
Chapter 8
Compromise Programming and Utility
Functions

Enrique Ballestero and Ana Garcia-Bernabeu

Abstract Proposed in the last decades of the twentieth century, the Compromise
Programming (CP) model assumes that the decision maker looks for a compromise
between objectives of different character, financial, ethical or others. As described
by CP, the decision maker has in mind an ideal point, which is a basket containing
the best feasible level of each objective. This ideal is a utopian infeasible basket of
reference because all the best objectives cannot be simultaneously reached. Given
an efficient frontier of baskets, the CP satisfying solution is to choose the basket
closer to the ideal. More precisely, the CP solution is obtained by minimizing
the distance between a frontier basket and the ideal. Distances are not necessarily
measured by the Euclidean quadratic metric but by a conventional metric between
one and infinity. Moreover, the distance in CP is not a purely geometric notion
but a composite measure in which the geometric components are multiplied by
the decision maker’s preference weights for each objective. Years later the CP
proposal, a linkage between CP and utility theory was investigated. Finally, Linear–
quadratic composite metric looks for a compromise between aggressive (large risky
acnievements) and conservative (balanced solutions) objectives.

8.1 Introduction to CP Modelling

To deal with a variety of MCDM methods assures competitiveness and comple-
mentarity, so that the use of a broad range of methods should not be abruptly
reduced to one or a few. Together with GP and other techniques, CP is appropriate
to make decisions in many fields such as finance, engineering, management and
so on. Given that no method can be presented as superior to others, each of them is
useful depending on environments and circumstances. Take, for example, classic
lexicographic and weighted goal programming, which are the most usual goal
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programming models (Tamiz et al. 1995). They are especially appropriate for man-
agement scenarios in which the decision maker (DM) seeks “satisficing” solutions
of bounded rationality by subjectively introducing a profusion of targets. In contrast,
CP and multi-objective programming are more appropriate for finance/engineering
scenarios where the DM cannot afford to replace objective information by subjective
views, although the principle of bounded rationality is still accepted in a moderate
way. Briefly speaking, CP raises the following optimization problem: to find the
efficient alternative closest to a referential infeasible alternative, named utopia, ideal
or anchor value. In greater detail, the characteristics of CP are as follows:

(a) It requires specifying the efficient frontier, namely, an allocation set in which no
variable can be made better off without making some other variable worse off.

(b) It considers the ideal as an analytic reference for optimization.
(c) This ideal is an infeasible point which generally derives from the efficient

frontier, i.e., the CP ideal is a vector whose components are the best values
(anchor values) of the criteria.

(d) Therefore, unlike goal programming, the CP ideal is not a target established by
the DM from his own views and judgments.

(e) The CP solution is obtained by minimizing the weighted distance from each
efficient point to the infeasible ideal, so that the DM chooses the efficient
alternative closest to the utopia.

(f) Therefore, CP, although using preference weights, searches for an optimal
solution rather than for a “satisficing” solution in the most literal sense of this
word.

Assuring efficiency by finding the efficient frontier prior to selecting the optimal
solution is the standard procedure used in economics (utility optimization, multi-
objective programming models, etc.). In economics, the production possibility set
(Pareto efficient frontier) is determined prior to optimizing utility by Lagrange
maximization. However, the two-step model (efficient frontier first) can be reduced
to a single step (direct optimization) in problems where the presence of inefficient
solutions is directly discarded. Descriptively considered, CP embraces different
meanings and representations, one of them being an arbiter who looks for a
compromise between parties with conflicting interests or opposite standpoints
(Ballestero 2000). To undertake the CP minimization, the analyst should previously
specify the objective function as a distance equation depending on the chosen
metric, which is not necessarily the usual Euclidean quadratic metric. Linear metric
is appealing to DMs who seek large outcomes involving imbalanced solutions in
exchange for balanced (non-corner) solutions. In contrast, higher metrics such as
the quadratic one or even higher are more appealing to DMs who turn to the
precautionary principle of avoiding corner solutions. An extreme metric for the
balancing purpose is the infinity norm; however, its use might be inappropriate from
the achievement perspective (Ballestero 1997). There is CP literature in which a
method is provided to solve the metric selection problem. This method relies on a
linkage between the CP metric and Arrow’s-Pratt’s risk theory (Arrow 1965; Pratt
1964). Nevertheless, such an approach cannot be properly used in our deterministic
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context (Ballestero and Romero 1998; Krcmar et al. 2005; Stokes and Tozer 2002;
Xia et al. 2001).

A large amount of CP papers have been published in the academic literature.
Currently, more than 18,000 articles can be found in ScienceDirect, which is one
of the world’s leading full-text scientific database, from which more than 1,300 are
applications in finance and, in particular, more than 300 papers include applications
of CP-based models to the portfolio selection problem. One of the pioneering
applications of CP for portfolio selection are due to Ballestero and Romero (1996)
and since then several interesting works can be found in the literature. Some recently
published applications are: Bilbao-Terol et al. (2006a,b), Amiri et al. (2011),
Abdelaziz et al. (2007a), Ballestero and Plà-Santamaría (2003, 2004), Ballestero
et al. (2007) and Perez Gladish et al. (2007).

In this chapter, the problem takes a different turn. The approach is deterministic,
which appears to be more appealing than to combine CP with risk and probability
without an axiomatic basis.

8.2 Choice Problems and the Decision Maker’s Utility

In economics, utility is the cornerstone of classical and modern theory. This concept
derives from Bentham’s thought, which is known as utilitarianism. Economists
assume utility maximization, which is stated as follows:

max Z D Z.x1; x2/

subject to T .x1; x2/ D k
(8.1)

where .x1; x2/ represents a choice for the decision-maker (e.g. commodity–mix
in a consumer’s choice problem, vector of outputs in a joint production problem,
composition of a portfolio of securities, etc.); Z.x1; x2/ is the utility function for
the decision-maker, and T .x1; x2/ D k is the attainable or feasible set (budgetary
boundary in consumer theory, transformation curve in joint production problems,
efficient frontier in portfolio analysis, etc.).

The essence of microeconomic analysis lies within structure (8.1). Thus, eco-
nomic rationality is usually defined in terms of maximizing a consistent and
transitive function such as Z.x1; x2/ subject to the satisfaction of the feasible set.
This approach has long been used because of its elegance, although its empirical
value is doubtful for practical reasons. Implementation of traditional analysis
requires one obtaining a reliable mathematical representation of Z.x1; x2/ which
demands very precise information not available in many scenarios. In other words,
Z.x1; x2/ is often unknown. For example, an economist can rarely deal with a
consumer’s empirically elicited utility function, and still less with an empirical
social utility function.
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Moreover, it might be useful to remember that the logical soundness of the
utility function has been severely criticized in several decision contexts. Some
of the assumptions necessary to the acceptance of the existence of a utility
function (comparability, reflexivity, transitivity, and continuity of preferences) seem
questionable; e.g. the continuity of preferences in many decision making problems
within the field of natural resources planning. However, this controversial topics
will not be considered in the present paper. We do not seek to modify the core of the
traditional paradigm since it is commonly accepted in the literature and has proved
its explanatory power for the economist’s intellectual necessities. On the contrary,
we are looking for a bridge between utility functions and operational research,
improving the potentiality of the traditional paradigm in economic applications.

8.3 Reviewing the CP Model

A first task in CP is to define the ideal point, also called the point of anchor values.
This ideal is an infeasible utopian target, in which each CP variable reaches its
optimum. No decision maker can optimize all the variables simultaneously. Imagine
your ideal is to drive your car as fast as possible and simultaneously to minimize
road accident risk, but this utopian aspiration is quite impossible to achieve. Then
you look for a compromise between speed and security. Consider the following
example related to SRI policies: A country which can produce food of two different
types of farming:

(a) Organic food by agricultural systems that do not use chemical fertilizers and
pesticides. This farming involves an SRI objective.

(b) Conventional food from crops in which chemical fertilizers and pesticides are
used. This farming does not involve an SRI objective.

By allocating all the agricultural resources to organic food, the country can attain
x�

1 units of food, whereas by allocating all the agricultural resources to conventional
food, the country can reach x�

2 units. Hence, the obviously unattainable utopian
basket .x�

1 ; x�
2 /, would be the CP ideal point. The country’s dream consists in

simultaneously producing x�
1 organic food and x�

2 conventional food; however,
this dream is impossible. Indeed, the country can produce a mix .x1; x2/ such as
T .x1; x2/ D k, where T is an efficient frontier whose extreme points are .x�

1 ; 0/

and .0; x�
2 /.

Under similar situations, the basic structure of a CP choice is not (8.1) but the
following alternative, which is not devoid of realism:

max Z D Z.x1; x2/

subject to T .x1; x2/ D k
(8.2)
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where CO.x1; x2/ means the search for an compromise point along the T frontier.
There is not a single rigid criterion for solving (8.2). Among many others, a simple
way of compromising is obtained by taking:

x1=x�
1 D x2=x�

2 (8.3)

However, there is a general criterion which is widely accepted in the literature:
the decision-maker seeks a compromise solution as close as possible to the ideal
point, the so called Zeleny’s axiom of choice (Zeleny 1982). To achieve this close-
ness, a family of distance functions is introduced into the analysis. In consequence,
the structure of a CP problem under Zeleny’s axiom can be summarized as follows:

min Lp D Œwp
1 .x1 � x�

1 /p C wp
2 .x2 � x�

2 /p�1=p

subject to T .x1; x2/ D k

0 � x1 � x�
1 ; 0 � x2 � x�

2

(8.4)

where .x�
1 ; x�

2 / is the ideal point which is usually derived from T .x�
1 ; 0/ D k and

T .0; x�
2 / D k; .w1; w2/ is the vector of weights attached to both magnitudes; and p

is a parameter defining the family of distance functions 1 � p � 1.
In CP, weights w1 and w2 can play two different roles: (i) shadow prices for

normalizing both x1 and x2 magnitudes in order to make their aggregation possible;
(ii) preferential indexes, when utility functions are not considered in the analysis. In
this paper weights will only be used for normalizing purposes, since utility functions
involve the preferential scheme.

For several values of the parameter p different baskets which are closest to the
ideal point are obtained. Yu (1973) demonstrated that for the bi-criteria case the
distance function L1, is monotone nondecreasing for 1 � p � 1. Thus, L1 and
L1 metrics define a subset of the attainable frontier, known as the compromise set.

The other best-compromise solutions fall between those corresponding to L1

and L1 metrics, i.e., Lp 2 ŒL1; L1�. Baskets on the compromise set enjoy some
useful economic properties, such as feasibility, Paretian efficiency, independence of
irrelevant alternatives, etc. (Yu 1985, Ch.4)

It is worth pointing out that Eq. (8.3) is a particular case of Eq. (8.4) when p D 1
and weights are inversely proportional to the values (i.e. w1=w2 D x�

2 =x�
1 ) as can

easily be proved (see Ballestero and Romero 1991).

8.3.1 An Example of CP Setting from Economic and Ethical
Objectives

Political leaders in a country usually pursue economics growth policies together
with ethical policies. Electors and media can then wonder if the political programs
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are able to combine economic and ethical objectives in a coherent way by
looking for a compromise between goals. Those programs which promise an ideal
achievement of maximizing incompatible goals are not earnest and can be judged
as demagogic. Suppose that the Y party is preparing an electoral program from the
following objectives.

(i) Economic policy. To increase Gross Domestic Product (variable x1) as much as
possible. Domestic product to be reached should not be less than x1� expressed
in real terms to assure a reasonable income guaranteeing a decent standard of
living to people.

(ii) Ethical policy. To increase environmental protection (variable x2) as much as
possible. This is needed to meet targets such as sustainable growth, rational use
of natural resources, health, and low pollution. For this purpose, the index of
environmental protection should not be less than x2� scalarized units.

This involves a trade-off between (i) and (ii), so that more x2 can be only
obtained in exchange for less x1 and viceversa. Electoral programs should consider
the moral impossibility of promising ideal paradises, which overlook the trade off. In
mathematical terms the trade off is measured on the Paretian efficient frontier (8.1),
namely:

T .x1; x2/ D k

In Fig. 8.1, curve ABCD represents this trade-off in its general formulation. Since
more x1 implies less x2, the curve is decreasing. Concerning concavity, the shape of
the curve is highlighted as follows. If x1 has a value close to 0, then x1 can strongly
increase in exchange for a slight loss of x2. Therefore, we have an almost horizontal
slope at point D. On the contrary, suppose that x1 reaches a high value close to OA.
Then, slight increments in x1 involve abrupt losses of x2, so that the slope at point
A is almost vertical.

Fig. 8.1 Gross Domestic
Product and environmental
protection dilemma: CP
setting
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Figure 8.1 describes the CP setting. Ideal point I.x�
1 ; x�

2 / and anti-ideal point
H.x1�; x2�/ are graphed in connection with the efficient frontier.

OE is the minimum level of gross domestic product to assure acceptable lower
limits for consumption, investment and employment. This is the x1� anti-ideal
value. Vertical line EC determines the ideal or anchor value x�

2 D FI.
OG is the minimum level of environmental protection to assure acceptable lower
limits for critical environmental parameters. This is the x2� anti-ideal value.
Horizontal line GB determines the ideal or anchor value x�

1 D FI.

Given preference weights w1 and w2 for objectives (i) and (ii), the compromise
solution is the frontier point which minimizes distance (8.4).

There is an ongoing issue that movements along the frontier curve can cause
changes in this frontier. As shown in Fig. 8.2, the frontier could then shift upward
to position A0B 0C 0D0 or downward to position A00B 00C 00D00. Consider a CP setting
in which x1 is company’s income in aggregate terms while x2 is an index of social
protection including social security, subsidies, holidays and any other government
initiative of social welfare. Conservative parties contend that the frontier curve will
shift downward if x2 is set high. This is because high levels of social protection
discourage private investment. If so, social protection could finally turn out to be
less than before due to downward shifts. Social democratic parties do not agree with
this paradox. They contend that the frontier curve will keep unchanged or will shift
upward because productivity increases with social welfare. To look into pros and
cons of these political programs lies outside the limits of this book.

Fig. 8.2 Company’s income
and social protection
dilemma: Frontier shifting x1
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8.3.2 CP Proxy for the Decision Maker’s Utility Function

Now, our purpose is to show how to use CP model (8.4) to help solve difficult
problem (8.1). Before rushing into formal statements, we will highlight the issue
in an intuitive way. To minimize CP distance (8.4) is equivalent to maximizing the
following CP utility function:

max..w1 x1/P C .w2 x2/p/1=p (8.5)

under satiation conditions x1 � x�
1 and x2 � x�

2

CP utility (8.5) is non-linear non-additive for p values other than 1. It is
worth noting that additive utility does not satisfy important properties in economic
analysis. Satiation at the ideal point is also meaningful. Given a utility map, satiation
means that you will reach a utility top. To assume the existence of this utility top is
more realistic that assuming non-satiation, which would involve that you will never
reach the top.

As proven in the MCDM literature, the CP maximum (8.5) lies on the Yu
compromise set on the T efficient frontier. This property is extended by the
following theorem:

Theorem 1 Under plausible assumptions, the Lagrangean maximum of utility Z
with two attributes lies on the Yu compromise set on the T efficient frontier.

A proof can be found elsewhere. See e.g. Ballestero and Romero (1991).

8.3.3 SRI Example: Carbon Pollution from a Power Plant

Imagine a conventional thermal power plant which uses coal as energy source.
Pollution from this plant is very high. This specially affects tourists in the summer
and people living in the area who spend leisure time outside their homes. Faced with
this problem, the manager of the power company looks for a compromise between
environmental and profitability goals, which are defined as follows.

(i) Environmental objective. To stop the activity of the plant for some weeks in the
summer.

(ii) Profitability objective. To work the remaining weeks of the year.

Hereafter, we denote by h1 and h2 the yearly hours of activity and temporary
closure time, respectively.

According to the European Emission Trading Scheme (EU ETS), a CO2 emission
limitation target C0 tonnes per year is established for this kind of power plants. Let
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C be the yearly level of CO2 pollution from the plant. In this legal framework, the
following cases can occur:

(a) C D C0. As the pollution level from the plant is equal to the target, the
company is authorised to work during the year without incurring any penalty.
The company does not receive any premium either.

(b) C > C0. Then, the company’s activity is authorised if and only if the company
purchases Certified Emission Reduction credits (CERs) for the gap .C � C0/

from the primary market. These purchases are made at price P established by
the competitive market, which involves an extra cost of P.C � C0/ monetary
units for the company.

(c) C < C0. Then, the company can sell CERs amounting to .C0�C / in the primary
market at price P, which means an extra earning of P.C0 � C / monetary units
for the company.

Annual earnings after interest, taxes, depreciation and amortization are:

Y D y.1 � t/h1 C P.C0 � C / D y.1 � t/h1 C P.C0 � ch1/ (8.6)

where y denotes earnings per hour after interest, amortization and depreciation but
before taxes; t denotes corporate tax rate; and c is CO2 pollution per hour from the
plant.

To look for a compromise between objectives (i) and (ii), the following CP model
is formulated. See setting in Fig. 8.3.

Fig. 8.3 CP setting and
anchor values for
environmental and
profitability goals h1

h2
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h1 C h2 D 365 � 24 D 8;760 hours per year (8.7)

Ideal point .h�
1 ; h�

2 / and anti-ideal point .h1�; h2�/ are stated as follows.

h�
1 is the maximum number of yearly hours to work by the plant. In our case,

h�
1 D .365 � 15/ � 24 D 8;400 h, as the plant should stop for around 2 weeks

for maintenance and control, regardless of the temporary closure time to meet
environmental objective (i).
h1� is the minimum number of yearly hours that the plant can work. To estimate
it, we ask the company’s manager on the minimum level of earnings that the
company is willing to accept. Let Y0 be this level. From Eq. (8.6), we have:

y.1 � t/h1 C P.C0 � ch1/ � Y0 (8.8)

From Eq. (8.8) we obtain:

h1� D min h1 D Y0 � PC0

y.1 � t/ � cP
(8.9)

where the variables took in year 2013 the following numerical values: y D 4;500

monetary units per hour; t D 0:19; P D 4 monetary units per CO2 tonne, which
was the market price for CERs; C0 D 10;000;000 tonnes per year, which was the
CO2 emission limitation target for the plant; c D 833 tonnes per hour, which was
CO2 pollution from the plant; Y0 D 41;500;000 monetary units a year. This amount
was elicited by a dialogue between the analyst and the power plant manager who
discloses that 41;500;000 monetary units was the minimum earning acceptable by
the company. By specifying Eq. (8.9) with these numerical values, we get:

h1� D 41;500;000 � 4 � 10;000;000

4;500.1 � 0:19/ � 833 � 4
D 4;792

Moreover, we have:

h�
1 C h2� D 8;760 h1� C h�

2 D 8;760

These equations yield:

h2� D 8;760 � 8;400 D 360 hours per year

h�
2 D 8;760 � 4;792 D 3;968 hours per year
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From this setting, the CP model is defined as follows:

min D Œwp
1 .8;400 � h�

1 /p C wp
2 .3;968 � h�

2 /p�1=p

subject to h1 C h2 D 8;760

360 � h2 � 3;968

(8.10)

From preference weights w1 D 0:6 and w2 D 0:4 for the objectives, together
with the Euclidean metric p D 2, this model is solved by Lingo 11.0, which yields
h1 D 7;290 h for the activity time and h2 D 1;470 h for the temporary closure time.

A sensitivity analysis can highlight robustness of the model with respect to metric
p. If the decision maker’s risk aversion for random changes in the variables is very
strong, then a higher metric should be used. Readers can check the results.

8.4 Linear–Quadratic Composite Metric: Advanced
Approaches

We here minimize the distance between utility at the CP ideal point and the
utility at a frontier point on the criteria setting. This meaningful distance is treated
by Taylor expansion around the ideal point, thus obtaining the linear–quadratic
composite metric. Aggressive decision makers prefer large risky achievements
but the conservative ones prefer prudent balanced solutions, which are far away
from aggressive corner points. Linear–quadratic composite metric looks for a
compromise between these aggressive and conservative objectives.

The manufactures are often interested in blending materials to achieve industrial
products able to satisfy marketing criteria. Suppose a manufacturer who wants
to obtain blends of materials by considering a set of marketing and SRI criteria
such as quality standards, obsolescence, special necessities of customer segments,
environmental requirements, and others. In this problem, every criterion can be
associated with a decision variable. For example, a criterion such as environmental
requirements is associated with a decision variable such as the amount of a given
polluting material. From this correspondence, the level of the j th criterion can be
measured by the xj decision variable. The space of decision variables and the space
of criteria coincide.

Let .x1; x2; : : : ; xj ; : : : ; xn/ be a CP setting of criteria/decision variables, where
every criterion behaves as “the more the better”. Every xj is greater than (or equal
to) zero. In this setting, the ideal point is I.x�

1 ; x�
2 ; : : : ; x�

j ; : : : ; x�
n /, where x�

j is the
highest feasible value of the j th criterion. As well known, the CP objective function
is given by the distance function of metric p (between 1 and 1) as follows:

Z D
2
4

nX
j D1

wj
p.x�

j � xj /p

3
5

1=p

(8.11)
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to be minimized subject to an efficient frontier and the non-negativity conditions,
which is equivalent to:

max UZ D K � Z (8.12)

subject to the efficient frontier, where K is a constant sufficiently large to assure that
the difference (8.12) is positive. Function (8.12) has the meaning of a special utility
function that will be called the Zeleny–Yu utility.

8.4.1 Utility Function: An Extended Approach

A question arises whether CP can be stated from more general utility functions
than (8.12). Let

U.x1; x2; : : : ; xj ; : : : ; xn/ D
nX

j D1

Uj .xj / (8.13)

be a general additive utility function of criteria on the CP map. From Eq. (8.13),
consider the following constrained minimization:

min � D
nX

j D1

Uj .x�
j / �

nX
j D1

Uj .xj / (8.14)

subject to the efficient frontier and the non–negativity conditions, where � is the
deviation between the utility value at the ideal point and the utility value at a generic
point on the efficient frontier.

Indeed, minimizing the � deviation can be viewed as the core of an extended
compromise programming. A Taylor expansion around the ideal point with the
Lagrange form of the remainder term converts Eq. (8.14) into:

min � D
nX

j D1

Uj .x�
j /�

2
4

nX
j D1

Uj .x�
j / C

nX
j D1

Uj
.1/.x�

j /.xj � x�
j / C 0:5

nX
j D1

Uj
.2/."j /.xj � x�

j /2

3
5

D
nX

j D1

Uj
.1/.x�

j /.xj � x�
j / � 0:5

nX
j D1

Uj
.2/."j /.xj � x�

j /2 (8.15)
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where U
.1/
j and U

.2/
j are the first and second partial derivatives of the utility function

with respect to the j th variable, namely, the first and second derivatives of the utility
term Uj .xj / of the additive function. Notice that expansion (8.15) does not state a
mere approximate value but represents the exact value according to the following
Taylor’s theorem: the Lagrange form of the remainder term states that a number"
between xj and x�

j does exist if Uj is a function which is continuously differentiable
on the closed interval Œxj ; x�

j � and twice differentiable on the open interval .xj ; x�
j /.

Since the "j terms are unknown variables, we use a proxy for min �, which
consists in replacing every "j by the respective x�

j ideal value. Then, Eq. (8.15)
becomes:

min � D
nX

j D1

Uj .x�
j /�

2
4

nX
j D1

Uj .x�
j / C

nX
j D1

Uj
.1/.x�

j /.xj � x�
j / C 0:5

nX
j D1

Uj
.2/.x�

j /.xj � x�
j /2

3
5

D
nX

j D1

.�1/Uj
.1/.x�

j /.xj � x�
j / � 0:5

nX
j D1

Uj
.2/.x�

j /.xj � x�
j /2 (8.16)

8.4.2 Normalizing the xj Criteria

For practical convenience, each xj criterion is normalized by the following
equation:

yj D xj � xj �
x�

j � xj �
(8.17)

where x�
j and xj � are the ideal and anti-ideal values, respectively, while the

normalized yj ranges between 0 and 1. Therefore, the normalized ideal is y�
j D 1

while the normalized anti-ideal is yj � D 0 for all j. In the special and frequent case
of zero anti-ideal, Eq. (8.17) becomes yj D xj =xj �. Later, this normalization will
be use to transform Eq. (8.16). Our next task is to specify the partial derivatives in
an understandable CP language.
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8.4.3 Normalizing the Objective Function

By normalizing the xj variables according to the previous section, objective
function (8.16) becomes:

min � D
nX

j D1

U
.1/
j .1/.1 � yj / � 0:5

nX
j D1

U
.2/
j .1/.1 � yj /2 (8.18)

8.4.4 Linear–Quadratic CP Achievement Function

The statement in Sects. 8.4.1–8.4.3 leads to a particular utility–based compromise
objective function, which is called the linear-quadratic CP achievement (Ballestero
2007). This is interesting, not only for blend design but also to straightforwardly
solve a wide range of compromise programs of management. Linear-quadratic CP
achievement can be stated with any number of criteria. Hereafter, the analysis will
be limited by considering only two criteria, as this special case often appear in
managerial and finance applications. In the previous subsections, the CP approach
has been entirely developed in a rather general utility framework. No particular
type of utility, such as exponential, logarithmic, power or any other, has been used.
However, to derive the linear-quadratic CP achievement in our context we use the
classic Cobb–Douglas utility function UCD with two criteria as an operational tool,
namely:

UCD D y
V1

1 y
V2

2 I 0 � V1; V2 � 1I V1 C V2 D 1 (8.19)

whose first and second partial derivatives specified at the ideal point y�
j D 1

.j D 1; 2/ are:

U
.1/
CDj

.1/ D Vj

U
.2/
CDj

.1/ D Vj .Vj � 1/I j D 1; 2
(8.20)

By introducing partial derivatives (8.20) into CP objective function (8.18), we
obtain the linear-quadratic CP achievement function:

min � D .V1.1 � y1/ C V2.1 � y2// C
0:5

�
V1.1 � V1/.1 � y1/

2 C V2.1 � V2/.1 � y2/
2
�

(8.21)

which should be optimized subject to the normalized efficient frontier.
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Parameters V1 and V2 have a clear meaning of preference weights for the
respective criteria. This can be checked by rating utility (8.19) in its logarithmic
form:

log UCD D V1 log y1 C V2 log y2 (8.22)

Therefore, V1 and V2 can be elicited through a dialogue about preferences
between the analyst and the decision maker. An example of this dialogue is as
follows.

Analyst. Do you prefer the j D 1 criterion to the j D 2 criterion, or viceversa?
Decision Maker. I prefer j D 1.
Analyst. How much?
Decision Maker. I give 3 points to j D 1 and 2 points to j D 2.

From this dialogue, we get V1 D 3=5 and V2 D 2=5.

8.4.5 A Case of Polymer Industry

This section describes an example of industrial blending in which the manufacturer’s
decisions are made from marketing criteria rather than from SRI criteria. Later
in this chapter, an example involving SRI objectives will be developed. In both
examples, the linear-quadratic CP achievement (8.21) will be used.

Suppose a manufacturer who faces with the problem of blending three types
of polymer fibers. The product should have two desirable properties, tenacity
and elongation at break, which are the CP criteria. Let qi .i D 1; 2; 3/ be the
percentage of the i th fiber in the blend, these percentages being the decision
variables. Laboratory experiments to evaluate and enhance the product design show
that tenacity in the blend is governed by the following equation:

x1 D 1;132

 
3X

iD1

ti qi

!
� 0:012

 
3X

iD1

ti qi

!2

(8.23)

where ti is tensile strength per unit of the i th fiber. In Eq. (8.23), the negative
quadratic term is due to a synergy effect which negatively influences tenacity in
the blend. Elongation at break is roughly evaluated by the equation:

x2 D
3X

iD1

eiqi (8.24)

where ei is elongation at break per unit of the i th fiber. In Table 8.1, both ti and
ei values .i D 1; 2; 3/ are recorded. Note the high inverse correlation between
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tenacity (ability of the product to withstand tension, measured in Newton per square
millimetre) and elongation at break (ability to stretch, measured in percentage).

First step. Determine the efficient frontier by maximizing tenacity subject to
parametric levels of elongation at break from Eq. (8.24) and the constraint:

3X
iD1

qi D 1 (8.25)

saying that the sum of percentages is equal to unity. The parametric values
of elongation x2 range between 50 and 85 with intervals of 2.5. If elongation
decreases below 50, then tenacity decreases below 26.68, and therefore, elonga-
tion values lower than 50 should be discarded as they lead to results worse than
the combination .x1 D 50I x2 D 26:68/ (see Table 8.1). Moreover, if elongation
increases above 85, then tenacity decreases below 20, and consequently, using
fiber number 1 alone is better than using a blend (check this in Table 8.1, upper
half). In sum, the trade-off between elongation and tenacity appears only over
the range (50, 85).
Second step. Normalize (standardize) both x1 and x2 criteria by Eq. (8.17),
where the ideal and anti-ideal values are 26.68 and 20.44 for tenacity, while they
are 85 and 50 for elongation at break. In Table 8.1, bottom half, the normalized
values y1 and y2 are displayed.
Third step. Elicit preferences and attitudes to imbalance by the dialogue stated
in Sect. 8.4.4 for the special case n D 2, thus obtaining Y1 % and .100 � Y1/ %
from the decision maker’s answer. In Table 8.2, several possible answers are
considered, and therefore, their corresponding Y1 percentages are displayed as
parametric values.
Fourth step. For each possible answer, minimize Eq. (8.21) once specified
numerically with the respective Y1 percentage, this minimization being subject
to the normalized efficient frontier given in Table 8.1.
Results are shown in Table 8.2 for a scale of parametric values Y1 from 0:1 to
99:9 %. As a robustness analysis, this table visualizes each interval of parameter
Y1 for which the solutions given by the composite metric do not change, the
intervals being separated by horizontal lines. For comparison, the solutions with
metrics p D 1 and p D 1 are also recorded in the same table. As these results
come from a mere example of two criteria, their validity is very limited. They are
summarized as follows:

(a) Metric p D 1 gives a wide range of corner solutions with larger achievements.
Therefore, this is not a fitting metric for decision makers with significant
aversion to imbalance
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Table 8.2 Solutions with the
composite metric, metric 1
and the infinity norm for
different Y1 percentages

Composite metric h D 1 Infinity norm

Y1 y1 y2 y1 y2 y1 y2 Error

0.1 0 1 0 1 0 1 0.1

1 0 1 0 1 0 1 1

2 0 1 0 1 0 1 2

3 0 1 0 1 0 1 3

5 0 1 0 1 0.13 0.93 �2.3

10 0 1 0 1 0.13 0.93 2.4

15 0 1 0 1 0.25 0.86 �0.65

20 0 1 0 1 0.25 0.86 3.8

24 0 1 0 1 0.37 0.79 �0.84

25 0.13 0.93 0 1 0.37 0.79 0

27 0.13 0.93 0 1 0.37 0.79 1.68

28 0.25 0.86 0 1 0.37 0.79 2.52

29 0.25 0.86 0 1 0.37 0.79 3.36

30 0.37 0.79 0 1 0.37 0.79 4.2

35 0.37 0.79 0 1 0.47 0.71 �0.3

38 0.37 0.79 0.37 0.79 0.47 0.71 2.16

39 0.57 0.64 0.37 0.79 0.47 0.71 2.98

40 0.57 0.64 0.37 0.79 0.47 0.71 3.8

45 0.57 0.64 0.57 0.64 0.57 0.64 �0.45

46 0.57 0.64 0.57 0.64 0.57 0.64 0.34

47 0.65 0.57 0.73 0.5 0.57 0.64 1.13

48 0.73 0.5 0.73 0.5 0.57 0.64 1.92

49 0.73 0.5 0.73 0.5 0.57 0.64 2.71

50 0.73 0.5 0.73 0.5 0.57 0.64 3.5

57 0.73 0.5 0.85 0.36 0.65 0.57 1.46

58 0.73 0.5 0.85 0.36 0.65 0.57 2.24

59 0.79 0.43 0.9 0.29 0.65 0.57 3.02

60 0.85 0.36 0.9 0.29 0.73 0.5 �3.8

64 0.85 0.36 0.9 0.29 0.73 0.5 �0.72

65 0.85 0.36 0.9 0.29 0.73 0.5 0.05

66 0.85 0.36 0.9 0.29 0.73 0.5 0.82

67 0.9 0.29 0.94 0.21 0.73 0.5 1.59

70 0.9 0.29 0.97 0.14 0.79 0.43 �2.4

75 0.9 0.29 0.97 0.14 0.79 0.43 1.5

76 0.94 0.21 0.97 0.14 0.79 0.43 2.28

79 0.94 0.21 0.99 0.07 0.85 0.36 �1.59

80 0.97 0.14 0.99 0.07 0.85 0.36 �0.8

85 0.97 0.14 0.99 0.07 0.9 0.29 �2.15

86 0.97 0.14 0.99 0.07 0.9 0.29 �1.34

87 0.99 0.07 0.99 0.07 0.9 0.29 �0.53

(continued)
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Table 8.2 (continued) Composite metric h D 1 Infinity norm

Y1 y1 y2 y1 y2 y1 y2 Error

90 0.99 0.07 1 0 0.9 0.29 1.9

92 0.99 0.07 1 0 0.94 0.21 �0.8

93 1 0 1 0 0.94 0.21 0.05

99 1 0 1 0 0.99 0.07 0.06

99.9 1 0 1 0 1 0 �0.1

(b) Given the discrete frontier in this example, the infinity norm only provides
rough solutions affected by errors of considerable magnitude. From the basic
equation of the infinity norm:

Y1 D .1 � y1/ D .100 � Y1/.1 � y2/ (8.26)

the error corresponding to each frontier point .y1; y2/ is computed as the
difference between both sides of this equation, namely:

e.Y1/ D Y1.1 � y1/ � .100 � Y1/.1 � y2/ (8.27)

In Table 8.2, the rough solution given by the infinity norm for each Y1 preference
weight is the frontier point minimizing error (8.27) in the set of the 15 frontier
points recorded in Table 8.1, last two rows. Indeed, the errors shown in the
last column of Table 8.2 do not allow us to draw conclusions on the accuracy
of results from the infinity norm, which appears to be rather inapplicable. In
particular, the rough solution y1 D 0 and y2 D 1 for the first four rows in
Table 8.2 is affected by a percentage error of 200 %, and therefore, using here
the infinity norm is unacceptable. The same occurs with the last row of the table.
Only for Y1 D 25, zero error is obtained.

Conclusions
We describe Compromise Programming (CP) as a multicriteria technique
related to utility. Because optimizing utility is quite difficult in practice, the
existence of a linkage between utility U and CP is appealing to construct a CP
proxy for utility optimization. Analytically, CP can be viewed as a method to
maximize the decision maker’s utility function subject to an efficient frontier
of criteria an the non-negativity constraints in a deterministic context. The
lack of information necessary to build a reliable utility function is mitigated
by resorting to the technical information derived from the efficient frontier.
Regarding MCDM literature we explain how the CP solution lies on the Yu
compromise set on the T efficient frontier.

(continued)
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A first application of CP considering economic and ethical objectives
is developed. The CP setting represents the Gross Domestic Product and
environmental protection dilemma. Indeed, to reach the maximum Gross
Domestic Product together with the maximum environmental protection is
a utopian infeasible basket of reference because these objectives cannot be
simultaneously reached.

An SRI numerical example is presented in order to describe how to
apply the CP technique. The manager in a thermal power plant looks for a
compromise between environmental and profitability goals facing with the
problem of defining time for activity and time for temporary closure. Ideal
and antiideal points are established by the manager. Then, the CP model is
formulated taking into account preferences for the objectives. The selected
CP metric is the Euclidean metric p D 2.

Compromise programming (CP) is viewed as the maximization of the deci-
sion maker’s additive utility function (whose arguments are the criteria under
consideration) subject to an efficient frontier of criteria and the non-negativity
constraints in a deterministic context. This is equivalent to minimizing the
difference between utility at the ideal point and utility at a frontier point on the
criteria map, a meaningful statement as minimizing distances to the utopia is
the ethos of compromise programming. By Taylor expansion of utility around
the ideal point, the distance to the utopia becomes the weighted sum of linear
and quadratic CP distances, which gives us the composite metric. While the
linear terms pursue achievement, the quadratic ones pursue balanced (non-
corner) solutions. Because some decision makers fear imbalance while others
prefer large achievements even to the detriment of balance. Section 8.4 defines
an aversion to imbalance ratio, so that the composite linear-quadratic metric
should conform to this ratio depending on the decision maker’s preferences
and attitudes.

This composite metric seems to be appealing to analysts and users, not
only because of its utility foundation but also because practitioners can easily
specify the objective function without undertaking the unsolved problem of
determining the best metric.
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