
Chapter 10
Ship Route Schedule Based Interactions Between
Container Shipping Lines and Port Operators
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Abstract This chapter examines a practical tactical liner ship route schedule design
problem, which involves the interaction between container shipping lines and port
operators. When designing the schedule, the availability of each port in a week, i.e.,
port time window, is incorporated. As a result, the designed schedule can be applied
in practice without or with only minimum revisions. We assume that each port on a
ship route is visited only once in a round-trip journey. This problem is formulated as
a nonlinear non-convex optimization model that aims to minimize the sum of ship
cost, bunker cost and inventory cost. In view of the problem structure, an efficient
dynamic-programming based solution approach is proposed. First, a lower bound
of the number of ships is determined, and then we enumerate all possible numbers
of ships. Given the number of ships, we can construct a space-time network that
discretizes the time and represents the design of schedule. The optimal schedule in
such a space-time network can be obtained by dynamic programming. The algorithm
stops when the lower bound is not smaller than the optimal total cost of the best
solution obtained. The proposed solution method is tested on a trans-Pacific ship
route.
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Fig. 10.1 NCE service
provided by OOCL (2013)

10.1 Introduction

Liner shipping mainly involves the transportation of containerized cargo (contain-
ers) such as manufactured products, food, and garment. Liner shipping services have
fixed sequences of ports of call and fixed schedules, i.e., arrival and departure times
at each port of call, similar to public transport operations. Liner services are an-
nounced in advance to attract potential customers. For example, Fig. 10.1 shows a
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liner service named North & Central China East Coast Express (NCE) provided by
Orient Overseas Container Line (OOCL 2013). The ports of call and schedule are
published in the website of OOCL. Customers can arrange the delivery of their cargo
based on the available date of the cargo at the origin port and the expected arrival
date at the destination port. For instance, a customer that has 20 containers to be
transported from Pusan to New York may contact OOCL to transport the containers.
As ships visit Pusan on Sunday, the customer has to make sure that the containers
are stacked in the container yard of Pusan before Saturday, so that containers can
be loaded to a ship when the ship arrives. The ship will not directly transport the
containers from Pusan to NewYork. By contrast, the ship will transport the container
via Qingdao, Ningbo, Shanghai, and finally to New York. At the port of New York,
the containers will be unloaded from the ship.

In the process of container transportation, the main role of container port is to load
and unload containers. First, a containership informs a port operator the estimated
arrival time, and then the port operator makes a plan for servicing the ship. When the
ship arrives, tug boats will tow the ship to the berth. Then the ship will be moored,
and quay cranes will start to load and unload containers for the ship. At the same
time, yard trucks will transport containers from and to the quay side. The container
handling operation may take up to two days. After that, the ship is unmoored, and
tug boats tow the ship out of the port.

10.1.1 Interactions Between Shipping Lines and Port Operators

Shipping lines and port operators interact with each other to fulfill container transport
services. Their interactions occur in several aspects. Shipping lines need to choose
which ports to visit on the shipping services and determine which ports serve as
the hub ports. Port operators need to prioritize shipping lines when the ports have
limited capacity. Ports provide services to ships such as bunkering, pilotage and
towage, berthing, container handling and temporarily storing containers (including
empty containers) in container yards. In the sequel, we take a closer look at two
interactions: ship storage planning and berth allocation.

Ship Storage Planning

Ship storage plan determines how to stow a set of containers of different types
into a set of available locations within a ship at a particular port, subject to some
structural, stability and operational constraints related to both the containers and
the ship, while minimizing the total container re-handling cost or time caused by
unloading a container below other containers. A good ship storage plan is helpful
for port operators to efficiently load and unload containers, and thus shortens the
unproductive port time of ships.
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As proved by Aslidis (1989), the ship storage planning (SSP) problem is NP-
hard and several heuristic methods or computer simulation approaches have been
proposed in the past two decades.

Aslidis (1989), Imai and Miki (1989) and Aslidis (1990) have contributed three
pioneering works on the SSP problem. Aslidis (1989, 1990) have examined the SSP
problem with the objective of minimizing the total container overstorage cost and
proposed heuristic solution methods. Imai and Miki (1989) considered the minimiza-
tion of container loading-related rearrangements. Avriel and Penn (1993) formulated
the SSP problem as a binary integer linear programming model and argued that
exact algorithms solving the integer programming model were too slow even af-
ter some preprocessing. Ambrosino and Sciomachen (1998) derived some rules for
determining a better ship stowage configuration using a constraint satisfaction ap-
proach. Avriel et al. (1998) dealt with the SSP problem without taking into account
ship stability and several other constraints. They presented a binary integer linear
programming formulation and found that the optimal solution was difficult to obtain
because of the large number of binary variables and constraints involved in the model.
Consequently, they developed a heuristic procedure called the suspensory heuristic
procedure. However, they assumed that the ship only had a large cargo bay without
considering the hatch covers and stability. Wilson and Roach (1999, 2000) have pro-
posed a methodology for generating computerised container stowage plans, which
embodied a two-stage process: In the first stage, a branch-and-bound algorithm was
utilized for solving the problem of assigning containers to a bay’s block in a ship,
and in the second stage a tabu search algorithm was employed to assign specific
locations for specific containers. Wilson et al. (2001) applied a genetic algorithm
approach for solving a ship stowage pre-planning problem. Dubrovsky et al. (2002)
used a genetic algorithm for minimizing the number of container movements in the
stowage planning. Ambrosino et al. (2004) presented an integer linear programming
model for the SSP. Also, they proposed a tangible approach comprising heuristic pre-
processing and pre-stowing procedures that allowed relaxation of some constraints
of the exact model. Ambrosino et al. (2006) developed a three-phase algorithm for
solving the SSP problem based on a partitioning procedure that split the ship into
different portions and assigned containers on the basis of their destination.

Moreover, there are also a few software packages used by shipping lines for
ship stowage planning, for example, the PowerStow Container Stowage Sys-
tem (www.navis.com), LOADMASTER X5 (http://www.kockumsonics.com) and
CargoMax (www.herbertsoftware.com).

Berth Allocation

Another interaction between shipping lines and port operators is berth allocation.
In fact, the berth allocation problem (BAP), which is the assignment of quay space
and service time to vessels for container loading and unloading, is one of the essen-
tial quay-side decision problems faced by port operators. A good BAP can shorten
the unproductive port time of ships, enabling liner shipping companies to make a
higher profit.
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The BAP can be classified according to different criteria. First, there are discrete
BAP (DBAP) where each berth can serve one ship at a time, and continuous BAP
(CBAP) with a long straight quay and how many ships can be accommodated at
the same time depends on the sizes of the ships. Second, BAP can be classified as
being either static (SBAP) or dynamic (DynBAP). In SBAP, all ships are already in
the port when the berth allocation is planned, whereas in DynBAP some ships are
still on the voyage to the port when the port operator allocates berths. The SBAP is
applicable when the port is highly congested. Third, BAP can occur at the operational
level (OBAP), or tactical level (TBAP). The OBAP covers a planning horizon of
usually at most one week and the TBAP aims to support port operators to negotiate
with shipping lines. If TBAP accounts for the periodicity of vessel schedules, e.g.,
weekly arrival patterns of containerships, then if a vessel is serviced at a berth on
day 7 and day 8, other vessels cannot use the berth on day 1, because day 8 and day
1 correspond to the same day in a week. The time horizon of this type of TBAP is a
cylinder whose circumference equals 1 week. Hence, the resulting models (Moorthy
and Teo 2006, Zhen et al. 2011b) are significantly different from OBAP models. If
in the TBAP vessels do not arrive periodically, the time horizon is simply a rectangle
with an open end and the models are very similar to OBAP models.

Besides determining the berthing time and location, some studies on DynBAP
(either DBAP or CBAP and either TBAP or OBAP) also integrate other decision
issues such as quay crane assignment, quay crane scheduling, container storage
planning at yard, and yard truck scheduling. The models on DynBAP all aim at
providing berthing and other related services at minimum cost (cost associated with
quay cranes and yard trucks). However, different models have different definitions for
service. Most studies assume that each ship has a preferred arrival time. Giallombardo
et al. (2010) is an exception in that it examined a TBAP and assumed that there was
no difference for shipping lines when their ships were scheduled to arrive. The
objective was to minimize the container handling time of ships by choosing quay
crane assignment profiles.

The studies considering the preference of ship arrival times can be classified into
four different lines, which are briefly summarized as follows. The first line aims to
minimize the total service time (turnaround time) of all ships, including waiting time
for berths and container handling time, or total weighted service time where different
ships have different weights, for example, Imai et al. (2001, 2003, 2005, 2008a),
Cordeau et al. (2005), Moorthy and Teo (2006), Golias et al. (2009b, 2010a), Lee
et al. (2010). Note that if the handling time is constant, minimizing the service time
is equivalent to minimizing the waiting time. Similarly, Imai et al. (2008b) required
that if a ship’s waiting time exceeded a certain limit, the ship must be served at an
external terminal, and the target is to minimize the total service time of ships at
the external terminal. Golias et al. (2009a) considered two objectives: minimizing
the total service time of preferential customers, and minimizing the total service
time of all vessels. The second line minimizes the total tardiness cost, which is the
finish operation time (real departure time) minus the expected departure time if the
former is larger, and 0 otherwise, for instance, Kim and Moon (2003), Chang et
al. (2010), Zhen et al. (2011b). In addition, Han et al. (2010) proposed a proactive
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approach for a BAP with quay crane scheduling and stochastic arrival and handling
time. They took into account the expected value and standard deviation of the total
service time and weighted tardiness of all ships. Chen et al. (2012) minimized the
maximum relative tardiness of all ships. The third line formulates the penalty for
earliness and tardiness in greater details. Meisel and Bierwirth (2009) investigated
a CBAP with quay crane allocation. They assumed that each ship has an expected
arrival time, an earliest start operation time, expected finish operation time, and
latest allowed finish operation time. All of these time components were included in
the objective function. Zhen et al. (2011a) developed an integrated model for the
TBAP with yard operations planning. The model minimized the weighted sum of
deviation from vessels’ expected turnaround time intervals and the operations cost
associated with transshipment containers. The fourth line incorporates the bunker
cost of the vessels in the models. Golias et al. (2010b) considered the following
elements in the objective function: (i) the total service time, (ii) the tardiness, and
(iii) the emissions and fuel cost for all vessels while in transit to their next port of
call. By contrast, Du et al. (2011) incorporated the tardiness and the fuel cost for
all vessels while in transit from their current positions to the focal port of the BAP.
These berth allocation studies are all from the points of view of port operators.

10.1.2 Liner Ship Route Schedule Design with Port Time Windows

This book chapter examines the interaction between shipping lines and port operators
on schedule design from the viewpoint of shipping lines. Schedule design for a
liner service (ship route) is a tactical-level planning decision that is made every 3–6
months. To design the schedule of a ship route, the first factor to be considered is the
availability of the ports. Since a port needs to provide services for many shipping
lines and many ships, it cannot guarantee the availability of services whenever a ship
arrives. For instance, a port may be able to provide services on Monday, Tuesday,
and Friday, and is fully occupied on Wednesday, Thursday, Saturday, and Sunday.
We use the term “port time window” to refer to the time in a week that a port can
provide services to ships. Hence, schedule design is subject to the constraint of port
time windows. Moreover, because of the fast growth of container trade and the long
time required for the construction/expansion of port capacity, ports tend to be more
congested. As a result, it is important to consider the availability of ports in schedule
design. Otherwise the designed schedule may be infeasible in reality.

It should be noted that “port time window” here is different from the “time win-
dow” in other problems, e.g., the vehicle routing problems (VPRs), as shown in
Fig. 10.2. In fact, in most other problems, time window is an interval that defines a
convex set. However, in liner ship route schedule design, port time window defines
a set of available times in a week that the port can provide berthing services, and
more often than not, the set is disconnected and non-convex. Moreover, because of
the weekly frequency of liner shipping services, the port time window should be
considered from the viewpoint of a loop rather than a line or line segment. Take
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Fig. 10.2 Difference of time
windows

Fig. 10.3 Weekly property of
port time window

Fig. 10.3 as an example. The port time window in Fig. 10.3a is equivalent to that in
Fig. 10.3b.

Besides the availability of port time windows, the design of schedule is also
influenced by the ship costs, bunker costs, and inventory costs. Liner services are
usually weekly, which means that the round-trip journey time (weeks) of a ship
route is equal to the number of ships deployed on it. As a result, sailing at a higher
speed will reduce the round-trip journey time, thereby the number of ships required
and the ship cost. However, a higher speed implies a higher bunker cost: the daily
fuel consumption of ships increases approximately proportional to the sailing speed
cubed (Ronen 2011). At the same time, a higher speed leads to a shorter transit time
of containers from origin to destination, and therefore a lower inventory cost (OOCL
2006). Consequently, in schedule design a liner shipping company must balance the
trade-off between ship cost, bunker cost, and inventory cost, while considering port
time windows.
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10.1.3 Objectives

The objective of this chapter is to address the liner ship route schedule design problem
with port time windows (SDPTW). We assume that each port on the ship route is
visited only once in a round-trip journey. We design the arrival time at each port of
call on the ship route that satisfies the port time window constraint while minimizing
the sum of ship cost, bunker cost, and inventory cost. The designed schedule is
feasible in that it takes into account port time windows. The designed schedule is
also optimal because the total cost of ships, bunker, and inventory is minimized.
Therefore, this problem is of significant value for liner shipping companies.

The rest of the chapter is organized as follows. Section 10.2 reviews relevant stud-
ies on schedule design. Section 10.3 describes the problem. Section 10.4 formulates
a mathematical model for the problem. Section 10.5 proposes a dynamic program-
ming based holistic solution approach to address the problem. Section 10.6 reports
a case study based on the NCE service of OOCL. Section 10.7 concludes and points
out future research directions.

10.2 Literature Review

According to reviews of Christiansen et al. (2004), Christiansen et al. (2013) and
Meng et al. (2014), most studies on liner shipping operations focus on network
design, ship deployment, and container routing with fixed schedules. For exam-
ple, Shintani et al. (2007), Agarwal and Ergun (2008), Alvarez (2009), Meng and
Wang (2011a), Meng et al. (2012a), Reinhardt and Pisinger (2012), Wang and Meng
(2013), Brouer et al. (2013a), and Wang and Meng (2014) have examined ship route
design/network design/network alteration problems; Fagerholt (1999), Gelareh and
Meng (2010), Meng and Wang (2011b), Wang et al. (2011), Meng and Wang (2012),
Meng et al. (2012b), Wang and Meng (2012a), and Wang (2013) have investigated
fleet deployment problems; Bell et al. (2011), Dong and Song (2012), and Wang et
al. (2013) have studied container routing problems.

Liner shipping schedule design occurs both at the tactical level and the operational
level. At the tactical level, the designed schedule will be announced in the website of
the shipping line, so that customers can book ship slots for transporting containers.
Nevertheless, in reality the announced schedule may not be strictly adhered to, due
to adverse weather conditions, port congestion, mechanical breakdown, etc. There-
fore, at the operational level, the shipping line may adjust the arrival times at each
port of call based on real-time information. This is the operational-level schedule
design problem.

10.2.1 Tactical-Level Schedule Design

There are only a few studies on ship route schedule design. Mourão et al. (2001)
analyzed a small hub-and-spoke network at the tactical level. The network consisted
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of two routes—a feed route and a main route—and one pair of ports. It assumed
that all containers must be transshipped at the hub port in the feeder route. The
main route had two possible schedules: Monday roster and Thursday roster. Two
integer programming models were developed. The decision variables in the first
model include: number of mainline ships in each type assigned to the Monday roster,
number of mainline ships in each type assigned to the Thursday roster, and number of
feeder ships assigned to the feeder route. In the second model, the decision variables
were: number of voyages per year of the mainline ships in each type assigned to
the Monday roster, number of voyages per year of the mainline ships in each type
assigned to the Thursday roster, and number of voyages per year of feeder ships.
The inventory costs of the containers to be shipped were considered in the objective
function. These two models were solved by Excel.

Wang and Meng (2011) investigated the schedule design and container routing
problem in liner shipping. They considered a general liner shipping network with
many ports, many ship routes, and many origin-destination (OD) pairs. Containers
in each OD pair had more than one path to be transported from origin to destination,
and these paths were assumed to be given a priori. Containers in each OD pair had a
market-level transit time to ensure that the container delivery service was competitive.
In particular, if the real transit time was longer than the market-level transit time,
a penalty was incurred; if the real transit time was shorter than the market-level
transit time, a bonus was given. It was assumed that the sailing speed of ships and
the time spent at each port of call were all fixed. Hence, the main decision variables
were when to arrive at the first port of call on each ship route. At the same time,
container routing with transshipment were incorporated. In fact, how containers
were transported affected the schedule design. Hence, schedule design and container
routing were studied in a holistic manner. The formulation for the schedule design
and container routing problem was nonlinear, non-continuous and non-convex. An
efficient genetic local search heuristic was developed. Computational results showed
that the genetic local search heuristic could efficiently find good quality solutions.
Moreover, the model for the container routing sub-problem could be separately used
to optimize the day-to-day container routing decisions for the realized container
shipment demand after the schedules have been designed.

Qi and Song (2012) designed an optimal containership schedule for a liner ship
route to minimize the total expected fuel consumption. They considered uncertain
port time and weekly frequency. They defined the level of service as the probabil-
ity that the containership would arrive at a port no later than the published arrival
time. They analytically studied the special case of 100 % service levels. By proving
the convexity and differentiability of the objective function, it was shown that the
optimal schedule could be obtained by solving a nonlinear programming problem.
With further assumption of identical distribution of the uncertain parts of port times,
they analytically derived some properties of an optimal schedule, which led to use-
ful managerial insights. For example, the shortest leg was the most problematic leg
when designing the optimal schedule to achieve 100 % service level and to minimize
the emissions within the speed constraints, and therefore a liner shipping company



288 S. Wang et al.

should plan relatively longer time for a short leg. A general optimal ship schedul-
ing problem was formulated, and the formulation was solved by simulation-based
stochastic approximation methods. They validated the model and the properties by
numerical studies. Based on a real liner case study with various scenarios analysis,
they found significant fuel savings could be achieved from their model compared to
the company’s original schedule or to the schedule based on deterministic data, espe-
cially for the cases with larger degree of uncertainties. They also found that the total
fuel consumption could be reduced by sacrificing the service levels starting from the
shortest legs; whereas as the vessel lateness penalty increased, higher service levels
tended to be maintained and they became evener among all port-of-calls. This would
help liner companies better understand the tradeoff between the fuel consumption
and the service level.

Wang and Meng (2012c) examined the design of liner ship route schedules that
could hedge against the uncertainties in port operations, which included the uncer-
tain wait time due to port congestion and uncertain container handling time. They
assumed that if a ship arrived at a port later than planned, then the penalty cost first
increased linearly with the delay, and when the delay exceeded a particular threshold,
the penalty cost did not change any more because the customers already resorted to
other approaches to handle the delay. They further assumed that if a ship was de-
layed, it would try to catch up with the planned schedule as early as possible by
sailing at the fastest speed. The designed schedule was robust in that uncertainties in
port operations and schedule recovery by fast steaming were captured endogenously.
The number of ships required to maintain a weekly frequency was considered as a
decision variable. The objective function minimized the ship operating cost, ex-
pected bunker cost, and the penalty cost for delay. This problem was formulated as a
mixed-integer nonlinear stochastic programming model. A solution algorithm which
incorporated a sample average approximation method, linearization techniques, and
a decomposition scheme, was proposed. Numerical experiments based on a long-
haul ship route of Maersk Line were carried out. The ship route covered two trade
lanes: trans-Pacific and trans-Atlantic, and three regions: Asia, America, and Europe,
and had the sequence of ports of call as follows: Tokyo (1) → Kobe (2) → Chiwan
(3) → Hong Kong (4) → Kaohsiung (5) → Busan (6) → Kobe (7) → Tokyo (8)
→ Balboa (9) → Manzanillo (10) → Miami (11) → Jacksonville (12) → Savannah
(13) → Charleston (14) → New York (15) → Antwerp (16) → Felixstowe (17)
→ Bremerhaven (18) → Rotterdam (19) → Le Havre (20) → New York (21) →
Norfolk (22) → Charleston (23) → Manzanillo (24) → Balboa (25) → San Pedro
(26) → Oakland (27) → Tokyo (1). The numerical experiments demonstrated that
the algorithm obtained near-optimal solutions with the stochastic optimality gap less
than 1.5 % within reasonable time.

Wang and Meng (2012b) extended the work of Wang and Meng (2011). Both
works have studied a liner shipping network, which contrasted Qi and Song (2012)
and Wang and Meng (2012c), and both works have required a certain level of ser-
vice in terms of OD transit time. Wang and Meng (2012b) was the first attempt to
examine the optimal sailing speed function in view of sea contingency to minimize
bunker consumption. The optimality condition for the sailing speed and the optimal
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sailing speed function with time were derived. They also contributed to the line of
literature on optimization of sailing speed to control bunker consumption by pro-
viding an efficient and exact cutting-plane based solution algorithm. Moreover, they
addressed the practical schedule design problem arising in liner shipping industry
while considering port-to-port transit time with transshipment and sea contingency
and uncertain port time. The port-to-port transit time with transshipment issue was
solved with a mixed-integer programming model; sea contingency was investigated
in the optimality condition of sailing speed; and the uncertain port time was ad-
dressed by proving the convexity of the expected bunker cost on each voyage leg
with regard to the inter-arrival time between the two consecutive portcalls of the leg.
The novel holistic solution algorithm exploited the special structure of the decision
problem and integrated several techniques in a nice manner. The proposed model and
algorithm were applied to an Asia-Europe-Oceania shipping network provided by a
global liner shipping company. The network had a total of 46 ports in Asia, Europe,
and Oceania. These 46 ports were served by 11 ship routes with three types of ships.
There were a total of 100 container routes in the shipping network. The computa-
tional results demonstrated that the proposed model provided a useful planning tool
for liner shipping companies.

10.2.2 Operational-Level Schedule Design

At the operational level, Yan et al. (2009) developed a container routing model
from the perspective of a liner shipping company with the objective of maximizing
operating profit while considering the arrival time of ships at ports. They performed a
case study utilizing operating data from a major Taiwanese marine shipping company.
Brouer et al. (2013b) proposed a vessel schedule recovery problem to evaluate a given
disruption scenario and to select a recovery action balancing the tradeoff between
increased bunker consumption and the impact on cargo in the remaining network
and the customer service level. The model was applied to four real-life cases from
Maersk Line and cost savings of up to 58 % were achieved by the suggested solutions
compared to realized recoveries of the real life cases.

10.2.3 Gaps of Existing Studies

None of the above studies have taken into consideration the port time windows. In
other words, they have all assumed that a port is always ready for service whenever a
ship comes. This may not be consistent with the practice. Hence, the above literature
review clearly shows that liner ship route schedule design with port time windows is a
new research topic. It incorporates both shipping operations and port operations in the
planning decision and hence has practical significance for liner shipping companies.
This study thus focuses on the tactical-level schedule design problem.
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10.3 Problem Description

Consider a ship route such as the NCE service in Fig. 10.1. The ship route has
a weekly service frequency which means each port of call is visited on the same
day every week. The port rotation of the ship route has a total of N ports. Define
I := {1, 2, · · · , N}, which is a set representing all the ports of call for simplifying
the notation. Since the ports of call on a ship route form a loop, we can arbitrarily
choose one port as the first port of call. For instance, if we let New York be the first
port of call, the NCE service can be coded as follows: 1 (New York) → 2 (Norfolk)
→ 3 (Savannah) → 4 (Pusan) → 5 (Qingdao) → 6 (Ningbo) → 7 (Shanghai) → 1
(New York). If we let Norfolk be the first port of call, the NCE service can be coded
as follows: 1 (Norfolk) → 2 (Savannah) → 3 (Pusan) → 4 (Qingdao) → 5 (Ningbo)
→ 6 (Shanghai) → 7 (New York) → 1 (Norfolk). We let pi represent the physical
port of the ith port of call, i ∈ I . We further define the voyage from the ith port to
the (i + 1)th as leg i; leg N is the voyage from the N th port of call to the first one.
For instance, if we define New York to be the first port of call, then the first leg is the
journey from New York to Norfolk, the second leg is the journey from Norfolk to
Savannah, the third leg is the journey from Savannah to Pusan, the fourth leg is the
journey from Pusan to Qingdao, the fifth leg is the journey from Qingdao to Ningbo,
the sixth leg is the journey from Ningbo to Shanghai, the seventh leg is the journey
from Shanghai to New York.

We assume that pi �= pj , i �= j . In other words, we assume that each physical
port is visited only once during a round-trip journey. It should be noted that in reality
there are many ship routes that visit a port twice in a round-trip journey, and in
extreme cases, three times. The methods proposed in the chapter could be used for
designing schedules for these ship routes, too, but need considerable modification,
as to be discussed in Sect. 10.7. For better readability, we only consider the case that
each physical port is visited only once during a round-trip journey.

10.3.1 Ship Cost, Bunker Cost and Inventory Cost

We assume that a string of m homogeneous containerships are deployed on the ship
route to maintain a weekly service frequency. Ships are homogeneous means that they
have the same capacity, age, designed speed, and other ship specific characteristics.
In reality, two ships cannot be the same because even if they were the same when
constructed, different past operating conditions would make them different (e.g.,
fuel efficiency). However, in mathematical modeling, it is convenient to model ships
with similar characteristics as identical without losing much precision. That is why
we also adopt such an approach. The highest possible sailing speed of the ships
is denoted by V max (knot). Represent by t

port
i the time (h) a ship spends at port

i, and Li (n mile) the distance of leg i. The maximum speed of containerships
is usually higher than that of bulk cargo ships and tankers. This is mainly because
containerships transport containerized cargos with higher unit value, and hence faster
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delivery is more desirable. The time a ship spends at a port consists of the time for
towage, mooring and unmooring, possible wait time, and container handling. The
most significant time component is container handling. For instance, if the average
container handling efficiency is 100 containers/h, and a total of 2000 containers are
loaded or unloaded, then the container handling time is 20 h. We assume that the
container handling time is fixed. In reality, this time cannot be exactly predicted, and
hence here we can consider t

port
i as already including some buffer time.

Ship Cost

Let vi be the sailing speed (knot) of ships on leg i. To maintain a weekly service
frequency, we have the relation:

∑

j∈I

Lj/vj +
∑

j∈I

t
port
j = 168m (10.1)

In Eq. (10.1), the left-hand side is the round-trip journey time (h), and the right-hand
side is the number of ships times 168 h/week. Equation (10.1) is the fundamental
equation defining the number of ships required to maintain a weekly frequency. For
instance, if the round-trip journey time is 336 h (2 weeks), two ships are needed to
maintain a weekly frequency. If the round-trip journey time is 8 weeks, eight ships
must be deployed to maintain a weekly frequency. If we can reduce the round-trip
journey time from 8 to 7 weeks by sailing faster, skipping ports, or shortening port
time, we can save one ship. Denote by Cship (USD/week) the fixed operating cost of
a ship, which is the ship chartering cost but does not include bunker fuel cost. Hence,
the weekly operating cost of the ships deployed on the ship route is Cshipm.

Bunker Cost

As aforementioned, Eq. (10.1) implies that when the speed is higher, fewer ships need
to be deployed to maintain the same weekly service frequency. However, a higher
speed implies a larger amount of bunker consumed. To take into consideration the
bunker cost, we let gi(vi) (t/n mile) be the bunker consumption function at the speed
vi on leg i. Based on the results in existing studies (Psaraftis and Kontovas 2010;
Kontovas and Psaraftis 2011; Ronen 2011; Wang and Meng 2012d; Psaraftis and
Kontovas 2013), we assume that gi(vi) is a power function of the form:

gi(vi) = ai(vi)
bi , i ∈ I (10.2)

where ai and bi are two coefficients calibrated from historical operating data and
satisfy ai > 0 and bi > 1. Denote by α (USD/t) the bunker fuel price. The weekly
bunker cost is α

∑
i∈I Ligi(vi) = α

∑
i∈I Liai(vi)bi . It should be noted that although

we assume that the bunker consumption function has the form of Eq. (10.2), the
solution method that will be elaborated later is applicable to other forms of bunker
consumption functions, too.
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Inventory Cost

Besides the ship cost and bunker cost, the inventory cost of containers should also be
incorporated. In fact, a lower speed (slow-steaming) would increase the transit time
of containers, and thereby the inventory cost. We let V̄i be the number of containers
(twenty-foot equivalent units, or TEUs) on leg i, and β be the unit inventory cost
(USD per TEU per h). Since the time spent at each port is constant, we only consider
the inventory cost associated with sailing time at sea (sea time). Therefore, the total
inventory cost is

∑
i∈I βV̄iLi/vi . It should be noted that V̄i is actually a predicted

value based on historical data. The inventory cost is included to reflect the quality of
the liner shipping company’s transport services1. Note further that β is also predicted
and our model allows β to vary with different voyage legs.

10.3.2 Liner Ship Route Schedule

We define the time 00:00 of a certain Sunday as time 0 (h), and hence 10:00 on
Monday is time 24 + 10 = 34, and 10:00 next Tuesday is time 168 + 24 * 2 + 10 = 226.
Since we assume that the port time (tport

i ) is fixed, the time of departure (tdep
i ) at port

i is determined by the time of arrival (tarr
i ) and the port time (tport

i ), that is:

t
dep
i = tarr

i + t
port
i , i ∈ I (10.3)

Because of the weekly service frequency, without loss of generality, we let

0 ≤ tarr
1 < 168 (10.4)

Note that the above equation is important to eliminate symmetric solutions. Because
of the weekly frequency, there is no difference whether the first port of call is visited
at time 20 (i.e., tarr

1 = 20) or 20 + 168 (i.e., tarr
1 = 188). Hence, we only need to

consider the case where the arrival at the first port of call is between time 0 and 168.
We define the time when the ship returns to the first port of call as tarr

N+1, that is:

tarr
N+1 := tarr

1 + 168m (10.5)

This equation implies that a ship needs tarr
N+1 − tarr

1 = 168m hours to complete a
round-trip journey. This is consistent with the weekly frequency.

The schedule of a liner ship route is the vector defined below:

(tarr
i , i ∈ I ; m) (10.6)

We stress that the schedule of a liner ship route cannot be represented by (tarr
i , i ∈ I ).

This is because, given (tarr
i , i ∈ I ), we do not know the inter-arrival time from the last

port of call to the first. The number of ships m together with (tarr
i , i ∈ I ) can define

the inter-arrival time from the last port of call to the first. Of course, the schedule
can also be uniquely determined by (tarr

i , i ∈ I ; tarr
N+1).

1 In reality the liner shipping company will not pay the customers for their inventory cost.
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10.3.3 Port Time Window

A ship cannot arrive at a port at any time because the port may be busy during some
periods of a week. Hence, we let Ωi ⊆ [0, 168) be the time in a week during which
port i is available for serving ships on the ship route, i.e., port time window. For
example, Ωi = [10, 20]∪ [96, 120] means that port i is available from 10:00 Sunday
to 20:00 Sunday, and 00:00 Thursday to 00:00 Friday. Ωj = [0, 24] ∪ [144, 168)
means that port j is available from 00:00 Sunday to 00:00 Monday, and 00:00
Saturday to 00:00 Sunday. In other words, the port is available from 00:00 Saturday
to 00:00 Monday next week.

We assume that the port time window at each port (which corresponds to each
port of call because we assume that each port is visited once in a round-trip journey)
is known. In reality, a liner shipping company can obtain this port time window from
port operators, because port operators have to tell it whether it is possible to arrive
at a particular time.

A ship needs to stay at port i for t
port
i hours. Therefore, we could easily compute the

feasible arrival times at port i based on Ωi . For instance, Ωi = [10, 20]∪[96, 120] and
t

port
i = 5 imply that tarr

i could be any value in [10, 15]∪[96, 115]. We let Ω̂i ⊆ [0, 168)
be the set of feasible arrival times at port i in a week. It should be mentioned that
because of the weekly service frequency, when Ω̂i = [10, 15]∪ [96, 115], the arrival
time tarr

i = 180 (which corresponds to time 12 of the next week) is also feasible. In
fact, an arrival time is feasible if and only if

(
tarr
i mod168

) ∈ Ω̂i , where the “mod”
operator obtains the modulus of two integer numbers.

Therefore, the ship route schedule design problem with port time window aims
to determine the optimal arrival time at each port of call on a ship route that satisfies
the port time window to minimize the total cost including ship cost, bunker cost, and
inventory cost.

10.4 Mathematical Model

10.4.1 Notation

Before presenting the model, we list the notation below.

Variables

m Number of ships deployed on the ship route
tarr
i Arrival time (h) at the ith port of call
tarr
N+1 The time (h) when the ship returns to the 1st port of call

t
dep
i Departure time (h) from the ith port of call

vi Sailing speed (knot) on leg i

Parameters
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10.4.2 Model

The SDPTW can be formulated as:
[SDPTW]

minCshipm + α
∑

i∈I

Ligi(vi) +
∑

i∈I

βV̄i

Li

vi

(10.7)

α The bunker fuel price (USD/ton)
β The unit inventory cost (USD per TEU per h)
Ω̂i The set of feasible arrival times at the ith port of call
Cship The weekly operating cost of a ship (USD/week)
gi(vi) Bunker consumption per nautical mile at the speed vi on leg i (tons/n mile)
I Set of legs, I = {1, 2, · · · , N}
Li Oceanic distance (n mile) of the leg i

N Number of ports on the ship route
pi The port i on the ship route
t

port
i Time (h) a ship spends at port i

V̄i Number of containers (TEUs) on leg i

V max Maximum speed of the ships (knot)

subject to:
∑

j∈I

Lj/vj +
∑

j∈I

t
port
j = 168m (10.8)

t
dep
i = tarr

i + t
port
i , i ∈ I (10.9)

0 ≤ tarr
1 < 168 (10.10)

tarr
N+1 = tarr

1 + 168m (10.11)

vi = Li

tarr
i+1 − t

dep
i

, i ∈ I (10.12)

(
tarr
i mod 168

) ∈ Ω̂i , i ∈ I (10.13)

0 ≤ vi ≤ V max, i ∈ I (10.14)

m ∈ {1, 2, 3, · · · } (10.15)

The objective function (10.7) minimizes the sum of ship cost, bunker cost, and inven-
tory cost. The first term is the ship cost, which is proportional to the number of ships
deployed. The second term is the bunker cost, which varies nonlinearly with speed.
The third term is inventory cost, which is summed over all legs. Constraint (10.8)
requires that the service on this ship route is weekly. Constraint (10.9) defines the
departure time from each port of call. Constraint (10.10) eliminates symmetric so-
lutions. Constraint (10.11) defines the time when the ship returns to the first port
of call after one round trip. Constraint (10.12) calculates the sailing speed on each
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leg. Constraint (10.13) imposes the port time window restrictions. Constraint (10.14)
enforces the lower and upper limits on the sailing speed. Constraint (10.15) indicates
that the number of ships is a positive integer.

10.5 Solution Method

The model [SDPTW] is a mixed-integer nonlinear non-convex optimization problem.
It is difficult to solve because (i) it has both continuous (sailing speed) and discrete
variables (number of ships); (ii) it has nonlinear objective function (10.7) and non-
linear constraints (10.8) and (10.12); (iii) the set Ω̂i in Eq. (10.13) may consist of
disjoint intervals, as shown in Fig. 10.2. This will lead to a non-convex domain even
without considering the discrete decision variables; moreover, even if Ω̂i is convex,
the “mod” operator still leads to a non-convex domain. These difficulties make the
model challenging and hard to be solved by existing commercial solvers. To address
the model, we have to develop our own solution algorithm.

We notice that the optimal arrival time at a port of call almost only depends on
the arrival time at its previous port of call, and has little to do with the arrival times
at even further previous ports of call. Such a property enlightens us to develop a
dynamic programming based solution method that solves the problem to optimality.

10.5.1 Space-Time Network for a Given Number of Ships

Given the number of ships m, say, m̄, the ship cost Cshipm̄ is fixed. Moreover,
the round-trip journey time is also fixed, that is, 168m̄ hours. The model can be
reformulated as
[SDPTW-m̄]

min α
∑

i∈I

Ligi(vi) +
∑

i∈I

βV̄i

Li

vi

(10.16)

subject to:

∑

j∈I

Lj/vj +
∑

j∈I

t
port
j = 168m̄ (10.17)

t
dep
i = tarr

i + t
port
i , i ∈ I (10.18)

0 ≤ tarr
1 < 168 (10.19)

tarr
N+1 = tarr

1 + 168m̄ (10.20)

vi = Li

tarr
i+1 − t

dep
i

, i ∈ I (10.21)
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(
tarr
i mod 168

) ∈ Ω̂i , i ∈ I (10.22)

0 ≤ vi ≤ V max, i ∈ I (10.23)

Note that model [SDPTW-m̄] no longer has discrete variables.

Property of the Problem

As tarr
1 is between 0 and 168, we can discretize it and enumerate all possible discretized

values. Given m and tarr
1 (say, m̄ and t̄arr

1 ), if the arrival time at a particular port of call
is known, then the bunker cost and inventory cost associated with the voyage legs
after the port of call depend only on its arrival time and are independent of the arrival
times at ports of call prior to it. For instance, if we know that the arrival time at the
īth port of call is t̄arr

ī
, the problem can be split into two subproblem: subproblem

1 determines the arrival time at each port of call 2, 3, · · · , ī − 1; subproblem two
determines the arrival time at each port of call ī + 1, ī + 2, · · · , N . To be clear, we
formulate the two subproblems below:
[SDPTW-m̄-subproblem 1]

min α

ī−1∑

i=1

Ligi(vi) +
ī−1∑

i=1

βV̄i

Li

vi

(10.24)

subject to:

t
dep
i = tarr

i + t
port
i , i = 1, 2, 3, · · · , ī − 1 (10.25)

vi = Li

tarr
i+1 − t

dep
i

, i = 1, 2, 3, · · · , ī − 1 (10.26)

(
tarr
i mod 168

) ∈ Ω̂i , i = 2, 3, · · · , ī − 1 (10.27)

0 ≤ vi ≤ V max, i = 1, 2, 3, · · · , ī − 1 (10.28)

tarr
1 = t̄arr

1 (10.29)

tarr
ī

= t̄arr
ī

(10.30)

[SDPTW-m̄-subproblem 2]

min α

N∑

i=ī

Ligi(vi) +
N∑

i=ī

βV̄i

Li

vi

(10.31)

subject to:

t
dep
i = tarr

i + t
port
i , i = ī, ī + 1, · · · , N (10.32)

vi = Li

tarr
i+1 − t

dep
i

, i = ī, ī + 1, · · · , N (10.33)
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(
tarr
i mod 168

) ∈ Ω̂i , i = ī + 1, ī + 2, · · · , N (10.34)

0 ≤ vi ≤ V max, i = ī, ī + 1, · · · , N (10.35)

tarr
ī

= t̄arr
ī

(10.36)

tarr
N+1 = t̄arr

1 + 168m̄ (10.37)

Hence, the decisions about the arrival time at each port of call could be made in a
sequential manner, that is, the optimal arrival time at the next port only depends on the
arrival time at the current port (and of course m̄ and t̄arr

1 ). Exploiting this property, we
construct a space-time network and thereby develop a dynamic programming based
solution approach.

Space-Time Network Construction Method

To construct a space-time network, in view of Eq. (10.10), we only need to consider
a time horizon of 168(m + 1) hours 2. In other words, the time horizon is m + 1
weeks. We discretize the time horizon into intervals, the length of each interval being
1 h 3. To take into account the voyage from the N th port of call to the first one, we
consider N + 1 ports in the space-axis, where the (N + 1)th port corresponds to the
returning to the first one. Each of the N +1 ports is copied 168(m+1) times. Hence,
each node (t , i) in the space-time network corresponds to a port i at a particular
time t . We define the time t as the arrival time at the port i. Therefore, node (t , i)
in the space-time network means that port i is visited at time t . For each port i, if
(t mod 168) �∈ Ω̂i , then the port is busy at the time t . Hence, it is impossible to visit
port i at time t . Consequently, for each port i, if (t mod 168) �∈ Ω̂i , then we remove
the node (or mark it as inactive as it will not be visited).

Moreover, from each active node (t , i), the ship may visit any active node (t ′, i+1)
satisfying

t ′ ≥ t + t
port
i + Li

V max
(10.38)

In words, from port i, a ship can only visit port i + 1 and the sailing speed cannot
exceed V max. Of course, the port time window at port i + 1 is already implicitly
considered by removing the nodes that cannot be visited.

We formally state the method for constructing the space-time network below:
Algorithm 1: Construction of space-time network G(m)4 for a given ship
number m

Step1. (Construct nodes): Construct a space-time network with the horizontal axis
being the time (hours, starting from 0 which represents 00:00 of a particular

2 If, for example, tarr
1 = 167, then the ship will return to the first port of call at time 168m + 167.

Therefore, the time horizon is 168(m + 1) hours rather than 168m hours.
3 The precision of 1 h is more than sufficient for liner shipping applications.
4 G means “graph”.
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Sunday), and the vertical axis being the space (ports). The length of the time
axis is 168(m+1) with the discrete time points being 0, 1, 2,· · · ,168(m+1)−1.
The vertical axis has N + 1 ports, that is, the 1st port of call, the 2nd port
of call,· · · , the N th port of call, and the (N + 1)th port of call. Note that
the (N + 1)th port of call actually represents that the ship returns to the first
port of call after a round-trip journey of 168m hours. Each of the N + 1
ports is copied 168(m + 1) times. Now, in the space time network, there are
168(m + 1)(N + 1) nodes. A node can be represented by an ordered pair
(time unit, port ID), or (t , i), which means that port i is visited at time t .

Step 2. (Deactivate nodes):
Step 2.1 (Deactivate nodes that violate port time windows) For each node (t , i) in

the space-time network, if (t mod 168) �∈ Ω̂i , the ship cannot visit the
node and hence we mark it as inactive;

Step 2.2 (Deactivate nodes that violate Eq. (10.10)) For each node (t , 1) that cor-
responds to the first port of call in the space-time network, if t ≥ 168, the
ship cannot visit the node and hence we mark it as inactive;

Step 2.3 (Deactivate nodes that violate Eq. (10.11)) For each node (t , N + 1) that
corresponds to the return to the first port of call in the space-time network,
if t ≤ 168m − 1, the ship cannot visit the node and hence we mark it as
inactive (note that here the number of ships m is given).

Step 3. (Construct arcs):
Step 3.0 Set i = 0;
Step 3.1 Set i := i+1. For each active node (t , i), t ∈ {0, 1, 2, · · · , 168(m+1)−1},

construct an arc from it to any of the active nodes (t ′, i + 1) satisfying
t ′ ≥ t+t

port
i + Li

V max . Hence, the sailing time of the arc is t ′−t−t
port
i . More-

over, the sailing speed is also determined, which is vi = Li/(t ′ − t − t
port
i ).

Therefore, the corresponding bunker cost is αLigi(vi) and the inven-
tory cost of the containers is (t ′ − t − t

port
i )βV̄i (as aforementioned, the

inventory cost associated with port time is constant, and hence is not
modeled). The cost (sum of bunker and inventory cost) of the arc is
αLigi(Li/(t ′ − t − t

port
i )) + (t ′ − t − t

port
i )βV̄i .

Step 3.2 If i = N , Stop. Otherwise, go to Step 3.1. �

An Example of Space-Time Network Construction

We use an example to demonstrate the space-time network construction method. For
the ease of presentation, we use “day” rather than “hour” in the discretization. That
is, 0 represents Sunday, 1 represents Monday, etc. If we do not use days but use hours,
there would be too many nodes in the space-time network and it would be difficult to
understand it. Suppose that there are three ports of call on the ship route. The feasible
arrival days are Ω̂1 = {2, 3, 6}, Ω̂2 = {0, 1, 5, 6}, and Ω̂3 = {4, 5}. In addition,
suppose that t

port
1 + L1

V max = 4 days, t
port
2 + L2

V max = 5 days, and t
port
3 + L3

V max = 1 day.
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Fig. 10.4 Construct nodes

Fig. 10.5 Deactivate nodes

The number of ships m = 2. The three steps in Algorithm 1 are shown in Fig. 10.4,
10.5 and 10.6, respectively.

Let us look at Fig. 10.4 first. As m = 2 and we use “day” to discretize the time,
there are a total of 14 days in the time axis. Hence, each port should be copied
14 times. Since there are three ports of call on the ship route, considering the loop
property of the ship route, we need to consider 4 ports, where the fourth port is
actually the return to the first port. As a result, there are a total of 4 × 14 = 56 nodes
in the space-time network.

In Fig. 10.5, we deactivate nodes. In step 2.1, since Ω̂2 = {0, 1, 5, 6}, nodes corre-
sponding to port 2 are active only if t = 0, 1, 5, 6, 7, 8, 12, 13. In other words, only 8
nodes corresponding to port 2 are active. Since Ω̂3 = {4, 5}, nodes corresponding to
port 3 are active only if t = 4, 5, 11, 12. In other words, only 4 nodes corresponding
to port 3 are active. Since Ω̂1 = {2, 3, 6} and port 1 must be visited in the first week,
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Fig. 10.6 Construct arcs

nodes corresponding to port 3 are active only if t = 2, 3, 6. In other words, only
3 nodes corresponding to port 1 are active. Since Ω̂1 = {2, 3, 6} and port of call 4
(which is the same port as port of call 1) must be visited in the second week (as
m = 2), nodes corresponding to port 4 are active only if t = 9, 10, 13. In other
words, only 3 nodes corresponding to port 4 are active.

In Fig. 10.6, we add arcs connecting the nodes. Note that the arcs connect only
active nodes, and must respect the maximum speed of ships. For instance, both nodes
(2, 1) and (5, 2) are active. However, their time difference 5 − 2 = 3 is smaller than
t

port
1 + L1

V max = 4. Hence, ships cannot visit node (5, 2) from node (2, 1).

Loop Property of Ship Route in the Space-Time Network

It should be noted that in the space-time network, if a ship visits port 1 at time tarr
1 ,

it must return to port 1 at time tarr
1 + 168m. This constraint poses difficulties for

finding the schedule with the minimum cost. Nevertheless, we identify that the total
number of possible tarr

1 is at most 168. Therefore, we could enumerate all possible
tarr
1 . For each fixed tarr

1 , we can apply the dynamic programming approach to find the
shortest path (minimum-cost path) from node (tarr

1 , 1) to node (tarr
1 + 168m, N + 1),

denoted by c(m, tarr
1 )5. Hence, the minimum total cost with given m is Cshipm +

mintarr
1 ∈{0,1,2,··· ,167} c(m, tarr

1 ).

5 c(m, tarr
1 ) = ∞ if (tarr

1 , 1) is inactive or if there is no path from node (tarr
1 , 1) to node (tarr

1 +
168m, N + 1).
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10.5.2 Lower Bound of the Number of Ships

The previous sub-section provides an approach for finding the optimal schedule with
a given m. However, as m is a positive integer, we cannot enumerate all possible
values of m. To overcome this difficult, we investigate how to confine the range of
possible values of m.

According to Eq. (10.1), the minimum number of ships can be computed by:

mmin =
⎡

⎢
⎢
⎢

⎛

⎝
∑

j∈I

Lj/V max +
∑

j∈I

t
port
j

⎞

⎠ /168

⎤

⎥
⎥
⎥

(10.39)

where �x� is the smallest integer greater than or equal to x.

10.5.3 Lower Bound of the Total Cost With Given Number
of Ships

When the number of ships is m, a lower bound on the total cost, denoted by LB(m),
can be computed as follows. As the ship cost in Eq. (10.7) is fixed, we minimize
the sum of bunker cost and inventory cost by optimizing the speed. To facilitate the
computation of the lower bound, we relax relevant constraints and only require that
the speed is nonnegative. Using the bunker consumption function (10.2), we have:

minvi

∑

i∈I

αLiai(vi)
bi +

∑

i∈I

βV̄i

Li

vi

(10.40)

subject to:

−vi ≤ 0, i ∈ I (10.41)

It is easy to see that the speed on different legs can be optimized independently.
Let λi ≥ 0 be the Lagrangian multiplier associated with constraint −vi ≤ 0. The
Karush-Kuhn-Tucker (KKT) condition of the above optimization problem is:

αLiaibi(vi)
bi−1 − βV̄iLi

1

(vi)2
− λi = 0 (10.42)

λi( − vi) = 0 (10.43)

−vi ≤ 0 (10.44)

λi ≥ 0 (10.45)

Apparently −vi < 0, and therefore λi = 0. Hence, we can compute the optimal
speed in the model, denoted by ṽi :

ṽi =
(

βV̄i

αaibi

) 1
bi+1

(10.46)
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Consequently, a lower bound of the total cost with m ships is:

LB(m) = Cshipm + α
∑

i∈I

Ligi(ṽi) +
∑

i∈I

βV̄i

Li

ṽi

(10.47)

10.5.4 Overall Algorithm

Sub-section 10.5.1 develops a space-time network model that can find the optimal
schedule for a given number of ships using dynamic programming approach. Sub-
section 10.5.2 obtains a lower bound on the number of ships that are needed. Sub-
section 10.5.3 proposes a lower bound on the total cost for a given number of ships,
and this lower bound increases with m as shown in Eq. (10.47). Based on these
results, we now present the overall solution algorithm:

Algorithm 2: Solution method for the SDPTW

Step 0. Set m = mmin − 1. Denoted by C∗ := ∞ the minimum total cost obtained
(upper bound).

Step 1. Set m := m + 1. If LB(m) ≥ C∗, we have obtained the optimal solution
and hence stop. Otherwise, construct the space-time network G(m).

Step 2. For each tarr
1 ∈ {0, 1, 2, · · · , 167}, find the shortest path from node (tarr

1 , 1) to
node (tarr

1 +168m, N +1) and its cost c(m, tarr
1 ). If Cshipm+ c(m, tarr

1 ) < C∗,
set C∗ := Cshipm + c(m, tarr

1 ) and record the current solution. When all the
tarr
1 have been examined, go to Step 1. �

Algorithm 2 terminates in a finite number of iterations. This is because once a finite
upper bound C∗ is found, the algorithm will stop before or when m = ⌈

C∗/Cship
⌉

.

10.6 Case Study

We choose a case study of the NCE ship route in Fig. 10.1 to evaluate the proposed
model and solution method. We assume that 5000-TEU ships are deployed on it. We
choose 5000-TEU ships because larger ships cannot transit the Panama Canal. The
operating cost Cship =500,000 USD/week, the maximum speed V max=30 knots, the
bunker price α = 400 USD/t and the unit inventory cost β = 1 USD per TEU per
hour. The port time (h), distance (n mile), bunker consumption function gi(vi), and
volume of containers on each leg (TEUs) are shown in Table 10.1. In Table 10.1
we assume that the port time is either 1 day or 1.5 days, the bunker consumption
functions may be different for different legs, and the number of containers on each
leg implies that the ship load factor is between 2200

5000 = 44% and 4500
5000 = 90%. The

port time window at each port, i.e., Ωi , is shown in Table 10.2, which indicates that
no port is available seven days a week.
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Table 10.1 Parameters in the case study

ID Port Port time Distance Bunker function # containers

1 New York 36 261 0.001(v1)2 2200

2 Norfolk 24 436 0.001(v2)2.1 3000

3 Savannah 24 9678 0.001(v3)2.3 3500

4 Pusan 24 467 0.001(v4)2 4200

5 Qingdao 24 386 0.001(v5)2 4000

6 Ningbo 24 101 0.001(v3)2 4300

7 Shanghai 36 10553 0.001(v7)2 4500

Table 10.2 Port time windows

ID Port Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1 New York Free Free Busy Busy Free Free Busy

2 Norfolk Busy Busy Free Busy Busy Busy Busy

3 Savannah Busy Busy Busy Free Busy Busy Free

4 Pusan Free Busy Free Busy Busy Busy Busy

5 Qingdao Busy Busy Busy Busy Busy Busy Free

6 Ningbo Busy Free Busy Busy Free Busy Busy

7 Shanghai Free Free Busy Free Free Busy Busy

10.6.1 Impact of Port Time Windows

Firstly, we examine the effect of port time windows on the total cost and the optimal
schedule. We assume that currently the port of Norfolk is only available on Tuesday,
as shown in Table 10.2. Both Norfolk and the liner shipping company are interested
in looking at the result if more available time is provided at Norfolk. We hence
examine the cases of 1 day available for service each week (Tuesday), 2 days (plus
Friday), 3 days (plus Monday), 4 days (plus Saturday), 5 days (plus Thursday), 6
days (plus Sunday), and 7 days (which means that Norfolk is ready to serve ships at
any time). The results of the total cost and the optimal number of ships deployed are
shown in Fig. 10.7.

It can be seen that more available days at Norfolk leads to a lower total cost: when
the number of available days is increased from 2 to 6, the total cost is reduced by
214,639 USD per week. Figure 10.7 also demonstrates that the number of available
days at a port may affect the optimal number of ships deployed. The optimal ship
schedule, i.e., arrival time at each port of call, is shown in Table 10.3, where e.g.
“Cases 1, 2” means that Norfolk is available only 1 or 2 days in a week. We observe
that when the availability of Norfolk is changed, the optimal arrival times at it and
its neighboring ports may also change. However, there is no impact on the optimal
arrival times at ports that are a few voyage legs away from Norfolk.
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Fig. 10.7 Impact of port time windows on the total cost and the number of ships

Table 10.3 Impact of port time windows on the optimal schedule

ID Port Cases 1, 2 Cases 3, 4, 5 Cases 6, 7

1 New York 0 108 108

2 Norfolk 48 192 175

3 Savannah 144 240 240

4 Pusan 888 888 888

5 Qingdao 984 984 984

6 Ningbo 1032 1032 1032

7 Shanghai 1080 1080 1080

1 New York 1680 1620 1620

10.6.2 Consequence of Port Efficiency

The port time t
port
i to a large extent depends on the container handling efficiency.

Therefore, port operators seek to improve efficiency by optimizing quay-side and
yard-side operations. To investigate the effect of port handling efficiency, we change
the port time at Shanghai from 12 h, 18 h, 24 h, 30 h, to 36 h, and compute the
optimal solution. We find that the optimal number of ships is always 10. The total
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Fig. 10.8 Impact of port time at Shanghai on the total cost

cost increases with the time spent at Shanghai, as shown in Fig. 10.8. In fact, a
ship creates value when it is moving cargo, whereas standing still at ports does
not create value. Moreover, when the number of ships is given, a longer port time
means a shorter sailing time, which leads to higher bunker consumption. Therefore,
improving port efficiency will reduce the total cost for liner shipping companies.

We then fix the port time at Shanghai at 36 h, and change the port time at New
York from 12 h, 18 h, 24 h, 30 h, to 36 h, and compute the optimal solution. The
result is shown in Fig. 10.9. It clearly shows that when the port time is increased,
not only the total cost increases, but also the optimal number of ships to deploy may
increase.

10.6.3 Result of Bunker Prices

The bunker price is volatile and hence we examine the sensitivity of the solution
with different bunker prices from 300, 400, 500, 600, 700, to 800 USD/t. The
result is shown in Fig. 10.10. We observe that the total cost increases almost linearly
(not strictly linearly) with the bunker price. Consequently, a higher bunker price
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Fig. 10.9 Impact of port time at New York on the total cost and the number of ships

always leads to a higher cost for liner shipping companies. In addition, Fig. 10.10
clearly shows that there is a rise in the number of vessels used when the bunker price
becomes higher. This is because when more ships are deployed, the sailing speed
can be reduced, resulting in a lower bunker consumption. A reduction in bunker
consumption is more significant when the bunker price is higher.

10.6.4 Effect of Inventory Cost

Finally, we investigate the effect of the unit inventory cost β on the total cost and
the optimal number of ships to deploy by changing β from 1, 1.25 through to 2. The
result is shown in Fig. 10.11, which indicates that the rise of unit inventory cost leads
to a decreasing in the number of ships and an increasing of the total cost. This is
because when the unit inventory cost is higher, containerships have to sail at a higher
speed to shorten the transit time. Therefore, the number of ships is reduced. At the
same time, the total cost inevitably becomes higher.
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Fig. 10.10 Result of bunker prices on the total cost and the number of ships

10.7 Conclusions and Future Research

10.7.1 Summary of the Works

This research has studied the practical liner ship route schedule design problem with
port time windows. This is a significant tactical planning decision problem because it
considers the availability of ports when planning liner shipping services. As a result,
the designed schedule can be applied in practice without or with only minimum revi-
sions. This problem is formulated as a nonlinear non-convex optimization model. In
view of the problem structure, we have developed an efficient dynamic-programming
based holistic solution approach, which includes a space-time network model and a
bounding technique for the total cost with give number of ships.

The proposed solution method is applied to the NCE service provided by OOCL.
The results demonstrate that the port time windows, port handling efficiency, bunker
price and unit inventory cost all affect the total cost, the optimal number of ships
to deploy, and also the optimal schedule. A higher availability at ports, shorter port
time, lower bunker price and larger unit inventory cost result in a lower total cost.
Moreover, shorter port time, lower bunker price and smaller unit inventory cost lead to
a smaller number of ships to deploy. Therefore, port operators can apply the proposed
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Fig. 10.11 Effect of unit inventory cost on the total cost and the number of ships

method to quantify the benefits to their customers, i.e., liner shipping companies,
gained by expanding the ports’ capacity and improving the ports’ efficiency. Liner
shipping companies may need to charter in more ships if they predict that the future
bunker price will increase, or if they predict that a particular season is coming during
which the value of the cargo is generally low.

10.7.2 Future Research Directions

Ship Route with Ports Visited More than Once

In this study we have assumed that each port of call is visited only once in a round-trip
journey time. If some ports are visited twice in a round-trip journey, i.e., some ports
of call correspond to the same physical port, then the port time window should be
dealt with more carefully. First, in the dynamic programming approach, when we
analyze the second arrival time at a port, we have to take into account the first arrival
time at the port. As a result, in each step of the dynamic programming method, i.e.,
at port of call ī, we have to record information on the arrival time at all the ports
that have been visited and are to be visited again. This, in theory, may lead to the
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“curse-of-dimensionality”, because if there are n ports that are visited twice, in the
worst-case we have to record the arrival times at n ports of call, and if the possible
arrival times is e.g. 168, then the state space is 168n (without even considering the
possible arrival times at ī), which increases exponentially with n.

In reality, this problem may not be that serious. This is because on one side, the
number of ports of call in a round-trip journey is not very large. On the other side,
the number of ports that are visited twice in a round-trip journey is even smaller. In
addition, some ports may be always available, especially those major transshipment
hubs such as Singapore and Hong Kong that attract transshipment containers based
on their quality of service.

Another minor issue that is worth mentioning is that when a ship route has ports
that are visited twice in a round-trip journey, the definition of port time window at
these ports should be changed. For instance, if a port is visited only once, we only
need to record the possible arrival times in a week at the port, i.e., Ω̂i , with regard to
all berths at the port. We consider a port with two berths, assuming that both berths
are available on Sunday and Monday, and the port time is 24 h, then Ω̂i = [0, 24).
However, if the port is visited twice, we have to record the the time window of each
berth at the port, because different arrivals may use different berths. Of course, this
is only a minor issue in the dynamic programming algorithm, because we actually
do not need to record which berth the first arrival has used.

Schedule Design for a Liner Shipping Network

Another issue that we will investigate is the schedule design problem with port time
windows for a liner shipping network. In a liner shipping network, quite often than
not, a port may be visited more than once in a week. Some major transshipment hubs,
such as Singapore and Hong Kong, may be visited more than 20 times. Therefore, the
berth time windows at each port have to be dealt with with special efforts. Apparently,
dynamic programming is no longer applicable due to the “curse-of-dimensionality”.

When designing schedules for a liner shipping network, there is further the prob-
lem of container transshipment. In particular, we hope that containers could stay at
transshipment ports for as short time as possible, by matching the arrival times of
different ships. As a result, the schedules of different ship routes interact with each
other, because the arrival time at a port of call on a ship route affects the arrival
time at the port by ships on other ship routes. Hence, the resulting problem is more
challenging and interesting.

Schedule Design with Container Routing

The transportation of containers in a liner shipping network is mainly determined by
the transshipment cost, i.e., the liner shipping company aims to transport containers
at minimum transshipment cost. However, the transit time or inventory cost of con-
tainers should also be incorporated, because it affects the competitiveness of the liner
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shipping company. The transit time is determined by the schedules of ship routes
in the liner shipping network. Therefore, the schedule design problem for a liner
shipping network and container routing should be examined in a holistic approach.

The challenge with such a problem lies in that the joint planning of schedule design
and container routing is a highly nonlinear problem. In fact, Wang and Meng (2011)
examined such a problem with some simplifications of schedule design. Due to the
highly nonlinear property, they developed a hybrid genetic local search heuristic.
The framework of the heuristic, i.e., iteratively optimizing schedule and container
routing, may be further explored.

Schedule Design Under Uncertainty

In our study the port time and sea time are assumed to be deterministic, and possible
uncertainty is incorporated by adding some “buffer” time. Such an engineering-based
approach may not lead to optimal decisions. A worthwhile avenue is to capture port
time and sea time uncertainty endogenously. This problem is complex because a
natural problem that cannot be circumvented is: what should a ship do if it is delayed?
In reality, the ship may speed up (Qi and Song 2012; Wang and Meng 2012b, c),
may skip ports of call (Chang et al. 2013b), may swap ports of call (Chang et al.
2013b) and may leave a port early without loading all containers. The handling of
delay itself is a challenging topic, even when the planned schedule is given. There
is a long way to go to address this problem satisfactorily.

References

Agarwal, R., & Ergun, Ö. (2008). Ship scheduling and network design for cargo routing in liner
shipping. Transportation Science, 42(2), 175–196.

Alvarez, J. (2009). Joint routing and deployment of a fleet of container vessels. Maritime Economics
and Logistics, 11(2), 186–208.

Ambrosino, D., & Sciomachen, A. (1998). A constraint satisfaction approach for master bay
plans. In G. Sciutto & C. Brebbia (eds.), Maritime engineering and ports. WIT Press, Boston,
pp. 155–164.

Ambrosino, D., Sciomachen, A., & Tanfani, E. (2004). Stowing a containership: The master bay
plan problem. Transportation Research Part A, 38(2), 81–99.

Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container
ship stowage problem. Journal of Heuristics, 12(3), 211–233.

Aslidis, T. (1989). Combinatorial algorithms for stacking problems. PhD Thesis, MIT.
Aslidis, T. (1990). Minimizing of overstowage in container ship operations. Operations Research,

90, 457–471.
Avriel, M., & Penn, M. (1993). Exact and approximate solutions of the container ship stowage

problem. Computers and Industrial Engineering, 25, 271–274.
Avriel, M., Penn, M., Shpirer, N., & Witteboon, S. (1998). Stowage planning for container ships

to reduce the number of shifts. Annals of Operations Research, 76, 55–71.
Bell, M., Liu, X., Angeloudis, P., Fonzone, A., & Hosseinloo, S. (2011). A frequency-based

maritime container assignment model. Transportation Research Part B, 45(8), 1152–1161.



10 Ship Route Schedule Based Interactions . . . 311

Brouer, B., Alvarez, J. F., Plum, C., Pisinger, D., & Sigurd, M. (2013a). A base integer programming
model and benchmark suite for linear shipping network design. Transportation Science. 48(2),
281–312.

Brouer, B., Dirksen, J., Pisinger, D., Plum, C., & Vaaben, B. (2013b). The vessel schedule recovery
problem (VSRP)—A MIP model for handling disruptions in liner shipping. European Journal
of Operational Research, 224(2), 362–374.

Chang, D., Jiang, Z., Yan, W., & He, J. (2010). Integrating berth allocation and quay crane
assignments. Transportation Research Part E, 46(6), 975–990.

Chen, J., Lee, D.-H., & Cao, J. (2012). A combinatorial benders cuts algorithm for the quayside
operation problem at container terminals. Transportation Research Part E, 48(1), 266–275.

Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and
perspectives. Transportation Science, 38(1), 1–18.

Christiansen, M., Fagerholt, K., Nygreen, B., & Ronen, D. (2013). Ship routing and scheduling in
the new millennium. European Journal of Operational Research, 228(3), 467–478.

Cordeau, J.-F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search heuristics for
the berth-allocation problem. Transportation Science, 39(4), 526–538.

Dong, J., & Song, D. (2012). Cargo routing and empty container repositioning in multiple shipping
service routes. Transportation Research Part B, 46(10), 1556–1575.

Du, Y., Chen, Q., Quan, X., Long, L., & Fung, R. (2011). Berth allocation considering fuel
consumption and vessel emissions. Transportation Research Part E, 47(6), 1021–1037.

Dubrovsky, O., Levitin, G., & Penn, M. (2002). A genetic algorithm with compact solution encoding
for the container ship stowage problem. Journal of Heuristics, 8, 585–599.

Fagerholt, K. (1999). Optimal fleet design in a ship routing problem. International Transactions in
Operational Research, 6(5), 453–464.

Gelareh, S., & Meng, Q. (2010). A novel modeling approach for the fleet deployment problem
within a short-term planning horizon. Transportation Research Part E, 46(1), 76–89.

Giallombardo, G., Moccia, L., Salani, M., & Vacca, I. (2010). Modeling and solving the tactical
berth allocation problem. Transportation Research Part B, 44(2), 232–245.

Golias, S., Boile, M., & Theofanis, S. (2009a). Berth scheduling by customer service differentiation:
A multi-objective approach. Transportation Research Part E, 45(6), 878–892.

Golias, S., Saharidis, G., Boile, M., Theofanis, S., & Ierapetritou, M. (2009b). The berth allocation
problem: Optimizing vessel arrival time. Maritime Economics and Logistics, 11(4), 358–377.

Golias, S., Boile, M., & Theofanis, S. (2010a). A lamda-optimal based heuristic for the berth
scheduling problem. Transportation Research Part C, 18(5), 794–806.

Golias, S., Boile, M., Theofanis, S., & Efstathiou, C. (2010b). The berth-scheduling problem:
Maximizing berth productivity and minimizing fuel consumption and emissions production.
Transportation Research Record, 2166, 20–27.

Han, X.-L., Lu, Z.-Q., & Xi, L.-F. (2010). A proactive approach for simultaneous berth and
quay crane scheduling problem with stochastic arrival and handling time. European Journal
of Operational Research, 207(3), 1327–1340.

Imai, A., & Miki, T. (1989). A heuristic algorithm with expected utility for an optimal sequence
of loading containers into a containerized ship. Journal of Japan Institute of Navigation, 80,
117–124.

Imai, A., Nishimura, E., & Papadimitriou, S. (2001). The dynamic berth allocation problem for a
container port. Transportation Research Part B, 35(4), 401–417.

Imai, A., Nishimura, E., & Papadimitriou, S. (2003). Berth allocation with service priority.
Transportation Research Part B, 37(5), 437–457.

Imai, A., Sun, X., Nishimura, E., & Papadimitriou, S. (2005). Berth allocation in a container port:
Using a continuous location space approach. Transportation Research Part B, 39(3), 199–221.

Imai, A., Chen, H., Nishimura, E., & Papadimitriou, S. (2008a). The simultaneous berth and quay
crane allocation problem. Transportation Research Part E, 44(5), 900–920.

Imai, A., Nishimura, E., & Papadimitriou, S. (2008b). Berthing ships at a multi-user container
terminal with a limited quay capacity. Transportation Research Part E, 44(1), 136–151.



312 S. Wang et al.

Kim, K., & Moon, K. (2003). Berth scheduling by simulated annealing. Transportation Research
Part B, 37(6), 541–560.

Kontovas, C., & Psaraftis, H. (2011). Reduction of emissions along the maritime intermodal
container chain: Operational models and policies. Maritime Policy and Management, 38(4),
451–469.

Lee, D.-H., Chen, J., & Cao, J. (2010). The continuous berth allocation problem: A greedy
randomized adaptive search solution. Transportation Research Part E, 46(6), 1017–1029.

Meisel, F., & Bierwirth, C. (2009). Heuristics for the integration of crane productivity in the berth
allocation problem. Transportation Research Part E, 45(1), 196–209.

Meng, Q., & Wang, S. (2011a). Liner shipping service network design with empty container
repositioning. Transportation Research Part E, 47(5), 695–708.

Meng, Q., & Wang, T. (2011b). A scenario-based dynamic programming model for multi-period
liner ship fleet planning. Transportation Research Part E, 47(4), 401–413.

Meng, Q., & Wang, S. (2012). Liner ship fleet deployment with week-dependent container shipment
demand. European Journal of Operational Research, 222(2), 241–252.

Meng, Q., Wang, S., & Liu, Z. (2012a). Network design for shipping service of large-scale
intermodal liners. Transportation Research Record, 2269, 42–50.

Meng, Q., Wang, T., & Wang, S. (2012b). Short-term liner ship fleet planning with container
transshipment and uncertain demand. European Journal of Operational Research, 223(1), 96–
105.

Meng, Q., Wang, S., Andersson, H., & Thun, K. (2014). Containership routing and schedul-
ing in liner shipping: Overview and future research directions. Transportation Science. 48(2),
265–280.

Moorthy, R., & Teo, C.-P. (2006). Berth management in container terminal: The template design
problem. OR Spectrum, 28(4), 495–518.

Mourão, M., Pato, M., & Paixão, A. (2001). Ship assignment with hub and spoke constraints.
Maritime Policy and Management, 29(2), 135–150.

Notteboom, T. (2006). The time factor in liner shipping services. Maritime Economics and Logistics,
8(1), 19–39.

OOCL. (2013). The North & Central China East coast express. Orient overseas container lineWeb-
site. http://www.oocl.com/eng/ourservices/serviceroutes/tpt/Pages/default.aspx. Accessed on 5
Feb 2013.

Psaraftis, H., & Kontovas, C. (2010). Balancing the economic and environmental performance of
maritime transportation. Transportation Research Part D, 15(8), 458–462.

Psaraftis, H., & Kontovas, C. (2013). Speed models for energy-efficient maritime transportation: A
taxonomy and survey. Transportation Research Part C, 26, 331–351.

Qi, X., & Song, D. (2012). Minimizing fuel emissions by optimizing vessel schedules in liner
shipping with uncertain port times. Transportation Research Part E, 48(4), 863–880.

Reinhardt, L., & Pisinger, D. (2012). A branch and cut algorithm for the container shipping network
design problem. Flexible Services and Manufacturing Journal, 24(3), 349–374.

Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the
Operational Research Society, 62(1), 211–216.

Shintani, K., Imai, A., Nishimura, E., & Papadimitriou, S. (2007). The container shipping network
design problem with empty container repositioning. Transportation Research Part E, 43(1),
39–59.

Wang, S. (2013). Essential elements in tactical planning models for container liner shipping.
Transportation Research Part B, 54, 84–99.

Wang, S., & Meng, Q. (2011). Schedule design and container routing in liner shipping.
Transportation Research Record, 2222, 25–33.

Wang, S., & Meng, Q. (2012a). Liner ship fleet deployment with container transshipment operations.
Transportation Research Part E, 48(2), 470–484.

Wang, S., & Meng, Q. (2012b). Liner ship route schedule design with sea contingency time and
port time uncertainty. Transportation Research Part B, 46(5), 615–633.

http://www.oocl.com/eng/ourservices/serviceroutes/tpt/Pages/default.aspx


10 Ship Route Schedule Based Interactions . . . 313

Wang, S., & Meng, Q. (2012c). Robust schedule design for liner shipping services. Transportation
Research Part E, 48(6), 1093–1106.

Wang, S., & Meng, Q. (2012d). Sailing speed optimization for container ships in a liner shipping
network. Transportation Research Part E, 48(3), 701–714.

Wang, S., & Meng, Q. (2013). Reversing port rotation directions in a container liner shipping
network. Transportation Research Part B, 50, 61–73.

Wang, S., & Meng, Q. (2014). Liner shipping network design with deadlines. Computers &
Operations Research, 41, 140–149.

Wang, S., Wang, T., & Meng, Q. (2011). A note on liner ship fleet deployment. Flexible Services
and Manufacturing Journal, 23(4), 422–430.

Wang, S., Meng, Q., & Sun, Z. (2013). Container routing in liner shipping. Transportation Research
Part E, 49(1), 1–7.

Wilson, I., & Roach, P. (1999). Principles of combinatorial optimization applied to container-ship
stowage planning. Journal of Heuristics, 5, 403–418.

Wilson, I., & Roach, P. (2000). Container stowage planning: A methodology for generating
computerized solutions. Journal of Operational Research Society, 51, 1248–1255.

Wilson, I., Roach, P., & Ware, J. (2001). Container stowage pre-planning: Using search to generate
solutions, a case study. Knowledge-Based Systems, 14, 137–145.

Yan, S., Chen, C.-Y., & Lin, S.-C. (2009). Ship scheduling and container shipment planning for
liners in short-term operations. Journal of Marine Science and Technology, 14(4), 417–435.

Zhen, L., Chew, E., & Lee, L. (2011a). An integrated model for berth template and yard template
planning in transshipment hubs. Transportation Science, 45(4), 483–504.

Zhen, L., Lee, L., & Chew, E. (2011b). A decision model for berth allocation under uncertainty.
European Journal of Operational Research, 212(1), 54–68.


	Part II Shipping Liners: Tactical and Operational Management
	Chapter 10 Ship Route Schedule Based Interactions Between Container Shipping Lines and Port Operators
	10.1 Introduction
	10.1.1 Interactions Between Shipping Lines and Port Operators
	Ship Storage Planning
	Berth Allocation

	10.1.2 Liner Ship Route Schedule Design with Port Time Windows
	10.1.3 Objectives

	10.2 Literature Review
	10.2.1 Tactical-Level Schedule Design
	10.2.2 Operational-Level Schedule Design
	10.2.3 Gaps of Existing Studies

	10.3 Problem Description
	10.3.1 Ship Cost, Bunker Cost and Inventory Cost
	Ship Cost
	Bunker Cost
	Inventory Cost

	10.3.2 Liner Ship Route Schedule
	10.3.3 Port Time Window

	10.4 Mathematical Model
	10.4.1 Notation
	10.4.2 Model

	10.5 Solution Method
	10.5.1 Space-Time Network for a Given Number of Ships
	Property of the Problem
	Space-Time Network Construction Method
	An Example of Space-Time Network Construction
	Loop Property of Ship Route in the Space-Time Network

	10.5.2 Lower Bound of the Number of Ships
	10.5.3 Lower Bound of the Total Cost With Given Number of Ships
	10.5.4 Overall Algorithm

	10.6 Case Study
	10.6.1 Impact of Port Time Windows
	10.6.2 Consequence of Port Efficiency
	10.6.3 Result of Bunker Prices
	10.6.4 Effect of Inventory Cost

	10.7 Conclusions and Future Research
	10.7.1 Summary of the Works
	10.7.2 Future Research Directions
	Ship Route with Ports Visited More than Once
	Schedule Design for a Liner Shipping Network
	Schedule Design with Container Routing
	Schedule Design Under Uncertainty


	References





