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Preface

This book and its companion volume, LNCS vols. 8794 and 8795, constitute the
proceedings of the fifth International Conference on Swarm Intelligence (ICSI
2014) held during October 17–20, 2014, in Hefei, China. ICSI 2014 was the
fifth international gathering in the world for researchers working on all aspects
of swarm intelligence, following the successful and fruitful Harbin event (ICSI
2013), Shenzhen event (ICSI 2012), Chongqing event (ICSI 2011) and Beijing
event (ICSI 2010), which provided a high-level academic forum for the partici-
pants to disseminate their new research findings and discuss emerging areas of
research. It also created a stimulating environment for the participants to inter-
act and exchange information on future challenges and opportunities in the field
of swarm intelligence research.

ICSI 2014 received 198 submissions from about 475 authors in 32 countries
and regions (Algeria, Australia, Belgium, Brazil, Chile, China, Czech Repub-
lic, Finland, Germany, Hong Kong, India, Iran, Ireland, Italy, Japan, Macao,
Malaysia, Mexico, New Zealand, Pakistan, Romania, Russia, Singapore, South
Africa, Spain, Sweden, Taiwan, Thailand, Tunisia, Turkey, United Kingdom,
United States of America) across six continents (Asia, Europe, North Amer-
ica, South America, Africa, and Oceania). Each submission was reviewed by at
least two reviewers, and on average 2.7 reviewers. Based on rigorous reviews
by the Program Committee members and reviewers, 105 high-quality papers
were selected for publication in this proceedings volume with an acceptance rate
of 53.03%. The papers are organized in 18 cohesive sections, 3 special sessions
and one competitive session, which cover all major topics of swarm intelligence
research and development.

As organizers of ICSI 2014, we would like to express sincere thanks to Univer-
sity of Science and Technology of China, Peking University, and Xi’an Jiaotong-
Liverpool University for their sponsorship, as well as to the IEEE Computational
Intelligence Society, World Federation on Soft Computing, and
International Neural Network Society for their technical co-sponsorship. We ap-
preciate the Natural Science Foundation of China for its financial and logistic
support. We would also like to thank the members of the Advisory Committee
for their guidance, the members of the International Program Committee and
additional reviewers for reviewing the papers, and the members of the Publi-
cations Committee for checking the accepted papers in a short period of time.
Particularly, we are grateful to Springer for publishing the proceedings in the
prestigious series of Lecture Notes in Computer Science. Moreover, we wish to
express our heartfelt appreciation to the plenary speakers, session chairs, and
student helpers. In addition, there are still many more colleagues, associates,



VI Preface

friends, and supporters who helped us in immeasurable ways; we express our
sincere gratitude to them all. Last but not the least, we would like to thank all
the speakers, authors, and participants for their great contributions that made
ICSI 2014 successful and all the hard work worthwhile.

July 2014 Ying Tan
Yuhui Shi

Carlos A. Coello Coello
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Crowding-Distance-Based Multiobjective Artificial Bee Colony
Algorithm for PID Parameter Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 215

Xia Zhou, Jiong Shen, and Yiguo Li

Artificial Immune System

An Adaptive Concentration Selection Model for Spam Detection . . . . . . . 223
Yang Gao, Guyue Mi, and Ying Tan

Control of Permanent Magnet Synchronous Motor Based on Immune
Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Hongwei Mo and Lifang Xu

Adaptive Immune-Genetic Algorithm for Fuzzy Job Shop Scheduling
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Beibei Chen, Shangce Gao, Shuaiqun Wang, and Aorigele Bao

Evolutionary Algorithms

A Very Fast Convergent Evolutionary Algorithm for Satisfactory
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Xinchao Zhao and Xingquan Zuo

A Novel Quantum Evolutionary Algorithm Based on Dynamic
Neighborhood Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Feng Qi, Qianqian Feng, Xiyu Liu, and Yinghong Ma

Co-evolutionary Gene Expression Programming and Its Application in
Wheat Aphid Population Forecast Modelling . . . . . . . . . . . . . . . . . . . . . . . . 275

Chaoxue Wang, Chunsen Ma, Xing Zhang, Kai Zhang, and
Wumei Zhu

Neural Networks and Fuzzy Methods

Neural Network Intelligent Learning Algorithm for Inter-related Energy
Products Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Haruna Chiroma, Sameem Abdul-Kareem, Sanah Abdullahi Muaz,
Abdullah Khan, Eka Novita Sari, and Tutut Herawan



XVI Table of Contents – Part I

Data-Based State Forecast via Multivariate Grey RBF Neural Network
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Yejun Guo, Qi Kang, Lei Wang, and Qidi Wu

Evolving Flexible Neural Tree Model for Portland Cement Hydration
Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Zhi-feng Liang, Bo Yang, Lin Wang, Xiaoqian Zhang,
Lei Zhang, and Nana He

Hybrid Self-configuring Evolutionary Algorithm for Automated Design
of Fuzzy Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

Maria Semenkina and Eugene Semenkin

The Autonomous Suspending Control Method for Underwater
Unmanned Vehicle Based on Amendment of Fuzzy Control Rules . . . . . . 318

Pengfei Peng, Zhigang Chen, and Xiongwei Ren

How an Adaptive Learning Rate Benefits Neuro-Fuzzy Reinforcement
Learning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Takashi Kuremoto, Masanao Obayashi, Kunikazu Kobayashi, and
Shingo Mabu

Hybrid Methods

Comparison of Applying Centroidal Voronoi Tessellations and
Levenberg-Marquardt on Hybrid SP-QPSO Algorithm for High
Dimensional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Ghazaleh Taherzadeh and Chu Kiong Loo

A Hybrid Extreme Learning Machine Approach for Early Diagnosis of
Parkinson’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

Yao-Wei Fu, Hui-Ling Chen, Su-Jie Chen, Li-Juan Li,
Shan-Shan Huang, and Zhen-Nao Cai

A Hybrid Approach for Cancer Classification Based on Particle Swarm
Optimization and Prior Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

Fei Han, Ya-Qi Wu, and Yu Cui

Multi-objective Optimization

Grover Algorithm for Multi-objective Searching with Iteration
Auto-controlling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Wanning Zhu, Hanwu Chen, Zhihao Liu, and Xilin Xue

Pareto Partial Dominance on Two Selected Objectives MOEA on
Many-Objective 0/1 Knapsack Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Jinlong Li and Mingying Yan



Table of Contents – Part I XVII

Analysis on a Multi-objective Binary Disperse Bacterial Colony
Chemotaxis Algorithm and Its Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 374

Tao Feng, Zhaozheng Liu, and Zhigang Lu

Multi-objective PSO Algorithm for Feature Selection Problems with
Unreliable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Yong Zhang, Changhong Xia, Dunwei Gong, and Xiaoyan Sun

Convergence Enhanced Multi-objective Particle Swarm Optimization
with Introduction of Quorum-Sensing Inspired Turbulence . . . . . . . . . . . . 394

Shan Cheng, Min-You Chen, and Gang Hu

Multiobjective Genetic Method for Community Discovery in Complex
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Bingyu Liu, Cuirong Wang, and Cong Wang

A Multi-objective Jumping Particle Swarm Optimization Algorithm for
the Multicast Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Ying Xu and Huanlai Xing

Multi-agent Systems

A Physarum-Inspired Multi-Agent System to Solve Maze . . . . . . . . . . . . . 424
Yuxin Liu, Chao Gao, Yuheng Wu, Li Tao, Yuxiao Lu, and
Zili Zhang

Consensus of Single-Integrator Multi-Agent Systems at a Preset
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Cong Liu, Qiang Zhou, and Yabin Liu

Representation of the Environment and Dynamic Perception in
Agent-Based Software Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Qingshan Li, Hua Chu, Lihang Zhang, and Liang Diao

Evolutionary Clustering Algorithms

Cooperative Parallel Multi Swarm Model for Clustering in Gene
Expression Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Zakaria Benmounah, Souham Meshoul, and Mohamed Batouche

Self-aggregation and Eccentricity Analysis: New Tools to Enhance
Clustering Performance via Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . 460

Jiangshao Gu and Kunmei Wen

DNA Computation Based Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . 470
Zhenhua Kang, Xiyu Liu, and Jie Xue

Clustering Using Improved Cuckoo Search Algorithm . . . . . . . . . . . . . . . . . 479
Jie Zhao, Xiujuan Lei, Zhenqiang Wu, and Ying Tan



XVIII Table of Contents – Part I

Sample Index Based Encoding for Clustering Using Evolutionary
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Xiang Yang and Ying Tan

Data Mining Tools Design with Co-operation of Biology Related
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Shakhnaz Akhmedova and Eugene Semenkin

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507



Table of Contents – Part II

Classification Methods

Semi-supervised Ant Evolutionary Classification . . . . . . . . . . . . . . . . . . . . . 1
Ping He, Xiaohua Xu, Lin Lu, Heng Qian, Wei Zhang, and
Kanwen Li

Evolutionary Ensemble Model for Breast Cancer Classification . . . . . . . . . 8
R.R. Janghel, Anupam Shukla, Sanjeev Sharma, and
A.V. Gnaneswar

Empirical Analysis of Assessments Metrics for Multi-class Imbalance
Learning on the Back-Propagation Context . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Juan Pablo Sánchez-Crisostomo, Roberto Alejo,
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Abstract. In this paper, we compare different aggregation strategies for cue-
based aggregation with a mobile robot swarm. We used a sound source as the cue
in the environment and performed real robot and simulation based experiments.
We compared the performance of two proposed aggregation algorithms we
called as the vector averaging and naı̈ve with the state-of-the-art cue-based
aggregation strategy BEECLUST. We showed that the proposed strategies
outperform BEECLUST method. We also illustrated the feasibility of the method
in the presence of noise. The results showed that the vector averaging algorithm
is more robust to noise when compared to the naı̈ve method.

Keywords: swarm robotics, collective behavior, cue-based aggregation.

1 Introduction

Aggregation is a widely observed phenomenon in social insects and animals such as
cockroaches, honeybees and birds [1]. It provides additional capabilities to animals
such as forming a spore-bearing structure by slime mold or building a nest by termites
[2]. In general, two types of aggregation mechanisms are observed in nature: cue-
based or clueless. In cue-based aggregation, animals follow external cues to identify
optimal zones such as a humid location for sow bugs and then they aggregate on these
zones. Whereas in clueless aggregation, animals aggregate at random locations in an
environment such as aggregation of cockroaches [3]. From swarm robotics perspective
[4], aggregation can be defined as gathering randomly distributed robots to form an
aggregate. Due to limited sensing capabilities of the robots, aggregation turns out be
one of the challenging tasks in swarm robotics.

Many different studies have been performed in cue-based and clueless aggregation
in swarm robotics. We first discuss cue-based aggregation. In one of the earliest studies
on cue-based aggregation, Kube and Zhang [5] proposed an aggregation algorithm in
which robots are required to aggregate around a light box and then push it. Melhuish
et al. [6] proposed an algorithm for aggregation of robots around an infrared (IR)
transmitter. The robots after reaching the IR transmitter start to emit sound resembling
the vocalization of frogs and birds in order to help the other robots to estimate the
size of the aggregate they are in. Honeybee aggregation is another example of cue-
based aggregation method that was studied in [7,8]. In these studies, micro robots were
deployed in a gradually lighted environment to mimic the behavior of honeybees which

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 1–8, 2014.
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aggregate at a zone that has the optimal temperature. An aggregation algorithm called
BEECLUST that relies on inter-robot collisions was proposed [9]. The aggregation
method has been used and evaluated in several researches [10,11,12]. In another study
[13], two modifications on BEECLUST – dynamic velocity and comparative waiting
time – were applied to increase the performance of aggregation. In addition, a fuzzy-
based reasoning method has been proposed in [14,15] which increases the performance
of the system significantly.

Clueless aggregation mechanism was employed in various studies. Trianni et al.
[16] proposed an aggregation behavior of mobile robots using artificial evolution with
static and dynamic strategies. In static strategy, when robots create an aggregate, they
are not allowed to leave it. However, in the dynamic strategy, robots are allowed to
leave an aggregate with a certain probability depending on the size of the aggregate.
Static strategy resulted in many small compact aggregates, whereas with the dynamic
one robots are able to form a few larger aggregates. Soysal and Şahin [17] proposed
a probabilistic aggregation method using a combination of basic behaviors: obstacle
avoidance, approach, repel, and wait. They studied the effects of various parameters
such as control mechanisms, time, and arena size in performance of the system. This
study was continued by using an evolutionary approach in order to investigate the
various effective parameters in aggregation, such as the number of generations, the
number of simulation steps which are used for fitness evaluations, population size, and
size of arena [18]. Bayrindir and Şahin [19] proposed a macroscopic model to study
the effects of population size and probability of leaving an aggregate on aggregation
performance in a clueless aggregation scenario.

In this paper, different than the previous studies, we compare three different
aggregation mechanisms in a cue-based aggregation scenario. Specifically, we extend
the BEECLUST algorithm and propose two new algorithms which we call as vector
averaging and naı̈ve aggregation algorithms. Through systematic real-robot and
simulation-based experiments, we analyze and compare the performance differences
between those two algorithms and the BEECLUST algorithm.

2 Aggregation Methods

2.1 BEECLUST

BEECLUST aggregation [9] follows a simple algorithm as shown in the Fig. 1. When a
robot detects another robot in the environment, it stops and measures the magnitude of
the ambient audio signal and waits based on this magnitude. The higher the magnitude is
the longer the waiting time (w) becomes. The waiting time is estimated by the following
formula assuming that four microphones are used to detect the ambient audio signal:

w(t) = wmax · Ma(t)
2

Ma(t)2 + μ
, (1)

where Ma(t) =
1
4

∑4
i=1 Mi(t) is the average magnitude of the four microphones, Mi

is the magnitude of signal from the ith microphone ranging from 0 and 255, wmax is
the maximum waiting time, and μ is a parameter which changes the steepness of the
waiting curve. wmax and μ are determined empirically: wmax = 65 sec and μ = 5500.
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Fig. 1. Control diagram of the aggregation

When the waiting time is over, the robot rotates φ degree, which is a random variable
drawn uniformly within [−180◦, 180◦].

2.2 Naı̈ve Method

In the naı̈ve aggregation method, we employ a deterministic decision making
mechanism based on both the intensity and the direction of the sound signal. The
waiting time is still calculated using (1) based on the average intensity (Ma), but in
addition to that, we estimate the direction of the sound source by setting it to the angle
of the sound sensor that has the highest reading. φ = θi, i ∈ {1, 2, 3, 4} and θi is the
angle of the sensor {45◦, 135◦, 225◦, 315◦} with respect to the frontal axis of the robot
having the highest reading.

2.3 Vector Averaging Method

In vector averaging method, the direction information and intensity of the sound source
are utilized. We employ an averaging calculation based on both intensity and direction
of sound signal to estimate φ.

φ = atan2

(∑4
i=1 M̂i sin(βi)

∑4
i=1 M̂i cos(βi)

)

(2)

φ is the estimated angular position of the source speaker, βi is the angular distance
between ith microphone and the robot’s head. M̂i, i ∈ {1, 2, 3, 4} is the captured audio
signal’s intensity levels from microphone i.

3 Experimental Setup

3.1 Robot Platform

AMiR (Autonomous Miniature Robot) as shown in Fig. 2 (a) is an open hardware mobile
robot platform [20]. AMiR is specifically developed for swarm robotics studies. The
robot has two small geared DC motors that make it move with a maximum speed of
8.6 cm

s [21]. Six IR proximity sensors using 60◦ topology is used, which allows AMiR
to scan its surrounding area without turning [22]. AMiR also has an audio extension
module which is composed of four condenser microphones (45◦, 135◦, 225◦, and 315◦)
as shown in Fig. 2 (b).
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Fig. 2. (a) Autonomous Miniature Robot (AMiR) is equipped with an audio extension module
and (b) architecture of developed audio signal processor module

3.2 Simulation Software

In order to test the proposed algorithm in large scale, Player/Stage simulation software
is utilized. We modeled AMiR and its sensors in Player and used Stage as the simulation
platform.

3.3 Experiment Configuration

Real Robot Experiments. In real robot experiments, due to laboratory limitations, a
rectangular arena with a size of 120x80 cm2 is utilized. When compared to the sensing
range of the robots, the arena is approximately two times larger than the total sensing
area of 6 robots. The experiments are performed with different number of robots N ∈
{3, 4, 5, 6}. We placed a sound source at one of the edges of the arena, that plays a
single tone of frequency of approximately 1050 Hz. The sound source serves as the
environmental cue in the experiment. With the current configuration of the arena, the
intensity and waiting times are shown in Fig. 3. Each experiment is repeated 10 times
and at the start of each run, the robots are placed in the arena with random positions and
orientations.

Fig. 3. (a) Intensity of audio signals in the arena and (b) relative waiting time in different positions
of the arena. Dashed arc shows the predefined optimal aggregation zone around the sound source.
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Simulation-Based Experiments. In simulation-based experiments, in order to use
large number of robots N ∈ {5, 10, 15, 20, 25}, we used an arena with a size of
240 × 160 cm2. Similar to the real-robot experiments, the experiments are repeated
10 times and position and orientation of the robots are set randomly at the beginning of
each experiment. We perform two sets of experiments: One set without sensing noise,
the other with sensing noise. In the latter, we add noise to the sound measurements,
which is modeled as a uniformly distributed random variable. For the ith microphone,
the noise is added as Mi = |Mi + σρ| where Mi is sensor reading of ith microphone,
σ ∈ {0.1, 0.3, 0.5} is the noise scaling factor which determines the amount of noise to
be added to the reading and ρ is a random value within [−255,+255].

3.4 Metrics

In this study, we are interested in having fast aggregation around the sound source.
Therefore, we use aggregation time as one of our metrics. In order to calculate
aggregation time, T , we define an aggregation area which is shown with a dashed arc
in Fig. 3. The aggregation time is the duration of an experiment in which the number of
the robots aggregated in the aggregation area reaches 80% of the total robots.

4 Results and Discussion

4.1 Real Robot Experiments

We first performed experiments with real robots. In general, when the number of
robots increases, the aggregation time reduces significantly as shown in Fig. 4a, since
increasing the population size increases the number of collisions eventually causing
faster aggregation. It should be noted that, the reduction rate in the aggregation time is
not the same in the three algorithms. Results show that, vector averaging aggregation is
faster than naı̈ve and BEECLUST.

Fig. 4. Aggregation time as a function of population size for vector averaging, naı̈ve, and
BEECLUST aggregation methods with (a) real robot and (b) simulated robot experiments
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4.2 Simulation-Based Experiments

In these experiments, the aggregation methods are implemented using the simulator.
Fig. 4b shows the aggregation time as a function of population size in vector
averaging, naı̈ve, and BEECLUST methods. Results show that, population size has
a direct impact on the aggregation time. Simulation results also showed that the
vector averaging method performs faster aggregation in comparison with naı̈ve and
BEECLUST owing to more precise estimates φ values after each collision, which
increases the performance of the aggregation. In case of BEECLUST that relies on
random rotation, the aggregation time is longer than the others. Due to random rotations,
robots occasionally move in opposite direction of the sound source, that results in robots
leaving the aggregation zone. Therefore, it increases the aggregation time and number
of collisions.

Fig. 5. Effects of different noise values in different population sizes for vector averaging, naı̈ve
and BEECLUST methods

Although aggregation time decreases with increasing population size, when the
density of swarm reaches a certain value the performance decreases. This is due to
over-crowding effect observed, when the density of robots reaches a certain value [23].
In our current setting, the performance increases up to 25 robots.

The results of the experiments performed with sensing noise is depicted in Fig. 5 .
The rotation angle, φ, for naı̈ve and vector averaging methods relies on the prediction
of the direction of the sound source. However, in BEECLUST method which a random
value is used as the rotation angle, robots do not employ the magnitude of the audio
signal. Hence, only naı̈ve and vector averaging methods are tested against sensing noise.
Results show that the vector averaging algorithm is more robust to noise than naı̈ve
algorithm.

4.3 Statistical Analysis

We statistically analyzed the results of simulated robot experiments with and without
noise using analysis of variance (ANOVA), the F-test method (see Table 1).
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Population size has the highest influence on aggregation time for the vector averaging
method (Fρ = 116.60), which means that increasing the swarm density improves the
performance of the vector averaging method the most. Noise has the least influence
on the vector averaging method (7.327, and 12.39 for the vector averaging and naı̈ve
methods, respectively).

Table 1. Results of F-test in analysis of variance (ANOVA)

Experimental Parameters Aggregation Method
Setup Averaging Naı̈ve BEECLUST
Without Noise Population 116.60 85.51 76.75
With Noise Noise 7.32 12.39 –

Population 34.28 28.43 –

5 Conclusion

In this paper we evaluate three cue-based aggregation methods, namely, vector
averaging, naı̈ve and BEECLUST. The aggregation methods were implemented using
real- and simulated-robots with different population sizes. The results showed that
the proposed vector averaging method improves the performance of the aggregation
significantly. The swarm density has direct impact on the performance of the
aggregation. Hence, an increase in population improves the performance of aggregation
in all three algorithms. In addition to these, results revealed that the additional noise has
less impact on vector averaging method in comparison to the naı̈ve method.
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17. Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In:
Swarm Intelligence Symposium, pp. 325–332. IEEE (2005)
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Abstract. The swarm behavior of pedestrians in a crowd, generally, causes a 
global pattern to emerge. A pedestrian crowd simulation system must have this 
emergence in order to prove its effectiveness. For this reason, the aim of our work 
is to demonstrate the effectiveness of our model PHuNAC (Personalities’ Hu-
man's Nature of Autonomous Crowds) and also prove that the swarm behavior of 
pedestrians’ agents in our model allows the emergence of these global patterns. In 
order to validate our approach, we compared our system with real data. The con-
ducted experiments show that the model is consistent with the various emergent 
behaviors and thus it provides realistic simulated pedestrian’s behavior. 

Keywords: Multi-agent systems, autonomous crowd model, swarm behavior. 

1 Introduction 

Pedestrian crowd is a set of people with different personalities who are gathered in the 
same location. These different personalities shape the swarm behavior of the pede-
strian crowd. Indeed, personality is a pattern of behavioral and mental traits for each 
pedestrian [1]. The simulation of these complex phenomena has attracted considerable 
attention. However, a great number of these models do not cover all the psychological 
factors necessary for a pedestrian located in a crowd (see [2] and [3]). Moreover, 
many of these models simulate only homogenous personalities of pedestrians. In the 
reality, there are different personalities. Experimentations’ results of these models 
show that they lack realism. For this purpose, the goal of our work is to reproduce 
realistic collective behavior simulated situations by simulating a realistic pedestrian 
behavior and personality. In this context, we opted for the PHuNAC (Personalities’ 
Human's Nature of Autonomous Crowds) model [4, 5] which includes the necessary 
psychological factors for a pedestrian located in a crowd and which integrates hetero-
geneous crowd. 

The plan of our paper is as follows: section 2 describes related works. Section 3 
describes our model. Section 4 presents our experimentations and a discussion of this 
work. Finally, in section 5 we conclude and we give perspectives for this work. 



10 O. Beltaief, S. El Hadouaj, and K. Ghedira 

2 Related Works 

Several pedestrians’ crowd simulation models were proposed. These models could be 
classified into two families: macroscopic models and microscopic models. Macros-
copic approaches include regression (e.g., [6]) and fluid dynamic models (e.g., [7], 
[8], etc.). Microscopic approaches include rule-based models (e.g., [9], [10], etc.), 
cellular automata models (e.g., [11], [12], etc.), agent-based (e.g., [1], [3], [13], [14], 
etc.) and social force models (e.g., [15], etc.). The macroscopic approaches simulate 
the behavior of the crowd as a whole. In fact, macroscopic models don't consider 
individual features such as physical abilities, direction of movement, and individual 
positioning [16]. This causes a lack of realism [17]. On the other hand, the microscop-
ic approaches are interested in the behavior, actions and decisions of each pedestrian 
and his interaction with others [17]. Therefore, the microscopic models allow us to 
obtain more realistic simulations. For this reason, in our work, we adopt a microscop-
ic approach and more specifically an agent-based model. In fact, the agent-based 
models are able, over others approaches, to be flexible, to provide a natural descrip-
tion of the system and to capture emergent phenomena and complex human behaviors 
[4, 18]. In other words, they may reflect more the reality. Several models based on 
multi-agents and psychological theories have been proposed. We cite namely [3, 13, 
14], etc. However, a great number of these models do not cover all the psychological 
factors necessary for a pedestrian located in a crowd (see [2] and [3]). Therefore the 
produced pedestrian crowd situations lack realism. Indeed, many of these models 
simulate only homogenous pedestrians. In the reality, there are different personalities. 
The goal of our work is to reproduce realistic pedestrian crowd simulated situations 
by simulating a realistic pedestrian behavior. In this context, we proposed, firstly, our 
HuNAC (Human's Nature of Autonomous Crowds) model [4]. The design of the pe-
destrian behavior is based on psychosocial and psychophysical studies of normative 
personalities. In a second time, in order to have more realistic simulation, we opted 
for the PHuNAC [5] (Personalities’ Human's Nature of Autonomous Crowds) version 
which integrates heterogeneous crowd. 

3 PHuNAC Model 

In our PHuNAC model ([4, 5]), each pedestrian is represented by an agent. Each 
agent has its own autonomous behavior and personality. In the following sections, we 
present firstly the personality of pedestrians in our model and secondly the behavior 
of each pedestrian. 

3.1 The Personality of Pedestrians 

There are several theories that classify personality types such as: MBTI, Big Five, 
NPA, etc. It must be noted that MBTI and Big Five theory are the widely accepted 
theories by psychologists [19-22]. However, the Big Five theory is not used in the 
organizational behavior area in contrast to the MBTI theory [23]. Since the pedestrian 
crowd behavior is an organizational behavior [24], the MBTI theory is more linked to 
the crowd pedestrian simulation field. For this reason, we choose the MBTI theory.   
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In order to integrate personality in our model, we are based on the MBTI theory 
[25]. In fact, there are 16 personality types (according to MBTI theory). It is the com-
bination of the eight preferences and each combination presents a personality: 

• Extraversion (E) or Introversion (I) 
• Sensing (S) or iNtuition (N)    
• Thinking (T) or Feeling (F) 
• Judging (J) or Perceiving (P) 

For example, an ESFJ pedestrian is an extraversion, sensing, feeling and judging 
person. 

The dichotomies of the MBTI theory are still qualifying values that we cannot im-
plement and integrate into our PHuNAC model. For this reason, we had to find a me-
thod that quantifies the MBTI theory. In this context, we used the method of 2-qubits 
[26, 27]. The 2-qubit model can generate artificial personalities, which can be com-
pared to the real world. In this method, we need only three parameters which describe 
the complete distribution without the need for additional parameters. The three va-
riables are namely τ, θ and α with τ is the entanglement factor and θ and α are the 
parameters of superposition (for more details see [26], [27]).We can produce various 
artificial personalities through the following equations [26, 27]: 2 1 cos 2 1 sin  (1) 

 2 1 cos 2 1 sin  (2) 

 2 1 sin 2 1 cos  (3) 

 
The choice of personality is through formulas which allow us to correctly determine 

a personality with consistent manner (see equations 1, 2 and 3). Each personality cha-
racteristic is represented by the letter    , , .  
It is important to note that the characteristic value in psychology varies over time with 
a constant probability. Therefore, we must determine this probability. The likelihood of 
a feature of personality pedestrian i is represented by Ψi ( ) (see equation 4). Ψ 100max  (4) 

 

For reasons of simplification, we have decoupled the characteristics and . In 
order to decouple these characteristics, we use the platonic concept which is called'' 
ideal'' [28]. In the present application, Plato’s concept of ‘‘ideal’’ rigorously suggests 
matching any maximum possible 100% decoupled attitude score with equivalent 
100% scores of the associated original MBTI attitudes. Geometrically speaking, this 
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generates a new coordinate system with axes rotated 45° from the original ones. The 
combination of two approaches gives the following equation (see equation 5). Ψ Ψ Ψ2  

(5) 

3.2 Pedestrian Behavior 

The behavior of a pedestrian agent is divided into three phases: strategic phase, tactic-
al Phase and operational phase. The strategic phase defines the global plan of a pede-
strian agent. The tactical phase represents seeking information and taking decisions. 
These decisions allow the pedestrian agent to avoid people and obstacles. Each pede-
strian agent has its own perception of the environment. Researchers [29], [30] found 
that pedestrians predict the “cost” of each sidewalk facility in  terms  of  the  con-
venience  and  speed  to reach a destination and that the cost is based on their per-
sonal expectations. For this purpose, the pedestrian agent in our model divides the 
corridor in which it is situated in a set of lanes (see Fig.1). The width of each lane is 
equal to 60 cm (60 cm is the width of the body ellipse of a normal person [31]).  

 

 

Fig. 1. Lanes’ construction 

Being situated in a corridor (namely Ci), each time t, the pedestrian agent has to 
choose the adequate lane.  Indeed, the agent has to choose the closest, the fastest, the 
least dense lane, having its same direction, and allowing it to avoid the collisions. In 
other words, the pedestrian agent chooses the easiest lane for its movement. To 
achieve this goal, the pedestrian agent P determines for each lane a score function 
(namely SL). It is very important to note that if we take into account, in our model, 
only the normative personality (A normal person always chooses the optimal path), 
the function of the score will be based only on the optimal choice of the way. For this 
reason, we need to integrate into the score function of our model the "personality" 
factor. The choice of path should be sometimes optimal and sometimes not optimal 
this will depend on the agent pedestrian satisfaction and specifically on its personali-
ty.  The score function is based on the following attributes (namely Aj): 

• Speed: the speed of a lane is the speed of the slower pedestrian in this lane. 
• Density: the density of a lane is equal to the number of pedestrians situated in the 

lane divided by its surface. 
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• Direction: the direction of a lane is the direction of the majority of pedestrians 
present on this lane. 

• Proportion of pedestrians with the same direction: it is a measure that allows de-
termining the direction of the lane compared of the pedestrian direction. 

• Distance of a lane from a pedestrian: it is the Euclidian distance which separates 
the actual lane of a pedestrian from the lane to be reached. 

• Distance of an obstacle, situated in the lane to reach, from the pedestrian: it is the 
Euclidian distance which separates the pedestrian from the first obstacle which can 
cross it, placed in the lane to be reached. 

• Extraversion: determines how much an agent pedestrian attached to its group. 

Each attribute Aj is balanced by a weight Wj which gives us the following evalua-
tion function:  Ψ Ψ  (6) 

Note that f A  is the function of the attribute Ai. Fi is the favoring lane variable. Fi 
is equal to -1 in the case of a penalty and equal to +1 in the case of recompense. For 
example, if the attribute favors the choice of the lane, this attracts pedestrian to 
choose the lane in consideration. So the lane score must increase. Therefore Fi must 
be equal to +1. The idea behind the assignment of weights is to give each attribute a 
priority. To determine the different weight values, we are based on the normative 
goals priorities of a normative pedestrian. Indeed, the goal with a highest priority has 
the highest weight (see [4]). After determining for each lane L the score S L the pede-
strian agent chooses the lane with the highest score.  

Finally, in the operational phase, the pedestrian agent determines the direction and 
the speed suited to reach the chosen lane in the previous phase. In order to resume the 
behavior of a pedestrian agent in our model, we give the following algorithm.  

For each Lj in Ci 
 SLj • Calculate_function_score () 
End for each 
Adequate_lane • Max_score (SL) 
If Current_lane = Adequate_lane then 
 Move_in_the_same_direction () 
Else 
 Change_direction () 
 Move_to_ adequate_lane () 
End if 

At each time t, the agent pedestrian must observe its environment (the current cor-
ridor Ci) and determines for each lane LJ a score SLj. After that, the agent pedestrian 
determines the adequate lane for its movement (the lane with the highest score). If the 
adequate lane is equals to the current lane of the pedestrian agent then it must still 
move in the same direction. In the other case, it must change its direction and move to 
the adequate lane. 
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4 Experiments and Discussions 

To implement our model we used NetLogo. Our experiments consist in comparing 
real and simulated crowds. Firstly, we present qualitative experiments and then we 
present quantitative experiments. 

4.1 Qualitative Experiments 

The most common form of experimental results of crowd simulation systems are ani-
mation screen-shots. They are used by ([32], [33], [34], etc.) to show scenarios where 
agents perform a believable swarm behavior. If the visual output seems to exhibit real 
situations, it is assumed that the system is successful in simulating crowds [35]. In the 
following we compare the PHuNAC model results with real emergent swarm beha-
viors of pedestrian's crowd in urban areas and in buildings. 

It is important to note that if two different flows are directed in opposite directions 
inside a single corridor, pedestrians tend to emerge in lanes when the density is high 
enough. Indeed, the number and dimension of lanes depend on dimension of the  
corridor [36].  

The first experiment evaluates whether our crowd model can reproduce this phe-
nomena. Firstly, we create a street with 9 m width. Subsequently, we defined the den-
sity of the crowd in 1.6 p/m². The result of our experiment shows that pedestrian 
agents emerge in four lanes (see Fig.2). Then, we create another street with 4.2 m 
width and we defined the same density of the crowd (1.6 p/m²). The result of our ex-
periment shows that pedestrian agents emerge in two lanes (see Fig.2). This result 
shows that, for a constant density of pedestrians, the number of lanes depend on the 
dimension of the corridor. 

 

 

Fig. 2. Lane formation 

It is well known that a self-organization occurs in crossing pedestrian flows. When 
flows cross vertically, diagonal stripe pattern emerges and the congestion degree of 
each flows varies in the crossing area [22]. 
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In the second experiment, we simulate the crossing flows. Fig. 3 shows a screen-
shot of the simulation. We observed that a diagonal stripe pattern emerged after two 
flows have crossed. This result is consistent with the phenomenon mentioned in [22]. 

 

 

Fig. 3. Diagonal stripe pattern emerges. 

4.2 Quantitative Experiments 

We present in this section quantitative experiments. We follow the literature in the 
measurement of two main features of pedestrian’s movements: the average velocity 
and traffic flow. For this purpose, we have been based on the works achieved by Fruin 
(see [31]). On the basis of real data, the latter has pointed out laws that describe the 
walking Level of service. These laws represent the distribution of the average velocity 
as a function of the crowd density. He has also pointed out laws describing the rela-
tion between crowd flow and crowd density. 

In order to obtain a curve of average velocity as a function of density, at time t, we 
created an initial population density of 0.01 pedestrians/ m². Subsequently, we meas-
ured the average velocity of the crowd. At time t +1, we added another population of 
the same density which gives us a density of 0.02 pedestrians /m². Similarly, we 
measured the average velocity of the crowd. We repeated this experiment several 
times. At the end of the experiment, we obtained a curve of average velocity as a 
function of density. Fig.4 compares the curves of the average velocity of the PHu-
NAC model with curve representing the real data (Fruin [31]). We observe that the 
velocity curve of our model is very close to the velocity curve representing real data. 

It is very important to note that the personality’s variation affects the flow charac-
teristics [30]. In fact, the flow characteristics include pedestrian’s velocity and pede-
strian’s flow rates. For this purpose, we must take into consideration not only the 
velocity but also the flow rates. We repeated the same previous experiment, but this 
time we measured the flow of pedestrian traffic rather than the average velocity. Fig.5 
shows the comparison of the flow rates between PHuNAC model and real data. We 
observe that the flow rate curve of our model is very close to the flow rates curve 
representing real data. 
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Fig. 4. Comparison of average velocity curves 

 

Fig. 5. Comparison of flow rates curves 

5 Conclusion 

We present in this work the PHuNAC model which is based on multi-agent systems 
and that includes the major psychological factors. The PHuNAC model is based on 
the MBTI theory. The MBTI theory is a psychological theory which classifies perso-
nality types. The aim of our work is to demonstrate the effectiveness of our model 
PHuNAC and also prove that the swarm behavior of pedestrians’ agents in our model 
allows the emergence of these global patterns. In order to validate our approach, we 
compared our system with emergent behaviors. The conducted experiments show that 
the model is consistent with the various emergent behaviors and thus it provides rea-
listic simulated pedestrian’s behavior. It is very important to note that our PHuNAC 
model doesn’t consider emergency situations. We can improve PHuNAC model by 
considering the evacuation movements. 
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Abstract. According to benchmark learning theory in business management, a 
kind of competitive learning mechanism based on dynamic niche was set up. 
First, by right of imitation and learning, all the individuals within population 
were able to approach to the high yielding regions in the solution space, and 
seek out the optimal solutions quickly. Secondly, the premature convergence 
problem got completely overcame through new optimal solution policy. Finally, 
the algorithm proposed here is naturally adaptable for the dynamic optimization 
problems. The unique search model was analyzed and revealed in detail. 

Keywords: Benchmark learning, search model, evolutionary algorithm, swarm 
intelligence. 

1 Introduction 

Intelligent computation, also known as natural computation, is kind of optimization 
model, which was inspired by the principles of natural world, especially the biological 
world. Many optimization algorithms are included in the field of intelligent computa-
tion, which mainly consists of evolutionary algorithms (EAs) and swarm intelligences 
(SIs) et al. These intelligent optimization algorithms have special distinguishing fea-
tures from each other, but they all have some common deficiencies. First of all, they 
all try to search the optimal solution by the individual’s random drift in the solution 
space, yet the search direction and search purpose of the random drift are indetermi-
nate and uncertain. Furthermore, they are all population convergence-oriented.  
Benchmarking [1] originally means that a surveyor's mark on a permanent object of 
predetermined position and elevation used as a reference point. As a kind of manage-
ment idea and management method, benchmarking learning originated from  
enterprise management domain, and it means that some outstanding enterprise can be 
set as a standard, by which other companies can be measured or judged, and improved 
consequently. 

2 The Benchmarking Learning Algorithm (BLA) 

Benchmarking learning, in short, is to find the best case and learn something from it 
via imitate, others will improve themselves and even beyond the opponent. In  
the process of searching and learning, the self-organization learning in each niche 
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population goes like this: each individual will conduct external benchmarking learn-
ing first, that is to say, it will adjust its search direction and search step according to 
the best individual within the whole ecological system. Namely, it will decrease the 
distance with the external benchmarking. If its evaluation function value does not be 
improved, the individual will pass into the internal benchmarking learning stage. It 
will adjust its search direction and search step according to the best individual within 
the niche population to which it belongs, namely, it will reduce the distance with the 
internal benchmarking. If its evaluation function value does not be improved yet, the 
individual will carry out self-learning. It means that the individual will get its dual 
individual via dual operation. What is more, the best individual in each niche popula-
tion will be fixed with the program process goes, because every niche population will 
exchange its best individual with other niche populations. So the internal benchmark-
ing in each population, namely, the learning object of the staff inside each population 
will be replaced by other internal benchmarking. The three learning operations men-
tioned above will not be executed according to the order but executed selectively, 
only when its evaluation function value does not be improved through one learning 
operation, the individual will conduct another one.  

The idea of benchmarking learning for optimization problems is distinctive, so it is 
very important that how to use the usual encoding methods--float-point encoding 
method and binary encoding method, to give expression to this idea. In BLA  
described here, the three learning operation, is extremely helpful to express this idea. 
The details about the three learning operations can be given as follow. 

2.1 External Benchmarking Learning 

Let  be the best individual, whose evaluation function value is the maximal or the 
minimal according to the optimization purpose, in the whole ecological system, that 
is, the global optimal individual and the external benchmarking, let  be its corres-
ponding gene expression, let  be the gene expression of , which is the i-st indi-
vidual within niche population , then, the external learning rate of  can be given 
as rule (1): 

              (1)
 

Wherein,  stands for the initial value of the external learning rate,  stands 
for the value of the evaluation function of ,  stands for the average value of . 

If binary encoding method was put to use, external benchmarking learning was car-

ried out by  means that the gene-bits in ，which are different from that in , 
would be replaced by the gene-bits in  with a probability of . That is to 
say,  took the initiative to narrow the Hamming distance with . 

If float-point encoding method was involved, external benchmarking learning  
was conducted by  means that with a probability of , would be updated 
according to rule (2) as below. That is to say,  took the initiative to reduce the 
Euclidean distance with . 
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                (2) 

Wherein, , stands for the shift step length of individual . Experiments 
show that the optimization effect will be better if  is proportional to the search 
space, or fixed dynamically according to the evaluation function value in the process 
of learning. But this is not the focal point of this paper, so it will not be took into 
further discussion. 

2.2 Internal Benchmarking Learning 

Let  be the best individual, whose evaluation function value is the maximal or the 
minimal according to the optimization purpose, in niche population , namely, the 
local optimal individual and the internal benchmarking; let  be its corresponding 
gene expression; let  be the gene expression of , which is the i-st individual in 
niche population .Then, the internal learning rate of can be given as rule (3): 
 

      (3) 

Wherein,  stands for the initial value of the internal learning rate; stands 
for the Hamming distance between  and ;  stands for the length of the 

gene expression encoding;  stands for the Euclidean distance between  and 

, namely, . Radius stands for the diameter of the 

search space, that is, . Here,  is the i-st dimension of 

the gene expression, and . 
Similar to external benchmarking learning, if binary encoding method was put to 

use, internal benchmarking learning was carried out by means that the gene-bits in 
，which are different from that in , would be replaced by the gene-bits in  

with a probability of . That is to say,  took the initiative to narrow the 
Hamming distance with . 

If float-point encoding method was adopted, internal benchmarking learning was 
carried out by  means that with a probability of ,  would be updated 
according to rule (4) as below. That is to say,  took the initiative to diminish the 
Euclidean distance with . 

 

                 (4) 

Wherein, , stands for the shift step length of individual . 
It seems that there is no difference between external benchmarking learning and  

internal benchmarking learning, because they are all apt to narrow the Hamming  
(or Euclidean) distance between an individual and the best one. As a matter of fact, 
there is great difference between external and internal benchmarking learning. It is of 
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importance to reduce the Hamming (or Euclidean) distance. For one thing, it is help-
ful for the populations to carry out intensive search, which contributes to forming 
cluster effect and seeking out the global optimal solution quickly. For another, it is 
very helpful to maintain the population diversity, because the learning object of each 
individual within the population is changing constantly and dynamically, therefore, 
the clustering hierarchy in the whole ecological system is changing dynamically  
as well. 

2.3 Internal Benchmarking Learning 

Let  be the i-st individual in niche population ; let  be the evaluation func-
tion value of ; let  be the average value of the niche population ; let  be 
the gene expression of .Then, the self-learning rate of  can be given as below. 
 

       
(5)

 

Wherein,  stands for the initial value of the self-learning rate. 
 If binary encoding method was put to use, self-learning was carried out by 
means that each gene-bit in  will conduct dual mapping [2] with a probability of 

 shown as below. 
 

 

Fig. 1. Binary dual mapping 

If float-point encoding method was put to use,  carried out self-learning means 
that  would make use of logistic chaos mapping to help itself to jump out of the 
current region. Let ， . Then  would be updated ac-
cording to rule (6) as below: 
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larger number, and so it is more likely to obtain its dual individual to enhance the 
evaluation function value. But if its evaluation function value is bigger than the aver-
age value of the niche population it belongs, its self-learning desire will fade away 
quickly and its self-learning rate will decrease to a smaller number, and so it is great 
helpful to protect against the ascendant genes to be destroyed. In like manner, when 
the optimization purpose is to obtain the minimum value of the evaluation function, 
the self-learning desire will adjust accordingly. 

2.4 Pseudocode 

Let  be the whole ecological system consists of np niche populations, 
Ni be the number of individuals in ,  be the j-th individual in ,  be the best 
individual in . Let  be the evaluation function value of ,  be the average 
value of  at current generation,  be the average value of E at current generation, 

 be the best individual in E. Let  be the external learning rate,  be 
the internal learning rate,  be the self-learning rate. Let  be the 
maximum iteration times. Then the pseudocode for BLA can be given as below. 
(1) Initialize the , , , ,  and other parameters if necessary. 
(2) for gen=1:max_gen, do 

(a) for i=1:np, do 
ⅰ.Evaluate  

ⅱ.Evaluate  
ⅲ.Find and record  (Setting the internal benchmarking) 

(b) Find out and record  (Setting the external benchmarking) 
(c) Find out, record and update the best individual so far in E. (The global  

optimal solution) 

(d) evaluate  
(e) for i=1:np, do 

ⅰ. conduct external benchmarking learning 
ⅱ.if does not be improved，then, will conduct internal benchmarking 
learning 
ⅲ. if does not be improved yet，then, will carry out self-learning 

(f) does not be improved or the best individual in E does not be replaced do 

will exchange its best individual with other niche populations (Namely, 

each niche populations set a new external benchmarking) 
(3) Output the global optimal solution 

3 Main Features 

The main features and advantages of BLA, which are different from and superior to 
other optimization methods, were described, analyzed and given as below. 
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3.1 The Unique Search Model 

The general framework of evolutionary algorithms (EAs) represented by genetic algo-
rithm (GA) is that all the individuals in ecological system are carrying out genetic 
operations including selection, crossover and mutation at random. Though the cros-
sover rate and mutation rate can be fixed adaptively to reduce the randomness of the 
genetic operation, EAs appeared more stochastic and less intelligent. In general, the 
search strategy of EAs is still passively adaptive. In the particle swarm optimization 
(PSO), particles are apt to follow both the best position they had drifted and the posi-
tion of local optimal particle, so the search behavior of particles within PSO is intelli-
gent in a certain extent. However, PSO can’t maintain the population diversity native-
ly and can’t get over the premature convergence problem. What is more, no other 
encoding methods, but only the float-point encoding method can be used in PSO. A 
kind of PSO based on binary encoding method was proposed [3] by Kennedy and 
Eberhart, but it run at the sacrifice of PSO’s limited intelligence and became purely a 
kind of random search algorithm. The artificial fish swarm algorithm (AFSA) was 
designed through simulating the behavior patterns of fish swarm, such as prey, swarm 
and follow. Like PSO, AFSA is not able to keep the population diversity and over-
come the premature convergence problem as well. The ants in the ant colony optimi-
zation (ACO) would find out the best route according to the principle—the thicker the 
pheromones, the closer the route. ACO takes advantage of positive feedback mechan-
ism, but it can’t get over the distraction of the local extremum. Besides that, ACO is 
suitable for discrete problem like traveling salesperson problem (TSP), and it is hard 
to convergence to the global optimal solution when the number of cities is too great. 
The simulated annealing (SA) makes use of the metropolis acceptance criteria to help 
to jump out of the local extremum regions, but it includes too many repetitive itera-
tions and this requirement is difficult to be met in the practical applications. There-
fore, SA is just a heuristic random process based on Monte Carlo method. The taboo 
search (TS) and the predatory search (PS) are more likely to act as a kind of unique 
search strategy and search pattern. The former would flag the region which had been 
searched to reduce the repetitive iterations, and the later has no detailed computing 
method, it is just a strategy to balance the global search and local search, and just a 
way to keep the algorithm better both in exploration and exploitation.  

The general framework of BLA proposed in this paper is that all the individuals in 
ecological system are selectively executing learn-actions by themselves and their 
learning objects are constantly changing. The purpose and direction of the learn-
actions are very definite and clear, namely, every individual in ecological system 
wants to grow up and become the learning object of other individuals by simulating 
and learning from the best individual. When some niche population find out a new 
global or local optimal solution, that is, setting a new external or internal benchmark-
ing, it will attract lots of individuals, who belong to other niche populations, to join in 
and help to search a better global or local optimal solution. But if the niche population 
can’t seek out a new global or local optimal solution all the time, its members will  
be all attracted into other niche populations until its extinction. In a similar way, if 
some individual can chase down a better global optimal solution, it will attract a lot of 
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individuals into its local region to create and form a new niche population. This is the 
dynamic niche technique proposed in this paper. Therefore, BLA is a type of learning-
competition optimization model, and also a competition-learning optimization model. 
All in all, BLA described here, whose framework is brief and clear, is easy to be pro-
grammed. It is a learning-search strategy as well as a competitive optimizing method. 
Obviously, BLA, a new kind of search model, which was designed based on man-
agement theory and method in business word, is different from all the existing opti-
mization methods, which were designed based on the principles of the natural world, 
especially the biological world. 

3.2 Less Repetitive Operations in Search Process 

One of the remarkable characteristics of BLA is less repetitive operations in the 
search process. A great many of repetitive genetic manipulations would be conducted 
in the process of evolutionary algorithms (EAs) represented by genetic algorithms 
(GAs). For example, an individual may carry out crossover operation with one more 
individuals in the search process, yet its corresponding objective function value did 
not return to the program immediately. And due to the impact of random selection, 
after cross-operation was completed, some individuals within the population may  
be not involved in the crossover operation and their gene structures did not change, 
while some individuals within the population may conduct cross-operation for many 
times and their good gene structure may have been damaged. In the standard genetic 
algorithm(SGA) and the vast majority of its improved versions, each individual’s 
objective function value was evaluated after the three core genetic operations, namely 
selection, crossover and mutation, was carried out in sequence, which in fact is equal 
to that each individual conducted a series of repetitive genetic manipulations before 
its objective function value was evaluated. Additionally, the individual in simulated 
annealing (SA) will conduct a large number of exploratory movements in the thermal 
equilibrium phase, which makes no contribution to find out the global optimal solu-
tion in most of the time. Though the particles in particle swarm optimization(PSO) 
have no repetitive movements in the search process, if the objective function value 
was not improved after once drifting, only at the next iteration were the search direc-
tion and drift step of particles corrected. In the search process of BLA, individual’s 
learning behavior is conducted selectively, namely on condition that its objective 
function value was not be improved after carrying out previous learning strategy, the 
individual would conduct next learning strategy. Which not only contributes to create 
no useless and repetitive actions, but also helps to amend the gene structure before 
once search process came to an end. 

3.3 No Useless Operations in Search Process 

Useless operations, here, refers in particular to some operations in algorithm, which 
make no contribution to the optimization problems in question. Take the function 
optimization problems with real type of decision variables as an example, if the float-
point encoding method was adopted, then a great deal of useless operations would 
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appeared in the search process of the most of popular optimization methods, such as 
PSO, SA and AFSA. The search operations in these methods often make the individu-
als fly out of solution space, namely the decision variables are apt to beyond the scope 
of the variable range and become illegal solutions after a series of search operations. 
To solve this problem, the general approach is that if some decision variable is over 
the boundary, then it would be replaced by the boundary value or modulus of itself, or 
it would be assigned a new value within the variable range. But as a matter of fact, 
these solutions are not only another form of repetitive operations, in essence, but also 
a kind of useless operation, which completely destroyed the intelligence of the me-
thods and was not conducive to solving the problems in question. In the search 
process of BLA, every individual in the niche population is carrying out benchmark-
ing-oriented search actions which would narrow the Euclidean distance with the ben-
chmarking. Because the learning object is legitimate, the individual would not fly out 
of the solution space. Therefore, there are no useless operations in BLA as PSO, SA 
and AFSA did, this will be verified by the function optimization experiments in the 
later section. 

4 Conclusions 

In this paper, a competitive learning mechanism based on dynamic niches was set up 
according to the core values of benchmarking. BLA, which originated from  
benchmarking theory of business management, is different from the EIOMs, which 
stem from the biological activities of nature. So BLA is brand new and it is a newborn 
member of the family comprising the modern intelligent optimization methods.  
However, as other optimization methods, BLA also involved a number of controls 
parameters, such as learning rates, etc. and how to set these controls parameters to 
optimize BLA to achieve the best effect, which itself is also a combinatorial optimiza-
tion problem, is one of our next research topics. 

References 

1. Dong-long, Y.: Benchmarking: How to learn from benchmark enterprises. China Social 
Sciences Press, Beijing (2004) (in Chinese)  

2. Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. 
Evolutionary Computation 3, 2246–2253 (2003) 

3. Kennedy, J., Eberhart, R.C.: A discrete binary of the particle swarm optimization. In: Proc. 
IEEE International Conference on Systems, Man and Cybernetic, pp. 4104–4209. IEEE Ser-
vice Center, Piscataway (1997) 



Improve the 3-flip Neighborhood Local Search

by Random Flat Move for the Set Covering
Problem

Chao Gao, Thomas Weise, and Jinlong Li

School of Computer Science and Technology,
University of Science and Technology of China (USTC),

Hefei, China
chao.gao.ustc@gmail.com,
{tweise,jlli}@ustc.edu.cn

Abstract. The 3-flip neighborhood local search (3FNLS) is an excel-
lent heuristic algorithm for the set covering problem which has dominat-
ing performance on the most challenging crew scheduling instances from
Italy railways. We introduce a method to further improve the effective-
ness of 3FNLS by incorporating random flat move to its search process.
Empirical studies show that this can obviously improve the solution qual-
ities of 3FNLS on the benchmark instances. Moreover, it updates two
best known solutions within reasonable time.
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1 Introduction

The set covering problem (SCP) is a prominent combinatorial optimization task
which asks to find a collection of subsets to cover all the elements at the min-
imal cost. Formally, it is defined as: Given a universal set E which contains m
elements, n subsets which are S1 ∪ S2 ∪ ...∪ Sn = E and each subset has a cost,
find a set of subsets F at the minimal total cost but still cover all elements in X ,
i.e.,

⋃
s∈F s = E. In literature, the SCP is generally described as integer linear

programming form, as follows:

min

n∑

j=1

cj · xj (1)

s.t.

n∑

j=1

aij · xj ≥ 1, i ∈M, where M = {1, 2, . . . ,m}, (2)

xj ∈ {0, 1}, j ∈ N, where N = {1, 2, . . . , n} (3)
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The zero-one matrix A = {aij}m×n represents the problem instance, and
aij = 1 means subset Sj is able to cover the element i. For each variable xj = 1
indicates that Sj is selected, and 0 otherwise. In literature, the SCP is also
viewed as to find a set of columns to cover all the rows at the minimal total cost,
where N is the set of all columns that each has a cost, M is the set of rows that
need to be covered.

The SCP is NP-hard in the strong sense [10], thus no complete algorithms
with polynomial time complexity are known for SCP. It has many real-world ap-
plications, such as crew scheduling from bus, railway and airline systems[1,6,15].
A number of algorithms have been proposed for SCPs, among them the exact
algorithms are shown not suitable to tackle large-scale problems because of their
untolerable time consumption [5]. Therefore, approximation and heuristic algo-
rithms are also widely studied by researchers both from the operations research
and artificial intelligence communities. A variety of approximation or heuristic
algorithms have been proposed, including the greedy algorithm [7], randomized
greedy procedures [17,8], simulated annealing [11], genetic algorithm [3], ant
colony optimization algorithm [13,14], artificial bee colony algorithm [16] and
the Meta-RaPS approach by Lan et al. [12].

However, among these heuristics, only a few of them are able to tackle the
very large-scale instances from the Italy railways [6,4], which contain to up mil-
lions of columns and thousands of rows. These instances, firstly distributed by a
FASTER competition in 1994, are generally referred as the most challenging SCP
instances from the OR-Library [2]. Caprara et al. proposed a Lagrangian-based
heuristic (CFT) and a greedy procedure and obtained very impressive results
on this set of instances and other random generated benchmark instances [4].
They won the first prize of the competition. Later, the 3-flip neighborhood local
search (3FNLS) proposed by Yagiura et al. [18] is able to surpass CFT on these
crew scheduling instances. We emphasize that CFT is essential to the success
of 3FNLS, for 3FNLS also uses the same subgradient method implementation
proposed in CFT to solve the Lagrangian relaxation of SCP.

In this paper, we introduce a search strategy named random flat move to
further improve the effectiveness of 3FNLS. The experimental results show that
it is effective, especially on the very large-scale instances, for it generally produces
better solution qualities than the original 3FNLS within the same time limits.
Further, it discovered two new best known solutions for the largest two instances
within reasonable time.

The rest of this paper is organized as follows: In Section 2, we give descrip-
tion of the 3FNLS algorithm. Then our improvement strategy is described in
Section 3. Section 4 is the computational results and comparisons. Conclusion
and future work are finally presented in Section 5.

2 3FNLS Review

To make this article self-contained, it is necessary to introduce the basic concepts
of 3NFLS before presenting our improvement method. However, because the
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ideas in 3FNLS are complicated, we suggest the readers to refer [18] for the
details. In this section, we only provide brief introduction to the key procedures.

The overall procedure of 3FNLS is shown as Algorithm 1, in which the SUB-
GRADIENT method is used to solve the Lagragian dual relaxation of SCP to
obtain a Lagrangian multiplier vector u , and then for each column j a reduced
cost is calculated as cj(u) = cj−

∑
i∈M aij ·ui. Because of the integrality property,

an optimal solution u∗ to the dual of LP relaxation of SCP is also the optimal
solution to the Lagrangian dual problem [9]. For a good Lagrangian multiplier
vector u , the reduced cost cj(u) can give reliable information for the goodness
of column j, because each column j with xj = 1 in an optimal solution tends to
have small cj(u) value.

From Algorithm 1 we can see that in 3FNLS, initially, the candidate solution
x is obtained greedily, and UB is set to cost(x). 3FNLS calls the subgradient
method many times. At the first time, u0

i = min{cj/Ij |i ∈ Ij} (∀j ∈ N and Ij is
the set of rows j covers), otherwise, u0 is set to u+, where u+ is the Lagrangian
multiplier vector obtained by the first call. Let x ∗ be the stored best solution
during the search, then UB is always maintained as cost(x∗).

An essential feature of 3FNLS is its problem size reduction heuristic, which is
indispensable when facing the very large-scale instances, because directly local
search on the whole columns is quite expensive. At first, the selected columns are
determined by columns with the first α ·min free· small cj(u), where min free
and α are program parameters which are set to 100 and 3, respectively. This is
corresponding to Line 4 in Algorithm 1.

Whenever some iterations of local search are finished, the selected columns are
adjusted by randomly fixing some ’good columns’ to 1 to call the subgradiment
method, and then some new columns with cj(u

′) < 0 are added to the selected
column set, where u ′ is the new Lagrangian multiplier. Let Nselected be the
selected columns which the local search is conducted on,N1 be the set of columns
in x fixed to 1 (not permitted to flip to 0 during the next period of local search).
This is shown as Line 31 in Algorithm 1.

In Algorithm 1, r-flip is possible(r ≤ 3) means that there is at least one r-flip
to decrease a penalty function defined in 3FNLS. At most 3-flip is permitted by
3FNLS and when there are no flips within 3-flip to find to reduce the penalty
function value, the penalty weights of rows are updated. The details of how the
penalty weights are updated is complicated. Usually, the penalty weights are
updated by an increasing manner with the information provided by the last flip.
Only when a certain rule is violated, then the penalty weights of rows will be
decreased to make sure that there are possible flips again. The interested readers
are suggested to refer [18] for details.

3 Random Flat Move for 3FNLS

From Algorithm 1, we can see that 3FNLS can be viewed as a multi-start algo-
rithm. Each period of local search starts from fixing some variables in Nselected

to 1 and calling the subgradient method, and then based on the information from
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Algorithm 1. The 3FNLS algorithm

Input: A SCP instance
Output: Best found solution x∗

1 Initiate candidate solution x greedily and UB ← cost(x);
2 Initiate u0, intiate penalty weights for all rows in M ;
3 u+ ← SUBGRADIENT (UB,u0);
4 Select a subset of columns to Nselected based on their reduced cost;
5 trial← 1;
6 while Time not exceeded do
7 while Time not exceeded do
8 if one flip is possible then process one flip;
9 if better solution is detected then

10 update x∗ and UB ;
11 end
12 continue;
13 if two flip is possible then process two flip;
14 if better solution is detected then
15 update x∗ and UB ;
16 end
17 continue;
18 if three flip is possilbe then
19 if better solution is detected then
20 update x∗ and UB ;
21 end
22 process three flip;
23 continue;

24 else
25 break ;
26 end

27 end
28 update penalty weights of rows;
29 if penalty weigts is updated by decrease then
30 if x∗ has not been updated for at least mintr lsl iterations then
31 modify variable fixing;
32 end

33 end
34 trial← trial + 1;

35 end

solving Lagrangian relaxation, it continues to flip variables to decrease the pcost
of the candidate solution until the stop condition is reached. Because the N1 is
determined by the stored best solution and current candidate solution, thus the
quality of the stored best solution can directly influence the performance of the
following period of local search.

The problem size reduction heuristic (or variable fixing) divides all the columns
into twoparts, inwhich theNselected represents the columns selected into the search.
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Then, at the beginning of each period of local search, it further reduces the search
size by fixing some columns in Nselected as 1, which means they are not permit-
ted to be flipped to 0 the following period of local search. It is easy to see that the
correctness of selecting columns to fix to 1 is crucial to the search, because wrong
fixing could drastically mislead the search. As the columns in N1 is also selected
heuristically, it is obvious that the correctness of the selection of columns to fix to
1 can not be guaranteed.

However, we observe that 3FNLS only updates the stored best solution when
another better solution is detected; i.e., only when cost(x ) < UB and x is
feasible. In the variable fixing modification algorithm, the N1 is chosen from
the intersection between the current candidate solution x and the stored best
solution x ∗ which could be a no-promising local optimum. Therefore we propose
a simple search strategy to 3FNLS, which is randomly update the x ∗ when x
becomes feasible and cost(x ) = UB by a probability. The idea of random flat
move is that the stored best solution could be on a local optima plateau, neutral
walking at a probability may lead to a better chance for finding a portal. The
modification of the local search of 3FNLS is as below:

Algorithm 2. Random flat move for 3FNLS
1 if r-flip is possible then
2 if x is feasible then
3 if UB > cost(x) then
4 x∗ ← x ;
5 UB ← cost(x);

6 end
7 if UB = cost(x) and rand(0, 1) > prfm then
8 x∗ ← x ;
9 end

10 end

11 end

In Algorithm 2, r-flip refers to one, two or three flip in Algorithm 1, and prfm
is the probability of the flat move. We set prfm to 0.5 in our implementation.

4 Experimental Results

In order to show the effectiveness of our search strategy to 3FNLS, we test the
modified algorithm on instances from the OR-Library [2], which contains the
randomly generated instances as well as the very large-scale crew scheduling
instances from Italy railways.

4.1 The Benchmark Instances

We test 3FNLS on 4 type random instances and 7 challenging instances from
Italy railways, shown in Table 1. For type NRE to NRH, each type contains 5
instances. The density is the number of non-zero entries in the problem instance
matrix. The optima of these instances are all unknown.
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Table 1. Details of the test instances

Instance type m n Range of cost Density(%) Number of instances

NRE 500 5000 1–100 10 5
NRF 500 5000 1–100 20 5
NRG 1000 10000 1–100 2 5
NRH 1000 10000 1–100 5 5

RAIL507 507 63009 1– 2 1.2 1
RAIL516 516 47311 1– 2 1.3 1
RAIL582 582 55515 1– 2 1.2 1
RAIL2536 2536 1081841 1– 2 0.4 1
RAIL2586 2586 920683 1– 2 0.4 1
RAIL4284 4284 1092610 1– 2 0.2 1
RAIL4872 4872 968672 1– 2 0.2 1

For Table 1, we can see that one obvious characteristic of these instances is
that they all have many more columns (n) than rows (m), especially for the
crew scheduling instances from railways, with up to 1 million columns, whereas
no more than 5 thousands rows.

4.2 Comparison Results

The source code of 3FNLS is provide by the author Mutsunori Yagiura, written
in C. Our improvement algorithm with random flat move (3FNLS-rfm) is directly
modified upon the source of 3FNLS. Both the two algorithms are compiled in
g++ with -O2 option, run on the same Intel(R) Xeon(R) E5450 3.00 GHz CPU
machine with 16 GB RAM, under 64-bit Linux system. Due to the randomness
of the algorithms, for each instance, 10 independent runs are performed with
random seeds from 11 to 20. All times are measured in CPU seconds in our
experiments.

The results are reported as the best solutions (best) obtaind from the 10
runs, the average solution of the 10 runs (mean), number of runs that the best
is detected (#best), and the average times over the runs that detecting the
best (Avg Time). The time limit for instances from NRE to NRH is set to 20
seconds, RAIL507, RAIL516 and RAIL582 is set to 200 seconds, and RAIL2536,
RAIL2586, RAIL4284 and RAIL4872 is set to 2000 seconds. The comparison
results are shown in Table 2.

From Table 2, we can see that for instances from NRE to NRH, both 3FNLS
and 3FNLS can achieve the best known solution (BKS) within short times. The
only instance they have not all success is NRE2, where the solution quality of
3FNLS-rfm is still better than 3FNLS. For the NRG type instances, the average
times of 3FNLS are only slightly smaller than that of 3FNLS-rfm.
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Table 2. Comparison results of 3FNLS and 3FNLS-rfm on benchmark instances

Instance BKS 3FNLS 3FNLS-rfm
best mean #best Avg Time best mean #best Avg Time

NRE1 29 29 29 10 0.24 29 29 10 0.24
NRE2 30 30 30.7 3 6.74 30 30.2 8 12.89
NRE3 27 27 27 10 0.30 30 30 10 0.31
NRE4 28 28 28 10 0.24 28 28 10 0.23
NRE5 28 28 28 10 0.25 28 28 10 0.25
NRF1 14 14 14 10 0.36 14 14 10 0.36
NRF2 15 15 15 10 0.31 15 15 10 0.31
NRF3 14 14 14 10 0.30 14 14 10 0.31
NRF4 14 14 14 10 0.28 14 14 10 0.27
NRF5 13 13 13 10 0.54 13 13 10 0.27
NRG1 176 176 176 10 0.65 176 176 10 0.62
NRG2 154 154 154 10 0.86 154 154 10 1.25
NRG3 166 166 166 10 3.38 166 166 10 5.94
NRG4 168 168 168 10 0.99 168 168 10 1.27
NRG5 168 168 168 10 0.86 168 168 10 1.29
NRH1 63 63 63 10 1.82 63 63 10 2.47
NRH2 63 63 63 10 1.94 63 63 10 2.04
NRH3 59 59 59 10 1.17 59 59 10 0.63
NRH4 58 58 58 10 0.97 58 58 10 0.89
NRH5 55 55 55 10 0.60 55 55 10 0.59

RAIL507 174 174 174 10 26.45 174 174 10 9.70
RAIL516 182 182 182 10 1.67 182 182 10 1.64
RAIL582 211 211 211 10 2.83 211 211 10 2.31
RAIL2536 690a 691 691.3 7 709.83 690 690.2 9 910.80
RAIL2586 945a 946 947.0 2 1269.67 945 946.7 1 1002.79
RAIL4284 1064a 1063 1064.1 3 1350.27 1062* 1063.3 2 1826.34
RAIL4872 1528a 1528 1530.0 2 1214.32 1527* 1529.0 1 910.40

SUM 6136 6137 6143.1 237 4529.61 6133 6138.4 241 4596.41
a The BKSs of RAIL2536, RAIL2586, RAIL4284 and RAIL4872 are all previously found by

3FNLS, reported in [18].
+ The better solution of 3FNLS-rfm is highlighted by boldface.
+ The updated BKS of 3FNLS-rfm is with a following asterisk.

In Table 2, we highlight the better solutions of 3FNLS-rfm than 3FNLS in
boldface, and the updated best known solutions with a following asterisk. It is
easy to see that 3FNLS-rfm has 4 better best solutions than 3FNLS on the 7
railway instances. Moreover, 3FNLS-rfm also has better solution qualities than
3FNLS on the instance RAIL507, RAIL516 and RAIL582, because its average
times are generally smaller than 3FNLS. For RAIL2536 and RAIL2586, the ori-
gianl 3FNLS fails to achieve the BKS of these two instances within 2000 seconds.
For the RAIL4284 and RAIL4872, 3FNLS-rfm has updated the best known so-
lutions of these two instances. The results in Table 2 show that 3FNLS-rfm
can obviously improve the performance of 3FNLS, especially on the challenging
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large-scale railway problems, for it is always achieves better solution qualities,
given the same time limits on the same machine.

5 Conclusion and Future Work

In this paper, we have reviewed the state-of-the-art 3-flip neighborhood local
search (3FNLS) algorithm for the set covering problem. Through the analysis
of the process of 3FNLS, we notice that it can be regarded as a multi-start
algorithm, which starts each period of local search by solving the Lagrangian
and fixing some variables to 1. However, 3FNLS does not allow the stored best
solution to move on the other ‘equal-best ’solutions which may be portal to
better solutions. Therefore, we propose a random flat move strategy to 3FNLS
to make sure that the stored best solution can be updated by a probability on
the possible plateau.

The proposed strategy has been tested on instances from the OR-Library,
and the computational comparison results show that our strategy can obviously
improve the performance of 3FNLS on the very large-scale instances. Moreover,
it has updated the best known solutions of the last two instances. Observing that
the very large-scale railway instances are commonly regarded as most challenging
in the SCP benchmark instances, we believe our improvement method should be
worth of existing.

In this paper, the probability of our flat move is intuitively set to 0.5, which
may not be the ideal value for this algorithm. In the future, further empirical
studies will be conducted to explain the behaviors of 3FNLS with different flat
move probabilities. The relationship between the effectiveness of 3FNLS and
instance features is also worth for further study.
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Abstract. For hunting foods, migrating and breeding, some small animals tend 
towards flocking. Once encountering predators, these swarms usually present 
some special threat-evading behaviors and show incredible regularity in 
movement by coordinating with each other. In this paper, the actions of a small 
fish swarm evades a blacktip reef shark are taken as an example, we put 
forward the concept of predator threat-field and present a mathematical model 
to describe the threat-field intensity, demonstrate the decision-making process 
of preys escaping the predator’s threat by revising R-A model. The validity of 
the model is shown by simulations.  

Keywords: Swarm, decision-making, threat-field, threat-evading, movement. 

1 Introduction 

While hunting food or moving, an animal swarm is likely to encounter a predator’s 
attack. The responses of different kinds of animals to predator threat are quite 
different. The responses to attacks roughly fall into two categories: with and without 
active defense abilities. The paper focus on the phenomena of none active defense 
abilities swarms evade predator threat.  

A typical scene was recorded by videos and photos[1, 2], as illustrated in Figure 1. 
 

 

Fig. 1. Fish swarm avoiding a blacktip reef shark 
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According to these photos and videos, when there is no predator attack, individuals 
in the fish shoal are closely related to one another and the behaviors of fish are 
obviously regular. When encountering predator attack, the behaviors of individuals 
evading dangers present obvious regularity. Then, what is the law of the predator 
threat? How does an individual make the decision to evade the threat? How does the 
threat information transfer among individuals without any special signal sent by 
individuals in the shoal or even without the knowledge of the threat location? These 
problems will be dealt with in this paper. 

2 The Previous Relational Works 

In 1987, Reynolds put forward the Boids model to study the bird flying behavior[3]. He 
gave three simple rules each individual (agent) must abide, that is, collision avoidance, 
speed matching and flock centering. Iain D. Couzin et al presented the R-A model[4,5] 
which can be used to describe quite well the close relations among swarm members, 
reflect social interaction behaviors among the individuals in a swarm. 

Suppose the swarm consists of N agents in the R-A model. Respectively, denote the 
location, speed and acceleration of individual i by vectors , ,i i ix v a  ),,( n

iii Ravx ∈ . 

The movement of individuals is controlled by the following dynamics equation: 
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where ix  and iv  are the derivatives of ix  and iv , respectively. The acceleration 

ia  of individual i can be represented as follows[6-7] 
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RiV  are, respectively, the corresponding unit 

vectors of vector riV , miV , aiV  and RiV . riV is repulsion-action direction of 

individuals in region Rr. miV is the sum speed vector of individuals in region Rm; 

Vector aiV  is the direction of individuals’ attract-action to individual i in region Ra; 

RiV is a random vector which gives the preference movement direction of individual i. 
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The constants 1 4~c c  are, respectively, the weight coefficient of each term and they 

give the individual’s decision-makings in each direction in the movement process. The 
acceleration and speed values of each individual are subject to the following constraints 
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where maxA  and maxV  are, respectively, the reachable maximum acceleration and 

reachable maximum speed value for an individual. 

3 Threat-Evading Mechanism 

3.1 The Threat-Field Concept and Model 

In the course of predator attack prey swarm，we can observe and understand the 
behavior is that the predators follow the prey-swarm when they found them, then 
rapidly chase and try to rush the prey-swarm, so they can acquire hunting opportunity. 
When the distance between predator and prey-swarm reduces to a certain degree, the 
preys begin to show stress-response to evade the menace, and quickly run away along 
a direction to reduce the menace. The shorter the distance is, the greater menace to be 
perceived by preys, the more intense the threat-evading reactions are.  

For a simple analysis and expression, we suppose the prey-swarm consists of N 
individuals. At the moment t, the position vector of individual i is ( )i tx , the speed 

vector is ( )i tv  and the acceleration vector is ( )i ta . The corresponding position 

vector of predator is ( )th  and the speed vector of predator is ( )ts . 

Obviously, there are varying degree threats to the preys around the predator. The 
threat has its source direction and corresponding intensity. Therefore, there is a threat-
field around the predator. It can be described as a vector field. See Figure 2, the 
triangle represents the predator H and the circularity represents the prey Qi. Within 
the predator's threat-field, prey Qi can sense the threat of the predator H. The threat 
can be described as a vector wi(t) and the direction is from H to Qi. 

Fig. 2. The threat vector 
 

The relative position between predator H and prey Qi can be expressed as a vector 
( ) ( ) ( )i it t t= -p x h . The distance between them is ||)(||)( tpt ii =ρ  and the angle 
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between the relative position direction ( ) || ( ) ||i it tp p  and predator movement 

direction ( ) || ( ) ||t ts s is )(tiθ  ( ],0[)( πθ ∈ti ).  

In terms of only consider single factor, apparently, the longer the distance )(tiρ  is, 

the smaller the threat to prey becomes; the lager the angle )(tiθ  is, the smaller the 

threat to prey is. This means that the threat intensity is related to two factors: )(tiρ  

and )(tiθ . If the distance )(tiρ is only take into consideration, for 0)( =tiρ , the 

threat-field intensity will be the maximum, and for ∞=)(tiρ , the threat-field intensity 

will be the minimum 0. Moreover, the threat-field intensity will decrease with the 
decrease of distance )(tiρ . According simulation experiment, we found the 

exponential function )(2 tie ρ− can describe this feature. If the angle )(tiθ  is only 

considered, for 0)( =tiθ , the threat level will be maximal, and for πθ =)(ti , the 

threat intensity will be minimal (0). The threat-field intensity should decrease with the 
decrease of angle )(tiθ . According simulation experiment, we found the function 

)1)((cos
2

1 +tiθ  is able to meet this requirement. Furthermore, the orders of 

magnitude of the two functions are consistent with each other. So the arithmetic mean 
expression of the two functions is defined as threat-field intensity, that is 
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=θ . The maximal value by this threat-field 

intensity definition is 1 and the minimal value is 0.  

3.2 Threat-Evading Decision-Making  

In our works, the threat-evading movement model is based on the R-A model (see Eq. 
(2)). In R-A model, RiV is a random vector used to express the movement preference 

of an individual. When an individual falls into predator's threat-field, its movement 
preference ought to be threat-evading. Therefore, the individual random preference 
vector RiV is considered to be replaced by the threat-evading direction vector to 

characterize an individual’s movement actions. By adjusting of the weight 
coefficients 1 4~c c  according to the threat-field intensity, an individual’s threat-

evading desire can be expressed. For example, when the threat intensity is stronger, 
the value of 1 3~c c  will be reduced and the value of the 4c will be increased, so as to 

represent the increase of an individual’s threat-evading desire degree. 
Apparently, predator threat intensity is decrease from predator to beyond. The 

shorter the distance between the prey and the predator is, the greater threat intensity 
the prey senses. Obviously, there exists a distance d0. It is that a prey can bear the 
greatest threat intensity. That is, d0 is a critical distance value, if the predator-prey 
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distance is less than d0, the prey will sense that threat is too violent to bear. Thus, the 
prey will show the most intense threat-evading response, escape from threat 
desperately. In addition, it can be sure that there is a maximal sense distance, denoted 
by d1, it is the distance that a prey rely on their own sensing organs to perceive nearby 
predators. We call d1 as the prey’s maximal appreciable threat distance. 

From the perspective that prey evade a predator’s threat, the individuals within the 
prey-swarm can be divided into three layers by two concentric circles, the radii 
respectively is d0 and d1 and the centre of a circle is predator H. In the inner-most 
layer, that is, the neighborhood U(H, d0), the prey individuals will perceive the 
strongest threat, so their threat-evading desire is the biggest. Obviously, the most 
reasonable threat-evading direction is the one that can decrease the threat intensity 
most quickly. Suppose ( )i tT  is the gradient vector of the threat-field intensity 

function ))(),(( ttw ii θρ , that is 

tii
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where ,i ix y  are, respectively, the two coordinate components of the individual 

position vector ( , )T
i i ix y=x . According to the calculus theory, vector ( )i tT  is the 

direction that threat intensity function’s value increase fastest. Therefore, vector 
( ) || ( ) ||i it t-T T  represents the direction in which the threat intensity decrease most 

quickly, so it is the best evading direction, that is, in R-A model,  
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. 

In addition, if a individual in the inner-most layer (that is, in neighborhood U(H, 
d0)), its threat-evading desire is the strongest, so its movement decision is evading the 
threat desperately. Therefore, in R-A model, take the weight factors as 

1 2 3 0c c c= = = , 4 0c > , so as to indicate that the individuals’ strongest desire in the 

process of evading threat. 
For individuals in the middle layers, that is outside the neighborhood U(H, d0) but 

within the neighborhood U(H, d1), from the inside to the outside, the threat intensity 
decreases. When individuals make movement direction decision, they will consider 
both the threat-evading direction and the other factors, such as inter-individual 
distances, matching speed and group-keeping. That is, in the R-A model, the 
preference vector is still taken RiV  as eq.(7). In order to express the variations of 

considered factors, in an individual’s decision-making process, as the prey-predator 
distance varies from d0 to d1, the weight factors 1 3~c c  increase linearly from 0 to a 

normal value (that is, the value in the state without threat) and the weight factor 4c  

descend linearly form maximum to a normal value. 
The individuals in the outermost layer (i.e., outside the neighborhood U(H, d1)) 

cannot directly sense the threat of predators, so they determine their movement 
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direction based on the surrounding individuals’ locations, movement status as well as 
their own preferences. That is, the individual movement decision-making is consistent 
with the motion equations (see Eq. (1)~(4)) of R-A model. Still, RiV is a random 

vector representing individual movement preference. 

3.3 Threat Information Transfer 

Although the above analysis doesn’t mention the problems of information transfer, it 
can be ascertained that there are specific information transfer methods in the process 
of threat-evasion. The information transfer process can be understood as follows: first 
of all, a part of individuals within the threat-field (the distance between the two sides 
is less than maximal appreciable threat distance d1) can sense the predator’s threat 
rely on their own sensing organs. They show unusual threat-evading stress-response 
actions. For those individuals beyond the maximal appreciable threat distance d1, even 
if those individuals who have sensed the threat don’t send any clear alarm signal such 
as wow or ultrasonic waves, they can still sense the threat through the near threatened 
individuals' abnormal threat-evading actions. For example, some other individuals 
around an individual suddenly get very close to it and even knocked into it; the 
neighboring individuals move suddenly to a particular direction with strong desire. 
Through these abnormal behaviors, the individual will be able to realize the threat, 
and thus knows the threat. Because of social interactions among the individuals in a 
swarm, the individual realizes threat-evading movement implicitly.  

4 Simulations 

In order to observe the threat-field effects on the prey individuals’ escape direction, 
numerical simulations are carried out specially. The simulation method is as follows: 
fix a moving predator to a certain fixed position and put some prey individuals around 
the predator. The distance between the prey and predator is d0. The prey individuals’ 
initial speed is 0. In the case of only taking the threat-field action into account and 
without considering the individuals’ interaction, simulate these individuals movement 
process. The specific implement is, in R-A model, take 1 2 3 0c c c= = = , 4 1c = and 

RiV  is the negative gradient vector of the threat-field.  

The simulation result is shown in Figure 3(a). It can be found that, within the range 
of maximal threat distance d1, the prey individuals escape along the direction of 
negative gradient vector of threat-field. When they go beyond the maximal threat 
distance d1, their movement direction is no longer subject to threat-field. 

Actually, the prey individual's threat-evading movement direction is affected not 
only by threat-field, but also by the neighboring individuals' movement states, 
furthermore, the predator is still in the state of constant movement. So the prey’s 
threat-evading movement process is more complex. Now the prey evading threat 
simulation in the state of moving predator is presented in the following part. 
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The purpose of the predator is to approach the prey-swarm as close as possible. 
Suppose the predator is to determine its moving direction based on the swarm center 
and the average speed of the all of the preys in the swarm. So in the process of 
simulation calculation, the acceleration of the predator is taken as the direction vector 
pointing to the prey swarm center and all prey’s average speed vectors, i.e. 

)()()()( tvthtxttaH +−=Δ+  .                         (8) 

where ( )th  is the current position vector of predator, )(tx is the geometry center of 

prey-swarm. )(tv is the average speed of the prey-swarm. Considering the predator 

would have the greatest acceleration limit, if max|| ( ) ( ) ( ) || Ht t t a- + >x h v , then  

||)()()(||

)()()(
)( max tvthtx

tvthtx
atta HH +−

+−=Δ+  .                     (9)

 

where maxHa is the maximal acceleration that predators can reach. 

According to the acceleration of the predator and the current speed, the movement 
speed of the predator can be calculated 

)()()( tvttattv HHH +Δ=Δ+  .                        (10) 

Considering the maximum speed limit, if max||)()(|| HHH vtvtta >+Δ , then 

||)()(||

)()(
)( max tvtta

tvtta
vttv

HH

HH
HH +Δ

+Δ=Δ+  .                  (11)

 

where maxHv is the maximum speed that predators can reach. 

According to the predator speed and current position, the new position of the 
predator is 

)()()( txttvttx HHH +Δ=Δ+  .                      (12) 

The movement of the prey can be controlled by Eq. (1)~(4). In R-A model, the 
weight factors 1 4~c c and vector RiV  is determined according the methods of 

sections 3 (Threat-evading mechanism) in this paper. During the simulation, some 
data need to be given, including the prey’s body length, maximum speed and 
acceleration, maximal threat-evading distance, maximal sensing range and the inter-
individual repulsion distance and social interaction neighborhood radius. In addition, 
the predator’s body length, maximal speed and maximal acceleration are also needed. 
In the process of simulation, a simulation result video file is recorded. Here the 
simulated screenshot is presented, as shown in Figure 3(b). 

From the simulation results, individuals in the swarm are closely-related and the 
social interaction s very clear. Encountering a predator’s attack, the threat-evading 
actions of individuals in the swarm are obviously regular, the same as show in the 
photographs and videos. 
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(a)                                 (b) 

Fig. 3. Simulation screenshot of preys evading the predator  

5 Conclusion 

In this paper, a mathematical model is presented to demonstrate the factors and laws 
of a predator giving threat to the preys in a dense swarm. The decision-making rules 
of prey individuals’ threat-evading actions are studied and the threat information 
transfer methods among the prey individuals are analyzed. It is very important for us 
to understand the swarm threat-evading action mechanism, the threat-field formation 
mechanism and the decision-making rules of prey evading the threat, as well as the 
threat information transfer law. The simulation results are consistent with the actual 
situation, which shows the validity of the models. The models and methods presented 
in this paper can be used in the research such as robots swarm and aircraft cluster etc. 
artificial agents system’s threat-evading and obstacle-avoiding action control, 
providing the bionics principle for automatic control method. 
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Abstract. As a well-known NP-hard problem, the Three-Index Assignment 
Problem (AP3) has attracted lots of research efforts for developing heuristics. 
However, existing heuristics either obtain less competitive solutions or con-
sume too much time. In this paper, a new heuristic named Approximate Muscle 
guided Beam Search (AMBS) is developed to achieve a good trade-off between 
solution quality and running time. By combining the approximate muscle with 
beam search, the solution space size can be significantly decreased, thus the 
time for searching the solution can be sharply reduced. Extensive experimental 
results on the benchmark indicate that the new algorithm is able to obtain solu-
tions with competitive quality and it can be employed on instances with large-
scale. Work of this paper not only proposes a new efficient heuristic, but also 
provides a promising method to improve the efficiency of beam search. 

Keywords: Combinatorial Optimization, Heuristic, Muscle, Beam Search. 

1 Introduction 

The Three-Index Assignment Problem (AP3) was first introduced by Pierskalla [1, 2]. 
It is a NP-hard problem with wide applications, including addressing a rolling mill, 
scheduling capital investments, military troop assignment, satellite coverage optimi-
zation [1, 2], scheduling teaching practice[3], and production of printed circuit boards 
[4]. It can be viewed as an optimization problem on a 0-1 programming model:  

 min
∈ ∈ ∈Ii Jj Kk

ijkijk xc  . (1) 

subject to 

 
1=

∈ ∈Jj Kk
ijkx , Ii ∈∀  . (2) 

 
1=

∈ ∈Ii Kk
ijkx , Jj ∈∀  . (3) 

 
1=

∈ ∈Ii Jj
ijkx , Kk ∈∀  . (4) 

 
}1,0{∈ijkx , KkJjIi ∈∈∈∀ ,,  . (5) 

where },...,3,2,1{ nKJI === . 
The solution of AP3 can be presented by two permutations: 
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 min
n

i
iqipic )(),(, , Niqip π∈)(),(  . (6) 

where Nπ  presents the set of all permutations on the integer set N={1,2,…,N}. Here 

cijk represents the cost of a triple (i, j, k)∈I×J×K. 
Due to its intractability, lots of exact and heuristic algorithms are proposed to solve 

it, including Balas and Saltzman [5], Crama and Spieksma[6], Burkard and Rudolf 
[7], Pardalos and Pitsoulis[8], Voss [9], Aiex, Resende, Pardalos, and Toraldo[10], 
Huang and Lim [11], Jiang, Xuan, and Zhang [12]. Among these algorithms, LSGA 
proposed by Huang and Lim [11], and AMGO proposed by Jiang, Xuan, and Zhang 
[12] perform better than the other heuristics. LSGA can obtain a solution within quite 
a short time, but on difficult instances LSGA might not perform well in terms of the 
solution quality, while AMGO can obtain better solutions with high quality, but on 
large instances the running time is intolerable. It would be ideal to achieve a good 
trade-off between solution quality and running time. 

To tackle the challenges in balancing solution quality and running time, we pro-
pose a new heuristic named Approximate Muscle guided Beam Search (AMBS). It 
combines two phases. In the first phase, a multi-restart local search algorithm is used 
to generate a smaller search space, which we call “approximate muscle”. In the latter 
phase, beam search is employed to obtain a high quality solution. By combining the 
approximate muscle and beam search, we can obtain solutions with relatively high 
quality in a short time. Experimental results on the standard AP3 benchmark indicate 
that in terms of solution quality, the solutions obtained by AMBS are better than 
LSGA and not worse than the pure beam search, while in terms of running time, 
AMBS can deal with large instances that AMGO and the pure beam search cannot. 

The rest of this paper is organized as follow. In Section 2, a review of the muscle 
and beam search is given. In section 3, the framework of AMBS is proposed. Experi-
ment results are reported in Section 4. In Section 5, the conclusion is presented. 

2 Muscle and Beam Search 

In this section, we present the two concepts the muscle and beam search. For each 
concept, we first briefly review its related work and then present its details. 

2.1 Muscle 

The proposition of the concept muscle is inspired by the backbone. The backbone 
means the shared common parts of optimal solutions for an instance. It is an important 
tool for NP-hard problem. In contrast to the backbone, the muscle is the union of 
optimal solutions. It was first proposed by Jiang, Xuan, and Zhang in 2008 [12]. 
Some efficient algorithms have been proposed using the muscle. For example, Jiang 
and Chen developed an algorithm for solving the Generalized Minimum Spanning 
Tree problem with the muscle [13]. Obviously, if the muscle could be obtained, the 
search space for an instance would be decreased sharply. However, Jiang has proved 
that there is no polynomial time algorithm to obtain the muscle for AP3 problem [12]. 
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Now that the muscle cannot be obtained directly, there are some other ways to ap-
proximate it. Experiments conducted by Jiang indicate that the probability that the 
union of local optima contains the optimal solution increases with the growth of the 
number of local optimum, while the size increases slower [12]. Hence, the union of 
local optima can approximate the muscle, it can be named the approximate muscle. 

2.2 Beam Search 

Beam search is a widely-used heuristic algorithm. For example, Cazenave combined 
Nested Monte-Carlo Search with beam search to enhance Nested Monte-Carlo Search 
[14], López-Ibáñez and Blum combined beam search with ant colony optimization to 
solve the travelling salesman problem with time windows [15]. 

Beam search can be viewed as an adaptation of branch-and-bound search. The 
standard version of beam search builds its search tree using breadth-first search. At 
each level of the search tree, a heuristic algorithm is employed to estimate all the 
successors, and then a predetermined number of best nodes are stored, while the oth-
ers are pruned off permanently. This number is called the beam width. By varying the 
beam width, beam search varies from greedy search (the beam width equals to 1) to a 
complete breadth-first search (no limit to the beam width). By limiting the beam 
width, the complexity of the search becomes polynomial. In this way, beam search 
can find a solution with relatively high quality within practical time. We call the stan-
dard version of beam search as the pure beam search, to distinguish it with AMBS. 

3 Approximate Muscle Guided Beam Search for AP3  

In this section, we introduce the detail of AMBS. We will first present the framework 
of our algorithm, then we will show the details in the following subsections.  

3.1 AMBS for AP3 

The algorithm is shown in Algorithm 1. The instance AP3(I,J,K,c), the number of 
sampling k, and the beam width width are the inputs. The output is the solution s*. A 
instance is stored in a 3-dimesional array, and the solutions is stored in two arrays. 

Two phases are in the algorithm. In the beginning of the search phase, the order of 
search level is sorted ascending by the number of triples. When calculating the lower 
bound of each branch, more time will be consumed when the branch is at the higher 
level. Thus, after the sorting, fewer nodes are in the higher level, and searching time is 
reduced. More details about building the search tree is introduced in section 3.3. 

In the following subsections, we will discuss the details of two phases, respectively. 

3.2 Approximate Muscle for AP3 

In the first phase, we use the union of local optima to approximate the muscle. The detail 
is shown in Algorithm 2. The inputs are an AP3 instance and the number of sampling. 
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The output includes the approximate muscle musclea _ , and the best solution s is  

obtained. The approximate muscle is stored in a 3-dimensional array, where the cost is 
the same value as the instance if it is sampled, or infinite if not.  

The approximate muscle is initialized as an empty set first. Then k local optima are 
obtained to make up the approximate muscle. A random solution is generated, then a 
local search algorithm is applied to obtain a local optimum. The local search algo-
rithm we use here is the Hungarian local search proposed by Huang and Lim [11]. 
The best local optimum is recorded. 

3.3 Beam Search for AP3 

In the second phase, we use beam search to find a better solution. Before the introduc-
tion of beam search for AP3, we will first present how we build the breadth-first 
search tree. An instance of AP3 can be represented as a three-dimensional matrix. 
First, the matrix is divided into n  layers. For example, an instance with the size of 4 
is divided into 4 layers. Select a layer to be level 1 of the search tree. Then another 
layer is selected to build next level. Since one triple has been determined in level 1, 
there are 9 successors, and 144 nodes in all in level 2. In this way, the tree is built. If 
using the muscle to build the tree, only the triples in the muscle are considered.  
 

 
 

 

Algorithm 2. GenerateAM (Generate Approximate Muscle)
Input: AP3instance ),,,(3 cKJIAP , k  
Output: musclea _ , solution 's  
Begin 

(1)    ∅=musclea _  
(2)    for 1=counter  to k  do 
(3)        for 1=i to n  do iip =][ , iiq =][ ; 
(4)        for 1=i to n  do 
(5)            let j1 , j2 be two random integers between 1 and n ; 
(6)            swap ][ip  and ][ 1jp ; swap ][iq  and ][ 2jq ; 

 (7)        let }1|])[],[,{( niiqipis ≤≤= ; 
(8)        obtain a local optimum locals  by applying the local search to s ; 

(9)        localsmucleamusclea __ = ; 

(10)       if )'()( scsc local <  then localss ='  
End 

Algorithm 1. AMBS for AP3 
Input: AP3instance ),,,(3 cKJIAP , k , width  
Output: solution s* 
Begin 

//the sampling phase 
(1)    obtain the approximate muscle musclea _  and a solution 's  as the upper bound 

with )),,,,(3( kcKJIAPGenerateAM ; 
//the search phase 
(2)    sort the search order of the approximate muscle and get the order ; 
(3)    obtain the solution s* with ),',,_( orderswidthmuscleaBS ; 
End 



48 H. Jiang et al. 

The detail of beam search for AP3 is presented in Algorithm 3. The inputs are the 
approximate muscle a_muscle, the beam width width, the best local solution s’, and 
the search order order. The output is the solution s* of this AP3 instance.  

In the algorithm, a candidate represents a branch to be searched. When the search 
comes to a certain level, the lower bounds of all the successors are generated. The 
arrays fp  and fq  are used to record the determined triples to guarantee the con-
straints. Then the lower bounds are calculated. The lower bound includes three parts: 
the sum of the triples' cost in the candidate, the cost of the triple relevant to the suc-
cessor, and lower bound of the sub-problem. The sub-problem is the approximate 
muscle without the layers containing the determined triples. The lower bound calcu-
lating method is proposed by Kim et al. [16]. In the end, at most width successors 
with smaller lower bound than the cost of s’ are kept to be the new candidates. After 
searching, a local search algorithm is employed to the remaining candidates. Then the 
best (including s’) is chosen to be the solution s*. Since the approximate muscle is 
stored in the same way as an instance, beam search algorithm can be used to solve 
AP3 problem independently. 

 

 

4 Experimental Result 

In this section, we first show the parameter tuning result. Then we present the results 
of our algorithm on the benchmark. The codes are implemented with C++ under win-
dows 7 using visual studio 2010 on a computer with Intel Core i3-M330 2.13G. The 
time in the tables is measured in seconds. 

4.1 Parameter Tuning 

Two parameters are used in AMBS, the number of sampling and the beam width. We 
determine the number of sampling as 1000, the same value in AMGO [12]. As for the 

Algorithm 3. BS (Beam Search)
Input: musclea _ , width , solution 's , order  
Output: solution s* 

Begin 
(1)   for every level  based on order  in the search tree do 
(2)       for every candidate do 
(3)           for every triple ∈),,( kji candidate do truekfqtruejfp == ][,][ ; 
(4)           for every triple muscleakjlevelorder _),],[( ∈  do 
(5)               if falsejfp =][  and falsekfq =][  then 
(6)                   generate the sub-problem; calculate the lower bounds; 
(7)       sort the bounds of all candidate; 
(8)       for 1=i  to width  do 
(9)           if lower bound of the branch < )'(sc  then 
(10)              this branch belongs to the new candidates; 
(11)          else break; 
(12)  employ the local search algorithm on every candidate and choose the best to be 

the solution s* 
End 
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beam width, we test different beam widths {100, 200, 300, 400} on 4*5 instances 
from Balas and Saltzman Dataset (see Section 4.2) and 6 instances from Crama and 
Spieksma Dataset (see Section 4.3).  

Table 1 shows the result of our parameter tuning. We run the algorithm 10 times on 
each instances of the Balas and Saltzman Dataset with each beam width, while run it 
once on Crama and Spieksma Dataset since the result varies little. The value of Balas 
and Saltzman Dataset is the average value of each size. The result indicates that the 
solution quality and the running time rise with the increase of the beam width. Note 
that the running time of 3DA99N1, 3DA198N1 and 3D1299N1 vary little in different 
beam widths. This is because the approximate muscle space of each of the instance is 
so small. The running time of 3DI198N1 is the longest. When the beam width is 300, 
the running time is about 20 minutes. In order to balance the quality of the solution 
and the running time, we determine the beam width as 300 in the rest of experiments. 

Table 1. Beam Width Tuning 

Instance Id Width=100 Width=200 Width=300 Width=400 
 Cost Time Cost Time Cost Time Cost Time 

BS_14_x 10 0.74 10 1.07 10 1.31 10 1.72 
BS_18_x 6.86 2.48 6.66 4.25 6.48 5.97 6.46 7.82 
BS_22_x 4.86 6.75 4.62 12.00 4.34 17.13 4.34 22.45 
BS_26_x 2.74 15.01 2.34 27.05 2.1 39.16 2.08 51.01 
3DA99N1 1608 7.01 1608 7.39 1608 7.24 1608 7.16 
3DA198N1 2662 62.05 2662 65.00 2662 63.15 2662 64.34 
3DIJ99N1 4797 16.59 4797 18.53 4797 20.33 4797 22.11 
3DI198N1 9685 479.66 9684 863.94 9684 1219.82 9684 1566.40 
3D1299N1 133 1.70 133 1.75 133 1.73 133 1.73 
3D1198N1 286 169.37 286 276.14 286 383.95 286 573.86 

4.2 Balas and Saltzman Dataset 

This dataset is generated by Balas and Saltzman[5]. It contains 60 instances with size 
of 4, 6, 8, ..., 26. For each size, five instances are generated randomly. 

Table 2. Balas and Saltzman Dataset (12*5 instances) 

n Opt. LSGA AMGO Beam Search AMBS 
  Cost Time Cost Time Cost Time Cost Time 
4 42.2 42.2 0 42.2 0.01 42.2 0.01 42.2 0.01 
6 40.2 40.2 0.01 40.2 0.03 40.2 0.03 40.2 0.03 
8 23.8 23.8 0.03 23.8 0.06 23.8 0.06 23.8 0.06 

10 19 19 0.37 19 0.11 19 0.14 19 0.11 
12 15.6 15.6 0.87 15.6 0.18 15.6 0.62 15.6 0.26 
14 10 10 1.73 10 0.26 10 7.62 10 1.31 
16 10 10 1.89 10.16 0.52 10 22.74 10 3.32 
18 6.4 7.2 2.95 6.4 0.97 6.4 49.65 6.48 5.97 
20 4.8 5.2 4.01 4.8 1.67 4.8 98.18 4.88 10.43 
22 4 5.6 4.54 4 6.26 4.24 185.70 4.34 17.13 
24 1.8 3.2 5.66 1.96 12.16 2.38 313.60 2.28 26.95 
26 1.3 3.6 10.78 1 6.62 2.38 526.59 2.1 39.16 
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Table 2 shows the result on this dataset. The column "Opt." is the optimal solution 
reported by Balas and Saltzman[5]. "LSGA" is the result reported in Huang's paper 
[11] using a PIII 800MHz PC. "AMGO" is the results of the program implemented 
according to Jiang's paper [12]. "Beam Search" is the result of the pure beam search. 
"AMBS" is the result of our algorithm. The results of AMGO, the pure beam search 
and AMBS are the average cost after running 10 times on each instance. The solutions 
of size 26 found by AMGO are 0,0,2,1,2 respectively, the average cost is 1. Because 
the average of any five integers cannot be 1.3, it may be a typo in Balas's paper.  

The result indicates that AMBS can get solutions with higher quality than LSGA. 
AMGO generates the best solutions, and the running time is quite short, because it 
employs a global search on the approximate muscle and the search space is quite 
small. AMBS uses an incomplete search and needs to estimate the lower bound of 
each branch, thus, the quality of solutions is a little worse and the running time is 
longer than AMGO. Compared with the pure beam search, the running time of AMBS 
is about one-tenth of the pure beam search, but the quality is comparable. This is 
because that there are much fewer successors in the approximate muscle. 

4.3 Crama and Spieksma Dataset 

This dataset is generated by Crama and Spieksma[6]. Three types are in the dataset. In 
each type, three instances have the size of 33, and three have the size of 66. 

Table 2 shows the result on this dataset. AMGO, the pure beam search and AMBS 
are executed once since the result varies little. There are some cells with no value, 
because the running time is longer than 30 minutes, and we regard it unacceptable. 

Table 3. Crama and Spieksma Dataset. (18 instances) 

n Instance Id LSGA AMGO Beam Search AMBS 
  Cost Time Cost Time Cost Time Cost Time 

33 3DA99N1 1608 0.03 1608 7.60 1608 649.74 1608 7.24 
33 3DA99N2 1401 0.11 1401 7.11 1401 1733.90 1401 6.52 
33 3DA99N3 1604 0.11 1586 7.61 1604 1606.99 1604 7.30 
66 3DA198N1 2662 0.55 2662 71.22 - - 2662 63.15 
66 3DA198N2 2449 0.27 - - - - 2449 74.20 
66 3DA198N3 2758 0.58 - - - - 2758 82.07 
33 3DIJ99N1 4797 0.11 - - - - 4797 20.33 
33 3DIJ99N2 5067 0.26 - - - - 5067 35.95 
33 3DIJ99N3 4287 0.26 - - - - 4287 26.07 
66 3DI198N1 9684 4.86 - - - - 9684 1219.82 
66 3DI198N2 8944 3.35 - - - - 8944 929.51 
66 3DI198N3 9745 3.09 - - - - 9745 767.66 
33 3D1299N1 133 0.01 - - 133 3.50 133 1.73 
33 3D1299N2 131 0.03 - - 131 1128.17 131 3.94 
33 3D1299N3 131 0.02 131 1.98 131 580.97 131 3.31 
66 3D1198N1 286 0.15 - - - - 286 383.95 
66 3D1198N2 286 0.16 - - - - 286 341.05 
66 3D1198N3 282 0.23 - - - - 282 329.67 
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This result indicates that AMBS is able to run on every instance, and obtain a solu-
tion with high quality, while AMGO and the pure beam search are not able to deal 
with a number of instances. The running time of LSGA is quite short with high quali-
ty solution. This is because LSGA is an iterative algorithm and the instances in this 
dataset are easy to solve. If the instance is hard to solve, like the large instance in 
Balas and Saltzman Dataset, the quality of solutions of LSGA might not be that high. 

5 Conclusion 

In this paper, we propose a new heuristic named Approximate Muscle guided Beam 
Search (AMBS) for AP3 problem. This algorithm combines the approximate muscle 
and beam search. In this way, AMBS can achieve a good trade-off between the solu-
tion quality and the running time. Experimental results indicate that the new algorithm 
is able to obtain solutions with competitive quality, even on large instances. 
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Abstract. Fireworks algorithm (FWA) is a relatively new metaheuristic
in swarm intelligence and EFWA is an enhanced version of FWA. This
paper presents a new improved method, named IEFWA, which modifies
EFWA in two aspects: a new Gaussian explosion operator that enables
new sparks to learn from more exemplars in the population and thus
improves solution diversity and avoids being trapped in local optima,
and a new population selection strategy that enables high-quality solu-
tions to have high probabilities of entering the next generation without
incurring high computational cost. Numerical experiments show that the
IEFWA algorithm outperforms EFWA on a set of benchmark function
optimization problems.
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1 Introduction

Initially proposed by Tan and Zhu [1], fireworks algorithm (FWA) is a relatively
new nature-inspired optimization method mimicking the explosion process of
fireworks for optimization problems. In FWA, a solution to the problem is anal-
ogous to a firework or a spark, and an explosion is analogous to a stochastic
search in the solution space around the firework. By explosion, fireworks with
better fitness tend to generate more sparks within smaller explosion ranges in
order to intensify local search, while fireworks with worse fitness generate fewer
sparks within larger explosion ranges to facilitate global search, as illustrated in
Fig. 1 [1]. Numerical experiments on a set of benchmark functions show that,
FWA has more rapid convergence speed than some typical particle swarm opti-
mization (PSO) algorithms such as [2] and [3].

Since its proposal, FWA has attracted much attention. Zheng et al. [4] devel-
oped a new hybrid FWA by combining it with differential evolution (DE) [5],
which selects new fireworks for the next generation from highly ranked solutions
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Firework Spark

(a) Good firework (b) Bad firework

Fig. 1. Illustration of fireworks explosions in FWA

and updates these newly generated solutions with the DE mutation, crossover,
and selection operators. Pei et al. [6] studied the influence of approximation
model, sampling method, and sampling number on the acceleration performance
of FWA, and improved the algorithm by using an elite strategy for enhancing the
search capability. The hybrid algorithm proposed by Zhang et al. [7] introduces
the migration operator of biogeography-based optimization (BBO) [8] to FWA,
which can effectively enhance information sharing among the population, and
thus improves solution diversity and avoids premature convergence.

In [9] Ding et al. studied the parallel implementation of FWA on GPUs. In
[10] Zheng et al. presented a multiobjective version of FWA, which has shown
the great success for variable-rate fertilization in oil crop production. FWA has
also been successfully applied to many other practical problems [11,12,13,14].

An important improvement to FWA is the enhanced FWA (EFWA) proposed
by Zheng et al. [15], which tackles the limitations of the original FWA by de-
veloping new explosion operators, new strategy for selecting population for the
next generation, new mapping strategy for sparks out of the search space, and
new parameter mechanisms. Consequently, EFWA outperforms FWA in terms
of convergence capabilities, meanwhile reducing the runtime significantly.

In this paper, we further improve EFWA in two aspects, i.e., the Gaussian
explosion operator and the population selection strategy. We develop a new
Gaussian explosion operator that enables new sparks to learn from more exem-
plars in the population, and thus improves solution diversity and avoids being
trapped in local optima. Moreover, we propose a new population selection strat-
egy that enables high-quality solutions to have high probabilities of entering the
next generation, without incurring high computational cost. Numerical experi-
ments show that the proposed algorithm, named IEFWA, outperforms EFWA
on a set of benchmark function optimization problems.

In the rest of the paper, Section 2 introduces FWA and EFWA, Section 3
describes IEFWA in detail, Section 4 presents the experiments, and Section 5
concludes.
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2 FWA and EFWA

FWA is a metaheuristic optimization method inspired by the phenomenon of
fireworks explosion, where a solution to the problem is analogous to a firework
or a spark. The key principle of FWA is that fitter fireworks can explode more
sparks within a smaller area, while worse fireworks generate fewer sparks within
a larger amplitude. The basic framework of FWA is as follows:

1. Randomly initialize a certain number of locations to set off fireworks.
2. For each firework, perform a regular explosion operation to generate a set of

sparks.
3. Select a small number of fireworks, on each of which perform a Gaussian

explosion operation to generate a few number of sparks.
4. Choose individuals from the current generation of fireworks and sparks to

enter into the next generation.
5. Repeat Step 2-4 until the termination condition is satisfied.

For regular explosion of FWA, the number of sparks si and the explosion
amplitude Ai of the ith firework Xi are respectively calculated as follows:

si = Me · fmax − f(Xi) + ε
∑n

j=1(fmax − f(Xj)) + ε
(1)

Ai = Â · f(Xi)− fmin + ε
∑n

j=1(f(Xj)− fmin) + ε
(2)

where n is the size of population, f(Xi) is the fitness value of Xi, fmax and
fmin are respectively the maximum and minimum fitness values among the n
fireworks, Me and Â are two parameters for respectively controlling the total
number of sparks and the maximum explosion amplitude, and ε is a small con-
stant to avoid zero-division-error.

To avoid overwhelming effects of splendid fireworks, the number of sparks is
further bounded as follows (where smin and smax are control parameters and
round rounds a number to its closest integer):

si =

⎧
⎨

⎩

smin if si < smin

smax if si > smax

round(si) else
(3)

According to Eq. (2), the explosion amplitude may be too small for very good
fireworks. EFWA tackles this issue by setting at each dimension d a lower limit
of explosion amplitude Ad

min, which decreases with the number of generations
(or function evaluations) t as follows:

Ad
min = Ainit − Ainit −Afinal

tmax

√
(2tmax − t)t (4)

where Ainit and Afinal are respectively the initial and final minimum explosion
amplitude, and tmax is the maximum number of generations (or function evalu-
ations).
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When performing a regular explosion on Xi, FWA computes an offset dis-
placement as rand(−1, 1) · Ai, which is added to z random dimensions of Xi.
EFWA modifies the explosion operator by computing a different displacement
value for each dimension d:

Xd
j = Xd

i + rand(−1, 1) ·Ad
i (5)

Gaussian explosion of FWA is mainly used for improving solution diversity.
At each generation, FWA randomly chooses a small number Mg of fireworks,
and for each firework obtains a Gaussian spark by computing its location as:

Xd
j = Xd

i ·N(1, 1) (6)

where N(1, 1) is a Gaussian random number with mean 1 and standard deviation
1. However, such a mechanism often causes many sparks to be very close to the
origin of the search space, and fireworks already close to the origin cannot escape
from this location. To tackle this, EFWA uses the following Gaussian explosion
that makes the new spark learn from the best individual Xbest found so far:

Xd
j = Xd

i + (Xd
best −Xd

i ) ·N(0, 1) (7)

Algorithm 1 and Algorithm 2 respectively describes the regular explosion and
Gaussian explosion procedures used in EFWA, where Xi denotes the firework to
be exploded, and D is the dimension of the problem.

Algorithm 1. The regular explosion used in EFWA.

1 Calculate si and Ai for firework Xi;
2 for k = 1 to si do
3 Initialize a spark Xj = Xi;
4 for d = 1 to D do
5 if rand(0, 1) < 0.5 then
6 Xd

j = Xd
i + rand(−1, 1) ·Ad

i ;
7 if Xd

j is out of the search range then
8 Randomly set Xd

j in the search range;
9 Add Xj as a new spark.

Algorithm 2. The Gaussian explosion in EFWA.

1 Initialize a spark Xj = Xi;
2 for d = 1 to D do
3 if rand(0, 1) < 0.5 then
4 Xd

j = Xd
i + (Xd

best −Xd
i ) ·N(0, 1);

5 if Xd
j is out of the search range then

6 Randomly set Xd
j in the search range;

7 Return Xj as a new Gaussian spark.

At each generation, the best individual among all the sparks and fireworks is
always chosen to the next generation. In FWA, the other (n − 1) fireworks are
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selected according to the probabilities proportional to their distances to other
individuals, which is computationally expensive. Therefore, EFWA employs a
very simple strategy that randomly selects the remaining (n− 1) fireworks.

3 An Improved EFWA

The proposed IEFWA intends to improve EFWA in two aspects: the Gaussian
explosion operator and the population selection strategy.

3.1 A New Gaussian Explosion Operator

As shown in Eq. (6), the Gaussian explosion of EFWA makes the new spark
learn from the best individual Xbest found so far. This is similar to the mecha-
nism of learning from the global best in PSO [2]. Thus EFWA also partly suffers
the problem of premature convergence as PSO: If the Xbest is just a local op-
timum or very close to it, the Gaussian sparks will be heavily attracted by the
local optimum; if there is no new best solution found for a certain number of
generations, more and more sparks will converge to the local optimum, and the
algorithm is easily trapped.

To tackle this issue, we develop a new Gaussian explosion operator that en-
ables new Gaussian sparks to learn from not only the current best but also other
exemplars in the population. Our tactic is very simple: When exploding a fire-
work Xi, at each dimension d, we first randomly choose two individuals from the
current population, and then select the one with higher fitness value, denoted
by Xlbest, as the exemplar that replaces Xbest in Eq. (7):

Xd
j = Xd

i + (Xd
lbest −Xd

i ) ·N(0, 1) (8)

In this way, every Gaussian spark has a chance to learn from different exem-
plars at different dimensions, and thus the solution diversity can be increased
greatly. The combination of the regular explosion of EFWA and the new Gaus-
sian explosion of IEFWA can balance the exploration and exploitation much
more effectively. Algorithm 3 presents the new Gaussian explosion procedure.

Algorithm 3. The Gaussian explosion in IEFWA.

1 Initialize a spark Xj = Xi;
2 for d = 1 to D do
3 if rand(0, 1) < 0.5 then
4 Randomly choose two individuals from the population;
5 Set Xlbest to the better one between them;
6 Xd

j = Xd
i + (Xd

lbest −Xd
i ) ·N(0, 1);

7 if Xd
j is out of the search range then

8 Randomly set Xd
j in the search range;

9 Return Xj as a new Gaussian spark.
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3.2 A New Population Selection Strategy

When selecting individuals to the next generation, the original FWA uses a
distance-based selection strategy, which is effective in terms of population di-
versity but incurs high computational cost. EFWA employs a random selection
strategy that is computationally efficient but may lose some high-quality indi-
viduals which may ultimately lead to the global optimum.

In general, we want that high-fitness individuals have high selection proba-
bility, while low-fitness individuals still have chances of entering into the next
generation. Here we employ the pairwise comparison method used in evolution-
ary programming (EP) [16] to determine whether an individual should survive
to the next generation. That is, for each individual, we randomly choose q oppo-
nents from the current generation, and conduct q pairwise comparisons between
the test individual and the opponents. If the individual is fitter, it receives a
“win”. Finally, among all the individuals in the current generation, n individu-
als that have the most wins enter into the next generation.

EP has a fixed population size and uses a fixed q value of about 10∼20.
However, in FWA the total number of fireworks and sparks often varies from
generation to generation, and thus we set q to a random value in the range
[1,np], where np is the total number of individuals in the current generation.
Algorithm 4 presents the population selection procedure used in IEFWA.

Algorithm 4. The population selection in IEFWA.

1 Let q = rand(1,np);
2 for each Xi in the current generation do
3 Let Wins(Xi) = 0;
4 Randomly choose q opponents from the population;
5 for each opponent X ′

i do
6 if f(Xi) > f(X ′

i) then
7 Wins(Xi)←Wins(Xi) + 1;
8 Sort np individuals in decreasing order of Wins(Xi);
9 Return the first n individuals.

4 Computational Experiment

4.1 Experimental Settings

We test the performance of the proposed IEFWA on a set of 18 benchmark
functions denoted as f1–f18, which are summarized in Table 1. Here f1–f13
include unimodal and simple multimodal functions taking from [17], and f14–
f18 are shifted and rotated (SR) functions taking from [18]. All the functions are
high-dimensional problems, and in this paper we use 30-D problems.

To evaluate our new strategies, besides the proposed IEFWA that uses both
the new Gaussian explosion operator and the new population selection strategy,
we also implement another version that uses only the new Gaussian explosion



Improving Enhanced Fireworks Algorithm 59

Table 1. A summary of the benchmark functions used in the paper (for f14–f18, M
is the rotation matrix and oi is the shifted global optimum [18])

Name Function Range

Sphere f1(x) =
D∑

i=1

x2
i [−100, 100]D

Schwefel 2.22 f2(x) =
D∑

i=1

|xi|+
D∏

i=1

|xi| [−10, 10]D

Schwefel 1.2 f3(x) =
D∑

i=1

( i∑

j=1

xj

)2
[−100, 100]D

Schwefel 2.21 f4(x) = max
i
{|xi|, 1 ≤ i ≤ D} [−100, 100]D

Rosenbrock f5(x) =
D−1∑

i=2

(100(x2
i − xi−1)

2 + (xi − 1)2) [−30, 30]D

Step f6(x) =
D∑

i=1

(�xi + 0.5�)2 [−100, 100]D

Quartic f7(x) =
D∑

i=1

ix4
i + rand[0, 1) [−1.28, 1.28]D

Schwefel f8(x) = 418.9829 ×D −
D∑

i=1

xi sin(|xi| 12 ) [−500, 500]D

Rastrigin f9(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10) [−5.12, 5.12]D

Ackley f10(x) = −20 exp
(

− 0.2

√

1
D

D∑

i=1

x2
i

)

[−32, 32]D

− exp
(

1
D

D∑

i=1

cos(2πxi)
)
+ 20 + e

Griewank f11(x) =
1

4000

D∑

i=1

x2
i −

D∏

i=1

cos( xi√
i
) + 1 [−600, 600]D

Penalized1 f12(x) =
π
30

(
10 sin2(πy1) +

D−1∑

i=1

(yi − 1)2(1 + 10 sin2( [−50, 50]D

πyi+1)) + (yD − 1)2
)
+

D−1∑

i=1

u(xi, 10, 100, 4)

Penalized2 f13(x) = 0.1
(
sin2(3πx1) +

D−1∑

i=1

(xi − 1)2(1 + sin2(3πxi+1)) [−50, 50]D

+(xD − 1)2(1 + sin2(2πxD))
)
+

D−1∑

i=1

u(xi, 5, 100, 4)

where u(xi, a, k,m) =

⎧
⎪⎨

⎪⎩

k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a
SR Bent Cigar f14(x) = 200 + y2

1 + 106
∑D

i=2 y
2
i , y = M(x− o1) [−100, 100]D

SR Discus f15(x) = 300 + 106y2
1 +

∑D
i=2 y

2
i , y = M(x− o2) [−100, 100]D

SR Ackley f16(x) = 500 + f10(y), y = M(x− o3) [−100, 100]D
SR Griewank f17(x) = 700 + f11(y), y = M

( 600(x−o4)
100

)
[−100, 100]D

SR Rastrigin f18(x) = 900 + f9(y), y = M
(
5.12(x−o5)

100

)
[−100, 100]D
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operator, denoted as IEFWA1. For the sake of fair comparison, the maximum
number of function evaluations (NFE) is set to 200,000 for every problem.

We have compared EFWA, IEFWA1, and IEFWA on the 18 test problems,
using n = 5, Me = 50, Mg = 5, Â = 40, smax = 40, smin = 2, Ainit =
0.02(Xmax−Xmin) and Afinal = 0.001(Xmax−Xmin), as suggested in [1] and [15].
The experiments are conducted on a computer of Intel Core i5-2520M processor
and 4GB DDR3 memory. Each algorithm has been run 60 times (with different
random seeds) on each problem.

4.2 Experimental Results

Table 2 presents the mean and standard deviation of the best fitness values
obtained by the three algorithms averaged over 60 runs. The bold values indicate
the best results among the three algorithms. We have also conducted paired t-
tests between IEFWA and the other two algorithms, and mark + before the mean
values in columns 2 and 4 if IEFWA has statistically significant performance
improvement over the corresponding algorithms (at 95% confidence level).

Table 2. The experimental results of the three algorithms

ID FWA IEFWA1 IEFWA

mean std mean std mean std

f1
+5.01E+00 (9.01E−01) +7.48E−04 (3.51E−04) 5.32E−05 (5.10E−05)

f2
+9.17E−01 (1.49E−01) +1.18E−02 (2.35E−03) 1.25E−03 (8.58E−04)

f3
+6.23E+01 (1.45E+01) +3.79E−02 (1.23E−02) 1.98E−03 (1.63E−03)

f4
+9.55E−01 (6.79E−02) 2.01E−01 (4.29E−02) 3.29E−01 (3.30E−01)

f5
+2.18E+02 (2.57E+02) +1.00E+02 (1.57E+02) 5.34E+01 (3.29E+01)

f6
+3.87E+00 (9.99E−01) 0.00E+00 (0.00E+00) 0.00E+00 (0.00E+00)

f7
+1.83E−02 (1.36E−02) +1.75E−02 (1.18E−02) 8.22E−03 (5.68E−03)

f8 5.30E+03 (8.56E+02) 5.12E+03 (7.47E+02) 5.20E+03 (4.37E+02)

f9
+1.27E+02 (2.02E+01) 1.83E+01 (5.95E+00) 9.55E+01 (1.90E+01)

f10
+1.16E+00 (1.72E−01) +1.88E−02 (5.88E−01) 1.80E−03 (1.21E−03)

f11
+1.03E+00 (2.21E−02) +2.48E−02 (2.20E−02) 9.90E−03 (8.87E−03)

f12
+1.12E+01 (2.77E+00) +1.42E+00 (1.59E+00) 9.35E−01 (9.43E−01)

f13
+8.18E−01 (2.39E−01) +9.67E−05 (1.33E−04) 2.76E−05 (5.98E−05)

f14
+6.86E+06 (1.27E+06) +8.87E+03 (1.09E+04) 5.90E+03 (1.25E+04)

f15
+3.99E+02 (2.76E+01) +3.53E+02 (2.25E+01) 3.35E+02 (1.77E+01)

f16
+5.21E+02 (7.56E−02) +5.20E+02 (4.78E−03) 5.20E+02 (1.82E−03)

f17
+9.58E+06 (1.60E+06) +1.02E+04 (3.64E+03) 3.07E+03 (2.05E+03)

f18
+1.06E+03 (4.80E+01) 1.02E+03 (5.00E+01) 1.01E+03 (3.12E+01)

As we can see from the results, EFWA never obtains the best mean value on
any of the 18 problems, and the two IEFWA versions both achieve considerable
performance improvement over EFWA. In terms of statistical tests, except that
on f8 there is no significant difference between EFWA and IEFWA, on the
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Fig. 2. Convergence curves of the comparative algorithms on the test problems
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remaining 17 problems the performance of IEFWA is always significantly better
than EFWA. This shows that our new Gaussian explosion operator is effective
in improving the search ability of the algorithm.

By comparing IEFWA1 and IEFWA, the former obtains the best mean val-
ues on 4 problems, and the latter does so on 15 problems (they both reach the
optimum on f6). Statistical test results show that IEFWA has significant perfor-
mance improvement over IEFWA1 on 13 problems. In particular, IEFWA always
obtains the best mean values on the 5 shifted and rotated problems (f14–f18),
and has significant performance improvement over IEFWA1 on 4 problems. This
also demonstrates the effectiveness of our comparison-based population selection
strategy, especially on complex test problems.

Fig. 2(a)–(t) respectively present the convergence curves of the algorithms on
the 18 test problems. As we can see, the two IEFWA versions converges much
better than EFWA on most of the problems, except that on f7 the curves of
EFWA and IEFWA1 overlap to a great extent, (but IEFWA converges faster
and reaches a better result). On f10 EFWA and IEFWA both converge faster
than IEFWA1 in the early stage but the curve of EFWA soon becomes very flat
and overtaken by IEFWA1, while IEFWA still keeps a fast convergence speed
at later stages and reaches a much better result. This is because the Ackley
function has multiple local optima, where EFWA is easily trapped, but the two
IEFWA versions are capable of jumping out of the local optima. On most other
problems, the IEFWA versions not only converge faster than EFWA, but also
have their curves falling for long periods where EFWA has been already trapped.

On the other hand, the convergence curves of IEFWA1 and IEFWA have
similar shapes on many problems, but IEFWA often converges much faster than
IEFWA1. This also demonstrates that the new population selection strategy
contributes to the increase of the convergence speed.

In summary, the experimental results show that IEFWA has obvious advan-
tages in convergence speed and solution accuracy, which demonstrates that our
Gaussian explosion operator can greatly improve the solution diversity and thus
effectively avoid premature convergence, and the new population selection strat-
egy can efficiently accelerate the search. The combination of the two strategies
provides a much better balance of exploration and exploitation than EFWA.

5 Conclusion

EFWA is a major improvement of the original FWA. The proposed IEFWA fur-
ther uses a new Gaussian explosion operator that provides a more comprehensive
learning mechanism to increase solution diversity, and employs a new popula-
tion selection strategy to accelerate the search. Computational experiments show
that IEFWA outperforms EFWA in both convergence speed and solution accu-
racy on a set of well-known benchmark functions. Ongoing work includes testing
the new strategies for constrained and/or multiobjective optimization problems,
and hybridizing the proposed IEFWA with other heuristics.
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Abstract. Various metaheuristics have been proposed recently and each
of them has its inherent evolutionary, physical-based, and/or swarm in-
telligent mechanisms. This paper does not focus on any subbranch, but
on the metaheuristics research from a unified view. The population of
decision vectors is looked on as an abstract matrix and three novel ba-
sic solution generation operations, E[p(i,j)], E[p(c·i)] and E[i, p(c·i+j)],
are proposed in this paper. They are inspired by the elementary matrix
transformations, all of which have none latent meanings. Experiments
with real-coded genetic algorithm, particle swarm optimization and dif-
ferential evolution illustrate its promising performance and potential.

Keywords: Matrix-Based optimization, MaOA, metaheuristics, stoch-
astic optimization.

1 Introduction

A metaheuristic [9] is a higher-level procedure or heuristic designed to find,
generate, or select a lower-level procedure or heuristic that may provide a suffi-
ciently good solution to an optimization problem, especially with incomplete or
imperfect information or limited computation capacity. Compared to optimiza-
tion algorithms and iterative methods, metaheuristics [1] do not guarantee that
a globally optimal solution can be found on some class of problems. By searching
over a large set of feasible solutions, metaheuristics can often find good solutions
with less computational efforts than the iterative methods or simple heuristics.

There are a wide variety of metaheuristics, which are implemented as a form of
stochastic optimization, for example, simulated annealing (SA) [8], tabu search
(TS) [4], ant colony optimization (ACO) [3], artificial bee colony (ABC) [6],
genetic algorithms (GA) [5], particle swarm optimization (PSO) [7], and differ-
ential evolution (DE) [13] etc. All metaheuristics have their inherent evolution-
ary, physical-based, and/or swarm intelligence mechanisms. They are problem-
independent strategies to guide the search process. Metaheuristics maintain a
population of decision vectors (SA excluded as a single solution) and the cor-
responding generation operations for new solutions. The population of decision

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 64–73, 2014.
c© Springer International Publishing Switzerland 2014
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vectors of all metaheuristics can be mathematically modeled as a matrix, which
is independent of any biological, physical or swarm intelligence mechanisms.

From a different and unified view, a matrix optimization algorithm (MaOA)
is proposed in this paper. The operation object of MaOA is a matrix which is
composed of a population solutions. Three types of elementary matrix transfor-
mations in linear algebra [11], E[i,j], E[c·i] and E[i, c·i+j], are modeled into its
basic new solution generation strategies, E[p(i,j)], E[p(c·i)] and E[i, p(c·i+j)], as
algorithmic operations of MaOA.

The rest of this paper is organized as follows. Fundamental knowledge are
presented in Section 2. Algorithm MaOA is proposed in Section 3. Experimental
comparisons are given in Section 4. This paper is concluded in Section 5.

2 Fundamental Knowledge

2.1 Genetic Algorithm

Over the last few decades, evolutionary algorithms (EAs) have shown tremen-
dous success in solving complex optimization problems. EA family contains a
number of different algorithms, however, genetic algorithm (GA) is the most
popular and widely used in practice. It mimics the process of natural selection
which generates solutions to optimization problems using such bio-inspired tech-
niques as crossover, mutation and selection operations [5].

For GA, especially for binary GA, crossover is a key operator while muta-
tion is usually a background operator. However, mutation operation is also very
important to maintain population diversity and to enhance GA’s performance.
Traditional GA uses binary coded strings which are called chromosomes. But
other coding methods, such as gray code, integer code, and real code, are also
usually used in practice. Mutation operation is the main/only generation strat-
egy for evolution strategy and evolutionary programming.

2.2 Particle Swarm Optimization

PSO is a stochastic global optimization algorithm which emulates swarm be-
haviors of birds flocking. It was introduced by Kennedy and Eberhart in 1995
[7], which is a population-based iterative learning algorithm that shares some
common characteristics with other EAs [5]. However, PSO searches for an op-
timum through each particle flying in the search space and adjusting its flying
trajectory according to its personal best experience and its neighborhood’s best
experience. Owing to its simple concept and high efficiency, PSO has become
a widely adopted optimization technique and has been successfully applied to
many real-world problems

2.3 Differential Evolution

Differential evolution [13] is one of the best general purpose evolutionary op-
timization methods available. It is known as an efficient global optimization
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method for continuous problems. Similar with EAs, it starts with an initial pop-
ulation vectors, which are randomly generated when none preliminary knowledge
about the solution space is available. In DE, there exist many trial vector gener-
ation strategies, followed by crossover and selection operations. Moreover, three
crucial control parameters involved in DE, i.e., population size, scaling factor,
and crossover rate, may also have significant influence on its performance.

2.4 Three Types of Elementary Matrices

A matrix [11] is a rectangular array of numbers - in other words, numbers are
grouped into rows and columns. We use matrix to represent and to solve system
of linear equations. Elementary operations for matrix play a crucial role in find-
ing the inverse, solving linear systems, finding the eigenvalues and eigenvectors
and so on. As we know, the transpose operation interchanges the rows and the
columns of a matrix easily. Thus, we will only discuss elementary row operations
in the following.

An elementary matrix differs from the identity matrix by one single elemen-
tary row operation. Left multiplication (pre-multiplication) by an elementary
matrix represents an elementary row operation for a given matrix. There are
three types of elementary matrices [11] as follows, which correspond to three
types of row operations

– Interchanging two rows, E[i, j];
– Multiplying a row by a nonzero constant, E[c·i];
– Adding a row to another one multiplied by a nonzero constant, E[i, c·i+j].

3 Matrix Optimization Algorithm (MaOA)

3.1 Motivation to Propose MaOA

A lot of metaheuristics [10] have been proposed in recent several decades. Each
of them has its inherent biological, physical, and/or swarm intelligent mecha-
nisms and its characteristic generation operations. It is possible to confuse the
users how to choose the fittest algorithm for their problems, especially for prac-
titioners. Even though solving methods have been chosen, the next puzzle is how
to modify the present problems to adapt the initial algorithmic operations. Are
there the common features of them? Can a unified stochastic optimization algo-
rithm be proposed? Can it be modeled with an abstract mathematical concept?
It is also hoped to be free from any latent meaning.

This paper will propose a novel population-based matrix optimization algo-
rithm (MaOA). It mathematically models the operation object of population al-
gorithm as an abstract matrix, which has nothing latent biological, physical or
swarm inspiring mechanisms. Its new solution generation strategies are modeled
with three most fundamental matrices, i.e., elementarymatrices/transformations.
They includes interchanging two rows of a matrix, E[i, j], multiplying a row by a
nonzero constant, E[c·i] and adding a row to another one multiplied by a nonzero
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constant, E[i, c·i+j]. Of course, these three types of elementary operations need
some adaption to make the algorithmic operations meaningful.

The proposed MaOA aims at

– being faithful to the meaning of operation matrix as far as possible;
– conforming to the inherent search mechanism of iteration algorithm as far

as possible;
– less parameters as far as possible.

3.2 Three Elementary Matrix Operations

This section will model the algorithmic operations in terms of mathematics with
three types of elementary matrices/transformations.

Probabilistic Dimensionwise Interchanging Two Rows. As we know,
simple interchange two rows for a solution matrix is meaningless. Therefore, the
elementary matrix operation of interchanging two rows, E[i, j], is modeled as the
probabilistic dimensionwise interchanging two rows, E[p(i, j)].

– Randomly select two rows from solution matrix Ri and Rj ;
– if rand < pSwap
– for each dimension of Ri and Rj

– if rand > pSwap
– interchange this component of Ri and Rj ;

where rand is a random number in [0, 1], pSwap is the interchanging probability.
The sum of the probability of dimensionwise component interchanging and the
probability of interchanging operation executed to the chosen two rows is kept
to be 1 in order to keep algorithm as simple as possible.

Probabilistic Dimensionwise Multiplying a Row by Constant. The el-
ementary matrix operation of multiplying a row by a nonzero constant, E[c·i],
is modeled as the probabilistic dimensionwise multiplying a row by a random
number, E[p(c·i)].
– for each row, Ri, of solution matrix;
– for each dimension of Ri

– if rand < pMult
– this component of Ri is multiplied by a Gaussian random constant;

where rand is a random number in [0, 1], pMult is the probability of being
multiplied by a constant of a dimension.

Probabilistic Dimensionwise Adding a Row to Another One Multi-
plied by Constant. The elementary matrix operation of adding a row to an-
other one multiplied by a constant, E[i, c·i+j], is modeled as the probabilistic
dimensionwise adding a row to another one multiplied by constant, E[i, p(c·i+j)].
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– for each row, Ri, of solution matrix;

– if rand > pSum

– select another row, Rj , of solution matrix;

– for each dimension of Ri and Rj

– if rand < pSum

– this component of Rj is added to Ri before multiplying a Gaussian
random constant;

where rand is a random number in [0, 1], pSum is the probability of dimension-
wise adding a row to another one before multiplying a constant. The sum of the
probability of adding the other row to the current one and the probability of
adding operation executed to each dimension of the corresponding row is kept
to be 1 in order to keep algorithm as simple as possible.

3.3 Selection Operation of MaOA

All the above three matrix-inspired operations are exploration-oriented genera-
tion strategies. It is natural that selection pressure of solution matrix is lacking.
Therefore its performance is possible to be dissatisfied although it has good
population diversity.

Based on these observations, selection operation, (μ+ λ), with high selection
pressure is adopted. μ is the solution number of parental population and λ is the
population size of the offspring. μ and λ are factually the same in this algorithm.
Elitism strategy is also utilized in MaOA besides (μ+ λ) selection.

3.4 Repair Operator

The new solutions are possible to be out of search range after some generation
operations. A simple and popular repair operator is adopted for this case, which
works as follows: if the d -th element, xk

i,d, of the solution vector xk
i= (xk

i,1, · · ·,
xk
i,d, · · ·, xk

i,D) is out of search range [LBd, UBd], then xk
i,d is reset as follows:

xk
i,d =

{
min{UBd, 2LBd − xk

i,d}, if xk
i,d < LBd

max{LBd, 2UBd − xk
i,d}, if xk

i,d > UBd
. (1)

The repair operator is adopted by all the algorithms in this paper in order to
keep the difference among algorithms minimum.

4 Experimental Comparisons

In this section, how MaOA performs is compared with other metaheuristic search
algorithms. The main operations and parameters of GA, PSO and DE algorithms
are reviewed firstly.
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4.1 Benchmarks

Thirteen benchmarks, the first 13 benchmarks from reference [14], are adopted to
validate the performance of MaOA These benchmark functions are the classical
functions which are widely utilized by many researchers [10,15,16].

4.2 Comparison Opponents and Parameters Settings

Three competitors, i.e., PSO, real-coded GA (RGA), and DE (DE/rand/1) are
used in this paper to empirically verify the new proposed MaOA. Repair operator
and elitism strategy are all used in four algorithms. For the comparison of four
competitors PSO, RGA, DE and MaOA, maximal function evaluation number
is 60000; population size is 30; dimension of benchmark is 30; all the results are
obtained from 50 independent runs.

PSO. PSO approach updates the velocity and positions of particle population
with the fitness information obtained from the evolving environment. Individuals
of population can be expected to move towards better positions. The velocity
and position updating equations are given as Eqs.(2, 3).

vk+1
i,d = ωvki,d + c1r

k
1 (p

k
i,d − xk

i,d) + c2r
k
2 (p

k
g,d − xk

i,d) . (2)

xk+1
i,d = xk

i,d + vk+1
i,d . (3)

where vki,d/x
k
i,d/p

k
i,d are the d-th dimensional velocity/position/personal best of

particle i in cycle k; pkg,d is the d-th dimension of the gbest in cycle k; ω is
the inertia weight; c1 and c2 are positive constants; r1 and r2 are two random
numbers in [0, 1]. Parameter ω = 1/(2 ∗ log(2)), c1 = 0.5 + log(2) and c2 = c1.

RGA. In RGA, arithmetic crossover, Gaussian mutation and (μ+ λ) selection
are used as described in [12]. Repair operator and elitism strategy are also used.
Crossover and mutation probabilities are 0.8 and 0.1. Selection (μ + λ) is used
to keep the difference minimum to other algorithms.

DE. DE has many generation strategies [2], among which DE/rand/1/binomial
is the most popular one. It is given as Eq.(4).

vki = xk
r1 + F (xk

r2 − xk
r3) . (4)

where r1, r2, r3 ∈ [1, PS] are random and mutually distinct integers, and they
are also different with the vector index i. PS is population size.

Then a binomial crossover operator on xk
i and vki to generate a trial vector

uk
i . Selection (μ+ λ) is used.
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Constant parameters F and CR are not utilized in this paper which vary with
different solutions. For solution i, its F is decided with a normal random number
with 0.5 mean and 0.3 variance.

Fi = normrnd(0.5, 0.3) . (5)

For each solution, its CR is set 0.9 or 0.2 with 50% probability individually.

4.3 Numerical Comparison

The final results of PSO, RGA, DE and MaOA in 50 independent runs are
presented in Table 1.

Generally speaking, MaOA performs best from nine of thirteen functions and
RGA and DE performs best from three of thirteen functions which can be ob-
served from Table 1. MaOA, RGA and DE all obtained the same and the best
results on function f6. MaOA not only performs best on nine functions, but also
obtains significantly better results over its competitors on functions f1, f2, f4,
f5, f9-f11. All these observations can also be verified by the t -test values.

4.4 Evolving Behaviors Comparison

In order to further verify the evolutionary performance of MaOA, the average
best function values found-until-now of PSO, RGA, DE and MaOA at every
iteration over 50 runs versus the function evaluations are plotted in Fig. 1. Due
to the space limit, ten Benchmarks, including five unimodal functions f2, f4-f7
and five multimodal functions f9-f13, are selected to illustrate their evolutionary
performance.

Fig. 1 illustrates the excellent convergence properties and fast convergence
speeds of MaOA for most of the functions. As shown in Table 1 that RGA, DE
and MaOA all obtained the true optima of function f6, however, its evolving
performance tells us that MaOA has fastest convergence speed when comparing
with RGA and DE.

5 Conclusions, Discussions and Further Questions

Independent from various biological, physical and swarm mechanisms, an ab-
stract mathematical concept, matrix-based stochastic optimization algorithm
(MaOA) is proposed in this paper. Three elementary matrix-based transforma-
tions are modeled as its generation strategies.

Only preliminary algorithm model and framework are proposed in this paper.
As we know, matrix is an inherent transformation in linear algebra. Therefore,
MaOA is possible to lead a wide and further development in the areas of evolu-
tionary computation and swarm intelligence.

– various matrix-based transformations are possible to modify and/or improve
the current new solution generation strategies;
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Table 1. Result comparisons between PSO, RGA, DE and MaOA. Data are the sta-
tistical results over 50 independent runs, where “Mean” and “STD” are the average
results and the standard deviation of the final results in 50 runs. † is the two-tailed
t-test value with 49 degrees of freedom, which is significant at α = 0.05. “–” for t-test
means that algorithms obtained the same results and no t-test values were provided.

Function Items PSO RGA DE MaOA

f1 Mean 6.78e+1 9.69e-3 2.34e-2 1.31e-31
STD 1.19e+2 2.24e-3 1.65e-1 3.99e-31

† t-test -30.52 -4.02 -7.63

f2 Mean 3.78e+1 2.57e-1 1.86e-12 7.34e-24
STD 2.04e+1 4.38e-2 9.11e-12 1.44e-23

† t-test -41.47 -13.05 -2.44

f3 Mean 8.24e+3 1.66e+1 1.06e+4 2.35e+2
STD 4.65e+3 6.71 4.28e+3 5.23e+2

† t-test -12.08 2.95 -17.05

f4 Mean 3.37e+2 1.15e-1 5.94 1.23e-4
STD 7.14 1.56e-2 6.22 3.95e-4

† t-test -52.21 -6.75 -33.35

f5 Mean 1.32e+6 3.48e+2 2.72e+5 2.67e+1
STD 3.26e+6 6.51e+2 1.88e+6 3.33e-1

† t-test -5.49 -2.02 -4.85

f6 Mean 7.75e+2 0 0 0
STD 1.03e+3 0 0 0

† t-test -5.30 – –

f7 Mean 1.09 4.61e-2 1.27e-2 6.43e-3
STD 5.04e-1 1.44e-2 4.22e-3 2.46e-3

† t-test -19.23 -15.18 -9.11

f8 Mean 4.28e+3 6.08e+3 2.67e+2 5.50e+3
STD 8.65e+2 9.68e+2 1.90e+2 3.50e+2

† t-test 9.22 -4.02 19.84

f9 Mean 1.23e+2 1.75e+1 1.28e+1 0
STD 2.39e+1 4.09 1.11e+1 0

† t-test -36.55 -30.42 -7.67

f10 Mean 1.10e+1 7.43e-2 5.44e-2 6.71e-15
STD 3.73 1.26e-2 2.22e-1 1.72e-15

† t-test -41.61 -20.86 -17.34

f11 Mean 1.59 6.54e-1 4.76e-3 0
STD 9.84e-1 8.14e-1 9.90e-3 0

† t-test -11.43 -5.68 -3.39

f12 Mean 1.28e+1 6.88e-1 7.73e-1 9.05e-2
STD 4.95 1.04 4.57 1.82e-2

† t-test -20.07 -3.48 1.93

f13 Mean 4.66e+1 1.42e-3 1.61e+2 1.00
STD 5.72e+1 1.59e-3 1.12e+3 1.16e-1

† t-test -5.63 61.05 -10.01
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Fig. 1. Average Best Evolving Performance Comparisons among PSO, RGA, DE and
MaOA for unimodal functions f2, f4-f7 and multimodal functions f9-f13.
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– the eigenvectors of a matrix deeply characterize the properties of the matrix,
so they are possible to play some special roles for algorithm design;

– the principal components of a set of vectors [16] have abundant information
of the vectors set, so they also have promising potentials.
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Abstract. Fruit fly optimization algorithm (FOA) was a novel swarm intelligent 
algorithm inspired by the food finding behavior of fruit flies. Due to the defi-
ciency of trapping into the local optimum of FOA, a new fruit fly optimization 
integrated with chaos operation (named CFOA) was proposed in this paper, in 
which logistic chaos mapping was introduced into the movement of the fruit 
flies, the optimum was generated by both the best fruit fly and the best fruit fly in 
chaos. Experiments on single-mode and multi-mode functions show CFOA not 
only outperforms the basic FOA and other swarm intelligence optimization algo-
rithms in both precision and efficiency, but also has the superb searching ability.  

Keywords: Fruit fly optimization, logistic chaos, function optimization. 

1 Introduction 

Bio-inspired algorithms provide a new perspective for solving complex problems by 
mimicking the biological behaviors and nature phenomenon, with the characteristics 
of high robust, low complexities, excellent efficiency and superb performance, and 
also overcoming the weakness in searching and calculation for finite solutions and 
high complexity in traditional algorithms. As a significant branch of bio-heuristic 
research, swarm intelligence is inspired by the behavior of birds, fish, ants and bee 
colonies and so on in order to search global optima.  Besides the characteristics of the 
meta-heuristic algorithms, swarm intelligent algorithms have the advantages of easy 
operating and having good parallel architecture. In recent years, novel swarm intelli-
gent optimization algorithms spring up continually and have driven many researches. 
For example, particle swarm optimization algorithm (PSO) [1], proposed in 1995, 
imitated the behavior of birds; Bacterial foraging optimization algorithm (BFO) [2], 
introduced in 2002, simulated the foraging of bacteria; Glowworm swarm optimiza-
tion algorithm (GSO) [3], developed in 2009, inspired by the glowworms for search-
ing the light. Artificial bee colony algorithm (ABC) has two different mechanisms 
consisting of foraging behavior [4] and propagating behavior [5]. Swarm intelligent 
algorithms have been applied in many fields such as function optimization [6, 7], 
traveling salesman problem [8], path planning [9], image segmentation[10], spam 
detection [11], data clustering [12], and functional modules detection in protein-
protein interaction network [13, 14] etc.. 
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Fruit fly optimization algorithm (FOA) [15] is a novel swarm intelligent algorithm 
proposed by Pan in 2011, mimicking the foraging behavior of fruit flies for searching 
global optimum. With the outstanding olfactory, fruit flies can perceive the smell in 
the air even the food source beyond 40 meters and fly toward it. Then, after it gets 
close to the food location, it can also use its sensitive vision to find food and the com-
pany’s flocking location, and also fly towards that direction.  

FOA has been applied in many field such as neural network parameters optimiza-
tion [16], [17], financial distress [18], PID controller [19], scheduling [20], and knap-
sack [21] and so on. Because FOA is a novel algorithm, its application in scientific 
fields is not very extensive, what’s more, its weakness avoid it using for many fields. 
In order to overcome the weakness, we adopt chaos to the basic FOA.  

Chaos [22] is a stochastic phenomenon created in nonlinear and ensured system 
with the characteristics of randomness, regularity, ergodicity, and sensitive to the initial 
values, which makes it applied to many scientific research field such as image 
processing [23], signal processing [24], electric power system [25], optical assessment 
[26], and neural networks [27] and so on. Due to the features of chaos are correspond-
ing to the features in swarm intelligence, chaos is combined with swarm intelligent 
algorithms for optimization problems to strengthen the performance of the swarm intel-
ligent algorithms, such as PSO [28, 29], ABC [30], and bat algorithm [31] and so on. 

In this paper, logistic chaos operation is introduced into FOA in the movement of 
the fruit flies, in which the optimum was generated by both the best fruit fly and the 
best fruit fly in chaos. Besides, the calculation of high dimension distance was 
adopted to basic FOA to overcome the drawback that it is only used for one dimen-
sional problems. 

The rest of this paper is organized as follows. Section 2 introduces the basic con-
cepts and principles including the chaotic mapping, distance metric, and basic FOA. 
Section 3 provides the chaotic fruit fly optimization algorithm. Results from experi-
ments are described in Section 4. Finally, in section 5, conclusions about the paper 
and future research are shown.  

2 Basic Concepts and Principles 

2.1 The Chaotic Mapping 

Some statistic distribution is used for enhancing the randomness of algorithms, such 
as uniform and Gaussian distribution. With the randomness properties, chaos is a 
superb choice to generate random data. Because of the chaotic characteristics of ergo-
dicity and mixing of chaos, algorithms can potentially carry out iterative search steps 
at higher speeds than standard stochastic search with standard probability distribu-
tions [32]. As a typical chaotic system, logistic mapping is the most representative 
chaotic mapping with simple operation and well dynamic randomness introduced by 
May [33] in 1976. Logistic mapping is defined as: 

 401011 ≤<∈−=+ μμ ),())()(()( ztztztz  .           (1) 
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in which c is a control parameter and determines whether chaotic variable z stabilizes 
at a constant value and t denotes the iteration number. Variable z cannot be assigned 
to 0, 0.25, 0.75, 0.5 and 1. When 4=μ , the sequence of the logistic mapping is 
chaotic. In later experiments, 4=μ  is adopted. 

2.2 Basic Fruit Fly Optimization Algorithm 

Fruit fly optimization algorithm is a novel swarm intelligent optimization algorithm 
with the property of simple operation. Figure 1 shows the fruit fly and group iterative 
food searching process of fruit fly [15].  

 

Fig. 1. Illustration of the group iterative food searching of fruit fly 

According to the basic FOA [15], several steps are involved as below: 
Step 1. Randomly initialize fruit fly swarm location which is shown in Fig.1. The 

initial location is marked as ( InitX_axis, InitY_axis). 
Step 2. Give the random direction and distance for the search of food using osphre-

sis by an individual fruit fly. New location can be calculated using: 

 
y

x

erandomvalutyty

erandomvalutxtx

+=+
+=+

)()(

)()(

1

1
 .  (2) 

where randomvalue is the movment value in each coordinate. As shown in Fig.1, Fly 
group move to the new locations like Fly1, Fly2, Fly3, the new locations compose the 
new fly group and new locations take place of the former fly group locations for cal-
culation. 

Step 3. Due to the food location cannot be known, the distance to the origin is thus 
estimated first, marked as Dist calculated by: 

  22
iii yxDist +=  . (3) 

The smell concentration judgment value (S) is calculated, and this value is the reci-
procal of Dist. 
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Step 4. Substitute smell concentration judgment value (S) into smell concentration 
judgment function (or called Fitness function) so as to find the smell concentration 
(Smelli) of the individual location of the fruit fly.   

 Smelli=Function(Si) . (4) 

Step 5. Find out the fruit fly with minimal smell concentration (finding the maxim-
al value marked as [bestSmell bestIndex]) among the fruit fly swarm.  

Step 6. Keep the best smell concentration value (marked as Smellbest) and x, y 
coordinates, and at this moment, the fruit fly swarm will use vision to fly towards that 
location.  

Step 7. Enter iterative optimization to repeat the implementation of Steps 2-5, then 
judge if the smell concentration is superior to the previous iterative smell concentra-
tion, if so, implement Step 6. 

3 Chaotic Fruit Fly Optimization Algorithm 

3.1 Principle of Chaotic Fruit Fly Optimization Algorithm 

As we know above, only one variable is referred in the basic FOA, we tried to seek 
for the algorithm for multiple variables, so comes to chance the distance metrics in 
tradition. In general, basic FOA is a powerful algorithm in swarm intelligent algo-
rithms with the features of simple calculation and high efficiency.  

As a consequence of basic FOA, several local optima are achieved instead of global op-
tima. Aimed at this deficiency, chaotic mapping is adopted to improve the performance of 
basic FOA escaping from the local optima in this paper. The modified FOA proposed in 
this paper is marked as chaotic fruit fly optimization algorithm (CFOA, for short). 

3.2 Distance Metric 

Distance is the metric for two variables in similarity, the larger distance, the more 
difference is. Several distance metrics [34] are used frequently such as Euclidean 
distance, Mahattan distance, Minkowski distance and Mahalanobis distance. Eucli-
dean distance is taken advantage to calculate the distance resulting in variable one 
dimension, while experiments show Mahalanobis distance performs well in high di-
mension as a consequence of vector variable. As can be seen above, high dimension 
problems are not involved in the basic FOA. It becomes obviously that Euclidean 
distance is not appropriate for the high dimension problems; meanwhile the complexi-
ty for calculating is a very time-consuming process. Hence, distance metric is rede-
signed to make the algorithm apply to problems in high dimension and reduce the 
computational complexity. Due to the unknown location of the food source, we as-
sume that it locates in zero in coordinates, then absolute distance is adopted in each 
dimension for lessening the calculation complexity and insuring the vector result re-
quired. That is to say, smell concentration judgment value (S) is a multidimensional 
variable for high dimension problems in CFOA instead of single dimension smell 
concentration judgment value in FOA. 
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3.3 New Location Update 

The new location of the fruit fly group is combined the best location in the basic 
movement (xb) with the best chaotic location (xc) in logistic mapping. The new loca-
tion is defined as: 

 rtxataxtxtx cb )()()()()( −++=+ 11  . (5) 

where t stands for the iteration, r is a random number, a denotes the balance parame-
ter ranging from 0 to 1. If a = 1, new location depends on the movement of the fruit 
group independently; if a = 0, new location only depends on the chaotic mapping. In 
order to acquire the outperformance, random number r is introduced to avoid the ab-
soluteness and increase the possibility of seeking for the global optimum. 

3.4 CFOA Process 

CFOA includes several steps as below: 
Step 1. Initialization. Initialize the locations of the first fruit fly group, where uni-

form distribution is used for experiments to generate the random locations between 
the max and min values in the real models. The maximum iteration tmax, group size n, 
problem dimension d, and the bound values should be given at the beginning. 

Step 2. Fly group movement. According to the new location calculation method, 
use Eq. (5) to get the new location. Let the best location in the basic movement be 
equal to the best chaotic location (xb = xc) in the initial stage of the algorithm. 

Step 3. Calculation for smell concentration. As discussed above, absolute distance 
is introduced to calculate the smell concentration judgment value (S). After that, per-
form the 4th step of basic FOA in section 2.3, using Eq. (4) to achieve the value of 
smell concentration. Smell is the objective function value as well. 

Step 4. Frist selection. Find out the best location (xb) in fruit group with minimal 
smell concentration, mark the value of smell (smell1) as the same operation of 5th step 
of basic FOA in section 2.2 

Step 5. Chaotic operation. Let the whole fruit group in logistic mapping. On ac-
count of data in logistic mapping ranges from 0 to 1, variables in fruit group should be 
standardized in order to match the variable z in logistic mapping. Assume variables of 
fruit group (x) ranging from the low bound (low) to up bound (up), standardized vari-
able (z’) defines as: 

 [ ]uplowx
lowup

lowx
z ,' ∈

−
−=  . (6) 

z’ is matching the variable z in logistic mapping, operate the Eq. (1) to transform z’(n) 
to z’(n+1), where n denoting the iteration n in searching space.  

After the chaotic operation, the variable z’(n+1) ranges from 0 to 1, therefore, in-
verse substitution should be taken to transform z’(n+1) in logistic mapping to data in 
fruit group. Corresponding to Eq. (6), the substitution is presented below: 

 ),(')('' 10∈+−= zlowlowupzx  . (7) 
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Step 6. Best selection. Following the chaotic operation, Find out the best x’ in fruit 
group with the minimal smell concentration, mark the best chaotic location (xc) and value 
of smell (smell2) similar to the 3th step above. Compare the value of best smell in the 
basic movement and chaotic movement, mark the smaller as the best smell (bestsmell). 

Step 7. Enter iterative optimization to judge whether the iteration achieve nmax or 
not, if archives, end up the optimization get rid of loops and output global optima. 
Otherwise, go to the Step 2. 

4 Evaluation and Analysis of Experimental Results 

Algorithms are tested in Matlab 7.13 and experiments are executed on Pentium dual-
core processor 3.10 GHz PC with 4G RAM. 6 Benchmark functions are experimented 
to testifying the CFOA algorithm compared with PSO [1], BFO [2], GSO [3] and the 
basic FOA algorithms.  

4.1 Benchmark Functions 

In the experiments, benchmark functions are used to demonstrate the performance of 
the algorithm shown in Table 1. Among which, the former 3 functions (f1-f3) are 
unimodal and the others (f4-f6) are multimodal functions.  

Table 1. Benchmark functions. 

Id Name Equation Domain 

f1 Sphere 
=

d

i
ix

1

2  ±5.12
 

f2 Tablet +
=

d

i
ixx

2

22
1

610  ±100
 

f3 Quadric 
2

1 1
 
= =

d

i

i

j
jx )(  ±100

 

f4 Rastrigin  +−
=

d

i
ii xx

1

2 10210 ))cos(( π  ±5.12
 

f5 Ackley 
== −−+

−
d

i
i

d

i
i x

d
x

d eee 11

2 2
11

20

2020
)cos(. π
 ±32

 

f6 Schaffer 50
00101 22

2
2
1

2
2

2
1

2

.
))(.(

sin
+

++
+

xx

xx
 

±100 

4.2 Parameters Setting 

It can be seen from swarm intelligent algorithms such as PSO and GSO, the group 
size assignment is 50 in general. Here, the group size ranging from 10 to 60 are tested 
in search of the most suitable value, taking Sphere function in 30 dimensions as an 
example, which is shown in Table 2. “Convergence” is defined as the iteration where 
the value of objective function becomes changeless. “Time” denotes the running time. 
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Table 2. Influences of group size in CFOA 

Size Convergence Time(s) 
10 31 0.0921 
20 20 0.1909 
30 20 0.3081 
40 21 0.3890 
50 19 0.3720 
60 18 0.4827 

From Table 2, we can see that running time increase along with group size. In pace 
with group size augments, convergent iteration varies slightly. When group size 
ranged from 10 to 20, running time double increased, but from 20 to 30, running time 
changes little than double. As noted above, group size should be assigned to 20. 

Maximal iteration is set to 1000 in comparison between CFOA and FOA algorithm 
due to the curves converge approximately about 600 iteration; when comparing with 
other algorithms in Section 4.4, the maximal iteration is set to 200; other parameters 
are set in Table 3. 

Table 3. Parameters of algorithms 

Algorithm Parameters 

PSO n = 50, w = 0.8, 21 =c , 22 =c  

BFO n = 20, cn  = 10, sn = 5, rn = 2, rc  = 0.025 

GSO n = 20, ρ  = 0.4, γ = 0.6, )( 0il  = 4, tn  = 4, dr  = 50, sr  = 50 

4.3 Comparison between CFOA and FOA 

By virtue of FOA without the ability to handle high dimensional problems, the dis-
tance metric mentioned in section 3.2 is adopted for high dimensional problems here. 
We compare the best, mean and worst values of the 150 times running for the bench-
mark functions in 30 dimensions, along with the convergent searching curves gained 
by FOA and CFOA in Table 4 and Fig. 2, respectively. 

Table 4. Comparison of performances between CFOA and FOA 

Function FOA  CFOA 
Best Mean Worst  Best Mean Worst 

Sphere 1.0588e-
04 

1.1214e-
04 

1.1370e-
04 

 0 0 0 

Tablet 2.4690 2.7316 2.9027  0 0 0 
Quadric 0.0016 0.0017 0.0018  0 0 0 
Rastrigin 0.0211 0.2606 0.0219  0 0 0 
Ackley 0.0077 0.0080 0.0082  -8.8818e-

16 
-8.8818e-
16 

-8.8818e-
16 

Schaffer 1.0700e-
04 

1.1320e-
04 

1.1535e-
04 

 0 0 0 
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As can be seen from Table 4, CFOA outperforms the basic FOA in aspects of best, 
mean and worst values, the results win a perfect victory to the problems, reaching the 
precise value in real problems model mostly, expect for the Ackley problem. On the 
other hand, FOA is a stable algorithm which can be referred from the little deviation 
among the best, mean and worst values in Table 4. However, CFOA is more stable 
than FOA from the data in Table 4. 

 

 

Fig. 2. Searching curves between FOA and CFOA 

Basic FOA is not convergent commendably in the problem of Tablet, which can be 
brought out from Fig. 2. We can see the curves of basic FOA changes sharply and go 
oscillating in the former iterations, most get smooth in about 300 iterations, and even 
some diverges in the last such as Tablet. However CFOA converges faster evidently 
and its curves are smoother than FOA. 

4.4 Comparison among CFOA and other Swarm Intelligent Algorithms 

As noted above, some typical swarm intelligent optimization algorithms were 
emerged, in which PSO a well-known algorithm is applied in various fields, after that 
came BFO, then GSO in recent years. CFOA with PSO, BFO, and GSO are compared 
to reveal its excellent performance. Maximal iteration is assigned to 200 and d = 30.In 
addition, ABC cited in [35] is used for comparison. The best, mean and worst values 
are shown in Table 5. Searching curves of CFOA, PSO, BFO, and GSO are compared 
show in Fig. 3. 
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Table 5. Comparison of the best value among CFOA and other algorithms 

Function Algorithm Best value Mean value Worst value Time(s) 

Sphere 

PSO 0.7082 4.2435 16.3361 0.1536 
ABC 6.9216e-06 9.71e-06 1.7306e-05 - 
BFO 0.0569 27.9043 34.4376 2.2938 
GSO 15.1463 24.1407 37.9462 0.8207 
CFOA 0 0 0 0.1584 

Tablet 

PSO 9.2533 47.5864 151.2483 0.1633 
ABC - - - - 
BFO 0.8019 27.8247 54.2484 2.8789 
GSO 21.5472 26.2276 84.2679 0.7496 
CFOA 0 0 0 0.1858 

Quadric 

PSO 0.1471 6.8473 18.2545 0.2270 
ABC - - - - 
BFO 1.4393e-07 35.8423 62.8472 5.4017 
GSO 55.2578 89.1475 107.3562 0.8838 
CFOA 0 0 0 0.2755 

Rastrigin 

PSO 20.1543 70.5196 135.2792 0.1681 

ABC 9.6741e-04 0.0024 0.0054 - 
BFO 207.5546 222.6783 236.8989 2.7732 
GSO 203.8972 227.2889 278.0422 0.8361 
CFOA 0 0 0 0.1700 

Ackley 

PSO 0.0924 2.3001 4.1087 0.2427 
ABC - - - - 
BFO 0.0940 1.4919 5.3649 2.8435 
GSO 4.3467 4.6689 5.5228 0.8678 
CFOA -8.8818e-16 -8.8818e-16 -8.8818e-16 0.2138 

Schaffer 

PSO 0.0372 0.0622 0.0782 0.2109 
ABC 0.8701 1.0657 1.2542 - 
BFO 0.0165 0.0372 0.0412 2.4955 
GSO 0.0372 0.0372 0.0372 0.9135 
CFOA 0 0 0 0.1952 

From Table 5 we can see that CFOA reaches the best value of problems mostly to 
be the best in actual, values among the best, mean and worst are equivalent. Other 
algorithms cannot gain the accurate value in actual and even traps into local optima. 
Furthermore, although PSO runs faster than the other algorithms, CFOA has the advan-
tage in running time, better than PSO. Values obtained by CFOA, which exceeded far 
from BFO and GSO, better than PSO as well. As a consequence, CFOA is a superb 
algorithm with outstanding robustness and wonderful accuracy for the functions above. 

We tested PSO, BFO and GSO along with CFOA of performance in convergence 
and searching abilities. Searching curves of algorithms show in Fig.3, we can see that 
the convergent iteration begin to converge and the values changing in the iteration 
period. CFOA reaches the smallest values in Fig.3, what’s more, the CFOA curves  
 



 Chaotic Fruit Fly Optimization Algorithm 83 

0 100 200
0

50

100

150

200

Iteration

O
pt

im
a

Sphere

 

 
CFOA

PSO

BFO

GSO

0 100 200
0

50

100

Iteration

O
pt

im
a

Tablet

 

 
CFOA

PSO

BFO

GSO

0 100 200
0

50

100

150

Iteration

O
pt

im
a

Quadric

 

 
CFOA

PSO

BFO

GSO

0 100 200
0

200

400

600

Iteration

O
pt

im
a

Rastrigin

 

 
CFOA

PSO

BFO

GSO

0 100 200
0

5

10

Iteration

O
pt

im
a

Ackley

 

 
CFOA

PSO

BFO

GSO

0 100 200
0

0.05

0.1

0.15

0.2

Iteration

O
pt

im
a

Schaffer

 

 
CFOA

PSO

BFO

GSO

 

Fig. 3. Searching curves of CFOA and other swarm intelligent algorithms 

converges better than the other three algorithms, especially for the functions such as 
Tablet, Quadric, Rastrigin and Ackley. In addition, the approximately equivalent val-
ues are apparently for the Schaffer function. 

5 Conclusion and Discussion  

Aiming at the deficiencies of trapping into local optimum, converging slowly as well 
as not suitable for high dimension problems in the basic fruit fly optimization algo-
rithm, chaotic fruit fly optimization algorithm is presented in this paper. In the first 
place, we modified the distance metric to suit the high dimension problems, absolute 
distance is adopted here in each dimension to transform the distance into a vector. 
Secondly, we introduced logistic mapping, the famous typical chaotic mapping to the 
new algorithm to expand the searching space. Last but not least, new location update 
is designed to improve the optimum gained by the group. As superior results gained 
above, CFOA algorithm performs outstanding in both optima searching and running 
time, not only outperforms the basic FOA, but also other swarm intelligent algo-
rithms. We are intending to apply it to other fields for scientific research in the near 
future to testify whether it works well. 
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Abstract. A new bio-inspired algorithm, Chicken Swarm Optimization (CSO), 
is proposed for optimization applications. Mimicking the hierarchal order in the 
chicken swarm and the behaviors of the chicken swarm, including roosters, 
hens and chicks, CSO can efficiently extract the chickens’ swarm intelligence 
to optimize problems. Experiments on twelve benchmark problems and a speed 
reducer design were conducted to compare the performance of CSO with that of 
other algorithms. The results show that CSO can achieve good optimization re-
sults in terms of both optimization accuracy and robustness. Future researches 
about CSO are finally suggested. 

Keywords: Hierarchal order, Chickens’ behaviors, Swarm intelligence, Chick-
en Swarm Optimization, Optimization applications. 

1 Introduction 

Bio-inspired meta-heuristic algorithms have shown proficiency of solving a great 
many optimization applications [1, 2]. They exploit the tolerance for imprecision and 
uncertainty of the optimization problems and can achieve acceptable solutions using 
low computing cost. Thus the mate-heuristic algorithms, like Particle Swarm Optimi-
zation (PSO) [3], Differential Evolution (DE) [2], Bat Algorithm (BA) [1], have at-
tracted great research interest for dealing with optimization applications. 

New algorithms are still emerging, including krill herb algorithm [4], and social 
spider optimization [5] et al. All these algorithms extract the swarm intelligence from 
the laws of biological systems in nature. However, to learn from the nature for devel-
oping a better algorithm is still in progress. 

In this paper, a new bio-inspired optimization algorithm, namely Chicken Swarm 
Optimization (CSO) is proposed. It mimics the hierarchal order in the chicken swarm 
and the behaviors of the chicken swarm. The chicken swarm can be divided into  
several groups, each of which consists of one rooster and many hens and chicks.  
Different chickens follow different laws of motions. There exist competitions between 
different chickens under specific hierarchal order. 
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The rest of paper is organized as follows. Section 2 introduces the general biology 
of the chicken. The details about the CSO are discussed in Section 3. The simulations 
and comparative studies are presented in section 4. Section 5 summaries this paper 
with some conclusions and discussions. 

2 General Biology 

As one of the most widespread domestic animals, the chickens themselves and their 
eggs are primarily kept as a source of food. Domestic chickens are gregarious birds 
and live together in flocks. They are cognitively sophisticated and can recognize over 
100 individuals even after several months of separation. There are over 30 distinct 
sounds for their communication, which range from clucks, cackles, chirps and cries, 
including a lot of information related to nesting, food discovery, mating and danger. 
Besides learning through trial and error, the chickens would also learn from their 
previous experience and others’ for making decisions [6]. 

A hierarchal order plays a significant role in the social lives of chickens. The pre-
ponderant chickens in a flock will dominate the weak. There exist the more dominant 
hens that remain near to the head roosters as well as the more submissive hens and 
roosters who stand at the periphery of the group. Removing or adding chickens from 
an existing group would causes a temporary disruption to the social order until a spe-
cific hierarchal order is established [7]. 

The dominant individuals have priority for food access, while the roosters may call 
their group-mates to eat first when they find food. The gracious behavior also exists in 
the hens when they raise their children. However, this is not the case existing for 
individuals from different groups. Roosters would emit a loud call when other chick-
ens from a different group invade their territory [8]. 

In general, the chicken’s behaviors vary with gender. The head rooster would posi-
tively search for food, and fight with chickens who invade the territory the group 
inhabits. The dominant chickens would be nearly consistent with the head roosters to 
forage for food. The submissive ones, however, would reluctantly stand at the peri-
phery of the group to search for food. There exist competitions between different 
chickens. As for the chicks, they search for the food around their mother. 

Each chicken is too simple to cooperate with each other. Taken as a swarm,  
however, they may coordinate themselves as a team to search for food under specific 
hierarchal order. This swarm intelligence can be associated with the objective prob-
lem to be optimized, and inspired us to design a new algorithm. 

3 Chicken Swarm Optimization 

Given the aforementioned descriptions, we can develop CSO mathematically. For 
simplicity, we idealized the chickens’ behaviors by the following rules. 

(1) In the chicken swarm, there exist several groups. Each group comprises a do-
minant rooster, a couple of hens, and chicks. 
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(2) How to divide the chicken swarm into several groups and determine the identi-
ty of the chickens (roosters, hens and chicks) all depend on the fitness values of the 
chickens themselves. The chickens with best several fitness values would be acted as 
roosters, each of which would be the head rooster in a group. The chickens with worst 
several fitness values would be designated as chicks. The others would be the hens. 
The hens randomly choose which group to live in. The mother-child relationship 
between the hens and the chicks is also randomly established. 

(3) The hierarchal order, dominance relationship and mother-child relationship in a 
group will remain unchanged. These statuses only update every several (G) time steps. 

(4) Chickens follow their group-mate rooster to search for food, while they may 
prevent the ones from eating their own food. Assume chickens would randomly steal 
the good food already found by others. The chicks search for food around their moth-
er (hen). The dominant individuals have advantage in competition for food. 

Assume RN, HN, CN and MN indicate the number of the roosters, the hens, the 
chicks and the mother hens, respectively. The best RN chickens would be assumed to 
be roosters, while the worst CN ones would be regarded as chicks. The rest are treated 
as hens. All N virtual chickens, depicted by their positions ,  1, , ,1, ,  at time step t, search for food in a D-dimensional space. In this work, the 
optimization problems are the minimal ones. Thus the best RN chickens correspond to 
the ones with RN minimal fitness values. 

3.1 Movement of the Chickens 

The roosters with better fitness values have priority for food access than the ones with 
worse fitness values. For simplicity, this case can be simulated by the situation that 
the roosters with better fitness values can search for food in a wider range of places 
than that of the roosters with worse fitness values. This can be formulated below. 

, , 1 0,  . (1) 1 ,  ,exp   | | , , 1, ,  . 
(2) 

Where Randn (0,  ) is a Gaussian distribution with mean 0 and standard devia-
tion . , which is used to avoid zero-division-error, is the smallest constant in the 
computer. k, a rooster’s index, is randomly selected from the roosters group, f is the 
fitness value of the corresponding x. 

As for the hens, they can follow their group-mate roosters to search for food. 
Moreover, they would also randomly steal the good food found by other chickens, 
though they would be repressed by the other chickens. The more dominant hens 
would have advantage in competing for food than the more submissive ones. These 
phenomena can be formulated mathematically as follows. 

, , 1 , , 2 , ,  . (3) 1 exp  /  . (4) 
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2 exp  . (5) 

Where Rand is a uniform random number over [0, 1]. 1 1, ,  is an index 
of the rooster, which is the ith hen’s group-mate, while 2 1, ,  is an index of 
the chicken (rooster or hen ), which is randomly chosen from the swarm. 1 2. 

Obviously,  , , thus S2 <1< S1. Assume S1=0, then the ith hen 
would forage for food just followed by other chickens. The bigger the difference of 
the two chickens’ fitness values, the smaller S2 and the bigger the gap between the 
two chickens’ positions is. Thus the hens would not easily steal the food found by 
other chickens. The reason that the formula form of S1 differs from that of S2 is that 
there exist competitions in a group. For simplicity, the fitness values of the chickens 
relative to the fitness value of the rooster are simulated as the competitions between 
chickens in a group. Suppose S2=0, then the ith hen would search for food in their 
own territory. For the specific group, the rooster’s fitness value is unique. Thus the 
smaller the ith hen’s fitness value, the nearer S1 approximates to 1 and the smaller the 
gap between the positions of the ith hen and its group-mate rooster is. Hence the more 
dominant hens would be more likely than the more submissive ones to eat the food.  

The chicks move around their mother to forage for food. This is formulated below. 

, , , ,   . (6) 

Where  ,  stands for the position of the th  chick’s mother 1, . 
FL 0,2   is a parameter, which means that the chick would follow its mother 
to forage for food. Consider the individual differences, the FL of each chick would 
randomly choose between 0 and 2. 

Chicken Swarm Optimization. Framework of the CSO
Initialize a population of N chickens and define the related parameters; 
Evaluate the N chickens’ fitness values, t=0; 
While (t < Max_Generation) 

If (t % G  0) 
     Rank the chickens’ fitness values and establish a hierarchal order in the 
swarm; 
     Divide the swarm into different groups, and determine the relationship be-

tween the chicks and mother hens in a group; End if 
For i = 1 : N 

     If i == rooster  Update its solution/location using equation (1); End if 
     If i == hen     Update its solution/location using equation (3); End if 

If i == chick   Update its solution/location using equation (6); End if 
     Evaluate the new solution; 
     If the new solution is better than its previous one, update it; 
  End for 
End while 

3.2 Parametric Analysis 

There exist six parameters in CSO. Humans keep chickens primarily as a source of 
food. As the food themselves, only hens can lay eggs, which can also be the source of 
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food. Hence keeping hens is more beneficial for human than keeping roosters. Thus 
HN would be bigger than RN. Given the individual differences, not all hens would 
hatch their eggs simultaneously. Thus HN is also bigger than MN. Though each hen 
can raise more than one chick, we assume the population of adult chickens would 
surpass that of the chicks, CN. As for G, it should be set at an appropriate value, 
which is problem-based. If the value of G is very big, it's not conducive for the algo-
rithm to converge to the global optimal quickly. While if the value of G is very small, 
the algorithm may trap into local optimal. After the preliminary test, G 2,20  may 
achieve good results for most problems. 

Furthermore, the formula of the chick’s movement can be associated with the cor-
responding part in DE. If we set RN and MN at 0, thus CSO essentially becomes the 
basic mutation scheme of DE. Hence the partial conclusions from the DE [2] can be 
used. In practice, FL [0.4, 1] usually perform well. 

4 Validation and Comparison 

4.1 Benchmark Problems Optimization 

Twelve popular benchmark problems [9, 10] (shown in Table 1) are used to verify the 
performance of the CSO compared with that of PSO, DE and BA. The statistical re-
sults have been obtained, based on 100 independent trials, in all the case studies. The 
number of iterations is 1,000 in each trial. For a fair comparison, all of the common 
parameters of these methods, such as the population size, dimensions and maximum 
number of generations, are set to be the same. The related parameters of these  
algorithms are showed at Table 2. 

Table 1. Twelve benchmark problems 

Problem name ID Dimension Bounds Optimum 
High Conditioned Elliptic F1 20 [-100,100] 0 

Bent Cigar F2 20 [-100,100] 0 
Discus F3 20 [-100,100] 0 
Ackley F4 20 [-32,32] 0 

Griewank F5 20 [-600,600] 0 
Sphere F6 20 [-100,100] 0 

Step F7 20 [-100,100] 0 
Powell Sum F8 20 [-1,1] 0 

Rastrigin F9 20 [-5,10] 0 
Axis parallel hyper-ellipsoid F10 20 [-5.12,5.12] 0 

Brown 
Exponential 

F11 
F12 

20 
20 

[-1,4] 
[-1,1] 

0 
-1 

Table 2. The related parameter values 

Algorithm Parameters 
PSO c1=c2=1.49445, w = 0.729 
DE CR = 0.9, F = 0.6 
BA 0.9, 0, 2, 0, 2 , 0, 1  

CSO RN=0.2*N, HN=0.6*N, CN=N-RN-HN, MN=0.1*N, G = 10, FL 0.5, 0.9   
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There are many variants of PSO, DE and BA. In this work, the basic BA and the 
standard PSO are chosen. As for DE, the DE/rand/1/bin scheme is selected. Table 3 
displays the statistical comparison of the four algorithms on twelve benchmark prob-
lems. It clearly shows that CSO is superior to PSO, DE and BA on all these problems 
in terms of accuracy, efficiency and robustness.  

The superiority of CSO over PSO, BA and DE should be the case. If we set RN = 
CN = 0, and let S1, S2 be the parameters like c1 and c2 in PSO, thus CSO will be 
similar to the standard PSO. Hence CSO can inherit many advantages of PSO and 
DE. Moreover, the chickens’ swarm intelligence can be efficiently extracted in CSO. 
Given the diverse laws of the chickens' motions and cooperation between the multi-
groups, the search space can be efficiently explored. Under the specific hierarchal 
order, the whole chicken swarm may behave like a team to forage for food, which can 
be associated with the objective problems to be optimized. All of these merits en-
hance the performance of CSO. 

Table 3. Statistical comparison of CSO with PSO, DE and BA 

Problem Algorithm Best Mean Worst Std. 
 
 

F1 

PSO 12600.53084 49808.05813 101417.29666 2124.09 
CSO 0 0 0 1.89943e-60 
BA 3782.10211 30996.60571 84110.41779 30996.6057 
DE 0 0 0 5.99605e-12 

 
 

F2 

PSO 0 1300 10000 339.7 
CSO 0 0 0 1.35815e-62 
BA 1780594.354 2636386.576 3804547.807 36993.4 
DE 0 0.00001 0.0001 1.88465e-6 

 
 

F3 

PSO 0 0 0 4.66505e-33 
CSO 0 0 0 9.37294e-66 
BA 101.92698 2256.99578 6307.26214 132.731 
DE 0 0 0 3.22023e-12 

 
 

F4 

PSO 0 0 0 1.31168e-16 
CSO 0 0 0 6.12169e-17 
BA 1.48288 2.59402 3.07403 0.02297 
DE 0 0.35702 11.64977 0.17096 

 
 

F5 

PSO 0 0 0 5.36538e-8 
CSO 0 0 0 0 
BA 0.004 2.82906 15.42094 0.296984 
DE 0 0 0 1.05399e-12 

 
 

F6 

PSO 0 0 0 1.8988e-35 
CSO 0 0 0 4.10796e-70 
BA 1.867408 2.94197 4.18701 0.0491192 
DE 0 0 0 1.94304e-12 

 
 

F7 

PSO 0 0 0 0 
CSO 0 0 0 0 
BA 1 3.41 6 0.103105 
DE 0 0 0 0 

 
 

F8 

PSO 0 0 0 4.78569e-60 
CSO 0 0 0 0 
BA 0 0 0 5.02596e-8 
DE 0 0 0 0 
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Table 3. (Continued) 
 

Problem Algorithm Best Mean Worst Std. 
 
 

F9 

PSO 10.94454 21.26284 41.78822 0.60048 
CSO 0 0 0 0 
BA 88.44729 121.99296 167.60654 1.57913 
DE 8.41884 22.70527 43.9751 0.706825 

 
 

F10 

PSO 0 0 0 2.13096e-37 
CSO 0 0 0 1.59801e-71 
BA 24.34652 39.73613 63.15 0.749752 
DE 0 0 0 4.15726e-14 

 
 

F11 

PSO 0 1.29 8 0.171595 
CSO 0 0 0 5.71381e-72 
BA 4.22819 5.92480 7.52686 0.0726235 
DE 0 0 0 2.37888e-15 

 
 

F12 

PSO -1 -1 -1 9.58157e-18 
CSO -1 -1 -1 0 
BA -0.41494 -0.20415 -0.12952 0.0052408 
DE -1 -1 -1 1.75511e-16 

4.2 Speed Reducer Design 

Design of the speed reducer [11] (as shown in Fig. 1) is to design a gearbox, which 
can be rotated at its most efficient speed. The gearbox is described by the face width 
b , module of teeth m , number of teeth in the pinion z , length of the first 
shaft between bearings h1 , length of the second shaft between bearings h2 , 
diameter of the first shaft d1 , and diameter of the first shaft d2 . The optimi-
zation in the design of the speed reducer is to minimize its total weight, subject to 
constraints on bending stress of the gear teeth, surface stress, transverse deflections of 
the shafts, and stresses in the shafts. This problem can be formulated as follows. 

Minimize 0.7854 3.3333 14.9334 43.0934                        1.508 7.4777 0.7854  

Subject to   .
  

.
  

.
    16.9 10  157.5 10     

     
. .

 
. .

 

Where  2.6 3.6, 0.7 0.8, 17 28, 7.3 8.3, 7.88.3, 2.9 3.9, 5 5.5, 1 1, 2, 3, 11 . 
Table 4 summarizes a comparison of the results achieved by CSO and other algo-

rithms. It clearly shows that CSO’s results outperform all the results achieved by the 
six methods in terms of both optimization accuracy and robustness. The best solution 
achieved by CSO is  (3.5, 0.7, 17, 7.308, 7.802, 3.35, 5.287) with  = 
2996.60481329. The constraint values are  = (-0.07, -0.2, -0.5, -0.9, -2.33e-6, -
1.06e-5,-0.7,-5.06e-5,-0.58,-0.05,-0.01), which indicates that the solution is feasible. 
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Fig. 1. Speed reducer 

Table 4. Optimization results of the speed reducer design 

 

5 Discussions 

Mimicking the chickens’ behaviors, a new bio-inspired algorithm, namely Chicken 
Swarm Optimization was proposed for optimization problems. The performance of 
CSO is compared with that of the PSO, DE and BA on twelve benchmark problems. 
Experiments show that CSO outperforms the PSO, DE and BA in terms of both opti-
mization accuracy and robustness. Moreover, CSO can efficiently solve the speed 
reducer design, which endues the CSO with a promising prospect of further studying. 

One of the reasons that CSO has very promising performance is that CSO inherits 
major advantages of many algorithms. PSO and the mutation scheme of DE are the 
special cases of the CSO under appropriate simplifications. What is more significant 
for the superiority of the CSO is that the chickens’ swarm intelligence can be effi-
ciently extracted to optimize problems. The chickens' diverse movements can be con-
ducive for the algorithm to strike a good balance between the randomness and deter-
minacy for finding the optima. The whole chicken swarm consists of several groups, 
namely multi-swarm. Through integration of the hierarchal order, chickens of the 
different groups may behave as a team and coordinate themselves to forage for food. 
Thus CSO can behave intelligently to optimize problems efficiently. 

The innovation in this paper not only lies in efficiently extracting the chickens’ 
swarm intelligence to optimize problems, but also making CSO innate multi-swarm 
method. Multi-swarm technique is usually used to enhance performance of the popu-
lation-based algorithm. As an innate multi-swarm algorithm, various multi-swarm 

h
1

z
h2

d2 

d
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techniques can be used to develop the different variants of CSO. Thus CSO has good 
extensibility. Moreover, from the parametric analysis, the population of the hens is the 
biggest in the swarm. Thus the performance of CSO largely depends on how the hens’ 
swarm intelligence can be extracted to optimize problems. The motion of the hens can 
be adaptively controlled according to the fitness value of the problem itself. With the 
dynamical hierarchal order, the hens swarm can be updated. Hence CSO has the self-
adaptive ability to solve the optimization problems. 

More comprehensive analyses on the CSO are still need to be investigated in the 
future. Moreover, we can consider there exist several roosters in a group and dynami-
cally adjust the population of the hens and chicks in each group. It’s also significant 
to tune the related parameters for enhancing the algorithm performance, and design 
the variants of the CSO to solve many optimization applications. 
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Abstract. Extremal optimization is a dynamic, heuristic intelligent algorithm.  
It evolves a single solution and makes local modifications to the worst compo-
nents. In this paper, a knowledge-base mutation operator is presented based on 
the distribution knowledge of candidate solutions. And then a population-based 
extremal optimization with knowledge-based mutation is proposed by introduc-
ing the idea of swarm evolution. Finally, the proposed method is applied to PID 
parameter tuning. The simulation results show that the proposed algorithm is 
characterized by high response speed, small overshoot and steady-state error, 
and obtains satisfactory control effect. 

Keywords: Extremal optimization, Knowledge-based mutation, PID controller. 

1 Introduction 

Extremal optimization (EO) is a phenomenon-mimicking algorithm inspired by the 
Bak-Sneppen model of self-organized criticality from the field of statistical physics 
[1-2]. Unlike Genetic Algorithm (GA) favoring the good genes of the individuals, EO 
prefers to vary the worst component, together with its nearest neighbors, of the 
present individual, and the whole system can adaptively evolve into the self-organized 
critical state. 

The basic EO makes the search to approach near-ground state energy quickly but 
gets stuck in a meta-stable state easily. To overcome this problem, an adjustable pa-
rameter τ was introduced into basic EO [3]. Yao et al. [4] proposed Lévy mutation to 
produce alterable step sizes by means of adjusting the control parameter and Chen et 
al. [5] adopted the Lévy mutation for EO. Menai et al. [6] introduced an improved EO 
algorithm based on the Bose-Einstein distribution in quantum physics. Sousa et al. [7] 
proposed a generalized extremal optimization method. Zeng et al. [8] demonstrated 
that EO with heuristic initial information is more effective than the one with random 
initial solution. Moreover, hybrid algorithms [9] were proposed by combining the 
exploitation ability of EO with the exploration ability of other optimization methods. 

However, the above-mentioned EO algorithms cannot guarantee to work well for 
other optimization problems, and further discussions are needed for their conclusions. 
In this paper, a novel mutation strategy is proposed by analyzing the distribution of 
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candidate solutions, and the uncertain information of optimization problem is ex-
tracted for guiding the evolution of EO. 

The rest of this paper is organized as follows. In Section 2, a new mutation opera-
tor is presented based on the distribution knowledge of candidate solutions. In  
Section 3, a population-based extremal optimization with knowledge-based mutation 
is proposed by introducing the idea of swarm evolution. In Section 4, the proposed 
method is applied to PID parameter tuning. Our concluding remarks are contained in 
Section 5. 

2 Knowledge-Based Mutation Strategy 

In this section, a knowledge-based mutation operator is proposed to acquire informa-
tion about the optimization problem. Generally, the landscape information can be 
approximately described as the distribution of candidate solutions in learning algo-
rithms. Here, we take a population of candidate solutions to illustrate the uncertain 
information about the problems to be solved. Figure 1 shows the distribution of can-
didate solutions in EO when dealing with Schwefel’s function. The black dots 
represent the candidate solutions, plotted by the first component X1 on the horizontal 
axis and the second component X2 on the vertical. The contours describe the same 
evaluation function values. The color is deeper and the evaluation value is smaller. 

 

 

Fig. 1. The distribution of candidate solutions for solving Schwefel’s function 

From Fig. 1, the candidate solutions are widely dispersed at the level of groups and 
concentrate at four local areas at the level of individuals. That is, the Schwefel’s func-
tion has more than one extreme value point and sub-optimal solutions are far from the 
global optimal solution. Therefore, this uncertain information of the problem being 
optimized can be extracted from the distribution of candidate solutions. 

Cloud model is an effective tool for studying and analyzing the uncertainty  
information [10]. It represents the fuzziness and randomness and their correlation. 
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Meanwhile, it converts between qualitative knowledge and its quantitative expression. 
In this paper, the overall property of candidate solutions is represented by three nu-
merical characteristics: Expected value (Ex), Entropy (En) and Hyper-Entropy (He), 
which are dependent upon the idea of cloud model. The calculation process of numer-
ical characteristics is as follows. 

Algorithm 1. Calculate the numerical characteristics of the candidate solutions 

Input: candidate solution ix  and its evaluation value ( )if x , 1,2, ,i n=  . 

Output: the numerical characteristics of the candidate solutions [ ], ,Ex En He  

(1) Select the candidate solution with the best evaluation value as elite candidate solution 
*x , and the expected value *Ex = x . 

(2) Calculate the standard variance of ix  for En, i.e., ( )2
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1

1

n

i
i
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(4) Calculate the mean of iEn ′  for En′ , i.e., 
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i
i

En En
n =
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(5) Calculate the hyper-entropy ( )
1

1

1

n

i
i

He En En
n =

′ ′= −
−  . 

Algorithm 2. Knowledge-based Mutation strategy 

Input: the numerical characteristics [ ], ,Ex En He , the size of solution set n. 

Output: candidate solution and its evaluation value ( ){ },i ifx x , 1,2, ,i n=  . 

(1) Generate a normally distributed random number iEn ′  with expectation En and variance 

He, i.e., ( )NormRand ,iEn En He′ = . 

(2) Generate a normally distributed random number ix  with expectation Ex and variance 

iEn ′ , i.e., ( )NormRand ,i iEx En ′=x . 

(3) Calculate the evaluation value of candidate solution ( )if x . And ix  with evaluation 

value ( )if x  is a candidate solution in the domain. 

(4) Repeat steps 1 to 3 until all the n candidate solutions are generated. 

The expected value Ex is the position corresponding to the center of the cloud 
gravity, whose elements are fully compatible with the knowledge. And the elite can-
didate solution is the most classical sample while solving optimization problems. So 
the elite candidate solution is related to the expected value of cloud model. The entro-
py En reflects the dispersing extent of the candidate solutions, so the entropy can 
indicate the search scope of EO. The hyper-entropy He indirectly shows dispersion 
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degree and thickness of candidate solutions, which can be used as the stability degree 
of candidate solutions in the search process of EO. 

The knowledge-based mutation is proposed by analyzing the distribution of candi-
date solutions in the search space, and the uncertain information of optimization prob-
lem is extracted according to Algorithm 1. The new candidate solutions are further 
generated on the basis of the numerical characteristics. The detailed process is as 
Algorithm 2. 

3 Population-Based EO with Knowledge-Based Mutation 

3.1 Population Representation 

The basic EO works on a single solution at any time, namely, the point-to-point 
search. Population-based methods such as GA and Particle Swarm Optimization 
(PSO), on the contrary, perform search processes which describe the evolution of a set 
of points in the search space. Consequently, population-based algorithms provide a 
parallel, intrinsic way for the exploration of the search space. In order to enhance 
global searching ability of EO, we develop a population-based EO in the light of the 
warm search strategy. 

Consider a set of candidate solutions (hereafter referred to as solution set ) X  
composed by n candidate solutions. Each candidate solution is composed of m com-
ponents. A population of candidate solutions generated by EO can be written in the 
following vector and matrix forms: 

1 11 12 1

2 21 22 2

1 2

m

m

n n n nm

x x x

x x x

x x x

   
   
   = =
   
   
   




    


x

x
X

x

. (1) 

 
where [ ]1 2, , ,i i i imx x x= x  is the i-th candidate solution, and ijx  is the j-th solution 

component of the i-th candidate solution, 1,2, ,i n=  , 1, 2, ,j m=  . 

3.2 Population-Based Extremal Optimization 

A population-based EO (PEO) with knowledge-based mutation is proposed in this 
section. PEO deals with a set of solutions rather than a single solution in every itera-
tion, and each individual is modified by the knowledge-based mutation operator. To 
be specific, distribution information of excellent individuals is extracted and used to 
construct the new solutions in the search process. Heuristic information helps contri-
bute to the optimal performance of the proposed EO algorithm. The structure diagram 
of PEO with uncertainty knowledge is shown in Fig.2. 
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Fig. 2. Structure diagram of PEO with uncertainty knowledge 

Algorithm 3. PEO with knowledge-based mutation 

Input: initial solution set ( ) ( ) ( ) ( )1 20 0 , 0 , , 0n=   X x x x . 

Output: the optimal solution and its evaluation value ( ) ( )( ){ }* *,t f tx x . 

(1) Initialize the solution set ( )0X  randomly. 

(2) Calculate the evaluation value of each candidate solution ( )( )if tx  and the mean evalu-

ation value of solution set, i.e., ( )( )f tX , 1,2,i n=  . Select the candidate solution with 

the best evaluation value as ( )* tx . 

(3) Call Algorithm 1 and take the candidate solution satisfying ( )( ) ( )( )if t f t≥x X as 

input. And then, we have numerical characteristics of solutions distribution 

( ) ( ) ( ), ,t t t  Ex En He . 

(4) Employ Cauchy and Gauss mutation to generate temporary population ( )1 1tem t +X  and 

( )2 1tem t +X , respectively. Calculate the fitness function value for each individual, and sort 

the solutions according to their fitness values. Denote the best candidate solution as 

( )* 1tem t +x . 

(5) If inequality ( )( ) ( )( )* *1temf t f t+ >x x  is met, call Algorithm 2 taking the numerical 

characteristics ( ) ( ) ( ), ,t t t  Ex En He  as input and generate temporary population 

( )3 1tem t +X . Select the top n solutions to form a new solution set ( )1t +X . Otherwise, the 

new solution set is equal to ( )3 1tem t +X , i.e., ( ) ( )31 1temt t+ = +X X . 

(6) Output the best candidate solution ( )* tx  and its evaluation value ( )( )*f tx  if maxi-

mum iterations or solution precision criteria is met, otherwise go to Step 2. 

As shown in Fig. 2, the candidate solutions with good evaluation function values are 
first selected in every iteration. The uncertain knowledge is extracted as three numeri-
cal characteristics according to the distribution of candidate solutions. After that, heu-
ristic knowledge is used in the mutation operator for constructing the new candidate 
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solutions in the new generation. In general, PEO with uncertainty knowledge bridges 
the gap between uncertainty knowledge and practical problems to be solved. Mean-
while, uncertainty information helps to concentrate search on those regions in which 
better solutions may likely exist. The specific process is as Algorithm 3. 

Mutation strategy in Algorithm 3 can generate large variations and small variations 
simultaneously. Therefore, Algorithm 3 is good at both coarse-grained search and 
fine-grained search. The proposed method can quickly identify the regions in the 
search space with high quality solutions with the help of the uncertainty knowledge. 
None of search parameters are predefined in the proposed algorithm, and the whole 
system can adaptively approach to the global optimum. 

4 PEO for PID Parameter Tuning 

A PID controller is a control loop feedback mechanism widely used in industrial con-
trol systems, which involves three separate constant parameters, i.e., the proportional, 
the integral and derivative values, denoted by , ,P I Dk k k . By tuning the three parame-

ters, the controller can provide control action designed for specific process require-
ments. PID parameter tuning can be seen as an optimization problem in EO algorithm 
which aims to seek an optimal or near-optimal set of proportional, integral and deriva-
tive values [11]. A second-order system with time-delay is taken as the simulation 
object, and its transfer function is described as follow. 

( ) ( )( )
0.25

2 1 0.5 1
sG s e

s s
−=

+ +
. (2) 

 
In this paper, a candidate solution is composed of three components which 

represent the proportional, integral and derivative parameters, respectively. According 
to the control requirements of the system, Integral of Time Multiplied by Absolute 
Error (ITAE) is used to evaluate performance of the PID controller. The reciprocal of 
ITAE is selected as the evaluation function in EO. 

( )
( )

0

1 1
min

i if
ITAE t e t dt

∞= =


k k . (3) 

 
where [ ], ,i iD iP iIk k k=k , and e(t) is an error signal in time domain. 

To verify the effectiveness and feasibility of the proposed EO algorithm, it is ap-
plied to the PID parameter tuning, and PSO, GA and EO are used as comparisons. In 
the following experiment, the population size of GA, PSO and PEO is set as 40. The 
same maximum iteration 50itermax =  is applied to avoid falling into an infinite 
loop. The parameters of PID controller range from 0 to 10. For the standard PSO, the 
cognitive and social scaling parameters are both equal to 2.0. The inertia weight ω 
decreases linearly from 0.9 to 0.2 with the increase of the iterations. The basic GA 
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adopts non-linear ranking selection, arithmetic crossover and uniform mutation opera-
tors, where the selection probability Ps is 0.2, crossover probability Pc is 0.75, and 
mutation probability Pm is 0.1. The basic EO adopts adaptive Lévy Mutation with the 
scaling factor γ = 1. 

The algorithms were coded in Matlab 8.0 and the simulations were run on an In-
tel Core i3 2350M 2.3GHz with 2 GB memory capacity. As these algorithms are 
nondeterministic algorithms, we set a small positive value 1.0×10-6 for each test func-
tion. In other words, if a solution falls between this value and that of the actual global 
optimum, the solution is judged to be acceptable. Moreover, each algorithm is tested 
30 times independently to obtain reasonable statistical results.  

The performances of these algorithms are evaluated by the indicators of control 
systems mainly include overshoot (mp%), the rise time (tr), setting time (ts) and 
steady-state error (ess%). Figure 3 shows the comparative performance of PEO with 
GA, PSO and EO. Iterative trajectories of PEO-PID parameters are shown in Fig. 3(a) 
and the step response under different algorithms-based PID controllers is shown  
in Fig. 3(b). 
 

  

(a) (b)  

Fig. 3. The comparative performance of PEO-PID with GA-PID, PSO-PID and EO-PID 

As shown in Fig. 3(a), PEO approaches to an optimal or near-optimal set of pro-
portional, integral and derivative values after 25 times of iterative computation. From 
Fig. 3(b), the overshoot, setting time and steady-state error obtained by PEO are all 
smaller than those by GA, PSO and EO. The rise time obtained by PEO is equivalent 
to that by EO and GA, and smaller than that by PSO. The EO-PID has the largest 
overshoot, and GA-PID has the longest setting time. Moreover, the PSO-PID obtains 
well control effect except for the steady-state error. 

5 Conclusions 

The basic EO deals with a single solution and merely has a mutation operator. In  
this paper, adaptive knowledge-based mutation is proposed based on the cloud model. 
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It can extract useful knowledge from the distribution of candidate solutions in the 
search process and take full advantage of the information to generate the new solution 
candidates. A population-based EO with knowledge-based mutation is further devel-
oped in the light of the warm idea. It combines both attributes in coarse-grained 
search and fine-grained search. Finally, the proposed PEO is applied to the optimiza-
tion problem of PID parameter tuning, with PSO and GA as comparisons. The simula-
tion results show that PEO-PID outperforms GA-PID, PSO-PID and EO-PID signifi-
cantly in the overshoot, setting time and steady-state error, and obtains a satisfactory 
control effect. 
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Abstract. Magnetotactic bacteria is a kind of polyphyletic group of prokaryotes 
with the characteristics of magnetotaxis that make them orient and swim along 
geomagnetic field lines. Its distinct biology characteristics are useful to design 
new optimization technology. In this paper, a new bionic optimization algorithm 
named Magnetotactic Bacteria Moment Migration Algorithm(MBMMA) is 
proposed. In the proposed algorithm, the moments of a chain of magnetosomes 
are considered as solutions. The moments of relative good solutions can migrate 
each other to enhance the diversity of the MBMMA. It is compared with Genetic 
Algorithm, Differential Evolution and CLPSO on standard functions problems. 
The experiment results show that the MBMMA is effective in solving optimiza-
tion problems. It shows good and competitive performance compared with the 
compared algorithms.  

Keywords: Magnetotactic bacteria, nature inspired computing, moment migration. 

1 Introduction  

Optimization design problems in engineering solved by the inspiration of biologic 
systems can be date back to 1940s. In nature, many kinds of animals and insects show 
the amazing abilities of solving complex problems. Today, a lots of biology inspired 
algorithms(BIAs) have been proposed to apply for different engineering problems. 
Swarm Intelligence (SI) is one kind of important BIAs. Some well known SI algorithms 
include Ant Colony Optimization(ACO)[1], Particle Swarm Optimization (PSO)[2], 
Artificial Bee Colony (ABC)[3], Artificial Fish Swarm (AFS) [4], Bacterial Foraging 
Optimization algorithm(BFOA)[5], which mimics the ants, birds, bees, fish and bac-
teria behaviors, respectively. Among them, PSO had been paid more attention in the 
past two decades. Although different BIAs had shown different performance in solving 
optimization problem, ‘No free lunch theorem’ had told us that there is no universal 
algorithm which can be better over all possible problems [6]. So it is always necessary 
for us to develop new algorithm for problem solving.  

In nature, magnetotactic bacteria (MTBs) is a special kind of bacteria which have 
many micro magnetic  particles named magnetosome in their bodies. These magnetic 
particles can generate moments to guide the bacteria to swim along geomagnetic  
field lines of the earth[7]. Thus, most bacteria can find optimal localities in their  
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environment to maximize their substrate or energy uptake[8]. Mo had proposed an 
optimization algorithm named Magnetotactic Bacteria Optimization Algo-
rithm(MBMMA) inspired by the magnetotactic bacteria[9]. But in the MBMMA, the 
quality and diversity of solutions are mainly subjected to the step of random replace-
ment. The moments don’t play the role of regulating the quality of the solutions.  

In this paper, a new magnetotactic bacteria moment migration algorithm(MBMMA) is 
proposed. The moments of magnetosomes in MTBs are considered as the feature values 
of solutions in the MBMMA. The moments of relative good solutions can migrate to the 
other solutions. Such a migration strategy can enhance the diversity of solutions in the 
algorithm and make the algorithm be effective in solving optimization problems. 

2 Magnetotactic Bacteria Moment Migration Algorithm 

For the MTBs, the efficiency of the magnetotactic response greatly depends on the 
coordinated movement of each cell's flagellae and the total magnetic dipole moment, 
which in turn depends on the relative orientation of the magnetosome chains to each 
other and their polarity distribution. Each cell carries a remanent magnetic moment, the 
direction of which is given by the orientation of the magnetosome-chain axis and its 
magnetic polarity[10]. If each cell is to align its magnetosome chain parallel to the 
other ones, with the same polarity would yield the most efficient swimming way for 
living. For the algorithm, we consider this state as finding the optimal solution. The 
interaction energy between different chains in different cells make MTBs strive for 
better living. The basic optimization process inspired by magnetotactic bacteria can be 
seen in[9]. In the following we briefly describe he basic operators and the main steps of 
MBMMA. MBMMA mainly has three steps and three main operators including mo-
ment generation, moment migration, moment replacement. 

2.1 Interaction Distance 

In the algorithm, each solution is looked as a cell containing a magnetosome chain. 

Before obtaining the interaction energy of cells, the distance ird of two cells ix  and 

rx  calculated as follows: 

,i r i rd x x= −  (1) 

Thus, we can get a distance matrix 1, 2, , ,[ , ,... ,..., ]'r r i r N rD d d d d= ,where r is a 

randomly selected integer in [1, N ]. N  is the size of cell population. 

2.2 Moments Generation 

Based on the distances among cells, the interaction energy ie  between two cells is 

defined as     
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( )ie t =
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where t is the current generation number, 1c  and 2c  are constants, ijd  is one ele-

ment of distance matrix D. pqd  is a randomly selected element from D. P and r are 

randomly integers in [1,N]. [1, ]q J∈ stands for one randomly selected dimension. J is 

the dimension of a cell. ,i rD  stands for the Euclidean distance between two cells ,i rx x .    

After obtaining interaction energy, the moments im  are generated as follows:   

( )
( ) i

i

e t
m t

B
=  (3) 

where B  is a constant .  
Then the total moments of a cell is regulated as follows: 

, , ,( ) ( ) ( )*i j i j r qx t x t m t rand= +  (4) 

where ,r qm  is randomly selected element from im . rand  is a random number 

in interval (0,1).  

2.3 Moments Migration  

After moments generation, the moments migration is realized as follows. 
If  rand  > 0.5, the moments in the cell migrate as follows: 

( 1) ( )ij rjx t x t+ =  (5) 

Otherwise,   

, ,( 1) ( ) ( ( ) ( ))ij ij cbest q i qx t x t x t x t rand+ = + − ⋅  (6) 

where ,cbest qx  is the qth dimension of the best individual in the current generation.   

2.4 Moments Replacement 

After the moments migration, some worse moments are replaced by the following way:  
 

,( 1) ( ) (( (1, ) 1) (1, ))i r qx t m t rand J rand J+ = ∗ − ∗  (7) 
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where ,r qm  is the qth dimension of rm . r is a randomly integer in [1,N]. 

[1, ]q J∈ stands for one randomly selected dimension. (1, )rand J  is a random 

vector with J  dimensions. 
Generally, A pseudo code of MBMMA is as follows:  

   I. Data Structures: Define the simple bounds, determination of algorithm 
parameters. 

   II. Initialization: Randomly create the initial population in the search space. 
III. While stop criteria is not met  

      for i =1: N  
        interaction distance according to(1) 
      end 
      for i =1: N  
        moments generation according to (2),(3) and (4) 
      End 
      sort the population according to fitness 
      for i =1: N  

moments migration according to (5) and (6) 
end 

sort the population according to fitness 

for i =1: N /2  
      moments MTS replacement to (7) 
    end 
  VI. End while 

 
In the algorithm, the value of test benchmark function is used as the fitness. 

3 Simulation Results 

To analyze the performance of MBMMA, the experiments are carried out on 10 
benchmark functions. These benchmark functions are widely used in evaluating global 
numerical optimization algorithms. In this section, the benchmark functions are pre-
sented firstly. Secondly, the parameter settings of MBMMA and the algorithms chosen 
for comparison are presented. Finally, the simulation results obtained from different 
experimental studies are analyzed and discussed. 

3.1 Benchmark Functions 

A short description of 10 benchmark functions is shown in Tables 1. These test functions, 
can be classified into two groups. The first six functions 1f – 6f  are unimodal func-

tions. The unimodal functions here are used to test if MBMMA can maintain the 
fast-converging feature compared with the other methods. The next four functions 

7f – 10f  are multimodal functions with many local optima. These functions can be 

used to test the global search ability of the algorithm in avoiding premature convergence.  
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Initial range, formulation, characteristics, the dimensions and parameters setting of 
these problems are listed in Tables 1. In Tables 1, characteristics of each function are 
given under the column titled C. In this column, M means that the function is multi-
modal, while U means that the function is unimodal. If the function is separable, ab-
breviation S is used to indicate this specification. Letter N refers that the function is 
non-separable. Dimensions of the problems we used can be found in Tables 1 under the 
column titled D. 

Table 1. Classical test functions used in experiments     

Function Range D C Formulation 

1f  : Sphere [-100, 100] 30 US 2

1
( )

n

ii
f x x

=
=

2f : Schwefel2.22 [-10, 10] 30 UN 
1 1

( )
nn

i ii i
f x x x

= =
= + ∏

3f : Schwefel1.2 [-100, 100] 30 UN 2

1 1
( ) ( )

n i

ji j
f x x

= =
= 

4f : Step [-100, 100] 30 US ( )2

1
( ) 0.5

n

ii
f x x

=
= +  

5f : Quartic [-1.28, 1.28] 30 US 4

1
( ) [0,1)

n

ii
f x ix random

=
= +  

6f : Rosenbrock [-30, 30] 30 UN 
1 2 2 2

11
( ) [100( ) ( 1) ]

n

i i ii
f x x x x

−
+=

= − + −  

7f : Rastrigin [-5.12, 5,12] 30 MS 2

1
( ) [ 10cos(2 ) 10]

n

i ii
f x x xπ

=
= − +  

8f :Generalized  

    Schwefel 
[-500, 500] 30 MS 

1
( ) sin( )

n

i ii
f x x x

=
= −  

9f :Griewank [-600, 600] 30 MN 2

1 1

1
( ) cos 1

4000

nn i
ii i

x
f x x

i= =

 = − + 
 

 ∏   

10f : Ackley [-32, 32] 30 MN 

2

1

1
( ) 20 exp 0.2

n

ii
f x x

n =

 
= − − 



 
1

1
exp cos(2 ) 20

n

ii
x e

n
π

=

 − + + 
 
  

3.2 Experiments Settings  

In all experiments, during each run, a maximum number of 3000 generations is used. 
To reduce statistical errors, each test is repeated 30 times independently and the mean 
results are used in the comparisons. In order to make a fair comparison, the population 
size for the algorithms is uniformly set to 40.  

The other specific parameters of the MBMMA and the other compared algorithms 
are given below: 

GA Settings[11]: In our experiments, we employ a real number coded standard  
GA having evaluation, fitness scaling, seeded selection, random selection, crossover, 
mutation and elite units. Single point crossover operation with the rate of 0.8 is em-
ployed. Mutation operation restores genetic diversity lost during the application of 
reproduction and crossover. Mutation rate in our experiments is 0.01.  
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DE Settings[12]: In DE, F is a real constant which affects the differential variation 
between two solutions and set to 0.5 in our experiments. Value of crossover rate, which 
controls the change of the diversity of the population, is chosen to be 0.9. 

CLPSO Settings[13]: In our experiments, cognitive and social components are both 
set to1.49445. Inertia weight, which determines how the previous velocity of the par-
ticle influences the velocity in the next iteration, is linearly from 0.9 to 0.2. 

MBMMA setting: In the MBMMA, only the magnetic field B  needs to be set up as 
a parameter, B  =0.5.   

3.3 Experimental Results and Discussions  

The compared results on test functions are listed in Tables 2-3, which are in terms of the 
mean, best and standard deviation of the solutions obtained in the 30 independent runs 
by each algorithm.  

In order to determine whether the results obtained by MBMMA are statistically dif-
ferent from the results generated by other algorithms, the nonparametric Wilcoxon rank 
sum tests[14][15][16]are conducted between the MBMMA results and the best result 
achieved by the other three algorithms for each problem. The h values presented in the 
Tables 2-3 are the results of Wilcoxon rank sum tests. An h value of one indicates that 
the performances of the two algorithms are statistically different with 95% certainty, 
whereas h value of zero implies that the performances are not statistically different.  

“+’’, ‘‘=’’, ‘‘-’’ mean that MBMMA is significantly better, equal and significantly 
worse, respectively, when compared with other algorithms.  

sig−better: The number of test functions on which MBMMA obtains significantly 
better results. 

sig−worse: The number of test functions on which MBMMA obtains significantly 
worse results.On unimodal functions 1f – 6f , it is relatively easy to locate the global 

optimum. Therefore, we focus on comparing the performance of the algorithms in 
terms of solution accuracy.Table 2 presents the mean and the best fitness values yielded 
by MBMMA and the compared methods after 30 runs. From the results, we observe 
that for unimodal functions, the proposed MBMMA achieves the highest accuracy or 
has equal performace with the compared methods. In general, it clearly demonstrates 
the superior performance of MBMMA to the compared methods. According to the 
results of Wilcoxon rank sum tests shown in Table 2, the differences between the re-
sults obtained by the MBMMA and the other algorithms are statistically significant. 

MBMMA significantly outperforms three other algorithms on 1f , 3f  , 5f  and 6f . 

For 2f , MBMMA and GA both can obtain the best results and significantly outperform 

DE and CLPSO. MBMMA has better performance on 4f  compared with DE and 

CLPSO, and the differences between the results obtained by the MBMMA and GA are 
not statistically significant. Overall, MBMMA performs better than the compared  
methods on unimodal functions.On multimodal functions, the global optimum is more 
difficult to locate. Therefore, in the comparison, we study the accuracy and reliability of 
MBMMA and the other compared methods. 
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Table 2. Statistical results on Unimodal Functions obtained by GA, DE, CLPSO and MBMMA 

Func. GA DE CLPSO MBMMA 

 

1f  

Mean 2.3437 1.3287e-45 242.3895 0 

Dev 2.8695 1.8614e-45 110.8980 0 

median 1.8846 5.0650e-46 218.3507 0 

best 0.1391 5.2834e-49 136.6229 0 

worst 9.2630 5.4661e-45 474.8157 0 

h 1+ 1+ 1+ \ 

 

2f  

 

Mean 0 7.0104e-28 5.6391 0 

Dev 0 1.0003e-27 1.8057 0 

median 0 2.9829e-28 5.4325 0 

best 0 6.6737e-29 3.4951 0 

worst 0 3.2508e-27 9.2423 0 

h 0= 1+ 1+ \ 

 

3f  

Mean 7.4996e+03 9.6243e-05 1.2308e+04 0 

Dev 1.9150e+03 9.3179e-05 3.1485e+03 0 

median 7.1364e+03 4.4838e-05 1.2019e+04 0 

best 4.9104e+03 1.6823e-06 7.8782e+03 0 

worst 1.1441e+04 2.5282e-04 1.8806e+04 0 

h 1+ 1+ 1+ \ 

 

4f  

Mean 0.5556 7.2222 322.1111 0 

Dev 0.7265 13.6178 130.5703 0 

median 0 2 291 0 

best 0 0 138 0 

worst 2 41 594 0 

h 0= 1+ 1+ \ 

 

 5f  

Mean 0.2010 0.0091 0.2356 3.5985e-0
6Dev 0.0862 0.0056 0.0547 3.4716e-0
6median 0.1824 0.0077 0.2240 2.2675e-0
6best 0.0960 0.0043 0.1802 6.6784e-0
9worst 0.3576 0.0227 0.3526 9.0295e-0
6h 1+ 1+ 1+ \ 

 

6f  

Mean 98.9783 30.4482 2.2177e+03 28.7057 

Dev 45.0647 23.0222 3.0672e+04 0.0012 

median 107.3990 23.2319 1.2884e+04 28.7064 

best 30.7317 0.0426 3.0484e+03 28.7040 

worst 172.4143 69.8208 1.0211e+05 28.7068 

h 1+ 1+ 1+ \ 

sig−better 4 6 6  

sig−worse 0 0 0  
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Fig. 1. Convergence curves of six functions (a)Sphere (b) Schwefel2.22 (c) Schwefel1.2 (d) Step 
(e) Quartic (f) Rosenbrock 
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Table 3. Statistical results on Multimodal Functions obtained by GA, DE, CLPSO and MBMMA 

Func.  GA DE CLPSO MBMMA 

 

7f  

Mean 0 18.2237 46.3823 0 

Dev 0 7.2519 4.8799 0 

median 0 14.9244 43.8456 0 

best 0 8.9546 41.2034 0 

worst 0 32.6665 53.8777 0 

h 0= 1+ 1+ \ 

 

8f  

Mean -1.2569e+04 -1.0220e+04 -1.0431e+04 -5.5238e+03 

Dev 0.1030 777.4842 450.1157 31.5695 

median -1.2569e+04 -1.0545e+04 -1.0310e+04 -5.5359e+03 

best -1.2569e+04 -1.1329e+04 -1.1195e+04 -5.5376e+03 

worst -1.2569e+04 -9.1166e+03 -9.8085e+03 -5.4404e+03 

h 1- 1- 1- \ 

 

9f  

Mean 0.0271 1.2724e-47 3.0849 0 

Dev 0.0108 3.6248e-47 1.7968 0 

median 0.0236 4.2497e-49 2.7662 0 

best 0.0149 5.2876e-51 0.9647 0 

worst 0.0504 1.0935e-46 6.6591 0 

h 1+ 1+ 1+ \ 

 

10f  

Mean 1.0530 7.0067e-15 5.8445 -8.8818e-16 

Dev 0.4122 2.3685e-15 0.7683 0 

median 0.7878 6.2172e-15 5.7866 -8.8818e-16 

best 0.7171 6.2172e-15 4.7406 -8.8818e-16 

worst 1.7258 1.3323e-14 6.9621 -8.8818e-16 

h 1+ 1+ 1+ \ 

sig−better  2 3 3  

sig−worse  1 1 1  

“+’’, ‘‘=’’, ‘‘-’’ mean that MBMMA is significantly better, equal and significantly 
worse, respectively, when compared with other algorithms.  

sig−better: The number of test functions on which MBMMA obtains significantly 
better results. 

sig−worse: The number of test functions on which MBMMA obtains significantly 
worse results. 

Comparisons of solution accuracy on multimodal functions are given in Table 3. 
According to the results of Wilcoxon rank sum tests, MBMMA performs 

significantly better than three compared methods on 9f and 10f . For 7f , 

MBMMA and GA both can obtain the best results and significantly outperform DE 

and CLPSO. For 8f , MBMMA shows significantly worse performance compared 

with the other three methods. Overall, MBMMA performs better than the compared 

methods on multimodal functions except on 8f . 
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Fig. 2. Convergence curves of six functions (a) Rastrigin (b) Generalized Schwefel (c) Griewank 
(d) Ackley  

In Figure 1 and Figure 2, it can be seen that MBMMA has the fastest convergence 
speed than all the other three algorithms except on function Generalized Schwefel. 
CLPSO has the lowest speed. 

In total, as seen from the results, MBMMA achieves better performance than 
compared methods in terms accuracy of global optima for unimodal as well as multi-
modal functions except Schwefel function. MBMMA produces better quality of optima 
and there are significant differences among MBMMA and the compared algorithms. 

4 Conclusions  

In this paper, we proposes a new Magnetotactic Bacteria Moment Migration Algorithm 
(MBMMA), which is based on the original idea of magnetotactic bacteria optimization 
algorithm(MBOA). MBMMA adopts energy function to produce moments. And the 
obtained moments are used to obtain problem solutions. The moments can migrate 
among different solutions in each generation. MBMMA has simple procedure and is 
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easy to implement. MBMMA is compared with 3 optimization algorithms including 
GA, DE and CLPSO. The experimental results show that it is effective in solving op-
timization problems. In future, MBMMA will be improved to solve more complex 
problems including constrained optimization, multi-objective optimization and some 
real engineering problems. 
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Abstract. Magnetotactic bacteria is one kind of bacteria with magnetic particles 
called magnetosomes in its body. The magnetotactic bacteria move towards the 
ideal living conditions under the interaction between magnetic field produced by 
the magnetic particles chain and that of the earth. In the paper, a new magneto-
tactic bacteria algorithm based on power spectrum (PSMBA) for optimization is 
proposed. The candidate solutions are decided by power spectrum in the  
algorithm. Its performance is tested on 8 standard functions problems and  
compared with the other two popular optimization algorithms. Experimental 
results show that the PSMBA is effective in optimization problems and has good 
and competitive performance.  

Keywords: Magnetotactic bacteria algorithm, power spectrum, optimization. 

1 Introduction  

Optimization is prevalent in almost every field of science and engineering, ranging 
from profit maximization in economics to signal interference minimization in electrical 
engineering. Engineering problems with optimization objectives are often difficult and 
time consuming, and the application of nature or biology-inspired algorithms in com-
bination with the conventional optimization methods has been very successful in the 
last several decades. 

The major goal for the developments of any optimization technique is accurate  
solution with less complexity. Since 1960s genetic algorithm(GA) has been playing  
a dominant role in the optimization world [1]. However, the limitation of GA of getting 
trapped in local minima and need for more computational time forced the researchers  
to search for more efficient optimization techniques. Since 1980s, more and more  
Nature inspired Algorithms (NIAs) were developed following GA[2]. The most famous 
algorithms are ant colony optimization [3] and particle swarm optimization [4]. In  
recent years, many new bio-inspired computing methods were proposed, such as im-
mune clone selection algorithm [5], artificial bees colony optimization[6], artificial fish 
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swarm optimization (AFSO) [7], bacterial forging algorithms [8], biogeography-based 
optimization algorithm [9], firefly algorithm (FA) [10], brain storm optimization (BSO)[11] 
and so on. Their inspiration sources can be found directly from their names. 

The ability of exploration and exploitation and accuracy of global optima are the 
major criteria for NIAs. Researchers worldwide are striving for improving the existing 
methods for seeking the best optimal solution.  

In this paper, we propose a new optimization technique named as Power Spectrum 
Based Magnetotactic Bacteria Algorithm which is based on the model of power spectra 
of the magnetic field noise produced by Nonmotile bacteria Brownian rotation in zero 
magnetic field. The process of PSMBA follow through power spectrum calculation, 
bacteria rotation, bacteria swimming and bacteria replacement. It is tested on various ten 
standard benchmark functions for ensuring the efficiency of the proposed algorithms. 

2 Power Spectrum Based Magnettactic Bacteria Algorithm 

2.1 Basic Principles of PSMBA 

Magnetotactic bacteria occur widely in natural sediments from both marine and 
freshwater habitats. They produce intracellular, membrane-bounded magnetite 
(

43OFe .etc.) particles and synthesize a kind of magnetite colloids, a fairly narrow size 
distribution of particles of colloidal size and specific crystallographic orientations 
characterize the mineral particles and their enveloping membrane, together called 
magnetosomes (MTS), which are typically arranged in the form of one or several 
chains and impart a permanent magnetic dipole moment to the bacterium [12]. 

Chemla[13] described a study of the dynamics of magnetotactic bacteria in an 
aqueous medium. They presented a measurement of the magnetic field fluctuations 
produced by an ensemble of nonmotile bacteria. From this they determined the average 
rotational drag experienced by the cell and the average magnetic dipole moment. By 
detecting the fluctuations from an ensemble of motile cells, they illustrated the vastly 
different dynamics at play.  

The power spectrum of the magnetic field noise is generated by the Brownian rota-
tion of nonmotile cells in a zero magnetic field. Translational Brownian motion occurs 
over very long time scales and does not contribute to the measured noise. To prevent 
settling of the bacteria, the sample is agitated every 30 min. Calculations show that a 
single nonmotile bacterium produces a Lorentzian power spectrum  

0
2

0

2
( )

1 (2 )BS f
f

τ
π τ

∝
+

 . (1) 

where 0τ  is the characteristic time scale of the Brownian rotation, and 01/ 2πτ  is 

the knee frequency. The time 0τ   is / 2 Bk Tα , where the rotational drag coefficient 

α is strongly dependent on the size of the bacterium. Modeling the bacteria crudely as 
rigid cylinders of length L and diameter d (neglecting the flagellum), one finds  
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13

ln
3

L L

d

πηα γ
−

  = −    
 . (2) 

where η  is the viscosity of the medium and 0.662 0.92 /d Lγ ≈ − . The average 

rotational drag coefficient to be 20(3.9 0.3) 10 N mα −= ± × ⋅  for 290T K= . In 

particular, Chemla observed vibrational and rotational modes of the bacteria associated 
with the flagellar motor  and deduce their frequency and amplitude. So the vibrational 
and rotational motions of the magnetic bacteria have effect on the measured magnetic 

field noise power spectrum ( )BS f . 

From the view of the point of magnetic bacteria dynamics, power spectrum ( )BS f  

is an important factor which reflects the magnetic bacteria motion states, that is, 
whether they are straggling for better living conditions. This schema can be used as a 
way of solving optimization problem.  

2.2 Procdures of PSMBA 

The PSMBA mainly includes three steps: power spectrum calculation, bacteria rota-
tion, bacteria swimming.  

Power Spectrum Calculation. Randomly select two bacteria 1rx , 2rx  

( 1, 2 (1, 2,..., )r r N∈ ) in the population. 

In the algorithm,  L is defined as  

1, 2 1, 2,
t t t
r r r j r jL x x= −  . (3) 

Based on(2), for simplifying calculation, ln( )
L

d
→  

L

d
. In each generation, we get 

13
1, 2 1, 2

,

( )

3

t t
r r r rt

i j

L L

d

πη
α γ

−
 

= − 
 

 . (4) 

where η and γ are constants. 

2

t
ijt

ij kT

α
τ =  . (5) 

where k and T are contants. 

Suppose 1 2( , ,..., )i i i imS s s s=  is the power spectrum of a single bacterium, we have 

2
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Bacteria Rotation. Rotation is an important motion mode for a single bacterium. In the 
algorithm, a single bacterium rotates as follows:  

1
, , , *t t t

i j p q p qx x s rand+ = +  . (7) 

p  is randomly selected from [1, ]N . N is the size of bacteria population. 

q [1, ]m∈ stands for a randomly selected dimension. m is the dimension of a bacte-

rium. rand is a random number  in interval(0,1). 
Bacteria Swimming. After rotation, the bacteria swim as a whole as follows: If 
rand>0.5 , the bacteria swim as follows: 

1 *(1 )t t
i ix x rand rand+ = + −  . 

(8) 

Otherwise, they swim as follows： 

1 *( 1)t t
i ix x rand rand+ = + −  . (9) 

Bacteria Replacement. After rotation and swimming, some bacteria are not fit for 
living in further. Some worse bacteria are replaced in an ensemble of bacteria.  In the 
algorithm, based on the fitness of each bacterium, half of them are replaced as follows: 

1
, (( 1) )t t

ij p qx s rand rand+ = ∗ − ∗  . (10) 

The pseudo random code of PSMBA is described as follows: 

 

   Initialization  
   for t =1 to  NP 

         for i  =1: N    
         calculate power spectrum  according to (3) (4) (5)and 

(6)  
         bacterium rotation according to (7) 

end   
         for i  =1: N   
         bacteria swimming according to (8) and (9) 
         end  

evaluate the quality of iX according to fitness  

   bacteria replacement according to (10) 
   end 
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3 Simulation Results 

3.1 Parameter Settings and Benchmark Functions 

In this section, in order to analyze the performance of PSMBA, the experiments of 
minimization are carried out on 8 benchmark functions. All of the algorithms used for 
comparison are the basic version for fair comparison. 

In the experiments, the three algorithms are the basic ones without any improve-
ment. In order to make a fair comparison, the values of the common parameters for the 
algorithms such as population size and generation are chosen to be the same. The 
population size is set to 30. During each run, a maximum number of 1000 generations is 
used. The other specific parameters of algorithms are given below: 

GA Settings: In our experiments, we employ a real number coded standard GA 
having evaluation, fitness scaling, seeded selection, random selection, crossover, mu-
tation and elite units. Single point crossover operation with the rate of 0.8 is employed. 
Mutation operation restores genetic diversity lost during the application of reproduc-
tion and crossover. Mutation rate in our experiments is 0.01.  

DE Settings[14]: In DE, F is a real constant which affects the differential variation 
between two solutions and set to 0.5 in our experiments. Value of crossover rate, which 
controls the change of the diversity of the population, is chosen to be 0.9. 

PSMBA setting: The parameter settings of the PSMBA are 0.0001η = , K=0.0138, 

T =29,γ  =0.762. 

Table 1. Benchmark functions used in experiments 

Function Range D C Formulation 

1f : Step [-100, 100] 30 US ( )2

1
( ) 0.5

n

ii
f x x

=
= +  

2f : Sphere [-100, 100] 30 US 2

1
( )

n

ii
f x x

=
=

3f : Quartic [-1.28, 1.28] 30 US 4

1
( ) [0,1)

n

ii
f x ix random

=
= +  

4f : Schwefel2.22 [-10, 10] 30 UN 
1 1

( )
nn

i ii i
f x x x

= =
= + ∏  

5f : Rastrigin [-5.12, 5,12] 30 MS 2

1
( ) [ 10cos(2 ) 10

n

i ii
f x x xπ

=
= − +  

6f : Schaffer [-100, 100] 2 MN 
2 2 2

1 2
2 2 2
1 2

sin ( ) 0.5
( ) 0.5

(1 0.001( ))

x x
f x

x x

+ −
= +

+ +  

7f : Griewank [-600, 600] 30 MN 2

1 1

1
( ) cos 1

4000

nn i
ii i

x
f x x

i= =

 = − + 
 

 ∏  

8f : Ackley [-32, 32] 30 MN 

2

1

1
( ) 20 exp 0.2

n

ii
f x x

n =

 
= − −  

 
  

1

1
exp cos(2 ) 20

n

ii
x e

n
π

=

 − + + 
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In order to characterize the type of problems for which the algorithm is suitable and 
test the performance of PSMBA, we used 10 benchmark problems in order to compare 
the performance of these algorithms. A short description of 10 benchmark functions is 
shown in Tables 1. These benchmark functions are widely used in evaluating global 
numerical optimization algorithms.  

Initial range, formulation, characteristics, the dimensions and parameters setting of 
these problems are listed in Tables 1. In Tables 1, characteristics of each function are 
given under the column titled C. In this column, M means that the function is multi-
modal, while U means that the function is unimodal. If the function is separable, ab-
breviation S is used to indicate this specification. Letter N refers that the function is 
non-separable. Dimensions of the problems we used can be found in Tables 1 under the 
column titled D. 

Multimodal functions are used to test the ability of algorithms getting rid of local 
minima. If the exploration process of an algorithm is poor, it cannot search the whole 
space efficiently and it gets stuck at the local minima. The dimensionality of the search 
space is an important issue with the problem. Separable function have interrelation 
among their variables. Therefore, non-separable functions are more difficult than the 
separable functions.  

3.2 Experimental Results 

The compared results on 8 functions are listed in Tables 2. The results are shown in 
Tables 2 in terms of the mean and standard deviation, median, best and worst of the 
solutions obtained in the 30 independent runs by each algorithm. And the best results of 
each function are highlighted in boldface. 

Table 2. Statistical results of 30 runs obtained byGA, DE, FA and PSMBA algorithms( Mean: 
Mean of the Best Values, StdDev: Standard Deviation of the Best Values) 

Func. Min  DE GA PSMBA 
 

1f  

 
 
0 

Mean 24.3333 56.4667 0 
StdDev 38.8741 21.3101 0 
median 10 53.5000 0 
best 1 22 0 
worst 155 114 0 

 

2f  

 

 
 
0 

Mean 9.0762e-06 75.5128 3.4535e-21 
StdDev 4.1731e-05 34.9841 5.3211e-22 
median 4.9260e-08 67.6962 3.5448e-21 
best 1.4007e-11 29.6809 2.3497e-21 
worst 2.2879e-04 181.2149 4.3191e-21 

 

3f  

 
 
0 

Mean 0.0528 1.5883 1.1140e-04 
StdDev 0.0357 2.7530 7.8158e-05 
median 0.0500 0.6946 1.1283e-04 
best 0.0152 0.1039 7.2391e-06 
worst 0.1945 12.9754 2.6636e-04 

 

4f  

 
 
0 

Mean 4.1811e-05 1.5440 2.3541e-09 
StdDev 1.9426e-04 1.4077 1.6878e-10 
median 4.7228e-07 1.2569 2.3921e-09 
best 1.0595e-08 0 1.9180e-09 
worst 0.0011 5.5465 2.6962e-09 
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Table 2. (Continued) 
 

 

 5f  

 
 
0 

Mean 66.8015 0 0 
StdDev 40.0307 0 0 
median 61.7680 0 0 
best 17.0802 0 0 
worst 173.7519 0 0 

 

6f  

 
 
0 

Mean 9.7159e-04 0.0047 0 
StdDev 0.0030 0.0051 0 
median 0 0 0 
best 0 0 0 
worst 0.0097 0.0103 0 

 

7f  

 
 
0 

Mean 1.7321e-08 0.6632 2.4429e-26 
StdDev 4.4353e-08 0.3812 3.4510e-27 
median 1.2479e-10 0.6803 2.4386e-26 
best 1.0014e-12 0.1138 1.7831e-26 
worst 2.0730e-07 1.8282 3.0857e-26 

 

8f  

 
 
0 

Mean 1.8766 4.2105 1.3520e-10 
StdDev 1.5001 0.7290 1.1023e-11 
median 1.6438 4.1857 1.3626e-10 
best 6.8596e-06 2.8520 1.1096e-10 
worst 7.7000 6.2631 1.5192e-10 

 
As seen from Tables 2, PSMBA is better than DE and GA on 8 test functions, re-

spectively. GA has the same performance with PSMBA on Rastrigin function. In 
general, the results in Tables 2 demonstrate that PSMBA is better than DE and GA in 
terms of quality of the final solutions. 

To sum up, the results of nonparametric statistical tests consistently demonstrate that 
PSMBA is significantly better than the competitors. 

In order to show the PSMBA's performance in further, we plot the convergence 
graphs of 8 well known benchmark functions. Fig. 1, 2, 3, 4, 5, 6, 7, 8 show the progress 
toward optima value in terms of number of generations versus fitness for the 8 
benchmark functions, respectively.  
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Fig. 1. Experimental results on f1 

Based on Fig. 1 and the results presented in Table 2, it is clear that PSMBA has 
better performance than DE and GA in terms of accuracy and convergence.  
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Fig. 2. Experimental results on f2 

Based on Fig. 2 and Table 2, PSMBA outperforms all the other algorithms on f2. 
The comparison results for f2 show that PSMBA has the best performance on con-
vergence and accuracy . 
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Fig. 3. Experimental results on f3 

Based on Fig. 3 and Table 2, the comparison results for f3 show that PSMBA has the 
best performance on convergence and accuracy. And PSMBA outperforms all the other 
algorithms on f3.  
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Fig. 4. Experimental results on f4 

Based on Fig. 4 and the results presented in Table 2, PSMBA is better than DE and 
GA on f4.  
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Fig. 5. Experimental results on f5 

Based on Fig. 5 and Table 2, PSMBA and GA achieve comparatively better per-
formance in terms of accuracy of global optima and convergence for f5. But PSMBA 
can achieve the better performance within fewer generations compared with GA. 
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Fig. 6. Experimental results on f6 

Based on Fig. 6 and Table 2, PSMBA is better than GA on f6. PSMBA and DE 
achieve comparatively better performance in terms of accuracy of global optima and 
convergence for f6. 
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Fig. 7. Experimental results on f7 

Based on Fig. 7 and Table 2, the lowest value of fitness obtained by PSMBA for f7 
indicates that the PSMBA has better performance than compared techniques in terms of 
accuracy and convergence.  
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Fig. 8. Experimental results on f8 

Based on Fig. 8 and Table 2, PSMBA is better than the compared algorithms on f8. 
PSMBA is consistent for getting better quality global minima for multimodal function 
with minimum generations.  

In total, as seen from the results, PSMBA achieves better performance than com-
pared methods in terms accuracy of global optima with fast convergence for unimodal 
as well as multimodal functions. PSMBA is faster than most of the compared algo-
rithms and produces better quality of optima. 

4 Conclusions 

In this paper, we propose a new magnetic bacteria algorithm based on power spec-
trum-PSMBA. It is based on the model of power spectra of the magnetic field noise 
produced by Nonmotile bacteria Brownian rotation in zero magnetic field. It is com-
pared with classical optimization algorithms GA and DE. The experimental results 
show that it is effective in solving optimization problems. In future, it will be used to 
solve more complex problems including constrained optimization, multi-objective 
optimization and some real engineering problems. 
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Abstract. A proposal for particles’ initialization in PSO is presented
and discussed, with focus on costly global unconstrained optimization
problems. The standard PSO iteration is reformulated such that the
trajectories of the particles are studied in an extended space, combining
particles’ position and speed. To the aim of exploring effectively and
efficiently the optimization search space since the early iterations, the
particles are initialized using sets of orthogonal vectors in the extended
space (orthogonal initialization, ORTHOinit). Theoretical derivation and
application to a simulation-based optimization problem in ship design
are presented, showing the potential benefits of the current approach.

Keywords: Global Optimization, Derivative-free Optimization, Deter-
ministic PSO, Particles’ Initial Position and Velocity.

1 Introduction

In this paper we consider the solution of the global unconstrained optimization
problem

min
x∈IRn

f(x), (1)

where f : IRn → IR is continuous and possibly nondifferentiable. In particular,
we aim at detecting a global minimum x∗ of (1), satisfying f(x∗) ≤ f(x), for any
x ∈ IRn. Of course we assume that (1) admits solution, which may be guaranteed
under mild assumptions on f(x) (e.g., f(x) is coercive with lim‖x‖→∞ f(x) =
+∞). Furthermore, we also assume that the function f(x) is computationally ex-
pensive, which possibly discourages the use of asymptotically convergent meth-
ods (i.e., iterative methods that only eventually ensure convergence properties
to stationary points).

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 126–133, 2014.
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PSO is an iterative method for global optimization, based on updating a pop-
ulation of points (namely particles). Preliminary numerical tests performed in
[1], for 60 standard problems, suggest that the initial choice of particles’ posi-
tion/velocity may affect significantly the performance of PSO, giving motivation
for further investigation of apparently basic and well stated issues for PSO (such
as the choice of the initial particles’ position/velocity).

Herein, we study the trajectories of particles in an extended space, so that
analytical indications will be available in order to suggest the setting of initial
particles position and velocity. The current approach starts from considering the
results obtained in [2,3,4,5,6], though our partial conclusions in Sections 4-5 are,
to the best of our knowledge, novel in the literature.

In Sections 2-3 we first recall the reformulation of PSO, detailed in [7] and [8],
while the new proposal of this paper is in Sections 4-5. Conclusions and future
work are presented in Section 6. In the following, ‘I’ indicates the identity matrix
and ‘ei’ is the i-th unit vector. The Euclidean norm is simply indicated by ‖ · ‖.
2 A Reformulation of PSO Iteration

Consider the following standard (and complete) iteration of PSO:
⎧
⎪⎨

⎪⎩

vk+1
j = χ

[
wkvkj + ckj r

k
j (p

k
j − xk

j ) + ckgr
k
g (p

k
g − xk

j )
]
, k ≥ 0,

xk+1
j = xk

j + vk+1
j , k ≥ 0,

(2)

where j = 1, ..., P indicates the j-th particle, P is finite, vkj and xk
j are the velocity

and the position of particle j at step k, and the coefficients χ,wk, ckj , r
k
j , c

k
g , r

k
g

are bounded. Finally, pkj and pkg satisfy

pkj = argmin
0≤h≤k

{f(xh
j )}, j = 1, . . . , P, pkg = argmin

0≤h≤k, j=1,...,P
{f(xh

j )}. (3)

We can also generalize (2) and the analysis in this paper by assuming that
possibly the velocity vk+1

j depends on all the terms pkh − xk
j , h = 1, . . . , P ,

obtaining the so called fully informed PSO (FIPS) [9]. This corresponds to allow
a more general social contribution in PSO iteration. Notwithstanding the latter
choice, we prefer to keep the notation as simple as possible, considering the
recurrence (2) as is. Without loss of generality at present we focus on the j-
th particle and omit the subscript in the recurrence (2), so that pkj = pk and

vkj = vk.

Assumption 1. We assume in (2) that ckj = c, rkj = r for any j = 1, ..., P ,

ckg = c̄, rkg = r̄ and wk = w, for any k ≥ 0.

Using the latter position the iteration (2) is equivalent to the dynamic, linear
and stationary system1

X(k + 1) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠X(k) +

⎛

⎝
χ(crpk + c̄r̄pkg)

χ(crpk + c̄r̄pkg)

⎞

⎠ , (4)

1 See also [7,8], whose terminology and symbols are simply reported in this brief section
and in the next one. Then, in Section 4 we extend the latter results to our purposes.
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where

X(k) =

⎛

⎝
vk

xk

⎞

⎠ ∈ IR2n, k ≥ 0.

The sequence {X(k)} identifies a trajectory in the state space IR2n, and since
(4) is a linear and stationary system, we may consider the free response XL(k)
and the forced response XF (k) of the trajectory {X(k)}. Then, considering (4)
we explicitly obtain, at step k ≥ 0, X(k) = XL(k) +XF (k), where

XL(k) = Φ(k)X(0), XF (k) =

k−1∑

τ=0

H(k − τ )U(τ ), (5)

and, after some calculations

Φ(k) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠

k

, H(k − τ ) =

⎛

⎝
χwI −χ(cr + c̄r̄)I

χwI [1− χ(cr + c̄r̄)] I

⎞

⎠

k−τ−1

, (6)

U(τ ) =

⎛

⎝
χ(crpk + c̄r̄pkg)

χ(crpk + c̄r̄pkg)

⎞

⎠ . (7)

A remarkable observation from the latter formulae is thatXL(k) in (5) uniquely
depends on the initial point X(0), and is not affected by the vector pkg . On the

contrary, XF (k) in (5) is independent of X(0), being strongly dependent on pkg .
This implies that the quantities XL(k) and XF (k) can be separately computed.

3 Structural Properties of Matrix Φ(k) and Computation
of XL(k)

In order to simplify our analysis, provided that Assumption 1 holds, hereafter
we consider the following position in (6)

a = χw, ω = χ(cr + c̄r̄). (8)

Now, we first recall (see [7,2,4]) that in order to ensure necessary conditions
which avoid divergence of the trajectories of particles, the relations

0 < |a| < 1, 0 < ω < 2(a+ 1) (9)

must hold. Moreover, the only two eigenvalues λ1 and λ2 of Φ(1) coincide if and
only if ω = (1 ± √a)2. Thus, if ω 	= (1 ± √a)2 then the results in [7] can be

applied, so that XL(k) = [Φ(1)]
k
X(0) can be computed by simply introducing

the eigenvalues λ1 and λ2 of Φ(1), yielding the formula

[Φ(1)]k X(0) =

⎡

⎣
γ1(k)v

0 − γ2(k)x
0

γ3(k)v
0 − γ4(k)x

0

⎤

⎦ , (10)

where
γ1(k) =

λk
1 (a−λ2)−λk

2 (a−λ1)

λ1−λ2
γ2(k) =

ω(λk
1−λk

2 )

λ1−λ2

γ3(k) =
(λk

1−λk
2 )(a−λ1)(a−λ2)

ω(λ1−λ2)
γ4(k) =

λk
1 (a−λ1)−λk

2 (a−λ2)

λ1−λ2
.
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4 A Novel Starting Point for Particles in PSO

In this section we study a novel strategy to possibly improve the efficiency of
PSO, based on the idea of widely exploring the search space in the early iter-
ations, while maintaining the PSO iteration (2). As stated in the Introduction,
our analysis seems more promising when each function evaluation is particu-
larly expensive and time resources are scarce, so that a few iterations of PSO
are allowed. We start our analysis using the reformulation in Section 2, in order
to impose a novel condition for the choice of initial particles’ position/velocity
(namely the next relation (14)).

Consider two particles, namely particle j and particle h, such that 1 ≤ j 	=
h ≤ P ; using the theory in Section 2 we can consider their trajectories in the
space IR2n, so that their initial position and free response are respectively given
by (see (10))
Particle j:

X(0)(j) =

⎛

⎝
v0j

x0
j

⎞

⎠⇒ XL(k)
(j) = [Φ(1)]k X(0)(j) =

⎡

⎣
ξ1(k)

(j)v0j − ξ2(k)
(j)x0

j

ξ3(k)
(j)v0j − ξ4(k)

(j)x0
j

⎤

⎦ , (11)

Particle h:

X(0)(h) =

⎛

⎝
v0h

x0
h

⎞

⎠⇒ XL(k)
(h) = [Φ(1)]k X(0)(h) =

⎡

⎣
ξ1(k)

(h)v0h − ξ2(k)
(h)x0

h

ξ3(k)
(h)v0h − ξ4(k)

(h)x0
h

⎤

⎦ , (12)

where ξi(k)
(h), i = 1, . . . , 4 (similarly for ξi(k)

(j)) coincide with γi(k), i =
1, . . . , 4, if ω 	= (1±√a)2.

Now, observe that at iteration k the velocity vk of a particle may be regarded
as a search direction from the current position xk. Thus, we can be interested
to find out conditions on the initial position of the particles, in order to possi-
bly guarantee the orthogonality of particles’ velocity at any iteration k ≥ 0. The
latter fact is expected to possibly favour a better exploration in IR2n. However,
the latter condition is very tough to impose, without strongly modifying PSO
iteration (2). Nonetheless, following the idea in Section 6 of [7], we can attempt
for any k to impose the orthogonality of the free responses {XL(k)

(j)}. In par-
ticular, numerical efficiency is ensured by the fact that it is possible to set the
initial position and velocity of n particles, in such a way that the corresponding
free responses XL(k)

j1 , . . . , XL(k)
jn satisfy

[
XL(k)

ji
]T [

XL(k)
jh
]
= 0, ∀ji, jh ∈ {j1, . . . , jn}, i �= h.

In order to generalize the latter idea we observe here that what really matters is
the orthogonality of the search directions of the particles, and possibly not the
orthogonality of the entire free responses. On this guideline, here we study the
initial position and velocity of 2n particles, so that for any k the corresponding
free responses XL(k)

j1 , . . . , XL(k)
j2n satisfy for any 1 ≤ j 	= h ≤ 2n (see (11)-

(12))
[
ξ1(k)

(j)v0j − ξ2(k)
(j)x0

j

]T [
ξ1(k)

(h)v0h − ξ2(k)
(h)x0

h

]
= 0. (13)
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I.e., only the first n entries of the free responses of particles j and h, correspond-
ing to the velocity, are orthogonal. After some computation, the latter relation
is equivalent to the conditions

0 =

⎡

⎣
(
ξ1(k)

(j)I − ξ2(k)
(j)I

)
⎛

⎝
v0j

x0
j

⎞

⎠

⎤

⎦

T ⎡

⎣
(
ξ1(k)

(h)I − ξ2(k)
(h)I

)
⎛

⎝
v0h

x0
h

⎞

⎠

⎤

⎦

=

⎛

⎝
v0j

x0
j

⎞

⎠

T ⎡

⎣
σ1I σ2I

σ̂2I σ3I

⎤

⎦

⎛

⎝
v0h

x0
h

⎞

⎠ , (14)

where σ1 = ξ1(k)
(j)ξ1(k)

(h), σ2 = −ξ1(k)(j)ξ2(k)(h), σ̂2 = −ξ2(k)(j)ξ1(k)(h),
σ3 = ξ2(k)

(j)ξ2(k)
(h).

Observe that setting the same parameters ω and a in (8) for all the particles
(i.e., for any k ≥ 0 we have ξ1(k)

(j) = ξ1(k)
(h) = ξ1(k) and ξ2(k)

(j) = ξ2(k)
(h) =

ξ2(k)) the matrix

Λ =

⎡

⎣
σ1I σ2I

σ̂2I σ3I

⎤

⎦ =

⎡

⎣
σ1I σ2I

σ2I σ3I

⎤

⎦ (15)

is symmetric and condition (14) indicates that the vectors

⎛

⎝
v0j

x0
j

⎞

⎠ ,

⎛

⎝
v0h

x0
h

⎞

⎠ . (16)

must be mutually conjugate (see also [10,11] for a reference). The first relevant
property induced by the introduction of conjugacy is that conjugate vectors are
linearly independent. This implies that in case the vectors (16) are mutually con-
jugate, then not only the velocities of the free responses of the particles are or-
thogonal (as stated in relation (13)), but the vectors (16) will be also sufficiently
well scattered in IR2n. Now, note that if zi and zj are distinct eigenvectors of ma-
trix Λ, respectively associated to the eigenvalues λi and λj , then we simply have
zTi Λzj = zTi (λjzj) = λjz

T
i zj = 0, where the last equality follows from the fact

that distinct eigenvectors of a symmetric matrix are orthogonal. Thus, the eigen-
vectors of a symmetric matrix are also mutually conjugate directions with respect
to that matrix. As a consequence, in order to satisfy condition (14) it suffices to
compute the eigenvectors of (15), and set the vectors in (16) as proportional to
the latter eigenvectors. After some computation we have for the corresponding 2n

eigenvectors u
(i)
1 , u

(i)
2 , i = 1, . . . , n, of the matrix in (15) the simple expressions

u
(i)
1 =

⎛

⎝
−σ3−μ−

σ2
ei

ei

⎞

⎠ ∈ IR2n, u
(i)
2 =

⎛

⎝
−σ3−μ+

σ2
ei

ei

⎞

⎠ ∈ IR2n, i = 1, . . . , n, (17)

where μ∓ =
[
(σ1 + σ3)∓

√
(σ1 + σ3)2 − 4(σ1σ3 − σ2

2)
]
/2 are the eigenvalues

of matrix Λ.
The last result implies that in order to satisfy the conditions (14), for any

1 ≤ j 	= h ≤ P ≤ 2n, it suffices to set the initial particle position and velocity
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(respectively of the i-th and (n + i)-th particle) according with the following
(ORTHOinit) initialization

⎛

⎝
v0i

x0
i

⎞

⎠ = (−1)α1iρ1iu
(i)
1 , ρ1i ∈ IR \ {0}, α1i ∈ {0, 1}, i = 1, . . . , n (18)

⎛

⎝
v0n+i

x0
n+i

⎞

⎠ = (−1)α2iρ2iu
(i)
2 , ρ2i ∈ IR \ {0}, α2i ∈ {0, 1}, i = 1, . . . , n. (19)

Recalling that the choice of the coefficients ρ1i , ρ
2
i , i = 1, . . . , n, in (18)-(19) is

arbitrary, we conclude that, in case in (8) ω 	= (1±√a)2, then
– when P ≤ 2n, the choice (18)-(19) of the particles position and velocity

guarantees that the components of velocity of the free responses of the par-
ticles will be orthogonal at any iteration k ≥ 0, provided that Assumption 1
holds (i.e., no randomness is used in PSO, as in DPSO [12]);

– in case P > 2n, the user can adopt the choice (18)-(19) of the particles
position and velocity for 2n particles, while setting the remaining (P − 2n)
particles arbitrarily.

5 Numerical Results

Numerical results for both test functions and a simulation-based design of a high-
speed catamaran are performed using DPSO, setting the parameters according
to Assumption 1.

Numerical experiments are performed to assess the initialization (18)-(19) on
the 60 test functions in [1], varying the initialization of the swarm. Three ap-
proaches are used. Specifically, in the first approach the swarm is initialized as
shown in [1], using 4n particles distributed (following a Hammersley sequence
sampling, HSS) over the variables domain and its boundary. The second ap-
proach, following the guidelines in the previous sections, consists of using two
orthogonal sets of 2n particles each (ORTHOinit initialization). For the third
approach, an orthogonal set of 2n particles is added to the initialization set of
the first approach. As shown in Figures 1 and 2, using two ORTHOinit sets of
2n particles gives the best performance in terms of evaluation metric Δ (see [1]),
for test functions with both n < 10 and n ≥ 10 design variables.

For the catamaran design optimization, the parent hull considered is that
of the Delft catamaran, a concept ship used for experimental and numerical
benchmarks. The optimization problem is taken from [13] and solved by means
of stochastic radial-basis functions interpolation [14] of high-fidelity URANS
simulations. Six design variables control global shape modifications, based on the
Karhunen-Loève expansion of the shape modification vector [15]. The objective
is the reduction of the total resistance in calm water at Froude number equal to
0.5. Figure 3 plots the decrease of the objective function in the first twenty DPSO
iterations (early iterations), comparing the reference implementation given in
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[1], based on HSS initialization of particles over domain and boundary, with the
method in this paper (4n particles are used). ORTHOinit shows a faster progress
than the reference implementation, confirming the effectiveness of the present
method when a reduced number of iterations is allowed.

6 Conclusions and Future Work

With respect to [7] the theory above yields a guideline for the choice of 2n (and
not just n) particles’ initial position/velocity. This was expected to provide a
more powerful tool (as numerical results seem to confirm) for the exploration of
the search space. Moreover, the above theory proposes a particles’ initialization
in PSO which is related to the space dimension n. Though no specific conclu-
sion seems to be drawn by the latter observation, note that most of the exact
derivative-free methods for smooth problems, as well as gradient-based meth-
ods for continuously differentiable functions, show some analogies. We are per-
suaded that in our framework an adaptive criterion might be advisable, in order
to restart the position and velocity of the particles after a given number of itera-
tions. The latter criterion can indeed monitor the norm ‖XL(k)

(j)‖, j = 1, . . . , 2n
(see also Section 5 of [7]), of the free response of particles. When the latter quan-
tity approaches zero, a restart would re-impose orthogonality among the free re-
sponses of the particles, using the theory in Section 4.
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Abstract. The individual learning and team working is the quintessence of 
particle swarm optimization (PSO). Within the conceptual framework of 
computational thinking, the every particle is seen as a computing entity and the 
whole bird community is a generalized distributed, parallel, reconfigurable and 
heterogeneous computing system. Meanwhile, the small world network 
provides a favorable tool for the topology structure reconfiguration among 
birds. So a learning framework of distributed reconfigurable PSO with small 
world network (DRPSOSW) is proposed, which is supposed to give a 
systemative approach to improve algorithms. Finally, a series of benchmark 
functions are tested and contrasted with the former representative algorithms to 
validate the feasibility and creditability of DRPSOSW. 

Keywords: particle swarm optimization, computational thinking, complex 
adaptive systems, small world network, computational experiments. 

1 Introduction 

Particle Swarm Optimization (PSO) was initially proposed in 1995 by James Kennedy 
and Russell Eberhart as a global stochastic search algorithm that is based on swarm 
intelligence (SI) and inspired by the social behaviors of fish schooling and birds 
flocking [1]. Seeing that PSO possesses a clear and favorable biology society 
background as well as a few parameters and simplicity of implementation, it has been 
widely associated with the various fields whether in the scientific research or 
engineering practice. 

Nevertheless, the original PSO suffers from the chronic illnesses that is trapped 
into premature convergence and stagnation easily, especially for the complex high-
dimension multimodal problems. Consequently, an enormous amount of algorithm 
variants have been put forward, and has obtained remarkable achievement [2,3]. The 
self-adaptation and social learning are the primary focus of improvement measures. 

Yet the systemative solution to improve PSO is scarce thus far. This paper extends 
our previous work [4], and concentrates on the above two issues, and proposes a new 
PSO learning framework based on computational thinking, namely the distributed 
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reconfigurable PSO with small world network (DRPSOSW), to prevent from 
premature convergence and keep the biological diversity of PSO as well. 

2 Computational Thinking and Complex Adaptive Systems 

Computational thinking involves solving problems, designing systems, and 
understanding human behavior, by drawing on the concepts fundamental to computer 
science [5]. The nature of computational thinking is abstraction and automation. The 
essence of computation is a symbol string f is translated into another symbol string g. 
Seeing that the team working in SI are the evolutionary process in nature, and the 
PSO searching procedure is in conformity with the essence of computation too. Hence 
we intend to discuss and improve PSO with computational thinking. 

On the other hand, the core idea of complex adaptive system (CAS) theory is 
adaptability makes complexity, and the adaptability is the focus conception of CAS. 
The notion of adaptability is no longer just the survival of the fittest and the principle 
of use and disuse. It is generalized to be a kind of learning process which takes on 
different temporal scales notwithstanding. Regarding the above nature of 
computation, we conclude that the adaptability is no other than a generalized 
computation. 

The living prototype of PSO is just CAS beyond question, and the every bird is an 
agent that is an intelligent entity with sociality, so the bird community is a multi-agent 
system (MAS) too. The adaptability in PSO is that the birds can interact on each other 
and their environments with the explicit initiative and purpose. Hence the population 
has the ability of gathering experiences and continuous learning. The process of self-
learning and self-organization is a computation for the whole community, and it can 
change the individual behavioral style and population social structure as well. 

In addition, the bird community is inquired into according to the essence of 
computation from the following theoretical perspectives. For one thing, the PSO is 
provided with the inherent parallelism as it is based on population, so the community 
is considered as a parallel processing system (PPS). For another, although that the 
birds carry out the flight and foraging is a continuous process, that does not hinder our 
seeing the population and the concomitant searching behavior as a discrete time 
dynamic system (DEDS) by the circumscriptions of the multifarious discrete events. 

Given all that, the bird community for PSO is the recombination of PPS, DEDS, 
MAS and CAS from the different visual angles, which all reflect the computational 
essence ultimately. Meanwhile, the PSO is a singular blend of deterministic and 
stochastic by the computational thinking. That also gives us a systemative conceptual 
framework and theoretical principles of the improvement approach to PSO. 

3 Compound Computing Architecture for PSO 

Computational thinking comes from computer science, and the latter provides the 
former with adequate nutrition and a place to grow steadily. we can elaborate the 
computing architecture for the swarm to make a precise definition of computational 
model of PSO, which is supposed to facilitate the further analysis and improvement 
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on algorithms. Due to its own characteristics of particle swarm and the inherent self-
learning pattern, we discuss the computing architecture with different aspects. 

Above all, the particle cruise in the problem space independently though it is 
influenced by the companions, so the whole population performs the parallel 
computing that is a kind of space and data parallelism. The every bird is just a parallel 
processing element (PPE). The computing paradigm is the multiple instruction stream 
multiple data stream (MIMD) according to the classical Flynn's Taxonomy. 
Furthermore, the computation architecture is massive parallel processing (MPP). It 
means that each bird possesses its own genetic gene, computing resource, memory 
space and control logic, and a bird can not access the other bird's inner space, which 
suggests that the population searching can be also seen as a kind of distributed 
computation in a sense. The every particle is just a distributed processing unit (DPU), 
and the information interaction among birds are implemented by the social 
communication network which is a data redistribution process substantially. 

Secondly, seeing that the nonuniform distribution of satisfactory solution and 
population density, and the dynamic relationship among social communication, the 
neighborhood of every bird should be always changing throughout the community 
development. If a bird is regarded as a reconfigurable processing unit (RPU) and the 
population is executed clustering constantly by the Euclidean distance and/or object 
function fitness values with the population evolutionary. The every temporary cluster 
can be seen as an array processor, and the community has the ability to carry out the 
substantial transformation of data path and control flow by the reconfiguration of the 
population topology structure. Namely, the searching process can be considered as a 
reconfigurable computing for CAS. 

Lastly, as is known to all, that the bird group possesses and preserves the species 
diversity is very advantageous to the performance of PSO. As a result, the various 
measures can be introduced into the initialization and evolution of the particle swarm 
to achieve the objective. Supposing that the every bird is deemed to be a 
heterogeneous computing unit (HCU), the whole population searching behavior is no 
other than a kind of heterogeneous computing. 

4 Distributed Reconfigurable PSO with Small World Network 

4.1 Artificial Society and Small World Network 

On the grounds of the above computational thinking, the every bird in PSO is just 
about a PPE, DPU, RPU and HCU from a theoretical perspective of high performance 
computer architecture, and then all of them construct a flexible and efficient 
distributed, parallel, reconfigurable and heterogeneous computing systems. From 
another point of view, the each particle is a agent with the very limited computational 
capabilities and storage capacity with insight into MAS and CAS, and consequently 
the swarm form a relatively simple artificial society, which implies that the 
computational experiments (CE) can provide a good road to design and implement 
DRPSOSW. Whether the former view or the latter, the topology structure and 
synchronous frequency among birds both are of great significance to the performance. 
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The small world network (SWN) provides a favorable mathematical model for 
representing the topology structure and synchronous frequency in the community, and 
the specific reasons are listed below. First of all, the practical social network is just 
about SWN, which gives us an inspiration to construct an appropriate topological 
relationship by the law of learning from nature. Next, the speed of information 
transmission is rather quick in SWN, and the change on a small quantity of 
connections can have dramatic effects on the network performance. That is propitious 
to the fast convergence and achieves the new emerging patterns with keeping 
diversity of individuals simultaneously. Thirdly, the social communication network of 
the community should be dynamic and reconfigurable in the each iterative search. The 
SWN can give security to define the case and reconstruct the topology structure 
among birds well. Fourthly, as a kind of complex network, the SWN is an 
intermediate between rule network and stochastic network. The distinguishing 
features of SWN is incorporating deterministic and stochastic into one, which makes 
for the balance between exploration and exploitation ability of PSO. Finally, the SWN 
model can be given a precise definition by a few parameters, furthermore, is easily to 
design and implement with a low computation complexity. That is beneficial for the 
permeation and integration between PSO and SWN greatly with the conceptual 
framework and fundamental principles of CAS and MAS. 

4.2 Proposed Learning Framework 

With the original intention of the reinforcement of social psychology, we propose a 
new PSO learning framework that is applying computational thinking into PSO in 
essence that is DRPSOSW accordingly. The specific definition of is given as follows. 
The movement patterns of a particle in the D dimension problem space can be 
represented by a set of difference equations that are defined by (1) and (2) clearly, 
which both constitute the kernel of self-learning and self-organization mechanism.  

 

1 1

2 2 3 3

( 1)= ( )+ ( )( ( ) ( ))

( )( ( ) ( ))+ ( )( ( ) ( ))
id id d id id

d nd id d sd id

v t v t c r t p t x t

c r t p t x t c r t p t x t

ω+ −
+ − −

 (1) 

( 1) ( ) ( 1)id id idx t x t v t+ = + +  (2) 

 
In a parallel manner with the original PSO algorithm, the vid and xid stand for the 

component of velocity vector and position vector of the first d dimension on the first i 
particle respectively, and the pid is the current optimal position during the first i particle 
searching process, and the pnd is the current optimal position of the neighborhood of 
the particle i, and the psd is the current optimal position of the whole community 
experience so far. In addition, the ω  indicates the inertia weight, the c1, c2 and c3 are 
the coefficient of cognitive learning, neighborhood learning and social learning 
separately. Then again, the r1, r2 and r3 are all the independent random numbers which 
are located between 0 and 1 with the equiprobability. 
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For one thing, the formula of (1) makes the community to be the formation of the 
hybrid and flexible computing architecture from the visual angle of computer 
architecture. If the every agent is seen as a independent computing unit, the whole 
community is typical of parallel computing, distributed computation, reconfigurable 
computing and heterogeneous computing simultaneously. That provides a 
fundamental framework for DRPSOSW, and gives a computational thinking 
abstraction in narrow sense too. To be specific, the every component in the formula of 
(1) can be considered as the effect of different computing architecture. The first item 
is the embodiment of parallel computing, and the second one is the function of 
distributed computation, and the third one is the role of reconfigurable computing, 
and the last one is also the action of parallel computing that is the synchronous 
communication among PPE. The heterogeneous computing is demonstrated by the 
scaling diversity of evolutionary population. 

For another, the community can be seen as a computational society with the social 
communication distinguishing features of SWN from the viewpoint of artificial life 
and complex network. That gives a continuously evolving theoretical principles for 
DRPSOSW, and provides an automation exploration perspective in a wide sense. 

4.3 Computing Paradigm and Parameter Tuning 

The DRPSOSW is only a learning framework of SI, and there are a lot of algorithm 
paradigms and parameters both are still to be determined. The cardinal contents are 
enumerated as follows. Firstly, the sociality, purpose, adaptability and self-learning 
are the four fundamental characteristics of SI. Furthermore, the implement of purpose, 
adaptability and self-learning all depend upon the definition of sociality in the final 
analysis. The definition of SWN including the relevant technological parameters is of 
decisive significance for the performance of DRPSOSW. Secondly, the first two 
components in the equation of (1) are the individual learning section, and the last two 
one are the team learning section. The proportion of both has vast importance to the 
behavior of the community. In addition, the definition of inertia weight has a certain 
effect on the performance of DRPSOSW. Thirdly, the overflow handing is a key point 
in the computer system. A similar event occurs in the DRPSOSW. The overflow of 
position and velocity are the inevitable outcome when birds move by the equation of 
(1) and (2). Nevertheless, the overflow of position and velocity is not always a bad 
thing. That provide a useful way to escape from local optimums. The computing 
paradigm of both has the important effect on DRPSOSW for that is a necessary and 
beneficial complement to the conventional cruise. Finally, the PSO is a kind of 
intelligent optimization algorithm with the combination of deterministic computing 
framework and probabilistic adaptive strategy in substance, so the random number 
generating scheme is vitally important for the approach. However, the probability 
distribution and the related parameters setting are just about a very large scale,  
multi-objective, multi-constraint, discrete nonlinear, typical NP complete 
combinatorial optimization problem. That is a big challenge of DRPSOSW too. 
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5 Computational Experiments 

The computational experiments for DRPSOSW is designed and implemented by 
AnyLogic 6.9.0 and SQL Server 2012. We establish computational experiment by the 
comprehensive visual angle of PPS, DEDS, MAS and CAS. The computational 
experimental machine is the DELL Precision M4800 workstation, which is based on 
the Intel Core i7-4800MQ CPU and 32G memory. Meanwhile, the operating system 
(OS) is Win 8 Pro which is a 64 bit OS. In addition, the maximum available memory 
of AnyLogic is 4G, and the computational accuracy reaches up to 1.0E-38. 

Some classical benchmark functions, which exhibit the different characteristics and 
traps, are selected and tested to judge and evaluate the performance of DRPSOSW. 
The candidates for testing are Sphere, Ronsenbrock, Griewank, Rastrigrin, Schwefel 
2.22 and Ackley, which are called F1, F2, F3, F4, F5 and F6 for short later. 

The computing paradigm and parameters settings of DRPSOSW are listed below. 
The population size is 150, and the iterated searching times is 5000, which is intended 
to demonstrate the evolutionary process of the community clearly with the benefit of 
slow motion. The coefficient of inertia is computed according to the user-defined 
pattern (2) in the literature [6] that be aimed at showing the universality of the self-
learning framework. The coefficient of cognition is 0.90, and the coefficient of 
neighborhood is 0.90, and the coefficient of society is 0.80. The ri all fulfills the 
uniform distribution of between 0.0 and 1.0. The SWN adopts the classical WS 
model, and the connections of every agent is 6, and the neighbor link fraction is 0.6.  

We execute the benchmark functions test with the dimensions of 50 and 100, and 
the each group experiments is carried out by the different random number generation 
seed from 1 to 50 for the same objective function with the identical dimensions. In 
other words, 600 times CE are executed, which provides a comprehensive assessment 
with the premise of having and holding repeatability and randomicity simultaneously. 
The computational experiments result is showed in Table 1, and the convergence rate 
(CR) means the average optimization generations for the special problem with the 
given dimensions. We can conclude that DRPSOSW stays ahead of the many state-of-
the-art variants obviously, such as LPSO-TVAC[7] and MPSO[8]. 

Table 1. DRPSOSW computational experiments result 

CE  
Group 

Testing 
Function 

Problem 
Dimension 

Average 
Fitness 

Standard 
Deviations 

Convergence 
Rate 

CR Standard 
Deviations 

1 F1 50 0.0 0.0 2825.0 9.8995 
2 F1 100 0.0 0.0 3605.25 71.9554 
3 F2 50 0.0 0.0 1580.4 22.7772 
4 F2 100 0.0 0.0 1590.6 24.4602 
5 F3 50 0.0 0.0 2217.2 12.3774 
6 F3 100 0.0 0.0 2628.5 17.6777 
7 F4 50 0.0 0.0 323.8 76.6629 
8 F4 100 0.0 0.0 328.4 21.5592 
9 F5 50 0.0 0.0 3695.0 36.7696 
10 F5 100 4.10E-12 3.1617E-12 4208.34 145.2389 
11 F6 50 1.33E-14 0.0 2622.40 106.3969 
12 F6 100 7.37E-14 7.5364E-15 3113.2 54.8471 
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Thus the DRPSOSW showed promise even though it is only based upon the 
fundamental mode of SWN and the inertia weight, as it obtains the theoretical optimal 
value for F1~F4 and an excellent performance for F5 and F6. Those indicates the 
stable, efficient and robust searching capability. We take F3 with the dimensions of 
50 for example to demonstrate the evolutionary process of DRPSOSW. That we select 
the random number seed is 5, 16, 27, 38 and 49, the five sets of population current 
best position fitness (PCBPF) evolutionary curve are demonstrated by Fig. 1. 
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Fig. 1. Population evolutionary process for F3 with the dimensions of 50 

Even the DRPSOSW does not achieve the optimal value, it also shows the 
favorable and stable searching ability whether for the many dimensions or the high 
dimensions problem space. The distinguishing feature is incarnate by F6 evidently. 
We select two group experiments for the dimension of 50 and 100 separately, which 
demonstrate the analogical evolutionary curve. The result is showed by Fig. 2, and the 
upper part is the CE for the dimension of 50, and the bottom half is the one for the 
dimension of 100.  

6 Conclusions 

PSO is a simple and effective SI algorithm, but it is too straight-forward to underline 
the most arresting features of individual learning and team work that are contained in 
the social creatures. We treat the living prototype of PSO as a CAS, and then make a 
precise definition of bird movement patterns by the fusion of computational thinking 
and SWN to achieve a self-learning and self-adaption framework. That is intended to 
emphasize the essence of computability, sociality and adaptability of SI to obtain a 
systemative improving solution to the PSO. However, DRPSOSW is only a 
conceptual framework, the definition of computing paradigm and the selection of 
SWN model both are even the more complicated issues than the established work. 
Much the same thing is found in parameter setting. Those are the further work 
orientation. 
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Fig. 2. Population evolutionary process for F6 with the dimensions of 50 and 100 
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Abstract. Particle Swarm Optimization (PSO) is popular in optimization 
problems for its quick convergence and simple realization. The topology of 
standard PSO is global-coupling and likely to stop at local optima rather than 
the global one. This paper analyses PSO topology with complex network theory 
and proposes two approaches to improve PSO performance. One improvement 
is PSO with regular network structure (RN-PSO) and another is PSO with 
random network structure (RD-PSO). Experiments and comparisons on various 
optimization problems show the effectiveness of both methods.  

Keywords: particle swarm optimization, topology optimization, complex 
network. 

1 Introduction 

Particle swarm optimization (PSO) [1] is one of evolutionary algorithms deriving 
from observations of bird foraging behavior. Once one bird finds food, an efficient 
method for other birds to find food is to search in the vicinity of the bird that has 
found food. This may illustrate an optimizing model: the birds represent a group of 
searching points of the solution space, the bird that has found food represents the 
optimum, searching nearby the winner represents a certain updating rule of nodes. 
Each node is updated according to its location and velocity and that of the current 
winner. It converges quickly and can be easily realized. Therefore PSO and its 
improved versions have been applied to various areas to solve practical problems [2] 
[3] [4]. 

To improve PSO performance, researchers [5] introduced “inertia weight” to 
denote the relevance between current status and that after updating. And P. N. Sugant 
han [6] proposed neighborhood operator approach with linearly-decreasing inertia 
weight value to adaptively update the group. Asanga et al comes up with a new 
variant using varying acceleration coefficients [7]. [8] introduces dissipative theory 
(negative entropy) and develops DPSO which updates velocity and position with two 
random numbers called “chaos factor”.  

By analysis of PSO topology, [9] [10] put forward several optimization approaches 
focusing on specific network structures (e.g. circle, triangle, rectangle, etc.) instead of 
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the general law of various topologies. Matsushita et al [11] brings up a new method 
by applying “cooperative coefficient(C)” to help determine neighborhood relations 
between nodes when updated. It discusses different C values on the performance of 
the proposed version, but does not give access to general parameter setting rules. Yue-
jiao Gong et al has defined a “stagnation coefficient (Sc)” to describe the updating 
process of nodes that stagnate after a certain number of generations, and applied 
adaptation mechanism to adjust the randomization and size of neighborhood based on 
small-world network [12]. 

As we can easily find that standard PSO has short average path length and simple 
degree distribution [13]. Meanwhile the topology of standard PSO is fully-connected. 
This leads to an inevitable problem that particle swarms stop at a local optimum 
rather than the global one. With some concepts from complex network theory [13], 
we find that the topology has a large clustering coefficient, which means the swarm is 
highly converged. 

In this paper, we analyze the topology of standard PSO with some complex 
network parameters and propose two topology variants. One is to introduce a regular 
network structure (RN-PSO). Each node in RN-PSO is connected to a number of 
neighbors which are next to the node. The other approach is random topology (RD-
PSO), where nodes are connected to a number of random selected neighbors. We 
apply both approaches to four benchmarks to test their performance. 

The remainder of this paper is arranged as follows: Section 2 analyses standard 
PSO topology with some complex network parameters. We present our two proposed 
methods in detail in Section 3 and test their performance in Section 4. Section 5 
concludes the entire paper. 

2 Standard PSO and Its Topology 

In standard PSO, each particle has two parameters: location and velocity. The two 
parameters are updated in every generation according to its own location and velocity 
and the winner’s. We use a vector Xi=(xi1, xi2, …, xiD) to represent the location of 
particle i, vector Vi=(vi1, vi2, …, viD) the velocity of the particle, both in D dimensions, 
and 1≤i≤N, where N is swarm size. In every generation, each particle updates its 
location and velocity by the following equations 

vid(g+1)=wvid(g)+c1r1(lid-xid(g))+c2r2(xbest-xid(g))               (1a)         
xid(g+1)=xid(g)+vid(g+1)                                      (1b) 

where w is inertia weight [5] , c1 and c2 are acceleration coefficients [7] , and usually 
c1=c2. r1, r2 are two uniformly distributed random numbers between 0 and 1. lid is the 
local best position, xbest is the global best position so far. xbest-xid(t), lid-xid(t) show the 
distance between current global best and particle i, and the distance between local 
best and particle xi, respectively. And g represents the order of generations. 

The standard PSO has a topology of centralized pattern, as illustrated in Fig.1. The 
black circle denotes global best, and the grey circles denote other nodes of the 
network, the arrows denote how the nodes “learn”. We can see that the network 
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structure has pretty short average path length L=2(N-1)/N. The global best has direct 
connection to every node. In this sense, if the network has N nodes, the winner has a 
degree of (N-1), while the degree of other nodes is one. And clustering coefficient 
C=(N-1)/N→1 [13]. 

 

 

Fig. 1. Topology of standard PSO 

3 Optimization of Swarm Structure of PSO 

As discussed in Section 2, the topology of standard PSO has inevitable weaknesses in 
a concentrated network structure, in particular its large clustering coefficient, which 
constrains strongly a node’s searching range. Considering its global-coupling 
topology, in this section we will propose two optimizing approaches of PSO network 
structure: RN-PSO (regular network structure) and RD-PSO (random network 
structure). 
 

                 

Fig. 2. Topology comparison of RN-PSO and RD-PSO 

3.1 PSO with Regular Network Structure: RN-PSO 

In this part we will discuss regular network structure and we call it RN-PSO. Each 
node will “learn” from a number of (i.e., R) orderly selected nodes (i.e., neighbors) to 
update local best position. The topology might be illustrated by the left graph in Fig.2, 
where the swarm has 8 particles and arrows from each node denote that it learns from 
its 3 contiguous neighbors.  
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In this approach, the network parameters of each node are the same. Nodes are 
equivalent in the whole network, and degree of each node increases linearly with R. 
And we can easily know that average path length L decreases and clustering 
coefficient grows non-linearly. In particular, when R=1, the network is a ring, C=0. 
When R comes close to N, the structure becomes tightly-coupled, and we can imagine 
its performance will go bad. 

3.2 PSO with Random Network Structure: RD-PSO 

We present another improving method in this subsection: random network structure. 
Instead of “learning” from a fixed number of contiguous neighbors, each node 
compares with R randomly selected nodes to update local best position. A simplified 
topology model with 8 nodes is shown by the right graph in Fig.2, where arrows from 
each node represent learning from 3 random neighbors in every generation. 

As we expect RD-PSO to have better performance, its network topology has 
advantages that a regular structure does not acquire. Nodes are more flexible and have 
more chance of a global searching range. 

 

 

Fig. 3. Flowchart of the proposed algorithms 
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3.3 Algorithm Description 

The algorithms can be realized by the following process. 
Step1: Initialize a group of particles. Set this is the first generation of the iterative 
process, that is, g=0. The position vector of all nodes is Xi=(xi1, xi2, …, xiD), velocity 
vector is Vi=(vi1, vi2, …, viD). 
Step2: Calculate the fitness of test function, currentfit=f(X). Let the initializing 
position and current fitness be the current local best position (lbest) and local best 
fitness (lbestfit), respectively. For each node i, find the fitness of R neighbors (for RN-
PSO, the R neighbors are orderly following node i; for RD-PSO, the R neighbors are 
random selected) and compare. 
Step3: Update lbest. 
Step4: Let global best position (gbest) be the best of lbest, global best fitness (gbestfit) 
be the corresponding fitness value. 
Step5: Update the velocities and locations of all nodes according to Eq. (1). 
Step6: Begin the next generation and go to Step2. 

The flowchart is shown in Fig.3. 

4 Simulation 

In this section, we apply both RN-PSO and RD-PSO to four benchmarks to test 
their performance. To compare our algorithms with other PSO variants, we also 
present simulation results of WPSO [6], DPSO [8] and IPSO [11] along with 
standard PSO. 

4.1 Settings 

Table 1 shows definitions of the four benchmarks. 

Table 1. Definitions of four benchmarks 

name definition domain optima 

Sphere f1(x)=∑xi
2, 1≤i≤D [-5.12,5.12] 0 

Step f2(x)=∑(|xi+0.5|)2, 1≤i≤D [-100,100] 0 

Rosenbrock f3(x)=∑100(xi+1-xi
2)2+(xi-1)2, 1≤i≤D-1 [-2.048,2.048] 0 

Rastrigin  f4(x)=10D+∑[xi
2-10cos(2πxi)], 1≤i≤D [-5.12,5.12] 0 

 
Among these functions, f1 and f2 are unimodal, whereas f3 and f4 are multimodal. 
The number of nodes N=40, dimension of each node D=30 [14], and each single 

test is simulated for 1000 generations and repeated for 100 times. In order to obtain 
proper accuracy in local range, w=1/(2*ln2), c1=c2=0.5+ln2, the upper limit of 
velocity is vmax=xmax. If x surpasses the domain boundary when updated using Eq. (1), 
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it will be modified to the boundary value. And if velocity is larger than vmax, it will be 
reset to 0. 

In WPSO, w decreases from 0.9 to 0.2. In DPSO, chaos factor cv=0, cl=0.001. In 
IPSO, cooperative coefficient C=0.8. 

4.2 Results and Comparisons 

Table 2. Performance comparison  of various PSO algorithms 

f standard WPSO DPSO IPSO 
RN-PSO RD-PSO 

R f(x) R f(x) 

f1 
1.0997* 
1e+02 

2.4333* 
1e+00 

1.1290* 
1e+00 

1.1081* 
1e+00 

5 
8.6454* 
1e-01 

5 
5.0424* 
1e-01 

15 
3.4882* 
1e-01 

15 
8.6433* 
1e-01 

25 
8.6480* 
1e-01 

25 
5.1873* 
1e-01 

35 
7.3236* 
1e-01 

35 
5.8119* 
1e-01 

f2 
4.2391* 
1e+04 

4.6872* 
1e+02 

4.3112* 
1e+02 

4.2890 
1e+02 

5 
3.3272* 
1e+02 

5 
2.0848* 
1e+02 

15 
3.3021* 
1e+02 

15 
3.2960* 
1e+02 

25 
3.3079* 
1e+02 

25 
1.7107* 
1e+02 

35 
3.3196* 
1e+02 

35 
3.2957* 
1e+02 

f3 
9.4379* 
1e+03 

2.1962* 
1e+01 

9.8642* 
1e+01 

9.7579* 
1e+01 

5 
7.0801* 
1e+01 

5 
3.8750* 
1e+01 

15 
6.1579* 
1e+01 

15 
4.8648* 
1e+01 

25 
1.1313* 
1e+02 

25 
4.8130* 
1e+01 

35 
1.0751* 
1e+02 

35 
6.3354* 
1e+01 

f4 
4.5187* 
1e+02 

1.0750* 
1e+00 

1.0475* 
1e+00 

1.7469* 
1e+00 

5 
1.0169* 
1e+00 

5 
1.0195* 
1e+00 

15 
1.2231* 
1e+00 

15 
1.0219* 
1e+00 

25 
9.9054* 
1e-01 

25 
9.9465* 
1e-01 

35 
1.2258* 
1e+00 

35 
1.2234* 
1e+00 
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Table.2 presents simulation results of our proposed algorithms and comparisons with 
standard PSO, WPSO, DPSO and IPSO. In particular, R represents the number of 
neighboring nodes. In order to show the general tendency of R values, we give 
numerical results of 4 particular R values, i.e. R=5, 15, 25 and 35. 

Figures in the table show that optimized network structures have much better 
performance than standard PSO, also better than the comparison algorithms. Another 
common feature is that RD-PSO (random structure) performs better than RN-PSO 
(regular network) in general. With same parameters of both network topologies, nodes 
in RD-PSO have more chance to search for a better solution. This is because in RD-
PSO the network structure is relatively flexible, then a node’s searching area might 
cover the whole network. But in RN-PSO, nodes have a fixed network structure that 
nodes search its vicinity only.  

In general, performance worsens with R increasing to the scale close to swarm size. 
The network gets tightly connected this time as the structure becomes similar to that 
of the standard algorithm. 

5 Conclusion 

In this paper, we have proposed two optimization approaches to particle swarm 
optimization based on complex network analysis. All particles are connected to a 
number of neighbors that are orderly selected for RN-PSO and random selected for 
RD-PSO. Experiments and comparisons on four benchmarks prove our methods 
effective. The performance of regular and random network structures is remarkably 
superior to that of standard PSO and also better than the compared algorithms. 
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Abstract. This paper presents a new variant of PSO, called fully learned multi-
swarm particle swarm optimization (FLMPSO) for global optimization. In 
FLMPSO, the whole population is divided into a number of sub-swarms, in 
which the learning probability is employed to influence the exemplar of each 
individual and the center position of the best experience found so far by all the 
sub-swarms is also used to balance exploration and exploitation. Each particle 
updates its velocity based on its own historical experience or others relying on 
the learning probability, and the center position is also applied to adjust its 
flying. The experimental study on a set of six test functions demonstrates that 
FLMPSO outperform the others in terms of the convergence efficiency and the 
accuracy. 

Keywords: multi-swarm particle swarm optimization, fully learned, particle 
swarm optimizer (PSO). 

1 Introduction 

Particle swarm optimization (PSO), originally proposed by Kennedy and Eberhart [1] 
[2], has been the family of population-based evolutionary computation techniques. It 
is motivated from the social simulation of bird flocking. In PSO, each particle adjusts 
its flying pattern by combining both its own historical experience and its companions’ 
flying experience. The individual has a tendency to adapt the search trajectory 
combined personal cognition with social interaction among the population over the 
course of search process. 
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Through the process of trial and error in the past decades, particle swarm 
optimization has been developed various kinds of methods and applied to solve 
different practical problems. According to no free lunch theorems for search, 
extensive research through a wide variety of improved methods such as parameter 
selecting [3-4], population topology [5-8], hybridization [9-10] and etc [11-14] were 
proposed gradually to achieve a better trade-off between the exploration and 
exploitation. Although the shortcoming of premature has been improved, there is still 
much work to do. Based on our previous works [15-17], here we introduced a fully 
learning strategy to facilitate a global search in PSO by incorporating a learning 
probability to keep the population diversity and multi-swarm mechanism to avoid 
being trapping into local optimum. 

The rest of this paper is organized as following. Section 2 gives a brief description 
of the basic particle swarm optimization. The fully learned multi-swarm particle 
swarm optimization is elaborated in Section 3. The experimental studies on FLMPSO 
including other comparative algorithms and related results are presented in Section 4. 
Finally, Section 5 concludes this paper. 

2 Basic Particle Swarm Optimization 

In original PSO, each particle is treated as a potential solution vector in the problem 
space. And the best position is decided by the best value of the corresponding 
objective. The best previous experience of all the individuals is recorded and updated. 
Accordingly each particle integrates its local optimum and global best to update its 
trajectory. The velocity and position of each dimension for the i th particle are 
renewed by the following equation, respectively: 

( ) ( )1 1 2 2id id id id gd idv v c r p x c r p x← + ∗ ∗ − + ∗ ∗ −  (1) 

id id idx x v← +  (2) 

where 1, ,i ps=  , ps is the swarm size. d  denotes the corresponding dimension. 

1c  and 2c are two positive constants, 1r and 2r  are two random numbers in the 

range [0,1]. idp  and gdp  are the best previous position of individual and the whole 

swarm yielding the best fitness value. In addition, idv  and idx  represent the velocity 

and the position in the d-dimensional space for the i th particle respectively.  

3 Fully Learning Multi-swarm Particle Swarm Optimization  

In FLMPSO, the whole population consists of a number of sub-swarms, in which  
each has the identical individual. And the particle in each sub-swarm interacts by  
the exchange of individual experience during the course of flight. Meanwhile,  
the particles belonging to different sub-swarms also cooperate with each other.  
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Each individual follows the local best or the global optimum as its own exemplar 
based on the learning probability and the center position of the best experiences found 
so far by the particle from different sub-swarms is also employed to adjust its flying. 

The learning probability 
iPc for i th particle of each sub-swarm is adopted using 

[14]: 

( )

( )( )

10 1
exp

1
0.05 0.45

exp 10 1i

i

m
Pc

 − 
  −  = + ∗

−

 (3) 

where m  is the population size of each sub-swarm. And the exemplar is decided by 
the learning probability compared with a random number. If the learning probability 
is larger than this random number, the corresponding particle will learn from its own 
personal experience. Otherwise, it will learn from the best experience of the whole 
population. 

The velocity equation of the i th particle within each sub-swarm is updated as 
follows: 

( ) ( )1 1 2 2id id fid id cd idv v c r p x c r p x← + ∗ ∗ − + ∗ ∗ −  (4) 

where 1c and 2c  are constant learning factors. 1r and 2r are random numbers 

between 0 and 1. fi  defines the exemplar which the particle i  should follow. And 

c dp is the center position of the best experience found so far by the whole group of 

sub-swarms and d  is the dimension. 

Table 1. Pseudo code of the proposed algorithm 

Algorithm FLMPSO 

Begin 

Initialize the group of sub-swarms and the related parameters. 

While (the termination conditions are not met) 

Evaluate the fitness value of each particle.  

Compute the global optimum and the center position.  

For each sub-swarm (do in parallel) 

     For each particle i  
      Generate a random number and renew the best experience. 

      Compare the random number with the learning probability 
iPc . 

      Select the exemplar which i th particle should follow. 
      Update the velocity and position using Eqs.(4) and (2). 

     End for  

End for (Do in parallel) 

End while(until a terminate-condition is met)  

end 

Through the description above, the pseudo-code for the FLMPSO algorithm is 
elaborated as Table 1. 
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4 Experiments and Results 

The set of benchmark functions, which were popularly used in the literatures, will be 
also introduced to demonstrate the effectiveness of FLMPSO. Details of these 
benchmark functions are listed in Table 2 and four algorithms from the literatures 
[3,7,8,14] are also shown as below. 

Table 2. Six benchmark functions 

Functions Mathematical Representation Search Range 

Sphere( 1f ) 
2

1
=1

(x)=
n

i
i

f x  [-100,100] 

Rosenbrock( 2f ) 
-1

2 2 2
3 +1

=1

(x)= ((x -1) +100(x -x ) )
n

i i i
i

f  [-2.048,2.048] 

Ackley( 3f ) 

2
2

=1

1
(x)=20 -20exp(-0.2 )

n

i
i

f e x
n

+ 
 

=1

1
-exp( cos 2 )

n

i
i

x
n

π  

[-32.768,32.768] 

Griewank( 4f ) 2
4

=1 =1

1
(x)=1+ - cos( )

4000

n n
i

i
i i

x
f x

i
 ∏  [-600,600] 

Rastrigin( 5f ) 2
5

=1

(x)= (10-10cos(2 x )+x )
n

i i
i

f π  [-5.12,5.12] 

Weierstrass(
6f ) 

( ) ( ) ( )( )
20

7
1 0

0.5 cos 2 3 0.5
n

k k
i

i k

f x xπ
= =

  = ∗ +   
   

( ) ( )
20

0

0.5 cos 3
k k

k

n π
=

 − ∗ 
[-0.5,0.5] 

 

 
All the experiments are conducted to compare the algorithms with the same 

population size of 30, and FLMPSO has 5 sub-swarms which both include 6 particles 
within each sub-swarm to obtain a fair comparison. Meanwhile each benchmark 
function runs 20 times and the maximal iteration is set at 1000. In all cases, the inertia 
weight is linearly decreased from 0.9 to 0.4 [3] except UPSO [8], which adopts the 

constriction factor 0.729φ = . And 1c and 2c are both 2.0. Meanwhile, all the 

parameters of FLMPSO used in each sub-swarm are as same as those defined above. 
Test results on six benchmark functions are presented in the Table 3 and Fig 1. 

The convergence characteristics in terms of the mean value and standard deviation of 
the results for each benchmark function are shown. Note that, optimum values 
obtained are in bold in the following Table. 
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Table 3. Results on six benchmark functions for 10-D 

Algorithm SPSO FDR-PSO UPSO CLPSO FLMPSO 

1f  
2.207e-028 

±8.328e-028 
8.583e-054 

±2.971e-053 
4.267e-038 

±7.686e-038 
4.518e-027 

±1.519e-026 
1.892e-124 

±8.447e-124 

2f  
4.209e+000 

±1.961e+000 
3.312e+000 

±1.887e+000 
3.003e+000 

±1.086e+000 
3.764e+000 

±1.077e+000 
7.310e+000 

±1.143e-001 

3f  
1.323e+000 

±4.507e-015 
1.323e+000 
±1.244e-015 

1.323e+000 
±4.556e-016 

1.323e+000 
±1.328e-017 

1.323e+000 
±4.556e-016 

4f  
1.011e-001 

±4.103e-002 
7.565e-002 

±4.016e-002 
3.969e-002 

±1.739e-002 
3.594e-003 

±4.510e-003 
0±0 

5f  
4.481e+000 

±1.778e+000 
6.119e+000 

±3.390e+000 
7.444e+000 

±2.835e+000 
4.307e-006 

±4.577e-006 0±0 

6f  
2.646e+000 

±2.442e+000 
6.707e-001 

±6.146e-001 
4.631e-001 

±6.604e-001 
1.568e-001 

±8.431e-002 0±0 
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(c) (d) 

Fig. 1. Convergence characteristics on 10-dimensional benchmark functions. (a) Sphere 
function. (b) Rosenbrock function. (c) Ackley function. (d) Griewanks function. (e) Rastrigin 
function. (f) Weierstrass function. 
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Fig. 1. (Continued) 

For unimodal problem 1f , as illustrated in Fig 1, FLMPSO is able to find the better 

minimum within 1000 generations with greatly faster rate. For Rosenbrock function, 
it still suffers from premature convergence as well as other algorithms. And there is 
no much difference between FLMPSO and others for 10-D Ackley function. For 

multimodal functions 4f ~ 6f  as shown above, the proposed algorithm can be able to 

find the global optimum with the faster speed. However other optimizers seem to get 
stuck into the premature convergence. 

Based on the above results, FLMPSO is easier to find better minimum within 1000 
iterations compared with other algorithms. From the figures, we can visually see that 
FLMPSO has faster convergence speed and better solution accuracy for most 
problems in our experiment. Overall, the proposed algorithm has a great advantage on 
global search ability and efficiency for most benchmark functions, except that it 
seems to have stagnated for Rosenbrock function. 

5 Conclusions and Further Work 

In this paper, we present an improved multi-swarm particle swarm optimizer with a 
fully learning scheme called FLMPSO. Different from the original particle swarm 
optimization, the learning probability is employed to decide whether to follow its own 
historical experience or to adopt the global best experience from other sub-swarms. 
Meanwhile, the center position of the best historical experience of the whole 
population as the comprehensive experience is also employed to avoid getting into 
local optima. Each particle in the entire population combines the learning experience 
with its own learning probability to adjust its flight. 

To confirm the performance, the proposed algorithm is tested on a set of 10-D test 
functions as well as other optimizers. As shown in the experimental results, FLMPSO 
can easily escape from local optima and find the better optimum. In short, the 
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proposed algorithm can outperform others in our simulation. However, FLMPSO also 
can not solve all the optimization problems. Our future work will focus on extensive 
study on different types of problems, particularly very complex benchmark functions 
and real-world problems. 
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Abstract. Circulant partial Hadamard matrices are useful in many sci-
entific applications, yet the existence of such matrices is not known in
general. Some Hadamard matrices of given orders are found via com-
plete enumeration in the literature, but the searches are too computa-
tionally intensive when the orders are large. This paper introduces a
search method for circulant partial Hadamard matrices by using natural
heuristic algorithm. Slightly deviated from the swarm intelligence based
algorithm, this method successfully generates a class of circulant partial
Hadamard matrices efficiently. A table of circulant partial Hadamard
matrices results are given at the end of this paper.

1 Introduction

With scientific and technological advancements, investigators are becoming more
interested in and capable of studying large-scale systems. There is considerable
scope for reducing resources used in research by designing more efficient stud-
ies. Careful design considerations, even with only minor variation in traditional
designs, can lead to a more efficient study in terms of more precise estimate or
be able to estimate more effects in the study at the same cost ([12],[11], [14]).

It is well-known that there are some connections between combinatorial and
experimental designs. A Hadamard matrix of order n is an n× n square matrix
H with entries (±1) such that HHT = nIn, which also suggests that its rows
are orthogonal and thus designs based on Hadamard matrices are D-optimal.
The studies of Hadamard matrices and their design properties are rich, see [6],
[7] and others for details.

[9] pioneered a study of partial Hadamard matrix, which is a k×n rectangular
matrix with entries (±1) such that HHT = kIn. [3] introduced a class of k × n
partial Hadamard matrices that are constructed by circulating any row of the
matrix k times. Such row is generally called a generating vector. They denote
“r-H(k×n)” as a k×n circulant partial Hadamard matrix such that the numbers
of +1 and −1 in every row of H differ by r. Table 1 in [3] listed the maximum
k for which r-H(k × n) exists, it followed by several lemmas that describe the
relationship among r, k and n.

However, they do not provide the exact generating vectors of ±1 for each
H reported in Table 1. Not to mention some H of large order n, they could
only provide possible ranges of maximum k. This motivates us to search for an

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 158–164, 2014.
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efficient algorithm that can be used to find these exact generating vectors, and
hopefully this algorithm is efficient enough so that the length n will not be a
serious factor in computational burden. It leads to the use of natural heuristic
algorithm.

One classical natural heuristic algorithm is particle swarm optimization (PSO),
which was first proposed by [8] and then followed up by [13] and [4] among many
others. The optimization technique was originally aimed to study social network
structure but now is widely used in computational intelligence, industrial opti-
mization, computer science, and engineering research. Textbooks such as [2], [5]
and others provide comprehensive introduction of the optimization theories, evo-
lutionary computations, and practical applications of PSO.

It is not trivial to implement a standard PSO algorithm to discrete problems
like searching optimal matrices and designs. Not long ago, [10] first proposed a
swarm intelligence based (SIB) algorithm for optimizing supersaturated designs,
which required minimum column correlation and equal number of + and −
(their paper referred it as a balanced design) in each column. The procedure is
called “Swarm Intelligence Based Supersaturated Designs” (or in short, SIBSSD)
algorithm.

This paper is organized as follows. Section 2 provides a brief review on the
background of circulant partial Hadamard matrix (CPHM) and swarm intelli-
gence based (SIB) algorithm. Section 3 contains our proposed algorithm that
used to search for the generating vectors such that r-H(k ×m) can possess the
maximum k. Section 4 lists our search results. In the last section, we summa-
rize our work and provide future directions of this work, including additional
comments on the use of parallel computing.

2 Some Backgrounds on Circulant Partial Hadamard
Matrix and Swarm Intelligence Based Algorithm

Rephrased from [1], we officially define the circulant Hadamard matrix and
CPHM here.

Definition 1. Consider a k×n matrix A = {aij} with first row (a1, a2, . . . , an).

(a) A is a circulant if each row after the first is obtained by a right cyclic shift
of its predecessor by one position, thus aij = aj−imodn;

(b) A is a circulant partial Hadamard matrix if and only if it is circulant and
AAT = kIn;

(c) When n = k, A is a circulant Hadamard matrix of order n.

Example 1. We consider a generating vector a = (−,−,−,+,−,+,+,+). Let
A be a matrix and a be its first row, which makes (+,−,−,−,+,−,+,+) and
(+,+,−,−,−,+,−,+) its second and third rows respectively. A that consists
of these three rows is a 0-H(3 × 8): (i) r = 0 because the number of + and −
entries in each row are equal; (ii) A has a dimension of 3 rows and 8 columns;
(iii) AAT is a 3×3 diagonal matrix with all diagonal entries 8. In fact, according
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to Table 1 in [3] and our search, the maximum possible k for A with r = 0 and
n = 8 is 3.

The circulant nature greatly reduces the search space of optimal CPHM from
2kn to 2n, because the structure of the generating vector of length n governs the
matrix properties completely.

The SIB algorithm is a natural heuristic algorithm designed for specific prob-
lems in discrete domains. It was first proposed in [10]. To put it simply, for each
seed in each iteration after the initialization, the standard procedure of a SIB
algorithm includes:

1. Generate candidates via mixing the original seeds with its local best seeds
and the global best seed.

2. Choose the best candidates among all by MOVE operation, a decision mak-
ing step.

3. Update the current seed to the best candidates that selected in previous
step, with the possibilities to restart the seed if it is unchanged (trap in the
local attractors).

[10] applied the SIBSSD algorithm to search for supersaturated designs under
E(s2) criterion. Most supersaturated designs generated in SIBSSD algorithm
reached its theoretical lower bound E(s2) values; that is to say, they were E(s2)
optimal. [10] further explored the construction to optimal supersaturated designs
under Df criteria for various values of f .

3 SIBCPHM: A SIB Algorithm for Searching Circulant
Partial Hadamard Matrix

It is obvious that the optimized target, i.e. the generating vector, is not contin-
uous and thus many natural heuristic algorithms like PSO cannot be directly
applicable for finding optimal circulant partial Hadamard matrix. The search
space is a large set of entries comprising of ±1 and the optimization problem is
to select a right combination of n entries for the generating vector. To achieve
this goal, we apply the SIB algorithm and redefine the update operation in Ta-
ble 1, and named the procedure SIBCPHM (Swarm Intelligence Based Circulant
Partial Hadamard Matrix) algorithm in the rest of the paper. The SIBCPHM
algorithm shares some common features with the SIBSSD algorithm, except a
major difference in the MOVE operation that will be mentioned below.

Prior to the start of SIBCPHM, users are required to enter some parameters,
which include matrix-related parameters (r; n) and SIB-related parameters (N ,
number of seeds; t, number of maximum iteration; qLB, LB exchange rate; qGB,
GB exchange rate). The initial steps (Steps 1 to 4) can be viewed as the zeroth

iteration of SIBCPHM. It starts with N vectors of length n that are created
randomly, and the number of + and − in each vector differ by r. Users also need
to input t as a stopping criterion. It is not mandatory for the users to input two
exchange rates, because qLB = �n/3� and qGB = �qLB/2� are set as default.
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Table 1. SIBCPHM Algorithm

1: Randomly generate N vectors of length n as initial particles
2: Evaluate the maximum value of k of each vector
3: Initialize the LB for all vectors
4: Initialize the GB
5: while not converge do
6: Update each vector via MOVE operation
7: Evaluate the maximum value of k of each vector
8: Update the LB for all vectors
9: Update the GB
10: end while

There is no theoretical reason behind such settings, but it is our experience and
observation from simulation results in [10] that these settings work quite well.
However, if there are some prior information of optimal settings on exchanging
rates from professional opinion, users can manually overwrite these rates.

Following the initialization step, the first iteration starts from the while-loop
in Table 1. First, SIBCPHM performs MOVE operation on each vector, which
is to update each vector by exchanging some entries with its LB and the GB.
More explicitly, there are two intermediate vectors forming in this step. The
first intermediate vector is formed via copying qLB entries to the corresponding
entries of the vectors from its LB, and the second intermediate vector is formed
similarly from the GB. Among the original vector and two intermediate vectors,
MOVE selects the vector that leads to the highest k and the selection is viewed
as an update.

In order to further enhance the efficiency during the exchange, the selection
of entries that used to be exchanged is not random. Prior to the selection, there
is a detection on the difference between the original vector and the LB or GB
vector. These locations of different entries are then ranked according to the
impact on the value of k. The first qLB or qGB entries with the highest value
of k are exchanged. Such procedure ensures that the exchange leads to the best
possible result. One may wonder how MOVE avoids the vectors being trapped
in local attractors. In fact, if the two intermediate vectors are not better than
the original vector, MOVE will generate a new vector to restart. In other words,
the restart not only allows the vector to jump out from the local attractor, but
also to explore more search space.

Following the MOVE operation in each iteration, the maximum values of k
of each vector are evaluated again and are compared to those of their individual
LB. For some vectors with better maximum k values, their individual LBs are
updated. Then the best LB among all is compared to the GB and the GB is
updated when the best LB has a higher maximum k value.

The whole SIBCPHM terminates in two conditions. The first condition is
when the maximum value of k attains its best possible value. Some of these
upper bounds can be found in Table 1 of [3]. The second condition is when
the number of iteration reaches t. Once SIBCPHM is stopped, the GB is the
generating vector suggested via SIBCPHM.
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4 Search Results

The search results of using SIBCPHM are listed in Table 2. The first two columns
are the length of the generating vector (or column number of the matrix) and the
difference between the numbers of + and −. The third column is the maximum
k values obtained from Table 1 of [3], and all the listed results achieved their
upper bounds.

Table 2. Results from SIBCPHM

n r max k Generating Vector

8 0 3 (−−−+−+++)
8 2 4 (−−−−++−+)
12 0 5 (−−−−++−+++−+)
12 2 6 (−−−−+−−+++−+)
16 0 7 (−−−−+−−+−+++−+++)
16 2 8 (−−−−−+−−+++−+−++)
20 0 7 (−−−−−+−+−++−−++++−++)
20 2 10 (−−−−+−−−+−++++−−++−+)
24 0 9 (−−−−+−−+−−−++++−+−+++−++)
24 2 12 (−−−−−+++−++−+−+++−−−+−−+)
28 0 9 (−−−−−−+−+−++−−+++++−−++−+−++)
28 2 14 (−−−−−+−+−−−++−++++−−+−+++−−+)
32 0 12 (−−−−−+−+−−−++−+++−++++−−−++−++−+)
32 2 14 (−−−−−+++−+++−−+−++++−−+−+−−−+−−+)

The last column is the resulting generating vectors. Notice that these vectors
are being cycled so that the longest consecutive − is located in the front. For
example, for the first case n = 8 and r = 0, SIBCPHM may return a generating
vector (+ + + − − − +−) and it is trivial that this result is equivalent to the
one in the table after three-entry left-shifts. Furthermore, it is also clear that
once a generating vector is obtained, any vectors resulted from shifts are still
generating vectors for the circulant partial Hadamard matrix of the same size.
We list these generating vectors with the longest consecutive − at the front in
Table 2, because it looks neat. What is more, it will return the smallest values of
decimal counterpart if we treat these vectors as binary codes, which is a common
abbreviation method in the field of experimental designs.

This table provides the results only from n = 8 to n = 32 because the vectors
become too long for larger n. In fact, we have successfully obtained the generating
vectors up to n = 52 for r = 0 and n = 76 for r = 2. For r = 0, our result is the
largest definitive result reported in [3]; however, this result came up only after
a few hours’ search. For r = 2, our result has gone much further than what [3]
has reported in their Table 1. Results for large n are available upon request from
the first author.

Moreover, we only report the cases of r = 0 and r = 2 in this paper, but
there are other settings r > 2 shown in [3] that we do not report here. First,
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notice that [3] has derived some theoretical results from very large r but we are
not interested in repeating the known results. For the case of r = 0, this class
is considered as balanced designs in the field of experimental designs and thus
it is highly compelling. For the case of r = 2, this class possesses maximum
k among all different r values. In other words, this class of matrix is able to
generate experimental designs with maximum number of two-level factors which
are uncorrelated when experiments are analyzed. It is true that there are also
some r = 4 cases with equivalently maximum k, such as n = 12 (generating
vector: (− − − − + − − − + − ++)) and n = 28 (generating vector: (− − − −
− + − + + − + + − − + + + − + + + + − + − + ++)). Although we do not
report the results in the table, users can still use SIBCPHM to search for their
desired cases of r.

5 Discussion and Conclusion

This paper introduces a new SIB algorithm for searching generating vectors,
which are the building blocks of circulant partial Hadamard matrices. Due to the
discrete nature of the generating vectors, most natural heuristic algorithms fail
to be applied. Therefore, we consider a SIB algorithm and introduce SIBCPHM.
SIBCPHM consists of a MOVE operation that selects the best outcome among
the original vector and two intermediate vectors associated with the LB and GB.
This MOVE operation also includes a mechanism that is able to avoid trapping
in a local attractor.

We apply SIBCPHM to search for generating vectors of different n and r, and
the resulting vectors are reported in Table 2. It is obvious that all our results
successfully attain the upper bound k reported in [3], and even better, SIBCPHM
is computationally efficient enough to go further for larger n.

In fact, the idea of SIBCPHM is similar to SIBSSD in [10]. They both consist
of the MOVE operation for decision making and exchange some discrete com-
ponents in the MOVE operation. However, one major distinction between them
is on the nature of their discrete components. SIBSSD treats the column index
as a component. The search space increases exponentially when the dimension
increases, but also lowers the search power. On the other hand, SIBCPHM treats
the entry of a vector (column) as a component. Since there are only two choices
(±1 ) for two-level designs or binary matrices, the size of the search space is
acceptable even when the dimension is large. Such difference between two SIB
algorithms mainly comes from the prior knowledge on the structure of the target.
For SIBCPHM, despite the fact that we have some basic knowledge on the struc-
ture of circulant partial Hadamard matrices, we can only utilize it and search
for its generating vectors. For SIBSSD, the general structure of supersaturated
designs (without specific constraints) is unknown, so we allow each particle to
go over the whole potential design space.

This work can be extended to the search of many other classes of matrices
and designs. For example, one may slightly modify SIBCPHM to search for D-
optimal factorial designs with a defined dimension, or an orthogonal array with
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a defined dimension and a given strength. In addition, our current program is
written in R and without parallel computing. One may consider using parallel
computing with Graphics Parallel Units (GPUs). The resulting program is cer-
tainly much more powerful than ours and more likely to come up with results of
very large n within hours.
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Abstract. Travelling Salesman Problem (TSP) is a classical combinatorial 
optimization problem. This problem is NP-hard in nature and is well suited for 
evaluation of unconventional algorithmic approaches based on natural 
computation. Ant Colony Optimization (ACO) technique is one of the popular 
unconventional optimization technique to solve this problem. In this paper, we 
propose High Performance Ant Colony Optimizer (HPACO) which modifies 
conventional ACO. The result of implementation shows that our proposed 
technique has a better performance than the conventional ACO. 

Keywords: Travelling Salesman Problem (TSP), Ant Colony Optimization 
(ACO), Combinatorial Optimization (CO), Pheromone, Meta-heuristics. 

1 Introduction 

Travelling Salesman Problem, which is NP Hard in nature, is an open question to the 
researchers to solve in polynomial time. This kind of NP-hard problem can be solved 
by bio-inspired optimization techniques. Bio-inspired computations are the 
computational systems that take inspiration from nature. These bio-inspired 
techniques include artificial neural networks, genetic algorithms, ant colony 
optimization, artificial life, DNA computing, etc. Jing Zhang [1] made a survey of 
natural computation for TSP and concluded that ACO is a good performer. Li Wang 
[2] shows how Ant Colony Algorithm (ACA) can  be used in Neural Network based 
Optimal Method to facilitate distributed computation, and positive feedback. Marco 
Dorigo [3][4] gave an overview of ACO meta-heuristic inspired by the foraging 
behavior of real ant. According to many other research works, ACO is widely used 
for solving complex combinatorial problems [16][17] as it is the most solution 
specific, goal driven, efficient technique. We have incorporated a new idea in the 
movement of the ants. Instead of single ant moving randomly, we have considered 
ants as a group, and applied the effect of group updation on the edges of TSP graph. 
The local update and global update procedures are modified to influence the whole 
search procedure. 
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The remainder of this paper is organized as follows: In section 2 we have discussed 
the literature review and the problem definition .Section 3 describes the 
implementation methodology. Section 4 deals with and results and discussions and 
finally the conclusions are drawn and scope of future study are discussed in Section 6. 

2 Literature Review and Problem Definition 

In TSP a list of cities and their pair-wise distances are given, and the goal is to find 
the shortest route that visits each city once and returns to its original city [9]. The 
most direct solutions try all permutations to check which one is cheapest (using brute 
force search) having  time complexity of O (n!), the factorial of the number of cities. 
So direct solution becomes impractical even for only 20 cities. One of the earliest 
applications of dynamic programming is the Held–Karp algorithm [18] that solves the 
problem in time O (n22n). Using inclusion–exclusion [19], the problem can be solved 
in time within a polynomial factor of 2n and polynomial space. Though a lot of 
researches have been produced over the years but no perfect algorithm has been 
devised so far. ACO is one of the popular unconventional optimization techniques to 
solve TSP. So, we have chosen TSP to validate our proposed High Performance Ant 
Colony Optimizer. According to research works [20][21]and[22] ACO is widely used 
for solving complex combinatorial problems as it is the most solution specific, goal 
driven, efficient technique. 

ACS (Ant Colony System) has limitation of the initialization of early stage 
pheromone and poor convergence speed for the shortest path. The updations (local + 
global) of ACS [4] are responsible to increase the pheromone level in the suitable 
path for early convergence which ultimately enhances the performance. So, proper 
updation is one of the factors for achieving convergence speed towards the goal. 

We have designed High Performance Ant Colony Optimizer by modifying the 
pheromone update procedure and considered three key parameters for our design: (i) 
the number of computations for the convergence process, (ii) the number of iterations 
and (iii) the number redundant states.  

3 Methodology 

Out of the main ACO algorithms presented in the literatures: Ant System (AS) [6], 
Ant-Q system[8] , ant colony system (ACS)[4] , max–min ant system (MMAS)[5] , 
rank-based ant system (AS rank)[7], we have chosen Ant Colony System (ACS) for 
it’s satisfactory implementation and rich updation procedures i.e. local updation to 
diversify the search and global updation to achieve the global best path. 

In the conventional ACS, Local Update procedure is governed by the Equation 
(1) and Global Update procedure is governed by Equation (2) as follows: 

τij = (1 -  ϕ). τij + ϕ . τ0 .    (1) 
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Where  τij   = updated pheromone value on (i,j) edge by an ant. 
 τ0 =   initial pheromone value;  ϕ = pheromone decay.     

τij = (1- ρ). τij + ∑m
k=1 ∆τk

ij .     (2) 

Where ∆τk
ij  is equal to 1/Lk if (i , j) belong to tour otherwise zero and ρ = pheromone 

evaporation. 
We have modified the formulae for group local update as in Equation (iii) and global 
update as Equation (iv)  shown below: 

τij(next) = (1-ϕn )τij(current) + (1- ϕn ) τ0 .      (3) 

τij = τij +b*[(1- ρ). τij + ∑m
k=1 ∆τk

ij ] .   (4) 

Where ϕ= 0.5 and  ∆τk
ij  is equal to Q/Lk if (i , j) belong to tour otherwise zero. 

Q and b are two constants, those influence the pheromone increasing factor.   
The working methodology of our proposed HPACO is to first select the start node 

and searches for the adjacency nodes. The probabilities to visit each edge by the 
number of ants are calculated depending on their pheromone values and 
corresponding edges are locally updated. And same process is continued till the 
destination node is reached.  Paths traced by each ants are then stored in path matrix. 
If a better path is found then replace with higher path value if path matrix is full. After 
exploring all promising possible paths, global update is performed on the minimum 
weighted path and the process is continued till all the ants flow through the minimum 
weighted path. 

4 Results and Discussions 

In this section, an example with 5 node TSP for the study of nature of convergence, a 
comparison between conventional ACO and HPACO for 5 to 9 nodes and test up to 
101 nodes along with comparisons with other standard approaches  for the standard 
instances from the TSP Library are discussed in Section 4.1 ,4.2 and 4.3 respectively. 

4.1 Implementation of the High Performance Ant Colony Optimizer 
(HPACO) for Travelling Salesman Problem Example 

The implementation was done on Intel Core 2 Duo Processor T 5750 (2 GHz) 
machine with 2 GB RAM on Windows7 Professional 32 bit operating system in C 
language. In Figure 1, a small TSP problem with 5 nodes is presented to show the 
visual effect of path wise convergence in each iteration. The HPACO is applied to it 
for finding the shortest optimal tour containing all nodes. Nodes are representing 
cities and the weights are representing distance between two cities. At starting n 
(n=100) number of ants are initialized at the source node (node 0). 
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Fig. 1. An example TSP graph (Graph 1) with 5 nodes 

The distance between two nodes is considered as the parameter for initial artificial 
pheromone with a relation of inversely proportional order. Initial pheromone ηij = 
1/δij. δij is the distance between node i and j; also the cost of edge i j.  

A summary of all the iterations to show how the number of ants vary path wise in 
each iteration are shown in Table 1 below. 

Table 1. Iteration wise convergence of ants with path length 

iterations  1st 2nd 3rd 4th 5th 6th 7th  
Paths Weights Ants Ants Ants Ants Ants Ants Ants 
0->4->3->2->1->0 21 3 x x x x x x 
0->4->3->1->2->0 28 1 x x x x x x 
0->4->2->3->1->0 20 4 x x x x x x 
0->4->2->1->3->0 25 1 x x x x x x 
0->4->1->3->2->0 24 3 0 1 x x x x 
0->4->1->2->3->0 22 2 2 1 1 x x x 
0->3->4->2->1->0 19 4 x x x x x x 
0->3->4->1->2->0 23 2 3 1 1 x x x 
0->3->2->4->1->0 15 11 73 87 93  97 99 100 
0->3->2->1->4->0 22 5 3 1 1 x x x 
0->3->1->4->2->0 22 3 1 1 x x x x 
0->3->1->2->4->0 25 2 1 x x x x x 
0->2->4->3->1->0 21 3 x x x x x x 
0->2->4->1->3->0 22 3 5 3 1 1 x x 
0->2->3->4->1->0 18 6 1 x x x x x 
0->2->3->1->4->0 24 4 x x x x x x 
0->2->1->4->3->0 23 2 x x x x x x 
0->2->1->3->4->0 28 1 x x x x x x 
0->1->4->3->2->0 18 6 1 1 x x x x 
0->1->4->2->3->0 15  10 2 1 1 x x x 
0->1->3->4->2->0 21 3 x x x x x x 
0->1->3->2->4->0 20 8 3 2 1 1 x x 
0->1->2->4->3->0 19 5 4 2 1 1 1 x 
0->1->2->3->4->0 21 8 x x x x x x 
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Fig. 3. Overall Iteration wise Comparison of 
HPACO and Conventional ACS 

 

Fig. 4. Comparison of ACS and Proposed 
HPACO on execution time 

It is evident that, the modifications discussed in our proposed approach exhibits a 
good performance than the conventional ACS as per the simulation results. 

4.3 Comparison of HPACO with other Approaches on Standard TSP 
Instances from TSP Library 

Proposed HPACO have been applied on different standard problems from TSP library 
to check the optimality of the proposed algorithm. Performance of our proposed 
HPACO is compared with the performance of other naturally inspired optimization 
methods: Ant Colony System (ACS), Genetic Algorithm (GA), Hybrid GA (HGA), 
Evolutionary Programming (EP) and by Simulated Annealing (SA) as shown in Table 
3 below and found satisfactory.  

Table 3. Comparison of Proposed HPACO for standard instances of TSP 

 
 

Numerical experiments were executed with HPACO, whereas the performance 
figures for the other algorithms were taken from the literature.Results using EP are 
from [9] and those using GA are from [10] for KroA100 and [11]  for Oliver30, 
Eil50, and Eil75. Results using SA are from [12]. Oliver30 is from [13], Eil50, Eil75 
are from [14], ACS results are taken from (Ant colonies for the travelling salesman 
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problem, TR/IRIDIA/1996-3, Université Libre de Bruxelles, Belgium, pp1-10) and 
the results of Hybrid GA are taken from[15].  A graphical representation for the 
performance of our HPACO against other techniques on different standard TSP 
instances Oliver30, Att48, Berlin 52, Eil50, Eil51, Eil75, Eil76, Eil101 and KroA100 
are shown in Fig 5. 

 

Fig. 5. Graphical representation for standard TSP instances along with proposed HPACO vs. 
tour length 

5 Conclusion and Future Scope 

Our proposed High Performance Ant Colony Optimizer technique is capable to 
converge towards goal earlier than conventional ACS as well as consumes less 
number of iterations. It is also observed our proposed algorithm is able to achieve the 
so far known results from the TSP Library TSPLIB: http://www.iwr.uni-heidelberg.de 
/iwr/comopt/soft/TSPLIB95/TSPLIB.html. By modifying the pheromone updation 
procedure, we have achieved a better performance than conventional ACS. HPACO 
can be applied on various applications like: job scheduling problem, time scheduling 
problem, multicasting, sequential ordering problem, resource constraint project-
scheduling problem, open-shop scheduling problem, etc. 
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Abstract. The solutions to Traveling Salesman Problem can be widely
applied in many real-world problems. Ant colony optimization algorithms
can provide an approximate solution to a Traveling Salesman Problem.
However, most ant colony optimization algorithms suffer premature con-
vergence and low convergence rate. With these observations in mind, a
novel ant colony system is proposed, which employs the unique feature of
critical tubes reserved in the Physaurm-inspired mathematical model. A
series of experiments are conducted, which are consolidated by two real-
world Traveling Salesman Problems. The experimental results show that
the proposed new ant colony system outperforms classical ant colony
system, genetic algorithm, and particle swarm optimization algorithm in
efficiency and robustness.

Keywords: Physarum-Inspired Mathematical Model, Real-World Trav-
eling Salesman Problem, Ant Colony System, Meta-Heuristic Algorithm.

1 Introduction

The problem of route design in the real world can be formulated as a Traveling
Salesman Problem (TSP). Designing an efficient approach to solve a TSP has
great practical significance. Recently, many meta-heuristic algorithms, such as
ant colony optimization (ACO) [1], particle swarm optimization (PSO) [2] and
genetic algorithm (GA) [3], have been proposed based on the swarm intelligence
for solving a TSP. In particular, ACO algorithms are originally designed and
have a long tradition in solving a TSP [1,4]. However, ACO algorithms suffer
premature convergence and stagnation in generally, and the convergence rate of
ACO algorithms are slow [5].

Currently, a unicellular and multi-headed slime mold, Physarum polycephalum,
shows an ability to form self-adaptive and high efficient networks in biological ex-
periments [6,7]. Moreover, Tero et al. [8] capture the positive feedback mechanism
of Physarum in foraging and build a mathematical model (PMM). The PMM ex-
hibits a unique feature of critical tubes reserved in the process of network evolution.
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Taking advantage of this feature, Zhang et al. [9,10] have proposed an optimization
strategy for updating the pheromone matrix in ACO algorithms.

For promoting Zhang’s work, this paper devotes to answer two questions: 1)
Whether the performance of the optimized ACO algorithms based on the PMM,
denoted as PMACO algorithms, is better than other meta-heuristic algorithms
(e.g., PSO and GA) for solving a TSP? 2) Whether PMACO algorithms can
solve the real-world TSP?

The organization of this paper is as follows. Section 2 introduces the formula-
tion and measurements of the real-world TSP. Section 3 presents the basic idea
of the optimization strategy for ant colony system (ACS). Section 4 formulates
two real-world TSPs and provides comparable results of different algorithms.
Section 5 concludes this paper.

2 Problem Statement

In the real world, when people plan to visit several cities, they tend to choose the
most economical route. That is, to determine an access-order in which each city
should be visited exactly once, and the total distance is minimal. This problem
can be formulated as a classical TSP by the following description.

For a complete weighted graph G = (V,E), let nodes V = {v1, v2, ..., vn}
represent the geographical locations of n cities, and edges E = {(vi, vj)|vi, vj ∈
V, vi �= vj} represent the set of roads. The distance between two cities vi and
vj can be denoted as d(vi, vj). Then, TSP solution algorithms can be used to
find the shortest Hamiltonian circuit x, which will be the optimal route in the
real world. The length of x, denoted as Smin, is shown in Eq. (1), where vx(i)
represents the ith city in the Hamiltonian circuit x, and vx(i) ∈ V .

Smin = min(

n−1∑

i=1

d(vx(i), vx(i+1)) + d(vx(n), vx(1))) (1)

In order to evaluate the performance of TSP solution algorithms, some mea-
surements are defined as follows:

1. Smin stands for the optimal solution to a TSP, which is the length of the
shortest Hamiltonian circuit calculated by an algorithm.

2. Saverage and Svariance stand for the average value and the variance of results
to a TSP, respectively. They are obtained after C times computation repeat-

edly, such as Saverage is calculated as
∑C

i=1 S
i,steps(k)
min /C, where S

i,steps(k)
min

represents the optimal solution in the kth step for the ith time.

3 The Physarum-Based Ant Colony System

The novel ACS algorithm, denoted as PM-ACS (one of the typical PMACO al-
gorithms), proposes an optimization strategy for updating the global pheromone
matrix in ACS based on the PMM [9,10]. In the PM-ACS-based TSP, they as-
sume that there is a Physarum network with pheromone flows in tubes. Food
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sources and tubes of the Physarum network represent cities and roads connecting
two different cities, respectively. After each iteration of ant colony, the amount of
pheromone in each tube of the Physarum network can be calculated. When up-
dating the global pheromone matrix, PM-ACS considers both of the pheromone
released by ants and the flowing pheromone in the Physarum network.

Formally, in PM-ACS, the global pheromone matrix updating rule in ACS
is optimized by appending the amount of flowing pheromone in the Physarum
network. As shown in Eq. (2), the first two terms come from ACS and the last
one is newly added based on the PMM.

τij ← [(1− ρ) τij +
ρ

Sglobal−best
] + ε

Qij ×M

I0
, ∀ (i, j) ∈ Sglobal−best (2)

where

ε = 1− 1

1 + λ
Psteps

2 −(t+1)
(3)

Qij =
1

M

M∑

m=1

∣
∣
∣
∣
Dij

Lij

(
pmi − pmj

)
∣
∣
∣
∣ (4)

In Eq. (2), ε is defined as an impact factor to measure the effect of flowing
pheromone in the Physarum network on the final pheromone matrix. As shown
in Eq. (3), Psteps stands for the total steps of iteration affected by the PMM, t
is the steps of iteration at present, and λ ∈ (1, 1.2). M represents the number of
roads in a TSP. I0 represents the fixed flux flowing in the Physarum network.

In one iteration of the PMM, each pair of nodes connected by a tube has an
opportunity to be selected as inlet/outlet. When two nodes a and b connected
by the mth tube are selected as inlet and outlet nodes, respectively, the pressure
on each node pmi can be calculated according to the Kirchhoff Law based on
Eq. (5).

∑

i

Dij

Lij

(
pmi − pmj

)
=

⎧
⎨

⎩

−I0 for j = a
I0 for j = b
0 otherwise

(5)

where Lij is the length of the tube (i, j), Dij is defined as a measure of the
conductivity, which is related to the thickness of the tube.

The above process is repeated until all pairs of nodes in each tube are selected
as inlet/outlet nodes once. Then, the flux Qij through the tube (i, j) is calculated
based on Eq. (4). As the iteration goes on, the conductivity of a tube adapts
according to the flux based on Eq. (6). Then, the conductivities at the next
iteration step will be fed back to Eq. (5), and the flux will be updated based
on Eq. (4). Based on the positive feedback mechanism between the conductivity
and the flux, the shorter tubes, which we called critical tubes, will become wider
and be reserved in the process of network evolution. While, other longer tubes
will become narrower and finally disappear.

dDij

dt
=

|Qij |
1 + |Qij | −Dij (6)
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Algorithm 1 presents steps of PM-ACS for solving a TSP. The meaning of
each parameter can be seen in Table 1.

Algorithm 1. The Physarum-Based Ant Colony System (PM-ACS)

1: Initialize parameter α, β, ρ, s, q0, λ, I0, Psteps and Tsteps
2: Initialize pheromone trail τ0 and conductivity of each tube Dij

3: Set the iteration counter N := 0
4: while N < Tsteps do
5: for k := 1 to s do
6: Construct a tour by ant k
7: Update the local pheromone matrix
8: end for
9: best := find the global best ant
10: Smin := the length of the tour generated by ant best
11: Calculate the flowing pheromone in the Physarum network
12: Update the global pheromone matrix
13: N := N + 1
14: end while
15: Output the optimal solution Smin

4 Experimental Results

4.1 Benchmark Datasets

Two benchmark datasets, eil51 and eil76, are downloaded from the website
TSPLIB1. All experiments are undertaken in the same experimental environ-
ment. The main parameters and their values are listed in Table 1. All results in
our experiments are averaged over 50 times.

Table 1. Main parameters and their values used in this paper

Parameter Explanation Value
α The relative importance of the pheromone trail 1
β The relative importance of the heuristic information 2
ρ The pheromone evaporation rate 0.8
s The number of ants the number of cities
q0 A predefined parameter between 0 and 1 0.1
λ A parameter determined the value of ε 1.05
I0 The fixed flux flowing in the Physarum network 20
Psteps The total steps of iteration affected by the PMM 300
Tsteps The total steps of iteration 300
τ0 The initial amount of pheromone in each road 1
Dij The initial value of the conductivity of each tube 1

Figure 1 shows that Smin and Saverage of PM-ACS are the minimum compared
with ACS, PSO and GA. It means that PM-ACS has the strongest ability to

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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exploit the optimal solution. Furthermore, Svariance of PM-ACS is the lowest of
the four algorithms, which means that PM-ACS has the strongest robustness.

480

560

640

SvarianceSaverage

V
al

ue
s

Measurements

 PM-ACS
 ACS
 PSO
 GA

Smin
10

20

30

40

V
al

ue
s

 
(a)

500

750

1000

1250

V
al

ue
s

Measurements
SvarianceSaverageSmin

V
al

ue
s

 PM-ACS
 ACS
 PSO
 GA

30

45

60

75

 

(b)

Fig. 1. The efficiency comparison among PM-ACS, ACS, PSO and GA in benchmark
datasets: (a) eil51 and (b) eil76

4.2 Empirical Studies

In this section, we consider two real scenarios: How travelers plan their trips to
visit 17 prefecture-level cities in Sichuan province and 34 cities in China with
the lowest cost.

4.2.1 Formulation of Datasets
First, the latitude and longitude of each city can be extracted from Google Maps.
Second, the distance (DAB) between cities A and B is defined as the spherical
distance, which can be calculated based on Eq. (7) [11]. Let latA and lngA
represent the latitude and longitude of city A, respectively. Then ϕA = latA ×
π/180 represents the radian of the latitude of city A, and λA = lngA × π/180
represents the radian of the longitude of city A. R0 is the radius of earth, π is a
symbol in the mathematics, and we set R0 = 6378.1370, π = 3.1416.

DAB = 2R0 arcsin

(√

sin2(
ϕA − ϕB

2
) + cos(ϕA)cos(ϕB)sin2(

λA − λB

2
)

)

(7)

4.2.2 Results
Two real-world TSPs are solved by PM-ACS, ACS, PSO and GA, respectively,
and values of parameters are the same as Section 4.1. Fig. 2(a) shows that,
the four algorithms all can find the optimal solution (Smin = 1445.32) of 17
prefecture-level cities in Sichuan province, while the average value (Saverage)
and variance (Svariance) of the results calculated by PM-ACS are better than
ACS, PSO and GA. The advantage of PM-ACS is more obvious in Fig. 2(b),
where Smin, Saverage and Svariance of PM-ACS are all better than ACS, PSO
and GA. In particular, Fig. 3 illustrates the optimal tour found by PM-ACS for
34 cities’ TSP in China.

What’s more, Fig. 4(a) and Fig. 4(b) plot the convergent process of Saverage

and Svariance with the increment of iterative steps of PM-ACS, ACS, PSO and
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Fig. 2. The results calculated by PM-ACS, ACS, PSO and GA for solving (a) 17
prefecture-level cities in Sichuan province and (b) 34 cities in China

GA for solving the 34 cities’ TSP in China, respectively. Fig. 4(a) shows that
Saverage of PM-ACS or ACS decreases more obviously than PSO and GA. Spe-
cially, in the earlier iteration, the gap of Saverage between PM-ACS and ACS
is little. With the increment of steps, Saverage of PM-ACS is better than ACS.
The convergent process of Svariance in Fig. 4(b) also shows that PM-ACS has
the strongest robustness compared with ACS, PSO and GA.

Fig. 3. The illustration of the optimal solution to 34 cities’ TSP in China
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Fig. 4. The results calculated by PM-ACS, ACS, PSO and GA for solving the 34 cities’
TSP in China: (a) Saverage and (b) Svariance

5 Conclusion

In this paper, we present and estimate a Physarum-based ACS (i.e., PM-ACS)
that employs the unique feature of critical tubes reserved in the process of net-
work evolution of the PMM. The PM-ACS can enhance the amount of pheromone
in critical roads and promote the exploitation of the optimal solution. In or-
der to estimate the efficiency of the optimization strategy for solving a TSP,
we compare PM-ACS with traditional meta-heuristic algorithms in benchmark
networks. Specially, two real-world TSPs are consolidated for showing the per-
formance of the optimization strategy. Experimental results validate that the
optimization strategy is efficient in improving the search ability and robustness
of ACO algorithms for solving a TSP.
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Abstract. To solve a travelling salesman problem by evolutionary algorithms, a
challenging issue is how to identify promising edges that are in the global opti-
mum. The paper aims to provide solutions to improve existing algorithms and to
help researchers to develop new algorithms, by considering such a challenging
issue. In this paper, three heuristic strategies are proposed for population based
algorithms. The three strategies, which are based on statistical information of
population, the knowledge of minimum spanning tree, and the distance between
nodes, respectively, are used to guide the search of a population. The three strate-
gies are applied to three existing algorithms and tested on a set of problems. The
results show that the algorithms with heuristic search perform better than the
originals.

Keywords: Heuristic Strategies, Evolutionary Algorithms, Travelling Salesman
Problem.

1 Introduction

Although many population based approaches have been proposed to travelling sales-
man problem (TSP), most of them focus on specific techniques. They are hardly to be
abstracted to a general framework to guide algorithm design. To effectively solve TSP
by population based algorithms, a challenging issue is how to identify links/edges that
belong to the global optimum during the search process. This paper proposes several
general methods to obtain useful information to guide the search of an algorithm. In
this paper, three heuristic strategies are proposed. The first strategy is to use the statis-
tical information of a population: for a specific node, the probability of its “next“ city
is calculated based on the population. The second is to use the knowledge of minimum
spanning tree (MST). Experimental results show that links of MST have a very large
probability of belonging to the global optimum. The third is to use distance knowledge
between nodes where relatively short links have a large probability of being the links
in the global optimum. We employ the three strategies to generate three probability
matrices to guide the search. The three heuristic strategies are implemented to three ex-
isting algorithms. Experimental results show that significant improvement is obtained
by using these strategies in comparison with the original algorithms.
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The paper is organized as follows. Section 2 introduces related algorithms for solv-
ing TSP. Section 3 provides the detailed description of the proposed strategies and
Section 4 presents the experiment results and discussions. Finally, conclusions are given
in Section 5.

2 Related Work for TSP

In the literature of evolutionary computation for TSP, population based algorithms are
one of the major research areas. Many operators and strategies have been proposed to
address this problem. In the research, some researchers found that the quality of indi-
vidual solutions in the initial population plays a critical role in determining the quality
of the final solution [1]. The method that randomly initializes a population is simple
and makes the initial population with good diversity. However, its whole population
contains many individuals with bad quality, infeasible solutions sometimes [2]. Meth-
ods with a random initial population require a large amount of time to find an optimal
solution. Thus, several approaches were proposed to address this issue the claim [1,2].

Nearest neighbor (NN) tour construction heuristic is one of the alternatives for ran-
dom population seeding in GA, particularly for TSP [3][4]. In the NN technique, indi-
viduals in the population seeding are constructed with the nearest city to the current city
and such good individuals can refine the subsequent search in the next generation [3].
Though NN works fine, it suffers some critical issues: Several cities are not included
in the individuals created initially and have to be inserted at high costs in the end; Ne-
glecting several cities at the population seeding stage leads to severe errors in optimal
solution construction and the population diversity is very poor.

Wei et al. [5] proposed a greedy GA (GGA), in which the population seeding is per-
formed using a gene bank (GB). The GB is built by assembling the permutation of n
cities based on their distance. In GGA, the population is generated from the GB such
that the individuals are of above-average fitness and short length. In GGA, the increase
in the number of cities leads to augmented problem complexity and performance degra-
dation. Moreover, a large collection of GB individuals enlarges the cost of computation
at each generation. The improved performance of GGA is justified using TSP with a
maximum of hundreds cities.

As we mentioned above, the population has very useful information. In fact, heuristic
algorithms, e.g., Inverover (GuoTao) algorithm [6] utilizes the information of the popu-
lation to guide the convergence of population. The inver-over operator has the character-
istics of both crossover and mutation. The part of crossover depends on the population.
If some edges have a larger frequency appearing among individuals, they will have a
higher probability to be generated by inverse operation in the current individual. This
indicates that the information of population is important.

3 Heuristic Strategies for TSP

In this section, we will introduce the three general strategies for population based algo-
rithms to identify promising links in detail. Each strategy generates a probability matrix
to guide the search of the population. To validate the effectiveness of the proposed
strategies, they are implemented into three existing population based algorithms.
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Table 1. The percentage of edges that belong to the global optimum in MST and between near
cities

Instance MST
The number of the nearest cities

Instance MST
The number of the nearest cities

1 2 3 4 5 1 2 3 4 5
KROA100 0.768 0.59 0.79 0.87 0.95 0.99 EIL76 0.72 0.579 0.895 0.934 0.987 0.987

EIL101 0.73 0.564 0.861 1 1 1 CH130 0.736 0.554 0.808 0.885 0.923 0.962
CH150 0.765 0.587 0.847 0.933 0.973 0.987 PR76 0.733 0.605 0.829 0.934 0.947 0.974
LIN105 0.779 0.619 0.8 0.857 0.933 0.962 TSP225 0.799 0.587 0.84 0.947 0.964 0.982

3.1 Three Heuristic Strategies

Strategy Based on Topology. An edge between two near cities in geographic space
usually has a larger probability of being in the global optimum than those edges between
two cities that are far away from each other. The second and fifth columns in Table 1
present percentages of edges between different numbers of nearest cities on eight TSP
instances. From the table, it can be seen that more than half of edges in the global
optimum are those edges between two nearest cities. The percentage almost increases
to 1 when the number of edges between nearest cities increases to five. Therefore, we
believe that this information is useful to guide the search of EAs. To implement the
idea, we built a probability matrix An∗n (n is the number of cities) according to the city
topology of a TSP instance. For a given city i, the nearer city j to i, the larger probability
it will be chosen as the next city of i. The Eq. (1) below is used to calculate element
aij in A, where costij indicates the distance from node i to node j and n is the number
of nodes. Fig. 1 shows a TSP instance with five nodes and distances between nodes,
where a02 can be obtained by a02 = 1/22/(1/22 + 1/42 + 1/62 + 1/102) = 0.714.
The probability matrix A is shown in Fig. 2.

Strategy Based on MST. The first and forth columns in Table 1 present the percentages
of edges of MST that belong to the global optimum on eight TSP instances. From the
results, more than 70 percent of edges of MST are in the global optima for all TSP cases.
The results indicate that the knowledge of MST is also useful. Fig. 3 presents one MST
of the TSP example in Fig. 1. To build a probability matrix A with the knowledge of
MST, links connected to city i are equally treated, i.e., cities connected to city i have the
same probability to be selected. For example, cities 0, 1, and 4 have the same probability
(1/3) of being chosen as the next city of 2. The probability matrix A is shown in Fig. 4.
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Fig. 4. Probability matrix A based on MST

Strategy Based on Population. Generally speaking, for an EA the population will
gradually improves as the evolutionary process goes on. The improvement of the pop-
ulation may contain two different aspects. Firstly, more good edges (those brings in
improvement) may appear in the population as the search goes on. Secondly, the same
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good edge may appear in more individuals. Based on this motivation, we count the
frequency of an edge that appears in the population. The larger frequency of an edge
denotes the more promising it is.

However, we cannot directly use this information to create a probability matrix. To
build a matrix A, we need to make some transformations. Intuitively, edges in better
individuals should be paid more attention than edges in worse individuals as better
individuals have shorter tour lengths than worse individuals. To achieve it, we assign an
individual a weight w, which relates to the fitness of that individual. For an individual i,
we use Eq. (2) to calculate its relative fitness f ′i , where lmax and lmin are the maximum
and minimum tour length in the population, respectively.

For an individual, to make a relationship between its relative fitness and its weight,
we adopted the Eq. (3), where α is a positive value. Eq. (3) indicates that the weight
value increases faster for a small fitness than a large fitness. Based on our experimental
results, we set α to 4 in this paper. Then, we could calculate element aij in A. To
achieve it, we sum the weights of all individuals, in which edge (i, j) is, then calculate
a normalized weight aij . For example, a population contains three individuals for the
instance in Fig.1, i.e., Individual 1: (0,1,2,3,4), tour length: 22; Individual 2: (0,2,3,4,1),
tour length: 21; Individual 3: (0,3,4,2,1), tour length: 20. Using Eq.(2) and Eq.(3), we
get w1=0.58, w2=0.87, and w3=0.96. Each element in matric A, e.g., a23, is calculated
by a23 = (w1 +w2)/(2 ∗ (w1 +w2 +w3)) = 0.3 (edge (2, 3) appearing in individuals
1 and 2). The probability matrix is shown in Fig. 5.

aij =
1

cost2ij ∗
∑n−1

j=0 (1/cost
2
ij)

, i, j = 0, 1, · · · , n− 1. (1)

f ′
i = (lmax − li + 1)/(lmax − lmin + 1) (2)

wi = 2 ∗ (1/(1 + e−α∗f ′
i ))− 1 (3)

0 1 2 3 4
0
⎡

⎢
⎢
⎢
⎢
⎣

0 0.5 0.18 0.2 0.12
⎤

⎥
⎥
⎥
⎥
⎦

1 0.5 0 0.32 0 0.18
2 0.18 0.32 0 0.3 0.2
3 0.2 0 0.3 0 0.5
4 0.12 0.18 0.2 0.5 0

Fig. 5. Probability matrix based on popula-
tion

3.2 Strategy Instantiation

In order to test the proposed strategies, we implemented them into three existing algo-
rithms: Inverover [6], PMX [7] and OX [8]. For consistency, algorithms with the three
strategies are named with suffixes of “MST”, “DIS” and “POP”, e.g., the algorithms of
OX and PMX with MST are named as OX MST and PMX MST, respectively. However,
to the algorithm of Inverover, it is named as IO MST.

For each individual, it starts from a random city and selects the next “suitable” city
either from remaining cities of that individual or from a random individual according
to a certain probability in the original Inverover algorithm. Here, to implement our
strategies into Inverover, we change the behavior of selecting the next city. The choice
of the next city is made according to the probability matrix A instead of the original rule.
Algorithm 1 shows Inverover with proposed strategies (see steps 8− 17 for procedures
to select the next city). The matrix A can be obtained by the three strategies depending
on the strategy to be used.
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Algorithm 1. Inverover with the proposed strategies
1. Random initialization of a population P with size of n;
2. while (not satisfied termination-condition) do
3. for (each individual Si ∈ P ) do
4. S′ = Si; select (randomly) a city i from S′;
5. loop
6. z ← 0; p = rand();
7. while (z < n− 1) do
8. if (p ≤ A′

i0) then j = 0; break; end if
9. if (p > A′

iz&&p ≤ A′
i(z+1)) then j = z + 1; break; end if

10. z ← z + 1; {a′
ij =

∑
aik, k = 0, 1, ..., j}

11. end while
12. if (the next city or the previous city of city i in S′ is j) then exit from the loop end if;
13. inverse the section from the next city of city i to the city j in S′; i = j;
14. end loop
15. if (eval(S′) ≤ eval(Si)) then Si = S′; end if
16. end for
17. end while

Table 2. Performance comparison between the proposed algorithms with the three strategies and
their original algorithms

Problem Algorithm Error R1 R2 S ratio Evals Algorithm Error R1 R2 S ratio Evals Algorithm Error R1 R2 S ratio Evals

CH150

Inverover 23.8∼±218 1 0.92 0.17 1287507 PMX 3691.8∼±8.2e5 0.43 0.43 0.00 5277534 OX 4572.8∼±2.2e5 1 0.36 0.00 31762522
IO DIS 130.9−±1.1e3 1 0.83 0.00 5429889 PMX DIS 1172.3+±1.7e4 1 0.68 0.00 22091533 OX DIS 500.6+±9.9e3 1 0.74 0.00 14887753
IO MST 1025.2−±9.1e3 0.92 0.73 0.00 416258 PMX MST 1379.0+±2.0e4 1 0.64 0.00 21625808 OX MST 764.8+±1.7e4 0.99 0.71 0.00 15361670
IO POP 11.0+±105 1 0.96 0.43 1000255 PMX POP 1278.9+±1.8e4 1 0.66 0.00 23839989 OX POP 686.9+±9.0e3 1 0.71 0.00 20228646

KROC100

Inverover 8.6∼±396 1 0.99 0.80 434672 PMX 6163.5∼±5.6e6 0.57 0.57 0.00 2325874 OX 13135.1∼±3.1e6 1 0.38 0.00 10143379
IO DIS 77.3−±2.4e3 1 0.93 0.03 1606946 PMX DIS 2332.9+±2.6e5 1 0.76 0.00 7605371 OX DIS 874.8+±6.8e4 1 0.81 0.00 4788670
IO MST 3148.4−±2.6e5 0.93 0.76 0.00 153784 PMX MST 2982.7+±2.1e5 1 0.71 0.00 7938812 OX MST 1532.2+±6.9e4 0.99 0.77 0.00 5653965
IO POP 0.0+±0 1 1 1.00 294982 PMX POP 2667.3+±1.7e5 1 0.72 0.00 8637833 OX POP 1308.1+±2.6e5 0.99 0.76 0.00 6750488

LIN105

Inverover 4.3∼±133 1 0.99 0.87 443622 PMX 4514.9∼±2.3e6 0.58 0.58 0.00 2670379 OX 9239.6∼±2.7e6 1 0.39 0.00 11653478
IO DIS 79.2−±2.4e3 1 0.93 0.03 1477190 PMX DIS 1800.9+±1.1e5 1 0.77 0.00 8650150 OX DIS 863.4+±3.8e4 1 0.85 0.00 5650738
IO MST 2545.2−±9.1e4 0.96 0.74 0.00 210998 PMX MST 2162.7+±1.2e5 0.99 0.72 0.00 6741161 OX MST 1452.7+±8.1e4 0.99 0.76 0.00 4739845
IO POP 0.0∼±0 1 1 1.00 323164 PMX POP 2014.9+±5.5e4 1 0.73 0.00 9596997 OX POP 888.2+±7.5e4 0.99 0.79 0.00 7998658

TSP225

Inverover 52.9∼±208 1 0.86 0.00 3278213 PMX 26491.0∼±1.1e6 0.72 0.04 0.00 963889 OX 3285.3∼±9.2e4 1 0.29 0.00 52586126
IO DIS 152.8−±469 1 0.77 0.00 15209708 PMX DIS 934.8+±8.6e3 1 0.63 0.00 61775716 OX DIS 445.2+±2.5e3 1 0.71 0.00 40209376
IO MST 694.7−±3.8e3 0.949 0.78 0.00 882910 PMX MST 1030.0+±1.5e4 1 0.66 0.00 52413648 OX MST 630.5+±2.3e3 1 0.75 0.00 32203187
IO POP 28.4+±103 1 0.89 0.00 2892760 PMX POP 966.3+±5.6e3 1 0.60 0.00 69385442 OX POP 651.3+±5.2e3 1 0.59 0.00 60258544

The PMX [7] and OX [8] operators generate two offspring starting with two sub-
tours selected from two parents. To embed the proposed strategies into these two algo-
rithms, we select one parent and generate one sub-tour in the way as follows. A city i
is randomly selected and chose the next city j according to the selection probability in
matrix A. This procedure repeat until the sub-tour makes a circle. Once the sub-tour is
obtained, we follow the same steps as PMX or OX to generate one offspring. Due to the
space limitation, the pseudo-code of the two algorithms with proposed strategies is not
provided.

4 Experimental Study

4.1 Experimental Settings

The parameter settings of the three algorithms are as follows. For algorithms in this
paper, the population size was set to 1.2 times of the number of nodes, α in Eq. (3)
was set to 4. Parents are directly replaced with their offspring if they are worse than
their offspring expect the original PMX algorithm. The original PMX algorithm selects
offsprings with the roulette wheel rule. The crossover probability is 0.9 for PMX and
OX.
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All results are averaged over 30 independent runs. A two-tailed t-test is performed
with a 95% confidence interval between the original algorithms and the ones with the
proposed strategies. +, -, and ∼ denote the results achieved by the proposed algorithms
are significantly better than, significantly worse than, and statistically equivalent to the
results obtained by the original algorithms, respectively.

4.2 Experimental Results

Table 2 presents the comparison between the proposed algorithms and their original
algorithms, where error is the tour length difference between the global optimum and
the best solution found by algorithms and the t test results are associated with the error
values, R1 and R2 are the percentage of the number of edges that belong to the global
optimum, in the population and in the best solution at the last iteration, respectively.
S ratio is the number of runs where the global optimum is found over the total number
of runs. Evals means the average number of fitness evaluations at the end of the run.

By observing Table 2, it can be seen that the error values achieved by IO POP are
significantly better than that of Inverover on most instances, especially in the cases of
KROC100 and LIN105 where IO POP finds the global optimum for each run. The cor-
responding number of fitness evaluations needed are also much smaller than that of
Inverover in all cases. For the other two strategies, the performance are much worse
than Inverover on the error values in all cases. This is because that Inverover is already
a heuristic algorithm, its performance will get worse if very strong heuristic informa-
tion is used, such as the strategies based on MST and problem topology. Take the MST
heuristic strategy as an example. For each node, only two options on average are avail-
able. If those edges are not the edges in the global optimum. This would cause the
population to be easily trapped in local optima. The similar issue also exists for the
first strategy. Although the error values of IO DIS get worse than Inverover, all edges
in the global optimum appear in the population at the last iteration in almost all cases
for IO DIS (similar observations on the other two algorithms). This indicates that with
proper enhancements, the algorithms with the topology strategy may find the global
optimum.

Additionally, from Table 2, it can be seen that the algorithms PMX and OX with
heuristic guiding perform much better than the corresponding original algorithms, re-
spectively. This is because that PMX and OX are not heuristic based operators. Both
algorithms are improved by using these heuristic strategies. However, compared to the
results of algorithms based on Inverover, the performance of the PMX and OX based
algorithms still needs to be improved.

Fig. 6 presents the evolutionary progress of the number of good edges (links in the
global optimum) in the population (left) and in the best solution (middle), and the error
value of the best solution. The results on LIN105 are shown only due to space limit
(similar behaviors are observed on other instances). By comparing the behavior of each
algorithm in Fig. 6, we can have several observations as below:

Firstly, the number of good edges in the best solution achieved by using strategies of
MST and problem topology increases much faster than the other two peer algorithms.
As discussed above, the strong heuristic information would benefit the search especially
during the early search progress. Accordingly, the convergence speed is also faster than
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Fig. 6. Comparison between Inverover, PMX and OX and the ones with three strategies on
LIN105, where the left and middle graphs are the number of edges that belong to the global
optimum obtained in the population and in the best solution, respectively. The error values are
shown in the right column.

the later two algorithms. However, this may lead to pre-mature convergence problem as
shown in the right graphs in Fig. 6.

Secondly, comparing the results in the left graphs in the second and third rows of
Fig. 6, the number of good edges achieved by the proposed algorithms gradually in-
creases nearly to one, which is much better than that achieved by PMX and OX. How-
ever, the figure of the origin algorithms initially decreases. The decrease in the number
of good edges probably is caused by the lack of heuristic information for PMX and OX,
where sub-tours selected from two parents are blindly mapped without any heuristic
guiding. Although the number of good edges in the population achieved by OX in-
creases to a similar level of the other three peer algorithms, the number of good edges
in the best solution achieved by OX is far less than that of its peer algorithms.

Thirdly, in the first row of Fig. 6 the number of good edges achieved by IO POP
initially decreases as PMX and OX, the figure, however, increases after a certain number
of evals and eventually reaches almost 1. This results indicate the learning capability
of the strategy based on population information.

5 Conclusions and Future Work

This paper proposes three heuristic strategies for EAs to solve TSP. The three strategies
are designed based on the knowledge of MST, distance between nodes, and population.
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Each strategy generates a probability matrix to guide the search of an algorithm. The
three strategies are implemented into three existing algorithms, which are Inverover,
PMX and OX algorithms. A set of TSP instances are selected to investigate the perfor-
mance of the algorithms with and without the proposed ideas.

From the results in this paper, we can draw two conclusions: Firstly, the performance
of the involved algorithms get improved with the three strategies, especially the pop-
ulation based algorithms. Secondly, the MST and distance based strategies have faster
convergence speed than the population based strategy, however, the former two are vul-
nerable to the attraction of local optima due to their strong heuristic guiding. On the
contrary, the population based strategy has a better global search capability but the con-
vergence speed is slower than the other two strategies.

We will pursue two interesting topics for the future work of this research. Combi-
nation of the advantages the three strategies would be one of our future focus. How to
introduce a punishment mechanism for the heuristic strategies is also important.
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Abstract. We present a novel application of the Artificial Bee Colony
algorithm to solve the non-unicost Set Covering Problem. The Artificial
Bee Colony algorithm is a recent Swarm Metaheuristic technique based
on the intelligent foraging behavior of honey bees. We present a 2-level
metaheuristic approach where an Artificial Bee Colony Algorithm acts
as a low-level metaheuristic and its paremeters are set by a higher level
Genetic Algorithm.

Keywords: Set Covering Problem, Artificial Bee Colony Algorithm,
Swarm Intelligence, Parameter Setting, Genetic Algorithm.

1 Introduction

The Set Covering Problem (SCP) is a classic problem in combinatorial analysis,
computer science and theory of computational complexity. It is a problem that
has led to the development of fundamental technologies for the field of the ap-
proximation algorithms. Also it is one of the problems from the List of 21 Karp’s
NP-complete problems, its NP-completeness was demonstrated in 1972 [8]. SCP
has many applications, including those involving routing, scheduling, stock cut-
ting, electoral redistricting and others important real life situations [5]. Different
solving methods have been proposed in the literature for the Set Covering Prob-
lem. In this paper we propose a novel application of Artificial Bee Colony (ABC)
to solve SCP.

Depending on the algorithm that has been used, the quality of the solution
wanted and the complexity of the SCP chosen, it is defined the amount of cus-
tomization efforts required. Conveniently, this work proposes transferring part of

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 189–196, 2014.
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this customization effort to another metaheuristic (a “high level” metaheuristic)
which can handle the task of parameters adjustment for a low level metaheuris-
tic. This approach is considered as a multilevel metaheuristic since there are two
metaheuristics covering tasks of parameter setting, for the former, and problem
solving, for the latter [11,4]. The main design of the implementation proposed
considers a Genetic Algorithm (GA) at parameter setting for a low level meta-
heuristic (ABC) using an Automatic Parameter Tuning approach. The Auto-
matic Parameter Tuning is carried by an external algorithm which searches for
the best parameters in the parameter space in order to tune the solver automat-
ically.

This paper is organized as follows: In Section 2, we explain the problem. In
Section 3, we describe our ABC proposal to solve SCP. In section 4 we present
the 2-level framework. In section 5 details of implemetation are presented. In
Section 6, we present the experimental results obtained. Finally, in Section 7 we
conclude the paper and give some perspectives for further research.

2 Set Covering Problem

A general mathematical model of the Set Covering Problem can be formulated
as follows:

Minimize Z =

n∑

j=1

cjxj j = {1, 2, 3, ..., n} (1)

Subject to:
n∑

j=1

aijxj ≥ 1 i = {1, 2, 3, ...,m} (2)

xj = {0, 1} (3)

Equation 1 is the objective function of set covering problem, where cj is
the cost of j-column, and xj is decision variable. Equation 2 is a constraint to
ensure that each row is covered by at least one column where aij is a constraint
coefficient matrix of size m x n whose elements comprise of either “1” or “0”.
Finally, equation 3 is the integrality constraint in which the value xj can be “1”
if column j is activated (selected) or “0” otherwise.

3 Artificial Bee Colony Algorithm

ABC is one of the most recent algorithms in the domain of the collective intelli-
gence. Created by Dervis Karaboga in 2005, who was motivated by the intelligent
behavior observed in the domestic bees to take the process of foraging [7]. ABC
is an algorithm of combinatorial optimization based on populations, in which
the solutions of the problem of optimization, the sources of food, are modified
by the artificial bees, that fungen as operators of variation. The aim of these
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bees is to discover the food sources with major nectar. In the ABC algorithm,
the artificial bees move in a space of multidimensional search choosing sources
of nectar depending on its past experience and its companions of beehive or fit-
ting his position. Some bees (exploratory) fly and choose food sources randomly
without using experience. When they find a source of major nectar, they mem-
orize his position and forget the previous one. Thus, ABC combines methods of
local search and global search, trying to balance the process of the exploration
and exploitation of the space of search. The pseudocode of Artificial Bee Colony
is showed in Algorithm 1.

Algorithm 1. ABC()

1. Initialize Food Sources;
2. Evaluate the nectar amount of Food Sources;
3. while (not TerminationCriterion) do
4. Phase of Workers Bees;
5. Phase of Onlookers Bees;
6. Phase of Scout Bees;
7. Update Optimum();
8. end while
9. Return BestSolution;

The procedure for determining a food source in the neighborhood of a par-
ticular food source which depends on the nature of the problem. Karaboga [6]
developed the first ABC algorithm for continuous optimization. The method for
determining a food source in the neighborhood of a particular food source is
based on changing the value of one randomly chosen solution parameter while
keeping other parameters unchanged. This is done by adding to the current value
of the chosen parameter the product of a uniform variable in [-1, 1] and the dif-
ference in values of this parameter for this food source and some other randomly
chosen food source. This approach can not be used for discrete optimization
problems for which it generates at best a random effect. Singh [10] subsequently
proposed a method, which is appropriate for subset selection problems. In his
model, to generate a neighboring solution, an object is randomly dropped from
the solution and in its place another object, which is not already present in the
solution is added. The object to be added is selected from another randomly
chosen solution. If there are more than one candidate objects for addition then
ties are broken arbitrarily. In this work we use the ABC algorithm described
in [1].

4 Multilevel Framework

This section is based on work presented in [11]. Metaheuristics, in their original
definition, are solution methods that orchestrate an interaction between local
improvement procedures and higher level strategies to create a process capable
of escaping from local optima and performing a robust search of a solution space.
Over time, these methods have also come to include any procedures that employ
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strategies for overcoming the trap of local optimality in complex solution spaces,
especially those procedures that utilize one or more neighborhood structures as
a means of defining admissible moves to transition from one solution to another,
or to build or destroy solutions in constructive and destructive processes. A
number of the tools and mechanisms that have emerged from the creation of
metaheuristic methods have proved to be remarkably effective, so much that
metaheuristics have moved into the spotlight in recent years as the preferred
line of attack for solving many types of complex problems, particularly those of
a combinatorial nature.

Multilevel Metaheuristics can be considered as two or more metaheuristics
where a higher level metaheuristic controls de parameters of a lower level one,
which is at charge of dealing more directly to the problem. Our ABC algorithm
employs four control parameters which are: number of food sources, the value of
limit, % Columns to add and % Columns to eliminate. Different combinations
of parameters are evaluated by the upper-level GA algorithm relieving the task
of manual parameterization. Each individual encodes the parameters of an ABC
algorithm generating an ABC instance (see Algorithm 2).

Algorithm 2. Tuning ABC()

1. SetUp Genetic Algorithm Population();
2. while (not TerminationCriterion) do
3. for (each GA Individual xi) do
4. Run ABC(xi, cutoff);
5. end for
6. Apply Genetic Algorithm Operations();
7. end while
8. best Individual← select Best Individual();
9. Run ABC(bestIndividual);

5 Implementation Details

The design proposed for the multilevel implementation is based on documented
standards proposed for each metaheuristic. Both metaheuristics are looking to
be as close as they can to its origins. In GA the chromosome genes are: “Food
sources”, it is the number of initial solutions for ABC (which is equal to the
number of workers or onlookers bees), it will take values between 50 and 500.
The second gene, “Limit”, it takes values between 0 and 100. Similarly, the third
and fourth genes, “% Columns to Add” and “% Columns Eliminate”, they take
values between 0,01 and 10. The maximum cycle number is set in 1000 iterations.
The Genetic Algorithm used to obtain the best values of the ABC parameters
was implemented using the Java Genetic Algorithm Package 1(JGAP) version
3.5. The basic behavior of a GA implemented using JGAP contains three main
steps: a setup phase, the creation of the initial population and the evolution of the

1 http://jgap.sourceforge.net

http://jgap.sourceforge.net
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population. The GA paremeters were: Number of generations = 20, Population
size = 30, Crossover type is Uniform, Crossover rate was 0.4, Mask probabil-
ity was 0.5, Mutation rate was 0.025, Selector tournament size was 3 and the
Tournament selector parameter (p) was 0.75.

6 Experimental Results

The ABC algorithm has been implemented in C in a 2.5 GHz Dual Core with 4
GB RAM computer, running windows 7. ABC has been tested on 65 standard
non-unicost SCP instances available from OR Library 2.

Table 1 summarizes the characteristics of each of these sets of instances,
each set contains 5 or 10 problems and the column labeled Density shows the
percentage of non-zero entries in the matrix of each instance. ABC was executed
30 times on each instance, each trial with a different random seed.

Table 1. Details of the 65 test instances

Instance set No. of instances m n Cost range Density (%) Optimal solution

4 10 200 1000 [1, 100] 2 Known

5 10 200 2000 [1, 100] 2 Known

6 5 200 1000 [1, 100] 5 Known

A 5 300 3000 [1, 100] 2 Known

B 5 300 3000 [1, 100] 5 Known

C 5 400 4000 [1, 100] 2 Known

D 5 400 4000 [1, 100] 5 Known

NRE 5 500 5000 [1, 100] 10 Unknown

NRF 5 500 5000 [1, 100] 20 Unknown

NRG 5 1000 10000 [1, 100] 2 Unknown

NRH 5 1000 10000 [1, 100] 5 Unknown

In comparison with very recent works solving SCP - with Cultural algo-
rithms [3] and Ant Colony + Constraint Programming techniques [2] - our pro-
posal performs best than the SCP instances reported in those works. In order
to bring out the efficiency of our proposal the solutions of the complete set of
instances have been compared with other swarm metaheuristic. We compared
our algorithm solving the complete set of 65 standard non-unicost SCP instances
from OR Library with the newest ACO-based algorithm for SCP in the litera-
ture: Ant-Cover + Local Search (ANT+LS) [9]. Tables 2 and 3 show the detailed
results obtained by the algorithms. Column 2 reports the optimal or the best
known solution value of each instance. The third and fourth columns show the
best value and the average obtained by our ABC algorithm in 30 runs (trials).

2 http://people.brunel.ac.uk/~mastjjb/jeb/info.html

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 2. Experimental results - Instances with optimal

Instance Optimum Best value found ABC Avg ANT-LS Avg RPD (%)

4.1 429 430 430.5 429 0.35

4.2 512 512 512 512 0

4.3 516 516 516 516 0

4.4 494 494 494 494 0

4.5 512 512 512 512 0

4.6 560 561 561.7 560 0.30

4.7 430 430 430 430 0

4.8 492 493 494 492 0.41

4.9 641 643 645.5 641 0.70

4.10 514 514 514 514 0

5.1 253 254 255 253 0.79

5.2 302 309 310.2 302 2.72

5.3 226 228 228.5 226 1.11

5.4 242 242 242 242 0

5.5 211 211 211 211 0

5.6 213 213 213 213 0

5.7 293 296 296 293 1.02

5.8 288 288 288 288 0

5.9 279 280 280 279 0.36

5.10 265 266 267 265 0.75

6.1 138 140 140.5 138 1.81

6.2 146 146 146 146 0

6.3 145 145 145 145 0

6.4 131 131 131 131 0

6.5 161 161 161 161 0

A.1 253 254 254 253 0.40

A.2 252 254 254 252 0.79

A.3 232 234 234 232.8 0.86

A.4 234 234 234 234 1.10

A.5 236 237 238.6 236 0

B.1 69 69 69 69 0

B.2 76 76 76 76 0

B.3 80 80 80 80 0

B.4 79 79 79 79 0

B.5 72 72 72 72 0

C.1 227 230 231 227 1.76

C.2 219 219 219 219 0

C.3 243 244 244.5 243 0.62

C.4 219 220 224 219 2.28

C.5 215 215 215 215 0

D.1 60 60 60 60 0

D.2 66 67 67 66 1.52

D.3 72 73 73 72 1.39

D.4 62 63 63 62 1.61

D.5 61 62 62 61 1.64



A 2-level Approach for the Set Covering Problem 195

Table 3. Experimental results - Instances with Best Known Solution

Instance Optimum Best value found ABC Avg ANT-LS Avg RPD (%)

NRE.1 29 29 29 29 0

NRE.2 30 30 30 30 0

NRE.3 27 27 27 27 0

NRE.4 28 28 28 28 0

NRE.5 28 28 28 28 0

NRF.1 14 14 14 14 0

NRF.2 15 15 15 15 0

NRF.3 14 14 14 14 0

NRF.4 14 14 14 14 0

NRF.5 13 13 13 13.5 0

NRG.1 176 176 176 176 0

NRG.2 154 154 154 155.1 0

NRG.3 166 166 166 167.3 0

NRG.4 168 168 168 168.9 0

NRG.5 168 168 168 168.1 0

NRH.1 63 63 63 64 0

NRH.2 63 63 63 67.9 0

NRH.3 59 59 59 59.4 0

NRH.4 58 58 58 58.7 0

NRH.5 55 55 55 55 0

The next column shows the average values obtained by ANT+LS. The last
column shows the Relative Percentage Deviation (RPD) value over the instances
tested with ABC. The quality of solutions can be evaluated using the RPD, its
value quantifies the deviation of the objective value Z from Zopt which in our
case is the best known cost value for each instance. Examining Tables 2 and 3
we observe that ABC is able to find the optimal solution consistently - i.e. in
every trial- for 43 of 65 problems. ABC is able to find the best known value in
all instances of Table 3. ABC is able to find the best known value in all trials
of Table 3. ABC has higher success rate compared to ANT+LS in sets NRE,
NRF, NRG and NRH. The RPD of BEE is 0,00% and the RPD of ANT+LS is
0,86%.

7 Conclusion

A 2-level metaheuristic has been tested on different SCP benchmarks showing to
be very effective. We have presented an Artificial Bee Colony Algorithm for the
Set Covering Problem where its parameters were tuned using a Genetic Algo-
rithm. We performed experiments throught all ORLIB instances, our approach
has demostrated to be very effective, providing an unattended solving method,
for quickly producing solutions of a good quality. Experiments shown interesting
results in terms of robustness, where using the same parameters for different set
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of instances giving good results. The promising results of the experiments open
up opportunities for further research. The fact that the presented framework is
easy to implement, clearly implies that it could also be effectively applied us-
ing others metaheuristics. Furthermore, our approach could also be effectively
applied to other combinatorial optimization problems.
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Abstract. Many different earning algorithms used for getting high performance 
in mathematics and statistical tasks. Recently, an Artificial Bee Colony (ABC) 
developed by Karaboga is a nature inspired algorithm, which has been shown 
excellent performance with some standard algorithms. The hybridization and 
improvement strategy made ABC more attractive to researchers. The two fam-
ous improved algorithms are: Guided Artificial Bee Colony (GABC) and Gbest 
Guided Artificial Bee Colony (GGABC), are used the foraging behaviour of the 
gbest and guided honey bees for solving optimization tasks. In this paper, 
GABC and GGABC methods are hybrid and so-called Hybrid Guided Artificial 
Bee Colony (HGABC) algorithm for strong discovery and utilization processes. 
The experiment results tested with sets of numerical benchmark functions show 
that the proposed HGABC algorithm outperforms ABC, PSO, GABC and 
GGABC algorithms in most of the experiments. 

Keywords: Back propagation, Gbest Guided Artificial Bee Colony, Numerical 
function optimization, Hybrid Guided Artificial Bee Colony algorithm. 

1 Introduction 

In recent years, the swarm intelligence algorithms have become a research interest to 
different domain of researchers for solving optimization problems. They are interested 
in developing the new optimization techniques based on nature collection, intelligence 
movement, thinking behaviors of Bee Colony [1], ABC [2], Ant Colony Optimization 
(ACO), Improved ABC algorithm [3],  Hybrid Ant Bee Colony (HABC) [4], Gbest 
Guided Artificial Bee Colony (GGABC) [5], Global Guided Artificial Bee Colony 
GABC [6-8], multiple Gbest some other hybrid and meta heuristic algorithms.  
Particle Swarm Optimization (PSO) [9] and its variations have been introduced for 
solving optimization problems and successfully applied to solve many others real 
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problems like classification, clustering and prediction [10-13]. Motivated by the fo-
raging behavior of honeybees [14], researchers have initially proposed ABC algo-
rithm for solving various optimization problems. ABC is a relatively new population-
based meta-heuristic approach and is further improved by researchers for many appli-
cations [15-16]. To increase the performance of the standard ABC algorithm in explo-
ration and exploitation procedures, researchers improved the standard ABC by using 
different strategies like hybridization, modification, gbest, global best, guided so best 
so far and other strategies [4, 17-18].  

In this paper, to increase the exploration and exploitation process of the standard 
ABC algorithm and at the same time for finding optima for numeric function optimi-
zation problems, the two global algorithms, namely Global Artificial Bee Colony 
(GABC) and Gbest Guided Artificial Bee Colony (GGABC) are hybrid and so-called 
Hybrid Guided Artificial Bee Colony (HGABC) algorithm [6-7]. Further, the perfor-
mance of the proposed HGABC algorithm and four standard algorithms i.e. ABC, 
GABC, PSO and GGABC were compared to solve benchmark numerical functions. 

2 Gbest Guided Artificial Bee Colony (GGABC) Algorithm 

The exploration and exploitation are the famous procedure in the swarm based algo-
rithms, which used for a solution to a given problem. Exploration includes things 
captured by terms such as search, variation, risk taking, experimentation, play,  
flexibility, discovery, innovation [13, 17-18]. Exploitation includes such things as 
refinement, choice, production, efficiency, selection, implementation, execution. To 
improve the exploration process, a standard ABC algorithm modified with Gbest 
Guided technique called Gbest Guided Artificial Bee Colony (GGABC) by incorpo-
rating the information of global best (gbest) solution into the solution search equation 
proposed for training multilayer perceptron (MLP) [6]. The new candidate solutions 
of both agents are generated by moving the old solution towards (or away from) 
another solution selected randomly from the population. Here the employed and  
onlookers bee section of standard ABC has modified for improving the exploration 
procedure as follow. 

   ( ) )( , jijijkjijijijij xyxxxv −Ψ+−+= φ ,
   

    (1)  
where yj is the jth element of the global best solution, vij is a uniform random number 
in [0, C], where C is a nonnegative constant. The value of C can balance the exploita-
tion ability. 

3 Guided Artificial Bee Colony (GABC) Algorithm 

How to improve the exploration and exploitation processes with balance amount is a 
challenge for swarm based algorithm, especially for standard ABC. Guided ABC  
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algorithm is an improved honey bees inspired technique, which used to increase the 
exploitation process with balance of ABC [19]. In the standard ABC algorithm, the 
process of replacing the abandoned food source is simulated by randomly producing a 
new solution, through the employed and onlooker bee's section with the same strategy 
as in Equation (2) as follow. 
    

( )kjijijijij xxxv −+= φ     (2)  

 
The new solutions in scout bee of the standard ABC algorithm are not based on the 
information of previous best solutions. Researchers used different advance searching 
strategies like hybridization, improvement, mimetic, global, gbest and so on, with 
standard ABC. Guided ABC is one of the proposed algorithm [19]. The new modify 
solution search equation by applying the global best solution to guide the search of 
scout bees to improve the exploration procedure of standard ABC. In the standard 
ABC in scout bees new solution generated by using a random approach as in equation 
(3), thus it is very difficult to generate a new solution that could be placed in the 
promising region of the search space. 
 

  ))(1,0( minmaxmin

jjij

rand

ij xxrandxx −+= .  (3) 

 
Therefore, the GABC algorithm proposed for improving the exploration procedure 

within  scout bee searching strategy [19]. In GABC algorithm, the scout will generate 
a new solution through global knowledge information (xbest,j - the best global food 
source) to Equation (3). The global best experience will modify Equation (3) with the 
following best guided strategy as: 

 
( ) )(*)1(*

jbestijkjijijij xxxxxv −−+−+= φφ .   (4) 

 
The guided ABC will increase the capabilities of the standard ABC algorithm to 

produce new best solutions located near the feasible area.  

4 Hybrid Guided Artificial Bee Colony (HGABC) Algorithm 

The Gbest Guided Artificial Bee Colony (GGABC) and Guided Artificial Bee Colony 
(GABC) are swarm based meta-heuristic algorithms, applied to different problems 
like engineering, statistical, optimization and to ANN for training and testing purpose 
and other tasks [4, 6-7].  GABC algorithm has outstanding performance from 
standard ABC algorithm in terms of exploration process [19]. Furthermore, GGABC 
has great achievements for increasing exploitation process than standard ABC [5].  

Taking the advantage of the GABC and GGABC algorithms to improve and  
balance the exploitation and exploration procedures, are hybrid called HGABC algo-
rithm. The proposed hybrid approach HGABC has the following modification in em-
ployed, onlooker and scout bees phases are as follow. 
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1) Gbest Guided Employed Bee Phase: 
( ) )( , jijijkjijijijij xyxxxv −Ψ+−+= φ   (5) 

2) Gbest Guided Onlookers Bees Phase: 
( ) )( , jijijkjijijijij xyxxxv −Ψ+−+= φ   (6) 

3) Guided Scout Bee Phase:           ( ) )(*)1(*
jbestijkjijijij xxxxxv −−+−+= φφ   (7)  

HGABC algorithm as a hybrid optimization tool provides a population-based 
search procedure in which individuals called foods positions are modified by global 
and Gbest artificial bees with time, and the bee’s aim is to discover the places of best 
food sources with high nectar amount and finally the one with the highest nectar. The 
HGABC algorithm will update the solution step and will convert to best solution 
based on neighborhood values, though hybridization of guided and best guided strate-
gy. The proposed flow chart of HGABC algorithm is given in Figure 1 as follow. 

 

 

Fig. 1. Flowchart of Hybrid Guided Artificial Bee Colony algorithm 
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5 Simulation Results and Discussion 

In this section, HGABC, PSO, ABC, GGABC and GABC algorithms used for numer-
ical function optimization tasks. The performance of the above mentioned algorithms 
is calculated by Mean Square Error (MSE) and Standard Deviation by using Matlab 
2012b software.  

5.1 Six Benchmark Numeric Functions  

In order to evaluate the performance of the HGABC for numerical function optimiza-
tion scheme, simulation experiments performed on Intel Core i7-3612QM @ 2.1Ghz, 
6 MB L3 Cache Intel HM76 with 4 GB RAM using Matlab 2012b software. Seven 
well-known benchmark functions are used to compare the performance of the pro-
posed HGABC algorithm with standard ABC, GABC and GGABC algorithm. These 
functions contain one unimodal variable-separable function, two unimodal non-
separable functions, two multimodal variable separable functions and two multimodal 
non-separable functions. These are Rosenbrock, Sphere, Rastrigin, Schwefel, Ackley 
and Griewank functions. 

The first benchmark is Rosenbrock function used for simulation, whose global 
minimum value is 0 at (1,1,…,1). It is a unimodal function with nonseparable vari-
ables. Its global optimum is inside a long, narrow, parabolic shaped flat valley. So it is 
difficult to converge to the global optimum. This problem is repeatedly used to test 
the performance of the optimization algorithms. The second benchmark function is 
Sphere used for simulation, whose global minimum value is 0 at (0,0,…,0). It is a 
unimodal function with separable variables. The third bench function is Rastrigin 
function used for simulation, whose global minimum value is 0 at (0,0,…,0). This 
function is based on Sphere function with the addition of cosine modulation to pro-
duce many local minima. It is a multimodal function with separable variables.   

For finding optimal solutions to this function is that other algorithms easily can be 
trapped in a local optimum on its way towards the global optimum. The fourth 
benchmark function is Schwefel used for simulation, whose global minimum value is 
0 at (420.9867,420.9867,…,420.9867). The function has a second best minimum far 
from the global minimum where many search algorithms are trapped. Moreover, the 
global minimum is near the bounds of the domain. It is also multimodal function with 
separable variables. The fifth benchmark function is Ackley function whose global 
minimum value is 0 at (0,0,…,0). It is also multimodal function with non-separable 
variables. The difficulty of this function is moderated. An algorithm that only uses the 
gradient steepest descent will be trapped in local optima, but any search strategy that 
analyses a wider region will be able to cross the valley among the optima and achieve 
better results. 

The six benchmark function is Griewank function whose global minimum value is 
0 at (0,0,…,0). Griewank function has a product term that introduces interdependence 
among the variables. The aim is to overcome the failure of the techniques that opti-
mize each variable independently. It is also multimodal function with non-separable 
variables.  
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Initialization range for the, Rosenbrock, Sphere, Rastrigin, Schwefe, Ackley and 
Griewank benchmark functions are [15, 15], [5.12, 5.12], [15, 15], [500,500], [32.768, 
32.768] and [600,600] respectively. The Rosenbrock, Sphere, Rastrigin, Schwefe, 
Ackley, and Griewank functions are shown f1,  f2,  f3,  f4,  f5 and  f6 from the 
equation (8) to (13), respectively.  
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In this experiment, all functions were tested with 30 dimensions and run for 10 

times randomly. In the proposed and standard algorithms, the numbers of employed 
and onlooker bees were half of the population size, and the number of scout bees was 
selected as one. The abandon limit =100 selected for the above six benchmark func-
tion optimization. The standard PSO algorithm was used in this experiment for the 
optimization task. The comparison of proposed HGABC with GGABC, PSO, GABC 
and ABC algorithms are discussed based on the simulation results. 

 

Table 1. Six Benchmark Numerical Functions and their details 

Function Name Function's formula Search Range f( x*) 
Rosenbrock

f1(x) 
[-2.048,2.048] D

f(1)=0 

Sphere
f2(x) [-100, 100 ] D f(0)=0 

Rastrigin
f3(x) 

 
[-5.12,5.12]D f(0)=0 

Schwefel
f4(x) 

[-500,500]D

f(420.96)=0 

Ackley
f5(x) 

[-32, 32]D

f(0)=0 

Griewank
f6(x) 

[-600,600]D

f(0)=0 
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Tables 2 shows the numerical function results in terms of MSE and Std of the 
above mentioned functions through the standard and proposed algorithms. The 
HGABC algorithm plays a significant character in improving and balancing the ex-
ploration and exploitation procedures. The result obtained by HGABC is outstanding 
compared to other standard algorithms. 

Table 2. Results obtained by ABC, GABC, GGABC and HGABC for Numerical Function 

Function MSE/S.D ABC GABC GGABC PSO HGABC 

f1 MSE
7.49831e-001 2.08e-002 1.68496E-04 1.06450e+002 1.18E-04 

Std
5.71665e-001 3.21e-002 1.454eE-04 3.59814e+001 1.32E-02 

f2 MSE
2.07570e-011 5.96e-017 6.37910E-16 1.11023e-005

1.40E-09 

Std
1.63697e-011 1.48e-017 1.203eE-16 9.22993e-006

1.68E-14 

f3 MSE
6.09826e-001

0
1.34529E-13 8.81223e+001

1.02E-09 

Std
7.01110e-001

0
7.966eE-14 1.62872e+001

3.16E-10 

f4 MSE
3.53639e+002

0
2.227E-15 3.94638e+003 2.227E-18 

Std
1.38774e+002

0
1.24E-16 8.44500e+002 2.24E-16 

f5 MSE
1.33853e-004 3.79e-015 1.34E-12 1.98057e+000 3.72e-016

Std
6.24273e-005 9.17e-016 9.91E-11 3.52026e-001 2.11E-13 

f6 MSE
6.77262e-006 1.48e-017 1.27305E-15 1.12245e+000 2.21e-019

Std
2.41784e-005 3.91e-017 1.464E-15 3.81335e-002 3.21e-018

  

 

Fig. 2. Convergence curve of HGABC for the Rastrigin function 
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Fig. 3. Convergence curve of HGABC for the Griewank function 

 
Fig. 4. Convergence curve of HGABC for the Sphere function 

 
Fig. 5. Convergence curve of HGABC for the Schwefel function 

From the Figures 2, 3, 4 and 5 above, the convergence is stable using proposed 
HGABC learning algorithm for Rastrigin, Sphere, Griewank and Schwefel functions. 
Overall the performance of HGABC is better than other standard approaches for a 
numerical function optimization task.  
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Fig. 6. Convergence curve of HGABC for the Ackley function 

 

Fig. 7. Convergence curve of HGABC for the Rosenbrock function 

Figures 5, 7 and 7 show the convergence performance of the proposed HGABC 
algorithm. The above simulation results demonstrate, that HGABC algorithm has 
successfully searched the optima for the above mention numerical function  with 
very less error. The non-linear dynamical behaviour is induced by the bee nature 
intelligence. Therefore, it leads to the best input, output mapping and an optimum 
production. 

6 Conclusion  

The HGABC algorithm has been improved the exploration and exploitation procedure 
with balance quantity successfully, for numerical function optimization task through 
guided and gbest strategies. HGABC has the powerful ability of searching global 
optimal solution than standard ABC, PSO, GGABC and GABC. From the simulation 
results, the proposed HGABC algorithm can successfully obtain the optimum.  
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Abstract. DNA microarrays are a powerful technique in genetic science
due to the possibility to analyze the gene expression level of millions of
genes at the same time. Using this technique, it is possible to diagnose
diseases, identify tumours, select the best treatment to resist illness,
detect mutations and prognosis purpose. However, the main problem that
arises when DNA microarrays are analyzed with computational intelli-
gent techniques is that the number of genes is too big and the samples
are too few. For these reason, it is necessary to apply pre-processing
techniques to reduce the dimensionality of DNA microarrays. In this
paper, we propose a methodology to select the best set of genes that allow
classifying the disease class of a gene expression with a good accuracy
using Artificial Bee Colony (ABC) algorithm and distance classifiers.
The results are compared against Principal Component Analysis (PCA)
technique and others from the literature.

Keywords: DNA microarrays, Artificial Bee Colony (ABC) algorithm,
feature selection, pattern classification, PCA technique.

1 Introduction

DNA microarrays are oligonucleotide or DNA molecule lay out in a glass con-
tainer (the most common). This information allows to analyze the gene expres-
sion of millions of genes at the same time from a tissue. Using this technique, it
is possible to diagnose diseases, identify tumours, select the best treatment to
resist illness, detect mutations and prognosis purpose, etc [1].

For solving some of the previously mentioned problems, the enormous quantity
of genes to be analyzed is a disadvantage because many genes could be irrelevant
and the time to analyze all data increase. Moreover, the complexity to compute
them is high and the number of samples (or patterns) is much lower than the
number of genes (characteristics). For these reason, it should be considered to
reduce the genes number into a set of the most important that allow to solve a
specific problem; this procedure is known as dimensionality reduction or feature
selection [2].
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There are many works that present different feature selection techniques whose
results are applied to classify DNA microarrays data. For example, in [3], the au-
thors use a class prediction model called Logistic Discrimination to solve two can-
cer problems from DNA microarrays using Partial Least Squares (PLS), Sliced
Inverse Regression (SIR) and PCA. An interesting work is [4], where the authors
proposed a feature selection technique to classify cancer data using the correla-
tion degree between genes from two kind of leukemia and a weighted vote.

There are many works that apply Evolutionary Algorithms (EA) or swarm-
based algorithms in order to select the best genes that represent a specific prob-
lem. A good example that apply Least Squares Supported Vector Machines (LS-
SVM) to select the best features of DNA microarray dataset and then use PSO
to optimize the scaling factors is presented in [5]. In [6], two hybrid algorithms
(PSO and Genetic Algorithm (GA)) augmented with Supported Vector Machines
(SVM) are presented with the purpose to classify and select the genes of the six
kind of cancer problems.

In this paper, we present an approach which focuses on evaluating a gene
expression from a DNA microarrays to be classified with a feature selection
technique previously applied. Artificial Bee Colony (ABC) algorithm is a good
evolutionary technique that will be used to select the best genes. Due to there is
not a binary version of ABC, the representation of the individual is binarized to
select the subset of genes used to classify the gene expression. Then, the genes
selected are classified by an Euclidean and Manhattan distances. In addition, we
evaluate the threshold value to know the influence in the values diversity of the
solutions. Finally, the accuracy of the proposed methodology is tested over gene
expression from a DNA microarrays with leukemia information. Furthermore,
the experimental results obtained with ABC algorithm will be compared against
those obtained with PCA algorithm. PCA is a classic technique that reduce a
complex data set to a lower dimension [7]. This technique has been used for
many years to solve unimaginable kinds of problems. Compare new techniques
with PCA is a challenge. For this reason, the proposed methodology results are
compared with the PCA results.

2 Artificial Bee Colony (ABC) Algorithm

Artificial Bee Colony (ABC) algorithm based on the metaphor of the bees forag-
ing behavior was proposed by Dervis Karaboga [8]. It consists in a population of
NB bees (possible solutions) xi ∈ IRn, i = 1, . . . , NB represented by the position
of the food sources. Three classes of bees are used to achieve the convergence
near to the optimal solution: employed bees, onlooker bees and scout bees. These
bees have got different tasks in the colony, i. e., in the search space.

Employed bees: Each bee searches for new neighbor food source near of their
hive. After that, it compares the food source against the old one using Eq. 1.
Then, the best food source is saved in their memory.

vji = xj
i + φj

i

(
xj
i − xj

k

)
. (1)
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Where k ∈ {1, 2, ..., NB} and j ∈ {1, 2, ..., n} are randomly chosen indexes
and k �= i. φj

i is a random number between [−a, a].
After that, the bee evaluates the quality of each food source based on the

amount of the nectar (the information) i.e. the fitness function is calculated.
Finally, it returns to the dancing area in the hive, where the onlookers bees are.

Onlooker bees: This kind of bees watch the dancing of the employed bees so as
to know some kind of information such as where the food source can be found, if
the nectar is of high quality, as well as the size of the food source. The onlooker
bee chooses probabilistically a food source depending on the amount of nectar
shown by each employed bee, see Eq. 2.

pi =
fiti

NB∑

k=1

fitk

. (2)

Where fiti is the fitness value of the solution i and NB is the number of food
sources which are equal to the number of employed bees.

Scout bees: This kind of bees helps the colony to randomly create new solutions
when a food source cannot be improved anymore, see Eq. 3. This phenomenon
is called “limit” or “abandonment criteria”.

xj
i = xj

min + rand (0, 1)
(
xj
max − xj

min

)
. (3)

The pseudo-code of the ABC algorithm is next shown:

1. Initialize the population of solutions xi∀i, i = 1, ..., NB.

2. Evaluate the population xi∀i, i = 1, ..., NB.

3. for cycle = 1 to maximum cycle number MCN do

4. Produce new solutions vi from the employed bees by using Eq. 1 and

evaluate them.

5. Apply the greedy selection process.

6. Calculate the probability values pi for the solutions xi by Eq. 2.

7. Produce the new solutions vi for the onlookers from the solutions xi
selected depending on pi and evaluate them.

8. Apply the greedy selection process.

9. Replace the abandoned solutions with a new one randomly produced xi
by scout bees using Eq. 3.

10. Memorize the best solution achieved so far.

11. cycle = cycle+ 1
12. end for

3 Proposed Methodology

The aim of this work is to select the best subset of genes from a gene expression
obtained from a DNA microarray and then apply it to classify and diagnose a
specific cancer disease with a good accuracy.
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The problem to be solved can be defined as follows: Giving a set of input
patterns X = {x1, . . . ,xp},xi ∈ IRn, i = 1 . . . , p and a set of desired classes
d = {d1, ..., dp} , d ∈ IN, find an subset of genes G ∈ {0, 1}n such that a function
defined by min (F (X|G,d)) is minimized.

The food source’s position represents the solution to the problem in terms of
a subset of genes. This solution is defined with an array I ∈ IRn. Each individual
Iq,q = 1, . . . , NB is binarized by means of Eq. 4 using a threshold level th in
order to select the best set of genes that compose the gene expression defined as
Gk = Tth

(
Ik
)
,k = 1, . . . , n; values whose component is set to 1, indicates that

this gene will be selected to make up the subset of genes.

Tth (x) =

{
0, x < th
1, x ≥ th

}

. (4)

The aptitude of an individual is computed by means of the classification error
(CER) function, defined in Equation 5, that measures how many gene expressions
have been incorrectly predicted.

F (X |G,d ) =

p∑

i=1

(∣
∣
∣
∣

K
argmin

k=1

(
D
(
xi |G , ck

))− di

∣
∣
∣
∣

)

tng
. (5)

Where tng is the total number of gene expressions to be classified, D is a dis-
tance measure,K is the number of classes and c is the center of each class. Differ-
ent distance measures could be applied to classify the gene expression samples,
for example classic Euclidean and Manhattan distances given by Equation 6.

D (p,q) = s

√
√
√
√

n∑

j=1

|pj − qj |s . (6)

Where p ∈ IRn and q ∈ IRn. This equation represents the Manhattan distance
when s = 1 and the Euclidean distance when s = 2.

4 Experimental Results

The proposed methodology was tested applying ABC algorithm with a bench-
mark high-dimensional biomedical DNA microarray data set [4]. The leukemia
ALL-AML database is next described.

Leukemia ALL-AML data set: Consists of 38 bone marrow samples for train-
ing (27 ALL and 11 AML), over 7129 probes from 6817 human genes. Also 34
samples testing data are provided, with 20 ALL and 14 AML.

The experiments take into account the threshold for binarizing each indivi-
dual. To evaluate the threshold value and to know how much affect the values
diversity, the threshold value was changed in seven different configurations: 0.1,
0.3, 0.5, 0.7, 0.9, 0.99 and 0.999. These values are labeled with numbers from 1
to 7 in the same sequence.
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In order to validate statistically the experimental results, the proposed meth-
odology was executed 30 runs for each distance measure (see Eq. 6) and for each
configuration threshold. The database information was previously normalized.

The parameters of ABC algorithm for all the experimentation were: popula-
tion size (NB = 40), maximum number of cycles MNC = 1000, limit l = 100
and food sources NB/2.

Figure 1 shows the learning error evolution during the 1000 iterations for the
seven configurations for two distance measures.

(a) (b)

Fig. 1. Learning error evolution using different distance classifiers. 1(a) Learning error
evolution for Euclidean distance measure. 1(b) Learning error evolution for Manhattan
distance measure.

Table 1 shows important information about the experimentation. The results
for training classification were above 98.2% where three of this configurations
(th = 0.9, th = 0.99 and th = 0.999) obtained 100% of accuracy. For the case
of testing classification, the best results was obtained with configuration five
which provided a 79.3% of accuracy. In configuration with the value th = 0.9,
the minimum genes number was 695. The best threshold configuration using the
Euclidean distance and ABC algorithm was th = 0.3 with a 100% in training
classification and 88.2% in testing classification using three genes whose names
are, according to the database: SLC17A2 Solute carrier family 17 (L13258 at),
MLC gene (M22919 rna2 at) and FBN2 Fibrillin 2 (U03272 at).

The experimental results using the proposed methodology with the Manhat-
tan distance are shown in Table 2. The average accuracy in training classification
for the 30 experiments with six threshold configurations was 100% and above the
73.9% for the case of testing classification. For example, the proposed method-
ology provides a 100% of training classification for the seven configurations. For
testing classification rate, the minimum value was 79.4% and the higher value
is above the 91.2%. The best threshold configuration using the Manhattan dis-
tance and ABC algorithm was th = 0.1 with a 100% in training classification
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Table 1. Behavior of the proposed methodology using an Euclidean distance classifier

th Average Average Average Best # of # of
accuracy # of genes # of iter. accuracy genes iter.

Tr. cl. Te. cl. Tr. cl. Te. cl.
0.1 0.998 ± 0.007 0.751 ± 0.071 434.8 430.0 1.000 0.853 5 318
0.3 0.992 ± 0.012 0.746 ± 0.073 1506.7 724.7 1.000 0.882 3 253
0.5 0.982 ± 0.012 0.769 ± 0.035 2618.3 933.5 1.000 0.824 4 446
0.7 0.996 ± 0.009 0.770 ± 0.011 2054.8 452.4 1.000 0.794 3 335
0.9 1.000 ± 0.000 0.793 ± 0.032 712.0 63.0 1.000 0.853 695 62
0.99 1.000 ± 0.000 0.760 ± 0.054 74.0 57.5 1.000 0.853 79 53
0.999 1.000 ± 0.000 0.706 ± 0.079 12.0 216.1 1.000 0.853 11 759

Tr. cl. = Training classification rate, Te. cl. = Testing classification rate.

and 94.1% for testing classification using three genes whose names are KIAA0075
gene (D38550 at), MYELIN TRANSCRIPTION FACTOR 1 (M96980 at), and
Anthracycline resistance associated protein (X95715 at), all according to the
database.

Table 2. Behavior of the proposed methodology using a Manhattan distance classifier

th Average Average Average Best # of # of
accuracy # of genes # of iter. accuracy genes iter.

Tr. cl. Te. cl. Tr. cl. Te. cl.
0.1 0.996 ± 0.009 0.756 ± 0.111 1717.3 503.3 1.000 0.941 3 298
0.3 1.000 ± 0.000 0.778 ± 0.015 4994.7 75.3 1.000 0.794 4938 62
0.5 1.000 ± 0.000 0.777 ± 0.015 3563.8 58.8 1.000 0.794 3557 59
0.7 1.000 ± 0.000 0.778 ± 0.017 2133.2 55.8 1.000 0.824 2154 57
0.9 1.000 ± 0.000 0.783 ± 0.024 710.3 55.1 1.000 0.824 691 54
0.99 1.000 ± 0.000 0.779 ± 0.054 72.4 60.5 1.000 0.912 57 77
0.999 1.000 ± 0.000 0.739 ± 0.093 11.9 225.7 1.000 0.912 9 137

Tr. cl. = Training classification rate, Te. cl. = Testing classification rate.

Comparing the results obtained with ABC algorithm, PCA method was ap-
plied to the feature selection and it was tested with Euclidean and Manhattan
distances. The parameters of PCA method for the experimentation were seven
variance percentage with the values: 0.5, 0.6, 0.7, 0.8, 0.9 and 1.

The experimental results for PCA using seven variance percentage are shown
in Table 3. As can be observed, the results obtained with PCA are not as good as
to those obtained with the proposed methodology. Furthermore, if we compare
the number of genes selected by the proposed methodology for the best configu-
ration against the number of features used with PCA, the proposed methodology
uses less genes than PCA.
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Table 3. Behavior of the proposed methodology using PCA technique

% Variance Euclidean # of Manhattan # of
distance features distance features

Tr. cl. Te. cl. Tr. cl. Te. cl.
0.5 0.947 0.765 6 0.895 0.794 6
0.6 0.947 0.794 10 0.921 0.765 10
0.7 0.974 0.765 14 0.921 0.735 14
0.8 0.974 0.765 20 0.921 0.765 20
0.9 0.974 0.765 27 0.921 0.765 27
0.95 0.974 0.765 31 0.921 0.794 31
1 0.974 0.765 36 0.921 0.735 36

Tr. cl. = Training classification rate, Te. cl. = Testing classification rate.

Furthermore, in [4] the authors report a training classification of 94.74% and
testing classification of 85.29% which are not as good as those obtained with the
proposed methodology. In [6] the authors report only a training classification
accuracy of 97.38% for PSO algorithm using three genes, and for the case of
GA, a percentage of 97.27% was achieved using four genes.

As can be observed from these experiments, the proposed methodology pro-
vides the best results using the Manhattan distance combined with ABC algo-
rithm with a threshold th = 0.1, a percentage of 100% in training classification
and 94.1% for testing classification were achieved, these results were obtained
using only three genes.

5 Conclusions

In this paper an approach which focuses on evaluating a gene expression from
a DNA microarrays combined with a feature selection previously applied was
presented. The features selection task was carried out by means of Artificial
Bee Colony (ABC) algorithm using different configurations to binarize each in-
dividual or solution and so to know which gene of thousands will be the best to
contribute to solve a problem, in this case a classification task. After the feature
selection, the Euclidean and Manhattan distances were applied to classify by
means of two stages: training and testing.

Concerning to learning error evolution, the experimental results show that
Manhattan distance provides a better performance than Euclidean distance. The
learning error achieved the best results with few iterations. Talking about the
accuracy, it is important to notice that the configuration of ABC algorithm using
the Euclidean distance with th = 0.3 provides the best classification accuracy
with a training percentage of 100% and a testing percentage of 88.2%, using only
three genes. The results for Manhattan distance were better than the Euclidean
distance results. The best classification accuracy obtained with the proposed
methodology using the Manhattan distance was 100% in training classification
and 94.1% in testing classification with th = 0.1 selecting only three genes.
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The results were compared against those obtained with PCA. From these ex-
periments, we observe that the accuracy obtained with PCA are not as good
as those obtained with the proposed methodology. Furthermore, if we compare
the number of genes, selected by the proposed methodology for the best con-
figuration, against the number of features used by PCA, we observed that our
proposed methodology uses less genes than PCA. Furthermore, when the pro-
posed methodology is compared against some results reported in literature, the
proposed methodology provides the best results using the Manhattan distance
together with ABC algorithm with a threshold of th = 0.1 achieving a percent-
age of 100% in training classification and 94.1%for testing classification, using
only three genes.

Nowadays, we are testing different classifier such as artificial neural networks,
including spiking neural networks to improve the classification accuracy using
ABC algorithm.
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Abstract. This work presents a crowding-distance(CD)-based multiobjective 
artificial bee colony algorithm for Proportional-Integral-Derivative (PID) 
parameter optimization. In the proposed algorithm, a new fitness assignment 
method is defined based on the nondominated rank and the CD. An archive set 
is introduced for saving the Pareto optimal solutions, and the CD is also used to 
wipe off the extra solutions in the archive. The experimental results compared 
with NSGAII over two test functions show its effectiveness, and the simulation 
results of PID parameter optimization verify that it is efficient for applications. 

Keywords: Crowding-distance, Multiobjective, Artificial bee colony, PID 
parameter optimization. 

1 Introduction 

The Proportional-Integral-Derivative (PID) controller is the most accepted controller 
in the process industry. More than 80% of industrial controllers are implemented 
based on the PID controller[1]. Objectives of the PID parameter optimization includes 
getting the best rising time and settling time, minimizing the overshoot and the 
accumulated error, and etc[2]. Since there are conflicts among the objectives, it is 
appropriate to solve it by multiobjective optimization method. 

In order to solve the PID parameter optimization problem by effective 
multiobjective algorithm, and taking both the good performance of Crowding 
Distance(CD)[3] and the efficiency of Artificial Bee Colony(ABC)[4] into 
consideration, a Crowding-Distance-based Multiobjective Artificial Bee Colony 
Algorithm(CDMABCA) is proposed in this paper. The rest of this paper is organized 
as follows: Section 2 describes the proposed algorithm in detail; Section 3 discusses 
its application in the PID parameter optimization. Finally, the conclusion of the paper 
is outlined in section 4.  
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2 Crowding-Distance-Based Multiobjective ABC Algorithm 

For convenience of the description, we give some notations in advance. 
(1) The size of the employed bees is denoted as ne. The size of the onlooker bees 

equals to that of the employed bees.  
(2) An external archive set is introduced for saving the Pareto optimal 

solutions(PF), and the size of the archive is set as na. 
(3) Xi is the i-th food source, xij is the j-th value of Xi(j=1,2…d). The upper and 

lower bounds of the dimension j are denoted as xjmax and xjmin, respectively. 

2.1 CD and Its Application in the CDMABCA 

The CD is first addressed by Deb[3] for keeping a uniformly spread-out PF. The CD 
value of the i-th individual is calculated as follows.  

max min

( 1). ( 1).
1 max min

                               

,   and    (1)
       

ij j ij j
m

i ij ij i j i j
j

j j

 if   f f or f f

CD CD CD f f
otherwise

f f
+ −

=

∞ = =


= = −
 −

   

where max
jf and min

jf  are the maximum and minimum value of the j-th objective. 

( 1).i jf + and ( 1).i jf − are the j-th objective value of the nearest neighbors to the i-th 

individual in the population.  
Besides NSGA-II, the CD has been used as a distribution maintenance method in 

many other algorithms. In CDMABCA, the CD is not only used in keeping the 
spread-out of PF, but also used in the fitness assigning. 

2.1.1 PF Keeping Based on the CD 
As discussed in ref.[5], the CD is rough for it wipes off the extra individuals one time, 
and it cannot obtain a PF with good uniformity. In CDMABCA, the method proposed 
in ref.[5] is adopted. The details are described as follows:  

Suppose the size of the nondominated set is N, and N>na. We first calculate the CD 
values for the members of the nondominated set. Instead of selecting na members 
having the largest CD values, N−na members having the smallest CD values are 
removed one by one, and the CD values for the remaining members of the set are 
updated after each removal. 

2.1.2 Fitness Assignment Based on the CD 
With the Pareto-based methods, relations between the solutions are expressed as 
dominated or not. Select the nondominated individuals in the whole population as the 
first rank solutions and let its rank equals to one. Select the nondominated individuals 
in the remaining as the second rank solutions and let its rank equals to two. And so 
on, until the population is empty. The population is divided into many ranks and each 
solution belongs to a rank. 
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It is obvious that the individuals of lower rank are better that of higher rank. But if 
we simply use the rank value as the fitness value, we cannot distinguish the 
individuals of the same rank. Here the CD is added. Taking the two aspects into 
consideration, the fitness value of the i-th individual is evaluated as follows: 

1
 ( )                                                   (2)

1i

i
i

fit X
rank

CD

=
+                           

2.2 Description of the Proposed Algorithm    

The flow of CDMABCA can be described as follows: 

Function CDMABCA( ) 
initialization( );    
REPEAT   
     nondominated_set_getting( ); 
     archive_set_proposing( ); 
     employed_bee_optimization( ); 
     onlooker_bee_optimization( ); 
     scout_optimization( ); 
UNTIL (the stopping criterion is met) 

The only difference between the CDMABCA and the ABC is that 
nondominated_set_getting( ) and archive_set_proposing( ) are added to the former. In 
the following, the definitions of each operator are given in detail. 

(1) Initialization 
The initial population is generated by using a random approach. i.e., each food 

source is generated as follows[4]. 

                   (3)ij jmin jmax jminx = x + rand(0,1)* (x - x )    

where i=1,2…ne, and j=1,2,…, d. 
(2) Nondominated set getting operator 
In each iteration, the nondominated solutions are acquired by the nondominated set 

getting operator. Since the efficiency of nondominated set getting has a significant 
impact on the efficiency of the whole algorithm, the method which has lower 
computational compexity will be preferred. Please see ref.[6] for the detail. 

(3) Archive set processing operator 
In the first run, nondominated solutions are added to the external archive directly. 

After that, at the end of each iteration, new generated nondominated solutions are 
compared with the solutions in the external archive. And the nondominated of the two 
parts are set as the new archive. If the quantity of the new archive is bigger than na, 
redundant solutions are removed according to the CD which is described in 2.1.1. 

(4) Employed bee optimization 
Just as the ABC algorithm[4], an employed bee takes the local search with the 

formula (4). 
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                            (4) v = x + rand(-1,1)(x - x )       ij ij ij kj  

where k and j are produced randomly, ej 1, 2,...d  k 1, 2,...n∈ ∈, , and k i≠ . 

After local search is performed, the employed bee exploits a new neighbor food 
source Vi around Xi. Then the new food source will be evaluated and compared with 
the old one. Here a greedy selection will be performed, and the better food source will 
be kept in the population.   

(5) Onlooker bee optimization                                                                     
An artificial onlooker bee selects a food source depending on the fitness value 

according to formula(5).   

{ } (5)i
s i

e

j
j=1

fit(X )
P T (X)= X =  n

fit(X )
                      

 

After the food source is selected, each onlooker bee will perform the same local 
search approaches and greedy selection procedure as employed bees. 

(6) Scout optimization 
If a food source cannot be further improved through some cycles, then the food 

source will be abandoned and the corresponded bee would turn out to be a scout[4]. A 
scout performs random search. It generates a new food source just as the initialization. 

(7 ) Terminal condition of the algorithm   
Terminal condition of the algorithm is set as arriving at the maximum cycle, or the 

archive set is unchanged in a continuous iterations.  

2.3 Testify of the Proposed Algorithm 

This section contains the experimental results obtained by the CDMABCA. In order 
to validate the performance of the proposed algorithm, it is compared to the 
NSGAII[3].   

The selected test functions are given as follows[3,6].    

1P : (6)
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2
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x x
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In order to make the NSGAII work as the presenter described, the parameters of 
the algorithm is set originally. The population size and archive size of the NSGAII are 
both set as 100, and the iteration cycle is set as 100, too. The other parameters of the 
NSGAII is set according to the values suggested by the developers. In the case of the 
CDMABCA, there are only four parameters. The population size and the iteration 
cycle are set according to that of the NSGAII, and they equal to 100 and 50, 
respectively. The quantity of the archive set equals to that of the population size, and 
the food source couldn’t get optimized in 5 cycles will be abandoned.  

Fig.1 shows the comparison of the experimental results of the two algorithms. Each 
diagram is marked by the algorithm name and the problem number. 

 

 

CDMABCA_(1)                               NSGAII_(1) 

 

CDMABCA_(2)                              NSGAII_(2) 

Fig. 1. Comparison of the experimental results
 

As shown in Fig.1, It is obvious that the CDMABCA performs better at these two 
benchmark problems. It is probably owing to introduction of improved CD for 
keeping the spread-out of the PF and the existence of the scouts which performs 
global random search. 
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3 Application in PID Parameter Optimization 

3.1 PID Controller of Superheated Steam Temperature Control System 

A simplified block diagram of superheated steam temperature cascade control system 
which use spray water injection as deputy controller is shown in Fig.2[7]. Spray water 
injection control system is extracted to respond quickly, serves as deputy control 
object; superheated outlet steam temperature which characterized by hysteresis and 
nonlinear, serves as the primary control object. 
 

 

Fig. 2. Figure of the boil superheated steam temperature cascade control system 

In Fig.2, r is the set point of superheated steam temperature, T is the superheated 
steam temperature, Ta is the intermediate steam temperature. Wal(S) and Wa2(S) are 
the deputy and primary controller respectively. WHl(S) and WH2(S) are the 
measurement units. Wol(S) and Wo2(S) are the transfer functions, which is described 
as follows[8]. 

                                       (8)o
o1 2

8
W (s)= (mA/ C)   

(1+15s)
       

                                                    (9)o
o2 3

1.125
W (s)= (mA/ C)     

(1+ 25s)
 

Since the deputy controller just regulates intermediate steam temperature roughly, 
a fixed proportional controller is usually used in order to simplify the design of 
controller. The main controller is employed to regulate steam temperature to its set 
point accurately, it is designed as a PID controller,Wa2(s)=Kp2+Ki2/S+Kd2S.The  

deputy controller and the primary controller of the cascade control system can be 
adjusted respectively. The Kp1 of deputy controller equals to 25 under the condition of 
attenuation rate equal to 0.75. The problem left is to optimize the parameters of the 
primary controller by the CDMABCA. 

3.2 Principle of Multiobjective PID Parameter Optimization 

The commonly used performance measures of the PID controller are attenuation rate  
(ψ ), response overshoot ( σ ), rising time (tr), settling time (ts), integral time absolute 
error(ITAE), and etc. The effectiveness of the PID controller depends on the values of 
Kp, Ki and Kd. Taking the demands of the primary control object into consideration, 
we use ts and ITAE’ as the optimization objectives.  
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s.t. 
 

where ts is the settling time with error bound of 5%, and the integral time domain of 
the ITAE is improved. 

3.3 Simulation Results 

In this paper, bound value of the parameters are set according to ref.[8]. Which are set 
as p2 i2 d2 2 K 4.5  0.035 K 0.11  30 K 45≤ ≤ ≤ ≤ ≤ ≤， ， . The PID parameters are tuned based 

on adding a 1mA step disturbance to the set point. With CDMABCA, plenty of Pareto 
optimal solutions are achieved. Due to limited space, we only list five groups of 
parameters in Table 3. 

Fig.3(a) are the step responses curves of the parameters listed in Table 3. As for 
comparison, Fig.3(b) shows the step response curve of the best parameters proposed 
in ref.[7]. It is obvious that the simulation results of the CDMABCA are more 
satisfying than that of ref.[7] acquired. No matter what the overshoot, or the settling 
time, the former is better than the latter.  

Table 1. parameter and objective values of the selected five groups 

kp2 ki2 kd2 ts(s) ITAE’ 
43.0726 2.4731 0.0476 116 36.755 

41.7530 2.2152 0.0350 88 83.610 
39.5608 2.1758 0.0351 98 65.244 
44.7481 2.5085 0.0427 101 58.919 
41.0376 2.3834 0.0453 119 36.665 

 

 

(a)                                      (b) 

Fig. 3. Step responses curves 
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4 Conclusion 

In this paper, a novel multiobjective artificial bee colony algorithm for optimizing the 
PID controller parameters is presented. How to adjust the ABC algorithm suitable for 
multiobjective optimization by the CD is discussed in detail. The simulation results 
demonstrate the effectiveness of the proposed algorithm, and it can be applied to other 
PID parameter tuning or other multiobjective optimization problems. 
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Abstract. Concentration based feature construction (CFC) approach
has been proposed for spam detection. In the CFC approach, Global con-
centration (GC) and local concentration (LC) are used independently to
convert emails to 2-dimensional or 2n-dimensional feature vectors. In this
paper, we propose a novel model which selects concentration construction
methods adaptively according to the match between testing samples and
different kinds of concentration features. By determining which concen-
tration construction method is proper for the current sample, the email
is transformed into a corresponding concentration feature vector, which
will be further employed by classification techniques in order to obtain
the corresponding class. The k-nearest neighbor method is introduced
in experiments to evaluate the proposed concentration selection model
on the classic and standard corpora, namely PU1, PU2, PU3 and PUA.
Experimental results demonstrate that the model performs better than
using GC or LC separately, which provides support to the effectiveness
of the proposed model and endows it with application in the real world.

Keywords: Global concentration (GC), local concentration (LC), adap-
tive concentration selection, spam detection.

1 Introduction

Spam has been a serious problem in the developing of internet. According to the
CYREN internet threats trend report, the average daily spam level for the first
quarter in 2014 was 54 billion emails per day [1]. Large numbers of spam not only
consume many resources online, but also threaten security of the network, espe-
cially when they carry viruses and malicious codes. What’s more, people usually
take much time to handle spam, which reduces efficiency and productivity.

In the fields of spam detection, intelligent detection methods have been the
most effective way to examine junk mails. On one hand, the intelligent methods
have a higher degree of automation. On the other hand, these methods not
only have high precision and strong robustness, but also can fit email content
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and users’ interests. Now the mainstream of intelligent detection methods can
be divided into two categories: machine learning and artificial immune system.
Because spam email detection task is a typical classification problem, supervised
learning method is general in machine learning fields, such as naive bayes (NB) [2,
3], k-nearest neighbor (KNN) [4,5], support vector machine (SVM) [6], artificial
neural networks (ANN) [7, 8] and so on. And in the artificial immune system
(AIS), researchers imitate the process of immune cells’ recognition to antigen.

In this paper, we propose a model structure, which aims to select concentration
methods adaptively. The GC approach transforms each email to a 2-dimensional
GC feature vector, which may lose some important information of the email. And
the LC approach extracts position-correlated information from each email by
mapping it to an 2n-dimensional feature vector, which may get some redundant
information. But in our model, we can adjust concentration method adaptively
according to distinctive information of different emails.

The remainder of the paper is organized as follows. In Section 2, we introduce
the related works. In Section 3, the proposed adaptive concentration selection
model is presented in detail. Section 4 gives the detailed experimental setup and
results. Finally, we conclude the paper with a detailed discussion.

2 Related Works

This section introduces term selection approaches, concentration-based methods
and classifiers that have close relationship with our work.

2.1 Term Selection Approaches

Information Gain. Information gain (IG) [9] is a concept in the information
theory, which gives a description of the distance between two probabilities dis-
tribution P (x) and Q(x). In the spam detection field, it is utilized to measure
the importance of terms. The calculation formula of IG is defined as

I(ti) =
∑

C∈(CS,CL)

∑

T∈(ti,t̄i)
P (T,C) log

P (T,C)

P (T )P (C)
(1)

where C indicates an email’s class (CS and CL are the spam and legitimate email
classes) and T denotes the whether term ti appears in the email or not. And all
the probabilities are estimated from the whole data set.

2.2 Concentration-Based Methods

Global Concentration. Global concentration (GC) [10, 11] is an approach
inspired from the human immune system, which can transform each email to
a 2-dimensional feature vector. The flow chart of GC is described in Fig1. The
biological immune system is a complex adaptive system, which has its unique
self and non-self cells. Similar to this, the concentration approach proposed has



An Adaptive Concentration Selection Model for Spam Detection 225

Messages in the training
corpus Set up of gene libraries

GC calculationTraining&&Classification

Preprocessing

The class of the
message

Fig. 1. Construction of GC model

two gene libraries - ‘self’ and ‘non-self’ gene libraries. The ‘self’ gene library is
composed of words that present healthy emails. And in contrast, the ‘non-self’
gene library covers words that can present spam emails. So through the gene
libraries, we can calculate global concentration of each email to construct its GC
feature vectors.

Local Concentration. Similar to GC, the local concentration (LC) [12, 13]
approach also transforms each email to a feature vector. However, the difference
between GC and LC is that the LC can provide local information of a document,
which can help to ‘check’ the email microscopically. In the process of LC, it

Data in the training set 

Tokenization

Term selection

Calculate LC

Classifier 

Classifier Model

Testing data

Tokenization

Calculate LC

Classification

Classification results

N
ecessary steps

N
ecessary steps

(a) Training phase  of the model (b) Classification phase of  the model

Fig. 2. Construction of LC model

mainly covers two parts: the training part and the testing part. And in both
parts, tokenization is the first step to pre-process the documents. Then in the
term selection step, it chooses the important terms, which can reflect the emails’
tendency to spam or non-spam. After calculating the local concentration of each
email, every document is represented by a 2n-dimensional feature vectors. Then
the feature vectors are transported to the classifier for training or testing.
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2.3 Classifier

K-Nearest Neighbor. K-nearest neighbor (KNN) [14] is a kind of basic classi-
fication and regression method, which was proposed by Cover and Hart in 1968.
The central idea of KNN is that when a new testing case is fed to the classifier,
we look for k cases that are nearest to the testing case, and the testing case is
classified as the class that those k cases belong to. KNN can be defined as follows

y = argmax
Cj

∑

Xi∈Nk(x)

I (yi = cj) , i = 1, 2, . . . ,N; j = 1, 2, . . . ,K (2)

where I(yi = cj) is a indicator function, with the value of 1 when yi = cj , and
0 otherwise, and (yi) ∈ Υ = (c1, c2, . . . , ck). And the special situation that the k
is set to 1, KNN degrades to nearest neighbor.

3 Adaptive Concentration Selection Model

3.1 Overview of Our Proposed Model

In global concentration method, we transform an email into a 2-D feature vec-
tor, which reflects the global information of the email. Similarly, we use local
concentration method to reflect emails’ local information. However, global con-
centration may be too simple to cover some ‘necessary’ information and local
concentration may cover some ‘unnecessary’ information. As a result, we pro-
pose the adaptive concentration selection model to transform emails into global
or local feature vectors adaptively, according to their contents.

Our method can be mainly divided into four steps. (1) Set up ‘self’ and ‘non-
self’ gene library from training emails. (2) Generate global and local concentra-
tion vectors of each email, using the gene library. (3) Judge that which concen-
tration method each email should apply. (4) Train and classify on the corpora.
In this paper, we use KNN to calculate the evaluation which is the reference
standard of concentration selection method.

3.2 Set Up of Gene Libraries

Intuitively, if a word appears mostly in spam emails, it belongs to the ‘non-self’
gene library largely. Accordingly, a word which can provide more information for
spam emails than non-spam emails usually will be put into the ‘non-self’ gene
library, and vice versa. This inspires us to calculate information gain of each
word, and sort them in a decent order. Considering the amount of words is too
big to build gene library, and most documents contain the same common words,
we also discard 95% of the words that appear in all emails, just as the paper
does [10].
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Algorithm 1. Generation of gene libraries

1. Initialize gene libraries, detector DSs and DSl to the empty
2. Initialize tendency threshold θ to predefined value
3. Tokenization about the emails
4. for each word tkseparated do
5. According to the term selection method, calculate the importance of tk and the

amount of information I(tk)
6. end for
7. Sort the terms based on the I(t)
8. Expand the gene library with the top m% terms
9. for each term ti in the gene library do
10. if ‖P (ti|cl)− P (ti|cs)‖ > θ, θ≥0 then
11. if P (ti|cl)− P (ti|cs) < 0 then
12. add term ti to the spam detector set DSs

13. else
14. add term ti to the legitimate detector set DSl

15. end if
16. else
17. abandon this term, because it contains little information about those emails
18. end if
19. end for

Algorithm 2. Construction of feature vectors based on global concentration

1. for each term tj in the email do
2. calculate the matching M(tj , DSs) between term tj with spam detector set;
3. calculate the matching M(tj , DSl) between term tj with legitimate detector set
4. end for
5. According to 3, calculate the concentration of spam detector set SC;
6. According to 4, calculate the concentration of legitimate detector set LC;
7. Combine the above concentration values to construct the global concentration fea-

ture vectors < SC,LC >

3.3 Construction of Feature Vectors Based on the Immune
Concentration

After we have got the gene library, we can construct the feature vectors.
According to the generation of detector set, it is obvious that the DSs can match
spam emails and the DSl can match the legitimate emails with large probability.
As a result, the match between two detector sets and emails can reflect the class
information of emails, and the two detector sets have complementary advantages
with each other, which provides a guarantee for the effectiveness of detection.

SCi =

∑ωn

j=1 M(tj , DSs)

Nt
(3)
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where Nt is the number of distinct terms in the window, and M(tj , DSs) is
the matching function which is used to measure the matching degree of term tj
and detector DSs.

LCi =

∑ωn

j=1 M(tj , DSl)

Nt
(4)

where M(tj ,DSl) is the matching function which is used to measure the matching
degree of term tj and detector DSl.

Algorithm 3. Construction of feature vectors based on local concentration

1. According to the length of each email and preset number of windows to calculate
the value of ωn

2. Move the ωn-term sliding window to separate the email, with each moving length
being ωn

3. for each moving window do
4. for each term in the moving window do
5. calculate the matching M(tj , DSs) between term tj with spam detector set;
6. calculate the matching M(tj , DSl) between term tj with legitimate detector

set;
7. end for
8. According to 5, calculate the concentration of spam detector set SCi;
9. According to 6, calculate the concentration of legitimate detection set LCi

10. end for
11. Combine local concentration values in each sliding window to construct the local

concentration feature vector < (SC1, LC1), (SC2, LC2), . . . , (SCn,LCn) >

SCi =

∑ωn

j=1 M(tj , DSs)

Nt
=

∑ωn

j=1

∑
dk∈DSs

M(tj , dk)

Nt
(5)

LCi =

∑ωn

j=1 M(tj , DSl)

Nt
=

∑ωn

j=1

∑
dk∈DSl

M(tj , dk)

Nt
(6)

3.4 Implementation of Our Model

Global concentration reflects entire features of emails and the local concentration
reflects local characteristics. However, the GC lacks some detailed information
and the LC separates the emails quite meticulously. As a result, we propose our
model to combine their advantages and make up for their disadvantages. The key
point of our model is the evaluation which is used to determine concentration
methods. In our paper, we use KNN to calculate the evaluation. As we all know,
the main idea of KNN is to count the numbers of neighbors belonging to different
kinds of classes. However, if the numbers of different classes are close, it is hard
to judge which class the undetermined point belongs to. So in our model, we
take use of this characteristic of KNN and adapt it to determine concentration
methods.
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Fig. 3. Implementation of our model

Firstly, after preprocessing, we convert all data to GC feature vectors and
use KNN classifier to evaluate them. During the evaluation, if the number of
a particular class, which belongs to the neighbors of a undetermined point, is
larger than a certain proportion, we can classify the point to this class. But if
the number is less than the proportion, we consider this point as a fuzzy one.
Secondly, for those fuzzy points, we convert them to LC feature vectors which
can reflect their details and evaluate them with KNN classifier again. Thirdly,
we manipulate all classification results and assess them with precision, recalls,
accuracy and F1 measure.

4 Experiments

4.1 Experimental Setup

In this paper, experiments were conducted on PU series email corpora, which
contains PU1, PU2, PU3 and PUA and were collected and published by An-
droutsopoulos [15] in 2004. The PU series email corpora were widely utilized in
spam detection related experiments. To ensure the objectivity, all the experi-
ments are organized with 10-fold cross validation. At the stage of classification,
we choose the KNN method to verify the spam and legitimate emails. Besides,
we use recalls, precision, accuracy and F1 measure to assess the results. Among
them, the F1 measure is taken as the most important evaluating indicator, for
its reflection of the recalls and precision. All experiments were conducted on a
PC with Intel P7450 CPU and 2G RAM.
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4.2 Experiments of Parameter Selection

Proportion of term selection. In the term selection stage, we choose top
m% of the terms according to their information quantity, which decides the size
of the gene library. When we screen the terms, on one hand, we need to cut off
those noise terms, and on the other hand, the important terms should be held
back. In the practical application, this parameter can be adjusted based on the
need of time and space complexity.

According to the paper written by Zhu [13], when the parameter m is set to
50%, the performance of experiments can achieve optimal. Therefore, the value
of m is set to 50% in our experiments.

Tendency threshold. Tendency function is mainly used to measure the dif-
ference between the terms and the two kinds of emails and add corresponding
terms to the related detector. In Zhu’s paper [13], with the increasing of the
tendency threshold θ, the whole performance of the algorithm degrades. As a
result, the value of θ is set to 0.

Dimension of feature vectors. In the global concentration method, each
email is reconstructed with the self and non-self concentration, which means
the dimension is two. And in the local concentration method, this paper adopts
variable length sliding window strategy, which means that if we assume N is the
number of sliding window, each email is transformed into an 2N -dimensional
feature vector. In this paper, we set the parameter N to 3, according to [10]. As
a result, the dimension of local concentration method is 6.

Parameter k in KNN. We have done some experiments to determine the
value of parameter k. And the results are shown as follows. As mentioned above,
the PU2 is a corpus containing only English emails and the PUA contains not
only English emails but also other languages. So the experiments on these two
corpora reflect general characteristics. Besides, we find that different experiments
based on different values of parameter k perform similarly And as we all know,
if the value of k is set too large, the computation complexity will increase.
Consequently, we choose a moderate value, which sets the value of k to five.

4.3 Experiments of the Proposed Model

In this paper, we conducted comparison experiments of the model with selec-
tion method IG and mainly compares the performance among GC, LC and our
model. These experiments are mainly conducted on corpora PU1, PU2, PU3 and
PUA using 10-fold cross-validation. The average performance experiments are
reported in Table 1 to Table 4.

Compared to GC and LC, the proposed adaptive concentration selection
model achieves a better performance on the four corpora. Although in the ex-
periment with PU1, the precision and recall indexes are less than GC or LC, the
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Fig. 4. Classification results on PU2 and PUA

Table 1. Performance of three feature construction methods on PU1

Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%)

PU1
Global Concentration 95.59 94.37 95.60 94.97
Local Concentration 96.54 92.92 95.41 94.69

Adaptive Concentration 96.18 94.17 95.78 95.16

Table 2. Performance of three feature construction methods on PU2

Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%)

PU1
Global Concentration 96.74 78.57 95.07 86.71
Local Concentration 95.95 72.86 93.80 82.83

Adaptive Concentration 96.74 78.57 95.07 86.71

Table 3. Performance of three feature construction methods on PU3

Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%)

PU1
Global Concentration 96.14 93.57 95.40 94.84
Local Concentration 96.95 92.86 95.47 94.86

Adaptive Concentration 96.78 94.07 95.91 95.41

overall evaluation index, F1 measure, is better than GC and LC. And we can
still conclude that our model performs better on this corpus.

As a result, we can come to a conclusion that the proposed model combines
the advantages of GC and LC, and it can enhance the experimental effects so as
to classify emails more precisely.
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Table 4. Performance of three feature construction methods on PUA

Corpus Approach Precision(%) Recall(%) Accuracy(%) F1(%)

PU1
Global Concentration 95.98 92.81 94.30 94.37
Local Concentration 97.27 93.33 95.26 95.17

Adaptive Concentration 97.44 94.21 94.65 95.79

4.4 Discussion

We have proposed our model for adaptively taking use of concentration meth-
ods’ feature construction characteristics. The improvement of the model can be
explained with the defects of GC and LC. Although GC approach extracts global
information of emails into 2-dimensional feature vectors, it may miss some infor-
mation because of its rough data processing. To the contrary, LC processes data
in detail, which may be too excessive to retain some noise terms. By contrast,
our proposed model first uses GC feature vectors to evaluate data, and divide
all data into two parts: certain classes and fuzzy ones. For those fuzzy ones, the
proposed model further takes use of the detailed information based on LC fea-
ture vectors and finally we get better performance according to the experimental
results. Generally speaking, the model combines both advantages of GC and LC,
and avoids large computational complexity of only LC method.

5 Conclusion

In this paper, we present a spam filtering system that combine GC and LC
feature construction methods that further makes the system adaptive to dif-
ferent emails. In the stage of feature extraction, we use IG to estimate terms’
importance and concentration methods to transform emails into reconstructed
feature vectors. And in the classification, according to different characteristics
of emails, the system adaptively chooses feature construction methods and the
performance is promising.

In the future, we intend to convert emails into variable length future vectors
according to the length of emails’ messages and study its performance.
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Abstract. Immune control is a kind of intelligent control method which is based 
on biology immune system. It provides a new way for solving nonlinear, unter-
tain and time variable system. In the paper, for the problem of Permanent Magnet 
Synchonous Motor (PMSM) speed control, an immune controller based on Va-
rela immune network model is proposed. It uses immune feedback mechanism to 
construct the immune controller. It is compared with conventional PID controller 
for PMSM speed control. The Varela immune controller has a smaller starting 
current to avoid the influence of excessive current to PMSM. Simulation results 
show the effectiveness and practicability of this method. 

Keywords: Varela immune network, permanent magnet synchonous motor, 
PID control, immune control. 

1 Introduction  

A closed loop speed control system consisting of PMSM is widely used in aerospace, 
aviation, machine tools, robots, automation and other fields because of its characteris-
tics such as high precision, wide speed range, excellent dynamic performance and has 
good application prospects. Researchers carry out a lot of research work created for 
PMSM AC servo system. Currently, PMSM servo control adapts approximate linear 
model or linear control. Servo system design uses current speed double-loop structure, 
in which the inner is current loop, the outer is velocity loop. And control method adapts 
PI regulator. In order to overcome control deficiencies caused by this approximation 
linear models, some researchers proposed many new and useful methods or control 
strategies applying to PMSM servo system, including the synovial variable structure 
control [1] [2], adaptive control [3] [4], fuzzy control [5], neural networks [6] and so 
on. But they are still inadequate to PMSM. 

In fact, PMSM AC servo system is a typical nonlinear multivariable coupling sys-
tem. It is easily affected by the unknown disturbance load, friction and magnetic fields 
at runtime. Approximately linear control is difficult to meet the performance require-
ments of PMSM. Immune Control is a new intelligent control method. The main prin-
ciple of the immune control learns from living organisms to address the problems 
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which cannot be solved well by traditional control methods and provide new ideas for 
solving the control problems with complexity, nonlinear, time-varying, uncertainty. 
  In the field of immune control, Takahashi first proposed immune feedback mechan-
ism based on self-tuning immune feedback controller [7]. In[8], the authors used the 
immune feedback to adaptively adjust the single neuron PID control parameters of a 
permanent magnet AC servo system. It can enhance the anti-disturbance ability of the 
system to improve the speed control performance. In literature[9],for PMSM mul-
ti-parameter identification, it proposed an immune co-evolutionary particle swarm 
optimization algorithm for multi-parameter identification and estimation of dq axis 
inductance motors , the stator winding resistance and rotor flux in order to effectively 
track parameters change. In [10], in order to solve the uncertainty of the model 
parameters and motor disturbance problem, an artificial immune controller for PMSM 
frequency control system was proposed to improve the adaptive capacity and 
robustness of the system. Varela Varela immune network model is proposed and Ste-
wart in 1990 [11], it was improved for large objects large inertia lag control[12], but 
also can used for the permanent magnet brushless DC motor (BLDCM ) control [13]. 
Studies show that the network model has good resistance to nonlinear, time delay and 
parameter adaptive capacity. Immune control is used to design the speed loop of 
PMSM AC servo system. It needs neither parameter identification, nor the specific 
form of nonlinear uncertain function. Direct design of controller parameters allows the 
system to reach the global asymptotic stability. 

In this paper, the model is designed to improve the speed of an immune controller for 
PMSM AC servo system control.  

2 Establish Immunity Controller  

Varela immune network model [10] can be expressed as a differential equation 
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where 1k - 6k  denote the adjustment coefficient of immune network; if  and ib  

denote the concentration of the species cloned antibodies and B cells. The three terms 
in (1) represent antibody mortality caused by antibody interactions, natural antibody 
mortality and new antibodies produced by B cells, respectively. The three terms 
in(2)represent the natural B cells mortality, reproductive rate of B cells and the B cells 
produced by bone marrow, respectively. 

M( ) and P( ) are the functions of reproduction and mature of B cells, respectively. 

iσ  denotes the sensitivity to network of the ith clone.  
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where 1p and 2p  are the adjustment coefficient exponent; ,i jm  is Boolean value of 

the affinity interaction of  ith clone and j th clone. The value 1 indicates that there is an 

affinity effect, 0 means no. h is the species of Bi  cell and Ti  antibody. Mature and 

reproductive functions are shown in Fig.1. They are in the form of "bell" shape function. 
 

σ

( )mat σ ( )prol σ

 

Fig. 1. Ripe function shape 

Formulas (1) and (2) to some extent reflect the dynamic process of interaction be-
tween the process of artificial immune B cells and antibodies T, but the controller does 
not reflect the role of antigen.  

The basic framework to build immune controller is immune feedback rule. The error 
in the control system is equivalent to the immune system antigen. In the Varela immune 
network model above, it is not related to the invasion of antigen. Therefore, to make the 
network model can be used to control the field, Fu improved it by introducing the role 
of antigen[11].  

When the interaction between antigens is introduced into the body, there would be two 

different reactions. One is antigen self-replication and reproduction. if  and ia  

represent the ith antibody and antigen. 7k is the adjustment coefficient of self-replication 

and reproduction processes. Another one is that antigen will be cleared by antibodies. 
Assuming antigen clear is mainly accomplished by the meeting of antibodies and anti-

gens. The process is denoted by i if a
，

which is the product of the number of antibodies 

and antigens. 7k is the adjustment coefficient antibody removal process, we get 
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Combining (1), (2) and (6), we can obtain the kinetic equations of the control model. 
As the amount of control in the model and the amount of the actual control system have 
discrepancy, the adjustments based on the actual situation is as follows:  
(1) The change rate of antigen into the body consists of self-replicating rate of antigen 
and killing rate of antibody to antigen. But in actual control system, the bias does not 
have the phenomenon of self-replicating, therefore removing the first term in (1).  
(2) After the antigen into the body, it stimulates B cell proliferation. ( )e t  is instead of 

the antigen ia  and add a new term 9 ( )k e t in (2), we have 

4 5 6 9

d
k k P( ) k k ( )

d
i

i i i

b
b b e t

t
σ= − + + + (7) 

Let ib  is independent variable of M( )iσ . 
d

d
ib

t
is independent variable of P( )iσ . 

The antigen ia  is replaced by the deviation ( )e t . The concentration ib  of B cells is 

replaced by control amount ( )u t .  

Because the system is a single input single output control system, through a simple 
iteration [15], we obtain the Varela immune controller model after adjustment as follows. 

10 3

4 5 11

( ) k ( ) k M ( ( )) ( )
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   (8) 

where 0f  indicates small memory antibodies when there is non-invasive antigen. 

mK  is a constant, mK 0> . 1p  and 2p  are also constant, 2 1p p 0< < .  

 

 

Fig. 2. Block diagram of Varela immune controller 
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Based on the equation (8) , the improved Varela immune network model, immune 
controller is built by Matlab Simulink 7.0 .In Figure 2, Fcn1and Fcn2  denote repro-
duction function P( )σ  and the mature function M (σ),which are taken as nonlinear 

function, p1 = -0.1, p2 = -0.10001, reproductive function = 500, mature function M (σ) 
= 500000. 

3 PMSM Speed Control  

3.1 PMSM Model  

PMSM uses three-phase AC power.  The equivalent of three-phase windings is spa-
tially symmetrical two-phase windings which are mutual difference of 90 °, namely 
direct axis d and quadrature axis winding q. In the d-q coordinate system, PMSM state 
equation is: 
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(9) 

Electromagnetic torque equation is: 

1.5 [ ( ) ]e n r q d q d qT p I L L I Iψ= + −
 (10) 

 

Among them, dI  and qI  are the currents of d shaft and q shaft, respectively; dU  

and qU  are the voltages of d shaft and q shaft , respectively; dL and qL  are the 

armature inductances of d shaft and q  shaft, respectively; R  is the resistance per 

phase stator winding; rψ is rotor flux linkage; np  is pole pair. Ignoring the magnetic 

saturation, hysteresis and excluding the impact of the scroll flow loss, the sinusoidal 

conditions of spatial distribution of the magnetic field, when dL = qL = L ,damping 

coefficient B = 0, the Equation (9) is simplified to: 
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From the torque equation (10), it can be seen that the electromagnetic torque of 

PMSM output depends only on the d shaft current component and the q shaft current 
component. In order to make the relationship between the electromagnetic torque and 

current be linear, the vector control method of the excitation component dI =0 of the 

stator current is used here. The advantage of this method is simple to control, and 
widely applied in practice. Then the electromagnetic torque equation becomes: 
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1.5e n r qT p Iψ=
 (12) 

The rotor angular velocity equation: 

1.5 / /r n r q Lp I J T Jω ψ= − (13) 

where J  is the mechanical inertia of the motor, LT motor load torque.  

PMSM starts with no-load, when the load is added, t = 0.1s. The parameters of 
PMSM model are selected as follows: 

R =2.875 Ω , dL = qL = L =0.0085H, nP =1, J =0.008 2.kg m , LT =4 N m⋅  

Transformation equation from a-b-c coordinate system to d-q coordinate system and 
inverse transformation equation are as follows: 
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where, ai 、 bi 、 ci are three phase stator currents under a-b-c coordinate system, re-

spectively. 

4 Simulation and Analysis 

4.1 PMSM Speed Control Simulation System 

In the experiments, the PMSM speed control system is shown in Figure 3. In the sys-
tem, PMSM stator is powered by a three-phase SPWM inverter, which uses the 
double-loop speed control mode, that is, the speed regulator (ASR) as the outer loop, 
the current regulator (ACR) as the inner loop of. Current regulator is PI controller. 
Speed controller uses immune controller. Rotor position sensor PG detects the rotor 
speed and angle. Under the conditions of setting excitation component to be zero, 
SPWM three-phase voltage modulation signal and current feedback signal are obtained 
by coordinate transformation 2r/3s and coordinate inverse transform 3s/2r, respec-
tively. Motor starts with no load, t = 0.1s 4 N m⋅ is loaded.  
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Fig. 3. PMSM speed control system schematics 

4.2 Results of Speed Control 

The parameters of immune controller and PI controller are selected as the optimal 

values obtained in several experiments. 3k =0.01， 4k  =8， 5k  =0.000001, 10k  

=130， 11k  =20. Speed loop kp = 1000, ki = 14, current loop kp = 10.7, ki = 10. 
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Fig. 4. Speed control response 

It can be seen from Figure 4, PMSM starts to load and loads 4 N m⋅  at 0.1 second, 
the speed appeared fluctuation. Compared with the PID control system, the speed 
response of PMSM controlled by the immune controller is slightly overshoot and 
steady-state regulation time is slightly longer, but the steady-state error is relatively 
small, the speed fluctuation is weak. And it has good capability of speed following. 
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Fig. 5. Electromagnetic torque output 

It can be seen from Figure 5, compared with PID controller, the electromagnetic 
torque output is small at early starting when PMSM controller is under immune con-
troller, which led directly to a longer time for speed reaching to expected value. At 0.1 
seconds, the PMSM speed has risen to expectations under the control of the immune 
controller, then add 4 N m⋅ load has no effect on the output of PMSM electromag-
netic torque. The immune controller can effectively suppress the influence of load 
disturbances with good robustness. 

It can be seen from Figure 6, compared with the PID controller, the stator current 

components dI  of PMSM has a small starting current under the control of immune 

controller. After the 4 N m⋅  at 0.1 seconds is loaded, the current changes smoothly. 
The immune controller can overcome overall impact to the control system caused by 
large starting current of PMSM. 
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Fig. 6. D-q axis under Stator current output 
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Fig. 7. Abc phase current output coordinate system 

Figure 7 shows that, compared with the PID controller, PMSM phase stator currents 
of the immune controller, having a smaller current to start loading 4 0.1 seconds after 
the load current change smoothly, without distortion of the current waveform, the 
output stable. Immune Controller can effectively overcome the impact load disturbance 
on the three-phase stator current output PMSM  

4.3 The Impact on the Speed Control of PMSM  

It was found that the immune controller, three key control selection parameter controls 
the output effect on PMSM system is very large. 

It can be seen in Figure 8, the selection of the value 10k  has great impact on the 
over shoot and homeostasis regulation time and less impact on the steady-state error. 

No matter 10k  is too large or too small, the system homeostasis regulation time is 

longer. The smaller the 10k  value is, the greater the overshoot is. 

It can be seen from Figure 9, the selection of 11k  has great impact on system 
overshoot and homeostasis regulation time, and less impact on the steady-state error. 

No matter 11k  is too large or too small, the system homeostasis regulation time is 

longer. The greater the 11k  value is, the greater the overshoot is. 



 Control of Permanent Magnet Synchronous Motor 243 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

5000

t/s

n/
(r

.s
-1

)

 

 

rin
k10=70
k10=100
k10=130
k10=160
k10=190

 

Fig. 8. Impact PMSM speed control response 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1000

2000

3000

4000

t/s

n/
(r

.s
-1

)

 

 

rin
k11=30
k11=25
k11=20
k11=15
k11=10

 

Fig. 9. Pairs influence PMSM speed control response 
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Fig. 10. Pairs influence PMSM speed control response 



244 H. Mo and L. Xu 

 

It can be seen in Figure10 that the selection of 4k  has small impact on the system 

overshoot and homeostasis regulation, less impact on the steady-state error. No matter 

4k  is too large or too small, the system homeostasis time is longer and the overshoot is 

also significantly increased, but no significant proportional relationship.  
Experimental results show that, compared with the PID control system, PMSM 

speed control under immune controller has relatively small steady-state error and speed 

fluctuation is weak.  And the selection of three critical control parameters 4k , 

10k and 11k is not sensitive to steady-state error. The immune controller has excellent 
capability against systematic error. 

5 Conclusions  

In this paper, Varela immune network model is adapted to build the immune controller 
for PMSM control. The results show that, compared with conventional PID controller, 
the dynamic response of the motor speed control system is slightly overshoot, but the 
steady-state error is relatively small, the speed fluctuation is weak and with good speed 
following capability. The immune controller can effectively suppress the effect of load 
disturbance on speed, electromagnetic torque output and current output. The selection 
of key parameters for the PMSM control system to the results further illustrates that the 
immune controller has excellent ability of anti-system errors. Varela immune controller 
as a new controller has some practical value in PMSM speed-sensitive control system, 
as well as high-precision and high accuracy control system.  
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Abstract. In recent years, fuzzy job shop scheduling problems (FJSSP) with 
fuzzy triangular processing time and fuzzy due date have received an increasing 
interests because of its flexibility and similarity with practical problems. The 
objective of FJSSP is to maximize the minimal average customer’s degree of 
satisfaction. In this paper, a novel adaptive immune-genetic algorithm (CAGA) 
is proposed to solve FJSSP. CAGA manipulates a number of individuals to in-
volve the progresses of clonal proliferation, adaptive genetic mutations and 
clone selection. The main characteristic of CAGA is the usage of clone prolife-
ration to generate more clones for fitter individuals which undergo the adaptive 
genetic mutations, thus leading a fast convergence. Moreover, the encoding 
scheme of CAGA is also properly adapted for FJSSP. Simulation results based 
on several instances verify the effectiveness of CAGA in terms of search capac-
ity and convergence performance.  

Keywords: Job shop scheduling, Fuzzy processing time, Fuzzy due date, Clon-
al algorithm, Adaptive genetic algorithm. 

1 Introduction 

Job-shop scheduling problem (JSSP) is one of the well-known hardest combinatorial 
optimization problems. During the last three decades, this problem has captured the 
interest of a significant number of researchers [1, 2]. However, some uncertain factors 
during the production process, such as mechanical failures, delay machining, uncer-
tain job processing time, and fuzzy due date of jobs, strongly affect the arrangement 
and assessment in the whole scheduling. In this study, the fuzzy job shop scheduling 
problem (FJSSP) is considered and solved to describe and represent the real-world 
problems more closely. In the literature, numerous algorithms have been proposed to 
solve FJSSP. Han et al. [3] studied the single machine scheduling problem with fuzzy 
due date. Sakawa et al. [4] used genetic algorithm to research the fuzzy shop schedul-
ing problem with fuzzy processing time and fuzzy due date, and proved that the pro-
posed GA gave better results than SA. Ishibuchi et al. [5] studied the fuzzy job shop 
scheduling problem using GA with fuzzy processing time. Murata et al. [6] reported 
the validation results for the multi-objective job shop scheduling problem with fuzzy 
due date. Adamopulos [7] gave another attempt that use the neighborhood search 
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method to study the single machine scheduling problem with variable processing time 
and fuzzy due date. 
 In this paper, an improved adaptive immune-genetic algorithm (CAGA) is pro-
posed to resolve FJSSP. In FJSSP, the fuzzy processing time and fuzzy due date are 
represented by the triangular fuzzy numbers and the semi-trapezoidal fuzzy numbers 
respectively. The objective of FJSSP is to maximize the minimal average degree of 
customers’ satisfaction. The main evolutionary procedures of CAGA are the clonal 
proliferation, adaptive crossover and mutation, and clonal selection. Both search 
properties of clonal selection algorithms and genetic algorithms are properly emerged, 
thus resulting in a well balance between the search exploration and exploitation. In 
addition, the coding scheme is strictly selected for FJSSP. The validation of the per-
formance of CAGA is carried out based on several instances. Experimental results 
show the superiorities of CAGA over traditional algorithms. 

2 Description of the Problem 

In FJSSP, the processing tasks set for an available set of machines are allocated in the 
time to meet the performance indicators [8]. The schedule is for a particular job which 
can be decomposed under the certain constraints. That is, how to arrange the occupied 
resources of the operation, the fuzzy processing time, and the order, so that make the 
customers’ minimal average degree of satisfaction maximum for the job’s completion 
time. In general, FJSSP is formulated in the following. Let n different jobs be 
processed on m different machines, every job has Oj operations. Pij represents the j-th 
operation of job Ni. Oijk represents the operation Pij be processed on machine Mk. In 
this paper, the fuzzy processing time of operation Oijk is represented by a triangular 
fuzzy number Tijk(t

1
ijk t2

ijk t3
ijk). The semi-trapezoidal fuzzy numbers D (d1

i d2
i) 

represents the fuzzy due date of job Ni. The constraints of the fuzzy schedule model 
are as follows.    

(1) Order constraint expression:  

( 1) ( 1) , 1,2,3, , 1,2,3, ;ij i j i jS S T i n j m− −≥ + = =   (1) 

(2) Machine constraint expression:  

( 1) ( 1) , 1,2,3, ; 1,2, ;ik i k i kM M T i n k m− −≥ + = =   (2) 

(3) Time constraint expression:  

0 1,2,3, ; 1,2, , ;ijS i n j m≥ = =   (3) 

Where Sij represents the start time of the operation j of the job i. Mik denotes the job 
i is processed on the machine k. Tij denotes the j operation’s fuzzy processing time of 
job i. Eq. (1) shows that a job must be completed before start another process. Eq. (2) 
represents that each machine can only process a work piece at a time. Eq. (3) indicates 
that the start time of each operation must be not lower than zero. 
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2.1 FJSSP with Fuzzy Processing Time and Fuzzy due Date 

In the scheduling process, due to the job process is affected by many factors, we use 
the triangle fuzzy variable to express the processing time. The triangular fuzzy 
processing time is Tijk=(t1

ijk，t2
ijk，t3

ijk) , where t1
ijk,t

2
ijk,t

3
ijk represent the most ideally 

processing time of the operation, the maximum possible processing time, and the 
most pessimistic processing time respectively. The triangular fuzzy numbers can truly 
reflect the actual production conditions and Tijk is shown as follows in Fig.1 (a). The 
membership function μij(t) is a possibility measure that the operation j of job Ni is 
completed in the processing time x. The formula (4) of the membership function μij(t) 
is given as follows.   

( )
( ) ( )
( ) ( )

1 2 1 1 2

3 3 2 2 3

1 3

,

,

0 ,

ijk ijk ijk ijk ijk

ij ijk ijk ijk ijk ijk

ijk ijk

x t t t x t t

x t x t t x t t

x t x t

μ

  − − ∈    = − − ∈  


< >

 

 

(4) 

The jobs’ due date is inseparable with the customers’ degree of satisfaction. When 
only consider the case that tardiness completion is the unwelcome situation, we use 
the semi-trapezoidal fuzzy numbers Di=D (d1

i, d
2
i) to represent the fuzzy due date of 

job Ni. As shown in Fig.1 (b), if Ni is finished below the value d1
i of the due date, the 

degree of satisfaction is 1. If the fuzzy completion time is in the window [d1
i, d

2
i], the 

degree of satisfaction is expressed with the linear function. c indicates the time it 
takes to finish the job Ni. μi(c) is the satisfactory degree of the membership function 
of job Ni. The formula (5) of membership function μi(c) is shown as follows.   

( ) ( ) ( )
1

1 2 1 1 2

2

1

,

0

i

i i i i i i

i

c d

c c d d d c d d

c d

μ

 ≤
  = − − ∈  


>

 

 

(5) 

          
(a) Fuzzy processing time                   (b) Fuzzy due date 

 

Fig. 1. Fuzzy processing time and Fuzzy due date 

2.2 The Objective Function of FJSSP 

In this paper, the objective is to find the fittest schedule which minimal average de-
gree of satisfaction is the maximum. As illustrated in Fig. 2, the degree of satisfaction 
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is defined as the ratio between the area SA (the shade in Fig. 2) which is encircled by 
the fuzzy completion time’s membership function and the fuzzy due date’s member-
ship function, and the graphics area SD which is surrounded by the fuzzy completion 
time’s membership function. 
 

 
Fig. 2. Satisfaction index  

 
 Customer’s degree of satisfaction for the job Ni is ( )i i D DAI S S S=  , so the average 

satisfaction of all the jobs is:  

( )
1 1

n n

i i D Di i
AI AI n S S S n

= =
= =    (6) 

In Eq. (6), AIi is the Customer’s degree of satisfaction of the job Ni. Fuzzy schedul-
ing must ensure that each job has a certain degree of satisfaction to meet the delivery 
requirements, thus maximize the minimum average satisfaction index as the goal 
function. The objective function of FJSSP can be described as follows. In Eq. (7), AI 
is the all jobs’ average satisfaction index. 

{ }max min | 1,2,3,AI I n=   (7) 

2.3 Fuzzy Operations 

In FJSSP, the fuzzy operations are the key elements. The fuzzy operations involve 
addition operation, max operation, and the comparison between two fuzzy numbers. 
Max operation is to determine the job fuzzy starting time of operation. Addition oper-
ation is used to determine the fuzzy completion time. Because the processing time is 
represented by triangular fuzzy numbers, so the process beginning time and comple-
tion time are also fuzzy numbers. For two fuzzy numbers ( )1 2 3, ,A a a a= ，

( )1 2 3, ,B b b b= , the fuzzy operations are described as follows. 

 
(1) Fuzzy addition operation: 

( ) ( ) ( )( )1 1 2 2 3 3, ,A B a b a b a b+ = + + +   (8) 
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(2) Fuzzy max operation: 

( ) ( ) ( )( )1 1 2 2 3 3, , , , ,A B max a b max a b max a b∨ =   (9) 

Here, Fig. 3 shows two triangular fuzzy numbers which take the  (max) opera-
tion in different locations’ relationship. 

 

~A ~B

    
      (a)                            (b)                                  (c) 

Fig. 3. Max operation of triangular fuzzy numbers 

(3) compare operation of triangular fuzzy numbers: 
For the comparison operation of triangular fuzzy numbers, the general following 

three criteria [6] are adopted: 
Criterion 1: ( ) ( )1 1 2 32 4C A a a a= + + , we may use the value of C1 to compare the 

two triangular fuzzy numbers A , B . 
Criterion 2: ( )2 2C A a= , when the value C1 of the two triangular fuzzy numbers are 

equal, we compare the value C2. 
Criterion 3: ( )3 3 1C A a a= − , if the value C1 and C2 are all equal respectively, we 

compare the value C3. 

3 Algorithm Design 

The genetic algorithm is an essential directly search method that does not rely on the 
specific issues. It has a strong problem-solving ability and robustness, which can 
solve the nonlinear optimization problems very well. Therefore, the genetic algorithm 
in field of the production scheduling has been taken more and more attention [9-13]. 
On the other hand, immune algorithms, especially the clonal selection algorithm,   
are inspired by the mechanism of the biological immune system. The basic idea of 
clonal selection is to select those cells which can recognize the cell antigens, then   
clone them. In this paper, an attempt of combining clonal selection theory with adap-
tive genetic algorithm is made to increase the detection and search abilities near the 
optimum solutions [14], aiming to improve the search efficiency of the algorithm. 

3.1 Coding Scheme 

Encoding is the conversion process from the solution space to genetic coding. A natu-
ral expression of job shop scheduling problem is not easy to be determined because of 
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the working procedure route's restraint. If encoding idea is inappropriate, it will prone 
to deadlock [15]. In this paper, we use the expression based on the working process. 
This scheduling encodes based on the process sequence, and all the same jobs are 
specified as the same decimal notation, and then to be interpreted according to the 
order they appeared in a given chromosome.  

3.2 Clonal Proliferation 

The number of clones of each individual: 

( )
( )

1

i N

i

f i
q ceil

f i
α

=

 
 = ∗
 
 

                           (10) 

Here, α represents the cloning coefficient. ( )f i denotes the chromosome fitness. 

ceil ( ) denotes the rounded-off integer. Eq. (10) represents the number of clones of 
each individual. In order to improve the processing speed, and avoid only to rely on 
increasing individual scale to achieve optimal solution, the maximum number qi of 
clones is set to be qi<N/2, where N is the initial population size.  

3.3 Improved Adaptive Crossover and Mutation Operators 

The crossover and mutation probability are two important parameters affecting the 
performance of the algorithm. In this algorithm, the value of the crossover probability 
Pc and mutation probability Pm can be changed automatically along with the fitness 
values of individuals in the population. As suggested in [16], we adopt a typical adap-
tive method to control the above two parameters: 

1 max 1
1

maxc 

2 1

( )

= 
avg

avg

avg

k f f
f f

f fP

k f f

× − ≥ −
 <

                          (11) 

   

3 max 2
2

maxm

4 2

( )

= 
avg

avg

avg

k f f
f f

f fP

k f f

× − ≥ −
 <

                         (12) 

In the above formulas, k1, k2, k3, k4 are the constants among (0, 1). Eqs. (11) (12) 
show that when the individual fitness value equals to the maximum fitness value, the 
crossover and mutation probability is 0, and then the algorithm evolutionary capacity 
will be limited. Thus we propose the new adaptive crossover and mutation probability 
functions, as shown in Eqs. (13), (14). When the individual fitness value is equal to 
the maximum fitness value, it can take crossover and mutation operations according 
to a certain probability respectively. Therefore the search ability of the algorithm is 
improved and the search is easier to get out of the local optima. 
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1 max 1
1 1

maxc  

2 1

( )

= 
c avg

avg

avg

k f f
P f f

f fP

k f f

× − + ≥ −
 <

                    (13) 

   

3 max 2
1 2

maxm 

4 2

( )

= 
m avg

avg

avg

k f f
P f f

f fP

k f f

× − + ≥ −
 <

                    (14) 

Here, 1f is the larger fitness value among the two cross individuals. 2f is the fitness 

value of an variation individual. avgf is the average fitness value of all the individu-

als. maxf is the largest fitness value of all the individuals. 1cP and 1mP are initial cros-

sover and mutation probability respectively.  
In this study, the crossover operation refers to replace a part of the structure of the 

two parent individuals to generate two new offspring individuals. The detailed steps 
of the crossover operation are given as follows. 

Step1: According to adaptive crossover probability, we choose two individuals 
from the population, which are known as the father individuals P1, P2. 

Step2: Pick out two non-empty complementary subsets D1, D2 from P1, P2. 
Step3: The genes which belong to D2 are picked out from individual P1 to form a 

new gene fragments H1. The genes belonging to D1 are opted from individual P2 to 
form a new gene fragments H2. Then, we use H2 to fill into the corresponding loca-
tion of the gene fragment H1 to obtain an offspring C1. 

Step4: Genes which belong to D2 are selected from individual P2 to form a new 
gene fragments G2. Moreover, choose the genes belonging to D1 from individual P1 
to form a new gene fragments G1. Then, we use G1 to fill into the corresponding 
location of the gene fragment G2 to constitute an offspring C2. 

Step5: Finally, compare the fitness value of C1, C2, P1, P2. When the maximum 
fitness value of C1 and C2 is greater than the maximum fitness value of P1 and P2, 
thus we consider C1 and C2 are superior to P1 and P2. The offspring C1 and C2 will 
replace the parents P1 and P2; otherwise, the parents P1 and P2 will be preserved and 
they will enter the next generation to evolve. 

It is clear that the above adaptive crossover will not produce unreasonable chromo-
some phenotype. The method can improve the algorithm’s search capability and the 
quality of the whole population. Therefore avoid the algorithm to fall into local opti-
mum situation effectively. 

After the crossover operation, we use the mutation method with adaptive mutation 
probability to deal with the population. First, randomly select a parent. Then generate 
two random integer values, a1 and a2, which are both range in [1,n×m]. Finally swap 
the two genes at location a1 and a2 of the parent respectively.  

3.4 Clonal Selection Operation 

Clonal selection operation chooses the chromosomes which have strong vitality  
from the current population, to make them have a chance to reproduce, and thereby 
improve the global convergence and computational efficiency. It is intended to avoid 
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the loss of effective genes. In the vicinity of the optimal solution, clone every parent 
based on the fitness value. The clonal selection procedure utilizes the elitist reserva-
tion strategy. The fittest antibodies Yi (i=1,2,…,N) of all the clones of each parent 
antibody are firstly selected, i.e., ( ) ( ), ,1 , ,m,{ ( ), }, ,

ii i j j i i j iY X min f X f X f X= = … … . Then, a 

hill climbing update rule is used to replace the parent antibodies Xi with selected 
clones Yi according to an updating probability Pi. 
 

   

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

i

1 1

1

0

i i

i i
i i

f Y f X

f X f Y
P exp f Y f X

k

f Y f X

 <


 − = ≥  
 

 ≤

        (15) 

 

   Based on Eq. (15), if the fittest antibody of the clones Yi has worse fitness than its 
parent antibody Xi, update it with probability “1”. As a result, the elites in the offspring 
have been preserved and enter into the following generation. On the contrary, if Yi is 
better than its parent, then update according to an exponential function to maintain the 
diversity of the population, here (10,100)k ∈  is a value related to the diversity. General-

ly, the better the diversity is, the bigger the value of k. Furthermore, in order to save the 
information of the original population so that the best antibody in the parents could not 
be replaced, the exponential function is unavailable for parent X1. 
The procedure of CAGA is shown in Fig. 4: 

 

 

Fig. 4. The implementation procedure of CAGA 

4 Experiment and Simulation Results 

In this paper, we use 3×3, 6×6, 10×10 job shop scheduling problems as the study 
instances. The three benchmark instances are taken from the literature [4] and [17]. 
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Table 1. 3×3 fuzzy scheduling and processing data 

jobs Processing machines(fuzzy processing time) Fuzzy duedate 
1 1(2.5,3,3.5) 2(2.5,3,3.5) 3(1.5,2,2.5) (11,12) 
2 1(0.5,1,1.5) 3(4.5,5,5.5) 2(2.5,3,3.5) (7.5,9) 

3 2(2.5,3,3.5) 1(1.5,2,2.5) 3(2.5,3,3.5) (12,13.5) 

Table 2. 6×6 fuzzy scheduling and processing data 

jobs Processing machines(fuzzy processing time) 
Fuzzy  

due date 
1 1(5,6,13) 5(3,4,5) 2(1,2,3) 6(3,4,5) 4(2,3,4) 3(2,3,4) (30,40) 
2 1(3,4,5) 2(2,4,5) 3(1,3,5) 6(4,5,6) 4(5,6,7) 5(6,7,8) (35,40) 
3 3(1,2,3) 6(5,6,7) 5(4,5,6) 4(3,4,5) 2(1,2,3) 1(1,2,3) (20,28) 
4 6(2,3,4) 5(1,2,3) 4(2,3,4) 2(2,3,5) 1(3,4,6) 3(3,4,5) (32,40) 
5 6(3,4,5) 5(2,3,4) 4(1,2,3) 3(2,3,4) 2(4,5,6) 1(2,3,4) (30,35) 

6 5(6,7,8) 6(4,5,6) 1(2,3,4) 2(3,4,5) 3(2,3,4) 4(1,2,3) (40,45) 

Table 3. ×10 fuzzy scheduling and processing data 

jobs Processing machines(fuzzy processing time) 
Fuzzy 

due date 
1 8(2,3,4) 6(3,5,6) 5(2,4,5) 2(4,5,6) 1(1,2,3) 3(3,5,6) 9(2,3,5) 4(1,2,3) 7(3,4,5) 10(2,3,4) (45,60) 
2 10(2,3,4) 7(2,3,5) 4(2,4,5) 6(1,2,3) 8(4,5,6) 3(2,4,6) 2(2,3,4) 1(1,3,4) 5(2,3,4) 9(3,4,5) (50,60) 
3 6(2,4,5) 9(1,2,3) 10(2,3,5) 8(1,2,4) 1(3,5,6) 7(1,3,4) 4(1,3,5) 2(1,2,4) 5(2,4,5) 3(1,3,5) (50,65) 
4 1(1,2,3) 5(3,4,5) 8(1,3,5) 9(2,4,6) 10(2,4,5) 6(1,2,4) 7(3,4,5) 2(1,3,5) 4(1,3,6) 3(1,3,4) (50,65) 
5 2(2,3,4) 7(1,3,4) 3(1,3,4) 5(1,2,3) 8(1,3,5) 9(2,3,4) 10(3,4,5) 6(1,3,4) 1(3,4,5) 4(1,3,4) (50,65) 
6 4(2,3,4) 2(2,3,4) 3(1,2,3) 5(2,4,5) 6(1,3,4) 8(1,3,4) 7(3,4,5) 9(1,2,3) 10(2,4,5) 1(1,3,4) (45,60) 
7 3(2,3,4) 5(1,4,5) 4(1,3,5) 1(3,4,5) 9(2,3,4) 7(3,4,5) 2(1,2,3) 10(3,5,6) 8(3,5,6) 6(1,2,3) (45,60) 
8 7(3,4,5) 1(1,2,3) 9(3,4,5) 6(2,4,5) 10(1,3,4) 2(2,3,4) 5(1,2,3) 3(2,4,5) 4(3,4,5) 8(2,3,5) (50,60) 
9 9(3,4,5) 4(1,3,4) 10(1,3,5) 2(2,3,4) 3(3,5,6) 6(2,4,5) 8(1,3,4) 1(3,4,5) 5(1,2,3) 7(3,4,5) (45,60) 

10 7(2,4,5) 5(1,2,3) 2(3,4,5) 4(2,3,4) 1(1,2,3) 8(3,4,5) 10(2,4,5) 6(3,4,5) 3(1,2,3) 9(1,2,4) (50,60) 

Table 4. 3×3 fuzzy scheduling completion data 

jobs fuzzy completion data 
Average 

satisfaction 
1 (3,4,5) (5.5,7,8.5) (9,11,13.5) 

0.579 2 (0.5,1,1.5) (5,6,7) (8,10,12) 
3 (2.5,3,3.5) (4.5,6,7.5) (7.5,9,11) 

Table 5. 6×6 fuzzy scheduling completion data 

jobs fuzzy completion data 
1 (8,10,18) (12,16,23) (13,18,26) (17,22,31) (21,26,35) (24,33,45) 

2 (3,4,5) (5,8,10) (6,11,15) (14,17,21) (19,23,28) (25,30,36) 
3 (1,2,3) (22,28,38) (29,35,44) (32,39,49) (33,41,52) (34,43,55) 
4 (2,3,4) (7,9,11) (9,12,15) (11,15,20) (15,19,28) (18,23,33) 
5 (5,7,9) (9,12,15) (10,14,18) (12,17,22) (17,23,32) (19,26,36) 
6 (6,7,8) (10,12,15) (12,15,22) (20,27,37) (22,30,41) (23,32,44) 
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Table 6. 10×10 fuzzy scheduling completion data 

job fuzzy completion data 
1 2,3,4 5,9,11 8,15,19 12,20,25 13,23,32 19,30,41 23,38,51 24,41,57 27,45,62 29,49,66 
2 2,3,4 5,7,10 7,14,19 10,16,22 14,21,29 16,25,35 20,32,41 21,36,46 23,39,50 26,43,56 
3 2,4,5 4,6,8 7,13,19 8,16,23 11,21,29 14,24,33 15,27,38 23,38,52 25,43,57 26,46,63 
4 1,2,3 6,11,14 7,14,19 12,21,29 14,25,34 15,28,38 21,33,43 22,36,48 23,39,54 24,42,58 
5 2,3,4 6,10,14 7,13,18 12,23,30 17,32,42 21,35,46 24,39,51 25,42,55 28,46,60 29,49,66 
6 2,3,4 4,6,8 5,8,11 10,19,24 11,22,28 15,25,33 18,29,38 19,31,41 21,35,46 23,41,53 
7 2,3,4 3,7,9 5,10,14 8,14,19 10,17,23 13,21,28 15,25,32 18,30,40 21,37,48 22,39,51 
8 3,4,5 4,6,8 7,10,13 9,14,18 10,17,23 14,23,29 15,25,33 21,34,46 27,45,62 29,48,67 
9 3,4,5 4,7,9 5,10,14 7,13,18 10,18,24 13,26,33 16,29,37 19,33,42 20,35,45 24,39,50 

10 8,14,19 11,21,27 18,29,37 20,32,42 22,38,49 25,42,54 27,46,59 30,50,64 31,52,67 32,54,71 

 
In CAGA, the initial population size is 100. The initial adaptive cross probability 

Pc1 is 0.5. The initial variation probability Pm1 is 0.1. The cloning coefficient α is 50. 
The maximum number of iterations MAXGEN=200. The adaptive genetic algorithm 
(AGA) [17] and genetic algorithms (GA) [4] are also implemented to make a compar-
ison. Each algorithm runs 10 times. Table 4, Table 5, Table 6 recorded the fuzzy 
scheduling completion data for the above three benchmark FJSSP instances. 

From Table 4, we can find that the maximum minimum average degree of satisfac-
tion (0.579) can be obtained every run for the 3×3 problem. This value is better than 
optimal solution 0.5255 in [17]. Tables 7 and 8 summarize the optimal minimum 
average degree of satisfaction by using the three algorithms respectively. For the 6×6 
problem, the best value by CAGA is 0.773, which is better than the optimal solution 
0.69 of the problem in [4]. The convergence curve is depicted in Fig.5 (a). For 10×10 
scheduling problems, the objective satisfaction value is 0.961 obtained by CAGA, 
which is also better than the optimal solution value 0.94 in [4]. The corresponding 
convergence curve is shown in Fig. 5(b). Besides, Fig. 6(a) and Fig. 6(b) illustrates all 
convergence curves of CAGA for 10 runs. 

Table 7. 6×6 Average customer satisfaction in fuzzy scheduling 

Trial GA AGA CAGA Trial GA AGA CAGA 
1 0.617 0.683 0.769 6 0.429 0.687 0.773 
2 0.532 0.706 0.748 7 0.652 0.706 0.773 
3 0.547 0.703 0.773 8 0.618 0.706 0.769 
4 0.547 0.692 0.769 9 0.669 0.694 0.773 
5 0.429 0.701 0.773 10 0.627 0.688 0.773 

Table 8. 10×10 Average customer satisfaction in fuzzy scheduling 

 

 
 

Trial GA AGA CAGA Trial GA AGA CAGA 
1 0.649 0.799 0.921 6 0.713 0.850 0.933 
2 0.663 0.802 0.947 7 0.742 0.870 0.947 
3 0.692 0.815 0.961 8 0.742 0.855 0.947 
4 0.751 0.819 0.961 9 0.751 0.815 0.961 
5 0.718 0.821 0.961 10 0.658 0.870 0.961 
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From the above simulations, we can see that CAGA can achieve better performance 
than its competitors. The novelty of CAGA is the hybridization of clonal operators with 
the genetic algorithm. The experimental results verify the effectiveness of such hybridi-
zation based on solving several fuzzy job shop scheduling problems. 
 

 

Fig. 5. Maximum Minimum Satisfaction compared during GA, AGA, CAGA 

 
Fig. 6. The Maximum Minimum Satisfaction (CAGA run 10 times) 

5 Summary 

In this paper, a novel adaptive immune-genetic algorithm (CAGA) is proposed to 
solve the fuzzy job shop scheduling problems (FJSSP). CAGA manipulates a number 
of individuals to involve the progresses of clonal proliferation, adaptive genetic muta-
tions and clone selection. The main characteristic of CAGA is the usage of clone 
proliferation to generate more clones for fitter individuals which undergo the adaptive 
genetic mutations, thus leading a fast convergence. Moreover, the encoding scheme of 
CAGA is also properly adapted for FJSSP. Furthermore, the parameters to control 
crossover and mutation operators are adaptively set. Simulation results based on sev-
eral instances verify the effectiveness of CAGA in terms of search capacity and con-
vergence performance. 
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Abstract. As we know, genetic algorithm converges slowly. It is a nat-
ural contradiction when the situation appears with expensive objective
function evaluating and satisfactory solutions being adequate. In this pa-
per, a very fast convergent evolutionary algorithm (VFEA) is proposed
with inner-outer hypercone crossover, problem dependent and search sta-
tus involved mutation (PdSiMu). The offsprings produced by hypercone
crossover are allowed to be outside the hypercone generated by rotat-
ing the parents around their bisectrix. PdSiMu utilizes the problem and
evolving information quickly. VFEA is experimentally compared with five
competitors based on ten classic 30 dimensional benchmarks. Experimen-
tal results indicate that VFEA can reach the accuracy of 10−4 − 10−1

for all the benchmarks within 1500 function evaluations. VFEA arrives
significantly better performance than all its competitors with higher so-
lution accuracy and stronger robustness.

Keywords: Very fast evolutionary algorithm, hypercone crossover,
PdSiMu, numerical optimization.

1 Introduction

Evolutionary Algorithms (EAs) [1] imitate nature’s evolutionary process to solve
complex problems. The main idea of Darwinian evolution is survival of the fittest.
According to this principle, EA employs crossover, mutation and selection op-
erations to generate new solutions. It is simple to execute, and can obtain the
global optimal or satisfactory solutions with reasonable computational cost. Con-
sequently, EA has been applied to a very wide range of problems, including
function optimization, automatic control, combinatorial optimization, machine
learning and other related areas [2]-[10].

As a general problem solver, the semi-blind crossover and mutation opera-
tions of EA are random only. This blindness affects the speed of optimization
[1]. Low convergence efficiency has become a major obstacle when using EA
to real world problems [1]. As the other side of a coin, the semi-blind opera-
tions are also obligatory when we are facing the complete black-box problems.

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 258–266, 2014.
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Under the condition of nothing heuristic information available, simultaneously,
the problems being also difficult, what we can do is to design the powerful and
efficient general operations to accelerate the exploration speed of optimization
algorithms.

As we know, population diversity and selection pressure are two interdepen-
dent and hostile issues [1] in EA. Their fragile, however, excellent balance, largely
determines the performance of EA. EAs, maintaining a diverse population of
highly-fit individuals, are capable of adapting quickly to fitness landscape change
and well-suited to efficient optimization of multimodal landscapes for promis-
ing search areas. Selection pressure is responsible for the finely locating the
global/satisfactory solutions. Both issues cooperate and interact each other for
the excellent performance of EAs.

This paper mainly focuses on the fast exploration operations for quickly find-
ing the promising areas and solutions. An inner-outer hypercone crossover is
presented, whose offsprings are allowed to be outside the hypercone generated
by rotating the parents around their bisectrix. A problem and heuristic infor-
mation involved mutation is proposed. The common features of both genetic
operations are fast exploration-oriented in the initial search stage. Tournament
selection drives population towards the promising search area(s).

The rest of this paper is organized as follows. Section 2 introduces the re-
lated genetic operations and algorithm. Fast and very competitive properties
are verified in Section 3. Finally, the paper is concluded in Section 4.

2 Evolutionary Operations and VFGA

Suppose X1 = [x11, · · · , x1n]
′, Y1 = [y11, · · · , y1n]′ are parental solutions, whose

offsprings are X2, Y2 after genetic operations.

2.1 Arithmetic Crossover

The arithmetic crossover is usually implemented as follows:

X2 = rX1 + (1 − r)Y1, Y2 = (1 − r)X1 + rY1 . (1)

where r is a uniform random number in [0, 0.5]. In terms of geometric perspec-
tive, the arithmetic crossover lets offspring vectors being contained in the plane
of parental vectors and locating in both sides of the bisectrix of the parents
[10]. The arithmetic crossover is illustrated as Fig. 1 in terms of geometrical
viewpoint.

2.2 Hypercone Crossover

The fact that the newly generated solution is contained in the plane of parental
vectors has a fatal problem, i.e., the inherent, irreconcilable contradiction be-
tween the scanned planar region and huge hypervolume of search space.
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Fig. 1. Geometrical illustration of arithmetic(left)/hypercone(right) crossover

A hypercone crossover operator is proposed for numerical optimization in this
paper, which allows the offspring to be outside the plane of parents [10]. The
offspring can be limited inside the hypercone resulting from rotating the parents
around their bisectrix if the vectors are rotated in a small range of angles. The
offspring can also locate outside the hypercone around their bisectrix if the
vectors are rotated in an even broad range of angles.

The computing procedure of generating offspring with inner-outer hypercone
crossover is presented as follows and illustrated as Fig. 1.

– Calculate the bisectrix B (sectrix curve) of vectors X1, Y1;
– Calculate the angle θ between B and any of parents;
– Obtain another vector V orthogonal to B. They construct two bases [B, V ]

of a plane which contains the bisectrix B;
– Generate an angle θb in [0, 2θ];
– Produce two offspring, X2 = [B, V ] · eθb , Y2 = [B, V ] · e−θb;

2.3 Gaussian and Cauchy Mutation

In the classic evolutionary programming (EP) [2], one parent (Xi, ηi) creates a
single offspring (X ′i, η

′
i) with Eq.(2).

x′i(j) = xi(j) + ηi(j)Nj(0, 1), η′i(j) = ηi(j)exp(τ
′N(0, 1) + τNj(0, 1)) . (2)

where xi(j), x
′
i(j), ηi(j) and η′i(j) denote the j -th component of vectors Xi,

X ′i, ηi and η′i. N(0, 1) is a normally distributed one-dimensional random number
with mean zero and standard deviation one. Factors τ and τ ′ are commonly set
to (

√
2
√
n)−1 and (

√
2n)−1.

If the term Nj(0, 1) in Eq.(2) is replaced by a Cauchy random variable δj as
Eq.(3), an EP with Cauchy mutation [2] is obtained.

x′i(j) = xi(j) + ηi(j)δj . (3)
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2.4 Problem Dependent and Search Status Involved Mutation

Either Gaussian mutation Eq.(2), or Cauchy mutation Eq.(3), has a common in-
surmountable obstacle, i.e., the search stepsize is nearly independent of problem
and the evolving states of algorithm. The above mentioned information can be
seen as being included in the stepsize parameter ηi(j) to a little extent.

Based on these observations, a problem dependent and search status involved
self-adaptive mutation operator (PdSiMu) is proposed.

x′i(j) = xi(j) + ηi(j) ∗ (Maxj −Minj) . (4)

where Maxj and Minj are the maximal and minimal values in the j -th compo-
nents of all the current solutions, which contains the present searching informa-
tion of problem and the current evolving information of algorithm.

2.5 Tournament Selection

The above two strategies are global exploration-oriented via large-scale and di-
verse cooperation. Tournament selection [2,1] is then adopted to drive population
to evolve in this paper. For each individual, q opponents are chosen uniformly
at random from the newly generated individuals and the best one is put into the
next generation.

2.6 Flowchart of VFGA

Elitist strategy is used to ensure algorithm evolve steadily and converge because
the proposed exploration-oriented crossover and mutation operations damage
the best evolving patterns from time to time.

Fig. 2. Flowchart of VFGA
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Table 1. Benchmark functions, where f1−f6 are unimodal and f7−f10 are multimodal,
whose known optimal values are fmin = 0

Benchmark functions Domain xmin

f1 =
n∑

i=1

x2
i [-100, 100]n {0}n

f2 =
n∑

i=1

|xi|+
n∏

i=1

|xi| [-10, 10]n {0}n

f3 =
n∑

i=1

(∑i
j=1 xj

)2

[-100, 100]n {1}n

f4 = max
i
{|xi|, 1 ≤ i ≤ n} [-100, 100]n {0}n

f5 =
n∑

i=1

(�xi + 0.5�)2 [-100, 100]n {0}n

f6 =
n∑

i=1

ix4
i + random[0, 1) [-1.28, 1.28]n {0}n

f7 =
n∑

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[-5.12,5.12]n {0}n

f8 = −20 exp
[

−0.2
√

1
n

n∑

i=1

x2
i

]

− [-32, 32]n {0}n

exp
(
1
n

∑n
i=1 cos(2πxi)

)
+ 20 + e

f9 = 1
4000

n∑

i=1

x2
i −

n∏

i=1

cos
(

xi√
i

)
+ 1 [-600,600]n {0}n

f10 = π
n

{

10 sin2(πy1) +
n−1∑

i=1

(yi − 1)2 · [-50,50]n {1}n
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n∑

i=1

u(xi, 10, 100, 4), yi = 1 + 1
4
(xi + 1),

where u(xi, a, r, s) =

⎧
⎨

⎩

r(xi − a)s, if xi > a
0 if − a ≤ xi ≤ a

r(−xi − a)s, if xi < −a.

3 Simulation and Experimental Comparisons

3.1 Benchmarks, Competitors and Parameters

Ten classical 30-dimensional benchmarks [2] and five competitors are chosen to
verify the fast optimizing property of VFGA. Benchmarks refer to Table 1.

VFEA is an EA with hypercone crossover, mutation PdSiMu and tournament
selection operations. Five other competitors are

– EAGau: a VFEA variant with Gaussian mutation replacing PdSiMu, which
is similar with classic evolutionary programming (CEP) [2];

– OMEA: a VFEA variant with PdSiMu only and no crossover;
– EACau: a VFEA variant with Cauchy mutation replacing PdSiMu and no

crossover, which is similar with fast evolutionary programming (FEP) [2];
– GL25 [6]: solutions are categorized into female parents and male parents and

a parent-centric real-parameter crossover operator is proposed;
– CMAES [3]: any new candidate solutions are sampled according to a multi-

variate normal distribution.
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Common parameters for algorithms are: population size is 40, the maximal
function evaluation is 1500, independent running time is 50. Crossover and mu-
tation probabilities are 0.6 and 0.4 in EAGau and VFEA, mutation probabilities
are 1 in OMEA and EACau. The initial value of step size is 3. The parameters
of GL25 and CMAES are the same as the corresponding references.

3.2 Numerical Comparison among Algorithms

Table 2. Results comparison (Mean±Std) among six algorithms

EAGau OMEA EACau

f1 1.48e+1±6.31 6.11e+5±9.15e+3 3.45e+5±4.82e+3

f2 8.92 ±2.05 7.85e+11±3.16e+12 1.18e+4 ±2.29e+4

f3 5.68e+1±2.56e+1 1.17e+5±3.28e+5 4.90e+5±1.00e+5

f4 2.16 ±4.26e-1 8.62e+1±4.49 6.74e+1±3.56
f5 1.68e+1 ±7.89 6.01e+4 ±8.75e+3 3.47e+4 ±3.90e+3

f6 7.83e-1 ±3.17e-1 1.04e+2 ±2.59e+1 2.26e+1 ±5.34
f7 6.53e+1±1.79e+1 4.11e+2±3.34e+1 3.00e+2±1.92e+1

f8 3.57 ±6.55e-1 2.05e+1±2.25e-1 1.92e+1±2.49e-1
f9 5.23e-1±1.33e-1 5.54e+2±6.54e+1 3.90e+2±4.45e+1

f10 1.59 ±3.17e-1 5.02e+8±1.32e+8 8.59e+7±3.15e+7

VFEA GL25 CMAES

f1 2.33e-3±3.43e-3 6.21e+3±1.54e+3 2.78e+2±1.46e+2

f2 1.27e-2 ±1.17e-2 3.52e+1 ±5.68 2.31e+14±1.32e+15

f3 3.27e-2±5.10e-2 3.28e+5±6.90e+4 2.19e+5±7.51e+4

f4 3.78e-2±2.11e-2 5.05e+1±5.69 2.77e+1±8.64
f5 0 ±0 5.67e+3 ±1.74e+3 8.32e+2 ±4.99e+2

f6 6.35e-3 ±5.13e-3 2.94 ±1.31 1.17e-1 ±4.19e-2
f7 3.09e-3±8.80e-3 2.65e+2±2.02e+2 2.39e+2±4.38e+1

f8 1.05e-2±8.98e-3 1.37e+1±1.03 1.94e+1±1.94e-1
f9 2.36e-4±2.83e-4 5.52e+1±1.40e+1 9.97 ±4.60
f10 6.45e-1±1.02e-1 5.02+6 ±4.49e+6 6.94 ±3.49

Experimental results of Table 2 clearly tell us that algorithm VFEA has signif-
icantly better performance than all of its competitors. The closest performance
to VFEA is EAGau, however, there is still a clear difference to VFEA, which
indicates the excellent property of the proposed PdSiMu mutation. There are
great difference of OMEA and EACau with VFEA which illustrates the distinct
superiority of the proposed hypercone crossover. The distinctively different per-
formance of the first four algorithms has solidly verified the cooperating and
benefiting effects of the hypercone crossover and PdSiMu mutation.

As we know, the state-of-the-art evolutionary algorithms CMAES [3] and
GL25 [6] are the milestones of EA and have great performance when optimizing.
However, when we are facing is the expensive objective function evaluations and
what we are requiring is the roughly satisfactory solutions as the situation of
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this paper is considering, it is clear that VFEA shows subversive advantages over
both of them.

3.3 Online Evolutionary Performance Comparison

The online evolutionary performance comparisons on unimodal and multimodal
functions are plotted in Fig. 3. VFEA performs best and EAGau is following,
both of which outperform all their competitors. It needs specifically to say that
VFEA has arrived the solution accuracy 10−4 − 10−1 when all its competitors
just start or have not started their optimizing process. These phenomena are
clearly shown in all the evolving process of functions, whatever the unimodal or
the multimodal benchmarks. For example, it can be clearly seen that CMAES
just begins to optimize process for functions f1, f5, f9 and f10 and VFEA has
been reached the precision of 10−4 − 10−1.

4 Discussion and Conclusion

Many state-of-the-art evolutionary algorithms have been proposed recently for
various optimization and engineering applications, such as CMAES [3], CoDE
[12], JADE [13], Stochastic Ranking [14], NSGA-II [15] and MOEA/D [5]. All
of them have very competitive performance with a certain amount of computing
costs. However, their performance have not been considered and we do not know
their performance with a very limited computing resources. At the same time,
there are many questions whose objective function evaluations are very expensive
and roughly satisfactory solutions are enough.

Aiming at these analysis, an inner-outer hypercone crossover and a problem
dependent and search status involved mutation (PdSiMu) strategy, as well as
a fast convergent EA (VFEA), are proposed in this paper. Simulation results
show two sides of conclusions. Firstly, both strategies significantly cooperate
and benefit each other. Secondly, VFEA greatly outperforms its competitors
under the condition of very limited computing costs.

It is easy to see that this is only the very preliminary results on the road of
this study. There are some questions to be researched. For example, can it have
even more competitive performance when combined with other metaheuristics?
What will it perform when it is applied to other questions, such as multi-objective
optimization? Its convergent property and other executing mechanism [16] are
also interesting questions.
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Abstract. A variant of quantum evolutionary algorithm based on dy-
namic neighborhood topology(DNTQEA) is proposed in this paper. In
DNTQEA, the neighborhood of a quantum particle are not fixed but
dynamically changed, and the learning mechanism of a quantum particle
includes two parts, the global best experience of all quantum particles
in population, and the best experiences of its all neighbors, which col-
lectively guide the evolving direction. The experimental results demon-
strate the better performance of the DNTQEA in solving combinatorial
optimization problems when compared with other quantum evolutionary
algorithms.

Keywords: Quantum Evolutionary Algorithm, Particle Swarm Opti-
mization, Dynamic Neighborhood Topology, Algorithm.

1 Introduction

Quantum computing with its powerful computing power has become one of the
most focused technology of current science. By considering the quantum informa-
tion processing, researchers attend to introduce quantum computing mechanism
into some traditional optimization algorithms. The combination of quantum
computing and evolutionary computation was proposed in [1] named quantum
genetic algorithm. In [2][3] quantum-inspired evolutionary algorithms(QEA) are
first investigated for a class of combinatorial optimization problems in which
quantum rotation gates act as update operators. Many works have tried to im-
prove the performance of QEA. In [4] a new two phase scheme and a new He
Gate is proposed for QEA. Reference [5] establishes that QEA is an original algo-
rithm that belongs to the class of estimation of distribution algorithms (EDAs),
while the common points and specifics of QEA compared to other EDAs are
highlighted. Since proposed, QEA has been applied on several applications in
science. Using QEA and Markov Model [6] presents a new method for static
VAR which considers existing wing generator voltages and transformer taps as
controller to regulate the voltage profile in a distribution system with wind farms.
In order to solve the problem of highly non-linear economic load dispatch prob-
lem with value point loading [7] proposes an improved real quantum evolutionary
algorithm which shows better performance than QEA.

Generally, the structure of the population in evolutionary algorithms is an
important parameter. A graph based evolutionary algorithm is proposed in [8]

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 267–274, 2014.
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in which the individuals are located on the nodes of a graph structured popula-
tion. The effect of variable population structure on Particle Swarm Optimization
is investigated in [9]. Random graphs and their performance on several crite-
ria are compared in their work. Similar with the above algorithms, Tayarani
[10] proposed a sinusoid size ring structure QEA, experimental results show
that the ring structure can be an efficient architecture for an effective Explo-
ration/Exploitation tradeoff and improves the performance of QEA. [11] pro-
poses a dynamic structured interaction among members of population in QEA
and the study shows that cellular structure is the best. The structure of the
population in above algorithms is fixed and the relationship among individuals
never change in evolving process, this characteristics may cause the optimization
process trap in local optimums and make the algorithm unstable.

As the similar particle study strategy, many hybrid algorithms by combing
QEA and particle swarm optimization(PSO) are proposed . [12] proposed a bi-
nary Quantum-behaved PSO algorithm with cooperative approach, the updating
method of particle’s previous best position and swarm’s global best position are
performed in each dimension of solution vector to avoid loss some components.
The experimental results show that this technique can increase diversity of pop-
ulation and converge more rapidly than other binary algorithms. In [13], a hybrid
real-coded QEA is proposed by combing PSO, crossover and mutation. Simula-
tion results show that it performs better in terms of ability to discover the global
optimum and convergence speed. [14] uses quantum PSO principles to resolve
the satisfiability problem. In [15], a quantum inspired PSO is applied to optimize
of simultaneous recurrent neural networks and shows better performance than
traditional methods.

From what has been discussed above, this paper proposed a variant of quantum
evolutionary algorithm based on dynamic neighborhood topology(DNTQEA), In
DNTQEA, the neighborhood of a quantum particle are not fixed but dynamically
changed, and the learning mechanism of a quantum particle includes two partsthe
global best experience of all quantum particles in populationand the best experi-
ences of its all neighbors, which guide the final evolving direction of the quantum
particle.

This paper is organized as follows. Section 2 describes the original QEA. In
Section 3 the dynamic structure for QEA and the hybrid algorithm are given.
In Section 4 the proposed algorithm is evaluated on some benchmark functions
and finally the proposed algorithm is concluded in section 5.

2 Brief Description of Quantum Evolutionary Algorithm

Quantum evolutionary algorithm(QEA) combines quantum mechanism and ba-
sic evolutionary algorithm is a kind of probability search algorithm. Its essential
characteristics are making full use of the superposition and coherence of quan-
tum state. QEA adopts a new coding party quantum bit code; the concrete form
can be described as: [

α1| α2| · · · | αm

β1| β2| · · · | βm

]

(1)
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In equation (1), (αi, βi)
T (i = 1, 2, · · · ,m), represents a quantum bit and sat-

isfies the following expression |α2 + β2| = 1, m denotes the number of quantum
bit; q is called a quantum chromosome used to describe the problem in QEA.

The above representation method has the advantage that it is able to rep-
resent any superposition of states, so evolutionary computing with the Q-bit
representation has a better characteristic of diversity than classical approaches,
since it can represent superposition of states. As α2

i or β2
i approaches to 1 or 0,

the Q-bit chromosome converges to a single state and the property of diversity
disappears gradually, and the algorithm converges.

The structure of QEA is described in Table 1 [3]:

Table 1. The details description of QEA

procedure QEA

begin
1. t← 0;
2. initialize Q(t);
3. make P (t) by observing Q(t) states;
4. evaluate P (t);
5. store the best solution among P (t);

while(not termination-condition) do
begin

6. t← t+1;
7. make P (t) by observing Q(t− 1) states;
8. evaluate P (t);
9. update Q(t) using quantum gates U(t);
10. store the best solution among P (t);

end
end

Here, Q(t) represents the population in t generation; P (t) denotes the set of
binary solution of t generation. When initializing the population, generally all
the quantum bits in quantum chromosomes are initialized to

√
2 which means

that all possible superposition states appear in the same probability. In step
(3), Q(t) generates P (t) through the observation operation. This process can
described as follows: randomly generating a random number between [0, 1], if
it is greater than α2

i , the Q-bit value of corresponding binary solution is 1,
otherwise its value is 0. In the step(9), QEA adopts the quantum revolving door
u(t) to update Q(t), and mathematical formula can be defined as:

[
α

′
i

β
′
i

]

=

[
cos(Δθ) −sin(Δθ)
sin(Δθ) cos(Δθ)

] [
αi

βi

]

(2)

Here, Δθ is the rotation angle and controls the speed of convergence and
determined by look table given in [3], which shows that these values for Δθ have
better performance.
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3 Dynamic Neighborhood Topology Based QEA

3.1 Dynamic Neighborhood Topology Structure and Updating
Rules

Usually, the structure of the population in improved QEAs [9][10][11] is fixed
and the neighbors of each individual are never changed in evolving process, this
will cause each individual has fewer learning samples and greatly reduce the
diversity of the population. So in order to keep each individual has opportunity
to learn from more individuals, avoid trapping in local optimums and existing
precocious phenomenon, this paper proposes a strategy based on fitness of each
individual to form its neighbors dynamically. This makes the learning samples
become diversity and promotes the individual converge to the global optimal
position.

In DNTQEA, the neighbor selection rule of each individual is Euclidean dis-
tance among individuals. Based on this rule, the neighbors of current individual
i can be calculated as follows:

{
Di(t) = {dij(t)|dij(t) = ||xi(t)− xj(t)||}, j �= i, j ∈ Ps;

neighbori(t) = arg(min(sort(Di(t)), n)).
(3)

Where, Di(t) denotes the Euclidean distance set between the current indi-
vidual i and other individuals in population at t generation; Ps denotes the
population size; neighbori means the neighbors set of the current individual i at
t generation; n denotes the number of neighbors belong to the current individual
i, its value usually is set to 1/4 ∼ 1/3 of the population size and in DNTQEA,
n = Ps/3; sort(A) means sorting elements in A from smallest to largest. When
executing DNTQEA, if the individual fitness holds the same in continuous T gen-
eration, its neighbors need to be reselected. After repeated experiments, when
T = 10, the algorithm gains the best result, so in DNTQEA, parameter T is set
to 10.

The updating method of each individual in [2][3][9][10][11] can be summarized
as that each individual only learning from the global best individual or the best
one in its neighbors. This method may cause the searching process trapped
in local optimums, while in particle swarm optimization(PSO)[15] algorithm,
the evolving direction of each particle is decided by its history experience and
the global experience. So in DNTQEA, the global best individual and the best
individual of neighbors are used to guide the evolving direction of each individual.
This updating rule can be described as follows:

⎧
⎨

⎩

q1i ←− Learn(qi, gbest);
q2i ←− Learn(qi, nbest);

q
′
i ←− Random(q1i , q

2
i , p);

(4)

Here, qi and q
′
i denote the ith original individual and the new individual after

learning from the gbest and nbest, respectively; gbest means the global best indi-
vidual in current population; nbest denotes the best individual in neighbors of qi;
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Learn(I1, I2) means I1 is updated by predefined quantum gate with reference to
I2; q

1
i and q2i denote the learning results from gbest and nbest; Random(I1, I2, p)

means to choose I1 with probability p as the final evolving individual.

3.2 Procedure of the Proposed DNTQEA

By combing the dynamic neighborhood topology and updating rule introduced
in above subsection, the procedure of the proposed DNTQEA is described in
Table 2.

Table 2. The details description of DNTQEA

Procedure DNTQEA
begin

t = 0;
1. initialize quantum population Q(t) with the size of Ps;
2. make X(t) by observing the states of Q(t);
3. evaluate X(t);
4. for all binary solutions xt

i do
begin

5. find neighborhood set Ni in X(t) by definition (3)
6. find binary solution x with best fitness in Ni

7. save x in Bi

end
8. save solution y with best fitness of Xt in gbest;
9. while(not termination-condition) do

begin
t = t + 1;

10. make X(t) by observing the states of Q(t− 1);
11. evaluate X(t);
12. update Q(t) based on Bi and gbest using Q-gates by rule (4);
13. for all binary solutions xt

i do
begin

14. find neighborhood set Ni in X(t) by definition (3)
15. select binary solution x with best fitness in Ni

16. if x is fitter than Bi save x in Bi

end
17. select solution y with best fitness of X(t)
18. if y is fitter than gbest save y in gbest;

end
end

The pseudo code of DNTQEA is described as below:
1. In initialization step, [α0

i,k β0
i,k]

T in q0i are initialized with 1/
√
2, where

i = 1, 2, · · · , Ps is the index of the individuals in the population, k = 1, 2, · · · ,m,
and m is the number of Q-bits in a individual. This initialization means that

each Q-bit individual q
[
i0] represents the linear superposition of all possible states

with equal probability.
2. This step makes a set of binary solutions X(0) = {x0

i |i = 1, 2, · · · , Ps} at
generation t = 0 by observing Q(0) = {q0i |i = 1, 2, · · · , Ps} states, where X(t) at
generation t is a random solution of Q-bit population and Ps is population size.
Each binary solution, x0

i with length m, is formed by selecting each bit using
the probability of Q-bit, either |α0

i,k|2 or |β0
i,k|2 of q0i . The binary bit xt

i,k can be

obtained from Q-bit [α0
i,k β0

i,k]
T in following way:
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xt
i,k =

{
0 if random(0, 1) < |αt

i,k|2
1 otherwise

(5)

Where random(0, 1) is a uniform random number generator.
3. Each binary solution x0

i ∈ X(0) is evaluated to give some measure of its
fitness.

4,5,6,7,8. In these steps the neighborhood set Ni of all binary solutions x0
i in

X(0) is selected by rule 3, meanwhile, the best solution among Ni is stored in
Bi and the best solution among X(0) is saved in gbest.

9. The while loop is terminated when the maximum number of iterations is
reached.

10. Observing the binary solutions X(t) from Q(t− 1).
11. Evaluating the binary solutions X(t).
12. The quantum individuals are updated using Q-gate based on Bi and gbest

with updating rule 4.
13. The for loop is for all binary solutions xt

i(i = 1, 2, · · · , Ps) in population.
14. Finding the neighbors of the binary solution xt

i.
15. Selecting the best possible solution in Ni and save it to x.
16. If x is fitter than Bi and then replace Bi with x.
17. Finding the best possible solution in X(t) and save it to y.
18. If y is fitter than gbest and then replace gbest with y.

4 Simulations

The proposed DNTQEA is compared with the original version of QEA and
FSQEA [11] which used Cellular structure and a functional population size for
QEA. The experimental results are performed for several dimensions (m=50,
100, 250) of Knapsack Problem and 14 numerical benchmark functions. Similar
settings with reference [11], the population size of all algorithms is set to 25;
termination condition is set for a maximum of 1000 generations. Due to statistical
nature of the optimization algorithms, all results are averaged over 30 runs. The
parameter of QEA is set to Δθ = 0.01π and the parameters of FSQEA are set
to the same value with reference [11].

Table 3 summarizes the experimental results on DNTQEA, FSQEA and QEA
for Knapsack Problem and 14 benchmark functions (The results for some dimen-
sions are not summarized in Table 3 because of small space of the paper). As it
seen in Table 3, DNTQEA has the best results.

5 Conclusions

This paper proposes a variant of quantum evolutionary algorithm based on
dynamic neighborhood topology(DNTQEA). In DNTQEA, the neighbors of a
quantum particle are dynamically changed by Euclidean distance set between
the current individual and other individuals in population. The learning mech-
anism of a quantum particle contains the global best experience of all quantum
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Table 3. Experimental results on Knapsack Problem and 14 numerical benchmark
functions for m=100 and m=250

m=100 m=250
DNTQEA FSQEA QEA DNTQEA FSQEA QEA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
KP1 590.28 0.73 562.13 0.92 546.82 11.29 1355.8 15.23 1252.6 17.40 1173 30.19
KP2 438.54 1.14 418.15 1.94 406.91 4.39 1029.55 10.11 994.46 10.31 942.99 20.90
f1 47126 1289.3 45889 1558.8 34437 3984.1 80081 2719 76292 2939 55844 5845.3
f2 -1097.3 66.49 -1287.8 97.97 -2096.3 199.45 -5015 287.18 -5118.9 304.75 -6511 360.74
f3 -13.76 0.08 -16.89 0.14 -17.19 0.09 -16.89 0.08 -17.39 0.11 -17.62 0.11
f4 -27.28 4.19 -30.08 5.24 -39.60 8.48 -123.89 10.19 -134.53 10.16 -154.42 14.04
f5 -1.27e5 12459 -1.43e5 14756 -1.67e5 16807 -5.41e5 20115 -5.60e5 20743 -6.05e5 43232
f6 -21459 2412.8 -23017 2742.1 -36949 4918.7 -0.97e5 4873.2 -1.09e5 5039 -1.44e5 8269.3
f7 38.22 2.27 31.17 2.53 22.04 2.46 55.81 3.28 52.24 4.39 39.43 3.02
f8 54.11 1.21 50.57 1.75 38.19 3.24 97.89 4.89 93.51 5.31 73.50 5.02
f9 -2.198e5 21054 -2.46e5 23972 -4.55e5 68039 -1.15e6 88756 -1.26e6 93119 -1.64e6 1.34e5
f10 -3.561 0.22 -4.2161 0.29 -5.21 0.68 -5.45 0.28 -5.95 0.30 -6.52 0.46
f11 -167.01 5.45 -169.84 7.76 -176.72 3.78 -178.24 1.56 -189.69 2.35 -192.03 1.36
f12 -1.19e7 2.21e6 -1.33e7 2.53e6 -2.56e7 9.20e6 -2.19e8 2.01e7 -2.44e8 2.45e7 -3.09e8 3.59e7
f13 -46873 5104 -49229 5885 -1.08e5 35412 -2.84e5 33298 -3.1e5 35376 -4.81e5 72311
f14 -0.074 0.057 -0.098 0.065 -1.29 1.26 -7.29 1.74 -7.53 1.94 -20.38 6.19

particles in population and the best experiences of its all neighbors, which to-
gether guide the evolving direction. The performance of the proposed algorithm
is tested on Knapsack Problem and 14 benchmark functions, and simulation re-
sults show that DNTQEA is better than other improved QEA and more suitable
for solving combinatorial optimization problems problems.

The objective functions which are used here are f1: Schwefel 2.26 [16], f2:
Rastrigin [16], f3: Ackley [16], f4: Griewank [16], f5: Penalized 1 [16], f6: Penalized
2 [16], f7: Michalewicz [17], f8: Goldberg [18], f9: Sphere Model [16], f10: Schwefel
2.22 [16], f11: Schwefel 2.21 [16], f12: Dejong [17], f13: Rosenbrock [18], and f14:
Kennedy [18].
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Abstract. A novel approach of function mining algorithm based on co-
evolutionary gene expression programming (GEP-DE) which combines gene 
expression programming (GEP) and differential evolution (DE) was proposed 
in this paper. GEP-DE divides the function mining process of each generation 
into 2 phases: in the first phase, GEP focuses on determining the structure of 
function expression with fixed constant set, and in the second one, DE focuses 
on optimizing the constant parameters of the function which obtained in the 
first phase. The control experiments validate the superiority of GEP-DE, and 
GEP-DE performs excellently in the wheat aphid population forecast problem.  

Keywords: Gene expression programming, function mining, differential evolu-
tion, co-evolution, wheat aphid population forecast. 

1 Introduction 

Gene expression programming (GEP) was proposed on the basis of genetic algorithm 
(GA) and genetic programming (GP) by Portugal scholar Candida in 2001 [1]. It 
adopts the dual architecture of genotype and phenotype, and retains the advantage of 
GA and GP, and possesses the characteristics that the algorithm flow is clear, realiza-
tion is simple and precision is high, and especially it shows the excellent performance 
in complex function finding and prediction [2-3]. 

Numerical constants have a great influence on the performance of GEP, where 
there are three main approaches to handle numerical constants. The first approach 
does not include any constants in the terminal set, but relies on the spontaneous emer-
gence of necessary constants through the evolutionary process of GEP [1]. The 
second approach involves the ability to explicitly manipulate random constants  
by adding a random constant domain DC at the end of the gene [4].  Zuo J et al.  
proposed the third constants generation approach------MC method [5], where each 
numerical constant is directly regarded as terminator. This method improves DC me-
thod to a certain extent, but it also has some drawbacks, such as the determination of 
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numerical constants set usually depends on experience, and the interpretability of 
functions mined is poor. 

On the basis of MC method, an improved GEP algorithm, GEP-DE, was proposed 
in this paper, which embedded different evolution algorithm (DE) [6] into GEP to 
handle numerical constants.  In GEP-DE, the function expression is divided into two 
parts of structure and constant parameters, and they are respectively optimized by 
GEP and DE. Control experiments show that the performance of GEP-DE is better 
than other GEP algorithms proposed in the related literatures. Moreover, GEP-DE 
performs excellently in the wheat aphid population forecast problem. 

2 Introductions of GEP and DE 

2.1 Introduction of GEP 

Standard GEP algorithm could be defined as a nine-meta group: 

0{ , , , , , , , , }GEP C E P M ϕ= Γ Φ Π Τ ,where C is the coding means; E is the fitness func-

tion; 0P  is the initial population; M is the size of population; ϕ  is the selection op-
erator; Γ  is the crossover operator; Φ  is the point mutation operator; Π  is the 
string mutation operator; Τ  is the termination condition. In GEP, individual is also 
called chromosome, which is formed by gene and linked by the link operator. The 
gene is a linear symbol string which is composed of head and tail. The head involves 
the variables from the terminator set and the functions from function set, but the tail 
merely contains the variables from the terminator set. The basic steps of the standard 
GEP are as follows [1]:  

1. Inputting relevant parameters, creating the initial population;  
2. Computing the fitness of each individual;  
3. If the termination condition is not met, go on the next step, otherwise, terminate 

the algorithm;  
4. Retaining the best individual; 
5. Selecting operation;  
6. Point mutating operation;  
7.String mutating operation (IS transposition, RIS transposition, Gene transposi-

tion);  
8.Crossover operation (1-point recombination, 2-point recombination, Gene re-

combination); 
9. Go to (2). 

2.2 Introduction of DE 

DE proposed by Rainer Storn and Kenneth Price in 1995 is a real coding global opti-
mization algorithm based on population evolution [6]. DE performs excellently as 
soon as it was proposed and has become a very good tool for continuous optimization 
problem, and is widely used in many fields. 
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Basic operations of DE are the same as GA, also including mutation, crossover and 
selection. In mutation operation, DE randomly selects two different individual vectors 
and subtracts them to generate different vector, and then endows a weight value to the 
different vector and adds it to the 3rd vector randomly selected to generate mutation 
vector. Then mutation vector is mixed with target vector to generate experiment vec-
tor, this process is named as crossover operation. If the fitness of experiment vector is 
better than the target vector, the experiment vector will replace the target vector, and 
this process is called selection operation. 

3 Co-evolutionary Gene Expression Programming 

The flow chart of Co-evolutionary Gene Expression Programming (GEP-DE) is given 
as Fig.1. 
 

 

Fig. 1. The flow chart of Co-evolutionary Gene Expression Programming algorithm (GEP-DE) 

3.1 Gene Coding and Fitness Evaluation Function 

GEP-DE puts a fixed constant set into terminator set, and regards the constant as ter-
minator when creating individual. For instance, function set is { , ,*, /}FS = + − , termi-

nator set is TS=｛x, y, C｝, and the constant set C= {1.2371, 2.1424, -3.2643, 
1.3298, 5.3237}. Fig.2 shows a chromosome with single gene, whose head length is 4. 
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In this example, C is fixed, it forms the terminator set with terminator set together. 
When creating individual, terminator is randomly selected from terminator set. 
 

 

Fig. 2. (a) A chromosome.  (b) Expression tree (ET).  (c) Function expression 

In statistics, the method to assess the relevance degree between two groups of data 
usually uses the correlation coefficient. In this paper the fitness function is devised 
as: 2 1 /fitness R SSE SST= = − , where 

2

1
ˆ( )

m

j j
j

SSE y y
=

= −                                (1) 

2

1
( )

m

j j
j

SST y y
=

= −                                (2) 

Where, jy  is the observation data; ˆ jy is the forecast data which is computed with 

formula and observation data; y  is the mean of y ; SSE is the residual sum of 
squares; SST is the total sum of squares of deviations; m is the size of data. 

3.2 Genetic Operation of GEP-DE  

The genetic operations of GEP-DE mainly include selection operator, crossover oper-
ator, point mutation operator and string mutation operator. The selection operator is 
the tournament method with elitist strategy. The crossover operation includes single 
point recombination, 2-point recombination and gene recombination. The point muta-
tion includes the single-point and multi-point mutation; the string mutation includes 
IS transposition, RIS transposition and Gene transposition. 

3.3 Constant Optimization Based on DE 

The best individuals of each generation in GEP evolution process are passed into DE to 
be optimized, and the detailed steps are as follows: (a) firstly, elite chromosomes are 
parsed out to get the number of constant in the expression; (b) initialize the DE popula-
tion; (c) iteratively run mutation, crossover, selection operation; (d) when program is 
over, the elite individual with the optimized constant is returned to GEP population. 
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4 Performance Comparisons and Its Application in Wheat 
Aphid Population Forecast Modelling 

4.1 The Constant Optimization Performance of GEP-DE 

Experiment 1: In order to test the performance of numerical constant optimization of 
GEP-DE, compare GEP-DE with the DC method [4] MC method [5], where target func-
tion is the same with the compared literatures, and this function formula is as Eq. (3). 

4 3 25 4 3 2 1n n n nN a a a a= + + + +                         (3) 

Where, an is a non-negative integer. 
Select 10 groups of random test data (an=1, 2, 3, 4, 5, 6, 7, 8, 9, 10), and the para-

meters of this experiment are shown as Tab.1. The experiment results are shown as 
Tab.2. It can be seen from Tab.2 that the success ratio of GEP-DE reaches to 98%, 
which is 17% higher than GEP-DC and 8% higher than GEP-MC. All these show that 
GEP-DE owns competitiveness in the aspect of numerical constant optimization.  

Table 1. Parameter settings of experiment 1 

parameters values 
Times of run  50 

Max evolve generation  100 
Size of population 40 

Function set +-*/LEK~SC 
Terminator set  A 
Link operator  + 

The length of head  6 
The number of genes 4 
Ration of crossover 0.45 

Ration of point mutation  0.034 
Ration of recombination 0.044 
Ration of string mutation 0.3 

Max generation of evolution in DE 50 
Size of population in DE 20 

CR in DE 0.9 
F in DE 0.5 

 

（Remarks：L refers to ln function；E stands for exp(x)；K refers to log10 function；
~ refers to negative operation ；S stands for sin function；C stands for cos function） 

Table 2. The results of experiment 1 

terms GEP-DC GEP-MC GEP-DE 
Times of experiment 100 100 100 

Times of success 81 90 98 
Ratio  of success 81% 90% 98% 
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Table 3. The descriptions of variables of experiment 2  

descriptions variables 
Date x1 

Daily highest temperature（℃） x2 

Daily average temperature（℃） x3 

Daily precipitation（mm） x4 
Growth stage (GS) x5 
Number of I-III instar larvae x6 
Number of IV instar larvae with wing x7 
Number of IV instar larvae without wing x8 
Number of adult with wing x9 
Number of adult without wing x10 
Natural enemies x11 

Table 4. Parameters setting of experiment 2  

parameters Values 
Max generation of evolution 2000 

Size of population 100 
The number of genes 8 

Length of gene 23 
Link operator + 

Ratio of point mutation 0.31 
Ration of 1-point recombination 0.1 
Ration of 2-point recombination 0.1 
Ration of gene recombination 0.1 

Length of IS element 5 
Ratio of IS transposition 0.1 
Length of RIS element 5 

Ratio of RIS transposition 0.1 
Max generation of evolution inDE 50 

Size of population in DE 20 
CR in DE 0.9 
F in DE 0.5 

4.2 Application of GEP-DE in Wheat Aphid Population Forecast Model 

Experiment 2: The data adopted in this paper is from Ref. [7]. We set function set and 
terminator set respectively as (+，-，*，/，sin, cos, tan, log, √, abs, ex) and (x1, x2, 
x3, x4, x5, x6, x7, x8, x9, x10, x11, T), where T refers to the total number of wheat aphid,  
x1 to x11 stand for the variables  shown in Tab.3. Experiment parameters of GEP-DE 
are shown as Tab.4. The 3 wheat aphid population forecast models about the 3 fields 
from Ref. [7] mined by GEP-DE are respectively shown as Eq. 4 to Eq.6. 
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8
5sin sin

11 11 6 10 3 4 7 9 1 2 10cos(cos ) cos5 tan sin(14 )
x

x eT x x x x x x x x e x x x= + + + + + − + + + + +    (4) 

26 1
3 10 8 7 9 2 8 5 3 4 11

1

2 3 ( ) sin tan(9 ) (0.5 )
6

x x
T x x x x x x x x x x x

x
= − + + + + + + − + + +

+    (5) 

2 3 2 6
1 0 1 1 4 1 6 3

4

s in (s in ( ) c o s ( )) 1
2 lo g 3

x x x
T x x x x x x

x
= + + + + + + − +

+    (6) 

Use above 3 models to forecast the wheat aphid population of the 3 fields in 2004 
[7] and compare them with the observation data respectively, and the results are 
shown as Fig.3 to Fig.5. The results of experiment in Ref. [7] with the same experi-
ment data are shown as Fig.6. By experiment 2, we can find that the forecast results 
with the model obtained by GEP-DE are closer to the observation data than the results 
of Ref. [7]. 

 

 

Fig. 3. Compare of forecast values of total of wheat aphid of field 1 with observation values 

 

Fig. 4. Compare of forecast values of total of wheat aphid of field 2 with observation values 
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Fig. 5. Compare of forecast values of total of wheat aphid of field 3 with observation values 

 

Fig. 6. Compare of forecast value (·) of total of wheat aphid of field 1 to 3 with observation 
value (solid line) from Ref.[7] 

5 Conclusion 

This paper improves the MC method which was proposed in latest important litera-
ture, and moreover introduces DE into GEP, then proposes the GEP-DE based on  
co-evolution. The control experiments show that GEP-DE promises excellent perfor-
mance in constant optimization and overall performance. Lastly GEP-DE is success-
ful applied in the wheat aphid population forecast problem as well. 
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Abstract. Accurate prediction of energy products future price is required for ef-
fective reduction of future price uncertainty as well as risk management. Neural 
Networks (NNs) are alternative to statistical and mathematical methods of pre-
dicting energy product prices. The daily prices of Propane (PPN), Kerosene 
Type Jet fuel (KTJF), Heating oil (HTO), New York Gasoline (NYGSL), and 
US Coast Gasoline (USCGSL) interrelated energy products are predicted. The 
energy products prices are found to be significantly correlated at 0.01 level (2-
tailed). In this study, NNs learning algorithms are used to build a model for the 
accurate prediction of the five (5) energy product price. The aptitudes of the 
five (5) NNs learning algorithms in the prediction of PPN, KTJF, HTO, 
NYGSL, and USCGSL are examined and their performances are compared. 
The five (5) NNs learning algorithms are Gradient Decent with Adaptive learn-
ing rate backpropagation (GDANN), Bayesian Regularization (BRNN), Scale 
Conjugate Gradient backpropagation (SCGNN), Batch training with weight and 
bias learning rules (BNN), and Levenberg-Marquardt (LMNN). Results suggest 
that the LMNN and BRNN can be viewed as the best NNs learning algorithms 
in terms of R2 and MSE whereas GDANN was found to be the fastest. Results 
of the research can be use as a guide to reduce the high level of uncertainty 
about energy products prices, thereby provide a platform for developmental 
planning that can result in the improvement economic standard. 

Keywords: US Coast Gasoline, Heating oil, Propane, Bayesian Regularization, 
Levenberg-Marquardt. 
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1 Introduction 

The future prices of energy products such as Propane (PPN), Kerosene Type Jet fuel 
(KTJF), Heating oil (HTO), New York Gasoline (NYGSL), and US Coast Gasoline 
(USCGSL) are highly uncertain. The uncertainty trailing these energy products prices 
has succeeded in attracting both domestic and foreign political attention, and this 
facilitated market ranking [1]. Accurate forecasting of future prices of energy product 
can effectively be used for risk management as argued by [2].  Sato et al. [3] forecast 
the prices of commodities including Chicken, Coal, Coffee, Copper, Fish, Iron, Ma-
ize, Oil (Brent), Peanuts, Pork, Thai Rice, Sugar US, and Uranium using neural net-
work (NN) model. However, only oil is energy product and the effectiveness of the 
NN model was not evaluated by comparing its performance with another method. 

Malliaris and G. Malliaris [2] forecast one month ahead spot prices of crude oil, 
heating oil, gasoline, natural gas and propane since their spot prices in market are 
interrelated. Multi linear regression, NNs model, and simple model were applied in 
each of the energy market to forecast one month future prices of the energy product. 
Results show the NNs perform better than the statistical models in all markets except 
for propane market. Wang and Yang [4] examined the probability of predicting crude 
oil, heating oil, gasoline, and natural gas futures markets within a day using NN, semi 
parametric function coefficient, nonparametric kernel regression, and generalized 
autoregressive conditional heteroskedasticity (GARCH). Results indicated only heat-
ing oil and natural markets possessed the possibility of being predicted within a day. 
The NNs was found to outperform the statistical models.  

Barunik and Křehlík [5] predict energy product prices using the NN model and its 
performance was found to be better than the popular heterogeneous autoregressive 
(HAR) models and autoregressive fractionally integrated (ARFIMA) econometric 
models. However, these statistical and econometric methods assume normal distribu-
tion for input data [6] which makes the statistical methods unsuitable for energy prod-
ucts price prediction because of the non-linear, complex and volatile nature of the 
energy products, experimental evidence can be found in [7]. Therefore, the compari-
son of NNs and statistical methods might not provide a fair platform.  

Most literature mainly focuses on comparing the architecture of NNs in the domain 
of energy product price prediction. Recently, Panella et al. [8] compared performance 
of a Mixture of Gaussian NN (MoGNN) with that of RBF, ANFIS, and GARCH 
which proves the robustness of the MoGNN. Comparing the learning algorithms of 
NN is limited despite its significance in turning the NNs weights and bias for optimi-
zation. In this study, we have chosen a multilayer NN learning algorithms because the 
recurrent NN structure becomes more complex, thus, further complicates the chosen 
of the best NN parameters; the computation of the error gradient in a recurrent NN 
architecture also turns out to be complicated due to  presents of more attractors in the 
state space of a recurrent NN [7]. In addition, for the recurrent NN to achieve optimal 
performance, high number of hidden neurons are required in the hidden layer than 
necessarily needed for learning the problem which is considered as limitation because 
it reduces the operational efficiency of the recurrent NN [10].   

In this paper, we propose neural network intelligent learning algorithm as a useful 
technique to evaluate and compare the its validity for the prediction of energy prod-
ucts price. The NNs learning algorithms are used to build a model for the prediction 
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of PPN, KTJF, HTO, NYGSL, and USCGSL prices. Subsequently, compare the per-
formances of the learning algorithms in each of the markets. 

The rest of this paper is organized as follow. Section 2 describes proposed method. 
Section 3 describes results and following by discussion. Finally, the conclusion of this 
work is described in Section 4. 

2 Proposed Method 

2.1 Neural Network Learning Algorithms 

The weights and bias of NNs are iteratively modified during NNs training to minimize 
error function such as Mean Square Error (MSE) computed using Equation (1) as follow. 

( )2

1

1
( ) ( )

N

j
MSE x j y j

N =
= −           (1) 

where N, x (j), and y (j) are the total number of predictions made by the model, origi-
nal observation in the dataset, and the value predicted by the model, respectively. The 
closer the value of MSE  to zero (0), the better is the prediction accuracy. Zero (0) 
indicates a perfect prediction, which rarely occurs in practice. The most widely use a 
NN learning algorithm is the BP algorithm which is a gradient-descent technique of 
minimizing an error function. The synaptic weight (W) in a BP learning algorithm can 
be updated using Equation (2) as follow. 

 

kkk WWW Δ+=+1 .    (2) 
 

Here, k is the iteration in a discrete time and the current weight adaptation is 

represented by kWΔ expressed as follow. 
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∂
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are learning rate (typically ranges from 0 to 1) and gradient of 

the error function to be minimized, respectively. The main drawbacks of the gradient 
descent BP includes: slow convergence speed and possibility of being trapped in local 
minima as a result of its iterative nature of solving problem till the error function 
reaches its minimal level. Appropriate specification of learning rate and momentum 
determine the success of BP in a large scale problem. Gradient-decent BP is still be-
ing applied in many NNs programs. Though, the BP is no more considered as the 
optimal and efficient learning algorithm. Thus, powerful learning algorithms that are 
fast in convergence are developed based on heuristic method from the standard steep-
est descent algorithm referred to as the first category of the fastest learning algo-
rithms. The second category of the fastest learning algorithms were developed based 
on standard numerical optimization methods such as the Levenberg-Marquardt (LM). 
Typically, conjugate gradient algorithms converge faster than the variable learning 
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rate BP algorithm, but such results are limited to application domain, implying that 
the results can differ from a particular problem domain to a  different domain. The 
conjugate gradient algorithms require line search for each iteration, which makes the 
conjugate gradient to be computationally expensive. The scaled conjugate gradient 
backpropagation (SCGNN) algorithm was developed in response to the computation-
ally expensive nature of the conjugate gradient so as to speed up convergence. Other 
alternative learning algorithms includes Gradient Decent with Adaptive learning rate 
backpropagation (GDANN), Bayesian Regularization (BRNN), Batch training with 
weight and bias learning rules (BNN), and Levenberg-Marquardt (LMNN). However, 
LMNN is viewed as the most effective learning algorithm for training a medium sized 
NNs. Gradient descent is used by the LM to improve on its starting guess for tuning 
the LMNN parameters [11]. 

2.2 Energy Product Dataset and Descriptive Statistics 

The daily spot prices of HTO, PPN, KTJF, USCGSL, and NYGSL were collected from 
9 July, 1992 to 16 October, 2012 source from the Energy Information Administration of 
the US Department of Energy. The data were freely available, published by the Energy 
Information Administration of the US Department of Energy.  The data were collected 
on a daily basis since enough data are required for building a robust NNs model. The 
data comprised of five thousand and ninety (5090) rows and five (5) columns. The data 
were not normalized to prevent the destruction of the original pattern in the historical 
data [12]. The descriptive statistics of the data are computed and the results are reported 
in Table 1. The standard  Deviation (Std.D) shown in the last column of Table 1 indi-
cated uniform dispersion among the energy products prices except for PPN. 

Table 1. Descriptive statistics of energy products datasets 

N Min Max Mean Std.D. 

PPN 5090 0.2 1.98 0.6969 0.40872 

KTJF 5090 0.28 4.81 1.037 0.73589 

HTO 5090 0.28 4.08 1.2622 0.88739 

NYGSL 5090 0.29 3.67 1.2472 0.82894 

USCGSL 5090 0.27 4.87 1.2298 0.82616 

 
Table 2 is a correlation among the energy product prices. The correlation is signifi-

cant among the HTO, PPN, KTJF, USCGSL, and NYGSL as clearly showed in Table 2. 
Correlated variables imply that influence of a variable can affect the other variables 
positively as the case in Table 2. Hair et al. [13] argued that for better prediction, va-
riables in the research data have to be significantly correlated. Thus, HTO, PPN, KTJF, 
USCGSL can be independent variables whereas NYGSL dependent variable. Also, 
PPN, KTJF, USCGSL, and NYGSL can be used as independent variables whereas HTO 
dependent variable. This can also be applied to PPN, KTJF, and USCGSL. Therefore, 
we compared the NNs learning algorithms in the five different energy markets.  
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Table 2. Inter correlation matrix of the energy products dataset 

PPN KTJF HTO NYGSL 

KTJF 0.702** 

HTO 0.949** 0.745** 

NYGSL 0.937** 0.737** 

USCGSL 0.940** 0.727** 0.984** 0.997** 

** Correlation is significant at the 0.01 level (2-tailed). 

2.3 Neural Network Model Description 

After several trials, our data were partition into training, validation, and test (3562, 
764, and 764 samples, respectively). To avoid over-fitting the training data, random 
sampling was used to partition the dataset. Updating of NNs weights and bias as well 
as computation of the gradient is performed with the training dataset. To explore the 
best combination of the activation functions (ACFs), several ACFs are considered: 
log-sigmoid, linear, soft max, hyperbolic tangent sigmoid, triangular basis, inverse 
and hard-limit. Several ACFs were tried in the hidden layer neurons while linear 
ACFs was constantly maintained in the input layer neuron. In the output layer, linear 
is used to avoid limiting the values in a particular range. Therefore, both input and 
output layers used linear ACFs throughout the training period. Momentum and learn-
ing rate were varied between zero (0) to one (1). Single hidden layer is used since [14] 
stated that single hidden layer is sufficient to approximate any nonlinear function with 
arbitrary accuracy. Experimental trials were performed to find the appropriate NNs 
model with the best MSE, R2, and convergence speed. The training terminates after 
six (6) iterations without performance improvement to avoid over-fitting the network. 
The network architecture with the minimum MSE, highest R2, and low convergence 
speed are recorded as the optimal NNs topology. The predictive capabilities of the 
NNs learning algorithms were evaluated on the test dataset. 

3 Results and Discussion 

The proposed algorithms were implemented in MATLAB 2013a Neural Network 
ToolBox on a computer system (HP L1750 model, 4 GB RAM, 232.4 GB HDD, 32-
bit OS, Intel (R) Core (TM) 2 Duo CPU @ 3.00 GHz). The number of hidden neurons 
should not be twice of the independent variables as argued in [15]. Thus, we consider 
between four (4) to ten (10) ranges of the number of neurons and used to verify for 
NNs optimal architecture for every learning algorithms.  Different ACFs were expe-
rimentally tried with corresponding number of hidden neurons. The models with the 
best results are reported in Tables 3 to 7 and those with poor results are discarded. 
The best ACFs found for the prediction of LMNN is log-sigmoid, for BNN is a 
hyperbolic tangent sigmoid, for GDANN is log-sigmoid, for SCGNN is triangular 
basis and for BRNN is log-sigmoid. Tables 3 to 7 shows performance (Mean Square 
Error (MSE)) (Regression (R2)) and convergence speed (Iterations (I) (Time (T)  
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in seconds (Sec.)) for each of the NNs learning algorithms. The momentum and learn-
ing rate found to be optimal were 0.3 and 0.6 respectively. The minimum MSE, high-
est R2, optimum combinations of I and T are in bold through the Tables.   

Table 3. Performance of the prediction of HTO price with different NNs learning algorithm 

Performance Convergence speed 
Learning 
Method Number of hidden neurons Number of hidden neurons 

4-8-1 4-7-1 4-6-1 4-8-1 4-7-1 4-6-1 

LMNN 
0.000178 
(0.9959) 

0.000115 
(0.9938) 

0.00082 
(0.9955) 

65 
(5) 

71(5) 72(4) 

SCGNN 
0.00208 
(0.8790) 

0.00504 
(0.9808) 

0.00363 
(0.9246) 

1000 
(150) 

1000 
(117) 

1000 
(100) 

GDANN 
2.86 
(-0.8471) 

3.93 
(-0.9142) 

0.793 
(0.7940) 

1(0) 1(0) 1(0) 

BNN 
8.89 
(-0.7898) 

5.57 
(-0.6456) 

8.63 
(0.9410) 

1000 
(27) 

1000 
(27) 

1000 
(26) 

BRNN 
0.00573 
(0.9963) 

0.00635 
(0.9961) 

0.00669 
(0.9958) 

217 
(25) 

230 
(22) 

293     
(22) 

 
From Table 3, it can be deduced that the LMNN algorithm has the lowest MSE and 

is the fastest in converging to the optimal MSE whereas BRNN achieved better R2  
than the other learning algorithms. These results indicated that the performance of the 
algorithms in predicting HTO is not consistent because it depends on the performance 
metrics being considered as the criteria for measuring performance. Though, in this 
case LMNN can be chosen despite not having the highest R2 due to its ability to 
achieve the lowest MSE in the shortest possible time.  Seven (7) hidden neurons pro-
duce the best MSE result, whereas six (6) hidden neurons is the fastest architecture. 

Table 4. Comparison of KTJF predicted by NNs learning algorithm models 

                         Performance Convergence speed 
Learning 
Method                         Number of hidden neurons Number of hidden neurons 

4-8-1 4-7-1 4-6-1 4-8-1 4-7-1 4-6-1 

LMNN 0.102(0.8771) 0.0873(0.9245) 0.1(0.88) 47(5) 110(9) 54(2) 

SCGNN 1.3000(-0.4111) 34.3000(-0.7662) 3.2(-0.67) 
1000 
(183) 

1000 
(168) 

1000 
(142) 

GDANN 0.62(0.7482) 0.744(-0.7108) 0.29(0.72) 12(2) 16(2) 31(10) 

BNN 15.7(-0.5972) 29(0.7396) 13.6(0.68) 
1000 
(28) 

1000 
(27) 

1000 
(28) 

BRNN 0.0896(0.9108) 0.0896(0.91468) 0.098(0.9) 
322 
(40) 

531 
(49) 

443 
(33) 

 
The results of the prediction of KTJF price are reported in Table 4, the LMNN has 

the minimum MSE and the highest R2 among the comparison algorithms. The other 
algorithms such as BRNN, GDANN (4-8-1, 4-6-1) also have competitive values of 
MSE and R2 compared to the optimal values. The fastest algorithm is GDANN having 
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the minimum iterations and time of convergence. The performance criteria’s indicated 
that the LMNN is the best in terms of MSE and R2 whereas convergence speed crite-
ria’s shows GDANN outperforms other algorithms. Seven (7) hidden neurons yield 
the best MSE and R2 but, the fastest architecture is having eight (8) hidden neurons. 
This is surprising as less complex structure is expected to be the fastest. 

Table 5. The performance of the NNs learning algorithms in the prediction of NYGSL 

Performance Convergence speed 
Learning 
Method Number of hidden neurons Number of hidden neurons 

4-8-1 4-7-1 4-6-1 4-8-1 4-7-1 4-6-1 

LMNN 0.0044(0.9983) 0.00158(0.9988) 0.00195(0.9987) 39(3) 60(3) 35(1) 

SCGNN 1(-0.1631) 18.6(0.4774) 13.5(0.9531) 1000(183) 1000(153) 1000(141) 

GDANN 3.22(0.8825) 2.12(0.8311) 0.490(0.9471) 1(0) 1(0) 1(0) 

BNN 13(-0.5668) 5.22(0.9338) 0.864(0.8711) 1000(27) 1000(25) 1000(24) 

BRNN 0.000025(0.999) 0.0000279(0.9988) 0.000512(0.9988) 433(48) 954(87) 604(44) 

 
The results of the prediction of NYGSL price are reported in Table 5, showing 

GDANN as the fastest algorithm to converge to its optimal solution. The BRNN 
learning algorithm with different architecture is the best predictor with the lowest 
MSE and the highest R2 among the comparison algorithms. SCGNN and GDANN are 
having the poorest values of MSE despite GDANN has a competitive R2 compared to 
the promising R2 value of BRNN, LMNN, BNN (4-7-1, 4-6-1), and SCGNN (4-6-1). 
In the prediction of NYGSL, the performance exhibited a similar phenomenon to the 
prediction of HTO and KTJF as consistency is not maintained. In the prediction of the 
NYGSL we cannot conclude on the best algorithms because the performance exhi-
bited by the algorithms is highly random unlike the case in the prediction of HTO.  
The BRNN converged to the MSE and R2 very slow compared to the LMNN, and 
GDANN speed. The optimal algorithm in this situation depends on the criteria chosen 
as the priority in selecting the best predictor. If accuracy is the priority, then BRNN 
can be the best candidate, whereas speed place LMNN above BRNN. Seven (7) hid-
den neurons have the best MSE value, whereas the architectures with six (6), seven 
(7), and eight (8) hidden neurons are the fastest. This could probably be caused by 
memorizing the training data by the algorithms.   

Table 6 indicated that GDANN is the fastest to predict PPN price, whereas the MSE 
of BRNN is the best. The R2 value of LMNN is the highest compared to the SCGNN, 
GDANN, BNN, and BRNN R2 values. The performance exhibited by the algorithms in 
the prediction of PPN price is not different from that of NYGSL, KTJF, and HTO 
because consistent performance is not realized. The best algorithm for the prediction of 
PPN price depends on the performance metrics considered as priority for selecting the 
optimal algorithm as earlier explained. The algorithms with negative values of R2 re-
ported in Tables 3 to 6 suggested that the observed price and the predicted once are in 
opposite directions. Signifying that upward movement of predicted price can influence  
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Table 6. Results obtained with the NNs learning algorithms in the prediction of PPN 

Performance Convergence speed 
Learning 
Method Number of hidden neurons 

Number of hidden neu-
rons 

4-8-1 4-7-1 4-6-1 4-8-1 4-7-1 4-6-1 

LMNN 0.00514(0.985) 0.00694(0.9801) 0.00623(0.9820) 74(8) 32(2) 60(4) 

SCGNN 0.266(-0.4121) 0.646(-0.8601) 0.686(-0.8592) 
1000 
(179) 

1000 
(149) 

1000 
(136) 

GDANN 1.78 (-0.8164) 2.45 (-0.2453) 3.31 (0.7886) 1(0) 1(0) 1(0) 

BNN 0.276(-0.28011) 0.211(0.3802) 1.62(-0.4091) 
1000 
(26) 

1000 
(25) 

1000 
(25) 

BRNN 0.00051(0.984) 0.00557(0.98231) 0.686(-0.8592) 204(19) 226(21) 385(28) 

Table 7. Comparison of USCGSL predicted by NNs learning algorithm models 

Performance Convergence speed 
Learning 
Method Number of hidden neurons Number of hidden neurons 

    4-8-1        4-7-1     4-6-1   4-8-1 4-7-1 4-6-1 

LMNN 0.00264(0.99821) 0.00330(0.99817) 0.00301(0.99624) 103(7) 21(1) 63(3) 

SCGNN 0.00598(0.99686) 0.00403(0.99621) 0.00445(0.99818) 37(1) 146(4) 131(1) 

GDANN 0.0531(0.95758) 0.0284(0.97383) 0.0484(0.96635) 55(0) 68(0) 94(1) 

BNN 0.0246(0.98191) 0.712(0.69757) 0.913(0.96988) 1000(23) 10(0) 12(0) 

BRNN 0.00250(0.99825) 0.00273(0.99785) 0.00235(0.94193) 652(67) 653(57) 
563(41
) 

 
the observed price to move downward and vice versa. This is not true considering the 
promising results obtained by other algorithms that show positive R2 values.  

In the prediction of USCGSL price as indicated in Table 7, BRNN have the mini-
mum value of MSE and the highest R2, though with a different hidden neurons. The 
fastest algorithm is the GDANN with seven (7) hidden neurons. It seems hidden layer 
neurons do not always affect the convergence speed of the NNs algorithms based on 
experimental evidence from Tables 3 to 7. The results do not deviate from similar 
behavior shown by the prediction of HTO, PPN, NYGSL, and KTJN prices. Small 
number of iterations do not necessarily imply lower computational time based on 
evidence from the simulation results. For example, in Table 7, a GDANN converge to 
a solution in sixty eight (68) iterations, 0 Sec. Whereas, 4 indicated that convergence 
occurs in thirty five (35) iterations, one (1) Sec. with the LMNN which is considered 
as the most efficient NN learning algorithm in the literature.  The poor performance 
exhibited by some algorithms can be attributed to the possibility that the algorithms 
could have been trapped in local minima. The complexity of an NNs affects conver-
gence speed as reported in Tables 3 to 7. The fastest architectures have six (6) hidden 
neurons with exception in the prediction of KTJN.  This is a multitasking experi-
ments performed on the related energy products. We have found from the series of the 
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experiments conducted that the LMNN and BRNN constitute an alternative approach-
es for prediction in the oil market especially when accuracy is the subject of concern. 
The objective of the research have been achieved since the idle NN learning algo-
rithms were identified for future prediction of the energy products. Therefore, uncer-
tainty related to the oil market can be reduced to the tolerance level which in turn 
might stabilize the energy product market. The results obtained do not agree with the 
results reported by [2]. This could probably be attributed to the fair comparison of our 
study, unlike the study by [2] that compared NN and statistical methods. The results 
of this study cannot be generalized to other multi-task problems because the perfor-
mance of NNs learning algorithm depends on the application domain since the NNs 
performance differ from domain to domain as argued by [16]. However, the metho-
dology can be modified to be applied on similar datasets or problem. The research 
presented by [17] differ from the present study in the following ways: Crude oil price 
was predicted based on the inter-related energy products prices; Genetically opti-
mized NN was applied for the modeling.    

4 Conclusion 

In this research, the performance of NNs learning algorithms in the energy products 
price prediction was studied and their performances in terms of MSE, R2, and conver-
gence speed were compared. BRNN was found to have the best result in the predic-
tion of an HTO price in terms of R2 whereas LMNN achieved the minimum MSE and 
converges faster than the SCGNN, GDANN, BRNN, and BNN in predicting HTO 
price. In the prediction of KTJF price, LMNN performs better than the SCGNN, 
GDANN, BRNN, and BNN considers MSE and R2 as performance criteria’s. In con-
trast, GDANN is the algorithm that converges faster than the other NNs learning 
algorithms. On the other hand, prediction of NYGSL is more effective with BRNN in 
terms of MSE and R2, but GDANN is the fastest. BRNN have the minimum MSE 
whereas LMNN achieved the maximum R2 in the prediction of PPN price.  

The fastest among the learning algorithms in the prediction of PPN price is GDANN 
despite having the poorest MSE values. BRNN performs better than the SCGNN, 
GDANN, LMNN, and BNN in the prediction of USCGSL price in terms of MSE and 
R2. GDANN recorded the best convergence speed compared to SCGNN, BRNN, 
LMNN, and BNN. The NNs learning algorithms use for the prediction of energy prod-
ucts prices is not meant to replace the financial experts in the energy sector. Perhaps, is 
to facilitate accurate decision to be taken by decision makers in order to reach better 
resolutions that could yield profits for the organization. Investors in the energy sector 
could rely on our study to suggest future prices of the energy products. This can reduce 
the high level of uncertainty about energy products prices, thereby provide a platform 
for developmental planning that can result in the improvement of economic standard. 
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Abstract. This paper presents a multivariable grey neural network (MGM-NN) 
model for predicting the state of industrial equipments. It combines the merit of 
MGM model and RBF-NN model on time series forecast. This mode takes the 
dynamic correlations among multi variables and environment’s impact on state 
of equipment into consideration. The proposed approach is applied to the melt 
channel state forecast. The results are contrasted to MGM model executed on 
the same test set. The results show the accuracy and promising application of 
the proposed model. 

Keywords: State Forecast, Multivariate Grey Model, Neural Network, RBF. 

1 Introduction 

With the rapid development of information technology and automation technology, 
the modern industrial control system, such as iron-steal smelting industry and auto 
industry, is becoming more and more integrity and complexity. The current fault 
diagnosis method cannot meet the requirement these control system. At the same 
time, we can get any kinds of real-time data from such complexity control system by 
the continuous development of embedded system and data collection technology. In 
these contexts, Prognostics and Health Management (PHM), promoted by modern 
information technology and artificial intelligence (AI), is emerged at the right time, 
what is a health and fault management solution of high integrity and complexity in-
dustrial control system. State forecast is a key technology for PHM and is the com-
prehensive utilization of all kinds of data, such as monitoring parameter, the status of 
utilization, current environment and working condition, previous experimental data 
and experience, relies on some kinds of reasoning technology like mathematics, phys-
ics model and artificial intelligence technology to estimate the remaining useful life 
and the future health of device and system. 

Current state forecast algorithm based on data has time-series analysis which ap-
plies to stationary stochastic series, the grey model which applies index variation data, 
the hidden Markov model which applies to random signal, support vector machine 
(SVM) which applies to small sample and non-linear system, and artificial neural 
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network which applies to linear and non-linear system[1-6]. Lin et al. [7] apply the 
Grey forecasting model to forecast accurately the output value of Taiwan's opto-
electronics and get the residual error of the forecasting model is lower than 10%. 
Tseng et al. [8] proved that GM(1,1) grey forecasting model is insufficient for fore-
casting time series with seasonality and proposes a hybrid method that combines the 
GM(1,1) and ratio-to-moving-average deseasonalization method to forecast time 
series. Mao et al. [9] apply grey model GM(1,1) plus 3-point average technique to 
forecast motor vehicle fatality risk, and verify this model method is feasible, reliable 
and highly efficient and also does not need to make any assumptions. Xie et al. [10] 
proposes a novel discrete grey forecasting model termed DGM model and a series of 
optimized models of DGM and verify this model can increase the prediction accuracy. 
Hsu et al. [11] proposed a grey model with factor analysis techniques to deal with the 
multi-factor forecasting problems and improved multivariable grey forecasting model 
is more feasible and effective than grey model GM(1,1). He et al. [12] apply the new 
information multi-variable Grey model NMGM(1,n) to load-strain relation and im-
proved that this method is very effective to data processing which have a high per-
formance and precision. Zhang et al. [13] combine the radial basis function (RBF) 
neural network and the adaptive neural fuzzy inference system to forecast short-term 
load and improved that this model has high precision and can work effectively and 
overcome the defects of the RBF network. Ture et al. [14] compares time series pre-
diction capabilities of three artificial neural networks algorithms-multi layer percep-
tron (MLP), RBF, and time delay neural networks (TDNN). 

Univariate grey model, lacking of correlation analysis among the multiple signals 
which cause industrial equipment failure, will result in the loss of some significant 
information and reduce the accuracy and precision of state forecast; meanwhile cur-
rent various state forecasting do not have to consider the actual industrial environment 
like temperature which has important impact on equipment failure. This paper 
presents (MGM-RBF) forecast model, which can get a thorough understanding of 
complexity system by considering various factors from various angel, and can build 
dynamic relation of various factors, at the same time, also taking the actual environ-
ment like temperature into this model, so that it can improve accuracy and precision 
of state forecast. And verifying this model can achieve more satisfactory result by 
case simulation. 

2 Multivariate Grey RBF Neural Network Model 

2.1 Multivariate Grey Forecast Model 

Multivariate gray model MGM (1, n) is the nary first-order ordinary differential equa-
tions, which model is as follows:  

Let x k i 1,2, … , n  been n-ary grey time series which consist by k interac-

tive aspects, and generate x k i 1,2, … , n  been a corresponding cumulative 
sequence. 
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 x k  ∑ x j        where k 1,2, … , m . (1) 

 

MGM (1, n) model is n-ary first-order ordinary differential equations: 
 

 AX B . (2) 

where, 

 A  a aa a … a a  a a …  … a  , B b , b , … , b T . (3) 

 
The continuous time response for equation (3) is:  

 

 X t  eA X 0  A eA I  B . (4) 
 

Where:I is unit matrix. 
Then, discrete equations (2): 
 

 x k  ∑ x k  x k 1   b  . (5) 

 

where a a , a , … , a , b T, where i 1,2, … , n . 
Then, get the recognize value a  of a  by Least Squares: 

 

 a  aa…ab  LTL Y , i 1,2, … , n . (6) 

where, L x m  x m 1 … x m  x m 1  1   . 

Then, get the recognize value A and B: 

 A  a aa a … a… a  a a …  … a         B  bb…b  . (7) 

 

Finally, get the solution of MGM(1,n) is: 
 

 X k  eA X 1  A eA I B, k 1,2, …  . (8) X 1  X 1  . 

 X k  X k  X k 1 , k 2,3, …  . (9) 
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As can be seen from the derivation of the algorithm, when n = 1, the MGM(1,N) 
degeneration to GM(1,1), and when B = 0, MGM(1,n) is become n GM(1,1) models. 

2.2 RBF Neural Network Regression Model 

RBF neural network is an efficient feed-forward neural network, which has the best 
approximation performance and global optimum what other forward neural networks 
do not have, and simple structure and training in high speed. Radial basis function 
neural network is a local approximation, which simulates the human brain partial 
adjustment and mutually covering accepted domains neural network structure. Cur-
rently, it has proven to approximate any continuous function with any arbitrary preci-
sion. The most basic RBF neural network what is a three-layer feed-forward network 
with a single hidden layer, where each layer has a completely different role. The input 
layer, consisting of sensing unit, will connect with the external environments; the role 
of second layer is to complete the non-linear transformation from the input layer to 
the hidden layer, in most situations the hidden layer has higher dimension. The third 
layer is output layer, the role of this layer is provide response to activation model of 
the input layer [6]. 

2.3 Multivariate Grey RBF Model 

Multivariate grey neural network state forecast model is combine the disadvantage of 
multivariate grey forecast model in small simple, poor information and multiple inter-
related factors and the disadvantage of RBF neural network in non-linear regression. 
RBF neural network error forecast model, using the state forecast value and the tem-
perature which is the most important environment factors as input to this model, and 
the error value as output to train RBF neural network, then get the error forecast mod-
el. MGM-NN model, MGM-NN uses the error forecast model error forecast to com-
pensate MGM(1,n) result, what can get high accuracy and precision. 

3 Case Simulation 

3.1 Problem Description 

To establish a mathematical model for melt channel is not economic or even impossi-
ble, therefore using the historical running data about the performance of melt channel 
is become the main technical means to forecast the fault of device. Historical running 
data include the fault information of device, we can learn and mining the internal rule 
of fault information of device, and we can forecast the running state (including the 
fault information) by these internal rule to reflect the real fault information of melt 
channel, and determine whether to use it or not. Therefore we can transform fault 
forecast to running state forecast (including the fault information), and can also ab-
stract to time serials forecast, following is the mathematical model: 
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 y t T f y t , y t 1 , … , y t n 1  . (10) 
 

where T is the step. In this case T=3. 
We can find the approximate f by historical running data. 

3.2 Historical Running Data Preprocessing 

This paper data from real-time operating of industrial equipment melt ditch, the data 
preprocessing is shown as follows: 

Selection of variables Real-time running state of melting channel, resistor(R) and 
inductance(X), can be monitored by access to relevant literature, therefore we can turn 
Voltage(U), Current (I), Active Power (P), Reactive Power (Q) to R and X by electro-
magnetic principle. Choose temperature (T) as the actual industrial environment fac-
tors, because the running state of melting ditch is closely related to temperature. 

Processing singular value and normalization in RBF-NN model Find the singular 
value by Statistical Methods and delete it. In this case, we use following method to 
do, some processed data shown in Table 1. 

Table 1. Some processed data 

Dat
e 

Temperature(T) U(V) I(A) P(W) Q(W) R X 

8.2 1409 210 550 60 90 0.1983  0.3263  
8.5 1395 390 1040 230 300 0.2126  0.3089  
8.8 1403 210 540 60 90 0.2058  0.3300  
8.11 1392 380 1000 210 290 0.2100  0.3167  
8.14 1422 360 950 170 260 0.1884  0.3288  
8.17 1422 220 600 60 100 0.1667  0.3266  
8.20  1407 220 600 60 100 0.1667  0.3266  

3.3 Simulation Result 

The step of simulation is as follows: 
1. Use MGM to forecast the R and X, and get the RF value and XF value and ER = 

RF – R, EX = XF – X; the result shown in Table 2. 

Table 2. The result of MGM 

T R X RF XF ER EX 
1409  0.1983  0.3263  0.2082  0.3175  -0.0099  0.0088  
1395  0.2126  0.3089  0.1966  0.3280  0.0160  -0.0192  
1403  0.2058  0.3300  0.2136  0.3076  -0.0078  0.0224  
1392  0.2100  0.3167  0.2054  0.3321  0.0046  -0.0154  
1422  0.1884  0.3288  0.2103  0.3166  -0.0219  0.0123  
1422  0.1667  0.3266  0.1852  0.3304  -0.0185  -0.0038  
1407  0.1667 0.3266  0.1852 0.3304  -0.0185  -0.0038  

 
2 Take the Temperature (T), RF (forecast of R), XF (forecast of X)as input and the 

ER (error of R)and EX  (error of X)as output to train RBF-ANN, and get the error 
matched curve of R and X, shown in Fig.3. 
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Fig. 3. Error matched curve 

3 Use test set to verify MGM-NN model, and compute the Mean Square predict 
Error (MSE) and Average Relative Error (ARE). The test set data shown in Table 
II and we have already got the RF and XF value by MGM model, following we 
can get the ERF (error of R forecast) and EXF (error of X forecast) value by RBF 
model, then get the final value by  

RFF=RF + ERF 
XFF = XF + EXF 

where RFF is final forecast of R and XFF is final forecast of X. 
We can get the ERF and EXF from the RBF model, and the result of them is shown 

in Table 3. 

Table 3. Result of error forecast 

RF XF ERF EXF RFF XFF 
0.2082  0.3175  -0.0133  0.0160  0.1950  0.3335  
0.1966  0.3280  0.0210  -0.0232  0.2176  0.3048  
0.2136  0.3076  -0.0123  0.0261  0.2013  0.3337  
0.2054  0.3321  0.0106  -0.0194  0.2160  0.3127  
0.2103  0.3166  -0.0266  0.0165  0.1837  0.3331  
0.1852  0.3304  -0.0235  -0.0058  0.1617  0.3246  
0.1606  0.3277  0.0111  -0.0031  0.1717  0.3246  

 
The result of test set shown in Table 4 and Fig. 4 

Table 4. Average relative error rate of test set 

MGMRRERate(%) MGMXRERate(%) MGM-NNRRERate (%) MGM-NNXRERate (%) 
5.2480  3.1602  1.1234  1.094  

 

Fig. 4. Results of test set 
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3.4 Result Analysis 

From Fig. 3 and Fig.4, we can conclude that the forecast of MGM-NN model is better 
the MGM in melt channel, and from the Table 3 and Table 4, we can compute the 
MSE and ARE by 3.2.1 – 3.2.4 shown in Table 5. 

Table 5. MSE and ARE 

MGM MGM-NN 
MSER MSEX ARER AREX MSER MSEX ARER AREX 
0.0002 0.0002 5.25% 3.16% 0 0 1.12%  1.09%  

 
From the Table 5, we know that the result of MGM-NN is better than the MGM in 

both Mean Square Error (MSE) and Average Relative Error (ARE). From the Fig.5, 
we know that the MGM-NN model can forecast the channel X’s and R’s trends accu-
rately. Therefore we can draw a conclusion that the MGM-NN forecast model is bet-
ter than MGM model in melt channel running state forecast and this model can also 
apply to relative equipment running state forecast. 

4 Conclusion 

This paper presents a multivariable grey neural network (MGM-NN) model for pre-
dicting the state of industrial equipments. It combines the merit of MGM model and 
RBF-NN model on time series forecast. This mode takes the dynamic correlations 
among multi variables and environment’s impact on state of equipment into consider-
ation. The proposed model is applied to forecast the state of melt channel, and receive 
better result than MGM model from the case study. On the basis of this work, we can 
optimize the back-ground value and initial value of MGM-NN and embed the MGM 
into ANN for further study, and get a more accuracy. SVM is also can apply to small 
sample data analysis and can receive satisfactory results, so the next research is to mix 
the SVM and MGM to forecast the equipment running state.  
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Abstract. The hydration of Portland cement is a complicated process and still 
not fully understood. Much effort has been accomplished over the past years to 
get the accurate model to simulate the hydration process. However, currently 
existing methods using positive derivation from the conditions for physical-
chemical reaction are lack of information in real hydration data. In this paper, 
one model based on Flexible Neural Tree (FNT) with acceptable goodness of fit 
was applied to the prediction of the cement hydration process from the real mi-
crostructure image data of the cement hydration which has been obtained by 
Micro Computed Tomography (micro-CT) technology. Been prepared on the 
basis of previous research, this paper used probabilistic incremental program 
evolution (PIPE) algorithm to optimize the flexible neural tree structure, and 
particle swarm optimization (PSO) algorithm to optimize the parameters of the 
model. Experimental results show that this method is efficient. 

Keywords: Flexible Neural Tree, Probabilistic Incremental Program Evolution, 
Particle Swarm Optimization, Cement Hydration. 

1 Introduction 

Cement has been widely used in many kinds of fields as one of the most important 
industrial building material. Meanwhile, to enhance the performance of cement ma-
terial has strong application value for the national economy and construction. There-
fore, it is very significant to study the process of cement hydration in order to under-
stand the hydration principle and forecasting the cement performance [1]. Generally, 
hydration data of 28 days are selected as a reference to study the cement microstruc-
ture evolution process, because the degree of cement hydration after 28 days maintain 
at a low level and the cement performance has been determined basically [2]. 

                                                           
* Corresponding author. 
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Manual derivation of hydration kinetic equation is usually adopted in the physical-
chemical experimental methods [3] [4]. Single-particle model is proposed firstly in 
1967 by Kondo and Kodama [5]. Then, Kondo and Ueda developed this model in 
1968 [6]. Subsequently, in 1979, Pommersheim described an integrated reaction-
diffusion single-particle model on the basis of the previous work [7]. These models 
are not quite effective, until 1997, a new model expressed as a single equation which 
is also founded on the single particle model is proposed by Tomosawa [8].  

Although so many achievements have been obtained above, it is still cannot reflect 
the cement hydration process exactly due to the extreme complexity of the cement 
hydration. Recent studies show that, intelligent computation are introduced to the 
reverse modeling and has a good ability to extract rules from experimental data direct-
ly. Lin Wang and Bo Yang built a modern mixed kinetic modeling for hydration 
process based on Gene Expression Programming (GEP) algorithm and Particle 
Swarm Optimization (PSO) algorithm [9]. Subsequently, they reconstruct the model 
with Multi-layer Multi-Expression Programming (MMEP). 

The advantages of intelligent computation in the function finding and data fore-
casting prompt us to adopt it to explore the model of cement hydration process. This 
paper presents a new type of reverse modeling framework using Flexible Neural 
Tree (FNT) proposed by Chen [10] in 2005 to simulate the process of cement hydra-
tion. The structure of FNT is optimized by probabilistic incremental program evolu-
tion (PIPE) algorithm and parameters are optimized by PSO. With this model, we 
can get the 3D microstructure evolution process for cement hydration. The results of 
simulation show that predicting model achieved by PIPE and PSO based flexible 
neural tree has better validity than the canonical artificial neural network model and 
other model. 

The rest of the paper is organized as follows: Section 2 raises a description for the 
FNT model with PIPE and PSO. Section 3 introduces the experimental data capturing 
from micro-CT and feature selection. The results of the simulation experiment are 
described in section 4 to show its performance. Section 5 concludes the paper. 

2 An Introduction to FNT Model 

FNT model is similar to the model of artificial neural network. A tree-structural based 
encoding method is selected for representing a FNT model. This structure can be 
evolved expediently using the existing tree-structure-based approaches, like GEP, 
PIPE, and MEP etc. The parameters used in FNT can be optimized by Genetic Algo-
rithm (GA) and PSO, etc. 

Compositions of FNT model include function set F and terminal instruction set T 
[25]. For example, we use the set of functions F = {+2, +3... +N} and the set of termin-
al instruction T ={x1, x2... xn}. With this the FNT model can be expressed as S = F ∪ 
T  = {+2, +3... +N }∪{ x1, x2 ... xn }. Instruction +N is also called a flexible neuron 
operator with N inputs. An example of flexible neuron using the function +N and ter-
minal instruction set is given in Fig.1. 
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Fig. 1. A flexible neuron operator with the input of xi. Numbers of flexible neuron operator 
form a FNT model. 

In the process of constructing hybrid neural tree, if a non-leaf node instruction +i (i 
= 2, 3 …n) is selected, w1,w2,…w3 are generated randomly and used for representing 
the connection weight between node +i and x1, x2... xi. Meanwhile, two parameters a 
and b are created randomly as flexible activation function parameters. In this paper, 
the function is represented by following formulation (1): 
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The output of +i is calculated as following formulation (2): 

 (a , b ,net )=n n n nout f  (2) 

While netn is the sum of total activation calculated as following formulation (3):  
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Overall output of flexible neural tree can be computed from left to right by depth-
first method, recursively. Weight w and parameters a, b are optimized by PSO in our 
experiment. 

FNT model is more flexible when compared with traditional analytical model. 
Foremost, it allows identifying important input features that are efficient. This means 
that it has ability of features selection compared with traditional neural network. 

2.1 Brief Summary for PIPE 

PIPE algorithm was proposed by Salustowicz in 1997 [11]. PIPE “uses a stochastic 
selection method for successively generating better and better programs according to 
an adaptive probabilistic prototype tree”. No crossover operator is used. 
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PIPE generates individual according to an underlying probabilistic prototype tree 
called PPT. Generation-based learning (GBL) and elitist learning (EL) is the main 
learning algorithm of PIPE. In this paper, GBL is used for learning. 

PIPE algorithm can be described as follows: 

a) Initialize probabilistic prototype tree. 
b) Repeat until termination criteria are met. 

i. Create population of programs 
a) Grow PPT if required 

ii. Evaluate population 
a) Favor smaller programs if all is equal 

iii. Update PPT 
iv. Mutate PPT 
v. Prune PPT 

c) End 

2.2 Brief Summary for PSO 

Inspired by the flocking and schooling patterns of birds and fish, Particle Swarm Op-
timization (PSO) which is a population based stochastic optimization technique was 
invented by Russell Eberhart and James Kennedy in 1995 [12]. PSO shares many 
similarities with evolutionary computation techniques such as GA. 

PSO is initialized with a group of random particles (solutions) and then searches 
for optima by updating generations. Each particle is updated by following two "best" 
values at each iteration. The first one is the best solution (fitness) it has achieved so 
far. This value is called pbest. Another "best" value that is tracked by the particle 
swarm optimizer is the best value, obtained so far by any particle in the population. 
This best value is a global best and called gbest. When a particle takes part of the 
population as its topological neighbors, the best value is a local best and is called 
lbest. A new velocity for particle i is updated by equation (4): 

 1 2(t 1) v (t) c * ()*(p (t) present (t)) c * ()*(g (t) present (t))+ = + − + −i i i i i iv rand rand  (4) 

v is the particle velocity. Present is the current particle (solution) while pbest and 
gbest are defined as stated before. Function rand () is a random number between (0,1). 
Constant c1, c2 are learning factors. Usually c1 = c2 = 2. 
The particle updates its positions with following equation (5): 

 (t 1) (t) v (t 1)+ = + +i i ipresent present  (5) 

Then PSO algorithm description of the procedure can be expressed as follows: 
Step1: Initialize particle for each particle. 
Step2: Calculate fitness value for each particle. Current value is set as the new 

pBest when the fitness value is better than the best fitness value (pBest) in history. 
Step3: Choose the particle with the best fitness value of all the particles as the gBest. 
Step4: For each particle , calculate particle velocity according equation (4) while 

update particle position according equation (5) 
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2.3 Hybrid FNT with PIPE and PSO 

In this paper, each individual of PIPE is optimized by PSO to find the tree structure 
with the best parameters. 

At first, set the initial values of parameters used in the PIPE randomly. Assume that, 
the population of PIPE is 20. At each generation, it created 20 tree structures individual. 
For each individual, PSO iterate until reach the pre-defined stop point. The fitness 
function is measured by root mean square error (RMSE). When PSO reach the maxi-
mum number of iterations, the individual with the best parameters is stored. After all 
the 20 individual is optimized by PSO, an individual with the best parameters in this 
population in first generation has been getting. Then we use PSO to optimize this indi-
vidual with larger loops with more iteration than before to get a better result. For each 
iteration of PIPE, repeat the process above until the satisfactory solution is reached. 

The optimal design of hybrid FNT model can be described as follows: 
Step1: Creat a population with random structures and parameters. 
Step2: Optimized the tree structure using PIPE which is described in subsection 2.1. 
Step3: Optimized the parameters suing PSO which is described in subsection 2.2. 
Step4: repeat Step2 and Step3 above until the satisfactory solution is found 

3 Data Acquisition and Feature Selection 

In this section, the acquisition and processing of experimental data that used for FNT 
algorithm will be described. 

Microstructure image data of 28 days is chosen as a reference to study the cement 
hydration. First of all, a large number of micro-CT time-series images in the process 
of cement hydration according to the standard experiment are obtained. The image of 
each day is segmented into a small size of 140*140*140. In this paper, the following 
day’s images are used:1D(day), 2D, 3D, 4D, 5D, 6D, 7D, 14D, 21D, and 28D. At the 
same time, the final training dataset and testing dataset are obtained by a series of 
image processing like image enhancement and three dimension image registrations. 
After careful process of cement image, we get a three-dimensional image with that the 
pixel values are mapped to between 0 and 255. 

In this work, a plugin of ImageJ is developed to get the dataset from the observed 
time-series image. The dataset is consisting of the current pixel values and 26 neigh-
borhood pixel values. These 27 features are used as the input parameter and the pixel 
value of next time as the output parameter which forming a complete dataset. Then 
data set split according to the tenfold cross-validation scheme and linear scaling with 
the output range of <0, 1> is used in order to match nonlinear activation functions 
domains which were used for FNT. 

It is considered very effectively to implement the feature selection using FNT by 
itself. The feature that selected by FNT is given in following section. 

4 Results and Discussion 

The flexible neural tree model is applied here in conjunction with cement hydration 
prediction problems. 
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The following settings are adopted in the experiment (Table 1).  

Table 1. Parameter settings used for the experiment  

Parameters Settings
PIPE 
Population Size 20
Iterations 10000
Mutation rate 0.1
Learning rate
Epsilon 
PSO 

0.01
0.000001 
 

Population Size 20
Iterations 500(each individual),1000(best individual) 
c1 2
c2 2
FNT 
Function set {+2,+3,+4,+5}

 
The FNT model we get from 900 training data is shown in Fig.2.  
 

 

Fig. 2. The FNT model we get for prediction of the cement hydration. 

Then the output and the prediction error with 74 testing data are shown in Fig.3. 
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(a)  FNT model: the output and the prediction error with 74 testing data 

 

(b) Line Regression model: the output and the prediction error with 74 testing data. 

 

(c) Line Regression model: the output and the prediction error with 74 testing data. 

Fig. 3. Output and the prediction error of different models 

Compared with Line Regression model and Multilayer Perceptron (MLP) model. 
The RMSE based on FNT is 9.4, while the Line Regression and Multilayer Perceptron 
model are 14.32 and 13.08 respectively.  

5 Conclusion 

This paper proposed a new and reverse modeling method that no one had ever done it 
before for the simulation of cement microstructure evolution. It combines progressive 
computer technology with traditional physical-chemical experimental approaches, 
established new scientific methods for cement hydration. We compared our prediction 
model with other technics including Line Regression and MLP model. The experi-
mental results confirmed that it’s an effective modeling in the area of cement micro-
structure evolution prediction. 

In the future work, we will combine Multi Expression Programming algorithm 
with Particle Swarm Optimization to get a more accurate model. Moreover, grey val-
ue of cement data could be divided into different gray domain to use classification 
method. 
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Abstract. For a fuzzy classifier automated design the hybrid self-configuring 
evolutionary algorithm is proposed. The self-configuring genetic programming 
algorithm is suggested for the choice of effective fuzzy rule bases. For the tun-
ing of linguistic variables the self-configuring genetic algorithm is used. An ad-
ditional feature of the proposed approach allows the use of genetic program-
ming for the selection of the most informative combination of problem inputs. 
The usefulness of the proposed algorithm is demonstrated on benchmark tests 
and real world problems. 

Keywords: Genetic algorithms, genetic-programming, fuzzy classifier, auto-
mated design, performance estimation. 

1 Introduction 

A fuzzy classifier [1] is one of the intelligent information technologies allowing the 
generation of a fuzzy rule base suitable for interpretation by human experts. The re-
sulting fuzzy rule base that can be written in terms of natural language is the most 
useful data mining tool for end users that are experts in their area of activity and non-
experts in the field of intelligent information technologies. However, the process of 
fuzzy classifier design and adjustment is rather complex even for experts in fuzzy 
systems. For the automation of fuzzy classifier implementation we need to consider 
its design as an optimization problem. This problem consists of two parts: the genera-
tion of a fuzzy rule base and the tuning of its linguistic variables. Both are very com-
plicated for standard optimization tools, which makes evolutionary algorithms quite 
popular in this field [2, 3]. 

In this paper, we consider a genetic programming algorithm (GP) that automatical-
ly designs the fuzzy classifier rule base.  It can be a good solution for this problem 
because of the GP’s ability to work with variable length chromosomes. The use of a 
GP can simplify the implementation of the Pittsburg [3] method and, in this case, it is 
not required to implement the Michigan [2] method for reducing the dimension of the 
search space. 
                                                           
*  Research is fulfilled with the support of the Ministry of Education and Science of Russian 

Federation within State assignment project 140/14. 
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Applying the GP, one faces the usual problem of determining an effective configu-
ration of the evolutionary algorithm (EA) because the EA’s performance depends on 
the selection of their settings and the tuning of their parameters. The design of the EA 
consists of choosing variation operators (e.g., selection, recombination, mutation, etc.). 
Additionally, real valued parameters of the chosen settings (the probability of recom-
bination, the level of mutation, etc.) have to be tuned. The process of the choosing 
settings and tuning parameters is known to be a time-consuming and complicated task.  

Following from the definitions given by Gabriela Ochoa and Marc Schoenauer, or-
ganizers of the workshop "Self-tuning, self-configuring and self-generating evolutio-
nary algorithms" (Self* EAs) within PPSN XI [4] we call our algorithms self-
configuring because the main idea of the approach relies on automated "selecting and 
using existing algorithmic components". The self-configuring evolutionary algorithms 
(Self-CEA) use dynamic adaptation on the population level [5], centralized control 
techniques [6] for parameter settings with some differences from the usual approaches.  

Having conducted numerical experiments, we have found that the proposed ap-
proach positively impacts on the algorithms' performance and deserves special atten-
tion and further investigation.  

The rest of the paper is organized as follows. Section 2 explains the idea of self-
configuring evolutionary algorithms. Section 3 describes the proposed method of 
fuzzy classifier automated design. Section 4 describes the results of the numerical 
experiments comparing the performance of the proposed approach in solving real-
world problems, and in the conclusion we discuss the results.  

2 Self-configuring Evolutionary Algorithm  

If somebody decides to use evolutionary algorithms for solving real world optimiza-
tion problems, it will be necessary to choose an effective variant of the algorithm 
settings such as the kind of selection, recombination and mutation operators. 
Choosing the right EA settings for each problem is a difficult task even for experts in 
the field of evolutionary computation. It is the main problem of effective implementa-
tion of evolutionary algorithms for end users. We can conclude that it is necessary to 
find a solution for this problem before suggesting EAs for end users as a tool for 
automated design in solving real world problems.  

We propose using self-configuring evolutionary algorithms (SelfCEA) that do not 
require any efforts of the end user so that the problem is adjusted automatically. In 
our algorithm the dynamic adaptation of operators’ probabilistic rates on the level of 
population is used (see Fig.1). Instead of tuning real parameters, variants of settings 
were used, namely types of selection (fitness proportional, rank-based, and tourna-
ment-based with three tournament sizes), crossover (one-point, two-point, as well as 
equiprobable, fitness proportional, rank-based, and tournament-based uniform 
crossovers [7]), population control and level of mutation (medium, low, high for all 
mutation types). Each of these has its own initial probability distribution (see Fig. 2), 
which are changed as the algorithm executes (see Fig. 3).  
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Fig. 1. Main part of SelfCEA block diagram  

 

Fig. 2. Flowchart illustrating step 1 in SelfCEA block diagram 
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Fig. 3. Flowchart illustrating step 7 in SelfCEA block diagram  

This self-configuring technique can be used both for genetic algorithms (SelfCGA) 
and genetic programming (SelfCGP). In [8] the SelfCGA performance was estimated 
on 14 test problems from [9]. As a commonly accepted benchmark for GP algorithms 
is still an "open issue" [10], the symbolic regression problem with 17 test functions 
borrowed from [9] were used in [7] for testing the self-configuring genetic program-
ming algorithm. Statistical significance was estimated with ANOVA.  

Analysing the results of SelfCGA [8] and SelfCGP [7] performance evaluation, we 
observed that self-configuring evolutionary algorithms demonstrate better reliability 
than the average reliability of the corresponding single best algorithm. They can be 
used instead of conventional EA in complex problem solving. 

3 Self-configuring Evolutionary Algorithm for Automated 
Fuzzy Classifier Design 

We have to describe our way to model and optimize a rule base for a fuzzy logic sys-
tem with GP and linguistic variables adjusting with GA.  

Usually, a GP algorithm works with a tree representation of solutions, defined by 
functional and terminal sets, and exploits specific solution transformation operators 
(selection, crossover, mutation, etc.) until the termination condition is met [11]. The 
terminal set of our GP includes the terms of the output variable, i.e. class markers. 
The functional set includes a specific operation for dividing an input variables vector 
into subvectors or, in other words, for the separation of the examples set into parts 
through input variable values. It might be that our GP algorithm will ignore some 
input variables and will not include them in the resulting tree, i.e., a high performance 
rules base that does not use all problem inputs can be designed. This feature of our 
approach allows the use of our GP for the selection of the most informative combina-
tion of problem inputs.  
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The tuning of linguistic variables is executed to evaluate the fuzzy system fitness 
that depends on its performance when solving the problem in hand, e.g., the number 
of misclassified instances. A linguistic variable consists of a set of terms or linguistic 
variable values representing some fuzzy concepts. Each of the terms is defined by a 
membership function. The tuning of linguistic variables consists in the optimization 
of membership function parameters simultaneously for all the terms of linguistic 
variables involved in problem solving. In this paper, we propose adjusting linguistic 
variables with the self-configuring genetic algorithm (SelfCGA) combined with the 
conjugate gradient method that does not require any efforts of the end user for the 
problem to be adapted. We use here membership functions with a Gaussian shape. For 
the coding of membership function parameters, the mathematical expectation value of 
the Gaussian function and its standard deviation are written consecutively for each 
term in the chromosome. For automatic control of the number of terms the possibility 
of the term ignoring is provided: all bits of ignored term are set as 0 with the 
probability equal to 1/3.  

The efficiency of the proposed approach was tested on a representative set of 
known test problems. The test results showed that the fuzzy classifiers designed with 
the suggested approach have a small number of rules in comparison with the full rule 
base. These fuzzy systems have a small enough classification error. This is why we 
can recommend the developed approach for solving real world problems. 

4 Numerical Experiments with Real World Problems 

The developed approach was applied to two classification machine learning credit 
scoring problems from the UCI repository [12] often used to compare the accuracy 
with various classification models: 

─ Credit (Australia-1) (14 attributes, 2 classes, 307 examples of the creditworthy 
customers and 383 examples for the non-creditworthy customers); 

─ Credit (Germany) (20 attributes, 2 classes, 700 records of the creditworthy cus-
tomers and 300 records for the non-creditworthy customers).  

Both classification problems were solved with fuzzy classifiers designed by hybrid 
SelfCEA (SelfCEA+FL). This technology was trained on 70% of the instances in the 
data base and validated on the remaining 30% of the examples. The results of the 
validations (the portion of correctly classified instances from the test set) averaged for 
40 independent runs are given in Table 1 below.  

We first compared the fuzzy classifier performance with ANN-based [13, 14] and 
symbolic regression based [7] classifiers automatically designed by SelfCGP 
(SelfCGP+ANN and SelfCGP+SRF). As we have observed, the algorithm proposed 
in this paper demonstrates high performance on both classification tasks. 

We then conducted the comparison of our SelfCEA+FL designed classifier with al-
ternative classification techniques. Results for the alternative approaches have been 
taken from scientific literature. In [15] the performance evaluation results for these 
two data sets are given for the authors' two-stage genetic programming algorithm 
(2SGP) specially designed for bank scoring as well as for the following approaches 
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taken from other papers: conventional genetic programming (GP), multilayered per-
ceptron (MLP), classification and regression tree (CART), C4.5 decision trees, k 
nearest neighbors (k-NN), and linear regression (LR). We have taken additional ma-
terial for comparison from [16] which includes evaluation data for the authors' auto-
matically designed fuzzy rule based classifier as well as for other approaches found in 
the literature: the Bayesian approach, boosting, bagging, the random subspace method 
(RSM), and cooperative coevolution ensemble learning (CCEL). The results obtained 
are given in Table 1. As can be seen from Table 1, the proposed algorithm demon-
strates competitive performance being runner up for both problems.  

Table 1. The comparison of classification algorithms 

Classifier Australian 
credit 

German 
credit 

2SGP 0.9027 0.8015 
SelfCEA+FL 0.9022 0.7974 
SelfCGP+ANN 0.9022  0.7954 
SelfCGP+SRF 0.9022 0.7950 
Fuzzy  0.8910 0.7940 
C4.5 0.8986 0.7773 
CART 0.8986 0.7618 
k-NN 0.8744 0.7565 
LR 0.8696 0.7837 
RSM 0.8660 0.7460 
Bagging 0.8470 0.6840 
Bayesian 0.8470 0.6790 
Boosting 0.7600 0.7000 
CCEL 0.7150 0.7151 

 
Our intention was to make it clear whether our approach could give results compet-

itive with alternative techniques without attempting to develop the best tool for bank 
credit scoring. We used limited computational resources: 500 generations rather than 
1000 as, e.g., in [15]. This is necessary to stress that fuzzy classifiers designed by 
SelfCEA give additionally human interpreted linguistic rules which is not the case for 
the majority of other algorithms in Table 1. Designed rule bases usually contain 10-15 
rules which do not include all given inputs.  

Analysis of the data sets shows that input variables can be divided in some groups 
so that inputs of one group are highly correlated to each other but the correlation be-
tween inputs of different groups is weak. There are also inputs weakly correlated with 
the output. A fuzzy classifier designed with suggested hybrid SelfCEA doesn’t usual-
ly include inputs of the last kind. Moreover, it usually includes members of every 
inputs’ group but only one input from each, i.e. it doesn’t include highly correlated 
inputs in the rule base. This allows the algorithm to create relatively small rule bases 
with rather simple rules. 
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The computational efforts required by the suggested hybrid SelfCEA are high 
enough but not much higher than ANN-based classifier design requests. This can be 
considered as an acceptable disadvantage taking into consideration that this approach 
gives a compact base of easily interpreted rules and not just a computing formulation 
of a black box as ANN does.   

5 Conclusions 

A self-configuring genetic programming algorithm and a self-configuring genetic 
algorithm were hybridized to design fuzzy classifiers. Neither algorithm requires 
human efforts to be adapted to the problem in hand, which allows the automated de-
sign of classifiers. A special way of representing the solution gives the opportunity to 
create relatively small rule bases with rather simple rules. This makes possible the 
interpretation of obtained rules by human experts. The quality of classifying is high as 
well, which was demonstrated through the solutions of two real world classification 
problems from the area of bank scoring.  

The results obtained allow us to conclude that the developed approach is workable 
and useful and should be further investigated and expanded.  
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The Autonomous Suspending Control Method  
for Underwater Unmanned Vehicle  

Based on Amendment of Fuzzy Control Rules 
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Abstract. For the specific needs of the underwater unmanned vehicle (UUV) in 
the working environment, the autonomous suspending control method for UUV 
based on amendment of fuzzy control rules is advanced. According to the tradi-
tional fuzzy controller, this method based on particle swarm optimization (PSO) 
for online search strategies adjusts the amendment of fuzzy control rules in 
time. This online optimization of fuzzy control method has a faster convergence 
speed, and can effectively adaptive adjust the motion state of UUV,  which car-
ries out the autonomous suspending control within the scope of predetermined 
depth for the accuracy and robustness . It is illuminated by simulation experi-
ments that this autonomous suspending control method for UUV based on 
amendment of fuzzy control rules is more effective against uncertain distur-
bance and serious nonlinear, time change process.  

Keywords: Underwater unmanned vehicle, autonomous suspending control, 
amendment factor, particle swarm optimization. 

1 Introduction 

When operating the underwater unmanned vehicle (UUV), the good autonomous 
suspension control is required for their own structural safety and the steady mainten-
ance of underwater depth. Due to the large inertia, the low-speed underwater move-
ment of UUV is coupled nonlinear. Therefore, the autonomous suspension control 
system of UUV is a kind of large inertia, delay, nonlinear complex control system. 
For the conventional PID control method[1,2] , the UUV dynamics characteristics is 
required to know,which should remain unchanged, as small as possible to the external 
disturbance in particular. However, the actual situation of the particularity and varia-
bility in the marine environment makes conventional PID methods to have significant 
limitations and the uses of ineffective. Fuzzy control is a complex control methods 
suited for the hard describe with a precise mathematical model and mainly relying on 
the experience[3,4,5]. So people have to study the fuzzy control applied to a variety 
Autopilot steering control [6,7]. But the traditional fuzzy controller for selecting a 
large number of parameters needs to have a wealth of operational experience in the 
actual sea trials and applications, which the debugging time is often limited. Once the 
parameter setting is wrong, the results could be disastrous. And the overly complex 
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parameter adjustment constrains the application of fuzzy control technologies in the 
underwater motion [8,9,10]. 

As for the actual requirements, the autonomous suspending control method for 
UUV based on the amendment of fuzzy control rules is proposed in this paper. Which 
using particle swarm optimization method to adjust the online amendment factors 
fuzzy control rules, this method implements the adaptive fuzzy control process. Large 
number of simulation experiments show that this method based on the amendment of 
fuzzy control rules is a good kind of autonomous suspending control, especially for 
the nonlinear state process, uncertainty disturbances and imprecise models in depth 
deep-sea movements. 

2 The Work Principle for Underwater Unmanned Vehicles 
Autonomous Suspension Control System 

The autonomous suspension control system device of underwater unmanned vehicle 
is mainly composed of tanks, pumps, solenoid valves, oil capsule and related electron-
ic controllers, sensors, fuzzy conversion circuit, power supply. The principle of 
buoyancy control device is using the pump to fill the bag with oil from the tank, 
which making the oil bag expand and the underwater unmanned vehicles drainage 
volume increase, and its buoyancy increases. Conversely, using the pump to draw oil 
from the bag makes its buoyancy decrease. Thereby changing the buoyancy can make 
the underwater unmanned vehicle float or sink. 

The autonomous suspension control of underwater unmanned vehicle enables the 
system to stably work underwater at a depth within a predetermined range, especially 
when it is subjected to external impact or environmental disturbances. With the auto-
matical adjustments of motion state, underwater unmanned vehicle can be ensured to 
return to a predetermined depth. 

3 Autonomous Suspension Control Method  
Based on Amendment of Fuzzy Control Rules  

On the basis of the traditional adaptive fuzzy control method, the fuzzy control rules 
can be considered for further optimization and adjustment. The search for the 
amendment factor of fuzzy control rules is a typical nonlinear optimization process. 
Therefore, in view of PSO effectively applied in parameter optimizations and fuzzy 
control systems[11,12], it is possible to combine the movement of process simulation 
with the PSO algorithm. With designing the amendment of fuzzy control rules based 
on PSO, a new kind of method for autonomous suspension control is proposed. 

3.1 The Amendment of Fuzzy Control Rules 

The performance of fuzzy controller has great influence for the characteristics of 
system, which dues to the selected control rules. Among them, the weights between 
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the input variables will directly affect the control rules. Therefore,to introduce a 
amendment factor to adjust the control rules is needed, which can correct deficiencies 
in the original set rules to improve the performance of the fuzzy controller. 

Fuzzy control rules can be introduced by the following formula: 

              ( )EEU εε −+−= 1
， [ ]10，∈ε  .               (1) 

Among them，ε is amendment factor. 
When the amendment factor adjusts the size of itself, the weights of the error and 

error change can easily change. Further, in the actual control system and under differ-
ent conditions, the weights of the error and error change will have different require-
ments. Therefore, in different situations or error levels, the introduction of different 
amendment factors is needed. For example, the discrete domain of the errors 

is { }3, 2, 1, 0,1, 2, 3E = − − − . When the error is small, the amendment factor 1ε is to 

correct rules ; When the error is large, the amendment factor 2ε is to correct rules. 
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3.2 The Amendment of Fuzzy Control Rules Based on PSO and the Autonomous 
Suspension Control Method for Underwater Unmanned Vehicle 

The preferred amendment factor will help to improve the performance of the actual 
control system. But only to determine with the experimental testing or experiences 
must bring a certain blindness, or even difficult to adjust to a set of best parameters. 
Therefore, the rapid optimization for amendment factor is needed, with the precise 
adjustment of control rules in time. Here an integral performance index can be used as 
the system performance evaluation. 
 

( ) ( ) min
0

== 
∞

dttetITAEJ  .                   (3) 

 

Wherein， ( )J ⋅ represents the size of the integral area after the error function 

weighting. I is integrator, T is time, A means the absolute value, E means that error. 
The integral performance indicator of ITAE can evaluate the dynamic and static 
performance of control systems, such as setting evaluations are fast response, regulat-
ing in short time, small overshoot and the steady-state small error and so on. 

The ITAE  is regarded as the objective function, and the optimization process is 
based on the principle of objective function value decreases gradually. After continuously 
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adjusting the value of the parameters and obtaining the optimized amendment factor, the 
ideal control rules should come into being. 

Because of the complex features for movement of UUV, the search of amendment 
factor is a typical nonlinear optimization process. With combining the motion control 
process simulation and particle swarm optimization algorithm, the amendment of 
fuzzy control rules is designed to carry out the adaptive optimization of fuzzy control-
ler. Therefore, the correction process of fuzzy rules based on particle swarm optimiza-
tion shown in Figure 1, the specific algorithm steps are as follows: 

 

 

Fig. 1. Flow of rule adjustment with fuzzy control based on PSO 

Because of the fuzzy control rules can be adaptively adjusted to optimize, so the 
autonomous suspending control new method for UUV based on the amendment of 
fuzzy control rules is put forward in the basis of the traditional fuzzy control algo-
rithm,which shown in Figure 2. 

 

⊗
e

e

u0H H

 

Fig. 2. Principle of adaptation control based on amendment of fuzzy control rules 
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4 Simulation Analysis 

Assumptions: for UUV quality 1520kg, length of 7m, diameter 0.6m, cylindrical 
shape for the rules, the pumping rate of the charge pump 10 Bull / sec, an initial speed 
of 13 m/ sec with underwater interference. The suspended motion in the depth of 
2300m and control process are simulated by using the designed fuzzy controller. The 
simulation results show in Figure 3 and Figure 4. In the fuzzy controller, the inertia 

weight PSO is set to 0.9, and 221 == cc . After several iterations, the optimized 

factor ε is 0.3872, and the control system integrator performance indicator 

( )J ITAE has reached the minimum at this time. 

 

 
Fig. 3. Control value of suspending movement for UUV based on the amendment of fuzzy 

control rules(when initial velocity is 13 sm/ ) 

 

Fig. 4. Depth and velocity value of suspending movement for UUV based on the amendment of 

fuzzy control rules(when initial velocity is 13 sm/ ) 
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By analyzing Figure 3 and Figure 4, it can be see that the autonomous suspending 
control processes time for UUV based on the amendment of fuzzy control rules is 
shorter, and the system control variable overshoot and steady-state error could well 
meet the design requirements. 

5 Conclusion 

Good autonomous suspension control for UUVs is essential to ensure the normal 
underwater operation. The amendment algorithm of fuzzy control rules based on 
modified particle swarm optimization is designed, and then the autonomous suspend-
ing control method for UUV based on the amendment of fuzzy control rules is pro-
posed in this paper.The performance of the controller has got a significant improve-
ment. A large number of simulation experiments show that this suspension control 
method for UUVs is simple, fast convergent, and has broad application prospects in 
the actual works. 
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Abstract. To acquire adaptive behaviors of multiple agents in the unknown  
environment, several neuro-fuzzy reinforcement learning systems (NFRLSs) 
have been proposed Kuremoto et al. Meanwhile, to manage the balance  
between exploration and exploitation in fuzzy reinforcement learning (FRL), an 
adaptive learning rate (ALR), which adjusting learning rate by considering 
“fuzzy visit value” of the current state, was proposed by Derhami et al. recently. 
In this paper, we intend to show how the ALR accelerates some NFRLSs which 
are reinforcement learning systems with a self-organizing fuzzy neural network 
(SOFNN) and different learning methods including actor-critic learning (ACL), 
and Sarsa learning (SL). Simulation results of goal-exploration problems 
showed the powerful effect of the ALR comparing with the conventional empir-
ical fixed learning rates.  

Keywords: Neuro-fuzzy system, swarm behavior, reinforcement learning (RL), 
multi-agent system (MAS), adaptive learning rate (ALR), goal-exploration problem. 

1 Introduction 

As an active unsupervised machine learning method, reinforcement learning (RL) has 
been developed and applied to many fields such as intelligent control and robotics 
since 1980s [1] – [3]. The learning process of RL is given by the trials of exploration 
and exploitation of a learner (agent) in unknown or non-deterministic environment. 
Valuable or adaptive actions which are optimized output of RL systems are obtained 
according to the modification of action selection policies using the rewards (or pu-
nishments) from the environment. Generally, there are four fundamental components 
in RL: state (observed information from the environment, input); policy (usually us-
ing probability selection to keep exploitation to an unknown environment); action (the 
output of the learner changing the current state) and reward (perceived/obtained by 
the learner during the transition of the state).  
                                                           
* A part of this work was supported by Grant-in-Aid for Scientific Research (JSPS No.   

 23500181, No. 25330287, No. 26330254). 
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In the history of RL research, there are some severe problems need to be solved 
theoretically: (1) The explosion of state-action space in high dimension problems (the 
curse of dimensionality); (2) The balance between exploration and exploitation; (3) 
Learning convergence in partially observable Markov decision process (POMDP). 

To tackle the first issue, linear approximation method [2], normalized Gaussian 
radial basis function classification method [3], fuzzy inference systems [4] – [8], etc. 
are proposed. Specially, neuro-fuzzy systems with a data-driven type self-organizing 
fuzzy neural network (SOFNN) proposed in our previous works showed their adap-
tive state identification ability for different RL algorithms such as actor-critic learning 
[5] [6], Q-learning, and Sarsa learning [7]. Meanwhile, Derhami et al. proposed to use 
adaptive learning rate (ALR) and adaptive parameter of state transition function to 
obtain a suitable balance of exploration and exploitation [8]. Effectiveness of the ALR 
has been confirmed by its application to a fuzzy controller with Q learning algorithm 
with simulation results of some benchmark problems such as boat problem and moun-
tain-car problem in [8]. Furthermore, the third problem of RL mentioned above is 
more serious to a multi-agent system (MAS). Even the exploration environment is 
stable, the existence of other agents nearby the learner agent is uncertain. In [4] – [8], 
Kuremoto et al. proposed to calculate the reward of suitable distance between agents 
to modify the action policy and showed its higher learning convergence comparing 
with RLs by individuals independently.  

In this paper, we adopt Derhami et al.’s ALR to Kuremoto et al.’s neuro-fuzzy rein-
forcement learning systems to improve the learning performance of agents in MASs. 
Goal-exploration problems were used in simulation experiments and the comparison 
between results with conventional empirical fixed learning rate and ALR is reported.  

2 Neuro-Fuzzy Reinforcement Learning Systems 

Markov decision process (MDP) is used in reinforcement learning (RL) algorithms. 
Let a state space n

n Rxxx ∈),...,,( 21X , an action space m
m Raaa ∈),...,,( 21A , a 
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To avoid a mass calculation to whole MDP state transition, and deal with unknown 
transition probabilities, there is an efficient RL algorithm named temporal difference 
learning (TD-learning) [2] to yield the maximum value functions. A TD error 1R∈ε  
is defined by Eq. (1), and it is used to update state value function in the learning 
process, for example, Eq. (2). 
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  )()( 11 ttt VVr xx ππγε −+≡ ++                       (1) 

αεππ +← )()( tt VV xx                           (2) 

where 10 ≤≤ γ  and 10 ≤≤ α are a damping rate and a learning rate, respectively. 

2.1 An Actor-Critic Type Neuro-Fuzzy Reinforcement Learning System 

To deal with continuous state space, an actor-critic type neuro-fuzzy reinforcement 
learning system is proposed by Kuremoto et al. [5] [6]. The system is able to be used 
as an internal model of an autonomous agent which output a series of adaptive actions 
in the exploration of the unknown environment. The information processing flow is as 
follows:  

Step 1 Agent observes states tx from the environment;  

Step 2 Agent classifies the inputs into k classes )( tk xφ by Fuzzy net; 

Step 3 Agent outputs an action according to the value function )( tm xA (i.e. Actor); 

Step 4 Agent receives rewards from the environment after the action is executed; 
  Step 5 TD-error, concerning with the state value function )( txV in Critic, is calculated; 

Step 6 Modify the action value function using TD-error (Eq. (1)). 
  Step 7 Return to Step 1if the state is not the terminal state, else end the current trail. 

For an n-dimension input state space ( ))(),...,(),( 21 txtxtx nx , a fuzzy inference net is 

designed with a hidden layer composed by units of fuzzy membership func-

tions ( ) ( )
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Let )(tK be the largest number of fuzzy rules, we have Eq. (3) : 
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where ))(x( tkφ means the fitness of the rule kR for an input set )(x t .   

To determine the number of membership functions and rules of fuzzy net, a self-
organized fuzzy neural network (SOFNN) which is constructed adaptive membership 
functions and rules driven by training data and thresholds automatically [5] [6].  

The weighted outputs of fuzzy net are used to calculate the value of states (Critic) 
and actions (Actor) according to Eq. (4) and Eq. (5), respectively.  
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Here
kjk wv , are the weighted connections between fuzzy net rules ))(( tk xφ and critic 

function 1))(( RtV ∈x , actor function m
j RtA ∈))((x . jA denotes the jth action selected by 

agent according to a stochastic policy Eq. (9), where j = 1, 2, …, m.  

( ) ( )( )
( )( )

==

m
m

j
jt TtA

TtA
taaP

/)(exp

/)(exp
(|

x

x
)x                      (6) 

Here 0>T  is a constant named temperature of Boltzmann distribution.  
TD learning rule given by Eqs. (1) and (2) becomes to Eq. (7) and Eq. (8), 

where
wv ββ , denote learning rates for connections of Critic and Actor. 
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When multiple agents explore an unknown environment at the same time, coopera-
tive exploration, i.e., swarm learning may provide more efficient performance com-
paring with individual learning. Then we give a positive reward swarmr to the agent 

when Eq. (9) and Eq. (10) is satisfied, or a negative reward swarmr in the opposite.  

 disttDdis qp max_))((min_ ≤≤ x),(x                      (9) 

swarmt rrr ±=+1t                             (10) 

Here disdis max_min_  , , denotes near limit distance, far limit distance between 

agents in the Euclidean space, respectively. 

2.2 Adoption of Adaptive Learning Rate 

Learning rates in Eq. (7) and Eq. (8) are decided empirically as fixed values conven-
tionally. However, they need to be reduced to improve the learning convergence dur-
ing the iterations of exploration process. It is indicated by Derhami et al. that the vi-
sited states should use smaller learning rates, meanwhile, less visited states with larg-
er learning rates to modify the exploration policy [8]. So they proposed an adoptive 
learning rate (ALR) to balance the exploitation/exploration as follows. 

Let k
tΦ be the accumulation firing strength of rule )(( )x tkφ , the visit value to the 

state
 

)x t( is normalized by Eq. (11). 
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The ALR then is given by Eq. (12). 
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where tK is the number of fuzzy rules, maxmin ,αα are the boundaries of ALR. 

2.3 A Sarsa Learning Type Neuro-Fuzzy Reinforcement Learning System 

When a RL agent is in a partially observable Markov decision Process (POMDP), 
there may be different adaptive actions need to be output though the observed states 
are the same. Actor-critic type neuro-fuzzy reinforcement learning system was hard to 
find the optimal solution in POMDP [7]. So a sarsa learning (SL) type neuro-fuzzy 
reinforcement learning system is proposed recently [7].  

The mathematical description of Fuzzy net is as same as which in actor-critic learn-
ing type system. Two steps states are observed in sarsa learning algorithm [2], and 
these state-action value functions are given by following: 
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where tKk ,...2,1= is the number of fuzzy rules, mj ,...2,1= is action number. 

The learning rule of QL becomes to: 
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where ALR
t

ALR
t 1, +αα are adaptive learning rates described by Eq. (12), TD error is given 

by Eq. (17). 
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3 Simulation Experiments 
To confirm how ARL can benefit the learning performance of neuro-fuzzy type rein-
forcement learning systems, a goal-exploration problem was used to in the simulation 
experiments (Fig. 1). The problem is assumed that agents explore a goal area in an 
unknown 2-D square surrounded by walls. All candidate actions may be chosen before 
the learning processes, and RL algorithms aforementioned find adaptive actions of 
agent to explore the goal or exploit its experience to move to the goal. Adaptive actions 
mean that agents choose to avoid obstacles, other agents and wall, and find the shortest 
path from their start positions to the goal area. 
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Agents observed the state of environment by the information of its position (x, y) in 
Simulation I, and their vicinities in 4 directions: up, down, left, right in Simulation II. 
In the last case, if the one step ahead is a path that an agent can arrive at it by one time 
motion, then the value of the direction is 0, oppositely, if there is a wall, or other agent 
(s), or an obstacle, then the input is 1. So the number of states in the environments of 
Simulation I is yx×  in a grid scale, and more in the continuous space. In the case of 

Simulation III, the number of states is 4 bits, 16 states (i.e., 0010, 0011, …). 

 

 

3.1 Simulation I: A Maze-like Environment  

An exploration environment is shown in Fig. 1 (a). There were walls on the four 
sides, obstacles in the exploration area, and a goal area was fixed. Two agents a1 and 
a2 start from (2.0, 1.0) and (1.5, 2.0) to find the goal area between (9.0, 9.0) to (10.0, 
10.0). Each agent observed its position and position of others in the square, and 
moved 1.0 length per step toward an arbitrary direction. The method to decide the 
direction of one time movement was given by [5]. Agents did not have any informa-
tion of the goal position before they arrived at it. When the distance rewards defined 
by Eqs. (9) & (10) were not considered, 2 agents learned to search the goal as fast as 
they can individually (individual learning); meanwhile, when agents used the swarm 
rewards in the same environment to modify their policies, the learning was called 
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swarm learning. Actor-critic type neuro-fuzzy reinforcement learning system de-
scribed in Section 2.1 was used as a conventional system [5] [6]. When adaptive 
learning rate (ALR) shown in Section 2.2 was adopted in, the change of the learning 
performance was investigated. The number of learning iterations (cycles) for one 
simulation was set to be 500. In one trial (cycle), i.e., an exploration from the start to 
the goal, the limitation steps of exploration was 5,000. Because the stochastic proper-
ty of RL, the simulation results were given by the averages of 5 simulations. 
 

 
 

 
 

 

When we confirmed the learning curves of these different learning methods, not 
only swarm learning with ALR but also individual learning with ALR showed their 
prior learning performance comparing with the conventional fixed learning rate. The 
average results are shown in Fig. 2. In detail, the average lengths of the path explored 
by agents were 1182.01 using fixed learning rate and individual learning, 41.62 using 
ALR and individual learning, 26.61 using fixed learning rate and swarm learning, 
22.64 using ALR and swarm learning calculated by the last 100 cycles data (from 
cycle 400 to cycle 500). 

3.2 Simulation II: A POMDP Environment 

An exploration environment with an obstacle as shown in Fig. 1 (b) was used in Simu-
lation II. The sarsa learning type neuro-fuzzy reinforcement learning system was 
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Fig. 4.  Learning curves of different learning methods by the sarsa learning system  
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adopted as the action learning method of autonomous agents. Two agents were input in 
4 dimensions, i.e., up, down, left, and right directions with values 0 and 1. The actions 
were also in 4 directions 1 grid/step ( 4,3,2,1, =ja j ). The optimal path of the agents 

should be a transition of a same state (0, 0, 0, 0) even from the start position (2, 2) and 
(3, 2) to the goal area from (30, 30) to (36, 36) avoiding to crash the 10x10 obstacle in 
the center of the exploration square. So it was an environment under partially observa-
ble Markov decision process (POMDP) and the optimal solution was difficult to be 
found, alternatively, quasi-optimal solution was available as shown in Fig. 1 (c).  

The dramatic improvement for the learning performance by ALR was confirmed 
with the learning curves of sarsa learning type neuro-fuzzy reinforcement learning 
system dealing with the POMDP problem as shown in Fig. 4. Swarm learning effects 
stand out clearly and ALR accelerated learning convergence efficiently. 

4 Conclusions 

Adaptive learning rate (ALR) was adopted into neuro-fuzzy reinforcement learning 
systems in this paper. The concept was founded on the balance management of explo-
ration and exploitation of reinforcement learning process. Higher learning rate serves 
larger modification of value functions dealing with unexplored states. Simulations of 
goal-navigated exploration problem showed the effectiveness of the proposed method. 
And adequate distance between agents also accelerated the exploration process. It is 
expected to apply these effective RL learning systems to autonomous agent in web 
intelligence or robots in real environment in the future.   
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Abstract. In this study, different methods entitled Centroidal Voronoi Tessella-
tions and Levenberg-Marquardt applied on SP-QPSO separately to enhance its 
performance and discovering the optimum point and maximum/ minimum value 
among the feasible space. Although the results of standard SP-QPSO shows its 
ability to achieve the best results in each tested problem in local search as well 
as global search, these two mentioned techniques are applied to compare the 
performance of managing initialization part  versus convergence of agents 
through the searching procedure respectively. Moreover, because SP-QPSO is 
tested on low dimensional problems in addition to high dimensional problems 
SP-QPSO combined with CVT as well as LM, separately, are also tested with 
the same problems. To confirm the performance of these three algorithms, 
twelve benchmark functions are engaged to carry out the experiments in 2, 10, 
50, 100 and 200 dimensions. Results are explained and compared to indicate the 
importance of our study. 

Keywords: Centroidal Voronoi Tessellations (CVT), Shuffled Complex Evolu-
tion with PCA (SP-UCI), Quantum Particle Optimization (QPSO), Levenberg-
Marquardt (LM), High Dimensional Benchmark Functions. 

1 Introduction 

Since many years ago, numerous evolutionary algorithms stimulated the nature and 
behavior of creatures are introduced by researches and scientists to address the prob-
lem of optimization in different areas. Some of the famous and most applicable evolu-
tionary algorithms are Genetic Algorithm (GA) [1], Particle swarm Optimization 
(PSO) [2], Ant Colony Optimization (ACO) [3] and Shuffled Complex Evolution 
(SCE) [4]. 

However, there is no special way to choose the best evolutionary algorithm suited 
to exploit for each different problem. Therefore, there is no guarantee to reach to the 
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optimum point using evolutionary algorithms and optimization as they all have their 
corresponding advantages and disadvantages. 

To tackle this problem, hybrid algorithms are proposed to assist and improve the 
performance of optimization process to discover the best point in the search space. 
These hybrid evolutionary algorithms take benefit from the advantages of original 
evolutionary algorithms and fill the gaps in the existing evolutionary algorithms. 

Moreover, the other elements which affect the performance of this type of algo-
rithm is the random initialization of points through the search space at the very first 
stage of process. Accordingly, the most important drawback of random distribution of 
points is leading to local minima in the beginning of search process. Thus one of the 
way to effect the result of optimization is to manage the initialization of points all 
over the search space.  

In addition, to ensure the process of optimization and accomplishing the task, con-
vergence of agents and looking for the best point through the search space considered 
as one of the vital parts in this procedure. To ensure the movement of agents in a right 
track, there is a need to monitor their position in every iteration and lead them to the 
optimum results. 

In this study, the new proposed hybrid algorithm titled SP-QPSO by the author [5] 
which shows the promising results to perform in both low dimensional problems as 
well as high dimensional problem is combined by two previously stated techniques 
separately. Centroidal Voronoi Tessellations and Levenberg-Marquardt techniques 
are performed in initialization part to confirm the distribution of points and ensuring 
the convergence of points in each iteration during optimization process, respectively. 
To examine the significance of our work, three stated techniques undertake the expe-
rience on twelve benchmark functions in 2, 10, 50, 100 and 200 dimensions. The 
achieved results are compared based on the best values (minimum values) found by 
the algorithms. 

This paper is formed as follow: In section two, a brief review of hybrid SP-QPSO, 
CVT and LM algorithms can be found. In section three, the proposed approaches have 
been discussed and the application of CVT and LM on new SP-QPSO algorithm ex-
plained in details. Experimental works and achieved results are presented, discussed 
and analyzed in section four. Lastly, in the final section, conclusion and future works 
are covered. 

2 Research Background 

In this section an overview of Hybrid SP-QPSO, Centroidal Voronoi Tessellations 
(CVT) and Levenberg-Marquardt (LM) algorithms are included and depicted. 

2.1 Hybrid SP-QPSO Algorithm 

Based on previous researches on proposing a new hybrid algorithm, hybridization can 
be proposed in variety of ways [6]. Therefore, using high level hybridization and 
taking the advantages of other algorithms, hybrid SP-QPSO algorithm is offered [5]. 
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Quantum Particle Swarm Optimization (QPSO) [7] and Complex Shuffled Evolution 
with PCA (SP-UCI) [8] are the two evolutionary algorithms which formed the SP-
QPSO. In these two algorithms, agents are called particles and points respectively. 
Furthermore, the local search is performed by QPSO and the global search is imple-
mented by SP-UCI strategy. According to previous researches [7], QPSO has the 
promising results in low dimensional problems and SP-UCI performed well in high 
dimensional problems and avoid population degeneration to accomplish the optimiza-
tion task. The SP-QPSO algorithm takes these privileges and performs better than 
QPSO and SP-UCI [5] in both low dimensional problems as well as high dimensional.          

In this algorithm, agents are known as point in the beginning. Points are distributed 
randomly through the search space and the first results are saved and sorted from the 
smallest value to the largest in an array . After sorting the 
values in array D, it is divided into number of complexes of A1, …, A p; in each sub-
division m points are placed and called simplex. In the next stage, the optimization 
procedure is applied on each simplex.  

 

 
 

 

Fig. 1. Dividing D array into sub-arrays 

After providing sub-arrays, QPSO strategy applies on each complex to look for the 
best result over the feasible search space. In QPSO algorithm, Wave function W(x,t) 
is employed to manage the movements of particles to find out the remaining optimum 
result. In this strategy, all the particles follow the best point (points) found so far in all 
the past iterations (pbest) individually and also the best point found by all the particles 
which is known as global best (gbest).  These movements are specified as follow:   

 
where, β: contraction-expansion coefficient and allocated a value in a range of [0-1], u 
and k: used in uniform probability distribution.  The Mbest which is known as mean 
best is defined as: 

 
where, g: index of best particle among all the particles in the population. 

One of the advantages in this algorithm is to check and monitor dimensionality of 
population in each iteration and avoid population degeneration which is accomplished 
by SP-UCI strategy. Correspondingly to ensure the performance of global search, 
QPSO is applied to find out the optimum result by employing each particle. 

(1) 

(2) 

(3) 
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2.2 Centroidal Voronoi Tessellations (CVT) 

As distribution of agents over the search space plays vital role and can affect the re-
sult of algorithm, variety of distribution techniques are proposed to initialize the 
agents and start the optimization task [9-10]. One of these strategies which can be 
applicable in many fields of science and engineering is Centroidal Voronoi Tessella-
tion (CVT).  CVT which is a type of Voronoi Tessellation known as one of the best 
techniques to partition the surface to the sub regions and scatter points to all the sub 
regions. However, the distribution of points is done in different manner such as: uni-
form density, non-uniform density, density with peak in middle, density with peak at 
a corner and etc. [11]. In this work, non- uniform density function is employed. 

 

 

Fig. 2. CVT with non-uniform density function 

The representation of non-uniform density is as follow: 

Assume:  i (order set of n sites in where Ω )       (4) 

 
 

where ||.|| symbolizes the Euclidean norm in  [12]. 
Nevertheless, poor distribution of points in the regions is considered as one of the 

drawbacks of this technique [13]. 

2.3 Levenberg-Marquardt (LM) 

Convergence rate assumed as one the important factors in optimization process to 
ensure finding of optimum values. Several algorithms are introduced, like gradient 
descent which has a difficulty to find the convergence in the search space. Levenberg-
Marquardt optimizer algorithm (LM) outperforms the other algorithms and shows 
encouraging performance. 

The LM optimizer is classified in the group of efficient local optimizer, expressly 
in a special condition such that the algorithm found the closest point to global opti-
mum of search space as the best result [14]. LM optimizer also performs similar to the 
other algorithms such as steepest decent method and Gauss-Newton method [15]. 
There are several forms of LM optimizer presented to apply on the different type of 
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problems, such as Function Vector, Vector + Jacobian and Funcion + Garadient + 
Hessian [16]. 

The basic formula of LM optimizer is defined as follow: 

 

Where, ƒ known as minimization/ maximization function, p is a parameter vector and 
p  as well as J is the Jacobian matrix . 

3 Methodology 

In this study, based on previous works by author [5], the initialization of points in SP-
QPSO algorithm modified individually by applying CVT technique.   

Description of our work is explained in detail and the steps required to accomplish 
the experiments is discussed. The standard SP-QPSO algorithm is as follow:  

1) Number of complexes and points in each complex, Number of population 
size are defined as p, m and s=pm. 

2) Populations are initialized through the search space. 
3) Calculating fitness value of each point in the search space  

4) Sort all the values in increasing order and store them in the array D = {Xi, i 
,i=1,…, s} 

5) Dividing the Array D into p complexes 
6) QPSO strategy undertake each complex to find the best solution   

a. Initialize QPSO parameters like population size and number of ite-
rations. 

b. Create a swarm consisting of x points from the Y1
k, …., Yq

k in Ak  
based on their function value and store in Ek = { Yi

k, vi
k, i = 1, …,q}. 

c. Find the optimum value in the search space according to pbest and 
gbest. 

d. Compute the Mbest for the particle’s movement and increase num-
ber of iterations in each round. 

e. This sub-routine stops when the required criteria are met. 
7) To assist searching process over the rough fitness space Multinormal resam-

pling is applied. 
8) Complexes are shuffled and replace the A1, …, Ap into D and sort it. 
9) This routine is repeated until the stopping criteria is met. 

 
Though applying CVT and LM are illustrated in flowcharts in fig.3 and fig.4 re-

spectively. 
Applying CVT on initialization stage helps the algorithm to visit all the regions in 

the search space and avoiding decoy in local minima at the very beginning of optimi-
zation process. Referring to this point, after assigning number of complexes, number 
of points and population size, the CVT is performed and divided the surface into sub 
regions.  

(5) 
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Besides, LM optimizer assist SP-QPSO algorithm to enhance the convergence rate 
and ensures all the particles move toward the best results and optimum points. As 
soon as the global best (gbest) is found by QPSO, LM start to do its function on the 
local search and improve the convergence of particles. 
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By applying CVT and LM optimizer separately on SP-QPSO, its performance is 
examine and compare with the standard SP-QPSO. 

4 Experimental Results and Discussion 

In this section, to assess the performance of SP-QPSO, SP-QPSO with CVT and SP-
QPSO with LM, twelve popular benchmark functions are engaged. Algorithms under-
took experiments in several dimensionality of 2, 10, 50, 100 and 200. The benchmark 
functions hired to examine this work are entitled as Ackley, Griewank, Quarticnoise, 
Rastrigin, Rosenbrock, Sphere, Step, Schwefel1_2, Schwefel2_21, Schwefel2_22, 
Penalized1, and Penalized2 [18]. 

The conditions in assessment and evaluation of this work is based on minimization 
and finding the lowest value for each function over the search space. Besides the 
assessment and evaluation conditions, parameters are also need to be assigned accord-
ing to the experiences and functions. Parameters of SP-QPSO such as population size, 
number of iterations, number of complexes and number of points in each complex are 
initialized as 20, 300, 2 and 20 respectively. The remaining of parameters are as-
signed by default. The obtained results by SP-QPSO, SP-QPSO with CVT and SP-
QPSO with LM are illustrated and compare in tables. The results are calculated aver-
age value of results and minimum value found over 20 times of runs. The minimum 
values of each function are bold in the table.1 and 2. Moreover SP-QPSO, SP-QPSO 
with CVT and SP-QPSO with LM are shown as Alg.1, Alg.2 and Alg.3 respectively. 

Table 1. Result of comparison on three algorithms 

  Ackley Griewank Quarticnoise Rastrigin Rosenbrock Sphere 

2 D
im

 
Alg.1 8.88E-16 0 0.0029 0 3.27E-10 3.05E-40 
Alg.2 8.88E-16 0 0.0165 0 1.99E-09 4.81E-33 

Alg.3 8.88E-16 0 0.0026261 0 4.96E-11 1.65E-41 

10 D
im

 

Alg.1 5.36E-10 0.0099 1.1304 0 1.33E-16 2.49E-76 
Alg.2 4.44E-15 0 1.2947 0 2.76 3.35E-79 
Alg.3 4.44E-15 0.0074 1.1285 0 9.9E-17 3.79E-78 

50 D
im

 

Alg.1 4.44E-15 0 14.7149 0 46.3956 7.47E-109 
Alg.2 4.44E-15 0 14.2332 0 46.9 7.03E-108 

Alg.3 4.44E-15 0 14.1926 0 46.0906 2.93E-111 

100 D
im

Alg.1 4.44E-15 0 34.035 0 96.5787 2.92E-121 
Alg.2 4.44E-15 0 34.3087 0 97 1.41E-121 

Alg.3 4.44E-15 0 33.9868 0 96.1076 9.32E-122 

200 D
im

Alg.1 4.44E-15 0 76.0902 0 196.6573 1.95E-93 
Alg.2 4.44E-15 0 76.7474 0 196.6221 6.33E-137 

Alg.3 4.44E-15 0 75.9438 0 184.3924 7.08E-143 
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Table 2. Result of comparison on three algorithms 

  Step Schwefel Schwefel1_2 Schwefel2_22 penalized1 penalized2 

2 D
im

 

Alg.1 0 2.23E-18 3.52E-23 1.37E-22 2.36E-31 2.36E-31 

Alg.2 0 5.35E-21 9.16E-19 1.11E-24 2.36E-31 1.35E-32 

Alg.3 0 2.41E-29 6.31E-27 1.24E-36 2.36E-31 1.35E-32 

10 D
im

 

Alg.1 0 1.52E-15 3.7E-19 1.38E-41 4.71E-32 1.35E-32 

Alg.2 0 1.03E-16 1.54E-18 4.15E-43 4.71E-32 1.35E-32 

Alg.3 0 3.17E-19 4.25E-26 1.98E-48 4.712E-32 1.35E-32 

50 D
im

 

Alg.1 344 7.75E-09 1.65E-06 3.78E-63 9.42E-33 1.35E-32 

Alg.2 348 0.0000158 9.36E-07 5E-64 9.42E-33 1.35E-32 

Alg.3 343.0013 4.55E-09 6.868E-22 9.99E-69 9.42E-33 1.35E-32 

100 D
im

 

Alg.1 1810 0.0041 1.57E-06 1.26E-78 4.71E-33 1.35E-32 

Alg.2 8367.7 0.0033 0.000478 3.29E-76 4.71E-33 1.35E-32 

Alg.3 1832.849 0.00312 9.3E-07 9.58E-80 4.71E-33 1.35E-32 

200 D
im

 

Alg.1 8367.7 0.042762 93.9405 1.357E-92 2.36E-33 19.4095 

Alg.2 8367.7 0.027402 4.5538 1.465E-92 2.356E-33 19.4604 

Alg.3 8367.7 0.022728 4.54 4.595E-97 2.356E-33 19.3976 

 
Form the overall point of view, all three algorithms performs closely and obtain the 

results near the optimum points in all functions with different dimensionalities. How-
ever, there are some differences between the achieved results which are discussed in 
this section. 

From the statistical point of view and analyze the results in detail, in 2 dimensional 
experiments on all the functions, all three algorithms perform equal in five functions 
and SP-QPSO with LM achieved the optimum value except penalized 2 function. In 
10 Dimensional experiments on the functions, the completion to find the best value is 
between SP-QPSO with CVT and SP-QPSO with LM. SP-QPSO with CVT performs 
better than the other two algorithms in Griewank and Sphere. SP-QPSO with LM 
performs better than the rest in more functions such as Quarticnoise, Rosenbrock, 
Schwefel, Schwefel1_21 and Schwefel2_22. In the case of experiments on 50 dimen-
sional functions, SP-QPSO with LM acts better than the other two algorithms and all 
the three algorithms performs equally on the remaining functions. Like the other cases 
in 100 dimensional functions, the SP-QPSO with LM reached to the optimum points 
in six function and all the three algorithms obtained the similar results except one. In 
200 dimensional experiments, the SP-QPSO performs well in seven functions and the 
rest of functions attained the similar value by three algorithms. 

According to the results shown in table.1 and table. 2, SP-QPSO with LM  
algorithm shows promising performance to obtain optimum point and minimum value 
in most of the cases and experiments. However, referring to the results these three 
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algorithms act close to each other and in some cases the outcomes are equal to each 
other and there is no differences in some cases. We have also illustrated the conver-
gence graphs to ensure the agents convergence which are not included in this paper.  

5 Conclusion 

As a conclusion, in this study a new hybrid algorithm entitled SP-QPSO which shows 
the promising results in both low dimensional problems as well as high dimensional 
problems is combined with CVT and LM separately to try and enhance its perfor-
mance. The main idea of this study is to choose the CVT to manage the initialization 
part or choosing LM to ensure the convergence of agents during the optimization 
process. In overall, we aim to show the importance of initialization and convergence 
rate of particles in SP-QPSO algorithm individually. To evaluate these algorithms and 
show the significance of using CVT in initialization or LM for convergence rate of 
particles the results are compared. All the algorithms are tested on benchmarks in 2, 
10, 50, 100 and 200 dimensions. Results illustrated that the initialization with CVT 
did not have so much effect on the obtaining the optimum results. Whereas the SP-
QPSO with LM shows its ability to find the best fitness value over the search space 
not only in low dimensions but also in high dimensional functions as well. 

6 Future Work 

Since this algorithm applied on the benchmark functions and shows its performance 
in both low dimensional and high dimensional problems, the next work is to apply it 
on the real world problems and evaluate its performance to ensure its efficiency.  
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Abstract. In this paper, we explore the potential of kernelized extreme learning 
machine (KELM) for efficient diagnosis of Parkinson’s disease (PD). In the 
proposed method, the key parameters in KELM are investigated in detail. With 
the obtained optimal parameters, KELM manages to train the optimal predictive 
models for PD diagnosis. In order to further improve the performance of KELM 
models, feature selection techniques are implemented prior to the construction 
of the classification models. The effectiveness of the proposed method has been 
rigorously evaluated against the PD data set in terms of classification accuracy, 
sensitivity, specificity and the area under the ROC (receiver operating characte-
ristic) curve (AUC). 

Keywords: Extreme learning machine, Feature Selection, Parkinson’s disease 
diagnosis. 

1 Introduction 

Parkinson's disease (PD) has become the second most common degenerative disorders 
of the central nervous system after Alzheimer's disease [1]. Till now, the cause of PD 
is still unknown, however, it is possible to alleviate symptoms significantly at the 
onset of the illness in the early stage [2]. Research has shown that approximately 90% 
of the patients with PD show vocal disorders [3]. The vocal impairment symptoms 
related with PD are known as dysphonia (inability to produce normal vocal sounds) 
and dysarthria (difficulty in pronouncing words) [4]. Therefore, it is clearly that the 
dysphonic indicators play an important role in early diagnosing PD.  

Motivated by the pioneer work done in [5], many researchers made use of ma-
chine learning techniques to handle the PD diagnosis problem. In [6], AStröm et al. 
proposed a parallel feed-forward neural network structure for diagnosis of PD, the 
highest classification accuracy of 91.20% was obtained. In [7], Ozcift et al. combined 
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the correlation based feature selection (CFS) algorithm with the RF ensemble classifi-
ers of 30 machine learning algorithms to identify PD, and the best classification accu-
racy of 87.13% was achieved by the proposed CFS-RF model. In [8], Chen et al. 
employed the FKNN classifier in combination with the principle component analysis 
(PCA-FKNN) to diagnose PD, and the best classification accuracy of 96.07% was 
obtained by the proposed diagnosis system. In this study, an attempt was made to 
explore the potential of KELM in constructing an automatic diagnostic system for 
diagnosis of PD. Previous study [5, 8] on PD diagnosis has proven that using dimen-
sion reduction before conducting the classification task can improve the diagnosis 
accuracy. Here, an attempt is made to diagnose PD by using the KELM classifiers in 
combination with the feature selection methods.  

The remainder of this paper is organized as follows. Section 2 offers brief back-
ground knowledge on KELM. In section 3 the detailed implementation of the  
proposed method is presented. Section 4 describes the experimental design. The 
experimental results and discussions of the proposed approach are presented in  
Section 5. Finally, Conclusions and recommendations for future work are summa-
rized in Section 6. 

2 KELM 

This section gives a brief description of extreme learning machine (ELM) and KELM. 
For more details, one can refer to [9]. The learning steps of the ELM algorithm can be 
summarized as the following three steps: 

Given a training set {( , ) | , , 1, 2, , }n m

i i i ix t x R t R i Nℵ = ∈ ∈ =  , an activation 

function ( )g x , and the number of hidden neurons N , 

(1) Randomly assign the input weights i
w  and bias i

b , 1,2, .,i N=    
(2) Calculate the hidden layer output matrix Η . 

(3) Calculate the output weight †
H Tβ = , 1 2[ , , , ] .T nt t t= Τ   

It should be noted that when the feature mapping is unknown to users [10, 11], a 
kernel matrix for the ELM can be adopted according to the following equation: 

,HH : ( ) ( ) ( , )T

ELM ELMi j i j i jh x h x K x xΩ = Ω = ⋅ =
. (1) 

where h(x) plays the role of mapping the data from the input space to the hidden-
layer feature space H. The orthogonal projection method is adopted to calculate  

the Moore-Penrose generalized inverse of matrix, namely, 1†
H H HH( )T T −= , and a 

positive constant C is added to the diagonal of HH
T . Now we can write the output 

function of ELM as 
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In this specific kernel implementation of ELM, namely KELM, we can specify the 

corresponding kernel for ELM model, the hidden layer feature mapping need not to 
be known to users. In this paper, the Gaussian radial basis function kernel is used, so 

2

exp(( ), )K u v u vγ= − − . The two main parameters presented in KELM with Gaus-

sian kernel are penalty parameter C and kernel parameter gamma. The parameter C 
determines the trade-off between the fitting error minimization and the norm of input 
weights minimization, while the parameter gamma defines the non-linear mapping 
from the input space to some high-dimensional feature space. Both of them play an 
important role in model construction. 

3 Proposed Hybrid Method for PD Diagnosis 

The main objective of the proposed hybrid method is to provide an efficient and accu-
rate diagnosis tool for PD diagnosis. The flowchart of the proposed KELM based 
diagnosis method is shown in Figure 1. In the proposed methods, feature selection is 
firstly applied to identify the informative features in PD dataset, after then several 
feature subsets with top ranked features are fed to KELM model for performance 
evaluation. In Figure 1, we can see that one main issues of the KELM based method 
is the choice of the parameter pair. The hybrid method is comprehensively evaluated 
on the PD dataset in terms AUC, ACC, sensitivity and specificity. The pseudo-code 
of the proposed method is given bellow. 

__________________________________________________________________ 
Pseudo-code for the proposed model 
/*Performance estimation by using k-fold CV where k = 10*/ 
Begin 
For j = 1:k 

Training set ← k-1 subsets; 
Validation set ← remaining subset; 
Rank features using mRMR, IG, Relief and t-test; 
Train KELM classifier on the reduced training data feature space using differ-

ent size of feature subset; 
Test the trained KELM models on the validation set; 

EndFor; 
Return the average classification accuracy rates of KELM over jth validation set; 

End. 
__________________________________________________________________ 
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Fig. 1. Overall procedure of the proposed KELM based diagnosis system 

4 Experiments Design 

The experiment was conducted on the PD data set taken from UCI machine learning 
repository. The purpose of this data set is to discriminate healthy people from those 
with PD, given the results of various medical tests carried out on a patient. The whole 
experiment is conducted in the MATLAB platform, which runs on Windows 7 operat-
ing system with AMD Athlon 64 X2 Dual Core Processor 5000+ (2.6 GHz) and 4GB 
of RAM. mRMR program can be obtained from http://penglab.janelia.org/proj/ 
mRMR/index.htm. The corresponding algorithms of IG and Relief from WEKA tool 
[12] are called by the main program which is implemented in MATLAB, and we 
implement the t-test from scratch. For ELM and KELM, the implementation by 
Huang available from http://www3.ntu.edu.sg/home/egbhuang is used.  
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Normalization is employed before classification, the data are scaled into the inter-
val of [0, 1]. In order to gain an unbiased estimate of the generalization accuracy, the 
10-fold CV was used to evaluate the classification accuracy. The 10-fold CV will be 
repeated and averaged over 10 runs for accurate evaluation. Classification accuracy 
(ACC), sensitivity, specificity and AUC are commonly used performance metrics for 
evaluation the performance of the binary classification task, especially for the task of 
disease diagnosis. 

5 Experimental Results and Discussions 

In this experiment, the performance of KELM for the PD diagnosis is examined. The 
performance of KELM is mainly influenced by the constant C and kernel parameter 
gamma in Gaussian kernel function. Therefore, the impact of these two parameters on 
KELM model for PD diagnosis is also examined in detail in this experiment. In order 
to investigate the impacts of these parameters, we have conducted the experiments 
using different values of C when the value of gamma is fixed to 1, 10, 100 and1000 
respectively, different values of gamma when the value of C is fixed to 1, 10, 100 and 
1000 respectively. The relationship between classification accuracy and parameter C 
with different values of gamma, and parameter gamma with different values of para-
meter C are shown in Figure 2 and Figure 3 respectively. From Figure 2 we can clear-
ly see that parameter gamma has a bigger impact to the performance of KELM clas-
sifier. Interestingly, the classification accuracy is getting higher when the value of 
gamma is set to be smaller. The best classification accuracy of 89.79%, 91.26%, 
93.87% and 94.89% was achieved with the parameter pair of (1, 1), (10, 1), (100, 2) 
and (1000, 2) as shown in Fig. 2(a), Fig. 2(b), Fig. 2(c) and Fig. 2(d) when C is equal 
to 1, 10,100 and 1000 respectively. Compared to the parameter gamma, the parameter 
C is not that sensitive to the performance of KELM. From Figure 3 we can see that 
the classification accuracy is fluctuating when changing the value of C. The best clas-
sification accuracy of 96.45%, 89.82%, 87.68% and 86.17% was achieved with the 
parameter pair of (62, 1), (84, 10), (94, 100) and (48, 1000) as shown in Fig. 3(a),  
Fig. 3(b), Fig. 3(c) and Fig. 3(d) when gamma is equal to 1, 10,100 and 1000 respec-
tively. Owing to the best classification accuracy is achieved when C and gamma is  
set to be 62 and 1 respectively, the optimal parameter pair of (62, 1) is adopted for 
subsequent analysis.  

In order to investigate whether feature selection can further improve the perfor-
mance of KELM for diagnosis of PD, we further conducted the experiments in the 
reduced feature space. mRMR, IG, Relief and t-test are implemented to rank the fea-
tures and the trends of classification accuracy of KELM model over the incremental 
feature subset. For comparison, the ELM model with the same four feature selection 
methods are also shown in Figure 4. According to the preliminary experimental re-
sults, the ELM model has achieved the best performance with Sine function when the 
number of the hidden neuron is 67. For convenience, the hidden neuron of 67 is taken 
for ELM model with Sine function, and the parameter pair of (1, 62) is adopted  
for KELM. From Figure 4 we can see that feature selection can further improve the  
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Fig. 2. The relationship between classification accuracy and parameter gamma with different 
values of parameter C  

 

Fig. 3. The relationship between classification accuracy and parameter C with different values 
of parameter gamma 

classification accuracy of the ELM and KELM, except the IG approach. Both ELM 
and KELM combined with IG achieve the best performance with the feature subset be 
full with the whole 22 features. It can be also found that the two models coupled with 
mRMR filter achieve the best classification accuracy with the smallest features among 
the four feature selectors. Therefore, mRMR has emerged as the promising technique  
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Fig. 4. Trends of classification accuracy of ELM and KELM for different feature subset ob-
tained by different feature selection methods: (a) ELM model (b) KELM model 

compared to other three feature selection methods for extracting most informative 
features. In addition, we can find that KELM still performs much better than ELM 
with the aid of feature selection.   

Since both ELM and KELM are sensitive to the variation of the parameter values 
on different feature subset, further detailed evaluation should be conducted. For sim-
plicity, here we performed the detailed evaluation for KELM model with the mRMR 
filter owing to its excellent discriminative ability. We first utilize mRMR to rank the 
features and then selected top 1, 5, 10, 15, and 20 features. Since KELM model is 
sensitive to the variation of the parameter C and gamma, we performed the experi-
ment to look for the best parameter pair in each feature subset. The experimental 
results show that the performance of KELM models built with feature subset size of 
15 and 20 is better than the one built with all features. The best performance of 
KELM is obtained on the feature subset with size of 20, with the average AUC of 
94.37%, ACC of 95.97%, sensitivity of 97.61% and specificity of 91.12%.  

From the above analysis, we can find that with the aid of feature selection using 
mRMR, KELM has improved its performance for PD diagnosis in terms of AUC, 
ACC, sensitivity and specificity. In addition, it is interesting to find that the standard 
deviation of KELM is becoming smaller than before in most cases, which indicates 
that KELM has become more robust and reliable through feature selection.  

6 Conclusions and Future Works 

In this work, we have developed an efficient hybrid method, mRMR-KELM, for ad-
dressing PD diagnosis problem. With the aid of the feature selection techniques, espe-
cially the mRMR filter, the performance of KELM classifier was improved with much 
smaller features. The promising performance obtained on the PD dataset has proven 
that the proposed hybrid method can distinguish well enough between patients with 
PD and healthy persons. The future investigation will pay much attention to evaluat-
ing the proposed method in other medical diagnosis problems.  
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Abstract. In this paper, an improved method for cancer classification based on 
particle swarm optimization (PSO) and prior information is proposed. Firstly, 
the proposed method uses PSO to implement gene selection. Then, the global 
search algorithm such as PSO is combined with the local search one such as 
backpropagation (BP) to model the classifier. Moreover, the prior information 
extracted from the data is encoded in PSO for better performance. The proposed 
approach is validated on two publicly available microarray data sets. The expe-
rimental results verify that the proposed method selects fewer discriminative 
genes with comparable performance to the traditional classification approaches. 

Keywords: Cancer classification, gene selection, prior information, particle 
swarm optimization, backpropagation. 

1 Introduction 

Various methods have been developed for cancer classification based on microarray 
data obtained by DNA microarray technology [1, 2]. However, the features of microar-
ray data (high-dimensional, small sample, and the existence of inherent noise) make can-
cer classification a complex issue. Gene selection is a critical step for cancer classification.  

ANN (artificial neural network) has been widely used as a classifier, since the 
neural network with a single nonlinear hidden layer is capable of forming an arbitrari-
ly close approximation of any continuous nonlinear mapping. Since BP (backpropaga-
tion) has good local search ability, it is mostly used to train ANN. However,  BP is 
easy to be trapped in some local minima. Some methods used PSO (particle swarm 
optimization) to train neural networks and these PSO-based ANN methods had nice 
training performance, fast convergence rate, as well as good predicting ability [3, 4]. 
Although PSO has good ability of global search, but it is not good at local search. 
Moreover, PSO suffers from the problem of premature convergence like most of the 
stochastic search techniques. 

In this paper, the proposed approach employs PSO to realize gene selection, and 
combines PSO and BP to obtain a powerful classifier. Moreover, to obtain better per-
formance, the prior information extracted from BSS/WSS ratio (Between-groups to 
within-groups sum of squares ratio) [5] of each genes is encoded in PSO. Finally, the 
proposed approach is validated on two real-world gene expression datasets including 
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leukemia and colon, and the effectiveness of the proposed approach is verified by the 
experimental results. 

2 Methods 

2.1 Particle Swarm Optimization Algorithm 

PSO was proposed in 1995 and the adaptive one is then proposed in 1998 [6, 7]. PSO 
can be stated as initializing a swarm of random particles and finding the optimal solu-
tions by iterations. Each particle will update itself by two optimal positions, pbest and 
gbest. This algorithm can be described as follows: 

 
( 1) * ( ) 1* 1*( ( ) ( )) 2* 2*( ( ) ( ))i i i i g iV t w V t c r P t X t c r P t X t+ = + − + −

 (1) 

 ( 1) ( ) ( 1)i i iX t X t V t+ = + +  (2) 

where Vi(t) is the velocity of the i-th particle in the t-th iteration; Xi(t) is the position 
of the i-th particle; Pi is the best position achieved by the particle so far; Pg is the best 
position among all particles in the population; r1 and r2 are two independently and 
uniformly distributed random variables with the range of [0,1]; c1 and c2 are positive 
constant parameters called accelerated coefficients. w is called the inertia weight that 
controls the impact of the previous velocity of the particle on its current. 

2.2 The PSO-Based Gene Selection and Classifier Optimization Algorithm 

Compared with BP, PSO has good ability of global searching. The employment of 
PSO performing search considering the entire search space, followed by BP perform-
ing the search in a small portion of the search space may produce solutions closer to 
the global minima than the use of each method individually. Many researchers have 
concentrated on hybrid algorithm basing on PSO and BP [4, 8]. However, prior in-
formation was not taken into consideration in these hybrid algorithms. In this study, 
the BSS/WSS ratio of each gene is considered in the proposed hybrid method. 

The detailed steps of the proposed approach are as follows: 
Step 1: Data preprocessing is performed with a group-based ensemble gene selec-

tion method [9]. As the result of data preprocessing, an informative candidate gene set 
is obtained. However, this method just focuses on single biomarker correlation degree 
but neglects the underlying abnormal biomarker association patterns that are respon-
sible for a cancer or cancer type. 

Step 2:  PSO encoding prior information is employed to select gene subset from 
the informative candidate gene set. Since the gene selection method in the paper is a 
wrapper one, each particle of the PSO consists of two parts: candidate gene sets and a 
set of weights of the ANN. During each iteration, each particle in the swarm is up-
dated according to the performance of the ANN classifier and thus the new gene sub-
set and weights are obtained. If the fitness value reaches the threshold value, or the 
maximal iterative generations are arrived, the particle with the best fitness value is 
output, containing the best gene subset and an optimized set of weights of ANN. 
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Step 3: After the gene subset is determined, BP is adopted to optimize the ANN 
further whose initial weights are obtained by the above PSO optimization till the 
training target is achieved. 

Step 4: The ultimate ANN trained with BP and the optimal gene subset is applied to 
the test samples to obtain prediction results. 

To reduce searching time of PSO and give the searching a good initial direction, the 
prior information is obtained from the training samples and encoded into the algo-
rithm [10]. In this paper, the prior information is obtained from BSS/WSS ratio [5] of 
each gene in the candidate gene subset. The ratio of each gene in the candidate subset 
is calculated and ranked in descending order, and then the first L genes are taken as 
most probable selected genes, in which L is the size of the gene subset. The BSS/WSS 
ratio of j-th gene in the gene subset is calculated as follows: 

 

2( )( )
.

( )
2( )( )

i c

i c

I y c x x
i cj j

S j
I y c x x

i ij cj

= −
=

= −

 

 
                          (3) 

I(.) is an indicator function returning one if the condition inside the parentheses is 
true, otherwise it returns zero. yi is the class label of the i-th sample. xij is the expres-
sion level of gene j in the i-th sample. . jx  and  cjx  denote the average expression 
level of gene j across all tumor samples and across samples belonging to class c only. 

Then the prior information is encoded into PSO as follows: First of all, initialize 
the positions and velocities of a group of particles randomly in the range of [-1, 1]. 
Every particle is constructed as[

1,..... .. NX X ,
1 , ......,N N MX X+ +

] where [
1, ......,N N MX X+ +

] 

represent the classifier’s weights, and [
1,..... .. NX X ] represent the candidate gene subset. 

If the value of any component in the first N components of a particle is within 
[ 0, +∞ ),the gene correlated to this component is selected, or else the gene will be cut 

off. Since the first L genes are selected as the most probable selected genes, each 
iX  

in [
1,....... LX X ] is initialized within the interval [ 0,+∞ ) and each one in [

1,.......L NX X+
] 

is initialized within the interval ( , 0−∞ ). 

In each iteration, each particle is valuated according to the fitness function, and the 
worst particle is replaced by the sorted best particle. The fitness function for i-th par-
ticle is given as follows: 

 100 * (1 (%)) ( )fitness accuracy E i= − +  (4) 

where the (%)accuracy  is the classification accuracy on the training samples basing on 

the gene subset and the set of classifier’s weights offered by the i-th particle which is 
optimized by PSO alone before using BP. ( )Ei  is the performance of the set of clas-

sifier’s weights offered by the i-th particle which is optimized by PSO alone before 
using BP. At the end of the PSO part, the set of classifier’s weights offered by the best 
particle will be taken as the initial weights of the BP network instead of a random set 
of weights. In details, ( )Ei  is training mean squared error (MSE) for the i-th particle. 

Obviously, the smaller the particle’s fitness value is，the better performance the se-
lected gene subset and the optimized classifier will obtain. 
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3 Results and Discussion 

Leukemia dataset contains the expression levels of 7,129 genes for 47 patients of 
acute lymphoblastic leukemia (ALL) and 25 patients of acute myeloid leukemia 
(AML) [11]. The source of the 7,129 gene expression measurements is publicly avail-
able at http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi/. 

Colon cancer dataset consists of expression levels of 62 samples of which 40 sam-
ples are colon cancer samples and the remaining are normal samples [11]. Although 
originally expression levels for 6,000 genes are measured, 4,000 genes out of all the 
6,000 genes were removed considering the reliability of measured values in the meas-
ured expression levels. The measured expression values of 2,000 genes are publicly 
available at http://microarray.princeton.edu/oncology/. 

In the following experiments, values of parameters in the proposed method are de-
termined by trial and error. The maximal generation of PSO is 20; the weight w is 0.9, 
the acceleration constants, both c1 and c2 are 2.0, r1 and r2 are two random numbers 
in the range of [0, 1], respectively. Let the maximum velocity be 1.0 and the mini-
mum velocity -1.0. The initial velocities of the initial particles are generated randomly 
in the range of [0, 1], and the population size is assumed as 50. As for the BP, the 
maximal generation is assumed as 1000 times. The number of hidden units is assumed 
to be 5 for the leukemia dataset, while the one is 7 for the colon dataset. 

Table 1 lists the LOOCV results of the proposed method and those of previous ap-
proaches including Nero-fuzzy ensemble machine (NFEM) [12], Bayesian variable 
selection (BVS) approach [13], SVM/REF [14], GA/SVM [15] and GA-based ap-
proach [14] on the leukemia dataset, and the LOOCV results of the proposed method 
and those of methods including MFMW [1], SFSW [1], SVM-REF [14] and GA-
based method [14] on the colon data. The results show that the proposed method ob-
tains comparatively high prediction performance with the fewer feature genes. 

Table 1. Comparison of the LOOCV results of the proposed algorithm with previously reported 
results on the two data 

Leukemia Colon 
Methods Accuracy (gene no.) Methods Accuracy (gene no.) 
NFEM 0.958(20) MFMW 0.952(6) 
BVS 0.972(5) SFSW 0.903(10) 
SVM/REF 0.972(8) SVM-REF 0.9677(8) 
GA/SVM 1(25) GA/SVM 0.9941(10) 
GA-based approach 0.972(12) GA-based 0.919(8) 
The proposed approach 0.972(5) The proposed approach 0.9677(3) 

 
The 5-fold cross-validation (CV) results on the two data are presented in Table 2. 

The reported results of PCA/PLS [1], PSO—NB [16], PSO—C4.5 [16], NLN classifi-
er [14] and GA/MRMR [17] on the leukemia data, and the results of QDA/t-
store/PLC [18], PSO-SVM [16], PSO—NB [16], PSO—C4.5 [16] and GA/MRMR 
[17] on the colon data, are listed in Table 2 for comparison. The conclusion as drawn 
from Table 1 is also suitable for the 5-fold CV case. 
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Table 2. Comparison of the 5-fold CV results of the proposed algorithm with previously 
reported results on the two data 

Leukemia Colon 
Methods Accuracy (gene no.) Methods Accuracy (gene no.) 
PCA/PLS 0.97(50) QDA/t-store/PLC 0.919(50) 
PSO—NB 0.972(27.8) PSO-SVM 0.936(25.7) 
PSO—C4.5 0.958(26.5) PSO—NB 0.887(29.4) 
NLN classifier 0.853(2) PSO—C4.5 0.871(28.9) 
GA/MRMR 0.945(23) GA/MRMR 0.867(7) 
The proposed approach 0.945(1) The proposed approach 0.887(3) 

 
To validate the effectiveness of the prior information from the samples encoding 

into PSO, two experiments are further conducted for comparison using LOOCV on 
the two datasets respectively. In one experiment, the prior information is encoded into 
the algorithm, while the other is not. Fig.1 depicts the effectiveness of encoding the 
prior information on the two datasets respectively. From Fig.1, it is found that the 
prediction accuracy of the algorithm with the prior information is much higher than 
the one without the prior information. 

 

1 2 3 4 5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

L

A
cc

ur
ac

y

prior information encoded

no prior information encoded

 
1 2 3 4 5

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

L

A
cc

ur
ac

y

prior information encoded

no prior information encoded

 
(a) (b)  

Fig. 1. Comparison of algorithms with the prior information and the one without the prior in-
formation (a) the prediction accuracy on the leukemia data (b) the prediction accuracy on the 
colon data 

4 Conclusions 

In this paper, an improved approach was proposed to perform gene selection and can-
cer classification. This method focused on three aspects: combining gene selection 
with classifier optimization, accompanying PSO with BP on optimization of the ANN 
classifier, and incorporating the prior information obtained from the sample data into 
PSO. The competitiveness and effectiveness of our approach were validated on two 
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real microarray data sets. Compared with other classical methods, it did not only offer 
a smaller size of gene subset, but also an effective classifier. However, less attention 
was paid to the physiological plausibility of the obtained results in this paper. Thus, 
our feature work will be dedicated to this problem. Besides, our approach will be 
further validated on more complex multiclass cancer classification problems. 
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Abstract. This paper presents an improved Grover searching algorithm [1] 
which can auto-control the iterative processing when the number of target states 
is unknown. The final amplitude of the target states will be decreased if this 
number is unknown. So the question is how to perform Grover searching algo-
rithm without the number of target states? As for this question, there are two 
conventional solutions. One solution tries to find the number of target states  
before performing the original algorithm. The other solution guesses a random 
k as the number of target states before performing the original algorithm. Both 

the two solutions need ( N)O  additional times Oracle calls than original  

algorithm and the answer of the first solution is non-deterministic while the 
second solution needs to check the correctness of the result. Assuming an  
operator which can judge the sign of the phases of superposition state, based on 
this technical, this paper shows a novel solution, which can perform Grover 
searching algorithm even if the number of target states is unknown. This  
solution only needs adding one gate, which can judge the sign of phase, and one 
more time Oracle call than the original algorithm. 

Keywords: Grover searching algorithm, sign of phase, adaptive control. 

1 Introduction 

Quantum computation was a novel technical in computer science in recent years. 
Quantum computation is an interdisciplinary sciences, which can process the eigen-
states of a superposition state in parallel. So quantum algorithm becomes quadratic 
even exponentially better than classical algorithm [2]. In 1996, a quantum searching 
algorithm for unstructured database was presented by Grover, and the Grover search-
ing algorithm can be quadratic better than any possible classical algorithm. Many 
results on Grover searching algorithm have been gained so far [3-10]. 

When we need to do multi-objective searching, we must get the number of the 
target states [8]. We can explain this as follows. First of all, Grover searching algo-
rithm consists of repeated application of a U operator, which is formed by an Oracle 
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operator and a Grover operator. As a result, the target states can be measured with 
high probability. Secondly, the times of iteration must be a suitable number, neither 
less nor more; otherwise the amplitude of the target states could be decreased. At last, 
the right number is in connection with the quantity of the target states. So a problem 
should be solved is how to perform Grover searching algorithm when the quantity is 
unknown. By the classical way, the time complexity to confirm the number of target 
states in N elements problem is (N)O . By the quantum way, there are two solutions 

[8-10], but both of them require additional ( N)O  Oracle calls. 

This paper shows a high-performance solution which can operate Grover search-
ing algorithm without the number of target states by judging the sign of phase in X 

basis ( )1
| 0 1

2

 ± ± = ± 
 

. This solution can maximize the probability of tar-

get states while it costs only one more Oracle call than the original Grover searching 
algorithm.  

The following text is organized as: a brief introduction of Grover searching algo-
rithm will be showed in the second section. In the third section, an automatically 
control circuit will be constructed by embedding a phase detecting gate to the Grover 
searching algorithm circuit. When the new algorithm stops, the probability to get one 
of the target states will be the same as the original version. The result will be proved 
by three theorems. 

2 Preliminary 

Let's introduce the Grover searching algorithm at first. The algorithm is formed by 
repeated application of a U operator (see Fig. 1).  

nH ⊗

0



4

N

M

π 
 
 

 

Fig. 1. Grover searching algorithm circuit 

It begins with the initial state 0
n⊗

, which is transformed to equal superposition 

state by performing nH ⊗ . More details shows as the following formula (let 2nN = , 

and the target is t  ): 
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We will use 
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=
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−

=
  to stand for equal superposition in the following. 

The U operator in Fig. 1 is formed by an Oracle operator which marks the target 
states, and a Grover operator that increases the amplitude of the target states.  

nH ⊗ nH ⊗

( ) ( )1
f x

x x→ −

0 0

0

x x

for x

→

→ −
>

 

Fig. 2. U operator circuit 

The Oracle operator can be expressed by 2Oracle I t t= − , which makes the 

phase of the target inverted. We have a simple form of Grover operator as follow:  

( )
( )

2 0 0

2 2 0 0

2 .

nn n

nn n n n n

Grover H I H

H H H I H

s s I

⊗⊗ ⊗

⊗⊗ ⊗ ⊗ ⊗ ⊗

= −

= −

= −

            (2) 

Let the number of target states is M. By calculation, we know that the times of ite-

rations of U operator is 
4

N
T

M

π 
=  
  

. After T times of iterations, the probability of 

outputting target states is more than 1/ 2 . Note that the probability could decrease 
when the times of iterations is either more or less than T. Therefore the amplitude of 
target states will be sharply decreased if M is unknown. 

Quantum counting was used to get the M in Reference [9]. Based on phase estima-

tion, quantum counting can estimate M within accuracy c M  for some constant c. 

This solution requires additional ( )O N  oracle calls. References [8] and [10] pre-

sented another solution which can be called testing algorithm. This solution takes a 
big enough number k as the number of target states and then performs the Grover 
searching algorithm. If it is fail to measure the target state, then k decreases. This 
process will be always repeated until one of the target states is got. There is no doubt 
that this solution must run several times of Grover searching algorithm. So the solu-

tion needs more ( )O N  Oracle calls. Is there a more efficiency solution to operate 

Grover searching algorithm when M is unknown? 
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3 Adaptive Iteration Control of Grover Searching Algorithm 

Theorem 1: The upper bound of the times of iterations for Grover searching algo-
rithm makes the amplitude of target states maximized for the first time. 
Proof: Assume the number of target states is M, in an N items search problem. Let 

xΣ  indicates a sum over all x which are target states, as well as the 'xΣ  indicates a 

sum over all x which are not target states. Define normalized states as follows: 

'1
,x x

N M
α ≡ Σ

−
                             (3) 

1
.x x

M
β ≡ Σ                               (4) 

The initial state ψ  can be re-expressed as 
N M M

N N
ψ α β−= + . The ac-

tion of U operator iteration is letting the state vector rotated towards the superposition 
state β  of target states. According to the analysis of Grover searching algorithm, 

let the initial angle be / 2θ  , then It means ( )sin / 2 /M Nθ =  and 

( ) ( )cos / 2 sin / 2ψ θ α θ β= + , and the state vector will be rotated by θ  at 

every turn. This fact can be explained by as follows. 

Let α  be horizontal ordinate and β  be the orthogonal one to α . The 

Oracle operator reflects the state about α , which means rotating θ  towards α . 

The Grover operator reflects the state about ψ , which means rotating 2θ  towards 

β . So the angle of state vector will be ( )/ 2 2 3 / 2θ θ θ θ− + =  at last, which 

means the state vector is rotated by θ  towards β [7]. 

After k times of iterations, the state is 

 ( ) ( )cos / 2 sin / 2 .kG k kψ θ θ α θ θ β= + + +               (5) 

Notice that the amplitude of target states is ( )sin / 2kθ θ+ . Obviously the am-

plitude of target states will not be maximum until / 2 / 2kθ θ π+ ≈ . Assume M<<N, 

so / 2θ  can be considered as small enough. As a result, when 
2

k
π
θ

 ≈   
, the ampli-

tude of target states maximizes for the first time. We have 

( )/ 2 sin / 2 /M Nθ θ≈ =  by assuming M<<N, so 
4 2

N

M

π π
θ

   ≈     
. Therefore 

4

N

M

π 
 
 

 times of iterations for Grover searching algorithm adequately maximized 

the amplitude of target states for the first time. 
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Theorem 2: After performing Oracle operator, when the sum of the phase of all the 
states turn to negative for the first time, the amplitude of the target states will become 
maximized for the first time. 
Proof: A general superposition state is defined by i i iϕ α≡ Σ , where ϕ  are 

normalized. After applying the Oracle operator to ϕ , ϕ  is transformed to a new 

superposition state ( ) ( )' 1
f i

i i iϕ α≡ Σ − , where ( ) 1f i =  for i  being the target 

state and ( ) 0f i =  for other conditions. Therefore target states can be expressed as 

' ' 'i i iαΣ − , and non-target states can be expressed as '' '' ''i i iαΣ . Applying the 

Grover operator to the new superposition state, it will become: 

( ) ( ) ( ) ( ) ( )

( )'' '' ' '

2 1
2 1 '' ' .

f i
f i i i

i i i i i i i

i i
s s I i i i i

N

α
α α α

Σ −
− Σ − = Σ − Σ − Σ    (6) 

Notice that 
( ) ( )1

f i

i i i i

N

αΣ −
 is the mean of the phase of all the states. Let it be 

called α  for brief. So Formula (6) can be transformed to the following 

( )
( ) ( )

'' '' ' '

' ' '' ''

2 '' '

2 ' 2 '' .

i i i i i

i i i i

i i i

i i

α α α

α α α α

Σ − Σ − Σ

= Σ + + Σ −
                   (7) 

The phase of target states is changed to '2 iα α+  as formula (4) shows[7][8]. 

When the initial superposition state is equal superposition state and the number of 
target states / 2M N≤  (notice that Grover searching algorithm has the same restric-

tion), α  is positive obviously. And 'iα  will become maximum when α  

changes to negative for the first time, and then the algorithm stops. According to 

( ) ( )1
f i

i i i i

N

α
α

Σ −
= , the sign of α  is determined by ( ) ( )1

f i

i iαΣ − . Therefore 

after performing Oracle operator, the amplitude of the target states will become max-
imized for the first time when the sum of the phase of all the states turn to negative 
for the first time. 

According to Theorem 1 and Theorem 2, the times of calling Oracle are 

1
4

N

M

π 
+ 

 
, when the sum of the phase of all the states turn to negative for the first 

time. 

Theorem 3: The sign of sum of the phase of all the states in Z basis { }0 , 1  is 

determined by the sign of phase of + + +  in X basis. 
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Proof: This conclusion can be easily got by changing the Z basis to X basis. Grover 
searching algorithm uses Z basis as the basis, so a product state of n quantum bits can 
be expressed as: 

( )( ) ( ) ( )( )00 01 10 11 1 0 1 10 1 0 1 0 1 .n nα α α α α α− −+ + +   (8) 

The sum of the phase of all the states above can be calculated by 1 1
0 0

n
i j ijα−
= =Π Σ . 

The i-th quantum bit can be changed as follow: 

( ) ( )( )0 1 0 1 0 1

1
0 1

2
i i i i i iα α α α α α+ = + + + − − .   (9) 

Notice that the phase of +  is 1
0

1

2
j ijα=Σ , then the phase of + + +  is 

1 1
0 0

1

2

n

n
i j ijα−
= =

  Π Σ 
 

. Obviously  
1

2

n
 
 
 

 do not influence the sign of phase; hence 

the sign of phase of + + +  determines the sign of the sum of phase of all states 

in Z basis. 
Assuming that we can construct a phase detecting gate, which has two inputs 

ψ β⊗ . ψ  is a superposition state, and the other one β  is a constant quan-

tum bit. After applying phase detecting gate, ψ  always does not change. β  will 

not change until 0φ ++ + ≤ , which is the phase of + + + . Obviously this gate is 

reversible gate. And this gate can be expressed as the following figure. 

i
i

iψ α=

β

ψ

0

1 0

if

if

β φ

β φ
++ +

++ +

 >
 ⊕ ≤





 

Fig. 3. Phase detecting gate circuit 

Insert phase detecting gate to U operator. Let ψ  be the superposition state after 

performing Oracle operator and 0β = , then the U operator is changed to the 

following form. 
As Fig. 4 shows, in every iteration of the U operator, the constant bit will be 

measured after performing phase detecting gate. If the measuring result is 0 , then 

the algorithm continues. If the measuring result is 1 , the algorithm stops. 

Analysis of algorithm: when the measuring result is 1 , 0φ ++ + ≤ . According 

to Theorem 3, when 0φ ++ + ≤ , the sum of phase 0i iαΣ ≤ . And according to Theo-

rem 2, when the sign of the sum of phase of all states changes for the first time,  
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Fig. 4. New U operator circuit of Grover searching auto-control algorithm 

the amplitude of target states becomes maximum. There is one more Oracle call, but it 
does not influence the amplitude because the Oracle operator only changes the sign of 
phase of the target states. So we can take the conclusion that when the measuring 
result is 1 , the amplitude of target states becomes maximum. Compared with the 

original Grover searching algorithm, the quantum circuit of the new algorithm only 
adds one more reversible gate, and the new algorithm only needs one more Oracle 
call, which means the complexity does not increase. And this new algorithm can op-
erate without knowing the number of target states. 

4 Summary 

Grover searching algorithm is a quantum searching algorithm for unstructured database 
with high performance as well as quadratic better than any classical algorithm. Grover 
searching algorithm is formed by several repeated application of U operator, and the 
number of iteration during the whole process directly influences the probability of out-
putting the target states. Whatever the times of iteration is more or less than the optimal 
number, the probability will decrease. Moreover, the calculation of the optimal number 
relies on the number of target states M. It cannot output one of the target states with 
high probability when the number is unknown. In the previous research, the quantum 
counting and testing algorithm was used to solve this problem. But these solutions need 

( )O N  more Oracle calls and cannot get the accurate M as well. 

This paper presents a solution that operates Grover searching algorithm without M. 
The solution can auto-control the iteration by judging the sign of phase of + + + . 

This solution can stop the algorithm just when the probability of the target states be-
comes maximum. Compared with the circuit of the original algorithm, there is only 
one more reversible gate used to judge phase. And it needs one more Oracle call than 
the original algorithm. 
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Abstract. In recent years, multi-objective optimization problems (MOPs) have
attracted more and more attention, and various approaches have been developed
to solve them. This paper proposes a new multi-objective evolutionary algorithm
(MOEA), namely Pareto partial dominance on two selected objectives MOEA
(PPDSO-MOEA), which calculates dominance between solutions using only two
selected objectives when choosing parent population. In the proposed algorithm,
two objectives are mainly selected with the first and the second largest distances
to the corresponding dimension of the best point. PPDSO-MOEA switches the
two-objective combination in every Ig generation to optimize all of the objec-
tive functions. The search performance of the proposed method is verified on
many-objective 0/1 knapsack problems. State-of-the-art algorithms including
PPD-MOEA, MOEA/D, UMOEA/D, and an algorithm selecting objectives with
random method (RSO) are considered as rival algorithms. The experimental results
show that PPDSO-MOEA outperforms all the four algorithms on most scenarios.

Keywords: Evolutionary Multi-objective Optimization (EMO), Many-objective
Optimization, Pareto Partial Dominance.

1 Introduction

Multi-objective optimization problems refer to those problems having more than one
objective. The real-world optimization problems that we often face with refer to many
objectives, and some objectives conflict with each other. Multi-objective optimization
aims at finding a set of well-distributed compromising solutions representing the differ-
ent trade-offs with respect to the given objective functions. The usefulness of evolution-
ary algorithms to solve a large number of MOPs has been verified [1,2]. Without loss
of generality, a multi-objective optimization problem can be defined as follows [3]:

MaximizeF(X) = (f1(X), f2(X), . . . , fm(X))T subject toX ∈ Ω (1)

where X = (x1, x2, . . . , xn)
T is a solution vector and Ω is the decision space. Further-

more, fi(X) (1 ≤ i ≤ m) are the m objective functions involved in the problem. Here,
F : Ω → Rm denotes the objective function vectors and Rm is the objective space. One
should notice that multi-objective optimization problems with four or more objectives
are often referred to as many-objective optimization problems (ManyOPs) [4].

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 365–373, 2014.
c© Springer International Publishing Switzerland 2014



366 J. Li and M. Yan

Multi-objective evolutionary algorithms proposed in the past few decades show
promising performance when tackling bi-objective or three-objective problems [5], but
encounter new difficulties when dealing with ManyOPs. The existing state-of-the-art
EMO algorithms scale poorly with the number of objectives. As a result, various ap-
proaches for handling ManyOPs by EMO algorithms are proposed.

The indicator-based approaches incorporate the quality indicators in the fitness as-
signment mechanism to deal with ManyOPs [6]. The aggregation-based approaches
optimize the ManyOPs by optimizing a series of scalar functions which aggregate the
objective values of original problem [7,8,9]. The reference set based approaches mea-
sure the quality of the solutions with the help of a set of reference points [10]. The
Pareto-based approaches concentrate on enhancing the convergence and maintaining
the diversity of the population at the same time [5], [11]. The objective space reduc-
tion approaches are proposed to eliminate the redundant objectives and identify the
important objectives by using feature selection techniques or analyzing the relation-
ship among the objectives [12]. Then the search process is employed on the reduced
objective set.

Also, [13] presented an algorithm partitioning the objective space based on an anal-
ysis of the conflict information obtained from the current Pareto front approximation. It
aimed to separate the MOPs into several subproblems in such a way that each of them
contains the information to preserve as much as possible the structure of the original
problem.

This paper proposes a new method, namely Pareto partial dominance on two selected
objectives MOEA (PPDSO-MOEA), to improve the performance of MOEA especially
for ManyOPs. We calculate dominance between solutions using only two objective func-
tions selected fromm objectives when choosing parent population. Also, we temporally
switch the two-objective combination in every Ig generations to optimize all objective
functions throughout the entire evolution process. The main process of selecting two
objectives can be concluded as the following two steps: Firstly, for every objective, the
average distance to the corresponding dimension of the best point is calculated. Sec-
ondly, two objective functions with the first and the second largest average distances
are chosen. Also, when the above strategy improves less convergence, two objectives
are selected with random method. The strategy for choosing objectives here makes the
population push on towards the goal of getting better convergence.

The remainder of this paper is organized as follows. Section 2 is devoted to the
description of the proposed algorithm. Section 3 presents the test problems, algorithm
settings and performance metrics used for performance comparison. The experimental
results and discussion are also given in Section 3. Finally, In Section 4, conclusions
about the proposed algorithm are drawn, as well as some possible future work.

2 Working of the Proposed Algorithm

We proposes a new method namely Pareto partial dominance on two selected objectives
MOEA (PPDSO-MOEA) in this section. Section 2.1 outlines our algorithm, and we
detail the sub-algorithms in other sections.



Pareto Partial Dominance on Two Selected Objectives MOEA 367

Algorithm 1. PPDSO-MOEA: Main Loop

1 begin
2 U0 ←− Initialize() /*create an initial union population U0 of size N*/
3 Evaluate(U0) /* evaluate U0 */
4 generate the best point Rpoint

5 Aset ←− U0 /*update Aset */
6 ChooseObj(fc1, fc2, Aset, Rpoint) /*choose two objectives with the first and the

second largest average distances to the best point Rpoint*/
7 while t ≤ G do
8 fast− non− dominated− sort(Ut, {fc1, fc2}) /*perform non-dominated

sorting on objective set {fc1, fc2}*/
9 Crowdingdistance(Ut) /*calculate crowding distance/

10 Pt+1 ←− truncation(Ut) /* choose N/2 individuals as parent population */
11 Qt+1 ←− CreateOffspring(Pt+1) /*create offspring population*/
12 Evaluate(Qt+1) /*evaluate offspring population*/
13 UpdateBestPoint(Rpoint, Qt+1) /*update the best point with the help of

Qt+1*/
14 Ut+1 ←− Pt+1 ∪Qt+1 /*get the union population*/
15 if t mod Ig = 0 or t = G then
16 fast− non− dominated− sort(Aset ∪ Ut+1, F ) /*perform

non-dominated sorting on objective set F */
17 Crowdingdistance(Aset ∪ Ut+1) /*calculate crowding distance/
18 Ut+1 ←− truncation(Aset ∪ Ut+1) /* choose N individuals from

Aset ∪ Ut+1 */
19 Aset ←− Ut+1 /*copy Ut+1 to Aset*/
20 UpdateParameter(curnorm, lastnorm, Aset, duration)
21 if duration > 5 then
22 choose objectives with random method
23 else
24 Choose Obj(fc1, fc2, Aset, Rpoint) /*choose two objectives with the

first and the second largest average distances to the best point Rpoint */
25 duration←− 0

26 t←− t+ 1

2.1 Framework of PPDSO-MOEA

As we all know, if the solutions in the population have better values on all objectives,
the performance of the population will be better. However, if worse values on some
objectives are obtained, worse performance is gained too. So, designing a method im-
proving all objective values is desired. There are many methods measuring the value
of a objective, one of which is calculating the average distance to the corresponding
dimension of the best point ( the best point Rpoint is an array with size m and Rpoint[i]
stores the best objective value of the i−th objective found so far), which is detailed
in Section 2.2. Placing emphasis on improving the values of the objectives who have
worse values is needed.

In our proposed method, the main strategy of choosing objectives is choosing two
objectives with the first and the second largest average distances to the corresponding
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Table 1. The meanings of some notations used in algorithms

name meaning name meaning

N population size fc1 the selected objective
G max generation number fc2 the selected objective
F the set of all objectives Ig interval generation
m the number of objectives

dimension of the best point (we use random method for one time to choose two objec-
tives when the change of metric for convergence is smaller than 10 for five times), and
then perform non-dominated sorting by using only those two objectives while choosing
parent population, instead of using objective combination in Otable which is used in
PPD-MOEA [11]. We evolve Ig generations to make those two objectives obtain better
values. We temporally switch combination in every Ig generation with the help of the
archive set to optimize all objective functions throughout the entire evolution process.
Because we make efforts to improve the values of two selected objectives every time,
the total convergence of the population will be improved.

An initial union population U0 of size N (N is the population size) is created and
evaluated. Then a best point is generated with the help of U0. Two objectives: fc1 and
fc2 are chosen with the help of the best point. Line 1 to line 6 of algorithm 1 describe
the initial work. The rest of algorithm 1 is described as follows:

1. line 8 ∼ 10 implement the following works: N/2 non-dominance solutions are
selected from Ut as new parent population on the sub-objective set {fc1, fc2}.

2. line 11 ∼ 14 implement the following works: offspring population is generated and
evaluated, and the best point is also updated. Ut+1 is updated as Ut+1 = Pt+1 ∪
Qt+1.

3. line 15 ∼ 27 implement the following works: if t mod Ig = 0 or t = G is
met, the archive set Aset is updated and the two-objective combination is also up-
dated. The function UpdateParameter(curnorm, lastnorm, Aset, duration) im-
plements the following works: firstly, curnorm is set to the norm value of Aset.
Secondly, if curnorm − lastnorm < 10 is met,then duration is increased by 1,
else it is set to 0. Lastly, lastnorm is updated as curnorm.

4. if t > G is satisfied, the algorithm is terminated, or it will go to 1 and continue.

Pt is the parent population of tth generation, Qt is the offspring population of tth
generation, and Ut is the union of parent and offspring population of tth generation. Set
Aset is the archive population which is used to maintain Pareto optimal solutions (POS)
when the two-objective combination is changed. When new individuals are generated,
the best point will be updated. duration is the current times that the norm value keeps
a small change. lastnorm and curnorm are the norm values of the last archive and the
current archive. More notations are listed in Table 1.
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2.2 The Choosing of Two Objectives

To accelerate the convergence speed, we choose two objectives with the first and the
second largest average distances to the corresponding dimension of current best point
Rpoint. The work is described in algorithm 2.

The objective function values of each individual are translated using the following
function:

f
′
i (x) = Rpoint[i]− fi(x) . (2)

Then the average objective distance of every objective of population Aset is calculated
as follows:

f̄
′
i =

∑|Aset|
j=1 f

′
i (Xj)

|Aset| . (3)

Note that smaller f̄
′
i means that the population set has better convergence perfor-

mance at the i-th objective. Obviously, We aim to choose two objectives with the first
and the second largest f̄

′
to make those two objectives become better.

Algorithm 2. Choose two objective
Input: A population set, the best points
Output: Two objectives: fc1,fc2

1 ChooseObj(fc1,fc2,Aset,Rpoint)
2 begin
3 for i← 1 to m do
4 f̄

′
i ←− 0

5 for j ← 1 to |Aset| do
6 f̄

′
i ←− f̄

′
i + (Rpoint[i]− fi(Asetj )

7 f̄
′
i ←− f̄

′
i /|Aset| /*the average distance value of every objective is

calculated*/

8 fc1 ←− {fi|f̄ ′
i = maxj=1...,m{f̄ ′

j}}
9 fc2 ←− {fj |f̄ ′

j = maxk=1...m,k �=i{f̄ ′
k}}

3 Experimental Study

3.1 Test Problems and Parameter Settings

State-of-the-art algorithms including PPD-MOEA [11], MOEA/D [7], UMOEA/D [8],
and an algorithm selecting objectives with random method (RSO) are considered as
rival algorithms.

The search performance of the proposed algorithm is verified on many-objective
0/1 knapsack problems[11] with m = {4, 6, 8, 10, 12} and n = 100 items, and the
feasibility ratio φ is set to 0.5. More settings are described as follows:
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1. In PPDSO-MOEA, UMOEA/D, PPD-MOEA and RSO, the population size N is
set to 200 (|Pt| = |Qt| = 100). The size of the archive population is set to 200.
The population size of MOEA/D is the same as the number of weight vectors
and cannot be arbitrarily specified. It is controlled by an integer H . More pre-
cisely, λ1, λ2, . . . , λN are all the weight vectors in which each individual weight
takes a value from {0,1/H,2/H,. . . ,1}. Then, the population size of MOEA/D N
is Cm−1

H+m−1. We use the closest integer to 200 among the possible values as the
population size (i.e., 220, 252, 120, 220 and 364 for 4-, 6-, 8-, 10-, 12-objective
problems, respectively). Weighted sum approach is used in MOEA/D.

2. In PPDSO-MOEA, MOEA/D and RSO, we adopt uniform crossover with a crossover
rate Pc = 1.0, and apply bit-flipping mutation with a mutation rate Pm = 1/n
(n is the number of items). In PPD-MOEA, two-point crossover with a crossover
rate Pc = 1.0 and bit-flipping mutation with a mutation rate Pm = 1/n are taken.
Moreover, in UMOEA/D, single-point crossover with a crossover ratePc = 1.0 and
bitwise mutation with a mutation rate Pm = 1/n are adopted.

3. In our algorithm, Ig varies for different test instance and Ig = {30, 10, 5, 10, 5} for
m = {4, 6, 8, 10, 12}, respectively. In PPD-MOEA, r = 2 , Si = 0.35 and Ig =
{65, 20, 20, 15, 20} form = {4, 6, 8, 10, 12}.And in RSO, Ig={45, 20, 15, 15, 20}
for m = {4, 6, 8, 10, 12}. T (number of the weight vectors in the neighborhood) in
MOEA/D and UMOEA/D is set to 10 for all the test instances.

4. Each algorithm performs 30 independent runs for average. An algorithm terminates
after 2000 generations.

3.2 Performance Metrics

Finally, to compare the performance of the algorithms on all tested problems, we use
some metrics which are detailed later. 0/1 knapsack problems with different number of
objective functions are considered as different test problems.

We adopt Norm [14] and MS [15] to evaluate the convergence performance and
diversity performance of the obtained POS. Higher value of Norm indicates better con-
vergence to true POS, and higher MS indicates better diversity in POS which can be
approximated widely spread Pareto front. Moreover, in order to get statistically sound
conclusions, the Wilcoxon signed-rank test [16] at a 0.05 significance level is adopted
to test the significance of the differences between assessment results obtained by com-
peting algorithms.

Norm of population P is calculated by:

Norm(P) =

∑|P|
i=1 ρi
|P| . (4)

Where ρi which denotes the norm of the i− th individual Xi in P is calculated by

ρi =

√
√
√
√

m∑

j=1

fj(Xi)2 . (5)
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Table 2. Norm as we increase the number of objective m. Best performance is shown in bold.
Considering the high time complexity of UMOEA/D, we did not compare it with other algorithms
for m = {6, 8, 10, 12}. ”†” indicates that the result of the considered algorithm is significantly
different from that of PPDSO-MOEA at a 0.05 level by the Wilcoxon signed-rank test.

m UMOEA/D MOEA/D RSO PPD-MOEA PPDSO-MOEA

4 6445.98(29.83)† 6786.52(21.36)† 6941.78(20.30)† 6953.04(9.23)† 6956.92(10.20)
6 - 7443.49(22.54)† 7659.95(46.16)† 7693.40(14.11)† 7724.43(17.37)
8 - 8480.86(26.19)† 8681.10(38.68)† 8721.67(23.41)† 8747.29(25.79)
10 - 9437.63(51.08)† 9677.94(49.78)† 9697.16(26.34)† 9718.30(35.49)
12 - 10146.1(42.70)† 10352.5(74.48)† 10416.8(43.50)† 10450.9(45.55)

MS of population P is calculated by:

MS(P) =

√
√
√
√

m∑

i=1

max{‖ui − vi‖ |u, v ∈ P} . (6)

3.3 Results and Discussion

We use 0/1 Knapsack problems with m = {4, 6, 8, 10, 12} objectives. Table 2 and Table
3 show the Norm values and the MS values respectively as we increase the number
of objective functions. The values in the tables are the means and standard deviations.
”†” in the tables indicates that the result of the considered algorithm is significantly
different from that of PPDSO-MOEA at a 0.05 level by the Wilcoxon signed-rank test.
Higher value of Norm indicates better convergence to true POS, and higher MS value
indicates higher diversity in POS which can be approximated widely spread Pareto
front. Considering the high time complexity of UMOEA/D, we did not compare it with
other algorithms for m = {6, 8, 10, 12}. [8] only tests the performance of UMOEA/D
for m = {2, 3, 4} on 0/1 knapsack problems.

From Table 2, we can see the proposed algorithm, PPDSO-MOEA, has better conver-
gence than PPD-MOEA, MOEA/D, UMOEA/D and RSO for all test instances, which
demonstrates the effectiveness of our method. The reason for the better convergence of
PPDSO-MOEA is as follows: the main strategy of choosing objectives is choosing two
objectives which have the first and the second worst average values to improve them
and we use random method for one time to choose two objectives at the appropriate
time. Moreover, we temporally switch the two-objective combination in every Ig gen-
eration with the help of the archive set and improve those two new worst objectives. In
a word, our method for selecting two objectives results in better and better convergence
performance.

From Table 3, we can see MOEA/D has better diversity than all other algorithms.
PPDSO-MOEA has better diversity than PPD-MOEA for m = {8, 10, 12} and slightly
worse for m = {4, 6}. PPDSO-MOEA and RSO share the same diversity for m =
{6, 8, 10, 12} considering of Wilcoxon signed-rank test. The reason lying in this result
is that we put emphasis on improving the convergence. As a result, we get the result with
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Table 3. MS as we increase the number of objective m. Best performance is shown in bold.
Considering the high time complexity of UMOEA/D, we did not compare it with other algorithms
for m = {6, 8, 10, 12}. ”†” indicates that the result of the considered algorithm is significantly
different from that of PPDSO-MOEA at a 0.05 level by the Wilcoxon signed-rank test.

m UMOEA/D MOEA/D RSO PPD-MOEA PPDSO-MOEA

4 38.209(4.37)† 62.8786(1.18)† 43.8704(2.06)† 43.9104(1.31)† 42.1732(1.89)
6 - 77.8739(1.42)† 57.5757(4.40) 59.1133(1.94)† 57.7400(2.67)
8 - 78.4041(2.53)† 67.3001(4.42) 66.2876(2.71)† 67.0534(1.92)
10 - 80.3223(5.22)† 75.5318(4.53) 73.5528(2.52)† 75.0812(3.72)
12 - 87.6282(3.62)† 82.9805(4.76) 80.4356(3.73)† 82.6011(2.21)

better convergence and slightly worse diversity. However, PPDSO-MOEA has better
diversity than PPD-MOEA for most test problems, which demonstrates that our method
for selecting two objectives is more effectiveness than PPD-MOEA.

4 Conclusions

In this paper, we propose a new MOEA algorithm, PPDSO-MOEA (Pareto partial dom-
inance on two selected objectives MOEA), to improve the performance of ManyOPs on
many-objective 0/1 knapsack problems. The algorithm calculates dominance between
solutions using only two objectives selected from m objectives and reflects the result in
parents selection. Those two objectives have the largest distances to the best point. Fur-
thermore, PPDSO-MOEA updates the archive population Aset to maintain POS when
it changes the two-objective combination. The search performance of PPDSO-MOEA
is verified on many-objective 0/1 knapsack problems, with up to 12 objectives. Simu-
lation results for 0/1 Knapsack problems show that significant improvement on Norm
was achieved by PPDSO-MOEA. POS obtained by PPDSO-MOEA achieved higher
convergence than PPD-MOEA, MOEA/D, UMOEA/D and RSO for all test instances
as well as better diversity than PPD-MOEA and UMOEA/D for most test instances.

In the future work, we plan to improve our algorithm and verify its effectiveness
on many-objective continuous optimization problems. Also, more Pareto partial domi-
nance need to be explored in the proposed algorithm framework.
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Abstract. A simple, convenient and efficient multi-objective binary disperse 
optimized bacterial colony chemotaxis algorithm (MDOBCC) is proposed, in 
which the Disp(disperse update mechanism) is defined to handle 0-1 disperse 
optimization problems. The concept of chemotaxis center is proposed with the 
item of group and chemotaxis in order to improve the convergence rate of the 
algorithm. The definition of reference colony is used to retain the elite solution 
produced during the iteration; the definition of colony spatial radius and density 
is used to guide the bacteria for determinate variation, thus keeping the 
algorithm obtain even-distributed Pareto optimum solution set. Furthermore, the 
derivation analysis is given to prove the convergence of the algorithm and 
comes to the conclusion of global convergence. The simulate result confirmed 
the effectiveness of the algorithm. 

Keywords: bacterial colony chemotaxis, disperse update mechanism, reference 
colony, determinate variation. 

1 Introduction 

In most cases, the objectives of multi-objective disperse optimization problems 
(MDOP) are mutually conflicted which is different from single-objective 
optimization, making it difficult to achieve optimization for many objectives 
simultaneously. There are some efficient intelligent optimized algorithms with 
solving 0-1 disperse combination optimization problems [1], [2], [3], [4], [5]. 
Kennedy [1] etc. put forward disperse binary version of PSO algorithm, which uses 
the Sigmoid function of speed to represent the possibility of location and status 
change. However, this update mechanism exert restriction on the variation range of 
speed, lowering the efficiency in dealing with disperse optimization problems. 
Reference [6] defined the binary arithmetic operation. However, this will increase the 
calculating cost and consume long time. 

This paper proposes a MDOBCC which expect for the fast convergence speed. 
When dealing with multi-objective disperse optimization problems, Disp is defined, 
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which can make adjustment according to actual problems, offsetting the shortages of 
ordinary algorithm’s restriction on variable range. In addition, this paper put forward 
the concept of chemotaxis center which can accelerate the speed for the bacteria in 
seeking optimal solution. The reference colony, and the colony spatial radius and 
density are proposed to guide the bacteria for effective variation. So the evenly-
distributed Pareto Fronts can be obtained finally. 

2 MDOBCC 

2.1 Algorithm of Bacteria Colony Chemotaxis 

Generally, the Pareto optimal solution [7] of multi-objective optimization problem is 
a set. As a new functional optimized algorithm inspired by biological behavior, BCC 
algorithm simultaneously applies the stress reaction of single bacteria under the 
attractant environment and the interaction of positional information among bacterial 
colonies for functional optimization. Bremermann [8] and his colleagues [9], [10] 
studied BCC algorithm firstly. Miiller[11] carried out a further research and proposed 
the bacterial chemotaxis algorithm on this basis. Reference [11] provides the two-
dimension model of bacterial chemotaxis algorithm as well as its optimization 
process. 

2.2 Disperse Update Mechanism 

The Disp which was defined in this paper shows as follows: 
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where r  is the random number within the interval (0,1), and Disp is the possibility 
for ρ =1. The smaller the Disp is, the greater the probability for ρ =1. The sign of x 

represents the direction of bacteria’s position. At this moment, x has specific physical 
significance. This update mechanism is able to self adjust the value of k according to 
the actual step length without need to exert restriction on the range of independent 
variables.  
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2.3 Operators 

This paper proposes three operators, such as chemotaxis center, reference colony, 
colony spatial radius and density, for further improving the performance of the 
algorithm. 

• Chemotaxis center 

Fig 1 shows the calculation of bacterial colony chemotaxis center composed by 4 
bacteria when there are two target functions. In Fig (a), the open hole represents the 
previous location of the bacteria while the filled circle means the current location. 
From the Fig, we can see that 1, 2, and 3 are the bacteria which move to better 
locations. Then the chemotaxis vector of this bacterial colony is recorded as the 
average of 1d , 2d  and 3d . The open hole in Fig (b) is the non-dominate center of 
individual 4. The non-dominate center moves to position A along with the chemotaxis 
vector d, thus form the chemotaxis center.  

  

Fig. 1. Calculation of bacterial colony chemotaxis center (a)Move trace (b)Form chemotaxis 
center 

• Reference colony 

This paper takes the better location of 1newx
→

 and 2newx
→

 as the reference colony. If 

there’s no mutual domination, take 2newx
→

 as the reference colony. 
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• Colony spatial radius avR  

 
ni

n

r
R

n

i
i

av ,...3,2,11 ==


=

 (4) 



 Analysis on a Multi-objective Binary Disperse BCC Algorithm 377 

where ir  is the Euclidean distance between individual bacterium, and n is the total 

amount of Euclidean distance between any two bacteria. 

• Colony spatial density η  

 1, 2,3,...i
i

V
i N

N
η = =  (5) 

where iV  is the amount of bacterium i that contains other bacteria within the spatial 

radius Rav  and N is the scale of bacterial colony. 

The bigger the spatial density is, the more intensive the colony is. Guide the over-
crowded bacteria to move to the area with small spatial density for determinate 
variation. The movement location is the center between target bacterium and its 
nearest neighbor bacterium. 

2.4 MDOBCC of Disperse Property 

Extend based on the BCC algorithm and apply it on MDOP. Use the Pareto-
dominated concept to evaluate the strengths and weaknesses between two bacteria. 
Suppose there are k bacterial target functions and n dimensions of discrete variable. 
The calculation steps are as follows:  

1) Initialized bacterial colony generates n bacteria randomly with a steady speed. In 
this paper, v=1. Elite set is set and good solutions are selected from the bacterial 
colony generated randomly and put into the elite set. 

2) Individual bacterial optimization and compute new location 1newx
→

; 

• Compute the move time τ  of bacterial on the new direction, which is determined 
by probability distribution. Its density function can be expressed as: 

 T

T
X /1

)(P ττ −==   (6) 
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• Compute new direction of movement. The included angle between the new 
direction and original track is subject to Gaussian probability distribution, and the 
deflection to left and right can be expressed respectively as: 
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where [0 ,180 ]α ∈ ° ° . The mathematical expectation and variance expression is: 

 ( ) ( )



















−=
−=










=
=

=

→→→→

curpre

curprecurpre

xxif

xxxxif





))cos(1(26

)cos(162

)~((|)(
26

62

0

0

0

0

θσ
θμ

σ
μ

σμ，  (9) 

• Compute location 
→

1x , determined by the formula (10). 

 τ⋅+=
→→

vxx pre1
 (10) 

• Update bacterial location by using Disp disperse update mechanism and produce 

the new location 1newx
→

. 

3) Bacterial colony optimization and compute new location 2newx
→

 

• Compute non-dominant center. Each bacterium has to perceive the surrounding 
environment and explore whether there’s bacteria with better location. If yes, take 

the center of these bacteria as the non-dominant center cenx
→

. 

 ))()(|( ijjcen xfxfxAverx
→→→→

=   (11) 

where 1 2
1

A ( , ,.., ) /
m

m j
j

ver x x x x m
→ → → →

=

 
=  
 
 , m is the amount of dominate bacteria, 

and ),( ij xxdis
→→

 is the distance between bacteria i and bacteria j. 

• Compute the chemotaxis center _cen cex
→

. 

• Compute location 
→

2x  that is determined by formula (12). 
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 )()1,0(2 _2

→→→→
−×−= checenprepre xxUxx  (12) 

Where U（0,1）is the random number within the interval [0,1] and subject to even 
distribution. 

• Update bacterial location by using Disp disperse update mechanism and produce 

the new location 2newx
→

. 

4) The reference colony refx
→

 is produced and bacteria move to the new location. 

5) Guide the bacteria for determinate variation with the colony spatial radius and 
density, and select good solutions in the new colony and put into the elite set. At 
the same moment, remove the poor solutions out of the elite set. 

6) Judge whether the terminal condition is satisfied. If yes, end the cycle, otherwise, 
return to step 2) for further optimization. Finally, the bacteria in the elite set are the 
Pareto optimal solution. 

3 Convergence Analysis 

Hypothesis 1. (a) The feasible region Ω  of optimal problem is the bounded closed 

region within nR ; (b) The target function ( ) , 1,2, ,if x i k=   is the continuous 

function in area Ω . 
From hypothesis 1, we can see in the formula (13): 

 ( )1 2{ , , , | arg min ( )}
i

k i i
x

S x x x f x φ
∈Ω

= ≠  (13) 

Definition 1. Suppose ( 1,2, )
ni

X n =   is the random sequence defined in 

probability space. If there’s random variable ε , 0ε∀ > . If 
*

1
{ [ ]} 0

mi i
n m n

P X X ε
∞

= ≥
− ≥ =  , this random sequence is converged to *

iX  at the 

probability 1. 

For 0ε∀ > , if  

 ( ){ }*
0 1 0| ; \i iD x f x f D Dε= ∈Ω − < = Ω  (14) 

where ( ){ }Ω∈= xxff ii :min* , then n points produced in the algorithm can be 

divided into two states: 
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(a) There is at least one point belonging to 0D , recorded as state 0S ; 

(b) All n points belong to 1D , recorded as state 1S . 

The colony sequence (1), (2), , ( ),X X X m   is a monotonous one, which 

means that the Pareto optimal solution set produced by iteration of MODBCC 
algorithm won’t be worse or at least better than the solution of previous iteration.  
Lemma 1. Suppose the target function and feasible region of optimal problem satisfy 

hypothesis 1. If ( )1,0, =jiqij  represents the probability when ( )tX  belongs to 

state iS , ( )1+tX  belongs to state jS , then:  

(a) For the point set ( )X t  of any state belongs to 0S , 00 1q =  

(b) For the point set ( )X t  of any state belongs to 1S , there’s a constant ( )1,0∈c  

that enables cq ≤11 . 

Please refer to the reference [12] for prove.  

Theorem 1. Suppose ( ){ }mX  is the colony sequence generated by MDOBCC 

algorithm. If the target function and feasible region of optimal problem satisfy 
hypothesis 1, the colony sequence converges to Pareto Front at the probability 1. 

Proof:  

For 0>∀ε , make  

 ( )( ){ }* *
k i iP P f X k f ε= − >  (15) 

then  
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From Lemma 1,  
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and Borel-Cantelli theorem, we can deduce that: 



 Analysis on a Multi-objective Binary Disperse BCC Algorithm 381 

 ( )( )* *

1

0i i
n m n

P f X k f ε
∞

= ≥

  − ≥ =   
  (18) 

Therefore, the conclusion is correct according to definition 1 and the property of 
MODBCC algorithm. The proof is finished here. 

4 Simulation 

Apply MODBCC with and without operators and NSGA-II respectively for 
simulation, among which NSGA-II applies binary coding to obtain Pareto Fronts. The 
parameter setting of MODBCC algorithm can refer to [8]. The initial precision is set 

as 2.0 and end precision is set as 6
end 10−=ε  with a precision update constant of 

1.05. The coefficient k of disperse mechanism values 0.1, and the probability of 

determinate variation mP =0.05. The cross probability of NSGA-II is 0.8, and the 

variation probability is 0.01. The colony scales of all these three algorithms are 100 
and the test function iterates 100 times except for the ZDT series function which 
iterates 200 times. This paper applies six classical test functions to examine the 
performance of the algorithm, including the research achievement SCH[13], 
DEB[14], ZDT1 and ZDT2 [15-16], SRN with constraint condition[17-18]. Binary 
coding and discretization treatment are applied to test function while the optimization 
is conducted in the discrete area. The bacteria dimensions of SCH, DEB and SRN, 
ZDT1 and ZDT2, FON are 10, 20, 180, and 30 respectively. The number of variables 
are 1, 2, 30, 30, 3and 2. The test functions are all with two objectives.  

4.1 Performance Evaluation 

In order to evaluate the comprehensive performance of the algorithm, CM[3], SP[3] 
and RVI performance evaluation indexes are applied in this paper to measure the 
advantages of the algorithm performance. 

• Effective solution proportion index (RVI) refers to the proportion of non-dominant 
solutions in all solutions, which is used to examine the convergence degree of final 
solutions. The bigger the RVI index value is, the better performance the algorithm 
is. 

 
N

indval−=
V

RVI  (19) 

where Val indv−  means that the non-dominant solutions minus the bacteria amount in 

same location. 
The algorithm carries out for 30 times on each index to obtain their mean value 

Mean and standard deviation Stdev. Table 1 to 3 shows the Mean and Stdev of CM, 
SP, and RVI index for NSGA-II, MODBCC with and without operators respectively. 
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From the table of comparisons, we can see that all indexes of MODBCC with 
operators are better than that of MODBCC without operators. The performance of 
MODBCC and NSGA-II is equal to each other in terms of CM index. However, 
MODBCC algorithm achieves better Mean and Stdev in terms of SP and RVI 
indexes, indicating its better performance than NSGA-II algorithm. 

Table 1. Comparison table of CM index 

Standard test function SCH ZDT1 ZDT2 FON 

MODBCC 

(with operators) 

Mean 1550 1502 775 1620 

Stdev 313 1033 41 342 

MODBCC 

(without operators) 

Mean 3500 1856 26681 19850 

Stdev 190 3824 64024 3560 

NSGA-II 
Mean 1612 1932 569 1120 

Stdev 316 362 165 635 

Table 2. Comparison table of SP index 

Standard test function SCH DEB ZDT1 ZDT2 FON SRN 

MODBCC 

(with 

operators) 

Mean 9300 6300 10500 8600 3700 10600 

Stdev 4000 1015 5300 4500 1500 2300 

MODBCC 

(without 

operators) 

Mean 17700 98000 24500 30000 87800 36700 

Stdev 2400 20500 5700 5900 13800 36900 

NSGA

-II 

Mean 16480 173200 73900 27200 240850 24470 

Stdev 1600 10200 25800 4300 57290 5700 

Table 3. Comparison table of RVI index 

Standard test function SCH DEB ZDT1 ZDT2 FON SRN 

MODBCC 

(with 

operators) 

Mean 1.000000 0.980000 0.991800 0.992700 0.994000 0.978500 

Stdev 0.000000 0.001667 0.002603 0.002517 0.002020 0.007508 

MODBCC 

(without 

operators) 

Mean 0.920000 0.825714 0.892500 0.874000 0.960000 0.988571 

Stdev 0.018973 0.048819 0.030956 0.034985 0.042426 0.009009 

NSGA-II 
Mean 0.851250 0.914000 0.896000 0.888000 0.914012 1.000000 

Stdev 0.046904 0.054772 0.011694 0.017321 0.025000 0.000000 
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4.2 Figures of Simulation Results 

In order to further compare the performances among these three algorithms, this paper 
listed the Figures of simulation results of three algorithms corresponding to SCH, 
DEB, and FON test functions, shown in Fig 2 to 4. From the simulation Fig, we can 
see that MODBCC with operators is better than the other two algorithms in view of 
test problems of both continuous and discontinuous in the front of Pareto, as it can 
converge to the front of Pareto more effectively and obtain more evenly distribution. 
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Fig. 2. Simulation result of optimized SCH function (a)MODBCC(with operators) 
(b)MODBCC(without operators) (c)NSGA-II 
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Fig. 3. Simulation result of optimized DEB function (a)MODBCC(with operators) 
(b)MODBCC(without operators) (c)NSGA-II 
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Fig. 4. Simulation result of optimized FON function (a)MODBCC(with operators) 
(b)MODBCC(without operators) (c)NSGA-II 

5 Conclusion 

With consideration to the shortages that the ordinary 0-1 disperse mechanism exerts 
restriction on independent variable range and low efficiency in optimizing disperse 
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problems, this paper defines Disp and put forward a high effective MODBCC. 
Furthermore, it defines three operators: chemotaxis center, reference colony as well as 
colony spatial radius and density, which improves the performance of algorithm 
significantly and accelerates its convergence speed, thus enabling the obtained 
solution set to distribute evenly on the optimal frontier of Pareto. The simulation 
results indicate that this algorithm is obvious advantageous and effective in 
optimizing MODP. 
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Abstract. Feature selection is an important data preprocessing technique in 
classification problems. This paper focuses on a new feature selection problem, 
in which sampling data of different features have different reliability degree. 
First, the problem is modeled as a multi-objective optimization. There two 
objectives should be optimized simultaneously: reliability and classifying 
accuracy of feature subset. Then, a multi-objective feature selection method 
based on particle swarm optimization, called JMOPSO, is proposed by 
incorporating several effective operators. Finally, experimental results suggest 
that the proposed JMOPSO is a highly competitive feature selection method for 
solving the feature selection problem with unreliable data. 

Keywords: particle swarm optimization, feature selection, unreliable data,  
ulti-objective. 

1 Introduction 

Purpose of a feature selection problem (FSP) is to move the useless features without 
sacrificing the predictive accuracy. Particle swarm optimization (PSO) is a heuristic 
search technique that is inspired by the behavior of bird flocks [1]. Due to its 
advantages such as the simplicity, the fast convergence and the population-based 
feature, the attention of researchers upon PSO-based feature selection methods is 
much high in recent years [2-7].  

In those studies above, however, they all focused on the case that all sampling data 
are completely reliable. As we know, equipments that are used to generate feature 
data often have some degree of error in real world. For the features whose sampling 
data are from high precision equipments, obviously decision makers should assign 
high reliability degrees. On the contrary, for those sampling data generated by low 
precision equipments, their corresponding features should be assigned low reliability 
degrees. The kind of feature selection problems is general in real life.  

In this paper, a novel multi-objective feature selection method based on particle 
swarm optimization is proposed and implemented for solving the above feature 
selection problem with unreliable data. First, an encoding strategy based on the 
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selection probability of feature is proposed, based on which a feature selection 
problem with discrete variables is transformed to a continuous problem suitable to 
PSO. Then, a multi-objective particle swarm approach based on the adaptive jump 
operator, called JMOPSO, is adopted to optimize the above problem.  

The rest of this paper is organized as follows. Section 2 gives multi-objective 
optimization model of the feature selection problem with unreliable data. Section 3 
introduces the proposed multi-objective feature selection method in detail. Section 4 
presents experimental results. Finally, Section 5 gives the concluding remarks. 

2 Problem Modeling 

Like most existing studies [2, 3], we use a binary string to represent a solution. For a 
set of pending data with D features, if a bit is 1, the corresponding feature is chosen 
into the feature subset; if 0, it is not. Then, a feature selection problem can be 
described a combinatorial optimization problem, whose variables only have two 
values {0, 1}. Based on it, decision variables of the problem can be represented as 
follows: 

{ }1 2( , , , ), 0,1 , 1,2, , .D iX x x x x i D= ∈ =                          (1) 

Since sampling data of features become unreliable, it is necessary to consider the 
reliability degree (RD), not just the classifying accuracy (CA), when estimating a 
feature subset. First, considering the RD, without loss of generality, a value within [0, 
1] is used to represent the reliability of a feature. The bigger this value is, the higher 
the RD value of this feature is; especially, the value 1 means that its corresponding 
feature is completely credible. So, the RD values of all the D features can 
be represented by the following vector: 

  1 2[ , , , ], [0,1], 1, 2, , .D iE e e e e i D= ∈ =                          (2) 

For a solution X , furthermore, we use the average of all selected features to 
estimate the whole reliability degree of X in this paper, as follows: 

1( )1
1

D
x ei iif X
D xii

×
==
 =

                                    (3) 

    Considering the classifying accuracy (CA), in this paper we adopt the leave-one-
out cross-validation (LOOCV) of 1-NN to evaluate the classifying accuracy of a 
feature subset [3, 5]. In this method, a single datum dat1 from the original data set 
DAT is selected as a testing sample, and the rest constitute training samples. Then the 
1-NN classifier predicts the class of the testing sample by calculating and sorting the 
distances between the testing sample and the training ones. If the prediction class is 
right, than the flag of the testing sample y(dati) is assigned as 1; otherwise, assigned 
as 0. This process is repeated so that each datum in the original data set is used once 
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as the testing sample. Finally, the classification accuracy of this feature subset can be 
calculated by the proportion of correctly predicted samples to all samples: 

2
1

1
( ) ( )

DAT

i
i

f X y dat
DAT =

=                            (4) 

Where, DAT is the size of original data set DAT. 

3 MOPSO-Based Feature Selection Method 

This section describes the proposed multi-objective feature selection algorithm. The 
motivation for this algorithm is to design an effective multi-objective PSO technique, 
which is suitable to the feature selection problem.  

3.1 Encoding of Particles 

In this paper, the probability that a feature is chosen into a feature subset is taken as 
an encoded element, and multiple elements form a particle which represents a 
candidate solution of the feature selection problem. Taking a data set with D features 
as an example, the i-th particle in the swarm can been coded by a D-bit real string as 
follows:  

     ,1 ,2 , ,( , , , ), [0,1], 1, 2, , , 1, 2, ,i i i i D i j sX x x x x j D i N= ∈ = =   ,          (5) 

Where Ns is the swarm size, and , [0,1]i jx ∈ is the probability which the j-th feature is 
chosen into the feature subset. 

For the particle iX , furthermore, its corresponding decoding solution iZ is 
constructed by the following equation: 

,
,

1,

0, otherwise
i j

i j

x rand
z

≥
= 


                                (6) 

Where , 1i jz =  represents that the j-th feature is chosen into the feature subset iZ . 

3.2 The Adaptive Jump Operator 

In order to improve the search capability of JMOPSO, this paper proposes a new 
method to determine the jump probability of particles on each dimension. Based on it, 
those stagnation dimensions can jump old positions with a high probability. In 
previous works [8-10] it has been incorporated in the PSO to improve its 
performance, by assigning the same jump probability on all the dimension spaces.  

In each iteration, the new jump operator first identifies all stagnation dimensions, 
then each stagnation dimension is assigned a fixed probability to jump old position.  
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In order to identify those stagnation dimensions, we take the current archive and the 
swarm as an input, and take a set SET0 to save the tags of stagnation dimensions. For 

each dimension space, all the solutions are checked in turn (from 1 to sAr N+ ). 

Taking the j-th dimension space as an example, if the values of these solutions on this 
dimension space all are 1, then this dimension is called to be stagnant, and its tag is 
saved in the set SET0; Similarly, if the values of these solutions on this dimension 
space all are 0, then it is also called to be stagnant, and its tag is saved in the set SET0.  

Function JUMP:  NEW_X=JUMP (Xi (t) SET0, D) 
//* Xi (t): the i-th particles, SET0: the set to save  
tags of all the stagnation dimensions*// 
FOR j=1 to D      
IF j∈SET0           //*the j-th dimension is stagnant *// 
IF Xi,j (t)=0 or 1        //*the j-th dimension of the 
particle is equal to 1 or 0*// 

,

,

,

1 ( ) , 1/
( )

( ), .

i j s

i j

i j

X t rand N
X t

X t otherwise

 − <= 
  

ENDIF 
ENDIF 
ENDFOR 
NEW_X←Xi,j (t)  //Return the new particle after jump *// 

By applying the above techniques, all the stagnation dimensions are identified. 
Then, each particle is checked in turn against all the stagnation dimensions found. 
Taking the i-th particle Xi (t) as example, if its value on the j-th dimension is equal to 
1 or 0, and the j-th dimension also is stagnant, then this dimension of the particle, Xi,j 
(t), will get a chance of 1/Ns to jump old value. After jump, the old value 1 becomes 0, 
and the old value 0 becomes 1. In other words, those died features will be waked up 
with the 1/Ns probability, and those permanent features will also be clear up with the 
same probability.  

3.3 Implement of the Proposed JMOPSO 

1) Initialize. First, set relative parameters, including the swarm size Ns, the archive 
size Na, and the terminal condition of the swarm. Second, initialize the positions of Ns 
particles and  the personal best position of each particle.  

2) Calculate the objective values of particles based on equations (3), (4) and (6).  
3) Update the external archive. In this paper an external archive is introduced to 

store the non-dominated solutions found during the entire search process. And the 
crowding distance proposed for multi-objective genetic algorithms [11] is adopted to 
estimate the diversity of elements among the archive. If the archive has reached its 
maximal capacity Na, then the most sparsely spread Na solutions, i.e., Na solutions 
with the largest crowding distance values, are retained in the archive. 

4) Update the global best position. In order to exploit sparse areas that include 
few solutions, the Gbest of each particle is selected from the archive on the basis of 
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the solutions’ diversity. For any solution in the archive, the higher its crowding 
distance value is, the higher its probability selected as Gbest is. 

5) Update the particles’ positions and run the adaptive jump operator. In this 
paper an update method without acceleration coefficients, which is introduced by 
[12], is used as follows:  

, , , , , ,

, , ,

( 1) ( ) ( ( ) ( )) ( ( ) ( ))

( 1) ( ) ( 1)
i j i j i j i j i j i j

i j i j i j

v t w v t rand pb t x t rand gb t x t

x t x t v t

+ = ⋅ + ⋅ − + ⋅ −
+ = + +  (7) 

Where rand is a random number within [0,1]; w is the inertia weight, this paper sets 
w=0.4.; ,1 ,2 ,( ) ( ( ), ( ), , ( ))i i i i DPb t pb t pb t pb t=  represents the personal best position of 

the i-th particle; ,1 ,2 ,( ) ( ( ), ( ), , ( ))i i i i DGb t gb t gb t gb t=   is the global best position of 

this particle. After that, run the adaptive jump operator to improve the search 
capability of the swarm. 

6) Update the personal best position. For a particle, supposing that its position is
( 1)iX t +  at the (t+1)-th iteration, its Pbest value before updated is ( )iPbest t , the 

novel update strategy is as follows:  

( 1), if ( ) ( 1)

( 1) ( 1), if ( ) || ( 1) & | ( ( )) | | ( 1)) |

 ( ), otherwise

i i i

i i i i i i

i

X t Pb t X t

Pb t X t Pb t X t Z Pb t Z t

Pb t

+ +
+ = + + ≥ +




        (8) 

where ( 1)iZ t + is the decoded solution of ( 1)iX t + , | |Z represents the number of 

features in the subset Z; ( ) ( 1)i iPb t X t +  represents that ( 1)iX t + dominates

( )iPb t ,and ( ) || ( 1)i iPb t X t + represents that both solutions do not dominate each other.  

7) Judge whether the algorithm meets termination criterion. If yes, stop the 
algorithm, and output the archive as finial result; otherwise, go to step 3. 

4 Experiment and Analysis 

Effectiveness of the proposed algorithm was demonstrated on several real-world 
benchmark datasets. And for a fair performance comparison, two state-of-the-art 
multi-objective algorithms are applied in the feature selection problem.  

4.1 Preparation Work 

To construct an appropriate test datasets, it seems feasible to choose some popular test 
problems. In this paper, several well known real-world benchmark datasets, including 
WDBC, Ionosphere and Sonar, are selected. By using the quality vector 

1 2[ , , , ]DE e e e=   to represent the reliability of each feature, these popular datasets are 

transformed into bi-objective feature selection problems with unreliable data. Table 1 
shows those translated test functions. Note that, the quality vector of each dataset is 
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composed of the elements of E, which begin at the first element 0.7 until the last 
feature is assigned. 

Two state-of-the-art algorithms, the TV-MOPSO algorithm proposed in [13] and 
the NSGA-II algorithm [11] are selected for performance comparison. In our 
experiments, the same conditions are used to compare the performance between the 
proposed algorithm and the other meta-heuristic algorithms, i.e., the size of the 
swarm=30, the archive size=20, the maximum generation/iteration number=100 and 
the 1-nearest neighbor method to evaluate the feature subset. Moreover, Table 2 lists 
values of the rest parameters in detail.  

Table 1. Format of test problems 

Data sets 
No. of 

samples 
No. of 
classes 

No. of 
features 

Quality vector 

WDBC 569 2 30 
E=[0.7,0.8,0.9,1.0,0.6,1.0,0.6,0.9,1.0 0.9 0.7 

0.8 0.4, 0.8 ,1.0 ,0.7, 0.5, 0.9, 1.0, 1.0, 
0.6, 1.0, 0.9, 1.0, 0.5, 0.7, 0.8, 0.9, 1.0, 
0.6, 0.7, 1.0, 0.9, 1.0, 0.6, 0.7, 0.8, 0.9, 
1.0 ,0.9, 0.7, 0.8,0.9, 1.0 ,0.9, 0.7, 0.8, 
0.9 ,1.0, 0.9 ,0.7, 0.8,0.9, 1.0, 1.0 , 0.7, 

0.8 ,1.0 ,1.0, 1.0]. 

Ionosphere 351 2 34 

Sonar 208 2 60 

Table 2. Parameter configurations for selected algorithms 

Algorithms TV-MOPSO NSGA-II 

Parameters 

Inertia weight:
 

max
0.3 * (1 / ) 0.4w t T= − +

 
Cognitive coefficient:

 
1 max

(0.5 2.5) / 2.5c t T= − × +
 

Social coefficient: 

2 max
(2.5 0.5) / 0.5c t T= − × +

 
Mutation parameter 

b=5.

Distribution index for SBX is 20; 
distribution index for 

polynomial mutation is 20; 
mutation probability =1/D; 
crossover probability =0.9; 

tournament is 2. 

In our comparative study, two performance metrics known to multi-objective 
optimizers are adopted. To evaluate the distribution of solutions throughout the Pareto 
optimal set found, the spacing metric (SP) [14] is adopted. In order to evaluate the 
closeness of the obtained Pareto front to the true Pareto front which is unknown in 
advance, the two-set coverage (SC) [14] is adopted.  

4.2 Comparison Results and Analysis 

In this subsection, we evaluate the performance of the proposed JMOPSO algorithm 
by comparing TV-MOPSO [13] and NSGA-II [11]. All the algorithms were set to 
conduct 30 runs to collect the statistical results for all simulations. The results 
obtained with respect to each adopted performance metric are shown in Tables 3-5.  
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For the dataset WDBC, we can see from Table 3 that the proposed algorithm 
JMOPSO has the best convergence, where 97.40 % and 96.30 % solutions obtained 
by TV-MOPSO and NSGA-II are dominated by those of JMOPSO respectively. On 
the other hand, the three algorithms obtain similar average in terms of SP.  

For the dataset Ionosphere, we can see from Table 4 that the proposed algorithm 
JMOPSO still has the best convergence, where 98.77 % and 94.32 % solutions 
obtained by TV-MOPSO and NSGA-II are dominated by those of JMOPSO 
respectively; TV-MOPSO has the second best convergence, where 50.49% solutions 
obtained by NSGA-II are dominated by those of TV-MOPSO. On the other hand, in 
terms of SP, JMOPSO has also the best average, followed by TV-MOPSO.  

For the dataset Sonar, TV-MOPSO finds the solutions with the best distribution; 
however, it gets the worst convergence. As Table 5 shows, the proposed algorithm 
JMOPSO still has the best convergence, where 81.67% and 100% solutions obtained 
by TV-MOPSO and NSGA-II are dominated by those of JMOPSO respectively; TV-
MOPSO has the second best convergence, where 72.78% solutions obtained by 
NSGA-II are dominated by those of TV-MOPSO.  

Table 3. Results obtained by the three algorithms on tackling WDBC 

Algorithms SP(Average/Std.) 
SC (Average/Std.) 

(TV-MOPSO,*) （NSGA-II,*） (JMOPSO,*) 
TV-MOPSO 0.0039/0.002 -- 0.2892/0.2898 0.9740/0.0532 

NSGA-II 0.0042/0.0038 0.6201/0.3265 -- 0.9630/0.1111 
JMOPSO 0.0039/0.0016 0.0171/0.0513 0.0101/0.0303 -- 

Table 4. Results obtained by the three algorithms on tackling Ionosphere 

Algorithms SP(Average/Std.) 
SC (Average/Std.) 

(TV-MOPSO,*) （NSGA-II,*） (JMOPSO,*) 
TV-MOPSO 0.0055/0.0025 --- 0.3471/0.4044 0.9877/ 0.0370 

NSGA-II 0.078/0.0071 0.5049/0.3963 --- 0.9432/ 0.1338 
JMOPSO 0.0052/0.0022 0/0 0/0 --- 

Table 5. Results obtained by the three algorithms on tackling Sonar 

Algorithms SP(Average/Std.) 
SC (Average/Std.) 

(TV-MOPSO,*) （NSGA-II,*） (JMOPSO,*) 
TV-MOPSO 0.0050/0.0025 -- 0.1202/0.0606 0.8167/0.3018 

NSGA-II 0.074/0.0043 0.7278/0.1093 -- 1/0 
JMOPSO 0.0065/0.003 0.0825/0.1997 0/0 -- 

5 Conclusion 

In this paper, a new feature selection problem with unreliable data is studied, and is 
modeled as a bi-objective optimization problem. Furthermore, an improved MOPSO-
based feature selection algorithm JMOPSO is proposed. By comparing with two well-
known multi-objective optimization techniques, the solutions obtained by JMOPSO 
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exhibit certain superior characteristics with respect to the multi-objective 
performance, as well as the ability of removing redundant features.  
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Abstract. Enhancing the convergence property is one of the main goals to 
achieve when designing a multi-objective particle swarm optimization 
(MOPSO) algorithm. To promote convergence, a turbulence mechanism de-
rived from the bacteria quorum sensing behavior is introduced and a novel 
MOPSO (MOPSO-QSIT) is proposed. The inspired turbulence mechanism 
takes into effect only if the whole current population’ velocities are rather small 
(less than a predefined threshold), which enables to maintain the swarm diversi-
ty and avoids declining the swarm evolution. The MOPSO-QSIT algorithm has 
been tested on a set of benchmark functions and compared with other multi-
objective optimization algorithms that are representative of the state-of-the-art. 
Simulation results illustrate that the proposed algorithm possesses the best con-
vergence performance while keep good diversity performance, and is a compe-
titively effective global optimization tool. 

Keywords: Multi-objective optimization, Multi-objective particle swarm opti-
mization, Convergence, Quorum sensing. 

1 Introduction 

Multi-objective optimization problems (MOPs) with non-commensurable or even 
conflict-with-each-other objectives are rather common in many scientific and engi-
neering environments. Consequently, multi-objective optimization (MOO) has been 
extensively studied and widely applied to MOPs to provide more information for 
supporting decision making tasks [1]. Because of advantages such as fast conver-
gence, fewer parameters to adjust, robust adaptability, and relative simplicity of im-
plement, population based particle swarm optimization (PSO) has been extended for 
MOO, and such multi-objective PSO (MOPSO) has achieved universal applications to 
MOPs.  
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As stated, a high convergence speed is one of the most important features of the 
PSO. It’s a negative effect when premature convergence occurs which result from the 
rapid loss of the swarm diversity. Especially, such convergence speed may be harmful 
in the context of MOO, because a PSO-based algorithm may converge to a false Pare-
to front [2]. Thus, means to maintain the swarm diversity is an important issue to 
avoid premature convergence. 

Recently, incorporation of bio-behaviors into PSO produces a novel approach to 
strengthen the performance of PSO. Inspired by the phenomenon of chemo taxis in 
colonies of the bacteria, an improved PSO [3] was presented by analogy to the way 
that bacteria react to chemo-attractants or chemo-repellents, which not only prevents 
premature convergence to a high degree, but also keeps a more rapid convergence rate 
than standard PSO. Similarly, a new PSO algorithm based on the operator of chemo 
taxis in the bacterial foraging algorithm was presented to avoid fall into the local min-
imum in the standard PSO algorithm. According to the analysis of biological symbiot-
ic relationship, a two-population PSO model called particle swarm optimization based 
on parasitic behavior was proposed in [4], the effectiveness of which had been veri-
fied. Although some literature is available on PSO with bio-behaviors, few attempts 
have been made to MOPSO combined with such bio-behaviors. This motivates us to 
explore the application of bio-behaviors to MOPSO algorithms. 

This study introduces a novel MOPSO based on bacteria-quorum-sensing inspired 
turbulence (MOPSO-QSIT). In the algorithm, for diversity preservation of the swarm 
and promotion of exploitation, a turbulence mechanism inspired from the bacteria 
quorum sensing behavior is introduced. The mechanism is first exerting turbulence 
and then replacement operation in nature and serves as mutation function when the 
velocity of the swarm is rather small. Besides, each particle’s leader is selected dy-
namically to enrich the exploratory capabilities and an improved NSGA-II crowing 
distance based sorting (CDS) [5] is incorporated to ensure the good distribution of 
Pareto solutions on the Pareto Front.  

2 MOPSO Algorithm with Introduction of Quorum Sensing 
Inspired Turbulence 

It has long been appreciated that certain groups of bacteria exhibit cooperative beha-
vioral patterns. It seems that intercellular communication likewise can account for 
such behaviors and the communication was called quorum-sensing (QS) by Fuqua 
[6]. Early in 1970s, au-to-induction of luminescence was described [7, 8]. Fuqua [6] 
argued that auto-induction defines an environmental sensing system allowing bacteria 
to monitor their own population density and the bacteria produces a diffusible com-
pound termed auto-inducer which accumulates in the surrounding environment during 
growth. In 2007, Higgins et al. [9] discovered that vibrio cholerae, the causative agent 
of the human disease cholera, also uses quorum sensing mechanism to control patho-
genicity and biofilm formation. They also pointed out that cholera activates the ex-
pression of virulence factors and forms bio-films when at low cell density, while at 
high cell density the accumulation of two quorum-sensing auto-inducers re-presses 
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these traits. Therefore, quorum sensing plays an important role in the survival and 
multiplies of the biology. 

2.1 Mechanism of Quorum Sensing Inspired in the MOPSO 

PSO is an evolutionary computation technique. During the evolutionary process, the 
velocity and position update formula of particle i on the dimension d|d=1,2,…D (D stands 
for the dimension of the decision variables) are described as Eq. (1) and Eq. (2), re-
spectively. As Eq. (1) and Eq. (2) show, when the velocities of the particles in the 
swarm are almost zero, it becomes unable to create new solutions which might lead 
the swarm out of this stagnating state. Therefore, creating new particles potentially 
facilitates the swarm to escape from local optima and to strengthen the exploratory 
capabilities of PSO [10].  

 1 1 2 2( 1) ( ) [ ( )] [ ( )]id id id id gd idv t wv t c r p x t c r p x t+ = + − + −
 (1) 

 ( 1) ( ) ( 1)id id idx t x t x t+ = + +  (2) 

where t is the current iteration; w is the inertia weight; c1 and c2 are acceleration coef-
ficients; r1 and r2 are random numbers with uniform distribution between 0 and 1. vid 

and xid denote the dth|d=1,2,…D dimension of particle i velocity vi= [vi1, vi2, …, viD ]
T and 

position xi= [xi1, xi2, …, xiD ]
T, respectively. pid and pgd indicate the dth|d=1,2,…D dimen-

sion of the personal best pi= [pi1, pi2,…, piD ]
T and global best pg=[pg1, pg2,…, pgD ]

T, 
respectively. 

Inspired by the quorum sensing phenomenon, QS mechanism is introduced into 
MOPSO. Once the velocities of the whole swarm are less than a threshold Vlimit, carry 
out the quorum sensing inspired turbulence to the swarm. Namely, generate a new 
swarm Ptur with population size N, and then replace 20%N particles in Pnew with the 
excellent particles in Ptur, where Pnew denotes the swarm used for next iteration. The 
quorum sensing inspired turbulence can be described as follows and its scheme is 
illustrated in Fig. 1. 

(1) Read the current population P, non-dominated solution set ND and particle 
swarm Pnew for next iteration. 

(2) Check whether the velocity of each particle in being less than or not. If yes, go 
to (3). Else go to (7). Set i=1, n=0. 

(3) Generate a new population Ptur according to Eq. (3). 

 ( )( )( )2 1, 0.5tur new maxx x V sign rand Nβ= + −
 

(3) 

where xtur represents the positions of newly generated swarm Ptur, and it is a D×N 
matrix; Xnew is also a matrix which indicates the positions of population Pnew.; β is the 
turbulence degree and its value is between 0 and 1; Vmax is a D×1 matrix represents 
the max velocity values in each dimension; sign is the sign function; rand is the ran-
dom operator.  
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(4) Replace some particles in Pnew with the excellent particles in Ptur. Set j=1 and 
carry out the following operations. 

a) Check whether particle j in Ptur dominating thenon-dominated solutions in ND, 
if yes, let n=n+1 and replace the (N-n)th particle in Pnew.  

b) Decide the relationship between j and N, and the relationship between n and 
[0.2N]. If j<N and n<[0.2N], j=j+1 and go to a); j<N and n≥[0.2N], go to (5). If j≥N 
and n<[0.2N], i=i+1and go to (3); j≥N and n>[0.2N], go to (5). 

(5) Set P=Pnew. 

N

Generate a new swarm Ptur based on to Eq. (3). j=1.

Particle j dominates all the 
solutions in ND?

i=1,n=0

Replace the (N-n)th particle in Pnew 
with the jth particle in Ptur, n=n+1. 

j<N

Y

N

Y
Y

n>[0.2N]n>[0.2N]
N

Y

j=j+1

i=i+1
N

start

P=Pnew  

Fig. 1. Scheme of quorum sensing inspired turbulence 

2.2 Proposed MOPSO-QSIT 

With introduction of quorum sensing inspired turbulence mechanism, the MOPSO-
QSIT can be expressed as follows, its flow chart is shown in Fig. 2. 

Step 1. Initialization. Set the population size N and maximum iteration number Mt. 
Initialize the population with velocities V and positions X. Set t=0. 

Step 2. Selection of leaders. t=t+1. Identify the non-dominated solutions from the 
current population P and then dynamically select the non-dominated solution with the 
larges fitness value as the leader pg for each particle according to Eq. (4). Update pi. 

 1 1
1 , / , (0,1)

M M

i i i i i ii i
fitness w f w Uλ λ λ

= =
= = =   

(4) 

where M is the number of objectives, and fi is the ith objective-function. The function 
U(0,1) generates a uniformly distributed random number within the interval [0,1]. 

Step 3. Generation of new particles. Compute the new velocities vnew and positions 
xnew based on the current v and x according to Eq. (5) and (2), where the inertia weight 
and acceleration term c change with iteration according to Eq. (6) and (7). Combine 
xnew and x together and store them in a temporary list TempX. 
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 1 2( 1) ( ) ( ( ( )) ( ( ))id id id id gd idv t wv t c r p x t r p x t+ = + − + −
 

(5) 

 3 01 (1 )w r w= + −
 

(6) 

 0 /c c t Mt= +
 

(7) 

Step 4. Identification of non-dominated solutions. Identify the non-dominated solu-
tions from TempX and store them in a matrix ND, while the dominated solutions are 
stored in the matrix D. 

Step 5. Selecting particles for next iteration according to method presented in [5] .  
Step 6. Turbulence operation and replacement. If all |vi(t)|<Vlimit, execute the turbu-

lence operation and replacement according to Fig. 1. 
Step 7. Return to Step 2 if t<Mt. Else go to Step 8. 
Step 8. Store the non-dominated solutions as final Pareto solutions. 

3 Demonstration of the Proposed MOPSO-QSIT 

3.1 Benchmark Functions, Performance Metrics Used 

MOO is the process of finding well-spread solutions along the Pareto front as diverse 
as possible and as close to the real Pareto front as possible. In order to demonstrate 
the effectiveness of MOPSO-QSIT algorithm, a set of commonly recognized bench-
mark functions (ZDT1~ ZDT4 [11]) formulated as Eq. (8) ~ Eq. (12) have been cho-
sen as test problems of MOO. ZDT1 has a convex Pareto front while ZDT2 has a 
concave Pareto front. With many MOO algorithms, it’s difficult (See Table 2) for 
ZDT3 to find a diverse set of solutions because of its discreteness. ZDT4 is a multi-
modal problem and the multiple local Pareto fronts make it difficult for many algo-
rithms to converge to the true Pareto-optimal front (Also see Table 1).  

In order to present a quantitative assessment of the performance of MOPSO-QSIT 
algorithm, two performance metrics [11] are used, namely the generational distance 
GD and the spread S. Let Q and P* denote an obtained and a known true Pareto set, 
respectively. GD and S are defined as Eq. (13), which measure the closeness of Q 
from P* and the diversity of the solutions along the Pareto front, respectively. In Eq. 
(13), M is the numbers of objective-functions; Di is the Euclidean distance between 
the solution i Q and the nearest member of P*. di represents the distance between 
consecutive solutions in Q; dave is the mean value of all di; d

e
m denotes the distance 

between the extreme solutions of Q and P* along the mth objective. A set of |P*|=500 
uniformly distributed Pareto solutions is used to calculate GD. 

 

1 2

1 2

1 1

2 2 1 2

[ , ,..., ]

min ( ) [ , ]

. . :

( ,..., ) ( , ( ,..., ))

T
D

T

D D

X x x x

F X f f

s t f x

f g x x h f g x x

=

=
=
=

 
(8) 
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(13) 

3.2 Competiveness of MOPSO-QSIT 

To demonstrate how competitive it is, the proposed MOPSO-QSIT algorithm is com-
pared with other MOO algorithms that are representative of the state-of-the-art. These 
algorithms include NSGA-II [11], non-dominated sorting particle swarm optimizer 
(NSPSO) [12], multi-objective particle swarm optimization (MOPSO) [2], multiob-
jective particle swarm optimization algorithm based on crowding distance sorting 
(CDMOPSO)[13], improved niching multi-objective particle swarm optimization 
(AIPSO) [14] and local search and hybrid diversity strategy based multi-objective 
particle swarm optimization (LH-MOPSO) [15].  

The parameters used are: population/swarm size 100 for NSGA-II, NSPSO, AIPSO 
and LH-MOPSO, 50 for MOPSO; archive size 100 for MOPSO, number of iterations 
250 for NSGA-II, NSPSO and AIPSO, 500 for MOPSO (to keep the number of func-
tion evaluations to 25000 for all the algorithms), cross-over probability 0.9 for 
NSGA-II and CDMOPSO and 0.5 for LH-MOPSO, mutation probability inversely 
proportional to the chromosome length. The values of c1 and c2 have been used as 2 
for NSPSO, CDMOPSO and LH-MOPSO. The value of w has been used as 0.3 whe-
reas it has been allowed to decrease from 1.0 to 0.4 for NSPSO and LH-MOPSO. For 
all test functions handled with MOPSO-QSIT, w0=0.3, α0 = 0.5, N=100, Mt=250, 
Vlimit=0.2. In order to establish repeatability, the proposed algorithm is run 30 times 
independently. The mean and variance of performance metrics are summarized in 
Table 1.  
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Table 1. Mean and variance values of the convergence measure GD and the diversity measure  

Algorithm Index
ZDT1 ZDT2 ZDT3 ZDT4 

Mean Var Mean Var Mean Var Mean Var 

NSGA-II 
GD 0.03348 0.00476 0.07239 0.03169 0.11450 0.00794 0.51305 0.11846 

S 0.68132 0.01335 0.63922 0.00114 0.83195 0.00892 0.96194 0.00114 

NSPSO 
GD 0.00642 0.00000 0.00951 0.00000 0.00491 0.00000 4.95775 7.43601 

S 1.22979 0.00484 1.16594 0.00768 0.78992 0.00165 0.87046 0.10140 

MOPSO 
GD 0.00133 0.00000 0.00089 0.00000 0.00418 0.00000 7.37429 5.48286 

S 0.84816 0.00287 0.89292 0.00574 1.22731 0.02925 1.01136 0.00072 

CDMOPS

O 

GD 0.00690 0.00055 0.00692 0.00055 0.00720 0.00099 0.26300 0.02488 

S 0.27400 0.04080 0.27090 0.01820 0.01820 0.01160 0.21780 0.01850 

AIPSO 
GD 0.00448 0.00000 0.00386 0.00000 0.00612 0.00000 0.14462 0.00709 

S 0.51485 0.00051 0.49909 0.00052 0.50558 0.00028 0.50735 0.00034 

LH-

MOPSO 

GD 0.0021 --- 0.0027 --- 0.0059 --- 0.4811 --- 

S 0.4088 --- 0.3803 --- 0.5607 --- 0.4089 --- 

MOPSO-

QSIT 

GD 0.00015 0.00000 0.00008 0.00000 0.00061 0.00000 0.00016 0.00000 

S 0.58168 0.00066 0.54037 0.00061 0.48805 0.00033 0.58360 0.00093 

It can be seen that MOPSO-QSIT has resulted in best convergence on all test 
problems in terms of GD measure, especially on ZDT3 and ZDT4, markedly better 
than the other algorithms. Meanwhile, MOPSO-QSIT is able to obtain good 
distribution of the solutions on the Pareto front.  

To demonstrate the distribution of the solutions on the final non-dominated front, 
the results of the four benchmark functions in a single run have been illustrated in Fig. 
1. It can be seen that the proposed algorithm performed very well and converged to 
the Pareto front with a high accuracy while maintaining a good diversity among the 
Pareto solutions. 

3.3 Effect of Introducing Quorum Sensing Inspired Turbulence Mechanism 
on the Convergence of MOPSO 

Sierra etc. [10] argued that the use of a mutation operator or likewise is very impor-
tant to escape from local optima and to improve the exploratory capabilities of 
MOPSO. They also pointed that random, unreasonable mutation or mutation-like 
operation declines the swarm evolution. To verify the effectiveness of introducing 
quorum sensing inspired turbulence mechanism on the convergence of MOPSO, si-
mulations without the proposed turbulence mechanism are carried out and the results 
are summarized in Table 2 and Fig. 2. Suppose only the methods for selecting the 
particles for next iteration are different, and use random (AWPSO [16]), sequential 
[17] and SE (MRBHPSO-SE [5]), respectively. ZDT3 and ZDT4 have been 
considered as typical illustrations. It can be seen that the effects on the diversity 
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performance caused by without turbulence mechanism are not as notable as on the 
convergence. Conclusion can be drawn from Table 2 and Fig. 2 compared with results 
shown above that, the proposed quorum sensing inspired turbulence mechanism does 
provides a means of appropriate promotion of diversity and enrichment of the global 
search capability of MOPSO.  
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Fig. 2. Final fronts of MOPSO-QSIT on ZDT1~ZDT4 in a single run 

Table 2. Mean and variance values of GD and S without turbulence mechanism 

Function Index 
Random Sequential SE 

Mean Var Mean Var Mean Var 

ZDT3 
GD 0.65974 0.00019 0.82261 0.00033 0.74400 0.00034 

S 0.99667 0.00023 0.92453 0.00004 0.89491 0.00031 

ZDT4 
GD 0.17566 0.00002 0.29703 0.00010 0.21267 0.00006 

S 0.94486 0.00038 0.92117 0.00010 0.90563 0.00004 
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Fig. 3. Final fronts on ZDT3 and ZDT4 performed methods without turbulence mechanism 

4 Conclusion 

In this paper, a novel multi-objective particle swarm optimization algorithm 
(MOPSO-QSIT) is presented, which draw inspiration from the bacteria quorum sens-
ing behavior. Introduction of the quorum sensing inspired turbulence mechanism not 
only maintain the diversity of the swarm but also strengthen the exploitation. Besides, 
dynamic selection of a leader for each particle at each iteration also served as a means 
of diversity preservation of the swarm and enrichment of global exploration. Exten-
sive experiments were carried out on a set of benchmark functions in order to ex-
amine the major features of the proposed algorithm and its performance was com-
pared with the other commonly recognized effective multi-objective optimization 
algorithms. Results indicated that MOPSO-QSIT is a highly competitive method; it 
can provide diverse solutions well spreading along the Prato front with good global 
convergence performance. MOPSO-QSIT can be considered as a viable alternative to 
solve multi-objective optimization problems (MOPs). Future work will look into its 
application to real-world MOPs.  
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Abstract. The problem of community structure discovery in complex networks 
has become one of the hot spots in recent years. This paper proposes a multiob-
jective genetic algorithm MOGCM to uncover community structure. This me-
thod overcomes the limitations of the community detection problems, choosing 
MinMaxCut and the community fitness as the objective functions.  
In the experiments, 2 well-known real-life networks are used to validate the per-
formance and the results show that the method successfully detects the com-
munities and it is competitive with state-of-the-art approaches. 

Keywords: complex networks, community discovery, genetic method, multiob-
jective optimization. 

1 Introduction 

Many real-world systems, such as social networks, biological interaction networks, 
communications, the world-wide-web and Internet can be described as complex net-
works. Network nodes represent entities and edges represent the interactions among 
these entities. Complex network analysis has been one of the most popular research 
areas in recent years. One of the main problems in the study of complex networks is 
the detection of community structure. Community structure is an important characte-
ristic of complex networks. The community of a network is also referred to as clusters 
[1], which is a group of nodes that having dense intra-connections and sparse inter-
connections [2]. There are several methods currently to discovery community struc-
tures [3-8]. The algorithms can be divided into two main categories: heuristic and 
optimization based methods.  

The heuristic methods solve community mining problem based on some intuitive 
assumptions. One of the most popular methods proposed so far is the Girvan-Newman 
algorithm [3] which introduces a divisive method that iteratively removes the edge 
with the greatest betweenness value and use the concept of modularity as criterion to 
stop the division of a network in sub-networks in their divisive clustering algorithm. 
Some improved algorithms have also been proposed [9, 10]. These algorithms are 
based on a foundational measure criterion of community, Modularity. Modularity is a 
popular quality function of community detection, the larger the Modularity value, the 
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more accurate the community partition. Thus, community discovery becomes a Mod-
ularity value optimization problem. For example, Fast Newman (FN) algorithm [11], 
Simulated Annealing (SA) algorithm [12], Iterated Tabu Search (ITS) [13], etc. Max-
imizing the modularity has been proven to be a NP-complete problem. At present, 
genetic algorithm (GA) has been becoming a type of competitive method in the com-
munity mining area due to its effectiveness for solving NP-complete problems. Some 
other algorithms has been described in [14], it is a survey of community discovery 
methods in complex networks. 

In this paper we propose a new genetic method to discovery communities in a 
complex network. We apply multiobjective optimization method MOGCM (multi-
objective genetic community discovery method) to detect communities, where the 
first objective is MinMaxCut minimization and the second objective is the community 
fitness maximization. Because this method returns a set of solutions where each of 
them correspond to different trade-offs between the two objectives, so do not need a 
prior knowledge of the number of communities. Experiments on real life networks 
show that the MOGCM method can find the communities of a complex networks with 
high accuracy and high modularity, which is the most common metrics.  

This paper is organized as follows. Section 2 introduced the community detection 
problem. Section 3 described the new genetic algorithm, including framework, objec-
tive function and operators. 

2 Related Works 

Community detection can be viewed as an optimization problem. Many single objec-
tive optimization techniques have been used to solve this problem. 

A single objective optimization problem ( ), FΩ can defined as 

 Min F(X),   s. t. X ∈Ω  (1) 

where F(X) is an objective function that needs to be optimized and 
{ }1 2, , , nX X XΩ =  is the set of feasible community structures in a complex network. 

One kind of optimization method is to optimize the modularity [15, 16]. Modulari-
ty is a quality function introduced by Newman and Girvan in [3] that quantifies the 
community structure by providing a value for every clustering of a given graph. There 
are so many optimization methods use the modularity as the objective function, but it 
may fail to identify modules smaller than a scale which depends on the total number 
of links in the network and the degree of interconnectedness of the modules, even in 
case where modules are unambiguously defined.  

A general advice for community definition is that the density of nodes inside the 
same community should be much higher than the density of nodes connecting to  
the remainder nodes of the graph, this definition pursues two different objectives: 
maximizing the internal links and minimizing the external links. So we can view the 
community detection problem as a multiobjective optimization problem. Given a set 
of quality measures ( ) ( ) ( )1 2, , , tF S F S F S , we want to find community S that simulta-

neously optimizes each quality measure. 
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The general multiobjective optimization problem ( )1 2, , , , tF F FΩ  is posed as follows: 

 min ( ),i 1,2, , t;  s.t  SiF S = ∈ Ω  (2) 

Since the goal is to optimize a set of competing objectives optimized simultaneous-
ly, there is not one unique solution to the problem. Multiobjective optimization aims 
to generate and select non-dominated solutions through the use of Pareto optimality 
theory [17]. The solution of the multiobjective optimization problem is a set of Pareto 
points. These solutions are obtained through the use of Pareto optimality theory and 
constitute global optimum solutions satisfying all the objectives as best as possible. 
The Pareto optimal solutions usually include the optimal solutions obtained by single-
objective GA when applied to the clustering problem.  

Given two solutions S1 and S2∈ Ω , solution S1 is said to dominate solution S2, de-
noted as 1 2S S , if and only if  

( ) ( ) ( ) ( )1 2 1 2:  and i s.t. i i i ii F S F S F S F S∀ ≤ ∃   

Community discovery could be formulated as a multiobjective optimization prob-
lem and the framework of Pareto optimality can provide a set of solutions correspond-
ing to the best compromise among the objectives to optimize. 

3 Community Discovery Method 

In this study, we model a complex network as a graph G = (V, E) where V is a set of 
vertices and E is a set of edges that connect two elements of V. A network can be 
described as an adjacency matrix A, where if there is an edge between nodes i and j, 
then aij=1, otherwise aij=0. Community discovery is to identify a partitioning {p1, p2,   
pn} that maximized the number of connections inside each community and minimizes 
the number of the links between them. ( )in

ik S and ( )out
ik S  is the internal and external 

degree of the nodes belonging to a community S.  

 ( )in
i ij

j S

k S A
∈

=   (3) 

 ( )out
i ij

j S

k S A
∉

=  (4) 

A subgraph S is a community in a strong sense if  

 ( ) ( ) ,  .in out
i ik S k S i S> ∀ ∈  (5) 

A subgraph S is a community in a weak sense if  

 ( ) ( ).in out
i i

i S i S

k S k S
∈ ∈

>   (6) 
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Thus, each node in a strong community has more connections within the communi-
ty than with the rest of the network, but in a weak community, the sum of the degrees 
within the sub graph is larger than the sum of degrees toward the rest of the network. 
We adopt the concept of weak community.  

3.1 Objective Functions 

Our aim is to find the community of a complex networks. A community structure S  
in a network is a set of groups of vertices having a high density of edges among the 
vertices and a lower density of edges between different groups. We want to find 
community structure S that simultaneously optimized each quality measure. 

Recently, researchers have found so many quality functions, such as the modulari-
ty, community score, community fitness, the MinMaxCut value of the community and 
the Maximum-Out Degree Fraction(ODF). Modularity is the function we described 
above. Let k be the number of modules found inside a complex network, the modular-
ity is defined as: 

 
2

1 2

k
i i

i

l d
Q

m m=

  = −  
   

  (7) 

where il  is the total number of edges joining vertices inside the module i, and di is the 

sum of the degree of the nodes of i, m is the total number of links in the network. 
Though this function Q suffers from resolution limit problems, as shown by Fortunato 
and Barthelme [18], it still has been widely accepted by the scientific community.   

Community score [19] is a global measure of the network division in communities 
by summing up the local score of each module found. Community fitness [20] is the 
ratio between the total internal degrees of the nodes belonging to that community and 
the sum of the total internal and external degrees of the nodes belonging to that com-
munity. As mentioned above, ( )in

ik S  and ( )out
ik S  is the internal and external degree 

of the nodes belonging to a community S. The community fitness ( )P S  of a module 

S is defined as  

 ( ) ( )
( ) ( )( )

in
i

in out
i S

i i

k S
P S

k S k S
α

∈
=

+
  (8) 

where α  is a positive real-valued parameter controlling the size of the community. 
MinMaxCut(MMC) tries to maximize similarity of nodes within the same community 
while minimizing the similarity of nodes belonging to different communities[21]. The 
MinMaxCut is defined as  

 
( )
( )1

outm
i

in
i i

d V
MMC

d V=

=  (9) 
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where ( )
,, i

in
i jkj k j V k Vi

d V A
≠ ∈ ∈

= and ( )
,, i

out
i jkj k j V k Vi

d V A
≠ ∈ ∉

= , A is the adjacency matrix. 

The smaller the value of MinMaxCut, the higher the quality of the online community. 
ODF is the maximum fraction of edges of a node pointing outside the cluster. We 
choose MMC and the community fitness as the objective function. We use the mod-
ularity and Normalized Mutual Information (NMI) to evaluate the quality of the pro-
posed community detection method. Modularity has been described above. NMI is  
a similarity measure [22]. Given two partitions A and B of a network, let C be the 
confusion matrix whose element Cij is the number of nodes of community i of the 
partition A that are also in the community j of the partition B. The normalized mutual 
information I (A, B) is defined as: 

 ( )
1 1

1 1

2 log

,

log log

A B

A B

j

C C ij
ij iji j

i j

C C ji
ii j

C C
C C

C C
I A B

CC
C C

C C

= =

= =

 
−   

 =
   +   

   

 

 
 (10) 

where CA(CB) is the number of groups in the partition A(B), Ci( Cj) is the sum of the 
elements of C in row i (column j), and N is the number of nodes. Cij If A=B, 
I(A,B)=1, else if A and B are completely different, I(A,B)=0. 

3.2 Genetic Representation 

The algorithm uses the locus-based adjacency representation proposed in [23]. In this 
representation, each individual chromosome consists of n genes g1, g2 , …, gn and 
each gene can take values j in the range {1, …, n}, where n is the number of nodes in 
the network. If the ith gene assigned a value j, it means there is a link between node i 
and j. It also means that node i and j will be in the same community. In order to iden-
tify all the communities, a further decoding step is necessary. 

If the ith gene’s value is equal to the kth gene’s value, then they are in the same 
community, else the ith node is in the community same to the ith gene’s value. This 
method can decode rapidly. 

3.3 Initialization 

Consider the connection between different nodes, assign one of the neighbor’s id to 
the ith gene. Use the neighbor ordered list to ensure this. The ith row of the neighbor 
ordered list is an ordered list of the ith node. For example, Fig. 1(b) is the neighbor 
ordered list of Fig. 1(a). 

3.4 Crossover 

Crossover is the process by which two-selected chromosome with high fitness values 
exchange part of the genes to generate new pair of chromosomes. Different types of  
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crossover have been used, such as one point crossover, two-point crossover, uniform 
crossover and multipoint crossover. MOGCM uses two-point crossover. In each 
chromosome randomly choose two point and exchange genes between them. 
 

 

Fig. 1. (a).a complex network             (b) the neighbor ordered list  

Table 1. Example of two-point crossover 

Parent1: 2 4 4 5 6 3 4 2 
Parent2: 4 5 3 4 6 3 2 4 
Offspring1 2 5 3 4 6 3 4 2 
Offspring2 4 4 4 5 6 3 2 4 

3.5 Mutation 

Mutation is the random change of the value of a gene, which is used to prevent pre-
mature convergence to local optima. Major ways of mutation are random bit muta-
tion, random gene mutation, creep mutation, and heuristic mutation. MOGCM use 
random gene mutation, but change the value j of the ith gene randomly may cause a 
useless exploration of the search space as mentioned above. Thus, use the neighbor 
ordered list to choose a possible neighbor value to guarantee the generation of the 
mutated child in which each node is linked only with one of its neighbor.  

The new population generated undergoes the further selection, crossover and muta-
tion till the termination criterion is satisfied. 

3.6 Algorithm Description 

The algorithm calculate the neighbor ordered list D first, then use genetic algorithm to 
generate the solution and chose the solution with the max modularity. It is descripted 
as follow: 
 

node Neighbor ordered list 
1 2  3  4
2 1  3  4
3 1  2  4
4 1  2  3  5  6  7  

8 
5 4  6  7  8
6 4  5  7  8
7 4  5  6  8
8 4  5  6  7
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Program1:MOGCM 
Model the network as a graph G=(V,E) 
Create an adjacent matrix A 
Create a neighbor ordered list D 
Create a population of random individual 
Set the ith gene’s value is one of its neighbor ordered 
list value 
While j<100 
{ 
 Decode the population and calculate the two fitness 
value 
 Crossover two chromosomes which has high nondomination 
rank  
Mutation 
} 
Return the solutions which have the maximum modularity 
value 

4 Experiments 

In this section, we study the effectiveness of our method and compared with other 
methods using some real world datasets. Our algorithm was implemented into Matlab 
2013b. All experiments are conducted on a computer with Intel Core i5 1.7GHz, 4GB 
RAM. 

The Zackary’s Karate Club network was generated by Zachary who studied  
the friendship of 34 members of the karate club over a period of 2 years [24]. During 
this period, the club divided in two groups almost of the same size because of the 
disagreements between members. The dolphin network was established by Lusseau, it 
has 62 nodes each represent one dolphin living in Doubtful Sound, New Zealand [25]. 
A tie between two dolphins was established by their statistically significant frequent 
association. The network split naturally into two large groups, the number of ties be-
ing 159. 

First, compare the MOGCM with GN[3] algorithm. GN algorithm has been ex-
plained in the first section. 

For each network, the algorithm was executed 15 times. To compare the MOGCM 
with other method, at each run the solutions with the best value of modularity has 
been selected. In MOGCM method, the crossover rate was 0.8, the mutation rate was 
0.2, the elite reproduction rate was 10% of the population size. GA is a nondetermi-
nistic algorithm, due to the random nature of the GA i.e., it may produce a different 
solution each run. So we calculate the average NMI for each pair of solutions for each 
network. Because the GA algorithm generates a set of solutions, the MOGCM algo-
rithm chooses the solution with max modularity. Table 2 reported the average NMI 
value and the modularity values of these 15 runs of MOGCM. A low value indicates 
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that, over many runs, the solutions vary considerably; a high value indicates that the 
solutions are much more similar to each other. The table shows that the very good 
performance of MOGCM. The NMI values show that the 15 results of the 15 runs of 
MOGCM are similar. The communities found by Girvan and Newman split Zackary’s 
Karate Club network in two and misplaces a node, but the MOGCM found the exact 
communities. MOGCM found two smaller communities with high modularity. 

Second, modify the objective function of MOGCM, change the community fitness 
with community score. Table 3 shows the different between them. Table 2 shows the 
NMI and modularity obtained by the two different methods, it shows that uses the 
community and MinMaxCut as the two objective function, can obtain high NMI than 
use the community score and MinMaxCut. It shows that the community fitness is the 
better choice here. 

Table 2. NMI results and modularity obtained by MOGCM and GN for the real-life data sets 

 avg NMI Avg mod GN mod 
Zackary’s Karate Club 0.99 0.418 0.381 
Bottlenose Dolphins 0.98 0.496 0.496 

 

  Fig. 2. The community been detected by GN    Fig. 3. The community been detected by  
                                                   MOGCM 

Table 3. NMI results obtained by MOGCM and the change 

 avg best NMI Changed avg best NMI 
Zackary’s Karate Club 0.964 0.803 
Bottlenose Dolphins 0.835 0.723 

5 Conclusions 

In this paper, we proposed an efficient community discovery method and analyzed its 
performance in terms of MinMaxCut and the community fitness. The optimization of 
these two objectives allows finding communities such that connections in one com-
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munity are dense and the connections between communities are sparse. The results on 
real-world networks have shown our method is more efficient than state-of-art algo-
rithms. Future work aims to extending the method to dynamic networks. 
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Abstract. This paper presents a new multi-objective jumping particle swarm 
optimization (MOJPSO) algorithm to solve the multi-objective multicast 
routing problem, which is a well-known NP-hard problem in communication 
networks. Each particle in the proposed MOJPSO algorithm performs four 
jumps, i.e. the inertial, cognitive, social and global jumps, in such a way, 
particles in the swarm follow a guiding particle to move to better positions in 
the search space. In order to rank the non-dominated solutions obtained to select 
the best guider of the particle, three different ranking methods, i.e. the random 
ranking, an entropy-based density ranking, and a fuzzy cardinal priority ranking 
are investigated in the paper. Experimental results show that MOJPSO is more 
flexible and effective for exploring the search space to find more non-
dominated solutions in the Pareto Front. It has better performance compared 
with the conventional multi-objective evolutionary algorithm in the literature. 

Keywords: Multi-objective Optimization, Jumping Particle Swarm 
Optimization, Multicast Routing. 

1 Introduction 

Multicast routing is an important telecommunication technique that simultaneously 
transfers messages from a source to multiple destinations simultaneously in 
communication networks. It provides the support for real-time applications, such as 
the multimedia conference, the distance education, video/audio on demand, etc.  
In this work, we consider the Multicast Routing Problem (MRP) with multiple quality 
of service (QoS) requirements. The QoS requirements normally include the link 
utilization, the end-to-end delay, the delay jitter and the tree cost etc. The underlying 
model of MRPs is the Steiner tree problem, which is a NP-hard combinatorial 
optimization problem [1]-[2]. The QoS-based MRPs, i.e., the QoS requirements 
constrained Steiner tree problem, is thus also NP-hard, which is a challenging 
optimization problem.  

During the past two decades, the QoS-based MRPs have attracted a lot of research 
attention from both computer communications and operational research ([3]-[5]). 
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Many efficient meta-heuristic algorithms, including simulated annealing, tabu search, 
variable neighborhood search, genetic algorithm, ant colony, particle swarm 
optimization, etc., have been proposed to solve various QoS-based MRPs ([6]-[8]). 
Recently, the MRPs with multiple QoS constraints have been defined as a multi-
objective optimization problem [9]. A variety of multi-objective optimization 
algorithms based on meta-heuristics have been investigated in the recent literature 
([10],[12]).  

Particle Swarm Optimization (PSO), a natural-inspired population-based stochastic 
search method proposed by [13], is an effective meta-heuristic for solving both the 
combinatorial optimization and the multi-objective optimization problems. PSO 
simulates social behavior of flocks of birds or schools of fish. In PSO, a population of 
particles (individuals) moves through a multi-dimensional continuous space with  
a moving velocity. While PSO was originally designed for solving continuous 
optimization problems, a variant called Discrete Particle Swarm Optimization 
(DPSO) has been firstly designed by Kennedy and Eberhart [14]. Since then, many 
variations of DPSO algorithms have been proposed for different combinatorial 
problems [15]-[16].  

Recently, a DPSO algorithm named Jumping Particle Swarm Optimization (JPSO) 
algorithm was introduced by [17] to solve combinatorial optimization problems. 
Without using the concept of velocity, the JPSO algorithm defines different jumps 
(moves) for particles to move from position to position in a discrete hyper-
space[18],[19]. There are four types of moves, the first one is the inertial move, which 
enables the particle to continue exploring its current position. The other three moves 
encourage the particle to move towards three different attractors (the best position bi 
of the particle i; the best position gj is of the swarm at iteration j; and the best position 
gi,j found by the neighbors of particle i at iteration j). Each move has a certain 

probability given by the weight vector 
xc , where  =

3

0x xC = 1. The segment [0, 1] is 

thus divided into four sub-segments with the variable width subject to a certain 
xc . 

At each generation, a random number r uniformly distributed in [0, 1] is generated to 
decide which move to be performed. For r ∈ [0,

0c ), the inertial move will be applied. 

For r ∈ [
0c ,

10 cc + ), the particle moves towards 
ib . For r ∈ [

10 cc + ,
210 ccc ++ ), the 

particle moves towards 
jg . For r∈[

210 ccc ++ , 1], the attractor will be 
jig ,
.  

In the literature, we only notice one related work in [10], where a hybrid genetic 
algorithm and particle swarm optimization has been proposed for solving the multi-
objective MRP. A quantum-behaved particle swarm optimization (QPSO) algorithm 
for QoS multicast routing is proposed in [20]. In our recent work [8], a JPSO 
algorithm has been proposed to tackle the single objective optimization MRP 
problem. The good performance of JPSO motivated us to further extend our work to 
solve the multi-objective multicast routing problem. 

The rest of the paper is organized as follows. In Section 2, the multi-objective 
MRP is formally defined. Section 3 describes the proposed JPSO algorithm, which is 
then evaluated through extensive experimentation in Section 4. Finally, Section 5 
concludes the paper and proposes possible future work.  
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2 The Multi-objective MRP Formulation 

A network is modeled as a directed graph G = (V, E) with |V| = n nodes and |E| = l 
links. As defined in our recent work [11], we use the following notations: (i ,j)∈E: 
the link from node i to node j, i, j∈V; cij∈R+: the cost of link (i ,j); dij∈R+: the delay 
of link (i ,j); zij∈R+: the capacity of link (i ,j); tij∈R+: the current traffic of link (i ,j); 
s∈ V: the source node for a MRP; R ⊆ V – {s}: the set of destinations, i.e. the 
multicast group; rd∈R: a destination; |R|: the cardinality of R, i.e. the number of 
destinations, also called the group size; φ∈R+: the traffic demand; T(s, R): the 
multicast tree; pT(s, rd) ⊆ T(s, R): the path from the source s to a destination rd∈R in 
the multicast tree T; d(pT(s, rd)): the delay of path pT(s, rd) is the sum of delays of links 
along the path, i.e. d(pT(s, rd)) = 

∈ ) ,(),( dT rspji
ijd , rd∈R. By using the above definitions, a 

multi-objective MRP with five minimizing objectives can then be formulated as 
follows: 

1. The cost of the multicast tree: 

            C(T) = φ · 
∈Tji

ijc
),(

                            (1) 

 

2. The maximal end-to-end delay of the multicast tree: 

   DM(T) = Max{d(pT(s, rd))}, rd ∈R                (2) 

 

3. The maximal link utilization: 

       α(T) = Max










 +

ij

ij

z

tφ , (i, j)∈T                      (3) 

 

4. The average delay of the multicast tree: 

       DA(T) = 
∈Rrd

d
R ||
1 (pT(s, rd))                      (4) 

 

5. The delay jitter of the multicast tree: 

DJ(T) = Max{d(pT(s, rd))} – Min{d(pT(s, rj))}, rd, rj∈R       (5) 

 

subject to a bandwidth capacity constraint:  

φ + tij ≤ zij, ∀(i, j) ∈ T(s, R)                           (6) 

For a multi-objective optimization problem, a set of trade-off optimal solutions 
will be obtained, when considering multiple objectives. It means no single solution 
can be considered superior to the others in the search space. The set of all these 
Pareto-optimal solutions in X is called the Pareto-optimal Set. Various multi-objective 
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optimization approaches have been proposed in the literature for solving a wide range 
of optimization problems [21]-[24]. For a recent comprehensive review of numerous 
multi-objective particle swarm optimization algorithms for a variety of multi-
objective optimization problems can be found in [13]. To our knowledge, there is no 
investigation of JPSO to solve the multi-objective MRP.  

3 The Multi-objective Jumping Particle Swarm Optimization 
(MOJPSO) Algorithm 

In this paper, we propose a new jumping particle swarm optimization algorithm to 
solve the multi-objective multicast routing problem, named MOJPSO. The initial 
population consists of a fixed number of particles which are random multicast trees. 
For each particle, a non-dominated solution set NDSi is maintained to record the best 
positions of the particle. A non-dominated solution set NDS of the whole swarm is 
used to track the non-dominated positions during the evolution. After the particle 
moves to a new position, a local search is used to further explore better neighboring 
solutions of the particle. 

3.1 The Representation of the Multicast Tree  

In the proposed MOJPSO algorithm, we use the same encoding method in our 
previous work in [8] to represent a multicast tree (a solution or position of the 
particle) for the multi-objective MRPs. In this representation, a multicast tree is 
represented by an ordered set of |R| paths {g1, g2, …, g|R|} from the source node s to 
each destination rd∈R, d = 1, … |R|. 

3.2 The Four Jumps in MOJPSO  

In the proposed MOJPSO, depending on where the random number r falls within the 
interval [0, 1], a specific jump is defined to influence the how the particle moves from 
its current position to a new one. At each generation, we define four jumps as follows: 

1) If r ∈ [0, c0), the particle moves around its current position. In MOJPSO, after 
a destination is randomly selected, the path from the source to the chosen 
destination will be replaced by a random path from the k-shortest [25] path set. 
We set k = 25 in our MOJPSO algorithms. 
2) For r falls in the three different intervals，i.e. [c0, c0+ c1), [c0+ c1, c0+ c1+ c2) 
and [c0+ c1+ c2, 1], the attractor is bi, gj and gi,j, respectively. Once the attractor is 
selected, a jumping operation will be performed. Here, a multicast tree is 
represented by a binary vector with n= |V| bits (see [8]). Each bit in the vector 
takes a value of 1 if the corresponding node is in the multicast tree, 0 otherwise. 
At each step, each bit of the current multicast tree’s binary vector will be changed 
to the same value as that in the binary vector of the attractor. Then the Prim’s 
algorithm [26] is used to generate a minimum spanning tree for the given nodes. 
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This operator repeats until a new feasible tree is generated or the two binary 
vectors are the same. 

3.3 The Ranking Methods in MOJPSO 

The key issue in MOJPSO is the selection of the guiding particles (attractors). How to 
select the attractor, i.e. bi, gj and gi,j, will affect the performance of the proposed 
algorithm. Each particle will obtain a non-dominated solution set NDSi, how to rank 
these solutions in NDSi to select the best solution bi, as well as the selection of global 
best solution gj from NDS and gi,j from NeiNDSi (the non-dominated neighboring 
particles set of the current particle at generation j). There are some ranking 
approaches in the area of multi-objective optimization, including the fitness sharing 
[27], the crowding distance [22], the nitched sharing [28], the fuzzy cardinal priority 
[21], and the entropy-based strategy [10], etc. In our proposed JPSO, we implement 
three simple ranking methods as follows: 

1) The entropy-based density ranking: A multicast tree (solution) can be 
thought of as an uncertain system based on entropy optimization principles of 
Shannon [29], and the entropy of the mth locus (the path from the source to the mth 
destination) of the multicast tree is defined as:  

S

m tm tmt=1
H (N)= - p ln(p )                     (9) 

where 
tmp denotes the probability that the tth symbol appears the mth locus, and it 

can be calculated:  

tmp = c/N                                   (10) 

where N is the number of solutions, c denotes the total number of the tth path 
appears at the mth locus among N solutions, S is the number of paths. The entropy-
based density ranking is calculated as follows: 

-- For N = 2 with two multicast trees Ti and Tj, the entropy of Ti for the mth locus 
is 2m m mH ( )= -p ln(p ) , where if Ti and Tj have the same path to the mth destination, 

mp = 2/2 = 1 according to Equation (10); otherwise mp = 1/2. 

-- The mean entropy of Ti and Tj :  
| |

,
1

1
2 (2)

| |

R

i j m
m

H ( )= H
R =
                            (11) 

-- Similarity 
i, jS [0,1]∈ between Ti and Tj is decided by: 

            
,

,

1

1 (2)i j
i j

S
H

=
+

                                (12) 

-- Density of Ti is: 

           ,,
( )

| |
i jj pop scount

C i
P

∈ >λ=                            (13) 
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where λ is the similarity constant, P is the current population, |P| is the population 
size, and 

,, i jj P scount ∈ >λ is the number of solutions whose similarity to Ti exceeds λ .  

2) The fuzzy cardinal priority ranking: In order to rank the solutions in the non-
dominated solution set, the normalized membership function βj is calculated to 
provide the fuzzy cardinal priority ranking of each non-dominated solution j. The 
solution with the maximal value of βj is considered as the best compromise solution. 
βj is defined as [21]: 

   1

1 1

=

= =

β = 
 

obj

obj

N j
ii

j N M j
ii j

u

u
                              (14) 

where Νobj is the number of objectives for the multi-objective optimization 

problem, M is the number of non-dominated solutions in the NDS. 
j

iu is given by: 

   
max

max min

−=
−

j
j i i

i
i i

f f
u

f f
                                (15) 

where max
if and min

if are the maximum and minimum value of the ith objective, 

respectively, j
if is the ith objective value for the jth solution in the NDS. 

3) The random ranking: A solution is randomly selected in the NDS. 

3.4 The Local Search in MOJPSO 

In each generation, after each particle jumping to a new position, a local search is 
performed to further enhance the solution. At each step, it randomly flips a bit of a 
node in the binary vector of the multicast tree which represents the solution using the 
Prim’s algorithm to generate a minimum spanning tree on the given nodes. This 
operation repeats until a new feasible tree is generated.  

4 Performance Evaluation 

4.1 Simulation Environment 

We have carried out a large amount simulations to test our algorithms on some 
benchmark and random networks. Six variants of our MOJPSO have been evaluated 
and then compared with a traditional multi-objective evolutionary algorithm in [9]. 

1) MOJPSO-DR/ MOJPSO-DR-LS, the proposed algorithm with the entropy-based 
density ranking without or with the local search  

2) MOJPSO-FR/MOJPSO-FR-LS, the proposed algorithm with the fuzzy cardinal 
priority ranking without or with the local search 

3) MOJPSO-RR/MOJPSO-RR-LS, the proposed algorithm with the random ranking 
without or with the local search 
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4) MOEA/MOEA-LS, a multi-objective evolutionary algorithm without or with the 
local search. 

We use the same multicast routing simulator to generate the network topologies as in 
[10]. For a fair comparison, the population size |P| is set as 50 in the variants of 
MOJPSO and MOEA.  

4.2 The Impact of the Local Search 

In this group of experiments, we test the effectiveness of the local search procedure 
designed in this paper upon a set of random networks. Four MRP instances are 
generated on two random networks of |V| =100 with different group sizes (the number 
of destination nodes |R| = 20%*|V| and |R| = 30%*|V|). In order to visually compare 
the Pareto optimal front obtained by variant algorithms of MOJPSO in 20 runs, the 
running time for each run is 160 seconds. we consider only two objectives, namely 
the cost and the delay as defined in Section 2, in Figure 1. It shows the local search 
can further enhance the search to find better non-dominated solutions. It is interesting 
to see that MOJPSO with three different ranking methods have similar performance. 

     
(a) Cost vs. Delay (|V| = 100, |R| = 20,160s)            (b) Cost vs. Delay (|V| = 100, |R| = 30, 160s) 

Fig. 1. The Pareto-front of the solutions found by each algorithm for the random networks 

4.3 The Effectiveness of Different Ranking Methods 

Finally, we test MOJPSO with different ranking methods described in Section 3.3 and 
compare these variants of MOJPSO with MOEA upon these random networks with 
respect to all five objectives defined in Section 2. For each network, we run 20 times 
for each network. The same running time, i.e. 160 seconds is set for all algorithms in 
each run. We plot all the non-dominated solutions found by these algorithms in 20 
runs in Figure 2. It can be seen that the performance of MOJPSO with three different 
ranking methods are competitive during the search. MOJPSO with different ranking 
methods can obtained more non-dominated solutions than the conventional MOEA. 
For the instance in Figure 2, three MOJPSO algorithms can find better Pareto non-
dominated solution set than that of MOEA, which demonstrate the effectiveness and 
flexibility of our proposed MOJPSO. 
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5 Conclusions 

In this paper, we propose a new Multi-Objective Jumping Particle Swarm Optimization 
algorithm MOJPSO for solving the multi-objective multicast routing problems in 
communication networks. Four jumps which guide the particles to move during the 
evolutionary procedure have been designed. Three ranking methods, including the 
entropy-based density ranking, the fuzzy cardinal priority ranking and the random 
ranking, have been investigated to rank non-dominated solutions for selecting the best 
guiders. Experimental results show our proposed MOJPSO algorithms perform better 
than the conventional MOEA by finding more and better non-dominated solutions. We 
thus conclude that MOJPSO is a competitively approach for solving the multi-
objective multicast routing problem. In our future work, we intend to extend our 
MOJPSO algorithm to solve other multi-objective optimization problems. 

     
(a) Cost vs. Delay (|V| = 100, |R| = 20, 160s)          (b) Cost vs. Delay (|V| = 100, |R| = 30, 160s) 

Fig. 2. The non-dominated solutions found by each algorithm for the random networks 
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Abstract. Physarum Polycephalum is a primitive unicellular organism.
Its foraging behavior demonstrates a unique feature to form a shortest
path among food sources, which can be used to solve a maze. This paper
proposes a Physarum-inspired multi-agent system to reveal the evolution
of Physarum transportation networks. Two types of agents – one type for
search and the other for convergence – are used in the proposed model,
and three transition rules are identified to simulate the foraging behavior
of Physarum. Based on the experiments conducted, the proposed multi-
agent system can solve the two possible routes of maze, and exhibits the
reconfiguration ability when cutting down one route. This indicates that
the proposed system is a new way to reveal the intelligence of Physarum
during the evolution process of its transportation networks.

Keywords: Physarum Polycephalum, Multi-Agent System, Maze.

1 Introduction

Maze is an interesting game, as well as a complex searching problem, which
can puzzle some high-level organism sometimes. However, based on the latest
biological studies, researchers find an amazing result: a primitive single-cell or-
ganism, called Physarum Polycephalum, has the ability to solve it [1]. Physarum
Polycephalum, commonly known as a multi-headed slime mould, can reshape
itself in the plasmodium stage of its complicated life-cycle. The plasmodium
of Physarum Polycephalum reserves the shortest protoplasmic tube connecting
the entrance and the exit in the maze. The amazing observation inspires an in-
novative spark based on biological and physical theories to uncover the key of
intelligence hidden in Physarum over the last few years [2–6].

Jones [5, 7] presents a low-level particle-based agent model to reveal the evo-
lution of plasmodium networks. For enhancing the self-organization of Jones’
model, Wu et al. [8] have presented a multi-agent system (MAS) with self-
adaptive population. Their system can automatically adjust the population of
agents, maintain its homeostasis and keep the stable of the macro formation. For
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further developing Wu’s MAS, this paper derives two types of agents to simu-
late the search and convergence behaviors of Physarum in foraging and utilizes
agent’s type transition to pass information globally. After the improvement, the
new model, denoted as the PMAS, has the self-organization ability and can solve
a maze.

The rest of this paper is organized as follows. Section 2 presents the basis of the
PMAS, especially the behaviors of agents. Section 3 validates the route-finding
ability of the PMAS when solving a maze. Section 4 concludes this paper.

2 The Physarum-Inspired Multi-Agent System

This section introduces the basic idea of the PMAS from three aspects: environ-
ment, the structure and behaviors of agents.

2.1 Environment Setting

The environment of the PMAS is a 2D scenario discretized with n × m grids,
which corresponding to the substrate in biological experiments. The plasmodium
of Physarum and food sources are modelled as agents and data points, respec-
tively. Each grid only holds one agent. One time step is defined as that each
agent performs once asynchronously.

An agent secretes depT of trail when it moves into a new grid. A data point
deposits CN of chemo-nutrient in its grids at each time step. Both chemo-
attractants (i.e., trail and chemo-nutrient) diffuse independently in the scenario
by means of a simple average filter as shown in Eq. (1), where V t

(i,j) represents

the value of chemo-attractants in grid (i, j) at time step t. For trail informa-
tion, V means trail value (denoted as TV ), and for chemo-nutrient information,
V means chemo-nutrient value (denoted as NV ). What’s more, two damping
factors, dampT and dampN , are used to describe the volatilization of trail and
chemo-nutrient, respectively. Taking trail information as an example, at each
time step, the amount of trail in all grids updates simultaneously through that
filter and descreases to 1− dampT of the previous value.

V t
(i,j)

=

m∑

k=1

m∑

l=1

V
t−1

(i+k−m+1,j+l−m+1)

m2
(1)

2.2 Agent Architecture

In corresponding with the foraging behaviors of Physarum, two types of agents,
one type for search, named as agent T1 and the other for convergence, named as
agent T2, are proposed. They have the same architecture and just one difference
in basic behaviors. As shown in Fig. 1, an agent is composed of three components,
i.e., the main body, the left sensor and the right sensor. The body determines
the position of an agent. The sensor is used to sample the chemo-attractants in
the grid where the sensor locates.
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The “Forward” of an agent indicates the direction that it would move along.
The “Sensor Arm Length” is used to represent the sense distance of an agent.
The “Sensor Angle” is fixed to 45◦. Each sensor is armed with a “Trail Sampling”
module and a “Chemo-nutrient Sampling” module, which are used to measure
the trail value (TV ) and chemo-nutrient value (NV ), respectively. The total
sampled chemo-attractants value (SV ) is calculated by a linear weighted method
SV = WT ×TV +WN ×NV , which WT and WN are the weights of trail and
chemo-nutrient, respectively. The “Synthesis Comparator” module of the main
body controls the forward direction of an agent by comparing SV between the
left sensor and right sensor. For an agent T1, it selects the direction with lower
SV . But an agent T2 selects that with greater one. The “Motion Counter” is a
module to record the motion of an agent. It is crucial for the self-organization
of the quantity of agents in the system.

Sensor Arm
Length

Left
Sensor

Right
Sensor

Forward

Sensor
Angle

Motion
Counter

Trail Sampling

Chemo-nutrient 
Sampling

Synthesis
Comparator Agent 

Body

Trail Sampling

Chemo-nutrient 
Sampling

Fig. 1. The architecture and morphology of an agent

2.3 Behavior Rules

The behaviors of an agent can be divided into two categories: the basic behaviors
of each type of agent and the interaction between two types of agents.

2.3.1 Basic Behaviors of Each Type of Agent
The basic behaviors of an agent mainly include movement, reproduction and
elimination. Initially, the integer in the “Motion Counter” of an agent, denoted
as MC, is zero. At each time step, an agent attempts to move forward to a
neighbor grid. If that grid is occupied by other agent, then the agent stays at
the current grid and changes its forward direction randomly. At the same time,
MC is decreased one. If that grid is empty, then the agent moves to the grid,
deposits depT of trail in the grid and rotates the new direction according to
“Synthesis Comparator”. Meanwhile, MC is increased one.

The parameters RT and ET are set to trigger the reproduction and the elim-
ination of an agent, respectively. When an agent moves successfully and MC is
greater than RT , the agent clones a child agent at its previous grid (i.e., repro-
duction behavior). If MC is less than ET , the elimination behavior is triggered,
i.e., the agent disappears from the environment.
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2.3.2 Transition Rules Between Two Types of Agents
There are three transition rules for establishing the cooperation between two
types of agents. Specifically, Rule 1 supports for the system search of the sce-
nario. Rule 2 indicates a local information that a new data point is found. Rule 3
implements the message passing in the system by type transition, which global-
izes the local information and makes the chaotic system converge to an organized
pattern.

Rule 1. The population evolution starts with an agent T1.

Rule 2. An agent T1 transmits to an agent T2, when the agent T1 enters into
the grids of a new data point.

Rule 3. An agent T1 transmits to an agent T2, if the agent T1 has an agent T2
neighbor.

What’s more, Algorithm 1 presents details about the behaviors of an agent.

Algorithm 1. Framework of the behaviors of an agent

1. if MC < ET then
2. eliminate itself;
3. return;
4. end if
5. if the forward grid is empty then
6. if MC > RT then
7. clone a child agent at the current grid;
8. end if
9. move to the forward grid;
10. MC ++;
11. rotate a new direction
12. else
13. reset the forward direction randomly;
14. MC −−;
15. end if
16. if the agent is an agent T1 then
17. if the agent enters into the grid of a new data point ‖ the agent has an agent T2

neighbor then
18. transform to an agent T2
19. end if
20. end if

3 Numerical Experiments

A maze scenario in this section is used to explore the ability of the system on
maze solving and path reconfiguration. The basic parameters and their values
are listed in Table 1. As shown in Fig. 2, the black parts stand for walls of the
maze, and the white areas are passages. The widths of walls and passages are
both 20 grids. Two data points, which represent the entrance and exit of the
maze, are arranged at the southwest and northeast, respectively.
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Table 1. Basic parameters and their values used in this paper

Parameter Explanation Value
Scenario Size The planar area for network formation 200 × 200 grids
Sensor Arm Length The distance between sensor and its body 4 grids
depT The amount of trail deposited by an agent 5
dampT Diffusion damping factor of trail 0.1
WT The weight of trail value 0.4

m
The size of mean filter for trail 3
The size of mean filter for chemo-nutrient 5

CN The amount of chemo-nutrient in the girds 10
of data points

dampN Diffusion damping factor of chemo-nutrient 0.2
WN The weight of chemo-nutrient value 0.6
RT A parameter that is used to trigger the 5

reproduction behavior
ET A parameter that is used to trigger the -5

elimination behavior

(a) t=51 (b) t=266 (c) t=356 (d) t=489

(e) t=1110 (f) t=2352 (g) t=2600 (h) t=3196

Fig. 2. (Color online) Maze solving of the system. (a)-(f) show the process that how
the two routes of the maze are constructed. (g)and (h) capture the reconfiguration of
path after the maze been changed.

For startup the system, an agent T1 is generated in the entrance data point.
A mass of agents T1 appears and covers almost the entire passages, as shown
in Fig. 2(a) and Fig. 2(b). When the data point in the exit is found, the agent’s
type transition begins along the passage that agents T1 propagating before (Fig.
2(c) and Fig. 2(d)). With the last agent T1 transforming to agent T2, agents T2
distributed on the blind sides shrink to the right path gradually (Fig. 2(e)). At
last, agents T2 compose two stable paths connecting the entrance and the exit,
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which are the exact two routes in this maze, as shown in Fig. 2(f). So far, it is
revealed that the system as a maze solver can find all routes of the maze.

For further exploring the robustness of the system, the structure of the maze
in t=2600 is reset. The part of the passage marked as the gray block in Fig. 2(g)
is transformed into a wall, which results in the cutting down of that branch.
However, this sudden change to the environment and the population does not
collapse the system. The system keeps running and the other path is maintained
naturally. Eventually, the system organizes the only route in the new maze at
t=3196, as shown in Fig. 2(h).

4 Conclusions

In this paper, we propose a nature-inspired multi-agent system, dawing on the
foraging behavior of Physarum, to solve a maze. The proposed system, denoted
as the PMAS, imports two types of agents (i.e., agent T1 for search and agent T2
for convergence) and three transition rules between agents to simulate the forag-
ing behavior of Physarum in network evolution. The PMAS shows the same in-
telligence as the plasmodium of Physarum in foraging, such as self-reshape, path
finding and reconfiguration. In particular, experimental results validate that the
PMAS can solve a maze by finding all possible routes and manifest reconfigu-
ration features when altering the maze dynamically. What’s more, our system
would provide a novel perspective to understand the intelligence of Physarum
during its transportation network evolution process.
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Abstract. This paper studies the preset time consensus problem of sing-
integrator multi-agent systems for reaching the desired state in both undirected 
and directed communication networks. Two linear consensus protocols with 
time-varying gain are proposed. In fixed undirected networks, if the undirected 
topology is connected, the proposed protocol can achieve the consensus at the 
preset time even if only a portion of agents can obtain the desired state. In fixed 
directed networks, if the directed topology has a directed spanning tree, the 
proposed protocol can solve the consensus problem at a given preset time. 
Finally, numerical simulation results are presented to demonstrate the 
effectiveness of the theoretical results. 

Keywords: consensus, single-integrator, multi-agent systems, preset time, 
desired state. 

1 Introduction 

Coordinate control of multi-agent systems has drawn much attention due to its wide 
applications such as formation control, flocking, rendezvous, attitude alignment of 
clusters of satellites in the last decade. As the foundation of coordinate control, 
consensus problems are aimed to design appropriate protocols or algorithms based on 
local information such that agents reach an agreement on some quantities of interest. 
There are many results about consensus problems of multi-agent systems in the 
existing publications. In [1], a theoretical explanation is provided for the alignment 
behavior observed in the Vicsek model [2]. This is a pioneering work on consensus. 
Then, a general framework for the consensus problem of networks of integrators is 
proposed in [3]. Since then, the consensus problem has been extensively studied. In 
[4-6], consensus of single-integrators is considered. The consensus problem of multi-
agent systems with second order dynamics is studied in [7-10]. High order linear 
dynamic multi-agent systems have also been paid much attention in [11-14]. 

However, in the above mentioned literatures, all the multi-agent systems only can 
achieve asymptotic consensus. In practice, finite-time consensus is sometimes more 
desirable, especially when high precise performance and strict convergence time is 
required. So, finite-time consensus problems of multi-agent systems are considered in 
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[15-20]. In the most existing finite-time consensus results, the proposed protocols are 
generally discontinue and nonlinear and only the upper bound of convergence time is 
given. In [21], a preset time dependent time-varying but linear consensus protocol is 
designed and agents in the system reach the same state at a preset time. 

In this paper, based on the results of [21], we consider the desired state consensus 
problem of multi-agent systems with single-integrator dynamics at a preset time for 
both the undirected and directed communication network cases.  With the proposed 
control protocol, under the same communication condition as asymptotic consensus, 
the desired state can be achieved at a preset time. 

The rest of this paper is organized as follows. Some useful concepts and results 
about graph theory are reviewed in Section 2. Section 3 states the problem to be 
investigated. In Section 4, main results are presented. The simulation results are given 
in Section 5. Conclusions are drawn in Section 6. 

2 Preliminaries 

The following notations will be used throughout this paper. The sets of real numbers 
and complex numbers are denoted by R and C , respectively. 1  denotes the 
appropriate dimension column vector with all entries equal to one. I  denotes  
the appropriate dimension identity matrix. Re( )iσ  denotes the real part of i Cσ ∈ . 

The Euclidean norm is denoted by ⋅ . A diagonal matrix is represented by 

{ }1, , ndiag b b  with ib  being the i th main diagonal element. An upper triangular 

matrix is denoted by { }1, , ntriag a a  with ia  being the i th main diagonal element. 

The Kronecker product is denoted by ⊗ . 
The multi-agent system can always be modeled by graph. The agents in the multi-

agent system are regarded as vertices of graph. The communication links among 
multi-agents are regarded as edges of graph. Thus, graph theory is an important tool 
to investigate the distributed coordinate control problem of multi-agent systems. In 
this section, some concepts and properties about algebraic graph theory are presented. 
For more details, please refer to [22]. 

Let ( ) ( , , )G A V E A=  be an n th order weighted directed graph with a vertex set

{ }: 1, 2, ,iV i nν= =   , an edge set ={e ( , ) | , }ij j i i jE Vν ν ν ν= ∈  and a weighted 

adjacency matrix =[ ] n n
ijA a R ×∈ . An edge ije  of G , where jν  is called the parent 

vertex of iν  and iν  is the child vertex of jν , denotes that jν  is a neighbor of iν . 

The neighbor set of agent iν  is denoted by j{ : e }i ijN Eν= ∈ . The element ija of 

weighted adjacency matrix A  associated with the edge ije  is nonnegative, i.e.,

0ij ija e E> ⇔ ∈  and =0ija  otherwise. Moreover, we assume 0iia =  for 

1, 2, ,i n=  . A directed path in the directed graph is a finite ordered sequence of 

vertices 
1 2
, , ,

ji i iν ν ν  such that 
1

( , )
l li i Eν ν

+
∈  for 1,2, , 1l j= − . A directed tree is 

a directed graph in which every vertex has exactly one parent vertex except for one 
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vertex called root vertex which has a directed path to every other vertex. A directed 
spanning tree of G  is a directed tree which consists of all vertices and some edges of 
G . If =ij jia a , the graph G  is a undirected graph. If there exists a path between any 

two distinct vertices of the undirected graph, we say that the undirected graph is 
connected. The Laplacian matrix [ ] n n

ijL l R ×= ∈  of G  is defined as -L A= Δ , 

where 11 22= { , , , }nndiagΔ Δ Δ Δ  and 
1,

=
n

ii ijj j i
a

= ≠
Δ  for 1, 2, ,i n=  . Apparently, 

for the undirected graph, the weighted adjacency matrix A  and Laplacian matrix L  
are symmetric matrices. 

Lemma 1. [23] If the undirected graph G  is connected and D  is any nonnegative 
diagonal matrix with at least one of the main diagonal entries being positive, the 
H L D= +  is symmetric positive definite, where L  is the Laplacian matrix of G . 

Lemma 2. [24] For a directed graph G ,  zero is an eigenvalue of  L  with 1  as a 
right eigenvector and all nonzero eigenvalues have positive real parts. Furthermore, 
zero is a simple eigenvalue of L  if and only if G has a directed spanning tree. 

3 Problem Formulation 

Consider a multi-agent system consisting of n  agents labeled 1  through n . The i
th agent is described by  

 ( ) ( )i ix t u t=  , (1) 

where ( ) N
ix t R∈  is the state and ( ) N

iu t R∈  is control input. Let N
cx R∈  be the 

desired state. 

Definition 1. Given any finite time 0ft >  and the desired state cx , the multi-agent 

system (1) is said to achieve the preset time consensus, if for any initial states, the 
solution of (1) satisfies 

 lim ( ) 0
f

i c
t t

x t x
−→

− =  . (2) 

The object of this paper is to design the consensus protocol (control input) ( )iu t  
to achieve the preset time consensus of Definition 1. 

4 Main Results 

In this section, preset time consensus problems of Definition 1 under the undirected 
topology and directed topologies are considered, respectively. 
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4.1 Consensus under Undirected Topology 

Suppose that the undirected graph G  is connected and at least one agent attains the 
desired state cx . Denote by 1{ , , }nD diag d d=   the relation between the desired 

state and agents. When the i th agent can get the desired state, 0id >  and 0id =  
otherwise.  

In order to achieve the object, the following consensus protocol is proposed: 

 ( ) ( ( ) ( )) ( ( ) ) , 1,2, ,
i

i ij j i i i c
j Nf

c
u t a x t x t d x t x i n

t t ∈

 
= − − − = −  

   ,  (3) 

where c  is a positive constant scalar. The disagreement error is defined as 

( ) ( )i i ce t x t x= − . Denote 1 2( ) ( ), ( ), , ( )
TT T T

ne t e t e t e t =   ，  then the multi-agent 

system (1) with the protocol (3) can be written in the compact form: 

 ( ) ( ) ( )
f

c
e t H I e t

t t
= − ⊗

−
  , (4) 

where H L D= + . 

Remark 1. When designing the control input ( )iu t , only the relative state 

( ) ( )j ix t x t−  between the i th agent and its neighboring agents can be used which 

makes the consensus protocol is distributed. In order to driver all the agents to arrive 
the desired state,  a portion of  agents should be pinned by using the desired state as 
the prior knowledge. Therefore, the term ( )i cx t x−  is introduced and id  determines 

whether the i th agent is pinned. In the most existing finite-time consensus results, 
only the upper bound of convergence time is given and the convergence time is 
related to the initial states. However, in the consensus protocol (3), the control gain is 
adjusted in the light of the preset time and thus, the convergence time is independent 
of  initial states of agents. 

Theorem 1. Suppose that the undirected graph G  is connected. Given any finite-
time 0ft >  and the desired state cx , the consensus protocol (3) solves the desired 

state consensus problem of system (1) as ft t −→ . 

Proof: D  is a nonnegative diagonal matrix with at least one of the main diagonal 
entries being positive and L  is the Laplacian matrix of G . It follows from Lemma 1 
that H  is a positive definite matrix. Thus, there exists a nonsingular matrix 

n nP R ×∈  such that -1
1 2{ , , , }nP HP diag λ λ λ=  , where 0 , 1,2, ,i R i nλ > ∈ =   are 

eigenvalues of H . Let 1( ) ( ) ( )t P I e tξ −= ⊗ , we have 

 1 2( ) ( { , , , } ) ( )n
f

c
t diag I t

t t
ξ λ λ λ ξ= − ⊗

−
   . (5) 
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From (5), we have 

 ( ) ( ), 1,2, , , [0, )i
i i f

f

c
t t i n t t

t t

λξ ξ−
= = ∈

−
   , (6) 

which implies that 

 ( ) (0), [0, )
ic

f
i i f

f

t t
t t t

t

λ

ξ ξ
 −

= ∈  
 

 . (7) 

Since c  and iλ  are positive, it follows that ( )i tξ → 0 , as ft t −→ . Then we have 

 lim ( ) ( ) lim ( )
f ft t t t
e t P I tξ

− −→ →
= ⊗ = 0  , (8) 

which implies ( )i cx t x→ , as ft t −→ . Theorem 1 holds.  

Remark 2.  In the proof of Theorem 1, from (7) we have 

 
( ) 1

( ) (0)

i

i

c

f

i i ic
f

t t
t c

t

λ

λξ λ ξ
−

−
= −  . (9) 

If we select c  such that  

 1, 1, 2, ,ic i nλ > =   , (10) 

then ( )i tξ  is bounded for all [0, )ft t∈ . It follows that ( )iu t  is bounded for all 

[0, )ft t∈ . 

Remark 3.  In the consensus protocol (3), some parameters have to be determined. 

ft  and cx  can be chose by the need of practice application. The value of c  

influences the convergence rate. Intuitively, under the condition satisfying (10), the 
lager c  makes the convergence faster due to it means that agents can get the larger 
control input in this situation. It is verified in Section 5. However, in the practice 
application, the input saturation should be considered when determining c . 

4.2 Consensus under Directed Topology 

Now consider the case with directed topology. Suppose that the directed graph G  
has a directed spanning tree and all agents knows the desired state cx . In order to 

achieve the object, the following consensus protocol is proposed: 

 ( ) ( ( ) ( )) ( ( ) ) , 1,2, ,
i

i ij j i i c
j Nf

c
u t a x t x t x t x i n

t t ∈

 
= − − − = −  

   ,  (11) 
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where c  is a positive constant scalar. The disagreement error is defined as 

( ) ( )i i ce t x t x= − . Denote 1 2( ) ( ), ( ), , ( )
TT T T

ne t e t e t e t =   ， then the multi-agent 

system (1) with the protocol (11) can be written in the compact form: 

 ( ) ( ) ( )
f

c
e t H I e t

t t
= − ⊗

−
  , (12) 

where H L I= + . 

Remark 4.  When designing the control input ( )iu t , only the relative state 

( ) ( )j ix t x t−  between the i th agent and its neighboring agents can be used which 

makes the consensus protocol is distributed. In order to driver all the agents to arrive 
the desired state, agents should be pinned by using the desired state as the prior 
knowledge. Therefore, the term ( )i cx t x−  is introduced to assure agents are pinned. 

In the most existing finite-time consensus results, only the upper bound of 
convergence time is given and the convergence time is related to the initial states. 
However, in the consensus protocol (11), the control gain is adjusted in the light of 
the preset time and thus, the convergence time is independent of initial states of 
agents. 

Lemma 3. [21] Consider the following time-varying linear differential equation 

 ( ) ( ) ( )t f t M tθ θ=   , (13) 

where ( ) nt Cθ ∈ , ( )f t C∈  is differentiable, and n nM C ×∈  is a constant matrix. 

Then, the solution of equation (13) is given by 

 [ ]( ) exp ( ( ) (0)) (0)t f t f Mθ θ= −  . (14) 

Theorem 2. Suppose that the directed graph G  has a directed spanning tree. Given 
any finite-time 0ft >  and the desired state cx , the consensus protocol (11) solves 

the desired state consensus problem of system (1) as ft t −→ . 

Proof: The directed graph G  has a directed spanning tree, so it follows from 

Lemma 2 there exists a nonsingular matrix n nQ C ×∈  such that 
-1

2= {0, , , }nQ LQ triag λ λ , where , 2,3, ,i C i nλ ∈ =   are eigenvalues of L  and 

Re( ) 0iλ > . Let 1( ) ( ) ( )t Q I e tξ −= ⊗ , and then from (12) we have 

 ( ) ( ) ( )
f

c
t T I t

t t
ξ ξ= − ⊗

−
  ,  (15) 

where 1 2 2= { =1, = 1, , = 1}n nT triag σ σ λ σ λ+ + .  
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By Lemma 3, based on (15), we have 

 ( ) exp ln (0), [0, )f
f

f

t t
t c T I t t

t
ξ ξ

  −
= ⊗ ∈      

 .  (16) 

Since c  and Re( )iσ  are positive, it is easy to verify that exp ln ,f

f

t t
c T

t

 −
→  

 
0  as 

ft t −→ . It follows that ( )tξ → 0 , as ft t −→ . Then we have 

 lim ( ) ( ) lim ( )
f ft t t t
e t Q I tξ

− −→ →
= ⊗ = 0  , (17) 

which implies ( )i cx t x→ , as ft t −→ . Theorem 2 holds.   

Remark 5.  If we select c  such that  

 Re( ) 1, 1,2, ,ic i nσ > =   ， (18) 

then ( )iu t  is always bounded for all [0, )ft t∈ . 

Remark 6.  In the consensus protocol (11), some parameters have to be determined. 

ft  and cx  can be chose by the need of practice application. The value of c  

influences the convergence rate. Intuitively, under the condition satisfying (18), the 
lager c  makes the convergence faster due to it means that agents can get the larger 
control input in this situation. It is verified in Section 5. However, in the practice 
application, the input saturation should be considered when determining c . 

5 Simulation 

In this section, two illustrative examples are provided to verify the effectiveness of 
the proposed consensus protocols. Without loss of generality, choose 1N = here. 

Consider a multi-agent system consisting of five agents under the undirected graph. 
Suppose the interaction topology of agents is described by Fig. 1. The weight of every 
communication link is set to 1. Only agent 1ν  can get the desired state and then

1 1d = . By calculating, the eigenvalues of H L D= +  are 1 20.1401, 0.8803λ λ= = ,

3 4 52.4229, 2.8341, 4.7226λ λ λ= = = . Choose the value of c  such that (10) holds 

and let 3cx = . Under the control protocol (3), the simulation result is shown in  

Fig. 2～4. We can see the states of all the agents reach the desired state as 
f

t t−→  for 

any initial states. Fig. 3 implies the larger c  will make the convergence faster. 
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Fig. 1. The interaction topology of agents: the undirected topology (left) and the directed 
topology (right) 

 

Fig. 2. The simulation result of system (1) under protocol (3) with the same initial states and 
different parameters: 8, 8fc t= =  (left) and 8, 5fc t= = (right) 

 

Fig. 3. The simulation result of system (1) under protocol (3) with the same initial states and 
different parameters: 12, 8fc t= =  (left) and 20, 8fc t= = (right) 

Next consider a multi-agent system consisting of five agents under the directed 
graph. Suppose the interaction topology of agents is described by Fig. 1. The weight 
of every communication link is set to . All the agent can get the desired state. By 
calculating, the eigenvalues of  are . 

Choose  such that (18) holds and let . Under the control protocol (11), the 

1
H L I= + 1 2,3 4 51, 2 1 , 3jσ σ σ σ= = ± = =

c 1cx =
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simulation result is shown in Fig. 5～7. We can see the states of all the agents reach 
the desired state as  for any initial states. Fig. 6 implies the larger  will 

make the convergence faster. 

 

Fig. 4. The simulation result of system (1) under protocol (3) with the same parameters 
8, 8fc t= =  and different initial states 

 

Fig. 5. The simulation result of system (1) with protocol (11) with the same initial states and 
different parameters: 2, 8fc t= =  (left) and 2, 5fc t= = (right) 

 

Fig. 6. The simulation result of system (1) with protocol (11) with the same initial states and 
different parameters: 6, 8fc t= =  (left) and 10, 8fc t= = (right) 

f
t t −→ c
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Fig. 7. The simulation result of system (1) with protocol (11) with the same parameters 
2, 8fc t= =  and different initial states 

6 Conclusion 

This paper studies the preset time consensus problem of sing-integrator multi-agent 
systems reaching the desired state in both undirected and directed communication 
network. Linear consensus protocols with time-varying gains are presented under 
which sing-integrator multi-agent systems can reach the desired state if the undirected 
network is connected or the directed network has a directed spanning tree. 
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Abstract. As the Internet become mainstream software system environment, 
software systems shift from closed, static and controllable to open, dynamic and 
difficult to control. The changes in the environment are unpredictable; it is ma-
jor challenge for software system research to ensure that the software systems 
can deal with dynamic environment and change themselves appropriately. In 
this paper, according to the Multi-Agent environment,  we divide environmen-
tal perception mechanism into three parts: by defining the environment, the 
composition problems in Multi-Agent Systems environment are solved; by  
designing method by which dynamic environmental data is generated and 
changes, we propose a dynamic environmental perception model based on the 
"publish / subscribe" model; by customized rules, the system can change itself 
in the environment according to the appropriate action to achieve the entire 
software adaptive process. Finally, we present examples to verify the feasibility 
and effectiveness of the theory. 

Keywords: Software Evolution, Multi-Agent System, Dynamic Environment. 

1 Introduction 

Software evolution is the process that software continues to change itself and reach 
people's requirement [1]. Adaptive dynamic evolution mean that during the process of 
dynamic evolution, the software can sense the environment and changes in demand 
according to predefined strategy, as well as change its structure or behavior automati-
cally so that it can adapt itself better to the external environment and the changed needs 
[2]. But in the field of adaptive dynamic evolution software systems, the existing work 
focuses on the manner adopted by the system when the environment changes [3]. By 
this way, the system can adjust itself to the environment. However, the studies on ex-
pressing themselves in the environment and detecting the changes of environment are 
inadequate [4]. Agent environment has been considered an important research, many 
studies are not available as an important factor of the environment into the MAS mod-
els and tools, or are the responsibility of the environment for a weakened. 

The main contribution of this paper is to address the problem of multi-Agent sys-
tem environment which supports explicit representation and effective perception me-
chanisms and methodologies aimed at improving the development of Multi-Agent 
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Systems, Multi-Agent System to enhance the ability to adapt to complex environ-
ments, improve system maintainability [6].  

2 Environment Abstraction and Representation 

2.1 Environment Definition and Classification 

In MAS, usually the software environment is divided into static environment and 
dynamic environment [7]. Static environment refers to the objective physical world, 
such as CPU and memory. Dynamic environment refers to the system environment, 
such as the Agent's state and behavior. Wedivide dynamic environment of the soft-
ware into two categories: internal environment and external environment. 

Definition 2.1the internal environment is expressed as a tripletassociated withA-
gentInEVR = <AgentSet, AgentCaps, LifeMessage>. AgentSetrepresents a collection 
of Agent in system. AgentCaps represents the current Agent's ability. LifeMessage 
represents the Agent lifecycle state. 

Definition 2.2External environment is represented as a tupleOutEVR = <AID, 
Attribute, Type, Value>. AID representsthe unique identifier of Agent running in 
simulation platform. Attribute representsAgent attribute name. Type represents type 
of attribute. Value represents the value of the attributes.  

2.2 Environmental Perception Framework 

This paper presents a dynamic environment perception framework as shown in Fig. 1. 

 

Fig. 1. Dynamic environment perception frameworks 
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Framework overall similar to the style of pipeline structure, mainly consist of sens-
ing module and the evolution rules setting module. Users can subscribe and unsub-
scribe environmental information by sensors. Users can develop the "Event - Condition 
- Action" evolution rules at any time and send it to the evolution rule container. An 
evolution rule contains a reference to one or more sensors. In the MAC operation, on-
going environmental information publishes by the environmental information database 
to save and update the latest real-time environmental information. Sensor container 
screens of concerned environmental information, and update the corresponding sensor 
records. Meanwhile, the Rule Interpreter engine constantly on the evolution rules cus-
tomized loop through a list, according to the reference sensor data and conditional 
logic to determine the evolution rule of whether all the conditions met, if it satisfies the 
reference then set the evolution rule into the rule trigger queue. The rule trigger queue 
is similar to the closed-loop system, gives a new task integration relationship and 
processed by MAS. The evolution control engine parses the action and form new inte-
grated relationship. The task of the current system is still running old tasks until the 
new distribution of tasks successfully and then Multi-Agent collaboration operating 
logic will switch to the new collaborative relationship. The whole process dynamic 
switches task without involved the users to realize the adaptive evolution. 

3 Environment Perception Mechanism 

3.1 Dynamic Environmental Perception Mechanism 

This article divides mechanism of Adaptive Agent perception environment into four 
stages: publish, subscribe, receive and unsubscribe.  

• Publish process of environmental information 

First, AMS instance and state instance are created when platform startup. When 
Agent loaded to the platform, the system creates Agent instance, and sends registra-
tion information to the AMS to register Agent identifies AID and abilities Cap. At this 
point Agent does not communicate with other Agent for collaboration to deal with 
tasks and without any load, so the Agent current health status is "idle". Then when 
there is an operation of Agent increase or delete, the system need to send a registra-
tion or cancellation message to AMS, on behalf of Agent lifecycle change. 

• Publishing process of external environmental information 

Create transport instance and receiver instance when platform startup and create 
Agent instance when Agent is loaded to the platform. Transport instance is called 
during Agent communication and real-time publish data. Receiver instance intercept 
and store the current Agent communication and update the stored contents. When  
the Agent collaboration, will call transport instance to deliver the message which 
content using the string type. Then when transport instance is called, meanwhile  
call receiver instance to update the content of the communication and implement the 
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release process of the external environment information. Receive instance get AID of 
sent messages Agent and identifies message the type of information to the external 
environment. 

• Subscribe/unsubscribe process of Environmental information 

Create SensorContainer instance when platform startup and initialize PublicSensor 
lists and InstanceSensor list to empty. Suppose the user needs to subscribe to the in-
ternal environment information that addition or deletion of Agent changes, then add 
the common sensors, create PublicSensor instance, initializing its name and Agent 
logo and initialize the value of the life state to null. Finally put PublicSensor instance 
to SensorContainer list of PublicSensor. 

• Reception process of environmental information 

When platform startup, it creates environment Information Base Environment Library 
instance which constantly receives environment information stored in StateReceiver 
and MsgReceiver. If the identification of environmental information in the Agent and 
the Agent subscribed sensors identify are same, then the sensor updates the content of 
the environmental information.  

3.2 Rule Triggering Process Based on the "Event/Condition/Action" 

In a dynamic environment perception framework, we propose the ECA evolution rule 
based on the "event/condition/action". If the match succeeds which means evolution 
rule conditions are met, then get the corresponding evolution action, shown in Fig. 2. 

 

 

Fig. 2. The evolution rule custom module framework 
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Fig. 7. The changed system operations 

In this paper, we give a performance test of switching time overhead in traditional 
artificial modeand automatic mode. The experiment process is that using the same 
integrated logic execution evolution, in the same simulation condition and loaded in 
the same number of Agents, we record the time of switching integration script by 
using the artificial mode and automatic mode, as shown in Fig. 8. 

 

 
Fig. 8. Switching processing time overhead comparison 

From the figure two evolutionary modes testing time can be seen in the same con-
ditions, the time overhead required for automatic mode is smaller than that for  
the artificial mode, mainly analyzed in two ways. For public event, artificial mode 
time overhead mainly consuming decision-making and operations in artificial parts, 
including the selection of the integration script, load and start the operation of such 
commands as well as on the response of the system. For instance event, it generally 
cannot adaptive evolution by manually switching. Because the user is often difficult 
to determine whether by visual observation of the conduct of the script to switch, for 
example, if the condition for the evolution is the Agent currently position, as the user 
may determine the error cause visual integration scripts switched earlier or later, re-
sulting in unpredictable consequences. 

5 Conclusion 

Currently a number of software systems operate with changing demands and changing 
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environmental conditions. To effectively make the software system can self-aware 
and adapt to the complex environment is a major challenge for computer software 
technology. With the proposed Multi-Agent system environment representation and 
dynamic perception, we can describe the system environment of software system 
according to Agent features and characteristics of the area; we can also design a dy-
namic sensing mechanism with which the system is able to perceive the environment 
at runtime and can take appropriate actions to meet users' needs and environment 
changes according to its own knowledge. This improves the adaptability and intelli-
gence of the system. But there still exist some shortcomings. The proposed environ-
ment representation is not comprehensive enough and it doesn't have the versatility. 
We will continue to improve the environment representation, parsing evolution rules 
and study the Agent learning and reasoning mechanisms. 
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Abstract. Clustering of gene expression profiles is a mandatory task in cancer 
classification. Querying the expression of thousands of genes simultaneously 
imposes the use of powerful clustering techniques. Swarm based methods have 
shown their ability to perform data clustering. However, they may be faced to 
premature convergence problem and may be time consuming when large data 
sets need to be processed. Nowadays, the availability and widespread of parallel 
processing resources make possible the use of cooperative parallel methods. 
Within this context, we propose in this paper an archipelago based model that 
allows to reap advantage from the dynamics and the intrinsic parallelism of 
three swarm based methods namely PSO, ABC and ACO. Cooperation is 
achieved by sharing information through migration inside and between archipe-
lagoes. The proposed cooperative parallel model for clustering gene expression 
profiles has been implemented on multicore computers and applied to several 
data sets. Experimental results show that it competes and even outperforms ex-
isting methods. 

Keywords: Clustering, Swarm Intelligence, Parallel Metaheuristics, Gene Ex-
pression Profiling. 

1 Introduction 

Gene expression profiling (GEP) is a popular technique in molecular biology used to 
study the expression of very large numbers of genes simultaneously. More particular-
ly it aims at accurately classifying tumors as the majority of cells within a tumor share 
a common profile of gene expression. Managing the mass of microarray data is one of 
GEP challenges. GEP can be performed for class discovery or class prediction [1]. 
The need is to identify characteristics of expression profiles related to non-predefined 
subset in the first case or to predefined subset in the second case.  

In order to study gene expression profiling datasets, one often used computational 
method is clustering. Clustering is the process of grouping genes on the basis of their 
profiles. This classification of genes aims at interpreting and extracting possible infe-
rences from microarrays and other throughput bioinformatics data sets to identify new 
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subsets of tumors. To this end, many methods covering gene expression profiling 
clustering have been proposed in the past decades [2]. No clustering method can ade-
quately handle all types of clusters structures and properties due to the variety of data-
sets regarding overlapping, size, shape and density [3]. 

One alternative is the use of techniques that combine multiple clustering algo-
rithms at once such as clustering ensemble. This later evolves over two steps namely a 
generation step and a consensus step. While the generation step consists in generating 
multiple clustering solutions using the same data sets, the consensus step constructs 
new clustering solutions using the results obtained by the generation step. These two 
tasks are in fact NP-hard problems that require effective methods to be solved [4]. 
Swarm intelligence (SI) algorithms have been investigated to gauge their potential to 
solve clustering problem [5, 6]. Although metaheuristics allow solving NP-hard prob-
lems in reasonable time they still lead to unsatisfactory convergence if not improved. 
This is essentially due to the possibility to get stuck into local optimum.  

The use of parallelism to design new nature inspired algorithms deals with com-
plex problems such as clustering. Parallel algorithms target not only speeding up the 
search but enhancing the quality of obtained solutions as well. The use of parallel 
computing is fostered by the rapid development of technology in designing processors 
(e.g. multicore processors). Nowadays, parallel computing resources have become 
increasingly available and the cost/performance ratio is constantly decreasing. 

In this paper, we propose a multi-swarm approach to deal with clustering problem. 
The key feature consists in organizing swarms into archipelagos where each archipe-
lago acts as a generalized island model. Swarms evolve in parallel. Cooperation  
between swarms is performed at two levels. Inside each archipelago through intra-
archipelago migration and between archipelagos through inter-archipelago migration. 
Three metheuristics are considered namely Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO) and Artificial Bee Colony (ABC).  

The remainder is organized as follows. In section 2, we present the background and 
related works. Section 3 is devoted to the description of the proposed approach for 
gene expression profiling. In section 4, we present the experimental results obtained 
by using available data sets. Finally, conclusions and future work are drawn. 

2 Background and Related Work 

2.1 Background 

Generalized Island Model (GIM). GIM is a parallel model which can be applied to a 
large class of optimization problems. Based on metaheuristics cooperation, it allows 
an effective parallel execution of multiple algorithms across multiple islands. This 
cooperation is maintained by the exchange of solutions between these islands. The 
exchange operator (migration operator) aims at improving the overall performance of 
the different algorithms used [7].  
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Clustering. The purpose of clustering approach is to find natural groups in a given 
data set. This objective is realized by strengthening the similarity and the dissimilarity 
between genes within the same cluster and in different clusters respectively. 

Let  denotes the data set, a clustering of  consists in finding a partition of D 
denoted by  such that , , … , K  where each   is a cluster and K 
is the number of clusters. Clusters should be nonempty, disjoint and their union leads 
to D. 

Clustering Ensemble. Is an approach that suggests clustering data over two steps 
namely a generation step and a consensus step. Generation step  consists in 
generating multiple clustering solutions. The consensus step  consists in con-
structing the final clustering solution using the information provided by the first step 
that is  , , … ,  and , , … ,  [4]. 

2.2 Related Work 

The collective behavior of decentralized and self-organized natural systems such as 
colonies of ants, bees and swarm of birds among other has inspired many researchers 
and lead to what is known as swarm intelligence systems. Modern metaheuristics are 
nature inspired like: Ant colony optimization (ACO) proposed by Dorigo et al. [8], 
Particles warm optimization (PSO) proposed by Kennedy and Eberhart [9], Artificial 
bee colony (ABC) proposed by Karaboga and Basturk in [10].  On the other hand, 
data clustering can be easily cast as a global optimization problem, thereby making 
the application of SI tools becomes more obvious and appropriate. In [11], a con-
strained ACO (C-ACO) is presented on the basis of handling arbitrary shaped clusters 
and outliers present in the data. Adaptive ACO was proposed in [12] to determine the 
optimal number of clusters and also to improve the convergence rate. It imitates the 
ants’ behavior of grouping dead bodies based on their size, so as to keep the nest 
clean. In fact, the first algorithm using this concept is proposed by LF (Lumer and 
Faieta) algorithm [13]. In [14], several ant colonies are used in parallel to find cluster-
ing solutions that are sent to the queen (each colony has one queen). At the final 
stage, the results at queens level are combined using a hypergraph model. From 
another side, PSO based Clustering was first introduced by Omran et al. in [15]. Their 
results showed that PSO based clustering outperform k-means and FCM (fuzzy c-
means). Authors in [16] have introduced the quantum-behaved PSO for clustering 
analysis as a QPSO application to gene expression profiling. Also, to determine the 
unknown number of clusters, a recent clustering algorithm was developed by Cura et 
al. [17]. Clustering has been tackled as well using ABC metaheuristic.  Karaboga is 
the first algorithm proposed [18]. In [19], the authors proposed ABCK algorithm, 
which tries to find the Centroid initialization to be given as an input for the K-means 
algorithm. 

Algorithms based on these nature inspired metaheuristics generally suffer from 
premature convergence. Many tentative methods to avoid such issue were proposed in 
the literature. In [20], Ghosh et al have proposed a variant of ACO, known as APC 
(aggregation pheromone density- based clustering) algorithm. This latter attempts to 
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solve the issue by the pheromone matrix updating policy. Cohen and Castro in [21] 
have proposed a particle swarm clustering algorithm in which the particle’s velocity 
update is influenced by the particle’s previous position along with cognitive, social and 
self-organizing terms. These latter are helpful to guide the particle towards better solu-
tions avoiding local optima. In [22], an ABC algorithm proposes the introduction of a 
new group of bees called the scout bees, which creates a random search to help the 
employed bees finding the food source. All the methods reported so far remain limited 
in terms of quality of results and induce an extra cost regarding time complexity.  

3 Proposed Cooperative Parallel Multi-swarm Model  
for Clustering  

The key idea behind the proposed work is to organize swarms into archipelagos as 
shown on figure 1. A fully connected and bidirectional topology is used. First a gen-
eration step is performed followed by a consensus step. The use of cluster ensemble 
can be justified by the fact that weak clustering solutions when combined using a 
consensus clustering technique will give rise to high quality clustering solutions [23]. 

3.1 Generation Step 

Each archipelago is in fact a generalized island model that encompasses three swarms 
that evolve according to ACO, PSO and ABC dynamics. Each of these algorithms 
explores the space of centroids as search space. The same solution encoding is 
adopted for the three algorithms that is a vector of centroids.  
 

  

Fig. 1. Proposed model 

Inside each archipelago, the clustering algorithms evolve in parallel; they generate 
clustering solutions and cooperate using an intra-archipelago migration. This latter is 
triggered by each algorithm whenever it gets into stagnation that is no further im-
provement of its global best solution. By another side, whenever all islands within an 
archipelago get into stagnation simultaneously, an inter archipelago migration is per-
formed. After migration, a stagnant island updates its population by introducing the 
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migrant solutions using a recombination policy that consists in replacing worst solu-
tions by the migrant ones to form the new population. Each island evolves according 
to algorithm 1 shown below. 

  
Algorithm 1. ,  (the jth island in the ith archipelago ) 
begin              

 input  

 P :population  
 S :selection strategy  
 R :recombination policy  
  :clustering based SI algorithm (ACO, PSO or ABC) 

 ,  :Best solution found in the ,  
   , , … , -j,  represents the number of islands in the ith 

archipelago  
   , , … , -i, n represents the number of archipelagos 
initialize P :initialize population  
 while non_stop_criterion  

  P'←Ai(P) :get the new population P'  
if isStagnant (P') :stagnation test 
 initiate intra-Archipelago migration   
 send(‘start migration’) to ,                    
 M' ←receive :receive migrant solutions 
 if , = ,   :one dominant solution  
  initiate inter-Archipelago migration  
  send(‘start migration’) to ,   
 end 
 M'←receive :reception of migrant solution 

 P' ← R(P', M') :recombination policy  
 P ←P' :update current population 

  end  

 end   

end. 

 
The migrant solutions represent 5% from the population that are selected using an 

Elitism strategy when a migration request is received as shown in algorithm 2. 
 

Algorithm 2. ,   at receiving of (‘start migration’) 
begin 

 M ← S(P) :select a subset M from local population  

 send(M,j) :send selected solutions  
end. 
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3.2 Consensus Step 

Clustering solutions obtained after the generation step are given as input for the con-
sensus step. The task of this latter is to combine them with the aim to obtain a final 
better solution. Therefore, there is no constraint regarding the way partitions must be 
obtained. In our model we used GA based consensus clustering (HCE) proposed in 
[24]. The method uses the search capability of genetic algorithms to obtain the con-
sensus clustering. Since convergence is not guaranteed, we propose using three in-
stances of HCE in parallel and introducing solution migration to allow cooperation 
between them as shown on figure 2. The outline of each HCE is given in algorithm 3. 

 
 
 
                                           
 
 
 
 

 

Fig. 2. Consensus step 

Algorithm 3.   
begin 

 input:  

 P  :initial population 
 S  :selection strategy 
 R  :recombination policy  
 Ui  :number of iteration in HCE 
 initalize P :initialize population 
 while non_stop_criterion 

  P'← HCE(P,Ui) :P' represents the new population   M ← S(P') :select M chromosomes from P'  
send M :send to all other islands  M'←Receive :reception of M' chromosomes from neighboring 
islands P''← R(P', M') :combine M' with P' to generate new  population  P ← P''                

 end  

end. 

4 Experimental Results and Discussion 

The proposed model has been implemented in C++ using a cluster of 8 workstations 
(HP Z600) where each workstation has an Intel Xeon with 8 cores at 2.4 GHz and 16 
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Go memory. Message Passing Interface (MPI) has been used for the inter processor 
information exchange. In order to assess the performance of the proposed method, 
real data sets borrowed from [25] have been used. These sets represent different com-
plexities regarding data size and distribution. As described in Table 1.  

Table 1. Description of used gene expression datasets 

Dataset Tissue Dimension Num. 
classes   

Selected #  
of genes    

Breast Cancer  Breast 49 2 1198 
Endometrial cancer  Endometrium 42 4 1771 
Leukemia  Bone Marrow 248 6 2526 
Multi-tissue  Multi-tissue 190 14 1363 
Prostate cancer  Prostate 69 3 1625 
Serrated carcinomas  Colon 37 2 2202 

 
Parameters of the three used metheuristics algorithms are set as shown in Table 2. 

Table 2. Experimental setup 

ACO Evaporation rate=0.1, Threshold=0.9  
PSO 1.2, wmax=0.9, wmin=0.4 
ABC Upper bounce=5, limit=10 

4.1 Evaluating Clustering Result Quality 

To assess the quality of our results, we used cluster cohesion as an internal perfor-
mance measure. It measures the compactness of clusters that is how closely related 
are objects in a cluster. Cohesion is measured by the within cluster sum of squares: ∑ ∑ , Where  is the number of genes in the datasets,  

the number of cluster and  the center of cluster .  
The proposed approach has been executed 20 times during which values of cohe-

sion have been gathered. Each of the used swarm algorithms has been processed in 
the same manner separately. In table 2, we show the obtained best values in each case. 
It is observed from these results that the proposed cooperative method achieved the 
best results in all cases when compared to each algorithm alone. Furthermore, we 
illustrated the distributions of the obtained results over the 20 runs in terms of box-
plots as shown on figure 3. We see that in terms of median values, the proposed mod-
el outperforms the three algorithms. Except for Multi-tissue data set, our algorithm 
exhibits more stability and robustness. In order to study how significant is the differ-
ence between algorithms a Friedman test followed by a multi-comparison test have 
been performed. The p-values given by the Friedman test are shown on table 3 and 
multi-comparison graphs are shown on figure 3. The p-value indicate significant  
difference between the proposed model and the other algorithms in all cases at signi-
ficance level α=0.05 while giving the best results as shown by the boxplots. The mul-
ti-comparison graphs clearly show that our algorithm is significantly different from 
the other algorithms. This gain shows the advantage of the use of cooperation and 
parallelism between metaheuristics. 
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Table 3. Best cohesion values obtained over 20 runs and Friedman’s test p-values 

Data set 
 

 SO
 

 Proposed 
 

Friedman’s 
Test   p-value 

Breast Cancer 14.52 17.89 20.08 12.05 4.8921e-11 
Endometrial cancer 6.10 6.06 6.16 2.09 1.9925e-07 

Leukemia 44.08 42.09 57.02 34.56 8.5126e-11 

Multi-tissue  3.06 2.43 2.09 1.03 1.1631e-05 
Prostate cancer 24.07 20.37 25.53 15.62 4.8921e-11 

Serrated carcinomas 28.10 26.73 29.33 24.32 1.3177e-08 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Boxplots showing distribution of results over 20 runs for all data sets and the corres-
ponding multi-comparison graph in which 1: ACO, 2: PSO, 3: ABC and 4: PSIC (PSIC: Paral-
lel Swarm Intelligence in Clustering, it refers to the proposed model) 
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Another set of experiments has been conducted to evaluate the ability of our model 
to find the right number of cluster. We compared our results with the expected optim-
al number of classes related to each data set and also with DiCLEANS (Divisive 
Clustering Ensemble with Automatic Cluster Number) algorithm reported in the lite-
rature [23]. The experimental results show that our approach competes with and even 
outperforms DiCLEANS in some cases as shown in table 4. However, when the num-
ber of clusters grows like in Multi-tissue and Leukemia data sets both algorithms fail. 
In our case this can be explained by the fact that clustering algorithms in all islands 
have been run with fixed number of clusters. 

Table 4. Comparison of obtained number of clusters 

Data                               True Cluster   DICLEANS    Proposed   

Breast Cancer  2 2 2  
Endometrial cancer  4 4 4  
Leukemia 6 3 4  
Multi-tissue  14 5 6  
Prostate cancer 3 2 3  
Serrated carcinomas  2 2 2  

5 Conclusion 

In this paper we described a model that allows cooperation between several heteroge-
neous swarms organized into archipelagos to solve clustering of gene expression pro-
files. Each archipelago is a GIM. A fully connected and bidirectional topology is 
used. Communication is performed in asynchronous manner and an elitist selection 
strategy is used to decide about migrant solutions. Obtained results are very competi-
tive. As ongoing work, we intend to further improve results using MapReduce model 
and dynamic determination of cluster numbers. 
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Abstract. In view of the intrinsic drawbacks of traditional clustering methods, 
e.g. the sensitivity to initialization and the risk of falling into local optima, we 
introduce two new tools to enhance clustering performance via Swarm 
Intelligence (SI), i.e. Self-Aggregation (SA) and Eccentricity Analysis (EA), 
which are based on Firefly Algorithm (FA) in this paper. In order to confirm the 
effectiveness of the techniques, an improved k-means++ method is given as an 
instance. Large experiments illustrate that our algorithm performs better on both 
accuracy and robustness than the existing ones. 

Keywords: Cluster Analysis, Eccentricity Analysis, Firefly Algorithm, Self-
Aggregation, Swarm Intelligence. 

1 Introduction 

Cluster analysis is a vital task of unsupervised learning, which aims at grouping a set 
of objects in the way that the objects in the same cluster share more common features 
than those in other clusters. Over the years, it has been used in many fields, e.g. 
machine learning, image analysis, pattern recognition, etc [1, 2, 3]. There are  
four major categories in the approaches, i.e. partitional clustering, density-based 
clustering, hierarchical clustering, and grid-based clustering. 

Swarm Intelligence (SI) is a class of methods to solve optimization problems, 
inspired by the collective behavior in nature such as bird flocking and fish schooling. 
A series of clustering methods hybrid with SI have been proposed in recent years [4, 
5, 6, 7, 8], whose advantages have been studied and confirmed to a certain extent. In 
the following pages, we will go on to compare their characters and provide some 
analyses together with our algorithms. 

In this paper, we will talk about two new thinkings on using SI to improve the 
clustering methods, i.e. Self-Aggregation (SA) and Eccentricity Analysis (EA). We 
would like to point out that the ideas are substantially different from the traditional 
approaches, which transform the clustering into optimization problems. In fact, our 
research focuses on more essential ways for SI to work on clustering, which mean 
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using some kind of swarm behavior to make the expected results arise spontaneously. 
In practice, we choose Firefly Algorithm (FA) [9, 10] as the frame for some reasons 
listed later. Furthermore, we design a new k-means++ method hybrid with these 
techniques and demonstrate their superiority by experiments. 

The remainder of this paper is organized as follows. Section 2 and 3 briefly look 
back at k-means, k-means++, and FA methods. Section 4 introduces the motivations 
and implementations of the proposed algorithms in detail. The experiment setup and 
comparison analyses are displayed in Section 5. The contributions and future work are 
concluded in Section 6. 

2 The K-means/K-means++ Method 

The k-means method [11] is one of the most popular clustering approaches. Given a 
set of N objects, where each object is a d-dimensional real vector Xi, the target of k-
means is to partition the objects into k sets Si, so as to minimize the Sum Squared 
Errors (SSE), 
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where Ci is the mean of the objects belonging to Si. The k-means uses an iterative 
refinement approach as follows. 

 
Algorithm 1. The k-means method. 

1.  Arbitrarily choose k centers in the domain. 
2.  Assign each object to the nearest center, where the Euclidean distance is most often used. 
3.  Recalculate the means to be the centers of new clusters. 
4.  Loop to 2 until terminal condition is met, e.g. the assignment no longer changes. 

 
The k-means method is a simple and fast algorithm which is very appropriate for 

spherical clusters. However, its performance badly depends on the initial distribution. 
To address the uncertainties, Arthur et al. [12] propose a specific way of choosing 
centers based on the idea to make them as far as possible away from each other. The 
whole algorithm is called k-means++. 

 
Algorithm 2. The k-means++ method. 

1.  Take an object uniformly at random as a center. 
2.  Choose another center with probability proportional to the distance, from the object to the 
closest center we have already chosen. 
3.  Loop to 2 until we have obtained k centers in total. 
4.  Proceed as with the standard k-means algorithm. 
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3 Firefly Algorithm 

In summer, fireflies will produce short and rhythmic flashes to attract mating partners 
or potential prey. Through communication, the swarm will gather in the vicinity of the 
most suitable places, which behaviour could be referred to in solving optimization 
problems. There are two important issues in FA, i.e. the variation of light intensity Ii 
and formulation of the attractiveness βi,j. Based on some assumptions and analyses, 
they are recommended to be defined as follows for maximization goals. 
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where β0 is the attractiveness at ri,j = 0, and γ is the fixed light absorption coefficient. 
The ri,j gives the Euclidean distance between any two fireflies. When a firefly moves 
towards another, its location will be updated in 
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where the second term is due to the attraction while the third term is randomization 
with scale factor α, and rand is a random number distributed uniformly in the range 
[0, 1.0], i.e. rand ~ U(0, 1.0). Now we can summarize FA as pseudo-code: 

 

Algorithm 3. Firefly algorithm. 

1.  For each firefly: 
    1.1.  Initialize its position randomly in the space. 
    1.2.  Evaluate fitness value and update the current optimum. 
2.  For each moving firefly: 
    2.1.  For each targeted firefly: 
        2.1.1.  Check if the brightness of targeted one is greater using Eq.(2). 
        2.1.2.  If so, move towards the targeted firefly using Eq.(3) and Eq.(4). 
    2.2.  Evaluate fitness value and update the current optimum. 
3.  Loop to 2 until terminal condition is met, e.g. iteration limit is reached. 

 
Compared with other SI-based algorithms, there are some distinct strengths of FA 

such as few parameters and strong capacity to capture extremum areas. Its inherent 
characteristics of aggregation and differentiation also meet our expectations well for 
clustering. What’s more, we would like to point out that there is another SI-based 
algorithm called Glowworm Swarm Optimization (GSO) [13, 14], which is also 
inspired by the luminescent insects. Although the two methods share similar 
observations, the implementations of them are different or even opposite. 

4 Proposed Algorithms 

In this section, we will explain in detail how to employ FA to realize Self-
Aggregation (SA) and Eccentricity Analysis (EA), and then introduce a hybrid k-
mean++ algorithm to outline the universal improving strategy. 
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4.1 Approach for Self-aggregation 

In the previous studies, there are two representative clustering methods called K-FA 
[6] and GSOCA+KM [7]. Both of them adopt SI-based algorithms for pretreatment, 
and then use k-means to obtain final results. It is observed that their processing ways 
stand for two different ideas: 

1. For K-FA, it transforms clustering into a classic optimization problem defined by 
Eq.(1) and utilizes FA to acquire an optimal solution, which could be taken as the 
seeds of k-means. 

2. For GSOCA+KM, it regards the data as individuals in a glowworm swarm and 
makes them reorganize spontaneously by evolutions, to strengthen the 
differentiation of clusters and make those in the same cluster aggregating closer. 

According to our research, we find the latter can not only give better performance, 
but also enhance the theoretical upper limit. Now we provide some suggestive 
interpretations. 

 

 
Fig. 1. Two clustering processes from unstable states to stable, where the circles refer to objects 
and the squares refer to cluster centers. The left is executed on original data and reorganized 
data are adopted for the right. 

It is interesting to see that the unprocessed data set in the left case leads to a false 
partition according to our common understanding. What is the root cause of this? 
Note that the SSE (similar to potential energy in physics) of the false partition is yet 
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smaller. Therefore the reason is that the seemingly wrong partition is just a “right” 
one in the prototype of k-means, i.e. an object should be assigned to the nearest 
cluster center. This rule is not correct in most actual cases, and fortunately it could be 
amended through Self-Aggregation (SA). 

Compared with GSO, there are at least three facts indicating the superiority of FA 
on realizing SA as follows. 

1. With the removal of luciferin and other simplifications, the number of parameters 
in FA is far less than GSO’s. 

2. In FA, the attractiveness attenuates with distance rather than being simply 
restricted by the threshold radius, leading to more consistent performance. 

3. The step size in FA is adaptive and surely better than the constant in GSO, e.g. for 
avoiding the oscillatory phenomenon. 

Considering the above, we propose our algorithm of SA based on FA, by the 
redefinition of light intensity Ii as 
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Intuitively, the firefly with more neighbors and distributed more densely, has larger 
probability of being close to the cluster center, and its light intensity Ii tends to be 
greater. This explains the rationality of our approach. 

4.2 Approach for Eccentricity Analysis 

Let us consider a problem, how to recognize an object’s degree of deviating from the 
cluster center as accurately as possible, before the clusters are worked out? In our 
opinion, it is not easy to solve through structured methods. However, a reasonable 
solution could be neatly provided by SI-based algorithms. Think of the modified FA 
in the previous part. The individuals at the border of a cluster have larger moving 
steps, since they are attracted by more objects in the same direction, whereas those 
near the center share smaller moving steps, because their attractions are less and come 
from all sides. This phenomenon can be used for Eccentricity Analysis (EA) in 
reverse, for which we rewrite the algorithm again so that it needs neither iterative 
process nor actual movement, just to record the moving vector ΔXi of each firefly 
using 
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Then we can obtain the Eccentricity of each firefly (ECCi) in 

 ]},1[,|{ NjXofnormXofnormXECC ijji ∈Δ<Δ=  (7) 

whose intuitive sense is the number of fireflies moving a shorter distance than the 
specific one, and on the rise from each center to the boundary. Formally, we have 
grounds for the correctness of Eq.(8) in a statistical sense. 
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Given ECCi, we can know the approximate distribution of the swarm, which could 
be utilized in many ways, e.g. designing particular regulations for different 
individuals in an optimization or clustering procedure. 

4.3 Hybrid K-means++ Algorithm 

Given the two helpful instruments, there is a natural strategy to improve an existing 
clustering method, i.e. 1) do SA for reorganization; 2) do EA to label ECCi; 3) run 
clustering method taking the heuristic information into use. Now we introduce a  
k-means++ improved in this way, by interpreting the 3) step as follows. 

Since the k-means++ attempts to generate the initial centers as far as possible away 
from each other, it probably leads to a layout where the chosen objects are distributed 
on the edge of the clusters, which is not the most ideal situation. Nevertheless, if we 
make the centers picked out from the objects with the lowest ECCi at P percent, the 
clustering seeds will come close to the accurate centers to a certain extent. This 
modification can improve the robustness of the algorithm, as well as accelerate the 
convergence. We take the improved k-means++ for comparative trials in the next 
section. 

5 Experiments and Results 

In this section, we first make a brief description of the experimental setup including 
benchmark data sets and parameter settings, then make a comparison with some 
competitors, i.e. k-means, k-means++, K-FA, and GSOCA+KM to prove the 
advantages of our proposals. 

The experimental platform was a laptop computer with Intel (R) Core (TM) i7-
3630QM CPU @ 2.4 GHz (8 CPUs), containing 8.0GB of RAM, running Microsoft 
Windows 7 Ultimate 64-bit. The simulation programs were developed using Dev-C++ 
4.9.9.2. 

5.1 Experimental Setup 

The experiments were conducted on six real-world data sets widely used in the 
literature, i.e. Iris, Wine, Glass, Balance, Seeds, and WDBC (Wisconsin Diagnostic 
Breast Cancer) downloaded from the UCI database repository. The detailed features 
of them are listed as follows. 

Before clustering, we normalized the data to make them proportionally distributed 
in the unit space, by executing in each dimension 
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Table 1. Summary of the data sets 

Data Set Records Features Clusters Area 

Iris 150 4 3 Life 

Wine 178 13 3 Physical 

Glass 214 9 6 Physical 

Balance 625 4 3 Social 

Seeds 210 7 3 Life 

WDBC 569 30 2 Life 

 
where Xmin and Xmax are the minimum and maximum coordinates of the given data set 
respectively. 

Each time for pretreatment, we ran K-FA for 50 iterations with swarm size 50, 
GSOCA+KM for 10 iterations, and our algorithm for 5 iterations keeping the run-
times close. Then k-means/k-means++ was iterated for 100 rounds. All the tests were 
repeated for 10 times independently with configures the same. It should be noted that 
only a few iterations of SA are enough to achieve obvious improvements. 

For K-FA and GSOCA+KM, we set the parameters in Table 2 and 3 with reference 
to [6, 7] and our experience. 

Table 2. Parameter settings in K-FA method 

Parameter γ α β0 

Value 1.0 0.7 1.0 

Table 3. Parameter settings in GSOCA+KM method 

Parameter l0 ρ γ s β rs nt r 

Value 0 0.4 1.0 0.02 0.02 0.2 10 0.1 

 
For our algorithm, we believe that the following settings provide satisfactory 

performance most often, according to plenty of tuning practice. 

Table 4. Parameter settings in hybrid k-means++ proposed 

Parameter γ α β0 P 

Value 100.0 0.005 0.5 50.0 

5.2 Performance Comparison 

In order to measure the effect of clustering, the classification accuracy is usually 
taken into use. However, we don’t want to waste run-time on the correspondence 
between the real and artificial clusters, so we construct the Associative Error Rate 
(AER) given by 
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where the IDCreality 
i  is the identification number of the cluster that the i-th object 

belongs to in reality, while the IDCresult 
i  is the similar term given by the algorithms. 

The result of logical operation is 0 or 1. Obviously AER varies in the range [0, 1.0] 
and the smaller is the better, especially 0 if the division is exactly the same as the 
truth. 

Table 5. Performance comparison in associative error rate 

Algorithm 
Comparison 

Index 

Benchmark Data Sets 

Iris Wine Glass Balance Seeds WDBC 

k-means 

Best 12.50% 6.50% 33.10% 39.50% 13.00% 13.40% 

Mean 23.50% 9.40% 45.10% 41.00% 13.20% 16.70% 

Std 15.30% 7.60% 14.50% 1.20% 0.20% 10.00% 

k-means++ 

Best 12.50% 5.80% 32.00% 37.70% 13.00% 13.40% 

Mean 14.30% 7.00% 33.50% 41.50% 13.30% 13.40% 

Std 4.50% 0.70% 1.30% 2.20% 0.30% 0.00% 

K-FA 

Best 12.50% 6.00% 32.70% 37.70% 13.00% 13.40% 

Mean 25.50% 6.90% 44.30% 41.90% 14.40% 13.40% 

Std 20.90% 0.40% 15.10% 2.70% 3.90% 0.00% 

GSOCA+KM 

Best 9.40% 6.50% 33.60% 37.90% 10.40% 13.40% 

Mean 18.40% 9.60% 47.40% 40.60% 16.40% 16.70% 

Std 16.40% 7.20% 17.30% 1.50% 16.80% 10.00% 

k-means++ 

with 

SA & EA 

Best 4.20% 5.30% 32.50% 34.10% 9.90% 12.50% 

Mean 10.40% 7.80% 35.20% 42.40% 12.40% 13.80% 

Std 7.60% 1.90% 1.90% 4.10% 1.30% 0.70% 

 
The detailed comparison indexes and experimental records are enumerated in 

Table 5. We can easily find that k-means++ and K-FA indeed enhanced the 
performance of standard k-means on Wine, Glass, and Balance, however, they played 
an insignificant role on the rest of data sets, since the theoretical limits had been 
reached as we discuss. The GSOCA+KM was successful in upgrading the best results 
on Iris and Seeds, but failed on WDBC which might be partially attributed to the 
massive parameters increasing the complexity of tuning. 

It is demonstrated that our algorithm outperformed the competitors consistently in 
all the instance, which not only broke the theoretical limits on Iris, Seeds, and 
WDBC, but also enhanced the results on the other data sets especially on Balance. In 
addition, it is fairly reliable for the stability embodied in good mean performance. 
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Table 6. Performance comparison in sum squared errors 

Category of Algorithms 
Benchmark Data Sets 

Iris Wine Glass Balance Seeds WDBC 

Methods without SA 7.00E+00 4.90E+01 1.84E+01 2.17E+02 2.20E+01 2.16E+02 

Methods with SA 7.79E+00 4.90E+01 1.99E+01 2.20E+02 2.22E+01 2.16E+02 

 
In Table 6, we list the SSE of the best results generated by the methods without SA, 

i.e. k-means, k-means++, and K-FA, as well as the opponents, i.e. GSOCA+KM and 
our hybrid algorithm. It is proved once again that the better partitions in the sense of 
SSE are not in fact as good as those reorganized first, for which our pretreatment tools 
are highly recommended. 

6 Conclusion and Future Work 

This paper first introduces the ideas and realizations of Self-Aggregation (SA) and 
Eccentricity Analysis (EA) based on Firefly Algorithm (FA), then provides a variant 
of k-means++ hybrid with these techniques, whose superiority is verified by 
experiments. The work indicates a new direction to enhance clustering performance 
via Swarm Intelligence (SI). 

Future work mainly focuses on making general optimizations in the case of high-
dimensional and large-sized conditions, and finding a more efficient or adaptive way 
to determine the several parameters. 
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Abstract. Using DNA computation to solve clustering problem is a new
approach in this field. In the process of problem solving, we use DNA
strands to assign vertices and edges, constructing the shortest Hamilton
path and cutting branches whose length is longer than the threshold we
gavegetting the initial clustering result. For improving the quality, we do
the iterative calculation, getting clusters for every produced cluster, we
deal all of the process with DNA computation in test tubes, reducing the
time complexity obviously by DNAs high parallelism. In this paper, we
give the process and analysis of our algorithm, illustrating the feasibility
of the method.

Keywords: DNA computation, clustering, shortest Hamilton path,
parallelism.

1 Introduction

In 1994 ,Adleman [1] computed the seven vertices of Hamiltonian path problem
with DNA molecules in test tube, which shows a great power in combinational
problems [2] [3] by DNA computing. Then DNA computing is widely used in
various fields. So far, it solves many practical problems successfully. Compared
with traditional computing, DNA computing is more suitable for solving complex
combinatorial optimization problem. DNA computing belongs to the biochemical
reaction in essence, which loads information in DNA chain. Through the relevant
operation and under the environment of a particular reaction, it output the
solution set. DNA computing has three advantages: (1)huge parallelism (2)high
speed (3)large storage, 1 bit information can be stored in 1 nm3 [4].

Clustering plays an important and indispensable role in data mining. Al-
though several methods are available in these areas [5], these algorithms exhibit
polynomial or exponential complexity when the number of clusters is unknown
and the data set is huge, which make problems more challenging. There are
many types of clustering, such as hierarchical clustering, Density-based cluster-
ing, Subspace clustering, etc. However, when the number of clusters is unknown
and the data set become huge, these algorithms exhibit polynomial or exponen-
tial complexity, which make the problem being more challenging [6].

William Rowan Hamilton was Astronomer Royal of Ireland in the mid-19th
century, the problem that has come to bear his name. A Hamiltonian path is

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 470–478, 2014.
c© Springer International Publishing Switzerland 2014
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a path that visits each vertex exactly once, given starting and ending vertex
beforehand. The Hamiltonian path problem is to decide for any given graph
with specified start and end vertices whether a Hamiltonian path exists or not.
So it is a decision problem.

There have been many algorithms to deal with the Hamiltonian path prob-
lem, just like greedy algorithm, dynamic planning algorithm, divide and conquer
algorithm. However, it seemed that there were any efficient methods in solving
it. In the early 1970s, it was shown to be NP complete. Until 1994, Adleman
used DNA computation to find the Hamilton path in a seven vertex directed
graph, which proved to be a much powerful algorithm.

DNA computing has been used in many fields, but there has not many re-
searches in clustering. Bakar and Watada presented some ideas to use DNA com-
puting to solve clustering problems [5]. They proposed a new DNA approach to
solve clustering problem based on k-means and fuzzy c-means algorithm. Kim
and Watada (2009) gave the similar method for heterogeneous coordinate data.
Zhang Hongyan, Liu xiyu [7] presented another research on clustering based on
the idea of using DNA computing to find Hamilton circuit.

Motivated by researches above, we combine DNA computing with clustering
through Hamilton path. At first, we find the shortest Hamilton path, then, we
use the thought of mimimum spanning tree, cut edges beyond the thresholds
by the help of grids. All the process conduct in test tubes The DNA-Hamilton
based algorithm provides an alternative for traditional computing.

2 Preliminaries

DNA computing is essentially a biochemical reaction, The information included
in the DNA chain, under certain circumstances, and through some related opera-
tions, we can get the solutions. A strand of DNA is encoded with four nucleotides,
A(Adenine), G(Guanine), T(Thymine), C(Cytosine). Each strand, according to
chemical convention, has a 5’ and a 3’ end; hence, any single strand has a natu-
ral orientation. According to the famous Watson-Crick complementary which is
deduced by James D. Watson and Francis H. C. Crick in 1953, A bonds with T
and G bonds with C. The pairs are (A, T) and (G, C).

The manipulations about DNA computation are shown as follows: Gel elec-
trophoresis used for the separation of DNA molecules. Electrophoresis is a pro-
cedure which enables the sorting of DNA molecules based on size and charge.
Using an electric field, DNA molecules can be made to move through a gel made
of agar. The DNA molecules being divided are dispensed into a well in the gel
material. The gel is placed in an electrophoresis chamber, which is connected
to a power source. When the electric current is applied, the negatively charged
DNA molecules move toward the anode, and we know that the larger molecules
move more slowly than the smaller molecules through the gel. So, the smaller
molecules go to the positive electrode preferentially. Then, the different sized
molecules form distinct bands on the gel, from this bands, we can know the
length of different DNA molecules.
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DNA denaturation means the melting of double stranded DNA to generate
two single strands. The main work is to break the hydrogen bonds between the
bases in the duplex. We often heat the DNA to a temperature above its melting
point in the laboratory to melt the double stranded DNA. If we cool the tube
again, the denaturated DNA will bump into each other and stick tightly, and
becomes double stranded DNA. This process is named DNA annealing. Poly-
merase Chain Reaction can produce large amounts of a specific DNA fragment
from small amounts of a complex template. Recombinant DNA techniques cre-
ate molecular clones by conferring on a specific sequence the ability to replicate
by inserting it into a vector and introducing the vector into a host cell. Because
of Polymerase Chain Reactions high replication ability, it has had an enormous
impact in both basic and diagnostic aspects of molecular biology.

DNA sequencing is the method to determine the order of the nucleotide bases
in a molecule of DNA. Some important methods of DNA sequencing are as
follows: Maxam - Gilbert sequencing (this method is based on chemical modi-
fication of DNA and subsequent cleavage at specific bases), and then Frederick
Sanger invented a new method named Chain-termination methods, because of
its high efficient and lower amounts of radioactivity than the method of Maxam
and Gilbert, it rapidly became peoples choice. There are more ways about DNA
sequencing, we do not introduce here.

3 DNA Computing Design for Clustering Algorithms

The basic idea of this algorithm is using grids to divide dataset firstly. Then,
it extracts the mapping data to form graph. Using DNA computation does the
clustering at last.

3.1 Framework of Algorithm

Input D;
Output C;
Step 1 meshing data set;
Step 2 take each center of the grid which contains data as vertex of the

generated graph, and connect the center.
Step 3 calculating distance between vertices and expressed as matrix A. gen-

erating the directed weight complete graph.
Step 4 using DNA sequences to encode vertex and edge, reacting fully in a

test tube, getting the shortest Hamilton path.
Step 5 deleting edged not meeting with the threshold Φ ( Φ is the function of

x, y), forming the preliminary clusters.
Step 6 doing step 2 - step 4 of data points in each cluster, finding the shortest

Hamilton path weights and ε, if ε < ξ (upper and lower bounds of the factor for
the weight, and the new grid of x, y). The algorithm stops. Otherwise, it goes
to step 7.
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Step 7 for ε > ξ cluster, repeated step 1 - step 6, until all the cluster are
satisfied with ε < ξ.

Step 8 Return clustering result C.

3.2 Process of Algorithms

According to the characteristics of data sets, corresponding grid is given, data
are divided. In step 3, the distance between vertices is

D =

√

(x2 − x1)
2
+ (y2 − y1)

2
(1)

Graph G = (V,E) is generated. In step 4, each vertex design for nmr, the
DNA strand of edge is the complement strands of its precursor vertex + weight
information coding + complement of subsequent vertex. Each vertex is set as an
independent cluster and encode by DNA sequence. Through a series of biological
response, the shortest Hamilton path is obtained. The process is as follows [4]:
(a) assuming for any graph, the beginning is v1 and ending is vn, (b) generating
all arbitrary path in graph, (c) keeping paths with starting v1 and ending vn,
(d) keeping paths containing all vertex at least once, (e) choosing the shortest
path, which is the initial clustering result.

3.3 Process of Biology Reaction

(1) input(T):
putting single-stranded DNA molecules representing each vertex and edge into

test tube T. doing full annealing and connection reaction, amplifying random
product by using polymerase chain reaction.
(2) prefix(T, v1):

extracting all DNA molecules containing vertex v1 from test tube T
(3) postfix(T, vn):

extracting all DNA molecules containing vertex vn from test tube T
(4) amplify(T):amplifying DNA strands with v1 and vn
(5) length-separate(Tm ∗ n):

extracting all paths with n vertices (each vertex encoding length of m)
(6) for i from 2 to n− 1 do
(7) {
(8) substring-separate(Tvi):extracting DNA stands with all vertexes recursively.
(9) }
(10) end for
(11) return detect(T):

using gel electrophoresis technique to find the shortest path, and reading out
DNA sequence through DNA sequencing technology.

In step 5, we use DNA molecular probe to isolate the DNA sequence whose
length is greater than the threshold, so that we can remove edges who are not
satisfied with the conditions. In step 6, Hamilton shortest path of each cluster
was conducted in test tubes at the same time. The consumed time is equal to
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find one Hamilton path, which reduces the time complexity of the algorithm
greatly.

3.4 Analysis of Time Complexity

In Step 4, the process of finding the shortest Hamilton path depends on great
parallelism of DNA computing. All shortest Hamilton paths are found at the
same time. Thus, time complexity of step 1 - step 7 is O(n). Finding the Hamilton
shortest path for every cluster executes in parallelism too. The time complexity
is O(n). As a result, the total time consumption is O(kn) (k is the conducting
number of step 1 - step 7). Compared with other clustering algorithm (as shown
in table below), our algorithm consumes less time.

Table 1. Time complexity of different algorithms

Algorithms Time complexity

K-means O(nkl)

K-median O(n(i+ε))
Hierarchical agglomerative algorithms O(n2logn)
MST O(n2logn)
DBSCAN O(nlogn)

4 Example

Take each center of the grid who contains data, and connect edges who are linked
to these centers(v1(2.5, 12.5), v2(2.5, 17.5), v3(17.5, 7.5), v4(27.5, 12.5), v5(27.5,
22.5)) as Fig.2.

According to 1, calculate distances between vertexes. Then, we obtain the
directed weight complement graph as Fig 3.

Fig. 1. Example
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Fig. 2. Clustering result of the example

Fig. 3. Directed weight complement graph

Each vertex is designed as 20 mr. DNA strand of edges are complementary of
its precursor vertex + weight coding + complementary of its subsequent vertex.
Coding length of weights are equal to matrix A. Vertices v1 is ATATC GCGGG
TTCAA CGTGC, v2 is GCAGT TGACA TGCAG GATCG, edge e12 is shown
below.

TATAGCGCCCAAGTTGCACG GTCGT CGTCAACTGTACGTCCTAGCT

Thus, there is:

ATATCGCGGGTTCAACGTGC GCAGTTGACATGCAGGATCG
TATAGCGCCCAAGTTGCACG GTCGT CGTCAACTGTACGTCCTAGCT

By annealing and connection reaction, all double-stranded DNA molecules of
arbitrary paths are got. Then paths are amplified by polymerase chain reaction,
only path with v1 (as a starting) and v5 are amplified. Shortest paths are iso-
lated by gel. We use affinity purification technology for purification. Finally the
shortest Hamilton path is read out through sequencing technology, as shown in
Fig. 4.

Set the threshold as Φ, delete edges with D > 10, initial clustering result is
shown in Fig. 5.

So far, we get the preliminary clustering result. However, it only ensures the
quality between clusters, failing to consider the relationship within clusters after
clustering. This paper not only focuses on the distance between clusters, but
also ensures the quality in cluster.
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Fig. 4. The shortest Hamilton path through sequencing technology

Fig. 5. Initial clustering result deleted edges with D > 10, threshold as Φ

Fig. 6. Final clustering result

According to this algorithm, it finds shortest Hamilton path for every clus-
ter and calculate sum of weights, then, get w(C1), w(C2), w(C3). Because of
w(C3) > ξ. Edges do not meet with threshold are deleted. New groups are ob-
tained. The process will continue until all clusters meet the requirements. The
algorithm halts. Final clustering result is shown in Fig. 6.

This paper uses data set as Fig. 7 to show the effectiveness of DNA com-
putation based clustering algorithm. This experiment executes in Windows xp,
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Fig. 7. The data set this paper used

Fig. 8. The clustering result of DNA computation based clustering algorithm

MATLAB 7.0. Data set is two dimension with 0 ≤ x ≤ 54 and 0 ≤ y ≤ 17 .The
grid is divided into 53*16. Clustering result is shown in Fig. 8.

The experimental results show that the algorithm can obtain solutions, the
data points are divided into 4 clusters, similarity within cluster is high, between
clusters is low, and the algorithm has obvious advantages on time complexity
and clustering quality.

5 Conclusion

One of the main advantage of DNA computing is solving multiple problems in
parallel. Combing DNA computing grid, and Hamilton shortest path to solve
clustering prove to be feasible. Every step is to look for local optimal clustering.
The algorithm also illustrates the feasibility of DNA computing for clustering
and powerful parallelism of DNA computing. But we still have a lot of work to
do.We just proved that it is feasible in theory. There are many problems to be
solved about biotechnology. In the future, we will continue to study with DNA
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computing to solve clustering problems and try to find out the more effective
method to solve multi-dimensional data.
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Abstract. Cuckoo search (CS) is one of the new swarm intelligence 
optimization algorithms inspired by the obligate brood parasitic behavior of 
cuckoo, which used the idea of Lévy flights. But the convergence and stability 
of the algorithm is not ideal due to the heavy-tail property of Lévy flights. 
Therefore an improved cuckoo search (ICS) algorithm for clustering is 
proposed, in which the movement and randomization of the cuckoo is modified. 
The simulation results of ICS clustering method on UCI benchmark data sets 
compared with other different clustering algorithms show that the new 
algorithm is feasible and efficient in data clustering, and the stability and 
convergence speed both get improved obviously.  

Keywords: Clustering, cuckoo search, Lévy flights, swarm intelligence 
optimization algorithm. 

1 Introduction 

Clustering is the process of separating similar objects or multi-dimensional data 
vectors into a number of clusters or groups. It is an unsupervised problem. Clustering 
techniques have been used successfully in data analysis, image analysis, data mining 
and other fields of science and engineering [1].  

Many algorithms have been developed for clustering. The traditional clustering 
methods can be classified into four categories: partitioning methods, hierarchical 
methods, density-based methods and grid-based methods [2].  

Swarm intelligence optimization algorithm such as genetic algorithms (GA) [3], 
ant colony optimization [4], particle swarm optimization (PSO) [5, 6], artificial bee 
colony (ABC) [7, 8], bacteria foraging optimization algorithm (BFO) [9], firefly 
algorithm (FA) [10] has been widely used in the clustering in recent years. Cuckoo 
Search (CS) algorithm is a new intelligence optimization algorithm which has been 
successfully applied to the global optimization problem [11], economic dispatch [12], 
clustering [13-16] and other fields [17]. However, the cuckoo search clustering 
algorithm has several drawbacks such as slow convergence speed and vibration of the 
convergence.  



480 J. Zhao et al. 

In this paper, we propose an improved cuckoo search (ICS) algorithm for 
clustering, in which the movement of cuckoo and random disturbance was modified 
to find optimal cluster center. The algorithm was tested on four UCI benchmark 
datasets, and its performance was compared respectively with K-means, PSO, GA, 
FA and CS clustering algorithm. The simulation results illustrated that this algorithm 
not only own higher convergence performance but also can find out the optimal 
solution than the other algorithms. 

2 Cuckoo Search Algorithm 

Cuckoo search algorithm is a novel metaheuristic optimization algorithm developed 
by Xin-she Yang and Suash Deb in 2009 [18], which is based on the obligate brood 
parasitic behaviour of some cuckoo species in combination with the Lévy flights 
behavior of some birds and fruit flies.  

2.1 Cuckoo Brood Parasitic Behaviour 

Cuckoos are fascinating birds not only because of the beautiful sounds they can make, 
but also because of their aggressive reproduction strategy they share [19]. Quite a 
number of species engage the obligate brood parasitism by laying their eggs in the 
nests of other host birds, which may be different species. They may remove others’ 
eggs to increase the hatching probability of their own eggs [20]. If a host bird 
discovers that the eggs are not their own’ eggs, they will either throw these alien eggs 
away or simply abandon its nest and build a new nest elsewhere. 

Studies also indicated that the cuckoo eggs hatch slightly earlier than their host 
eggs. Once the first cuckoo chick is hatched, the first instinct action it will take is to 
evict the host eggs by blindly propelling the eggs out of the host, which increases the 
cuckoo chick’s share of food provided by its host bird. In addition, a cuckoo chick can 
also mimic the call of host chicks to gain access to more feeding opportunity.  

2.2 Lévy Flights 

In nature, animals search for food in a random or quasi-random manner. Various 
studies have shown that the flight behavior of many animals and insects demonstrates 
the typical characteristics of Lévy flights [21]. Lévy flights comprise sequences of 
randomly orientated straight-line movements. Frequently occurring but relatively 
short straight-line movement randomly alternate with more occasionally occurring 
longer movements, which in turn are punctuated by even rarer, even longer 
movements, and so on with this pattern repeated at all scales. As a consequence, the 
straight-line movements have no characteristic scales, and Lévy flights are said to be 
scale-free, the distribution of straight-line movement lengths have a power-law tail 
[22]. Fig. 1 shows the path of Lévy flights of 60 steps starting from (0, 0). 
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Fig. 1. Lévy flights in consecutive 60 steps starting at the origin (0, 0) which marked with “ * ” 

2.3 Cuckoo Search Algorithm 

Here we simply describe the cuckoo search algorithm as follows which contain three 
idealized rules [19]: 

(1) Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen 
nest;  

(2) The best nest with high quality of eggs will carry over to the next generations;  
(3) The number of available host nests is fixed, and then the egg laid by a cuckoo is 

discovered by the host bird with a probability pa ],[ 10∈ . In this case, the host bird can 
either throw the eggs away or abandon the nest, and build a completely new nest. For 
simplicity, this rule can be approximated by the fraction pa of the n nests are replaced 
by new nests (with new random solutions). 

For a maximization problem, the quality of fitness of a solution can be proportional 
to the objective function. Other forms of fitness can be defined in a similar way to the 
fitness function in genetic algorithm and other optimization algorithms [23].  

Based on these three rules, the basic steps of the cuckoo search can be summarized 
as the pseudo code as Table 1 [19]:  

Table 1. Pseudo code of the cuckoo search 

begin 
Objective function f (x), x = (x1, ..., xd)

T 
Generate initial population of n host nests xi (i = 1,2, ..., n) 
while (t < MaxGeneration) or (stop criterion) 

Get a cuckoo randomly by Lévy flights   
evaluate its quality/fitness Fi 

Choose a nest among n (say, j) randomly 
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if (Fi > Fj), 
replace j by the new solution; 

end 
A fraction (pa) of worse nests are abandoned and new ones are built; 
Keep the best solutions (or nests with quality solutions); 
Rank the solutions and find the current best 

end while 
Postprocess results and visualization 

end 

When generating new solutions x (t+1) for a cuckoo i, a Lévy flight is performed 
using the following equation: 

⊕+=+ α)()( t
i

t
i xx 1 Lévy )(β , ),...,2,1( ni =  .               (1) 

where α > 0 is the step size which should be related to the scales of the problem of 
interests. The product ⊕  means entry-wise multiplications. The Lévy flight 
essentially provides a random walk while the random step length is drawn from a 
Lévy distribution which has an infinite variance with an infinite mean [19].  

Lévy )(β  ~ )20(,1 ≤<= −− ββtu  .                (2) 

Mantegna puts forward a most efficient and yet straightforward ways to calculate 
Lévy distribution [18, 24].  

Lévy )(β  ~ β/1
v

u
 .                         (3) 

u～ ),( 20 uN σ  ， v～ ),( 20 vN σ  .                  (4) 

1
221

21
1

21
=









+Γ
+Γ=

− vu σ
ββ
πββσ

β

β ,
]/)[(

)/sin()(
/

/)(
 .         (5) 

In CS Algorithm, the worst nest is abandoned with a probability pa and a new nest 
is built with random walks [19].  

()*)()( randxx t
worst

t
worst α+=+1  .                      (6) 

3 Clustering Using ICS Algorithm 

3.1 The Clustering Criterion 

Clustering is the process of grouping a set of data objects into multiple groups or 
clusters so that objects within a cluster have high similarity, but are very dissimilar to 
objects in other clusters. Dissimilarities and similarities are assessed based on the 
attribute values describing the objects and often involve distance measures. The most 
popular distance measure is Euclidean distance [1]. 
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Let ),...,,( 21 ipii xxxi =  and ),...,,( 21 jpjj xxxj =  be two objects described by p 

numeric attributes, the Euclidean distance between object i and j is define as: 
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2
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For a given N objects the clustering problem is to minimize the sum of squared 
Euclidean distances between each object and allocate each object to one of k cluster 
centers [1]. The main goal of the clustering method is to find the centers of the 
clusters by minimizing the objective function. The clustering objective function is the 
sum of Euclidean distances of the objects to their centers as given in Eq. (8) [2]  
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where m denotes the number of clusters, kC  denotes the kth cluster, ),( ki ZXd  

denotes the Euclidean distance between object iX and cluster center kZ .  

3.2 Clustering Using ICS Algorithm 

Some researchers [13-16] have been designed CS for clustering. The Lévy flight is 
more efficient because the step length is heavy-tailed and any large step is possible, 
which makes the whole search space to be covered [14].  However, Lévy flight often 
leads to slow convergence rate and vibration when clustering using CS. We propose 
ICS algorithm for data clustering, in the algorithm, each egg in a nest represents a 
cluster center, the cuckoo searches for a new nest in line with Eq. (9) 

⊕+=+ α)()1( t
i

t
i xx Lévy )(**)( )(t

ibest xZrandw −+β , ),...,2,1( ni =  .      (9) 

where rand is random number, w denotes disturbance constant, bestZ denotes the 

cluster center of the best cluster. 
The ICS algorithm for data clustering is as the following steps: 

Step 1: Generate initial population of n host nests randomly, the host nests position 
denote the cluster centers. Initialize the iterations iter, maximum iteration maxiter and 
cluster number nc;  

Step 2: Clustering and calculate the clustering objective function Fold using Eq. (8) 
to find the best nest bestnest; 

Step 3: Generate n-1 new nests using Eq. (9) except the bestnest, clustering and 
calculate the clustering objective function Fnew, 

Step 4: Compare Fnew with Fold, if Fnew < Fold, replace the old nests by the new 
ones; 

Step 5: A fraction (pa) of worst nests are abandoned and new ones are built using 
Eq. (6); 

Step 6: Find the best solution, set iter = iter + 1; 
Step 7: If iter < = maxiter, goto Step 3, otherwise output the clustering result. 
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4 Implementation and Results 

In order to test the accuracy and the efficiency of ICS data clustering algorithm, 
experiments have been performed on four datasets including Iris, Glass, Wine and 
Sonar selected from standard set UCI [25]. All algorithms are implemented in Matlab 
R2011b and executed on a Pentium dual-core processor 3.10GHz PC with 4G RAM. 
The parameter values used in our algorithm are n=15, pa=0.25, α =0.01 and w=0.06.  

4.1 Data Set Description 

The four clustering data sets Iris, Glass, Wine and Sonar are well-known and popular-
used benchmark datasets. Table 2 shows the characteristics of the datasets. 

Table 2. Summary of the characteristics of the considered data sets 

Name of 

data set 

Number of 

classes 

Number of 

features 

Size of data set 

(size of classes) 

Iris 3 4 150(50,50,50) 

Glass 6 9 214(29,76,70,17,13,9) 

Wine 3 13 178(59,71,48) 

Sonar 2 60 208(111,97) 

4.2 Analysis of Algorithm Convergence 

To evaluate the convergence performance, we have compared the ICS algorithm with 
traditional K-means, PSO and CS clustering algorithm on Iris data set. 
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Fig. 2. Convergence curve of clustering on Iris data set 
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Fig. 2 illustrates that the ICS clustering algorithm has achieved the best 
convergence performance in the terms of the clustering objective function. K-means 
algorithm is easily to fall into local optimum due to the premature convergence [26]. 
The disadvantage of CS clustering algorithm is the slow convergence rate and 
vibration of the convergence; the convergence rate is insufficient when it searches 
global optimum. 
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Fig. 3. Results of ICS clustering algorithms on Iris, Wine, Glass and Sonar data sets 

The results of ICS clustering algorithms on Iris, Wine, Glass and Sonar data sets is 
given in Fig. 3 which can make it visualized clearly. Principal component analysis 
was utilized to reduce the dimensionality of the data set. It can be seen from Fig. 3 
clearly that ICS clustering algorithm possess better effect on Iris data set and Wine 
data set. The Glass data set has six classes and the Sonar data set has sixty features, so 
the higher data complexity leads to the larger clustering error. 
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4.3 Clustering Results 

The best clustering objective function, mean clustering objective function and 
clustering error for K-means, PSO, GA, FA, CS and the proposed algorithm of ICS on 
different data set including Iris, Glass, Wine and Sonar are shown in Table 3. 
Experiments were repeated 30 times. 

Table 3. Comparison of clustering results via the four algorithms  

Data set Algorithm Best Jc Mean Jc Clustering Error 

Iris 

K-means [27] 97.32 102.57 16.05±10.10 
PSO [27] 97.10 102.26 10.64±4.50 

GA[7] 113.98 125.19 — 
FA 99.06 103.18 10.3±3.61 
CS 96.89 97.67 10.2±1.1 
ICS 96.66 96.68 9.6±0.6 

Glass 

K-means [27] 213.42 241.03 48.30±3.14 
PSO [27] 230.54 258.02 48.72±1.34 

CS 212.74 215.22 52.34±2.3 
ICS 210.95 213.84 43.93±1.89 

Wine 

K-means [27] 16555.68 17662.73 34.38±6.08 
PSO [27] 16307.16 16320.67 28.74±0.39 
GA[7] 16530.53 16530.53 — 
FA 16714.00 18070.59 31.46±3.45 

CS 16298.79 16309.24 29.21±1.34 
ICS 16295.67 16302.40 27.64±1.08 

Sonar 

K-means [27] 234.77 235.06 44.95±0.97 
PSO [27] 271.83 276.68 46.60±0.42 

FA 239.75 245.71 45.34±4.67 
CS 271.52 282.70 46.63±0.53 

ICS 232.20 238.58 44.23±0.24 

As shown in Table 3, it is obvious that the ICS clustering algorithm could find the 
optimal clustering objective function value, and the mean clustering objective 
function value close to the best clustering objective function value, which illustrates 
the new algorithm has good stability. The results are exactly same as the phenomenon 
showed in Fig. 3. 

5 Conclusion and Discussion 

The ICS algorithm to solve clustering problems has been developed in this paper. To 
evaluate the performance of the ICS, it is compared with K-means, PSO and CS 
clustering algorithms on four well known UCI data sets. The experimental results 
indicated that the ICS clustering algorithm has best convergence performance, 
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stability and better clustering effect. In order to improve the obtained results, we plan 
to apply the proposed approach into other clustering areas as our future work.  
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Abstract. Clustering is a commonly used unsupervised machine learn-
ing method, which automatically organized data into different clusters
according to their similarities. In this paper, we carried out a through-
out research on evolutionary computation based clustering. This paper
proposed a sample index based encoding method, which significantly re-
duces the search space of evolutionary computation so the clustering al-
gorithm converged quickly. Evolutionary computation has a good global
search ability while the traditional clusteringmethod k-means has a better
capability at local search. In order to combine the strengths of both, this
paper researched on the effect of initializing k-means by evolutionary com-
putation algorithms. Experiments were conducted on five commonly used
evolutionary computation algorithms. Experimental results show that the
sample index based encoding method and evolutionary computation ini-
tialized k-means both perform well and demonstrate great potential.

Keywords: Clustering, evolutionary computation, sample index based
encoding, initializing k-means.

1 Introduction

Clustering refers to partitioning data into different clusters according to their sim-
ilarities. It is an unsupervised machine learning method that does not require the
pre-specified categories information. It directly mining unlabeled data according
to their inherent structure, and automatically partitions them into several clus-
ters based on the intrinsic properties of the data. The goal of clustering is to get
the greatest similarity between samples of the same cluster and the smallest sim-
ilarity between samples of the different clusters. Clustering has been widely used
in many fields. For example, in the field of text processing, document clustering
can effectively organize different documents together based on subject, which can
help people to filter the documents and find what they needed quickly.

There are many traditional clustering algorithms, such as k-means [1], hi-
erarchical clustering [2] and expectation maximization (EM) [3]. The target of
k-means algorithm is to get the smallest sum of distances within the same classes.

Y. Tan et al. (Eds.): ICSI 2014, Part I, LNCS 8794, pp. 489–498, 2014.
c© Springer International Publishing Switzerland 2014



490 X. Yang and Y. Tan

It will get a satisfying result through iterative updating the center of each clus-
ter and updating the cluster each sample belongs to. However, using such a
clustering approach always has the risk of falling into local optimum.

Evolutionary computation is a kind of optimization algorithm by simulating
the natural biological process of evolution. Evolutionary computation algorithms
generally maintain a population of solutions, and gradually improve the quality
of the solution through the evolution of the population. There are some common
evolutionary computation algorithms, like genetic algorithms [4], evolutionary
strategies [5], differential evolution [6], particle swarm optimization algorithm
[7] and firework algorithms [8]. Evolutionary computation has incomparable su-
periority compared to traditional optimization algorithms. It does not need to
calculate the gradient of the objective function for achieving the optimization,
and it has strong robustness, not easy to fall into local optimum.

In recent years, evolutionary computation is used by many researchers to
improve the quality of clustering. Ujjwal Maulik et al. used the genetic algorithm
to optimize the inter-clustering distance [9,10], Das, S. et al. and Paterlini, S.
et al. applied differential evolution to the clustering problem [11,12], while Van
der Merwe, DW et al. and Chen, ChingCYi et al. studied the particle swarm
optimization based clustering [13,14].

In this paper, we first reviewed the basic principle and process of using evo-
lutionary computation to cluster, and then we proposed a sample index based
encoding method, this method can effectively reduce the search space of evo-
lutionary computation algorithms, which will make the clustering algorithm
converge quickly. Finally we focused on the study of initializing k-means by
evolutionary computation algorithms.

This paper is organized as follows: Chapter 1 is introduction. Chapter 2 gives
a brief introduction to k-means and the clustering based on evolutionary com-
putation. Chapter 3 presents a sample index based encoding method. Chapter 4
demonstrates the using of evolutionary computation to initialize k-means. The
experimental results are given in Chapter 5. Chapter 6 makes the summaries.

2 Formulated Description of Clustering

Given a data set D, whose amount of the samples is N and the dimension of
each sample is d. D = x1, x2, ..., xN where xi represents a d-dimensional vec-
tor, i = 1, 2, ...N . Clustering algorithms require these N samples be partitioned
into K clusters. Many clustering algorithm use the centroids of the clusters to
determine the cluster attribution. Assuming the centroid of the i-th cluster is
ci, i = 1, 2, ...,K. For the sample xj , clustering algorithm will calculate the dis-
tance between xj and all the centers of K clusters, and partition xj into the
k-th cluster if the distance between xj and the centroid of the k-th category is
the smallest. The process can be represented mathematically by the following
formula:

k = argmin
i
‖xj − ci‖2 (1)

where ‖xj − ci‖2 represents the Euclidean distance between the two vectors.
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The goal of clustering is to make the samples inside the same cluster have the
greatest similarity. This goal can be achieved by minimizing the within-cluster
sum of squares (WCSS). The definition of WCSS is as follows [9]:

J =

K∑

i=1

∑

xj∈Ci

‖xj − ci‖2 (2)

where Ci represents a collection of samples in class i, the WCSS represents the
sum of all samples distances to their corresponding clusters centroid.

K-means applies an iterative way to update the centroid of the cluster to
obtain a promising clustering result. It first randomly initialize a centroid for
each cluster, then each samples cluster label is determined according to Formula
1, then the average of all samples within the cluster i is set as the new centroid
of the i-th cluster, as shown in the following equation [1]:

ci =

∑
xj∈Ci

xj

|Ci| (3)

After obtaining the new centroid for each cluster, k-means process the clus-
tering according to Formula 1 again, and then get new cluster centroids. This
process is iterated until the termination condition is satisfied.

The clustering result of k-means is susceptible to the initial cluster centroid.
If the selection of initial cluster centroid is not good, k-means is easy to fall
into local optimum. While the evolutionary computation has excellent ability of
global optimization. Therefore using evolutionary computation to cluster data
can get a better quality of clustering.

When using evolutionary computation to clustering, we have to encode the
way of clustering into individuals. The individual is represented by a multi-
dimensional vector and the way of encoding has significant impact on the clus-
tering results. There two common ways used for encoding: cluster centroid based
encoding [9] and sample category based encoding [15].

When using cluster centroid based encoding, all clusters centroids will be
joined into a single vector, as an individual in evolutionary computation, which
is represented as < c1, c2, , cK >.

Assuming a data set has 1000 samples in total, and they can be partitioned
into 20 clusters, each dimension of the data is 10, the clustering problem will be
encoded as a 200-dimensional vector. The vector is represented by the conjunc-
tion of 20 10-dimensional vectors, the 20 vectors stand for the 20 centroids for
all the 20 clusters.

Given the centroid of each category, each sample is partitioned to the corre-
sponding cluster according to Formula 1, and then use the formula Formula 2
to get the WCSS, which will then be used as an individuals fitness function.

Sample category based encoding method encodes each sample’s cluster di-
rectly. Each individuals dimension equals to the number of samples, the indi-
vidual is expressed as < L1, L2, , LN >, where Lj stands for sample xjs cluster
label, j = 1, 2, ..., N , Lj ranges between 1 to K as an integer. If the j-th sample



492 X. Yang and Y. Tan

belonging to the category i, i = 1, 2, ...,K, then the individual value of the j-th
dimension Lj is i.

After given each samples category, the center of each class is calculated
by using the Formula 3, then the WCSS will be used as an individuals fitness
function.

3 Sample Index Based Encoding

In order to further improve the quality of clustering, we propose to use the
sample index based encoding method. Cluster centroid based encoding using a
point in d-dimensional space to represent a cluster centroid, so each individuals
dimension after encoding is K ∗d. Sample index based encoding using the sample
from the sample set as a cluster centroid; we just have to record the samples
index in the sample set. Therefore the individuals dimension after encoding is
K. The individual is represented as < I1, I2, , IK >.

Under such encoding method, the i-th clusters centroid is the Ii-th sample
in the sample set xIi . After each clusters centroid is determined, each samples
cluster is calculated by using Formula 1, then the WCSS will be used as an
individuals fitness function.

Assuming a data set has 1000 samples in total, and they can be partitioned
into 20 clusters, each dimension of the data is 10, the clustering problem will be
encoded as a 20-dimensional vector. If the 10-th dimension of the vector is 426,
the centroid of the 10-th cluster is the 426-th sample in the sample set.

The individuals dimension of cluster centroid based encoding is K ∗ d, the
individuals dimension of sample category based coding isN , while the individuals
dimension of sample index based encoding is K. Generally K is much less than
K ∗d and N . Therefore the dimension of the proposed encoding method is much
lower than the other two ones. The relationship between the search space of
evolutionary computation and the individuals dimension is exponential, so the
low-dimensional encoding means you can significantly reduce the search space.
After the reduction, evolutionary computation algorithms can easily find the
optimal solution and get a better result.

General speaking, before using evolutionary computation to search for the op-
timal solution, we need to specify the upper and lower bounds for each dimension
in the search space. The upper and lower bounds of the cluster centroid based
encoding is determined by the range of training data. For example the range of
cis x-th dimension should be equal to the range of the x-th dimension of all the
data. So actually the process of evolutionary computation is to search a solution
within a hypercube. But in general the data are not evenly distributed in the
hypercube, the data may be concentrated in certain areas, and most areas in the
search space don’t have any data. The evolutionary computation algorithm will
inevitably enter areas without data to search. This will waste a lot of time.

When using sample index based encoding, since each centroid comes from the
sample set, the selection of centroids is more close to the real distribution of the
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data. So evolutionary computation algorithm will not enter the areas without
data, but it will only search within areas of data. This mechanism ensures that
the evolutionary algorithms search time is spent where it makes sense, thus
evolutionary algorithm can quickly converge to the optimal solution, resulting
in better clustering results.

4 K-means Initialized by Evolutionary Computation

Evolutionary computation is well known for its excellent global search capabil-
ity. Evolutionary computation algorithms adopt the stochastic strategy to avoid
trapping into the local optimum. Individuals have certain probability to jump
out of current searching areas, which enables the evolutionary computation al-
gorithms to explore the global optimum in the whole search space. But such
algorithms may not perform well when searching the local area to further im-
prove the current best solution. The stochastic way of local search cannot finely
guide the current best solution to the actual best solution near it.

K-means minimizes the WCSS by iterating the following procedures: updating
the cluster label of each sample according to the centroids of clusters, and then
updating the centroids of clusters according the cluster label of each sample.
The updating of centroids of clusters at successive iterations takes place in the
local area; the centroids at the next iteration are not far from the centroids
at the previous iteration. Therefore k-means has strong local search capability.
But such searching strategy cannot explore the whole search space sufficiently,
leading to a poor global search capability. If the initial centroids are not well
chosen, k-means will trapping into the local optimum.

In order to exploit the synergy of global search ability and local search ca-
pability, the combination of evolutionary computation with k-means have been
studied. For example Ahmadyfard, A. et al. combined particle swarm optimiza-
tion algorithm and k-means algorithm to to get a better clustering algorithm [16].

In this section we combine the proposed sample index based encoding method
with k-means to study their synergy. First we use an evolutionary computation
algorithm to get K centroids. Evolutionary computation is able to obtain quite
good centroids over the whole search space due to its excellent global search
capability. But these centroids need to be further tuned in the local area to
improve the clustering performance. We use k-means to tune these centroids by
taking these centroids as the initial centroids of k-means. k-means will exploit the
local area to search for better centroids in an iterative way. k-means initialized
by evolutionary computation combines the strength of evolutionary computation
and k-means, leading to both excellent global search capability and excellent
local search capability.

The procedure of k-means initialized by evolutionary computation are shown
in Algorithm 1.
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Algorithm 1. K-means initialized by evolutionary computation.

1: Randomly initialize a population of individuals, each individuals dimension is K.
2: Calculate the fitness function for each individual in the population. First, we parse

the centroid for each cluster from the sample index based encoding method. Then
each samples cluster is determined according to the clusters centroids, and the
WCSS will be used as an individuals fitness function.

3: Apply the evolutionary operations (such as selection, crossover, mutation, etc.)
of evolutionary algorithms to get the next generation of the population from the
current population.

4: If the termination condition of evolutionary algorithm meets, get the optimal so-
lution and go to Step 5, otherwise go to Step 2.

5: Figure out the centroid of each cluster from the optimal individual obtained by
evolutionary computation.

6: Each samples cluster is determined according to its closest centroid.
7: Calculate the mean vector of all the samples in each cluster. Then use the mean

vector as the new cluster centroid.
8: If the termination condition of k-means is satisfied, go to Step 9, otherwise go to

Step 6.
9: Output clustering result.

5 Experiments

5.1 Experimental Setup

In this paper, we use six evolutionary computation algorithms for clustering,
which are differential evolution (DE) [6], the conventional fireworks algorithm
(FWA) [8], enhanced fireworks algorithm (EFWA) [17], evolutionary strategies
(ES) [5], genetic algorithms (GA) [4] and particle swarm optimization algorithm
(PSO) [7].

For fireworks algorithm and enhanced fireworks algorithm, we use the default
parameters from their original papers. We use the java library jMetal [18] to
implement the other four algorithms, and the default parameters of jMetal is
used for these algorithms. The maximum number of evaluations of all algorithms
are set to 25000.

These algorithms will use a lot of random numbers at running time, so the
results obtained by the algorithm will be different when run repeatedly. In order
to obtain a stable measurement evolutionary computation based clustering, each
experiment were run 20 times, and the average of the results will be used as the
final result.

Experiments are conducted on eight commonly used document clustering data
sets. Stacked auto-encoder is used to extract document feature [19]. At first
the tf-idf feature [20] is extracted for the most frequent 2000 words. Then a
stacked auto-encoder with the structure of 2000−500−250−125−10 is used to
extract abstract document feature. After such feature extraction each document
is represented as a 10-dimensional vector. The name of each dataset, the number
of samples, the dimension and the number of categories are shown in Table 1.
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Table 1. Detailed information of the eight datasets

Dataset Number of Samples Dimension Number of Categories

re0 1504 10 13
re1 1657 10 25
wap 1560 10 20
tr31 927 10 7
tr45 690 10 10
fbis 2463 10 17
la1 3204 10 6
la2 3075 10 6

Clustering algorithms need to set the number of clusters K in advance. These
data in the dataset have the original category, we set the number of clusters
equal to the number of original categories.

5.2 Comparison among Different Encoding Methods

In this section we will compare cluster centroid based encoding, sample category
based encoding and sample index based encoding. The average WCSS over all
of the 8 data sets is shown in Table 2.

Table 2. Within-cluster sum of squares of cluster centroid based encoding, sample
category based encoding and sample index based encoding

Evolutionary
Algorithms

cluster centroid sample category sample index

DE 935.08 1582.72 828.44
EFWA 1183.19 1645.08 814.41
ES 920.33 1425.40 800.64

FWA 1023.67 1634.44 819.05
GA 940.97 1524.56 811.12
PSO 1216.97 1639.51 881.40

We can see from the above results that the proposed sample index based en-
coding performs better than the two existing ways of encoding after optimization
by all of the six algorithms. This shows that the proposed encoding method can
effectively reflect the essence of the document sets structure, which made the
optimization easily to be done. Thus the proposed sample index based encoding
method has a great potential in the future development of clustering.

From Table 2, we can get the performance of different evolutionary compu-
tation algorithms. Evolutionary strategy (ES) performed best among all of the
optimization algorithms, which was followed by the genetic algorithm (GA), en-
hanced fireworks algorithm (EFWA), fireworks algorithm (FWA) and differential
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evolution (DE), the worst one is the particle swarm optimization (PSO). There-
fore the evolutionary computation algorithm used also has an import impact on
the clustering performance.

We also compare the clustering results between evolutionary computation
based clustering and k-means. The average WCSS of k-means over the 8 data
sets is 811.32. As shown in Table 2, evolutionary strategy achieves better result
than the k-means, so it can be used as a new and effective clustering methods.
However, several other optimization algorithms effect is not significant. While the
usage of evolutionary computation to initialize k-means can effectively improve
the quality of clustering, experimental results are shown in the next section.

5.3 K-means Initialized by Evolutionary Computation

Fig. 1 gives the average WCSS over eight datasets of three clustering algorithms.
The three clustering algorithms include clustering using evolutionary computa-
tion directly, k-means and k-means initialized by evolutionary computation. The
average WCSS of clustering using PSO directly is 881.4, while other clustering
algorithms are all below 835. We cut this extreme value in Fig. 1 to get a suitable
figure; only the part below 835 is shown in Fig. 1.
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Fig. 1. Within-cluster sum of squares of clustering using evolutionary computation
directly, k-means and k-means initialized by evolutionary computation

From the figure we can see that k-means initialized by differential evolu-
tion, enhanced fireworks algorithm, evolution strategy, fireworks algorithm and
genetic algorithm is superior to original k-means and the direct evolutionary
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computation algorithms. Therefore the initialization strategy of k-means is able
to improve the performance of clustering evidently.

It is easy to fall into local optimum for traditional k-means initialized at
random. While k-means initialized by evolutionary computation will locate the
initial centroids near the optimal centroids. In such case k-means who has excel-
lent local searching ability will find the optimal centroids easily. The clustering
performance of particle swarm optimization is slightly poor. This is because
particle swarm optimization doesn’t converge well for clustering.

6 Conclusions

This paper introduces the basic principle and procedures of k-means and cluster-
ing using evolutionary computation. A novel encoding method based on sample
index is proposed in this paper. We combine k-means and evolutionary com-
putation by initializing k-means by evolutionary computation to enhance the
clustering performance. At last this paper gives the experimental results of evo-
lutionary computation based clustering over six common evolutionary computa-
tion algorithms.

The proposed sample index based encoding method significantly outperforms
cluster centroid based encoding and sample category based encoding. The en-
coding method based on sample index is able to restrict the centroids within
the training data. The evolutionary computation algorithms will concentrate on
meaningful search space to get a better solution. Whats more, the search space
of this encoding method is much smaller than the other two encoding methods
due to its lower dimension, therefore evolutionary computation algorithms will
find the optimal centroids more easily.

K-means initialized by evolutionary computation is superior to the original k-
means and using evolutionary computation directly. Evolutionary computation
is good at global search, while k-means is good at local search. Initializing k-
means by evolutionary computation is able to combine the two advantages and
improve the clustering performance.
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Abstract. Artificial neural network (ANN) and support vector machine (SVM) 
based classifier design by a meta-heuristic called Co-Operation of Biology Re-
lated Algorithms (COBRA) is presented. For the ANN’s structure selection the 
modification of COBRA that solves unconstrained optimization problems with 
binary variables is used. The ANN’s weight coefficients are adjusted with the 
original version of COBRA. For the SVM-based classifier design the original 
version of COBRA and its modification for solving constrained optimization 
problems are used. Three text categorization problems from the DEFT’07 com-
petition were solved with these techniques. Experiments showed that all vari-
ants of COBRA demonstrate high performance and reliability in spite of the 
complexity of the solved optimization problems. ANN-based and SVM-based 
classifiers developed in this way outperform many alternative methods on the 
mentioned benchmark classification problems. The workability of the proposed 
meta-heuristic optimization algorithms was confirmed. 

Keywords: Bio-inspired optimization algorithms, neural networks, support vec-
tor machines, text categorization. 

1 Introduction 

Data Mining is the computational process of discovering patterns in large data sets 
involving methods at the intersection of artificial intelligence, machine learning,  
statistics, and database systems.  The basic idea of the data mining process is to ex-
tract information from a data set and transform it into an understandable structure for 
further use.  

Data mining involves different classes of tasks and classification is one of them. 
Classification is the problem of identifying which of a set of categories a new obser-
vation belongs to on the basis of a training set of data that contains observations 
whose category is known. In this work we consider text categorization tasks as a rep-
resentative of data mining problems. There are various approaches which can be used 
for solving this kind of problems and among the most famous are Artificial Neural 
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Networks (ANNs) and Support Vector Machines (SVMs). In machine learning, the 
SVMs and ANNs are supervised learning models; the basic SVM and ANN take a set 
of input data and predict which of the possible classes will form the output. 

The ANN models have three components: the input data layer, the hidden layer(s) 
and the output layer. Each of these layers contains nodes and these nodes are con-
nected to nodes at adjacent layer(s). Also there is an activation function on each node. 
So the ANN’s structure contains a number of hidden layers, a number of nodes (neu-
rons) on each layer, and a type of activation function on each node. Nodes in the net-
work are interconnected and each connection has a weight coefficient; the number of 
these coefficients depends on the problem solved (number of inputs) and the number 
of hidden layers and nodes. Thus, networks with a more or less complex structure 
usually have many weight coefficients which should be adjusted with some optimiza-
tion algorithm. In this study we use the collective bionic meta-heuristic called  
Co-operation of Biology Related Algorithms (COBRA) [1] for the ANNs’ weight 
coefficients adjustment and its binary modification (COBRA-b) for the ANNs’ struc-
ture design.  

The SVM model is a representation of the examples (input data) as points in a 
space, mapped so that examples of the separate classes are divided by a clear gap that 
should be as wide as possible. New examples are then mapped into the same space 
and are predicted to belong to a category depending on which side of the gap they fall 
on [2]. In this study we have chosen the polynomial kernel function with three pa-
rameters for solving text categorization problems, so COBRA and its modification for 
constrained optimization (COBRA-c) were used for SVM-classifiers design. 

The rest of the paper is organized as follows. In Section 2 the developed meta-
heuristic and its modifications are presented. Section 3 describes the ANN-based and 
SVM-based classifier design by the mentioned optimization tools. In Section 4 the 
term relevance estimation for text categorization problems [3] is explained. Section 5 
demonstrates the workability of the optimization of meta-heuristics within the ANN-
based and SVM-based classifier design for three text categorization problems from 
the DEFT’07 competition. The conclusion contains the discussion of results and con-
siderations for further research directions. 

2 Co-Operation of Biology Related Algorithms (COBRA) 

Existing meta-heuristic algorithms, such as Particle Swarm Optimization or the  
Firefly Algorithm, started the demonstration of their power dealing with tough opti-
mization problems and even NP-hard problems. Five well-known and similar nature-
inspired algorithms such as Particle Swarm Optimization (PSO), Wolf Pack Search 
(WPS), the Firefly Algorithm (FFA), the Cuckoo Search Algorithm (CSA) and the 
Bat Algorithm (BA) were used for the development of a new meta-heuristic.  

The results of our investigation into the effectiveness of these optimization meth-
ods [1] showed that we cannot say which approach is the most appropriate for the 
given optimization problem and the given dimension (number of variables). The best 
results were obtained by different methods for different problems and for different 
dimensions; in some cases the best algorithm differs even for the same test problem if 
the dimension varies. Each strategy has its advantages and disadvantages. So it 
brought researchers to the idea of formulating a new meta-heuristic approach that 
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combines the major advantages of the algorithms listed above. The proposed ap-
proach was called Co-Operation of Biology Related Algorithms (COBRA) [1]. Its 
basic idea consists of generating five populations (one population for each algorithm) 
which are then executed in parallel, cooperating with each other (so-called island 
model). The parameters of component optimization algorithms were set according to 
the original recommendations of algorithms’ authors. Up-to-date adjusting techniques 
of these algorithms were not used in order to check the co-operation idea itself. 

The proposed algorithm is a self-tuning meta-heuristic. That is why there is no ne-
cessity to choose the population size for each algorithm.  The number of individuals 
in each algorithm’s population can increase or decrease depending on whether the 
fitness value was improving on the current stage or not. If the fitness value has not 
improved during a given number of generations, then the size of all populations in-
creases. And vice versa; if the fitness value has constantly improved, then the size of 
all populations decreases. Besides, each population can “grow” by accepting indi-
viduals removed from other populations. A population “grows” only if its average 
fitness is better than the average fitness of all other populations. Thereby we can de-
termine the “winner algorithm” on each iteration/generation. The result of this kind of 
competition allows us to present the biggest resource (population size) to the most 
appropriate (in the current generation) algorithm. This property can be very useful in 
the case of a hard optimization problem when, as it is known, there is no single best 
algorithm on all stages of the optimization process execution. 

Besides, all populations communicate with each other: they exchange individuals 
in such a way that a part of the worst individuals of each population is replaced by the 
best individuals of other populations. It brings up-to-date information of the best 
achievements to all component algorithms and prevents their preliminary convergence 
to their own local optimum which improves the group performance of all algorithms. 

The performance of the proposed algorithm was evaluated on the set of benchmark 
problems (28 unconstrained real-parameter optimization problems with 10, 30 and 50 
variables) from the CEC’2013 competition. Experiments showed that COBRA works 
successfully and is reliable on this benchmark and demonstrates competitive behav-
iour. Results also showed that COBRA outperforms its component algorithms when 
the dimension grows and more complicated problems are solved [1]. 

2.1 Binary Modification of COBRA 

All the algorithms listed above (PSO, WPS, FFA, CSA and BA) were originally de-
veloped for continuous valued spaces. However many applied problems are defined in 
discrete valued spaces where the domain of the variables is finite. For this purpose the 
binary modification of COBRA, COBRA-b, was developed.  

COBRA was adapted to search in binary spaces by applying a sigmoid transforma-
tion to the velocity component (PSO, BA) and coordinates (FFA, CSA, WPS) to 
squash them into a range [0, 1] and force the component values of the positions of the 
particles to be 0’s or 1’s.  

The basic idea of this adaptation was taken from [4]; firstly it was used for the PSO 
algorithm. It’s known that in PSO each particle has a velocity, so the binarization of 
individuals is conducted by the use of the calculation value of the sigmoid function 
which is also given in [4]: 
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 s(v) = 1/(1+exp(–v)). (1) 

After that a random number from the range [0, 1] is generated and the corresponding 
component value of the particle’s position is 1 if this number is smaller than s(v) and 
0 otherwise.  

In BA each bat also has a velocity, which is why we can apply exactly the same 
procedure for the binarization of this algorithm. But in WPS, FFA and CSA individu-
als have no velocities. For this reason, the sigmoid transformation is applied to posi-
tion components of individuals and then a random number is compared with the  
obtained value. The performance of COBRA-b evaluated on benchmark optimization 
problems from [5]. Experiments showed that COBRA-b works successfully and relia-
bly enough but slower than the original version of COBRA for the same problems 
with a smaller success rate obtained [6]. 

2.2 COBRA Modification for Constrained Optimization Problems 

The next step in our study was about the development and investigation of COBRA-c, 
i.e., COBRA’s modification that can be used for solving constrained real-parameter 
optimization problems.  

For these purposes three constraint handling methods were used: widely known 
dynamic penalties, Deb’s rule [7] and the technique that was described in [8]. The 
method proposed in [8] was implemented for the PSO-component of COBRA; at the 
same time other components were modified by implementing Deb’s rule followed by 
calculating function values using dynamic penalties. The performance of the proposed 
algorithm was evaluated on the set of 18 scalable benchmark functions provided for 
the CEC 2010 competition [9], when the dimension of decision variables is set to 10 
and 30. COBRA-c was compared with algorithms that took part in the competition 
CEC 2010 and was superior to 3-4 of the 14 methods from this competition. Besides, 
COBRA-c outperforms all its component algorithms. 

3 Data Mining Tools Design with COBRA 

3.1 Artificial Neural Networks Design 

The neural networks’ structure design and the tuning of its weight coefficients are 
considered as the solving of two unconstrained optimization problems: the first one 
with binary variables and the second one with real-valued variables. The type of vari-
ables depends on the representation of the ANN’s structure and coefficients.  

We set the maximum number of hidden layers to equal 5 and the maximum num-
ber of neurons in each hidden layer equal to 5. Each node is represented by a binary 
string of length 4. If the string consists of zeros (“0000”) then this node does not exist 
in ANN. So, the whole structure of the neural network is represented by a binary 
string of length 100 (25x4), and each 20 variables represent one hidden layer. The 
number of input layers depends on the problem in hand. ANN has one output neuron. 

We use 15 known activation functions for nodes: the sigmoidal function, the  
linear function, the hyperbolic tangent function and others. For determining which 
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activation function will be used on a given node, the integer that corresponds to its 
binary string is calculated.  

Thus we use the optimization method for problems with binary variables 
(COBRA-b) for finding the best structure and the optimization method for problems 
with real-valued variables (COBRA) for the adjustment of every structure weight 
coefficients. 

3.2 Support Vector Machine Classifiers Design 

In the most common formulation, support vector machines are classification mecha-
nisms, which, given a training set 

 },1;1{,)},,(),...,1,1{( −∈∈= i
m

i yRxlylxyxlX  (2) 

assuming l examples with m real attributes, learn a hyper-plane: 

 ,0, =+>< bxw  (3) 

where <…> – dot product, which separates examples labelled as -1 from the ones 
labelled as +1. So using this hyper-plane, a new instance x is classified using the fol-
lowing classifier: 
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However, the given data set is not always linearly separable, and in this case SVM 
(as a linear classifier) does not provide satisfying classification results. One way to 
solve this problem is to map the data onto a higher dimension space and then to use a 
linear classifier in that space. The general idea is to map the original feature space to 
some higher-dimensional feature space where the training set is linearly separable. 
SVM provides an easy and efficient way of doing this mapping to a higher dimension 
space, which is referred to as the kernel trick [2]. 

In this study the polynomial kernel is used. So, let dxxxxK )',()',( βα +><= , 

where d,,βα  are parameters of the kernel function K. Then the classifier is: 
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It means that the following constrained optimization problem should be solved: 

 min,
2 →w  (6) 
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Thus for solving a classification problem, the kernel function’s parameters 
d,,βα , a vector w and a shift factor b should be determined, i.e. the constrained op-

timization problem with continuous variables must be solved. 

4 Term Relevance Estimating 

It is well known that the way that documents are represented influences on the per-
formance of the text classification algorithms. Generally, documents are not classified 
as sequences of symbols. They are usually transformed into vector representation 
because most machine learning algorithms are designed for vector space models. The 
document mapping into the feature space remains a complex non trivial task. Many 
researchers develop new algorithms for text preprocessing. In this work, the technique 
described in [3] was used. 

The basic idea is that every word that appears in the text has to contribute some 
value to a certain class. So, a real number term relevance is assigned for each word; 
and this number depends on the frequency of the word occurrence. The term rele-
vance is calculated using a modified formula of fuzzy rules relevance estimation for 
the fuzzy classifier. The membership function has been replaced by word frequency in 
the current class.  

Let L be the number of classes; ni is the number of instances of the i-th class; Nji is 

the number of j-th word occurrence in all instances of the i-th class; 
i

ji
ji n

N
T =  is the 

relative frequency of j-th word occurrence in the i-th class. 
)maxarg(,max ji

i
jji

i
j TSTR == is the number of class which we assign to j-th word. 

The term relevance, Cj, is calculated in the following way: 
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So each instance is represented by a vector of L+1 numbers, where the first num-
ber is a class identifier, and the other numbers are the sum of Cj values of all words 
that occurred in this instance (according to their Sj). 

5 Experimental Results 

The DEFT07 (“Défi Fouille de Texte”) Evaluation Package [10] has been used for  
the application of algorithms and the comparison of results. For the testing of the 
proposed approach three corpora were used: “A voir à lire”, “Video games” and “De-
bates in Parliament”. 
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Table 1. Test corpora 

Corpus Description Marking scale 

A voir à lire 
3,000 commentaries about books, 

films and shows 
0:unfavorable, 1:neutral, 

2:favorable 

Video games 
4,000 commentaries about video 

games 
0:unfavorable, 1:neutral, 

2:favorable 

Debates in Parliament 
28,800 interventions by Represen-

tatives in the French Assembly 
0:against the proposed 

law, 1:for it 

The F-score value with β=1 was used for evaluating the obtained results: 

 ,
)(*

**)1(
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recallprecision
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+
+

=−
β
β

 (9) 

The classification “precision” for each class is calculated as the number of cor-
rectly classified instances for a given class divided by the number of all instances of 
the algorithm assigned for this class. “Recall” is the number of correctly classified 
instances for a given class divided by the number of instances that should have been 
in this class. 

The results for all text categorization problems are presented in Table 2 (there are 
also results obtained for the best submission of other researchers for each corpus). It 
should be mentioned that our algorithms exhibit good stability demonstrating the 
same best results in the majority of runs.  

Table 2. Comparison of results obtained by different research teams 

Researchers 
A voir à lire 

(rank1) 
Video Games 

(rank2) 
Debates 
(rank3) 

Rank 

J.-M. Torres-Moreno (LIA) 0.603 (2) 0.784 (1) 0.720 (1) 1 
G. Denhiere (EPHE et U. Wurzburg) 0.599 (3) 0.699 (5) 0.681 (6) 4 

S. Maurel (CELI France) 0.519 (8) 0.706 (4) 0.697 (4) 5 
M. Vernier (GREYC) 0.577 (5) 0.761 (3) 0.673 (7) 6 

E. Crestan (Yahoo ! Inc.) 0.529 (7) 0.673 (8) 0.703 (3) 7 
M. Plantie (LGI2P et LIRMM) 0.472 (10) 0.783 (2) 0.671 (9) 8 

A.-P. Trinh (LIP6) 0.542 (6) 0.659 (9) 0.676 (8) 9 
M. Genereux (NLTG) 0.464 (11) 0.626 (10) 0.569 (12) 11 

E. Charton (LIA) 0.504 (9) 0.619 (11) 0.616 (10) 10 
A. Acosta (Lattice) 0.392 (12) 0.536 (12) 0.582 (11) 12 

SVM+COBRA 0.619 (1) 0.696 (6) 0.692 (5) 2 
ANN+COBRA 0.585 (4) 0.692 (7) 0.7032 (2) 3 

Results for each corpus were ranked and then the total rank was evaluated by the 
following formula: 

 
3

321 rankrankrank
Rank

++=  (14) 
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6 Conclusion 

In this paper we have described a new meta-heuristic, called Co-Operation of Biology 
Related Algorithms, and introduced its modification for solving unconstrained opti-
mization problems with binary variables (COBRA-b) and constrained optimization 
problems with real-valued variables (COBRA-c). We illustrated the performance 
estimation of the proposed algorithms on sets of test functions.  

Then we used the described optimization methods for the automated design of 
ANN-based and SVM-based classifiers. These approaches were applied to three text 
categorization problems which were taken from the DEFT’07 competition. For this 
purpose an alternative formula for word relevance estimation was used. 

Solving these problems is equivalent to solving big and hard optimization prob-
lems where objective functions have many variables and are given in the form of a 
computational program. The suggested algorithms successfully solved all problems 
designing classifiers with a competitive performance, which allows us to consider the 
study results as confirmation of the algorithm’s reliability, workability and usefulness 
in solving real world optimization problems.  

Having these appropriate tools for data mining we consider the following direc-
tions of approach development: the design of other types of neural network models, 
the design of SVMs with alternative kinds of kernel, the application to the design of 
fuzzy systems, and the improvement of COBRAs optimization performance. 
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López-González, Erika II-17
Lu, Bingbing II-155
Lu, Lin II-1
Lu, Mingli II-236, II-244, II-253
Lu, Yuxiao I-173, I-424
Lu, Zhigang I-374
Luo, Wenjie II-170
Lv, Qing II-114, II-125
Lv, Yawei II-196

Ma, Chuncheng II-259
Ma, Chunsen I-275
Ma, Yinghong I-267
Mabu, Shingo I-324
Meng, Xianbing I-86
Meshoul, Souham I-450, II-412
Mi, Guyue I-223
Mo, Hongwei I-103, I-115, I-234

Naseem, Rashid I-197
Ni, Qingjian II-114, II-125
Niu, Ben I-150

Obayashi, Masanao I-324
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