
Algorithm Selection on Data Streams

Jan N. van Rijn1, Geoffrey Holmes2,
Bernhard Pfahringer2, and Joaquin Vanschoren3

1 Leiden University, Leiden, Netherlands
j.n.van.rijn@liacs.leidenuniv.nl

2 University of Waikato, Hamilton, New Zealand
{geoff,bernhard}@cs.waikato.ac.nz

3 Eindhoven University of Technology, Eindhoven, Netherlands
j.vanschoren@tue.nl

Abstract. We explore the possibilities of meta-learning on data streams,
in particular algorithm selection. In a first experiment we calculate the
characteristics of a small sample of a data stream, and try to predict
which classifier performs best on the entire stream. This yields promis-
ing results and interesting patterns. In a second experiment, we build a
meta-classifier that predicts, based on measurable data characteristics in
a window of the data stream, the best classifier for the next window. The
results show that this meta-algorithm is very competitive with state of
the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging.
The results of all experiments are made publicly available in an online
experiment database, for the purpose of verifiability, reproducibility and
generalizability.

Keywords: Meta Learning, Data Stream Mining.

1 Introduction

Modern society produces vast amounts of data coming, for instance, from sensor
networks and various text sources on the internet. Various machine learning
algorithms are able to capture general trends and make predictions for future
observations with a reasonable success rate. The number of algorithms is large,
and most of these work well on a varying range of data streams. However, there
is not much knowledge yet about on which kinds of data certain algorithms
perform well and when a certain algorithm should be preferred over another.

In this work we investigate how to predict what algorithm will perform well on
a given data stream. This problem is generally known as the algorithm selection
problem [14]. For each data stream, we measure the performance of various
data stream classifiers and we calculate measurable data characteristics, called
meta-features. In addition to many existing meta-features, we introduce a new
type of meta-feature, based on concept drift detection methods. Next, we build
a model that predicts which algorithms will work well on a given data stream
based on its characteristics. Indeed, having knowledge about which classifier to
apply on what data could greatly increase the performance of predictive tools in

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 325–336, 2014.
c© Springer International Publishing Switzerland 2014



326 J.N. van Rijn et al.

real world applications. For example, it is common for the performance curves of
data stream algorithms to cross as the stream evolves. This means that at certain
points in the stream, the data is best modelled with algorithm A, while at a later
point, the data is better modelled with algorithm B. As such, selecting the right
algorithm at each point in the stream has the potential to increase performance.
In this work we focus on data streams with a nominal target. Although much
work has been done on both data streams and meta-learning, to the best of our
knowledge, this is the first effort to do meta-learning on data streams.

The remainder of this paper is structured as follows. Section 2 contains a de-
scription of related work. Section 3 describes how the meta-dataset was created,
the data streams that it contains, how they are characterized, and how we have
measured the performance of data stream algorithms. Section 4 describes an
experiment in which we calculate the characteristics of a small sample of a data
stream, and predict which classifier performs best on the entire stream. Next,
Section 5 describes a second experiment, in which we continuously measure the
characteristics of a sliding window on the data stream, and use a meta-algorithm
to predict the best classifier for the next window. In Section 6 we present and
discuss some emerging patterns from the data. Section 7 concludes.

2 Related Work

It has been recognized that mining data streams differs from conventional batch
data mining [4,13]. In the conventional batch setting, usually a limited amount
of data is provided and the goal is to build a model that fits the data as well as
possible, whereas in the data stream setting, there is a possibly infinite amount
of data, with concepts possibly changing over time, and the goal is to build a
model that captures general trends.

More specifically, the requirements for processing streams of data are: process
one example at a time (and inspect it only once), use a limited amount of time
and memory, and be ready to predict at any point in the stream [3,13]. These re-
quirements inhibit the use of most batch data mining algorithms. However, some
algorithms can trivially be used or adapted to be used in a data stream setting,
for example, NaiveBayes, k Nearest Neighbour, and Stochastic Gradient

Descent, as done in [13]. Also, many algorithms have been created specifically
to operate on data streams. Most notably, the Hoeffding Tree [6] is a tree based
algorithm that splits based on information gain, but using only a small sample
of the data determined by the Hoeffding bound. The Hoeffding bound gives an
upper bound on the difference between the mean of a variable estimated after a
number of observations and the true mean, with a certain probability.

Conventional batch data mining methods can also be adapted for use in the
data streams setting by training them on a set of instances sampled from recent
data. Typically, a set of w (window size) training instances is formed. Every w
instances form a batch and are provided to the learner, which builds a model
based on these instances. The disadvantages of this approach are that the most
recent examples are not used until a batch is complete, and old models need to



Algorithm Selection on Data Streams 327

be deleted to make room for new models. Read et al. [13] distinguish between
instance incremental methods and batch incremental methods and compare the
performance of both approaches. Their main conclusion is that the performance
in terms of accuracy is equivalent. However, the instance incremental algorithms
use fewer resources.

Ensembles of classifiers are among the best performing learning algorithms in
the traditional batch setting. Multiple models are produced that all vote for the
label of a certain instance. The final prediction is made according to a predefined
voting schema, e.g., the class with the most votes wins. In [10] it is proven that
the error rate of an ensemble in the limit goes to zero if two conditions are met:
first, the individual models must do better than random guessing, and second,
the individual models must be diverse, meaning that their errors should not be
correlated. Popular ensemble methods in the traditional batch setting are Bag-
ging [5], Boosting [17] and Stacking [7]. Bagging and Boosting have equivalents
in the data stream setting, e.g., OzaBag [11], OzaBoost [11] and Leveraging Bag-
ging [4]. The Average Weighted Ensemble [20] tracks which individual classifiers
perform well on recent data, and uses this information to weight the votes.

The field of meta-learning addresses the question what machine learning algo-
rithms work well on what data. The algorithm selection problem, formalised by
Rice in [14], is a natural problem from the field of meta-learning. According to
the definition of Rice, the problem space P consists of all machine learning tasks
from a certain domain, the feature space F contains measurable characteristics
calculated upon this data (called meta-features), the algorithm space A is the set
of all considered algorithms that can execute these tasks and the performance
space Y represents the mapping of these algorithms to a set of performance
measures. The task is for any given x ∈ P , to select the algorithm α ∈ A that
maximizes a predefined performance measure y ∈ Y , which is a classification
problem. Similar ranking and regression problems are derived from this.

Much effort has been devoted to the development of meta-features that effec-
tively describe the characteristics of the data (called meta-features). Commonly
used meta-features are typically categorised as one of the following: simple (num-
ber of instances, number of attributes, number of classes), statistical (mean
standard deviation of attributes, mean kurtosis of attributes, mean skewness
of attributes), information theoretic (class entropy, mean entropy of attributes,
noise-signal ratio) or landmarkers [12] (performance of a simple classifier on the
data). The authors of [18] give an extensive description of many meta-features.
Furthermore, they propose a new type of meta-feature, pair-wise meta-rules.

Another recent development is the concept of experiment databases [15,19],
databases which contain detailed information about a large range of experiments.
Experiment databases enable the reproduction of earlier results for verification
and reusability purposes, and make much larger studies (covering more algo-
rithms and parameter settings) feasible [19]. Above all, experiment databases
allow a variety of studies to be executed by a database look-up, rather than
setting up new experiments. An example of such an online experiment database
is OpenML [15].



328 J.N. van Rijn et al.

3 Meta-dataset

For the purpose of meta-learning, we need to obtain data on previous experi-
ments, i.e., runs of various algorithms on various data streams (from here on
referred to as base datasets, or base data streams). From this we construct a so-
called meta-dataset, in which each instance is a data stream characterized by a
number of measurable characteristics, the meta-features, as well as performance
scores of various machine learning algorithms.

3.1 Bayesian Network Generator

Unfortunately, the data stream literature contains few publicly available data
streams. In order to obtain a reasonable number of experiments on data streams,
we propose a new type of data generator that generates data streams based on
real world data [16]. It takes a dataset as input, preferably consisting of real world
data and a reasonable number of features, and builds a Bayesian Network over it,
which is then used to generate instances based on the probability tables. These
streams can also be combined together to simulate concept drift, similar to what
is commonly done with the Covertype, Pokerhand and Electricity dataset [4].

The generator takes a dataset as input, and outputs a data stream containing
a similar concept, with a predefined number of instances. The input dataset is
preprocessed with the following operations: all missing values are first replaced
by the majority value of that attribute, and numeric attributes are discretized
using Weka’s binning algorithm [9]. Values for attributes that are numeric in the
original dataset can be determined using two strategies. The nominal strategy
assigns one of the bins as the attribute value, determining the bin based on the
probability tables. The numeric strategy takes the bin with the highest proba-
bility value and draws a number from this bin based on its normal distribution.
The generated data streams are denoted as BNG(data, strategy, num instances),
with data denoting the original dataset, strategy denoting the chosen strategy
for numeric values, and instances denoting the number of generated instances.
The algorithm is implemented in the OpenML MOA package1.

Figure 1 shows the meta-features as calculated over the two Bayesian Network
Generated data streams based on the glass dataset, compared to the values of the
original dataset. As many of these qualities are quite similar, there is some indica-
tion that there is a similar concept underlying the data. The dimensionality indi-
cates the ratio between the number of instances and the number of attributes. The
decrease of this value can be explained by the fact that the number of attributes
is the same, yet the number of instances has increased. Furthermore, data streams
generated using the nominal strategy do not have any numeric attributes, hence
meta-features likeMean Skewness Of Numeric Attributes andMean StDev Of Nu-
meric Attributes are zero. Themeta-features indicating the J48 landmarkers (with
varying confidence factors) have better values on the generated data streams, hint-
ing at a slightly easier concept represented by the data. Similar patterns can be
found for other generated data streams.

1 Can be obtained from http://www.openml.org/

http://www.openml.org/


Algorithm Selection on Data Streams 329

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

DecisionStum
pAUC

DecisionStum
pErrRate

DecisionStum
pKappa

DefaultAccuracy

Dim
ensionality

J48.00001.AUC

J48.00001.ErrRate

J48.00001.kappa

J48.0001.AUC

J48.0001.ErrRate

J48.0001.kappa

J48.001.AUC

J48.001.ErrRate

J48.001.kappa

M
eanKurtosisOfNum

ericAtts

M
eanM

eansOfNum
ericAtts

M
eanSkewnessOfNum

ericAtts

M
eanStdDevOfNum

ericAtts

NBAUC

NBErrRate

NBKappa

NegativePercentage

Num
Num

ericAtts

Num
berOfNum

ericFeatures

PercentageOfNum
ericAtts

REPTreeDepth1AUC

REPTreeDepth1ErrRate

REPTreeDepth1Kappa

REPTreeDepth2AUC

REPTreeDepth2ErrRate

REPTreeDepth2Kappa

REPTreeDepth3AUC

REPTreeDepth3ErrRate

REPTreeDepth3Kappa

Random
TreeDepth1AUC

K =0

Random
TreeDepth2AUC

K =0

Random
TreeDepth3AUC

K =0

ac
cu

ra
cy

(k
-N

N
)-

ac
cu

ra
cy

(L
B

-k
N

N
)

BNG(glass,nominal,1000000)
BNG(glass,numeric,1000000)

Fig. 1. Meta-features of two Bayesian Network Generated data streams, where each
value is divided by the corresponding meta-feature value of the original dataset

3.2 Base Data Streams

The data streams generated by the Bayesian Network Generator form the basis
of our meta-dataset. We took datasets from the UCI repository [1] as input for
the Bayesian Network generator. We aimed to generate data streams of 1,000,000
instances, or less if the original dataset did not have enough attributes to obtain
a million different instances. We used both the nominal and the numeric strategy
in those cases where the original dataset had numeric attributes. In addition to
these, we also generate data streams by commonly used data generators from the
literature. We used the following data generators, as implemented in the MOA
workbench [3]: the SEA Concepts Generator, Rotating Hyperplane Generator,
Random RBF Generator and the LED Generator. For the generation of these
data streams we used the same parameters as described in [13].

Additionally, we also included the commonly used datasets Covertype, Elec-
tricity and Pokerhand, and a combination of these in order to generate concept
drift, as is done in [4]. We also included large text datasets, i.e., the IMDB
dataset and the 20 Newsgroups dataset. We converted the IMDB dataset into a
binary classification problem, having the drama genre as target. The 20 News-
groups dataset is first converted into 20 binary classification problems (one for
every Newsgroup) and then appended again into one big binary-class dataset,
as is done in [13]. This simulates a data stream with 19 concept drifts.

3.3 Meta-Features

We have characterized the base data streams using a wide variety of meta-
features. Most of the features are already described in the literature, e.g., in [18],
and are either of the type simple, statistical, information theoretic or landmarker.
We also introduce stream specific meta-features, based on a change detector. We
have run both Hoeffding Trees and NaiveBayes with both the ADWIN [2] and
DDM [8] change detectors over all data streams, and have recorded the number



330 J.N. van Rijn et al.

Table 1. Algorithms used in the experiments. Batch incremental classifiers have a
window of size 1,000; ensembles contain 10 base classifiers; k-NN is used with k = 10.

Key Classifier Type

NB NaiveBayes Instance incremental
SGD Stochastic Gradient Descent Instance incremental
SPeg SPegasus Instance incremental
k-NN k Nearest Neighbour Instance incremental
HT Hoeffding Tree Instance incremental
SMO Support Vector Machine / Polynomial Kernel Batch incremental
J48 C4.5 Decision Tree Batch incremental
REP Reduced-Error Pruning Decision Tree Batch incremental
OneR One Rule Batch incremental
LB-kNN Leveraging Bagging / k-NN Ensemble
LB-HT Leveraging Bagging / Hoeffding Tree Ensemble
Bag-HT OzaBag / Hoeffding Tree Ensemble
Boost-HT OzaBoost / Hoeffding Tree Ensemble

of changes detected (both ADWIN and DDM) and the number of warnings (DDM
only). All these meta-features are calculated for each window of 1,000 instances
on each data stream.

3.4 Algorithms

The algorithms included in this study are shown in Table 1, and can be grouped
into three types: instance incremental classifiers, batch incremental classifiers
and ensembles. For all classifiers, we have recorded the predictive accuracy, the
runtime, and RAM Hours on each data stream. The predictive accuracy was de-
termined using the Interleaved Test Then Train procedure, where each instance
is first used as a test instance, before it can be used to train the classifier.

4 Algorithm Selection in the Classical Setting

In the classical setting of the algorithm selection problem, the goal is to predict,
for a certain dataset, what algorithm would perform best.

4.1 Experimental Setup

In prior studies, the algorithm selection problem was treated as either a clas-
sification problem, regression problem, or ranking problem [18]. To investigate
what kind of information can be obtained from the data, we treat the algorithm
prediction problem on data streams as a classification problem. We create a
meta-dataset2 using the experimental data described in Section 3. For each base

2 All meta-datasets that were created for this study can be obtained from
http://www.openml.org/d/



Algorithm Selection on Data Streams 331

Table 2. Results of the algorithm selection problems in the classical setting

Task A Majority % Decision Stump Random Forest

Instance incremental 5 HT 71.25 79.63 88.46
Batch incremental 4 SMO 67.86 65.07 68.73
Ensembles 4 LB-HT 62.25 63.98 67.11
All classifiers 13 LB-HT 61.43 60.14 69.57

data stream, the meta-features are recorded in the first window of 1,000 obser-
vations. By the definition of Rice [14], this means that we are working on the
algorithm selection problem with A = 13 (algorithms), P = 75 (data streams),
Y = predictive accuracy (performance measure) and F = 58 (meta-features).

The goal is to predict which algorithm performs best, measured over the whole
data stream. In order to obtain deeper insight into what kind of targets we can
predict, we also defined three sub tasks, i.e., predicting the best instance incre-
mental classifier (A = 5), predicting the best batch incremental classifier (A = 4)
and predicting the best ensemble (A = 4). We have selected the “Decision
Stump” and “Random Forest” classifiers (as implemented in Weka 3.7.11 [9])
as meta-algorithms. The Random Forest algorithm has proven to be a useful
meta-algorithm in prior work [18], while models obtained from a single decision
tree or stump are especially easy to interpret. Both classifiers are tree-based,
which guards them against modeling irrelevant features. We ran the Random
Forest algorithm with 100 trees and 10 attributes. We estimate the performance
of the meta-algorithm by doing 10 times 10 fold cross-validation, and compare
its performance against predicting the majority class. For each meta-dataset, we
have filtered out the instances that contain a unique class value; since they will
either only appear in the training or test set, these do not form a reliable source
for estimating the accuracy.

4.2 Results

Table 2 shows the results obtained from the various tasks. It shows for every
task which classifier performs best in most cases (and therefore is the major-
ity class of the task) and in what percentage of the data streams that is the
case. Column “A” denotes the number of classes that were distinguished in
the tasks; column “Majority” and “%” denote the majority class and its size.
The other columns denote the accuracy score of the respective meta-algorithms.
The Random Forest algorithm performs better than the baseline on all defined
tasks. The Decision Stump algorithm performs well only at predicting both the
best instance incremental classifiers and ensembles. The results of both meta-
algorithms on the task of predicting the best instance incremental were marked
as significantly better than predicting majority class, tested using a Paired T-
Test with a confidence of 95%. Since the data characteristics were obtained over
only the first 1,000 instances of each stream, algorithm selection on data streams
can improve results of classifiers at already very low computational cost.



332 J.N. van Rijn et al.

5 Algorithm Selection in the Stream Setting

In data stream prediction, it is common for performance curves of different
algorithms to cross each other multiple times. Whereas, at a certain interval of
the stream, one of the algorithms performs best, this might be different for other
intervals of the stream. By applying algorithm selection in a stream setting, our
goal is to predict what algorithm will perform best for the next window of data.

5.1 Experimental Setup

In this experiment we want to determine whether meta-knowledge can improve
the predictive performance of data stream algorithms in the following setting.
Consider an ensemble of algorithms that are all trained on the same data stream.
For each window of size w, an abstract meta-algorithm determines which al-
gorithm will be used to predict the next window of instances, based on data
characteristics measured in the previous window and the meta-knowledge. Note
that the performance of the meta-algorithm depends on the size of this win-
dow. Meta-features calculated over a small window size are probably not able to
adequately represent the characteristics of the data, whereas calculating meta-
features over large windows is computationally expensive. Since our previous
experiment obtained good results with a window size of 1,000, we perform our
experiments with the same window size.

We have constructed a new meta-dataset, containing for each window the
meta-features measured over the previous interval, and the performance of all
base-classifiers trained on the entire data stream up to that window. We only
include a subset of the generated data streams. Indeed, since the Bayesian Net-
work Generator was used to generate multiple data streams based upon the same
source data (using the nominal strategy and the numeric strategy), it is likely
that these data streams contain a similar concept. We therefore remove all data
streams generated using the nominal strategy, if a version generated by the nu-
meric strategy also exists. After filtering out these data streams, there are still
49 data streams left. The meta-dataset consists of roughly 45,000 instances, each
describing a window of 1,000 observations from one of these base data streams.

For each of the base data streams, a meta-algorithm is trained using only
the intervals of the other data streams. We use a Random Forest (100 trees,
10 attributes) as meta-algorithm, since it proved to be a reasonable choice in
the previous experiment. We measure how it performs on the meta-learning
task of predicting the right algorithm for a given interval, as well as how it
would actually perform on the base data streams. To the best of our knowl-
edge, Leveraged Bagging Hoeffding Trees is the state of the art algorithm
on these data streams, so we will compare it against our abstract algorithm.
As in the previous experiment, we distinguish the tasks of selecting the best
instance incremental classifier, the best batch incremental classifier and the best
ensemble.



Algorithm Selection on Data Streams 333

Table 3. Results of the algorithm selection problems in the stream setting

Task A Majority % RFmeta ZeroRbase RFbase MAXbase
Instance incremental 5 HT 59.75 80.78 80.98 84.07 84.59
Batch incremental 4 SMO 65.56 68.17 74.38 75.33 76.02
Ensembles 4 LB-HT 57.78 56.20 84.27 85.15 86.12
All classifiers 13 LB-HT 50.97 50.92 84.27 85.31 86.30

5.2 Results

Table 3 shows the results obtained from this experiment. As with the results
of the previous experiment, column A indicates the number of classes in the
classification problem, “Majority” denotes which classifier is the majority class
(i.e., the classifier that performs best in most observations), and “%” shows the
size of the majority class. We measure two types of accuracy, meta-level accu-
racy and base-level accuracy. Meta-level accuracy records the performance using
a zero-one loss function. Consequently, it indicates for how many windows the
meta-algorithm predicted the best classifier. Column RFmeta shows the meta-
level accuracy of a Random Forest. Base-level accuracy records the performance
using a loss function equivalent to the performance of the predicted classifier. For
example, when the meta-algorithm predicts k-NN to be the best classifier on a
certain interval, the accuracy of k-NN on this interval will be used as loss. Accord-
ingly, base-level accuracy indicates the performance of the meta-classifier on the
base data streams when dynamically selecting the base-classifier. The base-level
score of the Random Forest meta-algorithm is shown in column RFbase. Column
ZeroRbase shows the base-level accuracy when the majority class is always pre-
dicted. Note that this is the score obtained by the majority class base-classifier,
measured over all base data streams. Column MAXbase shows what the base-level
score would be, if for any interval the best classifier would have been predicted.

As in the classical setting, it appears that determining the best instance-
incremental classifier yields good results. In more than 80% of the cases, the
correct classifier is predicted.This also results in anotable increase inbase level per-
formance, in such a way that it is comparable with Leveraged Bagged Hoeffding

Trees (84.27), and outperforms the scores obtained by OzaBag (82.58) and
OzaBoost (80.55). The results also show a consistent increase in performance. For
all defined tasks, the meta-algorithm outperforms the use of the single best classi-
fier in its pool, even though, on the ensemble task,RFmeta performs no better than
predicting themajority class.Apparently, themeta-algorithmwas able to avoid the
use of Leveraged Bagged Hoeffding Trees on windows where the performance is
very low. Furthermore, the base level performances are in many cases close to the
maximum possible value given the pool of classifiers. This indicates that the main
challenge is to find ways to improve this limit. This could be done by using a larger
set of algorithms, or by using other techniques such as parameter optimisation.



334 J.N. van Rijn et al.

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

pokerhand-norm
alized

CovPokElec

BNG(m
feat-fourier,num

eric,1000000)

20
n ewsgroups.drift.arff

BNG(sonar,nom
inal,1000000)

BNG(sonar,num
eric,1000000)

covertype

BNG(letter,num
eric,1000000)

BNG(m
feat-karhunen,num

eric,1000000)

BNG(kr-vs-kp,nom
inal,1000000)

electricity-norm
alized

BNG(m
feat-karhunen,nom

inal,1000000)

BNG(vehicle,num
eric,1000000)

Hyperplane(10;0.0001)

BNG(autos,num
eric,1000000)

BNG(letter,nom
inal,1000000)

BNG(waveform
-5000,nom

inal,1000000)

Hyperplane(10;0.001)

BNG(credit-g,nom
inal,1000000)

BNG(m
feat-fourier,nom

inal,1000000)

BNG(optdigits,nom
inal,1000000)

BNG(credit-g,num
eric,1000000)

BNG(lym
ph,nom

inal,1000000)

BNG(autos,nom
inal,1000000)

BNG(heart-c,nom
inal,1000000)

BNG(pendigits,nom
inal,1000000)

BNG(lym
ph,num

eric,1000000)

BNG(pendigits,num
eric,1000000)

BNG(heart-statlog,nom
inal,1000000)

BNG(vehicle,nom
inal,1000000)

LED(50000)

BNG(heart-c,num
eric,1000000)

BNG(heart-statlog,num
eric,1000000)

BNG(breast-cancer,nom
inal,1000000)

SEA(50000)

BNG(heart-h,nom
inal,1000000)

BNG(anneal.ORIG,num
eric,1000000)

BNG(vowel,nom
inal,1000000)

BNG(derm
atology,num

eric,1000000)

SEA(50)

BNG(derm
atology,nom

inal,1000000)

BNG(m
feat-zernike,num

eric,1000000)

IM
DB.dram

a

BNG(anneal.ORIG,nom
inal,1000000)

Random
RBF(50;0.0001)

BNG(vowel,num
eric,1000000)

BNG(page-blocks,nom
inal,295245)

BNG(page-blocks,num
eric,295245)

Random
RBF(10;0.001)

BNG(spam
base,nom

inal,1000000)

BNG(anneal,num
eric,1000000)

Random
RBF(10;0.0001)

Random
RBF(0;0)

BNG(m
feat-zernike,nom

inal,1000000)

BNG(anneal,nom
inal,1000000)

covertype-norm
alized

BNG(hypothyroid,nom
inal,1000000)

BNG(soybean,nom
inal,1000000)

BNG(sick,nom
inal,1000000)

BNG(m
ushroom

,nom
inal,1000000)

BNG(cm
c,nom

inal,55296)

Random
RBF(50;0.001)

BNG(waveform
-5000,num

eric,1000000)

BNG(waveform
-5000,num

eric,1000000)

BNG(trains,nom
inal,1000000)

BNG(vote,nom
inal,131072)

BNG(credit-a,nom
inal,1000000)

BNG(labor,nom
inal,1000000)

BNG(credit-a,num
eric,1000000)

BNG(cm
c,num

eric,55296)

BNG(segm
ent,nom

inal,1000000)

BNG(hepatitis,num
eric,1000000)

BNG(labor,num
eric,1000000)

BNG(labor,num
eric,1000000)

BNG(hepatitis,nom
inal,1000000)

BNG(ionosphere,nom
inal,1000000)

P
er

ce
nt

ag
e

accuracy(k-NN)-accuracy(LB-kNN)

Fig. 2. The difference in predictive accuracy of k-NN and Leveraged Bagging k-NN.
(k = 10, 10 base classifiers).

6 Discoveries

In this section we discuss interesting patterns that were obtained while analysing
the meta-datasets, some of which corroborate earlier findings in the literature.
Other findings will form the basis of our future work.

Discovery 1. An abstract meta-classifier consisting of 5 instance incremental clas-
sifiers (NaiveBayes, 10 Nearest Neighbour, SPegasus, SGD and a Hoeffding

Tree) is competitive with state of the art ensembles, tested over a large range
of data streams. It is likely that this result generalizes to an even larger num-
ber of data streams, because both conditions for an ensemble of classifiers to be
successful are met [10]: the base classifiers are diverse and do better than ran-
dom guessing. Moreover, the experiment in Section 4 shows that it is possible
to predict which one will perform well based on prior data.

Discovery 2. In contrast to the increase in performance that Leveraging Bagging

obtains when applied to Hoeffding Trees, it barely increases performance when
applied to k Nearest Neighbour. Figure 2 shows the difference in performance
of both algorithms. Note that, although Leveraged Bagging k-NN performs
slightly better, the difference is minuscule. This may be due to the fact that
even in a stream setting, k-NN is extremely stable; Bagging exploits the varia-
tion in the predictions of classifiers. In [5], it was already shown that Bagging

will not improve k-NN in the batch setting, due to its stability.

Discovery 3. The data streams on which k-NN or Leveraging Bagging k-NN
performs best all have a negative Mean Skewness of attributes. Skewness is a
measure of the asymmetry in the distribution of a range of values. A nega-
tive Skewness indicates that there are some outliers with low values. This was
already observed in the first interval of 1,000 instances, the Decision Stump ex-
tensively uses this feature to distinguish between predicting k-NN and Hoeffding

trees. This is surprising, since it has been reported that simple, statistical and



Algorithm Selection on Data Streams 335

information theoretic meta-features do not add much predictive power to land-
markers [18].

Discovery 4. NaiveBayes works well when the meta-feature measuring the num-
ber of changes detected by an ADWIN-equipped Hoeffding Tree has a high
value. The NaiveBayes algorithm generally needs only relatively few observa-
tions to achieve good accuracy compared to more sophisticated algorithms such
as Hoeffding Trees. Assuming that a high number of changes detected by this
landmarker indicates that the concept of the stream is indeed changing quickly,
this could explain why a classifier like NaiveBayes outperforms more sophisti-
cated learning algorithms that need more observations of the same concept to
perform well.

7 Conclusions

We have performed an extensive experiment on meta-learning on data streams,
running a wide range of steam mining algorithms over a large number of data
streams, and published all results online in OpenML [15], so that others can
verify, reproduce and build upon these results. Containing more than 1,000 ex-
periments on data streams, with extensive meta-information calculated over data
(windows), this now forms a rich source of meta-learning experiments on data
streams. In order to obtain a good number of data streams, the Bayesian Net-
work Generator was introduced, a new data stream generator used to generate
a comprehensive set of data streams describing various concepts.

Our approach to perform meta-learning on these streams seems promising:
Meta-features calculated on a small interval at the start of the data stream al-
ready provide information about which classifier will outperform others. Beyond
the classical setting of the algorithm selection problem, we can even use the
meta-models obtained from earlier experiments to improve the current state of
the art classifiers. We have sketched an abstract algorithm that uses multiple
classifiers and a voting schema based on meta-models that outperforms the per-
formance of the individual classifiers in its ensemble, but also is very competitive
with state of the art ensembles, measured over 49 data streams spanning more
that 46,000,000 instances. In addition, we discussed interesting patterns that
emerged from the meta-dataset, which will form a basis for future work.

Moreover, in this work we have treated the algorithm selection problem as a
classification task. In future work we will focus on ranking or regression tasks.
We will also include more data streams containing concept drift, and study the
effect on classifier performance. Due to the use of data generators this study
may potentially be biased towards this kind of generated data. We hope that
making our meta-dataset publicly available will persuade others to share more
data streams, eventually enabling much larger studies on even more diverse data.

Acknowledgments. This work is supported by grant 600.065.120.12N150 from
the Dutch Fund for Scientific Research (NWO).



336 J.N. van Rijn et al.

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

2. Bifet, A., Gavalda, R.: Learning from Time-Changing Data with Adaptive Win-
dowing. In: SDM, vol. 7, pp. 139–148. SIAM (2007)

3. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

4. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging Bagging for Evolving Data
Streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010, Part I. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010)

5. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the

Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 71–80 (2000)

7. Gama, J., Brazdil, P.: Cascade Generalization. Machine Learning 41(3), 315–343
(2000)

8. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection.
In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp.
286–295. Springer, Heidelberg (2004)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

10. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence 12(10), 993–1001 (1990)

11. Oza, N.C.: Online Bagging and Boosting. In: 2005 IEEE International Conference
on Systems, Man and Cybernetics, vol. 3, pp. 2340–2345. IEEE (2005)

12. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and I
can tell you who you are: Landmarking various learning algorithms. In: Proceedings
of the 17th International Conference on Machine Learning, pp. 743–750 (2000)

13. Read, J., Bifet, A., Pfahringer, B., Holmes, G.: Batch-Incremental versus Instance-
Incremental Learning in Dynamic and Evolving Data. In: Hollmén, J., Klawonn,
F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 313–323. Springer, Heidelberg
(2012)

14. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers 15, 65–118
(1976)

15. van Rijn, J.N., et al.: OpenML: A Collaborative Science Platform. In: Blockeel, H.,
Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS,
vol. 8190, pp. 645–649. Springer, Heidelberg (2013)

16. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J.: The Bayesian Net-
work Generator: A data stream generator. Tech. Rep. 03/2014, Computer Science
Department, University of Waikato (2014)

17. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5(2), 197–
227 (1990)

18. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algo-
rithm ranking. Machine Learning 93(1), 141–161 (2013)

19. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases. A
new way to share, organize and learn from experiments. Machine Learning 87(2),
127–158 (2012)

20. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining Concept-Drifting Data Streams using
Ensemble Classifiers. In: KDD, pp. 226–235 (2003)

http://archive.ics.uci.edu/ml

	Algorithm Selection on Data Streams
	1Introduction
	2 Related Work
	3 Meta-dataset
	3.1Bayesian Network Generator
	3.2Base Data Streams
	3.3Meta-Features
	3.4Algorithms

	4Algorithm Selection in the Classical Setting
	4.1Experimental Setup
	4.2Results

	5Algorithm Selection in the Stream Setting
	5.1Experimental Setup
	5.2Results

	6Discoveries
	7Conclusions
	References




