
Real-World Loops Are Easy to Predict

Raphael Ernani Rodrigues

Department of Computer Science, UFMG, Brazil
raphael@dcc.ufmg.br

Abstract. The Trip Count of a loop determines how many iterations
this loop performs. Several compiler optimizations yield greater benefits
for large trip counts, and are either innocuous or detrimental for small
ones. However, predicting exactly the trip count of a loop is an unde-
cidable problem in general. Thus, such problem is usually approached
through heuristics, which tend to be computationally expensive. In this
paper we argue that in most cases there is no need to resort to expen-
sive methods and that in many cases the trip count prediction does not
need to be sound. In that sense, we propose a lightweight trip count
prediction heuristic. Our method identifies the pattern on which the in-
duction variables of each loop are updated between two iterations and
generate symbolic expressions that represent the trip counts of the loops.
Such expressions can be evaluated at runtime with O(1) complexity and
allow blocks of code to be conditionally executed, depending on the ex-
pected trip count. We argue that such technique is useful for speculative
optimizations, very common in the world of just-in-time compilers. For
instance, if we predict that a loop will iterate for a long time, we can
perform more aggressive JIT optimizations. Furthermore, we show that
despite the simplicity of our technique, we have accurately predicted
nearly 90% of all the interval loops found in millions of lines of C code.
The interval loops represent approximately 67% of the total number of
loops of the programs.

1 Introduction

Loops represent most of the execution time of a program. For that reason, there
is a well-known aphorism that says that "all the gold lays in the loops". Thus,
compiler optimizations made inside loops have their benefits multiplied by the
number of iterations actually executed. As a consequence of that fact, there is a
vast number of works in the literature that are specialized in loop optimizations
[19,11,14].

Some optimizations, however, are highly sensitive to the number of iterations
of a given loop. For instance, if a given loop iterates a few times in an interpreter,
an aggressive optimization made by a Just-In-Time (JIT) compiler may not
even pay for the compilation overhead. On other hand, if the same loop iterates
thousands of times, the JIT compilation might use more expensive techniques
and still have a better end-to-end performance. The number of iterations a loop
actually executes is called Trip Count. Here we use the same concept of trip
count as described by Wolfe et al. [19, pp.200].

F.M. Quintão Pereira (Ed.): SBLP 2014, LNCS 8771, pp. 124–138, 2014.
© Springer International Publishing Switzerland 2014



Real-World Loops Are Easy to Predict 125

However, in most cases this number is only known at runtime. Rice [16] has
demonstrated that statically predicting this information is an undecidable prob-
lem. Therefore, this problem can only be partially solved by heuristics. There is a
large number of works in the literature that propose different techniques to solve
this problem [18,1,9]. The main disadvantage of them is the high computational
cost to predict loops. That characteristic makes these solutions impractical to
be applied to JIT compilers, for instance.

In this particular work, we argue that, although predicting exactly the trip
count of a loop is undecidable, most of the time there is no need to use computa-
tionally expensive state-of-the-art methods to compute (an approximation of) it.
We propose a heuristic that extracts patterns of the updates of variables’ values
and estimates the trip count of loops with symbolic expressions. Those expres-
sions might, then, be evaluated at runtime with O(1) complexity. They allow
the program to decide dynamically which piece of code to execute, depending
on the actual expected number of iterations.

We support our position with a series of experiments. We have analyzed mil-
lions of lines of C code, with thousands of different loops present on well-known
benchmarks. Our experiments demonstrate that most of the loops are easy to
predict and do not demand expensive techniques to be accurately analyzed. We
have collected statistics about the structure of thousands of loops that support
our claim. According to our research, 70% of the loops have a very simple and
well-behaved structure. We have instrumented those loops and we have exactly
predicted the trip counts of 90% of them.

The rest of this paper is organized as follows: Section 2 gives us the basis upon
which we develop our technique. Sections 3 and 4 describe our algorithms and
explain our engineering choices. We experimentally evaluate the performance of
our work in Section 5. In Section 6 we discuss how our work is related with
existing efforts in the literature. Finally, in Section 7 we discuss possible future
directions of this research and make final remarks.

2 Background

Our analysis combines information contained in the Control Flow Graph (CFG)
and in the Data Dependence Graph of the program. From the CFG we can ex-
tract information about the structure of the analyzed program, like the points of
the program where the loops start and stop, and which variables and instructions
directly affect the control flow. From the dependence graph we can extract in-
formation about the way that the information flows among the variables. Those
information allow us to generate symbolic expressions that estimate the trip
count of the loops of the program.

The dependence graph [5] is defined in the following way: for each program
variable v, we create a node nv, and for each instruction i in the program we
create a node ni. For each instruction i : v = f(. . . , u, . . .) that defines a
variable v and uses a variable u we create two edges: nu → ni and ni → nv.

Many variables of a program do not affect the predicates that represent the
loops’ stop conditions. Thus, we do not consider those variables in our analysis,



126 R.E. Rodrigues

Fig. 1. (a)Example program. (b) CFG of the program, after conversion to SSA form.
(c)Dependence graph highlighting nodes that do not affect the loop predicate, after
converting the original program into SSA.

because they do not have any impact on the number of iterations of those loops.
Therefore, despite of working with a slice of the program that eliminates those
instructions, the result of our analysis remains the same. Figure 1 shows a de-
pendence graph for the factorial function and highlights the variables that we
can prune before doing our analysis. In this work we use the SSA representation
form [3]. We chose this representation form because it is able to give extra preci-
sion to our analyses in cases when the same variable is redefined in two different
loops.

Natural Loops
According to Appel and Palsberg [2, p.376], a natural loop is a set of nodes S
of the control flow graph (CFG) of a program, including a header node H , with
the following properties:
– from any node in S there is a path that reaches H ;
– there is a path from H to any node that belongs to S;
– any path from a node outside S to a node inside S contains H .

A node PH of the CFG is a pre-header of a natural loop if and only if PH
has H as an immediate successor. In this work we normalize the CFG in such
a way that every natural loop has one unique pre-header PH , that is executed
immediately before the first iteration of the loop. Such normalization gives us
a basic block that immediately dominates the loop. This basic block is used by
our profiler to initialize the variables that we use to observe the behavior of the
loop.

In addition, the stop condition of a loop is a boolean expression E =
f(e1, e2, . . . , en), where each ej , 1 ≤ j ≤ n is a value that contributes to the
computation of E. Depending on the stop condition we classify the loop into one
of the following categories:

– Interval Loops - The stop condition is an integer comparison instruction
that receives two operands e1 and e2 and compares them with an inequality
( <, ≤, >, or ≥).



Real-World Loops Are Easy to Predict 127

– Equality Loops - The stop condition is an integer comparison instruction
that receives two operands e1 and e2 and compares them with an equality (
== or ! =).

– Other Loops - Any natural loop that neither is an Interval Loop nor is an
Equality Loop.

Strongly Connected Components
Variables that are redefined during the execution of a loop of the program belong
to cycles in the dependence graph. Cycles of redefinitions of variables can be
identified by computing the Strongly Connected Components (SCCs) on the
dependence graph [17]. The SCCs help us to group the different nodes of the
graph that belong to the same redefinition sequence.

After we have computed the SCCs of the dependence graph, we can classify
them in the following way:

– Single-node SCC - SCCs composed by only one node.
– Multi-node SCC - SCCs composed by more than one node. SCCs of this

class represent cycles in the dependence graph.
Multi-node SCCs can be divided in two categories:
– Single-path SCC - From any node in the SCC there is only one path that

starts and ends in the same node and passes through the edges of the SCC
at most once.

– Multi-path SCC - There is at least one node in the SCC for which there
are two or more paths that start and end in the same node and pass through
the edges of the SCC at most once.

Single-path SCCs are unconditional sequences of redefinitions of a variable.
This pattern of SCC is the easiest to analyze, because it is possible to infer
statically what is the effect of one iteration of the loop on the variables of the
SCC.

Multi-path SCCs are conditional sequences of redefinitions of a variable. This
means that there are conditional branches inside the CFG loop. The amount of
branches makes the total number of possible paths to grow exponentially. Thus,
this class of SCCs is harder to analyze. Multi-path SCCs can be further classified
into two different categories:

– Single-loop SCC - The SCC has branches that does not constitute nested
loops.

– Nested-loop SCC - There are inner loops inside the SCC. In order to avoid
non-termination problems, we do not analyze this category of SCC.

Sequences of Redefinitions of Variables
A sequence of redefinitions (SR) is a path in the SCC that starts and ends in
the same node and does not repeat any edge. By construction, our dependence
graph does not admit self loops, so SRs are always extracted from Multi-node
SCCs. A SR can be interpreted to generate the effect of one iteration of the



128 R.E. Rodrigues

Fig. 2. (a)Dependence graph. (b)Multi-node SCC of the variable i1. (c)Sequence of
redefinitions of the variable i1. (d)Effect of one iteration on the variable i1.

program on a given variable. Figure 2 shows an example of SR for one induction
variable.

Considering infinite precision, a SR has one of the following classifications:

– Constant - after one iteration of the SR, the value of the variable remains
the same.

– Increasing - after one iteration, the value of the variable is always larger
than the initial value.

– Decreasing - after one iteration, the value of the variable is always smaller
than the initial value.

– Possibly Oscillating - after one iteration, we are not able to prove neither
an increasing nor a decreasing behavior.

SRs that are classified as Possibly Oscillating are placed in this category because
at least one of the following reasons is true:

– There is a call instruction in the SR. Currently our analysis is not able to
analyze interprocedural SRs.

– There is an operation in the SR that receives an operand X , where the range
analysis of X gives a positive upper bound and a negative lower bound.

– The SR depends on SCCs that have been classified as Possibly Oscillating.
We can classify a Multi-node SCC within the same categories of a single SR.

For that, the classification of all the SRs of the SCC must be combined using a
meet operation in the lattice shown in Figure 3. Therefore, the classification of
a SCC is the least upper bound of the classifications of the SRs that the SCC
contains.

Vectors
In order to achieve good precision without sacrificing efficiency, we propose an
abstraction called vectors to predict trip count. We place each numeric variable
v of the analyzed program on the real number line, in the point corresponding to
the value stored by v. Whenever the value that v stores is changed, we move v
to another point of the real line, corresponding to its new value. By doing that,
we have observed that some variables have a well-defined behavior along loop
iterations, that we can translate into patterns of movement. The vectors are,



Real-World Loops Are Easy to Predict 129

Fig. 3. Lattice of SR classifications

then, the structures that help us to understand those patterns of movement. We
borrow the concept from linear physics vectors (magnitude, direction).

A vector is the step given by a variable v after one complete iteration through
a SR p. Before the execution of p, we have v0 stored in v. After the execution of
p, v will be redefined with a new value, vp. We can understand this redefinition
of v as a move on the real number line. The step given by v in the line is vp−v0.
Thus, a vector of a variable v extracted from a SR p is Δvp = vp − v0.

The sign of Δvp indicates the direction of the vector (i.e. the direction to where
we are moving v). Vectors may be defined by symbolic expressions involving other
variables of the program. This characteristic generates a chain of dependencies
that brings the need to process the SCCs in topological order. If the SCC of a
variable n is classified as Possibly Oscillating, then the vectors that depend on
n are unknown.

Patterns of Movement
When variables have their values updated always by vectors with the same char-
acteristics, some patterns of movement are noticeable:

– Stationary - variables updated by vectors with length equal to zero.
– Constant Speed - variables updated by vectors with constant length. In

this case, on each iteration, the variable is moved a constant distance from
its previous location, creating a linear behavior.

– Constant Acceleration - variables updated by a vector that has a linearly
increasing length. This kind of vector is generated by a linear expression
involving a Constant Speed variable, creating a quadratic behavior.

– Constantly Increasing Acceleration - variables updated by a vector that
is generated by a linear expression involving a Constant Acceleration variable,
creating a cubic behavior.



130 R.E. Rodrigues

– More Than Cubic - variables updated by a vector that is generated by
a linear expression involving a Constantly Increasing Acceleration or More
Than Cubic variable, creating a more-than-cubic behavior.

– Unknown - Occurs when:

– Variables are updated with vectors that depend on variables with Unknown
movement patterns.
– Variables are updated with vectors that have their length decreased on
each iteration.

3 A Trip Count Algorithm Based on Vectors

Most of the loops have their number of iterations controlled by data that come
from the input, so a purely static analysis is not precise enough to solve this prob-
lem. We propose, then, a hybrid solution involving a static and a dynamic step:
we statically analyze the program and generate symbolic expressions that rep-
resent the estimated trip counts of its loops. Dynamically, during its execution,
the instrumented program evaluates those expressions with O(1) complexity.
Other optimizations might use the result of those expressions to make decisions
at runtime, depending on the expected trip count. At the end of the compilation
process, unused expressions can be trivially removed by a dead code elimination
procedure.

Algorithm 1. Trip Count Instrumentation Based on Vectors
Input: Program P
Output: Program P with new instructions that estimate the maximum trip count of the loops
1: for all Loop l ∈ P do
2: if isIntervalLoop(l)orisEqualLoop(l) then
3: Variable op1 = getF irstOperand(l.getStopCondition())
4: Variable op2 = getSecondOperand(l.getStopCondition())
5: Expression step = estimateMinimumStep(op1 , op2)
6: if ∃ step then
7: Insert instructions that compute the expression |op1 − op2|/step before the first iter-

ation of l.
8: end if
9: end if
10: end for

Algorithm 1 presents the static analysis needed to generate the trip count
expressions using vectors. Our heuristic only covers Interval Loops and Equality
Loops. Once we have collected both operands op1 and op2 of the stop condition
of a loop l, we have to estimate the step of approximation of the two variables
in the real numbers line. In order to estimate the trip count of a loop, we must
be able to evaluate op1 and op2 before the first iteration. Thus, both operands
must be integer expressions that do not produce side effects when evaluated.
Finally, if there is a well defined behavior of update of both operands, then
estimateMinimumStep(op1, op2) will return a valid step and we can estimate
the trip count. Otherwise, we are not able to estimate the trip count of l.



Real-World Loops Are Easy to Predict 131

Algorithm 2. estimateMinimumStep: Estimate the minimum step of approxi-
mation of variables in the real line.
Input: Pair of Variables op1, op2

Output: Expression step with the minimum step.
1: Vector v1 = getMinV ector(op1)
2: Vector v2 = getMinV ector(op2)
3: if ∃ v1 and ∃ v2 then
4: return |v1 − v2|
5: else
6: return null
7: end if

Algorithm 2 shows how we estimate the minimum step given the minimum
vectors of the two variables that control the stop condition of the loop. The min-
imum step leads to the maximum trip count. Minor adaptations are required to
generate the maximum step and, finally, the minimum trip count. The variables
will only have a minimum vector if they have a monotonic behavior i.e. whenever
the variables move in the real line, they move in the same direction.

Algorithm 3. getMinVector: Generate the minimum vector of a given mono-
tonic variable
Input: Variable v
Output: Vector

#»
V with the minimum length.

1: Vector
#»
V = ⊥

2: for all RedefinitionSequence rs of v do
3: Vector

#      »
Tmp = evaluateDelta(rs)

4: #»
V = joinV ectorsmin(

#»
V ,

#      »
Tmp)

5: if #»
V == unknown then

6: break
7: end if
8: end for
9: return #»

V

Algorithm 3 generates the minimum vector for a given variable. In order
to generate such vector, we have to symbolically evaluate every Sequence of
Redefinition of that variable and join the results in a vector. The join oper-
ation has two steps: first we check the direction of both vectors. If the vec-
tors have opposite directions or one of the vectors is unknown, the result of
joinV ectorsmin(

#»

V ,
#       »

Tmp) is unknown. Otherwise, we take the vector with the
minimum length as the result of the join.

4 A Simplified Trip Count Algorithm Based on Vectors
for JIT Compilers

With the massive increase of the usage of the World-Wide-Web and the in-
troduction of many new architectures that must run the same programs, it is
essential to have portable programs. Code interpreting provides easy portability
of programs, because just the interpreter must be translated into the different



132 R.E. Rodrigues

architectures, instead of any program of a given language. However, code inter-
preting is slow and excessively consumes resources. In this context, Just-In-Time
(JIT) compilers are used to overcome the inefficiencies that code interpreters in-
herently have [15].

JIT compilers work by compiling pieces of code right before they are exe-
cuted. Whenever the controller thread tries to execute some function that has
no native code available, the controller thread calls the compiler before execut-
ing the function. That means that the execution stops while the JIT compiler
is generating native code. Therefore, the JIT compiler must generate the most
optimized possible code in the minimum time, because the total time (compil-
ing + execution) must be lower than the interpreting time, otherwise there is
no point in compiling those programs. Because of that, JIT compilers must use
extremely lightweight algorithms to keep the compiling time as low as possible.

Here we present a simplification in our trip count prediction heuristic in order
to be able to apply it in JIT compilers. As we have observed in Section 5, 90% of
the natural loops are either Interval Loops or Equality Loops. Moreover, most of
our vectors are constant speed vectors with length equal to one. From those facts,
in the simple heuristic we assume that in every Interval or Equality loops the min-
imum step of approximation of op1 and op2 is equal to one. Thus, the estimated
trip count is |op2−op1| and we avoid calling EstimateMinimumStep(op1, op2).
Our heuristic generates the expression that estimates the trip count with O(1)
complexity. The complexity of the analysis of the whole program is O(n), where
n is the number of natural loops of the program.

5 Experimental Results

We have implemented a prototype of our analyses in the LLVM compiler, version
3.3. We have analyzed more than 500 programs, including the benchmarks of the
LLVM test-suite and the benchmarks of SPEC 2006 CPU. In this section we will
focus the discussion in the results obtained with the analysis of the benchmarks
of SPEC 2006 CPU.

Most of the loops of the programs have a simple structure, and that means that
the analysis does not need to be complicated in order to cover almost all loops of a
program. Table 1 analyzes the structure of natural loops of programs. According
to Ferrante [5], natural loops are single-entry regions. We have observed that
65.92% of the loops have just one stop instruction, so they are single-entry and
single-exit regions. However, 39.87% of the loops are nested inside other loops.
Those numbers tell us that despite of the simplicity of most loops, a considerable
amount of them is nested, so loop analyses that does not support nested loops
leave a large number of loops uncovered.

We have also identified a pattern in the stop conditions of the loops. Table 2
shows that approximately 85% of the natural loops have a single integer com-
parison as the stop condition. Moreover, the vast majority of those loops are
interval loops, the easiest kind of loop to analyze. We have also observed simi-
lar proportions while analyzing the rest of our benchmarks. Those numbers are



Real-World Loops Are Easy to Predict 133

Table 1. Natural Loops in the Control Flow Graph. L: number of natural loops. NL:
number of nested loops. SEL: number of loops that have a single exit point.

Program L NL % NL/L SEL % SEL/L

433.milc 426 211 49.53% 399 93.66%
444.namd 623 418 67.09% 593 95.18%
447.dealII 6526 2695 41.30% 3412 52.28%
450.soplex 742 181 24.39% 554 74.66%
470.lbm 23 10 43.48% 23 100.00%
401.bzip2 238 85 35.71% 150 63.03%
403.gcc 4614 1357 29.41% 3202 69.40%
429.mcf 50 9 18.00% 39 78.00%
445.gobmk 1288 482 37.42% 913 70.89%
456.hmmer 881 245 27.81% 740 84.00%
458.sjeng 267 62 23.22% 201 75.28%
462.libquantum 98 13 13.27% 90 91.84%
464.h264ref 1870 1008 53.90% 1784 95.40%
471.omnetpp 465 66 14.19% 249 53.55%
473.astar 119 37 31.09% 104 87.39%
483.xalancbmk 3106 259 8.34% 1611 51.87%

Total 21336 7138 33.46% 14064 65.92%

Table 2. Classification of Natural Loops according to their stop conditions. L: number
of natural loops. IL: number of Interval Loops. EL: number of Equality Loops. OL:
number of Other Loops.

Program L IL % IL/L EL % EL/L OL % OL/L

433.milc 426 417 97.89% 5 1.17% 4 0.94%
444.namd 623 494 79.29% 7 1.12% 122 19.58%
447.dealII 6526 4597 70.44% 604 9.26% 1325 20.30%
450.soplex 742 572 77.09% 101 13.61% 69 9.30%
470.lbm 23 23 100.00% 0 0.00% 0 0.00%
401.bzip2 238 201 84.45% 29 12.18% 8 3.36%
403.gcc 4614 2103 45.58% 1954 42.35% 557 12.07%
429.mcf 50 17 34.00% 28 56.00% 5 10.00%
445.gobmk 1288 1098 85.25% 131 10.17% 59 4.58%
456.hmmer 881 697 79.11% 109 12.37% 75 8.51%
458.sjeng 267 117 43.82% 128 47.94% 22 8.24%
462.libquantum 98 88 89.80% 6 6.12% 4 4.08%
464.h264ref 1870 1789 95.67% 19 1.02% 62 3.32%
471.omnetpp 465 283 60.86% 82 17.63% 100 21.51%
473.astar 119 108 90.76% 1 0.84% 10 8.40%
483.xalancbmk 3106 1687 54.31% 752 24.21% 667 21.47%

Total 21336 14291 66.98% 3956 18.54% 3089 14.48%

favorable to our heuristics, because we take advantage of the simplicity of the
loops to produce precise results with simple algorithms.

Table 3 shows the statistics collected while analyzing the dependence graphs
of the programs. 85.40% of the Multi-Node SCCs are Single-Path SCCs. That
means that there is only one SR for the variables of such SCCs. Moreover,
just 7.70% of the Multi-Node SCCs have nested cycles and do not fulfill the
requirements of our analysis. All the presented data confirms that the programs
have a structure that is suitable for our heuristics to produce accurate results.

In order to estimate the trip count of a loop, our prototype must be able to
infer the values that Op1 and Op2 store before the first iteration. Op1 and Op2
are the operands of the stop condition of the loop. This information is not always



134 R.E. Rodrigues

Table 3. Classification of Strongly Connected Components in the Dependence Graph.
SN: number of Single-Node SCCs. MN: number of Multi-Node SCCs. SP: number of
Single-Path SCCs. MP: number of Multi-Path SCCs. SL: number of Single-Loop SCCs.
NL: number of Nested-Loop SCCs.

Program SN MN SP % SP/MN MP SL % SL/MP NL % NL/MN

433.milc 2507 426 409 96.01% 17 11 64.71% 6 1.41%
444.namd 5879 781 604 77.34% 177 6 3.39% 171 21.90%
447.dealII 79169 7249 6077 83.83% 1172 505 43.09% 667 9.20%
450.soplex 13032 807 683 84.63% 124 53 42.74% 71 8.80%
470.lbm 94 24 23 95.83% 1 1 100.00% 0 0.00%
401.bzip2 3610 214 171 79.91% 43 16 37.21% 27 12.62%
403.gcc 123775 5121 4513 88.13% 608 276 45.39% 332 6.48%
429.mcf 1022 54 40 74.07% 14 7 50.00% 7 12.96%
445.gobmk 17675 1555 1283 82.51% 272 163 59.93% 109 7.01%
456.hmmer 12215 946 825 87.21% 121 67 55.37% 54 5.71%
458.sjeng 3337 276 221 80.07% 55 38 69.09% 17 6.16%
462.libquantum 1439 123 100 81.30% 23 8 34.78% 15 12.20%
464.h264ref 21502 1946 1841 94.60% 105 27 25.71% 78 4.01%
471.omnetpp 12383 470 379 80.64% 91 39 42.86% 52 11.06%
473.astar 2591 138 118 85.51% 20 7 35.00% 13 9.42%
483.xalancbmk 57181 3024 2486 82.21% 538 373 69.33% 165 5.46%

Total 357411 23154 19773 85.40% 3381 1597 47.23% 1784 7.70%

Table 4. Trip Count Instrumentation. IL: interval loops. IIL: instrumented interval
loops. EL: equality loops. IEL: instrumented equality loops.

Program # IL # IIL % IIL/IL # EL # IEL % IEL/EL

433.milc 417 391 93.76% 5 3 60.00%
444.namd 494 469 94.94% 7 1 14.29%
447.dealII 4597 3535 76.90% 604 77 12.75%
450.soplex 572 422 73.78% 101 48 47.52%
470.lbm 23 23 100.00% 0 0 -
401.bzip2 201 186 92.54% 29 7 24.14%
403.gcc 2103 1798 85.50% 1954 192 9.83%
429.mcf 17 7 41.18% 28 1 3.57%
445.gobmk 1098 1040 94.72% 131 56 42.75%
456.hmmer 697 664 95.27% 109 39 35.78%
458.sjeng 117 106 90.60% 128 17 13.28%
462.libquantum 88 77 87.50% 6 1 16.67%
464.h264ref 1789 1411 78.87% 19 8 42.11%
471.omnetpp 283 238 84.10% 82 29 35.37%
473.astar 108 80 74.07% 1 1 100.00%
483.xalancbmk 1687 1403 83.17% 752 108 14.36%

Total 14291 11850 82.92% 3956 588 14.86%

possible to be inferred, because sometimes one of the operands is the result of
a call to other function. In cases like this, we do not know the value of the
operand before the loop starts and, consequently, we are not able to estimate its
trip count. Thus, both operands must be integer expressions that do not produce
side effects when evaluated. Table 4 shows the number of loops of which we are
able to infer the trip count. For instance, we were able to estimate the trip count
of 85.50% of the interval loops of the benchmark 403.gcc, while we were able to
instrument just 9.83% of its equality loops. We have investigated this and we
observed that most of the 403.gcc’s equality loops are bounded by comparisons



Real-World Loops Are Easy to Predict 135

between pointers. The same was observed in other programs. Because of that,
we should focus only in the interval loops.

We have developed a profiler that collects the estimated trip count and the
real trip count during an actual execution of the benchmarks. The result of
our profiler lets us to observe how accurate are our heuristics. We have split
our accuracy results into seven categories according to the actual number N of
iterations:

– [0,
√
N ]: Occurs when the estimated trip count is less or equal the square

root of the actual trip count. For example, if we estimate that a loop will
iterate 2 times and it iterates 10 times during its execution, this loop will be
classified into this category.

– ]
√
N , N/2]: Occurs when the estim ted trip count is greater than the square

root of the actual trip count but is less or equal its half. For example, if we
estimate that a loop will iterate 4 times and it iterates 10 times during its
execution, this loop will be classified into this category.

– ]N/2, N [: Occurs when the estimated trip count is greater than the half
of the actual trip count but is less than the trip count. For example, if we
estimate that a loop will iterate 8 times and it iterates 10 times during its
execution, this loop will be classified into this category.

– [N , N ]: Occurs when the estimated trip count equals the actual trip count.
For example, if we estimate that a loop will iterate 10 times and it iterates
10 times during its execution, this loop will fall into this category.

– ]N , 2 ∗N ]: Occurs when the estimated trip count is greater than the actual
trip count, but is less or equal to two times the actual trip count. For example,
if we estimate that a loop will iterate 16 times and it iterates 10 times during
its execution, this loop will be classified into this category.

– ]2 ∗N , N2]: Occurs when the estimated trip count is greater than two times
the actual trip count, but is less or equal to the power of two of the actual
trip count. For example, if we estimate that a loop will iterate 32 times and
it iterates 10 times during its execution, this loop will be classified into this
category.

– ]N2, +∞]: Occurs when the estimated trip count is greater than the power
of two of the actual trip count. For example, if we estimate that a loop will
iterate 128 times and it iterates 10 times during its execution, this loop will
be classified into this category.

Table 5 shows the comparison between the estimated trip count and the actual
trip count that we have collected with our profiler. The subtotal lines contain
only the SPEC CPU benchmarks, while the total lines also include more than
300 benchmarks distributed with LLVM. While running the programs, each time
a loop stops, we collect the actual trip count and compare it with the estimated
trip count. Thus, the numbers that we presented is the number of instances of
loops, instead of the number of natural loops. We did this because we may predict
correctly the trip count for some instances and may predict wrongly for other
instances of the same CFG loop. Table 6 shows information about the programs



136 R.E. Rodrigues

Table 5. Trip Count Profiler - Trip count estimated using vectors

Program [0,
√
N ] ]

√
N , N/2] ]N/2, N [ [N , N ] ]N , 2 ∗ N ] ]2 ∗ N , N2] ]N2, +∞]

milc 14 0 0 435,514,912 38,360 9,984 1,032,930
namd 0 0 0 21,602,695 8,064 3,168 0
soplex 1,851 367 122 186,943 12,782 10,219 43,338
lbm 0 0 0 53,397 0 0 0
bzip2 8,616,650 2 311,724 13,204,855 14,195,603 1,128,948 28,939,274
gcc 433,588 17 326 17,240,735 1,851,284 278,164 336,422
mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
gobmk 8,392 20 400 651,081 70,492 117 20,141
hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
libquantum 0 0 0 8,182,095 0 1 0
h264ref 6,749,850 0 0 311,274,945 13,427,840 57,300 228,711
astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 15,914,068 1,113 2,877,992 955,866,120 44,786,968 6,026,735 37,227,397
Subtotal (%) 1.50% 0.00% 0.27% 89.95% 4.21% 0.57% 3.50%

Total 25,525,142 2,078 2,922,080 4,134,074,825 163,974,403 11,363,892 400,209,181
Total (%) 0.54% 0.00% 0.06% 87.25% 3.46% 0.24% 8.45%

Table 6. Trip Count Profiler - Trip count estimated using simplified heuristic

Program [0,
√
N ] ]

√
N , N/2] ]N/2, N [ [N , N ] ]N , 2 ∗ N ] ]2 ∗ N , N2] ]N2, +∞]

milc 14 0 0 435,514,912 38,360 9,984 1,032,930
namd 0 0 0 21,602,688 8,065 3,174 0
soplex 1,851 367 112 186,939 12,784 10,231 43,338
lbm 0 0 0 53,333 0 64 0
bzip2 5,270,006 2 311,724 14,386,219 15,987,072 1,502,759 28,939,274
gcc 420,390 17 326 17,252,944 1,841,701 283,373 343,054
mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
gobmk 8,392 20 400 651,081 70,492 117 20,141
hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
libquantum 0 0 0 8,182,095 0 1 0
h264ref 367,010 0 0 302,394,768 12,636,622 5,636,387 10,703,859
astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 6,171,386 1,113 2,877,982 948,179,441 45,777,639 11,984,924 47,709,177
Subtotal (%) 0.58% 0.00% 0.27% 89.22% 4.31% 1.13% 4.49%

Total 10,762,387 2,094 2,882,136 3,996,856,652 227,506,781 53,384,130 441,012,280
Total (%) 0.23% 0.00% 0.06% 84.46% 4.81% 1.13% 9.32%

that had their trip counts estimated using the simplified heuristic, following the
same rules used to build table 5.

By analyzing table 5 we can observe that our heuristic is very precise. 87.25%
of the trip counts that we have predicted were the same as the actual trip
count. Furthermore, we have observed that more than 99% of the estimated
trip counts were equal or greater than the actual trip counts. When we analyze
the results obtained with the simplified heuristic, we also find some impressive
numbers. As expected, the vector heuristic has better results than the simplified
heuristic, but the difference was small. Our predictions were exact in 84.46%
of the cases, despite of the extreme simplicity of the algorithm. We also have
observed the same over-approximation that we have noticed with the complete
vector heuristic. However, it is important to keep in mind that we are not able
to instrument 100% of the loops of the programs. In this experiment we only
consider Interval Loops, that account for 67% of them.



Real-World Loops Are Easy to Predict 137

6 Related Works

It is possible to estimate the trip count of loops in many different ways, in a
trade-off between speed and precision. In order to estimate the trip count of
loops, many authors have used abstract interpretation [4,10,6,8]. Others have
used symbolic execution to achieve similar goals [13,12]. Although those tech-
niques are quite powerful, they are also computationally expensive. Thus, their
application is limited by the size of programs to be analyzed. Nevertheless, the
high complexity does not mean perfect precision. Some of those works have re-
strictions with regards to the structure of the analyzed loops. For instance, some
of them only analyze loops with a single path and are very conservative while
analyzing nested loops. Our work aims to find a better balance between speed
and precision.

In an effort similar to ours, Gulwani et al. [7] have developed a new approach
to estimate the number of iterations of a loop. They have proposed the Control-
Flow Refinement, a conversion of the programs into a suitable representation,
that allowed them to handle programs that other algorithms were not able to
analyze. That representation allowed them to find symbolic bounds for 90% of
the programs they have analyzed. However, they still rely on expensive tech-
niques. For instance, their implementation requires a theorem prover. Such tools
often rely on solutions to NP-complete problems. Differently to their work, here
we present two heuristics to estimate the number of iterations of loops that use
simpler techniques. Despite of the simplicity of our algorithms, our results show
that we offer a good precision without resorting to expensive techniques.

7 Conclusion

In this paper we have discussed the prediction of the number of iterations of
loops. We have indicated the usefulness of such information to decide at runtime
which code to execute based on the estimated trip count of loops. We also have
classified the loops into a taxonomy proposed by us, which allowed us to better
understand where the most promising optimizing opportunities are. In addition,
we proposed the Vectors, an abstraction inspired by physics to represent patterns
of updates of variables on the real line. Furthermore, we have proposed two
heuristics to estimate the trip count of loops, based on our Vectors. Finally,
we have evaluated the precision of our heuristics on some test suites, observing
87.25% of accuracy while analyzing interval loops.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

2. Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edn.
Cambridge University Press (2002)



138 R.E. Rodrigues

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Effi-
ciently computing static single assignment form and the control dependence graph.
TOPLAS 13(4), 451–490 (1991)

4. Ermedahl, A., Gustafsson, J.: Deriving annotations for tight calculation of execu-
tion time. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS,
vol. 1300, pp. 1298–1307. Springer, Heidelberg (1997)

5. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its
use in optimization. TOPLAS 9(3), 319–349 (1987)

6. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression
abstraction and max operator with application in timing analysis. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

7. Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invariants
for bound analysis. In: ACM Sigplan Notices, vol. 44, pp. 375–385. ACM (2009)

8. Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: precise and efficient static estima-
tion of program computational complexity. In: ACM SIGPLAN Notices, vol. 44,
pp. 127–139. ACM (2009)

9. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for wcet analysis using abstract execution. In:
27th IEEE International Real-Time Systems Symposium, RTSS 2006, pp. 57–66.
IEEE (2006)

10. Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

11. Kennedy, K., Allen, R.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann (2001)

12. Liu, Y.A., Gomez, G.: Automatic accurate time-bound analysis for high-level
languages. In: Müller, F., Bestavros, A. (eds.) LCTES 1998. LNCS, vol. 1474,
pp. 31–40. Springer, Heidelberg (1998)

13. Lundqvist, T., Stenström, P.: Integrating path and timing analysis using
instruction-level simulation techniques. In: Müller, F., Bestavros, A. (eds.) LCTES
1998. LNCS, vol. 1474, pp. 1–15. Springer, Heidelberg (1998)

14. Park, E., Cavazos, J., Pouchet, L.-N., Bastoul, C., Cohen, A., Sadayappan, P.:
Predictive modeling in a polyhedral optimization space. International Journal of
Parallel Programming 41(5), 704–750 (2013)

15. Plezbert, M.P., Cytron, R.K.: Does “just in time"=“better late than never"? In:
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 120–131. ACM (1997)

16. Rice, H.G.: Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74(2), 358–366 (1953)

17. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

18. Tetzlaff, D., Glesner, S.: Static prediction of loop iteration counts using machine
learning to enable hot spot optimizations. In: 2013 39th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA), pp. 300–307. IEEE
(2013)

19. Wolfe, M.J., Shanklin, C., Ortega, L.: High performance compilers for parallel
computing. Addison-Wesley Longman Publishing Co., Inc. (1995)


	Real-World Loops Are Easy to Predict

	1 Introduction

	2 Background

	3 A Trip Count Algorithm Based on Vectors

	4 A Simplified Trip Count Algorithm Based on Vectors for JIT Compilers

	5 Experimental Results

	6 Related Works

	7 Conclusion

	References




