

A. Kravets et al. (Eds.): JCKBSE 2014, CCIS 466, pp. 697–707, 2014.
© Springer International Publishing Switzerland 2014

Lean Mindset in Software Engineering:
A Case Study in a Software House in Brazilian

State of Santa Catarina

Mehran Misaghi1 and Ivan Bosnic2

1 UNISOCIESC, Joinville, Brazil

mehran@sociesc.org.br
2 NeoGrid, Joinville, Brazil

ivan.bosnic@neogrid.com

Abstract. This article presents a literature review whose purpose is to identify
the key characteristics of lean software development and its similarities and dif-
ferences with agile methodologies. For concept proof, a case study conducted in
a team of software developers is presented, where lean concepts were applied
within the current process, previously based on agile methodologies. It was
found at the end of this work that the indicator used by the team, percentage of
the time spent on improvements and new features, had a significant increase,
causing the team be able to add more value to the product, and to increase the
level of quality. This article ends with the presentation of the steps required for
the development of lean mindset in software engineering.

Keywords: Lean mindset, Agile methodologies, Scrum, Software.

1 Introduction

Modern societies depend every day more on diverse types of computer programs.
Such programs manage our bank accounts, control the supply of water and electricity,
monitor our health when admitted to hospitals, entertain us when we play video
games, and provide many others critical services to the community. It was expected
that, as they are dealing with services so fundamental to our lives, software projects
were at a very high level of success.

However, according to [1], the practice of software development has been plagued
with critically low success rates for decades. Meanwhile, demand for IT products and
services do not stop growing and the situation seems to get into a chaotic situation
with no solution. What has brought some optimism is the emergence of agile metho-
dologies, which have shown that it is possible to obtain better success rates. The au-
thors observed that there is a trend of improvement in the quality of the projects, but
still the situation requires attention, because the percentage of projects that exceed the
costs or terms remains almost as high as before.

[1] also emphasize that lean techniques have been increasingly applied to software
development. Ideology and lean techniques to which the authors refer are the same

698 M. Misaghi and I. Bosnic

used in the Toyota Production System and Toyota Product Development. According
to [2], the first step in the implementation of the lean software development is to un-
derstand these principles, because software development is a form of product devel-
opment. Applying the concepts of lean manufacturing, used for a long time in tradi-
tional industry and especially in the automobile industry, to the process of software
development is the challenge behind the lean software development.

This paper presents a case study conducted within a team of experienced software
developers that have used agile methodologies in the past decade with great success.
Since early 2012 the team has invested in implementing lean concepts in the process
of software development, which has had a positive impact on monthly indicators
presented to company management [3].

2 Lean Software Development

According to [4], the ideas of lean software have their origin in lean manufacturing
and lean product development. These concepts, in turn, had their origins in the Toyota
Production System and the Toyota System of Product Development.

According to [2], software development is a form of product development. The au-
thors were first to introduce in 2003 the concept of lean software development. The
main focus of their work was to identify lean concepts and how they could be applied
to software development.

Although agile and lean software development both have been inspired by the lean
concepts, [5] emphasizes that agile methods are applied only to software develop-
ment, while lean is a much broader concept. According to [6], the lean philosophy is
not just a set of tools. It affects all sectors of business, from human resources to mar-
keting. From this work were established seven principles of Lean Software Develop-
ment [2].

2.1 Principle One: Eliminate Waste

According to [7], the Toyota Production System has as one of its foci the total elimi-
nation of waste. The author states that everything that does not add value to the cus-
tomer must be removed from the process. According to [1], this category includes a
number of concepts that must be analyzed so that we can understand how waste indi-
cated in the Toyota Production System can be identified in the process of software
development.

• Defects: Defects are represented by themselves. Defects cause costly rework,
which does not add value to the product. The lean software development has as one
of its goals preventing defects.

• Overproduction: Unnecessary features. The cost of software is not contained only
in writing the source code. This code needs to be maintained, documented, taught
to the new team members, etc. For this reason, all the features embedded in the
software should come from the real needs of the user, i.e., features that add value to
the final product. According to [1], the study 'CHAOS study' Standish Group

 Lean Mindset in Software Engineering 699

showed that 64% of all the features are not used or are rarely used. This is a great
waste of resources over time.

• Stock: Partially completed tasks. Here we consider requirements analyzed but not
implemented, code that has not been tested or errors that have not been corrected.
The lean philosophy does not admit the accumulation of uncompleted tasks.
Instead, we try to adopt the unit flow that makes the task completed as soon as
possible.

• Transportation: Switching between tasks. Interruptions and work alternated be-
tween very different activities affect productivity. Before starting work on a task,
people need time to acclimatize to the problem and to understand the requirements.
Any interruption causes this process to be restarted. This is one reason why the
flow unit is so productive.

• Further processing: Unnecessary processes. This type of process is the most pure
waste. It hinders productivity without adding any value to the final product. An ex-
ample of this process is the creation of documentation that is not used by anyone,
or even manual execution of tasks that could be automated.

• Standby: Delays. During the process of software development programmers often
need to communicate with other project participants to ask questions and clarify
certain requirements. If these participants are not available, there will be delays in
delivery or implementation will be done without the proper information, which in
most cases will generate rework. This rework is one of the most common forms of
waste in the process of software development and should be avoided at any cost.

2.2 Principle Two: Integrating Quality

[7] states that it is not possible to inspect the quality of a product at the end of the
production line. According to [1], traditional development methodologies make exact-
ly this error: allow defects to be detected later by the team of quality assurance.

Lean software development, moreover, proposes a different philosophy. Instead of
creating systems to control defects (nonconformities queues to be resolved), the
process should be focused on the total elimination of defects and the consequent eli-
mination of rows control [2]. To achieve such a degree of maturity in the process is
only possible with the use of resources such as unit testing and continuous integration,
among others.

2.3 Principle Three: Creating Knowledge

According to [2], one of the major flaws that software development plans aimed at is
the idea that knowledge in the form of requirements exists separately from coding.
Authors emphasize that software development is a process of knowledge creation and
the detailed design, although it should be outlined before, it stands only during the
implementation of the code.

[1] has put that knowledge should be stored in such a way that it can be easily lo-
cated the next time it becomes necessary. People should not waste time learning
something that has already been studied and put into practice by other team members.

700 M. Misaghi and I. Bosnic

2.4 Principle Four: Postpone Commitments

[1] assert that the best decisions are made when we have as much information as poss-
ible. If a particular decision needs not be made immediately, we should wait until we
have more knowledge on the subject. According to [2], this item applies mainly to
making irreversible decisions. The reversible decisions can be taken before, because
they can be easily modified.

2.5 Principle Five: Delivering Fast

[8] teaches that we must begin with a thorough understanding of what adds value to
the customer. Once understood the needs of the client, we create a workflow that
seeks to make rapid and frequent deliveries of working software. According to [1], the
importance of delivering fast is to get customer feedback as soon as possible. Thus,
we avoid the requirements change just because they take too much time to be deli-
vered.

2.6 Principle Six: Respect People

According to [2], thinkers and people engaged in the project are the largest and most
sustainable competitive advantage that a company can have. This thought defines
what people represent in a lean philosophy. Respecting people means trusting that
they know the best way to perform a job and enables them to find ways to improve
processes.

2.7 Principle Seven: Optimize the Whole

According to [2], improving a local process is usually achieved at the expense of the
value stream in the entire process. This occurs when changes are made without consi-
dering the whole. This is known as sub-optimization, and an organization that imple-
ments lean concepts always tries to avoid it.

3 Case Study

The company chosen for this case study has a long experience in software develop-
ment. Currently, it is ranked as the leading supplier of systems for the supply chain in
Brazil. Furthermore, it has successfully implemented the agile software development,
Scrum and XP during the last decade. In the last five years, the company has in-
creased its interest in the concepts of lean software development, with the intention of
improving the productivity of its teams [3]. This case study was conducted from Sep-
tember 2011 to August 2012. At this time, we had 12 people on staff. 8 people have
had solid experience in software development (levels between full and senior). The
rest were younger and some also trainees.

 Lean Mindset in Software Engineering 701

3.1 Lean Concepts in Practice

Several indicators have been used to monitor the productivity of these teams, and
goals have been established to evaluate their progress. One of the main indicators
evaluates the time that a team invests, during each software version, in improvements
and new features. These tasks add value to the product and the increase of this indica-
tor has been one of the goals of the company.

All other activities performed by the team are considered waste, even if some are
needed so that the process can be managed correctly. Examples of some activities
performed by the team are correction of non-conformities, participation in meetings,
planning and others. When the time spent in correction of nonconformities (errors
caused during the execution of software) increases, it is an indication that the product
quality has worsened. Consequently, the team will have less time to invest in im-
provements and new features.

In an attempt to improve the indicators and increase the quality of the product, the
team that was followed in this case study chose to adopt the concepts of lean software
development. Each of the seven concepts explained in section 2 of this paper had a
corresponding action based on [9,10,11,12,13].

3.1.1 Eliminate Waste
The problem of multitasking has been identified as a major cause of decreased prod-
uctivity. People were constantly engaged in more than one activity, which took their
concentration of the main tasks (implement improvements and new features). Some
multitasking arose by the constant need to provide support to other teams about how
the software works, but others were caused by the behavior of the team itself. That is,
developers were involved in more than one task at a time, because there were no clear
rules within the process about what should be the correct behavior in these cases.

To deal with the problem of multitasking, the team defined two new guidelines in
the process of software development:

1. Each version of the software, one developer would be elected to handle support
tasks requested by other teams. Thus, the rest of the team would be free to devote
to the development of new features and improvements.

2. No developer would be involved in more than one feature at the same time. The
aim was to implement the flow unit (continuous). Only after completing an activity
the developer would dedicate to another, even if that meant some downtime.

3.1.2 Integrating Quality
The practice of automated tests, i.e., tests that do not depend on human interaction
and ensure the correct operation of one or more software features, would be integrated
into the process from the beginning. Experience had shown that leaving the develop-
ment of tests for a later stage caused waste, because it created an inventory of tasks
that hardly was handled.

702 M. Misaghi and I. Bosnic

3.1.3 Creating Knowledge
All knowledge about the product should be available to all team members. To achieve
this goal, the company implemented a collaborative tool for knowledge management,
where everyone could contribute documenting the processes in which they were
working. The knowledge could not be restricted to a group of more experienced de-
velopers.

3.1.4 Postpone Commitments
Important decisions, especially those involving changes in the architecture of the
system, were postponed until such time that the team had more knowledge on the
subject and therefore more security in the process of decision-making. This practice
proved to be very effective, because it avoided hasty decisions.

3.1.5 Delivering Fast
Divide the project into smaller iterations between three to four weeks, enabled rapid
delivery of functionalities, even partially completed. It was thus possible to obtain
customer feedback more rapidly, and allow them to have a higher level of involve-
ment in the evolution of the product. This practice is widely used in Scrum, one of the
agile methodologies adopted by the team.

3.1.6 Respect People
At all meetings of planning future versions of the software, all team members are
heard. The final decisions take into account everyone's opinion and make the team
commits to the estimates.

3.1.7 Optimize the Whole
The importance of understanding the processes of the company was highlighted with-
in the team. Workshops were made with other teams to clarify several questions about
how the software was used in practice. This knowledge was useful for evaluating the
impacts of development of a new feature on internal and external customers. The
result of this approach was an improvement in usability and better acceptance by
customers.

3.2 Data Collection

The company at which the case study was conducted has several tools to manage the
process of software development. All developed requirements are recorded as well as
the tasks and corrections of bugs. The data of this case study was obtained from tools
used in the process of software development:

1. Jira: This tool is provided by the company Atlassian and is used for registration
and monitoring of requirements, time recording and graphs tracking progress of
versions;

 Lean Mindset in Software Engineering 703

2. Confluence: Also provided by Atlassian, tool is used for documenting functional
and technical details of systems developed by the company. It is a collaborative
software where all team members have access to edit documents.

Every day, the team members record worked hours. Each time recording is obliga-
torily linked to a task, which can be an improvement, a bug correction, a meeting, etc.
Each of these tasks, in turn, is linked to a particular component. Currently the compo-
nents are divided into:

1. Product: Groups all the hours spent on tasks that add value to the product, such as
improvements and new features, development of automated tests, etc.

2. Bugs: The time spent on correction of nonconformities;
3. Support: hours are recorded in support activities provided to other teams;
4. Management: all tasks related to project management: meetings, planning, daily

meetings, etc.

3.3 Analysis of Results

To analyze the results, we used the one-year period, from September 2011 until Au-
gust 2012. The actions taken by the team and which were explained in the previous
sections had its implementation in February 2012. Thus, it is possible to observe the
evolution of the indicators analyzed in this case study, covering the phases before
and after the implemented changes. Data were obtained from the BI (Business
Intelligence) tool provided by the team of software quality. The percentage of time
spent is monitored monthly, and information is divided into three groups [3].

The group "product" covers all the hours spent on improvements and new features.
Corrections of bugs are classified as group "bugs", while in the group "others"
are inserted all other activities performed by team. Table 1 shows the history of the
percentage of time spent in each of the groups defined above.

Table 1. Data collection of time invested by component

Month 9/11 10/11 11/11 12/11 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12

Product 50 54.2 51.82 54.4 51.65 60.02 57.37 61.29 65.13 64.21 60.47 61

Bugs 13.9 13.7 10.8 10.2 9.4 8.6 8.5 8.6 7.4 6.7 6.6 5.9

Others 36.1 32.1 37.38 35.4 38.95 31.38 34.13 30.11 27.47 29.09 32.93 33.1

Through the graph shown in Fig. 1 it can be seen more clearly how the tracked in-

dicators evolved during one year.

704 M. Misaghi and I. Bosnic

Fig. 1. Evolution of the percentage of time spent per component

3.3.1 Time Invested in Improvements and New Features
Through the collected data, it can be observed the increase of time spent on product
relative to other components. While in 2011 the indicator stood at around 50%, from
the changes implemented the same shall remain in the range of 60%. Therefore, we
conclude that the indicator had an average increase of 20%.

Fig. 2 shows, in isolation, the evolution of the percentage of time spent on product. It is
possible to observe that, as of February 2012, the month in which it started implementing
lean software development; there was an average increase of 20% in this indicator.

Fig. 2. Graph of the percentage invested in product

0

10

20

30

40

50

60

70

Product

Bug

Others

0

10

20

30

40

50

60

70

Product

 Lean Mindset in Software Engineering 705

3.3.2 Time Spent on Bug Fixing
While there was an increase in the percentage of time spent on improvements and
new functionalities, it was observed, on the other hand, a decrease in time spent on
correcting bugs. Fig. 3. shows the evolution of this indicator.

Fig. 3. Graph of percentage spent on bug fixing

It is important to note that the reduction of time spent on bug fixing was achieved
with better product quality. That is, since the implementation of automated testing
was incorporated into the process of software development, fewer errors were re-
leased and hence more time was available for investment in new features and im-
provements.

4 Lean Mindset in Software Engineering

According to [14], lean is a mental model of how the world works, lean is a mindset.
For the impacts generated through implementation of lean principles in fact continue,
there is a need to implement lean mindset.

[14] also emphasize that for presenting a mental model, we have to start with two
questions: What is a purpose of a business? What kind of work systems are for ac-
complishing that purpose?

To understand how lean mindset work and how we can implement lean mindset,
[14] propose five steps:

1. The Purpose of Business: emphasizes the principle Optimize the Whole, taking the
Shareholder Value Theory to task for the short-term thinking it produces.

2. Energized Workers: is based on the work of Mihaly Csikszentmihalyi, who found
that the most energizing human experience is pursuing a well-framed challenge
[15].

0
2
4
6
8
10
12
14
16

Bug

706 M. Misaghi and I. Bosnic

3. Delighted Customers: urges readers to Focus on Customers, understand what they
really need, and make sure that the right products and services are developed.

4. Genuine Efficiency: starts by emphasizing that authentic, sustainable efficiency
does not mean layoffs, low costs, and controlling work systems.

5. Breakthrough Innovation: starts with a cautionary tale about how vulnerable busi-
nesses are—even simple businesses like newspapers can lose their major source of
revenue seemingly overnight.

Fig. 4 shows in detail the various components of each step based on [14].

Fig. 4. Lean Mindset Steps and Components based on [14]

For successful implementation of Lean Mindset, there is need for cooperation in
various sectors of the whole organization, not just those directly involved with soft-
ware engineering. We should view the organization as unique unit to ensure this suc-
cess.

5 Conclusion

During the conduct of the case study and the subsequent analysis of the results, it was
observed that the implementation of lean development software had several impacts
on the development process adopted by the company. All the impacts were positive as
they enabled the company to improve its software development process, adding more
productivity and quality.

On the other hand, the specific objectives of this study, analysis of indicators of
time invested in improvements and new functionalities and time spent on correcting
bugs had their data collected and compared over a period of one year. Both indicators
have improved, easily observed by the analysis of the results.

 Lean Mindset in Software Engineering 707

The elimination of waste was achieved with the elimination of multitasking, which
had been identified as a major cause of reduced productivity. The practice of auto-
mated testing was responsible for integrating more quality to the developed software,
while the implementation of a collaborative tool for knowledge management contri-
buted to the creation of a unique knowledge base.

Our challenge is to define the criteria to implement lean mindset in software engi-
neering, in our organization according to our need, with innovative ingredients.

References

1. Hibbs, C., Jewett, S., Sullivan, M.: The art of lean software development. O’Reilly Media,
Inc., Sebastopol (2009)

2. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley, Boston (2007)

3. Bosnic, I., Misaghi, M.: Lean Software Development: A Case Study in a Medium-sized
Compnay in Brazilian State of Santa Catarina. In: ADIS-AC Proceedings, USA, pp. 163–170
(2013)

4. Shore, J., Warden, S.: The Art of Agile Development. Reilly Media, Inc., Sebastopol
(2008)

5. Gustavsson, H.: Lean thinking applied to system architecting.Thesis. Department of
School Of Innovation, Design And Engineering, Mälardalen University, Västerås, Sweden
(2011)

6. Petersen, K.: Implementing Lean and Agile Software Development in Industry. Thesis -
Department of School Of Computing, Blekinge Institute Of Technology, Karlskrona, Swe-
den (2010)

7. Ohno, T.: Toyota Production Software: Beyond Large Scale Production. Productivity
Press, Oregon (1988)

8. Kniberg, H.: Lean from the Trenches: Managing Large-Scale Projects with Kanban. The
Pragmatic Bookshelf, Dallas (2011)

9. Cohn, M.: Succeeding with agile: Software development using scrum. Addison-Wesley,
Boston (2010)

10. Dyba, T., Dingsoyr, T.: Empirical studies of agile software development: A systematic re-
view. Information and Software Technology 50, 833–859 (2008)

11. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 6th edn. McGraw-Hill,
New York (2004)

12. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Boston (2011)
13. Vlaanderen, K., et al.: The agile requirements refinery: Applying SCRUM principles to

software product management. Information And Software Technology 53(1), 58–70
(2011)

14. Poppendieck, M., Poppendieck, T., Kniberg, H.: Lean Mindset – Ask the Right Questions.
Addison-Wesley, Boston (2014)

15. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. HarperCollins, New
York (1990)

	Lean Mindset in Software Engineering: A Case Study in a Software House in Brazilian State of Santa Catarina
	1 Introduction
	2 Lean Software Development
	2.1 Principle One: Eliminate Waste
	2.2 Principle Two: Integrating Quality
	2.3 Principle Three: Creating Knowledge
	2.4 Principle Four: Postpone Commitments
	2.5 Principle Five: Delivering Fast
	2.6 Principle Six: Respect People
	2.7 Principle Seven: Optimize the Whole

	3 Case Study
	3.1 Lean Concepts in Practice
	3.2 Data Collection
	3.3 Analysis of Results

	4 Lean Mindset in Software Engineering
	5 Conclusion
	References

