
Mining Rank Data

Sascha Henzgen and Eyke Hüllermeier

Department of Computer Science
University of Paderborn, Germany
{sascha.henzgen,eyke}@upb.de

Abstract. This paper addresses the problem of mining rank data, that
is, data in the form of rankings (total orders) of an underlying set of
items. More specifically, two types of patterns are considered, namely
frequent subrankings and dependencies between such rankings in the
form of association rules. Algorithms for mining patterns of this kind are
proposed and illustrated on three case studies.

1 Introduction

The major goal of data mining methods is to find potentially interesting patterns
in (typically very large) data sets. The meaning of “interesting” may depend on
the application and the purpose a pattern is used for. Quite often, interestingness
is connected to the frequency of occurrence: A pattern is considered interesting
if its number of occurrences in the data strongly deviates from what one would
expect on average. When being observed much more often, ones speaks of a
frequent pattern, and the problem of discovering such patterns is called frequent
pattern mining [6]. The other extreme is outliers and exceptional patterns, which
deviate from the norm and occur rarely in the data; finding such patterns is called
exception mining [10].

Needless to say, the type of patterns considered, of measures used to assess
their interestingness, and of algorithms used to extract those patterns being
highly rated in terms of these measures, strongly depends on the nature of the
data. It makes a big difference, for example, whether the data is binary, cate-
gorical, or numerical, and whether a single observation is described in terms of
a subset, like in itemset mining [6], or as a sequence, like in sequential pattern
mining [9].

In this paper, we make a first step toward the mining of rank data, that is,
data that comes in the form of rankings of an underlying set of items. This idea
is largely motivated by the recent emergence of preference learning as a novel
branch of machine learning [5]. While methods for problems such as “learning
to rank” have been studied quite intensely in this field, rank data has not yet
been considered from a data mining perspective so far.

To illustrate what we mean by rank data, consider a version of the well-known
SUSHI benchmark, in which 5000 customers rank 10 different types of sushi from

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 123–134, 2014.
c© Springer International Publishing Switzerland 2014

124 S. Henzgen and E. Hüllermeier

most preferred to least preferred.1 This data could be represented in the form
of a matrix as follows:

5 7 3 8 4 10 2 1 6 9

6 10 1 4 8 7 2 3 5 9

2 7 3 1 6 9 5 8 4 10

.

In this matrix, the value in row i and column j corresponds to the position of
the jth sushi in the ranking of the ith customer. For example, the first customer
likes the eighth sushi the most, the seventh sushi the second best, and so on.

The above data consists of complete rankings, i.e., each observation is a rank-
ing of the complete set of items (the 10 types of sushi). While we do assume
data of that kind in this paper, there are many applications in which rank data
is less complete, especially if the underlying set of items is larger. We shall come
back to corresponding generalizations of our setting in the end of this paper.

The rest of the paper is organized as follows. In the next two sections, we ex-
plain more formally what we mean by rank data and rank patterns, respectively.
An algorithm for mining rank patterns in the form of what we call frequent sub-
rankings is then introduced in Section 4. Some experimental results are presented
in Section 5, prior to concluding the paper in Section 6.

2 Rank Data

Let O = {o1, . . . , oN} be a set of items or objects. A ranking of these items is a
total order that is represented by a permutation

π : [N] → [N] ,

that is, a bijection on [N] = {1, . . . , N}, where π(i) denotes the position of item
oi. Thus, the permutation π represents the order relation

oπ−1(1) � oπ−1(2) � · · · � oπ−1(N) ,

where π−1 is the inverse of π, i.e., π−1(j) is the index of the item on position j.
We assume data to be given in the form of a set D = {π1,π2, . . . ,πM} of

(complete) rankings πi over a set of items O. Returning to our example above,
O = {o1, . . . , o10} could be the 10 types of sushi, and πi the ranking of these
sushis by the ith customer.

3 Rank Patterns

In the context of rank data as outlined above, there is a large variety of rank
patterns that might be of interest. In this section, we introduce two examples of
rank patterns that we shall elaborate further in subsequent sections.

1 http://kamishima.new/sushi/

http://kamishima.new/sushi/

Mining Rank Data 125

3.1 Subrankings

An obvious example of such a pattern is a subranking. We shall use this term for
a ranking π of a subset of objects O ⊂ O. Here, π(j) is the position of item oj
provided this item is contained in the subranking, and π(j) = 0 otherwise. For
example, π = (0, 2, 1, 0, 0, 3) denotes the subranking o3 � o2 � o6, in which the
items o1, o4, o5 do not occur.

In the following, we will write complete rankings π in bold font (as we already
did above) and subrankings in normal font. The number of items included in a
subranking π is denoted |π|; if |π| = k, then we shall also speak of a k-ranking.

We denote by O(π) the set of items ranked by a subranking π. The other way
around, if O′ ⊂ O(π), then (π|O′) denotes the restriction of the ranking π to the
set of objects O′, i.e.,

(π|O′)(j) =
{
#{oi ∈ O′ |π(i) ≤ π(j)} if oj ∈ O′

0 if oj /∈ O′

If π is a subranking of O = O(π), then π is a (linear) extension of π if (π|O) = π;
in this case, the items inO are put in the same order by π and π, i.e., the former is
consistent with the latter. We shall symbolize this consistency by writing π ⊂ π
and denote by E(π) the set of linear extensions of π.

Now, we are ready to define the notion of support for a subranking π. In
analogy to the well-known problem of itemset mining (see also Section 4 below),
this is the relative frequency of observations in the data in which π occurs as a
subranking:

supp(π) =
1

M
·#{πi ∈ D |π ⊂ πi} (1)

A frequent subranking is a subranking π such that

supp(π) ≥ minsupp ,

where minsupp is a user-defined support threshold. A frequent subranking π is
maximal if there is no frequent subranking π′ such that π ⊂ π′ and π′ �⊂ π.

3.2 Association Rules

Association rules are well-known in data mining and have first been considered
in the context of itemset mining. Here, an association rule is a pattern of the
form A ⇀ B, where A and B are itemsets. The intended meaning of such a rule
is that a transaction containing A is likely to contain B, too. In market-basket
analysis, where a transaction is a purchase and items are associated with prod-
ucts, the association {paper, envelopes} ⇀ {stamps} suggests that a purchase
containing paper and envelopes is likely to contain stamps as well.

Rules of that kind can also be considered in the context of rank data. Here,
we look at associations of the form

πA ⇀ πB , (2)

126 S. Henzgen and E. Hüllermeier

where πA and πB are subrankings of O such that

#
(
O(πA) ∩O(πB)

) ≤ 1 . (3)

For example, the rule b � e � a ⇀ d � c suggests that if b ranks higher than e,
which in turn ranks higher than a, then d tends to rank higher than c. Note that
this rule does not make any claims about the order relation between items in the
antecedent and the consequent part. For example, d could rank lower but also
higher than b. In general, the (complete) rankings π that are consistent with a
rule (2) is given by E(πA) ∩ E(πB).

The condition (3) may call for an explanation. It plays the same role as the
condition of empty intersection between items in the rule antecedent A and rule
consequent B that is commonly required for association rules A ⇀ B in itemset
mining (A ∩ B = ∅), and which is intended to avoid trivial dependencies. In
fact, assuming an item a in the rule antecedent trivially implies its occurrence
in all transactions to which this rule is applicable. In our case, this is not com-
pletely true, since a subranking is modeling relationships between items instead
of properties of single items. For example, a rule like a � b ⇀ a � c is not at all
trivial, although the item a occurs on both sides. A redundancy occurs, however,
as soon as two or more items are included both in πA and πB. This is why we
restrict such occurrences to at most one item.

In itemset mining, the confidence measure

conf(A ⇀ B) =
supp(A ∪B)

supp(A)

that is commonly used to evaluate association rules A ⇀ B can be seen as an
estimation of the conditional probability

P(B |A) = P(A and B)

P(A)
,

i.e., the probability to observe itemset B given the occurrence of itemset A.
Correspondingly, we define the confidence of an association πA ⇀ πB as

conf(πA ⇀ πB) =
#{πi ∈ D |πA, πB ⊂ πi}
#{πi ∈ D |πA ⊂ πi} =

supp(πA ⊕ πB)

supp(πA)
(4)

As an important difference between mining itemsets and mining rank data, note
that the class of patterns is closed under logical conjunction in the former but
not in the latter case: Requiring the simultaneous occurrence of itemset A and
itemset B is equivalent to requiring the occurrence of their union A∪B, which is
again an itemset. The conjunction of two subrankings πA and πB , denoted πA⊕
πB in (4), is not again a subranking, however, at least not a single one; instead, it
is represented by a set of subrankings πA⊕πB, namely the rankings π such that
O(π) = O(πA) ∪ O(πB), (π|O(πA)) = πA, (π|O(πB)) = πB. Correspondingly,
the joint support of πA and πB,

supp(πA ⊕ πB) = #{πi ∈ D |πA, πB ⊂ πi} , (5)

Mining Rank Data 127

is the support of this subset. As we shall see later on, this has an implication on
an algorithmic level.

Finally, and again in analogy with itemset mining, we define a measure of
interest or significance of an association as follows:

sign(πA ⇀ πB) = conf(πA ⇀ πB)− supp(πB) (6)

Just like for the measure of support, one is then interested in reaching certain
thresholds, i.e., in finding association rules πA ⇀ πB that are highly supported
(supp(πA ⇀ πB) ≥ minsupp), confident (conf(πA ⇀ πB) ≥ minconf), and/or
significant (sign(πA ⇀ πB) ≥ minsign).

3.3 Comparison with Itemset Mining

The connection between mining rank data and itemset mining has already been
touched upon several times. Moreover, as will be seen in Section 4, our algorithm
for extracting frequent subrankings can be seen as a variant of the basic Apriori
algorithm, which has first been proposed for the purpose of itemset mining [1].

Noting that a ranking can be represented (in a unique way) in terms of a
set of pairwise preferences, our problem could in principle even be reduced to
itemset mining. To this end, a new item oi,j is introduced for each pair of items
oi, oj ∈ O, and a subranking π is represented by the set of items

{oi,j | oi, oj ∈ O(π), π(i) < π(j)} .

This reduction has a number of disadvantages, however. First, the number of
items is increased by a quadratic factor, although the information contained in
these items is largely redundant. In fact, due to the transitivity of rankings, the
newly created items exhibit (logical) dependencies that need to be taken care of
by any mining algorithm. For example, not every itemset corresponds to a valid
ranking, only those that are transitively closed.

Apart from that, there are some important differences between the two set-
tings, for example regarding the number of possible patterns. In itemset mining,
there are 2N different subsets of N items, which is much smaller than the N !
number of rankings of these items. However, the N we assume for rank data (at
least if the rankings are supposed to be complete) is much smaller than the N in
itemset mining, which is typically very large. Besides, the itemsets observed in
a transaction database are normally quite small and contain only a tiny fraction
of all items. In fact, assuming an upper bound K on the size of an itemset, the
number of itemsets is of the order O(NK) and grows much slower in N than
exponential.

4 Algorithms

Our algorithm for mining frequent subrankings is based on the well-known Apri-
ori algorithm for mining frequent itemsets [1]. This algorithm constructs itemsets

128 S. Henzgen and E. Hüllermeier

in a level-wise manner, starting with singletons and increasing the size by 1 in
each iteration. Candidate itemsets of size k are constructed from the frequent
itemsets of size k − 1 already found. In this step, Apriori exploits an important
monotonicity property for pruning candidates: If A is a frequent itemset, then
any subset of A must be frequent, too. Thus, by contraposition, any superset of
a non-frequent itemset cannot be frequent either.

This monotonicity property also holds for subrankings: If a subranking π is
frequent, then all rankings π′ ⊂ π are frequent, too. Thus, the Apriori approach is
in principle applicable to rank data. Nevertheless, since rankings and sets have
different properties, the construction and filtering steps need to be adapted.
The basic structure of our algorithm for finding frequent subrankings, that will
subsequently be explained in more detail, is the following:

1. Initial search for frequent 2-rankings F (2) (set k = 3).
2. LOOP:

(a) Construct potential frequent k-rankings from the set of frequent (k− 1)-
rankings F (k−1).

(b) Filter frequent k-rankings from the potential frequent k-ranking set.
(c) Stop the LOOP if no k-ranking passes the filtering.
(d) Set k = k + 1.

4.1 Searching Frequent 2-Rankings

While the smallest unit in itemset mining is an item, the smallest unit in the
case of subrankings is a preference pair a � b. Therefore, the initial step is to
exhaustively search for all frequent 2-rankings in the data set of rankings.

4.2 Construction of Candidate k-Rankings

Every k-ranking π(k) can be decomposed into a set of (k − l)-rankings

C(l)
(
π(k)

)
=

{
π
(k−l)
i |π(k−l)

i ⊂ π(k)
}

with 0 ≤ l < k. A k-ranking π(k) is fully consistent with F (k−1) if C(1)(π(k)) ⊂
F (k−1).

In this step, we search for all k-rankings that are fully consistent with F (k−1).

For this purpose, the algorithm iterates over all pairs (π
(k−1)
i , π

(k−1)
j) ∈ F (k−1)×

F (k−1) with i < j and builds partially consistent k-rankings. These are rankings

π(k) such that {π(k−1)
i , π

(k−1)
j } ⊂ C(1)(π(k)). For example, from the 2-rankings

a � b and c � d, we are not able to build any 3-ranking, whereas from a � b
and b � c, we can build the 3-ranking a � b � c. Likewise, from the 2-rankings
a � c and b � c, we can build the two rankings a � b � c and b � a � c.

Being partially consistent with a single pair {π(k−1)
i , π

(k−1)
j } ⊂ F (k−1) is

necessary but not sufficient for being fully consistent with F (k−1). Let us again

Mining Rank Data 129

consider the 2-rankings a � b and b � c, and the only partially consistent 3-
ranking a � b � c. In order to assure that this ranking is fully consistent with
F (k−1), we have to check whether the ranking a � c is in F (k−1), too.

Instead of explicitly searching for a � c in F (k−1), we store a � b � c in a hash
map with a key (based on the object sequence abc) and a count as value. This
count is set to 1 the first time we put in a key and incremented every time we
apply the put(key) operation. The idea is that if a ranking π(k) is fully consistent
with F (k−1), we find exactly |C(1)(π(k))|(|C(1)(π(k))| − 1)/2 = k(k − 1)/2 pairs
of (k − 1)-rankings from which π(k) can be built. After iterating over all pairs,
we pass through the entries in our hash map and collect the keys with value
k(k − 1)/2. These rankings form the set of potentially frequent k-rankings. The
whole procedure is described in Algorithm 1.

Algorithm 1.

1: procedure NCR(F(k−1))
2: K = ∅ � set of candidates
3: initialize HashMap M
4: for i = 1 to |F(k−1)| − 1 do
5: for j = i+ 1 to |F(k−1)| do
6: Ci,j ← CONSTRUCT((π

(k−1)
i , π

(k−1)
j)) � constructs sub consistent

k-rankings
7: for π(k) ∈ Ci,j do
8: if M.getV alue(π(k)) = null then � π(k) is key
9: M.put(π(k), 1)
10: else
11: M.incrementV alue(π(k))
12: end if
13: end for
14: end for
15: end for
16: for entry ∈ M do
17: if entry.getV alue() = k(k − 1)/2 then
18: K.add(entry.getKey())
19: end if
20: end for
21: return K
22: end procedure

The task of CONSTRUCT is to take two (k − 1)-rankings and construct all
partially consistent k-rankings. The way CONSTRUCT works is actually quite
easy, although the implementation is a bit intricate. Roughly speaking, the two
rankings are compared position by position, and the algorithm has a special
handling for the last two positions. CONSTRUCT can be divided into two steps,
an alignment step and a construction step. Before we explain the basic principle
of operation, let us make a few observations.

130 S. Henzgen and E. Hüllermeier

pb = 1 pt = 1

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

=⇒

pb = 2 pt = 2

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c

c

=⇒

pb = 3 pt = 4

ub = −1 ut = 2

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c a f

c − f

=⇒

pb = 4 pt = 4

ub = 3 ut = 2

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c a f −

c − f d

Fig. 1. Illustration of the CONSTRUCT procedure. The second row shows how the
object pointers are set after every iteration—the upper arrow is the top object pointer
pt and the lower arrow the bottom object pointer pb. The alignment, which is implicitly
constructed by the algorithm, is shown in the bottom row.

The number of partially consistent k-rankings that can be constructed from
two (k− 1)-rankings is 0, 1 or 2. It is 0 if there is no k-ranking that is consistent

with π
(k−1)
i and π

(k−1)
j . By construction, π

(k−1)
i = π

(k−1)
j only if i = j, and we

only compare rankings with i �= j. Consequently, if there is a partially consis-

tent k-ranking, there is also exactly one object oi,ui = O(π
(k−1)
i) \ O(π

(k−1)
j)

and exactly one object oj,uj = O(π
(k−1)
j) \ O(π

(k−1)
i). Using terminology from

sequence alignment, this means there are exactly two gaps in the alignment of

the sequences π
(k−1)
i and π

(k−1)
j , one in the former and one in the latter (Fi-

gure 1). However, the existence of one gap in each sequence is only a necessary
but not a sufficient condition. Additionally, we must have oi,ui �= oj,uj . For in-
stance, the sequences in Figure 2 contain the same elements but in another order.
In the alignment, there is one gap in each sequence, yet there is no consistent
(k − 1)-ranking.

The last observation is that the number of consistent k-rankings which can

be constructed from π
(k−1)
i and π

(k−1)
j is one if ui �= uj and two if ui = uj .

Thus, the key tasks consist of finding and counting the gaps—seeAlgorithm2 for
a description in pseudo code. The meaning of top- and bottom are like in Figure 1.

pb = 1 pt = 1

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

=⇒

pb = 2 pt = 2

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c

c

=⇒

pb = 3 pt = 4

ub = −1 ut = 2

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c a f

c − f

=⇒

pb = 4 pt = 4

ub = 3 ut = 2

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c a f −

c − f a

Fig. 2. Here, the (k−1)-rankings differ by a swap of the objects a and f . Although it is
not possible to build a k-ranking, the alignment is the same as in Figure 1. Therefore,
the objects ob,ub

and ot,ut need to be checked for equality.

Mining Rank Data 131

Algorithm 2.

1: procedure construct(π
(k−1)
b , π

(k−1)
t)

2: ub ← −1; ut ← −1 � bottom and top gap position
3: pb ← 1; pt ← 1 � bottom and top object pointer
4: for pb to |π(k−1)

b | − 2 do
5: if oj,pb = oi,pt then
6: pt ← pt + 1
7: else if oj,pb �= oi,(pt+1) then
8: if ub > −1 then
9: return null � bottom gap already found
10: end if
11: ub ← pb � bottom gap is found
12: else
13: if ub > −1 then
14: return null � top gap already found
15: end if
16: ut ← pt and pt ← pt + 2 � the top gap is found
17: end if
18: end for

19:
... � Here the procedure deals with the cases pb > |π(k−1)

b | − 2, where you have
to be careful with the incrementation of pt

20: if ob,ub
= ot,ut then

21: return null � necessary gaps are caused by a swap, see Figure 2
22: end if
23: return INNERCONSTRUCT(π

(k−1)
b , π

(k−1)
t , ub, ut)

24: end procedure

While the “outer” CONSTRUCT procedure performs the alignment step, the
INNERCONSTRUCT procedure performs the construction step. The idea here

is simply to add ob,ub
and ot,ut to π

(k−1)
t with the help of the position information

ub and ut, so that the resulting k-rankings are consistent with π
(k−1)
b and π

(k−1)
t .

4.3 Filtering Frequent k-Rankings

Like in the original Apriori algorithm, we need to check for every potentially
frequent k-ranking whether or not it is indeed frequent. For this purpose, we
have to go through all rankings and count the appearance of the k-rankings.

4.4 Association Rule Mining

The mining of association rules of the form (2) is done on the basis of fre-
quent subrankings, just like in itemset mining. However, as mentioned before,
the conjunction πA ⊕ πB of two subrankings πA and πB is not again a subrank-
ing. Therefore, the support (5) of a candidate rule πA ⇀ πB cannot simply be
looked up.

132 S. Henzgen and E. Hüllermeier

Instead, for each candidate rules πA ⇀ πB, where πA and πB are frequent
subrankings that meet the consistency constraint (3), we again pass through the
data in order to compute the support (5) as well as measures of confidence (4)
and interest (6).

5 Experiments

We used three real data sets for our experiments: The SUSHI data, that was
already mentioned in the introduction, consists of 5000 rankings of 10 types of
sushis. The STUDENTS data [2] comes from a psychological study and consists
of 404 rankings of 16 goals (want to get along with my parents, want to feel good
about myself, want to have nice things, want to be different from others, want
to be better than others, etc.), each one reflecting what a student considers to
be more or less important for himself or herself to achieve. Finally, the ESC14
data is derived from the European Song Contest 2014 in Denmark. It consists
of rankings of the 26 countries that reached the final. Since each of the 36
participating countries selected 5 jurors, the total number of rankings is 180.
There was a need for one adjustment, however: Since jurors are not allowed to
rank their own country, we completed such rankings (of length 25 instead of 26)
by putting that country on the bottom rank.

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Threshold

N
u

m
b

e
r

o
f

P
a

tt
e

rn

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Threshold

N
u

m
b

e
r

o
f

P
a

tt
e

rn

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Threshold

N
u

m
b

e
r

o
f

P
a

tt
e

rn

Fig. 3. Number of patterns reaching a threshold minsupp (left bar) for the data sets
STUDENT, ESC14 and SUSHI (from left to right), compared to the same number for
synthetic data sets of the same dimension, in which rankings are generated uniformly
at random (right bar)

Figure 3 shows the number of frequent subrankings found in the data sets,
compared with the number of frequent subrankings found in synthetic data sets
taken from a uniform distribution.

For each of the three data set, we derived a most representative subranking,
namely the subranking π that maximizes the relation between its support and the
support one would expect under a uniform distribution (which is 1/|π|!). Figure 4

Mining Rank Data 133

−2 0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90

discordances

a
m

o
u
n
t
o
f
ra

n
k
in

g
s

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

discordances

a
m

o
u
n
t
o
f
ra

n
k
in

g
s

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

discordances

a
m

o
u
n
t
o
f
ra

n
k
in

g
s

Fig. 4. Distribution of the distance of rankings from the most representative pattern;
from left to right: STUDENTS (goal 2 � goal 1 � goal 9 � goal 11 � goal 14 � goal 16),
ESC14 (Netherlands � Finland � UK � Italy � Greece), SUSHI (sushi 8 � sushi 3 �
sushi 9 � sushi 7 � sushi 10)

shows the distribution of the distances of all rankings from that representative,
where the distance is determined as the number of pairwise disagreements. As
can be seen, the pattern is indeed representative in the case of STUDENTS and
SUSHI, in the sense that the large majority deviates by at most 2-3 pairwise in-
versions. For ESC14, a representative pattern is more difficult to find, suggesting
that the preferences are more diverse in this case.

Finally, we also extracted association rules from the data sets, and found a
number of rules with high confidence and interest (for example, the rule goal 10
(material gain) � goal 3 (belongingness) � goal 7 (management) ⇀ goal 10 (ma-
terial gain) � goal 5 (social responsibility) in the STUDENTS data with confi-
dence 0.9038, interest 0.6544, and support 0.1149). Many of these rules also have
a quite interesting semantic interpretation. Due to reasons of space, however, we
refrain from a detailed discussion here.

6 Summary and Conclusion

In this paper, we introduced the problem of mining rank data as a novel data
mining task—to the best of our knowledge, mining patterns in this type of data
has not been studied systematically in the literature so far. Moreover, we have
given two concrete examples of rank patterns, namely frequent subrankings and
associations between such rankings, and proposed an algorithm for extracting
them from rank data. Our algorithm is a rather straightforward generalization
of the basic Apriori algorithm for itemset mining. Needless to say, there is much
scope for improving this approach, so as to make it scalable to very large data
sets. To this end, one may try to adopt ideas of faster algorithms for itemset
mining, such as Eclat [11] or FP-growth [7,8], although the data structures used
there are not immediately applicable to rank data.

More importantly, however, the problem of mining rank patterns itself can be
generalized in various directions:

– For example, as already mentioned, rank information will not always be
provided in the form of complete rankings of all items, i.e., the data itself

134 S. Henzgen and E. Hüllermeier

may already be given in the form of subrankings, partial orders or “bags” of
order relations.

– In this regard, one may also think of a combination of mining rank and
itemset data. For instance, preference information is often given in the form
of top-k rankings, i.e., a ranking of the k most preferred alternatives [4]—
obviously, information of that kind can be seen as a ranking of a subset of
all items.

– Since the space of rankings is equipped with a natural topology, it would
make sense to search for approximate patterns, also allowing a ranking to be
supported by similar rankings, for example [3].

– Yet another direction is the incorporation of quantitative information about
rank positions. It could make a difference, for example, whether two objects
a and b share adjacent ranks (suggesting that a is only slightly preferred to
b), or whether a appears on the top and b on the bottom of the ranking.

Extensions and generalizations of that kind provide interesting challenges for
future work.

Acknowledgments. The authors gratefully acknowledge support by the Ger-
man Research Foundation (DFG). Moreover, they would like to thank Prof.
Louis Fono, Université de Douala, Cameroun, for very stimulating discussions
on the topic of this paper.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
VLDB, 20th Int. Conf. on Very Large Data Bases, pp. 487–499 (1994)

2. Boekaerts, M., Smit, K., Busing, F.M.T.A.: Salient goals direct and energise
students’ actions in the classroom. Applied Psychology: An International Re-
view 4(S1), 520–539 (2012)

3. de Sá, C.R., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining association
rules for label ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011,
Part II. LNCS, vol. 6635, pp. 432–443. Springer, Heidelberg (2011)

4. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top-k lists. SIAM Journal of
Discrete Mathematics 17(1), 134–160 (2003)

5. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer (2011)
6. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and

future directions. Data Mining and Knowledge Discovery 15, 55–86 (2007)
7. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.

ACM SIGMOD Record 29, 1–12 (2000)
8. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

9. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. Springer (1996)

10. Suzuki, E.: Data mining methods for discovering interesting exceptions from an
unsupervised table. J. Universal Computer Science 12(6), 627–653 (2006)

11. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering 12(3), 372–390 (2000)

	Mining Rank Data
	1Introduction
	2Rank Data
	3Rank Patterns
	3.1Subrankings
	3.2Association Rules
	3.3Comparison with Itemset Mining

	4Algorithms
	4.1Searching Frequent 2-Rankings
	4.2Construction of Candidate k-Rankings
	4.3Filtering Frequent k-Rankings
	4.4Association Rule Mining

	5Experiments
	6Summary and Conclusion
	References

