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Abstract Road Network Conflation is concerned with the unique identification of
geographical entities across different road networks. These entities range from
elemental structures such as crossings represented by nodes in the network to
aggregated high-level entities such as topological edges or sequences of edges.
Based on topological, geometrical and semantic information, the road networks to
be conflated are investigated in order to identify similarities as well as differences.
In this paper, we introduce a novel approach for conflating road networks of digital
vector maps which iteratively employs multiple matching steps on different hier-
archies of structures in order to progressively find, evaluate and refine possible
solutions by recognizing and exploiting topological and geometrical relationships.
The introduced algorithms are applied to real-world maps and validated against
ground truth data retrieved from visual inspection. Validation shows that our
approach leads to good results exhibiting high success rates in rural regions and
provides a reasonable starting point for further refining in dense urban areas, where
special heuristics are required in order to tackle difficult matching cases.
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1 Introduction

A road network is the structure given by the topology and geometry of roads, streets
and transport links within a certain area. Historically, maps depicting road networks
have a long tradition, dating back to a time as early as Ancient Egypt where maps
such as the Turin Papyrus Map showed pedestrian routes along dry river beds
(Harrel and Brown 1992). Nowadays advanced methods of georeferencing are
employed in order to accurately assign the geographical objects used in a road map
to geographical locations. Maps are increasingly authored and maintained in digital
form, which may either be raster or vector based (Hackeloeer et al. 2014).

In recent times, digital vector maps have gained importance in the field of
automotive navigation. These maps organize georeferenced information in several
layers. The topological layer consists of a representation of the road network given
by its induced graph, where crossings and intersections correspond to nodes in the
graph, and the routes interconnecting these crossings correspond to edges. In
contrast, the geometrical layer of a digital map contains a description of the geo-
metrical shape of the objects stored in the map. While a road is usually represented
as a one-dimensional entity, more detailed maps, e.g. those required for driver
assistance systems, may store additional information such as the width of a road or
the boundaries of different lanes. In addition, digital road maps may contain
polygonal two-dimensional objects such as footprints of buildings or special areas
like parking zones. All geographical entities found in a digital road map are
georeferenced using a geodetic reference frame such as WGS-84 (Boucher and
Altamimi 2001). Digital road maps usually enforce internal consistency, i.e. there is
only one unique representation of a single geographical object. However, multiple
maps of the same region may vary greatly, to the extent that a geographical object
present in one map may be entirely missing in the other, or may be assigned to a
different georeference. Also, it may (partly) correspond to multiple objects in the
other map, e.g. if a road with lanes separated by a physical divider is modeled as a
single road in one map and as two one-way roads in the other.

The problem of identifying geographical entities across different maps is called
conflation (Saalfeld 1988). The outcome of a conflation process between two maps
is a projection from one map to the other which defines how the geographical
entities found in the two maps are related (the similarities), thereby also identifying
the objects which are unrelated (the differences). Within the domain of conflation,
Road Network Conflation is concerned with conflating road networks. With the
advent of an increasingly heterogeneous landscape of location-based services which
heavily rely on georeferencing, often across different maps and environments, Road
Network Conflation is gaining attention as a path towards reliable attribute transfer,
cross-map relating of georeferenced entities, and map fusion. Moreover, conflation
offers a way to store georeferenced information independent of specific maps,
which is of special importance in the automotive navigation, e.g. for maintaining
learned georeferenced data in the course of a map update. This paper introduces the
Road Network Conflation problem along with common approaches to solve the

138 A. Hackeloeer et al.



problem. Then, our novel approach called Iterative Hierarchical Conflation (IHC) is
described, followed by a real-world map evaluation of the algorithm. Finally, we
conclude by summarizing our results and discussing the ongoing challenges in the
field.

2 Problem Definition of the Road Network Conflation
Problem

Let M1 := N1;E1ð Þ a graph representing a road network, where E1 � ðN1 � N1Þ,
and M2 := N2;E2ð Þ another graph representing a road network of the same area,
where E2 � ðN2 � N2Þ. M1 is also called the Reference Network, while M2 is called
the Matching Network. We call Ni := N1

i ; . . .;N
ni
i

� �
; ni 2 N the nodes of road

network Mi and Ei := E1
i ; . . .;E

mi
i

� �
;mi 2 N the links of road network Mi. The

nodes of both graphs are allowed to be bivalent, reflecting the fact that road net-
works of digital road maps often contain bivalent nodes, e.g. at places where a
crossing existed in a prior version of the map or where a link-specific attribute such
as a speed limit changes its value. We then call Si := (E j

i ;E
k
i ; . . .;E

x
i Þ a link

sequence created from the concatenation of consecutive links of the edge relation
Ei. A link sequence corresponds to a simple path from the starting node of E j

i to the
ending node of Ex

i .
We define a node matching relation P � ðN1 � N2Þ as a set of node pairs, where

for each pair the first node is taken from the nodes of M1 and the second node is
taken from the nodes of M2. Thus, any p ¼ p1; p2ð Þ 2 P assigns a node p1 2 N1 to a
node p2 2 N2. Note that in general, we neither require P to be functional, nor
injective, i.e., one node of N1 may be assigned to multiple nodes of N2, and vice
versa. This is motivated by the fact that many-to-many relationships between nodes
may and are likely to exist when conflating road networks from different sources. A
node matching relation represents a solution to the road network conflation problem
on the elementary level of topological nodes.

In order to refine our solution towards the level of aggregated structures such as
links and link sequences, we define a link sequence matching relation L �
S1 � S2ð Þ as a set of link sequence pairs, where for each pair the first link sequence
consists entirely of consecutive links taken from E1 and the second link sequence
consists entirely of consecutive links taken from E2. A link sequence matching
relation represents a solution to the road network conflation problem on the level of
one-dimensional structures. Again, many-to-many relationships between link
sequences of the road networks to be conflated may exist. As indicated in the
introduction, this may e.g. be the case if the modeling of a road with a physical
divider differs between the road networks.

So far, we have only defined solutions which allow for describing total corre-
spondences, i.e. situations where a link or a sequence of links of M1 corresponds to
another link or sequence of links of M2 a whole. However, often partial
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correspondences are present. For example, it may occur that we have two links
ea; eb 2 E1 and another link ex 2 E2, and ea corresponds to ex only for the first
couple of meters from the start of ex, and the remainder of ex corresponds to eb in its
entirety (see Fig. 1).

As a simple concept for dealing with partial correspondences, we suggest to
employ virtual nodes along with virtual links. If a partial correspondence is iden-
tified, the involved links are split up into separate virtual links which are inter-
connected via a virtual node, and the virtual nodes and links are added to the
respective road network. Node and link sequence matching assignments may then
refer to these virtual entities in order to describe partial correspondences. Since a
road network also includes a geometrical layer, some geometric modifications are
necessary to update the geometry so as to match the altered topology. E.g., if the
geometry of a link is given by a sequence of shape points, and the chosen split point
is not identical to one of these shape points, then a new shape point must be created
at an intermediate position along the straight line between the neighboring shape
points. Formally, we need a set Niv of virtual nodes to be added to Ni, a set Eiv of
virtual links, where at least one of the two nodes in the link is virtual, and a
projection Vi : ðEi;NivÞ ! ðEiv ;EivÞ which assigns a link involved in a partial
correspondence to the two virtual links which are created from splitting the link at
the position of the respective virtual node.

Taking these considerations into account, it is possible to express a solution to
the Road Network Conflation Problem for two road networks on the level of both
elementary topological nodes as well as composite line structures by the tuple
R ¼ ðP; L;N1v ;E1v ;V1;N2v ;E2v ;V2Þ. The problem of Road Network Conflation can
then be defined as finding the optimal R. Sometimes it is demanded that the con-
flation result exclusively describes one-to-one correspondences. In this case, we
require both P and L to be injective as well as functional relations, and special
strategies must be applied to deal with real-world ambiguities, such as replacing all
nodes assigned to a node with a single merged virtual node which may e.g. be
placed at their center of gravity.

Fig. 1 From left to right: partial correspondence, 1:1 correspondence, one-to-many node
correspondences, one-to-many link correspondences
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3 Related Work

The following matching algorithms are approaches to the conflation of road net-
works: Buffer Growing (Walter 1997; Mantel and Lipeck 2004; Zhang and Meng
2007), Multi-Stage Matching (Xiong 2000; Volz 2006), and Delimited Stroke
Oriented Matching (Zhang and Meng 2008; Zhang 2009).

3.1 Buffer Growing

Walter (1997) describes a geometric matching approach for line objects using the
concept of Buffer Growing, which is also employed by Mantel and Lipeck (2004)
for the matching of geometric datasets. Zhang and Meng (2007) suggest a road-
matching approach based on Buffer Growing which also accounts for systematic
geometric deviations by using unsymmetrical buffers.

Buffer Growing assumes a certain similarity regarding the location of the line
objects to be matched, which may require preceding transformations. A line object
originating from the Reference Network which we call the reference link sequence
is encircled by a buffer, and then the Matching Network is spatially searched for all
line objects which are fully covered by that very buffer, which we call matching link
sequences. A result list holds assignments between reference link sequences and
matching link sequences. In each iteration, the matching link sequence is added to
the result list along with the corresponding reference link sequence as long as it
cannot be derived from concatenating prior results, and then the reference link
sequence along with the buffer boundary is extended by one link. The process stops
when either certain pre-defined boundaries are reached, such as nodes having a
valence (number of incident edges, where loops are counted twice) of 1 or a valence
of at least 3, or if the reference link sequence exceeds a fixed number of links.

Buffer Growing already implies a limitation on the number of link sequence
pairs to be evaluated by means of the size of the buffer. Still, the approach suffers
from high combinatorial complexity, as no prior filtering derived from node
assignments is performed.

3.2 Multi-stage Matching

Xiong (2000) proposes a three-stage approach for Road Network Conflation which
consists of the stages node matching, segment matching, and edge matching. These
stages are first processed bottom-up, i.e. from nodes via segments to edges, and
then top-down, i.e. from edges via segments to nodes. In the bottom-up process,
associations between nodes are established, which are then used to associate seg-
ments and edges. The edge mapping is aggregated from the segment mapping
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gained from associating the nodes. The top-down process propagates edge corre-
spondences down to the level of elementary nodes in order to identify additional
node associations. Volz (2006) describes an approach which relies on combined
edge and node matching. After several preprocessing steps, seed nodes are iden-
tified in the Reference Network. Then, for each seed node, matching candidates are
selected from the Matching Network. The process is repeated vice versa, i.e. with
switched roles of the Matching and Reference Network. Once the seed nodes have
been associated, the respective line objects, which correspond to link sequences, are
compared and selected based on a number of topological and geometrical distance
metrics. Finally, multiple iterations are performed in order to successively re-
associate nodes by incorporating more tolerant criteria, which leads to the identi-
fication of new matching pairs.

Both approaches employ several heuristics and require fine-tuning of multiple
parameters, so that tailored parameter settings are needed for a certain region. Also,
they rely on a node matching algorithm which derives a similarity score between
two nodes from the position of incident edges within discrete sectors. However, it
has been shown that non-sector-oriented point matching algorithms lead to more
accurate results (Hackeloeer et al. 2013).

3.3 Delimited Stroke Oriented Matching

Delimited Stroke Oriented Matching (DSO) is a Road Network Conflation algo-
rithm introduced by Zhang (2009) which builds upon the Buffer Growing approach.
After several preprocessing steps, a matching procedure is carried out which con-
sists of five steps which are repeated at three different levels. The DSO algorithm
operates on entities called Delimited Strokes, which are line objects corresponding
to link sequences. In the matching process, first potential matching pairs are
identified. Then, incorrect potential matching pairs are excluded by accounting for
certain differences. The remaining matching pairs are subject to a further investi-
gation, which removes some ambiguity by calculating a similarity score. A so-
called network-based selection detects conjoint Delimited Strokes and arranges
them into a single network, which is then used for network-based matching. Finally,
the node pairs on twigs of the matched networks are used as seeds for matching-
growing, which leads to the identification of new Delimited Stroke matching pairs.
The growing continues as long as the new matched pairs exhibit sufficient geo-
metrical and topological similarity. While the DSO algorithm is capable of dealing
with numerous matching cases, the large number of heuristics involved leads to a
very high overall complexity of the process in terms of both computation time as
well as necessary parameter adjustments.
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4 Evaluation Methodology of Road Network Conflation

In order to find a solution, a conflation algorithm needs to perform a binary clas-
sification of pairs of nodes and links. Like any classifier, conflation algorithms can
be assessed by means of predictive analytics. In detail, several properties derived
from a table of confusion offer a starting point for the evaluation.

Lemma 1 A solution R is optimal if it maximizes the number of true positives and
true negatives in both P and L, while minimizing the number of false positives and
false negatives in both P and L (see Table 1).

A conflation algorithm is directed towards two rivaling goals: correctness and
completeness. Correctness requires that the identified assignments reflect real-world
correspondences, while completeness implies that existing real-world correspon-
dences are actually identified as assignments. The extent to which correctness is
achieved can be measured by the precision (sometimes called positive predictive
value), while the degree of completeness may be expressed by the recall (also
known as sensitivity). In this context, precision constitutes the percentage of correct
algorithm decisions out of all algorithm decisions, and recall stands for the per-
centage of correct algorithm decisions out of all correspondences which are
reflected by reality. Precision and recall are negatively correlated and thus cannot be
optimized independently. It should be noted that the recall is not related to the
actual network coverage, i.e. the percentage of elements which are part of the
projection out of the number of all elements of a road network. If the road networks
to be conflated offer few similarities, even an optimum solution with perfect pre-
cision and recall will exhibit little coverage for both networks. Since precision and
recall for node and link solutions are directly correlated, it is sufficient to only
evaluate link solutions in order to assess a conflation algorithm.

5 Iterative Hierarchical Conflation

Here, we introduce a novel approach to Road Network Conflation named Iterative
Hierarchical Conflation, which combines concepts from both Multi-Stage Matching
and Buffer Growing in order to find and iteratively refine matching results. From an

Table 1 Table of confusion for Road Network Conflation results

Algorithm deci-
sion/reality

True False

Positive Correctly identified matching
pairs

Pairs incorrectly identified as
being a match

Negative Pairs correctly identified as
being no match

Pairs incorrectly identified as
being no match
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abstract point of view, data are processed in the form of what we call the Matching
Pipeline (see Fig. 2).

The Matching Pipeline basically consists of four stages: Preprocessing, Node
Matching, Elementary Matching, and Combined Matching, where the latter may be
repeated several times in order to find more assignments. The input of each stage is
comprised of the output of all preceding stages, so that the matching result can
successively be improved as more information regarding correspondences has been
learned. Processing is divided into two phases: The bottom-up phase, where cor-
respondences between elementary structures are aggregated, and the top-down
phase, where correspondences between composite structures are decomposed.

5.1 Bottom-Up Phase

In the course of the bottom-up phase, correlations between elementary structures
are identified, which are then combined in order to derive assignments between
more complex structures.

5.1.1 Preprocessing

In order to normalize the road networks to be conflated, certain preprocessing must
take place, depending on their deviance. For example, if there is a systematic
geometric offset between both networks, it is possible to manually identify the
offset and remove it so that the matching network is centered on the reference
network. Also, it may be beneficial to harmonize the shape point resolution in each
map to facilitate spatial queries. After normalization, index structures must be
created which enable efficient spatial search for nodes as well as for shape points.
This may e.g. be performed with a k-d-tree or a quadtree. If the road networks are

Fig. 2 The matching pipeline
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based on different data models, they must be converted so as to share the same data
model in order to allow direct comparisons of their geometry and topology.

5.1.2 Node Matching

During bottom-up node matching, assignments between non-bivalent nodes of the
road networks are identified (see Fig. 3A). While any point matching algorithm may
be used for this task, we chose to employ the Exact Angular Index (EAI) approach
introduced by Hackeloeer et al. (2013) as it provides several benefits in terms of
precision compared to discrete sector-based point matching techniques such as the
Spider Index. In detail, the EAI evaluates all possible projections from the edges of
the reference node to the edges of the matching node and selects the projection
which exhibits the lowest overall angle difference derived from aggregating the
angle differences of all edge assignments, where redundant or missing edges are
counted as worst-case angle differences of 180°.

In order to obtain a node matching solution P, a fixed-radius search in the set of
non-bivalent nodes of the matching network is performed for each non-bivalent
node p1 of the reference network, resulting in candidate nodes p12. . .p

n
2. Then, the

EAI score is calculated for each pair ðp1; pi2Þ. By always choosing the pair with the
highest similarity score, the node matching solution comprises a functional relation,
i.e. no node in the reference network is assigned to more than one node in the
matching network. By repeating this process with switched roles of the networks
(yielding an injective relation) and then intersecting both relation sets, a bijective
node matching solution can be derived. This solution satisfies mutual optimality, i.
e. for any pair ðp1; p2Þ and a fixed radius r, p1 is the best match for p2 within a circle
of radius r, and p2 is also the best match for p1 within a circle of radius r.

If all nodes which are part of the solution are removed from both networks, and
then the process is repeated, additional node pairs may be identified. This can be

Fig. 3 Bottom-up phase (left) and top-down phase (right)

Road Network Conflation: An Iterative Hierarchical Approach 145



done until no additional node pairs are found in an iteration, or until a pre-defined
limit for the number of passes has been reached.

5.1.3 Elementary Matching

In the elementary matching stage, elementary link sequences, i.e. those consisting of
only one link, are constructed starting from a given node matching solution. We
establish two sets holding link sequences, one for each road network:
Ti := fS1i ; . . .; soii g. For each node of the reference network which is part of the solu-
tion, a separate link sequence is constructed out of each incident link, and all con-
structed link sequences are added to the corresponding link sequence set. The same
process is repeated for the nodes of the matching network contained in the solution.

For performing the actual matching, the two link sequence sets are compared. For
each link sequence S j

1 2 T1, a corresponding link sequence Sk2 2 T2 is identified if the
start node of S j

1 is related to the start node of S
k
2 in the node matching solution P, and

also the end node of S j
1 is related to the end node of Sk2. If a link sequence match

between S j
1 and Sk2 has been found, the pair ðS j

1; S
k
2Þ is added to the link sequence

matching relation L � ðS1 � S2Þ (see Fig. 3B). By employing several index struc-
tures, this process can be turned into an Oðnþ mÞ operation, where n ¼ jT1j and
m ¼ jT2j. In the next step, duplicates are removed from L (i.e. those pairs which are
identical apart from having swapped start and end nodes). Finally, all link sequences
of T1 and T2 are removed which have links in common with link sequences of L.

5.1.4 Combined Matching

The combined matching stage is concerned with the identification of correspon-
dences between composite link sequences. Therefore, new composite link
sequences are created by concatenating more elementary link sequences already
present in both link sequence sets. A concatenation of two link sequences in a link
sequence set Ti takes place if the end node of one link sequence is the start node of
the other. In this case, a new link sequence is derived from the concatenation and
added to the corresponding link sequence set. After concatenation has been per-
formed for both link sequence sets, they are compared again in the same manner as
during the elementary matching stage. As a result, new non-elementary link
sequence pairs are added to the link sequence matching relation L (see Fig. 3C).
This process may be repeated for a given number of passes, or until there is no
further concatenation possible, which implies that no additional link sequences are
created in an iteration.

L may contain ambiguity, i.e. one link sequence of the reference network may be
assigned to multiple link sequences of the matching network, or vice versa. In order
to enforce bijectivity and filter improbable matches, a score is assigned to each link
sequence pair of L expressing the degree of similarity of their corresponding
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polylines, which is projected on the interval [0;1]. This score can be calculated
using any polyline distance metric or a weighted combination of these metrics. In
detail, a simple distance metric yielding good results is the length ratio between the
polylines. Others include the sinuosity ratio, the Hausdorff distance, the Fréchet
distance or the area of the enclosed polygon (Yuan and Tao 1999). Once the scores
of all link sequence pairs have been determined, the pairs assigned to scores below
a certain threshold score are removed, as it can be assumed that they do not reflect
real-world correspondences. Then, L is made bijective in the same way as it has
been done with the node matching result (see Node Matching).

If there exists topological inconsistency, which may e.g. be caused by incorrect
point assignment in the node matching stage, multiple link sequence pairs of
L share several, but not all links. In this case, it is not possible to establish a
consistent matching and thus, link sequence pairs with common links are removed
from L.

A special treatment is required in order to identify dangling link sequence pairs,
i.e. pairs of link sequences which are only associated by their start nodes, but not by
their end nodes. Such situations can occur if two roads are running in parallel for a
certain distance, but beyond that one road ends while the other continues until it
also reaches a dead end. These may reasonably be added to L if the end nodes are
not associated to other link sequences. To create a proper link sequence pair out of a
dangling link sequence pair, a corresponding virtual end node must be placed near
the position of the end node of the shorter link sequence on the longer link
sequence, which can then be associated with the non-virtual end node of the other
sequence. Then, the same procedure as for regular link sequence pairs can be
applied to take care of ambiguity and inconsistency. The dangling link sequence
assignment must take place subsequent to all combined matching passes, since a
dangling link sequence pair might be prolonged to a regular link sequence pair after
concatenation has been done.

5.2 Top-Down Phase

During the top-down phase, correlations between aggregated structures are
decomposed into more elementary associations.

5.2.1 Combined Matching

Over the course of the bottom-up phase, correspondences between link sequences
have been identified. The implied knowledge that has been learned is the fact that
the corresponding road segments refer to the same real-world entity, regardless of
differences in topology and geometry. This knowledge can now be used to project
nodes located on one link sequence onto a corresponding position on the other link
sequence. Projection is done by multiplying the offset of a node from the start node
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of the link sequence by the length ratio between the two link sequences, then
placing a virtual node at the resulting distance from the start node of the paired link
sequence. This results in a splitting of the affected link into two new virtual links
(see Fig. 3D). The underlying rationale is the assumption that the link sequence of
the matching network as a whole represents a shrinked or stretched version of the
entire corresponding link sequence of the reference network. In order to decide
whether it is better to place a projected virtual node or rather associate with a nearby
non-virtual node, a one-dimensional search can be performed within an interval
around the projected position.

Sometimes multiple mappings are possible. Thus, we evaluate all possible
projections from the nodes of the link sequence of the reference network to nodes of
the associated link sequence of the matching network by aggregating and nor-
malizing the EAI scores of the respective node pairs for every possible projection
and then selecting the projection yielding the best overall score. A projection is
deemed possible if there are no crossed assignments of nodes, as these cannot
logically reflect real-world situations.

5.2.2 Elementary Matching and Node Matching

After the links of the link sequence pairs in L have been split according to node
projections, it is now possible to establish an elementary mapping on the link level.
Since for every node along a link sequence there is a matching node on the asso-
ciated link sequence (either virtual or non-virtual), single-link pairings can be
derived which represent total correspondences (see Fig. 3E). Finally, all nodes
belonging to link sequence pairs that have not been correlated in the bottom-up
phase are now added to the node matching result, including bivalent nodes.

6 Evaluation of the Iterative Hierarchical Conflation

6.1 Test Setup

Four sample regions were used: Two rural and two urban areas. As representatives for
rural regions, we choseMoosach, Germany ([48.0335, 11.8729], [48.0292, 11.8801])
and Sullivan, NY, USA ([43, −75.79], [42.97, −75.735]). For the urban sample, we
employed Munich Old Town, Germany ([48.138, 11.5738], [48.1349, 11.5804]) and
Boston Financial District, MA, USA ([42.358, −71.062], [42.3533, −71.0553]). For
the rural samples, we used a search radius of 40 m and a combined matching iteration
limit of 2, and for the urban samples, 15 m and a limit of 5. For the road networks, we
relied on map data from two different commercial map vendors who provide road
maps for automotive navigation. In order to reduce the subjectivity inevitably
involved with ground truth definitions, we employed a ground truth defined as the
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agreement of several people which we are disclosing here: https://www.dropbox.
com/sh/6sox114wb6klx4h/AAAWhM1RnnLg1iIdjZCoU4ATa?dl=0

6.2 Results

Table 2 shows a summary of the evaluation results.

6.2.1 Results for Urban Samples

The conflation result for the Munich and Boston samples can be seen in Fig. 4. Most
false negatives can be attributed to one-to-many or many-to-many correspondences

Table 2 Summary of evaluation results for urban and rural regions

Urban
(Munich)

Urban
(Boston)

Rural (Moosach) Rural
(Sullivan)

Found associations 121/134 121/140 78/82 53/55

False negatives 23 19 4 2

False positives 1 0 0 0

True negatives 10 28 10 4

Precision 99 % 100 % 100 % 100 %

Specificity 91 % 100 % 100 % 100 %

Recall 84 % 90 % 95 % 96 %

Nodes in network A 149 139 92 59

Nodes in network B 150 157 86 55

Network A coverage 81 % 87 % 85 % 90 %

Network B coverage 81 % 77 % 91 % 96 %

Fig. 4 Conflation results for urban samples (left Munich Old Town, right Boston Financial
District). Solid black/gray matched links of corresponding network, dashed black/gray unmatched
links. Node and link matchings are shown as solid/thin dashed lines. Nodes are shown as black/
gray dots. Virtual nodes are encircled
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between nodes and links. The modest coverage indicates that there are several major
differences between the networks, making the conflation process difficult and error-
prone. It can be seen that the IHC algorithm is designed to deliver very reliable
results by exploring topological relationships which are enforced for assignments,
sometimes at the cost of missing some assignments which are solely related through
geometry or cannot uniquely be deduced to a topological relationship.

6.2.2 Results for Rural Samples

Figure 5 shows a visualization of the conflation results for the rural samples.
For Moosach, the coverage suggests that the networks are fairly similar. The

ground truth solution nearly matches the algorithmical solution, apart from a small
area to the southwest. There, a topological inconsistency between the networks
leads to an improper node assignment and thus to multiple link sequences sharing
one link, which are removed during the bottom-up combined matching stage. The
simple, but very large-scale Sullivan sample also exhibits a very good recall and
perfect precision. The two networks do exhibit a shift, however it is nearly invisible
due to the scale of the image.

7 Summary

In this paper, we have introduced the field of road network conflation. We gave a
formal definition of the road network conflation problem as well as of the evalu-
ation methodology for the assessment of road network conflation algorithms, which
employs methods of the domain of predictive analytics. Furthermore, we described,
discussed and classified common road network conflation approaches in the field.
Subsequently, we presented our novel approach called IHC, which comprises a
comprehensive multi-stage and bi-phase model which builds upon a combination of

Fig. 5 Conflation results for rural samples (left Moosach, right Sullivan)
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Multi-Stage Matching and Buffer Growing in order to iteratively find correlations
between geographical structures on different levels of aggregation. In the evaluation
section, we assessed the correctness as well as the completeness of the IHC algo-
rithm by performing a conflation of road networks provided by two commercial
map vendors from four regions with different characteristics: two rural and two
urban regions. We compared the conflation results with ground truth results derived
from visual inspection and calculated precision and recall. Our results show that the
IHC algorithm works very well in terms of both correctness and completeness in the
rural sample regions and provides a very high correctness while maintaining con-
siderable, but not perfect completeness in the urban sample regions. Thus, we
conclude that further advancements of the IHC approach with special attention to
the proper resolution of ambiguous correspondences are necessary to tackle hard
matching cases such as the historic city center of Munich or Boston Financial
District.
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