)

The domain is a rectangular beam of length L = 10m extending along the positive
x-axis. It is discretized by 100 x 1 x 1 equally sized hexahedral elements. The solid
material has been selected elastic with Poisson’s ratio v = 0.25, Young’s modulus
E =5 x 10° Pa, thermal expansion @ = 1 x 107® 1/K, and Biot number equal one.
An isotropic permeability k = 10~''m? and porosity ¢ = 0.1 is assumed for the
material. The liquid is incompressible and has viscosity u = 1mPa-s. Densities,
heat capacities, and thermal conductivities of liquid and solid grain are given below
(Table2.4), gravity has explicitly been neglected.
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Table 2.4 Example overview

Liquid Solid
Density o1 = 1000 kg/m? 05 = 2000 kg/m3
Specific heat capacity ¢y = 1100 J/(kg-K) ¢y = 250 J/(kg-K)
Thermal conductivity X =10 W/(m-K) Ay =50 W/(m-K)

The face x = L is free, all other faces of the beam are sliding planes. Pressure
po = 10° Pa at the liquid inlet (x = Om) and zero pressure the liquid outlet (x =
L) generate steady-state 1D flow along the x-axis. At the liquid inlet a constant
temperature Tp = —10°C is specified for times ¢ > 0. Starting from zero initial
temperature the simulation evaluates the transient temperature distribution 7 (x, t)
as well as stresses, strains, and displacements with output after 10,000 and 20,000s.

The formal solution proceeds in three steps, first to solve for pressure p(x) and
specific discharge ¢, next to evaluate the temperature distribution 7 (x, ¢), and finally
to determine stresses, strains, and displacements (Figs.2.28 and 2.29).

For incompressible liquids Darcy’s law and continuity equation yield the Laplace
equation as the governing equation describing the steady-state pressure distribution.

It reads
d? P

=0 (2.457)

for 1D flow along the x-axis, hence, the pressure is given by
X
p(x) = po(l — Z)’ (2.458)

and the specific discharge ¢ is obtained by Darcy’s law

o

Temperature {C)

o

Fig. 2.28 Temperature distribution after 20,000 s
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k
g= -2 (2.459)
n L

We will next focus on the closed form solution of the heat transport problem. Based
on the setup of the present example the heat transport equation reads

32
(pprcr + (1 - ¢)pscs) + (¢,0161)$3— (P21 + (1 — ¢>))»s) . (2.460)

Introducing the notation

w = dpici g (2.461)
ppic; + (1 — @) pscs ¢
¢)”l + (1 - ¢))Ls

dppic + (1 — @) pscs '

the heat transport equation becomes

T T 92T

il =y 2.462
8t+w8x X8x2 (2.462)

Due to free outflow at x = L the formal problem is to determine the solution 7 (x, t)
of the above heat transport equation subject to the initial condition

T(x,0)=0 for x >0, (2.463)
and the boundary conditions

T0,t) =Ty fort >0,
lim 7(x,)=0 for > 0. (2.464)
xX—
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Applying the Laplace transform with respect to ¢ yields the ordinary differential
equation
xT" —wT' —sT =0, (2.465)

where T is the transform of T, s is the transformation parameter, and the prime
denotes the derivative with respect to x. This equation has to be solved with respect
to the transformed boundary conditions. This yields

T(x,s) = ? exp [x (% - /(%)2 n % )] . (2.466)

The temperature distribution 7 (x, ) may now be obtained from their transform,
Churchill [7] outlines how to proceed with the aid of operational calculus.

For the mechanical aspects of the problem we assume that the temperature distri-
bution 7 (x, ¢) is already known from the above. Let o denote the stress tensor and I
the unit tensor. Employing Biot’s simplified theory (i.e. Biot number equal one) the
equation of mechanical equilibrium reads

0=V-(oc —pl. (2.467)

It is satisfied by zero shear, if the stresses o2, and o33 are functions of x only and the
stress o satisfies

d
— (o011 — p) =0. (2.468)
dx
The face x = L is free of load, hence, integration gives
X
o11 = px) = po(l — Z)' (2.469)

With principal axes equal to coordinate axes, the constitutive equations give for the
strains

1

e —al(x,t) = E[G“ —v(o2 +033)],
1

e —al(x,t) = E[Gzz —v(o11 +033)], (2.470)
1

€33 —al(x,1) = E[Uas —v(o11 +o22)].

By the problem setup there is
en=e3=0 (2.471)

due to the y- and z-fixities along the front, rear, top, and bottom of the beam. In terms
of pressure p(x) and temperature 7T (x, t) the remaining non-zero stresses and strains
become
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on =03 =1 [vp(x) —aET(x,1)].
212 1

1l = (1 - ) PO IHY . (2.472)
1—v E 1—v

Integrating the strains with respect to the fixities at the sliding planes yields the
displacement vector (uy, uy, u;). The only non-zero displacement u, (x, t) becomes

X

212 2 1
wy(x. 1) = (1 _ 2 )@ (x l )+ +va/T(x’, 1dx'. (2.473)
—V
0

1-v) E\ 2L 1

The already known Laplace transform T (x, s) of the temperature serves to evalu-
ate the last integral over the temperature distribution. We have for the transformed
integral

X X

L /T(x/,l)dx/ :/Y_’(x/,s)dx/
0 0
w w S (2.474)
explx|—— [(=—)+ = ]—1
_T p[ (2)( 2 x
s w w o, s ’
= - G+
2x 2x X

and the last expression, as well as the Laplace transform of the temperature itself,
are well suited for numerical inversion. The numerical inversion scheme outlined
in the introductory section may easily be applied to give the required values of the
temperature 7 (x, r) and the entire mechanical load (Fig.2.29).
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Chapter 3
Groundwater Flow—Theis’ Revisited

Wenkui He

3.1 Problem Definition

Theis’ Problem describes the transient lowering of the water table caused by a
pumping well. In this section, Theis’ Problem is simulated for a homogeneous,
isotropic, confined aquifer numerically in 1.5D, 2D, 2.5D and 3D. The parame-
ters for the simulations can be found in Table3.1. In all the four cases, different
processes i.e. groundwater flow processes and liquid flow processes are applied
for the simulation in order to evaluate the plausibility of the model approaches
GROUNDWATER_FLOW and LIQUID_FLOW in OGS. The governing equa-
tion for groundwater flow process in a confined aquifer is Eq. (3.1) with the primary
variable hydraulic head, whereas that for liquid flow process is Eq. (3.2) with pressure
as its primary variable.

oh
SS§=V~(K-Vh)+q 3.1
Sg 0
2 _y. (— Vp) +4q (3.2)
pg ot

3.2 Theis’ 1.5D and 2.5D

For the simulation of Theis” problem in 1.5D and 2.5D, axisymmetric coordinate
system is applied. For 1.5D a one dimensional line mesh is applied, whereas for
2.5D a two dimensional mesh with a width of 1 m is applied (see Fig.3.1a, a scale
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Fig. 3.1 The mesh implemented. a 2D Mesh for Theis’ 2.5D; b 2D Mesh for Theis’ 2D

factor of 5 is taken for the y-direction). In the case of two dimensional groundwater
flow process, Eq. (3.1) is transformed into Eq. (3.3).

S%Z%%(Krr%)+aiz(l(z%)+q (3.3)

A hydraulic head of Om is given for the whole domain as the initial condition
for the numerical simulations. Since the aquifer should be infinite in radial extent
in order to fulfill the assumption required by the Theis’ solutions, a relatively huge
study area length of 1,000 m is applied. The hydraulic head at the end of radial extent
is set as Om as the boundary condition.

Since discharge is evenly distributed around the whole surface area of the well
(which can be seen as a cylinder), the source term (with the distribution type
CONSTANT_NEUMANN) applied for Theis” 2.5D is calculated as follows (‘1
in the formula represents the length of the 2D mesh in y-direction, i.e. 1 m):

0

=_— < = _7393E—3(m-s"!
21y 1 ? (m-s)

q

In the case of Theis’ 1.5D, the whole well is abstractly represented by a single point,
hence both the radius and the depth of the well are regarded as 1 m. The discharge

Table 3.1 Parameters and their values applied for Theis’ problem

Parameter Symbol Value Unit
Pumping rate Q 1.4158E-2 m3/s
Hydraulic conductivity K 9.2903E-4 m/s
Intrinsic permeability K 1.2391E-10 m?
Storage coefficient S 1E-3 -
Specific storage M 1E-3 1/m
Well radius rw 0.3048 m
Study area length rp 1,000 m
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Table 3.2 The density and dynamic viscosity of water at 10°C

Parameter Symbol Value Unit
Density of water (10 °C) P 999.7026 Kg:m~3
Viscosity of water (10 °C) " 1.308E-03 Pa-s

rate is thereby calculated by:

__ 9 _ -1
19=5 11~ 2253E —3(m-s™)

It is worth to mention that in the model approach GROUNDWATER_FLOW, the
value implemented for the key word PERMEABILITY_TENSOR in OGS should
be the value of hydraulic conductivity, i.e.

K =9.2903E —4(m-s™ 1)
whereas the value implemented for the key word STORAGE should be the specific
storage, i.e.
Sy =1E —3(m™1
However, in the model approach LIQUID_FLOW, the value used for the key word
PERMEABILITY_TENSOR is the intrinsic permeability, which is calculated as

follows by using the value of hydraulic conductivity as well as the density and
dynamic viscosity of water at 10 °C (see Table 3.2).

K
= =H —12391E — 10m?)
pg

Whereas the value implemented for the key word STORAGE should be the whole
parameter term on the left hand side of Eq. (3.2), i.e.

S
== 1.02E—-7®Pah
pg

Additionally, in the model approach LIQUID_FLOW the influence of gravity is
considered. Hence the geometries and meshes for both Theis’ 1.5D and Theis’ 2D
are built in x-y plane instead of x-z plane to avoid the influence of gravity.

3.3 Theis’ 2D

The governing equation system for groundwater flow process in 2D is

soh —T(82h+82h)+ (3.4)
or lox2 Tay2’ T4 '
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Table 3.3 Summary of the model concepts for Theis’ problem

Dimension | 1.5D 2D 2.5D 3D
Geometry % (_l< b ‘—Ig
Concept Radial symmetry | Axisymmetry
Key word SAXISYMMETRY |— ‘ SAXISYMMETRY ‘ -
or
S oh K(82h+82h)+ (3.5)
ot Dlaxz Ty Tl '

In order to compare the simulation results of 2D approach with other approaches,
the same parameter values, initial conditions and boundary conditions are applied for
the Theis’ 2D. A cake-shaped triangle geometry is chosen for the 2D approach (see
Fig.3.1b), in which the pumping well is set at the left vertex of the triangle. Since
the angle of the left vertex is set as 10°, the source term is calculated as follows:

0 = 10 0 =3.9329E — 4(m> - s
' =360~ =7

3.4 Theis’ 3D

Based on the 2D mesh shown in Fig. 3.1b, a 3D mesh is generated by extruding the
mesh elements into 3D. The 3D mesh is consist of one layer with a thickness of 1 m.
Similarly, the parameters used in Theis’ 2D are applied for Theis’ 3D. Since the model
approach LIQUID_FLOW considers the gravity of the liquid, there is a pressure
difference between the upper surface and the bottom surface. Hence the average
value of the upper surface and the bottom surface is taken to compare with the results
from Theis’” 1.5D, Theis’ 2D and Theis’ 2.5D. A summary of the model concepts,
implemented geometries and their related key words in OGS are listed in Table 3.3.

3.5 Results

All the simulations are performed for a duration of 10days with varying time step
lengths ranging from 10E-5 to 0.9d. The time series of the hydraulic head draw-
down at a distance of 9.639m from the well are extracted from the simulation
results of all the eight cases, and are shown in Fig.3.2 together with the analyti-
cal solutions. The calculation of the analytical solutions can be found in the work
of Srivastava et al. [1]. ‘GF’ in the graphic represents the simulations with model
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Fig. 3.2 Calculated drawdowns at a distance of 9.639 m from the well

approach GROUNDWATER_FLOW, whereas ‘LF’ represents LIQUID_FLOW.
We can find that all the numerical results obtained with different model approaches
are coincident with each other and are agree well with the analytical solutions. Addi-
tionally, the distribution of the hydraulic head at the end of the simulation time
for the 1D as well as 3D mesh are demonstrated in Figs.3.3 and 3.4, respectively.
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Fig. 3.3 Distribution of the hydraulic head at the end of the simulation time (1D)
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HEAD (m)

-22.76

Fig. 3.4 Distribution of the hydraulic head at the end of the simulation time (3D)

In order to show the 3D mesh in Fig.3.4 clearly, a scale factor of 5 is taken for the
z-direction.
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Chapter 4
Richards Flow

Thomas Kalbacher, Xi Chen, Ying Dai, Jiirgen Hesser, Xuerui Wang and
Wengqing Wang

Introduced by Richards [1], the Richards’ equation is used to mathematically describe
water movement in the unsaturated zone. Theoretically, the equation is also a sort
of simplification of the two-phase flow equations of water-air processes in porous
media under the constant gas pressure condition. By considering the water pressure
as the primary variable, the equation takes form

_w _I_V pw rel
8pC 3t

— ¢pw (Vpy — ;Owg)) =0y 4.1)

w
where ¢ is porosity, ¢ is time, p,, is the liquid density, w,, is the liquid viscosity, p.
is the capillary pressure with p. = —py,, py is the water pressure, S is the water
saturation, g is gravity acceleration vector, Q,, is the source term, k,; is the relative
permeability and K is the intrinsic permeability which is related to the hydraulic
conductivity K with

k=H2rK 4.2)
Pug

In this chapter, the finite element solution of the Richards’ equations is compared
with the semi-analytical one.

4.1 Comparison with Differential Transform Method (DTM)

Xi Chen, Wenqing Wang and Ying Dai

The concept of differential transformation method was first proposed by Zhou [4],
which uses Taylor series for the solution of differential equations in the form of a
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polynomial. For an arbitrary f(x), it can be expended in Talyor series at a specific
point, say x¢ as

0 k gk
(x —xo)" [d" f
f)y=> —+— [— (4.3)
= k! d x* x=xo
The differential transform of f(x) is defined as
dk
F(x) = [—{:| 4.4)
dx x=x0
Consequently, its inverse transform is given as
fo) = Z Gox0f p 4.5)
X 0 X .

k=0

Table4.1 lists the basic properties of the differential transform method (DTM).
Herewith, we apply the DTM to the Richards’ equation with van Genuchten [2] water
retention model to derive a semi-analytic solution. For this purpose, we consider the
saturation as the primary variable, and the Richards’ equation can be written as

aS krerk
i V. ( (Vpe + ,Owg)) = Quw (4.6)
t Hw

With the Mualem—van Genuchten parameterization [2, 3] the capillary pressure can
be described as

B 1n
Do = % [seff‘/ m_ 1] 4.7)

where « [1/m] is a conceptualized parameter related to the air entry pressure, 7 is a
dimensionless pore size distribution index and m = 1 — (1/n). These parameters are
usually used to fit the saturation dependent curves of capillary pressure and hydraulic

Table 4.1 Properties of DTM

Original function

Transformed function

y(x) =gx) £ h(x)

Y (k) = G(k) £ H(k)

y(x) = ag(x) Y (k) = aG (k)
y(x) = Lot Y (k) = ('”,;m) Gk +m)
Yo =1 Y (k) = 5(k)

y(x) = x Y(k) =6k — 1)

y(x) = 2" Y (k) = 8(k — m)

y&x) = g(x) h(x)

Y(k) =k _o Him)G(k —m)
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conductivity to experimental data. The relative permeability can be given as

2
kret = S [1 - Seﬂ/fm)m] 4.8)
The effective saturation is
S-S5,
Seff = ————— 4.9
=g 4.9)

with S and S, as the maximum and residual saturation.

The example is a one-dimensional infiltration problem based on an experiment
conducted by Abeele et al. [5].

Figure4.1 shows the setup of the problem. The domain is a 6 m long cylinder
with a diameter of 3m. A constant infiltration of 2.314e-6m/s is applied on the
top of the domain, while on the bottom the saturation is assumed to be 0.33. The
initial saturation is 0.33 too. The domain is assumed to have a homogeneous material
distribution, and all material parameters are listed in Table4.2.

Inspired by the concept presented in [6], we employ an intermediate variable ¢
for the variable of Eq.(4.3) to enhance the convergence of the Talyor series, which
is

¢ = tanh(a(x — b + ct)) (4.10)

Fig. 4.1 Computational boundary 1

domain of the numerical

S5(x.0)=0.303

boundary 2
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Table 4.2 Material

properties Symbol | Parameter Value Unit
¢ Porosity 0.33 -
kg Saturated permeability 2.95¢-13 | m?
S, Residual water saturation 0.0 -
Sinax Maximum water saturation 1.0 -
o van Genuchten parameter 1.43 1/m
n van Genuchten parameter 1.506 -

where a, b and c are parameters to be determined by initial and boundary conditions.
Consequently, the saturation function S(¢) is approximated by the Talyor series as

— (£ — to)¥ [d"f(;“)}
S(¢) = (4.11)
; k! dck r=to

where ¢ is the initial value. In this example, the first order of the DTM is adopted,
which leads to an approximation of the saturation as

5@) = S(0) + SOV — &) (4.12)

Applying the initial condition, the boundary condition with a constant saturation
of 0.33 at the bottom, and the infiltration boundary condition of 2.314e-6 m/s at the
top to Eq.(4.12) with the intermediate variable defined in Eq.(4.10), we get three
equations with three unknowns of a, b and c. Solving the derived three equation, the
parameters in Eq. (4.10) are obtained as

a=19.8, b =599, c =231de — 6/(0.33(1 — 0.303)) (4.13)

Finally, a semi-analytical solution to this example is derived by applying the
obtained parameters:

S(x, 1) = 0.303 + 0.697(tanh(a(x — b + ct)) + 1)/2 4.14)

The solution is compared against the numerical result obtained by OGS (Fig. 4.2).

4.2 Undrained Heating

Xuerui Wang and Jiirgen Hesser

The main purpose of this chapter is the numerical analysis of temperature effects
on pore water pressure in unsaturated porous medium by consideration of cou-
pled thermo-hydraulic (TH) processes using RICHARDS_FLOW approach in OGS.
Under thermal loading, the increase of temperature leads to anexpansion of pore
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Fig. 4.2 Comparison 0 02 04 06 08 1
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fluids. Due to undrained condition this expansion can cause an increase of pore pres-
sure as well as an increase of the degree of water saturation. Moreover, the increase
of temperature can also lead to a decrease of fluid viscosity. Under undrained con-
ditions, the thermal expansion, characterized by the thermal expansion coefficient is
defined as: _

o = —(=7) (4.15)

where pg is initial liquid density, p; is actual liquid density, 7 is temperature. The
effect of the thermal expansion on pore pressure is considered as an additional term.
This term is multiplied by the partial derivatives of temperature 7" with respect to
time ¢ in the Richards equation:

0 oT ko1k
+psutl 4y, (pw :’ (Vpw — pwg>) =0, (4.16)

w

In order to evaluate the plausibility of using the RICHARDS_FLOW model,
three reference calculations of heating an undrained and saturated sample have been
carried out. The first two reference calculations consider the same heating test. The
only difference is that one is using RICHARDS_FLOW, the other considers the
LIQUID_FLOW model. In the third reference calculation, the advection effects were
neglected to compare the results with the analytical solution. Finally the simulation
of an unsaturated heating test using the RICHARDS_FLOW model was carried out.
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Fig. 4.3 Geometry and dimension of the core sample (/eft) and the 1D calculation model (right)

4.2.1 Definition (1D)

In this example an undrained heating test on a cylindrical core sample (Fig. 4.3, left)
is numerically simulated. Due to the axisymmetric situation and the assump-
tion of homogeneous and isotropic material properties, a one-dimensional model

Table 4.3 Model parameters

Symbol Parameter Value Unit

Porous medium

Ps Density 2700.0 kg -m~3

S Specific storage 4.4.10710 Pa~!

k Permeability 3.5-107%0 m2.s~!

¢ Porosity 14 %

o Thermal expansion’s coefficient 451073 K~!

As Thermal conductivity 2.0 W.-m~!.K"!
c* Specific heat capacity 800 J.kg~l. K

Fluid

i Density 991 kg-m™3

c Specific heat capacity of water 4280 J-kg7!-K™!

A Thermal conductivity of water 0.6 wW-m~!.K~!
v Water viscosity 0.001 Pa-s




4 Richards Flow 127

120

100

[os]
o
rr 1.~~~ 1 1 11

Temperature [°C]
(2]
o

40

20

o b b b b b b b b 1

5 10 15 20 25 30 35 40 45
Time [h]

o

Fig. 4.4 Temperature increase at the bottom

(Fig.4.3, right) has been set up with 10 elements in the direction of the rotation
axis. The model parameters are listed in Table4.3. The initial temperature of the
whole model was set to 15°C. The boundary conditions are characterized with no
flux boundary. The temperature increases at the bottom from initial 15 to 120°C
(Fig.4.4) within 2 days. The calculations include 48 times steps, each with a length
of 1h.

4.2.2 Heating a Saturated Sample

Within the reference calculations using RICHARDS_FLOW or LIQUID_FLOW,
the initial pore pressure was set to 1 MPa to ensure a full saturated initial condition.
In the calculation using LIQUID_FLOW only the water phase has been considered
and the model remains always in full saturated state. Based on the calculation results
(Fig.4.5), it can be observed that the temperature increase induced a significant pore
pressure increase from 1 to almost 9 MPa. Because of the advection effects the
increase of pore pressure is nonlinear despite the linear increase of temperature with
time. In the simulation using RICHARDS_FLOW the relationship between capillary
pressure and water saturation is given by the Mualem—van Genuchten function. In
this case the pore size distribution index m is assumed with 0.52 belonging to the
typical value range of opalinus clay. Moreover, the air entry pressure is considered
as constant with 10 MPa. Theoretically, in the case of full saturation the calculated
results using RICHARDS_FLOW model should be identical with the results using
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Fig. 4.5 Comparison of the calculated pore pressure evolution using RICHARDS_FLOW model

with the results using LIQUID_FLOW model

LIQUID_FLOW. A the results comparison (Fig.4.5) shows that the results from the

two different models are congruent. In the third reference
effects are neglected with the assumption that permeabil

calculation the advection
ity converges to 0. Equa-

tion4.16 shows a linear dependency of the pore pressure with the temperature, when
saturation is constant to 1 and the Laplace term is always equal to 0. Thus, an increase
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Fig. 4.6 Pore pressure evolution as a function of temperature
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in pore pressure of about 8.99 MPa can be analytically calculated when the tempera-
ture rises from 15 to 120 °C. With the results in Fig. 4.6, it can be observed that pore
pressure increases linearly with the rise in temperature, and these values match with
analytical results very well.

4.2.3 Heating an Unsaturated Sample

Based on a RICHARDS_FLOW benchmark model of OGS, a numerical simula-
tion of undrained heating in an unsaturated sample has been carried out. Using the

Temperature [°C] Water Pressure [MPa] Saturation [%)
120
118 0.2
100
116 014
4 114 0.08 99.995
112 0.02 3.995
4 110 -0.04 99'33
108 -0.1 98-91'5
— 106 -0.16 :
| o2 s 2 965
102 028 :
-0.34 99.96
04 99.955
) 99.95
L 1
or
r 4 0.995
- Water pressure N
= 05 Degree of water saturation Jo0.99
o [ ]
2 4t 10.985
g r 17 ¢
2 g 1 S
B — -
8 45k 1 0.98 ©
A N 1 S
m B B
= r Joors 8
[} - 4
= o ]
0 r ]
= H Jo97
25F E
r Jo.965
Yz Ll Ll Ll Ll 1
20 40 60 80 100 120

Temperature [°C]

Fig. 4.7 Distribution of temperature (left) water pressure (middle) water saturation (right) at the
end of simulation (fop) and calculated water pressure and saturation at the bottom of model in
comparison with temperature (bottom)
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Mualem—van Genuchten function, the initial capillary pressure was set to 3 MPa to
ensure that the initial saturation is equal to 96 %. The main purpose of this bench-
mark model is to analyze the thermal induced expansion of pore water by using
RICHARDS_FLOW model. Therefore, thermal expansion of solid and the vapor
effects by none isothermal conditions are neglected.

4.2.4 Results

Figure 4.7 (top) shows the calculated distribution of temperature, water pressure and
degree of water saturation within this model at # = 48 h. During heating, temperature
as well as pore pressure increase gradually. The highest water pressure is 0.175 MPa
and is found at the bottom where the temperature is highest.The lowest water pressure
is equal to —0.33 MPa and located at the top, where the temperature is lowest. With
the increase of temperature, the degree of saturation rises from 96 % to full saturation
in parts of the sample. The increase of water pressure and saturation degree indicates
apore water expansion which is caused by the heating. Figure 4.7 (bottom) illustrates
the development of pore pressure and water saturation as a function of temperature at
the bottom. Here, it can be observed that saturation increases almost linear with the
increase of temperature until full saturation. It can also be seen that the pore pressure
rises faster at a higher saturation degree.
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Chapter 5
Multi-Componential Fluid Flow

Ashok Singh

This chapter deals with mathematical modeling of multi-componential fluid flow
and transport processes in a porous media. Compare to flow of a pure fluid, inter-
action of multi-componential fluid flow with other processes is very complex due
to the variability of material parameters due to change in pressure, temperature and
composition. Numerical simulation helps to understand such complex interaction
is arisen from process coupling or variability in the material parameters. Numerical
simulation also helps for making a precise prediction the consequences of fluid injec-
tion/extraction associated with subsurface. The present modeling is useful for com-
putational investigation of industrial and fundamental problems of mass, momentum
and heat transfer through porous media.

5.1 Basic Equations

This section is concerned with derivation of governing equations for multi-
componential fluid flow and transport processes in a porous media. A porous media
can be considered as a two-phase system which solid phase is immobile and isotropic
material. And the mobile phase is a mixture of different pure fluids filled in the pores
of solid skeleton. In this derivation, the concept of Representative Elementary Vol-
ume (REV—measurement over a smallest volume represents the whole two phase
system) is adopted. In the continuum mechanism, REV concept neglects that a matter
is made of atoms. The size of this REV is restricted by inequality A <[ < L which
provides definition of the Knudsen number K, = ’7\ A is the average mean free path
between two molecules and / is the characteristic length (e.g., diameter of pores).
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5.1.1 Mass Balance Equation

The mass balance equation of a multi-componential fluid flowing with velocity, v,
in a porous media is given by

3 (np’ : .
% 4V (pfnv) — np’ 0/ (5.1)

Here,v = > a),{ v is the averaged velocity shared by each component (Bear [1]).

t is time, superscript f stands for fluid phase, subscript k stands for component.
w,{ is the mass fraction of kth components in the mixture, ,of is mixture density,
k is permeability, n is porosity, w is viscosity, g is gravity vector and Q;g is fluid
source/sink term.

According to Helmig [2], sum of the diffusive fluid flux over all components is

zero. And the Darcy’s law is used for the advective fluid flux, F,.

Tk
P
Fa=PfW=anV=—T'(VP—Pfg) (5.2)
Equation (5.1) is expanded in following form
f
ap oT w
Fof 28 _ ot o f 28 k. Iwl =nofOof
ol S nete! G+ e n [o/w|=mo"0f 53
Here, thermal expansivity ai = —if (% ol fluid compressibility
k
Bl = /)17 (%)T i, and solutal expansivity y; = Lf (Lf) i i #k.
Pk “k / p, Ta)

5.1.2 Fractional Mass Transport Equation

Consider a reaction which affects mass fraction of kth chemical component in fluid
and solid phases. Rate of this reaction, R, can be decomposed into zero order and
Ist order rates.

R" = Rl + R}y :v="/ s (5.4)
—— ——
zero order st order

The zero order rate is equivalent to the source/sink term, i.e. R’ 0 = = p¥ Q7. Whereas,

according to the decay process, 1st order rate is given by relation Rg/]) = —ApY a)}:.
Choosing the dispersive mass flux in terms of mass fraction, the mass transport
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equation of the kth component for fluid and solid phases are given by

ad (n,ofa)f) i : .
T+V-(wpfw,{)—v-(nprij . Va),f) = —n)»pfa);f +npr£ (5.5)
and
a [(l - n)pAwli] \) A S \)
B v —(1=mrp’wp + (1 —n)p° 0, (5.6)
!
The mass fraction of kth chemical component in mixture (w[ = Z:—’}) and solid

(0] = %) phases are related via sorptionlaw i.e., w; = f (w,{ )w,{ . With considering
sorption process, the convective form of the factional mass transport equation is
given by

f
ow :
”prla_;k +pfw-Va){ - V. (npr,'j . Va),f)
+ of p! (npf 0 - nROA) =np’ Qf + (1 -n)Q, (5.7)

The retardation coefficient, Ry, and its derivative, R, are given by

1—np*
R0=1+—p
n

P 1 | —n po 0 F@D]]
—f(w;); and Ry =1+ —

2 g n pl Ew{
The coefficients of hydrodynamic-dispersion tensor are given by

V,'Vj
Dij = tD8jj + oy V| 8ij + (e — o)

v

Here, §;; is Kronecker delta, 7 is tortuosity, D is diffusion coefficient, a; and o are
transverse- and longitudinal- dispersivity, respectively.

5.1.3 Heat Transport Equation

Consider an open system with a fluid which internal energy is e/ and density is
o/ . According to the first law of thermodynamics, energy balance equation for this
system is expressed as

De/ » X .
or TV elplo) =

3vi
Tl'j_
0x;

J

o! (5.8)

where, e/ p/ Q o 1s amount of internal energy associated with fluid source/sink term,
0, and i/ is the fluid heat conduction flux vector. The stress tensor, 7;; %, can be
J
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decomposed into pressure term, pV - v, and viscous term, v - V p.

De , :
,OfT-FV i/ +e/p/Qf =v.-Vp—pv.v (5.9)
For a thermodynamically open system, enthalpy, & ! is preferred over internal energy,
e/ . Hence, Eq.(5.9) is being transformed in terms of fluid enthalpy with using the
p Dp/

mass balance equation.
p(%) p
V.y=_ "7 f_ f_\p) TP f 510
pvV-v o D +pQ,=pr D Dt+pr (5.10)

Replacing the pressure term in the Eq.(5.9) by using Eq.(5.10) and relation,
h=el + %, we have

Dh' Dp
pf7+v i =v. Vp+ oo —nlplof (5.11)
The energy balance equation for solid phase in terms of the internal energy, e*, is
given by

S
s De

Dt

+V-i=0’ (5.12)

Replace the total derivative in Egs. (5.11) and (5.12) with following thermodynamical
relations.

th_(l ain)Dp b1/

Dt o/ of )i TP Ds
De’ DT*
Det =)0 (5.13)

The heat transport equation for fluid and solid phases in terms of respective phase
temperature are

o DT/

p’c) +v.if =v. vp+afo —n' ol 0 (5.14)
Dt Dt
and
AT
,oscf)? + V.1’ = Qi (5.15)

Under the thermal equilibrium (7/ = T% = T), total energy conservation equation
is preferred which is obtained by averaging the Eqs. (5.14) and (5.15) over fluid and
solid phases.
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Table 5.1 Approximation of material parameters for a mixture

L_> o pf = PMe
of k Pkf k7 w(p, T)RT
SN Uk f f__Lfov
VoL W1 (),

Q

f_ Uk f f_l ov
T_Zk v ATk A = *(3‘” pof

f
1 j,
P E km (Pk,T)_Kk(T)"rAKk(Pk,T)"!‘Ac’fk(/)k»T)
k Pic»

f 0 f f
mk (s T) = i (T) + Aur (o » T) + Acpic (o, T)
k Mk(pk, k(o T) k k k ¢ k

(14 8¢5 — 8t¢hsc)?

f f.f, . f f 0
cf = ol chol . T) epp (8. 1) = = (B0 + bee) + e

0.00143717

Dij = MM ; !
iM; 3 3
M;+M; |:EV(1[ + 2Vdj:|

(P¢p) o 8; +epp/nv-VT =V - [kep- VT]

8 .
= na{Ta—’: V- Vp—alTnv-Vp +c) (T = Tonp! 0 + 01 (5.16)

Here, O7 = Q., and heat conduction flux can be represented according to the
Fourier’s law.

i = 7 .VT (5.17)

where k., is the effective thermal conductivity tensor of the porous media, with
coordinates defined as k5 = (1 —n)k* +nk/. (pc)) o 18 the effective heat capacity

of the porous medium defined by (,ocp) =1 -n)p’c + n,ofc[]; Here, specific

heat capacity and thermal conductivity of the fluid mixture are given in Table5.1.

5.1.4 Equation of State

Tsai and Chen [3] presented the volume translated Peng-Robinson equation of state
(VTPR-EoS). In this EoS, molar volume, vy, is corrected by the translated volume, c.
The translated volume is difference in molar volume obtained by experimental and
computation at the reduced temperature 7, = T/T,. Because of this translation,
VTPR-EoS approximates the fluid parameters for liquids, gases and supercritical
states.
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B RT B a(T)
(e te—b)  (k+ o)k +c+b)+ b+ c—b)

p (5.18)

Here, R is universal gas constant. @ and b are attraction and repulsion parameter,
respectively.

R’T? )
a(T) = 0.4572 [14+ My(1 = T,) + No(1 — T,)(0.7 — T,)]
p

c

Mo = 0.2047 + 0.8354w, — 0.1847w? + 0.1667w] — 0.0988w

RT,
b = 0.077796—=
Pc
RT, 2
0= ke [k] + ko (1 - T,2/3) ks (1 - T,2/3) ]
Pe

ki = 0.00185 + 0.00438w, + 0.36322w> — 0.9083 1. + 0.55885w;
ky = —0.00542 — 0.51112k3 4 0.04533k3 4 0.07447k3 — 0.038314k3

Here, p. is critical pressure, T is critical temperature and w, is acentric parameter.
Required parameters for VTPR-EoS are given in Table 5.2. A cubic equation based
on VTPR-EoS is obtained by setting vy = zxRT p, in Eq.(5.18).

P+ PP+ Qz4r=0
P=B-1+3C
Q=-3B>+3C>+2BC—2B—-2C+ A

r=B>+C>+B>-C?>+BC*—-3CB*—-2BC+CA — AB
(5.19)

Here, A = 2%, B = % and C = & The cubic equation can be easily solved
using either Newton-Raphson iteration or analytical method for super compressibility

Table 5.2 Constants of the pure fluid

CO, CHy N H,O Unit
De 467.6 162.66 314.0 322 kgm™3
T, 304.13 190.55 126.20 647.096 K
Pe 7,377,300 459,920 338,300 22,064,000 Pa
M 44.01 16.04 28.013 18.015 kg kmol~!
wa 0.22491 0.011 0.039 0.344 -
Va 26.9 25.14 18.5 - m3 kmol !
No 0.11333 0.08248 0.09967 0.1156 -
My 0.3849 0.2138 0.0185 0.4756 -
k3 0.28996 0.20978 0.24086 0.0471 -




5 Multi-Componential Fluid Flow 137

factor, zx = zx(p, T). According to the Katz chart, at temperature below to critical
point cubic equation has only one real root representing the existence of a single
phase. Otherwise, it has two real roots. The maximum root represents gas state,
whereas, minimum root represents either liquid or supercritical state.

5.1.4.1 PVT Derivatives

Two important derivatives, i.e. % and % are prerequisite to find other fluid and

thermal parameters (particularly, 8 ,{ and a; )- In this section, we provide expression
for these derivative deriving from Eq. (5.18).

(ka) F—9%E
or ), F+2pEH—2RTH+a

Vg EF
op ) 1w, PF+2pEH—2RTH+a

with, FF = (vy +¢)(vg+c+b)+b(vgy+c—b), E =vp+c—b,and H = vy +c+b

2

da R-T,
T = —0.4572 2a0[1+ MO —-T,)+ N1 —T,)(0.7 — T;)]
Pc

Here, ag = Mo + No(1.0 — T,,) + No(0.7 — T.).

5.1.4.2 Amagt’s Mixing Rule

According to the rule, the molar volume of a mixture is the sum of its component’s

partial volumes, i.e. v = > vk. This mixing rule with the real gas law, we have
k
pv = >, zx(p, T)RT. The expression for mixture density is given by

f

1 wj,

fzz 7

P k Pk

From above relation, expression for the salute expansivity is obtained as
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Fig. 5.1 Comparison of carbon dioxide (left) and water (right) parameters with NIST data for

pressure from 1.0 x 10° Pa to 2.0 x 107 Pa at 318.15 K
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5.1.4.3 Material Functions for Mixture

We computed density, viscosity, heat conductivity and specific heat capacity for
pure fluids according the expression given in the Table5.1. Figure5.1 shows that
the computed parameters are in close agreement with corresponding data from the
National Institute of Standards and Technology (NIST).

5.2 Examples

5.2.1 Tracer Test

Tracer is used to characterize the fluid flow through the reservoirs and for estimation
of medium parameters. For example, in oil and gas industries (also in hydrology) it
is used for indicate mean flow velocity, residual saturation, dispersivities, and etc.
For the transport of a contaminant through a porous medium, Genuchten and Alves
[4] provided one dimensional analytical solution which is as follow.

ol (x,0 <t <19) =0 + (@] —w)HAx, 1)
ol (x,1 > 10) = o] + (0] + 0 )AK, 1) — ol A, 1 — 1) (5.20)

with

AGet) =05 f|:nR0x—vti|+05rf|:nRox+vt:| (UX)
x, 1) = 0.5erfc | —=— Serfc | ———|exp(——
J4nt Ry Dt Ja4nt RyDt P ntD

To consider sorption process in the mass transport, the sorption law can be adapted,
e.g. Henry’s law. Extent to which sorption process affects the tracer transport is
accounted by the retardation factor, Ry. Here, D is the binary diffusion coefficient,

a)g is the mass fraction of the tracer chemical is used for pulse, 7y, injection.

Tracer injection

//”’ e o x=1000 m

Outlet

Observation points

Fig. 5.2 Conceptual model geometry
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Table 5.3 Model properties and material parameters

Parameter Symbol Value Unit
Length L 1,000 m

Area A 1 m?
Tortuosity T 1.0 -
Porosity n 0.1 -
Intrinsic permeability k 1.0 x 1014 m?
Fluid density o/ 30 kgm™3
Solid density 0° 2,000 kg m~3
Dynamic viscosity m 1.0 x 1073 Pas
Diffusion coefficient D 1.0 x 1076 m? s~ !
Sorption coefficient Kp 1.0x 1074 m3 kg~!
Initial pressure Po 1.01325 x 10° Pa
Constant temperature To 318.15 K
Tracer injection rate qm 0.82946592 kg per day
Pulse injection time to 10 day

5.2.1.1 Definition

Problem of tracer transport in one-dimensional porous column is considered. The
pores of the solid skeleton are completely filled with water at a constant pressure
and temperature. The tracer chemical is injected from the inlet within short time
and computed the tracer breakthrough curve (time evolution of tracer mass fraction)
at two different points located at 5 and 10m from the inlet (see Fig.5.2). System
properties and material parameters used in the simulation (porous medium as well
as of fluid and solid phases) are summarized in Table 5.3.

5.2.1.2 Model Geometry and Conditions

e Geometry: The porous column is 1,000 m long in x-direction. Inlet and outlet are
located at x = 0 and 1,000 m, respectively.

e IC: Ataconstant temperature, 318.15 K, we assume that the pores of solid skeleton

are occupied by water at pressure of 1.01325 x 103 Pa.

BC: Free boundary condition for pressure and tracer mass fraction is prescribed at

the outlet boundary. At the inlet, mass fraction of tracer chemical wg = 1 during
pulse tracer injection then altered by free boundary condition.

e ST: From the inlet, the tracer chemical is introduced with rate of 0.83 kg per day
for 10days.
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Fig. 5.3 Comparison of analytical and finite element solution

5.2.1.3 Numerical Solution

For numerical simulation, the numerical module ‘Multi Componential Flow’ embed-
ded in OGS simulator is utilized. This module solves coupled system of mass bal-
ance and fractional mass transport equations in monolithic way for pressure and
mass fraction of the tracer chemical. For non-linear iterations, it uses the Picard lin-
earization method. Numerical solution is stabilized with mass lumping method. The
model geometry is shown in Fig.5.2 which is discretized into 1,001 line elements.
To capture a sharp tracer concentration gradient, a variable spatial step size, i.e.
Ax = 0.000925289 m is chosen close to the inlet and it is increased to 10 m far away
from it. One year of the reservoir behavior has been simulated using a constant time
step size of one day.

Figure 5.3a, b show the tracer breakthrough curves at the observation points. In
Fig.5.3a, sorption process is not included, however, Fig.5.3b clearly showing that
sorption process retards the mass transport significantly. The present finite element
solution is in close agreement with the analytical solution, i.e. Eq. (5.20).

5.2.2 Bottom Hole Pressure

Well control is a technique prevalent in oil and natural gas industries for well drilling
or fluid injection. In this technique, hydrostatic pressure (fluid column) is main-
tained with formation pressure to avoid influx into well. So understanding of the
different pressure is important, particularly, Well Head Pressure (WHP) and Bottom
Hole Pressure (BHP). Hence, in this benchmark, BHP is simulated with simplified
geometry using multi-componential fluid flow approach.

The model geometry is shown in Fig.5.4. This uses axisymmetric concept
to simplify the model, i.e. one-dimensional porous column in r-direction which
pores are occupied with water at pressure 6.2 x 10° Pa and temperature 318.15K.
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Fig. 5.4 Benchmark setup

CO,  Observation point R=1000 m
p=6.2x10° Pa T, =318.15 K
Table 5.4 MOde,l parame,ter s Parameter Symbol | Value Unit
and geometrical information -
Radius R 1,000 m
Height H 27 m
Well radius ro 0.1 m
Porosity n 0.25 -
Permeability k 4.6 x 10714 |m?
Density ot Table5.1 kg m~3
Viscosity n Table 5.1 Pas
Diffusion coefficient | D Table5.1 m? s~
Mass injection rate qm () Fig.5.5 kgs~!
Time step At 10 h
Simulation time t 19,170 h

From the left point, time dependent injection rate is assigned for CO, injection.
Required parameters for this numerical simulation are given in Table5.4. Pressure
evolution during injection operation is computed to show that measured pressure
data (from real site) could be reproduced by numerical simulation.

5.2.2.1 System Geometry and Conditions

e Geometry: The porous column is 1,000m long in the r-direction. The inlet and
outlet are located at r = 0.1 and r = 1,000 m, respectively.
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e IC: The pores of the solid skeleton are occupied by water at pressure of 6.2 x 10° Pa

and temperature of 318.15K.

e ST: A time dependent mass source term is assigned at the inlet (see Fig.5.4) for

CO;, injection.

5.2.2.2 Numerical Solution

The geometrical model consists 1,001 line elements. To capture the sharp pressure
gradient close to the inlet, the spatial step size is refined to Ar = 0.000925289 m
whereas far from the injection point itis 10 m. The numerical simulation for 19,170 h
has been performed using a constant time step size of ten hours. In Fig.5.5, the
pressure evolution is presented which is observed at7 =23 m from the injection point.

Py 53Cm

Porous media chamber

(27,24 Cm)

Saline water at 101325 Pa, 313.15 K

o
o

29 Cm

LTreated water injection

Fig. 5.6 Semantic of the original experimental
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5.2.3 Plume Migration

Treated wastewater disposal into saline aquifers can rise up to the surface. Due to
this, saline aquifers generally are overlain by treated water layers. To make decision
for using these layers as a potable drinking water source or not, investigation about
plume rising become important. Usually, plume moves away from its source because
of density contrast and widens because of entrainment of the surrounding fluid at
its edges. Experimental (see Fig.5.6) investigation of buoyant plume movement is
presented by Brakefield [5].

5.2.3.1 Definition

Geometry of the problem is shown in Fig. 5.6. This two-dimensional plane is assumed
aisotropic porous media which pores are completely filled with saltwater at a pressure
of 1.01325 x 103 Pa. Mass rate for treated water (lighter than saltwater) injection is
assigned at the inj ectlon point. The densny of the treated water varies linear with mass
fraction, 1 e. ,olf) = ,owo(l + Vw a)w) The density of saltwater is used for reference

density ,ow0 =1,019kg m™~

5.2.3.2 Model Geometry and Conditions

e Geometry: The considered plane is 56 cm long and 29 cm high in x and z-directions,
respectively. From the point (27, 24 cm), treated water is injected.

e IC: At constant temperature, 313.15 K, we assume that the pores of solid skeleton
are occupied by saltwater at pressure of 1.01325 x 10° Pa.

e BC: Atthe top left and top right point, pressure pg = 1.01325 x 103 Pa is assigned.
Elsewhere, free boundary conditions for pressure and treated water mass fraction
are prescribed.

e ST: A 60ml volume of treated water is injected by syringe into saltwater for 41 s
(Table 5.5).

5.2.3.3 Numerical Solution

The model geometry is discretized into 24,591 quad elements. For numerical simula-
tion, the numerical module ‘multi componential flow’ is utilized. This solves coupled
system of mass balance and fractional mass transport equations in monolithic way
for pressure and mass fraction of treated water. For accuracy, a very fine mesh is used
in the region of plume rising. 2,671 s of plume rising have been simulated using a
constant time step size of ten seconds. For non-linear iterations, the Picard lineariza-
tion method is applied with the mass lumping method for numerical stabilization.
Figure 5.7 shows the development of treated water plume simulated by SUTRA and
SEWAT simulators along with the present finite element solution. It is found that
plume distribution patter from each simulator is very similar at all-time steps.
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Fig. 5.7 Evolution of treated water plume at a 27; b 369; ¢ 685; d 1,385; e 2,631 s after injection

completed

Table 5.5 Simulation parameters

Parameter Symbol Value Unit
Plane area LxH 0.56 x 0.29 cm?
Densities o, pd 1.0 x 103, 1.019 x 103 kg m—3
Dynamic viscosity I 0.001 Pas
Salution expansivity Vw —0.01865 -
Compressibility B/ 0.0 Pa~!
Porosity n 0.39 -
Intrinsic permeability k 1.120795 x 107° m?
Diffusion coefficient D 1.477 x 1079 m? s~ !
Dispersivity coefficient ay, o 0.0005, 0.00005 m
Simulation time t 2,671 S
Injection time tinj 41 S

Time step At 10 S

Mass injection rate qm 0.032831 kgs~!
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5.2.4 CO; Leakage Through Abondoned Well

Leakage is a way for fluid to escape from storage. Leakage of geological storaged
CO» through natural occurring faults and fractures would have different fatal effects
on the nearby environment. So, numerical modeling of the CO; leakage is an useful
tool for understanding the leakage mechanism. Its understanding helps to estimate
fraction of the stored CO» that can be retained in a suitable storage for a sufficiently
long period of time. In CO; capture and storage technology is associated with pressure
pulse that move away from the injection point and it is quicker compare to the front
of advancing CO». The pressure pulse forces the saline water to leak via naturally
occurred fractures or existing abondened well. And CO; arrives at the leaky point
late and boyuncy assists CO, leakage and opposes the saline water leakage. The
leakage rate is measured in terms of the non-dimensional leakage rate defined by

. . Fluid flux through observation point
Non-dimensional leakage rate = — (5.21)
CO;, injection rate

The problem of the advective spreading of CO5 into an aquifer already addressed by
Ebigbo et al. [6]. However, they used multi-phase fluid flow approach with assump-
tions (i) the CO; and the brine are two separate and immiscible phases (ii) capillary
pressure is negligible. These assumptions help to obtain the similar result using com-
positional fluid flow approach with neglecting the diffusion-dispersion part of mass
transport. We used theirs results in this benchmark for code validation. In this study,
we used dada from MUFTE and ELSA simulators

e ELSA code uniquely addresses the challenge of providing quantitative estimation
of fluid distribution and leakage rate.
e This problem is came in existence by developer of MUFTE code.

5.2.4.1 Definition

The problem of CO; leakage is modeled using a two-dimensional plane consisting
two layers separated by an aquitard. The bottom layer is considered as CO; storage
and top layer for freshwater body. Both layers share a common hydraulic parameters.
To be computationally efficient, the aquitard is omitted from numerical simulation.
At a constant temperature, the pores of the solid skeleton of both layers are filled
with water at the hydrostatic pressure condition. In the vicinity of the injection point,
an inclined fracture is incorporated. The non-dimensional leakage rate is defined in
Eq.(5.21) measured at the observation point located at the midpoint of the fracture.
The computed CO; leakage rate is compared with similar result from ELSA and
MUFTE simulators.
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Fig. 5.8 Leakage scenario [6]

5.2.4.2 Model Geometry and Conditions

e Geometry: A 1,000m long and 160 m high plane located between 2,860-3,000 m
deep to earth surface. This consists two layers each 30 m thick and a 100 m thick
aquitard. The CO; injection and observation points are located at (0, —2,970 m)
and (100, —2,920 m), respectively.

e IC: At constant temperature, 318.15 K, pores of both layers are filled completely
with water under hydrostatic pressure condition Z—’z’ = 10,251.45 Pam~! with
reference depth of 2,840 m.

e BC: At both lateral boundaries, hydrostatic pressure similar to initial condition is
assigned. No flow condition is prescribed at top and bottom boundaries.

e ST: CO; injection rate is 8.87 kg s~! for 18 months.

5.2.4.3 Numerical Solution

The layers (see Fig. 5.8) are discretized into 15,231 triangular whereas the fracture is
discretized into 52 line elements. The triangular element closed to fracture are densely
distributed is. Within the multi-componential approach, the coupled system of flow
and transport equations is solved numerically using monolithic approach for primary
variables, i.e. pressure and mass fraction of water and CO;. Generalized single step
scheme is used for time discretization with time step At = 1 Day. For non-linear
iterations the Picard linearization method is applied with the mass lumping method
for numerical stabilization. Negligence of diffusion-dispersion makes difficult to
achieve the desired convergence, but using available techniques (SUPG, FTC, or
MASS LUMPPING) we simulate this benchmark problem (Table 5.6).

Figure5.9 shows the non-dimensional leakage rate of CO;,. To simulate the
problem, OGS uses multi-componential fluid flow approach, whereas, other two
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Table 5.6 Simulation parameters

Parameter Symbol Value Unit
CO,, water density ,o'cf, p,'z 479,1045 kg m—3
CO,, water viscosity ey My 0.3950,2.535 x 1074 Pas
Diffusion D 0.0 m?s~!
Aquifer permeability kq 2.0 x 10714 m?
Fracture permeability ky 1.0 x 10712 m?
Porosity n 0.15

Aquifer depth h 2,840-3,000 m
Aquifer, aquitard thickness Ah 30,100 m
Injection rate qm 8.87 kgs~!
Simulation time t 18 Month

«
<]

0.25

0.2

0.15

0.1

0.05

Non-dimensional leakage rate (%)

o

Fig. 5.9 Comparison of computed leakage rate from three different simulators

Time (Months)

simulators were used the multi-phase fluid flow approach. This benchmark state that
CO; leakage rate from both approaches are in close agreement under assumption
made earlier in this benchmark.

5.2.5 Thermo-Chemical Energy Storage

For a given reaction, amount of product(s) and reactant(s) are varied with reaction
time. It also releases/absorbs certain amount of thermal energy, i.e. reaction enthalpy.
Therefore, we present numerical modeling approach for investigation of interphase

mass and heat transfer.



5 Multi-Componential Fluid Flow 149

Consider a CaO bed which pore is filled with N> gas. On introduction of water
vapor, CaO reacts with water produces Ca(OH); and releases heat (Ah). This system
can be considered as a two-phase system which solid phase is composed by CaO
and Ca(OH); and gas phase is a mixture of water vapor and N». The reaction rate
of this system is modelled with a trigonometric function such that the solid density
evolution is sinusoidal (amplitude a, angular frequency f

05 (1) = af cos(f1) (5.22)

From this reaction rate, the following composition relations can be derived analyti-
cally for solid phase and water vapor densities:

p* (1) = py +asin(f1), p?(t) = pj +asin(f1) (5.23)
pv (1)
pI(1)

Here, s and g stand for solid and gas phase. The heat transport equation for this
system is governed by

ov (1) = pyo +asin(ft), wy(t) = (5.24)

N

aT B 9
g] p P (5.25)

L —n)p’c 99| — —n— = (1 —n)Ah
[( np-ep nptc or | or (1=m ot

To obtained the analytical solution of Eq.(5.25), we assumed that Ah — o0 and
solid and gas phases are in thermodynamical equilibrium. If the gases are ideal and

mixing is according to the Amagat’s rule, we find

1 wj 1 1 Pi

=Y g =y = 5.26
M Z,-:Mi Pr p T " P (20
1 . RTo9w;

S D= L Ry PR (527)
P i —~ M,

Here, V and N stand for water vapor and nitrogen. Taking time derivative of gas
density function in Eq. (5.27), we have
ap RT w; 3p9 Z RpYw; 0T RTp9 dw;

— _ 5.28
M; ot + p M; ot ( )

Bt_i M; ot

Again time derivative of pressure function of Eq.(5.27) and considering Nj
is no-reactive (p* = py = p), we find

0 RT 9p; Ro9w; 0T
o _ ﬁ.,.Zﬂ (5.29)

az_iﬁl-at M; ot

i

the energy balance thus reads
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[(1 —m)p*e, +np? (cg _ 5)} T _ 2P (Ah - ”];R) (5.30)

M ot at 1%
If§ = #Rc;’ integration yields

-8
nRT

My (5.31)

= Ah— (Ah - nRTO) (1 —mp'c +np* (ch — 31)
(

My X = mpiey +neg (g0 = i)

5.2.5.1 Definition

In this example, the behavior of the model when mass transfer occurs between the
phases is verified. Consider a closed off system similar to the one described in the
previous example. The porous body is filled with a mixture of nitrogen and water
vapor modelled as ideal gasses.

5.2.5.2 Model Geometry and Conditions

Geometry: Water vapor is introduce from inlet of a 10 cm long bed of CaO.

IC: Pores are filled with Ny (wy = 0.5) at pg = 1.0 x 10° Pa and Tp 400K.
BC: No flow condition is prescribed at inlet and outlet boundaries.

ST: Injection rate for water vapor 1 x 10710 kg - s~ is assigned for one second.

5.2.5.3 Numerical Solution

The exemplary parameter set is listed in Table 5.7. The values are chosen such that
temperature changes due to mass transfer are visible in both phases. The numerical

Table 5.7 Simulation parameters

Parameter Symbol Value Unit

Length L 10 cm

Area A 0.0314 m?

Heat conductivity K* 0.4 W.-m~!.K™!
Permeability k 6.94 x 10714 m?
Self-diffusion coefficient Dy 9.5x 1079 m? . s~}
Dispersivity oy, o 0.1,0.01 m

Heat of reaction Ah 5.0 x 10° J-kg™!

Time step At 0.001 s

Simulation time t 1.0 S
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Fig. 5.11 Comparison of present FEM solution with the analytical solutions of a temperature;
b pressure; ¢ water vapor mass fraction; d gas density

model was run with the Multi Componential Flow numerical module with a very
high number for Ah. A time step size of 0.001 s was chosen for a time interval of 1 s.
One dimensional line elements were used for its spatial discretisation (Fig.5.10).
The model correctly reproduced the conditions of thermal equilibrium. During
the initial stage of the reaction the gas loses mass while the solid (not shown) gains
that amount of mass. During the back reaction the opposite effect occurs. An equally
good match is obtained for the temperature profiles (Fig. 5.11a). If no heat of reaction
is released, the gas simply cools down as its density and pressure drop. The solid
phase follows this trend due to the very low density chosen here for demonstration
purposes. In the gas pressure profiles this switch of sign can be observed as well
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Table 5.8 Parameter values for interphase mass transfer verification

A. Singh

n(-) p’(kg-m=) | pf(kg-m™) | )T -kgT' KT e J-kgTh KT
0.7 1.0 0.659 1,000 1,000

To(K) | f (Ho) a(kg-m~?) wvo (-) My (kmol - kg~ 1)
400 2 0.1 0.5 21919

along with an increasingly non-sinusoidal trend in the pressure profile (Fig.5.11b).
The numerically obtained water vapor mass fraction and gas density are compared

well with the analytical solution (Fig.5.11c, d and Table 5.8).
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Chapter 6
Random Walk Particle Tracking

Yuanyuan Sun, Chan-Hee Park, Geraldine Pichot and Joshua Taron

The classical advection-dispersion equation of a conservative solute in porous media
can be written as [1]

ocC

==V (VO)+ V- (DVO) ©6.1)

where C is the concentration (kg m~3), v is the pore velocity vector (m s7h), Dis
the hydrodynamic dispersion tensor (m%s~1), ¢ is time (s) and V is the differential
operator.

The random walk particle tracking (RWPT) method is issued from stochastic
physics. The stochastic differential equation is [2]

x(1) = x(ti-1) + v(x(ti-1)) At + Z/2D(x(t;-1)) At (6.2)

where x is the coordinate of the particle location, At is the time step, and Z is a
random number whose mean is zero and variance is unity.

It has been shown that this equation is equivalent to an equation that is slightly
different from the advection-dispersion Eq.(6.1). To be equivalent to Eq.(6.1), the
modified velocity [3] and dispersion tensor [1] are expressed as
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aD;;
= 6.3
vi=vi+ 2 o (6.3)
Djj = ar|v|o; + (ar, — aT) /4 pd 6.4)

where d;; is the Kronecker symbol, oy is the longitudinal dispersion length, ar is
the transverse dispersion length, Dg is the tensor of molecular diffusion coefficient,
and v; is the component of the mean pore velocity in the ith direction.

The equivalent stochastic differential equation to Eq.(6.1) in three-dimensional
problems can be written as [4—0]

BD ) 8D
Xe+Ar = X + (Vx(xz»yz,Zt, 1+ 8D“ + 57 + = ) AV)

++/2D AtZ) + szxymzz + JZDXZAtZ3
verar = e+ (Ve v 2 ) + G + T + )

+/2DyA1Z) + \/ZDyyAtZQ + \/2Dﬂng
Gear =2+ (Vz(x,,yt,z;, 0+ Pex g Doy 0 )At

+/2D AtZy + /2Dy AtZ; + \/2DZZAtZ3

(6.5)

where x, y, and z are the coordinates of the particle location, At is the time step, and
Z; is a random number whose mean is zero and variance is unity.

In Eq.(6.5), the spatial derivatives of the dispersion coefficients are introduced
from the modified velocity [3]. Together with Eq. (6.4), the spatial derivatives of the
dispersion coefficients can be expressed as a function of the derivatives of velocity.
Note that to obtain the derivatives of velocity, velocity has to be continuous mathe-
matically. To this end, we interpolate velocity at any location in an element from the
known velocity at the element nodes.

Since the proposed RWPT method makes use of the FEM for velocity estimation,
the derivative of velocity within each element is computed as in Fig. 6.1 and written as

Ove _ YOR)—V(x). Ovy — V(YU)—V(yD). ov: _ vn)—v(zs)

Ox I >y ly 0z I
Ovy _ Ove _ Ovy _ Ovy v, v, (6.6)

~

8}7_6_2_02_0):_0,\7_8)1_

where x7, and xg are intersection points of the element edges with a line parallel to
the global x axis at which velocities are v(xz) and v(xg), yp and yy are intersection
points of the element edges from down to up with a line parallel to the global y axis
at which velocities are v(yp) and v(yy), zs and zy are the intersection points of the
element edges from south to north with a line parallel to the global z axis at which
velocities are v(zs) and v(zy), and [y, I, and [, are the length of each intersection
line, respectively.
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V(}’U)

x‘;(xg)

Fig. 6.1 Spatial derivatives of velocity for a particle in triangular and quadrilateral elements (V is
velocity)

Thus, the derivatives of the dispersion coefficients are as follows [7]

2,2
Dy _  Ovy 2 _ W) L gt
o T Yaox | OL\y v3 ar v3

0Dy vy, WY ﬁ}
+
V

dy = (aL - aT) dy v v3  OJy
Dy, Ov. vy | VxVE v,
T =l —ar) | FFy — 5

Dy _ vy 2_ % vitv?
oy — Yoy |L\vT ) T

]

0Dy, v, Vy v,v ()v-
. =l —an) |5y — 5%

2
oD _ _ Ov. 2 V2 \F:
oz = Ve [O‘L (v - v—s) -or

D [Ovy v.  vzv2 v,
T = —an |5y - v—zm]

0D,
o =lr—ar)| 55 v — 3 5

2
vy v, VeV avy}

Because velocity is not derivable at the interface of two adjacent elements in a
nonuniform flow, computing dispersion coefficient derivatives by using a finite ele-
ment approach would yield erroneous values [7]. To prevent these errors, a particle
is coded to have information of an element index and the velocity estimation is con-
tinuous even at the elemental boundaries in this method. Thus, the derivatives of
dispersion coefficients will be computed accordingly. This is an improved approach
from the work by Hoteit et al. [7].
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6.1 Particle Tracking in Porous Medium

6.1.1 Particle Tracking in Porous Medium: 1D Case Study

6.1.1.1 Definition

A one-dimensional homogeneous aquifer is chosen to simulate a soil column exper-
iment conducted by Harter et al. [8]. In the experiment, a constant flow rate was
established, 2.5 pore volumes NaCl—tap water solution and 2.5 pore volumes Cryp-
tosporidium parvum solution (1 x 10° oocysts per mL) were injected respectively,
the outflow was continuously collected. Figure 6.2 shows the schematic description
of the experiment.

NaCl—tap water solution is used as a tracer, which experiences only advection
and dispersion. The Cryptosporidium parvum can be classified as a biological col-
loid. Colloids moving in porous media experience advection, dispersion, sorption-
desorption, and filtration.

6.1.1.2 Analytical Solution

For the one-dimensional transport including sorption-desorption and filtration
through a homogeneous medium the following differential equation is applied

B.C. p = 937.35Pa

I.C. p=200Pa

10 cm

T
v

B.C. p=200Pa

SN

Fig. 6.2 Schematic of soil column experiment
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oC  pp OCs 0*C oC
— + —— =vap— —v(a

o " n o o2 O ©®

where C is dissolved concentration (kg m~?), Cs is sorbed concentration (kg kg’l),

tis time (s), pp is bulk density (kg m~3), nis porosity (—), v is velocity (m s, ayp is

longitudinal dispersivity (m), x is distance (m), and A is filtration coefficient (m~h.
The instantaneous, linear sorption model assumes that

Cs = K,C (6.9)

where Ky is the partitioning coefficient (m> kg~!). The retardation coefficient R is
rR=1+"2k, (6.10)
n

The dispersion coefficient in the x-direction D,y (m2 s_l) is
Dy = var (6.11)

The analytical solution for a pulse input is [9]:
1 vx(l —7) x —vyt/R
C=-Cylexp{ —— )erfc | ———
270 [ P ( 2D, ) (NDxxt/R
vx(1+7) X +vyt/R
exp| ——— )erfc | —— 6.12
Ter ( 2., ) (ZJ_Dxxt/R ©12
for ¢t € (0, 7), (injection time from O to 7)
1 vx(1 —7)) x—V'yt/R)
C=—-Cplexp| ———— ) erfc
270 [ P ( 2D 2V/Dut/R

+oex (V( +7)

x +vyt/R

)ere (375)

vx(1 — ) x—vy(t—71)/R
~on (%55 (i)
(vx(l + 7)) orfe (x + vy(r — T)/R):|

2Dt —7)/R ©6.13)

fort € (7, 00) , where

= /1 + 4vARD,,/v? (6.14)
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6.1.1.3 Numerical Solution

The calculation area is simplified to a line with the length of 0.1 m. For the numerical
model 100 elements and 101 nodes are included. Head gradient is set by giving two
constant pressures at both left and right boundaries to establish a uniform velocity
field with the value of 7.1md~".

The number of pore volume (x-axis) is calculated by

vt
Py = 7 (6.15)
where v is the seepage velocity, L is the length of the soil column. Considering the
Courant number, the time step size is set by assigning Py to 0.01. In the simulation,
100 particles per time steps are loaded near the left boundary for 250 time steps.
The filtration process is described by using the filtration coefficient. The sorption-
desorption process is described by the two-rate model from Johnson et al. [10]. In
the two-rate model, desorption is governed by two different rate coefficients

N/Nop = Ae M 4 (1 — A)eF! (6.16)

where N is the number of particles remaining on the medium at time #, Ny is the initial
number of particles on the medium at the time of initial sorption, A is a weighting
factor, and k; and k; are the fast and slow sorption rate coefficient, respectively.
Relevant parameters are listed in Table6.1.

6.1.1.4 Results

The tracer experiences only advection and dispersion, which means in Eq. (6.8),
Cg =0, A = 0. The results of RWPT simulation for the distribution of concentration
over time are compared to those of measured value from the experiment by Harter,
the analytical solution, and the OGS simulation with the mass transport method.

Table 6.1 Model parameters for the column experiment

Symbol Parameter Value Unit
k Permeability 1.114476 x 10~ m?
ar, Longitudinal dispersivity 0.005 m

n Porosity(tracer) 0.5 -

n Porosity(colloid) 0.42 —

A Weighting factor 0.9 -

k1 Fast sorption rate coefficient 0.1 —

ko Slow sorption rate coefficient 0.001 -

A Filtration coefficient 5.2 m~!




6 Random Walk Particle Tracking 159

——&—— Measured tracer

= = mim tracer simulation mass transport
tracer simulation RWPT
tracer ADE analytical solution

] \‘ M Hﬂ

w.;,' '1” w\ I 'L‘
'{vj\ “”

v | . ‘\‘
) i ‘,‘
s

100

80

60

N/NO

40

20

0 I\\\\I\\\\I\\\\I
1 2 3 4 5 6

Pore Volume

o

Fig. 6.3 Tracer transport with advection and dispersion

The comparison results are shown in Fig. 6.3, where the green curve is the measured
value, the dashed black curve is the simulation result operated with FEM, the blue
curve is the RWPT simulation result, and the red curve is the analytical solution.

In the colloid transport simulation, the number of particles leaving the right bound-
ary is counted each time step. The number is then converted to concentration in order
to obtain the corresponding breakthrough curve over time. The comparison with the

I colloid simulation RWPT
80 I ——&—— Measured C.parvum
60 -
° L
2 L
2 40
20 -
0, 7 S N RS BSRRIR v . % VI B
0 1 2 3 4 5 6

Pore Volume

Fig. 6.4 Colloid transport with sorption-desorption and decay
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measured value from Harter’s experiment is shown in Fig. 6.4, where the green curve

is the measured value, and the blue curve is the RWPT simulation result. No analytical
solution is available in this kind of situation.

6.1.2 Particle Tracking in Porous Medium: 2D Case Study

6.1.2.1 Definition

A two-dimensional homogeneous aquifer is chosen to verify advective dispersive
transport. The dimension of the model domain is 184 m by 64 m where the uniform
velocity field is held constant in the x direction (Fig. 6.5).

6.1.2.2 Analytical Solution

The stated problem can be solved with an analytical solution provided by Ogata et
al. [11].

CoA x — x0)> —v0)?
Coyptye — A |-G =%" =) 6.17)
4771‘,/ Dxx + Dyy 4Dxxt 4Dyyt
where Cj is the initial concentration.
oh _
5—0
qg=0.5mld
h=h, | - 1753025 § h=h,

L’ oh :
=0

x _—
ay

Fig. 6.5 Schematic of 2D homogeneous model
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6.1.2.3 Numerical Solution

The domain is discretized with quadrilateral elements of 0.5m by 0.5m. The
same grid density is also used for converting particle distributions to element
concentrations. The head gradient of one in the x direction is set by assigning two
constant boundary conditions along both the left and right sides, thus obtaining the
uniform velocity field with the value of 0.5md~".

The initial source load is applied to an area with dimensions of 0.1m by 0.1m
to have an initial concentration of Cop = 1kgm™>. The material properties for this
model setup are given in Table 6.2.

6.1.2.4 Results

Transport results of the RWPT method compared with the analytical solution at 20,
40, and 60 days are provided in Fig. 6.6. The solid line is the analytical solution, the
dotted line is the RWPT result. Contour lines are shown for C = 2.6e %, 1.6e4,
1.0e~*, and 4e—>. The number of particles used for this simulation is 50,000. This
is significantly less than the number of particles reported by Hassan et al. [12], who
stated that up to 2.5 million particles were necessary to achieve smoothness of the
solution due to oscillations around the contours. As the oscillations observed here
for the method proposed are smaller than reported by Hassan et al. [12], the proposed
method allows a dramatic reduction of around two orders of magnitude in the number
of particles required for a smooth solution.

Table 6.2 Material properties for 2D homogeneous medium

Symbol Parameter Value Unit
k Permeability 1.114 x 10711 m?
ar Longitudinal dispersivity 0.1 m
ar Transverse dispersivity 0.1 m

50000 particles - 20, 40, and 60 day
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Fig. 6.6 Transport results of the 2D RWPT method compared with analytical solution
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Fig. 6.7 Particle clouds at different days. a Day 0. b Day 20. ¢ Day 60. d Day 60. e Day 60 for
each particle resolution

In addition, different numbers of particles are used to solve the same problem,
producing several different particle clouds as shown in Fig. 6.7. Figure 6.7a—d show
the particle clouds of 50,000 particles at 0, 20, 40, and 60 days, Fig.6.7e shows
particle clouds of 1,000, 5,000, 10,000, and 50,000 particles at 60 days.

6.1.3 Particle Tracking in Porous Medium: 3D Case Study

6.1.3.1 Definition

A three-dimensional homogeneous cube is chosen to verify advective dispersive
transport. The side length of the cube model domain is 100m. The velocity
field is held constant in the diagonal direction from the bottom left to top right
(Fig.6.8).
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Fig. 6.8 Schematic of 3D homogeneous model

6.1.3.2 Analytical Solution

The stated problem can be solved with an analytical solution provided by Ogata
etal. [11].

Cov
8 (11)*/% \/DyxDyyDy;
[ x—=x0)? OG-»)? (- zo)z}
X exp | — — —

Cx,y,z,t) =

(6.18)
4Dt 4Dyt 4Dt

where Cy is the initial concentration.

6.1.3.3 Numerical Solution

The domain is discretized with tetrahedral elements. The same grid density is used
for converting particle distributions to element concentrations. The head gradient is
set by assigning two constant boundary conditions on the diagonal joint points.

The initial source load is applied to an area close to the bottom left of the domain
with an initial concentration of Co = 1kgm™3. The material properties for this model
setup are given in Table 6.3.
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Table 6.3 Material properties for 3D homogeneous medium

Symbol Parameter Value Unit
k Permeability 6.0804 x 10~10 m?
ar Longitudinal dispersivity 0.005 m
ar Transverse dispersivity 0.005 m

n Porosity 0.2 —

6.1.3.4 Results

The advection-dispersion of the particles pulse across the cube is shown in Fig. 6.9.
At the beginning, particles are assembled together as they were released from posi-
tions that are very close to each other. As the particles moving along with the
flow, they disperse and form a spherical surface-shaped cloud. When the parti-
cles move to the center of the cube, the area of the spherical surface-shaped cloud
reach to the maximum. After particles across the center of the cube, as the flow-
paths begin to converge, the shape of the particle cloud change to a funnel-shaped
curved surface. Particles move along the diagonal line have the bigger velocities and
shorter pathlines so they reach to the top right corner of the cube earlier than other
particles.

The number of particles that pass the top right corner of the cube is counted at
every time step in order to generate the concentration breakthrough curve. The result

Fig. 6.9 Particle clouds in the cube
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Fig. 6.10 Transport results of the 3D RWPT method compared with analytical solution

of RWPT simulation for the distribution of concentration over time is compared
to the analytical solution. The comparison results are shown in Fig.6.10, where
the blue curve is the RWPT simulation result, and the red curve is the analytical
solution. The shape of the breakthrough curve is classical and similar to 1D and 2D
simulations. With a relatively large number of particles the problem of fluctuations
in concentration calculation can be overcome.

This benchmark shows that the proposed RWPT method can describe the fluid
flow and solute transport in more details comparing to the traditional finite ele-
ment method. With the post-processing programming one can observe the visualized
results of the movement of every single particle at any time step, and the development
of the particle cloud over time. While with the traditional finite element method one
can only get the result of concentration distribution.

6.2 Particle Tracking in Pore Scale

Physical observations and theoretical treatments of flow in porous media are usually
associated with three different length scales: pore-, local-, and field-scales. Dominant
processed and governing equations may vary with scales. In this benchmark, efforts
are taken in order to simulate solute transport in pore scale in a simplified manner.
The governing equation adopted here is the groundwater flow equation based on
Darcy’s law.
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Fig. 6.11 Mesh of 2D box with one grain inside

6.2.1 Particle Tracking in Pore Scale: 2D Case Study

6.2.1.1 Definition

To simulate particles moving in pore scale space, first the problem is simplified into a
two-dimensional case which is a box with only one grain inside. The calculation area
is a rectangular space with a circle in the middle, the void between the circle and the
rectangular is the calculation domain and discretized by triangle mesh (Fig.6.11).

6.2.1.2 Numerical Solution

Firstly, the proposed RWPT method in this model is testified by assign constant
hydraulic head to the left and right boundaries (Dirichlet boundary condition), and
no-flow boundary conditions to the top and bottom boundaries. Particles are released
from a line that is close to the left boundary. Relative parameters are listed in Table 6.4.

6.2.1.3 Results

The particles are moving in the pore space according to the velocity field. Particle
cloud develops over time is show in Fig.6.12.The shape of the particle cloud is a

Table 6.4 Material properties for 2D pore scale model with one grain inside—advective

Symbol Parameter Value Unit

k Permeability 1x 10710 m?
Dy Diffusion coefficient 0.0 m2s~!
n Porosity 1.0 —
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Fig. 6.12 Particles advect in rectangular domain with one grain
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straight line in the beginning, and then is curved a little as it getting closer to the
grain. The velocities in the area surrounding the grain are very small that particles in
this area are moving very slowly. When a particle hit the surface of the grain or the
boundary of the box, it will be captured. Particles pass through the throats between
the grain and the box are accelerated as the velocities in these throats are large.
After passing through the throats, particles spread to form an arc and move on to the
right side boundary. In the zone that is behind the grain no particles are observed
because the flow velocity is relatively small and dispersion is not considered in this
benchmark.

6.2.1.4 Discussion 1

If there is no flow in this domain, and the molecular diffusion coefficient is increased,
then the movements of the particles are dominated by the molecular diffusion process.
Relative parameters are listed in Table 6.5.

Particles are released from a line that is close to the left boundary. As there is no
flow, particles are moving randomly in the pore space. Particle cloud develops over
time is show in Fig. 6.13. Some of the particles attach to the surface of the grain or the
boundary of the box. The molecular diffusion coefficient is relative to temperature.
This benchmark is aimed to achieve the effect that particles are moving differently
when temperature changes.

6.2.1.5 Discussion 2

Next, the number of grains in the box is increased from one to six. The void between
the circles and the rectangular is the calculation domain and discretized by triangle
mesh (Fig. 6.14). Dirichlet boundary conditions are set by assign constant hydraulic
head to the left and right boundaries. No-flow boundary conditions are set to the
top and bottom boundaries. Particles are released from a line that is close to the left
boundary. Relative parameters are unchanged as listed in Table 6.4.

Particle cloud develops over time is show in Fig. 6.15. Note that in this benchmark,
released particles are displayed in the color of blue. When a particle hits the boundary
and gets attached, it turns to red. But in the next time step, the attached particle still
has the chance to detach and move again. It is clear that this benchmark is not a simple
combination of six single grains, because they can affect each other. The velocity

Table 6.5 Material properties for 2D pore scale model with one grain inside—diffusive

Symbol Parameter Value Unit

k Permeability 1x10710 m?

Dy Diffusion coefficient 1x1078 m2s~!
n Porosity 1.0 —
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Fig. 6.13 Particles diffuse in rectangular domain with one grain
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Fig. 6.14 Mesh of 2D box with several grains inside

field in this case is with more complexity thus the particle cloud is complicated. But
the particle cloud development obeys the same trend as in the single grain case.

6.2.1.6 Discussion 3

If the grain (circle) is discretized inside (Fig.6.16), then particles attached to the
surface of the grain can go into the grain and diffuse inside. Different porosity
and permeability coefficient are given to grains and the pore space. Note that the
different colors here represent materials with different properties. Dirichlet boundary
conditions are set by assign constant hydraulic head to the left and right boundaries.
No-flow boundary conditions are set to the top and bottom boundaries. Particles are
released from a line that is close to the left boundary. Relative parameters are listed
in Table 6.6.

Particle cloud develops over time is show in Fig.6.17. The particles in the pore
space are moving according to the velocity field. Note that there’s no flow inside of
the grains, only molecular diffusion. Particles that hit the surface of the grains can go
into the grains and move inside. Their movements are because of molecular diffusion
thus are random.

6.2.2 Particle Tracking in Pore Scale: 3D Case Study

6.2.2.1 Definition

Similar to the 2D case study, the problem is first simplified into a three-dimensional
case with only one grain in a box. The calculation area is a cube space with a sphere in
the center, the void space between the sphere and the cube is the calculation domain
and discretized by tetrahedral mesh (Fig. 6.18).
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Fig. 6.15 Particles transport in rectangular domain with several grains
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Fig. 6.16 Mesh of 2D box with meshed grains inside

Table 6.6 Material properties for 2D pore scale model with six meshed grains inside

Symbol Parameter Value Unit

k Permeability (pore space) 1x10~10 m?

k Permeability (grains) 1x10712 m?

Dy Diffusion coefficient 1x10~15 m2s~!
n Porosity (pore space) 1.0 —

n Porosity (grains) 0.1 -

6.2.2.2 Numerical Solution

The proposed RWPT method in this model is testified by assign constant hydraulic
head to the left surface and right surface boundaries (Dirichlet boundary condition),
and no-flow boundary conditions to the top, bottom, front, and back surface bound-
aries. Particles are released from a surface that is close and parallel to the left surface
boundary. Relative parameters are listed in Table 6.7.

6.2.2.3 Results

The particles are moving in the pore space according to the velocity field. Particle
cloud develops over time is show in Fig.6.19. The shape of the particle cloud is a
plain surface in the beginning, then is curved a little as it getting closer to the grain.
The velocities in the area surrounding the grain is very small that particles in this area
are moving very slowly. When a particle hit the surface of the grain or the box, it will
be attached. In the zone that is behind the grain no particles are observed because
the flow velocity is relatively small that no turbulence is happened in that zone.
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Fig. 6.17 Particles transport in rectangular domain with several meshed grains
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Fig. 6.18 Mesh of 3D box with one grain inside

Table 6.7 Material properties for 3D pore scale model with one grain inside

Symbol Parameter Value Unit
k Permeability 1x10710 m?

D Diffusion coefficient 1x1071 m? !
n Porosity 1.0 -

6.3 Particle Tracking with Different Flow Processes

The accuracy of the velocity field calculation is crucial to the precision of the RWPT
method. In groundwater flow simulation, the velocity field is determined by the
hydraulic head or pressure difference according to Darcy’s law. However, when
the velocity is higher, inertial effects can be significant and need for considera-
tion; the non-linear impact of the pressure difference to the velocity can be described
by Forchheimer flow. The proposed RWPT method is capable to be adopted with
different flow processes since the displacements of the particles are calculated
according to the velocity field, regardless of how it is obtained.

6.3.1 Forchheimer Term

Modeling groundwater flow in porous media typically makes use of Darcy’s law and
equation of mass conservation to establish the groundwater flow equation. For low
velocity flows, Darcy’s law gives a good description of the flows and thus a number of
linear forms have been developed [13, 14]. However, there are circumstances when
the velocities are high that discrepancies occur between the experimental observa-
tions and simulation results obtained according to Darcy’s law.
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Fig. 6.19 Particles advect in cube domain with one grain

Forchheimer flow describes the non-linear form of fluid flow in porous media in a
scale that is smaller than the macro-scale domain size and larger than the micro-scale
pore size. It is an extension of the Darcy’s law when the viscous forces do not prevail
over the inertial forces. A kinetic effect is considered and expressed as an additive
term in the description of pressure difference. The classic form of Forchheimer term
is written as [15]

VP = q+ Bplalg (6.19)

where u[MT~'L™"] is the dynamic viscosity of water, k[L?] is intrinsic permeabil-
ity, q[LT '] is Forchheimer velocity vector, 3 [L~'] is Forchheimer coefficient, and
p[ML™3] is density of water.

The Forchheimer coefficient 3 is also known as non-Darcy coefficient. Several
approaches have been applied to obtain the value of 3 [16-18]. The formulae are
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normally defined for certain flow conditions. There is no general agreement on the
nature of this coefficient. Some of the approaches are based on empirical results and
some on fundamental characterizations of the porous media. Parameters involved in
the calculation of 3 include permeability, as well as porosity, and tortuosity in some
cases.

6.3.2 Forchheimer Flow in 1D Porous Medium

The 1D homogeneous porous medium benchmark (see Sect. 6.1.1 for description) is
adopted in order to compare different behaviors of flow under Darcy and Forchheimer
regimes, and their influence on solute transport performance which is simulated with
particle tracking.

6.3.2.1 Governing Equations

If we consider the hydraulichead 7 = :;g +z, where z[L] is elevation head, and neglect
the gravitational effect, then the Forchheimer equation (6.19) can be written as

1 B
—Vh=—q+ —|qlq (6.20)
K g

where K [LT '] is hydraulic conductivity and K = %. In the OGS simulation of

Forchheimer flow, % is referred to as a and g as ap, and they are used as coefficients
for the calculation.

—Vh = a1q+ a2lqlq (6.21)

The equation of mass conservation that describes the groundwater flow without
source term can be formed as

—Vq=S,— 22
a4=>55; (6.22)

where S, [L~!] is the storativity (volumetric specific storage), ¢ [T] is time.
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In 1D case, Egs. (6.21) and (6.22) can be rewritten as

oh
— — =aiq =+ azqz (623)
Ox
oh  0Oq
Ss— +—=0 6.24
a1 T o 624

6.3.2.2 Steady State Flow with Dirichlet Boundary Condition

For the steady state flow, constant hydraulic heads are set at the inlet and outlet
boundaries. Relevant parameters for the flow are listed in Table 6.8.
Forchheimer velocity can be calculated from Eq. (6.23) that

—a + 1/6l12 - 4612%
q= o (6.25)
2an

Darcy velocity can be obtained from Eq. (6.23) by assign a, = 0.

Simulation results of hydraulic head distribution and the comparison of Forch-
heimer velocity and Darcy velocity are shown in Fig. 6.20.

The proposed RWPT method makes use of the velocities obtained from the flow
process, regardless of the flow regimes. 25,000 particles are injected at the inlet
boundary for 2.5 pore volume (Py = vt/L, v = g/n) to simulate non-reactive solute
transport with slug input in 1D steady state flow under Forchheimer and Darcy
regimes respectively. Parameters for the simulation of solute transport are listed in
Table 6.9. Note that particles experience not only advection and hydrodynamic dis-
persion, but decay and retardation processes as well in this case. Detailed description
for these processes is referred to in Sect.6.1.1.

Figure 6.21 shows the simulation result of concentration breakthrough curve at
x =0.1 m. Note thatin RWPT method, the concentration is represented by the number
of particles.

Table 6.8 Model parameters for the column experiment—steady state flow

Symbol Parameter Value Unit
hin Hydraulic head(inlet) 0.09555 m

hout Hydraulic head(outlet) 0.02038 m

L Column length 0.1 m

k Intrinsic Permeability 1.114476 x 10~ m?

K Hydraulic conductivity 1.0933 x 104 ms™!
S Volumetric specific storage 0.5 m~!
ai OGS coefficient (equals to K1) 9.146612 x 103 m~ s
a OGS coefficient 108 m—2s2
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Fig. 6.20 Forchheimer velocity and Darcy velocity in 1D steady state flow
Table 6.9 Model parameters for the column experiment—solute transport
Symbol Parameter Value Unit
ar, Longitudinal dispersivity 0.005 m
n Porosity 0.42 -
Weighting factor 0.9 —
ki Fast sorption rate coefficient 0.1 -
1) Slow sorption rate coefficient 0.001 —
A Filtration coefficient 5.2 m~!

6.3.2.3 Transient Flow with Dirichlet Boundary Condition

For unsteady, nonlinear flow in the 1D homogeneous porous medium, the same
parameters are used as listed in Table 6.8. Simulation results of hydraulic head and
velocity distributions under Forchheimer and Darcy regimes at r = 5.1, 10.2, 15.3,
20.4, 25.5, 30.6 s are shown in Fig. 6.23.

Particles are injected at the inlet boundary for 2.5 pore volume (Py = vt/L,
v = g/n) to simulate non-reactive advective-dispersive solute transport with slug
input in 1D transient flow under Forchheimer and Darcy regimes respectively.
Figure 6.22 shows the simulation result of concentration breakthrough curve at
x = 0.1 m. Note that in RWPT method, the concentration is represented by the
number of particles.
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Fig. 6.21 Particle tracking under Forchheimer and Darcy regimes in 1D steady state flow
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Fig. 6.22 Particle tracking under Forchheimer and Darcy regimes in 1D transient flow
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Fig. 6.23 Forchheimer velocity and Darcy velocity in 1D transient flow. a t = 5.1s. bt = 10.2s.
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6.3.3 Groundwater Flow Regimes

The applicability limits of Darcy’s and Forchheimer’s regimes of flow are of great
interest. Ruth et al. [19] rearranged the Forchheimer equation (6.19) in the form

Bkpq

1
P g =~ +Fyua=Lq  (6.26)
o k k

%

" 1
—VP="q+0plqlg= L+
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and named F,[—] as Forchheimer number, and k,[L?] as the velocity-dependent per-
meability. The Forchheimer number can be used as a criterion to indicate when the
inertial force can prevail over the viscosity force. The velocity-dependent permeabil-
ity shows that permeability can be treated as a velocity dependent parameter.

Apart from the Forchheimer number, another basic criterion to distinguish
between these two regimes is the range of Reynolds number (Re), which is defined
as the ratio of inertial forces to viscous forces and can be written as

L
Re = P4 (6.27)

I

where p[ML_3] is the density of water, q[LT_l] is the specific discharge, L[L] is the
characteristic linear dimension, and u[MT~!L~!]is the dynamic viscosity of water.

Darcy flow occurs at low Reynolds number, which means the dominant force in
this situation is viscous force and the flow is comparatively smooth. In Forchheimer
flow the inertial force prevails over the viscous force so the Reynolds number is high.
The upper limit of Reynolds number in Darcy flow is considered to be coincided with
the lower limit of Reynolds number in Forchheimer flow [17, 20-23].

6.4 Particle Tracking in Fractured Porous Media

Fractures may be defined through direct measurement or geo-statistical reproduction.
In the benchmarks of this chapter, both methods will be utilized. Where fractures are
directly measured, the methodology utilizes a laser profiler. Profiles (elevation mea-
surements) are taken of each fracture surface and these are manipulated numerically.
Point-wise fracture aperture is the difference between the top and bottom surfaces
at corresponding locations. Statistically reproduced fractures reproduce roughness
of the aperture (not each surface) in order to achieve a desired mean and standard
deviation. The result is used directly as the fracture aperture in numerical simulations.

For a fracture represented by two parallel (planar) plates, permeability is a function
of the fracture aperture by the cubic law,

b2

k=—
12

(6.28)

For a uniformly fractured rock mass, the cubic law takes form as b’ /12s , where s is
fracture spacing.

The aperture, b, however, represents only the mechanical state of the fracture.
In reality, observed flow rates are dependent on the hydraulic state of the fracture.
In other words, fracture roughness matters. We therefore distinguish two different
apertures: the so-called “void” aperture, b, and the “hydraulic” aperture, b;,. The
void aperture is the mean geometrically measured distance between the two fracture
surfaces, including only those points that are not in contact (as the name implies,
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including only voids). The hydraulic aperture is a correction from this value (b;, <
by), with one possibility known as the geometric correction [24],

b,31 = exp (In (k)) = exp 3 (In (by))) (6.29)

where the angled brackets indicate that the mean is taken over the logarithm of the
point-wise void aperture. Therefore, as an approximation to reality, the (effective)
true permeability of a rough fracture is given by,

2

= b—h (6.30)
12

In what follows, we use this permeability to approximate behavior of the fracture
and to generate an analytical solution for (qualitative) comparison to simulations
within rough fractures, where permeability occurs point-wise (and mechanically)
as k; = b? /12 . Therefore, this is an effective permeability, and shall be used as
an attempt to approximate (or provide reference to) true flow behavior in a rough
fracture from a single bulk property.

Fig. 6.24 RWPT versus
ADE at different stress states.
Two separate simulations are
conducted and overlay one
another. Particle pathlines
(black) and particles (white)
are illustrated, and overlay
contours (red = higher
concentration) generated
from the ADE simulation
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6.4.1 Uncertainty in Flow, Preferential Flow

To examine changes to flow characteristics, we utilize two alternate forms of mass
transport: the classical advection-dispersion equation (ADE) and random walk par-
ticle tracking (Fig.6.24). The RWPT simulator within OGS is modified to allow a
continuous source of particles (numerically approximate to a Neumann concentra-
tion boundary) for comparison with results from ADE simulations. For comparison,
dispersion is not allowed within the RWPT simulation: particles are only advected
with the flow. Therefore, particles represent the 50 % concentration breakthrough
if particles are imagined as concentrations. The plot for each stress state is shown
at a different absolute time, but each corresponds to the same dimensionless time,
tp = v-t/L, where ¢ is current time and L is total flow length, with v calculated from
the mean bj,. Therefore, if by, is a good approximation of behavior, the concentration
advance in each plot should be approximately of the same extent. Note that this
is true, but also that the increasing tendency for preferential flow with stress lends
to increasingly less uniform concentration advance: with increasing stress, a given
point in the geometry will record strongly different behavior than its neighbors.
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Chapter 7
Mechanical Processes

Thomas Nagel and Norbert Bottcher

7.1 Theory and Implementation

This section introduces benchmarks to verify the implementation of a pressure
boundary condition for mechanical processes. A traction boundary condition is
given as

[tN=0 — t=on=1tVx € 0%, (7.1)

where the traction £ is applied on 9€2; (92, N 9, = @ and 92, U 0L, = OR) and
n is the unit outward normal vector on 9€2;.
A pressure load is defined by

t,=pn (7.2)

For the RHS of the weak form of the momentum balance we thus find

/ t-oudl’ = / pn - éudl’ (7.3)

0 0

With N¢ as the displacement shape function at node a and the vector of nodal dis-
placements & the FE approximation

u~a =y N =Ni (74)
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is introduced. Considering the arbitrary nature of the virtual displacements, the
discretised form of the external virtual work by surface tractions provides the nodal
force vector for a finite element:

f,,:/pNTndr (7.5)
0

The switch from global (x) to local (€, &; € [—1, 1]) coordinates of the integration
domain yields with det J = |0x; /0§

fo,= / pEONT (&)n (&) det JdT¢ (7.6)

095

The surface normal vector of the element becomes (Fig.7.1)

X9 _ aixg
n(€) = ail ;2 _ |glxg2| (7.7)
‘%X%‘ 1 2

In the current implementation, normal vector and surface area are evaluated on the
undeformed geometry only. The pressure load is thus conservative and not follow-
ing the (infinitesimal) deformation of the boundary contour. Further details can be
found in [1].

Finally, for the determination of the forces at a particular node a, the contributions
from all connected elements e, will have to be assembled:

=4 (7.8)

7.2 Deformation of a Steel Tubing

7.2.1 Analytical Solution—Linear Elasticity

The pressure boundary condition was verified by simulating a ring