
Chapter 13
Purchasing Transportation Services
from Ocean Carriers

Zhou Xu and Xiaofan Lai

Abstract Reducing transportation costs is priority number one for global shippers
who need to move their cargo containers all over the world. To achieve such cost
reduction, a shipper can use what is called a reverse auction mechanism to purchase
transportation services, by inviting carriers, i.e. liner shipping companies, to bid
competitively to sell their services. As part of the process, carriers often seek com-
mitments from the shipper, and internal business units of the shipper often express
their own preferences when it comes choosing the carriers, which naturally compli-
cates the shipper’s decisions. In this chapter, we first review existing studies on the
transportation service procurement problem. Based on a new general optimization
model, we then discuss extensions to the existing known results, as well as present
several results new to the literature.

13.1 Introduction

In the container shipping market, the key players are shippers (as buyers) and carriers
(as sellers), where shippers, such as manufacturers and retailers, are companies
who need to move their cargo containers, and carriers, such as shipping liners,
are companies who provide transportation services to ship the containers. With the
huge expansion in global supply chains, shippers today have a huge demand for
transportation services from carriers to transport their cargo, which may include
raw materials or finished products. As a result, transportation services are often
listed among the top categories of spending by global shippers, providing large
opportunities for cost savings (Xu 2007). In fact, it is common for a global shipper
to spend more than a $ 100million annually on transportation services (Lim et al.
2012).
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Fig. 13.1 Reverse auction
mechanism for transportation
service procurement

For shippers, the transportation services are often purchased by their logistics
departments, and typically follow a reverse auction mechanism that consists of the
following four stages (Xu 2007), as shown in Fig. 13.1:

• Stage 1—Request for Information (RFI): The logistics department collects ship-
ping request information from different business units (or departments) of the
company, and based on the information collected, it then forecasts cargo volumes
for the coming period.

• Stage 2—Request for Quotation (RFQ): The logistics department invites a number
of carriers to make quotations of shipping prices for lanes between different origin-
destination pairs, for different service levels in terms of shipping times, and for
different weights of cargo, etc.

• Stage 3—Analysis and Negotiation: The logistics department analyzes the quo-
tations from the carriers, estimates the total transportation cost under different
scenarios, and negotiates with the carriers by bargaining over the shipping prices
and conditions.

• Stage 4—Signing Contract: The logistics department makes its decisions on the
selection of carriers and the allocation of shipping volumes to the selected carriers,
so as to finalize the prices and conditions with the carriers and then sign contracts.

Before finalizing and signing contracts, the shipper may go through multiple rounds
of analysis and negotiations, with a view to minimizing the total transportation cost.
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During the above process, particularly at the various stages of analysis and ne-
gotiation, as well as at the stage of signing contracts, a shipper often needs to solve
optimization problems with regard to selecting carriers and allocating cargo to the
selected carriers in order to minimize its total transportation cost. Such problems
are challenging, since they are often triggered by various constraints that reflect dif-
ferent business considerations, some imposed by the external carriers who provide
the shipping services (Lim et al. 2008a, 2006), and others imposed by the internal
business units who require the shipping services (Lim et al. 2012). Moreover, unlike
the trading of physical goods, shipping services are of a combinatorial nature, as
the price of shipping services is often imposed not only on a single lane but also
on a group of lanes of different origin-and-destination pairs (Lim et al. 2008a). It
is also well-known that the shipping market is very volatile, as both the demands
and the sport-market shipping prices vary significantly all the time. Due to this, the
key players, including both shippers and carriers, sometimes may not strictly follow
the contracts in actual operation, at times maybe breaking them to suit their own
interests.

The procurement of transportation services is challenging, and has raised several
interesting research questions that fall into the following three categories:

1. On Models: How should the problems be defined? What are the useful proper-
ties of the optimal solutions to these problems? To answer these questions, it is
necessary to formulate the corresponding optimization or decision problems as
mathematical programming models, as well as to analyze the properties of the
models.

2. On Tractability: Do efficient algorithms exist that can solve the problems to
optimality? Answering this question, it requires an understanding of the compu-
tational complexities of the corresponding optimization or decision problems, as
well as being able to identify special cases that have practical applications and
that can also be efficiently solved to optimality.

3. OnAlgorithms: How can exact or near optimal solutions to the problems be found
in affordable running times? To answer this question, it is necessary to develop
exact algorithms or heuristic algorithms, and to show by either theoretical analysis
or numerical experiments that these algorithms can guarantee good performance.

In this chapter, we review recent studies that have addressed some of these research
questions related to transportation service procurement problems. Since most of the
existing studies are focused only on problems with specific constraints, it is also
of interest to know how their results, models, and algorithms can be extended to
solving more general problems having broader applications. For this purpose, we
also introduce in this chapter a generalized optimization model for the transportation
service procurement problem, which is defined and formulated in Sect. 2, and we
then discuss how existing results from the literature can be applied to this generalized
model. These results include computational complexities, relaxations of mathemat-
ical models, exact algorithms, and heuristic algorithms, which are all discussed in
Sects. 3–6, respectively. The chapter is concluded in Sect. 7 with discussions on
future research directions.
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13.2 Problem Formulations: Generic Model, Side Constraints,
and Generalization

13.2.1 Generic Model

Consider a shipper who has to make decisions on purchasing transportation services
to move containers of its cargo for a time horizon of T periods. The shipper has a set of
business units, denoted by B, who use the services potentially from m carriers, which
are denoted by I = {i:1 ≤ i ≤ m}. The cargo for each period in the time horizon is for
n lanes in total, these being defined as pairs of the cargo’s origins and destinations,
and are denoted by J = {j:1 ≤ j ≤ n}. At the beginning of the time horizon, the
shipper collects information from its business units so as to forecast demands for
transportation services for each period t ∈ {1, 2,. . . , T}, which are given by dbjt

∈ R+ for each business unit b ∈ B and each lane j, where R+ indicates the set of
non-negative real numbers. The forecast demand dbjt is then released to the carriers,
and each carrier i responds by quoting a quote of a shipping rate pijt ∈ R+ according
to its bidding strategy. In addition to such a reverse auction mechanism, the shipper
can also purchase shipping services from the spot market, so as to minimize its total
shipping cost. The forecast spot market shipping rates are represented by sjt ∈ R+.
To reflect the fact that carriers often quote prices on groups of lanes, for each carrier
i we assume that the lanes that it operates are partitioned into a collection Ji = {Ji1,
Ji2,. . . , Ji,|J|} of lane groups, where Jik ⊆ J for 1 ≤ k ≤ |Ji |. We assume that lane
groups are disjoint. Let cik ∈ Z+ indicate the capacity that carrier i can ship for all
the lanes in Jik for all the T periods of the planning time horizon.

The shipper needs to make the following decisions, so as to minimize its total
transportation cost:

• Decisions on selecting carriers: This can be represented by binary variables
yibk ∈ {0, 1} and binary variables yik, where yibk = 1 if and only if carrier i is
selected to serve lanes in Jik for the cargo of business unit b, and yik = 1 if and
only if carrier i is selected to serve lanes in Jik;

• Decisions on allocating cargo to carriers: This can be represented by variables
xibjt ∈ Z+, where Z+ is the set of non-negative integers, and each xibjt indicates
the number of containers allocated to carrier i for shipping the cargo of business
unit b on lane j in period t.

Thus, the total transportation cost for the shipper is
∑

b∈B

∑
j∈J

∑T
t=1

[
∑

i∈I pij txibj t + sjt (dbjt −∑
i∈I xibj t )]. The generic integer programming model

(Generic IP) for the transportation service procurement problem, or in short the
TSPP, can then be formulated as follows:

(Generic IP ) = min
∑

b∈B

∑

j∈J

T∑

t=1

[
∑

i∈I

pij txibj t + sjt

(

dbjt −
∑

i∈I

xibj t

)]

(13.1)

s.t.
∑

i∈I

xibj t ≤ dbjt , ∀b ∈ B, j ∈ J , 1 ≤ t ≤ T , (13.2)
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∑

b∈B

∑

j∈J

T∑

t=1

xibjt ≤ cikyik , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.3)

∑

b∈B

yibk ≤ |B|yik , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.4)

xibjt ∈ Z+, ∀i ∈ I , b ∈ B, j ∈ J , 1 ≤ t ≤ T , (13.5)

yik ∈ {0,1} , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.6)

yibk ∈ {0,1} , ∀i ∈ I , b ∈ B, 1 ≤ k ≤ |Ji |. (13.7)

In the (Generic IP), the objective (1) is to minimize the total transportation cost for
the shipper. Constraint (2) ensures that for each lane j, period t and business unit b,
the total volume allocated to all carriers does not exceed the total demand dbjt of b.
Constraint (3) ensures that the total volume of cargo allocated to carriers can never
exceed their capacities for each of their lane groups. Constraint (4) ensures that yibk

equals zero as long as yik equals zero. Constraint (5) restricts shipment allocations to
be integers, because shippers are often required to buy spaces of full size containers
in TEUs (twenty-foot equivalent units), which can be expensive. It is not difficult to
see that decision variables yibk and yik are redundant in the (Generic IP). We leave yibk

and yik to model various side constraints that reflect different business considerations
in our formulations in the latter part of this chapter. It can be seen that the model
above has taken into account carriers’ lane groups, and has formulates basic demand
and capacity constraints

13.2.2 Side Constraints

There are two main sources of side constraints, those from external carriers and those
from internal business units (Xu 2007).

As for external carriers, in addition to the basic capacity constraint, they often also
request for a volume guarantee from the shipper. When carriers submit quotations
to the shipper, they make assumptions about demand, and their quotations can be
either too low or too high (Caplice and Sheffi 2005). As a result, the carrier that wins
the quotation can be the one that underestimates its service cost, and will thus suffer
from the “winner’s curse” (Caplice 2003; Sawhney 2003). A volume guarantee from
the shipper can thus be helpful in resolving this problem, since it can reduce risk
and uncertainty for the carriers, which enables the carriers to bid in a more realistic
manner.

There are two types of volume guarantee that are commonly requested by carriers
and have been studied in the literature. One is called a minimum quantity commit-
ment (MQC) constraint, which is motivated by the stipulation of the United States
Federal Maritime Commission that restricts a fixed minimum quantity for the total
volume of cargo shipped by each carrier to cities in the US (Lim et al. 2006). The
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commitment to a minimum quantity has commonly been applied in transportation
service procurement for various shippers, where carriers negotiate and quote for a
minimum volume for each lane group. Let qik ∈ R+ indicate the minimum quantity
for shipments for lanes in Jik, which limits the volume for carrier i to carry in all
the periods to be either none or above qik. Accordingly, the MQC constraint can be
formulated as follows:

qikyik ≤
∑

b∈B

∑

j∈Jik

T∑

t=1

xibjt , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.8)

where the right hand side of (13.8) is the total volume of cargo allocated to carrier i
for lanes in Jik.

The other type of volume guarantee constraint is called the maximum-to-average
ratio commitment (MARC), which is motivated by common practice in the shipping
industry (Lim et al. 2008a). This commitment requires that the volume of each
shipment that the shipper can ship through a carrier cannot exceed a fixed proportion
of the average volume shipped through the carrier during the term of the contract.
This proportion is usually referred to as the maximum-to-average ratio, which is
quoted by the carrier and can be negotiated with the shipper. Under this condition,
the shipper has to buy sufficient volume from the carrier that can be spread over the
duration. This is because the shipper’s shipments at any time can be made only if
commensurate volume is shipped throughout the duration. For example, the shipper
must ship sufficient volume in off-peak seasons if shipments are planned for peak
seasons. This stipulation translates into a volume guarantee to the carrier which, in
effect, smoothes shipments throughout the duration of the contract.

To formulate a constraint for the (MARC), let us take rikt ∈ R+ to be the maximum-
to-average ratio for shipments in Jik, which limits the volume that carrier i is willing
to carry in period t in excess of the average volume that it will carry for all T periods
of the contract (Lim et al. 2008a). We take ξ ∈ Z+ to represent a small excess
that is allowed in the maximum-to-average ratio commitment in practice. Letting
αikt = rikt/T, the constraint related to the maximum-to-average ratio commitment
can be formulated as follows:

∑

b∈B

∑

j∈Jik

xibj t ≤ αikt

⎛

⎝
∑

b∈B

∑

j∈Jik

T∑

t=1

xibjt

⎞

⎠+ ξ , ∀i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T ,

(13.9)

where the left hand side represents the total volume of cargo shipped by carrier i
during period t for lanes in Jik, and the right hand side is the average volume shipped
by carrier j and for lanes in Jik of all T periods.

Besides constraints from carriers, the shipper’s decision maker often also needs
to satisfy constraints from its own internal business units, the ones who are the actual
users of transportation service for shipping and receiving cargo. In the literature, three
types of such constraints have been introduced and studied. One is the carrier number
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constraint, which imposes a lower bound and/or an upper bound on the number of
carriers selected for a group of business units and a group of lanes (Lim et al. 2012).
This is motivated by practical considerations, whereby a smaller number of carriers
may reduce the management cost, but it also restricts the flexibility of business units
in choosing shipping dates. To formulate this constraint, let BG denote a collection
of groups of business units, and LG denote a collection of lane groups. For each
group of business unit Bh ∈ BG, and lane group Lg ∈ LG, let nhg and n̄hg indicate
the minimum and maximum numbers of carriers that can be selected to ship cargo
for business units in Bh and for lanes in Lg . The carrier number constraint can be
formulated as follows:

nhg ≤
∑

i∈I

zihg ≤ n̄hg , ∀Bh ∈ BG, Lg ∈ LG, (13.10)

∑

b∈Bh

∑

k:Jik∩Lg �=∅

yibk ≤ Mzihg , ∀i ∈ I , Bh ∈ BG, Lg ∈ LG, (13.11)

zihg ∈ {0,1} , ∀i ∈ I , Bh ∈ BG, Lg ∈ LG, (13.12)

where zihg indicates whether or not carrier i is selected to ship cargo for business
units in Bh and for lanes in Lg , and M is a sufficiently large constant.

The second type of shipper’s constraint is called the preference constraint (Xu
2007), under which cargo of a certain business unit cannot be assigned to particular
carriers, or must be assigned to particular other carriers. This is motivated by current
practice, where business units have their own preferences as to the choice of carriers
based on their previous experience. To impose such constraints, the logistics depart-
ment needs to collect preference information from business units. For each group of
business units Bh ∈ BG, and lane group Lg ∈ LG, let I+

hg indicate a set of carriers that
cannot be assigned to any business unit in Bh and any lane in Lg , and let I−

hg indicate
a set of carriers that cannot be assigned to any business unit in Bh and any lane in
Lg . Thus, the preference constraint can be formulated as:

∑

b∈Bh

∑

k:Jik∩Lg �=∅

yibk ≥ 1, ∀i ∈ I+
hg , Bh ∈ BG, Lg ∈ LG, (13.13)

∑

b∈Bh

∑

k:Jik∩Lg �=∅

yibk = 0, ∀i ∈ I−
hg , Bh ∈ BG, Lg ∈ LG. (13.14)

Another type of shipper’s constraint is called the fairness constraint, which restricts
the assignment of carriers so as to be fair to different business units. This is motivated
by current practice, where different business units may all request to be assigned to
carriers that quote the lowest shipping price, but such carriers may only provide
limited capacities. As a result, the available capacities of these low-price carriers
have to be allocated fairly to the various business units (Lim et al. 2012). One way
to reflect such a fairness concern is to impose a constraint such that, for each lane,
the gap between the actual total shipping cost to a business unit and its minimum
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possible shipping cost shall not exceed a given percentage, denoted by η%. As a
result, we can formulate the fairness constraint as follows:

∑

i∈I

T∑

t=1

[(pijt − sjt )xibjt + sjtdbjt ] ≤ (1 + η%)
T∑

t=1

[(pi′j t − sjt )xi′bjt + sjtdbjt ]

+ M(1 − yi′k), ∀1 ≤ k ≤ |Ji′ |, j ∈ Ji′k , b ∈ B, i ′ ∈ I , (13.15)

where the left hand side indicates the actual shipping cost for business unit b and its
cargo on lane j, the right hand side indicates its shipping cost for cargo on lane j if
carrier i ′ is assigned, and M is a sufficiently large constant.

13.2.3 Generalization

By generalizing the various side constraints presented earlier, we can obtain a general
mathematical programming model (General MP) for the TSPP as follows:

(General MP) = min
∑

b∈B

∑

j∈J

T∑

t=1

[
∑

i∈I

pij txibj t + sjt

(

dbjt −
∑

i∈I

xibj t

)]

s.t.(2) − (7). (x,y) ∈ EDom
⋂

IDom,

where EDom indicates the domain restricted by certain side constraints raised by
the carriers, and IDom indicates the domain restricted by certain side constraints
raised by the shipper’s internal business units.

Moreover, the (General MP) can be reformulated into a bi-level optimization
model, which separates determinations of decision variables yibk and xibjt. In other
words, letting y = {yibk: i ∈ I, b ∈ B, 1 ≤ k ≤ |Ji |}, EDom(y) = {x : (x,y) ∈ EDom},
and IDom(y) = {x : (x,y) ∈ IDom}, we have

(General MP) = min (General MP)(y), s.t.7

(GeneralMP)(y) = min(1), s.t.(2) − (15)x ∈ EDom(y)
⋂

IDom(y).

We make the point that the general model given here can include considerations other
than those mentioned in Sect. 2.2, such as carriers’ capacities in each period, and
other commitment constraints on lanes.

13.3 Problem Complexities and Tractability

In this section, we discuss the computational tractability of different variations of
the TSPP. Since the (Generic IP) model is equivalent to the classical transportation
problem, with carriers as supply points and with triples (b, j, t) for b ∈ B, j ∈ J,
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1 ≤ t ≤ T as demand points, it can be solved by a min-cost network flow algorithm
in polynomial time.

For the problem with the MQC constraint, it is easy to see that when qik equals
one, the MQC constraint can be relaxed, implying that the problem is equivalent to
the (Generic IP) model and can thus be solved in polynomial time. Moreover, it is
known that the problem is strongly NP-hard whenever the minimum quantity qik is
greater than or equal to three (Lim et al. 2006). The proof is based on a reduction from
the set cover problem, which is well known to be strongly NP-complete. However,
it still remains an open question as to whether or not the problem is NP-hard when
qik equals two. We now consider a new special case when only one lane and one
business unit is taken into account, i.e., |J | = |B| = 1, and establish a new tractability
result for the TSPP as follows:

Theorem 1 Solving the (Generic IP) model with the MQC constraint (13.8) and
with |J| = |B| = 1 is NP-hard in the strong sense. It is NP-hard but has a pseudo-
polynomial time algorithm for any fixed T.

Proof. Given |J | = |B| = 1, we can reformulate the problem as follows:

(MQC1 IP) = min
T∑

t=1

[
∑

i∈I

pitxit + st

(

dt −
∑

i∈I

xit

)]

(13.16)

s.t.
∑

i∈I

xit ≤ dt , ∀1 ≤ t ≤ T , (13.17)

qiyi ≤
∑

i∈I

xit ≤ ciyi , ∀i ∈ I , (13.18)

xit ∈ Z+, ∀i ∈ I , 1 ≤ t ≤ T , (13.19)

yi ∈ {0,1} , ∀i ∈ I , (13.20)

where dt := d11t indicates the demand for period t, xit indicates the volume of cargo
assigned to carrier i for period t, and yi indicates whether or not carrier i is selected.

The strong NP-hardness of model (MQC1 IP) can be shown by a reduction from
the following unary NP-complete problem:

Cover By 3-Sets (X3C) (Garey and Johnson 1983): Given a set X = {1,. . . ,
3k} and a collection C = {C1,. . . , Cm} with each member Ci ⊆ X and |Ci | = 3
for i = 1,. . . ,m, does C contain an exact cover for X, i.e. a sub-collection C ′ ⊂ C

such that every element of X occurs in exactly one member of C ′?
For any arbitrary instance of X3C, consider the instance of model (MQC1 IP)

where I = {i:1 ≤ i ≤ m}, T = |X|, dt = 1 for 1 ≤ t ≤ T, qi = 3 for i ∈ I, ci ≥ 3 for i ∈ I,
pit = 0 for i ∈ I and for t ∈ Ci , pit = ∞ for i ∈ I and for t /∈ Ci , and st = ∞ for
1 ≤ t ≤ T. We can show as follows that the (MQC1 IP) has a minimum total cost of
zero if and only if the X3C has an exact cover.
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On one hand, if the X3C has an exact cover, then we can set yi = 1 if Ci ∈ C ′
and yi = 0 otherwise, and set xit = 1 if t ∈ Ci and Ci ∈ C ′, and xit = 0 otherwise. It
can be seen that this leads to a feasible solution to (MQC1 IP) of a total cost equal
to zero.

On the other hand, if (MQC1 IP) has a feasible solution of zero cost, let C ′ include
Ci if and only if yi = 1. Since dt = 1, qi = 3, and the total cost equals zero, it can be
seen that each element t ∈ X is covered by C ′ exactly once, which implies that C ′ is
an exact cover. This completes the proof of the strong NP-hardness of (MQC1 IP).

Next, consider the case when T is fixed, and its NP-hardness can be shown by a
reduction from the following NP-complete problem:

Partition (Garey and Johnson 1983): Given a set X, size s(a) for a ∈ X, positive
integer S, does X have a subset X′ such that

∑
a∈X′ s(a) = S?

For any arbitrary instance of Partition, consider the instance of model (MQC1 IP)
where I = X, qa = ca = s(a) for a ∈ X, d1 = S, pa1 = 0, s1 = ∞, and dt = pat = st = 0
for 2 ≤ t ≤ T. If this instance has a feasible solution of zero cost, then letting X′
include a with ya = 1 leads to

∑
a∈X′ s(a) = d1 = S. On the other hand, if there

exists X′ ⊆ X with
∑

a∈X′ s(a) = S = d1, then setting ya = 1 only for a ∈ X′ and
setting xa1 = s(a) and xat = 0 for 2 ≤ t ≤ T lead to a feasible solution of zero cost.
Thus, the case with T = 1 is NP-hard.

Now, for any fixed T, we can use the following dynamic programming algorithm
to solve (MQC1 IP). Define f (i, Q1,. . . , QT ) as the minimum total cost to assign
the cargo of Qt for time t = 1, 2,. . . , T to carriers 1, 2,. . . , i, such that the capacity
and MQC constraints for carriers 1, 2,. . . , i are satisfied. For this, we can establish
recurrence equations as follows:

f (i, Q1, . . . , QT ) = min {f (i − 1, Q1, . . . , QT ), g(i, Q1, . . . , QT )} (13.21)

g(i, Q1, . . . , QT ) = min
x

f (i − 1, Q1 − xi1, . . . , QT − xiT ) +
T∑

t=1

pitxit

s.t. qi ≤
T∑

t=1

xit ≤ ci (13.22)

where f (0, 0,. . . , 0) = 0. Hence, the optimal objective value equals

min
Q1,...,QT

f (n, Q1, . . . , QT ) +
T∑

t=1

st (dt − QT ) (13.23)

It can be seen that the total time complexity of the above dynamic programming
algorithm is O(n(max{ci : i ∈ I })T + (max{dt : 1 ≤ t ≤ T })T ), which is pseudo-
polynomial when T is fixed. �

For the problem with the MARC constraint, it is known that the problem is strongly
NP-hard for any fixed ξ ≥ 0 even when only a single lane is considered (Lim et al.
2008a). The proof is also based on a reduction from the set cover problem. When
T = 1, it can be seen that the problem with the MARC constraint is equivalent to
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the (Generic IP) model, and can thus be solved in polynomial time. Moreover, when
only a single carrier is considered, i.e., |I| = 1, the problem can be reformulated as
a min-cost network flow problem, which can also be solved in polynomial time.
This special case also has a simple greedy algorithm (Lim et al. 2008a), which can
guarantee a polynomial running time if the total demand is polynomially bounded.

For the problem with the constraints on the number of selected carriers, it can
be transformed to the classical k-median problem, and thus it is strongly NP-hard
(Arya et al. 2001; Bozkaya et al. 2002; de Farias 2001; Hochbaum 1982; Lorena and
Senne 2004; Rolland et al. 1997; Senne et al. 2005), where carriers correspond to
candidate locations of facilities, and triples (b, j, t) indicate the locations of demand
points, even when |J | = 1 or T = 1. When the maximum number of selected carriers
is fixed, the problem can be solved in polynomial time, as one can enumerate all
the possible combinations of carriers, and solve model (Generic IP) on only selected
carriers to obtain optimal cargo allocations. In this case, even if the MQC constraint
is included, the problem can still be solved in polynomial time. Now, consider a
new special case where both |J| and T equal to one, for which we can derive a new
tractability result as follows.

Theorem 2 It is strongly NP-hard to solve the (Generic IP) model with con-
straints (13.10)—(13.12) on the number of carriers and with |J| = T = 1, but it has
a polynomial time algorithm when |B| is fixed.

Proof. For the (Generic IP) model with constraints (13.10)—(13.12) on the number
of carriers and with |J| = T = 1, we can reformulate it as follows.

(NUM1 IP) = min
∑

b∈B

[
∑

i∈I

pixib + s

(

db −
∑

i∈I

xib

)]

(13.24)

s.t.
∑

i∈I

xib ≤ db, ∀b ∈ B, (13.25)

∑

b∈B

xib ≤ ciyi , ∀i ∈ I , (13.26)

∑

b∈B

yib ≤ |B|yi , ∀i ∈ I , (13.27)

nb ≤
∑

i∈I

yib ≤ n̄b, ∀b ∈ B, (13.28)

xib ∈ Z+, ∀i ∈ I , b ∈ B, (13.29)

yi ∈ {0,1} , ∀i ∈ I , (13.30)

yib ∈ {0,1} , ∀i ∈ I , b ∈ B, (13.31)

where xib indicates the total volume of cargo of business unit b assigned to carrier i,
and yib indicates whether or not carrier i is selected to serve business unit b. We now
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show its NP-hardness as follows by a reduction from the following NP-complete
problem:

3-Partition (Garey and Johnson 1983): Given a set X of 3k elements, a bound S,
and a size s(a) for a ∈ X such that S/ 4 < s(a) < S/ 2 and

∑
a∈X s(a) = kS, can X be

partitioned into A1,. . . , Ak such that for 1 ≤ r ≤ k,
∑

a∈Ar
s(a) = S?

For any arbitrary instance of 3-Partition, consider the instance of model (NUM1
IP) where |J| = T = 1, I = X, |B| = k, ca = s(a) for a ∈ X, db = S for b ∈ B, nb = n̄b =
3 for b ∈ B, pi = 0 for i ∈ I, and s = ∞. If this instance has a feasible solution of
zero cost, then letting Ab := {i ∈ I : yib = 1} include those carriers i with yib = 1
for b ∈ B. Since nb = n̄b = 3 for b ∈ B, |B| = k, and

∑
a∈X s(a) = kS, it can be seen

that no carrier can serve more than one business unit, which implies that A1,. . . , Ak

is feasible to the 3-Partition problem. On the other hand, if the 3-Partition problem
has a feasible partition A1,. . . , Ak , then by setting yib = 1 and xib = s(i) for i ∈ Ab

and b ∈ B, we obtain a feasible solution to (NUM1 IP) of zero cost. Thus, the case is
strongly NP-hard.

Next, consider the case when |B| is fixed. Consider any yib for i ∈ I and b ∈ B
that satisfy the constraints on the number of selected carriers. The total number of
such possible combinations is polynomially bounded, since |B| is fixed. We can now
extend the (Generic IP) model to obtain a min-cost network flow model as follows,
so as to determine optimal allocations for the cargo:

min
∑

b∈B

[
∑

i∈I

pixib + s

(

db −
∑

i∈I

xib

)]

(13.32)

s.t.
∑

i∈I

xib ≤ db, ∀b ∈ B, (13.33)

∑

b∈B

xib ≤ ciyi , ∀i ∈ I , (13.34)

xib ∈ Z+, ∀i ∈ I , b ∈ B. (13.35)

Hence, this special case can be solved in polynomial time.
For the problem with the preference constraints, this can still be transformed

to a min-cost network flow problem, and thus can be solved in polynomial time.
However, in the literature, it is often imposed simultaneously with the constraints
on the number of selected carriers (Lim et al. 2012), which in general is strongly
NP-hard.

For the problem with the fairness constraints, its tractability is unknown in the
literature. Lim et al. (2012) studied a generalized problem that has taken into account
fairness constraints, and carrier number constraints, as well as preference constraints,
and they showed that it is strongly NP even to find a feasible solution to this problem,
and also that it has a polynomial time algorithm that can obtain a feasible solution
when all shipping prices are identical.

From the tractability results above, we know that the generalized problem (General
MP) is strongly NP-hard. However, for those special cases of (General MP), where
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only two types of side constraints are taken into account, few results showing their
tractability are known in the literature.

13.4 Problem Relaxations

In this section, we discuss various relaxations of the models proposed in Sect. 2 for
the TSPP. Although optimal solutions to these relaxations may not be feasible for
the original models, they can be used to estimate the optimal objective values of the
original models, as well as to construct feasible solutions for the original models.

Consider the problem with the MQC constraints, where |B| is assumed to be one
for ease of presentation. We can reformulate this problem as the following integer
programming model:

(MQC IP) = min
∑

j∈J

T∑

t=1

[
∑

i∈I

pij txij t + sjt

(

djt −
∑

i∈I

xij t

)]

(13.36)

s.t.
∑

i∈I

xij t ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.37)

∑

j∈Jik

T∑

t=1

xijt ≤ cikyik , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.38)

qikyik ≤
∑

j∈Jik

T∑

t=1

xijt , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.39)

xijt ∈ Z+, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T , (13.40)

yik ∈ {0,1} , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.41)

where xijt indicates the total number of containers assigned to carrier i for cargo of
lane j and period t. For this problem, it has a linear programming relaxation where
x and y are relaxed to take fractional values:

zLP
MQC = min

∑

j∈J

T∑

t=1

[
∑

i∈I

pij txij t + sjt

(

djt −
∑

i∈I

xij t

)]

s.t.(37) − (39), (13.42)

xijt ∈ R+, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T , (13.43)

0 ≤ yik ≤ 1, ∀i ∈ I , 1 ≤ k ≤ |Ji |. (13.44)

The above linear programming relaxation model can be strengthened by the fol-
lowing valid constraints of (MQC IP), which are extended from Lim et al. (2006)
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and Lim et al. (2008b). First, by (13.37) and (13.38), we have

xijt ≤ djtyik , ∀i ∈ I , j ∈ Jik , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T .

Next, suppose that pairs (i, k) are sorted on a non-decreasing order of qik, and let
Kmax indicate the smallest position of the order, such that the sum of qik for the first
Kmax pairs of (i, k) exceeds D, where D := ∑

j∈J

∑T
t=1 djt . By (13.37) and (13.39),

we have

∑

i∈I

|Ji |∑

k=1

yik ≤ Kmax.

Moreover, by extending the arguments from Lim et al. (2006, 2008b), we can show
that the above two valid constraints both define facets of the convex hull of the integer
programming model (MQC IP) under some mild conditions.

In addition to the linear programming relaxation, we can obtain a Lagrangian
relaxation of model (MQC IP) by dualizing the demand constraint (13.37). Let
μjt ≥ 0 indicate the Lagrangian multiplier, associated with constraint (13.37). Let
zLR1
MQC(μ) denote the optimal objective value for the following problem:

zLR1
MQC(μ) = min

∑

j∈J

T∑

t=1

∑

i∈I

(pijt − sjt + μjt )xijt +
∑

j∈J

T∑

t=1

(sjt − μjt )djt

s.t.(38) − (41).

The above zLR1
MQC(μ) can be decomposed by carriers i ∈ I and lane groups in Ji into∑

i∈I |Ji | sub-problems, with each corresponding to a continuous knapsack problem,
and thus it can be solved in polynomial time. Thus, one can apply a subgradient
algorithm to maximize zLR1

MQC(μ) over multipliers μ, so as to obtain a Lagrangian
relaxation lower bound, denoted by zLR1

MQC , for model (MQC IP).
Furthermore, by dualizing the capacity constraint (13.38) and the MQC con-

straints (13.39), we can derive a new Lagrangian relaxation of model (MQC IP) as
follows, where πik and γik indicate the associated Lagrangian multipliers.

zLR2
MQC(π , γ ) = min

∑

j∈J

T∑

t=1

∑

i∈I

(pijt − sjt + πik − γik)xijt +
∑

i∈I

(qikγik − cikπik)yik

+
∑

j∈J

T∑

t=1

sjt djt s.t. (37), (40), (41).

Based on the signs of (qikγik − cikπik), we can determine values of y, and then the
remaining problems on x can be decomposed by (j, t) for j ∈ J and 1 ≤ t ≤ T into |J|T
sub-problems, with each sub-problem equivalent to a continuous knapsack problem,
and thus it can be solved in polynomial time. By applying a subgradient algorithm,
we can thus maximize zLR2

MQC(π , γ ) to obtain a lower bound on the optimal objective
value of (MQC IP), denoted by zLR2

MQC .
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We can also derive an LP relaxation of the Dantzig-Wolfe reformulation of model
(MQC IP) as follows. Let xihfor h = 1,2,. . . , H indicate all the feasible cargo alloca-
tions for carrier i which satisfy the capacity constraint (13.38) and the MQC constraint
(13.39), and we denote the cost of each xih by cih := ∑

j∈J

∑T
t=1 (pijt − sjt )xih

jt .
Let λih indicate a binary variable that equals 1 if and only if cargo allocation xihis
assigned to carrier i. Thus, model (MQC IP) can be reformulated as follows:

min
∑

i∈I

H∑

h=1

cihλih (13.45)

s.t.
H∑

h=1

λih = 1, ∀i ∈ I , (13.46)

∑

i∈I

H∑

h=1

λihx
ih
jt ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.47)

λih ∈ {0,1} , ∀i ∈ I , 1 ≤ h ≤ H. (13.48)

The linear programming relaxation of the above model, denoted by zLPDW
MQC , can

be solved by column generation, for which the pricing problem is equivalent to a
continuous knapsack problem, and thus can be solved in polynomial time.

Proposition 1 below reveals that the four relaxations above are equally tight:
Proposition 1. zLP

MQC = zLR1
MQC = zLPDW

MQC = zLR2
MQC

Proof. The convex hull of feasible solutions to zLR2
MQC(π , γ ) is the same as the

convex hull of its linear programming relaxation, which implies that zLP
MQC = zLR2

MQC .
The convex hull of feasible cargo allocations for each carrier i is the same as the
convex hull of its linear programming relaxation, which implies that zLP

MQC = zLPDW
MQC .

Finally, the convex hull of feasible solutions to zLR1
MQC(μ) is the same as the convex

hull of its linear programming relaxation, which implies that zLP
MQC = zLR1

MQC . Hence,
the proposition is proved. �

The proposition above implies that the four relaxations mentioned above are
equally tight. To derive tighter relaxations, one needs to introduce more valid con-
straints. For example, by (13.37) and (13.39) we can obtain the following valid
constraint

∑

i∈I

|Ji |∑

k=1

qikyik ≤
∑

j∈J

T∑

t=1

djt . (13.49)

By extending the argument in Lim et al. (2008b), it can be shown that by including
(13.49) in zLR1

MQC(μ), one can obtain a stronger Lagrangian relaxation, which can be
transformed to a multiple-dimensional knapsack problem and solved by a dynamic
programming algorithm. Thus, the resulting lower bound on the optimal objective
value to (MQC IP) is tighter than zLP

MQC .
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Next, consider the problem with the MARC constraint, which can be formulated
as follows:

(MARC IP) = max
∑

j∈J

T∑

t=1

∑

i∈I

(sjt − pijt )xijt (13.50)

s.t.
∑

i∈I

xitj ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.51)

∑

j∈Jik

T∑

t=1

xijt ≤ cik , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.52)

∑

j∈Jik

xij t ≤ αikj

⎛

⎝
∑

j∈Jik

T∑

t=1

xijt

⎞

⎠+ ξ , ∀i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T , (13.53)

xijt ∈ Z+, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T . (13.54)

It also has a linear programming relaxation by relaxing x to take fractional values:

(MARC IP) = max
∑

j∈J

T∑

t=1

∑

i∈I

(sjt − pijt )xijt (13.55)

s.t. (51) − (53)

xijt ≥ 0, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T . (13.56)

The above linear programming relaxation model can also be strengthened by
introducing some valid constraints of the model (MARC IP). For example, from
(13.52) and (13.53), we have

∑
j∈Jik

xij t ≤ αikj cik + ξ , ∀i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤
t ≤ T . Thus,

∑

j∈Jik

xij t ≤ ⌊
αikj cik

⌋+ ξ , ∀i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T . (13.57)

We can establish the following theorem to show that under some mild conditions, the
valid constraint (13.57) defines a facet of model (MARC IP), and thus is necessary.

Theorem 3. If
⌊
αikj cik

⌋+ ξ <
∑

j∈Jik
djt and

∑T
t=1

(⌊
αikj cik

⌋+ ξ
)

< cik , then
(13.57) defines a facet of model (MARC IP).

Proof. To prove this theorem, we only need to show that if all feasible solutions to
model (MARC IP) that satisfy (13.57) for some i ∈ I and t with 1 ≤ t ≤ T at equality
also satisfy

∑

i∈I

∑

j∈J

T∑

t=1

aijtxij t ≤ θ , (13.58)

at equal, then (13.58) is equivalent to (13.57).
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First, since
⌊
αikj cik

⌋ + ξ <
∑

j∈Jik
djt and

∑T
t=1

(⌊
αikj cik

⌋+ ξ
)

< cik , there
exists a feasible x1such that (13.57) is satisfied at equality for i, k and t, and such
that constraints (13.51), (13.52) and (13.53) are all satisfied but not at equality. For
any with i ′, j ′, t ′ with i ′ �= i, or j ′ ∈ Jik , or t ′ �= t , consider x2, which is equal to
x1except that

x2
i′j ′t ′ = x1

i′j ′t ′ + ε. (13.59)

Thus, it can be seen that there exists ε > 0, such that x2 is feasible to model (MARC
IP) and satisfies (13.57) for i, k, t at equal. Substituting x1 and x2 into (13.58) and
subtracting one from the other results in ai′j ′t ′ = 0.

Next, for any j and j ′ in Jik, consider x3, which is equal to x1 except that

x3
ij t = x1

ij t + ε. (13.60)

x3
ij ′t = x1

ij ′t − ε. (13.61)

It can be seen that there exists ε > 0, such that x3 is feasible to model (MARC IP) and
satisfies (13.57) for i, k, t at equal. Substituting x3and x1into (13.58) and subtracting
one from the other results in aijt = aij ′t .

Thus, we can assume aijt = a for j ∈ Jik and (13.58) can be represented as:
∑

j∈Jik

axij t ≤ θ. (13.62)

Thus, since
∑

j∈Jik
x1

ij t = ⌊
αikj cik

⌋ + ε, we obtain that (13.58) is equivalent to
(13.57).

Next, by dualizing the demand constraint (13.51), we can obtain a Lagrangian
relaxation of model (MARC IP). Let μjt ≥ 0 indicate the Lagrangian multiplier,
associated with constraint (13.51). Define zLR

MARC(μ) as follows:

zLR
MARC(μ) = max

∑

j∈J

T∑

t=1

∑

i∈I

(sjt − pijt − μjt )xijt

s.t. (52) − (54). (13.63)

It can be seen that zLR
MARC(μ) can be decomposed by carriers and lane groups into∑

i∈I |Ji | sub-problems, with each being equivalent to a single-carrier problem, and
thus it can be solved in polynomial time (Lim et al. 2008a).

Moreover, we can also derive an LP relaxation of the Dantzig-Wolfe refor-
mulation of model (MARC IP) as follows. Let xihfor h = 1,2,. . . , H indicate
all the feasible cargo allocations for carrier i, which satisfy the capacity con-
straint (13.52) and the MARC constraint (13.53), and we denote each saving by
cih := ∑

j∈J

∑T
t=1 (sjt − pijt )xih

jt . Let λih indicate a binary variable that equals 1 if
and only if cargo allocation xih is assigned to carrier i. Thus, model (MQC IP) can
be reformulated as follows:

max
∑

i∈I

H∑

h=1

cihλih (13.64)
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s.t.
H∑

h=1

λih = 1, ∀i ∈ I , (13.65)

∑

i∈I

H∑

h=1

λihx
ih
jt ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.66)

λih ∈ {0,1} , ∀i ∈ I , 1 ≤ h ≤ H. (13.67)

The linear programming relaxation of the above model, denoted by zLPDW
MARC , can be

solved by column generation, for which the pricing problem is equivalent to a single
carrier problem, and thus can be solved in polynomial time.

The following proposition reveals the tightness of the three relaxations above:
Proposition 2. zLP

MARC ≤ zLR
MARC = zLPDW

MARC .

Proof. Noticing that both the Lagrangian dual and the pricing problem are equiv-
alent to a single-carrier problem, we can obtain that zLR

MARC = zLPDW
MARC . Moreover,

the convex hull of feasible solutions to the single-carrier problem is a super-
set of the convex hull of its linear programming relaxation, which implies that
zLP
MARC ≤ zLR

MARC = zLPDW
MARC , completing the proof. �

Similarly, by dualizing the demand constraint, we can further derive Lagrangian
relaxations, as well as the LP relaxation of the Dantzig-Wolfe reformulation, for
problems with constraints on the number and preference of selected carriers, as well
as on the fairness. Such relaxation techniques can also be applied to the (General MP)
having EDom and IDom containing all the various constraints. It is of interest to
investigate the tightness of these new relaxations as well as how to strengthen them.
For example, for the problem with constraints on the number of selected carriers, we
can derive a valid constraint directly from (13.11) as follows:
∑

b∈Bh

∑

k:Jik
⋂

Lg �=∅

yibk ≤ |Bh|
∣
∣
∣
{
k : Jik

⋂
Lg �= ∅

}∣
∣
∣ zihg , ∀i ∈ I , Bh ∈ BG, Lg ∈ LG.

(13.68)

For the problem with the fairness constraint, we can derive a valid constraint from
(13.15) by replacing M with

∑
i∈I

∑T
t=1 sjtdbjt , since the total cost for shipping

the cargo of each lane should not exceed the cost of shipping them all using the
spot-market price.

13.5 Exact Algorithms

Since the TSPP, as well as most of its special cases, are often computationally in-
tractable, it is of great interests to develop algorithms that can produce optimal
solutions to relatively small sized instances of the TSPP in affordable running time.

To solve the model (General MP) for cases where (General MP)(y) can be solved
to optimum efficiently, one can follow a branch-and-bound algorithm to search an
optimal value of y that minimizes (General MP)(y). As it goes down the search tree,
the branch-and-bound algorithm determines values of yibk one by one, and keeps the
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current best feasible solution denoted by (x*, y*). At each node of the search tree,
let �0 indicate the set of triples (i, b, k) with yibk = 0 and let �1 indicate the set of
triples (i, b, k) with yibk = 1. Let � := �0 ∪ �1 indicate the set of triples (i, b, k)
for determined yibk, and �̄ indicate the set of triples (i, b, k) for un-determined yibk.
Hence ( �0, �1) can be used to represent a partial solution.

Before assigning values to those un-determined yibk, the algorithm computes a
lower bound on the best possible objective value that can be obtained by completing
the current partial solution (�0, �1). This can be achieved by solving relaxations of
the models on the remaining problems, such as the linear programming relaxation
and the Lagrangian relaxation described in Sect. 4. If the obtained lower bound is not
less than the objective value of the current best solution (x*, y*), then the node can be
pruned. Otherwise, the algorithm will select an un-determined yibk for (i, b, k) ∈ �̄,
and assign yibk either 0 or 1, so as to generate two new nodes of the search tree. Given
the partial solution of each new node, we can construct feasible solutions by various
heuristics, which will be introduced later in Sect. 6. If the obtained solution has a
better objective value than the current best solution (x*, y*), the algorithm will update
(x*, y*). This branch-and-bound algorithm can be summarized in Algorithm 1.

Algorithm 1 The Branch-and-Bound Algorithm
1: Let NList represent the list of nodes of the search tree to be expanded,  

and set the initial value of NList to be the set that contains only the root node.
Let UB indicate the objective value of the current best feasible solution  
(x*, y*), and set the initial value of UB to be ∞

2: while NList is not empty do
p in NList, exclude p from NList, and consider its  

( 0 1,Π Π ).
3: Choose a node

4: Compute a lower bound LB on the best possible objective value that  
( 0 1,Π Π )

5: if LB < UB then 
0 1:Π =Π ∪Π

7:        each (i, b, k) ∈ Π do 
8:   v∈{ 0, 1} do

0 1
ˆ ˆ( , )Π Π , where 

ˆ : {( , , )}v v i b kΠ = Π U and 1 1
ˆ :v v− −Π = Π .

0 1
ˆ ˆ( , ) . If the feasible solution has a smaller objective value 

UB, then update UB and (x*, y*).
NList the new node p that is associated with 0 1

ˆ ˆ( , )Π Π .
12:   
13:       
14:  
15: 

associated partial solution 

can be obtained by completing 

6: Let 
for

for
9: Construct a new feasible solution

10: Construct a feasible solution from the new partial solution
Π Π

than
11: Add to

end for
end for

end if 
end while

16: Return the current best solution (x*, y*).

.
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To enhance the branch and bound algorithm, we can strengthen the relaxations of
the problem so as to obtain better lower bounds. For example, from the linear pro-
gramming relaxation, we can obtain a fractional solution, which may not be feasible
to the original model (General MP). In this case, an intuitive way to strengthen the
relaxation is to introduce new valid constraints that can exclude the fractional solu-
tions. This approach is usually referred to as a branch-and-cut algorithm (Lim et al.
2006).

The above branch-and-bound algorithm has been applied in the literature to solv-
ing the problem (MQC IP) (Lim et al. 2006). Given y, the model (MQC IP) can be
reformulated as follows:

(MQC IP)(y) = min
∑

j∈J

T∑

t=1

[
∑

i∈I

pij txij t + sjt

(

djt −
∑

i∈I

xij t

)]

(13.69)

s.t.
∑

i∈I

xij t ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.70)

qikyik ≤
∑

j∈Jik

T∑

t=1

xijt ≤ cikyik , ∀i ∈ I , 1 ≤ k ≤ |Ji |, (13.71)

xijt ∈ Z+, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T , (13.72)

which is equivalent to a min-cost network flow model, and thus can be solved effi-
ciently. Moreover, when given a partial solution ( �0, �1), the remaining problem
can be formulated as follows:

(MQC IP)(�0, �1) = min
T∑

t=1

∑

j∈J

sjtdjt +
T∑

t=1

∑

(i,k)∈�0

∑

j∈Jik

(pijt − sjt )xijt

(13.73)

s.t.
∑

(i,k)∈�0,j∈Jik

xij t ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.74)

qik ≤
∑

j∈Jik

T∑

t=1

xijt ≤ cik , ∀(i, k) ∈ �1, (13.75)

qikyik ≤
∑

j∈Jik

T∑

t=1

xijt ≤ cikyik , ∀(i, k) ∈ � (13.76)

xijt ∈ Z+, ∀(i, k) ∈ �0, j ∈ Jik , 1 ≤ t ≤ T , (13.77)

yik ∈ {0,1} , ∀(i, k) ∈ �. (13.78)
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Thus, relaxations of (MQC IP)(�0, �1) can provide valid lower bounds for the
branch and bound algorithm. This model for the remaining problem can be further
strengthened by including the valid constraints presented in Sect. 4.

Furthermore, the framework in Algorithm 1 can also be applied to problems with
constraints on the number as well as on the shipper’s preference for selected carriers.
This is because these constraints are only associated with y, and thus, given y, the
problems with these constraints are equivalent to the classical transportation problem,
and can be solved efficiently in polynomial time.

For (General MP)(y), searching for an exact optimal solution is more complicated,
since it needs to explore possible values for both x and y. However, in some cases,
we may still be able to reduce search space by introducing some auxiliary variables.
Consider the problem with the maximum-to-average-ratio commitment constraint
(MARC IP). Define vik := ∑

j∈Jik

∑T
t=1 xijt as new auxiliary variables that represent

the total volume of cargo assigned to carrier i for lanes in Jik and for all the T periods.
Given v, the model (MARC IP) can be reformulated as follows:

(MARC IP)(v) = max
∑

i∈I

∑

j∈J

T∑

t=1

(sjt − pijt )xijt (13.79)

s.t.
∑

i∈I

xitj ≤ djt , ∀j ∈ J , 1 ≤ t ≤ T , (13.80)

xijt ∈ Z+, ∀i ∈ I , j ∈ J , 1 ≤ t ≤ T , (13.81)

∑

j∈Jik

xij t ≤ αikj vik + ξ , ∀i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T , (13.82)

which can be transformed to a min-cost network flow problem, and thus can be
solved efficiently. Therefore, to solve (MARC IP), we can develop a branch and
bound algorithm to find optimal values of v so as to maximize (MARC IP)(v).

However, since vik are not binary variables, the branch and bound algorithm for
(MARC IP) needs to narrow the value ranges of vik iteratively. Thus, a partial solution
needs to be represented here by a vector of pairs (vik , v̄ik), where vikand v̄ik indicate the
lower and the upper bound of each vik, respectively. At each decision node associated
with the partial solution vik , v̄ik) : i ∈ I , 1 ≤ k ≤ |Ji |}, the algorithm first computes
the lower bound LB on the best possible objective value that can be obtained by
completing {(vik , v̄ik) : i ∈ I , 1 ≤ k ≤ |Ji |}. This can be achieved by solving a
relaxation of the integer programming model for given {(vik , v̄ik) : i ∈ I , 1 ≤ k ≤
|Ji |}. Next, the algorithm selects any (i, k) with vik < v̄ik , and computes the midpoint
p of [vik , v̄ik], so that two new nodes can be generated with the range of vik being
[vik , p] and [p + 1, v̄ik], respectively. For each new node, we can construct feasible
solutions to update the objective value UB of the existing best feasible solution.
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13.6 Heuristic Algorithms

To tackle the TSPP and its special cases that are computationally intractable, one so-
lution approach is to develop heuristic algorithms that can produce feasible solutions
close to the optimum in affordable running time. Recall that for a minimization (or
maximization) problem, a heuristic algorithm is said to be a ρ-approximation algo-
rithm if, for every instance of the problem, the algorithm has a polynomial running
time and returns a feasible solution that has an objective value at most ρ times the
minimum objective value (or at least 1/ρ times the maximum objective value). The
value of ρ is referred to as the approximation ratio of the algorithm.

The constant-ratio approximation algorithms known in the literature on trans-
portation service procurement are mainly for the special case where only MQC
constraints are taken into account. One such algorithm follows a greedy approach
(Lim et al. 2006). In this greedy algorithm, two operators, selection(i, k) and assign-
ment(i, k), are defined for the construction of feasible solutions. For each unassigned
pair of carrier i ∈ I and 1 ≤ k ≤ |Ji |, the operator selection(i, k) selects carrier i and
lanes in Jik, and assigns carrier i the cheapest qik units of unassigned cargo of lanes
in Jik so as to satisfy the minimum quantity commitment constraint. For each as-
signed carrier i ∈ I and 1 ≤ k ≤ |Ji |, the operator assignment(i, k) assigns carrier i
the cheapest unassigned cargo of lanes in Jik for delivering. Based on these two
operators, the algorithm constructs a feasible solution to the problem iteratively,
and during each iteration, it applies the operator with the minimum average cost,
until all the cargo has been assigned. Here, the average cost of selection(i, k) is
measured by

∑
(j ,t)∈A (pijt − sjt )/qik , where A is the set of qik cargo of lanes in Jik

newly assigned to carrier i, and the average cost of assignment(i, k) is measured by
(pijt − sjt ).

We summarize the above greedy algorithm in Algorithm 2, which extends the
one in Lim et al. (2006), as constraints presented in this chapter are more general,
with time periods being taken into account. It can be seen that after each iteration
of Algorithm 2, at least one of the three following events must happen: (i) a carrier
i and lanes in Jik are newly selected; (ii) the capacity of a selected carrier i is fully
assigned for lanes in Jik; (iii) the demand of lane j and period t is fully satisfied.
This implies that the total number of iterations is O(

∑
i∈I |Ji | + |J |T ). Since each

iteration has a polynomial running time, we obtain that Algorithm 2 runs in poly-
nomial time. Moreover, by following a similar argument as in Lim et al. (2006),
it can be shown that Algorithm 2 has an approximation ratio of b if all the car-
riers have unlimited capacity, if their minimum quantities qi all equal a constant
b, if they have only one lane group, and if the shipping price (pijt– jts) forms a
metric.
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Algorithm 2 Greedy Algorithm 
1: Set the selected set, 1Π , equal to empty, and set assigned quantity ˆ

jtd equal
to zero. 

2: while NOT all cargo has been assigned, i.e. there exists (j, t) such that
ˆ

jt jtd d< do 
3: Choose an operator σ with minimum cost among all selection(i, k) for 

(i, k) ∉ 1Π and assignment(i, k) for (i, k) ∈ 1Π , breaking ties by the
quantity of newly assigned cargo. 

4: if σ is selection(i, k) then 
5: Select carrier i and lanes in Jik by setting yik ←1 and

1Π ← 1Π {(i, k)}.
6: Let A denote the multiset of qik unassigned cargos (j, t) that are of the

qik cheapest ( )ijt jtp s− among all j ∈ Jik and 1 ≤ t ≤ T with

ˆ
jt jtd d< .

7: For each cargo (j, t) ∈ A, assign it to carrier i for delivering, so that
both xijt and ˆ jtd are increased by the number of copies of (j, t) in A. 

8: else if σ is assignment(i, k) then 
9: Let (j, t) denote the undelivered cargo (j, t) that minimizes the 

transportation cost ( )ijt jtp s− among all j ∈ Jik and 1 ≤ t ≤ T

with ˆ jt jtd d< . 

10: Assign the cargo (j, t) to carrier i for delivering, so that both xijt and
ˆ

jtd are increased by 
1

ˆmin{ ,( )}
ik

T
ik ijt jt jtj J t

c x d d
∈

− −∑
11: end if 
12: end while 
13: Return (x, y) as an approximation solution.

U

∑ =

When T = |B| = 1, |J i | = 1 for i ∈ I, ci1 = ∞ for i ∈ I, and qi1 = b for i ∈ I, the
above problem with the MQC constraint is equivalent to a facility location problem,
where the number of customers assigned to an open facility cannot be less than
b. In addition to the above b-approximation algorithm, two bi-criteria algorithms
are known in the literature (Guha et al. 2000; Karget and Minkoff 2000) which
achieve constant approximation ratios with regards to the optimal total cost, but which
violate the lower bound constraint by a constant factor. Svitkina (2010) has recently
developed a constant approximation algorithm for this problem, by transforming it
to a capacity facility location problem, where the number of customers assigned
to an open facility cannot exceed a given capacity, and for which several constant-
factor approximation algorithms are known. Its approximation ratio has further been
improved by Ahmadian and Swamy (2013).
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For the problem with the MARC constraint, a linear programming relaxation
heuristic (LP heuristic) is known to have a good worst-case performance (Lim et al.
2008a). The basic idea of the algorithm is to use a fractional solution, obtained from
the linear programming relaxation of the problem, so as to decompose the problem
into a number of sub-problems such that each sub-problem consists of only a single
carrier. Consider a special case of the problem that consists only of a single carrier
i, and for each 1 ≤ k ≤ |Ji |, we still use vik := ∑

j∈Jik

∑T
t=1 xijt to represent the total

volume of cargo assigned to carrier i for lanes in Jik and for all the T periods. The
problem for carrier i and lanes in Jik, denoted by IPik (d, ξ ), can be formulated as
follows:

IPik(d , ξ ) = max
0≤vik≤cik

IPik(d, ξ , vik) (13.83)

where

IPik(d, ξ , vik) = max
∑

j∈Jik

T∑

t=1

(sjt − pijt )xijt (13.84)

s.t. xitj ≤ djt , ∀j ∈ Jik , 1 ≤ t ≤ T , (13.85)

xijt ∈ Z+, ∀j ∈ Jik , 1 ≤ t ≤ T , (13.86)

∑

j∈Jik

xij t ≤ αiktvik + ξ , ∀1 ≤ t ≤ T . (13.87)

As shown earlier in Sect. 3, the model IPik (d, ξ , vik) can be solved in polynomial
time by a standard network flow algorithm or a simplified greedy algorithm.

Consider the fractional optimal solution x̂ to the linear programming relaxation
of model (MARC IP), denoted by LP(d, ξ ). From x̂ we can construct an instance
of the single carrier problem for each carrier i ∈ I and lanes in Jik, denoted by IPik

(d(i), ξ ), where d
(i)
j t := x̂ij t for j ∈ Jik and 1 ≤ t ≤ T. Let x denote the union of the

obtained solutions to sub-problems IPik (d(i), ξ ) for i ∈ I and 1 ≤ k ≤ |Ji |. Since∑
i∈I x̂ij t ≤ djt , it can be seen that x is feasible to (MARC IP). Moreover, Lim et al.

(2008a) shows that such an LP based heuristic guarantees a worst case approximation
ratio of ( ξ−1

ξ
)( ξ−1

ξ−1+ σ
)( τ−1

τ
), where parameters σ and τ are defined as follows, and

which depend on the instance of the problem:

σ = 1 + max
{|Jik| αikjT : i ∈ I , 1 ≤ k ≤ |Ji |, 1 ≤ t ≤ T } , (13.88)

τ = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ci

|Jik|T , for i ∈ I , 1 ≤ k ≤ |Ji |,
ξ

|Jik| , for i ∈ I , 1 ≤ k ≤ |Ji |,
djt

|I | , for j ∈ Jik ,1 ≤ t ≤ T , and existing i with sjt − pijt > 0.

(13.89)
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It can be seen that such an approximation ratio is close to one when σ is small, and
ξ or τ is large, which are often true in practice.

As for the problem with constraints on the number of selected carriers, this
contains the k-median problem as a special case, for which a number of constant
approximation algorithms are known (Arya et al. 2001; Li and Svensson 2013;
Vazirani 2001). However, it still remains unknown as to whether or not these ap-
proximation algorithms can guarantee constant approximation algorithms for more
general cases with BG containing multiple business units.

To develop heuristic algorithms for more general cases of the TSPP, we next intro-
duce two approaches as follows, one based on rounding of the fractional solutions,
and the other based on neighborhood search.

For the problems that can be formulated as integer programming models, we can
first solve its linear programming relaxation and obtain a fractional solution denoted
by (x̂, y). If (x̂, ŷ) contains only integer values, then a feasible solution is obtained.
Otherwise, we can select one or more variables that have fractional values, and
round them to integers. Fixing the values of these variables, we can obtain an integer
programming model with a smaller scale, and its linear programming relaxation can
be solved for the next iteration of rounding. As shown in Algorithm 3, this process
is iterated until we obtain a feasible solution.

Algorithm 3 Linear Programming Rounding Heuristic  
1: Let X indicate the list of xibjt whose values have been decided. Let Y indicate 
    the list of yibk whose values have been decided. Set X and Y to initially be  
    an empty set. 
2: Solve a linear programming relaxation of the problem for the given values of 
    variables in X and Y . Denote the obtained fractional solution by ˆ ˆ( , )x y .
3: if no variables in ˆ ˆ( , )x y are fractional then 
4:  Return ˆ ˆ( , )x y .
5: else
6:  Select xibjt or yibk having a fractional value, round it to an integer, and add 
          it to X or Y .
7:  Go to Step 2.  
8: end if 

For different specific problems or heuristics, we can use different ways to select
and round variables that have fractional values in Algorithm 3. For example, the
linear programming rounding heuristic has been applied to solving the model (MQC
IP) (Lim et al. 2006). Since this model is equivalent to a min-cost network flow
problem when y is given, the heuristic always selects yi of the largest fractional
value and rounds it to one. The numerical experiments have shown that such a linear
programming rounding method outperforms some other heuristic methods.

For a problem that can be efficiently solved when values of y are given, we
can explore near-optimal heuristic solutions by a neighborhood search approach.
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For every feasible selection y of carriers, let N(y) denote a subset of selections
other than y, defined as the neighborhood of y. The neighborhood search approach
iteratively moves the current feasible selection y to another feasible selection from
its neighborhood N(y), and returns the best feasible solution obtained after several
iterations. We can summarize this approach as follows:

Algorithm 4 Neighborhood Search Heuristic  
1: Let (x*, y*) indicate the best feasible solution obtained.  
2: while Stop condition is not satisfied do  
3:  Choose a feasible selection 'y  from N(y).  
4:  Compute 'x  

 
by solving (General MP)( 'y ).  

5:  if ( ', ')x y is better than (x*, y*) then  
6:   Set (x*, y*) to be ( ', ')x y .  
7:  end if  
8:  If certain conditions are satisfied, then update y by 'y .  
9: end while 

For different specific problems or heuristics, we can adopt different neighbor-hoods,
different ways of choosing new feasible selections, and different conditions to update
the current feasible selection. For the problem with fairness constraints, the neigh-
borhood search heuristic has been applied (Lim et al. 2012), where the neighborhood
N(y) is defined by two operators on y, including one that removes a selected carrier
and another that inserts a new carrier. The heuristic algorithm chooses a new feasible
selection from N(y) by random picking, and updates the current selection y only
when the new selection produces a better feasible solution. In order to avoid trapping
in local optimal solutions, Lim et al. (2012) has further extended this neighborhood
search heuristic to a Tabu search algorithm, so that certain selections that have been
made in the neighborhood will be forbidden for several iterations. Numerical results
have shown that this randomized Tabu search algorithm significantly outperforms
commercial optimization solvers.

13.7 Future Research Directions

In this chapter, we have introduced a general optimization model for the trans-
portation service procurement problem (TSPP), and have reviewed various existing
solution methods for different variants and extensions of it. We have discussed exist-
ing results and developed some new results for the problem, including its tractability,
relaxations, exact algorithms, approximation algorithms, and heuristic algorithms.
From this, there are several themes that can be identified for future research.

When choosing carriers during the procurement process, shippers are concerned
not only about the shipping cost but also about the shipping time, since a slow or
unreliable shipping time may increase the shipper’s production cost, or increase
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its risk of losing sales (Lu et al. 2014). Therefore, it would be of interest to also
take into account transit times, and to factor this into the optimization model for the
selection of carriers. However, as this may require making joint decisions with regard
to transportation service procurement, production, and sales, the problem could be
challenging.

In the existing literature on transportation service procurement, models and solu-
tion methods are mainly based on deterministic settings. However, due to the high
volatility of the shipping market, there are significant uncertainties involved with
both spot-market shipping rates and the actual shipping demands, and these can be
taken into account in the future research. This will no doubt present new challenges
when one develop optimization models and solution methods for this problem.

The volatility of the shipping market presents challenges not only for optimizing
decision making over transportation service procurement, but also in coordinating
the carriers and shippers. In practice, carriers are sometimes reluctant to purchase
transportation services from carriers in advance, since they are concerned that the
spot market price may suddenly drop. Thus, it would be interesting to design and
study various forms of contracts that can facilitate the business between carriers and
shippers, such as contracts that enable the sharing of risks and costs (An et al. 2014;
Lee et al. 2014).

Furthermore, it would also be interesting to study the design of mechanisms for
transportation service procurement. Since most problems faced in practice concern
computational intractability, only heuristic algorithms are available for them. There-
fore, Vickrey-based payment rules (Clarke 1971; Groves 1973; Vickrey 1961) are
often not able to guarantee positive revenue for the shipper (Conitzer and Sandholm
2006; Parkes et al. 2001). Thus, in future work we can investigate effectiveness of
different payment rules for situations that use heuristic algorithms (instead of exact
algorithms) for the shipper to determine cargo allocations (Huang and Xu 2013; Xu
and Huang 2013; Xu and Huang 2014).

Other interesting research directions may include the development of efficient
solution methods for the general optimization model for the TSPP, as well as for
those problems with more complicated cost structures, such as discounts that carriers
may offer for multiple tiers of shipping volume (Qin et al. 2012).
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