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Preface

This volume contains the proceedings of the 18th Brazilian Symposium on Pro-
graming Languages (SBLP 2014), held during October 2nd/3rd of 2014, in Ma-
ceió, Brazil. The Brazilian Symposium on Programing Languages had its first
event in 1996, and since 2010, it has been part of the Brazilian Conference on
Software (CBSoft). This symposium is a venue where researchers, developers, ed-
ucators, and practitioners exchange information on both the theory and practice
related to all the aspects of programing languages and systems.

Interest in the symposium has been confirmed by the submission of papers
on the most diverse subjects. There were 31 submissions from authors from six
different countries. Each submitted paper was reviewed by at least three mem-
bers of the Program Committee. The expert opinions of many outside reviewers
were invaluable to ensure the high quality of the program. We express our sin-
cere gratitude for the effort of these volunteers. The final program featured two
invited talks, two tutorials, eleven full papers in English, and three papers in
Portuguese. These three papers, which were presented at the conference, are not
part of these proceedings.

We owe a great deal of thanks to the authors, reviewers, and the members of
the Program Committee for making the 18th SBLP a success. We thank Louis-
Noel Pouchet for his invited talk on optimizing compilers for high-performance
computing, and we thank Fabrice Rastello for his talk on the duality that exists
between static and dynamic program analyses. Finally, we thank Márcio Ribeiro,
Leandro Dias da Silva and Baldóıno Fonseca, the general organizers of CBSoft
2014 for all their help and support.

August 2014 Fernando Magno Quintão Pereira
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A Mixed Approach for Building Extensible

Parsers

Leonardo Vieira dos Santos Reis1, Vladimir Oliveira Di Iorio2,
and Roberto S. Bigonha3

1 Departamento de Computação e Sistemas, Universidade Federal de Ouro Preto,
João Monlevade, Brazil
leo@decsi.ufop.br

2 Departamento de Informática, Universidade Federal de Viçosa, Viçosa, Brazil
vladimir@dpi.ufv.br

3 Departamento de Ciência da Computação, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil
bigonha@dcc.ufmg.br

Abstract. For languages whose syntax is fixed, parsers are usually built
with a static structure. The implementation of features like macro mech-
anisms or extensible languages requires the use of parsers that may be
dynamically extended. In this work, we discuss a mixed approach for
building efficient top-down dynamically extensible parsers. Our view is
based on the fact that a large part of the parser code can be statically
compiled and only the parts that are dynamic should be interpreted for
a more efficient processing. We propose the generation of code for the
base parser, in which hooks are included to allow efficient extension of
the underlying grammar and activation of a grammar interpreter when-
ever it is necessary to use an extended syntax. As a proof of concept, we
present a prototype implementation of a parser generator using Adapt-
able Parsing Expression Grammars (APEG) as the underlying method
for syntax definition. We show that APEG has features which allow an
efficient implementation using the proposed mixed approach.

1 Introduction

Parser generators have been used for more than 50 years. Tools like YACC [10]
can automatically build a parser from a formal definition of the syntax of a lan-
guage, usually based on context-free grammars (CFG). The main motivation for
automatic parser generation is compiler correctness and recognition complete-
ness, since with manual implementation it is very difficult to guarantee that all
programs in a given language will be correctly analysed. The parsers that are
generated from the language formal definition usually consist of a fixed code
driven by a parse table. Different languages are associated with distinct parse
tables. With top-down parsers, it is common to produce the code directly as a
recursive descent program instead of using parse tables.

Extensible parsers [28] impose new challenges to automatic parser generation,
since they have to cope with on-the-fly extensions of their own concrete syntax,

F.M. Quintão Pereira (Ed.): SBLP 2014, LNCS 8771, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014



2 L.V.S. Reis, V.O. Di Iorio, and R.S. Bigonha

requiring that the parser must be dynamically updated. If these changes are
frequent, the use of interpretation techniques may be less time-consuming than
to reconstruct the parser. Thus, at first, instead of building a fixed code for the
parser, it may be interesting to use an interpreter for parsing the input based on a
suitable representation of the syntax of the language, which may be dynamically
updated. However, this solution is not entirely satisfactory. A mixed approach,
compilation and interpretation, offers the best of both worlds.

For automatically building a parser, either using code generation or inter-
pretation, it is necessary to use a formal model that is powerful enough to ap-
propriately describe the syntax of the language, including possible on-the-fly
modifications. Adaptable Parser Expression Grammar (APEG) [17,18] is a new
formal model that satisfies these requirements. It is based on PEG (Parsing Ex-
pressions Grammars) [7], a formalism similar to CFG which formally describes
a recursive descent parser. APEG extends PEG with the notion of adaptability,
which is implemented by means of operations that allow the own syntax of the
language to be extended. In previous work [19], we have shown that a prototype
interpreter for APEG allows the implementation of extensible parsers which are
more efficient than the traditional approaches used by other tools.

In this work, we discuss a mixed approach for building extensible parsers.
Our view is based on the fact that a large part of the syntax of an extensible
language is stable, so it is appropriate for a parser whose code can be statically
generated. The parts of the syntax specification that are dynamically extended
may use grammar interpretation for a more efficient processing. We propose
the generation of code for the base syntax, including hooks that may allow an
efficient extension, activating an interpreter whenever it is necessary to use the
extended syntax. As a proof of concept, we present a prototype implementation
of a parser generator for APEG. We show that APEG has features which allow
an efficient implementation using the proposed mixed approach.

Section 2 presents a definition of the APEG model to help understanding
the concepts used in the following sections. Section 3 discusses our approach in
detail, showing how it works with the APEG model. In Section 4, we describe
some efficiency tests with parsers generated using the mixed approach. Section 5
lists some works similar to ours. Section 6 presents our final conclusions and
discusses future works.

2 Adaptable Parsing Expression Grammar

Parsing Expression Grammar (PEG) [7] is a model for describing the syntax
of programming languages using a recognition-based approach instead of the
generative system typical of context-free grammars (CFG). Similar to CFG,
formally a PEG is a 4-tuple (VN , VT , R, S), where VN is the set of nontermi-
nal symbols, VT is the set of terminal symbols and S is the initial symbol.
R is a rule function which maps nonterminals to parsing expressions . A pars-
ing expression is very similar to the right hand side of a CFG production rule
in the extended Backus-Naur form, except for the addition of two new oper-
ators: the not-predicate and the prioritized choice. The not-predicate operator
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checks whether the input string matches some syntax, without consuming it, thus
allowing unrestricted lookahead. The prioritized choice lists alternative patterns
to be tested in order.

Adaptable PEG (APEG) [18] is an adaptable model based on PEG. It also
uses the idea of attributes of Attributes Grammars [27] to guide parsing. The
attributes of APEG are L-Attributed and its purporse is syntactic and not se-
mantics as in attributes grammars. APEG possesses a special attribute called
language attribute, which represents the set of rules that are currently used. Lan-
guage attribute values can be defined by means of embedded semantic actions
and can be passed to different branches of the parse tree. This allows a formal
representation of a set of syntactic rules that can be modified on-the-fly, i.e.,
during the parsing of an input string. APEG allows to extend the grammar by
addition of new choices at the end of an existing list of choices of the definition
rule of a given nonterminal or by addition of new nonterminal definitions.

As a concrete example, Figure 1 shows a PEG definition of a toy block struc-
tured language in which a block consists of a list of declarations of integer variables,
followed by a list of assignment statements. An assignment statement consists of a
variable on the left side and a variable on the right side. For simplicity, the whites-
paces are not considered.

block ← { dlist slist } decl ← int id ;
dlist ← decl decl∗ stmt ← id = id ;
slist ← stmt stmt∗ id ← alpha alpha∗

Fig. 1. Syntax of block with declaration and use of variables (simplified)

Suppose that the context dependent constraints of this language are: a variable
cannot be used if it has not been declared before, and a variable cannot be
declared more than once. Using APEG, we implemented these context dependent
constraints as shown in Figure 2. As mentioned before, every nonterminal has
a special inherited attribute, the language attribute, which is a representation
of a grammar. In Figure 2, this attribute is always the first one and it has type
Grammar. The inherited attributes of a nonterminal are enclosed in the symbols
“[” and “]” occurring after the name of the nonterminal, and the synthesized
attributes are specified after the returns keywords. For example, line 20 defines
the nonterminal id with one inherited attribute of type Grammar named as
g (it is the language attribute) and one synthesized attribute named as s of
type String . To refer to a nonterminal on a parsing expression, we use the name
of the nonterminal followed by the list of inherited attributes and synthesized
attributes, in this order, enclosed in the symbols “<” and “>”. As an example, in
line 21, alpha<g, ch1> refers to the nonterminal alpha followed by its attributes
g and ch1 . APEG also has constraint , binding and update expressions . The
constraint expression is a boolean expression enclosed by the symbols “{?” and
“}”, such as the expression in the definition of the nonterminal var (line 12). A
constraint expression succeeds if it evaluates to true, otherwise it fails. A binding
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expression assigns the input string matched by a parsing expression to a variable.
It is used on line 24 of Figure 2 to assign to variable ch the value of the character
matched by the given parsing expression. An update expression is enclosed by
the symbols “{” and “}” and it is used to assign the value of an expression to an
attribute. The parsing expression {g = g1;} in line 5 of Figure 2 is an example
of an update expression.

In this example, the idea of implementing the context dependent constraints
is to adapt the nonterminal var on the fly in order to allow only declared vari-
ables to be recognized. Note that, in the beginning, the nonterminal var does
not recognize any symbols (lines 11-12). However, when a variable is declared
(nonterminal decl, defined in lines 7-9), a new grammar rule is produced by the
addition of a new choice in the definition of nonterminal var, which allows the
recognition of the new variable name. The resulting new grammar is passed as
the language attribute, in the definition of the nonterminal block, to the nonter-
minal slist , and, in the sequel, to stmt . As a result, the nonterminal stmt now
can recognize the declared variable.

1 block[Grammar g]:

2 ’{’ dlist <g, g1> slist <g1> ’}’ !.;

3
4 dlist[Grammar g] returns[Grammar g1]:

5 decl <g, g1 > {g = g1 ;} (decl <g, g1> {g = g1 ;})*;

6
7 decl[Grammar g] returns[Grammar g1]:

8 !(’int�’ var) ’int�’ id <s> ’;’

9 {g1 = g + ’var:�\'’ + s + ’\' !alpha <g, ch >;’;};

10
11 var[Grammar g]:

12 {? false };

13
14 slist[Grammar g]:

15 stmt <g> stmt <g>*;

16
17 stmt[Grammar g]:

18 var <g> ’=’ var <g> ’;’;

19
20 id[Grammar g] returns[String s]:

21 alpha <g, ch1 > {s = ch1;} (alpha <g, ch2 > {s = s + ch2 ;})*;

22
23 alpha[Grammar g] returns[String ch]:

24 ch=[a-zA-Z0 -9_];

Fig. 2. Example with the set of production rules changed at parse time
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For example, suppose the input string {int a;int b;a=b;b=a;}. The recogni-
tion of this string starts with the nonterminal block and its language attribute
is the grammar in Figure 2. After recognizing the first symbol, {, the parser
proceeds to recognize a list of declarations (nonterminal dlist), passing down the
same grammar as the language attribute to the nonterminal dlist . During the
recognition of the nonterminal dlist , it first tries to match a variable declaration
through the nonterminal decl , passing to it the same language attribute. The
nonterminal decl first checks if the variable is already declared using the parsing
expression !('int ' var). The not-lookahead operator, !, succeeds if the expres-
sion enclosed in parentheses fails, and it does not consume any symbol from the
input. In order to check whether the variable “a” has already been declared,
the parsing expression enclosed in parentheses matches the “int” string, but the
nonterminal var does not recognize the variable “a”, because it does not have
any rule for it yet. In the sequel, the parsing expression 'int ' id〈s〉';' recognizes
the declaration of variable ‘a’. Note the use of the nonterminal id instead of the
nonterminal var . The nonterminal id is used here to recognize any valid variable
name, since it is a new one. Then, a new grammar is built from the current
grammar by the addition of a new choice, var : 'a' !alpha〈ch〉;, on the definition
of nonterminal var. This new grammar becomes the value of the synthesized
attribute g1.

The grammar synthesized by the nonterminal decl is used in the nonterminal
dlist as language attribute of other calls of the nonterminal decl . Proceeding, the
next variable declaration will be recognized, and the nonterminal dlist synthe-
sizes a new grammar with these two choices, in this order, var : 'a' !alpha〈ch〉;
and var : 'b' !alpha〈ch〉;, for the nonterminal var . This new grammar is used
by the nonterminal block to pass it as the language attribute of the nonterminal
slist . As a result, the two statements, a = b and b = a, can be recognized, be-
cause the nonterminal var in the language attribute passed to the nonterminal
stmt has rules to recognize the variables ‘a’ and ‘b’.

Usually, parser generators for PEG produce a top-down recursive descent
parser. Every nonterminal is implemented by a function whose body is a code
for its parsing expression. The return value of each function is an integer value
representing the position on the input that it has got moved on or the value
−1 if it fails. It is straightforward to extend this idea to include attributes: the
inherited attributes become parameters of functions and synthesized attributes
are return values. For example, Figure 3 shows the code generated for the non-
terminal var of Figure 2. The function var has one parameter, the language
attribute, and returns an object of type Result , which must contain fields rep-
resenting the portion of the input consumed and the values of the synthesized
attributes, when specified.

Complications with this scheme arise when the base grammar is dynamically
extended during parsing. When new choices are added to the var nonterminal,
the function of Figure 3 does not represent anymore the correct code for this
nonterminal, then this function must be updated. However, it is cumbersome
regenerating all the parser code on the fly to reflect these small changes. In
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1 Result var(Grammar g) {

2 if(false) {

3 // do nothing

4 } else

5 return new Result(-1); // a fail result

6 }

Fig. 3. Example of code generated by a PEG

cases where the grammar changes several times, as in extensible languages, the
on-the-fly regeneration of all the parser is very expensive [17]. An alternative
solution is to interpret the whole grammar directly. However, this may cause a
great loss in parsing efficiency. So, we propose, in this paper, an approach to
efficiently adapt the grammar. We propose to generate the code from the base
grammar and include hooks to jump from the generated code to interprete the
parts that have been added dynamically.

3 Mixing Code Generation and Interpretation

Since APEG only allows changes in the definition of nonterminal symbols by in-
sertion of new choices at the end of the rules [19], we generate a recursive descent
parser from an APEG grammar, so there is a function for each nonterminal and,
whenever necessary, we place at the end of the body of these functions a call to
the interpreter.

Figure 4 shows a scratch of the code generated for the grammar of Figure 2. As
shown, we generate a Java class which has a function to each nonterminal defini-
tion on the grammar. The generated class extends the predefined class Grammar
that has the implementation of standard functions, such as the function inter-
pretChoice to interpret an AST and functions to add rules to the grammar or
to clone the grammar itself.

The vector adapt (line 3 in Figure 4) stores a possible new choice for each
nonterminal. Notice the hook at the end of the function body of each nonterminal
(lines 29 and 40) to call the interpreter with its possible choice. This hook will be
reached only if its preceding code fails, indicating that we must interpret the new
choice. For example, if the code representing the parsing expression '{'dlist<g,
g1> slist<g1> '}' on lines 6 to 24 fails, then we call the interpreter passing its
new choice. So, the action of adapting a grammar is just an action of including
a new choice rule on the vector adapt .

Using this strategy, all the base code for the grammar is generated and com-
piled, and only the choices that are added dynamically must be interpreted. Our
strategy is based on the assumption that the code for the base grammar is ex-
pected to be large and used many times. Therefore, the expected result shall be
a faster parser than the interpreter we have proposed in previous work [19], and
will still allow an efficient method for managing syntactic extensions.
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1 public class BlockLanguage extends Grammar {

2 // vector of new choices

3 private CommonTree [] adapt = new CommonTree [8];

4 ...

5 public Result block(BlockLanguage g) {

6 BlockLanguage g1; // local attribute

7 Result result;

8 int position = g.match("{", currentPos );

9 if(position > 0) {

10 g.currentPos = position ;

11 result = g.dlist(g);

12 if(! result.isFail()) {

13 g1 = (BlockLanguage ) result.getAttribute (0);

14 g1.currentPos = result.getNext_pos ();

15 result = g1.slist(g1);

16 if(!result.isFail()) {

17 position = g.match("}", result.getNext_pos ());

18 if(position > 0) {

19 char ch = g.read(position );

20 if(APEGInputStream .isEOF(ch))

21 return new Result(position );

22 }

23 }

24 }

25 }

26 Environment env;

27 ... // set the environment to start the interpreter

28
29 // interpreter the choice of block (index 0)

30 return g.interpretChoice (adapt[0], env);

31 }

32
33 public Result var(BlockLanguage g) {

34 if(false) {

35 // do nothing

36 }

37 Environment env;

38 // set the environment to start the interpreter

39
40 // interpreter the choice of var (index 3)

41 return g.interpretChoice (adapt[3], env);

42 }

43 ... // other functions

44 }

Fig. 4. Generated code for the block language
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In the APEG model, a parsing expression of a nonterminal is fetched from
its language attribute. Using different language attributes, it is possible to get
different parsing expressions for the same nonterminal, thus effectively adapting
the grammar. To have this behaviour, each function generated from a nontermi-
nal has the language attribute as a parameter. The type of this parameter is the
type of the grammar generated. In our example, Figure 4 shows the language
attribute, whose type is BlockLanguage, of the functions block (line 5) and var
(line 32).

We use the dot notation to call a nonterminal function associated with its
correct language attribute. For example, the nonterminals dlist and slist on the
definition of the function block are called as g.dlist(g) (line 11) and g1.slist(g1)
(line 15). Note that, as the language attribute passed to each nonterminal is
different, we call each nonterminal function from a different language attribute.
We must call slist from the object g1 instead of g because the vector adapt of
g1 has a different value of choices for the function var . So, the interpreter is
called, the new choice is passed, allowing the use of the variables that have been
declared.

A restriction to this approach is that as we use the generated class as the
language attribute type, e.g. the BlockLanguage type in Figure 4, it is not pos-
sible to pass a different grammar which is not subtype of the generated class,
as the language attribute. For example, suppose a grammar with other defini-
tions for the same nonterminals presented in Figure 4. One may want to pass
as the language attribute this grammar in a specific context on the definition of
the block language of Figure 4. However, as this grammar is not a subclass of
BlockLanguage, there will be a type error. Instead of using the generated class as
the language attribute, we could use the base type, Grammar , as the language
attribute and use reflection on runtime to invoke the nonterminal functions.
However, as the use of reflection may result in a slower program than the use of
the dot notation to call functions, we avoid this solution.

During the interpretation process of a parsing expression, it is possible to en-
counter a reference to a predefined nonterminal. In this case, the interpreter must
execute the function code of this nonterminal. For example, suppose an input to
the block language example of Figure 2 which adds the choice var : 'a' !alpha〈ch〉;
to the definition of the nonterminal var . The nonterminal referenced in this
choice, alpha, is the one defined in Figure 2 and has a code generated for it.
So, when the interpreter reaches this nonterminal, it must stop interpreting and
invoke the function of this nonterminal. We implemented this feature using the
reflection mechanism of the Java language. Whenever interpreting a nontermi-
nal, the interpreter checks whether the nonterminal is a method of the language
attribute object, and if so, the interpreter invokes the method code by reflection.
Otherwise, it continues the interpretation.

The code presented in Figure 4 was not automatically generated. In order to
test our approach, we first produced handwritten code for some APEG speci-
fications, such as the one presented in Figure 2 and another one discussed in
Section 4. For the interpretation, we modified a prototype interpreter we had
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developed in a previous work [19]. One of the main modifications was the code
for calling, from the interpreter, functions on the generated code. This feature
was implemented using reflection in the Java language, as previously discussed.
After our mixed approach proposal be proved useful, we will write the code
generator to automatically produce a recursive descent parser from an APEG
specification.

4 Evaluation of the Mixed Extensible Parser

We have performed preliminary experimental tests to evaluate whether our
mixed approach is feasible. We were interested in the performance of the mixed
code, i.e., the cost of switching to the interpreter and turning back to the
compiled code. So, we built tests which exercises these features. We used two
language definitions to evaluate our approach: the block language presented in
Section 2 and a version of a data dependent language presented in [9]. The syn-
tax of the data dependent language is an integer followed by the same number
of characters enclosed by the symbols “[” and “]”. The input 3[abc] is an exam-
ple of valid string of this language. Figure 5 shows an APEG grammar for this
language. Note that it adds a new choice to the nonterminal strN with exactly
the number of characters given by the integer value just read, e.g, for the input
3[abc] , the nonterminal strN is extended with the rule strN → CHAR CHAR
CHAR.

1 literal[Grammar g]:

2 number <n>

3 { g1 = g + ’strN�:�’ + concatN(’CHAR�’, n) + ’;’; }

4 ’[’ strN <g1> ’]’

5 ;

6
7 strN[Grammar g]: {? false } ;

8
9 number returns[int r]: t=[0 -9]+ { r = strToInt (t); } ;

10
11 CHAR : . ;

Fig. 5. APEG grammar for a data dependent language

We used these APEG grammars because they are simple and demand switch-
ing between the compiler and the interpreter. The data dependent example will
adapt the grammar once and force the interpreter to return to the code of the
CHAR function many times. The block language example adapts the grammar
several times and also turns back from the interpreter to the compiler code ev-
ery time a variable is used or declared. We have performed the experiments in
a 64-bit, 2.4 GHz Intel Core i5 running Ubuntu 12.04 with 6 GB of RAM on
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the Eclipse environment. We have repeated the execution 10 times in a row and
computed the average execution time.

Table 1 shows the result for the data dependent language. The inputs used
were automatically generated by setting an integer number and then randomi-
cally generating this set of characters. The first column shows the value of the
integer used in the input string; in this case, the size of the input is propor-
tional to this value. The second column shows the time for parsing the input
string, using a prototype interpreter we have developed in a previous work. We
have shown that this interpreter presents better performance than similar works,
when used for languages requiring extensibility [19]. The third column presents
the time for parsing the same input string using our new approach, mixing code
generation and interpretation. This result shows that, even though using reflec-
tion to switch between interpreter and compiled code is expensive, the efficiency
of the compiled code compensates it.

Table 1. Time in milliseconds for parsing data dependent programs. The performance
of the interpreter and the mixed approach are compared.

Size Interpreter Mixed approach

1000 258 276
10000 1615 2584
100000 68744 36015
150000 181338 86576
200000 445036 164041

Table 2 shows the results of parsing programs of the block structure language
of Figure 2. The first column shows the number of variables declared and the
second column shows the number of assignment statements in the programs used
as input string. These programs were also automatically generated by creating
a set of variables and formed assignment statement by chosing two variables
of this set. The third and the fourth columns present the time for parsing the
programs using the prototype interpreter and using a mixed approach, respec-
tively. The results show that the mixed approach executes slightly faster than
the interpreter.

Table 2. Time in milliseconds for parsing block language programs. The performance
of the interpreter and the mixed approach are compared.

Variable Statements Interpreter Mixed approach

100 1 176 176
500 1 754 498
1000 1 912 725
100 100 232 263
100 500 448 295
100 1000 506 394
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These examples force the use of the slow mechanism of reflection several times.
In real cases, we expect the activation of interpretation and reflection is not too
frequent, thus the performance of the parser using the mixed approach would be
even better. So, our preliminary experiments indicate that the mixed approach
can really improve the APEG performance.

5 Related Work

In 1971, based on data from empirical studies, Knuth [12] observed that most
programs spend the majority of time executing a minority of code. Using these
observations, Dakin and Poole [4] and Dawson [5] (both works published in a
same journal issue) independently proposed the idea of “mixed code”. The term
refers to the implementation of a program as a mixture of compiled native code,
generated for the frequently executed parts of the program, and interpreted
code, for the less frequently executed parts of the program. Their main moti-
vation was to save memory space with little impact on the execution speed of
programs. The interpreted source code is usually smaller although slower than
the generated native code. Although with different motivations, this approach
has some similarities to our work in the sense that the native code is statically
generated (in our case, code for a large part of the parser is statically generated)
and interpretation is also used.

Plezbert [15] proposes the use of a mixture of compiled and interpreted code
in order to improve programming efficiency during software development. His
purpose is to reduce the time spent in the “make” process, considering that pro-
grammers repeatedly use the cycle edit-make-execute when developing software.
Here, “make” stands for the compilation of files that have been changed, com-
pilation of files dependent on the ones which have been changed, and linking of
separately compiled objects into an executable image. The increasingly use of
aggressive compiler optimizations causes the make process to take longer. A so-
lution may be the use of interpretation for prototyping, during the development
phase, or to turn off optimizations until a final release is to be produced. Plezbert
suggests an alternative approach which he calls “continuous compilation”. After
editing a program, the execution phase can immediately start using interpreta-
tion, while the “make” phase is performed concurrently with program execution.
The interpreted code is gradually replaced by natively-executable code. Perfor-
mance increases until, eventually, the entire program has been translated to a
fully optimized native form. In our work, extensions for the parser are always in-
terpreted. We could benefit from the “continuous compilation” approach if code
is concurrently generated for extensions, without stopping the parsing process.
When the code is completely generated and compiled, it could replace the in-
terpreted parts of the parser. Further investigation is necessary, but we believe
the opportunities for the performance gains in parsing are smaller then the ones
reported by Plezbert.

Just-in-time compilation (JIT) [1], also known as dynamic translation, is com-
pilation done during execution of a program – at run time – rather than prior to
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execution. JIT is a means to improve the time and space efficiency of programs,
using the benefits of compilation (compiled programs run faster) and interpreta-
tion (interpreted programs are typically smaller, tend to be more portable and
have more access to runtime information). Thompson’s paper [23] is frequently
cited as one of the first works to use techniques that can be considered JIT
compilation, translating regular expressions into IBM 7094 code.

The success of Java has increased the attention to JIT compilation, highlight-
ing the tradeoff between portability of code and efficiency of execution. Several
Java implementations have been developed using JIT, such as the ones provided
by Sun [3], IBM [22] and the Harissa environment [13,14]. Several improvements
to JIT have been proposed, extending the possibilities of mixing interpretation
and compilation. For example, Plezbert has shown that good results could be
achieved combining JIT compilation with his approach of “continuous compi-
lation”, which he called “smart JIT” [16]. Dong Heon Jung et alli [11] add to
JIT the approaches of “ahead-of-time compilation” and “idle-time compilation”,
building a hybrid environment in order to increase the efficiency on a Java-based
digital TV platform. It should be noted that our approach is the reversal of
the traditional JIT in the sense that we perform a “just-in-time interpretation”
during the execution of a compiled code. However, we share the objective of
improving execution speed.

All the works discussed so far in this section use a combination of interpreta-
tion and code generation, having goals such as performance gain and portability,
but not specifically involving parsing. The works discussed in the following are
related to improvements on the parsing process, when extensions are considered.

Parsers using a bottom-up approach are usually built as a small, fixed code
that is driven by a large parse table, generated from a formal specification of a
language. When an extension to the language is required, the entire parse table
must be recalculated, which is an expensive process. Several works propose tech-
niques for generating small parse tables for the extended parts of the language,
and combining them with the table originally generated for the base language.
As an example, Schwerdfeger and Van Wyk [21,20] define conditions for com-
posing parsing tables while guaranteeing deterministic parsing. The algorithm
described by Bravenboer and Visser [2] for parse table composition supports
separate compilation of grammars to parse table components, using modular
definition of syntax. A prototype for this algorithm generates parse tables for
scannerless Generalized LR (GLR) parsers [24], with input grammars defined
in SDF [25]. The use of GLR imposes no restrictions on the input grammars,
allowing a more natural definition for the syntax than methods based on PEG,
such as our approach. On the other hand, GLR does not guarantee linear time
processing for the generated parsers. In [17], we have shown that a prototype in-
terpreter using APEG may present better performance results than works based
on GLR, when dynamic parser extensions are required, even not considering yet
the improvements provided by mixing interpretation with code generation. The
obvious reason is that these works are not designed having dynamic extensibility
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as an important goal. A disadvantage of the current version of APEG is that it
does not offer facilities for modular specifications.

OMeta [26] is a fully dynamic language extension tool, allowing lexically
scoped syntax extensions. Similarly to our work, it is based in Parsing Expres-
sion Grammar, but it can make use of a number of extensions in order to handle
arbitrary kinds of data (not limited to processing streams of characters). Also
similarly to our work, OMeta extends PEG with semantic predicates and se-
mantic actions, which can be written using the host language. Programmers
may create syntax extensions by writing one or more OMeta productions in-
side {}s. This creates a new parser object (at parsing time) that inherits from
the current parser. In current implementations, everything is processed during
parsing time, so they have more in common with our previous work, using only
interpretation.

Hansen [8] designed a dynamically extensible parser library and two new al-
gorithms: an algorithm for incremental generation of LL parsers and a practical
algorithm for generalized breadthfirst top-down parsing. This work is similar to
ours in the sense that the parsers produced may be modified on-the-fly, during
parsing time, and it also uses top-down parsing methods. Although the algo-
rithms proposed by Hansen have an exponential worst-case time complexity, the
author showed that they may work well in practice. Our approach is based on
PEG, so it always produces parsers with linear-time processing, provided by the
use of memoization. It may be interesting to implement the examples used by
Hansen (a Java grammar and several extensions) in APEG and compare the per-
formance of the two approaches, for parser generation and for parser execution.

6 Conclusion and Future Work

Automatic generation of an extensible parser is difficult because extensions on
the syntax may invalidate the generated parser code. In order to ameliorate this
problem, in this paper, we propose a novel mixed approach to generate an exten-
sible parser, which combines compilation with interpretation, using Adaptable
Parsing Expression Grammars (APEG) as the underlying formal model. The
greatest virtue of this proposal is its simplicity, which comes from the APEG
model.

Preliminary experiments indicate that the mixed approach can improve the
performance of the APEG parser. Our goals in the experiments were to evaluate
the mixed code, thus we used languages and examples that exercise this feature.
The next steps are to evaluate the performance of the mixed extensible parser in
real situations, such as parsing programs of extensible languages like SugarJ [6].
Our strategy is based on the assumption that the code for the base grammar is
expected to be large and used many times than the extensions. We still have to
prove this assumption.

As APEG allows changing the grammar during the parsing, it opens several
possibilities to compose grammars, and in the field of grammar extensibility,
allowing, for example, simulate a kind of backbones described in [9]. We plan to
investigate and evaluate the performance of the parser in these situations.
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As explained in Section 3, we have not developed yet a code generator that
may automatically produce a recursive descent parser for the static part of the
language specification written in APEG. The examples used in this paper were
handwritten and served only for a preliminary tests of the proposed approach.
Our next steps include the implementation of this code generator, which will
make possible to test for the entire syntax of real extensible languages. Several
optimizations on the generated parsers may also be introduced. For example, we
can apply techniques to generate code for rules that are used more frequently
during interpretation.
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Abstract. The analysis of information flow has become a popular tech-
nique for ensuring the confidentiality of data. An end-to-end confiden-
tiality policy guarantees that private data cannot be inferred by the
inspection of public data. A security property that ensures a kind of
confidentiality is the noninterference property, which can be enforced
by the use of security type systems where types correspond to security
levels. In this paper we show the development of a compiler (written
in Haskell) between a simple imperative language and semi-structured
machine code, which preserves the property of noninterference. The com-
piler is based on the use of typed abstract syntax (implemented in terms
of Haskell GADTs and type-level functions) to encode the security type
system of both the source and target language. This makes it possible
to use Haskell’s type checker to verify two things: that programs in both
languages satisfy the security property, and that the compiler is correct
by construction (in the sense that it preserves noninterference).

1 Introduction

The confidentiality of the information manipulated by computing systems has
became of significant importance with the increasing use of web applications.
Even though these applications are widely used, there is little assurance that
there is no leakage of confidential information to public output.

A technique that has been widely used in the last years for ensuring the con-
fidentiality of information is the analysis of information flow [4]. This technique
analyses information flows between inputs and outputs of systems. Flows can be
explicit or implicit. A flow from a variable x to a variable y is considered explicit
if the value of x is transferred directly to y. On the other hand, it is implicit
when the flow from x to y is generated by the control structure of the program.

The security property we deal with in this paper is the so-called noninterfer-
ence property [8]. This property guarantees that private data cannot be inferred
by inspecting public channels of information. This implies that a variation of
private data does not cause a variation of public data.

There are different approaches to ensure this security property. In this paper
we follow a type-based approach which relies on the use of a security type system
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© Springer International Publishing Switzerland 2014



A Security Types Preserving Compiler in Haskell 17

[17]. In this setting, variables are augmented with labels indicating which kind
of data they can store (for example, public or confidential). Modelling security
properties in terms of types has the advantage that the property can be checked
at compile-time (during type checking). The overhead of checking the property
at run-time is thus partially reduced or even eliminated.

Although there is an important amount of work on type systems for noninter-
ference on high-level languages (e.g. [20,17,1]), there is little work on type sys-
tems for noninterference on low-level languages. This is a consequence of the lack
of structure of low-level languages, which make them difficult to reason about.
Some of the existing works on security type systems for low-level languages use
code annotations to simulate the block structure of high-level languages at the
low-level [2,12]. Others are based on the use of a basic implicit structure present
in low-level code [16].

The aim of this paper is to perform a simple, but not trivial excercise: showing
that it is possible to write in a general purpose (functional) language like Haskell
a compiler that preserves the property of noninterference. We do so by using
Haskell plus some minor extensions, such as GADTs1, type families and multi-
parameter type classes, which open us the possibility to perform some kind of
type-level programming. The compiler we present translates programs in a simple
imperative high-level language (with loops and conditionals) into programs in a
semi-structured low-level language. We define the notion of noninterference for
each language by the specification of a security type system. Then we prove that
the compiler preserves the noninterference property, i.e., programs that satisfy
the security property in the source language are translated into programs that
satisfy the security property in the target language. The novelty of the approach
is that the proof of preservation is performed automatically by Haskell’s type
system. That way we are proving that the compiler is correct –in the sense that
it preserves the property– by construction. This is a nonstandard application
for Haskell which resembles a language with dependent types. We developed our
implementation using the Glasgow Haskell Compiler (GHC).

The paper is organized as follows. In Section 2 we present the high-level
language that serves as source language and show a security type system for it.
We also describe how to encode the security type system as a GADT in Haskell.
In section 3 we do the same with the low-level language that serves as target
language. We also present a encoding of this language as a GADT in Haskell.
Section 4 presents the compiler and the proof that it preserves security typing.
Section 5 discusses related work and Section 6 concludes the paper.

2 Source Language

In this section, we introduce the high level language that is used as source
language in the compilation. We start by describing its abstract syntax. Then
we define its semantics and the type system used to enforce secure information

1 Generalized Algebraic Data Types.
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flow within programs. Finally, we show an implementation of both the syntax
and the type system in Haskell.

2.1 Syntax

As source language we consider a simple imperative language whose expressions
and sentences are defined by the following abstract syntax:

e ::= n | x | e1 + e2

S ::= x := e | skip | S1;S2 | if e then S1 else S2 | while e do S

where e ∈ Exp and S ∈ Stm. Variables range over identifiers (x ∈ Var) whereas
n ranges over integer literals (n ∈ Num).

2.2 Big-Step semantics

We present a semantics of the language which is completely standard [13]. In
the semantics, the meaning of both expressions and statements is given relative
to a state s ∈ State = Var → Z, a mapping from variables to integer values
that contains the current value of each variable.

The semantics of expressions is given in terms of an evaluation function E :
Exp → State → Z defined by induction on the structure of expressions:

E [[n]] s = N [[n]]

E [[x]] s = s x

E [[e1 + e2]] s = E [[e1]] s+ E [[e2]] s

where N : Num → Z is a function that associates an integer value to each
integer literal.

For statements, we define a big-step semantics whose transition relation is
written as 〈S, s〉 ⇓ s′, meaning that the evaluation of a statement S in an initial
state s terminates with a final state s′. The definition of the transition relation
is presented in Figure 1.

Notice that the language does not contain boolean expressions. In fact, the
condition of an if as well as a while statement is given by an arithmetic expres-
sion. According to the semantics, the condition of an if statement is true when
it evaluates to zero, and false otherwise. The same happens with the condition
of a while.

2.3 Security Type System

We assume that each variable has associated a security level which states the
confidentiality level of the values that it stores. For simplicity, in this paper
we consider just two security levels, low and high , corresponding to public and
confidential data, respectively, but the approach can be easily generalized to
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〈x := e, s〉 ⇓ s[x �→ E [[e]] s] 〈skip, s〉 ⇓ s

〈S1, s〉 ⇓ s′ 〈S2, s
′〉 ⇓ s′′

〈S1;S2, s〉 ⇓ s′′

E [[e]] s = 0 〈S1, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′
E [[e]] s �= 0 〈S2, s〉 ⇓ s′

〈if e then S1 else S2, s〉 ⇓ s′

E [[e]] s = 0 〈S, s〉 ⇓ s′ 〈while e do S, s′〉 ⇓ s′′

〈while e do S, s〉 ⇓ s′′
E [[e]] s �= 0

〈while e do S, s〉 ⇓ s

Fig. 1. Big-step semantics of statements

a lattice of security levels ordered by their degree of confidentiality. As usual
low ≤ high .

We assume that the security level of each variable is maintained unchanged
during program execution. In this sense, the language is said to be flow insen-
sitive. We write xL and xH to mean a variable with low and high security level,
respectively.

A program satisfies the noninterference property when the final value of the
low variables is not influenced by a variation of the initial value of the high
variables. This property can be formulated in terms of the semantics of the
language. First we define that two states s and s′ are said to be L-equivalent,
written s ∼=L s′, when they coincide in the low variables, i.e., s xL = s′ xL for
every low variable xL. Hence, a program is noninterfering when, if executed in L-
equivalent initial states and the execution terminates, it does so in L-equivalent
final states:

NIS(S)
df
= ∀si, s′i. si ∼=L s′i ∧ 〈S, si〉 ⇓ sf ∧ 〈S, s′i〉 ⇓ s′f =⇒ sf ∼=L s′f

It is well-known that this property can be checked statically by the definition
of an information-flow type system that enforces noninterference. We present
such a type system for our language. It is based on similar type systems given
in [20,17]. In the type system, security levels are used as types and are referred
to as security types.

Expressions. For typing expressions we use a judgement of the form � e : st,
where st ∈ {low , high}. The rules for typing expressions is shown in Figure 2.
Essentially, the security type of an expression is the maximum of the security
types of its variables. We denote by max st st′ the maximum of two security
types st and st′. Integer numerals are considered public data.

Statements. The goal of secure typing for statements is to prevent improper
information flows at program execution. Information flow can appear in two
forms: explicit or implicit. An explicit flow is observed when confidential data
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Expressions

	 n : low 	 xL : low 	 xH : high

	 e : st 	 e′ : st′

	 e+ e′ : max st st′

Statements

	 e : st

[high ] 	 xH := e
assH

	 e : low

[low ] 	 xL := e
assL

[high ] 	 skip skip

[pc1] 	 S1 [pc2] 	 S2

[min pc1 pc2] 	 S1;S2

seq

	 e : st [pc1] 	 S1 [pc2] 	 S2 st ≤ min pc1 pc2

[min pc1 pc2] 	 if e then S1 else S2

if

	 e : st [pc] 	 S st ≤ pc

[pc] 	 while e do S
while

Fig. 2. Security Type System of the Source Language

are copied to public variables. For example, the following assignment is not
allowed because the value of a high variable is copied in a low variable.

yL := xH + 1

Implicit information flows arise from the control structure of the program. The
following is an example of an insecure program where an implicit flow occurs:

if xH then yL := 1 else skip

The reason for being insecure is because by observing the value of the low variable
yL we can infer whether the value of the high variable xH is zero. The is a
consequence of the assignment of a low variable in a branch of a conditional
upon a high variable. Due to situations like this it is necessary to keep track of
the security level of the program counter in order to know the security level of
the context in which a sentence occurs.

The typing judgement for statements has the form [pc] � S and means that S
is typable in the security context pc. The rules for typing statements are given in
Figure 2. The type system turns out to be syntax-directed. Equivalent systems
can be defined using a subsumption rule [20,17]. The reason for presenting a
syntax-directed system is because it is the appropriate formulation to be con-
sidered for the implementation.

Rule assH states that assignments to high variables need to be performed
in high contexts. In this type system a high context does not restrict typing,
since by other rules (mainly those for conditional and loop) a code with high
context can be part of any typable code. On the other hand, rule assL states
that assignments to low variables can only be done in low contexts. Explicit
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flows are prevented by this rule by the restriction to the expression to be low.
The rules if and while impose a restriction between the security level of the
condition and the branches (of the conditional) or the body (of the while). As
a consequence, if the condition is high then the branches (of the conditional)
or the body (of the while) must type in high contexts. This restriction together
with that on assignments to low variables prevent implicit flows.

2.4 Implementation

We implement the security type system in Haskell by encoding the typing judge-
ments as GADTs. A value of each GADT then represents a derivation of the
encoded judgment. Using such an encoding the property (noninterference in our
case) enforced by the type system of the object language is checked and main-
tained by the type system of the host language (Haskell in our case). This is a
technique widely used nowadays [19].

Generalized Algebraic Data Types (GADTs) [15] are a generalization of the
ordinary algebraic datatypes available in functional languages such as Haskell,
ML or O’Caml. We explain the features that GADTs incorporate while showing
the encoding of the type judgement corresponding to the arithmetic expressions
of our language. To start, let us consider the abstract syntax definition for ex-
pressions. It can be represented in Haskell as the following datatype:

data Exp = IntLit Int | Var V | Add Exp Exp

where V is the type of variable names. The first ingredient that GADTs intro-
duce is an alternative syntax for datatype declarations, where an explicit type
signature is given for every data constructor. So we can define the Exp as:

data Exp where

IntLit :: Int → Exp

Var :: V → Exp

Add :: Exp → Exp → Exp

The second feature that GADTs incorporate is even more important. GADTs
remove the restriction present in parameterized algebraic datatypes by means of
which the return type of every data constructor must be the same polymorphic
instance of the type constructor being defined (i.e. the type constructor applied
to exactly the same type variables as in the left-hand side of the datatype def-
inition). In a GADT, on the contrary, the return type of the data constructors
must still be an application of the same type constructor that is being defined,
but the arguments can be arbitrary. This is the essential feature that makes it
possible to encode type judgements as GADTs. It is not a minor point for these
encoding the fact that the defined type systems are syntax-directed (i.e. type
judgements reflect the structure of abstract syntax definitions).

We represent the type system for expressions as a GADT Exp st, similar to
the one above for the abstract syntax but with the addition of a type param-
eter st that denotes the security type of the expression that a term encodes.
The encoding is such that, the judgement � e : st in our formal type system
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corresponds to the typing judgement e :: Exp st in Haskell. We represent the
security types low and high in Haskell as empty types (i.e. datatypes with no
constructors):

data Low

data High

The reason for using empty types is because we are only interested in computing
with them at the type level. In fact, security types are only necessary to perform
the static verification of the noninterference property on programs. They are not
necessary at runtime.

The GADT for expressions is then the following:

data Exp st where

IntLit :: Int → Exp Low

VarL :: VL → Exp Low

VarH :: VH → Exp High

Add :: Exp st → Exp st’ → Exp (Max st st’)

where VL and VH are types for identifiers of low and high variables, respectively.
The definition of disjoint sets for low and high variables (and consequently the
definition of a constructor to each case) simplifies the implementation of the
language, avoiding the necessity of supplying an environment with the security
level of each variable. Notice that a separate treatment of each kind of variable
had been already given in the definition of the formal type system.

In the encoding, the maximun of two security types is computed by means of
the following type level function (called a type family [18] in Haskell’s jargon):

type family Max st st’ :: ∗
type instance Max Low x = x

type instance Max High x = High

To model statements we define a GADT that is also parametrized by a security
type, but in this case it represents the security level of the context in which a
statement is executed.

data Stm pc where

AssH :: VH → Exp st → Stm High

AssL :: VL → Exp Low → Stm Low

Skip :: Stm High

Seq :: Stm pc → Stm pc’ → Stm (Min pc pc’)

If :: LEq st (Min pc pc’)

⇒ Exp st → Stm pc → Stm pc’ → Stm (Min pc pc’)

While :: LEq st pc

⇒ Exp st → Stm pc → Stm pc

Each constructor corresponds to a rule of the type system shown in Figure 2. Now
the typing judgement stm :: Stm pc corresponds to the judgement [pc] � S in
the formal type system. It is worth noting that since Stm pc encodes the typing
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rules, it is only possible to write terms that correspond to secure programs. Inse-
cure programs will be rejected by the Haskell compiler because they correspond
to ill-typed terms.

The minimum of two security types is computed by means of the following
type level function:

type family Min st st’ :: ∗
type instance Min Low x = Low

type instance Min High x = x

The class LEq is defined for modelling the condition pc ≤ pc′ at the type level,
used in the typing rules for conditional and loop. This class has no operations.

class LEq a b

instance LEq Low b

instance LEq High High

Having this class it is not necessary to provide a proof of the inequality be-
tween two types. If the condition holds for given two types, the selection of the
appropriate instance will be chosen by Haskell’s type system.

3 Target Language

The target language of the compiler is a simple stack machine in the style of the
presented in [13]. In this section we describe its syntax and operational semantics
and define a type system that guarantees noninterference.

3.1 Syntax

The code of the low-level language is given by the following abstract syntax:

c ::= push n pushes the value n on top of the stack
| add addition operation
| fetch x pushes the value of variable x onto the stack
| store x stores the top of the stack in variable x
| noop no operation
| c1 ; c2 code sequence
| branch (c1, c2) conditional
| loop (c1, c2) looping

where c ∈ Code, x ∈ Var and n ∈ Num. Like the high-level language, this lan-
guage also manipulates program variables that have associated a security level.
As usual in this kind of low-level languages, values are placed in an evaluation
stack in order to be used by operations (in this language, addition is the unique
operation).
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〈push n, σ, s〉 � (N [[n]] : σ, s) 〈add, z1 : z2 : σ, s〉 � ((z1 + z2) : σ, s)

〈fetch x, σ, s〉 � ((s x) : σ, s) 〈store x, z : σ, s〉 � (σ, s[x �→ z])

〈noop, σ, s〉 � (σ, s)

〈c1, σ, s〉 � (σ′, s′)

〈c1 ; c2, σ, s〉 � 〈c2, σ′, s′〉
〈c1, σ, s〉 � 〈c′, σ′, s′〉

〈c1 ; c2, σ, s〉 � 〈c′ ; c2, σ′, s′〉

z = 0

〈branch (c1, c2), z : σ, s〉 � 〈c1, σ, s〉
z �= 0

〈branch (c1, c2), z : σ, s〉 � 〈c2, σ, s〉

〈loop (c1, c2), σ, s〉 � 〈c1 ; branch (c2 ; loop (c1, c2), noop), σ, s〉

Fig. 3. Operational Semantics of the Target Language

3.2 Operational Semantics

A code c is executed on an abstract machine with configurations of the form
〈c, e, s〉 or (e, s), where σ is an evaluation stack and s ∈ State is a state that
associates values to variables. The operational semantics is given by a transition
relation between configurations that specifies an individual execution step. The
transition relation is of the form 〈c, σ, s〉 � γ, where γ may be either a new
configuration 〈c′, σ′, s′〉, expressing that remaining execution steps still need to
be performed, or a final configuration (σ′, s′), expressing that the execution of c
terminates in one step. As usual, we write 〈c, σ, s〉 �∗ γ to indicate that there
is a finite number of steps in the execution from 〈c, σ, s〉 to γ. The operational
semantics of the language is shown in Figure 3.

We can define a meaning relation 〈c, s〉 ↓ s′ iff 〈c, ε, s〉 �∗ (σ′, s′) which
states that a given code c, and states s and s′ are in the relation whenever the
execution of c starting in s and the empty stack ε terminates with state s′. It can
be proved that this is in fact a partial function as our semantics is deterministic.
Based on this relation we can define what does it mean for a low-level program
to be noninterfering:

NIT (c)
df
= ∀si, s′i. si ∼=L s′i ∧ 〈c, si〉 ↓ sf ∧ 〈c, s′i〉 ↓ s′f =⇒ sf ∼=L s′f

3.3 Security Type System

The security type system is defined in terms of a transition relation that relates
the security level of the program counter with the state of a stack of security
types before and after the execution of a program code. The typing judgement
is then of the form ls � c : pc � ls′, where pc is the security level of the program
counter, and ls and ls′ are stacks of security types. This judgement states that
a program c is typable when it is executed in the security environment given by
the stack ls, the program counter has security level pc and it ends with stack
ls′. The type system is shown in Figure 4.
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push ls 	 push n : high � Low :: ls

add st1 :: st2 :: ls 	 add : high � max st1 st2 :: ls

fetchL ls 	 fetch xL : high � Low :: ls

fetchH ls 	 fetch xH : high � High :: ls

storeL Low :: ls 	 store xL : Low � ls

storeH st :: ls 	 store xH : high � ls

noop ls 	 noop : high � ls

cseq
ls 	 c1 : pc1 � ls′ ls′ 	 c2 : pc2 � ls′′

ls 	 c1 ; c2 : min pc1 pc2 � ls′′

branch
ls 	 c1 : pc1 � ls ls 	 c2 : pc2 � ls st ≤ min pc1 pc2

st :: ls 	 branch (c1, c2) : min pc1 pc2 � ls

loop
ls 	 c1 : pc1 � st :: ls′ ls′ 	 c2 : pc2 � ls′ st ≤ pc2

ls 	 loop (c1, c2) : min pc1 pc2 � ls′

Fig. 4. Security Type System for the Target Language

Like for the high-level language, this type system was designed in order to
prevent explicit and implicit illegal flows. Rule storeL, for example, prevents
explicit flows by requiring that the value to be stored in a variable low has
also security level low , while the requirement on the context (which must be
low ) prevents implicit flows. Rules branch and loop also take care of implicit
flows. Rule branch, for example, requires that the security level of the program
counters of the branches must be at least the security level of the value at the
top of the stack (which is the value used to choose the branch to continue).
Something similar happens with the loop construct in rule loop.

We note that this type system rejects some secure programs. For example,
the following program is not accepted:

push 1; branch (push 0, noop)

because of the restriction of rule branch, which states that the branches of a
conditional cannot change the stack of security types. In this case, the branch
push 0, adds an element to the stack. If we decided to remove such a restriction,
we should be careful that a code like the following one, clearly insecure, is rejected
by the type system:

fetch xH ; branch (push 1, push 2); store xL

However, without the restriction of rule branch this is a situation not easy
to detect because the instruction store xL occurs outside the conditional and
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depends on the code that comes before it. This problem is due to the way in
which the storage of a value in a variable is performed in this language. In fact,
at least two actions are required, rather than one: one for allocating the value
(to be stored in the variable) in the stack, and another for moving that value to
the variable.

A similar situation happens with rule loop. It rejects any loop loop (c1, c2)
whose body c2 changes the stack of security types.

In Section 4 we show that the programs which, even secure, are rejected by
these restrictions of the type system are not the ones generated by compilation.

3.4 Implementation

We use type-level lists to represent the stacks of security types. Such lists can
be defined by introducing the following empty types:

data Empty

data st :#: l

The type Empty represents the empty stack whereas a type st :#: l represents
a stack with top element st and tail stack l.

The low-level language is encoded by a GADT that is parameterized by the
security level of the context and the stacks of types before and after the execution
of the code.

data Code ls pc ls’ where

Push :: Int → Code ls High (Low :#: ls)

AddOp :: Code (st1 :#: st2 :#: ls) High (Max st2 st1 :#: ls)

FetchL :: VL → Code ls High (Low :#: ls)

FetchH :: VH → Code ls High (High :#: ls)

StoreL :: VL → Code (Low :#: ls) Low ls

StoreH :: VH → Code (pc :#: ls) High ls

Noop :: Code ls High ls

CSeq :: Code ls pc1 ls’ → Code ls’ pc2 ls’’

→ Code ls (Min pc1 pc2) ls’’

Branch :: LEq pc (Min pc1 pc2)

⇒ Code ls pc1 ls → Code ls pc2 ls

→ Code (pc :#: ls) (Min pc1 pc2) ls

Loop :: LEq st pc2

⇒ Code ls pc1 (st :#: ls’) → CodeS ls’ pc2 ls’

→ Code ls (Min pc1 pc2) ls’

The typing judgement c :: Code ls pc ls’ corresponds to the judgement
ls � c : pc � ls′ in the formal type system.

4 Compiler

The compiler is a function that converts terms of the source language into terms
of the target language. Since the terms of our source language are of two syntax
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Expressions

Ce[n] = push n

Ce[x] = fetch x

Ce[e1 + e2] = Ce[e1] ;Ce[e2] ; add

Sentences

CS [x := e] = Ce[e] ; store x

CS [skip] = noop

CS [S1;S2] = CS [S1] ;CS [S2]

CS [if e then S1 else S2]

= Ce[e] ; branch(CS [S1],CS[S2])

CS [while e do S] = loop(Ce[e],CS[S])

Fig. 5. Compilation functions

categories, we have to define two compilation functions, one for expressions (Ce :
Exp → Code) and the other for commands (CS : Stm → Code). Figure 5
shows the definition of both functions.

It is not difficult to prove that this compiler is correct with respect to the
semantics of the source and target languages.

Theorem 1 (compiler correctness). For any expression e, statement S of
the source language, and state s it holds that:

i) 〈Ce[e], ε, s〉 �∗ (E [[e]]s, s)
ii) if 〈S, s〉 ⇓ s′ then 〈CS [S], ε, s〉 �∗ (ε, s′)

However, in this paper we are especially interested in another property of the
compiler, namely the preservation of the noninterference by compilation. This
means that, if we start with a noninterfering program in the source language,
then the compiler returns a noninterfering program in the target language. We
can express this property semantically.

Theorem 2 (preservation of noninterference). For any expression e
and statement S,

i) NIT (Ce[e])

ii) if NIS(S) then NIT (CS [S])

However, our interest is to establish this property in terms of the type systems.

Theorem 3 (type-based preservation of noninterference). For any
expression e and statement S,

i) If � e : st then ls � Ce[e] : high � st :: ls

ii) If [pc] � S then ls � CS [S] : pc � ls

Proof. By induction on the structure of expressions and statements.
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4.1 Implementation

Both Ce and CS can be easily implemented in Haskell.

compE :: Exp st → Code ls High (st :#: ls)

compE (IntLit n) = Push n

compE (VarL x) = FetchL x

compE (VarH x) = FetchH x

compE (Add e1 e2) = CSeq (CSeq (compE e1) (compE e2)) AddOp

compS :: Stm pc → Code ls pc ls

compS (AssL x e) = CSeq (compE e) (StoreL x)

compS (AssH x e) = CSeq (compE e) (StoreH x)

compS Skip = Noop

compS (Seq s1 s2) = CSeq (compS s1) (compS s2)

compS (If e s1 s2) = CSeq (compE e) (Branch (compC s1) (compC s2))

comps (While e s) = Loop (compE e) (compS s)

However, we should not forget that as GADTs we have represented not simply
the abstract syntax of the languages but actually their secure type systems.
Therefore, these translation functions turn out to be more than compilation
functions. They are actually the Haskell representation of the proof terms of
Theorem 3! In fact, observe that the type of these functions is exactly the Haskell
encoding of the properties i) and ii) in the Theorem. In other words, when
writing these functions we are actually proving this Theorem and the verification
that we are doing so is done by Haskell type system. As we mentioned above,
both i) and ii) are proved by structural induction. The different equations of
the translation functions encode the cases of those inductive proofs.

This is a common situation in languages with dependent types, like Agda [14],
but was not so in languages like Haskell. However, with the increasing incorpo-
ration of new features to Haskell (and GHC) this sort of type level programming
applications are becoming more frequent and feasible.

5 Related Work

There has been a lot of work on information flow analysis, pioneered by Bell
and LaPadula [4], and continued with the work of Denning [6]. Noninterference
was introduced by Goguen and Meseguer [8]. One of the approaches to ensure
this security property has been based on the use of type system [6,17]. This is
the approach we followed in this paper. Most of the works on type systems for
noninterference concentrated on high-level languages (e.g. [20,17,1]), but there
are also some works that studied security type systems for low-level languages
(e.g. [2,12,16]).

In this paper we used a limited form of dependent type programming available
in Haskell and in particular in the GHC compiler by the use of some extensions.
The frontiers of dependent-type programming in Haskell is nowadays a subject
of discussion and experimentation (see e.g. [7,11]).



A Security Types Preserving Compiler in Haskell 29

There are some works on the use of dependent types for developing type-
preserving compilers. Chlipala [5], for example, developed a certified compiler
from the simply-typed lambda calculus to an assembly language using the proof
assistant Coq. He uses dependent types in the representation of the target lan-
guage of its compiler to ensure that only terms with object language typing
derivations are representable.

Guillemette and Monnier [9] wrote a type-preserving compiler for System F
in Haskell. Their compiler is composed by phases so that Haskell’s type checker
can mechanically verify the typing preservation of each phase.

An example of the use of GADTs for ensuring static properties of programs is
presented by Tim Sheard [19], who wrote a simple While language that satisfied
two semantic properties: scoping and type safety. He presented this example in
the language Omega.

These works are similar to ours in the sense that they prove that a compiler
preserves the types of object programs, or that a language satisfies some static
property, but they are not concerned with proving the preservation of a security
property of programs.

There aremanyworks on certified compilers.One is that byLeroy [10]whowrote
a certified compiler for a subset of C in the proof assistantCoq. Another is the work
by Barthe, Naumann and Rezk [3] who wrote a compiler for Java that preserves
information flow typing, such that any typable program is compiled into a program
that will be accepted by a bytecode verifier that enforces noninterference.

6 Conclusion

We presented a compiler written in Haskell that preserves the property of non-
interference. The compiler takes code in an imperative high-level language and
returns code in a low-level language that runs in a stack-based abstract machine.
For each of the languages we defined the property of noninterference by means
of a security type system. Those type systems were then represented in Haskell
in terms of GADTs combined with type families for computing with security
types at the type level and a multi-parameter type class for comparing security
types. This encoding guarantees that we can only write noninterfering programs
(i.e. valid terms of the corresponding GADTs).

Using this approach the type of the compiler corresponds exactly to the for-
mulation of the property that noninterference is preserved by compilation. The
definition of the compiler function itself then corresponds to the proof term that
proves that property. The rest of the work (i.e. the verification that the function
is indeed a proof of that property) is is done by Haskell’s type system.

Although the target language of the compiler is simple and semi-structured,
we think that a compiler to a more realistic low-level language (for example,
with goto) can be constructed applying the same ideas. We are currently doing
some experiments in this line using Agda [14], but we do not discard to try
with Haskell as well. The decision of using Agda for developing a more realistic
compiler is because the complexity of the required program properties increase
and then it becomes difficult to express them in Haskell.
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Abstract. Aspect-Oriented Programming (AOP) is a maturing technique that 
requires a good comprehension of which types of mistakes programmers make 
during the development of applications. Unfortunately, the lack of such know-
ledge seems to represent one of the reasons for the cautious adoption of AOP in 
real software development projects. Based on a series of experiments, this paper 
reports a catalogue of code pitfalls that are likely to lead programmers to make 
mistakes in AOP. Each experiment required the aspectization (i.e. refactoring) 
of a crosscutting concern in one object-oriented application. Six rounds of the 
experiment provided us with the data of 80 aspect-oriented (AO) implementa-
tions where three crosscutting concerns were aspectized in three applications. 
We developed a prototype tool to warn programmers of the code pitfalls during 
refactoring activities. 

Keywords: AOP, mistakes, code pitfalls, empirical study. 

1 Introduction 

Aspect-Oriented Programming (AOP) [19] is a software development technique that 
aims to improve software modularity through the separation of crosscutting concerns 
into modular units called aspects. A concern is any consideration that can impact on 
the design and maintenance of program modules [28]. It is well known that novice 
programmers need special guidance while learning how to program with a new lan-
guage [30, 31]. Therefore, to be widely adopted in practice, we need a good compre-
hension of the kinds of mistakes made by AOP programmers when learning this de-
velopment technique and the situations that lead to these mistakes. 

A mistake is “a human action that produces an incorrect result” [17]. In our study, 
a mistake occurs when a developer performs an inconsistent code refactoring, which 
may result in a fault into the application. A fault, on the other hand, consists in an 
incorrect step, process, or data definition in a computer program [17]. In other words, 
a fault occurs when there is a difference between the actually implemented software 
product and the product that is assumed to be correct. A mistake may lead to one or 
more faults being inserted into the software, although it not necessarily does so. 

Previous research [3, 5, 9, 11] investigated mistakes that are likely to be made by 
AOP programmers either to build systems from scratch or to refactor existing ones. 
Other studies identified AO code smells [21, 24, 26]. However, these studies often 
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consider complex systems developed by experienced programmers. In such scenarios, 
it is difficult to reveal the factors that hinder the learning of basic AOP concepts, such 
as pointcut and advice, by novice programmers. This situation gives us a lack of un-
derstanding of the scenarios that could lead novice programmers to make mistakes 
while refactoring existing code to AOP. In turn, it may represent one of the reasons 
for the cautious adoption of AOP in real software development projects [32]. 

Towards addressing this problem, we identified a preliminary set of recurring mis-
takes made by novice AOP programmers in our previous work [4]. We derived these 
mistakes by running three rounds of an experiment in which 38 novice AOP pro-
grammers were asked to refactor out to aspects two crosscutting concerns from two 
small Java applications. The mistakes observed in our previous study are often related 
to fault types documented in previous research [3, 5, 9, 11]. We also documented new 
kinds of programming mistakes, such as Incomplete Refactoring, which does not 
necessary lead to faults. 

This paper extends our previous study [4] and builds up on top of its results. First, 
this paper reports on other three rounds of the same experiment (resulting in six 
rounds in total) with a different application (called Telecom) and 42 additional partic-
ipants. Therefore, this paper relies on data of 80 refactored code samples of three 
small-sized applications (Section 2). In this follow up study, our goal is not only to 
further investigate and confirm our previous findings, but also to find out additional 
categories of common mistakes made by AOP programmers. Second, this paper also 
presents a novel catalogue of situations that appear to lead programmers to make the 
identified categories of recurring mistakes (Section 3). Such situations, named Aspec-
tization Code Pitfalls, were observed by inspecting the original source code focusing 
on code fragments that were incorrectly or inconsistently refactored to AOP. To sup-
port the automatic detection of the documented Aspectization Code Pitfalls, we pro-
pose a prototype tool called ConcernReCS (Section 4). Section 5 summarizes related 
work and Section 6 concludes this paper with directions for future work. 

2 Empirical Study 

This section presents the configurations of the experimental study we conducted. 
Section 2.1 presents its research questions and Section 2.2 briefly describes the study 
participants. Section 2.3 introduces the target applications and characteristics of the 
refactored crosscutting concerns. Section 2.4 explains the experimental tasks. 

2.1 Research Questions 

This study aims at investigating the types of mistakes made by students and junior 
professionals when using AOP. Our goal in this study is to uncover and document 
code pitfalls that lead programmers to make these mistakes. Based on this goal, we 
formulate the research questions below. To answer RQ1, we first identify and classify 
the recurring categories of mistakes made by programmers learning AOP. Then, we 
document error-prone situations as a catalogue of code pitfalls to address RQ2. 
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RQ1. What kinds of mistakes do novice AOP programmers often make while re-
factoring crosscutting concerns? 

RQ2. What are the code pitfalls in the source code that lead to these mistakes? 

2.2 Background of Subjects 

Participants of all six rounds of this study were organized in groups of one or two 
members, called subjects of the experiment. In three rounds, participants worked in 
pairs in order to investigate possible impact of pair programming on the mistakes [4].  

Table 1 summarizes the number of subjects (i.e., groups of participants) and how 
they were organized in each study round. Each subject took part of only one round of 
the experiment. Note that in the odd rounds (1st, 3rd, and 5th), the numbers of partici-
pants are twice the number of subjects since each subject includes two participants. 
That is, the total number of participants is 108 divided into 80 subjects. Table 1 also 
shows the application each subject worked with. That is, subjects of the first two 
rounds refactored a concern of an ATM application, of the following two rounds re-
factored a Chess game, and of the last two rounds refactored a Telecom system. We 
describe the software systems and the refactored concerns in Section 2.3. 

Table 1. Number of subjects in each round 

System Round # of Subjects Grouping 

ATM 
First 11 Pairs 

Second 17 Individually 

Chess 
Third 15 Pairs 
Fourth 15 Individually 

Telecom 
Fifth 3 Pairs 
Sixth 19 Individually 

Total number of subjects 80  

 
The participants filled in a questionnaire with their background information. The 

answers regard participants’ level of knowledge in Object-Oriented Programming 
(OOP) and their work experience in software development. This questionnaire aims to 
characterize the background of the study participants. In general, more than 80% of 
participants claimed to have some experience in OOP. Since most participants are 
undergraduate or graduate students, about half of them have never worked in a soft-
ware development company. Due to space constraints, we provide detailed informa-
tion of the participants’ backgrounds in the project website [1]. 

2.3 Target Applications and Crosscutting Concerns 

Three small Java applications were chosen to be used in this study: ATM, Chess, and 
Telecom. Each participant were asked to refactor one crosscutting concern of each 
application using the AspectJ programming language [18]. Table 2 summarizes some 
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size measurement for the target applications and their respective crosscutting con-
cerns. The Number of Classes (NC) and Lines of Code (LOC) metrics indicate the 
size of each application in terms of classes/interfaces and lines of code, respectively. 
Additionally, Concern Diffusion over Classes (CDC) [12, 14] and Lines of Concern 
Code (LOCC) [12, 14] measure the concern size using the same units. All concerns 
and applications share similar complexity and were carefully chosen to allow subjects 
to finish the experimental task within 90 minutes. Furthermore, we chose simple  
applications with distinct characteristics and from different domains to allow us as-
sessing the complexity behind heterogeneous AOP constructs, such as inter-type dec-
laration, pointcut, and advice [18]. 

Table 2. Size metrics of the target applications and concerns 

Application/ concern 
Application size Concern size 
NC LOC CDC LOC 

ATM / Logging 12 606 4 19 
Chess / ErrorMessages 13 1011 8 36 

Telecom / Timing 8 213 4 32 

 
The ATM application simulates three basic functionalities of an ordinary cash ma-

chine: show balance, deposit, and withdraw. Subjects of the first two rounds had to 
refactor out to aspects the Logging concern in this application. This concern is re-
sponsible for recording all operations performed by an ATM user. It is implemented 
by 19 LOC diffused over 4 application modules. The Chess application implements a 
chess game with a graphical user interface. Subjects of the third and fourth rounds 
refactored the ErrorMessages concern of this application. This concern is responsible 
for displaying messages when a player tries to break the chess rules. This concern is 
implemented by 36 LOC spread over 8 classes. Finally, Telecom is a connection 
management system for phone calls implemented in Java and AspectJ [2]. It simulates 
a call between two or more customers. We only used the Java implementation and 
asked each subject of the last two rounds to refactor out to aspects the Timing con-
cern. This concern is responsible for measuring the elapsed time of a given call. It is 
implemented in 30 LOC spread over 4 modules. 

2.4 Experimental Tasks 

Before performing the experimental tasks, all participants attended a 2-hour training 
session about AOP and AspectJ. After the training session, each group of participants 
received the source code of a small Java application and a textual description of the 
crosscutting concern. Using the Eclipse IDE (version 3.7 Indigo) with the AJDT plug-
in (version 2.1.3) properly installed, subjects were asked to refactor the crosscutting 
concern from the given application using the AspectJ language constructs. Note that 
the subjects were responsible for both correctly identifying the concern code in the 
application as well as choosing the proper AspectJ constructs to refactor the given 
crosscutting concern. No instruction was given in this sense because we consider 
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these tasks part of the AOP programmer regular duties. After subjects concluded their 
tasks, we performed our analysis in two steps. First, we investigated which were the 
categories of AOP-specific mistakes the programmers frequently made (Section 3). 
Then, we identified situations in the OO original code, named code pitfalls (Section 
4), that may lead programmers to make mistakes. 

3 Recurring Mistakes in AOP 

This section summarizes the results of our study and classifies the mistakes recurrent-
ly made by subjects during the experimental tasks. This classification is based on our 
previous work [4]. Mistakes were identified by manual code inspection. 

3.1 Classification of Recurring Mistakes 

Incorrect Implementation Logic. It occurs when a piece of concern code is aspec-
tized through pointcut and advice mechanisms. However, the refactored code behaves 
differently from the original code. For instance, by selecting an option in the main 
menu of ATM, a logging report of that operation can be displayed on screen. Howev-
er, novice programmers often make this kind of mistake because it involves an intri-
cate concern code nested in switch and while constructs. 

Incorrect Advice Type. In this mistake category, the programmer uses an incorrect 
type of advice to refactor a piece of concern code. For instance, in the OO version of 
the ATM application, the message that records information about the deposit opera-
tion is logged at the end of the credit() method of the BankDatabase class. This 
operation should therefore be refactored as an after advice. However, some subjects 
of this study wrongly use a before advice to refactor this code.  

Compilation Error or Warning. It refers to either a syntactic fault or a potential 
fault signaled by the AspectJ compiler through an error or warning message1. For 
instance, in the OO version of the ATM application, the logging message that records 
the user authentication is stored when the authenticateUser() method of the 
BankDatabase class is executed. Although this method has two integer parameters, 
some subjects have not specified the method parameters neither used a wildcard when 
writing the pointcut to select this join point. Consequently, a warning message noti-
fies the programmer that no join point matched this specific pointcut.  

Duplicated Crosscutting Code. In this mistake, part of the code that implements a 
crosscutting concern appears replicated in both aspects and the base Java code. For 
instance, the getErrorMsg() method of the ChessPiece class implements part of 
ErrorMessages and should be refactored to aspects in the Chess application. However, 

                                                           
1 Note that, sometimes syntactic problems in AspectJ code are not promptly signaled by the 

compiler. Programmers can only notice such problems when they perform a full weaving. 
Since programmers usually work with tied schedule, they do not always double-check their 
code to remove these types of faults. 
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this piece of code is sometimes not only implemented into aspects but also left in the 
original class (i.e., ChessPiece). Therefore, this mistake results in duplicated code. 

Incomplete Refactoring. This mistake occurs when developers fail to refactor part of 
the crosscutting concern. As a result, part of concern still remains in the base code in 
the AOP solution. This mistake was made, for instance, in the aspectization of the 
totalConnectionTime attribute in the Costumer class that implements part of 
Timing in the Telecom application. When refactoring this concern, some subjects 
have not transferred this attribute to an aspect. 

Excessive Refactoring. This kind of mistake is made when part of the base code that 
does not belong to a concern is refactored to aspects. As an example, when refactoring 
the Timing concern in Telecom, developers should move the timer.start() call 
from the complete() method in Connection to an advice. However, some subjects 
also refactored the previous statement: System.out.println("connection com-
pleted"). Although this statement also appears in the complete() method, it should 
not be refactored since it does not belong to the Timing concern.  

3.2 Experimental Results  

Our analysis is based on 80 AOP implementations of the three target applications 
(Section 2.3). AOP-related mistakes in these implementations were analyzed and 
classified according to the categories discussed in Section 3.1. Figure 1 presents the 
overall percentage of subjects that made mistakes within each category taking each 
application into consideration. Subjects were related to a given category if they made 
at least one mistake within that category regardless of the absolute number of mis-
takes. We made this decision because it would be hard to quantify how many times a 
subject makes some kinds of mistakes, such as Incomplete Refactoring, due to the 
higher granularity of them. Therefore, counting individual instances of a mistake 
could give us the wrong impression that a mistake (e.g., Incomplete Refactoring) is 
less frequent than others (e.g., Incorrect Advice Type). 
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Fig. 1. Subjects that made mistakes in each category 
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Figure 1 shows that Incomplete Refactoring is the most common mistake in all  
applications. This mistake occurred with fairly the same rate (about 95%) in all appli-
cations. Unlike Incomplete Refactoring, some mistakes are more common in one 
application than in the others. For instance, Duplicated Crosscutting Code and Incor-
rect Advice Type are common in the ATM application. Incorrect Implementation 
Logic, on the other hand, is more frequent in the Chess application. This result is 
mainly due to (i) the crosscutting nature of the aspectized concern and (ii) properties 
of the target application. For instance, no subject has made the Incorrect Advice Type 
mistake in the Chess and Telecom applications. After inspecting the concern code, we 
observed that all advices used to aspectize ErrorMessages (Chess) and Timing (Tele-
com) should be after advices. Therefore, due to the homogeneity of the concern code, 
it is unlike that someone would use a different type of advice and make this kind of 
mistake in these two concern instances. 

Incomplete Refactoring is often made in all sorts of systems due to at least two ma-
jor reasons: inability to identify the concern code and inability to separate it. In the 
former case, programmers fail to assign code elements to the concern that should 
actually be later refactored. Nunes et al. [25] highlighted that the inability to identify 
the concern code is one of the most problematic steps for concern refactoring. We 
empirically confirm their results. Regarding the inability to separate concern code, we 
found out that programmers avoid refactoring pieces of code if such code is very tan-
gled; in such cases, programmers end up leaving it mixed up with the base code. 

The Excessive Refactoring mistake only happened in the Telecom application (see 
Figure 1). We observed that this kind of mistake seems to be less often in software 
aspectization. In fact, the particular way Timing is implemented in Telecom might 
have led programmers to make Excessive Refactoring. For instance, Figure 2 shows 
the partial OO implementation of the BasicSimulation class in the Telecom appli-
cation. The grey shadow indicates a line of code realizing the Timing concern.  
Programmers are expected to use pointcut-advice to aspectize this part of concern. 
However, some programmers moved this method from the BasicSimulation class 
to an aspect and introduced it back by means of inter-type declaration; that is, they 
aspectized the whole method instead of just a single line of code. This mistake oc-
curred mainly because the report() method has a solo line of code. Therefore, OO 
programmers feel uncomfortable with an empty method in the application and prefer 
moving it to an aspect. 

 
   public class BasicSimulation extends AbstractSimulation { 

   ... 

     protected void report(Customer c) { 

       System.out.println(c+"spent"+c.getTotalConnectTime()); 
     } 
   } 

Fig. 2. Timing implementation in the BasicSimulation class 
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4 Aspectization Code Pitfalls 

After collecting the mistakes made by the subjects of the experiment described in 
Section 3, we manually inspect situations that could have led them to recurrently 
make these mistakes. We name these situations code pitfalls and analyzed them in 
two phases. Firstly, we performed a manual inspection in the OO source code of the 
applications in order to identify code pitfalls for AO refactoring. Secondly, we inter-
viewed some of the experiment participants with the purpose to verify whether such 
code pitfalls may have impacted on the mistakes they made. The result of this investi-
gation is a preliminary catalogue of code pitfalls described in this section. We  
organized these code pitfalls into two major categories: Dedicated Implementation 
Elements (Section 5.1) and Non-Dedicated Implementation Elements (Section 5.2). 

4.1 Dedicated Implementation Elements 

This section discusses two code pitfalls related to dedicated implementation elements, 
namely Primitive Constant and Attribute of a Non-Dedicated Type. We define a dedi-
cated implementation element as a class, method or attribute completely dedicated to 
implement a concern. 

Brinkley et al. [6] advocated that refactoring dedicated implementation elements 
should be straightforward since it only requires moving them from a class to an aspect 
by using inter-type declarations, for instance. However, a high number of refactoring 
mistakes were observed in this experiment when developers had to refactor dedicated 
elements. In particular, the mistakes Duplicated Crosscutting Code and Incomplete 
Refactoring (Section 3) are commonly related to dedicated implementation elements. 
The synergy between these two mistakes and dedicated implementation elements 
could be due to the concern mapping task, i.e., the developer fails to assign dedicated 
elements to a concern. In fact, Nunes et al. [25] have pointed out that not assigning a 
dedicated implementation element to a concern is a common mistake when develop-
ers perform concern mapping. Therefore, it is not a surprise that developers make the 
same mistake when refactoring a crosscutting concern to aspects. 

 
  public class ATM { 
     private static final int LOG= 0; 
     ... 
  } 

Fig. 3. Primitive Constant code pitfall 

Primitive Constant. The first code pitfall, named Primitive Constant, occurs when a 
constant is dedicated to implement the concern. For instance, Figure 3 shows a con-
stant called LOG that implements the Logging concern in the ATM application. In 
our study, 85% of the subjects of the first round and 86% of the second round made 
mistakes when refactoring this part of the Logging concern. For instance, subjects 
often replaced this constant by its value in places where it is used; this seems a com-
mon strategy to simplify the refactoring. However, they did not remove this constant 
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declaration from the base code which results in an unreachable code [10]. This kind of 
mistake was classified as Duplicated Crosscutting Code since both the base code and 
the aspect are dealing with the constant value. In addition to Duplicated Crosscutting 
Code, we observed that Primitive Constant is also related to the Incomplete Refactor-
ing mistake. One example of this kind of mistake occurs when developers just ignored 
moving the constant to an aspect, leaving it at the base code. 

Attribute of a Non-dedicated Type. This code pitfall has to do with the type of a 
dedicated implementation attribute. In this case, the attribute has either a primitive 
type (e.g., boolean, int, long) of a non-dedicated element type. For instance, the Tim-
ing concern in Telecom is implemented by two attributes. One of them, shown in 
Figure 4.a, is of the type Timer which is completely dedicated to the concern. Sub-
jects of the experiment had no problem to locate and refactor this attribute to an as-
pect. On the other hand, Figure 4.b shows the totalConnectionTime attribute, 
declared as a long data type, which is not dedicated to Timing; it is actually of a pri-
mitive Java type. When this concern is refactored, 33% of subjects in the fifth replica-
tion and 32% in the sixth replication did not aspectize such attribute, but none of them 
failed to refactor the timer attribute (Figure 4.a). We observed that developers ap-
pear to have difficulty to assign attributes of non-dedicated types to a concern during 
concern mapping tasks. This fact is probably due to the lack of searching support 
from IDE. Consequently, the presence of such attributes in the concern code leads 
programmers to make the Incomplete Refactoring mistake. 

 
public abstract class Connection { 
 
  Timer timer = new Timer(); 
  ... 
} 

public class costumer { 
  ... 
  long totalConnectionTime = 0; 
  ... 
}

(a) Attribute of a dedicated type (b) Attribute of a non-dedicated type 

Fig. 4. Attribute of the Non-Dedicated Type code pitfall 

4.2 Non-dedicated Implementation Elements 

Many mistakes occurred when subjects had to refactor elements which are not com-
pletely dedicated to implement a concern; we call them non-dedicated implementation 
elements. To refactor these elements, developers usually rely on pointcut/advice con-
structs of AOP languages. Three code pitfalls are related to non-dedicated implemen-
tation elements: Disjoint Inheritance Trees, Divergent Join Point Location, and  
Concern Attribute Accesses. These code pitfalls are discussed below. 

Disjoint Inheritance Trees. This code pitfall is characterized by two or more inherit-
ance trees involved in the concern realization. Elements of one tree usually does not 
refer to the elements of the other. The lack of explicit relationships between two inhe-
ritance trees might be one reason that subjects correctly refactored elements in one 
tree, but not in the other. In addition, elements in the same inheritance tree tend  
to follow the same pattern in the concern implementation. Figure 5.a illustrates the 
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Disjoint Inheritance Trees code pitfall. Elements inside the dotted square are more 
prone to the Incomplete Refactoring mistake because they do not follow the same 
pattern of concern code implemented in tree leaves. This mistake was very recurring 
while the experiment subjects aspectized the ErrorMessages in the Chess application.  

Class Method Code dedicated to the concern

(a) (b)

 

Fig. 5. Disjoint Inheritance Trees and Divergent Join Point Location code pitfalls 

Divergent Joint Point Location. This code pitfall occurs when (i) pieces of the con-
cern code are scattered over several methods and (ii) these pieces of code appear in 
different locations with respect to the method body. The problem mainly occurs when 
just a couple of pieces of code have a different location compared to the others. Fig-
ure 5.b illustrates this code pitfall. In this figure, the concern code is located at the end 
of three methods, but at the beginning of one method (marked with a dotted square). 
Therefore, developers should use after advice to refactor the former pieces of code, 
but a before advice in the latter case. This divergent joint point location usually tricks 
developers and they end up making the Incorrect Advice Type mistake. 

As an example of this code pitfall, the Logging concern in the ATM application is 
realized by the Logger class and several scattered calls to the log() method of this 
class. Only one call to log() appears in the beginning of a method and should be 
refactored using a before advice. All other calls to log() appear in the end of a me-
thod and should be refactored using after advice. Thus, developers should use the 
appropriate advice type - before or after in this case - to refactor the Logging concern. 
We noticed that many subjects of the first and second rounds refactored all of the 
Logging concern parts using only after advice. They thus made the Incorrect Advice 
Type mistake in the case which they were expected to use a before advice. Subjects of 
the other four rounds have not made this type of mistake because ErrorMessages 
(Chess) and Timing (Telecom) have a uniform implementation. That is, all parts of 
the concern should be refactored using the same advice type. 

Accesses to Local Variables. This code pitfall is characterized by the presence of 
concern code inside a method that accesses a local variable. Previous work [8] has 
advocated that the dependence on local variables makes the concern code harder to 
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refactor, since the join point model of AspectJ-like languages cannot capture informa-
tion stored in such variables. On the other hand, capturing the value of class members 
and method parameters is straightforward. For the former, for instance, it can be done 
by using the args AspectJ pointcut designator. 

 
public class ATM { 

  private void performTransactions() { 

    ... 

    while(!userExited) { 

      int mainMenuSelection = displayMainMenu(); 

      switch(mainMenuSelection) { 

        ... 

        case Log: 

          Logger.printLog(); 

          break; 

        ... 

      } 

    } 
  } 
  ... 
} 

Fig. 6. Incorrect Implementation Logic related Logging 

To illustrate this code pitfall, we rely on a piece of the Logging concern (ATM) 
shown in Figure 6. About 40% of subjects made the Incorrect Implementation Logic 
mistake when refactoring to aspects this piece of code. The logical expression that 
controls the execution flow of the switch statement in Figure 6 is composed by the 
local variable mainMenuSelection. This variable is declared inside the method 
body in which this code appears. In order to aspectize the grey code in Figure 6, de-
velopers need to access to this variable and check whether its value is equal to the 
LOG constant. However, this refactoring is not easy and, so, developers recurrently 
make mistakes in such trick aspectization scenario. 

5 Tool Support 

This section presents ConcernReCS , an Eclipse plug-in to find the aspectization code 
pitfalls discussed in Section 4. The tool is based on static analysis of Java code and 
builds on knowledge of our experiment results. ConcernReCS extends ConcernMap-
per [29] which is a tool to allow the mapping of methods and attributes to concerns. 
Figure 7 describes a simplified flow chart of ConcernReCS. ConcernReCS receives 
information from both ConcernMapper and Eclipse. The Data Analyzer module relies 
on this information to generate warnings of code pitfalls. 
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Fig. 7. ConcernReCS simplified flow chart 

The first step to use ConcernReCS is to manually map the dedicated implementa-
tion elements (i.e. methods, classes and attributes) of one or more concerns using 
ConcernMapper. Non-dedicated implementation elements are automatically inferred 
by (i) calls to dedicated implementation methods, (ii) read or write accesses to dedi-
cated implementation attributes, and (iii) syntactic references to dedicated classes or 
interfaces. Concern code of any other kind (e.g. conditional statements), should be 
extracted by the Extract Method refactoring [16] and, then, the resulting method 
should be mapped to the concern. 

Figure 8 presents the main view of ConcernReCS in the Eclipse IDE. Code pitfalls 
are presented one per line and, for each of them, it is shown the code pitfall name and 
the mistake that it can lead to. ConcernReCS also indicates the concern in which the 
code pitfall appears, the source file and where in the system code it appears. For each 
code pitfall, the tool also gives a number representing its error-proneness. The error-
proneness value can be 0.25, 0.5, 0.75, or 1, each of which representing approximate-
ly the percentage of subjects who made mistakes related to the code pitfall (the value 
of 1 means that all subjects in our experiment made mistakes related to a specific code 
pitfall). 

 

 

Fig. 8. The ConcernReCS main view 
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6 Study Limitations 

The AspectJ language can be pointed out as a limitation in our study. However, it is 
widely known that AspectJ-based systems have been used in the large majority of 
AOP assessment studies. Even though there are other programming techniques which 
are able to realize the AOP concepts (examples are Intentional Programming, Meta 
Programming and Generative Programming [15]), so far AspectJ has been the main-
stream AOP technology within both industrial and academic contexts [27]. 

Another limitation regards the size and representativeness of the target applications 
and the selected crosscutting concerns to be refactored. Regarding the size of the ap-
plications, they indeed do not reflect the complexity observed in the industrial con-
text. However, this type of experiment requires tasks being performed within a short 
pre-specified period of time. Furthermore, applications of similar size have been used 
in recent programming-related experiments with different goals within varied contexts 
[7, 20]. The crosscutting concerns are of different nature but with similar complexity 
in order to pose balanced implementation scenarios in terms of difficulty. 

The number and representativeness of the subjects can also be considered a limita-
tion of this study. Around 50% of the experiment participants declared to have mod-
erate to high level of knowledge in OOP. Despite of the observed heterogeneity, all 
subjects made similar types of mistakes while performing the experiment tasks. Note 
that their level of expertise in AOP was indeed not expected to be high, since the ex-
periment was designed to be performed by novice programmers in AOP. 

7 Related Work 

Investigations of fault types and faulty scenarios in AO software: Previous studies in 
AOP-specific fault types and bug patterns [3, 5, 9, 11] address from the most basic 
concepts of AOP to advanced constructions of AspectJ-like languages. In previous 
research, Ferrari et al. [10] analyzed the existing taxonomies and catalogues and iden-
tified four main categories of faults that can be found in AO software. According to 
them, faults can be associated with pointcut expressions (i.e., quantification mechan-
isms), inter-type declarations and other declare-like expressions (i.e., introduction 
mechanisms), advice signatures and bodies (i.e., the crosscutting behavior), and in the 
intercepted (i.e., base) code. When we compare the contributions of this paper to the 
results presented by Ferrari et al. [10], we can spot one major difference. We charac-
terize mistakes that novice programmers are likely to make while refactoring cross-
cutting concerns. Ferrari et al., on the other hand, characterize faults that can be  
revealed during the testing phase, be them refactoring-related or not, which shall be 
prioritized in testing strategies. 

Burrows et al. [7] analyzed how faults are introduced into existing AO systems 
during adaptive and perfective maintenance tasks. The AO version of the Telecom 
system was used as a basis for a set of maintenance tasks performed by experienced, 
paired programmers. The authors then applied a set of coupling and churn metrics in 
order to figure out the correlation between these metrics and the introduced faults. 
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Our study differs from the Burrows et al. one in the sense that while they evolved an 
existing AO system, our study participants were assigned to tasks of refactoring 
crosscutting concerns of OO systems in order to produce equivalent AO counterparts.  

Previous studies about AOP-specific mistakes [3, 9, 10, 11] range from the most 
basic concepts of AOP to advanced constructions of AspectJ-like languages, such as 
intertype declarations. Since our study was conducted only with novice programmers 
in AOP, our classification partially overlaps previous fault taxonomies and adds new 
categories, such as compilation errors or warning and incomplete refactoring. Moreo-
ver, it focuses on mistakes made by programmers when using the two most basic 
features of AOP languages: pointcut and advice. 

Investigations of concern identification and code smells: Recent studies [12, 25] 
investigated mistakes in the projection of concerns on code – a key task in concern 
refactoring. For instance, Figueiredo et al. [12] noticed that programmers are con-
servative when projecting concerns, i.e. they make omissions of concern-to-elements 
assignments. Such false negatives may lead to mistakes like Incomplete Refactoring 
or even Incorrect Implementation Logic herein described. Nunes et al. [25] characte-
rized a set of recurring concern mapping mistakes made by software developers. 
Amongst the causes that led to mistakes in the mapping tasks, Nunes et al. highlight 
the crosscutting nature – i.e., spreading or tangling – of several concerns they ana-
lyzed. This may help us to explain the high number of refactoring mistakes observed 
in our study: the participants had to first identify which parts of the code referred to 
the target crosscutting concern. That is, they had to map the target concern in the 
code. Then, they should perform the refactoring step. 

Macia et al. [21] report on the results of an exploratory study of code smells in 
evolving AO systems. They analyzed 18 releases of three medium-sized AO systems 
to assess previously documented AOP code smells and new ones characterized by the 
authors. Although our goal in this paper was neither characterizing nor assessing code 
smells for AO (AspectJ) programs, we shall perform similar analysis of the code pit-
falls described in Section 4. For instance, we can investigate the relationships between 
different pitfalls spotted in common implementations and the similarities of these 
pitfalls with code smells documented by previous studies. 

8 Conclusions and Future Work 

This paper presented the results of a series of experiments whose main goal was to 
characterize mistakes made by novice programmers in typical crosscutting concern 
refactorings. In this study, we revisit recurring mistakes made by programmers with 
specific backgrounds (Section 3). The results of this study may be used for several 
purposes, like helping in the development and improvement of new AOP languages 
and tools. Based on an analysis of recurring mistakes, this paper proposed a catalogue 
of aspectization code pitfalls (Section 4). These code pitfalls appear to lead program-
mers to make the documented mistakes. To support the automatic detection of code 
pitfalls, we developed a prototype tool called ConcernReCS (Section 5). 
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Further research can rely on our study settings to perform new replications of the 
experiment in order to (i) enlarge our dataset, (ii) uncover additional mistakes, and 
(iii) expand the proposed catalogue of code pitfalls. In fact, we have plans to replicate 
ourselves this study using different applications and subjects. This shall allow us to 
perform more comprehensive analysis with statistical significance. Moreover, we aim 
to evaluate whether the proposed tool (ConcernReCS) is effective to advise program-
mers about code pitfalls and help them avoiding typical refactoring mistakes. 
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Abstract. The C programming language is not memory safe, that is to
say that the semantics of out-of-bounds memory accesses are undefined.
There are tools that make certain guarantees about memory safety for
C programs. Amongst these are SAFECode and AddressSanitizer. The
latter instruments C programs with runtime checks to guarantee that no
invalid memory accesses are allowed to execute. As is to be expected, this
incurs in a notable performance decrease in instrumented programs. Our
work consists in hoisting these checks out of loops in such a way that
we maintain AddressSanitizer’s semantics, but, by providing increased
locality of access and by increasing the stride of bounds checks, we make
said checks notably cheaper. Unlike previous approaches to bounds check
hoisting, we use a parametric interval analysis to bound the index ranges
used in array accesses. We evaluated our method on a collection of bench-
marks from Polybench and from the domain of scientific computing. The
optimization recovers 60.6% of the overhead introduced by AddressSan-
itizer on average. Since energy performance is a crucial factor on mobile
systems, we have also evaluated our proposed solution on embedded sys-
tems in this regard. We observed a 31.7% reduction in energy consump-
tion in programs instrumented with AddressSanitizer.

1 Introduction

The C programming language is an imperative language that was originally
designed to provide a straightforward and efficient mapping from the language
constructs to machine code. The language offers programmers a way to perform
low-level accesses to the computer memory in the form of pointers. Programs
written in C can perform a wide range of arithmetic operations on pointers, i.e.,
addition and subtraction. Techniques that resort to manipulation of memory
addresses may give better optimization opportunities, but may also lead to fairly
complicated and, hence, error-prone code.

There are a series of problems that arise from this flexibility of manipulating
memory addresses. Amongst these are uninitialized pointers, dangling pointers,
and array out-of-bounds accesses. Uninitialized pointers are, as the name sug-
gests, pointers which are used without first being initialized. If its initial value
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contains an address such as that of a null pointer, then dereferencing it may
raise an exception. If not, then we can access garbage or, possibly, valid data
placed somewhere in memory. Second, dangling pointers reference objects which
were once allocated, but are not longer so. That is, the pointers are not tempo-
rally valid. Dereferencing these may not classify as an invalid access, since the
memory position may have been allocated to another object. Nonetheless, these
accesses are not logically valid. Finally, accessing memory positions beyond the
array bounds is dangerous, as well. Array out-of-bounds accesses may be ex-
ploited by attackers with a technique called buffer overflow [18]. These problems
are specially interesting because, in addition to the issue of correctness, they also
present a serious underlying security issue.

As C and C++ strive at producing fast programs, the legality of a memory
access is not usually checked, unless the programmer specifies otherwise. The
high-performance and the minimal requirement of runtime support make C and
C++ resource-efficient and popular in embedded systems programming. Un-
safe memory accesses, however, may cause data corruption or program crashes.
Academia has dedicated a reasonable amount of effort in the last decades to
mitigate such problems with a minimum amount of impact on the existing code
bases. Common solutions try to statically prove memory safety [5] or dynam-
ically verify the safety of accesses [19,10]. Due to the undecidability of most
compiler-related problems, static analyses are necessarily incomplete and can
not avoid dynamic checks entirely [6,12].

However, the instrumentation of memory accesses has a negative impact both
in terms of run time and in terms of memory usage. Even state-of-the-art runtime
approaches tend to slow down programs in such a manner that makes their use
in real-world applications impractical. For instance, AddressSanitizer [19] was
found to produce a 73% overhead, SAFECode, 67%, and SoftBound, 21%. Thus,
solutions like these are commonly used for the sole purpose of software testing
in order to find memory bugs in programs. The actual goal of this research is
not to develop tools to aid program testing. Instead, the goal is to create a
sound and scalable strategy to produce memory-safe C and C++ programs that
is compatible with already existing programs. Thus, the optimization of these
strategies is an important problem, given that it would allow us to apply these
in real-world programs.

In this paper, we propose a technique that mitigates the problems previously
discussed.

We base our technique on AddressSanitizer which, while having the largest
overhead amongst the aforementioned tools, is the most practical one. Address-
Sanitizer has been used on large scale software projects and works with either
instrumented or uninstrumented external libraries. It is the only tool to track
invalid pointers through casts to arbitrary types.

We have identified that most of the overhead caused by AddressSanitizer
comes from array bounds checks performed inside loops. The performance loss
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becomes even more evident when an array has its positions checked in nested
loops. Furthermore, we have observed that in many cases the number of checks
performed on an array is greater than the array size. This gives us strong evi-
dence that AddressSanitizer is doing redundant work, checking the same memory
position more than once.

Our approach consists in moving away from nested loops the code that guards
arrays against invalid accesses. With this, we are able to reduce the number of
times that each test is executed. Our transformation removes the bounds checks
from the body of the loop and inserts code that dynamically checks the entire
array before the first iteration of the outermost loop. If the dynamic test on the
entire array succeeds, the program executes the loop without checks. Otherwise,
if the test fails, the program executes an instrumented version of the loop, in
order to preserve AddressSanitizer’s semantics. Our approach can be applied on
general applications, but it really shines when used on affine loops. Such loops are
common in high performance computing, typically used in physics, biochemistry,
linear algebra, etc.

Figure 1 shows an example of our optimization. Figure 1a contains the original,
unchecked implementation of a simple sorting algorithm. This program performs
O(n2) accesses to the array A, that has size n. Figure 1b shows the same program,
instrumented with AddressSanitizer’s checks. Figure 1c shows the program after
our optimization. Thus, we remove the array checks inside the loops and check
the entire array once, before the first iteration of the loop. If the test succeeds,
we execute the unchecked loops. This, in practice, reduces the number of checks
from O(n2) to n, speeding up the execution of the checked program. On other
hand, if the tests fail, we execute the checked version of the loop. In this case,
we have a performance penalty, because we check the array more times than
AddressSanitizer originally would have.

We have implemented a prototype of our optimization in the LLVM compiler
infrastructure [8]. We have also conducted experiments to evaluate the impact
of our solution in benchmarks from the Easybench1 and Polybench [16] suites.
We have observed an average speedup of 39.8% (geometric mean) in the instru-
mented benchmarks, compared to AddressSanitizer. Our technique complements
static approaches such as that of Nazaré et al. [12], that statically proves the
safety of memory accesses throughout the program. Our optimization pushes Ad-
dressSanitizer a step further towards the goal of implementing scalable memory
safety for C and C++ programs.

The rest of this paper is organized as follows: Section 2 gives us the basis
upon which we develop our technique. Section 3 describes our algorithm and
explains our engineering choices. We experimentally evaluate the performance
of our work in Section 4. In Section 5 we discuss how our work is related with
existing efforts in the literature. Finally, in Section 6 we discuss possible future
directions of this research and make final remarks.

1 http://code.google.com/p/easybench-suite/

http://code.google.com/p/easybench-suite/
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char A[n];

for (int i=0; i<n; i++) {

for(int j=i+1; j<n; j++) {

x = A[i];

y = A[j]

if (x > y) {

A[i] = y;

A[j] = x;

}

}

}

(a) Original program

char A[n];

for (int i=0; i<n; i++) {

for(int j=i+1; j<n; j++) {

asan_check_byte(A,i);

x = A[i];

asan_check_byte(A,j);

y = A[j]

if (x > y) {

asan_check_byte(A,i);

A[i] = y;

asan_check_byte(A,j);

A[j] = x;

}

}

}

(b) AddressSanitizer-instrumented
program

char A[n];

if (check_range(&A[0],&A[n-1])) {

for (int i=0; i<n; i++) {

for(int j=i+1; j<n; j++) {

x = A[i];

y = A[j]

if (x > y) {

A[i] = y;

A[j] = x;

}

}

}

} else {

for (int i=0; i<n; i++) {

for(int j=i+1; j<n; j++) {

asan_check_byte(A,i);

x = A[i];

asan_check_byte(A,j);

y = A[j]

if (x > y) {

asan_check_byte(A,i);

A[i] = y;

asan_check_byte(A,j);

A[j] = x;

}

}

}

}

(c) Program after the hoisting of Ad-
dressSanitizer’s bounds checks

Fig. 1. Motivating example

2 Background

2.1 C, C++ and Safety

C and C++ programs are vulnerable to a series of runtime errors which, in many
ways, compromise their safety. The latter has addressed a few of these problems
and continues to do so with every new version of its standard. The recent in-
troduction of the std::shared ptr and std::unique ptr smart pointers, for
example, provide a way of overcoming dangling pointer and memory leak prob-
lems that exist in the core of C++, as well as that of C. This core language is
weakly typed, which, naturally, leads to very few guarantees being made regard-
ing memory safety [15]. The semantics of accessing an invalid memory position,
for example, are undefined. This means that, upon executing an invalid access,
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the programmay abort, continue, or perform some other implementation-defined
operation. Perhaps due to performance considerations, in nearly all implemen-
tations of the C and C++ standards, the program simply continues execution,
albeit in an undefined state.

This unsafe nature has, historically, been the cause of several well-known
and disastrous problems. The 1988 Morris worm exploited a buffer overflow
vulnerability in the finger daemon to spread itself throughout the Internet [7],
causing an estimated $100,000–$10,000,000 in damages. A similar vulnerability
was recently discovered in OpenSSL.

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL
cryptographic software library. This weakness allows stealing the infor-
mation protected, under normal conditions, by the SSL/TLS encryption
used to secure the Internet. SSL/TLS provides communication security
and privacy over the Internet for applications such as web, email, instant
messaging (IM) and some virtual private networks (VPNs).2

This Heartbleed bug exploited an out-of-bounds read to allow well-crafted input
to read a portion of memory, which could possibly contain sensitive information.
This bug was said to have affected over two-thirds3 of all web servers and has
an estimated impact in the order of millions of dollars4.

To detect these memory-related problems, we can resort to verification soft-
ware employing static analysis. For some programs, however, static analysis alone
is not a viable option, be it for the high run times or the lack of precision. In
these cases, we can resort to statically instrumenting programs to make addi-
tional guarantees about them. SAFECode [6], for example, modifies the program
to guarantee correct aliasing at runtime. That is, if any two pointers are said
not to alias, the program will reach no state in which they do. Valgrind [13] also
instruments binaries, to ensure, amongst other things, that no out-of-bounds ac-
cess is allowed to execute. AddressSanitizer [19] does the same as Valgrind, but
rather instruments the program at compile time. AddressSanitizer’s approach,
however, is heuristic and the bounds checks can very rarely incorrectly allow in-
valid access to execute. These tools come with an associated runtime overhead.
Reported overheads are 67% for SAFECode on the Olden benchmark suite and
73% for AddressSanitizer on the SPEC CPU2006 benchmark suite. Nethercote et
al. [13] have measured the overhead of Valgrind on the SPEC CPU2006 bench-
mark suite to be 2220% with memory access validation enabled. We chose to
apply our research to AddressSanitizer due to its high quality, wide-spread us-
age, and integration with the LLVM [8] framework and its C and C++ frontend.
Our techniques, can, however, be applied to other tools such as the other afore-
mentioned.

In the section that follows, we will give an in-depth explanation of the Ad-
dressSanitizer internals.
2 http://heartbleed.com
3 http://edition.cnn.com/2014/04/08/tech/web/heartbleed-openssl/
4 http://www.theaustralian.com.au/business/latest/

heartbleed-fix-to-cost-millions/story-e6frg90f-1226893225719

http://heartbleed.com
http://edition.cnn.com/2014/04/08/tech/web/heartbleed-openssl/
http://www.theaustralian.com.au/business/latest/heartbleed-fix-to-cost-millions/story-e6frg90f-1226893225719
http://www.theaustralian.com.au/business/latest/heartbleed-fix-to-cost-millions/story-e6frg90f-1226893225719
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2.2 AddressSanitizer

AddressSanitizer instruments the input program at compile time. This instru-
mentation serves two purposes, to check the shadow state and to create poisoned
redzones around stack allocations and global objects, both done to detect out-
of-bounds accesses. AddressSanitizer also redirects calls to malloc, free and
similar functions from the runtime library to its own corresponding versions,
which create poisoned redzones around objects in the heap and quarantine freed
memory regions. We will explain these below.

AddressSanitizer shadows the heap into a shadow memory. This shadow mem-
ory maps each byte in the heap to a few corresponding bits. This by default is
an 8-1 mapping, meaning each 8 bytes of the heap are mapped into 1 byte in
the shadow memory. This byte’s address is given by (Addr >> 3) + Offset, in
which Offset is the start of the shadow memory and Addr is the address being
accessed. The content of this byte is called the shadow state. If the shadow state
is not zero, then an invalid - quarantined or unallocated - memory position is
being accessed. This check is:

ShadowAddr = (Addr >> 3) + Offset;

if (*ShadowAddr != 0)

ReportAndCrash(Addr);

When we refer to bounds checks in AddressSanitizer, we are referring to the
above sanity check. The shadow memory is modified accordingly by the alloca-
tion and deallocation functions.

Poisoned redzones are regions of memory created around stack, global, and
heap objects which are considered unaccessible and, thus any attempt to access
them is considered invalid and will abort the program. Note that this is a heuris-
tic approach, since it is, indeed, possible to index a pointer in such a way that
the resulting access skips the redzone entirely, while still indexing a portion of
valid memory.

We exemplify this behavior in Figure 2. We show a function called
copy and print in Figure 2a and what its AddressSanitizer-instrumented equiv-
alent may look like in Figure 2b. The function asan alloc shadow in figure 2c
shows the handling of shadow memory for memory-allocating operations. In the
same figure, asan check byte shows how shadow memory is verified regarding
allocation. In Figure 3, we show a possible configuration of program memory
and of shadow memory. The dark bits of the program memory show in which
positions accesses are valid, and the dark bits of the shadow memory shows their
corresponding bytes in said memory. The lighter bits are redzones or a redzone’s
corresponding shadow memory.

AddressSanitizer has a runtime overhead of creating and checking the shadow
memory. Since we deal only with bounds check elimination, we have an unre-
movable overhead of approximately 10.5%, which is that of bookkeeping, that is
updating the shadow memory alone.



Bounds Check Hoisting for AddressSanitizer 53

void copy_and_print(char v[], int n) {
char buf[SIZE];
for (int i = 0; i < n; ++i) {
buf[i] = v[i];
printf("%d\n", buf[i]);

}
}

(a) Original copy and print function

void copy_and_print(char arg[], int n) {
char buf[SIZE];
asan_alloc_shadow(buf, SIZE);
for (int i = 0; i < n; ++i) {
asan_check_byte(buf, i);
asan_check_byte(arg, i);
buf[i] = arg[i];
asan_check_byte(buf, i);
printf("%d\n", buf[i]);

}
}

(b) Instrumented copy and print

function

void asan_alloc_shadow(void *buffer,
size_t size) {

void *shadow = buffer >> 3 + OFFSET;
char mask = 0x1;
for (unsigned i = 0; i < size; ++i) {
// Move to the next byte.
if (!mask) {

mask = 0x1;
shadow++;

}
// Set the shadow bit.
*shadow |= mask;
// Move to the next bit.
mask >> 1;

}
}
void asan_check_byte(void *buffer,

unsigned idx) {
void *shadow = buffer >> 3 + OFFSET;
if (!(*shadow[idx/8] & (1 >> (idx % 8)))) {
// Corresponding bit of the corresponding
// shadow byte is not set - the memory is
// not allocated.
crash();

}
}

(c) Example shadow allocation and
shadow checking functions, similar to
those of AddressSanitizer

Fig. 2. Code examples for AddressSanitizer functions and instrumented programs

3 Methodology

We have implemented our optimization as an extension of AddressSanitizer in
the LLVM compiler infrastructure.

The optimization proceeds through the following steps. Firstly, it determines
for every loop the ranges of its iteration variables and pointers (described in
Section 3.1). Secondly, looking at each loop individually, it groups memory ac-
cesses together and merges the pointer ranges (described in Section 3.2). Thirdly,
the optimization inserts sanity checks for entire pointer ranges and creates an
unchecked code path (described in Section 3.3). If all range checks succeed, the
program executes the loop without any checks on those pointers. Otherwise,
execution continues on a fully instrumented loop. In the next paragraphs, we
will describe all steps in detail referring to our running example of Figure 1a as
necessary.

3.1 Iteration Variable Inference

Our method relies on the inference of the ranges of iteration variables. Iteration
variables are initialized before entering a loop, change in every iteration, and are
checked to decide if the loop should be terminated. Some examples can be seen
in Figure 4 or our running example in Figure 1a. If we know the range of an
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buf arg buf arg

Offset

Program memory Shadow memory

Fig. 3. Memory configuration for the program in Figure 2b

for (int i = 0; i < n; ++i) {

...

}

int j = 2 * n + 42;

do {

...

j = j - 5;

...

} while (j > 3);

Fig. 4. Some examples of loops with iteration variables that our analysis can recognize.
Here, i and j are iteration variables wherever they occur.

iteration variable, we can determine the range of array accesses that depend on
it. Therefore, we only consider loops for which unique iteration variables can be
found. For the purpose of this paper, we assume that the iteration variable and
the loop it controls have the following properties:

– The iteration variable has integer type.
– In each iteration, the variable is incremented/decremented by a constant.
– Its loop has a single exit condition.
– The exit condition compares the iteration variable against a loop invariant

value.

If a loop satisfies these properties our analysis infers expressions for the lower
and upper bound of the iteration variable. These bound expressions are based
on loop invariant program variables and constants. Consider for example, the
iteration variables i and j in our guiding example of Figure 1a. The analysis
infers the range [i+1, .., n−1] for variable j and the range [0, .., n−1] for variable
i. By using interval arithmetic, the analysis can also determine ranges of values
derived from the iteration variable. Note, that the bound expressions for variable
j are loop invariant with respect to the inner loop. However, the lower bound still
depends on i. Based on this range, any range check depending on j could not be
hoisted beyond the outer loop. To alleviate this problem, we infer the ranges of
the current bound expressions of the variable j with respect to the outer loop.
This yields the range [1, .., n−1] for the lower bound expression i+1. If an array
access in the loop depends on j or i, we can bound its pointer range even before
the loop. This is the crucial requirement for hoisting the sanity check out of the
loop nest, which makes our optimization effective. Given the simple structure of
the instrumented loops, the question arises why runtime checking is necessary
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in these cases. Where safety of access can be proven at compile time, runtime
checks can be omitted. These guarantees require an unambiguous mapping from
each pointer variable to memory allocations of known size. This is impossible
if only parts of the program are known at compile time as it is the case with
external libraries or compilation of separate modules. Even if the whole program
is known the problem is undecidable in general.

3.2 Memory Access Decomposition

As discussed in Section 3.1, we can determine loop invariant bounds for iteration
variables and pointers derived from them. We decompose the accessed pointers
into loop-invariant base pointers and loop-carried offsets. This corresponds to
the notion of an array access. We determine the ranges of all offsets and merge
those indexing the same array. This yields for each loop and array, an over-
approximation of the range of indices that will be accessed. Function parameters,
loaded and returned values are considered to point to distinct arrays. This gives
us for each loop nest a set of arrays, each associated with a set of memory
instructions and their merged ranges. This is the information needed to perform
the actual hoisting explained below.

3.3 Hoisting

During hoisting, the optimization clones loop nests which contain memory ac-
cesses with known ranges. Both loop nests will be instrumented by Address-
Sanitizer. One version will not perform sanity checks for accesses that will be
subsumed by a range check. Finally, the optimization materializes the range
checks. With the default redzone size of 32 bytes, the redzones marking the ends
of allocated memory extend 32 bytes from both ends of the buffer. To verify a
memory range, the range check can stride at 32 bytes through the range of the
memory accesses. The range check is implemented as follows:

bool check_range(char * low, char * high) {

for (char * p = low; p < high; p = p + redzone_size) {

if (! safe(p)) return false;

}

return safe(high);

}

The decision to inline the range check is left to the compiler. The array elements
in our benchmarks have a size of 4 or 8 bytes, typical of numeric data types.
This can make range checks faster, even if only a single element is accessed per
iteration of the instrumented loop. The result of this applied to our guiding
example can be seen in Figure 1c. The executed code corresponds to that found
in Figure 1a for the uninstrumented case and to Figure 1b for the checked case.
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4 Experiments

We integrated our optimization into the implementation of AddressSanitizer
in the LLVM project. The prototype was able to automatically optimize the
functions in the reported benchmarks. The measured run times are shown in
Figure 5. We verified that the range checks never caused false positives. Only
the unchecked loops were executed where the optimization applied. Therefore,
the results reflect the pure overhead of the range checks. We provide a comple-
mentary table with code statistics in Figure 7.

The optimization is applicable in all benchmarks but partitionStrSearch. In
the case of the KNN and easy add the optimization only added instructions
without any performance gain. We observe significant speedups for the other
benchmarks.

Our results back up the claim earlier made that most part of the instrumen-
tation overhead stems from bounds checks in loops. We conclude that bounds
check hoisting can be very effective in compensating the overhead of Address-
Sanitizer in loop nests. The clear separation of the results points to a potential
for a heuristic approach. The easy add benchmark does not benefit from the
optimization. Normally instrumented kMeans has little overhead already. How-
ever, in said benchmark the optimization blows up code size by 85%. This favors
a compile-time approach to trade off expected performance gains against code
size. We did not pursue this idea yet.

4.1 Energy Measurements

To determine the energy consumed in the embedded system by a specific pro-
gram, we created a simple and robust procedure. To do so, a DAQ (NI USB-
6009) [11] measures the instantaneous current between the load and the ground
and sends it to a software in a PC called CMeasure. Since the tension in the em-
bedded system is constant, this software is able to calculate the instantaneous
power and, by integrating it, the consumed energy.

An application (SET UP DOWN) runs on the embedded system and notifies
the software when to start and stop getting data from the DAQ. It does that by
sending a signal through the RTS (Request To Send) pin from the serial port
DB9.

CMeasure and SET UP DOWN were developed by us. A shunt resistor is
used as the current sensor, and due to project restrictions (medium/low cur-
rent system), the Low-Side Current sensing technique was used. We have also
developed a series of MATLAB functions to manipulate the measured data.

Methodology. The first thing to do is to determine the basal energy consump-
tion of the embedded system. Therefore, we execute SET UP DOWN with no
application running. CMeasure gets all the instantaneous current values in a
specific sample rate, converts it to instantaneous power, and saves it on a text
file. We do it several times to get a confidence interval. Then, we use the func-
tions we developed in a numerical computational software (MATLAB or Scilab)
to manipulate this data.
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Fig. 5. Results on the Easybench benchmark suite. We compare the slow down of
benchmarks instrumented by AddressSanitizer with the optimization (Hoisted Bound
Checks) and without (AddressSanitizer). All experiments were conducted on a 3.4 GHz
Core i7-3770 machine.
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Name # I before # I after # Loops # L opt # Range checks

Easybench
QR 1311 1728 (131.81%) 46 21 (45.65%) 16
easy lu 1048 1199 (114.41%) 9 4 (44.44%) 3
easy add 974 1081 (110.99%) 6 2 (33.33%) 3
kMeans 385 716 (185.97%) 13 11 (84.62%) 8
easy prod 1006 1119 (111.23%) 8 3 (37.50%) 3
easy ch 1046 1258 (120.27%) 10 3 (30.00%) 2
partitionStrSearch 244 244 (100.00%) 7 0 (0.00%) 0
KNN 411 499 (121.41%) 8 3 (37.50%) 6

Polybench
doitgen 187 358 (191.44%) 16 16 (100.00%) 6
durbin 159 310 (194.97%) 7 7 (100.00%) 13
floyd-warshall 86 155 (180.23%) 7 7 (100.00%) 3
gramschmidt 246 477 (193.90%) 19 19 (100.00%) 9

average - - (141.7%) - - (57.8%) -

Fig. 7. Instruction counts before and after inserting range checks and cloning the loop
nests. # L opt is referring to the number of loops that were successfully instrumented
(two nested loops count as two) with # Range checks many range checks in total.
AddressSanitizer inserts additional code for the instrumentation which is not included
here.

After we determine the basal energy consumption, we proceed to mea-
sure the system with the desired application running. Instead of executing
SET UP DOWN alone, we execute it in parallel with the application. Other
than this step, we repeat the steps taken in the previous procedure. It must
be highlighted that, since SET UP DOWN sets the RTS to up and down in a
fixed time interval, this interval must be greater than the execution time of the
program. This interval has the same duration as the interval used in the basal
measurement. Once we determine both energy consumptions, we subtract one
value from the other to get the true energy consumption of the application.

5 Related Work

Astrée [5] is a static analyzer based on abstract interpretation [4], aimed at
proving absence of runtime errors in C programs. It is able to analyze complex
memory usage patterns, much more so than our work. Astrée, in fact, is sound,
and considers all possible run-time errors, while generating no false positives. It
was used to prove the correctness of flight control software for Airbus in 2003
and 2004, as well as that of the Jules Vernes Automated Transfer Vehicle (ATV)
in 20085.

5 http://www.astree.ens.fr

http://www.astree.ens.fr
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Logozzo and Fandrich [9] introduce the pentagon numerical domain used for
verifying the correctness of array accesses. This domain represents properties of
the form x ∈ [a, b]∧x < y. The goal of this is to be lightweight, more so than the
octagon domain, but precise, more so than the interval domain. Their techniques
were used to validate accesses in MSIL, an intermediate language for the .NET
framework. They were able to verify the correctness of 83% of accesses in the
mscorelib.dll library under 8 minutes.

The approach of Bodik et al. [2] to memory access validation is similar to
that of Logozzo and Fandrich, but, their approach lacks information regarding
intervals. They infer properties of the form x < y and store this information
in a sparse manner, using a newly introduced representation called extended
SSA form. This representation renames variables after conditional branches in
which their abstract state may change. This approach was implemented in the
Jalapeño optimizing compiler infrastructure [3] and was able to remove 45% of
bounds checks from selected SPECjvm98 benchmarks.

Rugina et al. [17] present a novel framework which is able to symbolically
analyze pointer bounds and array indices, thus being able to validate array
accesses. All analyses are formulated as constraint systems which are then solved
with linear programming techniques. With this, they were able to verify complete
correctness with regards to memory accesses on a series of artificial benchmarks.

Akritidis et al. [1] presented and implemented an optimization very similar to
ours. They keep an uninstrumented version of a loop, as well as an instrumented
version. A choice is made at runtime regarding which loop should be taken,
based on whether or not the accesses can be proven safe. They implemented their
algorithm on the Microsoft Phoenix code generation framework6, and reported
an 8% overhead for their entire approach, including the bounds checking portion.
Their approach, unlike the one taken by AddressSanitizer, is not able to handle
integer-pointer conversions, as well as not addressing the problem of temporal
memory safety.

Code duplication techniques have also been used by Noorman et al. [14]. They
duplicate functions and eliminate return instructions to protect against buffer
overflow vulnerabilities. That is, instead of protecting return addresses, they are
completely removed from the program. Tests on the RIPE benchmark suite, for
quantifying protection of any given countermeasure, show that their approach
protects against certain buffer overflows which canaries alone do not. We note
that, while AddressSanitizer also provides protection against buffer overflows,
it also does so with other major security vulnerabilities, including any out-of-
bounds access.

6 Final Considerations

Conclusion. In this paper, we have proposed a new strategy to avoid the over-
head caused by redundant memory checks. We have implemented our algorithm

6 http://connect.microsoft.com/Phoenix

http://connect.microsoft.com/Phoenix


60 S. Moll et al.

as an optimization to AddressSanitizer. Our heuristic was inspired by specula-
tive approaches that are common in in just-in-time optimizing compilers. Thus,
we move array bounds checks from the loop body to before the loop, where the
whole array is checked only once. In order to preserve AddressSanitizer seman-
tics, we have need of cloning loop nests, so we can run the fully instrumented
version of the code when something goes wrong. Thus, the main drawback of our
approach is a significant increase in program size. This increase was measured
to be 41.8% on average, which still might be limiting factor for deployment in
embedded systems. However, the increase in memory consumption is largely due
to the shadow memory and the red zones, which are unaffected by our optimiza-
tion. Even when taking into account the doubled code size in the worst case,
our technique does not change total memory consumption in a meaningful way.
Thus, coupled with the energy savings of 31.7%, our technique could be viable
for mobile computing. Our experiments also show that our technique was able
to speed up fully instrumented programs by 39.8%. If memory is not a heavily
constraining factor, our optimization is, indeed, worthwhile.

Future Works. There is still room for improvements in our endeavor to make
memory-safe C and C++ programs scalable. We are currently working on an
extension to this research. For instance, we might evaluate how our technique
performs together with other static approaches like that shown in Nazaré et al..
The new phase of this battle for scalability uses the idea proposed by this pa-
per, but involves inter-procedural static analysis with partial context sensitivity
and function cloning. The expected results are promising and might even make
memory-safe production C and C++ programs a possibility. Our ultimate goal
is to make memory-safe C code run faster than equivalent programs coded in
Java, that implements memory checks by default.
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Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

http://dl.acm.org/citation.cfm?id=1855768.1855772
http://doi.acm.org/10.1145/304065.304113


Bounds Check Hoisting for AddressSanitizer 61

6. Dhurjati, D., Kowshik, S., Adve, V.: Safecode: enforcing alias analysis for weakly
typed languages. In: PLDI 2006: Proceedings of the 2006 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 144–157. ACM,
New York (2006)

7. Eichin, M.W., Rochlis, J.A.: With microscope and tweezers: An analysis of the
internet virus of november 1988. In: Proceedings of 1989 IEEE Symposium on
Research in Security and Privacy (1988)

8. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO, pp. 75–88. IEEE (2004)

9. Logozzo, F., Fähndrich, M.: Pentagons: A weakly relational abstract domain for
the efficient validation of array accesses. Sci. Comput. Program. 75(9), 796–807
(2010)

10. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: Softbound: Highly compat-
ible and complete spatial safety for C. In: Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation (June 2009)

11. National Instruments Corporation: User Guide and Specifications NI USB-
6008/6009: Bus-powered multifunction DAQ USB device (2004)
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Abstract. We present a full certification of merge sort in the language
Agda. It features: termination warrant without explicit proof, no proof
cost to ensure that the output is sorted, and a succinct proof that the
output is a permutation of the input.

1 Introduction

Programming is an activity which consists in:

1. taking on a problem (technically named the specification) and
2. writing code to solve it.

Therefore, the delivery of every program implies an assertion, namely that the
code meets the specification. For most programmers it is desirable to have access
to technology that helps disclosing as many inconsistencies in such assertions as
possible, as early as possible in the course of program development. Any such
technology requires the declaration of at least some aspect of specification, so
that it becomes possible to verify whether the code satisfies it. Type systems
constitute a very successful technology of this kind, in which (aspects of) spec-
ifications are declared as types. Dependent type systems, in particular, make it
possible to declare functional specifications in full detail, so that type checking
entails actual logical correctness of the code. In other words, such languages can
be said to feature an appealing catchword: If it compiles, it works. Now, the fact
is that what actually compiles in these cases is not just the executable code, but
this together with additional mathematical proof, namely a formal proof that the
executable code matches the specification. This extra proof is necessary because
it is impossible in general to automatically prove that a given executable code
satisfies an arbitrary specification. It can be said that dependent type systems
turn, at least in principle, programming into fully formalized mathematics. Actu-
ally, the languages arisen from this trend are functional programming languages,
for example Agda [Nor07], Coq [Coq09] or Idris [Bra13], derived in general from
(constructive) type theory, a system of logic intended for the full formalisation
of (constructive) mathematics.
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For some practitioners this situation is indeed very welcome, for it allows to
enhance program construction with the composition of explicit foundation, which
is in addition automatically checked for correctness. But for most programmers
the cost is too expensive, in terms of instructional and actual work load. One
specific difficulty with dependently typed programming concerns the need to
ensure the termination of every computation, which is a requisite if the language
is to feature decidable type checking and consistency as a language wherein to
do mathematics as suggested above. This requirement necessarily places some
restriction as to the forms of recursion allowed, which affects the simplicity of
programming and increases the cost of production due to the necessity of often
burdensome termination proofs.

As a consequence of this latter issue, the largest part of the functional pro-
gramming community has, for most of the time, not paid serious consideration
to the alleged importance of dependently typed programming languages, being
satisfied with what is provided in various extensions of Hindley-Milner’s type
system. Now, as it happens, these extensions have, however, eventually begun
to move towards incorporating dependently typed features. One first example is
the generalized algebraic data types and, more recently, the use of Haskell’s type
classes as predicates and relations on types, giving rise to a kind of logic pro-
gramming at the type level. As a consequence, some interest has awakened in the
Haskell community concerning the power of the very much extended Haskell’s
type system for carrying out dependently typed programming.

A quite representative example of the mentioned investigations is [LM13],
where the system of classes and kinds of Haskell is used to program a partially
certified merge sort program. The result is quite satisfactory as the correctness
properties considered are ensured in an almost totally silent way, that is, without
need to mention any proof. But, at the same time, the certification is partial,
only providing for the ordering of the output list.

Our investigation in this paper concerns the development of the merge sort
example in Agda1, a language designed to be dependently typed. We consider
the problem of full certification, which means showing that the list resulting
from merge sort is sorted and a permutation of the input and that the program
terminates on every input. As a result, we are able to assert that:
1. Ensuring the sorted character of the output is achieved at the cost of minute

proof obligations that are in all cases automatically inferred by the compi-
lation system.

2. Ensuring that the output list is a permutation of the input requires a very low
proof cost, due to a carefully chosen formalisation of the required condition.

3. Termination can be ensured syntactically by the use of Agda’s sized types.
This is quite significant, as recursion in this algorithm is general well-founded,
that is, not structural, which makes it in general not checkable by a purely
syntactic mechanism.

The rest of the paper begins by the latter feature above, explaining the
sized types of Agda and showing how to use them for transforming a general
1 Agda version 2.3.2.2 is used in this work.
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well-founded form of recursion into a structural one. Next, we turn to discussing
the specification of the sorting problem and the certification of merge sort with
respect to it. We end up in section 4 with conclusions. As already said, the code
shown is Agda and can be fully accessed at:

https://github.com/ernius/mergesort

2 Sized Types

Introduction. Consider the following versions of subtraction and quotient on
natural numbers:

minus : N → N → N

minus 0 y = 0
minus x 0 = x
minus (suc x) (suc y) = minus x y

div : N → N → N

div 0 y = 0
div (suc x) y = suc (div (minus x y) y)

This definition of div is not structurally recursive. It works under some pre-
conditions, namely divx y yields the quotient of x into y if x � y. Specifically, if
y = 0 the computation is terminating with result x —which is rather arbitrary,
but meets the classic quotient specification. It might therefore be deemed a pe-
culiar version of the quotient operation, but it will anyhow serve our purpose of
explaining how the mechanism of sized types can be used to achieve syntactic
control of the well-foundedness of some recursion forms.

The reason why the recursion in div is well-founded is that the first argument
decreases strictly in the recursive call. Indeed, minusx y < sucx (even if y =
0). We can make this recursion structural by redesigning the type of the first
argument to div so that it carries appropriate information about its value. If we
could for instance express that x has i as an upper bound, then we would get
that:

1. sucx has upper bound suc i.
2. minusx y has upper bound i.

The type of x would in such case be specified as NatLt i (in words: Natural
numbers less than i) and the type of div would be:
(i : N) → (NatLt i) → N → N.
The important point is the appearance of i as a further parameter. Indeed,
calling div will require to explicitly pass i, that is, to pass the upper bound
to the subsequent parameter. Then the recursive equation that we are looking
at will, when adequately rewritten, expect an upper bound suc i in the pattern
on the left and effect the recursive call on just i on the right, so there is a

https://github.com/ernius/mergesort
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structural decrease of this parameter through the successive calls. Let us now
write the details down. We start by introducing the natural numbers with an
upper bound :

data NatLt : N → Set where
zero : (Ì : N) → NatLt (suc Ì)
succ : (Ì : N) → NatLt Ì → NatLt (suc Ì)

Now, to begin with, minus is rewritten as follows:

minus : (i : N) → NatLt i → N → NatLt i
minus x 0 = x
minus .(suc i) (zero i) = zero i
minus .(suc i) (succ i x) (suc y) = upcast i (minus i x y)

The first equation considers the case in which the subtrahend is 0. Otherwise,
we proceed by pattern matching on the minuend, which is the second parame-
ter of this function. Now, it is a general phenomenon that pattern matching in
the presence of dependent types induces patterns on parameters other than the
one being considered. For instance, in the two cases of patterns of the second
parameter of minus, the first parameter —i.e. the upper bound— cannot but be
suc i. This must be specified when writing the equations. What would otherwise
be a non-linear pattern (ones with repeated parameters at the left side of func-
tion’s rules), becomes in Agda a so-called dotted pattern —used exclusively for
the purpose of well-formation checking. The last equation makes use of a casting
function upcast. Indeed, the recursive call to minus yields a result of type NatLt i,
but what we need to return is one of type NatLt (suc i). So, upcast function only
changes the type of the result.

The div function becomes:

div : (i : N) → NatLt i → N → N

div .(suc i) (zero i) = zero
div .(suc i) (succ i x) y = suc (div i (minus i x y) y)

and, as mentioned above, as we proceed on the second argument the recursive
call is structurally decreasing on the first one, which is an upper bound on the
size of this argument.

Now, as it happens, the information about the bound of the arguments of
type NatLt can actually be inferred from the corresponding constructors. This
inference facility is what constitutes the sized types feature of Agda: There is
to begin a type Size, which is similar to N with a constructor ↑ for “successor”
Then one can declare for example the sized natural numbers as follows:

data SNat : {Ì : Size} → Set where
zero : {Ì : Size} → SNat {↑ Ì}
succ : {Ì : Size} → SNat {Ì} → SNat {↑ Ì}

In Agda, curly braces around parameters indicate that these are optional
or implicit when used as arguments, which means that they can be omitted
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and shall then be inferred by the type-checker in function calls. Therefore the
programmer may omit size information whenever this is unimportant. Besides,
sized types admit subtyping, i.e. every expression of a type α of size i —say
α {i}— is also of type α {↑ i} and, transitively, of every other instance of α of
greater size. Using sized naturals the final code for minus and div is the same as
the one we began with, but now it passes Agda’s termination check:

minus : {Ì : Size} → SNat {Ì} → N → SNat {Ì}
minus zero y = zero
minus x zero = x
minus (succ x) (suc y) = minus x y

--
div : {Ì : Size} → SNat {Ì} → N → N

div (zero) y = zero
div (succ x) y = suc (div (minus x y) y)

Merge sort. We shall now use sized lists to write a version of merge sort whose
termination is certified by Agda in a purely syntactic manner, that is, without
having to produce a termination proof. Merge sort works in two parts: it first
splits the given list into two –which we shall call deal– and then merges the
recursively sorted permutations of the latter into the final sorted list –which we
shall call merge. Direct encoding of this algorithm using ordinary lists will not
pass Agda’s termination check, as the recursive calls take on the components of
the result of the deal function, which are lists with no structural relation with
the original list.

Lists can be defined in Agda in the following way:

data List : Set where
[ ] : List
_::_ : (x : A) (xs : List) → List

The type A of the members of the list is a parameter to the whole module or
theory. It comes equipped with a total relation � which is what is required to
perform list sorting. In the code below we add size parameters to the previous
definition. As can be seen, in Agda it is possible to (re)use the former, ordinary
list constructors:

data ListN : {Ì : Size} → Set where
[ ] : {Ì : Size} → ListN {↑ Ì}
_::_ : {Ì : Size} → A → ListN {Ì} → ListN {↑ Ì}

In general, it is convenient to program functions converting back and forth
between a type and its sized version, which is readily done. In this section we
shall make use of the forgetN function going from sized to ordinary lists. This
function is trivial so we omit its definition. Next we introduce the code of the
deal function. Notice that the size annotations certify that the function does not
increase the size of the input in any of the resulting lists:
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deal : {Ì : Size} (xs : ListN {Ì}) → ListN {Ì} × ListN {Ì}
deal [ ] = ([ ], [ ])
deal (x :: [ ]) = (x :: [ ], [ ])
deal (x :: y :: xs) with deal xs
... | (ys, zs) = (x :: ys, y :: zs)

We go immediately on to present the merge sort, so that it can be seen that
the resulting code is indeed simple and quite natural:

mergeSort : {Ì : Size} → ListN {↑ Ì} → ListN
mergeSort [ ] = [ ]
mergeSort (x :: [ ]) = x :: [ ]
mergeSort (x :: y :: xs) with deal xs
... | (ys, zs) = merge (mergeSort (x :: ys)) (mergeSort (y :: zs))

As in the div example, the recursion has become structural on the implicit
size parameter. Indeed, the pattern of the recursive equation is of size at most
↑ (↑ ι) whereas the parameters to the recursive calls can be calculated of size at
most ↑ ι. It could be objected that a more natural code would apply deal in the
third case directly to the whole list, making later use of the fact that in such case
the resulting lists are both of lesser length than the original one. But this fact
cannot be captured syntactically, specifically by means of the sized types, for
these cannot tell variations in the behavior of the function at different inputs. In
our case, that means we cannot distinguish the case in which the upper bound
strictly decreases in the third rule of the definition of deal from those in which
the upper bound remains unchanged as in the first two rules.

The merge function also needs to specify size information in order to automat-
ically work out the termination, in spite of only performing structural recursive
calls. The reason is that those calls are on alternate parameter places.

merge : {Ì Ì′ : Size} (xs : ListN {Ì}) (ys : ListN {Ì′}) → ListN
merge [ ] l = l
merge l [ ] = l
merge (x :: xs) (y :: ys)
with tot� x y
... | .1 x�y = x :: merge xs (y :: ys)
... | .2 y�x = y :: merge (x :: xs) ys

The function tot� is the one deciding the total relation �. It can be concluded
that certification of termination of this algorithm is achieved at a low cost : It
specifically demands no termination proof, but only size annotations and a not
totally unnatural encoding of the recursion.

3 Sorting

Ordered lists. In order to get a fully certified sorting program we must ascertain
that the output list is an ordered permutation of the input. We start with the
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ordering issue. One method to accomplish the certification of a program with
respect to a specification is simply to prove that the output satisfies the post-
condition in every case in which the input satisfies the precondition. In our case,
and considering only the ordering issue, this would amount to writing a function

lemma-sorted : (xs : ListN) → Sorted (forgetN (mergeSort xs))

for an adequately defined Sorted predicate on ordinary lists. A standard definition
of the latter, relative to the � relation assumed in the preceding section, is the
following:

[nils]
Sorted []

x ∈ A [singls]
Sorted [x]

x � y Sorted (y :: l)
[conss]

Sorted (x :: y :: l)
The corresponding Agda code is:

data Sorted : List → Set where
-- —————

nils : Sorted [ ]
--

singls : (x : A)
-- —————
→ Sorted [x]

--
conss : (x y : A) (ys : List)

→ x � y → Sorted (y :: ys)
-- ———————————
→ Sorted (x :: y :: ys)

A very similar method of certification would be to use what can be called con-
ditioned types. If the problem is that of transforming input of type α satisfying
a precondition P into output of type β standing in the relation Q to the input,
then the function to be programmed is one of type

(x : α)(P (x) → (∃y : β)Q(x, y)).
In our case the sorting specification might be:

(xs : List) → (∃ys : List)Sorted ys .
Elements of type (∃x : β)γ are pairs formed by an object of type β and a proof
that it satisfies γ.

The difference between proving lemma-sorted and programming a function of
the latter type is minor. In the second case we get a function in which executable
code is interspersed with proof code whereas the first corresponds to program
verification. In either case we have to develop proof code that follows closely the
(recursive) structure of the program or executable code.

Using what we are calling conditioned types is but one way of encoding the
specification into the output type. That approach takes at least two inductive
definitions, namely the one of the output data (the β type above) and that of
the correctness property (predicate or relation) that must be satisfied. Now, as
it happens, the encoding in question can often be accomplished in a more direct
way by giving just one inductive definition that represents the data of type β
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that satisfy the required condition. Such definition will be called a part of the βs,
which in Type Theory means βs exhibiting certain further feature or evidence.
We call them for this reason refined data types or data structures.

Examples are of course the natural numbers NatLt with an upper bound or,
generally, the sized types, both given in the preceding section. Notice for example
that type NatLt could be used to give a finer specification of the subtraction,
where we requires that the minuend not to be lesser than the subtrahend:

(−) : (m : N) → NatLt(sucm) → N.
One example of a refined data structures is the ordered lists introduced in

[AMM05] and used again in [LM13]. It is the type of ordered lists whose elements
are bounded above and below by given values. We give here a definition tailored
to our needs, which on the one hand does not make use of an upper bound2 and,
on the other, is sized:

data Bound (A : Set) : Set where
bot : Bound A
val : A → Bound A
--

data LeB : Bound A → Bound A → Set where
lebx : {b : Bound A} → LeB bot b
lexy : {a b : A} → a � b → LeB (val a) (val b)
--

data OList : {Ì : Size} → Bound A → Set where
onil : {Ì : Size} { l : Bound A}

-- ———————————
→ OList {↑ Ì} l
--

:< : {Ì : Size} { l : Bound A} (x : A) { l�x : LeB l (val x)}
→ OList {Ì} (val x)
-- ———————————————————————
→ OList {↑ Ì} l

Observe the “cons” constructor :<. It requires first implicit arguments corre-
sponding to the size and the lower bound to the members of the list. Next comes
the head and, next to that, an implicit argument which is a proof that the lower
bound given is indeed lesser than the head. Finally the tail must have the head
as a lower bound, thus ensuring the sorted character of the entire list. In the
implicit argument just mentioned, which stands between the head and the tail,
we use the names LeB and val. The reason is connected to the use of the family of
types Bound . This family of types is indexed by the type of the list’s elements.

Bound type wraps up a type A together with an absolute lower bound bot. This
is convenient in order to produce OLists without having to care for providing a

2 That would be necessary if we should make use of the append operation on the
ordered lists. This is not used in [LM13] either, but the authors do not simplify the
definition.
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precise lower bound thereof. That bot is indeed a minimum of BoundA in ensured
by redefining the “order” relation with LeB data type.

Next, using the forgetO function from ordered lists to plain lists, we prove the
correction of OList definition, verifying that any list with type OList is sorted.

lemma-sort : { l : Bound A} (xs : OList l) → Sorted (forgetO xs)
lemma-sort onil = nils
lemma-sort (:< x onil) = singls x
lemma-sort (:< x (:< y { lexy x�y} xs))

= conss x y (forgetO xs) x�y (lemma-sort (:< y { lexy x�y} xs))

We next show the code of merge sort acting on sized OLists. The boxed parts
constitute the additional code corresponding to proof obligations of the condi-
tions related to the ordered character of the lists. The corresponding parameter
places have been put into curly braces in an attempt to dispense with them
as much as possible but, as it happens, they are actually required by Agda. In
the case of merge sort the extra code is minimal, namely the instantiation of
a parameter standing for a proof of inequality. The gray highlighting indicates
that Agda is able to supply the required proof object automatically. Therefore,
we observe that programming the new version of merge sort entails no cost due
to proof.

It should also be observed that deal is without change, as it was to be expected.
This is due to the simple fact that it is able to continue acting on just sized lists,
not necessarily ordered.

mergeSort : {Ì : Size} → ListN {↑ Ì} → OList bot
mergeSort [ ] = onil

mergeSort (x :: [ ]) = :< x {l�x = lebx } onil

mergeSort (x :: y :: xs) with deal xs
... | (ys, zs) = merge (mergeSort (x :: ys)) (mergeSort (y :: zs))

As to merge, we get the following new code, with additions of proof obligations
boxed and grayed:

merge : {Ì Ì′ : Size} { l : Bound A} → OList {Ì} l→ OList {Ì′} l→ OList l
merge onil l = l
merge l onil = l

merge (:< x {l�x =l�x} xs) (:< y {l�x =l�y} ys)

with tot� x y

... | .1 x�y = (:< x {l�x = l�x } (merge xs (:< y {l�x = lexy x�y } ys)))

... | .2 y�x = (:< y {l�x = l�y } (merge (:< x {l�x = lexy y�x } xs) ys))

The two first occur in patterns and are therefore not proof obligations, but
just parameters that have to be made explicit. The other four are automatically
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solved by Agda. Therefore, there is no cost associated to proof construction.
Finally, we apply the previously presented lemma to the present merge sort
algorithm in order to return an ordered list:

lemma-mergeSort-sorted : (xs : ListN) → Sorted (forgetO (mergeSort xs))
lemma-mergeSort-sorted = lemma-sort ◦ mergeSort

We observe that the certification of the sorted character of the output list is,
if not totally silent as in [LM13], nearly so and, in any case, not more expensive,
since the minute proofs are solved automatically by Agda.

The permutation relation. We now turn to the problem of ensuring that the
output list is a permutation of the input. The point in this case is the choice
of an appropriate formalisation of the specification. We begin by inductively
defining a ternary relation whose instances will be written xs/x �→ xs ′ and will
hold when xs ′ is the result of removing an element x from an arbitrary position
of the list xs . The following rules define this relation, establishing that a list
element can be removed either from the head or from the tail of a list.

(x :: l)/x �→ l
l/y �→ l′

(x :: l)/y �→ (x :: l′)
We next encode this relation in Agda:

data _/_ �→ _ : List A → A → List A → Set where
removeFromHead : {x : A} {xs : List A}

-- ————————–
→ (x :: xs) / x �→ xs

removeFromTail : {x y : A} {xs ys : List A} → xs / y �→ ys
-- ——————————————————

→ (x :: xs) / y �→ (x :: ys)

The preceding relation is used in the following standard definition of the
permutation relation ∼, which does not need a decidable equality:

[∼ []]
[] ∼ []

l1/x �→ l3 l2/x �→ l4 l3 ∼ l4 [∼ x]
l1 ∼ l2

The corresponding Agda code is:

data _∼_ : List A → List A → Set where
∼ [ ] : [ ] ∼ [ ]

--
∼x : {x : A} {xs ys xs’ ys’ : List A}

→ (xs / x �→ xs’) → (ys / x �→ ys’) → xs’ ∼ ys’
-- ————————————————————–
→ xs ∼ ys

Now we face a situation similar to the one in the preceding paragraph. Indeed,
in order to ensure that the merge sort returns a permutation of the input list, we
could think of employing an appropriate refined type. The existence of the latter,
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however, seems unlikely: we would need to define inductively the lists that are
permutations of a given list, and there exists a large variety of transformations
between the two related lists that do not seem able to be captured by simple
constructors. We therefore choose to employ a specification with conditioned
types, that is, one that produces an output consisting of both a list and a proof
that it is a permutation of the input list. We know that the proof will follow
the structure of the merge sort algorithm. Let us the look at this: First, deal
returns the pair (ys , zs) of lists, which must be a partition of the original list
xs. We might therefore think of proving that the concatenation of ys and zs
is a permutation of xs, but this will introduce properties of the concatenation
operation in our proof. We try to avoid such a detour by defining when a list is
a permutation of a pair of lists, as follows:

data _∼p_ : List A → List A × List A → Set where
∼ [ ] r : (xs : List A) → xs ∼p ([ ], xs)

--
∼ [ ] l : (xs : List A) → xs ∼p (xs, [ ])

--
∼xr : {x : A} {xs ys xs’ zs zs’ : List A}

→ (xs / x �→ xs’) → (zs / x �→ zs’) → xs’ ∼p (ys, zs’)
-- ——————————————————————

→ xs ∼p (ys, zs)
--

∼xl : {x : A} {xs ys xs’ ys’ zs : List A}
→ (xs / x �→ xs’) → (ys / x �→ ys’) → xs’ ∼p (ys’, zs)

-- ——————————————————————
→ xs ∼p (ys, zs)

The first two cases are trivial. The remaining two consider removing an ele-
ment from the first list: then the same element has to be removed from (exactly)
one of the other two lists and the lists resulting of the removals must still be in
the permutation relation. We can indeed prove that a list is a permutation of a
pair of lists according to this definition if and only if the list is a permutation of
the concatenation of the pair of lists in question.

Now, for the purpose of certifying the merge sort algorithm we do not need
so much, we can do with a coarser relation, only allowing to remove elements
from the head of the lists. The relation is clearly a sound, although not complete
version of the permutation relation, but this is all we need for ensuring that
merge sort returns a permutation of the given input. The observation gives rise
to the following definition:

data _∼p’_ : List A → List A × List A → Set where
∼ [ ] r : (xs : List A) → xs ∼p’ ([ ], xs)
∼ [ ] l : (xs : List A) → xs ∼p’ (xs, [ ])
∼xr : {x : A} {xs ys zs : List A}

→ xs ∼p’ (ys, zs)
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-- ———————————————————–
→ (x :: xs) ∼p’ (ys, x :: zs)

∼xl : {x : A} {xs ys zs : List A}
→ xs ∼p’ (ys, zs)

-- ———————————————————–
→ (x :: xs) ∼p’ (x :: ys, zs)

The next lemma states that this restricted relation is indeed a sound version
of the permutation relation, in other words, it implies that the first list is a
permutation of the concatenation of each pair to which it is related:

lemma∼p’∼ : {xs ys zs : List} → xs ∼p’ (ys, zs) → xs ∼ (ys ++ zs)

The latter is used for proving the following lemma, which establishes that
given two elements in this restricted relation, if the their second components
define a permutation component by component, then their first components are
a permutation too. It is necessary to demonstrate the correctness of the algorithm
later:

lemma∼p’ : {xs ys zs ws ys’ zs’ : List A} → xs ∼p’ (ys, zs) →
ys ∼ ys’ → zs ∼ zs’ → ws ∼p’ (ys’, zs’) →
xs ∼ ws

We do not expose the code of the previous two lemmas due to space con-
straints.

Now we go on to certify that the pair of lists returned by deal is related
to the latter’s input list by the ∼p’ relation. We use the forgetN and forgetNp
functions to erase size information. We choose to encode the specification fully
in the output type of the function just for the sake of showing in parallel the
composition of the algorithm and the proof. We could as well have proven the
desired condition as a property of a purely executable code.

deal : {Ì : Size} (xs : ListN {Ì}) →
Σ (ListN {Ì} × ListN {Ì}) (ń p → forgetN xs ∼p’ forgetNp p)

deal [ ] = ([ ], [ ]),

∼[]r []
deal (x :: [ ]) = (x :: [ ], [ ]),

∼[]l (x :: [])
deal (x :: y :: xs) with deal xs
... | (ys, zs), xs∼ys, zs = (x :: ys, y :: zs),

∼xl (∼xr xs∼ys, zs)

Again, because we have carefully selected the specification, we obtain an al-
most free proof. Proofs marked with grayed boxes were automatically solved, and
only one proof must be given, corresponding to the case of a list with at least
two members. What this requires is to prove that x :: y :: xs ∼p’ (x :: ys, y :: zs)
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if xs ∼p’ (ys, zs), which is easily seen to follow using the rules ∼xl and ∼xr of
the ∼p’ relation, as is indeed exhibited in the code’s last line.

Now we encode the merge function, whose type specifies that given two ordered
lists it returns another ordered list together with a proof that it is a permuta-
tion of (the pair of) the two originally given ones. Again, the proofs obligations
marked in gray were automatically solved by Agda. We use pair projections π.

merge : {Ì Ì′ : Size} { l : Bound A} (xs : OList {Ì} l) (ys : OList {Ì′} l) →
Σ (OList l) (ń zs → forgetO zs ∼p’ (forgetO xs, forgetO ys))

merge onil l = l, ∼[]r (forgetO l)

merge pl onil = l, ∼[]l (forgetO l)

merge (:< x {l�x = l�x } xs) (:< y {l�x = l�y } ys)

with tot� x y

... | .1 x�y = (:< x {l�x = l�x } zs), ∼xl hi

where zs = π1 (merge xs (:< y {l�x = lexy x�y } ys))

hi = π2 (merge xs (:< y {l�x = lexy x�y } ys))

... | .2 y�x = (:< y {l�x = l�y } ws),∼xr hi

where ws = π1 (merge (:< x {l�x = lexy y�x } xs) ys)

hi = π2 (merge (:< x {l�x = lexy y�x } xs) ys)

As can be seen, only two proofs had to be provided, corresponding to the
base cases. We end up giving the fully certified merge sort algorithm. Its type
is a specification in the form of a conditioned OList, requiring that it is a per-
mutation of the input. The only proof that could not be automatically solved
is a direct application of lemma presented above to the induction hypotheses,
named xs ∼ ys, zs in the where clause, and the permutation results of merge
and deal functions. The code could be more neat if we had chosen just to verify
the algorithm instead of developing it together with its proof.

mergeSort : {Ì : Size} (xs : ListN {↑ Ì}) →
Σ (OList bot) (ń ys → forgetN xs ∼ forgetO ys)

mergeSort [ ] = onil, ∼[]

mergeSort (x :: [ ]) = :< {l = bot} x {l�x = lebx } onil,

∼x removeFromHead removeFromHead ∼[]
mergeSort (x :: (y :: xs)) with deal xs
... | (ys, zs), xs∼ys,zs

with mergeSort (x :: ys) | mergeSort (y :: zs)
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... | ys’, x::ys∼ys | zs’, y::zs∼zs
with merge ys’ zs’

... | ws, ws∼ys,zs
= ws,

lemma∼p’ (∼xl (∼xr (xs∼ys, zs)))
x::ys∼ys’
y::zs∼zs’
ws∼ys’, zs’

4 Conclusions

Dependently typed programming provides a framework for certified software de-
velopment, one in which what compiles works. The price to pay for its use is
increased cost in code production, since not only executable but also mathemat-
ical code (formal proofs) has to be produced. One specific difficulty arises in
connection to program termination and the forms of recursion allowed: Totality
is required in order to feature decidable type checking and, therefore, recur-
sion has to be restricted. Normally the restriction is to structural recursion and,
therefore, explicit proofs of termination have to be given for the general forms
of recursion that are usually required.

In this paper we have contributed with a novel full formal certification of merge
sort that illustrates how to ease the preceding problems by using appropriate
techniques and features of the languages involved. Specifically:

1. Agda’s sized types can ensure termination of algorithms by converting some
forms of general recursion into structural in a silent manner.

2. The use of refined types that incorporate certain semantic information in the
inductive definition of appropriate (sub)classes of data can lead to almost
silent certifications.

3. The cost of proofs can significantly be reduced by a careful choice of formal-
isation of the specification in question.

One purpose of ours was to compare programming in a language designed with
dependent types with experiences that have recently been put forward using the
nowadays very elaborated type system of Haskell. Specifically with respect to
[LM13], we observe that:

1. They obtain a silent certification of merge sort with respect to the sorted
character of the output list. We, on the other hand, obtain a not fully, but
nearly, silent version that is nevertheless without cost due to proof construc-
tion.

2. We are able to certify the termination of our version also without cost of
proof, whereas the issue is not addressed in [LM13]. The price to pay in
this case reduces to encoding the algorithm in a way that might not be the
first choice for every programmer but that it is nevertheless clear and quite
natural.
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3. We are able to provide an inexpensive certification that the output is a
permutation of the input, whereas the issue is not either addressed in [LM13].

It has to be said that it looks highly unlikely that the kind of dependently typed
programming developed in the mentioned work is somehow able to cope with
the last two issues just mentioned.

We also believe that our code is generally more elegant and comprehensible
than the one obtained by pursuing the kind of logic programming given rise to
by the hacking on the workings of Haskell’s type classes constraint solver, even
if, as we have done in this case, programs and proofs are composed as part of
the same code. Actually we are ready to sustain that dependent type systems
are much easier to learn and use, and indeed more natural, than the present
type system of Haskell. Therefore we also prefer to pursue the expansion of the
knowledge on genuine (i.e. by design) dependently typed programming rather
than in intricate encodings thereof.

Possibly the main difficulty with dependently typed programming remains the
restriction as to the allowable forms of recursion imposed by the needs of decid-
able type checking and of consistency of the internal logic via the isomorphism of
propositions-as-types. Sized types have added to the alleviation of this matter,
as we expect to have shown, but, of course, the problem is not fully solvable and
there will always remain the necessity of developing termination proofs. The in-
vestigation of techniques to adequately formulate problems in ways that further
facilitate the development of easily proven terminating programs is a matter
worth pursuing. It is nevertheless important to mention that the consistency of
a language as logic and the decidability of type checking are features derived
from several restrictions, like in the supported recursion schemes, that are not
enjoyed by the present expansion and form of use of Haskell’s system of kinds
and classes.
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RELEASE, Universidade da Beira Interior, Portugal
{mcouto,tiagocarcao,jacome,jpaulo,jas}@di.uminho.pt

Abstract. The use of powerful mobile devices, like smartphones, tablets
and laptops, is changing the way programmers develop software. While
in the past the primary goal to optimize software was the run time op-
timization, nowadays there is a growing awareness of the need to reduce
energy consumption.

This paper presents a technique and a tool to detect anomalous energy
consumption in Android applications, and to relate it directly with the
source code of the application.

We propose a dynamically calibrated model for energy consumption
for the Android ecosystem that supports different devices. The model is
used as an API to monitor the application execution: first, we instrument
the application source code so that we can relate energy consumption to
the application source code; second, we use a statistical approach, based
on fault-localization techniques, to localize abnormal energy consump-
tion in the source code.

Keywords: Green Computing, Energy-aware Software, Source Code
Analysis.

1 Introduction

The software engineering and programming languages research communities have
developed advanced and widely-used techniques to improve both programming
productivity and program performance. For example, they developed powerful
type and modular systems, model-driven software development approaches, in-
tegrated development environments that, indeed, improve programming produc-
tivity. These communities are also concerned with providing efficient execution
models for such programs, by using compiler-specific optimizations (like, tail
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recursion elimination), partial evaluation [1], incremental computation [2], just-
in-time compilation [3], deforestation and strictification of functional programs
[4–6], for example. Most of those techniques aim at improving performance by
reducing both execution time and memory consumption.

While in the previous century computer users were mainly looking for fast
computer software, this is nowadays changing with the advent of powerful mobile
devices, like laptops, tablets and smartphones. In our mobile-device age, one of
the main computing bottlenecks is energy-consumption. In fact, mobile-device
manufacturers and their users are as concerned with the performance of their
device as in battery consumption/lifetime.

This growing concern on energy efficiency may also be associated with the
perspective of software developers [7]. Unfortunately, developing energy-aware
software is a difficult task, still. While programming languages provide several
compiler optimizations, memory profiler tools, benchmark and time execution
monitoring frameworks, there are no equivalent tools/frameworks to profile/op-
timize energy consumption.

In this paper we propose a methodology, based on an initial idea by [8], to
monitor and detect anomalous energy consumption for the Android ecosystem:
a widely used ecosystem for mobile devices. More precisely, we aim at provid-
ing Android application developers the tool support needed to develop energy-
efficient applications. We propose a three layer methodology, which also account
as the contributions of this paper:

– Firstly, we introduce an algorithm/application for the dynamic calibration
of such model, thus allowing the automatic calibration of the model for any
Android device. Moreover, we provide an API so that the calibrated power
model can be accessed by the Android application we wish to monitor in
terms of energy consumption.

– Secondly, we develop an Android application that automatically instruments
the source code of a given Android application the developer wishes to moni-
tor its energy consumption. The instrumentation is performed by embedding
in the source code calls to the (calibrated) power consumption model API.

– Thirdly, we use a testing framework for Android applications in order to exe-
cute the (previously compiled) instrumented application. For each execution
of a test case, we collect the energy consumed. Based on the energy con-
sumed logs we performed several static analysis to detect abnormal energy
consumption.

We have implemented our methodology in two different tools: one to dynam-
ically calibrate our Android power consumption model, using a pre-defined set
of calibrating applications. The second tool is used to automatically instrument
the source code of an application its developed wishes to monitor in terms of
energy consumption.

This paper is organized as follows: Section 2 presents the Android power con-
sumption model, its dynamically calibrating algorithm, and the API that makes
such model a reusable API. Section 3 describes the changes made to the Android
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power consumption model so it can be used to monitor power consumption at
the source code level, as well as the changes that the framework does to an appli-
cation source code. Section 4 introduces the framework GreenDroid, describing
how it works and how it relates the previous sections. Section 5 describes the
results generated by the framework. Finally sections 6 and 7 present the related
work and the conclusions, respectively.

2 A Dynamic Power Consumption Model

In this section we briefly discuss the Android power consumption model pre-
sented in [9]. This is a statically calibrated model that considers the energy
consumption of the main hardware components of a mobile device. Next, we ex-
tend this model in two ways: firstly, we present an algorithm for the automatic
calibration of the model, so that it can be automatically ported to any Android
based device (Section 2.2). Secondly, we provide an API-based implementation
of the model so that it can be reused to monitor other Android applications
(Section 3.1).

2.1 The Android Power Tutor Consumption Model

We know that different hardware components have different impact in a mobile
device power consumption. As a consequence, an energy consumption model
needs not only to consider the main hardware components of the device, but
also its characteristics. Mobile devices are not different from other computer
devices: they use different hardware components and computer architectures
that have complete different impact in energy consumption. If we consider the
CPU, different mobile devices can use very different CPU architectures (not
only varying in computing power, but also, for example, in the number of CPU
cores), that can also run at different frequencies. The Android ecosystem was
designed to support all different mobile (and non-mobile) devices (ranging from
smart-watches to TVs). As a result, a power consumption model for Android
needs to consider all the main hardware components and their different states
(for example, CPU frequency, percentage of use, etc).

There are several power consumption models for the Android ecosystem [9–
13], that use the hardware characteristics of the device and possible states to
provide a power model. Next, we briefly present the power tutor model [9]: a
state-of-the-art power model for smartphones [10]. The Power Tutor [9] model
currently considers six different hardware components: Display, CPU, GPS, Wi-Fi,
3G and Audio, and different states of such components, as described next.

CPU : CPU power consumption is strongly influenced by its use and frequency.
The processor may run at different frequencies when it is needed, and depending
on what is being done the percentage of utilization can vary between 1 and 100;
There is a different coefficient of consumption for each frequency available on the
processor. The consumption of this component at a specific time is calculated
by multiplying the coefficient associated with the frequency in use with the
percentage of utilization.
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LCD: The LCD display power model considers only one state: the brightness.
There is only one coefficient to be multiplied by the actual brightness level (that
has 10 different levels).

GPS: This component of the power model depends on its mode (active, sleep
or off). The number of available satellites or signal strength end up having little
dependence on the power consumption, so the model has two power coefficients:
one to use if the mode is on and another to use if the mode is sleep.

Wi-Fi: The Wi-Fi interface has four states: low-power, high-power, low-transmit
and high-transmit (the last two are states that the network briefly enters when
transmitting data). If the state of the Wi-Fi interface is low-power, the power
consumption is constant (coefficient for low-power state), but if the state is
high-power the power consumption depends on the number of packets transmit-
ted/received, the uplink data rate and the uplink channel rate. The coefficient
for this state is calculated taking this into account.

3G: This component of the model depends on the state it is operating, a little like
the Wi-Fi component. The states are CELL DCH, CELL FACH and IDLE. The
transition between states depends on data to transmit/receive and the inactivity
time when in one state. There is a power coefficient for each of the states.

Audio: The audio consumption is modeled my measuring the power consumption
when not in use and when an audio file is playing at different volume, but the
measures indicate that the volume does not interfere with the consumption, so
it was neglected. There is only one coefficient to take into account if the audio
interface is being used.

Static Model Calibration. In order to determine the power consumption of
each Android device’s component the power model needs to be “exercised”. That
is to say, we need to execute programs that vary the variables of each components
state (for example, by setting CPU utilization to highest and lowest values, or
by configuring GPS state to extreme values by controlling activity and visibility
of GPS satellites), while measuring the energy consumption of the device. By
measuring the power consumption while varying the state of a component, it’s
possible to determine the values (coefficients) to include in a device’s specific
instantiation of the model.

Power Tutor, as all other similar power models, uses a static model calibration
approach: the programs are executed in a specific device (which is instrumented
in terms of hardware) so that an external energy monitoring device1 is used to
measure the energy consumption. Although, this approach produces a precise
model for that device [9], the fact is that with the wide adoption of the Android

1 A widely used devise is available at
http://www.msoon.com/LabEquipment/PowerMonitor.

http://www.msoon.com/LabEquipment/PowerMonitor
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ecosystem makes it impossible to be widely used2. Indeed, the model for each
specific device has to be manually calibrated!

2.2 Power Model: Dynamic Calibration

In order to be able to automatically calibrate the power consumption model of
any Android device, we consider a set of training programs that exercises all
components of the power model. The training programs also change (over its
full range) the state of each component, while keeping the other constant. In
this way, we can measure the energy consumption by that particular component
in that state. To measure the energy consumption, instead of using an external
monitoring device as discussed before, we consider the battery consumed while
running the training applications. The Android API provides access to the bat-
tery capacity of the device, and to the (percentage) level of the battery of the
devices. By monitoring the battery level before and after executing a training
application, we can compute the energy consumed by that application. After
collecting power traces for all hardware components, a multi-variable regression
approach is used to minimize the sum of squared errors for the power coefficient.
Fig. 1 shows the architecture of the dynamic calibration of the power model.

Fig. 1. The architecture to dynamically calibrate the power model for different devices

The calibration process shown in Algorithm 1 executes the set of calibration
applications in a specific device. To summarize, the algorithm starts by getting
the full capacity of the device’s battery. Since every component has multiple
possible states (e.g., CPU with different frequencies), every training program
has an equal number of execution states that will be executed. Then, every state
is executedN time, in order to get an average of the consumption. This makes the
results more reliable. This algorithm returns a collection of energy consumption
coefficients, one per state of every hardware component. The generic power model
presented in the previous section is then instantiated.

These coefficients are used to compute the energy consumption of an Android
application. For example, when the CPU component is in a known state (i.e.,

2 In fact, [9] reports the calibration of the power model for three devices, only.
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Algorithm 1. Calculate power model coefficients

N ← 20
capacity ← getBatteryCapacity();
for all prog : trainingProgsSet do

for all state : getStates(prog) do
clear(consumptions)
for i = 1 to N do

before← checkBatteryStatus()
execute(state)
after ← checkBatteryStatus()
consumptions← consumptions ∪ {(after − before) ∗ capacity}

end for
avgConsumed← average(consumptions,N)
coefficients ← coefficients ∪ {(state, avgConsumed)}

end for
end for
return coefficients

running at a certain frequency, with a known percentage of use), then the power
model computes the current energy consumption as a equation of those coef-
ficients. Those Android energy consumption models are often implemented as
stand alone applications3, which indicate the (current) energy consumption of
other application running in the same device. In the next section, we present our
methodology to use our models in an energy profiling tool for Android applica-
tion developers.

3 Energy Consumption in Source Code

Modern programming languages offer their users powerful compilers, that in-
cluded advanced optimizations, to develop efficient and fast programs. Such
languages also offer advanced supporting tools, like debuggers, execution and
memory profilers, so that programmers can easily detect and correct anomalies
in the source code of their applications. In this section, we present one methodol-
ogy that uses/adapts the (dynamic) power model defined in the previous section,
to be the building block of an energy profiling tool for Android applications. The
idea is to offer Android application developers an energy profiling mechanism,
very much like the one offered by traditional program profilers [14]. That is to
say that we wish to provide a methodology, and respective tool support, that
automatically locates in the source code of the application being developed the
code fragments responsible for an abnormal energy consumption.

Our methodology consists of the following steps: First, the source code of the
application being monitored is instrumented with calls to the calibrated power
model. Fig. 2 displays this step.

3 Powertutor application website: https://powertutor.org.

https://powertutor.org
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Fig. 2. The behavior of the instrumentation tool

After compiling such instrumented version of the source code, the resulting
application is executed with a set of test cases. The result of such executions
are statistically analyzed in order to determine which packages/methods are
responsible for abnormal energy consumptions.

The source code instrumentation and execution of test cases is performed
automatically as we describe in the next sections. To instrument the source code
with calls to the power model, we need to model it as an API. This is discussed
first.

3.1 The Model as an API

In order to be able to instrument the source code of an application, with energy
profiling mechanisms, we need to adapt the current implementation of power
model described in Section 2.1. That power model is implemented as a stand
alone tool able to monitor executing applications. Thus, we needed to transform
that implementation into an API-based software, so that its methods can be
reused/called in the instrumented source code.

To adapt the power tutor implementation, we introduced a new Java class
that implements the methods to be used/called by other applications and re-
spective test cases. Those methods work as a link interface between the power
consumption model and the applications source code to be monitored.

The methods implemented in the new Java class, called Estimator, and that
are accessible to other applications are:

– traceMethod(): The implementation of the program trace .
– saveResults(): store the energy profile results in a file.
– start(): start of the energy monitoring thread.
– stop(): stop of the energy monitoring thread.
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3.2 Source Code Instrumentation

Having updated the implementation of the power model so that its energy pro-
filing methods can be called from other applications, we can now instrument an
application sourse code to call them.

In order to automatically instrument the source code, we need to define the
code fragments to monitor. Because we wish to do it automatically, that is by
a software tool, we need to precisely define which fragments will be considered.
If we consider code fragments too small, for example, a line in the source code,
than, the precision of the power model may be drastically affected: a neglected
amount of energy would probably be consumed. In fact, there is not a tool that
we can use capable of giving power consumption estimates at a so fine grained
level, with reliable results. On the other hand, we should not consider to large
fragments, since this will not give a precise indication on the source code where
an abnormal energy consumption exists.

We choose to monitor application methods, since they are the logical code
unit used by programmers to structure the functionality of their applications.
To automatize the instrumentation of the source code of an application we use
the JavaParser tool4: it provides a simple Java front-end with tool support for
parsing and abstract syntax tree construction, traversal and transformation.

We developed a simple instrumentation tool, called jInst, that instruments all
methods of all Java classes of a chosen Android application project, together
with the classes of an Android test project. jInst injects new code instructions,
at the beginning of the method and just before a return instruction (or as the
last instruction in methods with no return), as shown in the next code fragment:

public class Draw{

...

public void funcA(){

Estimator .traceMethod ("funcA", "Draw", Estimator .BEGIN

);

...

Estimator .traceMethod ("funcA", "Draw", Estimator .END);

}

This code injection allows the final framework to monitor the application,
keeping trace of the methods invoked and energy consumed.

3.3 Automatic Execution of the Instrumented Application

After compiling the instrumented source code an Android application is pro-
duced. When executing such application energy consumption metrics are

4 Java parser framework webpage: https://code.google.com/p/javaparser.

https://code.google.com/p/javaparser
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produced. In order to automatically execute this application with different in-
puts, we use Android testing framework5 that is based on jUnit.

In order to use the instrumented application and the developed Estimator
energy class, the application needs to call methods start and stop before/after
every test case is executed. Both jUnit and Android testing framework allow test
developers to write a setUp() and a tearDown() methods, that are executed after
a test starts and after a test ends, respectively. So, our jInst tool only needs to
instrument those methods so we can measure the consumption for each test, as
shown in the next example:

public class TestA{

...

@Override

public void setUp(){

Estimator .start(uid);

...

}

...

@Override

public void tearDown (){

Estimator .stop ();

...

}

With this approach, we assure that every time a test starts, the method Esti-
mator.start(int uid) is called. This method starts a thread that is going to collect
information from the operating system and then apply the power consumption
model to estimate the energy consumed. The uid argument of the method is
the UID of the application in test, needed to collect the right information. The
tearDown() is responsible for stopping the thread and saving the results.

3.4 Green-Aware Classification of Source Code Methods

Now, we need to define a metric to classify the methods according to the influence
they have in the energy consumption. They are characterized as follows:

– Green Methods: These are the methods that have no interference in the
anomalous energy consumptions. They are never invoked when the applica-
tion consumes more energy than the average.

– Red Methods: Every time they are invoked, the application has anomalous
energy consumption. They can be invoked when the application has bellow
the average energy consumption as well, but no more than 30% of the times.
They are supposed to be the methods with bigger influence in the anomalous
energy consumption.

5 Android testing web page:
https://developer.android.com/tools/testing/index.html.

https://developer.android.com/tools/testing/index.html
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– Yellow Methods: The methods that are invoked in other situations: mostly
invoked when the application power consumption is bellow the average.

This representation of methods is also extensible for classes, packages and
projects. In other words, the classification of classes depends on the set of meth-
ods they have, and so packages depend on their respective classes, as the projects
are classified according to their packages. If a class has more than 50% of its
methods classified as Red Methods, then it is a red class. With more 50% of
them as green, it is a Green Class. Otherwise, it is a Yellow class. Packages and
projects follow the same approach.

4 GreenDroid: An Android Framework for Energy
Profiling

At this point, we have power source code instrumentation, consumption measure-
ment, method tracing and automatic test execution using the Android testing
framework. The final result should be a tool that works automatically, and does
all this tasks incrementally. After that, it retrieves the information previously
saved and shows the results obtained. This section explains the workflow of the
framework, along with the information obtained at every point, and how the
results are obtained and generated.

Fig. 3. The behavior of the monitoring framework



Detecting Anomalous Energy Consumption in Android Applications 87

4.1 Workflow

After the source code of the application and the tests are instrumented as de-
scribed in section 2, the framework executes a set of sequential steps to show
the conclusive results, that being:

– Execute the tests : This is the starting point for the framework. The tests will
be executed twice, the first time to get the trace (list of invoked methods)
and the second to measure power consumption, so that the tracing overhead
does not affect measuring. The results will be saved in files (one for each
test), containing a list of the methods invoked, along with the number of
times it was invoked, and also the execution time of the test and the energy
consumed, in mW.

– Merge the results : After all the tests executed (twice), the framework would
have generated a set of files as big as the number of tests. For convenience,
the tests will be merged in one file to be read, parsed and the information
extracted once.

– Classify the methods : At this point, the framework will get the values read
from the file and classify them (and respective classes, packages and projects)
according to the categories described in section 3.4.

– Generate the results : The framework will than generate a graphical represen-
tation of the source code components, giving them different colors according
to its green-aware classification.

This steps are all represented in Figure 3, that represents how the application,
after instrumented, generates the results for measuring and tracing of the test
cases defined with the Android testing framework.

5 Results

This section shows the results of running multiples tests with our framework
from an open source Android application called 0xBenchmark6. This application
allowed us to simulate different kinds of executions. We managed to run 20
different tests, and each test had a different set of methods invoked (execution
trace). So, for each test we managed to keep the trace, the power consumption,
the time a test executed and the number of times a method was invoked. It is
important to mention that the values presented in the charts reflect, for each
test case, an average of several measures. It makes sense to do it since this is
a statistical approach. If we look at the Fig. 4, we can see that different tests
have different values of power consumption. One could think that the tests with
bigger values for power consumption are the ones with bigger execution times,
and so the energy consumed per unit of time would be nearly the same for all
the tests, but Fig. 5 shows that the consumption per second varies between the
tests.

6 0xbench can be found at http://0xbenchmark.appspot.com.

http://0xbenchmark.appspot.com
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Fig. 4. Total consumption per test Fig. 5. Consumption per second

Fig. 6. Execution time

So, these are very good indicators, they allow us to conclude that execution
time has an influence in the power consumption, but it is not the only relevant
factor. In fact, it might not be one of the most relevant.

So, with the approach described in Section 3 to detect tests with excessive
power consumption, we can get a percentage for each method that reflects its
influence in energy anomalous tests. The framework will then assign that percent-
age to the respective method, taking into account the test results, and display
a sunburst diagram like the one in Fig. 7 (similar to the approach presented
in MZoltar [15]) that allows the developer to quickly identify the most energy
anomalous methods.

6 Related Work

In the past years the investigation of power consumption in smartphones has
been increasing. Several research works indicate that power consumption model-
ing and energy-aware software are getting their importance in the investigation
scope. It is possible to find different tools designed to estimate the required
energy for an application to do its tasks. The majority of them focus on the An-
droid based smartphones, mostly because it is an open source OS7 and statistics
reveal that the percentage of selling is much higher for Android devices than any

7 An Android overview can be found at
http://www.openhandsetalliance.com/android_overview.html .

http://www.openhandsetalliance.com/android_overview.html
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Fig. 7. Sunburst diagram (and how to interpret it)

other8. In fact, in the second quarter of 2013 almost 80% of the market share
belonged to Android devices.

Most of the research works start by identifying the hardware components
of the device with significant influence on its energy consumption. We have
the example of Power Tutor [9], that is the starting point for many other re-
search works, but also DevScope [13] and related tools (AppScope [12] and User-
Scope [16]). These tools have a power consumption model relating the different
hardware components of a device to its different states and consequent power
consumption values. The main difference lies in the implementation of the model:
one works as an independent Android application, the other is a Linux kernel
module, but both of them focus on collecting the hardware components’ usage
information from the file system.

There are other examples of works based on power consumption models and its
applications in different areas ([11, 17–19]), however none of them is as powerful
as the remaining ones. Another interesting example, SEMO [20], has a similar
behavior to Power Tutor, but does not use power consumption models. Instead,
it is focused in battery discharge level, and its results are less reliable.

Other works [21, 22] demonstrate that it is possible to have different values
on energy consumption for different softwares designed to do the same tasks.
So this can be a very good indicator that helping developers choose the most
energy-aware solution for a software implementation is of great importance. In
fact, this has been demonstrated in [7].

8 Information about global smartphone shipments can be found at
http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-

global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc.

http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc
http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc
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7 Conclusions and Future Work

The energy consumption is nowadays of paramount importance. This is also valid
to software, and specially for applications running in mobile devices. Indeed the
most used platform is clearly the Android and thus we have devote our attention
to its applications.

Given the innumerable quantity of Android versions and devices, our approach
is to create a dynamic model that can be used in any device and any Android
system, and that can give information to the developers about the methods
he/she is writing that consume the most energy. We have created a tool that
can automatically calibrate the model for every phone, and another to automat-
ically annotate any application source code so the programmer can have energy
consumption measures with almost no effort.

With this work we were able to show that the execution time is highly cor-
related to the total energy consumption of an application. Although this seems
obvious, until now it was only speculative. We have also shown that the total
time and energy the application takes to execute a set of tasks does not indicate
the worst methods. To find them, it is necessary to apply the techniques we
now propose, measuring this consumption by second and computing the worst
methods, called red methods.

Nevertheless, there is still work to be done. Indeed it is still necessary to
evaluate the precision of the results of our consumption measurements. Since we
do not use real measurements from the physical device components, we still need
to confirm that the results we can compute are accurate enough.
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Abstract. Computational effects complicate the tasks of reasoning about and
maintaining software, due to the many kinds of interferences that can occur.
While different proposals have been formulated to alleviate the fragility and
burden of dealing with specific effects, such as state or exceptions, there is no
prevalent robust mechanism that addresses the general interference issue. Build-
ing upon the idea of capability-based security, we propose effect capabilities as
an effective and flexible manner to control monadic effects and their interfer-
ences. Capabilities can be selectively shared between modules to establish secure
effect-centric coordination. We further refine capabilities with type-based per-
mission lattices to allow fine-grained decomposition of authority. We provide an
implementation of effect capabilities in Haskell, using type classes to establish a
way to statically share capabilities between modules, as well as to check proper
access permissions to effects at compile time. We exemplify how to tame effect
interferences using effect capabilities, by treating state and exceptions.

1 Introduction

Computational effects (e.g. state, I/O, and exceptions) complicate reasoning about,
maintaining, and evolving software. Even though imperative languages embrace side
effects, they generally provide linguistic means to control the potential for effect inter-
ference by enforcing some forms of encapsulation. For instance, the private attributes
of a mutable object are only accessible to the object itself or its closely-related peers.
Similarly, the stack discipline of exception handling makes it possible for a procedure
to hide exceptions raised by internal computation, and thereby protect it from unwanted
interference from parties that are not directly involved in the computation.

We observe that all these approaches are hierarchical, using module/package nest-
ing, class/object nesting, inheritance, or the call stack as the basis for confining the
overall scope of effects. This hierarchical discipline is sometimes inappropriate, either
too loose or too rigid. Consequently, a number of mechanisms that make it possible to
either cut across or refine hierarchical boundaries have been devised. A typical exam-
ple mechanism for loosening the hierarchical constraints is friendship declarations in
C++. Exception handling in Standard ML—with the use of dynamic classification [7]
to prevent unintended access to exception values—is an example of a mechanism that
strengthens the protection offered by the hierarchical stack discipline.
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Exploiting the intuitive affinity between encapsulation mechanisms and access
control security, we can see classical approaches to side effect encapsulation as cor-
responding to hierarchical protection domains. The effective alternative in the secu-
rity community to transcend hierarchical barriers is capability-based security, in which
authority is granted selectively by communicating unforgeable tokens named capabil-
ities [11,13]. Seen in this light, the destructor of an exception value type in Standard
ML is a capability that grants authority to inspect the internals of values of this type [6].
The destructor, as a first-class value itself, can be flexibly passed around to the intended
parties. Friendship declarations in C++ can also be seen as a static capability-passing
mechanism.

Following this intuition we propose effect capabilities, in the context of Haskell1, for
flexibly and securely handling computational effects. Effect capabilities are first-class
unforgeable values that can be passed around in order to establish secure effect-related
interaction channels. The prime focus of effect capabilities is to guarantee, through
the type system, that there is no unauthorized access to a given effectful operation.
Authorization is initially granted through static channel sharing at the module level,
allowing detection of violations at compile time. We do not focus on dynamic sharing
of capabilities, because this can only be done by modules that were already trusted at
compile time.

We start illustrating the main problem addressed by effect capabilities in Haskell: the
issue of effect interference in the monad stack (Section 2). Then we present the main
technical development: a generic framework for capabilities and permissions, which can
be statically shared between modules (Section 3). In this framework we combine several
existing techniques, along with two novel technical contributions. First, a user-definable
lattice-based permission mechanism that checks access at compile time using type class
resolution (Section 3.2). And second, a static secret sharing mechanism implemented
using type classes and mutually recursive modules (Section 3.3). Finally, effect capabil-
ities are implemented using this framework in the particular case of monadic operations
(Section 4), and we illustrate how to implement private and shared state (Section 4.1
and Section 4.2) as well as protected exceptions (Section 4.3).

2 Effect Interference in Monadic Programming

In this section we illustrate the problem of effect interference in monadic programming.
We start with a brief description of monadic programming in Haskell (Section 2.1).
Then we illustrate the particular issue of state interference (Section 2.2), also show-
ing that the currently accepted workaround is not scalable (Section 2.3). Finally, we
illustrate the issue of exception interference (Section 2.4).

2.1 Monadic Programming in a Nutshell

Monads [15,25] are the mechanism of choice to embed and reason about computational
effects such as state, I/O or exception handling, in purely functional languages like

1 Implementation on the GHC compiler available online at: http://pleiad.cl/effectcaps

http://pleiad.cl/effectcaps


94 I. Figueroa, N. Tabareau, and É. Tanter

Haskell. Using monad transformers [12] it is possible to modularly create a monad that
combines several effects. A monad transformer is a type constructor used to create a
monad stack where each layer represents an effect. Monadic programming in Haskell
revolves around the standard MTL library, which provides a set of monad transformers
that can flexibly be composed together. Typically a monad stack has either the Identity ,
or the IO monad at its bottom. When using monad transformers it is necessary to es-
tablish a mechanism to access the effects of each layer. We now briefly describe current
mechanisms; for a detailed description see [21].

Explicit Lifting. A monad transformer t must define the lift operation, which takes a
computation from the underlying monad m, with type m a, into a computation in the
transformed monad, with type t m a. Explicit uses of lift directly determine which
layer of the stack is being used.

Implicit Lifting. To avoid explicit uses of lift , one can associate a type class with each
particular effect, defining a public interface for effect-related operations. Using the type
class resolution mechanism, the monadic operations are routed to the first layer of the
monad stack that satisfies a given class constraint. This is the mechanism used in the
transformers from MTL, where the implicit liftings between them are predefined.

Tagged Monads. In this mechanism the layers of the monad stack are marked using
type-level tags. The tags are used to improve implicit lifting, in order to route op-
erations to specifically-tagged layers, rather than the first layer that satisfies a con-
straint [16,23,21]. In this work we focus only on the standard lifting mechanisms, which
underlie the implementations of tagged monads, and leave for future work the integra-
tion of type-level tags and effect capabilities.

2.2 State Interference

As a running example to illustrate the issue of effect interference as well as its solu-
tion using effect capabilities, we consider the implementation of two monadic abstract
data types (ADTs). These are a queue of integer values, with operations enqueue and
dequeue; and a stack, also of integer values, with operations push and pop.

Regarding state, ideally each ADT should have a private state that cannot be modified
by components external to the module. Before we describe the implementation, let us
recall the standard state transformer and its associated type class:

newtype StateT s m a = StateT (s → m (a, s))

class Monad m ⇒ MonadState s m | m → s where
get ::m s
put :: s → m ()

A typical and reusable implementation of these ADTs is defined using implicit lift-
ing. A straightforward implementation of the structures’ operations is as follows:
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enqueue1 ::MonadState [Int ] m ⇒ Int → m ()
enqueue1 n = do {queue ← get ; put $ queue ++ [n ]}
dequeue1 ::MonadState [Int ] m ⇒ m Int
dequeue1 = do {queue ← get ; put $ tail queue ; return $ head queue }
push1 ::MonadState [Int ] m ⇒ Int → m ()
push1 n = do {stack ← get ; put (n : stack)}
pop1 ::MonadState [Int ] m ⇒ m Int
pop1 = do {stack ← get ; put $ tail stack ; return $ head stack }

Thanks to implicit lifting, the functions can be evaluated in any monad stack m that
fulfills the MonadState [Int ] constraint. With the intent of giving each ADT its own
private state, we define a monad stack M with two state layers.

type M = StateT [Int ] (StateT [Int ] Identity)

However, using both ADTs in the same program leads to state interference. The
problem is that implicit lifting will route both enqueue and push operations to the first
layer of M . For example, evaluating:

client1 = do push1 1
enqueue1 2 -- value is put into the state layer used by the stack
x ← pop1

y ← pop1 -- should raise error because stack should be empty
return (x + y)

yields 3 instead of throwing an error when attempting to pop1 the empty stack. To
address this issue, one of the ADTs must use explicit lifting to use the second state
layer, for instance we can modify the queue operations:

enqueue ′
1 n = do {queue ← lift get ; (lift ◦ put) (queue ++ [n ])}

dequeue ′
1 n = do {queue ← lift get ; (lift ◦ put) (tail queue); return (head queue)}

However, as discussed by Schrijvers and Oliveira [21], this solution is still unsatis-
factory. First, the approach is fragile because the number of lift operations is tightly
coupled to the particular monad stack used, thus hampering modularity and reusability.
And second, because the monad stack is transparent, meaning that nothing prevents
enqueue ′1 or dequeue ′1 to use get and put operations that are performed on the first
state layer. Conversely, nothing prevents push1 or pop1 from accessing the second state
layer. In fact, any monadic component can modify the internal state of these structures.

2.3 State Encapsulation Pattern

To the best of our knowledge, the current practice to implement private state in Haskell—
in order to avoid issues like the one above—is to define a custom state-like monad
transformer and hide its data constructor. For instance, a polymorphic queue ADT can
be implemented based on a new QueueT monad transformer, which reuses the imple-
mentation of StateT to represent the queue as a list of values:2

2 We do not show it here, but we use the GeneralizedNewtypeDeriving extension of GHC to
derive the necessary instances of the Monad and MonadTrans type classes.
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newtype QueueT s m a = QueueT (StateT [s ] m a) deriving ...

The definitions of enqueue and dequeue are similar to those already presented, but
let us consider their types:

enqueue2 :: s → QueueT s m ()
dequeue2 :: QueueT s m s

Because these definitions are tied specifically to a monad stack whereQueueT (resp.
StackT ) is on top, another requirement to integrate with implicit lifting is to declare a
new type class MonadQueue (resp. MonadStack ), whose canonical instance is given
by QueueT (resp. StackT ).

In short, a Queue module that encapsulates its state can be defined as:

module Queue (QueueT (),MonadQueue (. .), enqueue , dequeue) where

newtype QueueT s m a = QueueT (StateT [s ] m a) deriving ...

class Monad m ⇒ MonadQueue s m where
enq :: s → m ()
deq ::m s

instance Monad m ⇒ MonadQueue s (QueueT s m) where
enq s = QueueT $ StateT $ λq → return ((), q ++ [s ])
deq = QueueT $ StateT $ λq → return (head q , tail q)

enqueue :: (MonadQueue [Int ] m)⇒ Int → m ()
enqueue = enq

dequeue :: (MonadQueue [Int ] m)⇒ m Int
dequeue = deq

Declaring QueueT as instance of MonadQueue requires the implementation of enq
and deq . As QueueT relies on the standard state transformer StateT , the implemen-
tation is straightforward. The crucial point to ensure proper encapsulation is that the
module does not export the QueueT data constructor. This is explicit in the module
signature as QueueT (), which means that only the type QueueT is exported, but its
data constructors remain private.

Avoiding interference. Using the QueueT and StackT transformers, as well as the
MonadQueue and MonadStack type classes defined using this pattern,we can rephrase
our previous example in order to avoid state interference:

import Queue

type M = QueueT Int (StackT Int Identity)

client2 = do push 1
enqueue 2
x ← pop
y ← pop -- error: popping from empty stack
return (x + y)

Scalability Issues. The main issue of the state encapsulation pattern is that it is not scal-
able. To properly integrate MonadQueue and MonadStack with implicit lifting, we
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would need to declare QueueT and StackT as an instance of every other effect-related
type class, and to make every other monad transformer an instance ofMonadQueue and
MonadStack as well. If we consider only the 7 standard transformers in the MTL, this
effort amounts to 28 instance declarations! (14 instances for each encapsulated state)
Moreover, when using non-standard transformers, it may not be possible to anticipate
all the required combinations; therefore the burden lies on the user of such libraries to
fill in the gaps. We are not the first to note the quadratic growth of instance declarations
with this approach, e.g. Hughes dismisses monads as an option to implement global
variables in Haskell for this very reason [8].

2.4 Exception Interference

Another form of effect interference can occur in a program that uses exceptions and ex-
ception handlers. The problem is that due to the dynamic nature of exceptions and han-
dlers, it is possible for exceptions to be inadvertently caught by unintended handlers—for
instance, by “catch-all” handlers. As an illustration, consider an application where the
queue is used by a consume function.

consume :: (MonadQueue Int m,MonadError String m)⇒ m Int
consume = do x ← dequeue

if (x < 0) then throwError“Process error ′′

else return x

This function checks an invariant that values should be positive, and throws an ex-
ception otherwise. Further assume that another process function relies on consume.

process :: (MonadQueue Int m,MonadError String m)⇒ Int → m Int
process val = consume ‘catchError ‘ (λe → return val)

Here process uses an exception handler, catchError , to get a default value val when-
ever consume’s invariant does not hold. Consider now a variant of dequeue that raises
an exception when trying to retrieve a value from an empty queue. Its type is

dequeue :: (MonadQueue s m,MonadError String m)⇒ m s

In this scenario, exception interference will occur because the same exception effect
is used to signal two different issues. Consider the following program:

program1 = do enqueue (−10)
process 23

When evaluated, program1 yields 23 because the value in the queue breaks the invariant
of consume, triggering the handler of process . Now, consider a second program:

program2 = process 23

which will also yield 23, but because the queue was empty—not because the invariant
of consume was broken. In this setting, it is not possible to assert non-emptiness of the
queue, because exceptions get “swallowed” by another handler. Similar to state inter-
ference, current solutions rely on custom exception transformers and explicit lifting.



98 I. Figueroa, N. Tabareau, and É. Tanter

As argued by Harper [6], the standard semantics of exceptions difficult the modular
composition of programs because of the potentially modified exception flows. Indeed,
issues like this has been identified in the context of aspect-oriented programming [3].
In Section 4.3 we show how effect capabilities allows us to define exceptions that, like
in Standard ML, can be protected from unwanted interception.

3 A Generic Static Framework for Capabilities and Permissions

This section presents the main technical development of this work: a generic framework
for capabilities, upon which effect capabilities are built, in the next section. First, we
define capability-based access as a computational effect (Section 3.1). Then, we refine
simple capabilities with type-based and user-definable permission lattices (Section 3.2);
and show how capabilities can be shared between modules (Section 3.3). Finally we de-
scribe how the framework supports two key features of capabilities-based mechanisms:
delegation and attenuability (Section 3.4).

3.1 Private Capabilities as a Computational Effect

A private capability is a singleton type whose type is public but whose constructor is
private. For instance, consider the capability for read/write access to some state:

data RWCap = RWCap

We turn this capability into a notion of protected computations by using a specific
reader monad transformer for capabilities, CapT . Using the reader transformer allows
us to embed the actual capability used to run a computation into the read-only environ-
ment bound to a reader monad. Similar to state encapsulation, CapT is defined in terms
of the canonical reader monad transformer ReaderT .

newtype CapT c m a = CapT (ReaderT c m a) deriving ...

fromCapT :: c → CapT c m a → m a
fromCapT ! c (CapT ma) = runReaderT ma c

A capability has a public type but a private value, but as Haskell is lazy, a malicious
module can always forge a capability for which it has no access by passing ⊥ as the
capability argument to evaluate fromCapT .3 To avoid this situation, we use a strictness
annotation ! in the implementation of fromCapT . Note this issue would not be present
in a strict setting. As an example, consider a module A that uses RWCap to restrict
access to a state monad holding a value of type s .

module A (getp, putp,RWCap ()) where

data RWCap = RWCap

getp :: CapT RWCap (State s) s
putp :: s → CapT RWCap (State s) ()

A module B that imports A will get access to both operations, but will not be able
to perform any of them because it will lack the RWCap value, which can only be
constructed in the context of module A.

3 ⊥ is an expression that pertains to all types, and directly fails with an error if evaluated. Hence,
it can pass as any capability, fulfilling the expected type of fromCapT .
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3.2 Private Lattice of Permissions

Capabilities are unforgeable authority tokens that unlock specific monadic operations.
Ideally, a system should follow the principle of least privilege [18], which in our context
means that it should not be necessary to have write permissions just to read the value of
a state monad; and conversely, reading access is not necessary to update such a state.

We now refine the model of capabilities with the possibility to attach permissions to
a capability, in order to allow a finer-grained decomposition of authority. A permission
denotes the subset of operations that the capability permits. Now capabilities are defined
as type constructors with a single argument, the permission; and permissions are defined
as singleton types.

Permission Lattices. Permissions can be organized in a lattice specified by a � type
class. � is a simple reflexive and transitive relation on types defined as:4

class a � b
instance a � a -- generic instance for reflexivity

The type class � must not be public because it would allow a malicious user to
add a new undesirable relation in the lattice to effectively bypass permission checking
altogether. Still, we want to be able to impose constraints based on the private lattice in
other modules. To do that, we define a public lattice ⊃ that exports the private lattice
without being updatable from the outside of the module, because extending it always
requires to define an instance on the private lattice.5

class a � b ⇒ a ⊃ b
instance a � b ⇒ a ⊃ b

Permission Lattices in Practice. Going back to the previous example, we now define the
RWCap capability, as well as the ReadPerm , WritePerm and RWPerm permissions,
denoting read-only, write-only and read-write access, respectively. We also define the
private and public permission lattices �RW and ⊃RW , for state access permissions:

module RWLattice (⊃RW ,RWCap (),ReadPerm ,WritePerm ,RWPerm) where

data RWCap p = RWCap p
data ReadPerm = ReadPerm
data WritePerm = WritePerm
data RWPerm = RWPerm

-- private lattice
class a �RW b
instance a �RW b

-- private instances, not updateable externally
instance RWPerm �RW ReadPerm
instance RWPerm �RW WritePerm

-- public lattice
class a �RW b ⇒ a ⊃RW b
instance a �RW b ⇒ a ⊃RW b

4 Unlike logic programming, transitivity cannot be deduced from a generic instance, due to an
ambiguity issue during type class resolution; hence all pairs of the relation must be explicit.

5 Haskell type classes are open, that is, instances of publicly exported type classes can be added
in any part of the system. Private type classes are confined to the module that defines them.
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Crucially, we use module encapsulation to hide the private lattice �RW . Thus we
only export the public lattice ⊃RW , which can be used as a regular class constraint.
Otherwise, obtaining write-access from a read-only permission is as simple as:

module BypassRW where
import RWLattice
instance ReadPerm �RW WritePerm

Using the public permission lattice allows developers to impose fine-grained access
constraints using the public type class ⊃RW . For instance, the functions getp and putp
can be refined as:

getp :: perm ⊃RW ReadPerm ⇒ CapT (RWCap perm) (State s) s
putp :: perm ⊃RW WritePerm ⇒ s → CapT (RWCap perm) (State s) ()

As a final remark, recall from Section 3.1 that type class resolution statically checks for
proper permissions when a computation is evaluated using fromCapT .

Capabilities as namespaces for permissions. Capability constructors, such as RWCap,
may appear superfluous, because we are interested in the permissions for protected
operations. However, such constructors serve the crucial role of serving as namespaces
for permissions. This allows a module to have restricted read-only access to some state,
while still having full read-write access to another state.

3.3 Static Sharing of Capabilities

We now describe how to go beyond private capabilities and support the ability to allow
specific modules to have access to capabilities. The issue addressed here is that most
module systems, including that of Haskell, do not make it possible to expose bindings
to explicitly-designated modules. For example, as we illustrate in Section 4.2, for effi-
ciency reasons a Queue module can provide read-only access to its internal state to a
PriorityQueue module, which simply acts as another interface on top of the queue.

Conceptually, the idea of static sharing is to use public accessors to selectively share
capabilities. However this requires a trusted mechanism by which modules can be iden-
tified properly by the accessors. The development of this idea yields a mechanism for
static message passing, using type classes, loosely inspired by the π-calculus notion of
messages and channels [19].

Message sending as type class instances. In analogy with capabilities, a channel is just
a singleton type whose type is public, but whose (unique) value is private. Channels are
governed by the Channel monad reader which prevents from the use of ⊥:

newtype Channel ch a = Channel (Reader ch a) deriving ...

fromChannel :: ch → Channel ch a → a
fromChannel ! ch (Channel ma) = runReader ma ch

We define a type class Send for message sending:

class Send ch c p where
receive :: p → Channel ch (c p)
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This type class requires three types: a channel ch , a capability c, and a permission
p; and it provides the receive method. Sending a message of type c p on ch amounts
to declaring an instance Send ch c p. Conversely, receiving a message of type c p
on ch amounts to applying the function receive to p and getting the value back us-
ing fromChannel .6 Observe that the messaging protocol is rather asymmetric, because
capabilities are sent statically by declaring type classes instances, but are received dy-
namically by calling receive . This is not problematic because type class resolution will
check that all calls to receive are backed up by an instance of Send , or else type check-
ing will fail. Therefore, the protocol ensures that one module can only receive a message
that has been sent to it. 7

For instance, following the motivation example, the Queue module can send the
RWCap capability with read permission to the PQChan channel provided by the
PriorityQueue module (full example in Section 4.2):

instance Send PQChan RWCap ReadPerm
where receive ReadPerm = return $ RWCap ReadPerm

Of course, this mechanism is less expressive than message passing in
process calculi—only one message of type c p can be sent on a specific channel—but
it is sufficient for our purposes since permissions are singleton types.

3.4 Delegation and Attenuability

Capabilities-based mechanisms feature two characteristics called delegation and attenu-
ability [11]. In combination, these characteristics allow an entity to transmit (a restricted
version of) its capabilities to another entity in the system. We describe how these char-
acteristics are supported in the framework.

Delegation. The sharing mechanism allows for static delegation of capabilities. A mod-
ule B that receives a capability from other module A, can in turn transmit the capability
to another module C . This is sound because B cannot transmit more capabilities than
those it receives from A. Figure 1 shows static delegation of the RWCap ReadPerm
capability.

Attenuability. A capability with a high permission in a permission lattice can be atten-
uated into another capability with a lower permission implied by the former. To support
attenuability, we force capabilities to define a function attenuate using the type class:

class Capability c ⊃ | c → ⊃ where
attenuate :: p1 ⊃ p2 ⇒ c p1 → p2 → c p2

Here attenuate degrades the permission if it respects the lattice structure of ⊃. If mod-
ule A needs to provide a limited version of a capability to module B it can provide a

6 The expected result type c p has to be provided explicitly, because messages of different types
can be sent on the same channel.

7 We rely on GHC support for mutually recursive modules for inter-module communication. See
http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html

http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html
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module A where
import B -- to send capability to BChannel

instance Send BChannel RWCap ReadPerm where
receive ReadPerm = return $RWCap ReadPerm

module B where
import A -- to get the capability sent by A
import C -- to send capability to CChannel

data BChannel = BChannel

instance Send CChannel RWCap ReadPerm where
receive ReadPerm = return $ (fromChannel BChannel $ receive ReadPerm)

module C where
import B -- to get the capability sent by B
data CChannel = CChannel
cap :: RWCap ReadPerm
cap = fromChannel CChannel $ receive ReadPerm

Fig. 1. Static delegation of capabilities

sub-permission based on the existing permission lattice using the function attenuate.
Note that ⊃ is a parameter of the class because different capabilities may be defined on
different lattices, but the functional dependency c → ⊃ imposes that only one lattice is
attached to a capability. If the required permission is not already provided by the exist-
ing lattice, one can always define a refined lattice (and redefine associated functions).

4 Effect Capabilities: Upgrading Monads with Capabilities

We now delve into the main subject of this work: how to use capabilities to control
monadic effects and their interferences in an effective and flexible manner. Building
upon the generic capabilities framework, which can be used to restrict access to arbi-
trary monadic operations, the essential idea of effect capabilities is to secure the opera-
tions of the layers in the monad stack using capabilities.

Concretely, this means that we define protected versions of monad transformers, and
of the type classes associated to their effects, in which all the monadic operations are
wrapped by the CapT monad transformer. This way, while an external component can
still access any layer of the monad stack using explicit lifting, it will not be able to
perform operations on them unless it can present the required capability.

In particular, we define protected versions of the state and exception MTL transform-
ers and their associated type classes. As a naming convention we append the P suffix
to the name of the protected monad transformers and type classes. We now illustrate
how to implement private and shared state (Section 4.1 and Section 4.2) and protected
exceptions (Section 4.3).
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class Monad m ⇒ MonadStateP c s m | m → s where
getp :: (Capability c ⊃RW , p ⊃RW ReadPerm) ⇒ CapT (c p) m s
putp :: (Capability c ⊃RW , p ⊃RW WritePerm)⇒ s → CapT (c p) m ()

newtype StateTP c s m a = StateTP (StateT s m a) deriving ...

instance Monad m ⇒ MonadStateP c s (StateTP (c ()) s m) where
getp = lift ◦ StateTP $ get
putp = lift ◦ StateTP ◦ put

Fig. 2. Protected versions of the monad state type class and state monad transformer

4.1 Private Persistent State

Based on the state permission lattice (Section 3.2), we define the protected versions
of the state monad transformer and corresponding type class (Figure 2). To use the
getp function, one needs to have a capability c that implies the ReadPerm read per-
mission; and dually to use the putp function, one needs the capability that implies the
WritePerm write permission.

To illustrate, consider the following polymorphic Queue using private state:

module Queue (enqueue , dequeue ,QState ()) where

data QState p = QState p

instance Capability QState ⊃RW where
attenuate (QState ) perm = QState perm

enqueue ::MonadStateP QState [s ] m ⇒ s → m ()
enqueue s = do queue ← fromCapT (QState ReadPerm) getp

fromCapT (QState WritePerm) $ putp (queue ++ [s ])

dequeue ::MonadStateP QState [s ] m ⇒ m s
dequeue = do queue ← fromCapT (QState ReadPerm) getp

fromCapT (QState WritePerm) $ putp (tail queue)
return (head queue)

Thanks to the use of the QState capability and the secure MonadStateP class, the
internal state of the queue is private to the Queue module. Since the QState data con-
structor is not exported, external access is prevented—even if explicit lifting can be
used to access the respective instance of MonadStateP , it cannot be used to perform
any monadic operation on it because the proper capability is required. We still require
to export QState as a type, in order to create a suitable monad stack, e.g. to instantiate
an integer queue:

type M = StateTP (QState ()) [Int ] Identity

To construct a monad stack we are only interested on the capability type, but not in any
particular permission—however permissions will still be checked statically as required
for each operation—hence we use () as the permission type in the definition of M .



104 I. Figueroa, N. Tabareau, and É. Tanter

4.2 Shared Persistent State

We now illustrate capability sharing with shared persistent state. We define a module
PriorityQueue that adds a notion of priority on top of Queue. In a priority queue one
can access directly the most recent element having a high priority, using the peekBy
function. For efficiency, the PriorityQueue module needs direct access to the internal
state of the queue. As we do not want to do this by publicly exposing the capability
QState, we send the capability on the channel PQChan provided by PriorityQueue .

module Queue (enqueue , dequeue ,QState ()) where

import PriorityQueue -- to get PQChan channel

newtype QState p = QState p

instance Capability QState ⊃RW where
attenuate (QState ) perm = QState perm

instance Send PQChan QState ReadPerm where
receive perm = return $QState perm

-- enqueue and dequeue operations as before

The implementation of PriorityQueue is as follows:

module PriorityQueue (PQChan (), peekBy) where

import Queue

data PQChan = PQChan

queueState :: QState ReadPerm
queueState = fromChannel PQChan $ receive ReadPerm

peekBy :: (Ord s,MonadStateP QState [s ] m)⇒ (s → s → Ordering)→ m (Maybe s)
peekBy comp = do queue ← fromCapT queueState getp

if null queue then return Nothing
else return (Just $maximumBy comp queue)

To use the internal state of the queue, the PriorityQueue module imports Queue,
defines and exports its channel PQChan, and retrieves the capability QState with the
read-only permission, as prescribed by Queue. peekBy can access the internal state of
the queue by using the queueState capability and fromCapT .

4.3 Protected Exceptions

Exception handling may be seen as a communication between two modules, one that
raises an exception, and one that handles it. For correctness or security reasons, we
may wish to ensure that a raised exception can only be handled by specific modules.
Protecting exception handling can also be achieved using exception capabilities. First,
we define the private and public lattices, �Ex and⊃Ex, as permissions for throwing and
catching exceptions, then in Figure 3 we define the protected versions of the standard
ErrorT monad transformer and MonadError type class.
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class (Monad m,Error e)⇒ MonadErrorP c e m | c m → e where
throwErrorp :: perm ⊃Ex ThrowPerm ⇒ e → CapT (c perm) m a
catchErrorp :: perm ⊃Ex CatchPerm ⇒ m a → (e → m a)→ CapT (c perm) m a

newtype ErrorTP c e m a = ErrorTP {runETP :: ErrorT e m a } deriving ...

instance (Monad m,Error e)⇒ MonadErrorP c e (ErrorTP (c ()) e m) where
throwErrorp = lift ◦ ErrorTP ◦ throwError
catchErrorp m h = lift ◦ ErrorTP $ catchError (runETP m) (runETP ◦ h)

Fig. 3. Protected versions of the monad error type class and error monad transformer

module ExLattice (⊃Ex,ThrowPerm ,CatchPerm ,TCPerm) where

data ThrowPerm = ThrowPerm
data CatchPerm = CatchPerm
data TCPerm = TCPerm

-- private lattice
class a �Ex b
instance a �Ex a

-- private instances
instance TCPerm �Ex ThrowPerm
instance TCPerm �Ex CatchPerm

-- public lattice
class a �Ex b ⇒ a ⊃Ex b
instance a �Ex b ⇒ a ⊃Ex b

Going back to our running example, we can make dequeue raise an exception when
accessing an empty queue, in order to allow for recovery. Using a QError exception
capability we can control which modules are allowed to define their own handlers:

module Queue (enqueue , dequeueEx,QState (),QError ()) where
-- QState definition, type class instances and enqueue as before ...

data QError p = QError p

instance Capability QError ⊃Ex where
attenuate (QError ) perm = QError perm

dequeueEx :: (MonadStateP QState [s ] m,MonadErrorP QError String m)⇒ m s
dequeueEx = do queue ← fromCapT (QState ReadPerm) getp

if null queue then fromCapT (QError ThrowPerm) $ throwErrorp "Empty..."
else do fromCapT (QState WritePerm) $ putp (tail queue)

return (head queue)

Recall from Section 2.4 the example of exception interference. Now the consume func-
tion can catch the exceptions it is interested in, while exceptions thrown by dequeueEx

will simply pass-through. Actually, it is not possible for process to catch those excep-
tions unless the QError capability is shared from the Queue module.
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consume :: (MonadStateP QState [Int ] m,MonadError String m ,
MonadErrorP QError String m)⇒ m Int

consume = do x ← dequeueEx

if (x < 0) then throwError“Process error ′′

else return x

process :: (MonadStateP QState [Int ] m,MonadErrorP QError String m,
MonadError String m)⇒ Int → m Int

process val = consume ‘catchError ‘ (λe → return val)

Consider a debug function in a module that has access to the QError capability with
permission implying CatchPerm . Then, debug can define a custom handler:

debug val = fromCapT (QError CatchPerm) $
process val ‘catchErrorp ‘ (λe → error "...")

Finally, for cases where the client is not trusted and cannot catch the exception, we
can export a function dequeueErr, that reraises the error using the QError capability:

dequeueErr :: (MonadStateP QState [s ] m,MonadErrorP QError String m)⇒ m s
dequeueErr = fromCapT (QError CatchPerm) $ dequeueEx ‘catchErrorp ‘ error

5 Related Work

Extensible effects (EE) [9] proposes an alternative representation of effects, in Haskell,
that is not based on monads or monad transformers, and which can subsume the MTL
library by providing a similar API. EE presents a client-server architecture where an
effectful operation is requested by client code and is then performed by a correspond-
ing handler. The internal implementation of EE uses a continuation monad, Eff , to
implement coroutines, along with a novel mechanism for extensible union types. An
effectful value has type Eff r where r is a type-level representation, based on the novel
union types, of the effects currently available; thus defining a type-and-effect system for
Haskell. EE does not describe any mechanism for restricting access to effects. Any ef-
fect available in the type-level tracking of effects is available to any component. To add
two copies of the same effect while avoiding interference, the user is required to define
a wrapper using a newtype declaration. This means that each effect can be uniquely
identified by its type.

The Effects [1] library is an effect system implemented in the dependently-typed
language Idris, based on algebraic effect handlers, also designed as an alternative to
monads and monad transformers. Similar to EE, Effects keeps track of the available
effects that can be used in an heterogeneous list. Performing an effectful operation
requires a proof that the given effect is indeed available, but such proof is automatically
generated if the effect is available. As with EE, Effects does not address the issue of
controlling the access to effects. Any available effect can be used by any part of the
system. References to copies of a same effect (e.g.two integer states) are disambiguated
using labels in the effect-tracking list.

Effect capabilities are orthogonal to the mechanism used to implement effects. Re-
cent mechanisms like EE and Effects focus on how to enable flexible composition of
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effects—which is a well-known drawback of monad transformers—rather than on con-
trolling access to them. We have shown how to apply effect capabilities to control access
to effects in the context of monad transformers, mainly as a solution to known interfer-
ence issues. We believe that the same approach should be applicable to other effect
mechanisms, such as EE or Effects.

6 Future Work

We identify several venues for future work. A first one, regarding safety, arises from the
fact that we have ignored a number of Haskell features that defeat the integrity of the
type system. For instance, module boundaries can be violated using Template Haskell
or the GeneralizedNewtypeDeriving language extension, or generic programming. Re-
cently, Safe Haskell [24] has been proposed as an extension to Haskell, implemented
in GHC (as of version 7.2). Safe Haskell protects referential transparency and module
boundaries by disabling the use of these unsafe features. Because the privacy of capa-
bilities relies on effective module boundaries, we plan to integrate the effect capabilities
library as an extension of Safe Haskell.

A second line of work aims to lower the amount of boilerplate code that is re-
quired, like the instances of Capability and Channel classes. This situation can be
improved using generic programming (e.g.using the GHC .Generics library), to pro-
vide default implementations for the receive and attenuate functions. This is already
done in the downloadable implementation. A complementary approach is using Tem-
plateHaskell [22], a template meta-programming facility for Haskell.

Another line of work concerns the integration of capabilities with tagged monads. In
the model, each protected layer of the monad stack must be labeled with the capability
namespace to which it is bound. This is similar to how a layer in a tagged monad setting
must possess a tag in order to enable tag-directed type class resolution. The idea is to
use the capability type constructor for both purposes at the same time; thus benefitting
from the robustness with respect to the layout of the monad stack, provided by tagged
monads, in addition to controlling access to each layer, using capabilities.

We also are interested in studying effect capabilities for other effects, like non-
determinism, concurrency, continuations, and particularly I/O. Currently, access to I/O
operations through the IO monad is completely unrestricted. Using effect capabilities
we plan to split access into several categories (e.g. file access, network access, etc.). Fi-
nally, it remains to be studied how effect capabilities can be provided in programming
languages with imperative features but without explicit effects.

Acknowledgments. This work was supported by the Inria Associated Team REAL.
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Abstract. Graphic processing units (GPU) have been consolidated as
general-purpose computational devices that combine a challenging pro-
gramming model with an impressive acceleration of HPC programs whose
total execution time are dominated by performance-critical small sections
of code. However, there is still a lack of high-level programming language
abstractions for better specifying heterogenous parallel computations us-
ing these devices. This paper proposes Fusion, an extension of Java that
introduces new abstractions for heterogenous multicore-GPU program-
ming, taking advantage of new features introduced by the NVIDIA’s
Kepler architecture, such as Hyper-Q and Dynamic Parallelism.

1 Introduction

In the recent years, the use of Graphics Processing Units (GPUs) [16] have
been consolidated for general purpose computing, for accelerating sections of
code that exhibit high computational costs in programs with high performance
requirements. GPUs now represent a class of computational accelerators that
have been incorporated in a number of high performance computing platforms.
Other important classes are FPGAs (Field-Programmable Gate Arrays) [11] and
MICs (Many Integrated Cores) [7]. The success of GPGPU1 computing may be
measured by the large number of papers in the literature about the design of
parallel algorithms that may use them efficiently, produced mostly by researchers
from computational sciences, engineering and computing science.

However, the initiatives on new programming abstractions that aims at sim-
plifying the description of these algorithms on GPUs, without introducing sig-
nificant performance overheads, are still incipient. The programmer still needs
specific knowledge about the peculiarities of the target GPU architecture, as
well as programming techniques that are complex even for parallel programmers
with large experience. The existing programming interfaces with full expressive-
ness for taking advantage of GPU architectures efficiently, such as CUDA and

1 General-Purpose Graphic Processing Units.
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OpenCL, still works at a lower level of abstraction, requiring that programmers
have knowledge about a number of technical details about the GPU architec-
tures, as well as some undocumented programming tricks. Attempts of including
support for GPGPU programming in high-level object-oriented languages, such
as Java, still relies on providing direct connections to the CUDA architecture.

We are particularly interested in proposing and evaluating new programming
abstractions for heterogenous multicore/manycore parallel computing, where a
set of parallel threads running in a multicore processor wants to accelerate a
parallel computation by using a GPU device, shared among them. This is an
interesting problem not only for high-end HPC platforms, since almost all pro-
cessors are multicore, equipping a wide range of machines, from low-cost smart-
phones to high-end server workstations. In the recent years, NVIDIA, one of the
main GPU providers, launched the Kepler architecture, including the support
for the Hyper-Q and Dynamic Parallelism (DP) extensions, which offer new op-
portunities for increasing the expressiveness of parallel programming interfaces
on describing other known patterns of parallel computation using these devices.
Also, they attempt to remove certain bottlenecks that makes inefficient the con-
nection between multi-thread parallel programs in the host processor and the
GPU device, aiming at attending heterogenous parallel computing requirements.

This work aims at proposing new parallel programming abstractions in a new
object-oriented programming language based on Java, so-called Fusion[18], for
expressing heterogenous multicore/manycore parallel computations, offering a
higher level of abstraction compared to the existing alternatives, but still offering
to the programmer total control over the usage of the device resources. The
implementation of the abstractions of the proposed language is possible due to
the expressiveness offered by the Kepler architecture, with Hyper-Q and DP.

This paper is structured in five more sections. Section 2 presents an overview
about the GPU architecture and related works on programming languages for
GPGPU programming. Section 3 presents the Fusion programming language,
with focus on the abstractions it introduces for heterogenous multicore/manycore
parallel programming. Section 4 presents a case study of program developed with
Fusion, for evaluating it in practice. Finally, Section 5 presents the conclusions
of this work, also presenting lines for further works.

2 Context

Graphics processor units (GPU) have emerged in the late 1970s as coprocessors
providing fixed graphics functions organized in a pipeline. In the late 1990s, GPUs
with programmable vertex and pixel shading pipeline steps, through assembly and
shader languages, such as OpenGL’s GLSL, NVidia’s CG and Microsoft’s HLSL
[2] have motivated their use for general-purpose computations, consolidated in
the 2000’s, starting the interest in designingGeneral-PurposeGraphics Processing
Units (GPGPUs) andGPUComputing [15]. In 2006,NVIDIA released theG80 ar-
chitecture [12], introducingGPUswithgeneral-purposeprocessors so-called stream
processors (SP), as well as the CUDA general-purpose parallel programming plat-
form, for exploiting their performance.
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CUDA frees programmers from many complex tasks, such as scheduling
threads, hiding the GPU architecture behind an API. Together with G80’s high
performance and availability, CUDA rapidly popularized GPGPU. GPU com-
puting is now an attractive research field, exploiting algorithm development for
effectively accelerating critical portions of the code called kernels [16,8].

In 2009, NVIDIA released the Fermi architecture [10], introducing full C++
support, double-precision float-point operations, ECC support, cache hierarchy
and parallel kernel execution from multiple streams. Kepler was released in 2012
[5], introducing two new features of our interest in this paper: Dynamic paral-
lelism (DP) and Hyper-Q.

2.1 An Overview of Kepler GPU Architecture

In CUDA, the code that runs in the CPU, so-called host, can launch code that
will execute in the GPU, so-called device. The host and the device are connected
through a PCI Express bus. The code processed by the device is called kernel.

When a kernel is launched, threads are grouped in blocks, organized in a
grid. Blocks are divided into groups of 32 threads, so-called warps. Each warp
is scheduled to an SIMD processor containing 192 single-precision streaming
processors (SP) and 64 double-precision unities, so-called SMX (Next-generation
Streamming Multiprocessor). The full Kepler GK110 GPU has 15 SMX.

Fig. 1. High level architecture of an NVIDIA GPU [12]

The memory hierarchy in a Kepler GPU has several levels. The most impor-
tant are global, shared and local memories. The communication between host
and device occurs through the global memory. The global memory is the biggest
and slowest memory. Each thread has its local memory and threads within a
block communicate through the shared memory. Local and shared memory are
the fastest memory, but they are small. In Kepler, as in Fermi, each SMX has 64
KB of onchip memory, split into shared memory and L1 cache [3]. A high level
description of this organization can be seen in Figure 1.
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Kepler introduced Dynamic Parallelism (DP) for launching new kernels from
kernels in execution, making it possible the GPU code generate more work to the
GPU, for increasing the granularity in some critical regions of the code. In turn,
Hyper-Q enables the scenario where multiple CPU threads launch cooperative
kernels simultaneously, through independent streams. Kepler GPUs supports 32
streams [3]. This feature is useful in heterogenous parallel computing, where a
multithreading parallel program in the CPU want to use GPU cooperatively,
without synchronizing for launching a single kernel, as in Fermi.

DP and Hyper-Q provide more expressiveness to represent patterns of parallel
computations in GPUs. The aim of this work is to exploit them through new
abstractions in a proposed object-oriented programming called Fusion.

2.2 Related Work

There is a number of proposals of GPU programming interfaces that we consider
relevant in the context of our work with Fusion. They are implemented on top
of existing languages, mainly C, C++, Fortran, Python and Java.

Other approaches rely on the direct incorporation of CUDA abstractions to
the language, such as CUDA Fortran [20] and JCuda [21], without proposing new
high-level abstractions for GPU programming. In the case of JCuda, the abstrac-
tions of object-oriented programming, inherited from Java, may help to encap-
sulate the complexity of GPU programming. JaBEE [22] and Rootbeer [19] are
object-oriented interfaces for GPU Programming, based on Java. However, they
do not exploit the new possibilities due to Hyper-Q and DP neither introduce
specific programming abstractions. However, Rootbeer shows that it is possible
making a transparent translation from high-level abstractions to CUDA with ac-
ceptable performance overheads. Finally, the Lime Language, a Java based high
level language for targeting heterogenous systems, that allows an optimizing
compiler to generate GPU code [1,6].

3 The Fusion Language

We propose the Fusion programming language to face the challenging re-
quirements of heterogenous multicore/manycore parallel programming[18]. The
premises that guided the design of Fusion are discussed in the next paragraphs.

Separation of Concerns from the User Perspective. We are interested in sepa-
rating the burden of programming concerns related to GPU programming from
the high-level application concerns. For that, we assume the existence of two
kinds of programmers, viewed from the application perspective: developers and
specialists. Developers have knowledge about GPU architectures and the best
parallel programming techniques (and tricks) for them, being able to produce
highly tuned code for a given computation that must be accelerated using a
GPU. In turn, specialists have knowledge about the application, being able to
decide which computations are critical for the application performance and must
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be deployed in the GPU for execution. We are looking for the successful level of
programming abstraction of domain-specific scientific computing libraries, where
the developers must know how to implement the best algorithms and parallelism
strategies, removing this burden from the specialists, which are now only con-
centrated on identifying where and when the library functionality must be used.

Object-Orientation. Object-oriented languages have been consolidated as the
most influential paradigm in most of the application domains since the 1990s, in
such a way that modern software engineering techniques have been mostly based
on this paradigm. Thus, object-orientation makes it possible to reach both a large
spectrum of users and modern software engineering practices. In the last decade,
C++, Java and C# have been applied even in the implementation of scientific
computing programs, despite the performance overheads due to their abstrac-
tions. We adopt Java as a basis for Fusion, due to its dissemination, portability
and recent gains in performance due to JIT (Just-In-Time) compilation. GPU
programming code may be encapsulated into objects, for separating the concerns
of developers and specialists and allowing for JIT compilation of GPU objects
directly to the GPU code, bypassing virtual execution.

Kepler Architecture. The interest in developing Fusion has been highly motivated
by the inception of the Kepler architecture, supporting Hyper-Q and Dynamic
Parallelism (DP) technologies. They have removed some severe restrictions of
GPU programming, making it possible to express more patterns of parallel com-
putation and better integration with multi-core parallelism in the host processor,
an important tendency in heterogenous paralell programming. Most of the lin-
guistic abstractions proposed by Fusion on top of Java takes into consideration
the expressive power due to the Kepler architecture.

The abstractions of the Fusion programming model are presented in Section
3.1, together with the description of its syntax by using the illustrative example
presented in Section 3.2.

accelerator
object

device

one object
per device

computing
node

host

stream 0

stream 1

stream 2

stream 3

core 0

core 1

core 2

core 3

thread 1

thread 2

thread 0

thread 3

units

4 cores

GPU

Fig. 2. Linking a GPU and a Computing Node Through an Accelerator Object
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3.1 The Abstraction of Accelerator Objects - Concepts

Fusion extends Java with the abstraction of accelerator objects, a special kind of
object whose methods may be kernels that execute in a GPU. So, the Fusion JIT
compiler will have the ability to generate native GPU code for these methods.
In what follows, we scrutinize the structure of accelerator objects and how they
are specified by means of accelerator classes.

An accelerator object is a collection of units, each one linking a thread of
the host object to a stream of an accelerator device of the host node (Figure 2).
Each unit carries a subset of the state (attributes) and methods of the accelerator
object. The abstraction of units is a way of dealing with heterogenous parallel
computing, involving multicore processors and GPUs connected to them. This
is the main motivation for the Hyper-Q technology in the Kepler architecture.

An attribute of an accelerator object may be placed in either the host memory
or the global memory of the device. In turn, a method may be either a host
method or a kernel method. Host methods will execute in the host, whereas
kernel methods will execute in the device, over the stream associated to the
unit. A host method may access only host attributes, declared outside any unit
scope. In turn, a kernel method may access only the attributes of its unit.

A parallel method is a method that belongs to a team of units. They must be
invoked by all the host threads that are associated these units for completing
the invocation. A method that is not parallel, i.e. that belongs to a single unit,
is called a singleton method.

3.2 The Abstraction of Accelerator Classes - Syntax

The main extension of the Java syntax consists of a set of reserved words used
in the definitions of accelerator classes, i.e methods, attributes and operations
in the memory structure (access, allocations and types) on the GPU device. In
Table 1 there is a description of keywords added to Java syntax.

Table 1. Description of keywords added in Java syntax

Keyword Description

accelerator Qualifier for accelerator classes.

kernel, device and host Access modifier for methods.

unit Quantifier for units on accelarator classes.

parallel Access modifier for methods and units.

async Access indentifier for memory operations

shared, global, constant, texture Access modifiers for memory access

We have another set of constructors associated to kernel method that in-
dicates the map of threads to GPU: threads ≪ tx, ty, tz ≫; blocks ≪
bx, by, bz ≫, where each axis is represented by a tuple index, and another
that indicates the device number where the accelerator object will be executed,
idAcceleratorObject � device �.
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Moreover, the mapping of threads in kernel method is analog to CUDA lan-
guage, we have an set of built-in variables that reveal information on grid mapped
in the device for a specific axis coordinate (axis): blockSize(axis) indicate
the number of threads in block; gridSize(axis) indicate the number of blocks;
threadIdx(axis), indicate the index of thread in block; blockIdx(axis), in-
dicate the index of block in grid. Accelerator classes specifies the state and
interface of accelerator objects. We will use the pseudocode in the Listing 1.1
for illustrating their syntax.

Listing 1.1. Implementation of the Parallel Unit enumerate and the kernel method
dfs

1 a c c e l e r a t o r class EnumAccel{
2 global int path d ;
3 int path h ;
4 . . .
5 EnumAccel(<args >){ . . . }
6 synchronized public int getUpper Bound (){ . . . }
7 public kernel d f s ( int upper bound ) threads<192>
8 blocks <16>{ . . . }
9 paral lel unit Enumerate{

10 setData ( int path h ){
11 async path d = path h ;
12 }
13 public kernel d f s ( int upper bound ) threads<192>
14 blocks<nPreFixos / numThreads(x )
15 + ( nPreFixos % numThreads(x ) == 0 ? 0 : 1)>{
16 int tx = threadIdx . x ; ty = threadIdx . y ;
17 int bx = blockIdx . x ; by = blockIdx . y ;
18 shared f loat < i d v a r i a b l e >;
19 . . .
20 }

The EnumAccel class specify one unit declaration, called Enumerate. The for-
mer has host methods setData, for receiving the operands and correctly placing
them in the global memory of the device, and getResult, for fetching the result
from the device and returning it to the caller host object.

The parallel keyword in the Enumerate unit declares it as a parallel unit.
A parallel unit represents an homogeneous set of units with the same attributes
and methods. The host object may instantiate as many units of a parallel unit
it desires, for distinct host threads. The setData method will copy partitions of
the input matrices to the unit attributes of each Enumerate unit.

A method whose signature is declared in the scope of an accelerator class,
so-called class method, must have an implementation in the scope of each unit.
In turn, methods declared in units are so-called unit methods. A class method
may declare a body, representing a default implementation for units that do not
provide a specific implementation, which can access only host attributes.

The parallel keywork may also declare a parallel method. Clearly, parallel
methods must not be declared in the scope of singleton units. Kernel methods
may invoke device methods, declared using the device modifier, and other ker-
nel methods, which is now possible in Kepler architectures by using dynamic
parallelism (DP) technology. Kernel methods are directly compiled to CUDA
intermediate code.
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Attributes declared in the scope of the class are host attributes, whereas
attributes declared in the scope of units are unit attributes. Local variables de-
clared inside kernel methods may be placed in any place in the memory hierarchy
of the GPU. By default, they are placed in the local memory. The programmer
may force a variable to be placed in other place by using the modifiers global,
shared and constant and texture, such as in CUDA.

3.3 Instantiation of Accelerator Objects

The instantiation of an accelerator object is a collective operation involving all
the host threads. Firstly, it is instantiated using the new operator, outside their
scope, like in the following example:

EnumAccel objAccel = new EnumAccel<device>(· · ·)
instantiates an accelerator object objAccel from the accelerator class EnumAccel,
where device is an optional integer value specifying the device where the accel-
erabor object will be placed. If device not informed, it will be placed in a free
device, if one exists.

After instantiation, the methods of the units of objAccel cannot still be
accessed. They must be initialized, using the unit declaration, in each host
thread. For instance, the initialization of a parallel unit of objAccel identified by
Operation in each host thread that will hold a unit of objAccel has the following
syntax:

EnumAccel:Enumerate objAccel unit = unit Enumerate<size> of objAccel;

, where size is the number of Operation units. Notice that this code must be
executed by each host thread. After that, the unit operations may be accessed
through the unit variable objAccel unit. An access to a method of a unit of a
parallel unit before all units have been initialized will block until the initialization
is complete. For singleton units, the size parameter is not necessary.

3.4 Discussion

Accelerator objects make it possible to hide most of the complexity of het-
erogenous multicore/GPGPU programming through encapsulation. Indeed, the
abstraction of units make transparent the configuration of parallel streams in
GPU devices that follows the Kepler architecture. In the example, each unit
of the Enumerate parallel unit, connected to a host thread, is associated to a
different stream, in such a way that kernels invoked through each unit run in par-
allel. A programmer that wants to take advantage of the processing power of a
GPU to perform a computation must only concern with instantiating accelerator
objects from the accelerator classes that implements the desired functionalities
and invoking their parallel methods to perform calculations. In turn, the pro-
grammer of accelerator classes will have all the expressive power of CUDA to
communicate with the GPU as efficient as possible, implementing highly tuned
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algorithms for taking advantage of GPU computation power. We argue that
Fusion provides important gains in abstraction without loss in efficiency, since
its abstractions have simple mapping to CUDA constructors, promoting better
programmer productivity for developing code for GPUs.

Fig. 3. The Fusion Prototype Architecture

3.5 Prototypic Implementation

Since Fusion is an extension to Java, we have looked for an existing Java virtual
machine (JVM) with support for connection with CUDA for building its first
prototypic implementation. We found J3 [9], a JVM implementation built on a
substrate of the LLVM (Low Level Virtual Machine) project [14][13], so-called
VMKit. The JIT compiler of J3 is the LLVM compiler, which makes it possible
the addition of new features through intrinsic functions, ensuring that the func-
tionalities needed for supporting the GPU architecture can be inserted into the
JVM without the need for modifying the J3 compiler.

PTX (Parallel Thread Execution) is a low-level intermediate code generated
by CUDA compilers for the GPU architectures.We chose the LLVM compiler due
to its ability to generate intermediate code that is similar to PTX code. The code
generated by the LLVM compiler is called LLVM IR, which is later translated
into PTX. With the PTX code, we can call the execution compiler of CUDA
architecture for generating the machine code for the target GPU architecture.

Figure 3 outlines the proposed architecture. The Fusion abstractions are at
the top level, on top of the modified VMKit, the virtual machine of J3. The
CUDA layer is responsible for the interface between the Fusion-J3 compiler and
the device. It is necessary because the Fusion-J3 compiler, which has the respon-
sibility in generating the intermediate code, do not generate the specific machine
code of the device. This is the role of the CUDA compiler.

The use of a CUDA compiler is the most important restriction of the first
prototypic implementation of Fusion, since it restricts its use to NVIDIA devices.
Further works will remove this restriction by allowing a compiler to translate into
the machine code of AMD and ATI devices, possibly using OpenCL.

4 Case Study: Complete Enumeration in ATSP

The Travelling Salesman Problem is stated as follows: find the shortest route
for a travelling salesman who wants to visit a list of cities, each city exactly
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once, and return to the initial city. It is one of the most important combinatorial
optimization problems. If, for all a a and b, the distance from a to b is equal to
the one from b to a, then the TSP is symmetric. Otherwise, it is asymmetric.

The application chosen for this case study is a complete enumeration of Asym-
metric Traveling Salesman Problem (ATSP) instances, based on a GPU-based
schema for Depth-First Branch-and-Bound (DFS-B&B) algorithms proposed by
Carneiro et al. [4].

The B&B method is an important class of algorithm in combinatorial opti-
mization, since it is the main method for solving hard combinatorial optimization
problems in optimality. All B&B algorithms consist of three phases [23]: Branch-
ing, the partition of a problem into smaller problems; Bounding, evaluation of
partial and final solutions, by using upper and lower bounds; and Pruning, the
act of eliminating large portions of the search space. The complete enumeration
herein presented is a DFS-B&B with no prune rules, i.e., a complete enumera-
tion of all solutions of an ATSP instance. The complete enumeration of an ATSP
instance is a computationally intensive algorithm, since an ATSP instance with
N cities has (N − 1)! solutions.

The parallelization strategy adopted by Carneiro et al. (2011) is called Colle-
gial B&B. In this strategy, several independent search procedures are performed
in parallel. The algorithm is initialized by a modified serial DFS-B&B proce-
dure that performs B&B serially until a specific depth in the solutions space is
reached. The current path in B&B tree is saved as a node into the Active Set,
a set that contains nodes that have been evaluated but not yet branched. Each
node constitutes a root to the DFS-B&B kernel, which is responsible for find-
ing the best local solution in a ramification. This process generates a significant
amount of threads, aiming at achieving high GPU occupancy.

As shown in Listing 1.2 (lines 1 to 4), the use of streams enable parallelism,
ensuring that the roots will be calculated in parallel by the kernels DFS-B&B,
each one executing over an independent stream. Before the launching of each
DFS-BB kernel, between the lines 6 and 23, the data is transferred to the device,
by indicating the appropriate stream, where the kernel will be launched, in the
transference of the corresponding portions of each kernel. The number of threads
is calculated before the invocation of the DFS kernels, being dependent on the
number of created roots.

Listing 1.2. Stream Creation and Launching of the DFS-BB Kernels [17]

1 cudaStream t vectorOfStreams [ numStreams ] ;
2
3 for ( int s t ream id =0; stream id<numStreams ; s tr eam id++)
4 cudaStreamCreate (&vectorOfStreams [ st ream id ] ) ;
5
6 for ( int s t ream id =0; stream id<numStreams ; s tr eam id++)
7 cudaMemcpyAsync(&path d [ s t ream id∗chunk∗ ni ve lPreF ixos ] ,
8 &path h [ s t ream id∗chunk∗ ni ve lPreF ixos ] ,
9 qtd th reads s t r eams [ s tr eam id ]∗ s i zeo f ( short )∗ nive lPreFixos ,

10 cudaMemcpyHostToDevice , vectorOfStreams [ s tr eam id ] ) ;
11
12 for ( int s t ream id =0; stream id<numStreams ; s tr eam id++)
13 cudaMemcpyAsync(&melhorSol d [ s tr eam id∗chunk ] ,
14 &melhorSol h [ s tr eam id∗chunk ] ,
15 qtd th reads s t r eams [ s tr eam id ]∗ s i zeo f ( int ) ,
16 cudaMemcpyHostToDevice , vectorOfStreams [ s tr eam id ] ) ;
17
18 for ( int s t ream id =0; stream id<numStreams ; s tr eam id++)
19 cudaMemcpyAsync(& so l s d [ s t ream id∗chunk ] ,



Abstractions for Multicore/Manycore Heterogenous Parallel Programming 119

20 &so l s h [ s t ream id∗chunk ] ,
21 qtd th reads s t r eams [ s tr eam id ]∗ s i zeo f ( int ) ,
22 cudaMemcpyHostToDevice , vectorOfStreams [ s tr eam id ] ) ;
23
24 for ( int s t ream id =0; stream id<numStreams ; s tr eam id++)
25 dfs cuda UB stream<<<num blocks , b l o c k s i z e , 0 , vectorOfStreams [ s tr eam id]>>>
26 (N, qtd thread s s tr eams [ s t ream id ] , mat d ,
27 &path d [ s tr eam id∗chunk∗n ive lPreFixo s ] , n ive lPreFixos ,
28 999999 ,& so l s d [ s tr eam id∗chunk ] , &melhorSol d [ s tr eam id∗chunk ] ) ;

In the Fusion code, an accelerator class so-called EnumerationAccel is speci-
fied, with a single parallel unit so-called Enumerate, which implements the kernel
method dfs, representing the DFS-B&B kernel. The code of the unit Enumerate
is presented in the Listing 1.3. The kernel method dfs is similar to the CUDA
kernel of the related work. For this reason, this code is omitted from Listing 1.3
(ellipsis in line 14).

Listing 1.3. Implementation of the Parallel Unit enumerate and the kernel method
dfs

1 paral lel unit Enumerate
2 {
3 public void setData ( int [ ] path h )
4 {
5 async path d = path h ;
6 async melhorSol d = melhorSol h ;
7 async s o l s d = so ld h ;
8 }
9 public kernel d f s ( int upper bound ) threads<192>

10 blocks<nPreFixos / numThreads(x ) + ( nPreFixos % numThreads( x ) ==
11 0 ? 0 : 1) >{ . . .}
12 }
13 }

In a Fusion multi-thread computation, the parallel units of the accelerator
object are instantiated by the host threads. In the Listing 1.3, it is possible to
observe that each unit perform its own asynchronous data copies to the device
(lines 5, 6 and 7), using the usual assignment operation with the async modifier.
The units are instantiated through the set of host threads created and instanti-
ated by the application. The creation of a set of threads for a specific object may
be seen in the Listing 1.4, where size indicates the number of threads. Notice
that the accelerator object is mapped to the device 0.

Listing 1.4. Instantiation of an accelerator object from EnumerationAccel

1 enumeration = new EnumerationAccel<0> ( chunk , nPreFixos , N, n ive lPreFixos ,

2 mat h , path h , melhorSol h , s o l s h , s i z e , q td th read s s t r eams ) ;

3 ForkJoinPool f o rkJo inPoo l = new ForkJoinPool ( s i z e ) ;

4 forkJo inPoo l . invoke (new TaskEnumeration( this , Enumeration) ) ;

5 ot imo g l oba l = enumeration . getMelhorSol ( ) ;

The instantiation of units occurs inside each thread of the created set. In the
Listing 1.5, we can see the instantiation in line 9, as well as the call to the parallel
kernel method in line 16. Remember that the method will be executed when all
the size units will be instantiated.

Listing 1.5. Initialization of the Unit Enumerate

1 public class TaskEnumeration extends RecursiveTask<Double>
2 {
3 private EnumerationAccel a c c e l o b j ;
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4 private int rank ;
5
6 TaskEnumeration( EnumerationAccel a c c e l o b j ){
7 super ( ) ;
8 this . a c c e l o b j = a c c e l o b j ;
9 }

10 protected Object compute (){
11 private EnumerationAccel : Enumerate a c c e l o b j u n i t ;
12 a c c e l o b j u n i t = unit Enumerate<s i z e> o f a c c e l o b j ;
13 a c c e l o b j u n i t . d f s ( 999999 ) ;
14 return null ;
15 }
16 }

4.1 Performance Evaluation

This performance evaluation was designed with two questions in mind:

1. Can a Java developer obtain better performance by using Fusion for accel-
erating critical code fragments ?

2. Can a CUDA developer adopt a host language with higher level of abstrac-
tion without significant performance penalties ?

For that purpose, four program variants were created from Carneiro et al.
(2011): CUDA (A1), adapted for the use of streams; CUDA OMP (A2), adapted for
the use of OpenMP threads, where each thread creates a stream and launches
a kernel; Java Sequential (A3), where all operations are performed sequen-
tially; Java Parallel (A4), based on A2, with the solution space partitioned
across the host threads, by creating a Java thread for each workload; and Fusion

model(A5), based in A1 and A4, that presents the execution model of Fusion.
In the Java Parallel version, the partitioning of the workload is given by

the number of processing cores, in order to achieve a maximum occupancy. This
partitioning strategy is also adopted in algorithms CUDA, CUDA OMP and Fusion

model. In Fusion model, each host thread creates a parallel unit that will launch
a kernel implemented in CUDA. The interface between Java and CUDA is per-
formed via JNI (Java Native Interface). Every parallel unit is implemented as
an inner class in the class that represent the accelerator object.

In the experiments, each program repeated the complete enumeration by 32
times. The higher and the lower execution times have been discarded. The execu-
tion time has been measured by using the Linux function time. ATSP instances
were constructed by using glibc rand function. These instances represent com-
plete graphs, where each element rij belonging to the RNxN cost matrix can
vary from 0 to 1000. In Table 2, we can see the execution times for each im-
plementation of ATSP instances. In Table 2, we present the time required by
each implementation to perform the complete enumeration. The experimental
environment has the following characteristics:

1. Operating system: Linux Ubuntu 13.04 32 bits;
2. Processor: Intel core i5-3550 3.30GHz with four cores and 8 GB Ram;
3. Accelerator: GeForce Nvidia GTX690, 2 GB, 1536 cuda cores.
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For all instances, the execution times of Fusion are better than the execution
times of the Java multithreaded version, as expected. This is more evident for
higher levels. In relation to the CUDA-C versions, Fusion is equivalent with the
CUDA OMP version for instance 12. In turn, it is equivalent to the CUDA version in
higher instances, with significant results for instances 14 and 15.

Table 2. Execution time for each implementation of complete enumeration

Time Milliseconds
Instance A1 A2 A3 A4 A5

11 51.75 58.95 292.80 186.30 161.55
12 130.47 229.42 2290.43 1078.50 212.97
13 873.40 1617.97 27032.30 10351.10 1010.83
14 17877.60 20345.50 357397.75 190260.75 17842.60
15 168821.03 220479.32 5974113.6 3219878.85 168926.83

In Figure 4a, it is possible to observe the speedups for Java Parallel and
Fusion versions, compared with the serial version of the same algorithm. The
results demonstrate that Java programmers can benefit from the abstractions
proposed by Fusion. We can observe that the use of accelerators objects, in this
example, provided a significant performance gain especially for larger instances
reaching the order of 35 times faster than serial version.

It is observed a drop in speedup for the Fusion model in the transition be-
tween instances 13 and 14. This pattern was also observed in the CUDA-C
versions. In a more specific analysis, we identified that parallel execution of all
streams on the GPU device occurs only until the instance 13. For larger in-
stances, this is not possible. Serialization of streams occurs on the device due to
the large amount of data required for each workspace solutions.

(a) Speedup Java Parallel and Fusion model
(b) Relation Fusion model and
CUDA

Fig. 4. Speedup and relation between programs

The CUDA speedup is not presented since the serial version is written in Java,
for an evaluation of the weight of Java abstractions. However, the analysing of the
Figure 4b also shows that the CUDA programmers can use Fusion abstractions
without loss of performance. Note that the instance 11, CUDA is 2x faster than
Fusion, but this difference is reduced in other instances. In instances 14 and 15
the relation is zero demonstrated that the execution time Fusion is equivalent
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to CUDA. The results show that Fusion model accomplishes its initial purpose:
combine high-level abstractions with high performance.

5 Conclusions and Lines for Further Works

Fusion is an extension of Java with abstractions for heterogenous multicore/-
manycore parallel computing. It introduces a special kind of object, so-called
accelerator object, for taking advantage of object-orientation for hiding the com-
plexity of GPGPU architecture from the programmers. It also takes advantage
of recent advances in the GPU architecture for implementing new abstractions,
due to the introduction of Hyper-Q and Dynamic Parallelism technologies with
Kepler architecture, extending the programming model of GPUs.

Other Java based approaches for GPGPU programming are mostly concerned
with providing a direct connection to the CUDA architecture, only interested in
bringing object-orientation to GPGPU programming in its usual form. This is
the main difference with respect to Fusion, which also introduces new linguistic
abstractions to Java, making it possible the evaluation of this alternative.

The case study presented in Section 4 demonstrates that Fusion may reduce
the complexity of the GPGPU code in relation to the same code written in
CUDA-C, hiding architecture specific details under its abstractions. For instance,
the management of independent streams, a key concept introduced by the Kepler
architecture for heterogenous parallel computing, is completely hidden behind
the abstraction of units. In fact, all the complexity of the GPU architecture is
confined in the accelerator object EnumerationAccel. Only the programmer of
the accelerator object is responsible to tune the performance of the computation
with the characteristics of the target GPU.

Future works will complete the implementation of the Fusion compiler. It is
still necessary to study how to reconcile certain key features of Java, derived from
its virtual execution nature, with GPU programming. The most challenging is
dynamic memory management. In fact, the Java garbage collector is not able
to reach data placed in the memory hierarchies of the GPU, requiring explicit
deallocation routines like in CUDA-C.
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Abstract. The Trip Count of a loop determines how many iterations
this loop performs. Several compiler optimizations yield greater benefits
for large trip counts, and are either innocuous or detrimental for small
ones. However, predicting exactly the trip count of a loop is an unde-
cidable problem in general. Thus, such problem is usually approached
through heuristics, which tend to be computationally expensive. In this
paper we argue that in most cases there is no need to resort to expen-
sive methods and that in many cases the trip count prediction does not
need to be sound. In that sense, we propose a lightweight trip count
prediction heuristic. Our method identifies the pattern on which the in-
duction variables of each loop are updated between two iterations and
generate symbolic expressions that represent the trip counts of the loops.
Such expressions can be evaluated at runtime with O(1) complexity and
allow blocks of code to be conditionally executed, depending on the ex-
pected trip count. We argue that such technique is useful for speculative
optimizations, very common in the world of just-in-time compilers. For
instance, if we predict that a loop will iterate for a long time, we can
perform more aggressive JIT optimizations. Furthermore, we show that
despite the simplicity of our technique, we have accurately predicted
nearly 90% of all the interval loops found in millions of lines of C code.
The interval loops represent approximately 67% of the total number of
loops of the programs.

1 Introduction

Loops represent most of the execution time of a program. For that reason, there
is a well-known aphorism that says that "all the gold lays in the loops". Thus,
compiler optimizations made inside loops have their benefits multiplied by the
number of iterations actually executed. As a consequence of that fact, there is a
vast number of works in the literature that are specialized in loop optimizations
[19,11,14].

Some optimizations, however, are highly sensitive to the number of iterations
of a given loop. For instance, if a given loop iterates a few times in an interpreter,
an aggressive optimization made by a Just-In-Time (JIT) compiler may not
even pay for the compilation overhead. On other hand, if the same loop iterates
thousands of times, the JIT compilation might use more expensive techniques
and still have a better end-to-end performance. The number of iterations a loop
actually executes is called Trip Count. Here we use the same concept of trip
count as described by Wolfe et al. [19, pp.200].
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However, in most cases this number is only known at runtime. Rice [16] has
demonstrated that statically predicting this information is an undecidable prob-
lem. Therefore, this problem can only be partially solved by heuristics. There is a
large number of works in the literature that propose different techniques to solve
this problem [18,1,9]. The main disadvantage of them is the high computational
cost to predict loops. That characteristic makes these solutions impractical to
be applied to JIT compilers, for instance.

In this particular work, we argue that, although predicting exactly the trip
count of a loop is undecidable, most of the time there is no need to use computa-
tionally expensive state-of-the-art methods to compute (an approximation of) it.
We propose a heuristic that extracts patterns of the updates of variables’ values
and estimates the trip count of loops with symbolic expressions. Those expres-
sions might, then, be evaluated at runtime with O(1) complexity. They allow
the program to decide dynamically which piece of code to execute, depending
on the actual expected number of iterations.

We support our position with a series of experiments. We have analyzed mil-
lions of lines of C code, with thousands of different loops present on well-known
benchmarks. Our experiments demonstrate that most of the loops are easy to
predict and do not demand expensive techniques to be accurately analyzed. We
have collected statistics about the structure of thousands of loops that support
our claim. According to our research, 70% of the loops have a very simple and
well-behaved structure. We have instrumented those loops and we have exactly
predicted the trip counts of 90% of them.

The rest of this paper is organized as follows: Section 2 gives us the basis upon
which we develop our technique. Sections 3 and 4 describe our algorithms and
explain our engineering choices. We experimentally evaluate the performance of
our work in Section 5. In Section 6 we discuss how our work is related with
existing efforts in the literature. Finally, in Section 7 we discuss possible future
directions of this research and make final remarks.

2 Background

Our analysis combines information contained in the Control Flow Graph (CFG)
and in the Data Dependence Graph of the program. From the CFG we can ex-
tract information about the structure of the analyzed program, like the points of
the program where the loops start and stop, and which variables and instructions
directly affect the control flow. From the dependence graph we can extract in-
formation about the way that the information flows among the variables. Those
information allow us to generate symbolic expressions that estimate the trip
count of the loops of the program.

The dependence graph [5] is defined in the following way: for each program
variable v, we create a node nv, and for each instruction i in the program we
create a node ni. For each instruction i : v = f(. . . , u, . . .) that defines a
variable v and uses a variable u we create two edges: nu → ni and ni → nv.

Many variables of a program do not affect the predicates that represent the
loops’ stop conditions. Thus, we do not consider those variables in our analysis,
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Fig. 1. (a)Example program. (b) CFG of the program, after conversion to SSA form.
(c)Dependence graph highlighting nodes that do not affect the loop predicate, after
converting the original program into SSA.

because they do not have any impact on the number of iterations of those loops.
Therefore, despite of working with a slice of the program that eliminates those
instructions, the result of our analysis remains the same. Figure 1 shows a de-
pendence graph for the factorial function and highlights the variables that we
can prune before doing our analysis. In this work we use the SSA representation
form [3]. We chose this representation form because it is able to give extra preci-
sion to our analyses in cases when the same variable is redefined in two different
loops.

Natural Loops
According to Appel and Palsberg [2, p.376], a natural loop is a set of nodes S
of the control flow graph (CFG) of a program, including a header node H , with
the following properties:
– from any node in S there is a path that reaches H ;
– there is a path from H to any node that belongs to S;
– any path from a node outside S to a node inside S contains H .

A node PH of the CFG is a pre-header of a natural loop if and only if PH
has H as an immediate successor. In this work we normalize the CFG in such
a way that every natural loop has one unique pre-header PH , that is executed
immediately before the first iteration of the loop. Such normalization gives us
a basic block that immediately dominates the loop. This basic block is used by
our profiler to initialize the variables that we use to observe the behavior of the
loop.

In addition, the stop condition of a loop is a boolean expression E =
f(e1, e2, . . . , en), where each ej , 1 ≤ j ≤ n is a value that contributes to the
computation of E. Depending on the stop condition we classify the loop into one
of the following categories:

– Interval Loops - The stop condition is an integer comparison instruction
that receives two operands e1 and e2 and compares them with an inequality
( <, ≤, >, or ≥).
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– Equality Loops - The stop condition is an integer comparison instruction
that receives two operands e1 and e2 and compares them with an equality (
== or ! =).

– Other Loops - Any natural loop that neither is an Interval Loop nor is an
Equality Loop.

Strongly Connected Components
Variables that are redefined during the execution of a loop of the program belong
to cycles in the dependence graph. Cycles of redefinitions of variables can be
identified by computing the Strongly Connected Components (SCCs) on the
dependence graph [17]. The SCCs help us to group the different nodes of the
graph that belong to the same redefinition sequence.

After we have computed the SCCs of the dependence graph, we can classify
them in the following way:

– Single-node SCC - SCCs composed by only one node.
– Multi-node SCC - SCCs composed by more than one node. SCCs of this

class represent cycles in the dependence graph.
Multi-node SCCs can be divided in two categories:
– Single-path SCC - From any node in the SCC there is only one path that

starts and ends in the same node and passes through the edges of the SCC
at most once.

– Multi-path SCC - There is at least one node in the SCC for which there
are two or more paths that start and end in the same node and pass through
the edges of the SCC at most once.

Single-path SCCs are unconditional sequences of redefinitions of a variable.
This pattern of SCC is the easiest to analyze, because it is possible to infer
statically what is the effect of one iteration of the loop on the variables of the
SCC.

Multi-path SCCs are conditional sequences of redefinitions of a variable. This
means that there are conditional branches inside the CFG loop. The amount of
branches makes the total number of possible paths to grow exponentially. Thus,
this class of SCCs is harder to analyze. Multi-path SCCs can be further classified
into two different categories:

– Single-loop SCC - The SCC has branches that does not constitute nested
loops.

– Nested-loop SCC - There are inner loops inside the SCC. In order to avoid
non-termination problems, we do not analyze this category of SCC.

Sequences of Redefinitions of Variables
A sequence of redefinitions (SR) is a path in the SCC that starts and ends in
the same node and does not repeat any edge. By construction, our dependence
graph does not admit self loops, so SRs are always extracted from Multi-node
SCCs. A SR can be interpreted to generate the effect of one iteration of the
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Fig. 2. (a)Dependence graph. (b)Multi-node SCC of the variable i1. (c)Sequence of
redefinitions of the variable i1. (d)Effect of one iteration on the variable i1.

program on a given variable. Figure 2 shows an example of SR for one induction
variable.

Considering infinite precision, a SR has one of the following classifications:

– Constant - after one iteration of the SR, the value of the variable remains
the same.

– Increasing - after one iteration, the value of the variable is always larger
than the initial value.

– Decreasing - after one iteration, the value of the variable is always smaller
than the initial value.

– Possibly Oscillating - after one iteration, we are not able to prove neither
an increasing nor a decreasing behavior.

SRs that are classified as Possibly Oscillating are placed in this category because
at least one of the following reasons is true:

– There is a call instruction in the SR. Currently our analysis is not able to
analyze interprocedural SRs.

– There is an operation in the SR that receives an operand X , where the range
analysis of X gives a positive upper bound and a negative lower bound.

– The SR depends on SCCs that have been classified as Possibly Oscillating.
We can classify a Multi-node SCC within the same categories of a single SR.

For that, the classification of all the SRs of the SCC must be combined using a
meet operation in the lattice shown in Figure 3. Therefore, the classification of
a SCC is the least upper bound of the classifications of the SRs that the SCC
contains.

Vectors
In order to achieve good precision without sacrificing efficiency, we propose an
abstraction called vectors to predict trip count. We place each numeric variable
v of the analyzed program on the real number line, in the point corresponding to
the value stored by v. Whenever the value that v stores is changed, we move v
to another point of the real line, corresponding to its new value. By doing that,
we have observed that some variables have a well-defined behavior along loop
iterations, that we can translate into patterns of movement. The vectors are,
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Fig. 3. Lattice of SR classifications

then, the structures that help us to understand those patterns of movement. We
borrow the concept from linear physics vectors (magnitude, direction).

A vector is the step given by a variable v after one complete iteration through
a SR p. Before the execution of p, we have v0 stored in v. After the execution of
p, v will be redefined with a new value, vp. We can understand this redefinition
of v as a move on the real number line. The step given by v in the line is vp−v0.
Thus, a vector of a variable v extracted from a SR p is Δvp = vp − v0.

The sign of Δvp indicates the direction of the vector (i.e. the direction to where
we are moving v). Vectors may be defined by symbolic expressions involving other
variables of the program. This characteristic generates a chain of dependencies
that brings the need to process the SCCs in topological order. If the SCC of a
variable n is classified as Possibly Oscillating, then the vectors that depend on
n are unknown.

Patterns of Movement
When variables have their values updated always by vectors with the same char-
acteristics, some patterns of movement are noticeable:

– Stationary - variables updated by vectors with length equal to zero.
– Constant Speed - variables updated by vectors with constant length. In

this case, on each iteration, the variable is moved a constant distance from
its previous location, creating a linear behavior.

– Constant Acceleration - variables updated by a vector that has a linearly
increasing length. This kind of vector is generated by a linear expression
involving a Constant Speed variable, creating a quadratic behavior.

– Constantly Increasing Acceleration - variables updated by a vector that
is generated by a linear expression involving a Constant Acceleration variable,
creating a cubic behavior.
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– More Than Cubic - variables updated by a vector that is generated by
a linear expression involving a Constantly Increasing Acceleration or More
Than Cubic variable, creating a more-than-cubic behavior.

– Unknown - Occurs when:

– Variables are updated with vectors that depend on variables with Unknown
movement patterns.
– Variables are updated with vectors that have their length decreased on
each iteration.

3 A Trip Count Algorithm Based on Vectors

Most of the loops have their number of iterations controlled by data that come
from the input, so a purely static analysis is not precise enough to solve this prob-
lem. We propose, then, a hybrid solution involving a static and a dynamic step:
we statically analyze the program and generate symbolic expressions that rep-
resent the estimated trip counts of its loops. Dynamically, during its execution,
the instrumented program evaluates those expressions with O(1) complexity.
Other optimizations might use the result of those expressions to make decisions
at runtime, depending on the expected trip count. At the end of the compilation
process, unused expressions can be trivially removed by a dead code elimination
procedure.

Algorithm 1. Trip Count Instrumentation Based on Vectors
Input: Program P
Output: Program P with new instructions that estimate the maximum trip count of the loops
1: for all Loop l ∈ P do
2: if isIntervalLoop(l)orisEqualLoop(l) then
3: Variable op1 = getF irstOperand(l.getStopCondition())
4: Variable op2 = getSecondOperand(l.getStopCondition())
5: Expression step = estimateMinimumStep(op1 , op2)
6: if ∃ step then
7: Insert instructions that compute the expression |op1 − op2|/step before the first iter-

ation of l.
8: end if
9: end if
10: end for

Algorithm 1 presents the static analysis needed to generate the trip count
expressions using vectors. Our heuristic only covers Interval Loops and Equality
Loops. Once we have collected both operands op1 and op2 of the stop condition
of a loop l, we have to estimate the step of approximation of the two variables
in the real numbers line. In order to estimate the trip count of a loop, we must
be able to evaluate op1 and op2 before the first iteration. Thus, both operands
must be integer expressions that do not produce side effects when evaluated.
Finally, if there is a well defined behavior of update of both operands, then
estimateMinimumStep(op1, op2) will return a valid step and we can estimate
the trip count. Otherwise, we are not able to estimate the trip count of l.
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Algorithm 2. estimateMinimumStep: Estimate the minimum step of approxi-
mation of variables in the real line.
Input: Pair of Variables op1, op2

Output: Expression step with the minimum step.
1: Vector v1 = getMinV ector(op1)
2: Vector v2 = getMinV ector(op2)
3: if ∃ v1 and ∃ v2 then
4: return |v1 − v2|
5: else
6: return null
7: end if

Algorithm 2 shows how we estimate the minimum step given the minimum
vectors of the two variables that control the stop condition of the loop. The min-
imum step leads to the maximum trip count. Minor adaptations are required to
generate the maximum step and, finally, the minimum trip count. The variables
will only have a minimum vector if they have a monotonic behavior i.e. whenever
the variables move in the real line, they move in the same direction.

Algorithm 3. getMinVector: Generate the minimum vector of a given mono-
tonic variable
Input: Variable v
Output: Vector

#»
V with the minimum length.

1: Vector
#»
V = ⊥

2: for all RedefinitionSequence rs of v do
3: Vector

#      »
Tmp = evaluateDelta(rs)

4: #»
V = joinV ectorsmin(

#»
V ,

#      »
Tmp)

5: if #»
V == unknown then

6: break
7: end if
8: end for
9: return #»

V

Algorithm 3 generates the minimum vector for a given variable. In order
to generate such vector, we have to symbolically evaluate every Sequence of
Redefinition of that variable and join the results in a vector. The join oper-
ation has two steps: first we check the direction of both vectors. If the vec-
tors have opposite directions or one of the vectors is unknown, the result of
joinV ectorsmin(

#»

V ,
#       »

Tmp) is unknown. Otherwise, we take the vector with the
minimum length as the result of the join.

4 A Simplified Trip Count Algorithm Based on Vectors
for JIT Compilers

With the massive increase of the usage of the World-Wide-Web and the in-
troduction of many new architectures that must run the same programs, it is
essential to have portable programs. Code interpreting provides easy portability
of programs, because just the interpreter must be translated into the different
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architectures, instead of any program of a given language. However, code inter-
preting is slow and excessively consumes resources. In this context, Just-In-Time
(JIT) compilers are used to overcome the inefficiencies that code interpreters in-
herently have [15].

JIT compilers work by compiling pieces of code right before they are exe-
cuted. Whenever the controller thread tries to execute some function that has
no native code available, the controller thread calls the compiler before execut-
ing the function. That means that the execution stops while the JIT compiler
is generating native code. Therefore, the JIT compiler must generate the most
optimized possible code in the minimum time, because the total time (compil-
ing + execution) must be lower than the interpreting time, otherwise there is
no point in compiling those programs. Because of that, JIT compilers must use
extremely lightweight algorithms to keep the compiling time as low as possible.

Here we present a simplification in our trip count prediction heuristic in order
to be able to apply it in JIT compilers. As we have observed in Section 5, 90% of
the natural loops are either Interval Loops or Equality Loops. Moreover, most of
our vectors are constant speed vectors with length equal to one. From those facts,
in the simple heuristic we assume that in every Interval or Equality loops the min-
imum step of approximation of op1 and op2 is equal to one. Thus, the estimated
trip count is |op2−op1| and we avoid calling EstimateMinimumStep(op1, op2).
Our heuristic generates the expression that estimates the trip count with O(1)
complexity. The complexity of the analysis of the whole program is O(n), where
n is the number of natural loops of the program.

5 Experimental Results

We have implemented a prototype of our analyses in the LLVM compiler, version
3.3. We have analyzed more than 500 programs, including the benchmarks of the
LLVM test-suite and the benchmarks of SPEC 2006 CPU. In this section we will
focus the discussion in the results obtained with the analysis of the benchmarks
of SPEC 2006 CPU.

Most of the loops of the programs have a simple structure, and that means that
the analysis does not need to be complicated in order to cover almost all loops of a
program. Table 1 analyzes the structure of natural loops of programs. According
to Ferrante [5], natural loops are single-entry regions. We have observed that
65.92% of the loops have just one stop instruction, so they are single-entry and
single-exit regions. However, 39.87% of the loops are nested inside other loops.
Those numbers tell us that despite of the simplicity of most loops, a considerable
amount of them is nested, so loop analyses that does not support nested loops
leave a large number of loops uncovered.

We have also identified a pattern in the stop conditions of the loops. Table 2
shows that approximately 85% of the natural loops have a single integer com-
parison as the stop condition. Moreover, the vast majority of those loops are
interval loops, the easiest kind of loop to analyze. We have also observed simi-
lar proportions while analyzing the rest of our benchmarks. Those numbers are
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Table 1. Natural Loops in the Control Flow Graph. L: number of natural loops. NL:
number of nested loops. SEL: number of loops that have a single exit point.

Program L NL % NL/L SEL % SEL/L

433.milc 426 211 49.53% 399 93.66%
444.namd 623 418 67.09% 593 95.18%
447.dealII 6526 2695 41.30% 3412 52.28%
450.soplex 742 181 24.39% 554 74.66%
470.lbm 23 10 43.48% 23 100.00%
401.bzip2 238 85 35.71% 150 63.03%
403.gcc 4614 1357 29.41% 3202 69.40%
429.mcf 50 9 18.00% 39 78.00%
445.gobmk 1288 482 37.42% 913 70.89%
456.hmmer 881 245 27.81% 740 84.00%
458.sjeng 267 62 23.22% 201 75.28%
462.libquantum 98 13 13.27% 90 91.84%
464.h264ref 1870 1008 53.90% 1784 95.40%
471.omnetpp 465 66 14.19% 249 53.55%
473.astar 119 37 31.09% 104 87.39%
483.xalancbmk 3106 259 8.34% 1611 51.87%

Total 21336 7138 33.46% 14064 65.92%

Table 2. Classification of Natural Loops according to their stop conditions. L: number
of natural loops. IL: number of Interval Loops. EL: number of Equality Loops. OL:
number of Other Loops.

Program L IL % IL/L EL % EL/L OL % OL/L

433.milc 426 417 97.89% 5 1.17% 4 0.94%
444.namd 623 494 79.29% 7 1.12% 122 19.58%
447.dealII 6526 4597 70.44% 604 9.26% 1325 20.30%
450.soplex 742 572 77.09% 101 13.61% 69 9.30%
470.lbm 23 23 100.00% 0 0.00% 0 0.00%
401.bzip2 238 201 84.45% 29 12.18% 8 3.36%
403.gcc 4614 2103 45.58% 1954 42.35% 557 12.07%
429.mcf 50 17 34.00% 28 56.00% 5 10.00%
445.gobmk 1288 1098 85.25% 131 10.17% 59 4.58%
456.hmmer 881 697 79.11% 109 12.37% 75 8.51%
458.sjeng 267 117 43.82% 128 47.94% 22 8.24%
462.libquantum 98 88 89.80% 6 6.12% 4 4.08%
464.h264ref 1870 1789 95.67% 19 1.02% 62 3.32%
471.omnetpp 465 283 60.86% 82 17.63% 100 21.51%
473.astar 119 108 90.76% 1 0.84% 10 8.40%
483.xalancbmk 3106 1687 54.31% 752 24.21% 667 21.47%

Total 21336 14291 66.98% 3956 18.54% 3089 14.48%

favorable to our heuristics, because we take advantage of the simplicity of the
loops to produce precise results with simple algorithms.

Table 3 shows the statistics collected while analyzing the dependence graphs
of the programs. 85.40% of the Multi-Node SCCs are Single-Path SCCs. That
means that there is only one SR for the variables of such SCCs. Moreover,
just 7.70% of the Multi-Node SCCs have nested cycles and do not fulfill the
requirements of our analysis. All the presented data confirms that the programs
have a structure that is suitable for our heuristics to produce accurate results.

In order to estimate the trip count of a loop, our prototype must be able to
infer the values that Op1 and Op2 store before the first iteration. Op1 and Op2
are the operands of the stop condition of the loop. This information is not always
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Table 3. Classification of Strongly Connected Components in the Dependence Graph.
SN: number of Single-Node SCCs. MN: number of Multi-Node SCCs. SP: number of
Single-Path SCCs. MP: number of Multi-Path SCCs. SL: number of Single-Loop SCCs.
NL: number of Nested-Loop SCCs.

Program SN MN SP % SP/MN MP SL % SL/MP NL % NL/MN

433.milc 2507 426 409 96.01% 17 11 64.71% 6 1.41%
444.namd 5879 781 604 77.34% 177 6 3.39% 171 21.90%
447.dealII 79169 7249 6077 83.83% 1172 505 43.09% 667 9.20%
450.soplex 13032 807 683 84.63% 124 53 42.74% 71 8.80%
470.lbm 94 24 23 95.83% 1 1 100.00% 0 0.00%
401.bzip2 3610 214 171 79.91% 43 16 37.21% 27 12.62%
403.gcc 123775 5121 4513 88.13% 608 276 45.39% 332 6.48%
429.mcf 1022 54 40 74.07% 14 7 50.00% 7 12.96%
445.gobmk 17675 1555 1283 82.51% 272 163 59.93% 109 7.01%
456.hmmer 12215 946 825 87.21% 121 67 55.37% 54 5.71%
458.sjeng 3337 276 221 80.07% 55 38 69.09% 17 6.16%
462.libquantum 1439 123 100 81.30% 23 8 34.78% 15 12.20%
464.h264ref 21502 1946 1841 94.60% 105 27 25.71% 78 4.01%
471.omnetpp 12383 470 379 80.64% 91 39 42.86% 52 11.06%
473.astar 2591 138 118 85.51% 20 7 35.00% 13 9.42%
483.xalancbmk 57181 3024 2486 82.21% 538 373 69.33% 165 5.46%

Total 357411 23154 19773 85.40% 3381 1597 47.23% 1784 7.70%

Table 4. Trip Count Instrumentation. IL: interval loops. IIL: instrumented interval
loops. EL: equality loops. IEL: instrumented equality loops.

Program # IL # IIL % IIL/IL # EL # IEL % IEL/EL

433.milc 417 391 93.76% 5 3 60.00%
444.namd 494 469 94.94% 7 1 14.29%
447.dealII 4597 3535 76.90% 604 77 12.75%
450.soplex 572 422 73.78% 101 48 47.52%
470.lbm 23 23 100.00% 0 0 -
401.bzip2 201 186 92.54% 29 7 24.14%
403.gcc 2103 1798 85.50% 1954 192 9.83%
429.mcf 17 7 41.18% 28 1 3.57%
445.gobmk 1098 1040 94.72% 131 56 42.75%
456.hmmer 697 664 95.27% 109 39 35.78%
458.sjeng 117 106 90.60% 128 17 13.28%
462.libquantum 88 77 87.50% 6 1 16.67%
464.h264ref 1789 1411 78.87% 19 8 42.11%
471.omnetpp 283 238 84.10% 82 29 35.37%
473.astar 108 80 74.07% 1 1 100.00%
483.xalancbmk 1687 1403 83.17% 752 108 14.36%

Total 14291 11850 82.92% 3956 588 14.86%

possible to be inferred, because sometimes one of the operands is the result of
a call to other function. In cases like this, we do not know the value of the
operand before the loop starts and, consequently, we are not able to estimate its
trip count. Thus, both operands must be integer expressions that do not produce
side effects when evaluated. Table 4 shows the number of loops of which we are
able to infer the trip count. For instance, we were able to estimate the trip count
of 85.50% of the interval loops of the benchmark 403.gcc, while we were able to
instrument just 9.83% of its equality loops. We have investigated this and we
observed that most of the 403.gcc’s equality loops are bounded by comparisons
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between pointers. The same was observed in other programs. Because of that,
we should focus only in the interval loops.

We have developed a profiler that collects the estimated trip count and the
real trip count during an actual execution of the benchmarks. The result of
our profiler lets us to observe how accurate are our heuristics. We have split
our accuracy results into seven categories according to the actual number N of
iterations:

– [0,
√
N ]: Occurs when the estimated trip count is less or equal the square

root of the actual trip count. For example, if we estimate that a loop will
iterate 2 times and it iterates 10 times during its execution, this loop will be
classified into this category.

– ]
√
N , N/2]: Occurs when the estim ted trip count is greater than the square

root of the actual trip count but is less or equal its half. For example, if we
estimate that a loop will iterate 4 times and it iterates 10 times during its
execution, this loop will be classified into this category.

– ]N/2, N [: Occurs when the estimated trip count is greater than the half
of the actual trip count but is less than the trip count. For example, if we
estimate that a loop will iterate 8 times and it iterates 10 times during its
execution, this loop will be classified into this category.

– [N , N ]: Occurs when the estimated trip count equals the actual trip count.
For example, if we estimate that a loop will iterate 10 times and it iterates
10 times during its execution, this loop will fall into this category.

– ]N , 2 ∗N ]: Occurs when the estimated trip count is greater than the actual
trip count, but is less or equal to two times the actual trip count. For example,
if we estimate that a loop will iterate 16 times and it iterates 10 times during
its execution, this loop will be classified into this category.

– ]2 ∗N , N2]: Occurs when the estimated trip count is greater than two times
the actual trip count, but is less or equal to the power of two of the actual
trip count. For example, if we estimate that a loop will iterate 32 times and
it iterates 10 times during its execution, this loop will be classified into this
category.

– ]N2, +∞]: Occurs when the estimated trip count is greater than the power
of two of the actual trip count. For example, if we estimate that a loop will
iterate 128 times and it iterates 10 times during its execution, this loop will
be classified into this category.

Table 5 shows the comparison between the estimated trip count and the actual
trip count that we have collected with our profiler. The subtotal lines contain
only the SPEC CPU benchmarks, while the total lines also include more than
300 benchmarks distributed with LLVM. While running the programs, each time
a loop stops, we collect the actual trip count and compare it with the estimated
trip count. Thus, the numbers that we presented is the number of instances of
loops, instead of the number of natural loops. We did this because we may predict
correctly the trip count for some instances and may predict wrongly for other
instances of the same CFG loop. Table 6 shows information about the programs
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Table 5. Trip Count Profiler - Trip count estimated using vectors

Program [0,
√
N ] ]

√
N , N/2] ]N/2, N [ [N , N ] ]N , 2 ∗ N ] ]2 ∗ N , N2] ]N2, +∞]

milc 14 0 0 435,514,912 38,360 9,984 1,032,930
namd 0 0 0 21,602,695 8,064 3,168 0
soplex 1,851 367 122 186,943 12,782 10,219 43,338
lbm 0 0 0 53,397 0 0 0
bzip2 8,616,650 2 311,724 13,204,855 14,195,603 1,128,948 28,939,274
gcc 433,588 17 326 17,240,735 1,851,284 278,164 336,422
mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
gobmk 8,392 20 400 651,081 70,492 117 20,141
hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
libquantum 0 0 0 8,182,095 0 1 0
h264ref 6,749,850 0 0 311,274,945 13,427,840 57,300 228,711
astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 15,914,068 1,113 2,877,992 955,866,120 44,786,968 6,026,735 37,227,397
Subtotal (%) 1.50% 0.00% 0.27% 89.95% 4.21% 0.57% 3.50%

Total 25,525,142 2,078 2,922,080 4,134,074,825 163,974,403 11,363,892 400,209,181
Total (%) 0.54% 0.00% 0.06% 87.25% 3.46% 0.24% 8.45%

Table 6. Trip Count Profiler - Trip count estimated using simplified heuristic

Program [0,
√
N ] ]

√
N , N/2] ]N/2, N [ [N , N ] ]N , 2 ∗ N ] ]2 ∗ N , N2] ]N2, +∞]

milc 14 0 0 435,514,912 38,360 9,984 1,032,930
namd 0 0 0 21,602,688 8,065 3,174 0
soplex 1,851 367 112 186,939 12,784 10,231 43,338
lbm 0 0 0 53,333 0 64 0
bzip2 5,270,006 2 311,724 14,386,219 15,987,072 1,502,759 28,939,274
gcc 420,390 17 326 17,252,944 1,841,701 283,373 343,054
mcf 96,576 87 42 555 2,643,736 634,623 1,705,369
gobmk 8,392 20 400 651,081 70,492 117 20,141
hmmer 0 0 0 31,551,408 8,512,797 3,893,744 3,273,429
sjeng 0 620 2,565,378 41,787,788 3,423,766 7,917 1,038,075
libquantum 0 0 0 8,182,095 0 1 0
h264ref 367,010 0 0 302,394,768 12,636,622 5,636,387 10,703,859
astar 7,147 0 0 74,614,711 602,244 2,550 609,708

Subtotal 6,171,386 1,113 2,877,982 948,179,441 45,777,639 11,984,924 47,709,177
Subtotal (%) 0.58% 0.00% 0.27% 89.22% 4.31% 1.13% 4.49%

Total 10,762,387 2,094 2,882,136 3,996,856,652 227,506,781 53,384,130 441,012,280
Total (%) 0.23% 0.00% 0.06% 84.46% 4.81% 1.13% 9.32%

that had their trip counts estimated using the simplified heuristic, following the
same rules used to build table 5.

By analyzing table 5 we can observe that our heuristic is very precise. 87.25%
of the trip counts that we have predicted were the same as the actual trip
count. Furthermore, we have observed that more than 99% of the estimated
trip counts were equal or greater than the actual trip counts. When we analyze
the results obtained with the simplified heuristic, we also find some impressive
numbers. As expected, the vector heuristic has better results than the simplified
heuristic, but the difference was small. Our predictions were exact in 84.46%
of the cases, despite of the extreme simplicity of the algorithm. We also have
observed the same over-approximation that we have noticed with the complete
vector heuristic. However, it is important to keep in mind that we are not able
to instrument 100% of the loops of the programs. In this experiment we only
consider Interval Loops, that account for 67% of them.
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6 Related Works

It is possible to estimate the trip count of loops in many different ways, in a
trade-off between speed and precision. In order to estimate the trip count of
loops, many authors have used abstract interpretation [4,10,6,8]. Others have
used symbolic execution to achieve similar goals [13,12]. Although those tech-
niques are quite powerful, they are also computationally expensive. Thus, their
application is limited by the size of programs to be analyzed. Nevertheless, the
high complexity does not mean perfect precision. Some of those works have re-
strictions with regards to the structure of the analyzed loops. For instance, some
of them only analyze loops with a single path and are very conservative while
analyzing nested loops. Our work aims to find a better balance between speed
and precision.

In an effort similar to ours, Gulwani et al. [7] have developed a new approach
to estimate the number of iterations of a loop. They have proposed the Control-
Flow Refinement, a conversion of the programs into a suitable representation,
that allowed them to handle programs that other algorithms were not able to
analyze. That representation allowed them to find symbolic bounds for 90% of
the programs they have analyzed. However, they still rely on expensive tech-
niques. For instance, their implementation requires a theorem prover. Such tools
often rely on solutions to NP-complete problems. Differently to their work, here
we present two heuristics to estimate the number of iterations of loops that use
simpler techniques. Despite of the simplicity of our algorithms, our results show
that we offer a good precision without resorting to expensive techniques.

7 Conclusion

In this paper we have discussed the prediction of the number of iterations of
loops. We have indicated the usefulness of such information to decide at runtime
which code to execute based on the estimated trip count of loops. We also have
classified the loops into a taxonomy proposed by us, which allowed us to better
understand where the most promising optimizing opportunities are. In addition,
we proposed the Vectors, an abstraction inspired by physics to represent patterns
of updates of variables on the real line. Furthermore, we have proposed two
heuristics to estimate the trip count of loops, based on our Vectors. Finally,
we have evaluated the precision of our heuristics on some test suites, observing
87.25% of accuracy while analyzing interval loops.
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Abstract. Virtual execution is a method to reduce the prohibitive over-
head of the execution step on adaptive compilation systems. Nevertheless
it may fail to identify the best compiler optimizations set, reducing the
speedup that could be achieved by the adaptive compilation system. We
discuss the shortcomings of the virtual execution method and propose
a hybrid mechanism, which leverages the virtual execution method to
select a few optimizations sets before performing the execution step to
select the best set of optimizations.

Keywords: Code optimization and adaptive compilation systems.

1 Introduction

Modern compilers employ several algorithms to optimize the code during the
compilation process. Nevertheless, some optimizations might not be well suited
for every application, and there are several cases where applying an optimization
may even decrease the application’s performance. Even if a specific optimization
does not deteriorate performance by itself, its interaction with other optimiza-
tions being applied to the same code might cause it to impact the code’s per-
formance in a bad way [3]. An approach to reduce the bad impact a fixed set of
optimizations might have on the quality of the compiled code, is to search, at
compilation time, for a subset of optimizations that maximizes performance for
a particular source code. This process is known as adaptive compilation.

One of the biggest drawbacks of current adaptive compilation systems is the
execution of the compiled code. The execution is usually employed to measure
the performance of the code generated by each optimization set. However, the
amount of time a program takes to execute is usually hard to predict and may
be arbitrarily long because it is not directly bound to the size of the code. Notice
that, even a small application with a tight loop may take a long time to finish
the execution process.

The virtual execution method, proposed by Cooper et al. [2], aims at acceler-
ating adaptive compilation systems by predicting the performance of compiled
code via static analysis, instead of code execution. In this work we study the
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impact of the virtual execution method on the quality of the selected optimiza-
tions sets and show that this method may not always achieve the best results
when compared to the traditional adaptive compilation systems.

We also propose a hybrid mechanism that uses virtual execution to perform
the heavy work of selecting a short list of optimizations sets, which we show
empirically is very likely to contain a good set of optimizations, and then apply
a refinement step, in which we actually execute the generated code to select
the best set of optimizations for the application. Our results indicate that this
approach achieves better results than the virtual execution framework on several
SPEC CPU 2006 applications.

The rest of this paper is organized as follows: Section 2 presents a brief
overview of adaptive compilation and the virtual execution method; Section 3
discuss our hybrid framework; Section 4 presents our experimental results; Fi-
nally, Section 5 presents the conclusions and future work.

2 Adaptive Compilation and Virtual Execution

The search for an optimal subset of optimizations is usually an iterative process,
which involves generating a set of optimizations, compiling the source code with
this set of optimizations, executing the program to verify its performance and
deciding whether the optimizations set is the best one for the application.

The execution phase, used to measure the quality of each optimizations set,
can take a large amount of time to finish, even for small programs. Associated
with the high cost of this phase, the high number of possible optimization subsets
is a major reason for the long time required to compile a program with classical
adaptive compilation methods.

Cooper et al. [2] proposed the Virtual Execution method as an attempt to
address the overhead caused by the executions of the code generated by the opti-
mizations sets. It reduces the execution overhead by replacing the execution step
with an static estimation of the code’s performance, using the frequency of basic
blocks. In this approach, the code is executed only once, without optimizations,
to collect the basic blocks execution frequencies. This information is then prop-
agated through the compiler optimizations phases and used later to estimate
the number of instructions that would be executed by the optimized code. This
number is then used as an indicative of the performance of the code, enabling
the system to select the best set of optimizations without actually executing the
optimized the code.

As we show later, the code that executes the least amount of instructions is
not always the fastest one. Hence, the virtual execution method may still select
a poor optimizations set.

3 The Hybrid Framework

The hybrid framework is a two-phase process. In the first phase, it leverages the
virtual execution method to search for the K best optimizations sets using the
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instruction count criteria. Then, in the second phase, it performs a refinement
step, where it actually executes the code compiled with each of the K sets, and
compares the execution time to identify the one that provides the best speedup.

The first phase of the algorithm behaves in a similar way as described in
previous works on adaptive compilation systems [1,2,3,5]. In our experiments
we use an implementation of the Case-based reasoning algorithm presented by
Lima et al [3] to find sets of optimizations that could provide us with good
speedups. Each optimization set is passed to the compiler, which applies them
in turn and estimates its performance using the virtual execution mechanism.
The result of this phase is a list of K optimizations sets annotated with their
respective performance, estimated by the virtual execution mechanism.

Our results indicate that, for most benchmarks, a small list with the best
optimizations sets (K ≤ 5) selected accordingly to the virtual execution perfor-
mance criteria is likely to include at least one good set of optimizations for the
application. In this sense, the second phase consists on the execution of the code
produced by the K sets to select the best performing one. Since this phase exe-
cutes only K binaries, the overall overhead associated with the execution phase
is significantly reduced.

4 Experimental Results

In our experiments, we employed the Case-based Reasoning (CBR) algorithm [3]
to search for the best sets of LLVM compiler optimizations to compile the
SPEC CPU 2006 [4] programs. In order to perform the experiments on a rea-
sonable time, we measured the performance achieved by each optimizations set
by running the compiled code using the training input data set. For each opti-
mizations set, we executed the application 10 times and computed the average
runtime. We also used the PerfSuite tools1 to compute the average number
of instructions executed. The applications were compiled with LLVM 3.42 and
executed on a Core I7-2600 with 4 GB of RAM running Ubuntu 13.10.

Our experimental results indicate that there is a correlation between the num-
ber of instructions executed and the execution time of the code generated for
most of the SPEC CPU 2006 applications. As an example, Figure 1a shows the
number of instructions executed and the execution time for each one of the exe-
cutables produced by the 2479 optimizations sets explored by the CBR algorithm
when compiling the perlbench benchmark. Notice that, even though there is
some variance on the execution time, the number of executed instructions is a
good indicator of the execution time.

The hmmer application, on the contrary, exhibited very little correlation be-
tween the number of instructions executed and the execution time. As we can
see in Figure 1b, the fastest executables are not the ones that execute the least
amount of instructions. The results also indicate that one would have to select a
large value for K (> 1000) in order to ensure that the hybrid framework selects
a good candidate on the first phase.

1 http://perfsuite.ncsa.illinois.edu/, Accessed: 2014-05-22.
2 http://www.llvm.org/, Accessed: 2014-05-22.

http://perfsuite.ncsa.illinois.edu/
http://www.llvm.org/
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(a) 400.Perlbench (b) 456.hmmer

Fig. 1. Execution time and number of instructions executed for perlbench and hmmer
applications

The previous results suggest that selecting the executable that executes the
least amount of instructions may not be a good approach to find the ones that
execute in less time. However, as we discuss below, for most of the SPEC CPU
2006 applications, selecting the best optimizations set using the hybrid frame-
work with K=1 does not affect the outcome of the process when compared to,
the most expensive, real execution.

In our experiment we assume that the optimizations set selected by the com-
piler flag -O2 is our baseline. Also, if the framework does not find an optimiza-
tions set that is better than the baseline we select the baseline itself. Figure 2
shows the speedups (slowdown for values < 1.0) achieved on top of the baseline
when we use the hybrid framework with K=1, 5, 11, 62, and 2076. When K=2076
all the optimizations sets are selected for the “real execution” phase, ensuring
the results are equivalent to the traditional adaptive compilation frameworks.

Never improve
baseline 

No difference between 
baseline and optimization sets

K=1 K=5 K >= 11

Fig. 2. Speedups achieved by the hybrid framework for K=1, 5, 11, 62 and 2076

Notice that for 10 applications neither the traditional (K=2076) nor the hy-
brid framework (K=1 to 62) is capable of finding an optimizations set that
produces better executables than the baseline one. The hmmer benchmark is
one of these benchmarks. For this benchmark, the hybrid framework produces
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worse results than the traditional one, however, all the results, including the
ones achieved by the traditional framework are worse than the baseline. Hence,
in both case, the results would be the baseline itself.

The hybrid framework selected good optimizations sets for 4 benchmarks:
mcf, milc, h264ref, lbm. Notice that, even when K=1, the results achieved by
the framework are very similar to the ones achieved by a traditional framework.
For the bzip benchmark, the hybrid framework was able to find a good set when
K=5. The perlbench benchmark required the hybrid framework to select 11
candidates in the “virtual execution” phase to ensure the “real execution” phase
finds a good set of optimizations. The libquantum and sphinx3 required the
hybrid framework to select more than 60 candidates in the first phase.

5 Conclusion and Future Work

On this paper we discuss the validity of employing the number of instructions
executed as a single measure to predict application’s performance on adaptive
compilation systems using virtual execution. We show that there usually is a
correlation between the number of instructions executed and the program’s exe-
cution time, even though on most cases this metric alone fails to select the best
optimization set found during the optimizations search phase.

We also present a hybrid approach to address the problem of not selecting
the best compiler optimizations set found on the virtual execution phase, by
expanding the number of test sets to be taken into account, on a latter refinement
step. We show that this method improves the quality of the optimizations set
selected by the adaptive compilation system, which is reflected on the speedup
of several programs of the benchmarks we analyzed.

As a work in progress, the future work should focus on finding new met-
rics to improve the time estimation performed by the virtual execution system.
This would reduce the number of tests performed on the second phase of our
framework, reflecting on smaller compilation times and on higher speedups of
programs compiled with this method.
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Abstract. Transactional boosting is a methodology used to transform
highly concurrent linearizable objects into highly concurrent transac-
tional objects. In this paper we describe a STM Haskell extension that
allows programmers to write boosted versions of highly concurrent ab-
stract data types. Although the technique can only be applied to ab-
stract types that have certain properties, when used correctly, we obtain
transactional versions of existing types that are much faster than if they
were implemented with pure STM Haskell.

1 Introduction

Transactional memory is a higher level alternative to lock based synchronization
in concurrent programming. In this model, all accesses to shared memory are
grouped as transactions that can execute concurrently and, if no conflicting
accesses to shared memory are detected, may commit, or abort otherwise. Unlike
lock based synchronization, transactions are composable and deadlock free.

Transactional memory implementations record the reads and writes that trans-
actions perform and use this information to detect conflicts. A conflict occurs
if two or more different transactions access the same memory location and at
least one of these accesses is a write. Sometimes the conflict detecting mecha-
nisms used by transactional memory systems are too conservative, and end up
detecting false conflicts, or conflicts that might not violate the abstraction of a
program. One classical example is two different transactions modifying differ-
ent parts of a linked list [18,13,17,15]. Although their actions do not conflict,
there is a read/write conflict as one transaction is modifying a memory location
that was read by another transaction. This kind of read/write conflict detec-
tion scheme can have a huge impact in performance when using certain kinds
of linked data structures or generally when accessing memory locations that are
subject to high contention. On the other hand, using lock based synchroniza-
tion, or even lock-free algorithms, expert programmers can achieve a high level
of concurrency at the cost of code complexity. One alternative to combine these
two worlds is transactional boosting [13]. Transactional boosting is a methodol-
ogy used to transform highly concurrent linearizable objects into highly concur-
rent transactional objects. It treats base objects as black boxes: we can make a
boosted version of a linearizable concurrent library with no knowledge on how
it is implemented. Transactional boosting is not applicable to every problem,

F.M. Quintão Pereira (Ed.): SBLP 2014, LNCS 8771, pp. 145–159, 2014.
c© Springer International Publishing Switzerland 2014



146 A.R. Du Bois, M.L. Pilla, and R. Duarte

basically, the methodology requires that method calls have inverses, and that
only commutative method calls can occur concurrently.

STM Haskell [11] is a Haskell extension that provides the abstraction of com-
posable memory transactions. The programmer defines transactional actions that
are composable i.e., they can be combined to generate new transactions, and are
first-class values. Haskell’s type system forces threads to access shared variables
only inside transactions. As transactions can not be executed outside a call to
atomically, properties like atomicity (the effects of a transaction must be visible
to all threads all at once) and isolation (during the execution of a transaction,
it can not be affected by other transactions) are always maintained.

This text describes our experiments with transactional boosting in the context
of the functional language Haskell. The contributions of this paper are as follows:

– We propose a new construct for STM Haskell that lets programmers imple-
ment boosted versions of existing fast concurrent Haskell libraries. We also
describe how the new construct proposed here can interact with the high-
level transactional primitives retry and orElse available in STM Haskell.

– We present the implementation of three classic transactional boosting ex-
amples using available concurrent Haskell libraries and the new proposed
primitive. These examples demonstrate that our extension lets programmers
transform existing fast implementations of linearizable structures into com-
posable STM Haskell actions.

– Preliminary performance measurements are presented and indicate that, al-
though transactional boosting can only be used in certain cases, when applied
correctly, it is possible to achieve much faster STM actions than using the
original STM Haskell. We believe that the primitive proposed here can be
used by expert programmers do develop fast concurrent libraries for STM
Haskell.

This paper is organized as follows: Section 2 reviews the main concepts of
transactional memory and STM Haskell. Section 3 presents our extension to
STM Haskell. Next, in Section 4, three examples of boosted versions of abstract
data types are described and implemented using the new STM Haskell exten-
sion: a unique ID generator, a pipeline buffer, and a set data structure. Section 5
explains how the new primitive was implemented and shows the results of pre-
liminary experiments. Finally, Section 6 discusses related work, and Section 7
concludes.

2 Transactional Memory and STM Haskell

2.1 Transactional Memory

Transactional memory was first described as a Hardware feature [12]. This paper
focuses on Software Transactional Memory (STM), in which transactions are
mainly implemented in software, with little hardware support, i.e., a compare
and swap operation.
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In an STM system, memory transactions can execute concurrently and, if
finished without conflicts, a transaction may commit. Conflict detection may be
eager, if a conflict is detected the first time a transaction accesses a value, or lazy
when it occurs only at commit time. With eager conflict detection, to access a
value, a transaction must acquire ownership of the value, hence preventing other
transactions to access it, which is also called pessimistic concurrency control.
With optimistic concurrency control, ownership acquisition and validation occurs
only when committing. These design options can be combined for different kinds
of accesses to data, e.g., eager conflict detection for write operations and lazy
for reads. STM systems also differ in the granularity of conflict detection, being
the most common word based and object based. In STM Haskell conflicts are
detected at a TVar level, e.g, two different transactions writing to the same TVar
(see next Section).

STM systems need a mechanism for version management. With eager version
management, values are updated directly in memory and a transaction must
maintain an undo log where it keeps the original values. If a transaction aborts,
it uses the undo log to copy the old values back to memory. With lazy version
management, all writes are buffered in a redo log, and reads must consult this log
to see earlier writes. If a transaction commits, it copies these values to memory,
and if it aborts the redo log can be discarded.

An STM implementation can be lock based, or obstruction free. An obstruction
free STM does not use blocking mechanisms for synchronization and guarantees
that a transaction will progress even if all other transactions are suspended.
Lock based implementations, although offering weaker progress guarantees, are
believed to be faster and easier to implement [8].

2.2 STM Haskell

STM Haskell extends Haskell with a set of primitives for writing memory
transactions[11]. The main abstractions are transactional variables or TVars,
which are special variables that can only be accessed inside transactions. Fig-
ure 1 shows the main STM Haskell primitives. The readTVar function takes a
TVar and returns a transactional action STM a. This action, when executed, will
return a value of type a, i.e., the TVar’s content. Similarly, writeTVar takes a
value of type a, a TVar of the same type and returns a STM action that when
executed writes into the TVar.

These transactional actions can be composed together to generate new actions
using the basic monadic composition constructs (bind (>>=), then (>> ) and
return), or by using the syntactic sugar provided by the do notation.

The retry primitive is used to abort and re-execute a transaction once at least
one of the memory positions it has read is modified. orElse is a composition
operator, it takes two transactions as arguments, if the first one retries then the
second one is executed. If both fail the whole transaction is executed again.

An STM action can only be executed with a call to atomically:

atomically (transferMoney tvar1 tvar2 100.00)
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writeTVar :: TVar a -> a -> STM ()

readTVar :: TVar a -> STM a

retry :: STM ()

orElse :: STM a -> STM a -> STM a

atomically :: STM a -> IO a

Fig. 1. STM Haskell interface

It takes as an argument a transactional action (STM a) and executes it atom-
ically with respect to other concurrently executing transactions.

3 Transactional Boosting for STM Haskell

Transactional boosting is a methodology used to transform existing highly con-
current linearizable objects into highly concurrent transactional objects. It treats
existing objects as black boxes, and performs both conflict detection and logging
at the granularity of entire method calls. It can not be applied to every object
but to objects where commutative method calls can be identified, and which
reasonably efficient inverses exist or can be composed from existing methods
[13].

To write a transactional boosted version of an abstract type, the operations
associated with this type must have inverses. Hence the STM system must pro-
vide ways of registering user defined handlers to be called when the transaction
aborts or commits. If a transaction aborts, it must undo the changes it has done
to the boosted object and if it commits it must make these changes visible to
the rest of the system.

We propose a simple new STM Haskell primitive to build transactional ver-
sions of abstract data types:

boost :: IO (Maybe a) -> ((Maybe a)-> IO ()) -> IO () -> STM a

The boost primitive can be used to create a new transactional version of
existing Haskell libraries. It wraps a function in a Haskell STM action, providing
ways to call this function inside a transaction and also for undoing its effects in
the case of an abort. It takes as arguments:

– an action (of type IO (Maybe a)) that is used by the underlying transac-
tional system to invoke the original function. When the original function is
called it might return a result of type a, or maybe for some reason the origi-
nal function could not be called, e.g., an internal lock could not be acquired,
in which case the action should return Nothing. Hence the return type is
Maybe a

– an undo action (of type Maybe a -> IO ()) used to undo the function call
in case of an abort. If we want to abort a STM action, we must know what
was the outcome of executing it, e.g., if we want to undo deleting value x
from a set, we must insert x again into the set. As the outcome of executing
a transactional action is only known at execution time, the undo action takes
as argument the value returned by the first argument of boost.
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– a commit action (of type IO ()) that is used to commit the action done by
the boosted version of the original function, i.e., make it visible to the rest
of the system

boost returns a new STM action that is used inside transactions to access the
wrapped function.

4 Examples

This section describes the implementation of three classic transactional boosting
examples using existing concurrent Haskell libraries plus the new primitive pro-
posed for STM Haskell. The examples are a Unique ID Generator (Section 4.1),
a Pipeline Buffer (Section 4.2), and a Set (Section 4.3).

4.1 Unique ID Generator

We start with a simple example, a unique ID generator. Generating unique IDs
in STM systems is problematic. The generateID function would typically be
implemented using a shared counter that is incremented at each call. As different
transactions are trying to increment and read a shared location (the counter),
transactional memory implementations detect read/write conflicts and abort at
least one of the transactions. The problem is that those may not be real conflicts:
as long as different calls to generateID return different numbers, we do not care,
for example, if the values generated follow the exact order in which the counter
was incremented.

A simple and fast thread safe unique ID generator could be implemented using
a Fetch-and-Add or Compare-and-Swap (CAS) operation, available in most stan-
dard multi-core processors. Haskell, provides an abstraction called IORef that
represents a mutable memory locations [16]. An IORef a is a mutable memory
location that may contains a value of type a. The library [3] lets programmers
perform machine-level compare and swap operation on IORefs. Thus, a unique
ID generator can be implemented as follows:

type IDGer = IORef Int

newID :: IO IDGer

newID = newIORef 0

generateID :: IDGer -> IO Int

generateID idger = do

v <- readIORef idger

ok <- atomCAS idger v (v+1)

if ok then return (v+1) else generatetID idger

Under transactional boosting, the ID generator must follow the specification
in Figure 2.



150 A.R. Du Bois, M.L. Pilla, and R. Duarte

Function Call Inverse
generateID noop

Commutativity
x <-generateID ⇔ y <-generateID x �= y

x <-generateID � y <-generateID x = y

Fig. 2. Unique ID Generator specification

When a transaction that called generateID aborts, ideally the ID returned
by the call should be returned to a pool of unused IDs. On the other hand, since
generateID always returns an unique value, the IDs generated are disposable.

Using transactional boosting, the generateID function could be implemented
as follows:

generateIDTB :: IDGer -> STM Int

generateIDTB idger = boost ac undo commit

where

ac = do

id <- UniqueIDCAS.generateID idger

return (Just id)

undo _ = return ()

commit = return ()

Now generateIDTB is an STM action that, when executed calls the ac action
which simply uses the CAS version of the generator to increment the IORef

counter. If the transaction aborts, or the transaction commits, nothing has to
be done, hence the undo and commit actions are empty.

4.2 Pipeline Buffer

Pipeline is an abstraction where there is a chain of data processing threads that
communicate by bounded queues, or buffers. Each thread is in charge of a stage
in the pipeline and consumes data from a buffer, processes it, and writes the
new data to a different buffer.

A buffer must provide two functions: offer used to add a value to the buffer
and take, that consumes a data item. To implement a buffer using transactional

Function Call Inverse
offer buf x tryPopL buf
x <-take buf pushR buf x

Commutativity
offer buf x ⇔ y <-take buf, buffer non-empty

offer buf x � y <-take buf, otherwise

Fig. 3. Pipeline Buffer specification
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boosting, we need a double-ended queue as it provides inverses for take and
offer. Here we use a thread safe double-ended queue implemented by Ryan
Newton [4], and follow the specification in Figure 3:

data TBBuffer a = Q (SimpleDeque a) (IORef Int)

newTBBuffer :: TBBuffer a

newTBBuffer = do

q<-newQ

ioref <- newIORef 0

return (Q q ioref)

offer :: TBBuffer a -> a -> STM ()

offer (Q c ioref) v = boost ac undo commit

where

ac = do

pushL c v

return (Just ())

undo _ = do

mv <- tryPopL c

case mv of

Just v -> return ()

commit = do

v <- readIORef ioref

ok<- atomCAS ioref v (v+1)

if ok then return () else commit

A TBBuffer is represented by a double-ended queue and an IORef that con-
tains the size of the buffer. The offer function must use pushL to add a new
value to the queue. If a transaction aborts, the data that was inserted in the
queue must be eliminated using tryPopL. If the transaction commits, the only
thing to be done is to increment the buffer size thus making the new item visible
to the transaction that is consuming values. The take function uses tryPopR to
consume data from a buffer:

take :: TBBuffer a -> STM a

take (Q c ioref) = boost ac undo commit

where

ac = do

size<-readIORef ioref

if size ==0 then return Nothing

else do

decIORef ioref

tryPopR c

undo v = case v of

Nothing -> return ()

Just x -> do

incIORef ioref

pushR c x

commit = return ()
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If there are not enough items then the transaction aborts by returning Nothing.
Otherwise it decrements the buffer counter using CAS (with the decIORef func-
tion) and consumes an item (tryPopR). The undo action must increment the
counter using CAS (incIORef) and return the value taken back to the buffer.

4.3 Set

A set is a collection of distinct objects. An implementation of a set usually
provides three functions, add, remove and contains.

Function Call Inverse
add set x / False noop
add set x / True remove set x / True

remove set x / False noop
remove set x / True add set x / True

contains set x / noop

Commutativity
add set x / ⇔ add set y / , x �= y

remove set x / ⇔ remove set y / , x �= y

add set x / ⇔ remove set y / , x �= y

add set x / False ⇔ remove set x / False ⇔ contains set x /

Fig. 4. Set specification

As there is no linearizable implementation of a set data structure available for
Haskell, the boosted set described here uses a thread safe linked list, described
in [18] (see Figure 5). When implementing a boosted version of a set, we must
guarantee that if one transactions is working on a key, no other transaction
can be using the same key (see Figure 4). We can achieve this by using key-
based locking [15]. Key based locking can be implemented using a hash table to
associate a lock with each key. The problem is that currently there are no thread
safe Hash tables available for Haskell. To implement key locking we use an STM
Hash table from the Haskell STM benchmark suite [1]:

data KLock = KLock (THash Int Lock)

data Lock = Lock (IORef Integer) (IORef Integer)

newKLock :: IO KLock

newKLock = do

hasht <- atomically (new hashInt)

return (KLock hasht)

A KLock is a hash table that maps Ints (keys) to locks. Locks are represented
by two IORefs. The first is a versioned lock [9]: if it contains 0 the locks is free,
if it contains a transaction ID the lock is locked. The second IORef counts how
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many times the lock holder locked the same key. The newKLock function creates
a new KLock by simply creating an empty Hash table. A key can be locked with
the lock function:

lock :: KLock -> Int -> IO Bool

lock (KLock ht) key = do

mior <- atomically (Data.THash.lookup ht key)

myId <- getTransID

case mior of

Just (Lock ior counter) -> do

v <- readIORef ior

if (v == 0)

then do locked<- atomCAS ior 0 myId

case locked of

True -> do

plusOne counter

return True

False -> return False

(...)

It takes a Klock and a key as arguments. If there is already a lock associated
with the key, and the lock is free (i.e., contains 0), it tries to acquire the lock
using atomCAS. If successful, it increments the counter. If the current transaction
already holds the lock, it just needs to increment the counter one more time. If
there is no lock associated with the key, a new one must be created and inserted
into the hash table:

Nothing -> do

ior <- newIORef myId

counter <- newIORef 1

ok <- atomically (insert ht key (Lock ior counter))

if ok then return True else (lock alock key)

The unlock function

unlock :: KLock -> Int -> IO Bool

finds the lock associated with the key, and if the current transaction holds the
lock it simply decrements the lock’s counter. If the counter gets to zero, then
the lock is freed using CAS.

newList :: IO (ListHandle a)

addToTail :: Eq a => ListHandle a -> a -> IO ()

find :: Eq a => ListHandle a -> a -> IO Bool

delete :: Eq a => ListHandle a -> a -> IO Bool

Fig. 5. Interface for the concurrent linked list described in [18]

Now, a boosted version of a Set data structure can be represented by a KLock

and a linked list:

data IntSet = Set KLock (ListHandle Int)
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To add a key to a set, we must acquire the lock associated with it and then
insert the key in the linked list. As the linked list may contain duplicates, we
must also make sure that the key is not already in the list:

add:: IntSet -> Int -> STM Bool

add (Set klock list) key = boost ac undo commit

where

ac = do

ok<-lock klock key

case ok of

True -> do found <- CASList.find list key

if found then return (Just False)

else do

CASList.addToTail list key

return (Just True)

False -> return Nothing

If a key was inserted and the transaction aborts, the same key must be deleted
from the list and the lock freed. If the transaction commits, the only thing to do
is to free the lock:

undo v = do

case v of

Just True -> do

CASList.delete list key

unlock klock key

return()

Just False -> do

unlock klock key

return()

Nothing -> return ()

commit = do

unlock klock key

return ()

To remove a key, we must acquire the right lock and then delete the key from
the linked list:

remove :: IntSet -> Int -> STM Bool

remove (Set klock list) key = boost ac undo commit

where

ac = do

ok<-lock klock key

case ok of

True -> do v<-CASList.delete list key

return (Just v)

False -> return Nothing

undo ok = do

case ok of

Just True -> do
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CASList.addToTail list key

unlock klock key

return ()

Just False-> do unlock klock key

return ()

Nothing -> return ()

commit = do unlock alock key

return ()

To undo a successful remove, the key must be inserted back again in the list
and the lock freed. As before, to commit the operation we just need to liberate
the lock.

The contains operation

contains :: IntSet -> Int -> STM Bool

is simpler and the code is omitted. As contains does not changes the inter-
nal list, if the transaction aborts or commits, nothing has to be done except
liberating the lock associated with the searched key.

5 Implementation and Preliminary Experiments

5.1 Prototype Implementation

To test the examples presented in this paper, we extended TL2 STM Haskell
[7,2], a high-level implementation of STM Haskell that uses the TL2 [6] algo-
rithm for transactions. The TL2 implementation uses lazy conflict detection with
optimistic concurrency control as happens in the original C implementation of
STM Haskell that comes with the GHC compiler[10].

As the TL2 library is implemented completely in Haskell, it is easier to extend
and modify. It also provides reasonable performance for a prototype: programs
run 1 to 16 times slower than the C implementation, with factors of 2 and 3
being the most common. Experiments using the Haskell STM Benchmark suite
also demonstrate that the library provides scalability similar to the original C
run-time system [7].

In TL2 STM Haskell, as in other implementations of STM Haskell [14,5], the
STM data type is represented as a state passing monad. Thus, an STM a action
in the monad is in fact a function that takes the state of the current transaction
(e.g. its read and write logs) as an argument, executes a computation in the
transaction (e.g. reads a TVar), and returns a new transaction state and a result
of type a:

data STM a = STM (TState -> IO (TResult a))

The TResult type describes the possible outcomes of executing a transaction:

data TResult a = Valid TState a | Retry TState | Invalid TState
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Our implementation of the boost extends the type that represents the trans-
action state (TState) with two IO () actions:

data TState = Tr {

(...)

tbUndo :: IO (),

tbCommit :: IO ()

}

The tbUndo and tbCommit actions are constructed during the execution of a
transaction, and the first is executed only if a transaction aborts, i.e., finishes
with an Invalid state, and the later is executed only if a transaction commits.
Hence, the implementation of boost becomes simply:

boost :: IO (Maybe a) -> (Maybe a-> IO ()) -> IO () -> STM a

boost mac undo commit = STM $ \tState -> do

r <- mac

case r of

Just v -> return (Valid tState{tbUndo=undo (Just v)>>(tbUndo tState),

tbCommit = commit>>(tbCommit tState)} v)

Nothing -> return (Invalid tState{tbUndo=undo Nothing>>(tbUndo tState)})

The then monadic combinator (>>) is used to add the new actions to the
current tbUndo and tbCommit IO actions.

The design and implementation of the retry construct is tied closely to the
concept of TVar: when a transaction retries, it will not execute again until at
least one of the tvars it read is updated. We would like to extend the concept
further, for example, in the Set example, if we can not acquire the lock for a key,
we could retry or abort the transaction and only start it again once the lock is
freed. It is difficult to predict all possible cases in which we want a transaction to
be restarted and we also do not want to include in the design primitives that are
too low level. Hence we decided for a simpler approach: when a transaction that
executed TB actions calls retry, the transaction is stopped, tbUndo is executed,
and the transaction waits on the TVars it has read.

We also extend the behavior of the orElse construct to support transactional
boosting. A call to orElse t1 t2 will first save the tbUndo and tbCommit actions
of the current transaction’s state and execute t1 with new and empty tbUndo and
tbCommit. If t1 retries, its newly created tbUndo is called and the transaction
continues by executing t2 with the saved actions. If t1 finishes without retrying,
then both new and saved TB actions are combined and orElse returns the result
of executing t1.

5.2 Experiments

The experiments were executed on an Intel Core i7 processor at 2.1 GHz and
8 GiB of RAM and the times presented are the mean of 10 executions. The op-
erating system was Ubuntu 12.04, with Haskell GHC 7.4. The Core i7 processor
has 4 real cores plus 4 more with hyper threading.
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Figure 6 compares three implementations of the unique ID generator: ID STM

that uses the C implementation of STM Haskell that comes with GHC, ID CAS

that uses CAS to increment the ID counter, and ID TB that is the boosted
implementation described in Section 4.1. The experiment executes 10 million
calls to generateID in total, dividing these operations by the threads available.

Fig. 6. UniqueID execution times Fig. 7. Pipeline Buffer execution times

The second experiment (Figure 7) creates two threads, a producer and a con-
sumer, that communicate through a pipeline buffer each executing the number
of operations described on the X axis. Three different implementations of the
pipeline buffer are compared: Buffer STM that uses the TChan STM library that
comes with GHC, BufferP is the thread safe deque implemented by Ryan New-
ton, and BufferTB is the boosted version described in Section 4.2.

To benchmark the set data structure, we randomly generated test data con-
sisting of an initial list of 2000 elements and 8 lists of 2000 operations. Each list
of operations is given to a different thread and we vary the number of cores used
from 1 to 8, as can be seen in Figure 8. Note that the Y axis is a logarithmic
scale. Two implementations of Set are compared, one that uses an ordered linked
list of TVars and is compiled using the original C STM Haskell (GHC-STM), and
the boosted version described in Section 4.3 (TB).

As can be seen by these preliminary experiments, even though our prototype
implementation uses the slower TL2 STM Haskell implementation, all TB ex-
amples are still much faster than the original STM Haskell implemented in C.
This happens because the overhead introduced by transactional layer added to
the fast parallel implementations is not enough to harm the performance.

6 Related Work

Other works have extended the original STM Haskell design with escape primi-
tives that allow the programmer to change the state of the current transaction
hence avoiding false conflicts. The unreadTVar [17] construct is an extension to
the original STM Haskell interface that improves execution time and memory
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Fig. 8. 8 threads each executing 2000 operations in a Set (On the left: 40% adds and
removes + 60% contains, On the right: 65% adds and removes + 25% contains)

usage when traversing transactional linked structures. It is used to eliminate
from the read set values that are far behind from the current position. For the
same purpose in [18] the authors propose readTVarIO that reads a TVar without
adding a log entry for this read into the current transaction’s read set. If the lock
of the TVar is being held by a transaction trying to commit, readTVarIO blocks
until the lock is freed. Twilight STM in Haskell [5] extends STM Haskell with
safe embedding of I/O operations and a repair facility to resolve conflicts. Twi-
light splits the code of a transaction into two phases, a functional atomic phase
(that behaves just like the original STM Haskell), and an imperative phase where
Twilight code can be used. A prototype implementation of Twilight Haskell in
Haskell is provided but no performance figures are given.

All these new primitives are used to implement new data types in a way
that false conflicts are avoided. The method presented here is used as a way of
accessing existing fast highly concurrent structures inside transactions.

7 Concluding Remarks

We have described an STM Haskell extension to write transactional boosted
versions of abstract data types. We extended STM Haskell with a single new
primitive and have described three examples of its use. Preliminary experiments
show that the new primitive can help programmers to write faster transactional
libraries if used in the right context. Transactional boosting is low level concur-
rent programming and can lead to all the problems associated with concurrency,
such as deadlocks [13]. We believe that the primitive presented here can be used
by expert programmers to write fast concurrent libraries for Haskell.

We can also use boost to implemented transactional versions of sequential
structures that are not available in STM libraries, however there will be a per-
formance impact depending on the approach used to protect these structures
(e.g., a single lock) plus the overhead of the transactional boosting system, as
can be seen in the experiments in Section 5.
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