
Chapter 5
Parameter Uncertainties

This chapter uses an incremental bond graph approach in order to determine
parameter sensitivities of ARR residuals as well as adaptive mode-dependent ARR
thresholds for systems described by a hybrid model. To that end, first, the underlying
idea and some basics of incremental bond graphs are briefly recalled.

5.1 Introduction

In order to avoid that false alarms are reported to a supervisor system or that true
faults are not detected, ARR residuals should be significantly sensitive to true faults
but little sensitive to parameter variations given uncertain system parameter values.
Parameter sensitivities of ARR residuals can be singled out by defining appropriate
thresholds. As the dynamic behaviour of a real system described by a hybrid model
can be quite different in different system modes, thresholds should be adapted to
system modes.

If ARRs can be obtained in closed symbolic form, parameter sensitivities can
be determined by symbolic differentiation with respect to parameters. If this is not
possible, parameter sensitivities of ARRs can be computed numerically by using
either a sensitivity bond graph [1–4] or an incremental bond graph [5, 6]. Incre-
mental bond graphs were initially introduced for the purpose of frequency domain
sensitivity analysis of LTI models. Furthermore, they have also proven useful for
the determination of parameter sensitivities of state variables and output variables,
transfer functions of the direct model as well as of the inverse model, and for the
determination of ARR residuals from continuous time models [7, Chap. 4]. In this
chapter, the incremental bond graph approach is applied to systems described by
switched LTI systems.

As to FDI robust with regard to parameter uncertainties, an approach based on so-
called uncertain bond graphs in linear fractional transformation form (LFT) has been
reported in the literature [8–10] for time-continuous models. In an uncertain bond
graph, bonds carry power variables uncertain with regard to parameter variations
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102 5 Parameter Uncertainties

and bond graph elements are decomposed into a part with nominal parameters and
another one with uncertain parameters.

In contrast, in an incremental bond graph, bonds carry variations of power vari-
ables, and variations of ARR residuals are outputs of special interest. In the case of
switched LTI systems with uncertain parameters, variations of ARR residuals are
a weighted sum of variations of power variables. The weighting factors depend on
power variables of the original bond graph. The weighted sum suggests to apply the
triangle inequality to obtain adaptive bounds for the part of an ARR residual that
is uncertain due to parameter variations. The nominal part of an ARR residual is
obtained from the original bond graph with nominal parameters.

An incremental bond graph can be constructed in a systematic manner from the
original bond graph of a switched LTI system by replacing an element that is due to
parameter variations by its incremental element model. Equations for variations of
power variables can be automatically derived in the same way as they are derived
from an initial bond graph with nominal parameters.

5.2 Incremental Bond Graphs for Switched LTI Systems

Switched LTI systems are just LTI systems for the time intervals betweens between
discrete mode changes. Therefore, first, the incremental bond graph approach is
recalled for LTI systems. In a second step, an incremental model for switches is
proposed.

5.2.1 Incremental Models of Bond Graph Elements

In order to simplify the presentation, it is assumed that energy sources, energy storage
elements and resistors are linear 1-port elements and that transformers and gyrators
have got two ports.

The underlying idea of incremental bond graphs is that if a parameter Θ of a
component model varies, then both power variables at its port are perturbed due to
its interactionwith the ports of other elements in themodel. That is, an effort en(t) in a
bond graph with nominal parameters becomes e(t) = en(t)+Δe(t). The same holds
for the conjugate power variable f (t). In incremental bond graphs, bonds carry the
increments Δe(t), Δ f (t) of power variables. In other words, they represent energy
flows carrying the amount of power Δe(t) · Δ f (t).

An incremental bond graph of an LTI system is constructed from an initial bond
graph with nominal parameters by replacing those bond graph elements by their
incremental model for which a parameter variation has taken place. Clearly, sources
that do not depend on a parameter become null sources. Furthermore, the incremental
model of a 1(0)-junction remains a 1(0)-junction. As to the incremental models of
storage elements, resistors, transformers and gyrators, it turns out that they differ
from the respective element just by modulated sinks added to junctions. The sinks
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are modulated by a power variable of the initial bond graph. That is, the structure of
the initial bond graph is retained by the incremental bond graph. Structurally, both
bond graphs only differ with respect to sources and sinks and their location. As a
result, existing software can be used to set up a state space model for the variations
of the state variables.

In order to see how an incremental bond graph model for a bond graph element is
obtained, a linear 1-port C-element with the nominal capacitance Cn is considered.
In the following, an index n indicates a parameter or a variable of the non-faulty
bond graph model with nominal parameters. In the case of a time constant parameter
variation ΔC the linear constitutive equation of a 1-port C element in derivative
causality takes the form

fC (t) = fCn (t) + (Δ fC )(t) = (Cn + ΔC)(ėCn + (ΔėC ))(t) (5.1)

Expanding the right hand side yields

(Δ fC )(t) = Cn(ΔėC )(t) + (ΔC)ėC (t)

= Cn(ΔėC )(t) + ΔC

C
︸︷︷︸

=: δC

fC (t) (5.2)

Figure5.1 shows a bond graph representation of (5.2). In essence, the incremental
model of a C element is again a C element. Amodulated sinkMSe : δC fC contributes
to its output Δ fC .

The power variable fC controlling the modulated source is an output variable of
the original bond graph model. If fC has been obtained by measurements of the real
system, then the contribution to the output of the incremental bond graph model of
the C element may contain sensor noise. In any case, the outputs of the incremental
bond graph of a bond graph element indicate a parameter variation.

Recall that in FDI, energy storage elements are in preferred derivative causality
because initial conditions are not known or difficult to obtain in real time FDI. In
offline simulation, the storage elements in the non-faulty model may be in preferred
integral causality. Reformulation of (5.2) gives

Fig. 5.1 Incremental bond
graph model of a linear 1-port
C element in preferred
derivative causality

ΔeC

ΔfC

0 C : Cn

MSf : δC fC =
1

C
fC (t )Δ C
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Fig. 5.2 Incremental bond
graph model of a linear 1-port
C element in preferred
integral causality

ΔeC

ΔfC
1 C : Cn

MSe : δCn eC(t) =
1

Cn
eC(t)ΔC

SeΔeC(0) + δCn eC(0) :

Fig. 5.3 Incremental bond
graph model of a 2-port
transformer

Δe1

Δf1
1

MSe : (Δm)e2

TF

mn..
0

Δe2

Δf2

MSf : (Δm)f1

ΔeC (t) = 1

Cn

t
∫

0

(Δ f )(τ )dτ − δCn (eC (t) − ec(0)) + ΔeC (0) (5.3)

where δCn := ΔC/Cn . Equation5.3 may be represented by the bond graph model in
Fig. 5.2.

In the same manner, incremental models for the other bond graph elements may
be obtained. As an example, Fig. 5.3 depicts the incremental bond graph model of a
transformer TF : mn .

5.2.2 Incremental Models of Nonlinear Bond Graph Elements

The incremental bond graph approach is not limited to linear 1-port elementswith one
parameter [5]. The constitutive equation of the incremental model of a bond graph
element can be easily obtained by taking the total differential of the constitutive
equation of the bond graph element.

For instance, let

q(t) = Φ(e(t), θ) (5.4)

be the constitutive equation of a nonlinear 1-port C element, θ = Θn + ΔΘ its
parameter and ΔΘ a time constant deviation from the nominal value Θn . Then

f (t) = q̇(t) = ∂Φ(e(t), θ)

∂e
· ė(t) = f (e(t), ė(t), θ) (5.5)



5.2 Incremental Bond Graphs for Switched LTI Systems 105

Fig. 5.4 Incremental bond
graph model of a nonlinear
1-port C element in preferred
derivative causality

Δe

Δf
0 C :

∂f

∂ė

MSf :
∂f

∂θ
Δθ

R :
∂f

∂e

and

Δ f = ∂ f

∂e
Δe + ∂ f

∂ ė
Δė + ∂ f

∂θ
Δθ (5.6)

Equation5.6 may be represented by an incremental bond graphmodel with nonlinear
elements as depicted in Fig. 5.4.
In Fig. 5.4, the partial derivatives of f may be complex expressions depending on
the nonlinear function Φ.

5.2.3 An Incremental Model of the Non-ideal Switch

For the sake of a unified bond graph representation of hybrid models that hold for
all system modes, in this book, non-ideal switches are used and are represented by
means of an MFT : msw(t) with msw(t) ∈ {0, 1} ∀ t ≥ 0 in conjunction with a
resistor R : Ron in fixed conductance causality (Fig. 2.12b).

In ON-mode, the switchmodel simply reduces to a resistor with the small nominal
ON-resistance Rn

on. The constitutive equation of a linear 1-port resistor in conduc-
tance causality then leads to an equation for the increments of the power variables.

fsw(t) = f n
sw(t) + (Δ fsw)(t) = 1

Rn
on + ΔRon

(en
sw(t) + Δesw(t)) (5.7)

Reformulation yields

(Δ fsw)(t) = 1

Rn
on

(Δesw)(t) − ΔRon

Rn
on

︸ ︷︷ ︸

=: δRon

fsw(t) (5.8)

http://dx.doi.org/10.1007/978-3-319-11860-4_2
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Δesw

Δfsw
MTF

1/msw..
0 R : Rn

on

MSf : δRon fsw =
1

Rn
on

fsw(t)ΔRon

Fig. 5.5 Incremental bond graph model of a non-ideal switch

Fig. 5.6 Extended
incremental bond graph
model of a non-ideal switch
accounting for a non-zero
flow in OFF-mode

Δesw

Δfsw
0

MTF : 1/(1 − msw)

MSf : δRofffsw

MTF

1/msw..
0 R : Rn

on

MSf : δRonfsw

In OFF-mode, fsw = 0. Hence, Δ fsw = 0. Figure5.5 depicts an incremental bond
graph model of a non-ideal switch that captures both switch states.

If the flow close to zero in OFF-mode is not neglected, then the switch in OFF-
mode can be considered a resistor with a very high OFF resistance Roff . For this
resistor, an incremental model can be developed in the samemanner as for the resistor
R : Ron. In the resultingmodel, the resistor R : Roff can be neglected as the nominal
value of 1/Roff is very small. Figure5.6 depicts an extended incremental bond graph
model of a non-ideal switch that accounts for a non-zero flow in OFF-mode.

The incremental bond graphmodel of a linear 1-port resistor R : Rn in resistance
causality is obtained by solving (5.8) for Δe.

ΔeR(t) = RnΔ fR(t) + RnδRn fR(t) (5.9)

in accordance with Fig. 5.7.

Fig. 5.7 Incremental bond
graph model of a linear 1-port
resistor in resistance causality

ΔeR

ΔfR
1 R : Rn

MSe : δRn Rn fR(t) = fR(t)ΔR
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5.3 Incremental Bond Graphs for FDI

Given incremental models for all bond graph elements, an incremental bond graph
(incBG) canbe systematically constructed fromabondgraphof the non-faulty system
with nominal parameters by replacing sources of constant value by sources of value
zero and by replacing elements with varying parameters by their incremental bond
graph model. As the incremental model of a bond graph element differs from the
element only by modulated sinks representing parameter variations, the incremental
bond graph retains the structure of the original bond graph. The incremental DBG
differs from the initial DBG only with respect to the sources and the additional sinks
modulated by a power variable of the original BG. The number of these additional
sinks equals the number of varying parameters. If the original model is given by a
switched LTI system so is the incremental bond graphmodel. Hence, the incremental
model and the original one have the same systemmatrix A with nominal parameters.
Existing software can be used to derive equations from the incremental DBG and to
set up the matrices of a switched LTI system in symbolic form in the same manner
as for the original DBG.

Let u denote the vector of inputs into the original bond graph model with nominal
parameters, x its state vector composed of all inputs into storage elements in preferred
derivative causality and let an index n indicate a dependency from nominal parameter
values. The state space model derived from the original bond graph then reads

ẋ(t) = An x(t) + Bn u(t), x(0) = x0 (5.10a)

y(t) = Cn x(t) (5.10b)

Furthermore, let Θ denote the vector of all component parameters. The state space
model derived from the incremental bond graph then is of the form

Δẋ(t) = AnΔx(t) + B∗(Θn)w(t) (5.11a)

Δ y(t) = CnΔx(t) (5.11b)

The matrices An and Cn are obtained deriving equations from the original bond
graph with nominal parameters. Matrix B∗ can be automatically set up from the
incremental bond graph. The vector w denotes the outputs of the modulated sinks in
the incremental bond graph that represent parameter variations. These outputs are of
the form

w(t) = diag(δi zi (t))ΔΘ (5.12)

where diag() is a diagonal matrix and zi a power variable from the original bond
graph controlling the i th modulated sink that represents a parameter variation. The
coefficients δi depend on the type of the bond graph element that has been replaced
by its incremental model. For a capacitor for instance, δi = 1/Ci and zi = f i

C
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(cf. Fig. 5.1). For a linear resistor in conductance causality with nominal resistance
Rn , δi = 1/Rn and zi = f i

R (cf. Fig. 5.5).

5.3.1 Parameter Sensitivities of ARR Residuals

Inputs to an incremental bond graph are the outputs of the sinks representing a
parameter variation. They are modulated by a power variable from the original bond
graph.Outputs of the incremental bondgraphmodelwith respect to FDI are variations
Δri of ARR residuals ri . In the case of a switched LTI system, they can be expressed
as a weighted sum of the inputs and their time derivatives into the incremental bond
graph. As the weighting factors may include transformer moduli mi (t) ∈ {0, 1},
variations of ARR residuals are systemmode dependent. According to (5.11a, 5.11b)
and (5.12), there is a matrix Cn such that the Laplace transform of the variation of
the i th residual ri reads

LΔri =
m

∑

j=1

F∗
i j δ j (L z j )ΔΘ j

︸ ︷︷ ︸

L w j

(5.13)

where

(F∗
i j ) = Cn(sI − An)−1B∗ (5.14)

Hence, the parameter sensitivity of ARR residual ri with respect to the j th parameter
Θ j is

L
∂ri

∂Θ j
= F∗

i jδ jL z j (5.15)

The power variable z j is an output variable of the original bond graph model with
nominal parameters and as such it is a weighted sum of the inputs uk(t) into the
original bond graph in the case of a switched LTI system.

L z j =
n

∑

k=1

Fjk L uk (5.16)

where

(Fjk) = C(sI − A)−1B (5.17)

As a result, parameter sensitivities of ARR residuals ri with respect to parameter
Θ j can be obtained by constructing a matrix F from the matrices of the original
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bond graph and a matrix F∗ from the matrices of the incremental bond graph and by
multiplying the i th row of matrix F by the factor F∗

i jδ j .

L
∂ri

∂Θ j
= F∗

i jδ j

n
∑

k=1

Fjk L uk (5.18)

These operations can be hardly manually performed, even for models of small
size. However, a bond graph preprocessor such as CAMPG [11] can automatically
derive the equations from the original as well as from the incremental bond graph.
MATLAB®[12] or Scilab [13] script files can then generate the matrices F and F∗ in
symbolic form and can perform the multiplication of a row of F by the factor F∗

i jδ j

for each requested parameter sensitivity of an ARR residual.
For small switched LTI systems, variations of ARR residuals can be manually

derived from an incremental bond graph by applying the principle of superposition.
That is, only one bond graph element at a time is assumed to have an uncertain
parameter. It is replaced by its incremental model. Detectors are replaced by a dual
virtual detector for the variation of an ARR residual. Summing variations of flows or
efforts, respectively, at these junctions and eliminating unknowns yields variations
of residuals of ARRs as a weighted sum of the inputs supplied by those modulated
sinks that represent parameter variations. The weighting factors in these sums are
the sensitivities to be determined.

Example: Network with a Semiconductor Switch

As an example, the circuit with one switch in Fig. 4.1, is considered. To keep the
illustration of the procedure short and simple it is assumed that only one parame-
ter is uncertain. Accordingly, the incremental bond graph is obtained by replacing
the element by its incremental model and by replacing the constant voltage source
Se : Vi by an effort source of value zero and by replacing detectors by dual virtual
detectors for the variations of ARR residuals.

Parameter R1 Is Uncertain

Figure5.8 displays the corresponding incremental bond graph. Again, the purpose of
the auxiliary storage element C : Ca is just to resolve the causal conflict at junction
02. In the process of equation formulation, the capacitance Ca is set to zero.
Summing variations of power variables at junctions 11, 02, and i3 yields

11 : Δr̃1 = 0 − f ΔR1 − Δu (5.19a)

02 : 0 = Cn
1Δu̇C1 + Ca

︸︷︷︸

≈0

Δu̇ + Δisw (5.19b)

13 : Δisw = b

Rn
on

(ΔuC1 − Rn
2Δisw − 0) (5.19c)

http://dx.doi.org/10.1007/978-3-319-11860-4_4
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Se0 : 1 1

Δr̃1 0

De∗

1

R : Rn
1

MSefΔR1 :

0 2

C : Cn
1

Δu

C : Ca

1 3

Δisw

Sw : b

: Rn
2R

0 4

C : Cn
2

Δr̃20

Df∗

1 5

R : Rn
3

0 6

C : Cn
3

Δr̃30

Df∗

Fig. 5.8 Incremental bond graph of the switched circuit in Fig. 4.1 in the case of an uncertain
parameter R1

Combining (5.19a)–(5.19c) gives

Δr1 := −Cn
1Δ ˙̃r1 − b

Rn
on + Rn

2
Δr̃1 = Cn

1 ḟ ΔR1 + b

Rn
on + Rn

2
f ΔR1 (5.20)

Hence,

∂r1
∂ R1

= Cn
1 ḟ + b

Rn
on + Rn

2
f (5.21)

in accordance with (4.6).
Sensitivity ∂r2/∂ R1 is likewise obtained. Summation of flowvariations at junction

04 yields

Δr̃2 = Δisw (5.22)

Reformulation gives

Δr2 := Δr̃2 + b

Rn
on + Rn

2
Δr̃1 = − b

Rn
on + Rn

2
f ΔR1 (5.23)

Thus,

∂r2
∂ R1

= − b

Rn
on + Rn

2
f (5.24)

in accordance with (4.7).

http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
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Parameter R3 Is Uncertain

Figure5.9 displays the corresponding incremental bond graph. Summation of flow
variations at junction 06 gives

Δr3 = − 1

Rn
3

i3 ΔR3 = − 1

Rn
3

Cn
3 ė2 ΔR3 (5.25)

and

Δr3 := Rn
3Δr̃3 = − Cn

3 ė2 ΔR3 (5.26)

Thus

∂r3
∂ R3

= − Cn
3 ė2 (5.27)

in accordance with (4.8).
Likewise,

Δr2 := Δr̃2 = Δisw + 1

Rn
3

i3 ΔR3 = Δisw + e1 − e2
(Rn

3 )
2 ΔR3 (5.28)

Se0 : 1 1

Δr̃1 0

De∗

R : Rn
1

0 2

C : Cn
1

Δu

C : Ca

1 3

Δisw

Sw : b

: Rn
2R

0 4

C : Cn
2

Δr̃20

Df∗

1 5

0 MSf :
i3
Rn

3
ΔR3

R : Rn
3

0 6

C : Cn
3

Δr̃30

Df∗

Fig. 5.9 Incremental bond graph of the switched circuit in Fig. 4.1 in the case of an uncertain
parameter R3

http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
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and

∂r2
∂ R3

= 1

(Rn
3 )

2 (e1 − e2) (5.29)

in accordance with (4.7).

5.3.2 Adaptive Mode-Dependent Thresholds for Parameter
Variations of ARR Residuals

According to (5.13), the Laplace transform of the variation of an ARR residual is a
weighted sum of the inputs into the incremental bond graph. The weighting factors
are transfer functions

F∗
i j (s) = N∗

i j (s)

D∗(s)
(5.30)

where N∗
i j (s) and D∗(s) are polynomials and s ∈ C.

Let (n∗
i j )κ be the κth coefficient of the polynomial N∗

i j (s) and δΘ j := δ jΔΘ j .
Then

LΔri := D∗LΔr̃i =
∑

j

δΘ j N∗
i j (s)L z j

=
∑

j

δΘ j

k j
∑

κ=0

(n∗
i j )κ sκL z j (5.31)

or in the time domain

Δri (t) =
∑

j

δΘ j

k j
∑

κ=0

(n∗
i j )κ z(κ)

j (5.32)

The sum in (5.32) suggests in a natural way to apply the triangle inequality in order
to define an adaptive upper bound for the absolut values of parameter variations of
ARR residuals.

|Δri (t)| ≤
∑

j

∑

k

|δΘ j (n
∗
i j )k z(k)

j | =: thri (t) (5.33)

No fault is reported as along as variations of ARR residuals due to uncertain
parameters are within the adaptive bounds ± thri (t).

http://dx.doi.org/10.1007/978-3-319-11860-4_4
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As a result, ARR residuals as fault indicatorsmay be obtained by evaluatingARRs
derived from a diagnostic bond graph with nominal parameters. In order to assess
the effect of uncertain parameters on ARR residuals, parameter variations of ARR
residuals may be derived from an incremental bond graph. Application of the triangle
inequality then gives adaptive bounds for these variations.

Example: Simple Network with a Semiconductor Switch

This way of determining adaptive thresholds for parameter variations of ARR resid-
uals is illustrated by means of the network displayed in Fig. 5.10 which is a simpli-
fication of the switched circuit in Fig. 4.1.

Figure5.11 shows a diagnostic bond graph of the simple switched RC-circuit. For
this circuit, ARRs (4.6)–(4.7) simplify to

02 : r1 = 0 = f − C1(V̇i − R1 ḟ ) − b

Ron + R2
(Vi − R1 f − e1) (5.34a)

04 : r2 = 0 = b

Ron + R2
(Vi − R1 f − e1) − C2ė1 (5.34b)

Figure5.12 displays the corresponding incremental bond graph.
It is assumed that the small ON-resistance of the switch and resistance R2 are not

uncertain. Therefore, the switch model Sw : b and resistor R : R2 haven’t been

Vi

A

R1

C1

Sw

R2

V C2

Fig. 5.10 Simple RC-circuit with a semiconductor switch

Se
Vi

11

R : Rn
1

r̃1 f

Df

02

u

C : Ca

C : Cn
1

13

isw

Sw : b

R : Rn
2

04

C : Cn
2

e1 r̃2

De

Fig. 5.11 Diagnostic bond graph of the simple switched RC-circuit

http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
http://dx.doi.org/10.1007/978-3-319-11860-4_4
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MSefΔR1 :
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2
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0 MSf : δC2fC2

C : Cn
2

Δr̃20

Df∗

Fig. 5.12 Incremental bond graph of the simple circuit in Fig. 5.10

replaced by their incremental model. Summation of variations of power variables at
the junctions yields

11 : Δr̃1 = 0 − f ΔR1 − Δu (5.35a)

02 : 0 = Cn
1Δu̇ + δC1 fC1 + Ca

︸︷︷︸

≈0

Δu̇ + Δisw (5.35b)

13 : Δisw = b

Rn
on

(Δu − 0 − Rn
2 Δisw) (5.35c)

04 : Δr̃2 = Δisw − δC2 fC2 (5.35d)

Combination of (5.35a)–(5.35d) gives for variations of the residuals Δr1, Δr2:

Δr1 := −Cn
1Δ ˙̃r1 − b

Rn
on + Rn

2
Δr̃1 = Cn

1 ḟ ΔR1 − δC1 fC1 + b

Rn
on + Rn

2
f ΔR1

= δR1 Rn
1Cn

1 ḟ − δC1 C1(V̇i − R1 ḟ )
︸ ︷︷ ︸

fC1

+ b

Rn
on + Rn

2
δR1 Rn

1 f (5.36a)

Δr2 := Δr̃2 + b

Rn
on + Rn

2
Δr̃1 = − b

Rn
on + Rn

2
f ΔR1 − δC2 fC2

= − b

Rn
on + Rn

2
δR1 R1 f − δC2C2ė1 (5.36b)

Adaptive mode dependent thresholds thr1, thr2 for parameter variations of ARR
residual thus can be chosen as
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|Δr1| ≤ |δR1 Rn
1Cn

1 ḟ | + |(ΔC1)(V̇i − R1 ḟ )|
+ | b

Rn
on + Rn

2
δR1 R1 f | =: thr1(t) (5.37a)

|Δr2| ≤ | b

Rn
on + Rn

2
δR1 Rn

1 f | + |(ΔC2)ė1| =: thr2(t) (5.37b)

Remark 5.1 The same results for Δr1 and Δr2 are obtained by taking the total
differential of ARRs (5.34a)–(5.34b). �

Fault Scenario: The Value of Capacitance C1 Is Changed for Some Time Interval

The simulated fault scenario assumes that capacitance C1(t) is reduced to 20% of
its initial nominal value Cn

1 for 2 s < t < 4 s and is restored to Cn
1 for t > 4 s.

C1(t) = Cn
1 − dC1 · pulse(t,2,4) (5.38)

where dC1 = 80/100 · Cn
1 and pulse(t,2,4) denotes a unit pulse lasting from

2 to 4s.
According to (5.34a)–(5.34b), residual r1 is sensitive to a change in capacitance

C1 independent of the two system modes determined by the switch state b, while
residual r2 is insensitive of C1 in both modes. To show this mode independence,
the closed switch is opened at t = 3.5s. That is, a mode change happens while
parameter C1 has a significantly reduced value. For the determination of adaptive
threshold bounds a constant relative parameter variation of 2% has been adopted for
parameters R1, R2, C1 and C2. Table5.1 lists the parameter used by the simulation
of the fault scenario.

First, Fig. 5.13a, b indicate the time evolutions of the capacitor voltages
uC1 , ũC1 , uC2 , ũC2 and of the currents ĩ R1 and ĩC1 respectively as would be expected.
The tilde and the prefixing letter ‘t’ in the figures denote variables of the perturbed

Table 5.1 Parameters used
by the simulation of the fault
scenario

Parameter Value Units

E 5 V

Rn
1 100 k


Cn
1 10 µF

dC1 8 (2s < t < 4s) µF

Cn
2 10 µF

δR1 2% –

δR2 2% –

δC1 2% –

δC2 2% –
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(a) (b)

Fig. 5.13 Time evolution of the capacitor voltages and of currents ĩ R1 and ĩC1 . a Time history of
capacitor voltages. b Time history of currents ĩ R1 and ĩC1

(a) (b)

Fig. 5.14 Residuals r1, r2 and their adaptive thresholds. a Time evolution of residual r1 and its
adaptive thresholds ± thr1 b Time evolution of residual r1and its thresholds ± thr2

system. Both figures clearly show the effect of the reduction of capacitance C1 for
the time interval [2 s, 4 s] and the effect of the opening the switch at t = 3.5s.

Figure5.14a, b display the time evolution of residual r1, r2 and their adaptive
thresholds ± thr1, ± thr2.

Figure5.14b confirms that residual r2 is insensitive to a change in capacitance C1
independent of the system mode. The time history of residual r1 in Fig. 5.14a shows
a spike at t = 2 s due to the abrupt decrease of capacitance C1 and another spike at
t = 3.5s due to the opening of the switch. Moreover, for the time interval [2 s, 4 s] in
which C2 is significantly reduced, values of r1 are clearly below the adaptive lower
bound −thr1 indicating a fault. Outside of this time interval, the values of r1 are
well inside the narrow adaptive bounds. That is, r1 is sensitive in both system modes
to the temporary parametric fault in C1 but insensitive to a 2% relative parameter
variation of parameters R1, R2, C1 and C2.
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Moreover, Fig. 5.14a shows that for 0 < t < 3.5s (mode 1: closed switch, b = 1)
the bounds are much wider than for t > 3.5s (mode 0: open switch, b = 0). This
would be expected because in (5.37a)–(5.37b) b = 0 and fC1 as well as ḟ are very
small for t > 3.5s (cf. Fig. 5.13b for the time history of the currents f = iR1 and
fC1 = iC1 ).

5.3.3 Measurement Uncertainties

Inputs into an incremental bond graph are relative parameter variations ΔΘi/Θi

multiplied by a power variable from the diagnostic bond graph with nominal para-
meters. If inputs into the diagnostic bond graph obtained either by measurements
from the real system or from a behavioural model replacing the real system carry
measurement uncertainties then this affects power variables in the diagnostic bond
graph that control modulated sinks of the incremental bond graph. As a result, mea-
surement uncertainties have an impact on the variations of ARR residuals and thus
on their thresholds.

Figure5.15 illustrates this situation assuming that measurement uncertainties are
additive. A flow f̃ = f̃ ′ + Δ f̃ ′ with a predicted part f̃ ′ and an uncertain part Δ f̃ ′
due to measurement uncertainty is the output of a non-ideal sensor and an input into
the diagnostic bond graph. The input f̃ into the diagnostic bond graph results in
an effort e = e′ + Δe′ that controls a modulated sink MSe where e′ denotes the
predicted part and Δe′ the uncertain part. The output wΘ := δ(e′ + Δe′)ΔΘ of the
modulated sink is an input into the incremental bond graph that is needed to compute
the variation Δr of an ARR residual r .

If measurement uncertainties can be assumed to be bounded, then application of
the triangle inequality may yield thresholds for parameter variations of ARR resid-
uals that are independent of measurement uncertainties. For instance, let z′ be the
predicted part of an output variable z of the diagnostic bond graph that controls a
modulated sink of the incremental bond and let |Δz′| ≤ bz be the bounded mea-
surement uncertainty. Furthermore, let Δr be the variation of an ARR residual r that
depends on z and its derivative. Then

|Δr | ≤ |n1 (z′ + Δz′)| + |n2
d

dt
(z′ + Δz′)|

≤ |n1 z′| + |n2
d

dt
z′|

︸ ︷︷ ︸

≤ thr(t)

+|n1 bz | + |n2
d

dt
Δz′| (5.39)

where n1 and n2 are constants.
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Fig. 5.15 Accounting for
measurement uncertainties

real system

f̃

non-ideal sensor
Df

0 MSf : Δf̃

f̃ = f̃ + Δf̃

diagnostic BG r

De : e = e + Δe

MSe : δ(e + Δe )ΔΘ

wΘ

incremental BG Δr

u(t)

If the derivative d
dt Δz′ is approximated by the difference quotient then

|n2
d

dt
Δz′| ≤ |n2

2bz

Δt
| (5.40)

where Δt denotes the sampling time of the measurement.
The result is a threshold thr ′(t) ≥ thr(t) that is independent of measurement

uncertainties but that depends on the sampling rate of the measurement. In [14],
Touati et al. have accounted for measurement uncertainties by adding modulated
sources to an uncertain bond graph.

The simple model of a non-ideal sensor in Fig. 5.15 accounts for measurement
uncertainties by means of a modulated sink. However, a sensor may deliver wrong
readings because it operates in a faulty mode due to external disturbances that are
caused by changes in the ambient or by internal disturbances such as parametric
faults. That is, the computation of ARR residuals and of adaptive thresholds for their
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parameter variations may give misleading results. If the build-up and the parameters
of a sensor are known, parametric faults as well as a sensor’s sensitivity with regard
to known external disturbances can be taken into account by a more elaborate bond
graph model replacing a simple model such as the one in Fig. 5.15. If, however,
details of its internal build-up are not known, then the sensor’s dynamic behaviour
may be approximately captured for small deviations from its operating point by a
transfer function with parameters that at least account for the sensor’s time delay and
its gain.

5.3.4 Uncertain Excitations

Constant excitations to a system are represented by an effort or a flow source that
provides an output of constant value. In the incremental bond graph these sources are
replacedby sources of value zero. If a constant excitation, however, is to be considered
uncertain, its source may be replaced in the incremental bond graph by a source
modulated by the nominal value. For instance, let Se : En represent a constant voltage
or constant hydraulic pressure supply. If there is a relative uncertainty δE = ΔE/En ,
then the constant effort source may be replaced in the incremental bond graph by
an effort source MSe : δE En modulated by the nominal effort En obtained from
the bond graph with nominal parameters. If the internal structure and the parameters
of the device are known that provides the excitation and if possible disturbances
acting on the device can be modelled, then an incremental bond graph model can be
constructed that accounts for the uncertainty of the excitation.

5.4 Summary

ARR residuals as fault indicators should be distinctly sensible to true faults and
robust with regard to parameter uncertainties. That is, if parameters varies, the time
evolution of ARR residuals should be within prescribed bounds. For real systems
described by a hybrid model bounds should be adapted to system modes as the
dynamic behaviour can be quite different in different system modes.

This chapter briefly recalls the basic idea of incremental bond graphs and extends
their application to switched LTI systems. Incremental bond graphs can be system-
atically constructed from an original bond graph and retains its structure. They differ
from an original bond graph of a hybrid model only by additional sinks. These sinks
are introduced by the replacement of bond graph elements with varying parame-
ters by their incremental element model. The additional sinks represent parameter
variations and are modulated by a power variable from the original bond graph.

In contrast to an original bond graph, the bonds of an incremental bond graph carry
variations of power variables. Outputs of interest with regard to FDI are variations of
ARR residuals. For a switched LTI system, these variations are a weighted sum of the
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inputs and their derivatives into the incremental bond graph. The weighting factors
are the parameter sensitivities of anARR residual.Model equations andARRs can be
derived in the samemanner from an incremental bond graph as from an original bond
graph. That is, variations of ARR residuals due to parameter variations and parameter
sensitivities of ARR residuals can be derived from an incremental bond graph, while
the nominal part of an ARR is obtained from a diagnostic bond graph with nominal
parameters. Once the time evolution of parameter sensitivities of ARRs is known,
their assessment may give rise to simplify a structural FSM by setting some entries
to zero. For switched LTI systems, the principle of superposition may be applied.
That is, if only some parameter sensitivities are of interest, only their corresponding
bond graph elements may be replaced by their incremental model and increments of
ARR residuals be derived from the incremental bond graph.

Furthermore, the expression of variations of ARR residuals as a weighted sum of
inputs and their derivatives suggests in a naturalway to apply the triangle inequality to
obtain adaptive mode-dependent thresholds for variations of ARRs due to parameter
variations. That is, parameters may vary. As long as ARR residuals are within these
bounds, no fault is reported.
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