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Abstract. Aspect-Oriented Programming (AOP) is a maturing technique that 
requires a good comprehension of which types of mistakes programmers make 
during the development of applications. Unfortunately, the lack of such know-
ledge seems to represent one of the reasons for the cautious adoption of AOP in 
real software development projects. Based on a series of experiments, this paper 
reports a catalogue of code pitfalls that are likely to lead programmers to make 
mistakes in AOP. Each experiment required the aspectization (i.e. refactoring) 
of a crosscutting concern in one object-oriented application. Six rounds of the 
experiment provided us with the data of 80 aspect-oriented (AO) implementa-
tions where three crosscutting concerns were aspectized in three applications. 
We developed a prototype tool to warn programmers of the code pitfalls during 
refactoring activities. 
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1 Introduction 

Aspect-Oriented Programming (AOP) [19] is a software development technique that 
aims to improve software modularity through the separation of crosscutting concerns 
into modular units called aspects. A concern is any consideration that can impact on 
the design and maintenance of program modules [28]. It is well known that novice 
programmers need special guidance while learning how to program with a new lan-
guage [30, 31]. Therefore, to be widely adopted in practice, we need a good compre-
hension of the kinds of mistakes made by AOP programmers when learning this de-
velopment technique and the situations that lead to these mistakes. 

A mistake is “a human action that produces an incorrect result” [17]. In our study, 
a mistake occurs when a developer performs an inconsistent code refactoring, which 
may result in a fault into the application. A fault, on the other hand, consists in an 
incorrect step, process, or data definition in a computer program [17]. In other words, 
a fault occurs when there is a difference between the actually implemented software 
product and the product that is assumed to be correct. A mistake may lead to one or 
more faults being inserted into the software, although it not necessarily does so. 

Previous research [3, 5, 9, 11] investigated mistakes that are likely to be made by 
AOP programmers either to build systems from scratch or to refactor existing ones. 
Other studies identified AO code smells [21, 24, 26]. However, these studies often 
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consider complex systems developed by experienced programmers. In such scenarios, 
it is difficult to reveal the factors that hinder the learning of basic AOP concepts, such 
as pointcut and advice, by novice programmers. This situation gives us a lack of un-
derstanding of the scenarios that could lead novice programmers to make mistakes 
while refactoring existing code to AOP. In turn, it may represent one of the reasons 
for the cautious adoption of AOP in real software development projects [32]. 

Towards addressing this problem, we identified a preliminary set of recurring mis-
takes made by novice AOP programmers in our previous work [4]. We derived these 
mistakes by running three rounds of an experiment in which 38 novice AOP pro-
grammers were asked to refactor out to aspects two crosscutting concerns from two 
small Java applications. The mistakes observed in our previous study are often related 
to fault types documented in previous research [3, 5, 9, 11]. We also documented new 
kinds of programming mistakes, such as Incomplete Refactoring, which does not 
necessary lead to faults. 

This paper extends our previous study [4] and builds up on top of its results. First, 
this paper reports on other three rounds of the same experiment (resulting in six 
rounds in total) with a different application (called Telecom) and 42 additional partic-
ipants. Therefore, this paper relies on data of 80 refactored code samples of three 
small-sized applications (Section 2). In this follow up study, our goal is not only to 
further investigate and confirm our previous findings, but also to find out additional 
categories of common mistakes made by AOP programmers. Second, this paper also 
presents a novel catalogue of situations that appear to lead programmers to make the 
identified categories of recurring mistakes (Section 3). Such situations, named Aspec-
tization Code Pitfalls, were observed by inspecting the original source code focusing 
on code fragments that were incorrectly or inconsistently refactored to AOP. To sup-
port the automatic detection of the documented Aspectization Code Pitfalls, we pro-
pose a prototype tool called ConcernReCS (Section 4). Section 5 summarizes related 
work and Section 6 concludes this paper with directions for future work. 

2 Empirical Study 

This section presents the configurations of the experimental study we conducted. 
Section 2.1 presents its research questions and Section 2.2 briefly describes the study 
participants. Section 2.3 introduces the target applications and characteristics of the 
refactored crosscutting concerns. Section 2.4 explains the experimental tasks. 

2.1 Research Questions 

This study aims at investigating the types of mistakes made by students and junior 
professionals when using AOP. Our goal in this study is to uncover and document 
code pitfalls that lead programmers to make these mistakes. Based on this goal, we 
formulate the research questions below. To answer RQ1, we first identify and classify 
the recurring categories of mistakes made by programmers learning AOP. Then, we 
document error-prone situations as a catalogue of code pitfalls to address RQ2. 
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RQ1. What kinds of mistakes do novice AOP programmers often make while re-
factoring crosscutting concerns? 

RQ2. What are the code pitfalls in the source code that lead to these mistakes? 

2.2 Background of Subjects 

Participants of all six rounds of this study were organized in groups of one or two 
members, called subjects of the experiment. In three rounds, participants worked in 
pairs in order to investigate possible impact of pair programming on the mistakes [4].  

Table 1 summarizes the number of subjects (i.e., groups of participants) and how 
they were organized in each study round. Each subject took part of only one round of 
the experiment. Note that in the odd rounds (1st, 3rd, and 5th), the numbers of partici-
pants are twice the number of subjects since each subject includes two participants. 
That is, the total number of participants is 108 divided into 80 subjects. Table 1 also 
shows the application each subject worked with. That is, subjects of the first two 
rounds refactored a concern of an ATM application, of the following two rounds re-
factored a Chess game, and of the last two rounds refactored a Telecom system. We 
describe the software systems and the refactored concerns in Section 2.3. 

Table 1. Number of subjects in each round 

System Round # of Subjects Grouping 

ATM 
First 11 Pairs 

Second 17 Individually 

Chess 
Third 15 Pairs 
Fourth 15 Individually 

Telecom 
Fifth 3 Pairs 
Sixth 19 Individually 

Total number of subjects 80  

 
The participants filled in a questionnaire with their background information. The 

answers regard participants’ level of knowledge in Object-Oriented Programming 
(OOP) and their work experience in software development. This questionnaire aims to 
characterize the background of the study participants. In general, more than 80% of 
participants claimed to have some experience in OOP. Since most participants are 
undergraduate or graduate students, about half of them have never worked in a soft-
ware development company. Due to space constraints, we provide detailed informa-
tion of the participants’ backgrounds in the project website [1]. 

2.3 Target Applications and Crosscutting Concerns 

Three small Java applications were chosen to be used in this study: ATM, Chess, and 
Telecom. Each participant were asked to refactor one crosscutting concern of each 
application using the AspectJ programming language [18]. Table 2 summarizes some 
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size measurement for the target applications and their respective crosscutting con-
cerns. The Number of Classes (NC) and Lines of Code (LOC) metrics indicate the 
size of each application in terms of classes/interfaces and lines of code, respectively. 
Additionally, Concern Diffusion over Classes (CDC) [12, 14] and Lines of Concern 
Code (LOCC) [12, 14] measure the concern size using the same units. All concerns 
and applications share similar complexity and were carefully chosen to allow subjects 
to finish the experimental task within 90 minutes. Furthermore, we chose simple  
applications with distinct characteristics and from different domains to allow us as-
sessing the complexity behind heterogeneous AOP constructs, such as inter-type dec-
laration, pointcut, and advice [18]. 

Table 2. Size metrics of the target applications and concerns 

Application/ concern 
Application size Concern size 
NC LOC CDC LOC 

ATM / Logging 12 606 4 19 
Chess / ErrorMessages 13 1011 8 36 

Telecom / Timing 8 213 4 32 

 
The ATM application simulates three basic functionalities of an ordinary cash ma-

chine: show balance, deposit, and withdraw. Subjects of the first two rounds had to 
refactor out to aspects the Logging concern in this application. This concern is re-
sponsible for recording all operations performed by an ATM user. It is implemented 
by 19 LOC diffused over 4 application modules. The Chess application implements a 
chess game with a graphical user interface. Subjects of the third and fourth rounds 
refactored the ErrorMessages concern of this application. This concern is responsible 
for displaying messages when a player tries to break the chess rules. This concern is 
implemented by 36 LOC spread over 8 classes. Finally, Telecom is a connection 
management system for phone calls implemented in Java and AspectJ [2]. It simulates 
a call between two or more customers. We only used the Java implementation and 
asked each subject of the last two rounds to refactor out to aspects the Timing con-
cern. This concern is responsible for measuring the elapsed time of a given call. It is 
implemented in 30 LOC spread over 4 modules. 

2.4 Experimental Tasks 

Before performing the experimental tasks, all participants attended a 2-hour training 
session about AOP and AspectJ. After the training session, each group of participants 
received the source code of a small Java application and a textual description of the 
crosscutting concern. Using the Eclipse IDE (version 3.7 Indigo) with the AJDT plug-
in (version 2.1.3) properly installed, subjects were asked to refactor the crosscutting 
concern from the given application using the AspectJ language constructs. Note that 
the subjects were responsible for both correctly identifying the concern code in the 
application as well as choosing the proper AspectJ constructs to refactor the given 
crosscutting concern. No instruction was given in this sense because we consider 
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these tasks part of the AOP programmer regular duties. After subjects concluded their 
tasks, we performed our analysis in two steps. First, we investigated which were the 
categories of AOP-specific mistakes the programmers frequently made (Section 3). 
Then, we identified situations in the OO original code, named code pitfalls (Section 
4), that may lead programmers to make mistakes. 

3 Recurring Mistakes in AOP 

This section summarizes the results of our study and classifies the mistakes recurrent-
ly made by subjects during the experimental tasks. This classification is based on our 
previous work [4]. Mistakes were identified by manual code inspection. 

3.1 Classification of Recurring Mistakes 

Incorrect Implementation Logic. It occurs when a piece of concern code is aspec-
tized through pointcut and advice mechanisms. However, the refactored code behaves 
differently from the original code. For instance, by selecting an option in the main 
menu of ATM, a logging report of that operation can be displayed on screen. Howev-
er, novice programmers often make this kind of mistake because it involves an intri-
cate concern code nested in switch and while constructs. 

Incorrect Advice Type. In this mistake category, the programmer uses an incorrect 
type of advice to refactor a piece of concern code. For instance, in the OO version of 
the ATM application, the message that records information about the deposit opera-
tion is logged at the end of the credit() method of the BankDatabase class. This 
operation should therefore be refactored as an after advice. However, some subjects 
of this study wrongly use a before advice to refactor this code.  

Compilation Error or Warning. It refers to either a syntactic fault or a potential 
fault signaled by the AspectJ compiler through an error or warning message1. For 
instance, in the OO version of the ATM application, the logging message that records 
the user authentication is stored when the authenticateUser() method of the 
BankDatabase class is executed. Although this method has two integer parameters, 
some subjects have not specified the method parameters neither used a wildcard when 
writing the pointcut to select this join point. Consequently, a warning message noti-
fies the programmer that no join point matched this specific pointcut.  

Duplicated Crosscutting Code. In this mistake, part of the code that implements a 
crosscutting concern appears replicated in both aspects and the base Java code. For 
instance, the getErrorMsg() method of the ChessPiece class implements part of 
ErrorMessages and should be refactored to aspects in the Chess application. However, 

                                                           
1 Note that, sometimes syntactic problems in AspectJ code are not promptly signaled by the 

compiler. Programmers can only notice such problems when they perform a full weaving. 
Since programmers usually work with tied schedule, they do not always double-check their 
code to remove these types of faults. 
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this piece of code is sometimes not only implemented into aspects but also left in the 
original class (i.e., ChessPiece). Therefore, this mistake results in duplicated code. 

Incomplete Refactoring. This mistake occurs when developers fail to refactor part of 
the crosscutting concern. As a result, part of concern still remains in the base code in 
the AOP solution. This mistake was made, for instance, in the aspectization of the 
totalConnectionTime attribute in the Costumer class that implements part of 
Timing in the Telecom application. When refactoring this concern, some subjects 
have not transferred this attribute to an aspect. 

Excessive Refactoring. This kind of mistake is made when part of the base code that 
does not belong to a concern is refactored to aspects. As an example, when refactoring 
the Timing concern in Telecom, developers should move the timer.start() call 
from the complete() method in Connection to an advice. However, some subjects 
also refactored the previous statement: System.out.println("connection com-
pleted"). Although this statement also appears in the complete() method, it should 
not be refactored since it does not belong to the Timing concern.  

3.2 Experimental Results  

Our analysis is based on 80 AOP implementations of the three target applications 
(Section 2.3). AOP-related mistakes in these implementations were analyzed and 
classified according to the categories discussed in Section 3.1. Figure 1 presents the 
overall percentage of subjects that made mistakes within each category taking each 
application into consideration. Subjects were related to a given category if they made 
at least one mistake within that category regardless of the absolute number of mis-
takes. We made this decision because it would be hard to quantify how many times a 
subject makes some kinds of mistakes, such as Incomplete Refactoring, due to the 
higher granularity of them. Therefore, counting individual instances of a mistake 
could give us the wrong impression that a mistake (e.g., Incomplete Refactoring) is 
less frequent than others (e.g., Incorrect Advice Type). 
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Fig. 1. Subjects that made mistakes in each category 
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Figure 1 shows that Incomplete Refactoring is the most common mistake in all  
applications. This mistake occurred with fairly the same rate (about 95%) in all appli-
cations. Unlike Incomplete Refactoring, some mistakes are more common in one 
application than in the others. For instance, Duplicated Crosscutting Code and Incor-
rect Advice Type are common in the ATM application. Incorrect Implementation 
Logic, on the other hand, is more frequent in the Chess application. This result is 
mainly due to (i) the crosscutting nature of the aspectized concern and (ii) properties 
of the target application. For instance, no subject has made the Incorrect Advice Type 
mistake in the Chess and Telecom applications. After inspecting the concern code, we 
observed that all advices used to aspectize ErrorMessages (Chess) and Timing (Tele-
com) should be after advices. Therefore, due to the homogeneity of the concern code, 
it is unlike that someone would use a different type of advice and make this kind of 
mistake in these two concern instances. 

Incomplete Refactoring is often made in all sorts of systems due to at least two ma-
jor reasons: inability to identify the concern code and inability to separate it. In the 
former case, programmers fail to assign code elements to the concern that should 
actually be later refactored. Nunes et al. [25] highlighted that the inability to identify 
the concern code is one of the most problematic steps for concern refactoring. We 
empirically confirm their results. Regarding the inability to separate concern code, we 
found out that programmers avoid refactoring pieces of code if such code is very tan-
gled; in such cases, programmers end up leaving it mixed up with the base code. 

The Excessive Refactoring mistake only happened in the Telecom application (see 
Figure 1). We observed that this kind of mistake seems to be less often in software 
aspectization. In fact, the particular way Timing is implemented in Telecom might 
have led programmers to make Excessive Refactoring. For instance, Figure 2 shows 
the partial OO implementation of the BasicSimulation class in the Telecom appli-
cation. The grey shadow indicates a line of code realizing the Timing concern.  
Programmers are expected to use pointcut-advice to aspectize this part of concern. 
However, some programmers moved this method from the BasicSimulation class 
to an aspect and introduced it back by means of inter-type declaration; that is, they 
aspectized the whole method instead of just a single line of code. This mistake oc-
curred mainly because the report() method has a solo line of code. Therefore, OO 
programmers feel uncomfortable with an empty method in the application and prefer 
moving it to an aspect. 

 
   public class BasicSimulation extends AbstractSimulation { 

   ... 

     protected void report(Customer c) { 

       System.out.println(c+"spent"+c.getTotalConnectTime()); 
     } 
   } 

Fig. 2. Timing implementation in the BasicSimulation class 
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4 Aspectization Code Pitfalls 

After collecting the mistakes made by the subjects of the experiment described in 
Section 3, we manually inspect situations that could have led them to recurrently 
make these mistakes. We name these situations code pitfalls and analyzed them in 
two phases. Firstly, we performed a manual inspection in the OO source code of the 
applications in order to identify code pitfalls for AO refactoring. Secondly, we inter-
viewed some of the experiment participants with the purpose to verify whether such 
code pitfalls may have impacted on the mistakes they made. The result of this investi-
gation is a preliminary catalogue of code pitfalls described in this section. We  
organized these code pitfalls into two major categories: Dedicated Implementation 
Elements (Section 5.1) and Non-Dedicated Implementation Elements (Section 5.2). 

4.1 Dedicated Implementation Elements 

This section discusses two code pitfalls related to dedicated implementation elements, 
namely Primitive Constant and Attribute of a Non-Dedicated Type. We define a dedi-
cated implementation element as a class, method or attribute completely dedicated to 
implement a concern. 

Brinkley et al. [6] advocated that refactoring dedicated implementation elements 
should be straightforward since it only requires moving them from a class to an aspect 
by using inter-type declarations, for instance. However, a high number of refactoring 
mistakes were observed in this experiment when developers had to refactor dedicated 
elements. In particular, the mistakes Duplicated Crosscutting Code and Incomplete 
Refactoring (Section 3) are commonly related to dedicated implementation elements. 
The synergy between these two mistakes and dedicated implementation elements 
could be due to the concern mapping task, i.e., the developer fails to assign dedicated 
elements to a concern. In fact, Nunes et al. [25] have pointed out that not assigning a 
dedicated implementation element to a concern is a common mistake when develop-
ers perform concern mapping. Therefore, it is not a surprise that developers make the 
same mistake when refactoring a crosscutting concern to aspects. 

 
  public class ATM { 
     private static final int LOG= 0; 
     ... 
  } 

Fig. 3. Primitive Constant code pitfall 

Primitive Constant. The first code pitfall, named Primitive Constant, occurs when a 
constant is dedicated to implement the concern. For instance, Figure 3 shows a con-
stant called LOG that implements the Logging concern in the ATM application. In 
our study, 85% of the subjects of the first round and 86% of the second round made 
mistakes when refactoring this part of the Logging concern. For instance, subjects 
often replaced this constant by its value in places where it is used; this seems a com-
mon strategy to simplify the refactoring. However, they did not remove this constant 
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declaration from the base code which results in an unreachable code [10]. This kind of 
mistake was classified as Duplicated Crosscutting Code since both the base code and 
the aspect are dealing with the constant value. In addition to Duplicated Crosscutting 
Code, we observed that Primitive Constant is also related to the Incomplete Refactor-
ing mistake. One example of this kind of mistake occurs when developers just ignored 
moving the constant to an aspect, leaving it at the base code. 

Attribute of a Non-dedicated Type. This code pitfall has to do with the type of a 
dedicated implementation attribute. In this case, the attribute has either a primitive 
type (e.g., boolean, int, long) of a non-dedicated element type. For instance, the Tim-
ing concern in Telecom is implemented by two attributes. One of them, shown in 
Figure 4.a, is of the type Timer which is completely dedicated to the concern. Sub-
jects of the experiment had no problem to locate and refactor this attribute to an as-
pect. On the other hand, Figure 4.b shows the totalConnectionTime attribute, 
declared as a long data type, which is not dedicated to Timing; it is actually of a pri-
mitive Java type. When this concern is refactored, 33% of subjects in the fifth replica-
tion and 32% in the sixth replication did not aspectize such attribute, but none of them 
failed to refactor the timer attribute (Figure 4.a). We observed that developers ap-
pear to have difficulty to assign attributes of non-dedicated types to a concern during 
concern mapping tasks. This fact is probably due to the lack of searching support 
from IDE. Consequently, the presence of such attributes in the concern code leads 
programmers to make the Incomplete Refactoring mistake. 

 
public abstract class Connection { 
 
  Timer timer = new Timer(); 
  ... 
} 

public class costumer { 
  ... 
  long totalConnectionTime = 0; 
  ... 
}

(a) Attribute of a dedicated type (b) Attribute of a non-dedicated type 

Fig. 4. Attribute of the Non-Dedicated Type code pitfall 

4.2 Non-dedicated Implementation Elements 

Many mistakes occurred when subjects had to refactor elements which are not com-
pletely dedicated to implement a concern; we call them non-dedicated implementation 
elements. To refactor these elements, developers usually rely on pointcut/advice con-
structs of AOP languages. Three code pitfalls are related to non-dedicated implemen-
tation elements: Disjoint Inheritance Trees, Divergent Join Point Location, and  
Concern Attribute Accesses. These code pitfalls are discussed below. 

Disjoint Inheritance Trees. This code pitfall is characterized by two or more inherit-
ance trees involved in the concern realization. Elements of one tree usually does not 
refer to the elements of the other. The lack of explicit relationships between two inhe-
ritance trees might be one reason that subjects correctly refactored elements in one 
tree, but not in the other. In addition, elements in the same inheritance tree tend  
to follow the same pattern in the concern implementation. Figure 5.a illustrates the 
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Disjoint Inheritance Trees code pitfall. Elements inside the dotted square are more 
prone to the Incomplete Refactoring mistake because they do not follow the same 
pattern of concern code implemented in tree leaves. This mistake was very recurring 
while the experiment subjects aspectized the ErrorMessages in the Chess application.  

Class Method Code dedicated to the concern

(a) (b)

 

Fig. 5. Disjoint Inheritance Trees and Divergent Join Point Location code pitfalls 

Divergent Joint Point Location. This code pitfall occurs when (i) pieces of the con-
cern code are scattered over several methods and (ii) these pieces of code appear in 
different locations with respect to the method body. The problem mainly occurs when 
just a couple of pieces of code have a different location compared to the others. Fig-
ure 5.b illustrates this code pitfall. In this figure, the concern code is located at the end 
of three methods, but at the beginning of one method (marked with a dotted square). 
Therefore, developers should use after advice to refactor the former pieces of code, 
but a before advice in the latter case. This divergent joint point location usually tricks 
developers and they end up making the Incorrect Advice Type mistake. 

As an example of this code pitfall, the Logging concern in the ATM application is 
realized by the Logger class and several scattered calls to the log() method of this 
class. Only one call to log() appears in the beginning of a method and should be 
refactored using a before advice. All other calls to log() appear in the end of a me-
thod and should be refactored using after advice. Thus, developers should use the 
appropriate advice type - before or after in this case - to refactor the Logging concern. 
We noticed that many subjects of the first and second rounds refactored all of the 
Logging concern parts using only after advice. They thus made the Incorrect Advice 
Type mistake in the case which they were expected to use a before advice. Subjects of 
the other four rounds have not made this type of mistake because ErrorMessages 
(Chess) and Timing (Telecom) have a uniform implementation. That is, all parts of 
the concern should be refactored using the same advice type. 

Accesses to Local Variables. This code pitfall is characterized by the presence of 
concern code inside a method that accesses a local variable. Previous work [8] has 
advocated that the dependence on local variables makes the concern code harder to 
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refactor, since the join point model of AspectJ-like languages cannot capture informa-
tion stored in such variables. On the other hand, capturing the value of class members 
and method parameters is straightforward. For the former, for instance, it can be done 
by using the args AspectJ pointcut designator. 

 
public class ATM { 

  private void performTransactions() { 

    ... 

    while(!userExited) { 

      int mainMenuSelection = displayMainMenu(); 

      switch(mainMenuSelection) { 

        ... 

        case Log: 

          Logger.printLog(); 

          break; 

        ... 

      } 

    } 
  } 
  ... 
} 

Fig. 6. Incorrect Implementation Logic related Logging 

To illustrate this code pitfall, we rely on a piece of the Logging concern (ATM) 
shown in Figure 6. About 40% of subjects made the Incorrect Implementation Logic 
mistake when refactoring to aspects this piece of code. The logical expression that 
controls the execution flow of the switch statement in Figure 6 is composed by the 
local variable mainMenuSelection. This variable is declared inside the method 
body in which this code appears. In order to aspectize the grey code in Figure 6, de-
velopers need to access to this variable and check whether its value is equal to the 
LOG constant. However, this refactoring is not easy and, so, developers recurrently 
make mistakes in such trick aspectization scenario. 

5 Tool Support 

This section presents ConcernReCS , an Eclipse plug-in to find the aspectization code 
pitfalls discussed in Section 4. The tool is based on static analysis of Java code and 
builds on knowledge of our experiment results. ConcernReCS extends ConcernMap-
per [29] which is a tool to allow the mapping of methods and attributes to concerns. 
Figure 7 describes a simplified flow chart of ConcernReCS. ConcernReCS receives 
information from both ConcernMapper and Eclipse. The Data Analyzer module relies 
on this information to generate warnings of code pitfalls. 
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Fig. 7. ConcernReCS simplified flow chart 

The first step to use ConcernReCS is to manually map the dedicated implementa-
tion elements (i.e. methods, classes and attributes) of one or more concerns using 
ConcernMapper. Non-dedicated implementation elements are automatically inferred 
by (i) calls to dedicated implementation methods, (ii) read or write accesses to dedi-
cated implementation attributes, and (iii) syntactic references to dedicated classes or 
interfaces. Concern code of any other kind (e.g. conditional statements), should be 
extracted by the Extract Method refactoring [16] and, then, the resulting method 
should be mapped to the concern. 

Figure 8 presents the main view of ConcernReCS in the Eclipse IDE. Code pitfalls 
are presented one per line and, for each of them, it is shown the code pitfall name and 
the mistake that it can lead to. ConcernReCS also indicates the concern in which the 
code pitfall appears, the source file and where in the system code it appears. For each 
code pitfall, the tool also gives a number representing its error-proneness. The error-
proneness value can be 0.25, 0.5, 0.75, or 1, each of which representing approximate-
ly the percentage of subjects who made mistakes related to the code pitfall (the value 
of 1 means that all subjects in our experiment made mistakes related to a specific code 
pitfall). 

 

 

Fig. 8. The ConcernReCS main view 



 Avoiding Code Pitfalls in Aspect-Oriented Programming 43 

 

6 Study Limitations 

The AspectJ language can be pointed out as a limitation in our study. However, it is 
widely known that AspectJ-based systems have been used in the large majority of 
AOP assessment studies. Even though there are other programming techniques which 
are able to realize the AOP concepts (examples are Intentional Programming, Meta 
Programming and Generative Programming [15]), so far AspectJ has been the main-
stream AOP technology within both industrial and academic contexts [27]. 

Another limitation regards the size and representativeness of the target applications 
and the selected crosscutting concerns to be refactored. Regarding the size of the ap-
plications, they indeed do not reflect the complexity observed in the industrial con-
text. However, this type of experiment requires tasks being performed within a short 
pre-specified period of time. Furthermore, applications of similar size have been used 
in recent programming-related experiments with different goals within varied contexts 
[7, 20]. The crosscutting concerns are of different nature but with similar complexity 
in order to pose balanced implementation scenarios in terms of difficulty. 

The number and representativeness of the subjects can also be considered a limita-
tion of this study. Around 50% of the experiment participants declared to have mod-
erate to high level of knowledge in OOP. Despite of the observed heterogeneity, all 
subjects made similar types of mistakes while performing the experiment tasks. Note 
that their level of expertise in AOP was indeed not expected to be high, since the ex-
periment was designed to be performed by novice programmers in AOP. 

7 Related Work 

Investigations of fault types and faulty scenarios in AO software: Previous studies in 
AOP-specific fault types and bug patterns [3, 5, 9, 11] address from the most basic 
concepts of AOP to advanced constructions of AspectJ-like languages. In previous 
research, Ferrari et al. [10] analyzed the existing taxonomies and catalogues and iden-
tified four main categories of faults that can be found in AO software. According to 
them, faults can be associated with pointcut expressions (i.e., quantification mechan-
isms), inter-type declarations and other declare-like expressions (i.e., introduction 
mechanisms), advice signatures and bodies (i.e., the crosscutting behavior), and in the 
intercepted (i.e., base) code. When we compare the contributions of this paper to the 
results presented by Ferrari et al. [10], we can spot one major difference. We charac-
terize mistakes that novice programmers are likely to make while refactoring cross-
cutting concerns. Ferrari et al., on the other hand, characterize faults that can be  
revealed during the testing phase, be them refactoring-related or not, which shall be 
prioritized in testing strategies. 

Burrows et al. [7] analyzed how faults are introduced into existing AO systems 
during adaptive and perfective maintenance tasks. The AO version of the Telecom 
system was used as a basis for a set of maintenance tasks performed by experienced, 
paired programmers. The authors then applied a set of coupling and churn metrics in 
order to figure out the correlation between these metrics and the introduced faults. 
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Our study differs from the Burrows et al. one in the sense that while they evolved an 
existing AO system, our study participants were assigned to tasks of refactoring 
crosscutting concerns of OO systems in order to produce equivalent AO counterparts.  

Previous studies about AOP-specific mistakes [3, 9, 10, 11] range from the most 
basic concepts of AOP to advanced constructions of AspectJ-like languages, such as 
intertype declarations. Since our study was conducted only with novice programmers 
in AOP, our classification partially overlaps previous fault taxonomies and adds new 
categories, such as compilation errors or warning and incomplete refactoring. Moreo-
ver, it focuses on mistakes made by programmers when using the two most basic 
features of AOP languages: pointcut and advice. 

Investigations of concern identification and code smells: Recent studies [12, 25] 
investigated mistakes in the projection of concerns on code – a key task in concern 
refactoring. For instance, Figueiredo et al. [12] noticed that programmers are con-
servative when projecting concerns, i.e. they make omissions of concern-to-elements 
assignments. Such false negatives may lead to mistakes like Incomplete Refactoring 
or even Incorrect Implementation Logic herein described. Nunes et al. [25] characte-
rized a set of recurring concern mapping mistakes made by software developers. 
Amongst the causes that led to mistakes in the mapping tasks, Nunes et al. highlight 
the crosscutting nature – i.e., spreading or tangling – of several concerns they ana-
lyzed. This may help us to explain the high number of refactoring mistakes observed 
in our study: the participants had to first identify which parts of the code referred to 
the target crosscutting concern. That is, they had to map the target concern in the 
code. Then, they should perform the refactoring step. 

Macia et al. [21] report on the results of an exploratory study of code smells in 
evolving AO systems. They analyzed 18 releases of three medium-sized AO systems 
to assess previously documented AOP code smells and new ones characterized by the 
authors. Although our goal in this paper was neither characterizing nor assessing code 
smells for AO (AspectJ) programs, we shall perform similar analysis of the code pit-
falls described in Section 4. For instance, we can investigate the relationships between 
different pitfalls spotted in common implementations and the similarities of these 
pitfalls with code smells documented by previous studies. 

8 Conclusions and Future Work 

This paper presented the results of a series of experiments whose main goal was to 
characterize mistakes made by novice programmers in typical crosscutting concern 
refactorings. In this study, we revisit recurring mistakes made by programmers with 
specific backgrounds (Section 3). The results of this study may be used for several 
purposes, like helping in the development and improvement of new AOP languages 
and tools. Based on an analysis of recurring mistakes, this paper proposed a catalogue 
of aspectization code pitfalls (Section 4). These code pitfalls appear to lead program-
mers to make the documented mistakes. To support the automatic detection of code 
pitfalls, we developed a prototype tool called ConcernReCS (Section 5). 
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Further research can rely on our study settings to perform new replications of the 
experiment in order to (i) enlarge our dataset, (ii) uncover additional mistakes, and 
(iii) expand the proposed catalogue of code pitfalls. In fact, we have plans to replicate 
ourselves this study using different applications and subjects. This shall allow us to 
perform more comprehensive analysis with statistical significance. Moreover, we aim 
to evaluate whether the proposed tool (ConcernReCS) is effective to advise program-
mers about code pitfalls and help them avoiding typical refactoring mistakes. 
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