
Providing Concise Database Covers Instantly

by Recursive Tile Sampling

Sandy Moens1,2, Mario Boley2,3, and Bart Goethals1

1 University of Antwerp, Belgium
firstname.lastname@uantwerpen.be

2 University of Bonn, Germany
firstname.lastname@uni-bonn.de

3 Fraunhofer IAIS, Germany
firstname.lastname@iais.fgh.de

Abstract. Known pattern discovery algorithms for finding tilings (cov-
ers of 0/1-databases consisting of 1-rectangles) cannot be integrated in
instant and interactive KD tools, because they do not satisfy at least one
of two key requirements: a) to provide results within a short response
time of only a few seconds and b) to return a concise set of patterns
with only a few elements that nevertheless covers a large fraction of the
input database. In this paper we present a novel randomized algorithm
that works well under these requirements. It is based on the recursive
application of a simple tile sample procedure that can be implemented
efficiently using rejection sampling. While, as we analyse, the theoretical
solution distribution can be weak in the worst case, the approach per-
forms very well in practice and outperforms previous sampling as well as
deterministic algorithms.

Keywords: Instant Pattern Mining, Sampling Closed Itemsets, Tiling
Databases.

1 Introduction

Recently, data mining tools for interactive exploration of data have attracted
increased research attention [7,9,11,19]. For such an interactive exploration pro-
cess, a tight coupling between user and system is desired [4,17], i.e., the user
should be allowed to pose and refine queries at any moment in time and the
system should respond to these queries instantly [16]. This allows to transfer
subjective knowledge and interestingness better as opposed to a batch setting
with high computational overhead [4,17].

When finding collections of patterns that cover large fractions of the input
data, existing techniques often fail to deliver the requirement of instant results.
The reason is that they iteratively find the best pattern that covers the remain-
ing data [10,13], which involves an NP-hard problem [10]. Another approach
employed in the literature is first enumerating a large collection of patterns and
then selecting distinct patterns that optimize the quality [20]. The large bottle-
neck for such procedures is the enumeration of many patterns.

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 216–227, 2014.
© Springer International Publishing Switzerland 2014

Providing Concise Database Covers Instantly by RTS 217

In this paper, we address the issue of finding patterns that have good descrip-
tive capabilities, i.e., they individually describe a substantial amount of data,
and that can together be used to describe the data. Such collections are helpful
in exploratory data mining processes to get a quick overview of the prominent
structures in the data [20]. Then, iteratively a user can drill down to specific
parts of the data to explore even further. To this end, we propose a random-
ized procedure to quickly find small collections of patterns consisting of large
tiles. Our method is based on a recursive sampling scheme that selects individ-
ual cells in a conditional database. The sampling process is based on a heuristic
computation reflecting the potential of a cell for being part of a large pattern.

In summary, the contributions of our work are:

– We introduce a sampling method for finding database covers in binary data
with near instants results in Section 3. Our sampling method heuristically
optimizes the area of individual tiles using a recursive extension process.

– We introduce a new measure for evaluating pattern collections specifically in
interactive systems which ensures the total representativeness of a pattern
collection while guaranteeing the individual quality of patterns.

– We evaluate our novel sampling method with respect to the proposed mea-
sure in a real-time setting, in which algorithms are given only a short time
budget of one second to produce results. We compare to state-of-the-art
techniques and show that our method outperforms these techniques.

2 Preliminaries

In this paper we consider binary databases, as in itemset mining and formal
concept analysis. A formal context is a triple (O,A,R) with a set of objects O,
a set of attributes A and a binary relation or database defined between the
objects and attributes R ⊆ O ×A. We use ok and al as mappings to individual
objects and attributes from the sets. Two Galois operators are defined as O[X] =
{o ∈ O : ∀a ∈ X, (o, a) ∈ R} and A[Y] = {a ∈ A : ∀o ∈ Y, (o, a) ∈ R}. O[X]
is also called the cover cov(X). Applying both Galois operators sequentially,
yields two closures operators, õ[.] = O[A[.]] and ã[.] = A[O[.]].

The binary relation is essentially a binary matrix {0, 1}|O|×|A| such that a
region consisting of only 1’s is called a tile T = (X,Y) [10]. A tile can be adopted
directly to transactional databases as an itemset X and its corresponding cover
Y , such that ∀a ∈ X, ∀o ∈ Y : (o, a) ∈ R. A tile is said to support a cell
(k, l) ∈ R if ok ∈ Y and al ∈ X . In this work we are interested specifically in
formal concepts (also maximal tiles or closed itemsets), such that X = A[Y]
and Y = O[X]. The interestingness of a tile is defined by its area in the data
area(T) = |X | · |Y |. Note that the area of a tile is neither monotonic nor anti-
monotonic. Hence, typical enumeration strategies [21] can not be used directly.

Geerts et al. [10] developed an algorithm for mining all tiles with at least
a given area by adopting Eclat [21]. Using an upper bound on the maximum
area of tiles that can still be generated, they prune single attributes during the
mining process. Given a set of attributes X and a test attribute a, they count

218 S. Moens, M. Boley, and B. Goethals

the number of objects o ∈ O[X] such that (o, a) ∈ R and |A[{o}]| ≥ �. Denote
this count as count≥�(X, a). The upper bound on the area of a tile with |X | = s
is given by s · count≥s. The total upper bound over all sizes and possible tiles
is obtained by taking the maximum:

UBX∪{a} = arg max
�∈|X|+1,...

(� · count≥�(X, a)). (1)

A database tiling is a collection of possibly overlapping tiles [10]. The prob-
lem statement we consider, is finding a tiling covering as much of the data as
possible with only few patterns, in short time budgets. Therefore, each pattern
should individually have large area. We stress that our setting is new [7,9,11] and
existing measures do not satisfy these requirements. Given a collection of tiles
F , then the quality combines total collection and individual pattern qualities:

qual(F) =
cov(F)

|R| · 1

|F|
∑

T ∈F

area(T)

|R| , (2)

with cov(F) the total number of cells covered. If known, for comparison purposes
the normalization for area can be replaced by the area of the largest tile in the
data Tlarg. Note that this measure indirectly favors small pattern collections.

3 Biased Sampling of Large Tiles

In this section we introduce a sampling procedure on individual cells from a
conditional database. Our method heuristically optimizes the area of tiles.

3.1 Sampling Individual Cells

The upper bound from Equation (1) is good but intensive to compute. We
propose to use a less intensive bound to guide the search for large area pat-
terns. Consider a cell (k, l) ∈ R, corresponding to object ok and attribute al. If
(ok, al) ∈ R, the maximum area of a tile having this cell is given by the max-
imum upper bound MB(k, l) = |O[{al}]| · |A[{ok}]|, where the first part is
called the column marginal MA, and the second part the row marginal MO.

Proposition 1. Given a cell (k, l) in a dataset, MB(k, l) is never less than the
true area of a tile containing the cell.

Proof. Suppose T = (X,Y) contains cell (k, l) but has area greater thanMB(k, l).
Then T either (1) contains object oi �∈ O[{al}], or (2) contains attribute aj �∈
A[{ok}]. Since the cover of T is an intersection relation over the covers of the at-
tributes, (1) is not possible. Suppose (2) holds, then ok will never be part of the
cover of T , which is in contrast with the original assumption. ��

We can use MB as probabilities for sampling individual cells from a binary
database by using them as probabilities for sampling a single cell from the data:

Pr(k, l) =
MB(k, l)

Z
=

|O[{al}]| · |A[{ok}]|
Z

. (3)

Providing Concise Database Covers Instantly by RTS 219

Algorithm 1 RTS(R, S)

Require : relation R, current state S
Return : collection of large tiles

1: (i, j) ∼ Pr(k, l, S)
2: S ← (SA ∪ {aj}, SO ∪ {oi})
3: T iles ← {TV , TH} // Closures of S
4: if A(SO) \ SA �= φ and O(SA) \ SO �= φ then
5: T iles ← T iles ∪RTS(R, S)
6: end if
7: return T iles

The heuristic behind this sampling scheme is that a cell which is part of tiles
with large area, also has a larger sampling probability. Using the Equation 3 we
sample individual cells having higher chance of being in a large area tile.

3.2 Recursive Tile Sampling

Large tiles can be sampled by repeatedly sampling individual cells that consitute
a tile. As such, instead of sampling cells independently, we restrict the sampling
of new cells, to those that definitely form a tile. We do so by considering only
the conditional database constructed by the previous samples.

We define a current state S by a set of current attributes SA and a set of
current objects SO (in fact a current state is an intermediate tile). The sam-
pling probabilities from Equation 3 can be updated to incorporate the previous
knowledge reflected by the current state. The new probabilities become

Pr(k, l, S) =
|O[{al}] ∩O[SA]| · |A[{ok}] ∩A[SO]|

Z
, (4)

with Z a normalization constant over remaining cells. The intersections construct
the conditional database RS . As we condition on the current state we know that
an object in O[SA] or an attribute in A[SO] contains only ones. We therefore
remove these cells from the conditional database.

Pseudo code for Recursive Tile Sampling, RTS, is given in Algorithm 1.
The sampling procedure extends a current state in two directions simultaneously
(see Figure 1). When either no attributes or no objects remain, the algorithm
stops. Therefore, the current state S itself, never represents a rectangular tile.
As such, each time when constructing the conditional database we report a pair
of tiles defined by the Galois and closure operators on S: the tile containing all
remaining attributes is TH = (A[SO], õ[SO]) and the tile containing all remaining
objects is TV = (ã[SA], O[SA]). TH is also called a horizontal extension tile and
õ[SO] ⊇ SO. Likewise, TV is also called a vertical extension tile and ã[SA] ⊇ SA.
In the end we return all tiles that are found during the recursive steps.

220 S. Moens, M. Boley, and B. Goethals

a1 a2 a3 a4

o1 1 1 1 1
o2 1 1 1 0
o3 1 1 1 0
o4 1 1 0 1
o5 1 0 1 0
o6 0 1 1 1

(a) Toy 0/1 data

a1 a2 a3 a4

o1 20 20 20 12
o2 15 15 15 0
o3 15 15 15 0
o4 15 15 0 9
o5 10 0 10 0
o6 0 15 15 9

(b) Potentials

a1 a2 a3 a4

o1 1 1 1 1
o2 1 1 1 0
o3 1 1 1 0
o4 1 1 0 1
o5 1 0 1 0
o6

(c) Step 1

a1 a2 a3 a4

o1 0 0 0 0
o3 0 12 12 0
o3 0 12 12 0
o4 0 12 0 6
o5 0 0 8 0

(d) Step 1 Potentials

a1 a2 a3 a4

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4 1 1 0
o5
o6

(e) Step 2

a1 a2 a3

o1 0 0 0
o2 0 0 0
o3 0 0 9
o4 0 0 0

(f) Step 2 Poten-
tials

a1 a2 a3 a4

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4
o5
o6

(g) Step 3

a1 a2 a3

o1 0 0 0
o2 0 0 0
o3 0 0 0

(h) Step 3 Poten-
tials

Fig. 1. Running example of RTS: dark gray = S, light gray = cells without sampling
probability, black = cells that are not extensions of S

Example 1. Given the toy dataset from Figure 1a, the initial unnormalized sam-
pling probabilities (or potentials) are given in Figure 1b. First cell (1,1) is sam-
pled and object o6 is removed because (o6, a1) /∈ R. Two extension tiles are
formed by applying the closure operators: TH1 = ({a1, a2, a3, a4}, {o1}) and
TV1 = ({a1}, {o1, o2, o3, o4, o5}). The recursive step is applied to the database
excluding attributes ai �∈ A[{o1}] and objects oj �∈ O[{a1}]. In step 2, cell (2,2)
is sampled and TH2 = ({a1, a2, a3}, {o1, o2, o3}) and TV2 = ({a1, a2}, {o1, o2, o3,
o4})) are reported. In the last step, (3, 3) is sampled and the last extension tiles
are found: TH3 = TV3 = ({a1, a2, a3}, {o1, o2, o3, }). The process then stops as no
recursion can be applied.

3.3 Efficient Sampling of Individual Cells

The distribution f (k, l, S), f (x) for simplicity, defined by Equation 4 is

f (x) =

{
MB(k, l, S)/Z if (k, l) ∈ RS , tk /∈ SO, il /∈ SA

0 otherwise.
(5)

We show how to sample efficiently from f (x) without completely material-
izing it. We can use rejection sampling with non-uniform distributions for this
purpose. Rejection sampling is a general method for sampling from a probability
distribution f by sampling from an auxiliary distribution g that acts as an enve-
lope. It uses the fact that we can sample uniformly from the density of the area

Providing Concise Database Covers Instantly by RTS 221

under the curve cg(x) [15], c > 1. Samples from cg that are generated outside
of the density region of f ′ = βf are then rejected, β > 1. Formally, we have
f ′(x) < cg(x) and acceptance probability α ≤ f ′(x)/cg(x), with α ∼ Unif [0, 1].

To use rejection sampling we first set f ′ to the unnormalized version of the
true distribution f , using the same condition (i, j) ∈ R and β = Z. As auxiliary
distribution we choose g(x) = (|O[{al}]∩O[SA]| · |A[{ok}]∩A[SO]|)/Z, without
the condition on the presence of (k, l). Setting c = Z we obtain two rules

f ′(x) =

{
cg(x) if (k, l) ∈ R
0 ≤ cg(x) if (k, l) /∈ R,

(6)

such that by construction the acceptance probability boils down to accepting if
the cell is present, rejecting if not.

What is left is obtaining samples from g . Since this distribution is based on
the independence of rows and columns we sample al with probability PrA(l, S) =
|O[{al}] ∩ O[SA]|/Z and ok with probability PrO(k, S) = |A[{ok}] ∩ A[SO]|/Z
independently. This results in exact samples from g .

3.4 Incorporating Knowledge

Our sampling method can integrate prior knowledge by assigning weights to cells
instead of marginal counts. Suppose a weight function w : (k, l) → [0, 1], then we
have marginalsMO(ok) =

∑
ai∈A[{ok}] w(k, i) and MA(al) =

∑
oj∈O[{al}] w(j, l).

and potentials Pr(k, l) = (
∑

ai∈A[{ok}] w(k, i) ·
∑

oj∈O[{al}] w(j, l))/Z, with Z a
normalization constant to obtain a probability distribution. For the weights we
propose the use of multiplicative weights [12] based on the number of times a
cell has already been covered by previous knowledge, i.e., w(k, l) = γm, with m
the number of times a cell has been covered and γ a discounting factor.

The main bottleneck of this weighting scheme is the computation of individ-
ual marginals. When explicitly storing the previous marginal, we can efficiently
update them. Suppose for each of the attributes and objects we keep the cur-
rent marginals in memory. Given that new knowledge is provided in the form
of a tile Tn = (X,Y), then only marginals of attributes and objects supporting
cells described by Tn have to be updated. Using the following scheme over the
individual cells of the tile we obtain fast incorporation of knowledge:

∀al ∈ X, ∀ok ∈ Y

→
MA(al) = MA(al)− wold(k, l) + wnew(k, l)

MO(ok) = MO(ok)− wold(k, l) + wnew(k, l).

This results in updates in O(2|X ||Y |) time rather than an update for the com-
plete database in O(2|A||O|) time. The factor 2 comes from the fact that we
have to update the margins for attributes as well as for objects.

222 S. Moens, M. Boley, and B. Goethals

3.5 Worst Case Analysis

Individual Cell Sampling. We analyze the worst case performance of our
sampling probabilities wrt area2, which is the distribution that is closest to
the distribution simulated by our sampling method. We define the worst case
scenario as a dataset where the sampling probabilities do not reflect the area2 of
sampled closed tiles. In our framework this happens when {0, 1}n×n contains all
ones except on the diagonal. Then, the number of closed tiles equals 2n − 2 and
the largest tile in the region has area �n/2��n/2�. The total sampling potential
is n(n− 1)3, because each row and column has a count of (n− 1) and there are
n(n− 1) non-zero entries. The true area2 mass induced by all closed tiles equals∑

k=1,··· ,n−1

(
n
k

)
(k(n−k−1))2 ≥ n(n−1)3 and holds for all n ≥ 2. Moreover for

n ≥ 4 it holds that the second parts is strictly smaller and we have a constant
undersampling of this density region.

Rejection Sampling. We first analyze the general sampling complexity and
then the worst-case time complexity when many samples are rejected.

Using Section 3.3 we sample independently one column and one row. The
materialization of the marginal distributions has O(|A| + |O|) time and space
complexity. (A näıve direct approach for sampling relies on full materialization
of the matrix and therefore has time and space complexity O(|A||O|)) For the
time complexity we also have to take into account the time for sampling one
element. This can be achieved in logarithmic time using a binary seach. The total
sampling time with rejection sampling becomes O((|A|+log |A|)+(|O|+log |O|))
compared to O(|A||O|) + (log |A| log |O|) for the direct approach.

This does not yet conclude our time analysis as we did not yet take into
account the number of times we have to resample due to rejections. We use as
basis the worst-case scenario for rejection sampling, which is the setting where
the binary representation of the data is an identity matrix In of size n× n. The
marginal probabilities equal 1/n and the probability of sampling a single 1-valued
cell equals 1/n2. Since the data contains exactly n ones, the total probability
of sampling a valid cell with rejection sampling, and thus accepting the sample,
equals n·1/n2 = 1/n. Setting |R| to n we obtain a total time sampling complexity
for rejection sampling equal to O((|A|+ |O|)+(log |A|+log |O|) · |R|). Note that
the first term is the time for materializing the distribution and has to be done
just once. The last part is the time for sampling the distribution, which has to
be repeated in worst case |R| times.

4 Experiments

We experimented with our sampling method on several real world datasets shown
in Table 1 together with their main characteristics. Pumsb, Connect and Acc are
publicly available from the FIMI Repository [2]. Adult, Cens-Inc, CovType and
Pokhand are made available at the UCI Machine Learning Repository [1].

For the experiments our interests are two-fold:
– How well does RTS work in real instant conditions?
– How does the quality of patterns evolve over time?

Providing Concise Database Covers Instantly by RTS 223

Table 1. Characteristics for different datasets, quality of pattern collections and the
number of patterns in the collection obtained in 1 second

R |O| |A| RTS CDPSarea∗fq2 Asso Tileminerfirst Tileminerunif

quality |F| quality |F| quality |F| quality |F| quality |F|

Adult 48,842 97 0.64 25.0 0.40 24.8 0.58 7.0 0.55 25.0 0.61 25.0
Pumsb 49,046 2.113 0.31 25.0 0.00 1.10 0.00 0.0 0.00 0.0 0.00 0.0
Connect 67,557 129 0.47 25.0 0.09 25.0 0.00 0.0 0.00 25.0 0.00 25.0
Cens-Inc 199,523 519 0.35 12.7 0.03 25.0 0.00 0.0 0.04 25.0 0.04 25.0
Acc 340,183 468 0.18 10.5 0.00 0.3 0.00 0.0 0.00 0.0 0.00 0.0
CovType 581,012 5.858 0.28 3.0 0.33 24.5 0.00 0.0 0.45 14.0 0.45 14.0
Pokhand 1,000,000 95 0.09 9.2 0.02 5.1 0.00 0.0 0.00 0.0 0.00 0.0

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(a) Quality

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(b) Relative Coverage

ASSO CDPS RTS Tileminer_first 1512380 Tileminer_unif 1512380

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(c) Average Relative Area

Fig. 2. Quality of 100 patterns over time in millisecond (log scale) for Cens-Inc

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(a) Quality

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(b) Relative Coverage

ASSO CDPS RTS Tileminer_first 1505976 Tileminer_unif 1505976

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(c) Average Relative Area

Fig. 3. Quality of 100 patterns over time in millisecond (log scale) for Acc

The first topic is related to intensive interactive environments: a user is explor-
ing data and is assisted by several pattern mining algorithms. The user hereby
expects instant condense results. The second topic is related also to an interac-
tive environment with more relaxed conditions. For instance, instead of having
instant results, a user is willing to wait up to 1 minute. Due to space limitations,
we do not show our evaluation for the incorporation of knowledge.

For the experiments we compared our method to three other techniques for
finding tiles. As deterministic baseline we used a boolean matrix factorization
algorithm called Asso [13], which greedily optimizes the coverage of k basis

224 S. Moens, M. Boley, and B. Goethals

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(a) Quality

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(b) Relative Coverage

ASSO CDPS RTS Tileminer_first 1369236 Tileminer_unif 1369236

10
1

10
2

10
3

10
4

10
5

10
6

0.0

0.2

0.4

0.6

0.8

1.0
(c) Average Relative Area

Fig. 4. Quality of 100 patterns over time in millisecond (log scale) for CovType

vectors. Asso is implemented in C++. We used a Tileminer implementation
that finds all tiles given a minimum area, which can be seen as a baseline for
finding large area tiles. Tileminer is also written in C++. We use Controlled
Direct Pattern Sampling [8] (CDPS), written in Java, as alternative sampling
method and as baseline for a fast anytime sampling technique. CDPS provides
i.i.d. samples in rapid succession from a user customizable distribution over the
complete pattern space. At last, RTS1 is implemented in Java. In our experiments
we reported a single pattern for each recursive run, which is the largest area
pattern produced. The tests themselves are executed on our local server running
Ubuntu 12.04. The machine contains 32 Intel Xeon CPUs and 32 GB of RAM.

4.1 Instant Pattern Quality

We evaluated the representativeness of pattern collections in combination with
the individual quality of patterns, while simulating an interactive environment:
we set a hard constraint on the number of patterns generated and on the time
budget. The first constraint makes sure that the user is not overwhelmed by the
patterns he receives for investigation. The second constraint allows explorability
while retaining the attention span of the user [16]. In fact, we envision a setting
where a user clicks a mining button and wants to obtain good results instantly.
Moreover the mining can only start when the user tells the system to start, such
that knowledge from a previous mining round can be taken into account.

We used a hard time budget of 1 second for all datasets and reported the top 25
results obtained. Throughout the experiments we did not take into account the
loading times because in interactive environments the data is already in memory.
ForAsso we did not allow to find fault-tolerant covers and set the penalty to 100.
Since Asso is greedy, the first 25 results are the top 25. For Tileminer we made
a sweep over the parameter space, varying the area threshold from 5% to 95% of
area(Tlarg) (area of largest tile) with a 5% step increase. Moreover, we used two
settings: Tileminerfirst, uses the first k patterns obtained and Tileminerunif ,
selects k patterns uniformly at random from all tiles found in one second. For
CDPS we used several area distribution settings [8]. However, in the results

1 Implementation can be found at http://adrem.ua.ac.be/rts

Providing Concise Database Covers Instantly by RTS 225

we show only CDPSarea∗fq2 which is the setting that performed best overall.
We selected the first 25 non duplicates. For the samplers we made 10 runs and
averaged over the results. Each collection was scored wrt Equation (2). For
comparison, we normalized the areas over area(Tlarg) rather than |R|.

The qualities of pattern collections are shown in Table 1. It shows per dataset
and for each of the algorithms the quality and the number of patterns obtained
when running for at most 1 second and selecting 25 top patterns. The exper-
iments show that RTS performs good on our quality measure and even out-
performs other algorithms on 6 out of 7 datasets. Only for the sparse dataset
CovType it is not able to produce enough patterns to beat the other methods.
Moreover, it is the only method that produces at least one pattern within one
second. Aside from quality this also is very important in our experiment because
even while retrieving just one pattern the knowledge of the user is influenced!
The user can then incorporate this knowledge when exploring the data further.
It is clear that RTS outperforms all other methods on this experiments.

4.2 Pattern Quality over Time

We evaluate the quality using larger time budgets and show the evolving quality
over time. In this scenario all algorithms are given at most one hour to produce
100 patterns. For Tileminer we used the same parameter selection procedure as
in Section 4.1. We selected the setting giving the highest overall total coverage for
the first 100 patterns and generated a random selection of 100 patterns for that
complete collection of patterns. Evolving scores for quality, relative coverage and
average relative area are shown in Figures 2, 3 and 4 for a selection of datasets.
The graphs show elapsed time in milliseconds in log scale on the x-axis and the
respective qualities, with areas normalized by area(Tlarg) rather than |R|.

The results show similar behaviour except again on CovType, a sparse dataset
with a low number of high area patterns. Generally, the experiments show that
Asso is good at providing large covers while maximizing new information. How-
ever, the mining process often takes long and due to optimization of uncovered
parts, the area of tiles reduces drastically after the first pattern. Tileminer is
good at providing multiple large area patterns but lacks the ability to cover the
data with the patterns found. This is due to the enumeration strategy. CDPS is
not able to outperform other methods due to i.i.d sampling of area ∗ fq2, which
does not optimize enough the area. It is however one of the fastest methods.
RTS is the only method that is quick and robust in terms of quality. For all
datasets it is at least an order of magnitude faster than Asso with only slightly
lower total coverage. It is possible to obtain better coverage by also incorporating
previous samples (Section 3.4). This, however, negatively influences the score.

5 Related Work

We describe some related research to this paper. We cite two types of research
material, work based on finding database covers and work based on sampling.

226 S. Moens, M. Boley, and B. Goethals

Geerts et al. [10] adopted Eclat to mine non fault-tolerant (FT) large area
tiles, i.e., tiles with no false positives (0 values) in the result. They also describe
how to produce tilings, by recursively finding the largest tile in the data excluding
previous tiles. Vreeken et al. [18] optimize the Minimum Description Length in
pattern collections. As such, they maximize the number of times patterns are
used when encoding the data, rather than maximizing the total coverage.

In the FT setting multiple algorithms exist that try to find database covers.
These methods allow false positives in their patterns. Miettinen et al. [13] use
boolean matrix factorization in Asso, to find products of matrices that recon-
struct the complete data with a low number of errors. Asso can be adopted
to mine non FT patterns in binary data. Xiang et al. [20] use the concept of
hyperrectangles, which is similar to hierarchical tiles. They find hyperrectangles
by combining frequent itemsets with a given budget of false positives.

Sampling the output space is relatively new in pattern set mining. Existing
algorithms enumerate a large fraction of the pattern space and filter a selection
of patterns a posteriori. Not many techniques exist that sample the output space
directly. Al Hasan and Zaki [3] coined the term output space sampling on graphs.
They used a simple random walk on the partially ordered graph (POG), by
allowing only extensions of the current POG. Moens and Goethals [14] used the
same technique to sample maximal itemsets. They use an objective functions to
prune the search space and to propose new transitions for the random walk.

Boley et al. [6] introduced two-step sampling procedures for the discovery
of patterns following a target distribution. In step one a single data object is
materialized and in step two a pattern is sampled from the object. Boley et al. [8]
extended this into a general framework, where a user specifies a full distribution
in terms of frequency factors over specific parts of the data. This framework
can not optimize enough the area of patterns to find good covers. Boley [5] uses
Metropolis-Hastings to uniformly sample closed itemsets, however he does not
incorporate the area of patterns for biasing the results towards large area tiles.

6 Conclusion and Future Work

Interactive KD tools demanding short response times and concise pattern col-
lections are becoming increasingly popular. Existing techniques for finding large
covers in 0/1 databases fail in at least one of the two requirements and can
therefore not be integrated properly in such frameworks. We presented a novel
technique for sampling large database covers given a real-time situation of inter-
active data mining with very short time budgets. We showed how our method can
be implemented efficiently using rejection sampling. Moreover, we showed that
our technique outperforms existing techniques for finding large database cov-
ers given very short time. For larger time budgets we showed that our method
obtains comparable results to greedy optimizations, yet, much faster.

Interesting future work on this topic relates to tiles that are enumerated in
one recursive step. In the current implementation we select only the largest tile
in the collection. Another technique is to maintain an evolving list of top-k tiles

Providing Concise Database Covers Instantly by RTS 227

using for instance reservoir sampling. Other reseach directions for this technique
are the FT setting and probabilistic databases.

References

1. Uci machine learning repository, http://archive.ics.uci.edu/ml/
2. Frequent itemset mining dataset repository (2004), http://fimi.ua.ac.be/data
3. Al Hasan, M., Zaki, M.J.: Output space sampling for graph patterns. In: Proc.

VLDB Endow, pp. 730–741 (2009)
4. Blumenstock, A., Hipp, J., Kempe, S., Lanquillon, C., Wirth, R.: Interactivity

closes the gap. In: Proc. of the KDD Workshop on Data Min. for Business Appli-
cations, Philadelphia, USA (2006)

5. Boley, M.: The Efficient Discovery of Interesting Closed Pattern Collections. PhD
thesis (2011)

6. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two–step random procedures. In: Proc. ACM SIGKDD (2011)

7. Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One click mining:
Interactive local pattern discovery through implicit preference and performance
learning. In: IDEA 2013 Workshop in Proc. ACM SIGKDD, pp. 27–35. ACM (2013)

8. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proc. ACM SIGKDD, pp. 69–77. ACM (2012)

9. Dzyuba, V., van Leeuwen, M.: Interactive discovery of interesting subgroup sets.,
pp. 150–161 (2013)

10. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg
(2004)

11. Goethals, B., Moens, S., Vreeken, J.: Mime: a framework for interactive visual
pattern mining. In: Proc. ACM SIGKDD, pp. 757–760. ACM (2011)

12. Lavrač, N., Kavšek, B., Flach, P., Todorovski, L.: Subgroup discovery with cn2-sd.
J. Mach. Learn. Res, 153–188 (2004)

13. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis
problem. IEEE Trans. on Knowl. and Data Eng., 1348–1362 (2008)

14. Moens, S., Goethals, B.: Randomly sampling maximal itemsets. In: IDEA 2013
Workshop in Proc. ACM SIGKDD (2013)

15. Neal, R.M.: Slice sampling. In: Ann. Statist., pp. 705–767 (2003)
16. Ng, R.T., Lakshmanan, L.V., Han, J., Pang, A.: Exploratory mining and prun-

ing optimizations of constrained association rules. ACM SIGMOD Record, 13–24
(1998)

17. van Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger,
A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining. LNCS,
vol. 8401, pp. 169–182. Springer, Heidelberg (2014)

18. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Min. Knowl. Discov., 169–214 (2011)

19. Škrabal, R., Šimůnek, M., Voj́ı̌r, S., Hazucha, A., Marek, T., Chudán, D., Kliegr,
T.: Association rule mining following the web search paradigm. In: Flach, P.A., De
Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp.
808–811. Springer, Heidelberg (2012)

20. Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases
with overlapped hyperrectangles. Data Min. Knowl. Discov, 215–251 (2011)

21. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: Parallel algorithms for discovery
of association rules. Data Min. Knowl. Discov., 343–373 (1997)

http://archive.ics.uci.edu/ml/
http://fimi.ua.ac.be/data

	Providing Concise Database Covers Instantly by Recursive Tile Sampling
	1Introduction
	2Preliminaries
	3Biased Sampling of Large Tiles
	3.1Sampling Individual Cells
	3.2Recursive Tile Sampling
	3.3Efficient Sampling of Individual Cells
	3.4Incorporating Knowledge
	3.5Worst Case Analysis

	4Experiments
	4.1Instant Pattern Quality
	4.2Pattern Quality over Time

	5Related Work
	6Conclusion and Future Work
	References

