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Abstract. Fireworks algorithm (FWA) is a relatively new metaheuristic
in swarm intelligence and EFWA is an enhanced version of FWA. This
paper presents a new improved method, named IEFWA, which modifies
EFWA in two aspects: a new Gaussian explosion operator that enables
new sparks to learn from more exemplars in the population and thus
improves solution diversity and avoids being trapped in local optima,
and a new population selection strategy that enables high-quality solu-
tions to have high probabilities of entering the next generation without
incurring high computational cost. Numerical experiments show that the
IEFWA algorithm outperforms EFWA on a set of benchmark function
optimization problems.
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1 Introduction

Initially proposed by Tan and Zhu [1], fireworks algorithm (FWA) is a relatively
new nature-inspired optimization method mimicking the explosion process of
fireworks for optimization problems. In FWA, a solution to the problem is anal-
ogous to a firework or a spark, and an explosion is analogous to a stochastic
search in the solution space around the firework. By explosion, fireworks with
better fitness tend to generate more sparks within smaller explosion ranges in
order to intensify local search, while fireworks with worse fitness generate fewer
sparks within larger explosion ranges to facilitate global search, as illustrated in
Fig. 1 [1]. Numerical experiments on a set of benchmark functions show that,
FWA has more rapid convergence speed than some typical particle swarm opti-
mization (PSO) algorithms such as [2] and [3].

Since its proposal, FWA has attracted much attention. Zheng et al. [4] devel-
oped a new hybrid FWA by combining it with differential evolution (DE) [5],
which selects new fireworks for the next generation from highly ranked solutions
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(a) Good firework (b) Bad firework

Fig. 1. Illustration of fireworks explosions in FWA

and updates these newly generated solutions with the DE mutation, crossover,
and selection operators. Pei et al. [6] studied the influence of approximation
model, sampling method, and sampling number on the acceleration performance
of FWA, and improved the algorithm by using an elite strategy for enhancing the
search capability. The hybrid algorithm proposed by Zhang et al. [7] introduces
the migration operator of biogeography-based optimization (BBO) [8] to FWA,
which can effectively enhance information sharing among the population, and
thus improves solution diversity and avoids premature convergence.

In [9] Ding et al. studied the parallel implementation of FWA on GPUs. In
[10] Zheng et al. presented a multiobjective version of FWA, which has shown
the great success for variable-rate fertilization in oil crop production. FWA has
also been successfully applied to many other practical problems [11,12,13,14].

An important improvement to FWA is the enhanced FWA (EFWA) proposed
by Zheng et al. [15], which tackles the limitations of the original FWA by de-
veloping new explosion operators, new strategy for selecting population for the
next generation, new mapping strategy for sparks out of the search space, and
new parameter mechanisms. Consequently, EFWA outperforms FWA in terms
of convergence capabilities, meanwhile reducing the runtime significantly.

In this paper, we further improve EFWA in two aspects, i.e., the Gaussian
explosion operator and the population selection strategy. We develop a new
Gaussian explosion operator that enables new sparks to learn from more exem-
plars in the population, and thus improves solution diversity and avoids being
trapped in local optima. Moreover, we propose a new population selection strat-
egy that enables high-quality solutions to have high probabilities of entering the
next generation, without incurring high computational cost. Numerical experi-
ments show that the proposed algorithm, named IEFWA, outperforms EFWA
on a set of benchmark function optimization problems.

In the rest of the paper, Section 2 introduces FWA and EFWA, Section 3
describes IEFWA in detail, Section 4 presents the experiments, and Section 5
concludes.
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2 FWA and EFWA

FWA is a metaheuristic optimization method inspired by the phenomenon of
fireworks explosion, where a solution to the problem is analogous to a firework
or a spark. The key principle of FWA is that fitter fireworks can explode more
sparks within a smaller area, while worse fireworks generate fewer sparks within
a larger amplitude. The basic framework of FWA is as follows:

1. Randomly initialize a certain number of locations to set off fireworks.
2. For each firework, perform a regular explosion operation to generate a set of

sparks.
3. Select a small number of fireworks, on each of which perform a Gaussian

explosion operation to generate a few number of sparks.
4. Choose individuals from the current generation of fireworks and sparks to

enter into the next generation.
5. Repeat Step 2-4 until the termination condition is satisfied.

For regular explosion of FWA, the number of sparks si and the explosion
amplitude Ai of the ith firework Xi are respectively calculated as follows:

si = Me · fmax − f(Xi) + ε
∑n

j=1(fmax − f(Xj)) + ε
(1)

Ai = Â · f(Xi)− fmin + ε
∑n

j=1(f(Xj)− fmin) + ε
(2)

where n is the size of population, f(Xi) is the fitness value of Xi, fmax and
fmin are respectively the maximum and minimum fitness values among the n
fireworks, Me and Â are two parameters for respectively controlling the total
number of sparks and the maximum explosion amplitude, and ε is a small con-
stant to avoid zero-division-error.

To avoid overwhelming effects of splendid fireworks, the number of sparks is
further bounded as follows (where smin and smax are control parameters and
round rounds a number to its closest integer):

si =

⎧
⎨

⎩

smin if si < smin

smax if si > smax

round(si) else
(3)

According to Eq. (2), the explosion amplitude may be too small for very good
fireworks. EFWA tackles this issue by setting at each dimension d a lower limit
of explosion amplitude Ad

min, which decreases with the number of generations
(or function evaluations) t as follows:

Ad
min = Ainit − Ainit −Afinal

tmax

√
(2tmax − t)t (4)

where Ainit and Afinal are respectively the initial and final minimum explosion
amplitude, and tmax is the maximum number of generations (or function evalu-
ations).
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When performing a regular explosion on Xi, FWA computes an offset dis-
placement as rand(−1, 1) · Ai, which is added to z random dimensions of Xi.
EFWA modifies the explosion operator by computing a different displacement
value for each dimension d:

Xd
j = Xd

i + rand(−1, 1) ·Ad
i (5)

Gaussian explosion of FWA is mainly used for improving solution diversity.
At each generation, FWA randomly chooses a small number Mg of fireworks,
and for each firework obtains a Gaussian spark by computing its location as:

Xd
j = Xd

i ·N(1, 1) (6)

where N(1, 1) is a Gaussian random number with mean 1 and standard deviation
1. However, such a mechanism often causes many sparks to be very close to the
origin of the search space, and fireworks already close to the origin cannot escape
from this location. To tackle this, EFWA uses the following Gaussian explosion
that makes the new spark learn from the best individual Xbest found so far:

Xd
j = Xd

i + (Xd
best −Xd

i ) ·N(0, 1) (7)

Algorithm 1 and Algorithm 2 respectively describes the regular explosion and
Gaussian explosion procedures used in EFWA, where Xi denotes the firework to
be exploded, and D is the dimension of the problem.

Algorithm 1. The regular explosion used in EFWA.

1 Calculate si and Ai for firework Xi;
2 for k = 1 to si do
3 Initialize a spark Xj = Xi;
4 for d = 1 to D do
5 if rand(0, 1) < 0.5 then
6 Xd

j = Xd
i + rand(−1, 1) ·Ad

i ;
7 if Xd

j is out of the search range then
8 Randomly set Xd

j in the search range;
9 Add Xj as a new spark.

Algorithm 2. The Gaussian explosion in EFWA.

1 Initialize a spark Xj = Xi;
2 for d = 1 to D do
3 if rand(0, 1) < 0.5 then
4 Xd

j = Xd
i + (Xd

best −Xd
i ) ·N(0, 1);

5 if Xd
j is out of the search range then

6 Randomly set Xd
j in the search range;

7 Return Xj as a new Gaussian spark.

At each generation, the best individual among all the sparks and fireworks is
always chosen to the next generation. In FWA, the other (n − 1) fireworks are
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selected according to the probabilities proportional to their distances to other
individuals, which is computationally expensive. Therefore, EFWA employs a
very simple strategy that randomly selects the remaining (n− 1) fireworks.

3 An Improved EFWA

The proposed IEFWA intends to improve EFWA in two aspects: the Gaussian
explosion operator and the population selection strategy.

3.1 A New Gaussian Explosion Operator

As shown in Eq. (6), the Gaussian explosion of EFWA makes the new spark
learn from the best individual Xbest found so far. This is similar to the mecha-
nism of learning from the global best in PSO [2]. Thus EFWA also partly suffers
the problem of premature convergence as PSO: If the Xbest is just a local op-
timum or very close to it, the Gaussian sparks will be heavily attracted by the
local optimum; if there is no new best solution found for a certain number of
generations, more and more sparks will converge to the local optimum, and the
algorithm is easily trapped.

To tackle this issue, we develop a new Gaussian explosion operator that en-
ables new Gaussian sparks to learn from not only the current best but also other
exemplars in the population. Our tactic is very simple: When exploding a fire-
work Xi, at each dimension d, we first randomly choose two individuals from the
current population, and then select the one with higher fitness value, denoted
by Xlbest, as the exemplar that replaces Xbest in Eq. (7):

Xd
j = Xd

i + (Xd
lbest −Xd

i ) ·N(0, 1) (8)

In this way, every Gaussian spark has a chance to learn from different exem-
plars at different dimensions, and thus the solution diversity can be increased
greatly. The combination of the regular explosion of EFWA and the new Gaus-
sian explosion of IEFWA can balance the exploration and exploitation much
more effectively. Algorithm 3 presents the new Gaussian explosion procedure.

Algorithm 3. The Gaussian explosion in IEFWA.

1 Initialize a spark Xj = Xi;
2 for d = 1 to D do
3 if rand(0, 1) < 0.5 then
4 Randomly choose two individuals from the population;
5 Set Xlbest to the better one between them;
6 Xd

j = Xd
i + (Xd

lbest −Xd
i ) ·N(0, 1);

7 if Xd
j is out of the search range then

8 Randomly set Xd
j in the search range;

9 Return Xj as a new Gaussian spark.
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3.2 A New Population Selection Strategy

When selecting individuals to the next generation, the original FWA uses a
distance-based selection strategy, which is effective in terms of population di-
versity but incurs high computational cost. EFWA employs a random selection
strategy that is computationally efficient but may lose some high-quality indi-
viduals which may ultimately lead to the global optimum.

In general, we want that high-fitness individuals have high selection proba-
bility, while low-fitness individuals still have chances of entering into the next
generation. Here we employ the pairwise comparison method used in evolution-
ary programming (EP) [16] to determine whether an individual should survive
to the next generation. That is, for each individual, we randomly choose q oppo-
nents from the current generation, and conduct q pairwise comparisons between
the test individual and the opponents. If the individual is fitter, it receives a
“win”. Finally, among all the individuals in the current generation, n individu-
als that have the most wins enter into the next generation.

EP has a fixed population size and uses a fixed q value of about 10∼20.
However, in FWA the total number of fireworks and sparks often varies from
generation to generation, and thus we set q to a random value in the range
[1,np], where np is the total number of individuals in the current generation.
Algorithm 4 presents the population selection procedure used in IEFWA.

Algorithm 4. The population selection in IEFWA.

1 Let q = rand(1,np);
2 for each Xi in the current generation do
3 Let Wins(Xi) = 0;
4 Randomly choose q opponents from the population;
5 for each opponent X ′

i do
6 if f(Xi) > f(X ′

i) then
7 Wins(Xi)←Wins(Xi) + 1;
8 Sort np individuals in decreasing order of Wins(Xi);
9 Return the first n individuals.

4 Computational Experiment

4.1 Experimental Settings

We test the performance of the proposed IEFWA on a set of 18 benchmark
functions denoted as f1–f18, which are summarized in Table 1. Here f1–f13
include unimodal and simple multimodal functions taking from [17], and f14–
f18 are shifted and rotated (SR) functions taking from [18]. All the functions are
high-dimensional problems, and in this paper we use 30-D problems.

To evaluate our new strategies, besides the proposed IEFWA that uses both
the new Gaussian explosion operator and the new population selection strategy,
we also implement another version that uses only the new Gaussian explosion
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Table 1. A summary of the benchmark functions used in the paper (for f14–f18, M
is the rotation matrix and oi is the shifted global optimum [18])

Name Function Range

Sphere f1(x) =
D∑

i=1

x2
i [−100, 100]D

Schwefel 2.22 f2(x) =
D∑

i=1

|xi|+
D∏

i=1

|xi| [−10, 10]D

Schwefel 1.2 f3(x) =
D∑

i=1

( i∑

j=1

xj

)2
[−100, 100]D

Schwefel 2.21 f4(x) = max
i
{|xi|, 1 ≤ i ≤ D} [−100, 100]D

Rosenbrock f5(x) =
D−1∑

i=2

(100(x2
i − xi−1)

2 + (xi − 1)2) [−30, 30]D

Step f6(x) =
D∑

i=1

(�xi + 0.5�)2 [−100, 100]D

Quartic f7(x) =
D∑

i=1

ix4
i + rand[0, 1) [−1.28, 1.28]D

Schwefel f8(x) = 418.9829 ×D −
D∑

i=1

xi sin(|xi| 12 ) [−500, 500]D

Rastrigin f9(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10) [−5.12, 5.12]D

Ackley f10(x) = −20 exp
(

− 0.2

√

1
D

D∑

i=1

x2
i

)

[−32, 32]D

− exp
(

1
D

D∑

i=1

cos(2πxi)
)
+ 20 + e

Griewank f11(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos( xi√
i
) + 1 [−600, 600]D

Penalized1 f12(x) =
π
30

(
10 sin2(πy1) +

D−1∑

i=1

(yi − 1)2(1 + 10 sin2( [−50, 50]D

πyi+1)) + (yD − 1)2
)
+

D−1∑

i=1

u(xi, 10, 100, 4)

Penalized2 f13(x) = 0.1
(
sin2(3πx1) +

D−1∑

i=1

(xi − 1)2(1 + sin2(3πxi+1)) [−50, 50]D

+(xD − 1)2(1 + sin2(2πxD))
)
+

D−1∑

i=1

u(xi, 5, 100, 4)

where u(xi, a, k,m) =

⎧
⎪⎨

⎪⎩

k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a
SR Bent Cigar f14(x) = 200 + y2

1 + 106
∑D

i=2 y
2
i , y = M(x− o1) [−100, 100]D

SR Discus f15(x) = 300 + 106y2
1 +

∑D
i=2 y

2
i , y = M(x− o2) [−100, 100]D

SR Ackley f16(x) = 500 + f10(y), y = M(x− o3) [−100, 100]D
SR Griewank f17(x) = 700 + f11(y), y = M

( 600(x−o4)
100

)
[−100, 100]D

SR Rastrigin f18(x) = 900 + f9(y), y = M
(
5.12(x−o5)

100

)
[−100, 100]D
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operator, denoted as IEFWA1. For the sake of fair comparison, the maximum
number of function evaluations (NFE) is set to 200,000 for every problem.

We have compared EFWA, IEFWA1, and IEFWA on the 18 test problems,
using n = 5, Me = 50, Mg = 5, Â = 40, smax = 40, smin = 2, Ainit =
0.02(Xmax−Xmin) and Afinal = 0.001(Xmax−Xmin), as suggested in [1] and [15].
The experiments are conducted on a computer of Intel Core i5-2520M processor
and 4GB DDR3 memory. Each algorithm has been run 60 times (with different
random seeds) on each problem.

4.2 Experimental Results

Table 2 presents the mean and standard deviation of the best fitness values
obtained by the three algorithms averaged over 60 runs. The bold values indicate
the best results among the three algorithms. We have also conducted paired t-
tests between IEFWA and the other two algorithms, and mark + before the mean
values in columns 2 and 4 if IEFWA has statistically significant performance
improvement over the corresponding algorithms (at 95% confidence level).

Table 2. The experimental results of the three algorithms

ID FWA IEFWA1 IEFWA

mean std mean std mean std

f1
+5.01E+00 (9.01E−01) +7.48E−04 (3.51E−04) 5.32E−05 (5.10E−05)

f2
+9.17E−01 (1.49E−01) +1.18E−02 (2.35E−03) 1.25E−03 (8.58E−04)

f3
+6.23E+01 (1.45E+01) +3.79E−02 (1.23E−02) 1.98E−03 (1.63E−03)

f4
+9.55E−01 (6.79E−02) 2.01E−01 (4.29E−02) 3.29E−01 (3.30E−01)

f5
+2.18E+02 (2.57E+02) +1.00E+02 (1.57E+02) 5.34E+01 (3.29E+01)

f6
+3.87E+00 (9.99E−01) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)

f7
+1.83E−02 (1.36E−02) +1.75E−02 (1.18E−02) 8.22E−03 (5.68E−03)

f8 5.30E+03 (8.56E+02) 5.12E+03 (7.47E+02) 5.20E+03 (4.37E+02)

f9
+1.27E+02 (2.02E+01) 1.83E+01 (5.95E+00) 9.55E+01 (1.90E+01)

f10
+1.16E+00 (1.72E−01) +1.88E−02 (5.88E−01) 1.80E−03 (1.21E−03)

f11
+1.03E+00 (2.21E−02) +2.48E−02 (2.20E−02) 9.90E−03 (8.87E−03)

f12
+1.12E+01 (2.77E+00) +1.42E+00 (1.59E+00) 9.35E−01 (9.43E−01)

f13
+8.18E−01 (2.39E−01) +9.67E−05 (1.33E−04) 2.76E−05 (5.98E−05)

f14
+6.86E+06 (1.27E+06) +8.87E+03 (1.09E+04) 5.90E+03 (1.25E+04)

f15
+3.99E+02 (2.76E+01) +3.53E+02 (2.25E+01) 3.35E+02 (1.77E+01)

f16
+5.21E+02 (7.56E−02) +5.20E+02 (4.78E−03) 5.20E+02 (1.82E−03)

f17
+9.58E+06 (1.60E+06) +1.02E+04 (3.64E+03) 3.07E+03 (2.05E+03)

f18
+1.06E+03 (4.80E+01) 1.02E+03 (5.00E+01) 1.01E+03 (3.12E+01)

As we can see from the results, EFWA never obtains the best mean value on
any of the 18 problems, and the two IEFWA versions both achieve considerable
performance improvement over EFWA. In terms of statistical tests, except that
on f8 there is no significant difference between EFWA and IEFWA, on the
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Fig. 2. Convergence curves of the comparative algorithms on the test problems
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remaining 17 problems the performance of IEFWA is always significantly better
than EFWA. This shows that our new Gaussian explosion operator is effective
in improving the search ability of the algorithm.

By comparing IEFWA1 and IEFWA, the former obtains the best mean val-
ues on 4 problems, and the latter does so on 15 problems (they both reach the
optimum on f6). Statistical test results show that IEFWA has significant perfor-
mance improvement over IEFWA1 on 13 problems. In particular, IEFWA always
obtains the best mean values on the 5 shifted and rotated problems (f14–f18),
and has significant performance improvement over IEFWA1 on 4 problems. This
also demonstrates the effectiveness of our comparison-based population selection
strategy, especially on complex test problems.

Fig. 2(a)–(t) respectively present the convergence curves of the algorithms on
the 18 test problems. As we can see, the two IEFWA versions converges much
better than EFWA on most of the problems, except that on f7 the curves of
EFWA and IEFWA1 overlap to a great extent, (but IEFWA converges faster
and reaches a better result). On f10 EFWA and IEFWA both converge faster
than IEFWA1 in the early stage but the curve of EFWA soon becomes very flat
and overtaken by IEFWA1, while IEFWA still keeps a fast convergence speed
at later stages and reaches a much better result. This is because the Ackley
function has multiple local optima, where EFWA is easily trapped, but the two
IEFWA versions are capable of jumping out of the local optima. On most other
problems, the IEFWA versions not only converge faster than EFWA, but also
have their curves falling for long periods where EFWA has been already trapped.

On the other hand, the convergence curves of IEFWA1 and IEFWA have
similar shapes on many problems, but IEFWA often converges much faster than
IEFWA1. This also demonstrates that the new population selection strategy
contributes to the increase of the convergence speed.

In summary, the experimental results show that IEFWA has obvious advan-
tages in convergence speed and solution accuracy, which demonstrates that our
Gaussian explosion operator can greatly improve the solution diversity and thus
effectively avoid premature convergence, and the new population selection strat-
egy can efficiently accelerate the search. The combination of the two strategies
provides a much better balance of exploration and exploitation than EFWA.

5 Conclusion

EFWA is a major improvement of the original FWA. The proposed IEFWA fur-
ther uses a new Gaussian explosion operator that provides a more comprehensive
learning mechanism to increase solution diversity, and employs a new popula-
tion selection strategy to accelerate the search. Computational experiments show
that IEFWA outperforms EFWA in both convergence speed and solution accu-
racy on a set of well-known benchmark functions. Ongoing work includes testing
the new strategies for constrained and/or multiobjective optimization problems,
and hybridizing the proposed IEFWA with other heuristics.
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