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Abstract. A variant of quantum evolutionary algorithm based on dy-
namic neighborhood topology(DNTQEA) is proposed in this paper. In
DNTQEA, the neighborhood of a quantum particle are not fixed but
dynamically changed, and the learning mechanism of a quantum particle
includes two parts, the global best experience of all quantum particles
in population, and the best experiences of its all neighbors, which col-
lectively guide the evolving direction. The experimental results demon-
strate the better performance of the DNTQEA in solving combinatorial
optimization problems when compared with other quantum evolutionary
algorithms.
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1 Introduction

Quantum computing with its powerful computing power has become one of the
most focused technology of current science. By considering the quantum informa-
tion processing, researchers attend to introduce quantum computing mechanism
into some traditional optimization algorithms. The combination of quantum
computing and evolutionary computation was proposed in [1] named quantum
genetic algorithm. In [2][3] quantum-inspired evolutionary algorithms(QEA) are
first investigated for a class of combinatorial optimization problems in which
quantum rotation gates act as update operators. Many works have tried to im-
prove the performance of QEA. In [4] a new two phase scheme and a new He
Gate is proposed for QEA. Reference [5] establishes that QEA is an original algo-
rithm that belongs to the class of estimation of distribution algorithms (EDAs),
while the common points and specifics of QEA compared to other EDAs are
highlighted. Since proposed, QEA has been applied on several applications in
science. Using QEA and Markov Model [6] presents a new method for static
VAR which considers existing wing generator voltages and transformer taps as
controller to regulate the voltage profile in a distribution system with wind farms.
In order to solve the problem of highly non-linear economic load dispatch prob-
lem with value point loading [7] proposes an improved real quantum evolutionary
algorithm which shows better performance than QEA.

Generally, the structure of the population in evolutionary algorithms is an
important parameter. A graph based evolutionary algorithm is proposed in [8]
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in which the individuals are located on the nodes of a graph structured popula-
tion. The effect of variable population structure on Particle Swarm Optimization
is investigated in [9]. Random graphs and their performance on several crite-
ria are compared in their work. Similar with the above algorithms, Tayarani
[10] proposed a sinusoid size ring structure QEA, experimental results show
that the ring structure can be an efficient architecture for an effective Explo-
ration/Exploitation tradeoff and improves the performance of QEA. [11] pro-
poses a dynamic structured interaction among members of population in QEA
and the study shows that cellular structure is the best. The structure of the
population in above algorithms is fixed and the relationship among individuals
never change in evolving process, this characteristics may cause the optimization
process trap in local optimums and make the algorithm unstable.

As the similar particle study strategy, many hybrid algorithms by combing
QEA and particle swarm optimization(PSO) are proposed . [12] proposed a bi-
nary Quantum-behaved PSO algorithm with cooperative approach, the updating
method of particle’s previous best position and swarm’s global best position are
performed in each dimension of solution vector to avoid loss some components.
The experimental results show that this technique can increase diversity of pop-
ulation and converge more rapidly than other binary algorithms. In [13], a hybrid
real-coded QEA is proposed by combing PSO, crossover and mutation. Simula-
tion results show that it performs better in terms of ability to discover the global
optimum and convergence speed. [14] uses quantum PSO principles to resolve
the satisfiability problem. In [15], a quantum inspired PSO is applied to optimize
of simultaneous recurrent neural networks and shows better performance than
traditional methods.

From what has been discussed above, this paper proposed a variant of quantum
evolutionary algorithm based on dynamic neighborhood topology(DNTQEA), In
DNTQEA, the neighborhood of a quantum particle are not fixed but dynamically
changed, and the learning mechanism of a quantum particle includes two partsthe
global best experience of all quantum particles in populationand the best experi-
ences of its all neighbors, which guide the final evolving direction of the quantum
particle.

This paper is organized as follows. Section 2 describes the original QEA. In
Section 3 the dynamic structure for QEA and the hybrid algorithm are given.
In Section 4 the proposed algorithm is evaluated on some benchmark functions
and finally the proposed algorithm is concluded in section 5.

2 Brief Description of Quantum Evolutionary Algorithm

Quantum evolutionary algorithm(QEA) combines quantum mechanism and ba-
sic evolutionary algorithm is a kind of probability search algorithm. Its essential
characteristics are making full use of the superposition and coherence of quan-
tum state. QEA adopts a new coding party quantum bit code; the concrete form
can be described as: [

α1| α2| · · · | αm

β1| β2| · · · | βm

]
(1)
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In equation (1), (αi, βi)
T (i = 1, 2, · · · ,m), represents a quantum bit and sat-

isfies the following expression |α2 + β2| = 1, m denotes the number of quantum
bit; q is called a quantum chromosome used to describe the problem in QEA.

The above representation method has the advantage that it is able to rep-
resent any superposition of states, so evolutionary computing with the Q-bit
representation has a better characteristic of diversity than classical approaches,
since it can represent superposition of states. As α2

i or β2
i approaches to 1 or 0,

the Q-bit chromosome converges to a single state and the property of diversity
disappears gradually, and the algorithm converges.

The structure of QEA is described in Table 1 [3]:

Table 1. The details description of QEA

procedure QEA

begin
1. t← 0;
2. initialize Q(t);
3. make P (t) by observing Q(t) states;
4. evaluate P (t);
5. store the best solution among P (t);

while(not termination-condition) do
begin

6. t← t+1;
7. make P (t) by observing Q(t− 1) states;
8. evaluate P (t);
9. update Q(t) using quantum gates U(t);
10. store the best solution among P (t);

end
end

Here, Q(t) represents the population in t generation; P (t) denotes the set of
binary solution of t generation. When initializing the population, generally all
the quantum bits in quantum chromosomes are initialized to

√
2 which means

that all possible superposition states appear in the same probability. In step
(3), Q(t) generates P (t) through the observation operation. This process can
described as follows: randomly generating a random number between [0, 1], if
it is greater than α2

i , the Q-bit value of corresponding binary solution is 1,
otherwise its value is 0. In the step(9), QEA adopts the quantum revolving door
u(t) to update Q(t), and mathematical formula can be defined as:

[
α

′
i

β
′
i

]
=

[
cos(Δθ) −sin(Δθ)
sin(Δθ) cos(Δθ)

] [
αi

βi

]
(2)

Here, Δθ is the rotation angle and controls the speed of convergence and
determined by look table given in [3], which shows that these values for Δθ have
better performance.
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3 Dynamic Neighborhood Topology Based QEA

3.1 Dynamic Neighborhood Topology Structure and Updating
Rules

Usually, the structure of the population in improved QEAs [9][10][11] is fixed
and the neighbors of each individual are never changed in evolving process, this
will cause each individual has fewer learning samples and greatly reduce the
diversity of the population. So in order to keep each individual has opportunity
to learn from more individuals, avoid trapping in local optimums and existing
precocious phenomenon, this paper proposes a strategy based on fitness of each
individual to form its neighbors dynamically. This makes the learning samples
become diversity and promotes the individual converge to the global optimal
position.

In DNTQEA, the neighbor selection rule of each individual is Euclidean dis-
tance among individuals. Based on this rule, the neighbors of current individual
i can be calculated as follows:

{
Di(t) = {dij(t)|dij(t) = ||xi(t)− xj(t)||}, j �= i, j ∈ Ps;

neighbori(t) = arg(min(sort(Di(t)), n)).
(3)

Where, Di(t) denotes the Euclidean distance set between the current indi-
vidual i and other individuals in population at t generation; Ps denotes the
population size; neighbori means the neighbors set of the current individual i at
t generation; n denotes the number of neighbors belong to the current individual
i, its value usually is set to 1/4 ∼ 1/3 of the population size and in DNTQEA,
n = Ps/3; sort(A) means sorting elements in A from smallest to largest. When
executing DNTQEA, if the individual fitness holds the same in continuous T gen-
eration, its neighbors need to be reselected. After repeated experiments, when
T = 10, the algorithm gains the best result, so in DNTQEA, parameter T is set
to 10.

The updating method of each individual in [2][3][9][10][11] can be summarized
as that each individual only learning from the global best individual or the best
one in its neighbors. This method may cause the searching process trapped
in local optimums, while in particle swarm optimization(PSO)[15] algorithm,
the evolving direction of each particle is decided by its history experience and
the global experience. So in DNTQEA, the global best individual and the best
individual of neighbors are used to guide the evolving direction of each individual.
This updating rule can be described as follows:

⎧⎨
⎩

q1i ←− Learn(qi, gbest);
q2i ←− Learn(qi, nbest);

q
′
i ←− Random(q1i , q

2
i , p);

(4)

Here, qi and q
′
i denote the ith original individual and the new individual after

learning from the gbest and nbest, respectively; gbest means the global best indi-
vidual in current population; nbest denotes the best individual in neighbors of qi;
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Learn(I1, I2) means I1 is updated by predefined quantum gate with reference to
I2; q

1
i and q2i denote the learning results from gbest and nbest; Random(I1, I2, p)

means to choose I1 with probability p as the final evolving individual.

3.2 Procedure of the Proposed DNTQEA

By combing the dynamic neighborhood topology and updating rule introduced
in above subsection, the procedure of the proposed DNTQEA is described in
Table 2.

Table 2. The details description of DNTQEA

Procedure DNTQEA
begin

t = 0;
1. initialize quantum population Q(t) with the size of Ps;
2. make X(t) by observing the states of Q(t);
3. evaluate X(t);
4. for all binary solutions xt

i do
begin

5. find neighborhood set Ni in X(t) by definition (3)
6. find binary solution x with best fitness in Ni

7. save x in Bi

end
8. save solution y with best fitness of Xt in gbest;
9. while(not termination-condition) do

begin
t = t + 1;

10. make X(t) by observing the states of Q(t − 1);
11. evaluate X(t);
12. update Q(t) based on Bi and gbest using Q-gates by rule (4);
13. for all binary solutions xt

i do
begin

14. find neighborhood set Ni in X(t) by definition (3)
15. select binary solution x with best fitness in Ni

16. if x is fitter than Bi save x in Bi

end
17. select solution y with best fitness of X(t)
18. if y is fitter than gbest save y in gbest;

end
end

The pseudo code of DNTQEA is described as below:
1. In initialization step, [α0

i,k β0
i,k]

T in q0i are initialized with 1/
√
2, where

i = 1, 2, · · · , Ps is the index of the individuals in the population, k = 1, 2, · · · ,m,
and m is the number of Q-bits in a individual. This initialization means that

each Q-bit individual q
[
i0] represents the linear superposition of all possible states

with equal probability.
2. This step makes a set of binary solutions X(0) = {x0

i |i = 1, 2, · · · , Ps} at
generation t = 0 by observing Q(0) = {q0i |i = 1, 2, · · · , Ps} states, where X(t) at
generation t is a random solution of Q-bit population and Ps is population size.
Each binary solution, x0

i with length m, is formed by selecting each bit using
the probability of Q-bit, either |α0

i,k|2 or |β0
i,k|2 of q0i . The binary bit xt

i,k can be

obtained from Q-bit [α0
i,k β0

i,k]
T in following way:
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xt
i,k =

{
0 if random(0, 1) < |αt

i,k|2
1 otherwise

(5)

Where random(0, 1) is a uniform random number generator.
3. Each binary solution x0

i ∈ X(0) is evaluated to give some measure of its
fitness.

4,5,6,7,8. In these steps the neighborhood set Ni of all binary solutions x0
i in

X(0) is selected by rule 3, meanwhile, the best solution among Ni is stored in
Bi and the best solution among X(0) is saved in gbest.

9. The while loop is terminated when the maximum number of iterations is
reached.

10. Observing the binary solutions X(t) from Q(t− 1).
11. Evaluating the binary solutions X(t).
12. The quantum individuals are updated using Q-gate based on Bi and gbest

with updating rule 4.
13. The for loop is for all binary solutions xt

i(i = 1, 2, · · · , Ps) in population.
14. Finding the neighbors of the binary solution xt

i.
15. Selecting the best possible solution in Ni and save it to x.
16. If x is fitter than Bi and then replace Bi with x.
17. Finding the best possible solution in X(t) and save it to y.
18. If y is fitter than gbest and then replace gbest with y.

4 Simulations

The proposed DNTQEA is compared with the original version of QEA and
FSQEA [11] which used Cellular structure and a functional population size for
QEA. The experimental results are performed for several dimensions (m=50,
100, 250) of Knapsack Problem and 14 numerical benchmark functions. Similar
settings with reference [11], the population size of all algorithms is set to 25;
termination condition is set for a maximum of 1000 generations. Due to statistical
nature of the optimization algorithms, all results are averaged over 30 runs. The
parameter of QEA is set to Δθ = 0.01π and the parameters of FSQEA are set
to the same value with reference [11].

Table 3 summarizes the experimental results on DNTQEA, FSQEA and QEA
for Knapsack Problem and 14 benchmark functions (The results for some dimen-
sions are not summarized in Table 3 because of small space of the paper). As it
seen in Table 3, DNTQEA has the best results.

5 Conclusions

This paper proposes a variant of quantum evolutionary algorithm based on
dynamic neighborhood topology(DNTQEA). In DNTQEA, the neighbors of a
quantum particle are dynamically changed by Euclidean distance set between
the current individual and other individuals in population. The learning mech-
anism of a quantum particle contains the global best experience of all quantum
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Table 3. Experimental results on Knapsack Problem and 14 numerical benchmark
functions for m=100 and m=250

m=100 m=250
DNTQEA FSQEA QEA DNTQEA FSQEA QEA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
KP1 590.28 0.73 562.13 0.92 546.82 11.29 1355.8 15.23 1252.6 17.40 1173 30.19
KP2 438.54 1.14 418.15 1.94 406.91 4.39 1029.55 10.11 994.46 10.31 942.99 20.90
f1 47126 1289.3 45889 1558.8 34437 3984.1 80081 2719 76292 2939 55844 5845.3
f2 -1097.3 66.49 -1287.8 97.97 -2096.3 199.45 -5015 287.18 -5118.9 304.75 -6511 360.74
f3 -13.76 0.08 -16.89 0.14 -17.19 0.09 -16.89 0.08 -17.39 0.11 -17.62 0.11
f4 -27.28 4.19 -30.08 5.24 -39.60 8.48 -123.89 10.19 -134.53 10.16 -154.42 14.04
f5 -1.27e5 12459 -1.43e5 14756 -1.67e5 16807 -5.41e5 20115 -5.60e5 20743 -6.05e5 43232
f6 -21459 2412.8 -23017 2742.1 -36949 4918.7 -0.97e5 4873.2 -1.09e5 5039 -1.44e5 8269.3
f7 38.22 2.27 31.17 2.53 22.04 2.46 55.81 3.28 52.24 4.39 39.43 3.02
f8 54.11 1.21 50.57 1.75 38.19 3.24 97.89 4.89 93.51 5.31 73.50 5.02
f9 -2.198e5 21054 -2.46e5 23972 -4.55e5 68039 -1.15e6 88756 -1.26e6 93119 -1.64e6 1.34e5
f10 -3.561 0.22 -4.2161 0.29 -5.21 0.68 -5.45 0.28 -5.95 0.30 -6.52 0.46
f11 -167.01 5.45 -169.84 7.76 -176.72 3.78 -178.24 1.56 -189.69 2.35 -192.03 1.36
f12 -1.19e7 2.21e6 -1.33e7 2.53e6 -2.56e7 9.20e6 -2.19e8 2.01e7 -2.44e8 2.45e7 -3.09e8 3.59e7
f13 -46873 5104 -49229 5885 -1.08e5 35412 -2.84e5 33298 -3.1e5 35376 -4.81e5 72311
f14 -0.074 0.057 -0.098 0.065 -1.29 1.26 -7.29 1.74 -7.53 1.94 -20.38 6.19

particles in population and the best experiences of its all neighbors, which to-
gether guide the evolving direction. The performance of the proposed algorithm
is tested on Knapsack Problem and 14 benchmark functions, and simulation re-
sults show that DNTQEA is better than other improved QEA and more suitable
for solving combinatorial optimization problems problems.

The objective functions which are used here are f1: Schwefel 2.26 [16], f2:
Rastrigin [16], f3: Ackley [16], f4: Griewank [16], f5: Penalized 1 [16], f6: Penalized
2 [16], f7: Michalewicz [17], f8: Goldberg [18], f9: Sphere Model [16], f10: Schwefel
2.22 [16], f11: Schwefel 2.21 [16], f12: Dejong [17], f13: Rosenbrock [18], and f14:
Kennedy [18].
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