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Preface

This year’s International Conference on Discovery Science (DS) was the 17th
event in this series. Like in previous years, the conference was co-located with
the International Conference on Algorithmic Learning Theory (ALT), which is
already in its 25th year. Starting in 2001, ALT/DS is one of the longest-running
series of co-located events in computer science. The unique combination of recent
advances in the development and analysis of methods for discovering scientific
knowledge, coming from machine learning, data mining, and intelligent data
analysis, as well as their application in various scientific domains, on the one
hand, with the algorithmic advances in machine learning theory, on the other
hand, makes every instance of this joint event unique and attractive.

This volume contains the papers presented at the 17th International Confer-
ence on Discovery Science, while the papers of the 25th International Conference
on Algorithmic Learning Theory are published by Springer in a companion vol-
ume (LNCS Vol. 8776). We had the pleasure of selecting contributions from 62
submissions by 178 authors from 22 countries. Each submission was reviewed by
at least three Program Committee members. The program chairs eventually de-
cided to accept 30 papers, yielding an acceptance rate of 48%. The program also
included three invited talks and two tutorials. In the joint DS/ALT invited talk,
Zoubin Ghahramani gave a presentation on “Building an Automated Statis-
tician.” DS participants also had the opportunity to attend the ALT invited
talk on “Cellular Tree Classifiers”, which was given by Luc Devroye. The two
tutorial speakers were Anuška Ferligoj (“Social Network Analysis”) and Eyke
Hüllermeier (“Online Preference Learning and Ranking”).

This year, both conferences were held in Bled, Slovenia, and were organized
by the Jožef Stefan Institute (JSI) and the University of Ljubljana. We are
very grateful to the Department of Knowledge Technologies (and the project
MAESTRA) at JSI for sponsoring the conferences and providing administrative
support. In particular, we thank the local arrangement chair, Mili Bauer, and
her team, Tina Anžič, Nikola Simidjievski, and Jurica Levatić from JSI for their
efforts in organizing the two conferences. We would like to thank the Office of
Naval Research Global for the generous financial support provided under ONRG
GRANT N62909-14-1-C195.

We would also like to thank all authors of submitted papers, the Program
Committee members, and the additional reviewers for their efforts in evaluating
the submitted papers, as well as the invited speakers and tutorial presenters.
We are grateful to Sandra Zilles, Peter Auer, Alexander Clark and Thomas
Zeugmann for ensuring a smooth coordination with ALT, Nikola Simidjievski
for putting up and maintaining our website, and Andrei Voronkov for making
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EasyChair freely available. Finally, special thanks go to the Discovery Science
Steering Committee, in particular to its past and current chairs, Einoshin Suzuki
and Akihiro Yamamoto, for entrusting us with the organization of the scientific
program of this prestigious conference.

July 2014 Sašo Džeroski
Panče Panov
Dragi Kocev

Ljupčo Todorovski
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Building an Automated Statistician

Zoubin Ghahramani

Department of Engineering,
University of Cambridge,

Trumpington Street
Cambridge CB2 1PZ, UK

zoubin@eng.cam.ac.uk

Abstract. We live in an era of abundant data and there is an increasing
need for methods to automate data analysis and statistics. I will describe
the “Automated Statistician”, a project which aims to automate the ex-
ploratory analysis and modelling of data. Our approach starts by defining
a large space of related probabilistic models via a grammar over models,
and then uses Bayesian marginal likelihood computations to search over
this space for one or a few good models of the data. The aim is to find
models which have both good predictive performance, and are somewhat
interpretable. Our initial work has focused on the learning of unknown
nonparametric regression functions, and on learning models of time series
data, both using Gaussian processes. Once a good model has been found,
the Automated Statistician generates a natural language summary of the
analysis, producing a 10-15 page report with plots and tables describing
the analysis. I will discuss challenges such as: how to trade off predictive
performance and interpretability, how to translate complex statistical
concepts into natural language text that is understandable by a numer-
ate non-statistician, and how to integrate model checking. This is joint
work with James Lloyd and David Duvenaud (Cambridge) and Roger
Grosse and Josh Tenenbaum (MIT).

References

1. Duvenaud, D., Lloyd, J.R., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.: Structure
Discovery in Nonparametric Regression through Compositional Kernel Search. In:
ICML 2013 (2013), http://arxiv.org/pdf/1302.4922.pdf

2. Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z.: Auto-
matic Construction and Natural-language Description of Nonparametric Regression
Models. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2014
(2014), http://arxiv.org/pdf/1402.4304.pdf



Social Network Analysis

Anuška Ferligoj

Faculty of Social Sciences,
University of Ljubljana

anuska.ferligoj@fdv.uni-lj.si

Abstract. Social network analysis has attracted considerable interest
from the social and behavioral science communities in recent decades.
Much of this interest can be attributed to the focus of social network
analysis on relationship among units, and on the patterns of these rela-
tionships. Social network analysis is a rapidly expanding and changing
field with a broad range of approaches, methods, models and substantive
applications. In the talk, special attention will be given to:
1. General introduction to social network analysis:

– What are social networks?
– Data collection issues.
– Basic network concepts: network representation; types of net-

works; size and density.
– Walks and paths in networks: length and value of path; the short-

est path, k-neighbours; acyclic networks.
– Connectivity: weakly, strongly and bi-connected components;

contraction; extraction.
2. Overview of tasks and corresponding methods:

– Network/node properties: centrality (degree, closeness, between-
ness); hubs and authorities.

– Cohesion: triads, cliques, cores, islands.
– Partitioning: blockmodeling (direct and indirect approaches;

structural, regular equivalence; generalised blockmodeling); clus-
tering.

– Statistical models.
3. Software for social network analysis (UCINET, PAJEK, . . . )

References

1. Batagelj, V., Doreian, P., Ferligoj, A., Kejžar, N.: Understanding Large Temporal
Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and
Network Evolution. Wiley, Chichester (2014)

2. Carrington, P.J., Scott, J., Wasserman, S. (eds.): Models and Methods in Social
Network Analysis. Cambridge University Press, Cambridge (2005)

3. Doreian, P., Batagelj, V., Ferligoj, A.: Generalized Blockmodeling. Cambridge Uni-
versity Press, Cambridge (2005)

4. de Nooy, W., Mrvar, A., Batagelj, V.: Exploratory Social Network Analysis with
Pajek, Revised and expanded second edition. Cambridge University Press, Cam-
bridge (2011)
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5. Scott, J., Carrington, P.J. (eds.): The SAGE Handbook of Social Network Analysis.
Sage, London (2011)

6. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)



Cellular Tree Classifiers�

Gérard Biau1,2 and Luc Devroye3

1 Sorbonne Universités, UPMC Univ Paris 06, France
2 Institut universitaire de France

3 McGill University, Canada

Abstract. Suppose that binary classification is done by a tree method
in which the leaves of a tree correspond to a partition of d-space. Within
a partition, a majority vote is used. Suppose furthermore that this tree
must be constructed recursively by implementing just two functions, so
that the construction can be carried out in parallel by using “cells”: first
of all, given input data, a cell must decide whether it will become a leaf
or an internal node in the tree. Secondly, if it decides on an internal
node, it must decide how to partition the space linearly. Data are then
split into two parts and sent downstream to two new independent cells.
We discuss the design and properties of such classifiers.

* The full paper can be found in Peter Auer, Alexander Clark, Sandra Zilles, and
Thomas Zeugmann, Proceedings of the 25th International Confer- ence on Algo-
rithmic Learning Theory (ALT-14), Lecture Notes in Computer Science Vol. 8776,
Springer, 2014.



Online Preference Learning and Ranking�

Eyke Hüllermeier

Department of Computer Science
University of Paderborn, Germany

eyke@upb.de

Abstract. A primary goal of this tutorial is to survey the field of prefer-
ence learning [7], which has recently emerged as a new branch of machine
learning, in its current stage of development. Starting with a systema-
tic overview of different types of preference learning problems, methods
to tackle these problems, and metrics for evaluating the performance of
preference models induced from data, the presentation will focus on the-
oretical and algorithmic aspects of ranking problems [6, 8, 10]. In partic-
ular, recent approaches to preference-based online learning with bandit
algorithms will be covered in some depth [12, 13, 11, 2, 9, 1, 3–5, 14].

References

1. Ailon, N., Karnin, Z., Joachims, T.: Reducing dueling bandits to cardinal bandits.
In: Proc. ICML, Beijing, China (2014)

2. Busa-Fekete, R., Szörényi, B., Weng, P., Cheng, W., Hüllermeier, E.: Top-k selec-
tion based on adaptive sampling of noisy preferences. In: Proc. ICML, Atlanta,
USA (2013)

3. Busa-Fekete, R., Hüllermeier, E., Szörényi, B.: Preference-based rank elicitation
using statistical models: The case of Mallows. In: Proc. ICML, Beijing, China
(2014)

4. Busa-Fekete, R., Szörényi, B., Hüllermeier, E.: PAC rank elicitation through adap-
tive sampling of stochastic pairwise preferences. In: Proc. AAAI (2014)

5. Busa-Fekete, R., Hüllermeier, E.: A survey of preference-based online learning with
bandit algorithms. In: Proc. ALT, Bled, Slovenia (2014)

6. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. Journal of
Artificial Intelligence Research 10 (1999)

7. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer (2011)
8. Fürnkranz, J., Hüllermeier, E., Vanderlooy, S.: Binary decomposition methods for

multipartite ranking. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor,
J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 359–374. Springer,
Heidelberg (2009)

* The full version of this paper can be found in Peter Auer, Alexander Clark, Sandra
Zilles, and Thomas Zeugmann, Proceedings of the 25th International Confer- ence
on Algorithmic Learning Theory (ALT-14), Lecture Notes in Computer Science Vol.
8776, Springer, 2014.
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9. Urvoy, T., Clerot, F., Féraud, R., Naamane, S.: Generic exploration and k-armed
voting bandits. In: Proc. ICML, Atlanta, USA (2013)

10. Vembu, S., Gärtner, T.: Label ranking: A survey. In: Fürnkranz, J., Hüllermeier,
E. (eds.) Preference Learning. Springer (2011)

11. Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The K-armed dueling bandits
problem. Journal of Computer and System Sciences 78(5), 1538–1556 (2012)

12. Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a
dueling bandits problem. In: Proc. ICML, Montreal, Canada (2009)

13. Yue, Y., Joachims, T.: Beat the mean bandit. In: Proc. ICML, Bellevue, Washing-
ton, USA (2011)
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Miha Grčar, and Tomislav Šmuc
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Explaining Mixture Models through Semantic

Pattern Mining and Banded Matrix
Visualization

Prem Raj Adhikari1, Anže Vavpetič2, Jan Kralj2, Nada Lavrač2,
and Jaakko Hollmén1

1 Helsinki Institute for Information Technology HIIT and Department of Information
and Computer Science, Aalto University School of Science,

PO Box 15400, FI-00076 Aalto, Espoo, Finland
{prem.adhikari,jaakko.hollmen}@aalto.fi

2 Jožef Stefan Institute and Jožef Stefan International Postgraduate School,
Jamova 39, 1000 Ljubljana, Slovenia

{anze.vavpetic,jan.kralj,nada.lavrac}@ijs.si

Abstract. Semi-automated data analysis is possible for the end user
if data analysis processes are supported by easily accessible tools and
methodologies for pattern/model construction, explanation, and explo-
ration. The proposed three–part methodology for multiresolution 0–1
data analysis consists of data clustering with mixture models, extrac-
tion of rules from clusters, as well as data, cluster, and rule visualization
using banded matrices. The results of the three-part process—clusters,
rules from clusters, and banded structure of the data matrix—are finally
merged in a unified visual banded matrix display. The incorporation
of multiresolution data is enabled by the supporting ontology, describing
the relationships between the different resolutions, which is used as back-
ground knowledge in the semantic pattern mining process of descriptive
rule induction. The presented experimental use case highlights the use-
fulness of the proposed methodology for analyzing complex DNA copy
number amplification data, studied in previous research, for which we
provide new insights in terms of induced semantic patterns and clus-
ter/pattern visualization.

Keywords: Mixture Models, Semantic Pattern Mining, Pattern Visu-
alization.

1 Introduction

In data analysis, the analyst aims at finding novel ways to summarize the data to
become easily understandable [6]. The interpretation aspect is especially valued
among application specialists who may not understand the data analysis process
itself. Semi-automated data analysis is hence possible for the end user if data anal-
ysis processes are supported by easily accessible tools and methodologies for pat-
tern/model construction, explanation and exploration. This work draws together
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different approaches developed in our previous research, leading to a new three-
part data analysis methodology. Its utility is illustrated in a case study concern-
ing the analysis of DNA copy number amplifications represented as a 0–1 (binary)
dataset [12]. In our previous work we have successfully clustered this data using
mixture models [13, 16]. Furthermore, in [8], we have learned linguistic names for
the patterns that coincide with the natural structure in the data, enabling domain
experts to refer to clusters or the patterns extracted from these clusters, with their
names. In [7] we report that frequent itemsets describing the clusters, or extracted
from the ‘one cluster at a time’ clustered data are markedly different than those
extracted from the whole dataset. The whole set of about 100 DNA amplification
patterns identified from the data have been reported in [13].

With the aim of better explaining the initial mixture model based clusters, in
this work we consider the cluster labels as class labels in descriptive rule learn-
ing [14], using a semantic pattern mining approach [20]. This work proposes a
crossover of unsupervised methods of probabilistic clustering with supervised
methods of subgroup discovery to determine the specific chromosomal locations,
which are responsible for specific types of cancers. Determining the chromosomal
locations and their relation to certain cancers is important to study and under-
stand pathogenesis of cancer. It also provides necessary information to select
the optimal target for cancer therapy on individual level [10]. We also enrich
the data with additional background knowledge in different forms such as pre–
discovered patterns as well as taxonomies of features in multiresolution data,
cancer genes, and chromosome fragile sites. The background knowledge enables
the analysis of data at multiple resolutions. This work reports the results of the
Hedwig semantic pattern mining algorithm [19] performing semantic subgroup
discovery, using the incorporated background knowledge.

While a methodology, consisting of clustering and semantic pattern mining,
has been suggested in our previous work [9, 20], we have now for the first time
addressed the task of explaining sub-symbolic mixture model patterns (clusters
of instances) using symbolic rules. In this work, we propose this two-step ap-
proach to be enhanced through pattern comparison by their visualization on the
plots resulting from banded matrices visualization [5]. Using colored overlays on
the banded patient–chromosome matrix (induced from the original data), the
mixture model clusters are first visualized, followed by visualizing the sets of
patterns (i.e., subgroups) induced by semantic pattern mining.

Matrix visualization is a very popular method for information mining [1] and
banded matrix visualization provides new means for data and pattern explo-
ration, visualization and comparison. The addition of visualization helps to de-
termine if the clustering results are plausible or awry. It also helps to identify
the similarities and differences between clusters with respect to the amplification
patterns. Moreover, an important contribution of this work is the data analyt-
ics task addressed, i.e., the problem of explaining chromosomal amplification in
cancer patients of 73 different cancer types where data features are represented
in multiple resolutions. Data is generated in multiple resolutions (different di-
mensionality) if a phenomenon is measured in different levels of detail.
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The main contributions of this work are as follows. We propose a three-part
methodology for data analysis. First, we cluster the data. Second, we extract
semantic patterns (rules) from the clusters, using an ontology of relationships
between the different resolutions of the multiresolution data [15]. Finally, we
integrate the results in a visual display, illustrating the clusters and the identified
rules by visualizing them over the banded matrix structure.

2 Methodology

A pipeline of algorithmic steps forming the proposed three–part methodology is
outlined in Figure 1. The methodology starts with a set of experimental data
(Load Data) and background knowledge and facts (Load Background Knowl-
edge) as shown in the Figure 1. Next, both a mixture model (Compute Mixture
Model) and a banded matrix (Compute Banded Matrix ) are induced indepen-
dently from the data in Sections 3.1 and 3.2, respectively. The mixture model
is then applied to the original data, to obtain a clustering of the data (Apply
Mixture Model). The banded structure enables the visualization of the resulting
clusters in Section 3.2 (Banded matrix cluster visualization). Semantic pattern
mining is used in Section 3.3 to describe the clusters in terms of the background
knowledge (Semantic pattern mining). Finally, all three models (the mixture
model, the banded matrix and the patterns) are joined in Section 3.4 to produce
the final visualization (Banded Matrix Rule Visualization).

Fig. 1. Overview of the proposed three-part methodology

2.1 Experimental Data

The dataset under study describes DNA copy number amplifications in 4,590 can-
cer patients. The data describes 4,590 patients as data instances, with attributes
being chromosomal locations indicating aberrations in the genome. These aberra-
tions are described as 1’s (amplification) and 0’s (no amplification). Authors in [12]
describe the amplification dataset in detail. In this paper, we consider datasets in
different resolutions of chromosomal regions as defined by International System of
Cytogenetic Nomenclature (ISCN) [15].
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Given the complexity of the multiresolution data, we were forced to reduce
the complexity of the learning setting to a simpler setting, allowing us to de-
velop and test the proposed methodology. To this end, we have reduced the size
of the dataset: from the initial set of instances describing 4,590 patients, each
belonging to one of the 73 different cancer types, we have focused on 34 most
frequent cancer types only, as there were small numbers of instances available for
many of the rare cancer types, thus reducing the dataset from 4,590 instances
to a 4,104 instances dataset. In addition, in the experiments we have focused on
a single chromosome (chromosome 1), using as input to step 2 of the proposed
methodology the data clusters obtained at the 393 locations granularity level us-
ing a mixture modeling approach [13]. Inferencing and density estimation from
entire data would produce degenerate results because of the curse of large dimen-
sionality. When chromosome 1 is extracted from the data, some cancer patients
show no amplifications in any bands of the chromosome 1. We have removed
such samples without amplifications (zero vectors) because we are interested in
the amplifications and their relation to cancers, not their absence. This reduces
the sample size of chromosome 1 from 4,104 to 407. Similar experiments can be
performed for each chromosome in such a way that every sample of data is prop-
erly utilized. While this data reduction may be an over-simplification, finding
relevant patterns in this dataset is a huge challenge, given the fact that even indi-
vidual cancer types are known to consist of cancer sub-types which have not yet
been explained in the medical literature. The proposed methodology may prove,
in future work, to become a cornerstone in developing means through which
such sub-types could be discovered, using automated pattern construction and
innovative pattern visualization using banded matrices visualization.

In addition to the DNA amplifications dataset, we used supplementary back-
ground knowledge in the form of an ontology to enhance the analysis of the
dataset. The supplementary background knowledge used are taxonomies of hier-
archical structure of multiresolution amplification data, chromosomal locations
of fragile sites [3], virus integration sites [21], cancer genes [4], and amplification
hotspots. The hierarchical structure of multiresolution data is due to ISCN
which allows the exact description of all numeric and structural amplifications
in genomes [15]. Amplification hotspots are frequently amplified chromosomal
loci identified using computational modeling [12].

2.2 Mixture Model Clustering

Mixture models are probabilistic models for modeling complex distributions by
a mixture or weighted sum of simple distributions through a decomposition
of the probability density function into a set of component distributions [11].
Since the dataset of our interest is a 0–1 data, we use multivariate Bernoulli
distributions as component distributions to model the data. Mathematically,
this can be expressed as
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p(x|Θ) =
J∑

j=1

πjP (x | θj) =
J∑

j=1

πj

d∏
i=1

θxi

ji (1− θji)
1−xi . (1)

Here, j = 1, 2, . . . , J indexes the component distributions and i = 1, 2, . . . , d in-
dexes the dimensionality of the data. πj defines the mixing proportions or mixing
coefficients determining the weight for each of the J component distributions.
Mixing proportions satisfy the properties of convex combination such as: πj ≥ 0

and
∑J

J=1 πj = 1. Individual parameters θji determine the probability that a
random variable in the jth component in the ith dimension takes the value 1.
xi denotes the data point such that xi ∈ {0, 1}. Therefore, the parameters of
mixture models can be represented as: Θ = {J , {πj , Θj}Jj=1}.

Expectation maximization (EM) algorithm can be used to learn the maxi-
mum likelihood parameters of the mixture model if the number of component
distributions are known in advance [2]. Whereas the mixture model is merely a
way to represent the probability distribution of the data, the model can be used
in clustering the data into (hard) partitions, or subsets of data instances. We can
achieve this by allocating individual data vectors to mixture model components
that maximize the posterior probability of that data vector.

2.3 Semantic Pattern Mining

Existing semantic subgroup discovery algorithms are either specialized for a spe-
cific domain [17] or adapted from systems that do not take into the account the
hierarchical structure of background knowledge [18]. The general purpose Hed-
wig system overcomes these limitations by using domain ontologies to structure
the search space and formulate generalized hypotheses. Semantic subgroup dis-
covery, as addressed by the Hedwig system, results in relational descriptive rules.
Hedwig uses ontologies as background knowledge and training examples in the
form of Resource Description Framework (RDF) triples. Formally, we define the
semantic data mining task addressed in the current contribution as follows.

Given:
– set of training examples in empirical data expressed as RDF triples
– domain knowledge in the form of ontologies, and
– an object-to-ontology mapping which associates each object from the

RDF triplets with appropriate ontological concepts.
Find:

– a hypothesis (a predictive model or a set of descriptive patterns), ex-
pressed by domain ontology terms, explaining the given empirical data.

The Hedwig system automatically parses the RDF triples (a graph) for the
subClassOf hierarchy, as well as any other user-defined binary relations. Hedwig
also defines a namespace of classes and relations for specifying the training ex-
amples to which the input must adhere. The rules generated by Hedwig system
using beam search are repetitively specialized and induced as discussed in [20].
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The significance of the findings is tested using the Fisher’s exact test. To cope
with the multiple–hypothesis testing problem, we use Holm–Bonferroni direct
adjustment method with α = 0.05.

2.4 Visualization Using Banded Matrices

Consider a n×m binary matrix Mand two permutations, κ and π of the first n
and m integers. Matrix Mπ

κ , defined as (Mπ
κ )i,j = Mκ(i),π(j), is constructed by

applying the permutations π and κ on the rows and columns of M . If, for some
pair of permutations π and κ, matrix Mπ

κ has the following property:

– For each row i of the matrix, the column indices for which the value in the
matrix is 1 appear consecutively, i.e., on indices ai, ai + 1, . . . , bi,

– For each i, we have ai ≤ ai+1 and bi ≤ bi+1,

then the matrix M is fully banded [5]. The motivation behind using banded
matrices to exposes the clustered structure of the underlying data through the
banded structure. We use barycentric method used to extract banded matrix
in [5] to find the banded structure of a matrix. The core idea of the method is
the calculation of barycenters for each matrix row, which are defined as

Barycenter(i) =

∑m
j=1 j ·Mij∑m
j=1 Mij

.

The barycenters of each matrix row are best understood as centers of gravity
of a stick divided into m sections corresponding to the row entries. An entry of
1 denotes a weight on that section. One step of the barycentric method now:
calculate the barycenters for each matrix row and sort the matrix rows in order
of increasing barycenters. In this way, the method calculates the best possible
permutation of rows that exposes the banded structure of the input matrix. It
does not, however, find any permutation of columns. In our application, neigh-
boring columns of a matrix represent chromosome regions that are in physical
proximity to one another, the goal is to only find the optimal row permutation
while not permuting the matrix columns.

The image of the banded structure can then be overlaid with a visualization
of clusters, as described in Section 2.2. Because the rows of the matrix represent
instances, highlighting one set of instances (one cluster) means highlighting sev-
eral matrix rows. If the discovered clusters are exposed by the matrix structure,
we can expect that several adjacent matrix rows will be highlighted, forming a
wide band. Furthermore, all the clusters can be simultaneously highlighted be-
cause each sample belongs to one and only one cluster. The horizontal colored
overlay of the clusters in Figure 3 can also be supplemented with another colored
vertical overlay of the rules explaining the clusters as discussed in Section 2.3.
If an important chromosome region is discovered for the characterization of a
cluster, we highlight the corresponding column. In the case of composite rules of

the type Rule 1: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X) , both chromo-

somal regions 1q43−−44 and 1q12 are understood as equally important and are
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therefore both highlighted. If a chromosome band appears in more than one rule,
this is visualized by a stronger highlight of the corresponding matrix column.

3 Experiments and Results

3.1 Clusters from Mixture Models

We used the mixture models trained in our earlier contribution [13]. Through
a model selection procedure documented in [16], the number of components for
modeling the chromosome 1 had been chosen to be J = 6, denoting presence of
six clusters in the data.

Fig. 2. Mixture model for chromosome 1. Figure shows first 10 dimensions of the total
28 for clarity.

Figure 2 shows a visual illustration of the mixture model for chromosome
1. In the figure, the first line denotes the number of components (J) in the
mixture model and the data dimensionality (d). The lines beginning with #
are comments and can be ignored. The fourth line shows the parameters of
component distributions (πj) which are six probability values summing to 1.
Similarly, the last six lines of the figure denote the parameters of the component
distributions, θji. Figure 2 does not visualize and summarize the data as it
consists of many numbers and probability values. Therefore, we use banded
matrix for visualization as discussed in Section 2.4. Here, we focus on hard
clustering of the samples of chromosomal amplification data using the mixture
model depicted in Figure 2. The dataset is partitioned into six different clusters
allocating data vectors to the component densities that maximize the probability
of data. The number of samples in each cluster are the following: Cluster 1→30,
Cluster 2→96, Cluster 3→88, Cluster 4→81, Cluster 5→75, and Cluster 6→37.

3.2 Cluster Visualization Using Banded Matrices

We used the barycentric method, described in Section 2.4, to extract the banded
structure in the data. The black color indicates ones and white color denotes ze-
ros in the data. The banded data was then overlaid with different colors for
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Fig. 3. Banded structure of the matrix with cluster information overlay

the 6 clusters, discovered in Section 3.1, as shown in the Figure 3. By expos-
ing the banded structure of the matrix, Figure 3 allows a clear visualization of
the clusters discovered in the data. Figures 3 shows that each cluster captures
amplifications in some specific regions of the genome. The figure captures a phe-
nomenon that the left part of the figure showing chromosomal regions beginning
with 1p shows a comparatively smaller number of amplifications whereas the
right part of the figure showing chromosomal regions beginning with 1q (q–arm)
shows a higher number of amplifications.

The Figure 3 also shows that cluster 1 is characterized by pronounced am-
plifications in the end of the q–arm (regions 1q32–q44) of chromosome 1. The
figure also shows that samples in the second cluster contain sporadic amplifica-
tions spread across both p and q–arms in different regions of chromosome 1. This
cluster does not carry much information and contains cancer samples that do
not show discriminating amplifications in chromosomes as the values of random
variables are near 0.5. It is the only cluster that was split into many separate
matrix regions. In contrast, cluster 3 portrays marked amplifications in regions
1q11–44. Cluster 4 shows amplifications in regions 1q21–25. Similarly, cluster
5 is denoted by amplifications in 1q21–25. Cluster 6 is defined by pronounced
amplifications in the p-arm of chromosome 1. The visualization with banded
matrices in Figure 3 also draws a distinction between clusters each cluster which
upon first viewing show no obvious difference to the human eye when looking at
the probabilities of the mixture model shown in the Figure 2.
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3.3 Rules Induced Through Semantic Pattern Mining

Using the method described in Section 2.3, we induced subgroup descriptions
for each cluster as the target class [19]. For a selected cluster, all the other clus-
ters represent the negative training examples, which resembles a one-versus-all
approach in multiclass classification. In our experiments, we consider only the
rules without negations, as we are interested in the presence of amplifications
characterizing the clusters (and thereby the specific cancers), while the absence
of amplifications normally characterizes the absence of cancers not their pres-
ence [10]. We focus our discussion only on the results pertaining to cluster 3
because of the space constraints.

Fig. 4. Rules induced for cluster 3 (left) and visualizations of rules and columns for
cluster 3 (right) with relevant columns highlighted. A highlighted column denotes that
an amplification in the corresponding region characterizes the instances of the partic-
ular cluster. A darker hue means that the region appears in more rules. The numbers
on top right correspond to rule numbers. For example, the notations “1, 3” on top of
rightmost column of cluster 3 indicates that the chromosome region appears in rules 1
and 3 tabulated in the left panel.

Table on the left panel of the Figure 4 show the rules induced for cluster 3,
together with the relevant statistics. The induced rules quantify the clustering
results obtained in Section 3.1 and confirmed by banded matrix visualization in
Section 3.2. The banded matrix visualization depicted in Figure 3 shows that
cluster 3 is marked by the amplifications in the regions 1q11–44. However, the
rules obtained in Table on the left panel of the Figure 4 show that amplifications
in all the regions 1q11–44 do not equally discriminate cluster 3. For example, rule

Rule 1: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X) characterizes cluster 3
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best with a precision of 1. This means that amplifications in regions 1q43-44 and
1q12 characterizes cluster 3. It also covers 81 of the 88 samples in cluster 3. Nev-
ertheless, amplifications in regions 1q11–44 shown in Figure 3 as discriminating
regions, appear in at least one of the rules in the table on the left panel of the
Figure 4 with varying degree of precision. Similarly, the second most discrimi-

nating rule for cluster 3 is: Rule 2: Cluster3(X) ← 1q11(X) which covers

78 positive samples and 9 negative samples.
The rules listed in the table on the left panel of Figure 4 also capture the

multiresolution phenomenon in the data. We input only one resolution of data
to the algorithm but the hierarchy of different resolutions is used as background
knowledge. For example, the literal 1q43–44 denotes a joint region in coarse
resolution thus showing that the algorithm produces results at different reso-
lutions. The results at different resolutions improve the understandability and
interpretability of the rules [8]. Furthermore, other information added to the
background knowledge are amplification hotspots, fragile sites, cancer genes,
which are discriminating features of cancers but do not show to discriminate
any specific clusters present in the data. Therefore, such additional information
would be better utilized in situations where the dataset contains not only cancer
samples but also control samples which is unfortunately not the situation here
as our dataset has only cancer cases.

3.4 Visualizing Semantic Rules and Clusters with Banded Matrices

The second way to use the exposed banded structure of the data is to display
columns that were found to be important due to appearing in rules from Sec-
tion 3.3. We achieve this by highlighting the chromosomal regions which appear
in the rules. As shown in Figure 4, the highlighted band for cluster 1 spans chro-
mosome regions 1q32–44. For cluster 3, the entire q–arm of the chromosome is
highlighted, as indeed the instances in cluster 3 have amplifications throughout
the entire arm. The regions 1q11–12 and 1q43–44 appear in rules with higher
lift, in contrast to the other regions showing that the amplifications on the edges
of the region are more important for the characterization of the cluster.

In summary, Figures 3 and 4 together offer an improved view of the underlying
data. Figure 3 shows all the clusters on the data while Figure 4 shows only specific
cluster and its associated rules. We achieve this by reordering the matrix rows
by placing similar items closer together to form a banded structure [5], which
allows easier visualization of the clusters and rules. It is important to reorder
the rows independently of the clustering process. Because the reordering selected
does not depend on the cluster structure discovered, the resulting figures offer
new insight into both the data and the clustering.

4 Summary and Conclusions

We have presented a three-part data analysis methodology: clustering, semantic
subgroup discovery, and pattern visualization. Pattern visualization takes advan-
tage of the structure—in our case the bandedness of the matrix. The proposed
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visualization allows us to explain the discovered patterns by combining different
views of the data, which may be difficult to compare without a unifying visual
display. In our experiments, we analyzed DNA copy number amplifications in
the form of 0–1 data, where the clustering developed in previous work was aug-
mented by explanatory rules derived from a semantic pattern mining approach
combined by the facility to display the bandedness structure of the data.

The proposed semi–automated methodology provides complete analysis of a
complex real-world multiresolution data. The results in the form of different
clusters, rules, and visualizations are interpretable by the domain experts. Es-
pecially, the visualizations with banded matrix helps to understand the clusters
and the rules generated by the semantic pattern mining algorithm. Furthermore,
the use of the background knowledge enables us to analyze multiresolution data
and garner results at different levels of multiresolution hierarchy. Similarly, the
the obtained rules help to quantitatively prioritize chromosomal regions that
are hallmarks of certain cancers among all the different chromosomal regions
that are amplified in those cancer cases. In future work, we plan to extend the
methodology and evaluate it using the wide variety of problems in comparison
to some representative conventional methods.
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IDA 2007. LNCS, vol. 4723, pp. 1–12. Springer, Heidelberg (2007)

[9] Langohr, L., Podpecan, V., Petek, M., Mozetic, I., Gruden, K., Lavrač, N., Toivo-
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Abstract. Online stock forums have become a vital investing platform for 
publishing relevant and valuable user-generated content (UGC) data, such as 
investment recommendations that allow investors to view the opinions of a 
large number of users, and the sharing and exchanging of trading ideas. This 
paper combines text-mining, feature selection and Bayesian Networks to 
analyze and extract sentiments from stock-related micro-blogging messages 
called “StockTwits”.  Here, we investigate whether the power of the collective 
sentiments of StockTwits might be predicted and how these predicted 
sentiments might help investors and their peers to make profitable investment 
decisions in the stock market. Specifically, we build Bayesian Networks from 
terms identified in the tweets that are selected using wrapper feature selection. 
We then used textual visualization to provide a better understanding of the 
predicted relationships among sentiments and their related features.  

Keywords: Wrapper feature selection, Bayesian Networks, Stock micro-
blogging sentiment. 

1 Introduction 

Predicting the stock market is a very challenging task due to the fact that stock market 
data are noisy and time varying in nature [13]. In recent years, there has been 
increasing interest in stock market predictions using various statistical tools and 
machine learning techniques. Different methodologies have been developed with the 
aim of predicting the direction of securities’ prices as accurately as possible [4]. The 
aim has been to create accurate models that have the ability to predict stock price 
behavioral movements in the stock market rather than predicting the investing 
decisions that derive from and cause the movement itself, such as the buying, selling 
and holding decisions. Investors’ expectations and their psychological thinking from 
which the sentiments are derived are considered the main factors that affect stock 
price movements in capital markets [21]; it is therefore important to highlight the 
critical role played by trading decisions in the stock market. Trading decisions have a 
great effect on the profitability position of an investor in the capital market. 
Therefore, the ability to predict an intelligent trading support mechanism would help 
investors to make profitable investment decisions concerning a particular security in 
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the capital market. In spite of researchers’ continuing efforts to predict stock price 
movements, still little is known about the prediction of investing decisions 
(buy/sell/hold). This research study takes a different approach by integrating text-
mining techniques with a Bayesian Network model to extract relevant features from 
StockTwits data to predict trading decisions (buy/hold/sell). The aim is to investigate 
the interactions between the selected features and their ability to predict investors’ 
sentiments quarterly over different periods of the year. Previous research has proved 
the predictive ability of Bayesian Networks (BNs) in different domains both as 
classification and prediction tools [15]. The transparency and visibility of the 
connected relationships between nodes and parents in the Bayesian Networks model 
makes it better and more suitable approach for feature selection and prediction of 
sentiments in the stock market.  

The investigation presented in this paper contributes to two different communities: 
the Financial Data Mining community and the Online Investing community. Feature 
selection is proposed to extract the most relevant words and terms to better predict 
investors’ decision-making at different periods of the financial cycle. The paper also 
offers the potential to provide investors with an investment decision support 
mechanism by offering guidelines to help investors and traders determine the correct 
time to invest in the market, what type of stocks or sectors to invest in, and which 
ones yield maximum returns on their investments. Section 2 reviews the related 
literature on feature selection and Bayesian Networks. Section 3 presents the rationale 
of the model adopted for this research study. The experimental results are discussed in 
section 4. Section 5 presents and discusses the Bayesian Network Model for sentiment 
prediction. Section 6 explains textual visualization, which is utilized as a novel 
method when combined with both feature selection and the Bayesian Network model. 
We conclude our study in section 7. 

2 Related Work 

Many different soft computing methods and techniques have been utilized in the area 
of stock market predictions through the application of specific techniques for 
selecting important features [1]. Feature selection is one of the Data Mining 
techniques most commonly used to select a set of relevant features from datasets 
based on some predetermined criterion [18]. It is believed that the selected features 
subset provides a better representation of the original characteristics of the datasets. 
Feature selection is commonly used in the area of stock prediction. A considerable 
amount of literature has applied different feature selection methods to predict stock 
price movements. For example, [20] adopted the classification complexity of SVM as 
a feature selection criterion to predict the Shanghai Stock Exchange Composite Index 
(SSECI). [6] employed a wrapper approach to select the optimal feature subset and 
apply various classification algorithms to predict the trend in the Taiwan and Korea 
stock markets. [10] proposed a prediction model based on a hybrid feature selection 
method and SVM to predict the trend of the stock market. Although the above-
mentioned studies have all demonstrated that feature selection methods might 
improve prediction accuracy, their methods lack the modeled interactions and 
causality between selected features.  
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3 Methods 

3.1 Feature Selection 

Feature selection is an essential pre-processing step in the text mining process. 
Removing features that have no discriminatory power [7] enables the classification 
performance to be obtained in a cost-effective and time-efficient manner, which often 
leads to more accurate classification results [5]. In general, two methods are 
associated with feature selection: the filter and wrapper [8]. The filter method 
evaluates the relevance of features and results in a subset of ranked features in 
accordance with relevancies. Here however, we exploit the wrapper method, which 
assesses the relevance of features by selecting the optimal features from the original 
subset using a specified classifier. This method has demonstrated much success in 
related areas [19,6].  

3.2 Bayesian Networks 

A Bayesian Network (BN) describes the joint distribution (a method of assigning 
probabilities to every possible outcome over a set of variables, X1...XN) by 
exploiting conditional independence relationships represented by a Directed 
Acyclic Graph (DAG) [16]. See Figure 1a for an example BN with 5 nodes. Each 
node in the DAG is characterised by a state, which can change depending on the 
state of other nodes and information about those states propagated through the 
DAG. This kind of inference facilitates the ability to ask 'what if?' questions of the 
data by entering evidence (changing a state or confronting the DAG with new data) 
into the network, applying inference and inspecting the posterior distribution 
(which represents the distributions of the variables given the observed evidence). 
For example, one could ask 'what is the probability of seeing a strong growth in the 
stock market if terms "bullish" and "confident" are commonly seen in tweets. There 
are numerous ways to infer both network structure and parameters from data. 
Search-and-score methods to infer BNs from data have been used often. These 
methods involve performing a search through the space of possible networks and 
scoring each structure. A variety of search strategies can be used. BNs are capable 
of performing many data analysis tasks including feature selection and 
classification (performed by treating one node as a class node and allowing the 
structure learning to select relevant features [3] (Figure 1b). 
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Fig. 1. a)A Simple Graphical representation of a Bayesian Network with 5 nodes and b) a 
Bayesian Classifier where C denotes the class node 

3.3 Text Mining  

The nature of the data to be collected (StockTwits posts) and the purpose of the data 
analysis (to extract sentiment from online financial text) inherently propose the need 
for text mining. The rationale of the model in this paper is that the models are trained 
from a corpus of manually labelled data to test the computational model, instead of 
using a sentiment lexicon, such as the SentiWordNet. Existing lexicons are not used 
in this paper mainly because this research is based on extracting sentiments from 
financial text, as the decision is to classify text into buy, sell or hold, not merely 
positive or negative. The vast majority of research papers in the sentiment analysis 
field focus mainly on domains, including emotional state [9], product review [22] and 
movie review [14], in which cases SentiWordNet is deemed a suitable lexicon. 
However, financial researchers have shown that dictionaries developed from other 
disciplines may not be effective for use in financial texts and may result in a 
misclassification of common words [11]. We use the tm package in R to preprocess 
the individual tweets [17]. Standard text mining procedures were employed for each 
paragraph type in order to remove stop-words, white spaces, punctuation and 
numbers, and to stem all necessary words. This results in an n (terms) by m 
(documents) matrix for each paragraph, where cells contain the number of times a 
term has appeared in the corresponding document. 

4 Experiments and Analysis 

In this paper, the experiment aims to predict investors’ sentiments regarding a 
particular StockTwit post of DJIA companies on whether to buy, hold, or sell. The 
one-year training data are split into four subsets, each of which represents a quarter of 
the year’s data. A prediction model is built for each subset using four different 
machine-learning algorithms: Bayes Net, Naïve Bayes, Random Forest and Sequential 
Minimum Optimal (SMO). The performance is used to evaluate the efficiency of each 
of these classifiers based on wrapper feature selection. A textual visualization tool 
called Wordle is used to visualize the posterior distribution of the selected terms 
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based upon a Bayesian network model which is constructed for each quarter in order 
to investigate the causal relationships and interactions between the selected variables 
within each quarter’s network. 

4.1 Data Preparation and Pre-processing 

Stock Tweets Data. The primary data for this study were obtained from 
Stocktwits.com (http://www.stocktwits.com). One year of StockTwits data are 
downloaded from the website’s Application Programming Interface (API) for the 
period of April 2nd 2012-April 5th, 2013. StockTwits postings were pre-processed 
where those posts were without any ticker, or; those not in the DJIA index were 
removed, leaving 102,611 valid postings containing the dollar-tagged ticker symbol 
of the 30 stock tickers of the Dow 30.  

General Inquirer’s Harvard IV-4 Dictionary. General Inquirer is a well-known and 
widely-used program for text analysis. From the domain knowledge of Harvard-IV 
dictionary, more than 4,000 emotional words are tagged and classified as either 
positive or negative. Since a bull message indicates that an investor is optimistic and 
provides a “buy” signal to the market participants, it is therefore likely to associate 
positive emotions with the “buy” class. On the other hand, when an investor posts a 
bear message, this indicates that the investor is pessimistic and sends a “sell” signal to 
other market participants. The “hold” class is more likely to contain an equal balance 
of positive and negative emotions. 

4.2 StockTwits Sentiment Manual Labelling 

A random selection of a representative sample of 2,892 tweets on all 30 stocks on the 
Dow Jones Index are hand-labelled as either buy, hold or sell signals. These hand-
labelled messages constitute the training set which is then used as an input for the 
model of different machine learning algorithms.  

Performance Comparison. Four different machine learning classifiers (BN, NB, 
RandF and SMO) are applied in this paper; Table 1 presents the optimum feature 
attributes selected under the wrapper method for each classifier in each quarter 
independently, along with their average classification accuracy. Best first search was 
applied to Bayesian classifiers which we learnt using the K2 algorithm [12]. Applying 
a tenfold classification on the whole dataset, the last column in the Tables below 
represents predictions without feature selection (full feature set). The experimental 
results interestingly demonstrate that all classifiers perform well under the wrapper 
method in all quarters. This indicates that the wrapper approach, as a feature selection 
method, resulted in statistically significant improvements in classification 
performance over the use of the full feature set of all classifiers. Compared with the 
other machine learning algorithms, the Bayes net classifiers proved successful and 
can provide higher prediction accuracy.  
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Table 1. The experimental results of the feature selection andrelateda verage classification 
accuracy of (BN, NB, RandF and SMO) classifiers for all quarters (Qs) 

 

Feature Selection and Bayes Net Classifier. Since Bayes net classifiers proved 
effective in predicting sentiments of StockTwits data, it is worth pointing out at this 
stage the nature and type of the features selected in each quarter. Table 2 presents the 
wrapper-selected features using the Bayes net classifier of each quarter individually. 

Table 2. Feature subset selected under Bayes Net classifier for individual quarters 

 

As can be seen, a number of features appear in almost all quarters (see words in bold) 
while other features tend to appear in some of the quarters but not in others. An 
interesting observation from Table 2.is that some companies reappeared frequently in 
some quarters, such as Nike, Inc. “nke”and Chevron Corporation “cvx” and Johnson & 
Johnson “jnj”, indicating that these companies were highly discussed in the StockTwits 
forum during that period. This suggests that new information about those discussed 
companies (e.g. earnings announcements) may be arriving in the market. [2] argues that, 
as messages are generally posted just before an event occurs, the forum may contain 
real-time information that is important for making investment decision. 
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5 Bayesian Network Model for Sentiment Prediction 

In this paper, Bayesian Networks are built based on the selected features under the 
wrapper method for four datasets, one for each quarter. Each node in the network 
represents a term or word that exists in the tweet data whilst the class represents the 
sentiment. All term nodes in the networks are binary, i.e. having two possible states, 
which we will denote by T (True = feature appears in the tweet) and F (False = feature 
does not appear in the tweet) whilst the class can take on buy, hold or sell states. 
Figure 2 shows extracted versions of Bayesian Networks of each quarter, where the 
decision/sentiment “buy” is observed, giving a probability value of 1.  

 
(A) 

 
(B) 

Fig. 2. Results of an extracted Bayesian Networks Model of Buy sentiment for (a) Q1, (b) Q2, 
(c) Q3 and (d) Q4 showing the most dominated words associated with Buy sentiment 
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(C) 

 
(D) 

Fig. 2. (continued) 

As can be seen from the above figure, the chances of the “Buy” sentiment 
occurring increase with the appearance of the words “bull”, “bullish”, “nice” and 
“high” in tweet messages in all quarters. Each of these words affects the “Buy” 
sentiment differently, and the strength of these relationships is determined by the 
conditional probability assigned to them. For example, when the word “nice” appears 
in a tweet, the probability of the “buy” sentiment is increased, indicated by a high 
conditional probability associated with the “buy” class as follows: P (buy| nice)= 
0.1235, 0.0524, 0.0373 and 0.0585 for 1st, 2nd, 3rd and 4th quarter respectively. 
Similarly, there are a number of dominant words whose appearance increases the 
chance of the “Sell” sentiment. Those words are “short”, “bearish”, “lower” and 
“cat”.  For example, when the word “bearish” appears in a tweet, the probability of 
the “sell” sentiment is increased, indicated by a high conditional probability 
associated with the “sell” class as follows: P (sell| bearish)= 0.0445, 0.0929, 0.0454 



 Big Data Analysis of StockTwits to Predict Sentiments in the Stock Market 21 

 

and 0.0657for 1st, 2nd, 3rd and 4th quarters respectively. Since the sentiment event has 
three different states (buy, sell or hold), those words will affect each state differently 
based on the related weighted probability of their appearance. For example when the 
two child nodes such as  “bearish” and “cat “are connected with a parent (sentiment), 
we can see that the probability of a sentiment occurring when both features appeared 
as P (Sell |Bearish, Cat) = 0.75, 0.056 and 0.5 for buy, sell and hold sentiments 
respectively, which means that when both words (bearish and cat) appeared together 
in a StockTwit message there is an excessive buy sentiment despite their individually 
prominent appearances in the sell sentiment. Therefore, a sentiment can sometimes be 
affected inversely depending on whether each word appears independently or in 
combination. For the “Hold” sentiment, we observe that some words are always likely 
to appear when the holding sentiment is “on”, indicating either a company’s ticker 
symbols (e.g. Chevron Corporation “cvx”,Johnson & Johnson”jnj”,Pfizer, Inc “pfe”) 
or some neutral words (e.g. report, level). The change in conditional probability 
distributions of the most prominent words associated with the buy, sell and hold 
sentiment over time are shown in figure 3. 

 

                                    (A)                                                                         (B) 

 

(C) 

Fig. 3.The conditional probability distribution of the most common words related with the (A) 
buy, (B) sell and(C) hold sentiment 

6 Textual Visualization of Features Selection Using Wordle 

Wordle is a text analysis tool used to highlight the words that most commonly occur 
throughout StockTwits text (Wordle, http://www.wordle.net/creat). It creates an 
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image that randomizes the words where the size of the words is determined according 
to the frequency with which they occur, highlighting their importance.In our case, the 
probability values of all features, which are obtained from a Bayesian network, are 
used to determine the prominence of those features. Figure 4 shows the visualized 
image of the selected features that are more associated with particular sentiments in 
all quarters.  

 

Fig. 4. The textual visualization of feature selections of Bayes Net for Buy, Sell and Hold 
sentiment over four quarters 

Looking at the textual visualization windows of the “buy” sentiment across all 
quarters, it can be seen that a number of words stand out most, such as “break”, 
“look”, “bullish” and “nice”, surrounded by other specific terms/features, where the 
degree of these associations and their importance is determined by the size of their 
appearance. During the 1st quarter, words such as “break”, “strong” and “nice” are 
the most prominent words, appearing in a clear, visible manner. In the 2nd quarter, 
some of these words (e.g. “nice”) reappear alongside new words deemed prominent 
such as “look”, “bullish” and “ move”, while other words diminish (e.g. “break”). 
“Bullish” appears in the 2nd quarter and maintains the same level of importance 
throughout the remaining quarters. On the other hand, when the textual visualization 
windows of the “sell” sentiment are first seen, “short” and “bearish” are the most 
dominant words, standing out very clearly in every quarter. “cat”,“nke”, “mrk”, “jnj”, 
“dis” and “intc” are companies clearly visible in sell sentiment that indicates a high 
bearishness where investors might tend to sell short their stocks of those companies. 
The textual visualization windows of the “hold” sentiment interestingly show that 
greater prominence is given to words that represent the company ticker symbols as 
well as some other words  (e.g. “report”, “qout”, “don” and continue”), throughout the 
quarters. For example, the most dominant words associated with the “hold” sentiment 
are “aapl”, “goog” and “xom”, “csco”,“cvx” and “wmt”, suggesting that these 
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corporations are mostly being held during 1st and 2nd quarter. However some 
corporations reappear and demonstrate a holding position especially the largest 
corporations such as “csco” and “goog” which always seem to be associated with hold 
messages.  

7 Conclusion 

In this research paper, we proposed a novel approach by combining text mining, 
feature selection and Bayesian Networks models to predict investor sentiment from a 
stock micro-blogging forum (StockTwits) of DJIA companies. The experiments 
reported in this paper proved the predictive ability of Bayes Net classifiers in 
predicting StockTwist sentiments. In general, a look at the most prominent words per 
sentiment class indicate that Bayesian Network model and textual visualization using 
Wordle derived a plausible dictionary from our training set. Obviously, some features 
occur frequently in all sentiment classes (e.g. look). The positive emotions (e.g. nice 
and strong) are much more likely to be seen in the “buy” sentiment, while the “sell” 
sentiment contains many more negative emotions (e.g. “low” and “close”). The “buy” 
sentiment reflects the linguistic bullishness and is more likely to contain “bullish” 
words along with other technical words (e.g. “move” and “high”) or trading words 
(e.g. “buy”,“bull” and “call”). On the other hand, the “sell” sentiment reflects 
bearishness and often combines bearish words with technical words (e.g. “support”, 
“lower”) or trading words (e.g. “sell” and “short”). The “hold” sentiment is more 
likely to contain neutral words (e.g. “report”, “quote” and “time”) or company names 
(e.g. the company ticker symbol; “cvx” and “jnj”. An equal balance of negative and 
positive emotions is likely to be found in the “hold” sentiment. The findings of this 
research paper about the ability of Bayesian Networks to predict investors’ sentiments 
in the stock market may yield promising insights into the potential provision of an 
investment support mechanism for analysts, investors and their peers. Practically, this 
could be used to determine the precise time when stocks are to be held, added (buy) or 
removed from a portfolio, thus yielding the maximum return on the investment for the 
investor. 
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Abstract. Personalized recommender systems rely on each user’s per-
sonal usage data in the system, in order to assist in decision making.
However, privacy policies protecting users’ rights prevent these highly
personal data from being publicly available to a wider researcher audi-
ence. In this work, we propose a memory biased random walk model on a
multilayer sequence network, as a generator of synthetic sequential data
for recommender systems. We demonstrate the applicability of the gen-
erated synthetic data in training recommender system models in cases
when privacy policies restrict clickstream publishing.

Keywords: biased random walks, recommender systems, clickstreams,
networks.

1 Introduction

Recommender systems provide a useful personal decision support in search
through vast amounts of information on the subject of interest [1, 2] such as
books, movies, research papers, and others. The operation and the performance
of recommender systems based on collaborative data [3, 4] are necessarily tied
to personal usage data, such as users’ browsing and shopping history, and to
other personal descriptive data such as demographical data. These data often
conform to privacy protection policies, which usually prohibit their public us-
age and sharing, due to their personal nature. This, in turn, limits research and
development of recommender systems to companies in possession of such vital
data, and prevents performance comparisons of new systems between different
research groups.
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In order to enable data sharing and usage, many published data sets were
anonymized by removing all the explicit personal identification attributes like
names and demographical data, among others. Nevertheless, various research
groups managed to successfully identify personal records by linking different
datasets over quasi-personal identifiers such as search logs, movie ratings, and
other non-unique data, revealing as a composition of identifiers [5]. Due to suc-
cessful privacy attacks, some of the most informative data for recommendation
purposes, such as the personal browsing and shopping histories, are put out of
the reach of the general research public. In their original form, usage histories
are considered personal information, and their availability is heavily restricted.
However, even with the personal information obfuscated, they remain a specific
ordered sequence of page visits or orders, and as such can be uniquely tied to a
single person through linkage attacks.

With usage histories often rendered unavailable for public research, recom-
mender systems researchers have to manage on their own and often work on
disparate datasets. Recently, a one million dollar worth Overstock.com recom-
mender challenge released synthetic data, which shares certain statistical proper-
ties with the original dataset. The organizers noted that this dataset should have
been used only for testing purposes, while the code itself had to be uploaded to
RecLabs1 for model building and evaluation against the real data. The challenge
ended with no winner since no entry met the required effectiveness at generating
lift. It would be useful both for contestants and the companies, if the synthetic
data could be used for recommendation on real users.

We propose an approach to synthetic clickstream generation by constructing a
memory biased random walk model (MBRW) on the graph of the clickstream se-
quences, which is a subclass of Markov chains [6, 7]. Random walks [8–10] have
been used for constructing recommender systems on different types of graph
structures originating from users’ private data, but not to generate synthetic
clickstreams. In this work we show that the synthetic clickstreams generated by
the MBRW model share similar statistical properties to real clickstream. In ad-
dition, we use the MBRW model to generate synthetic clickstreams for the Vide-
oLectures.NET2 dataset from the ECML/PKDD 2011 Discovery Challenge [11]
and publish it on-line. Finally, we demonstrate that synthetic data could be used
to make recommendations to real users on the Yahoo! Music dataset released for
the KDDCup challenge for the year 2011 [12] and the MovieLens dataset 3.

2 Methodology

The biased random walk on a graph [13, 14] is a stochastic process for modelling
random paths on a general graph structure In our case, the graph we refer to
is constructed from users’ interaction history, i.e. clickstreams. Clickstream is a
sequence of items (path on graph) ci = {ui

1, u
i
2, u

i
3, ..., u

i
n}, such as web pages,

1 http://code.richrelevance.com/reclab-core/
2 http://videolectures.net
3 http://grouplens.org/datasets/movielens/

http://code.richrelevance.com/ reclab-core/
http://videolectures.net
http://grouplens.org/datasets/movielens/
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movies, books, etc., a user i interacted with. The set of all the clickstreams
in a system is C = {c1, c2, ..., ci, ..., cm}. This set is usually used to generate
an item history matrix, which is used by a recommender system algorithm for
recommendation learning. In our work, we use two characteristic data generator
matrices, obtained from the real clickstream data: the Direct Sequence matrix
(DS) and the Common View Score matrix (CV S). The element DS[m,n] of
the matrix DS denotes the number of clickstreams in C in which the web page
m immediately follows the web page n. The element CV S[m,n] of the matrix
CV S denotes the number of occurrences in which the web page m and the web
page n belong to the same clickstream in C. In order to reconstruct synthetic
clickstreams from these matrices, we introduce the memory component to the
biased random walk [13], and obtain the memory biased random walk model.

The MBRW model is a discrete time Markov chain model, with a finite mem-
ory of m past states. Biases from the DS graph are the connecting probability
of choosing the next item with respect to the current item, while biases from the
CV S graph are the connecting probability of choosing the next item with re-
spect to the the past m items in a clickstream. The initial vertex for the random
walk can be chosen by either a stochastic or a deterministic rule.

Given an initial vertex u1, the probability of choosing an adjacent vertex u2

equals:

P (u2|u1) =
DSu2,u1∑
k DSk,u1

(1)

which, generates a clickstream ci = {u1, u2}. The third vertex, u3 in the click-
stream is chosen with a probability of:

P (u3|u2, u1) =
DSu3,u2CV Su3,u1∑
k DSk,u1CV Sk,u1

(2)

thus generating a clickstream ci = {u1, u2, u3}. Using a finite memory of size m,
we choose the vertex un with the probability of:

P (un|un−1, ..., un−m−1) =
DSun,un−1

∏m
k=1 CV Sun,un−k−1∑

j DSj,un−1

∏m
k=1 CV Sj,un−k−1

(3)

thus generating a clickstream ci = {u1, u2, u3, ..., un} at the n-th step of the
random walk.

The intuition behind (3) is that the probability of choosing the next item
should be proportional to the product of direct sequence frequency DS and
common view score frequencies CV S in the clickstream data. Direct sequence
frequencyDS measures the tendency of the current item preceding the next item
in the clickstream data. The product of common view score frequencies measures
the tendency of the next item appearing together with all the other items in a
currently generated clickstream. The denominator of (3) is the normalization
expression. In Figure 1, we demonstrate the transition probability calculation
on a simple example.

We use the aforementioned MBRW model in a generative manner for con-
structing synthetic clickstreams. The procedure of generating a single clickstream
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Fig. 1. Simple example: at the current step the MBRW model (m = 2) has created
a clicktream (u1, u2, u3, u4) and node u4 has two neighbouring nodes u5 and u6 at the
DS graph. The transition probability (see formula 3) to node u5 is given, where the ε
transition denotes the probability of a jump to some arbitrary node ux, the C denotes
the normalization, the factor ε

N
denotes the probability of random jump back to node

u5 and N denotes total number of nodes in DS graph.

starts by randomly generating the first item. We then sample the length of the
clickstream l from a discrete probability distribution L like Poisson, negative
binomial, geometric, or from the real clickstream length distribution, if avail-
able. The next step is to iteratively choose the next l− 1 items with the MBRW
model. In order to ensure additive smoothing over transition probabilities in the
MBRW walk, we introduce a small ε probability of a random jump. At each step
in the clickstream generation process a random walker produces a jump at some
random item with the probability ε. This ε-smoothing technique turns all pos-
sible clickstreams to become non-forbidden in generation process. At the end of
this process, the random walk path ci = {ui

1, u
i
2, ..., u

i
l} presents one clickstream

which is then appended to the synthetic clickstream set C∗. This whole click-
stream generation process is iterated in K independent iterations to produce
K synthetic clickstreams. The pseudo code for Memory Biased Random Walks
with Random Jumps is provided in Algorithm 1. The code for the MBRW model
is available on GitHub.4

3 Evaluation and Results

We analyse the statistical properties as well as the utility of the synthetic data in
training recommender system models. In our experiments we used three datasets:
(i) the Yahoo! Music dataset released for the KDDCup challenge for the year
2011 [12], (ii) the MovieLens 1M dataset and (iii) the VideoLectures.NET dataset

4 http://github.com/ninoaf/MBRW

http://github.com/ninoaf/MBRW
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Algorithm 1. Memory Biased Random Walks with Random Jumps

Input: DS - Direct Sequence matrix, CV S - Common View Score matrix, K -
number of synthetic clickstreams, ε - probability of random jump, m - memory
length from prob. distr. M , L - clickstream length distribution
Output: C∗ = {c∗1, c∗2, ..., c∗K} synthetic clickstream set
C∗ = ∅
for i = 1 : K do

c∗i ∼ {u1, u2, ..., uk} // sample the initial item;
l ∼ L // sample the clickstream length
for j = 2 : l do

with 1 − ε probability choose the next item uj with MBRW walk on DS and
CV S by using (3), otherwise with ε probability choose the next item uj with a
random jump;
append new item: c∗i = c∗i ∪ uj

end for
append new synthetic clickstream: C∗ = C∗ ∪ ci

end for

from the ECML/PKDD 2011 Discovery Challenge [11]. As the privacy policies
did not restrict publishing user preference data to particular items in both the
KDDCup challenge 2011 and the MovieLens 1M dataset, we used them in our
study as an experimental polygon to measure the performance of recommender
systems models trained on synthetic data. Contrary, in the ECML/PKDD 2011
Discovery Challenge [11], only the content data and clickstrem statistics could be
published but not the actual clickstreams. Therefore, we used our methodology
on the VideoLectures.NET dataset to create and publish synthetic clickstream
data. The first dataset used in our experiments is a subset of the Yahoo! Music
dataset released for the KDDCup challenge for the year 2011 [12] which contains
user preferences to particular musical items in a form of ratings, along with an
appropriate time stamp. We extracted from this dataset a subset that represents
a very good proxy for a set of sequential activities (clickstreams). For each user
in our subset we retained a sequence of highly rated items in ascending order
over time stamps (sequence activity or clickstream proxy). We limited the total
number of items and users in our subset to 5000 and 10000 respectively, in order
to be able to perform large set of computational experiments with resources on
disposal. The reduced dataset, denoted with C, represents a set of clickstreams
for 10000 users. This dataset reduction should not have any significant impact
on the results and conclusions of the study. We will address this question later
with the cross-validation technique. The second dataset contains approximately
106 anonymous ratings of approximately 3900 movies made by 6040 MovieLens
users who joined MovieLens in 2000. Per each user, we extracted a sequence of
highly rated items in the ascending order over time stamps from this dataset.

Our first hypothesis is that, given a sufficiently large synthetic dataset, basic
statistical properties of DS∗ and CV S∗ matrices are preserved. We examined
how statistical properties of the item preference matrix like DS and CV S are
preserved in synthetic clickstream set, with respect to the original clickstream



30 N. Antulov-Fantulin et al.

set. We calculated the DS and CV S matrices from the C dataset and created
the synthetic clickstream set C∗ by using the MBRW model. Memory parameter
m was sampled from the Gaussian distribution N (3, 22), number of random
walk hops parameter l was sampled from N (9, 22) and number of synthetic
clickstreams parameterK varying from 104 to 106. Upon obtaining the synthetic
clickstream set C∗, we calculated the DS∗ and CV S∗ matrices, and compared
their statistical properties to the original matrices DS and CV S. We used the
Spearman’s rank correlation [15] measure between the corresponding rows in
(DS,DS∗) and (CV S,CV S∗).

Table 1. Average rank correlation between (DS,DS∗) and (CV S,CV S∗) for different
sizes (K) of generated synthetic clickstream set. Synthetic clickstream set is created
using parameter m sampled from N (3, 22), parameter l sampled from N (9, 22).

Size AVG[r(DS,DS∗)] STD[r(DS,DS∗)]
K = 104 0.5700 0.3210

K = 105 0.8914 0.2224

K = 106 0.9294 0.0590

AVG[r(CV S,CV S∗)] STD[r(CV S,CV S∗)]
K = 104 0.4545 0.2677

K = 105 0.6050 0.2120

K = 106 0.7361 0.1784

Due to the fact that these matrices are sparse and that in the process of recom-
mendation only top ranked items are relevant, we limited the rank correlation
calculation to the first z = 100 elements. Rank correlation between complete
rows would be misleadingly high due to row sparsity. Average rank correlation
coefficient AV G[r(DS,DS∗)] = 0.92 and AV G[r(CV S,CV S∗)] = 0.73 over all
corresponding rows was obtained for the first z most important elements, with
the above parameters and K = 106. The rank correlation coefficients for differ-
ent values of parameter K can be seen in Table 1. This shows highly correlated
statistical properties (DS,DS∗) and (CV S,CV S∗).

Now, we analyse the ability to learn recommender system models from syn-
thetic data and apply this model on real users. We measure and compare the rec-
ommender system models learned on real, synthetic and random data, and their
corresponding performance on recommending items to real users. We take the
standard Item-Knn [16] recommender system as a representative of similarity-
based techniques and a state-of-the-art matrix factorization technique, namely
Bayesian Personalized Ranking Matrix Factorization Technique [17]. We hypoth-
esise that learning recommender systems models even from the synthetic data
can help making predictions to real users.

In order to create proper training, query and test data for testing of our
hypotheses, we create two splits: a vertical and horizontal split. The horizon-
tal split of the clickstream dataset C randomly divides them to two disjoint,



Synthetic Sequence Generator for Recommender Systems 31

Fig. 2. Three ways of splitting the original clickstream set used in computational ex-
periments: A - Horizontal split, B - Vertical split and C - Horizontal and vertical split

Fig. 3. Results for 10-folds cross-validation for MAP and NDCG measures for different
datasets with Item-Knn [16] (plots A, B, E and F) and BPRMF [17] algorithm (plots
C, D, G and H). Label ”Real” represents performance on real dataset. Label: ”Syn”
represents synthetic data using MBRW with m sampled from N (3, 22), l sampled from
real length distribution, ε = 0.0001. Label ”Rnd” represents random data generated
by random jumps ε = 1.0 on item graph. Plots: A, B, C and D are experiments on the
Yahoo! Music dataset and plots: E, F, G and H are experiments on the Movielens 1M
dataset. One can notice that results obtained with the Item-Knn and synthetic data
are much lower than using real training data. This behaviour is more pronounced for
the Yahoo! Music dataset, which is more sparse than the MovieLens 1M dataset. This
confirms the hypothesis that Item-Knn is more sensitive to changes to the noise in local
data distribution.
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fixed-size clickstream sets Ctrain and Ctest. Using the horizontal split on the
Yahoo! Music dataset and the Movielens 1M dataset, we produced a training
set Ctrain and then used the vertical split on the rest of the data to get the
query set (Cquery) and a test set (Ctest). The vertical split, divides clickstream
in C into two sets: first 50% of items are appended to first set Cquery , whereas
the rest of the clickstream items belong to a second set Ctest. These splits are
graphically represented in Figure 2. Experimental procedure is the following.
We extract DS and CV S statistics from Ctrain and generate synthetic C∗

train

with the MBRW model. The baseline random synthetic dataset C∗
RND is cre-

ated by setting the parameter ε = 1 (random jump model). Now, we create three
different recommender system models: M (real model), M∗ (synthetic model),
and MRND (random model) from the Ctrain, C

∗
train and C∗

RND, respectively.
Then recommender models for the input of real users Cquery produce recom-
mendations which are compared to Ctest (ground truth). The performance on
Ctest is measured with the standard information retrieval measures: MAP [15]
(Mean Average Precision) and NDCG [15] (Normalized Discounted Cumulative
Gain: ranking measure). In order to estimate how performance results can gen-
eralize to independent datasets we use 10-fold cross-validation. Then in each
cross-validation round we generate Ci

train, C
i
test and Ci

query . For each Ci
train we

generate synthetic Ci∗
train and random dataset Ci∗

RND. Note that in each round
recommender algorithms learn model on Ci

train, C
i∗
train and Ci∗

RND but their per-
formance is measured for new users Ci

query on Ci
test. In Figure 3, we observe

that BPRMF and Item-Knn models performed significantly better than base-
line random models. We used the recommender system5 implementation from
the Recommender System extension [18–20] in RapidMiner. Furthermore, we
notice that Item-Knn recommender is more sensitive to synthetic data than the
BPRMF recommender system. Detailed analysis of this effects are out of scope
of this work, but our hypothesis is that this behaviour of the Item-Knn algorithm
is a consequence of well known high sensitivity of nearest neighbour approach to
local properties of data and noise in the data. Contrary to this, the BPRMF al-
gorithm is based on a low rank matrix factorization approximation which seems
to produce same latent factors from synthetic and real data.

In the end, we focus on the ECML/PKDD 2011 Discovery Challenge [11],
where the privacy policies have restricted public availability of users clickstream
data on the VideoLectures.Net. Note, that here we did not have real clickstreams
but onlyDS and CV S statistics. This challenge provided rich content data about
items in a system and different statistics about users clickstream sequences. This
motivated us to use the direct sequence statistics and common view statistics
as generators of synthetic clickstreams with the proposed MBRW model. Di-
rect sequence graph DS from this dataset consists of 7226 vertices in a single
large, weakly connected component and common view score undirected graph
CV S from this dataset consists of 7678 vertices in a large connected component.

5 Item-Knn with k = 20 and BPRMF with num. factors: 10, user, item and negative
Item regularization: 0.025, iterations: 30, learn rate: 0.05, initial mean: 0.0, initial
std: 0.1 and fast sampling: 1024.
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We produced and published6 20000 synthetic clickstreams for VideoLectures.net
with the MBRW model with the memory parameter m = 5 and clickstream
length L sampled from as a Geometric distribution with parameter 0.1 (expected
length of clickstreams is 10).

4 Related Work and Discussion

The problems of privacy-preserving data publishing [21, 22] and privacy preserv-
ing data mining [23] are intensively researched within the database, the statistical
disclosure, and the cryptography communities. Recently, a comprehensive survey
[24] on the privacy challenges and solutions in privacy-preserving data mining
has been published. Different privacy protection models already exists and here
we will only mention the important ones.

Record linkage models like k-Anonymity model [25, 26] assure that the num-
ber of records with a quasi-identifier id is at least k and therefore assure the value
of linkage probability of at most 1/k. Attribute linkage models like L-diversity
[27] are envisioned to overcome the problem of inferring sensitive values from
k anonymity groups by decreasing the correlations between the quasi-identifiers
and the sensitive values. Probabilistic models like ε-differential privacy model
[28] ensure that individual’s presence or absence in the database does not ef-
fect the query output significantly. Post-random perturbation (PRAM) methods
[29, 30] change original values through probabilistic mechanisms and thus, by
introducing uncertainty into data, reduce the risk of re-identification. Aggarwal
et. al. [31] proposed an anonymization framework for string-like data. They used
the condensation-based techniques to construct condensed groups and their ag-
gregate statistics. From the aggregate statistics, they calculated the first and the
second order information statistics of symbol distributions in strings, and gen-
erated synthetic, pseudo-string data. But still, many data-privacy researchers
agree that high dimensional data poorly resist to de-anonymization [5] which
poses privacy issues for companies, and prevent the usage of real-life datasets
for research purposes.

Contrary to standard anonymization methods, synthetic data generation is an
alternative approach to data protection in which the model generates synthetic
dataset, while preserving the statistical properties of the original dataset. Sev-
eral approaches for synthetic data generation have been proposed: (i) synthetic
data generation by multiple imputation method [32], (ii) synthetic data by boot-
strap method [33] (estimating multi-variate cumulative probability distribution,
deriving similar c.d.f., and sampling a synthetic dataset), (iii) synthetic data
by Latin Hypercube Sampling [34], (iv) and others such as a combination of
partially synthetic attributes and real non-confidential attributes [35, 36]. These
synthetic data generation strategies were mostly developed for database records
with a fixed number of attributes but not for sequence data.

We proposed a novel approach for synthetic sequence generation by construct-
ing the memory biased random walk (MBRW) model on the multilayer network

6 http://lis.irb.hr/challenge/index.php/dataset/

http://lis.irb.hr/challenge/index.php/dataset/
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of user sequences. Moreover, we demonstrated that this synthetic data can be
used for learning recommender models which can be useful for applications on
real users.

What are the potential privacy breach problems of our approach? Our method
is based on the assumption that the sequence statistics: direct sequence DS and
common view score CV S can be publicly available without breaking privacy
of particular user. Why this is the case? We can view the clickstreams as a
different way of writing the sequence statistics like finite state machines represent
finite way of coding the infinite set of word from some regular language [37].
Note that the privacy breach can occur in a situation when the attacker can
claim that individual unique synthetic subsequences could only be generated by
using the unique transitions from particular user u. This is the reason why we
need smoothing procedure (ε jumps) or k-anonymity filtering over the transition
matricesDS and CV S. The ε random jumps in the generation process with small
ε probability correspond to the additive smoothing of transition probabilities in
MBRW model. Let us define the set of all possible combinatoric combinations
of clickstreams with arbitrary length from set of items with Ω (infinite). Note
that when ε = 0 the MBRW model cannot create arbitrary clickstreams from the
space of all clickstream combinations Ω due to the existence of zero values in DS
and CV S matrices. As the additive smoothing technique turns all combinatoric
clickstreams from Ω set possible, the attacker cannot claim that a certain unique
user subsequence was used in the generation process. K-anonymity filtering can
also be applied to CV S and DS directly by filtering all frequencies that are
lower than k. This filtering enables that the presence or absence of individual
transitions in DS or CV S cannot be detected. Therefore if the DS and CV S
statistics can be publicly available without breaking privacy, our methodology
can be applied.

5 Conclusion

The principle aim of our work was to construct a generator of real-like clickstream
datasets, able to preserve the original user-item preference structure, while at
the same time addressing privacy protection requirements. With respect to this
aim, we investigated properties of the memory biased random walk model. We
demonstrated that the basic statistical properties of data generators DS and
CV S matrices are preserved in the synthetic dataset if we generate sufficiently
large datasets. In addition, we demonstrated that the synthetic datasets created
with it can be used to learn recommender system models applicable on real users.
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Abstract. Sepsis, an acute systemic inflammatory response syndrome
caused by severe infection, is one of the leading causes of in-hospital mor-
tality. Our recent work provides evidence that mortality rate in sepsis
patients can be significantly reduced by Hemoadsorption (HA) therapy
with duration determined by a data-driven approach. The therapy op-
timization process requires predicting high-mobility group protein B-1
concentration 24 hours in the future. However, measuring sepsis biomark-
ers is very costly, and also blood volume is limited such that the num-
ber of available temporal observations for training a regression model
is small. The challenge addressed in this study is how to balance the
trade-off of prediction accuracy versus the limited number of temporal
observations by selecting a sampling protocol (biomarker selection and
frequency of measurements) appropriately for the prediction model and
measurement noise level. In particular, to predict HMGB1 concentration
24 hours ahead when limiting the number of blood drawings before ther-
apy to three, we found that the accuracy of observing HMGB1 and three
other cytokines (Lsel, TNF-alpha, and IL10) was comparable to observ-
ing eight cytokines that are commonly used sepsis biomarkers. We found
that blood drawings 1-hour apart are preferred when measurements are
noise free, but in presence of noise, blood drawings 3 hours apart are
preferred. Comparing to the data-driven approaches, the sampling pro-
tocol obtained by using domain knowledge has a similar accuracy with
the same cost, but half of the number of blood drawings.

Keywords: health informatics, acute inflammation, therapy optimiza-
tion, limited temporal data, model predictive control.

1 Introduction and Motivation

Sepsis is a serious condition resulting from uncontrolled systematic inflamma-
tory response to some pathogen infections. This condition is characterized by fast
progression, severe symptoms and high mortality rate. In fact this is the number
one cause of in hospital death in the USA [1]. Despite the high importance of
the problem and substantial amount of researchers effort, not much progress has
been achieved in resolving it. The vast heterogeneity of clinical manifestations
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makes identification of sepsis severity challenging. Another difficulty lies in rapid
progression of the condition, where a patient goes from mild symptoms of infec-
tion to life threatening systematic inflammation condition in just several hours.
Treatment consists of administering cocktails of various antibiotics in order to
cover the spectrum of possible pathogens (usually bacteria) as much as possible.
Even this aggressive treatment often is not enough since mortally in severe sepsis
is as high as 30% and up to 70% when septic shock occurs [2].

Two main challenges arise in the problem of reducing the lethality of the
sepsis. First it is very important to devise accurate diagnostic techniques that are
also able to classify condition as early as possible. After correct diagnosis, it may
be even more important that therapy is applied timely and appropriately. Since,
in order to be effective, sepsis therapy should be aggressive, treating a person that
is healthy is almost as undesirable as not treating an ill patient. The problems of
early and accurate diagnostics have been addressed in a number of articles, such
as [4], [5] and [8]. Recently, a form of blood purification called Hemoadsorption
(HA) was proposed as a complement to antibiotic therapy. It was shown that
HA is beneficial when used in animal models of sepsis [6]. It is based on removing
certain cytokines from the blood, which are involved in mechanisms of systemic
inflammation. Systemic inflammation takes place when these biomarkers enter
a positive feedback loop with immune cells resulting in uncontrollable increase
in inflammation. This process is known as a cytokine storm and it plays major
role in number of conditions including sepsis. By cytokine reduction, HA therapy
attempts to regain control over the inflammation process and return it to normal
mode.

Given their roll in development of sepsis, observing cytokines over time is
beneficial in both diagnostic and therapeutic purposes. Recently, they were used
in the task of early classification of septic patients [8]. It is shown that applying
HA therapy can be guided according to the predicted future values of cytokines
in the Model Predictive Control framework [3]. On the other hand, there are also
some constraints on cytokines use in the task of predicting sepsis progression.
Constraints are mainly posed by limits on various resources. With current tech-
nologies fairly large volume of blood is needed to measure a particular (single)
cytokine. However, there are at least 150 different cytokines, and many of them
are involved in the inflammation process. Instead of measuring all cytokines,
in clinical applications just a few of the most informative should be identified.
Even when just a few cytokines are measured, measurement needs to be done
on a number of different chronological occasions in order to catch the temporal
dynamics of their change, which also increases demands on blood that needs to
be drawn. In reality the amount of blood that can be drawn from a subject is a
limiting factor in temporal observations of cytokines. The total amount of blood
drawn over some period of time is limited by cost, data extraction time and even
medical protocols. An additional constraint in small animals experiments (e.g
mice and rats) is that drawing too much blood can interfere with the state of
the subject since volume of the subject’s bodily fluids is small.
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In this article we are therefore addressing the problem of predicting progres-
sion of cytokines from a limited number of temporal observations. Here, we pro-
pose an approach for learning from limited temporal observations by utilizing
prior knowledge of the interconnections of biomarkers and important internal
states of sepsis progression. Using this approach, we discovered a blood draw-
ing and biomarker measuring protocol which balances the constraints, cost, and
accuracy.

The rest of the paper is organized as follows. In the second section the dy-
namical model of sepsis progression along with the process of virtual patient
generation is presented. The third section is comprised of several subsections: in
section 3.1, a detailed problem formulation of this study is provided; in section
3.2, a domain knowledge based approach is proposed; in section 3.3 and 3.4,
alternative data-driven approaches are introduced. In section 4, experiments
corresponding to different approaches are described in details, and results are
analyzed. Summary and conclusion of this study is provided in section 5.

2 Sepsis Model and Data Generation

2.1 Model of Sepsis Progression

A set of Ordinary Differential Equations (ODE) describing the evolution of se-
vere sepsis in rats is introduced in [7]. The network of interactions included
in the model consists of 19 variables and 57 parameters. Out of 19 states 11
are unobservable: CLP protocol (CLP), Bacteria (B), Anti-Inflammatory state
(AI), Pro-Inflammatory state (PI), Tissue Damage (D) and five types of Neu-
trophiles (Nr, Np, Na, Ns, Nt and Nl). Unobservable states are interconnected
through equations with each-other and with eight cytokines, which represents
variables that can really be measured. These eight observable states are the fol-
lowing plasma cytokines: tumor necrosis factor (TNF), three kinds of interleukins
(IL-1b, IL-6 and IL-10), Lselectin (Lsel), high mobility group box1 (HMGB1),
creatinine (CRT) and alanine aminotransferase (ALT). Domain knowledge was
utilized to relate particular biomarkers that serves as proxies for particular un-
observable states. Three cytokines TNF, IL-1b and IL-6 are well known as major
Pro-Inflamatory mediators. Similarly IL-10 favors Anti-Inflamaton, while Lsel is
related to Neutrophiles. The remaining three cytokines HMGB1, CRT and ALT
are indicators of tissue damage and ODEs are devised accordingly. Most of the
parameters in the model were fitted from real experimental data, while only a
few were adopted from the literature. Experimental data were collected from a
set of 23 rats where sepsis was induced by the CLP protocol. Eight longitudinal
measurements of eight cytokines were collected at 18, 22, 48, 72, 120, 144, and
168 hours after sepsis induction.

The devised model, although coarse, serves to allow insight into plausible
mechanism that drives the progression of sepsis. Moreover it provides a tool
for performing experiments on in silico patients, which in turn can lead to new
promising hypotheses that could later be evaluated in real experiments.
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2.2 Generation of Virtual Patients

For the purpose of conducting experiments on the prediction of sepsis biomark-
ers, we used the ODE model for the generation of in silico or virtual patients.
Every virtual patient behaves according to the mentioned dynamical equation,
but each of the patients has a unique set of parameters and therefore unique
response to the CLP induction of sepsis. Sets of parameters characterizing each
patient were obtained using the following 3-step protocol: First, the valid ranges
of parameter values are adopted from [7], and parameters are randomly sampled
from those intervals. Next the 19 states model is simulated over time for chosen
set of parameters. Finally, the likelihood that the evolution of 8 observable states
follows the evolution of the real data from [7] is calculated, and if the likelihood
is high enough then the virtual patient has been accepted as valid, or rejected
otherwise. In that way, a number of virtual patients is generated for the purpose
of training, validating or testing in the conducted experiments, for which setups
and results are reported in following section.

3 Biomarkers Selection for Prediction of Sepsis Severity
from Temporal Observations

3.1 Problem Definition

To determine the proper duration of HA therapy, the severity progression of sep-
sis is assessed, based on temporal observations of relevant variables, i.e. extending
duration if sepsis severity is predicted to increase. In this paper, a cytokine called
high-mobility group protein B-1 (HMGB1) is used as the biomarker indicating
severity of sepsis. Recently, it has been shown that using HMGB1 in the objective
function for model predictive control, the rescue rate was significantly improved
[3]. Therefore, our objective is to estimate the value of HMGB1 in the future
(typically 24 hours ahead) before applying therapy. Simulations have shown that
18% of septic patients could be rescued with a 4-hour duration HA therapy from
the 18th hour since sepsis induction [7]. Therefore, in this problem setup, we
would like to predict the value of HMGB1 at the 42nd hour since sepsis induc-
tion, while the start of therapy is scheduled at the 18th hour. One may think
that this is a typical time series prediction problem, because once we measure
HMGB1 for 18 hours, we can deploy any regression model to make predictions.
However, in practice we cannot make observations at all historic time points. In
our application the minimum time interval between two consecutive blood draw-
ings is 1 hour. Because of this, no more than 18 blood drawings corresponding
to hourly observation are possible before the start of therapy. In practice, the
number of blood drawings is also limited by blood volume and medical regu-
lations. However, at each blood sample we could measure multiple biomarkers,
including HMGB1. That brings up another problem; each individual measure-
ment of a biomarker is very costly, e.g. the cost of measuring 10 biomakers in a
blood sample is 10 times as costly as measuring 1 biomarker. Sepsis biomarkers
are correlated, and so measurement costs can be reduced as we can predict from
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less measurements by utilizing their relationships. In summary, the problem ad-
dressed in this study is to balance the number of blood drawings, the number of
biomarker measurements, and the prediction accuracy.

In the following 3 subsections we describe 3 methods for determining when
to do blood drawings and what biomarkers to measure. A brute-force approach
would consist of measuring 8 biomarkers hourly. Following such a protocol, in
18-hours, the number of measurement would be 144 (8 × 18=144). Considering
all 2144 combinations of biomarker measurements is infeasible. Therefore, in this
paper, we propose using a domain knowledge based approach to select biomark-
ers. This method is compared to two data-driven approaches based on feature
selection and L1 regularization.

3.2 Domain Knowledge Based Sepsis Biomarkers Selection

Numerous sepsis-related studies resulted in understanding of the basic mech-
anism of sepsis. We propose using existing domain knowledge as clues about
biomarkers that are closely related to sepsis progression. In particular, we use do-
main knowledge to identify biomarkers related to the prediction target HMGB1.

The prediction target HMBG1 is related to tissue damage (D). From the
model description in Section 2.1, other cytokines related to D are creatinine
(CRT) and alanine aminotrasferase (ALT). Thus, we assume that measuring
CRT and ALT could provide information about changes of HMGB1 in the future.
However, since CRT, ALT and HMGB1 are proxies for the same internal state,
the changes of these three tissue-damage-related biomarkers over time should be
similar. Therefore, in the proposed approach we decided not to measure them all,
but just select one of them to measure. In order to increase the information gain,
we propose that we should select biomarkers that are proxies to different internal
states. In other words, for each blood sample, in addition to measuring HMGB1
which is the observable biomarker that estimates tissue damage and is also the
prediction target of our interest, we propose measuring L-selectin (Lsel), which
is a proxy for peritoneal neutrophil, tumor necrosis factor-α (TNFα), which is a
proxy for systemic pro-inflammatory response, and interleukin-10 (IL10), which
is a proxy for systemic anti-inflammatory response.

A reduction from 8 cytokines to measuring 4 (Lsel, HMGB1, TNFα, and Il10)
in each blood sample is not sufficient, as the problem of when to draw blood
remains. Intuitively, measurement at the 18th hour (start of the therapy) gives
us the latest status information of the patient. Therefore, we will always draw
blood and take measurements at the 18th hour. In the proposed approach we
assume that the time between two consecutive blood drawings is the same. If a
blood drawing is definite at the 18th hour, the problem becomes finding the most
suitable sampling interval of blood drawings. We restrict the number of blood
drawings/samples to three, as three is a reasonable number of blood drawings,
and it allows us to investigate a variety of different choices of blood sampling
intervals in the initial 18-hour period from infection time to the beginning of
therapy. We expect that suitable sampling intervals would vary under different
situations, such as the level of noise in the measurement data. Thus, we conduct
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experiments to see how the preferred sampling interval changes under various
conditions.

3.3 Forward Feature Selection Based Biomarkers Identification

We can also treat the problem described in Section 3.1 as a traditional feature
selection problem in machine learning. If measurements of 8 biomarkers are
available at every hour in the 18-hour history we have 144 features. To reduce
measurements we can apply a greedy forward feature selection technique. The
forward selection algorithm will try to add features to the candidate set. If the
criterion function decreases after adding a feature to the candidate set, that
feature will be included to the candidate set (Algorithm 1). In this case, the
criterion function is the average root mean squared error (RMSE) in the training
set using 5-fold cross validation, while a Linear Regression (LR) model is used
as the predictor.

input : X, feature set; f(.), criterion function
output: Xc, candidate set
initialization: S = ∞; gain = true; Xc is empty; xa is empty;
while gain = true do

gain = false;
foreach feature x in X do

add x to Xc;
if f(Xc) < S then

S = f(Xc); gain = true; xa = x;
end
remove x from Xc;

end
if gain = true then

add xa to Xc; remove xa from X;
end

end

Algorithm 1. Biomarkers Identification by Forward Selection

3.4 Lasso Regression Based Biomarkers Selection

The Lasso Regression Model is a Linear Regression model that includes an L1−
norm regulation term to enhance the sparsity of the coefficients (β). The values
of the coefficients are found by solving the optimization function (1). Thus,
features with non-zero coefficients are relevant to the prediction task. So, Lasso
Regression has a built-in functionality of feature selection.

min
β
||Xβ − y||2 + λ||β||1 (1)

where X is the augmented feature matrix, y is the target vector, β is the coeffi-
cient vector, and λ is the regulation coefficient.
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4 Experiments and Results

The data used in our experiments were generated by using the system of equa-
tions described in Section 2.1. The value of each biomarker measurement is
between 0 and 1. In order to simulate real-life conditions, we will add various
levels of uniform noise to the generated data.

4.1 Using Domain Knowledge to Select Biomarkers

In the proposed approach based on using prior knowledge, three blood drawings
would be made; one of the three blood drawings would be always at the 18th
hour. This experiment was designed to answer the following questions: 1. What
is the most suitable time interval between two consecutive blood drawings? 2.
How do different choices of biomarkers used in the model would affect the pre-
diction accuracy? 3. How does the number of virtual patients in training affect
the accuracy? 4. How does the noise level in the data affect the accuracy. For
purposes of comparison, a linear model and a nonlinear model were used for pre-
diction. The linear model was Linear Regression (LR), and the nonlinear model
was Support Vector Regression (SVR) [10] with radial basis kernel. SVR was
implement by using the LIBSVM package [11].
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Fig. 1. RMSE’s of LR and SVR model, measuring 8 biomarkers at 3 blood drawings
noise free. Results shown from models trained on 1, 2, 3, 4, 6, 8 hours interval between
blood drawings and on data from 20 to 100 subjects.

As a baseline, we compare predictions with measurements of all eight biomark-
ers in the blood drawings. The number of virtual patients in training varied from
20 to 100, with increments of 20, and the time intervals between blood drawings
were 1 hour, 2 hours, 3 hours, 4 hours, 6 hours, and 8 hours. The prediction
error is measured by root mean squared error (RMSE) on 2,000 virtual patients.
Figure 1a and Figure 1b show the RMSE’s using different numbers of virtual
patients in training, and using different time intervals between blood drawings
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when number of blood drawings was 3, and with no noise present in measure-
ments. The RMSE’s of LR are lower than SVR when the time interval is small.
From the figures, we learn that if measurements are noise-free, a short time in-
terval between measuremetns (1 hour) will provide lower errors. We also learn
that the model trained on observations from 40 virtual patients performs much
better than the model trained on 20 virtual patients. However, training with
more than 40 virtual patients has not further reduce prediction error. With uni-
form noise in range of [-0.02, 0.02] present in the measurements, on Figure 2a
and Figure 2b, we learn that the RMSE’s of LR and SVR here are very similar.
In presence of noise, drawing blood with short time intervals was less accurate,
and the effect of noise on larger time intervals was less significant. Larger time
intervals between blood drawings are more robust to additive noise. In the case
of LR, large time intervals between blood drawings result in lower error.

The obtained results provide evidence that including more virtual patients in
training would not reduce errors. Therefore, in the following experiments, the
number of virtual patients in training is fixed to 100.
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Fig. 2. RMSE’s of LR and SVR model, measuring 8 biomarkers at 3 blood drawings
with uniform measurement noise in [-0.02, 0.02] range. Results shown are from models
trained by using 1, 2, 3, 4, 6, 8 hours interval between blood drawings and on data
from 20 to 100 subjects.

Measuring all 8 biomarkers in each blood drawing is not desirable, as the total
number of measurements is 24 when taking 3 blood drawings. We would like to
obtain similar accuracy by measuring fewer biomarkers. The domain knowledge
based approach described in Section 3.2 enabled us to do so. Figure 3a shows the
RMSE’s of the LR model trained by 3 blood drawings with noise-free, and noisy
measurements of HMGB1, TNFα, IL10, and Lsel biomarkers which are related
to different internal states that reflect severity of sepsis. In the obtained results,
RMSE’s in noise-free condition are smaller than the ones in noisy conditions;
as the noise level increases, the errors increase. For uniform noise in the [-0.02,
0.02] range errors using these 4 biomarkers are similar to the ones based on all 8
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biomarkers (black line in Figure 2a). So, since the number of blood drawings is
the same, we could use half the number of measurements to achieve a very similar
error. The prediction error when using HMGB1, CRT, and ALT biomarkers is
shown in Figure 3b. For noise-free measurements, using these three biomarkers
can achieve low error with 1-hour time intervals between blood drawings. For
additive uniform noise in [-0.02, 0.02] the errors increases significantly, especially
when the time interval between blood drawings is 1 hour. When noise is present,
the overall errors using these three biomarkers are significantly higher than the
ones when predicting based on 4 biomarkers.
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Fig. 3. RMSE’s in LR model using 4 and 3 biomarkers measured at 3 blood drawings
on (a) and (b) respectively. Results are based on models trained on 100 subjects under
noise-free, and different noisy conditions, with sampling interval of 1, 2, 3, 4, 6, and 8
hours between blood drawings.

4.2 Using Forward Selection for Biomarkers Identification

The training set consisted of 100 virtual patients and measurements had [-0.02,
0.02] additive uniform noise. The criterion function of the selection procedure
was the average RMSE using 5-fold cross validation on the training set. The
selection procedure was repeated 20 times. Selected biomarkers are shown in
Figure 4. In all the trails, number of biomarker measurements ranges from 7
to 14, number of required blood drawings ranges from 5 to 8. After testing the
model on 2000 virtual patients in each trial, the range of RMSE is from 0.0356
to 0.0623. The minimum RMSE is achieved by 12 biomarker measurements from
7 blood drawings. The minimum RMSE is similar to the one achieved by the
domain knowledge based approach, but the number of blood drawings is more
than twice large (7 v.s 3). We found that about 21% of the biomarkers were
selected from the 18th hour; this result consistent with our intuition that recent
measurements are very informative for prediction. Other than the 18th hour,
selected biomarkers uniformly span the whole 18-hour period.
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Fig. 4. Biomarker selection using sequential forward feature selection method. A matrix
shows the biomarkers selected in 20 trials. The matrix dimension is 20 by 144, where
20 indicates 20 trials and 144 indicates 8 biomakers in 18 hour period (8×18=144).

4.3 Using Lasso Regression for Biomarker Selection and Sepsis
Severity Prediction

100 virtual patients with [-0.02,0.02] uniform noise were used for training. 100
different values of the regularization coefficient λ were used to generate mod-
els with different numbers of non-zero coefficients. We tested 100 trained linear
models (with different non-zero coefficients) on 2,000 virtual patients, and ob-
tained the RMSE of each model. We found that the RMSE’s remain low (about
0.035) when models with 12 or more non-zero coefficients (see Figure 5).
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Fig. 5. Lasso regulation for feature selection

Models with 12 non-zero coefficients have RMSE’s in range from 0.0347 to
0.0359. In the model achieves minimum RMSE, number of required blood draw-
ings is 6, and number of required biomarker measurements is 12. Although, the
minimum RMSE is similar to the one in the domain knowledge based approach,
number of blood drawings is twice larger (6 v.s 3).
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4.4 Overall Comparison of Different Approaches

The sampling protocol design objectives were low prediction error as well as
small number of blood drawings and biomarker measurements. The prediction
error (RMSE) of different approaches, their required number of blood drawings,
and number of biomarkers measurements are shown at Table 1. Uniform noise
in [-0.02, 0.02] range was added to the signal to simulate reality. The smallest
RMSE was achieved by measuring all eight observable biomarkers. However,
the error was just slightly larger when using only half of measurements selected
based on knowledge of sepsis mechanism.

Table 1. Comparison of Different Approaches under Uniform Noise in [-0.02,0.02]

Approach
Best RMSE in

test
No. of blood
drawings

No. of
biomarker

measurements

Data-Driven: Forward
Selection

0.0356 7 12

Data-Driven:Lasso
Regression

0.0347 6 12

Domain Knowledge 8
biomarkers

0.0338 3 24

Domain Knowledge: 4
biomarkers

0.0341 3 12

Domain Knowledge: 3
biomarkers

0.0511 3 9

5 Summary and Conclusion

In this study, we used different approaches to characterize options for obtaining
temporal observations of biomarkers in an 18-hour period to predict the value of
HMGB1 in the future 24th hour. From the data-driven approaches, we learned
that with blood drawings at proper times, 12 biomarker measurements were
sufficient to make good predictions. Additional biomarker measurements would
not improve the prediction accuracy. Inspired by the data-driven results, we came
up with an approach that utilized domain knowledge of the interconnections
of biomarkers and important internal states of sepsis progression. Using this
approach, we discovered a blood drawing and biomarker measuring protocol
which balances the constraints, cost, and accuracy.
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Abstract. Process mining is a research discipline that aims to discover,
monitor and improve real processing using event logs. In this paper we
describe a novel approach that (i) identifies partial process models by
exploiting sequential pattern mining and (ii) uses the additional infor-
mation about the activities matching a partial process model to train
nested prediction models from event logs. Models can be used to pre-
dict the next activity and completion time of a new (running) process
instance. We compare our approach with a model based on Transition
Systems implemented in the ProM5 Suite and show that the attributes
in the event log can improve the accuracy of the model without decreas-
ing performances. The experimental results show how our algorithm im-
proves of a large margin ProM5 in predicting the completion time of a
process, while it presents competitive results for next activity prediction.

1 Introduction

Today, many organizations store event data from their enterprise information sys-
tem in structured forms such as event logs. Examples of such logs are audit trails of
workflowmanagement systems, transaction logs from enterprise resource planning
systems, electronic patient records, etc.. Here, the goal is not to just collect asmuch
data as possible, but to extract valuable knowledge that can be used to compete
with other organizations in terms of efficiency, speed and services. These issues are
taken into account in Process Mining, whose goal is to discover, monitor and im-
prove processes by providing techniques and tools to extract knowledge from event
logs. In typical application scenarios, it is assumed that events are available and
each event: (i) refers to an activity (i.e., a well-defined step in some process), (ii)
is related to a case (i.e., a process instance), (iii) can have a performer (the ac-
tor executing or initiating the activity), and (iv) is executed at a given timestamp.
Moreover, an event can carry additional process-specific attributes (e.g. the cost
associated to the event, the place where the event is performed).

Event logs such as the one shown in Table 1 are used as the starting point for
mining. As described in [12], we distinguish four different analyses: (1) Discovery,
(2) Conformance, (3) Enhancement and (4) Operational Support. In Discovery,
a process model is discovered based on event logs [7,14]. For example, the α-
algorithm [14] mines a process model represented as a Petri-Net [4,2] from event
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logs. In Conformance analysis, an existing process model is compared with event
logs to check and analyze discrepancies between the model and the log. Viceversa,
the idea behind Enhancement is to extend or improve an existing process model
using information about the actual process recorded in some event logs. Types of
enhancement can be extension, i.e., adding new perspectives to a process model
by cross-correlating it with a log, or repair, i.e., modify an discovered model to
better reflect reality. It is noteworthy that in all the analysis considered above, it
is assumed that process mining is done offline. Processes are analyzed thereafter
to evaluate how they can be improved or extended. On the contrary, Operational
Support techniques are used in online settings. Given a process model built over
some event logs and a partial trace, operational support techniques can be used
for detecting deviation at runtime (Detect), predicting the remaining processing
time (Predict) and recommending the next activity (Recommend).

At the best of our knowledge, classical algorithms presented in the literature
for operational support, (1) build a process model in form of Transition Sys-
tems [11] or Petri-Nets [4,2], (2) re-analyze the log to extend the model with
temporal information and aggregated statistics [13], and finally, (3) learn a re-
gression or a classification model to support prediction and recommendation
activities. However, as noted in [5], these operational support methods natu-
rally fit cases where processes are very well-structured (i.e. perfectly matching
some predefined schema), for real-life logs they suffer of problems related to “in-
completeness” (i.e. the model represents only a small fraction of the possible
behavior due to the large number of alternatives), “noise” (i.e., logs containing
exceptional/infrequent activities that should not be incorporated in the model),
“overfitting” and “under-fitting”, thereby resulting in a spaghetti-like model,
which is rather useless in practice. Other approaches, such as computational
intelligence systems [7], which overcome these problems, tend to be inefficient
and, thus, have problems to scale in case of a huge amount of activities which
are correlated each other (by means ofprecedence/causality dependencies). In
any case, existing solutions do not take into account additional process-specific
attribute values which change in running processes.

In this paper we present a novel approach for operational support which deals
with the problems presented before, that is, “incompleteness”, “robustness to
noise” and “overfitting”. The solution we propose aims at identifying partial
process models to be used for training predictive models. In our approach, two
types of predictive models are inferred: for the prediction of the next activity and
for the estimation of the completion time. In details, we identify frequent partial
processes in form of frequent activity sequences. These sequences are extracted
by adapting an efficient frequent pattern mining algorithm and are represented in
form of sequence trees. Afterwards, we associate at each node of the tree a specific
prediction model that takes into account, in addition to classical attributes (such
as the performer of each activity), also additional attributes such as the cost
associated to the event or the place where the event is performed. We call this
last prediction model “nested”. While the sequence mining algorithm allows us
to deal with incompleteness, robustness to noise and overfitting by removing
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Table 1. An example of event log

CID Act Time Perf X Y CID Act Time Perf X Y

1 A 0 p1 x1 y1 4 C 22 p1 - -
1 B 6 p1 - - 4 D 28 p1 - -
1 C 12 p1 - - 5 A 18 p1 x1 y2
1 D 18 p1 - - 5 C 22 p2 - -
2 A 10 p2 x1 y1 5 B 26 p1 - -
2 C 14 p2 - - 5 D 32 p2 - -
2 B 26 p2 - - 6 A 19 p1 x2 y2
2 D 36 p2 - - 6 E 28 p3 - -
3 A 12 p3 x2 y2 6 D 59 p2 - -
3 E 22 p3 - - 7 A 20 p1 x2 y1
3 D 56 p3 - - 7 C 25 p3 - -
4 A 15 p1 x1 y1 7 B 36 p3 - -
4 B 19 p1 - - 7 D 44 p2 - -

unfrequent behaviors, the nested models guarantee some flexibility. In fact, it
is possible to i) plug-in any classification/regression learning algorithm and ii)
enable a different representation of the data, one for each node of the trees. Our
solution has its inspiration in works which face with the associative classification
task [3], where descriptive data mining techniques are exploited for predictive
purposes using a hybrid data mining approach.

The paper is organized as follows: in the next section we describe the proposed
approach. Section 3 is devoted to present the empirical evaluation of the proposed
solution. Finally, Section 4 concludes the paper and draws some future work.

2 Methodology

This section describes our two-stepped online operational support approach.

First Phase: Process Discovery
In this phase, we look at a (partial) process as a sequence of activities and
we apply a sequential pattern mining algorithm in order to generate a partial
process model. This model allows us to represent both complete and partial
traces which are found frequent by the algorithm. The algorithm we adopt in
this phase is FAST [9] which guarantees low computational costs and allows us
to represent frequent sequences in a compact way by means of sequence trees.
FAST, by focusing only on frequent sequences, leads to predictive models (see
Section 16) which are robust to noise and do not suffer from overfitting problems.
Moreover, since FAST is able to extract frequent non-contiguous (and partial)
sequences of activities, we are also able to deal with incompleteness problems.

In this work we extend FAST by allowing it to also extract: 1) only contigu-
ous (partial) sequences and 2) only contiguous (partial) sequences that repre-
sent only processes since their beginning. Obviously, these extensions generate
smaller sequence trees, improve robustness to noise, reduce overfitting, but in-
crease problems related to incompleteness. All these aspects are due to a smaller
number of sequence patterns and, thus, to less specialized models. It is notewor-
thy that the idea of reducing the size of the process model is not new and in [13]
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the authors convert sequences into sets and multi-sets. However, such approach
results in loosing the exact order of events and the number of the occurrences.

In our approach, an event log is represented as a sequence database (SDB),
that is, a set of tuples 〈CID, S〉, where CID is a case id and S is a sequence
of ordered set of events (i.e. set of activities). Figure 1a shows the sequence
database extracted from the event log reported in Table 1. For instance, in this
figure, the cases 1 and 4 are composed by the sequence of activities A, B, C, D.

To formally describe the task solved in this phase, we give some definitions.

Definition 1 (Sub/Super-Sequence). A sequence α = 〈a1, a2, . . . , ak〉 is
called a sub-sequence of another sequence β = 〈b1, b2, . . . , bm〉, denoted as α 
 β,
if there exist integers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jk ≤ m such that a1 = bj1 , a2 =
bj2 , . . . , ak = bjk . For example, if α = 〈A,B〉 and β = 〈A,C,B〉, where A,C and
B are events, then α is sub-sequence of β and β is a super-sequence of α.

Definition 2 (Frequent sequences). Let α = 〈a1, a2, . . . , ak〉 be a sequence
of activities, SDB be a sequence database and minsup a user-defined threshold.
α is frequent if its support σ(α, SDB) (i.e. the number of sequences in SDB
which are super-sequences of α) is greater than minsup.

Definition 3 (Contiguous frequent sequences). Let α = 〈a1, a2, . . . , ak〉
be a frequent sequence in a sequence database SDB, according to a user-
defined threshold minsup. We define the contiguous support of α (denoted as
σcs(α, SDB)) as the number of sequences in SDB containing α such that, for
each i = 1 . . . k − 1, the activity ai+1 is observed immediately after the activity
ai. If σcs(α, SDB) ≥ minsup, then α is a contiguous sequence.

Definition 4 (Opening frequent sequence). Let α = 〈a1, a2, . . . , ak〉 be a
contiguous frequent sequence in a sequence database SDB and minsup a user-
defined threshold. We define the opening support of α (denoted σos(α, SDB))
as the number of sequences in SDB containing α, and having a1 in the first
position. If σos(α, SDB) ≥ minsup, then α is an opening sequence.

Example 1. Given the sequence database SDB in Figure 1a andminsup = 1, we
analyze the sequence α = 〈A,B〉. α is frequent because it is present in the tuples
with CID = {1, 2, 4, 5, 7}. Now we check if α can be marked as contiguous
frequent sequence. The activities A, B appear contiguously only in the tuples
with CID = {1, 4} (i.e. σcs(α, SDB) = 2). Since σcs(α, SDB) ≥ minsup, α is
marked as contiguous frequent sequence. Finally, we check if α can be marked
as opening frequent sequence. In this case, we have to count how many times the
first activity of α (i.e. A) is observed in first position in the SDB and its next
activity is B. Since this happens for CID = {1, 4} (i.e. σos(α, SDB) = 2), α is
an opening frequent sequence.

The above definitions allow us to push constraints in the patterns used to build
partial process models. Methodologically, we face the following task: given a se-
quence database SDB, where each sequence represents a sequence of events and
given a user-specified minimum support threshold minsup, the task of process
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(a) (b)

Fig. 1. (a) Sequence Database extracted from Table 1 and (b) VIL for 〈A,B〉

discovery is to find either: i) the frequent sequences in SDB, ii) the contiguous
frequent sequences in SDB or iii) the opening sequences in SDB. In all the cases,
sequences are expressed in the form of sequence trees. The original version of
FAST can generate a sequence tree of activities in two phases. In the first phase
all frequent activities are selected then, in the second phase, these activities are
used to populate the first level of the sequence tree and to generate sequences
with size greater than one. The mined sequence tree is characterized by the fol-
lowing properties: 1) each node in the tree corresponds to a sequence and the
root corresponds to the null sequence (<>); 2) if a node corresponds to a se-
quence s, its children are generated by adding to s the last activity of its siblings.
Only frequent children are stored in the tree. Figure 2 shows the sequence tree
extracted by FAST from the database in Table 1a (minsup = 1).

To represent in optimized way the sequence dataset and to perform efficient
support counting of activities and sequences, FAST uses a data structure called
vertical id-list (VIL). In the following we give a brief definition of a VIL.

Definition 5 (Vertical Id-list). Let SDB be a sequence database of size n
(i.e. |SDB| = n), Sj ∈ SDB its j-th sequence (j ∈ {1, 2, . . . , n}), and α a
sequence associated to a node of the tree, its vertical id-list, denoted as V ILα,
is a vector of size n, such that for each j = 1, . . . , n

V ILα[j] =

{
[posActα,1, posActα,2, . . . , posActα,m] if Sj contains α
null otherwise

where posActα,i is the end position of the i-th occurrence (i ≤ m) of α in Sj.

Example 2. Figure 1b shows the V IL of the sequence α = 〈A,B〉. Values in
V ILα represent the end position of the occurrences of the sequence α in the
sequences of Figure 1a. In particular, the first element (list with only value 2)
represents the position of the first occurrence of activity B, after the activity A
(i.e. B is the last activity in α), in the first sequence S1. The second element is
(list with only value 3) the position of the first occurrence of B (after A) in the
sequence S2. The third element is null since α is not present in S3. The other
values are respectively list with only value 2 (for sequence S4), list with only
value 3 (for S5), null (for S6) and list with only value 3 (for S7).
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Fig. 2. Sequence tree learned with FAST

Given the sequence α and its sibling β FAST builds a new node γ and its VIL,
using V ILα and V ILβ. In particular, for each j = 1, . . . , n, given: •V ILα[j] =
[posActα,1, . . . , posActα,mα,j ],
• an index i (initialized to 1) on V ILα[j],
• V ILβ [j] = [posActβ,1, . . . , posActβ,mβ,j

],
• an index z (initialized to 1) on V ILβ[j].

FAST checks whether posActα,i < posActβ,z. That is, the last activity of the
first occurrence of α precedes the last activity of the first occurrence of β. If the
condition is not satisfied, FAST increments z. This process is applied until either
posActα,i < posActβ,z is satisfied or the null value is found. In the first case
FAST sets V ILγ [j] = [posActβ,z, . . . , posActβ,mβ,j

], otherwise V ILγ [j] = null.
The support of γ is then computed as: σ(γ, SDB) = |{j | V ILγ [j] �= null}|.

In our extension of FAST, we employ the VILs not only in the extraction of fre-
quent sequences, but also in the extraction of contiguous and opening frequent se-
quences. In particular, the VIL structure is used to generate three different types
of trees, representing frequent sequences (see Figure 2), contiguous frequent se-
quences (see Figure 3a) and opening sequences (see Figure 3b), respectively. It is
interesting to note that this last type of sequence tree corresponds to a transition
system model [12] obtained from the same event log, after removing unfrequent
activities. These three different types of sequence trees are hereafter denoted as
(proper) sequence tree, contiguous tree and opening tree. The contiguous tree is
obtained by substituting, in the original implementation of FAST, the common
definition of support with σcs(n, SDB) = |{j|vil = contiguous(n, T ) ∧ vil[j] �=
NULL}|. In this formula, contiguous(n, T ) is the VIL returned by the applica-
tion of the function described in Algorithm 1. This algorithm iteratively looks
for possible holes in the sequences by bottom-up climbing the sequence tree. A
hole is found when the condition at line 10 is not satisfied. Similarly, the open-
ing tree is obtained by substituting, in FAST, the common definition of support
with σos(n, SDB) = |{j|vil = contiguous(n, T )∧ vil[j][1] = 1}|.
Second Phase: Nested-Model Learning
Once the partial process model is learned, it is used to build a nested model
for operational support. In particular, for each node α of the partial process
model, the description of the processes, which contribute to the support of the
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(a) (b)

Fig. 3. (a) Contiguous and (b) Opening trees associated to the tree in Figure 2

Fig. 4. Datasets associated with nodes 〈A〉 and 〈A,B〉

pattern expressed at that node, is used as a training set for a predictive learning
algorithm. Learned prediction models are then used to predict the completion
time and the next activity of a running process.

In the generation of the training set associated with each node α, all the in-
formative attributes associated with each event in α, and available in an event
log, can be used. Uninformative attributes, such as the CID, are removed, while
two additional attributes, that is, Completion time and Next Activity can be
created and populated for predictive purposes. Figure 4 shows the datasets asso-
ciated with the nodes representing 〈A〉 and 〈A,B〉 of the opening tree reported
in Figure 3b. Obviously, the attribute Completion time is only available when
training a regression model for Completion time, while the attribute Next Activ-
ity is only available when training a classification model for Next Activity. In the
construction of the nested prediction models, any traditional machine learning
algorithm for regression/classification can be used.

In the prediction phase, the algorithm traverses the (proper, contiguous or
opening) frequent sequence tree in order to identify the regression/classification
model to be used. The search starts from the root and proceeds towards the leaves
of the sequence tree. For each new activity of a running process, the algorithm
moves to the corresponding next level of the tree. If there is no corresponding
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Algorithm 1. contiguous(T,n)

input : T: a sequence tree; n: node of T
output: vil: the VIL of the sequence at node n such that the contiguous

condition is satisfied.
1 vil =getVIL(n); parent =getParent(n);
2 while parent != root(T) do
3 parentV il = getVIL(parent);
4 foreach j = 1 . . .length(vil);
5 do
6 i = 0; contiguous = FALSE;
7 while ++ i < len(vil[j]) and not contiguous do
8 z = 0;
9 while ++ z ≤ i and not contiguous do

10 if vil[j][i] = parentV il[j][z] + 1 then
11 vil[j] = parentV il[j][z..(len(parentV il[j]) − 1)];
12 contiguous = TRUE ;

13 if not contiguous then
14 vil[j] = NULL;

15 n = parent; parent =getParent(n);

16 return vil;

node, that is, the complete sequence was not found frequent during the partial
process model construction, the algorithm does not move to the next level and
remains in the current node until a new activity of the running process allows us
to move to the next level. At each point of the running process, the prediction
model associated to the current node is used for predictive purposes.

Example 3. Let p = 〈A,B,E,C〉 be the running process for which we intend to
predict either the next activity or the completion time. Let the sequence tree in
Figure 3b be the learned partial model. Starting from the root of the tree, when
the first activity of the process p arrives, the algorithm moves first in the node
associated with the sequence 〈A〉, then, when the second activity of the process
p arrives, it moves in the child node associated with 〈A,B〉. Since no child node
of 〈A,B〉 associated with the sequence 〈A,B,E〉 exists, when the third activity
of the process p arrives, the algorithm remains in the current node. When the
next activity C of p arrives, the algorithm moves in the node associated with
the pattern 〈A,B,C〉 and uses the nested models in this node for prediction.

3 Experiments

In this section we present the empirical evaluation of the proposed algorithm. For
evaluation purposes, we used a 10-fold cross-validation schema and, we collected
the average classification rate (C-RATE, i.e. the number of processes for which
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Table 2. Number of sequences extracted during the sequential pattern mining phase
for ProM and THINK3

minsup 40% 30% 25%
tree type 1 2 3 1 2 3 1 2 3

Prom 607 31 6 735 53 11 4671 66 13
Think3 104 26 7 208 40 9 855 68 21

we were able to obtain predictions), the average predictive accuracy of the next
activity and the error in the completion time estimation. As for this last error, we
use the symmetric mean absolute percentage error (SMAPE) defined in Equation
(1), since it is more robust to effect of zero or near-zero values than traditional
error measures [6] and the classical root relative mean squared error (RRMSE)
defined in Equation (2) [10]. In both equations yi is the actual completion time,
ŷi is the estimated completion time and yi is the average completion time.

SMAPE =

(
n∑

i=1

|ŷi − yi|
)
/

(
n∑

i=1

(ŷi + yi)

)
(1)

RRMSE =

√√√√(
n∑

i=1

(ŷi − yi)2

)
/

(
n∑

i=1

(yi − yi)2

)
(2)

In our implementation, we use as nested learning algorithms C4.5 [8] (to
predict the next activity) and M5’ [15] (to estimate the completion time). Results
are collected by varying the minimum support threshold and the type of the
sequence tree. We denote proper sequence trees with “tree type 1”, contiguous
trees with “tree type 2” and opening trees with “tree type 3”. Completion time
results obtained with our approach are compared with results obtained from the
transition systems implemented in ProM5 Suite, where the prediction is made
based on the average time to completion for process instances in a similar state
[13]. Unfortunately, the ProM5 Suite does not include tools for next activity
prediction. Since Tree type 3 is, as stated before, the model more similar to a
transition system, we consider this setting as baseline for our comparisons.

The evaluation is performed on two real datasets that is, ProM and THINK3.
ProM concerns repairing telephones of a communication company. The event
log contains 11,855 activities and 1,104 cases, while the number of distinct per-
formers is 29. Activities are classified as complete (1,343), schedule (6,673), re-
sume (178), start (809), suspend (166) and unknown (remaining). Additionally,
ProM stores several properties like name, timestamp, resources (in term of roles).
The second dataset, THINK3 [1] is an event log presenting 353,490 cases in a
company, for a total of 1,035,119 events executed by 103 performers. Activi-
ties are classified as administrator tools (131), workflow (919,052), namemaker
(106,839), delete (2,767), deleteEnt (2,354), prpDelete (471), prpSmartDelete
(53), prpModify (34) and cast (1,430).

Results on ProM are extracted by using three minimum support thresholds:
0.4, 0.3 and 0.25. Table 3 shows results for both the considered predictive tasks.
As it is possible to see, even if we consider a partial process model, we are
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Table 3. Averaged cross-validation results for ProM with different tree type (tree
type). Column “gain” indicates the RRMSE gain over the ProM5 Suite for completion
time prediction.

tree type minsup Completion time prediction Next activity prediction C-RATE
RRMSE SMAPE gain(%) ACCURACY

40% 0.71 0.19 29% 0.72 1.00
1 30% 0.70 0.20 30% 0.74 1.00

25% 0.69 0.19 31% 0.78 1.00
40% 0.83 0.24 17% 0.60 1.00

2 30% 0.69 0.19 31% 0.64 1.00
25% 0.69 0.20 31% 0.68 1.00
40% 0.83 0.24 17% 0.60 1.00

3 30% 0.69 0.19 31% 0.64 1.00
25% 0.69 0.20 31% 0.68 1.00

Table 4. Average running times for ProM (sec.)

tree type minsup seq. pattern datasets construction total
discovery generation nested model

40% 0.448 7.783 2.898 11.129
1 30% 0.498 8.514 2.965 11.977

25% 0.863 162.313 2.892 166.068
40% 0.448 5.478 3.155 9.081

2 30% 0.498 5.892 3.707 10.097
25% 0.863 6.666 3.434 10.963
40% 0.448 6.008 3.245 9.701

3 30% 0.498 5.853 3.497 9.848
25% 0.863 6.352 3.452 10.667

able to provide a prediction for (almost) all the sequences (C-RATE). Moreover,
we can observe that trees of type 2 and 3 are more robust to noise and to
incompleteness with respect to trees of type 3. For the next activity prediction
task, by reducing minsup, predictive accuracy increases. Moreover, the partial
model based on propers sequence trees (tree type 1) leads to the best results.
By comparing these results with those reported in Table 2, we can see that best
results are obtained with the most complete trees. This means that minsup=0.25
is still enough to do not suffer from overfitting problems. As for completion time
prediction, we show that results do not change significantly varying the tree
type. Best results are obtained with proper sequence trees (i.e tree type 1) and
minsup=0.25 ; contiguous trees (i.e. tree type 2) and minsup=0.3 ; opening trees
(i.e. tree type 3) and minsup=0.3. This means that, in this case, the abstraction
introduced in trees of type 2 and 3 is beneficial. Moreover, the comparison with
the ProM5 Suite shows that our approach leads to reduce the error of a great
margin (between 17% and 31% of the RRMSE). By analyzing results reported in
Table 4, we see that the generation of trees of types 2 and 3 is significantly more
efficient than that of trees of type 1. This means that, while for next activity
prediction, high running times of tree type 1 are justified by effectiveness, this
is not true for completion time prediction, where tree types 2 and 3 are the best
solutions in terms of efficiency and effectiveness.
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Table 5. Averaged cross-validation results for THINK3 with different configurations
(conf.). Column “gain” indicates the RRMSE gain over the ProM5 Suite for completion
time prediction.

tree type minsup Completion time prediction Next activity prediction C-RATE
RRMSE SMAPE gain(%) ACCURACY

15% 0.91 0.49 9% 0.51 1.00
1 10% 0.91 0.49 9% 0.54 1.00

5% 0.97 0.73 3% 0.62 1.00
15% 0.94 0.41 6% 0.49 1.00

2 10% 0.89 0.39 11% 0.49 1.00
5% 0.92 0.47 8% 0.54 1.00
15% 0.95 0.49 5% 0.49 0.99

3 10% 0.94 0.44 6% 0.49 0.99
5% 0.94 0.41 6% 0.54 1.00

Table 6. Average running times for THINK3 (sec.)

tree type minsup seq. pattern datasets construction total
discovery generation nested model

15% 0.848 413.355 67.067 481.270
1 10% 2.081 443.652 69.628 515.361

5% 3.573 572.952 69.970 646.495
15% 0.848 343.444 74.323 418.615

2 10% 2.081 351.362 72.796 426.239
5% 3.573 369.396 74.447 447.416
15% 0.848 393.726 73.169 467.743

3 10% 2.081 461.615 92.444 556.140
5% 3.573 567.422 127.741 698.736

Results on THINK3 are obtained with three minimum support thresholds:
0.05, 0.1 and 0.15. In Table 5, we show results obtained for both the considered
predictive tasks. Also in this case our approach is able to provide a prediction
for (almost) all the sequences (C-RATE). Similarly to what observed for the
ProM dataset, best results for the next activity prediction are obtained with
proper sequence trees (i.e. tree type 1). As for the prediction of the completion
time, the best results are obtained with the contiguous trees (i.e. tree type 2,
minsup=0.1 ). This setting is also one of the best settings in terms of running
times (see Table 6). Moreover, the comparison with the ProM5 Suite shows that
our approach leads, as in the case of ProM data, to reduce the RRMSE in all
cases (up to 11%). This is an interesting result if we consider that the THINK3
dataset has less attributes than the ProM dataset.

4 Conclusions and Future Works

This paper faces the problem of operational support in process mining and,
in particular, the prediction of the next activity and of the completion time.
The proposed approach is two-stepped and combines descriptive data mining
for partial model mining and predictive data mining for mining nested clas-
sification/regression models. This solution provides incompleteness-robust and
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non-overfitted prediction models thanks to the first phase, where a tailored se-
quential pattern mining algorithm is adopted. Moreover, with this method, we
can apply any traditional classification/regression techniques thanks to the con-
struction of the nested model. As can be seen, using this approach, completion
time predictions can be significantly improved over state-of-the-art applications
(approximately 30% with ProM Data and 11% with THINK3 Data).

For future work, we intend to extend the experiments with additional (noisy)
cases, to check the effectiveness of the proposed approach to noise, and to exploit
“closed” sequential pattern mining instead of frequent sequential pattern min-
ing to further reduce the number of nested models to learn. Moreover, we intend
to consider the use of other algorithms for sequential pattern mining with con-
straints, in addition to FAST as well as give more importance to recent activities
in the model construction, as typically done in data stream mining.

Acknowledgements. This work fulfils the research objectives of the UE FP7
project MAESTRA (Grant number ICT-2013-612944). This work is also par-
tially supported by the Italian Ministry of Economic Development (MISE)
through the project LOGIN.

References

1. Appice, A., Ceci, M., Turi, A., Malerba, D.: A parallel, distributed algorithm
for relational frequent pattern discovery from very large data sets. Intell. Data
Anal. 15(1), 69–88 (2011)

2. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Dis-
covering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

3. Ceci, M., Appice, A.: Spatial associative classification: propositional vs structural
approach. J. Intell. Inf. Syst. 27(3), 191–213 (2006)

4. Dongen, B., Busi, N., Pinna, G., Aalst, W.: An Iterative Algorithm for Applying
the Theory of Regions in Process Mining. In: Proceedings of the Workshop on
Formal Approaches to Business Processes and Web Services, pp. 36–55 (2007)

5. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in busi-
ness processes: Outlier-aware discovery and run-time prediction. Data Knowl.
Eng. 70(12), 1005–1029 (2011)

6. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy.
International Journal of Forecasting, 679–688 (2006)

7. Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: An experi-
mental evaluation. Data Min. Knowl. Discov. 14(2), 245–304 (2007)

8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

9. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on
sparse id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.)
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Abstract. This paper develops and applies sequential pattern mining
to a corpus of songs for the bagana, a large lyre played in Ethiopia. An
important aspect of this repertoire is the unique availability of rare motifs
that have been used by a master bagana teacher in Ethiopia. The method
is applied to find antipatterns: patterns that are surprisingly rare in a
corpus of bagana songs. In contrast to previous work, this is performed
without an explicit set of background pieces. The results of this study
show that data mining methods can reveal with high significance these
antipatterns of interest based on the computational analysis of a small
corpus of bagana songs.

1 Introduction

Sequences are a special form of data that require specific attention with respect
to alternative representations and data mining techniques. Sequential pattern
mining methods [2,1,19] can be used to find frequent and significant patterns
in datasets of sequences, and also sequential patterns that contrast one data
group against another [16,23]. In music, sequential pattern discovery methods
have been used for the analysis of single pieces [9], for the analysis of a corpus of
pieces [8], and also to find short patterns that can be used to classify melodies
[21,22,18,7].

Further to standard pattern discovery methods, which search for frequent
patterns satisfying minimum support thresholds [24], another area of interest is
the discovery of rare patterns. This area includes work on rare itemset mining
[14] and negative association rules [4]. For sequence data, rare patterns have
not seen as much attention, but are related to unwords [15] in genome research
(i.e. absent words that are not subsequences of any other absent word), and
antipatterns [10] in music (patterns that are surprisingly rare in a corpus of
music pieces). Antipatterns may represent structural constraints of a music style
and can therefore be useful for classification and generation of new pieces.

The Ethiopian lyre bagana is played by the Amhara, inhabitants of the Cen-
tral and Northern part of the country. The bagana is a large lyre, equipped with
ten gut strings, most of them plucked with the fingers. According to Amhara
tradition, the bagana is the biblical instrument played by King David and was
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brought to Ethiopia, together with the Ark of Covenant, by the legendary Em-
peror Menelik, mythical son of King Solomon and Queen of Sheba. The bagana
belongs to the spiritual sphere of Amhara music, even though it is not played
during liturgical ceremonies. Because of its mythical origin and connection to the
divine, the bagana is highly respected, as the instrument of kings and nobles,
played by pious men and women of letters [26].

The analysis of the learning process used by the most revered player, Alemu
Aga, has shown that the first phase of this process is based on exercises com-
posed of short motifs [25]. These exercises correspond, according to Alemu Aga,
to motifs that are either frequently or rarely encountered in his real bagana
songs. They are meant to familiarize the student with the playing technique, the
numbered notational system (see below) as well as with the sound colour of the
instrument, which is, due to its buzzing quality, unique in the Amhara musical
systems.

The study of a bagana corpus provides a unique opportunity for evaluation
of pattern discovery techniques, because there exist known rare motifs that also
have functional significance. The aim of this paper is to explore whether sequen-
tial pattern discovery methods, specifically methods for the discovery of rare or
absent patterns in music [10], can reveal the known rare patterns and possibly
other rare patterns in a corpus of bagana songs.

Fig. 1. The Ethiopian lyre bagana
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2 Bagana Background

This section provides some background on the Ethiopian bagana, presenting
how the fingers are assigned to strings, the tuning and scales of the bagana, and
finally the encoding of a corpus of bagana songs for computational analysis.

2.1 Bagana Notation

The bagana has 10 strings which are plucked by the left hand, with the fingers
numbered from 1 (thumb) to finger 5 as described in Table 1.

Table 1. Fingering of the bagana, with finger numbers assigned to string numbers

string 1 2 3 4 5 6 7 8 9 10

fingering 1 r 2′ 2 r 3 r 4 r 5

In Table 1, “r” (for “rest”) indicates a string that is not played, but rather
is used as a rest for the finger after it plucks the string immediately next to
it. Strings 3 and 4 are both played by finger number 2 (string 3 being therefore
notated as finger 2′), otherwise the assignment of finger number to string number
is fixed.

Table 2. Tuning of the bagana, in two different scales, and the nearest Western tem-
pered note corresponding to the degrees of the scales

finger 1 2′ or 2 3 4 5

string 1 3 or 4 6 8 10

scale tezeta E/F C D A G

scale anchihoye F C D� G� A

scale degree 3̂ 1̂ 2̂ 5̂ 4̂

As with the other Amhara instruments, the bagana is tuned to a traditional
pentatonic scale. Usually, the player chooses between the tezeta scale and the
anchihoye scale. Tezeta is anhemitonic (without semitones) and is relatively close
to Western tempered degrees (see Table 2). Anchihoye, however, is more complex
and comprises two intervals smaller than the Western tempered tone.

To illustrate the notation in Table 2, for example, in the tezeta scale the
ascending pentatonic scale (C, D, F, G, A) would be notated by the sequence
(2, 3, 1, 5, 4). The scale degree notation is also useful to measure the diatonic
interval between two strings, as will be used in Section 4.

Figure 2 shows the placement of the left hand on the 10 bagana strings, along
with the information from Table 2: the finger numbering used, and the notes
played by the fingers.
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Fig. 2. Placement of left hand on the strings of the bagana

2.2 Bagana Corpus

Bagana songs, also called yebagana mezmurotch in Amharic, are based on a
relatively short melody, repeated several times with different lyrics, except for
the refrain (azmatch) for which the lyrics do not vary. Bagana songs are usually
preceded by instrumental preludes, called derdera (pl. derderotch). The analyzed
corpus comprises 29 melodies of bagana songs performed by 7 players (5 men,
2 women), and 8 derderotch. These 37 pieces were recorded by Weisser [25]
between 2002 and 2005 in Ethiopia (except for 2 of them recorded in Washington
DC). In this paper, no differentiation will be made between derdera and bagana
songs. A total of 1903 events (finger numbers) are encoded within the 37 pieces
(events per song: μ = 51, σ = 30, min = 13, max = 121). Figure 3 shows
an example of a fragment of a bagana song, encoded as a sequence of finger
numbers, corresponding to the fingering of the song.

Fig. 3. A short fragment encoded in score and finger notation, from the beginning of
the song Abatachen Hoy (“Our Father”), one of the most important bagana songs, as
performed by Alemu Aga (voice not shown). Transcribed in 2006 (see [27]).
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2.3 Rare Motifs

Table 3 shows four motifs that correspond, according to the bagana master
Alemu Aga, to motifs that are rarely encountered in his real bagana songs and are
used during practice to strengthen the fingers with unusual finger configurations
[25]. The first two motifs in Table 3 are short bigram patterns. In Section 4 it
will be explored whether these two rare patterns can be discovered from corpus
analysis. The third and fourth motifs of Table 3 (bottom) correspond to longer
pentagram patterns that form ascending and descending pentatonic scales and
are also used for didactic purposes. Since most pentagram patterns will be rare
in a small corpus, an additional question that will be explored in Section 4 is
whether these two pentagram patterns are surprisingly rare.

Table 3. Rare motifs, from [25], page 50

Motifs in numeric notation

First exercise (1, 4)
Second exercise (1, 2)
Third exercise (2, 3, 1, 5, 4)
Fourth exercise (4, 5, 1, 3, 2)

3 Antipattern Mining

In this work we apply data mining to discover antipatterns in the bagana corpus.
The task is an instance of supervised descriptive rule discovery [20], a relatively
new paradigm for data mining which unifies the areas of subgroup discovery [17],
contrast set mining [6,12], and emerging pattern mining [13].

Referring to Figure 4, in the supervised descriptive mining paradigm, data
may be partitioned into two sets, an analysis class ⊕ with n⊕ objects, and a back-
ground set  with n� objects. The partitioning is flexible and the background
set may contain instances labelled with multiple different classes. A pattern is a
predicate that is satisfied by certain data objects. The number of occurrences of
a pattern P in the set ⊕ is given by c⊕P , and in the set  by c�P . The goal is to
discover patterns predictive of the ⊕ class, covering as few of the  objects as
possible. If under- rather than over-represented patterns are desired, the reversal
of the roles of the analysis and background classes  and ⊕ can naturally lead
to the discovery of patterns frequent in  and rare or absent from ⊕ [10]. In this
case the inner box of Figure 4 would be shifted downwards into the  region.

In the original studies of subgroup discovery and contrast data mining
[17,6,13] objects and subgroups are described using attribute-value representa-
tions. Later work has shown that contrast data mining can be applied to sequence
data: Ji et al. [16] considerminimal distinguishing subsequence patterns and Deng
and Zäıane [11] consider emerging sequences (sequential patterns frequent in one
group but infrequent in another).
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analysis class ⊕ (corpus)

n�

pattern P

n⊕c⊕P

c�P

background � (anticorpus)

Fig. 4. The schema for contrast set mining, showing the major regions of objects
involved. The top part of the outer box encloses data labelled with the class of interest,
below this the background. The inner box contains the objects described by a pattern,
and the top part of the inner box the contrast set described by a discovered pattern.

Music can be represented as sequences of events for the purposes of supervised
descriptive data mining. In music the analysis and background set are called the
corpus and anticorpus (Figure 4). In pattern discovery in music, the counting
of pattern occurrences can be done in two ways [9]: either by considering piece
count (the number of pieces containing the pattern one or more times, i.e. analo-
gous to the standard definition of pattern support in sequential pattern mining)
or by considering total count (the total number of positions matched by the pat-
tern, also counting multiple occurrences within the same piece). The latter is
used when a single music piece is the target of analysis. For the bagana, even
though several pieces are available, total count is used, because we consider that
a motif is frequent (or rare) if it is frequently (or rarely) encountered within any
succession of events. Therefore in this study the set ⊕ (resp., ) comprises all
suffixes in the corpus (anticorpus), and practically n⊕ (n�) is therefore the total
number of suffixes in the corpus (anticorpus), and c⊕P (c�P ) the total number of
sequences in ⊕ () for which the pattern P is a prefix. In this study overlapping
pattern occurrences are excluded from the total count of a pattern.

For antipattern mining of bagana songs, unlike for previous antipattern mining
studies with Basque folk songs [10], an interesting and important feature is that
there is no naturally available anticorpus to contrast with the corpus. Therefore
a different method was needed to reveal those patterns whose count within the
corpus is significantly low, evaluated here using a binomial distribution of pattern
counts along with a zero-order model of finger numbers to compute the pattern
probabilities.

3.1 Patterns and Expectation

In this study of the bagana corpus, a pattern is a contiguous sequence of events,
represented by finger numbers. To contrast the occurrences of a pattern between
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a set ⊕ and a set , the empirical background probability of a pattern P =
(e1, . . . , e�) may be computed simply as c�P /n

�, if a large background set  is
available [13]. Without a large background corpus, the background probability
of the pattern must be estimated analytically, for example using a zero-order
model of the corpus:

bP =

�∏
i=1

c⊕ei/n
⊕

where c⊕ei is the total count of event ei, and n⊕ is the total number of events
in the corpus. The background probability bP therefore gives the probability of
finding the pattern in exactly � contiguous events.

A useful quantity derived from the background probability is the expected
total count. Letting X be the random variable that models the total count of a
pattern P , the expected total count is:

E(X) = bP × tP

where tP is the maximum number of non-overlapping positions that can be
possibly matched by the pattern, approximated here simply by n⊕/�.

In this study a zero-order analytic model of the corpus is used to permit
the detection of over- or under-representation in bigram or longer patterns. A
first- or higher-order analytic model would not be able to detect bigram patterns
because the expected total count of a pattern would be equivalent to its actual
count.

3.2 Antipatterns and Statistics

An antipattern is a pattern that is rare, or even absent, in a corpus. For data
mining, this definition is not operational because almost any sequence of events
is an antipattern, that is, most possible event sequences will never occur in a
corpus, with their count rapidly falling to zero with increasing length. Most of
these patterns are not interesting because it is expected that their total count
is zero. Therefore we want to know which are the significant antipatterns: those
that are surprisingly rare or absent from a corpus.

Antipatterns are evaluated according to a p-value, which gives the probability
of finding an equal or fewer number of occurrences than the number observed.
Low p-values are desired, because it means such patterns are surprisingly rare
in the corpus. The p-value of finding c⊕P or fewer occurrences in the corpus is
modelled using the binomial distribution:

P
(
X ≤ c⊕P

)
=

c⊕P∑
i=0

B
(
i, tP , bP

)
(1)

where B
(
i, tP , bP

)
is the binomial probability of finding exactly i occurrences of

the pattern P , in tP possible placements of the pattern, and bP is the background
probability of the pattern. Low p-values indicate patterns that are statistically
surprising and therefore potentially interesting.
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3.3 Discovery Algorithm

The antipattern discovery task is stated simply as: given a corpus, and a sig-
nificance level α, find all patterns P with a p-value (Equation 1) of at most α:

P
(
X ≤ c⊕P

)
≤ α (2)

Furthermore, for presentation we consider only those significant antipatterns
that are minimal, that is, those that are not contained within any other signifi-
cant antipattern [10].

The discovery of minimal significant antipatterns can be efficiently solved by
a refinement search of pattern space [8,10], using a method similar to the SPAM
algorithm [5]. A depth-first search starts at the most general (empty) pattern,
and the search at a particular node of a search tree is continued only while the
pattern is not significant. In this work only the S-step refinement operator [5],
which extends a sequential pattern on the right hand side by one element, is
used: an I-step is not necessary because events here have only one feature (the
finger number).

The complexity of the antipattern discovery algorithm is determined by the
significance level α, because with low α the search space must be more deeply
explored before a significant pattern is reached. Nevertheless, similar to the
statistical significance pruning method of Bay and Pazzani [6] who evaluate
contrast sets using a χ2 statistic, it is possible to compute the minimal p-value
(Equation 1) achievable on a search path. This can lead to the pruning of entire
paths that will not visit a pattern meeting the significance level of α.

4 Results and Discussion

The pattern discovery method described in Section 3 was used to find all mini-
mal antipatterns at the significance level of α = 0.01 (Equation 2). The method
revealed exactly ten significant antipatterns (Table 4): five patterns and their
retrogrades (reversal). The third column shows the total count of the pattern,
and in brackets their piece count (number of pieces containing the pattern one
or more times). Interestingly, all minimal antipatterns are bigrams. The two pat-
terns (4,1) and (2,1) presented at the top part of Table 4 (with their retrogrades,
which are also significant) are the most significant antipatterns discovered, and
correspond to the retrogrades of two of the didactic rare motifs (Table 3).

The second column of Table 4 presents the undirected diatonic interval formed
by the pattern, in the tezeta scale (Table 2). Interestingly, all of the discovered
antipatterns form a melodic interval of a major third or greater (P4, M3, and
P5).

It is worth noticing that these results prove the rarity of the interval of fifths
(perfect in tezeta, diminished and augmented in anchihoye). According to au-
thoritative writings in ethnomusicology [3], the perfect fifth and the cycle of fifths
play a founding role in anhemitonic pentatonic scales such as tezeta. The rarity
of the actual fifths in the songs is therefore significant, and it can be speculated
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Table 4. Bagana antipatterns discovered at α = 0.01. Top: known rare bigram pat-
terns; middle: novel rare patterns; bottom: pentagram patterns of Table 3

P diatonic interval c⊕P E
(
X
)

p-value

(4,1) P4 2 (2) 48 6.3e-19

(1,4) 21 (14) 48 7.5e-06

(2,1) M3 6 (5) 50 1.8e-15

(1,2) 13 (7) 50 2.6e-10

(4,3) P5 2 (2) 30 3.8e-11

(3,4) 3 (3) 30 4.0e-10

(5,2) P5 17 (10) 38 6.6e-05

(2,5) 16 (9) 38 2.7e-05

(3,5) P4 5 (4) 26 5.7e-07

(5,3) 11 (8) 26 0.00077

(2,3,1,5,4) ascending scale 8 (7) 0.11 1

(4,5,1,3,2) descending scale 4 (3) 0.11 1

that this interval is a mental reference that is never (and does not necessarily
need to be) performed. Similarly, the (3,5), a perfect fourth, is the inversion,
i.e. the interval to be added to another one to constitute an octave. Intervals
and their inversions are usually connected in several musical cultures, including
Western art music.

For completeness with the results of Weisser [25], at the bottom of Table 4
are the two pentagram patterns from Table 3. As expected, these patterns are
not frequent, but surprisingly they are not significant according to their p-value
(Equation 1) (therefore they are not found by the pattern discovery method). In
fact, they occur in the corpus many times more than their expected total count.

From a small corpus of bagana songs, antipattern discovery is able to find
the two published rare bigram motifs. The results suggest several directions for
future studies. The novel antipatterns (3,4), (2,5), and (3,5) (with their retro-
grades) found by the method (Table 4) may have new implications for the study
of didactic and distinctive motifs of the bagana. The study of these patterns is
left for future work. Further, in this study only melodic aspects have been con-
sidered, and not rhythmic aspects. Though good results have been obtained with
melodic information only, rhythmic patterns could also be of interest, especially
when linked with melodic aspects, although data sparsity for this corpus may
become an issue. A transcription and encoding of rhythmic information for the
corpus from bagana recordings is in progress. It is also planned to explore posi-
tive pattern as well as antipattern discovery, partitioning the corpus in different
interesting ways, for example according to performer and the scale employed in
a performance. Finally, the use of antipatterns as structural constraints during
the process of generating new bagana song instances will be explored.
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Abstract. One of the goals of the European Flagship Human Brain Project is to 
create a platform that will enable scientists to search for new biologically and 
clinically meaningful discoveries by making use of a large database of neuro-
logical data enlisted from many hospitals. While the patients whose data will be 
available have been diagnosed, there is a widespread concern that their diagno-
sis, which relies on current medical classification, may be too wide and ambi-
guous and thus hides important scientific information. 

We therefore offer a strategy for a search, which combines supervised and 
unsupervised learning in three steps: Categorization, Clustering and Classifica-
tion. This 3-C strategy runs as follows: using external medical knowledge, we 
categories the available set of features into three types: the patients' assigned 
disease diagnosis, clinical measurements and potential biological markers, 
where the latter may include genomic and brain imaging information. In order 
to reduce the number of clinical measurements a supervised learning algorithm 
(Random Forest) is applied and only the best predicting features are kept.  We 
then use unsupervised learning in order to create new clinical manifestation 
classes that are based on clustering the selected clinical measurement. Profiles 
of these clusters of clinical manifestation classes are visually described using 
profile plots and analytically described using decision trees in order to facilitate 
their clinical interpretation. Finally, we classify the new clinical manifestation 
classes by relying on the potential biological markers. Our strategy strives to 
connect between potential biomarkers, and classes of clinical and functional 
manifestation, both expressed by meaningful features. We demonstrate this 
strategy using data from the Alzheimer's Disease Neuroimaging Initiative co-
hort (ADNI). 

Keywords: medical informatics, bioinformatics, disease profiling, categoriza-
tion, clustering, classification. 
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1 Introduction 

One of the goals of the European Flagship Human Brain Project is to create a plat-
form that will enable scientists to search for new biologically and clinically meaning-
ful discoveries by making use of a large database of neurological data enlisted from 
many hospitals. While the patients whose data will be available have been diagnosed, 
there is a widespread concern that their diagnosis, which relies on current medical 
classification, may be too wide and ambiguous and thus hide important scientific 
information. This is also the case with Alzheimer’s disease (AD). 

Alzheimer’s disease is the most common form of dementia. The disease is charac-
terized by the accumulation of b-amyloid (Ab) plaques and neurofibrillary tangles 
composed of tau amyloid fibrils associated with brain cells damage and neurodegene-
ration. The degeneration leads to progressive cognitive impairment. There is currently 
no known treatment, nor one that slows the progression of this disorder. According to 
the 2010 World Alzheimer report, about 35.6 million people worldwide are living 
with dementia, at a total cost of more than US$600 billion in 2010. The incidence of 
AD throughout the world is expected to double in the next 20 years. There is a press-
ing need to find markers to both predict future clinical decline and for use as outcome 
measures in clinical trials of disease-modifying agents and foster the development of 
innovative drugs[1].  

The diagnosis of Alzheimer’s disease requires histopathologic examination, 
which in most cases, can be found only by post-mortem pathological examination (if 
such is done). Therefore, the diagnosis of AD is often based on clinical criteria. In 
2013, an updated criteria was published by the American Psychiatric Association in 
the Diagnostic and Statistical Manual of Mental Disorders 5-th edition (DSM - 5)[2]. 
The clinical criteria are based on a history of insidious onset and progressive deteri-
oration, exclusion of other etiologies, and documentation of cognitive impairments 
that interfere with independence in everyday activities, in one or more of the follow-
ing domains: Learning and memory, Language, Executive function, Complex atten-
tion, Perceptual-motor, Social cognition. A detailed cognitive and general neurologic 
examination is essential for the clinical decision. The DSM-5 also mentions that 
“Evidence of a causative Alzheimer disease genetic mutation from family history or 
genetic testing” can be used as part of the diagnostic criteria[2]. In contrast, neuropsy-
chological testing is not specific to AD, even though it may provide confirmatory 
information on cognitive impairment and can aid in patient management. The role of 
laboratory and imaging investigations is mainly to exclude other diagnoses. Some 
studies suggest that certain biomarkers including increased levels of tau protein[3] 
and decreased levels of beta-amyloid protein ending at amino acid 42 in cerebrospinal 
fluid (CSF) or plasma [4],[5] elevated ApoE and ApoE4 plasma levels[6], and others 
may have predictive value for AD in healthy and in patients with minimal cognitive 
impairment (MCI). These may also aid in distinguishing AD from other forms of 
dementia, and may identify subsets of patients with AD at risk for a rapidly progres-
sive course. However, the role for these measurements in clinical practice has not 
been established.  
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Brain imaging using magnetic resonance imaging (MRI) is part of the diagnostic 
process for dementia. It is mainly used to exclude other possible diagnosis rather than 
AD for the condition. In some studies it has been postulated that a decreased volume 
of certain brain areas is related to AD but contradicting studies found a general 
process of volume reduction with aging. Functional brain imaging with [18F] fluoro-
deoxyglucose positron emission tomography (FDG-PET), functional MRI (fMRI), 
perfusion MRI, or perfusion single photon emission computed tomography (SPECT) 
reveals distinct regions of low metabolism and hypoperfusion in AD. These areas 
include the hippocampus, the precuneus (mesial parietal lobes) and the lateral parieto-
temporal cortex. Clinical studies suggest that FDG-PET may be useful in distinguish-
ing AD from frontotemporal dementia, but this result have not become a standard for 
diagnosis.  

The Alzheimer’s disease Neuroimaging Initiative (ADNI) was conceived at the 
beginning of the millennium as a North American multicenter collaborative effort 
funded by public and private bodies [1], in order to facilitate a progression in the un-
derstanding, assessing and treating AD. The initiative obtains data on patients of nor-
mal cognitive state, early and late mild cognitive impairment (MCI) and AD. Clinical, 
neuropsychological, biological markers, imaging and genetic data is collected on the 
patients. Many articles have been published in vast aspects of AD research from cor-
relations between different measures through prediction of disease course and classi-
fication of patients. Much of the current research focuses on classification methods 
proposed to (i) help diagnose AD patients, (ii) distinguish them from MCI patients as 
early as possible, or (iii) identify MCI patients with high risk of converting to AD. 
Some of the proposed methods focus on one or two specific and promising biomark-
ers such as Magnetic Resonance Imaging results[7], FDG-PET imaging [8] or CSF 
biomarkers [9],  others are trying to combine a number of biomarkers [10]. 

The combined-biomarkers methods are often based on various machine learning 
algorithms: Kohannim et al. [11] implemented the support vector machines (SVM) 
tool in order to classify AD and MCI patients. The authors considered age, sex, BMI, 
MRI summaries, ApoE, FDG-PET and CSF as possible biomarkers for classification 
and found that while MRI measures contributed most to the classification of AD the 
FDG-PET and CSF biomarkers were more useful in classifying MCI.  Hinrichs et al. 
[12] tried to predict conversion from MCI to AD using a multi kernel learning frame-
work on a dataset containing MRI, FDG-PET, CSF assays, ApoE genotype and scores 
from NPSE exam, reported better results than an SVM (but only by 3%-4%). Zhang 
et al. [13] presented a three steps methodology in which we first select a relevant 
subset of features using multi-task feature learning methods, then a kernel-based mul-
timodal-data-fusion method is applied in order to effectively fuse data from the dif-
ferent modalities and finally a support vector regression is trained. Whalhovd et al 
[14] used a repeated measures general linear model regression and logistic regressions 
in order to evaluate the sensitivity of CSF, MR and FDG-PET to the diagnosis and to 
the longitudinal changes of scores for MMSE exam and CDR-SB. 

Our approach deviates from these lines of research in two major ways. First, we 
avoid using the available diagnosis as the ultimate true status of the patients. We do 
acknowledge that the available diagnosis are somewhat informative, and thus can 
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guide us towards the goal, but do not treat them as targets to be predicted. Thus the 
available features are categorized to clinical variables that reflect the functionality of 
the patient, and to biological variables that can serve as potential biological markers. 
The available diagnosis is used to select via classification methods a relevant and 
important set of features among the clinical variables. This subset is then clustered in 
an unsupervised way to create a set of disease categories that take the role of the 
available diagnosis. 

Second, these categories are also predicted from the biological markers in two 
stages: informative subset of potential biological markers is selected by random forest 
model that is difficult to interpret, and then a simpler decision tree classification mod-
el is built, which caters to the medical decision-making process. (See Figure 1) 

In this paper we demonstrate the proposed approach on a limited part of ADNI da-
ta, and on a limited part of the available information about each subject. This is but a 
first step in a longer effort that will include evaluation and further adaptations, before 
returning to the original problem of using hospital data on a grand scale. 

2 Data and Methods 

Data 

We used the ADNIMERGE table, extracted from the ADNIMERGE R package (ver-
sion 0.0.1), in order to combine data from different domains of ADNI data. Variables 
were chosen to reflect both clinical and potential biomarkers. We only used baseline 
data of ADNI stage II + ADNI Go, out of which 796 subjects had no missing values 
on the clinical measurements.  

Pre-processing 

We dropped the "ADAS11" CM since it had near one correlation with the CM 
"ADAS13". In Addition, we removed from the analysis the CM EcogSPTotal and the 
CM EcogPtTotal as they are both they are derived from some of the other sub mea-
surments. In order to reduce skewness of some of the CMs, log transformations (for 
ADAS13, EcogPtMem), logit transformations (for EcogPtDivatt, EcogPtVisspat, 
EcogSpDivatt, EcogSpVisspat, MMSE, MOCA) and inverse transformations (for 
CDRSB, EcogPtLang, EcogPtOrgan, EcogPtPlan, EcogSpLang, EcogSpOrgan, 
EcogSpPlan, FAQ, Ravlt.prec.forgetting) were utilized. The following CMs needed 
no transformation: RAVLT.forgetting, RAVLT.immediate and RAVLT.learning. Six 
new CM were defined to be the difference between the transformed patients' report 
and the partner's report on certain everyday cognition (Ecog) variable. Finally, all the 
variables were scaled to have mean 0 and a variance of 1. 
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Fig. 1. A flow chart summarizing our suggested 3-C approach 

Stage I: Categorization of Variables 

Categorization was done using expert medical knowledge. 
(1) The first category is the disease diagnosis variable as assigned in the ADNI da-

tabase. This assigned diagnosis has five levels: Cognitively Normal (CN), Significant 
Memory Concern (SMC), Early Mild Cognitive Impairment (EMCI), Late Mild Cog-
nitive Impairment (LMCI), Alzheimr Disease (AD).  

(2) The second category is of clinical measurements (CM) that reflect the functio-
nality of the patient. They encompass scores of different cognitive and psycho-
neurological tests and ratings, according to clinical assessment and patient’s or  
partners' report. This battery of cognitive and functional assessment scores include: 
Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer's disease assessment 
scale (ADAS), mini–mental state examination (MMSE), Rey Auditory Verbal Learn-
ing Test (RAVLT), Functional assessment questionnaire (FAQ) Montreal Cognitive 
Assessment (MoCA), Everyday Cognition (Ecog). 
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(3) The third category includes measurements of potential biological markers, 
which were proposed to have a predictive value for disease risk, for deterioration, or 
for severity. These markers are either proteins levels measured in the cerebrospinal 
fluid (CSF) such as ApoE4 [6] or imaging data from different modalities: FDG-
PET[14], AV45 PET[15], and MRI. These will be referred to as potential biomarkers.   

Stage II: Feature Selection and Clustering 

In order to create clinical measurements based classes that are medically easy to in-
terpret, a feature selection procedure was performed on all potential clinical mea-
surements. We used Random Forest, but of course other methods may prove as useful 
or even more. Out of 27 potential CM, we chose to keep those that reduced error-rate 
by 15% or more (see figure 2)  

We then clustered the data based on the selected subset of clinical measurements 
using k-means algorithm (again, another algorithm could have been used). Of course, 
in any such algorithm the number of clusters is a crucial parameter. We chose to 
combine statistical information with medical perspectives. According to the latter, 
there is a natural lower bound to the number of clusters: the measured clinical data 
should represent the different classes of clinical manifestation including patients' 
medical history, background, care-giver or physician impression of cognitive state, 
symptoms, physical exam, neurological exam, neuropsychological tests and ratings. 
From the literature [16] and knowledge about dementia we know that within the clini-
cal spectrum that could be lines from Normal to Alzheimer’s disease there are some 
sub-classes of patients. While all AD patients have a progressive disease and we 
would find the same pathology in brain biopsy they do not have the exact same course 
of illness, so it is reasonable to have at least two classes of AD disease. The normal 
group is likely to be represented by at least two sub-classes. The differential diagnosis 
of dementia includes reversible factors that are assumed to be recognizable in the 
screening process. The other likely sub-class has irreversible causes, among which 
Alzheimer’s disease accounts for about half the cases. Other considerable causes are 
vascular dementia, dementia with lewy bodies (DLB) and frontotemporal 
dementia[17].  We therefor assess that at least three subclasses should be represented 
encompassing these phenomena. The last reasonable subclass would be for elderly 
with minimal cognitive impairment that will not progress to one of the mentioned 
diseases. In summary, it appears that at least 8 subclasses should be considered.  

This medical insight into the potential number of classes was combined with the 
statistical point of view, utilizing the gap statistic plot (see figure 3). A cutoff of 15% 
error-reduction was set to choose the number of clusters.  

Stage III: Classification Using Potential Biomarkers 

At this stage we classify the clinical measurements based classes using the set of po-
tential biomarkers. In principle this stage also consists of two parts. First, using im-
portance analysis by, say, random forests, where a promising subset of the biomarkers 
is selected.   The final classification step is done using hierarchical decision trees, or 
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other rule based analysis, utilizing the selected subset. This is essential in order to 
give easy interpretation to the diagnosis process. In the envisioned application to hos-
pital data the number of potential biomarkers may increase to thousands, before in-
corporating genomic information. Thus, the subset selection stage may be essential. In 
the current analysis we skip this stage as the number of potential biomarkers is small. 

Algorithms and Software 

Analyzes were performed using R [18] . For assessing the importance of the clinical 
measurements (as a preparation to the Clustering stage) we used the classification 
method of the {randomForest} R package [19]. Importance was measured as the mar-
ginal loss of classification accuracy for each variable by randomly permuting it on the 
test (out of bag) validation set.  A “junk” variable was added, taking the form of an 
independent random uniform [0,1] variable, in order to signal variables above the 
noise level. For clustering we used the R package {cluster} [20], using the gap statis-
tic [21] to choose the number of clusters. The gap statistic was based on 100 boots-
tarps and calculated for up to 20 clusters. Clustering was done using k-means with 10 
iterations at most, based on the Hartigan and Wong algorithm. Classification and 
regressions tree (CART) was constructed using the {rpart} R package, the tree was 
constructed with the minimal possible  number of observations for a split set to zero, 
minimal number of observation in a leaf set to zero, and with a 10-fold cross valida-
tions for tuning the complexity parameter. Scatter plot matrix was produces using the 
{psych} R package [22].  

3 Results 

Stage IIa: Out of 27 potential CM, we chose to keep the 7 CM that reduced error-rate 
of predicting the assigned diagnosis by 15% or more. (See figure 2)  

Stage IIb: These variables were clustered using k-means with varying number of 
means and the gap statistics plot for aid in the choice of the number of clusters. The 
first local maxima of the gap statistics above the clinically determined 8 was chosen 
to indicate that 10 clinically determined classes are needed. In order to discuss the 
meaning of the newly created classes we present their cross-classification with the 
assigned diagnosis in Table 1 and a profiles plot in Figure 4. 

Classes 1 and 3 contain nearly all the participants with an assigned diagnosis of 
AD. Class 3 might be a class of more severe AD cases (see minimal average level on 
all coordinates of the profile plot). From this plots we also see that Class 1 members 
score higher on EcogPtLang and EcogPtMem than those classified to 3. Classes 4,5 
and 10 hold the majority of patients whose assigned diagnosis is CN. It is interesting 
that while these classes have a very small amount of patients with different diagnoses 
they were still separated to three classes based on their clinical manifestation. Class 4 
has the highest “MMSE” and a low “CDRSB” scores which points to a group of clini-
cally normal participants, but the score in “ECogPtLang” is lower than other classes 
which means that these participants are more concerned of their personal observation  
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Fig. 2. Feature Selection for Clinical measurements. Only CM with mean decrease of accuracy 
of 15% or more were kept. 

 

Fig. 3. The Gap statistics plot using 100 bootstrap samples. A local maximum at k=10 suggest 
10 clusters are appropriate to the data at hand. 

of language difficulties. Classes 6 and 7 include normal and mildly affected partici-
pants (sharing the same branch in the decision tree), but differ from each other espe-
cially in their patients' "ADAS13" scores. Another group of classes is 2,8,9 in which 
patients are distributed almost uniformly but their disease manifestation differ from 
one another (though they all seem to have a progressive disease but not to a level 
which qualifies as AD).  
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Table 1. Cross-classification table of originally assigned diagnosis vs clinical classes 

1 2 3 4 5 6 7 8 9 10 
CN 0 5 0 37 59 11 15 2 3 44 

SMC 1 5 0 26 16 2 31 1 6 6 
EMCI 23 67 5 1 3 0 19 62 79 4 
LMCI 35 19 32 0 0 0 1 28 31 0 

AD 44 0 71 0 0 0 0 2 0 0 

 
Inspecting the decision tree representing the classes (figure 5), we can see that 

“FAQ” feature had much influence on the clustering: the classes with low “FAQ” are 
1,3,9 meaning those patients would be likely to have a progressive disease. Further 
down on the right branch of the tree, class 3 has a low “MMSE” score and class 1 has 
low score on “ECogPtLang” representing the interference of language impairment of 
the patient’s life in his own perception. Walking down the left branch of the tree the 
first split sends down the right branch all patients with a “CDRSB” score of over 0.33, 
this by definition of the inclusion criteria will not allow normal participants in that 
branch. Clusters 2,8,9 occupy that branch of the CART decision tree.  

This decision tree gives the possibility to determine rules and to explain to the phy-
sician the way the classes where created from the data. The first two branches divide 
the participants into "Normal" and "Not Normal". This division of the data is done 
using 2 variables: “FAQ” and “CDRSB”, that are related to disease state definitions. 
Then, both branches use the level of “MMSE” to create a separation within each 
branch between normal and AD affected. In a lower and fine distinction the next junc-
tion divides them to a class of participants according to ECogPtLang value meaning 
that the participant feels at least occasionally that his language ability is worse than it 
was 10 years earlier.  

 

Fig. 4. Profiles plot (parallel coordinates) demonstrating the values of the CM across classes. 
Note that some of the CM were reversed so that high level of all CMs will represent normal 
status. 
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Stage III: The potential biomarkers used to classify subjects to the ten clinically rele-
vant classes consist of “ApoE”, “AV45”, “FDG” and some gross imaging volume 
measurements: “Entorhinal”, “Fusiform”, “Hippocampus”, “ICV”, “Midtemp”, “Ven-
tricles”, “Whole-brain”. The results of the use of the Random Forest algorithm are 
presented in table 2 in a Confusion matrix of classification from the Potential Bio-
markers (PB) to the 10 clusters created in step II. Even though error rates are quite 
high, if we take into consideration the interpretation of the prior step, other explana-
tion could  be considered. For example, as shown above, classes 1,3 contain most of 
severely ill patients.  If we look at the confusion matrix most of the cases of class 3 
are either classified as class 1 or 3. Other classes are rarely assigned. If we were join 
these two classes error rate might drop, but since two clusters were formed it might be 
interesting to further investigate the clinical difference between them and look for 
new biomarkers that are able to capture these difference. The PB decision tree (figure 
6) distinguishes primarily between the patients designated to class 3 concurrent with 
severely symptomatic disease. This branches according to the value of “FDG”. This 
coincides with that FDG is a known marker of AD.  

 

 

Fig. 5. Decision tree representing the classes resulted from the clustering step 
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Table 2. Confusion matrix resulting from class prediction based on potential biomarkers 

 1 2 3 4 5 6 7 8 9 10 
class 
error 

1 13 6 26 0 3 0 0 6 8 0 79% 

2 4 26 2 4 6 0 2 16 18 4 68% 

3 15 2 40 0 1 0 0 4 9 1 44% 

4 0 9 1 1 4 0 3 7 7 1 97% 

5 2 16 0 1 5 0 2 4 19 6 91% 

6 0 6 0 0 0 0 0 2 1 0 100% 

7 1 8 1 0 6 0 3 5 6 1 90% 

8 5 19 6 2 3 0 3 10 28 2 87% 

9 8 21 16 2 4 0 1 12 27 3 71% 

10 0 15 1 1 5 0 0 6 10 5 88% 

 

Fig. 6. Decision tree representing the prediction of classes from PB 

4 Discussion 

The criteria used today according to DSM-5[2]  for diagnosis of AD relies on the 
clinical and functional ability of the patient. Most biological exams, such as imaging 
results, are mainly used to rule out other possible diagnoses. In our strategy we there-
fore differentiate between variables which are descriptive of the patient’s functional 
conditions and variables which are collected in order to try and find possible disease 
causes, the latter being targets for drug development or surrogate markers for disease 
stage or trajectory.  

A diagnosis depends on the time it was made and the available knowledge at that 
moment. DSM V presented ten etiological subtypes which did not appear in prior 



84 T. Galili et al. 

 

editions. Other than the explicit link to specific known etiologies, most of these sub-
types’ criteria are largely similar to one another. However, there are important  
and often subtle differences between these disorders [2]. We present an approach 
separating patient to groups according to their clinical data. Interestingly, our data 
also identifies 10 classes that might represent a more accurate distinction of the pa-
tient rather than 5 diagnosis criteria given by the ADNI protocol. 

We do not claim that our findings present our best current views on the problem. 
We are very aware that this was but a sketch of strategy that happened to offer some 
new insights. Further exploration is needed on a few fronts: The use of the raw exams 
data instead of combined scores, adding potentially important measurements, enligh-
tenment of the data by expert knowledge such as differing questions to the different 
cognitive function domain measured could all help in creating more subtle and fine 
clusters of patient’s disease presentation. From a statistical point of view, different 
clustering procedures and/or different selection procedures may yield better results 
under different settings, an issue we have not started to address at all.  

We believe that the attempt to predict the assigned diagnosis from very specific po-
tential biomarker is futile. The route we have taken is to predict more subtle disease 
manifestation classes. Such a process needs further exploration but has the potential to 
fit a small biomarker arrow to the clinical bull’s eye. In our data, only a few biomark-
ers were available and therefore we used all of which in the attempt to predict the 
classes. Had the data been richer in potential biomarkers, as expected from hospital 
data, we may had to perform a variable selection step for the PB as well.  

In many studies and definitely in the ADNI study a vast amount of measurable in-
formation is collected. Is it enough? The tacit knowing held and applied by proficient 
practitioners represents a valuable form of clinical knowledge, which has been ac-
quired through experience, and which should be investigated, shared, and contested 
[23]. In clinical work, tacit knowing constitutes an important part of diagnostic  
reasoning and judgment of medical conditions. Practitioners apply a broad range of 
experiential knowledge and strategies that are hardly mentioned in the textbooks or 
implicated in the analysis of research results. If we could use this known, yet  
sometimes ignored, information and quantify it - a valuable aspect of analysis and 
interpretation of the results could be added. In this work we implemented clinical 
categorization of features to better model the diagnosis process. Further exploration is 
needed of both the data nuances and methods, before trying to scale to the much hard-
er problem associated with regular hospital data. We do believe that the strategy we 
have outlined in this work is capable of achieving that. 
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Abstract. The topic of this work is the presentation of a novel clustering
methodology based on instance similarity in two or more attribute layers.
The work is motivated by multi-view clustering and redescription mining
algorithms. In our approach we do not construct descriptions of subsets
of instances and we do not use conditional independence assumption of
different views. We do bottom up merging of clusters only if it enables
reduction of an example variability score for all layers. The score is de-
fined as a two component sum of squared deviates of example similarity
values. For a given set of instances, the similarity values are computed by
execution of an artificially constructed supervised classification problem.
As a final result we identify a small but coherent clusters. The method-
ology is illustrated on a real life discovery task aimed at identification
of relevant subgroups of countries with similar trading characteristics in
respect of the type of commodities they export.

1 Introduction

Clustering is an optimisation task which tries to construct subpopulations of in-
stances so that distances between instances within each subpopulation are small
while distances between instances in different subpopulations are as large as pos-
sible [1]. The main problem of clustering algorithms is to define an appropriate
measure of distance between instances. It is well-known that different measures
may result in identification of different clusters [2,3]. The most common measure
is Euclidean distance that is well defined for numerical attributes [1]. Nominal
attributes can be handled only after some transformations. When dealing with
numerical attributes it is necessary to normalize the data in the preprocessing
step in order to ensure equal relevancy of all attributes regardless of their abso-
lute values [1]. Results obtained by clustering are unreliable in the sense of the
number of constructed clusters and in the sense of instances included in clusters.

A multi-view learning uses more than one set of attributes in order to improve
quality of both supervised and unsupervised techniques [4,5]. Redescription min-
ing can be interpreted as a clustering approach in which the quality of the re-
sults is ensured by the condition that resulting clusters must have meaningful
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interpretations in independent attribute layers [6,7]. In this work we present an
approach to reliable clustering that reuses the basic ideas of multi-view cluster-
ing and redescription mining in a novel setting. We call it multilayer clustering
because it has been originally developed for analysis of network data available in
more than one layer [8]. In contrast to redescription mining, we do not construct
descriptions of subsets of instances and in contrast to multi-view clustering we
do not assume conditional independence of layers.

The first step is to determine the similarity of instances by executing a super-
vised machine learning task on an artificial problem in which the target set of
instances are positive examples and negative examples are obtained by random
shuffling of positive examples. We compute similarity tables for each attribute
layer independently and then search for clusters that satisfy similarity conditions
in all available layers. The main characteristic of the approach is that the re-
sulting clusters are small but very coherent. Additionally, the methodology can
be directly implemented on original attribute values without any transforma-
tion and normalization. When compared to redescription mining, results are less
sensitive in respect of noise. The novel methodology is presented in Section 2.
Its application is illustrated on a real world problem of recognizing groups of
countries with similar economical profile based on export data for 106 different
commodity types. It is a good example of clustering in a domain with a lot of
noisy and imprecise data. Besides export data, we have a separate set of 105
attributes describing socio-economic characteristics of the countries. In this way
we have a typical multi-view setting with two independent attribute layers for
a fixed set of examples consisting of 155 countries. The obtained results are
presented in Section 3.

2 Clustering Related Variability Reduction Algorithm

In machine learning we have a set of examples E that are described by a set
of attributes A. Specifically in redescription mining, it is assumed that the set
of attributes may be partitioned in at least two disjoint parts (layers). The
partitioning is not random but a consequence of the meaning of the attributes
or the way the data have been collected. For example, in a medical domain
the first layer may contain anamnestic data (medical history of patients) while
the second layer may contain laboratory measurements. In some other domain,
different layers may contain the same attributes but collected in various time
periods. The goal is to construct coherent clusters, that are as large as possible,
in the complete attribute space.

2.1 Single Layer Clustering

Let us assume a basic clustering task in which we have only one layer of at-
tributes. The approach consists of two steps. In the first step we compute the
so called example similarity table. It is an N times N symmetric matrix, where
N is the number of examples. All its values are in the range 0.0 - 1.0. A large
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value at a position i, j (i �= j) denotes large similarity between examples i and
j. In the second step we use the table in order to construct clusters.

Example Similarity Table (EST) Computation
We start from the original set of N examples represented by nominal and numer-
ical attributes that may contain unknown values. The next step is to define an
artificial classification problem so that the examples from the original set make
positive examples while we artificially construct negative examples by shuffling
values of the positive examples. Shuffling is done at the level of attributes so
that we randomly mix values among examples. The values remain within the
same attribute as in the original example. As a result, we have the same values
in positive and negative examples but in negative examples we have randomized
connections between attributes. Typically we construct 4 times more negative
examples than positive examples.

Next, we use a supervised machine learning to build a predictive model for
the discrimination between positive cases (original examples) and negative cases
(examples with shuffled attribute values). The goal of learning is not the pre-
dictive model itself but information on similarity of examples. Machine learning
approaches in which we can determine if some examples are classified in the
same way are appropriate for this task. For example, in decision tree learning it
means that examples end in the same leaf node while in covering rule set induc-
tion it means that examples are covered by the same rule. In order to estimate
similarity between examples it is necessary to do a statistics over a potentially
large set of classifiers. Additionally, a necessary condition for a good result is
that classifiers are as diverse as possible and that each of them is better than
random. All these conditions are satisfied by Random Forest [9] and Random
Rules algorithms [10]. We use the latter approach in which we typically construct
about 1500 rules for each EST computation.

Similarity of examples is determined so that for each pair of examples we
count how many rules are true for both examples. The example similarity table
presents the statistics for positive examples (original set of examples). A pair of
similar examples will be covered by many rules while no rules or a very small
number of rules will cover pairs that are very different in respect of their attribute
values. Final EST values are obtained by the normalization of the determined
counts by the largest detected value.

Table 1 presents an example of the similarity table for a set of 6 examples
extracted from a real case with 155 examples. On the left side is the table with
number of rules covering pairs of examples. Diagonal elements represent total
number of rules covering each example. By the normalization of this table we
obtain EST that is presented on the right side. It can be noticed that we have two
very similar examples (examples 2 and 5), three similar (examples 1,3, and 4),
and one very different example 6. The maximal value in the table on the left side
is 97 and EST values (the table on the right side) are obtained by normalization
with this value.
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Table 1. Example of an EST

ex1 ex2 ex3 ex4 ex5 ex6

ex1 38 0 27 28 0 7
ex2 0 97 3 1 97 3
ex3 27 3 47 16 3 1
ex4 28 1 16 45 1 4
ex5 0 97 3 1 97 3
ex6 7 3 1 4 3 39

ex1 ex2 ex3 ex4 ex5 ex6

ex1 0.39 0.0 0.28 0.29 0.0 0.07
ex2 0.0 1.0 0.03 0.01 1.0 0.03
ex3 0.28 0.03 0.48 0.16 0.03 0.01
ex4 0.29 0.01 0.16 0.46 0.01 0.04
ex5 0.0 1.0 0.03 0.01 1.0 0.03
ex6 0.07 0.03 0.01 0.04 0.03 0.40

Clustering Related Variability (CRV) Score
The second step in the process of clustering starts from the EST. The goal is to
identify subsets of examples that can reduce variability of values in the EST. For
this purpose we define a so called Clustering Related Variability (CRV) score. It
is the basic measure which guides the search for iterative bottom up clustering.
CRV score is not the other name for some type of example similarity measure.
It is defined for a single example but so that the value depends on the examples
it is clustered with. A cluster may consist of a single example.

Clustering related variability for an element i contained in a cluster C is
denoted by CRVi. It is the sum of squared deviates of EST values in row i
(Xi = {xi,j , j ∈ {1, . . . , N}}) computed separately for examples that are within
and outside cluster C. CRVi = CRVi,wc + CRVi,oc.

Within cluster value CRVi,wc =
∑

j∈C(xi,j − xmean,wc)
2 is computed as a

summation over columns j of row i corresponding to examples included in the
same cluster with example i. In this expression xmean,wc is the mean value of
all xi,j in the cluster. When example i is the only example in cluster C then
CRVi,wc = 0 because we compute the sum only for value xi,i and xmean,wc = xi,i.

Outside cluster valueCRVi,oc is defined in the same way asCRVi,wc but for xi,j

values of row i not included in clusterC. The used xmean,oc is the mean value of the
EST element values not included in the cluster and it is different from the xmean,wc

used to compute CRVi,wc. When example i is the only example in a cluster then
CRVi,oc is the sum of squared deviates for all values in row i except xi,i.

The final CRV value of a cluster C is the average sum of all the CRV values

for the elements contained in the cluster. That is, CRVC =
∑

i∈C CRVi

|C|

Example of CRV Computation
We will use the data from the EST, presented in Table 1, to compute the CRV
value for the example (ex1) contained in the cluster C. In this demonstration we
will concentrate on three main cases: when a cluster contains only example ex1,
when ex1 is clustered with ex3, and finally when it is clustered both with ex3
and ex4. By visual inspection of EST we can immediately notice some similarity
among examples {ex1, ex3, ex4}. The goal is to demonstrate the CRV value
computation and to show how its value decreases when clusters contain similar
examples.
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If example ex1 is the only example in a cluster: C = {ex1} then:
CRVex1,wc = (0.39− 0.39)2 = 0
CRVex1,oc = (0.0−0.13)2+(0.28−0.13)2+(0.29−0.13)2+(0.0−0.13)2+(0.07−
0.13)2 = 0.08
CRVex1 = 0.08
When we add a new element (ex3) to this cluster: C = {ex1, ex3}
CRVex1,wc = (0.39− 0.34)2 + (0.28− 0.34)2 = 0.01
CRVex1,oc = (0.0− 0.09)2+(0.29− 0.09)2+(0.0− 0.09)2+(0.07− 0.09)2 = 0.06
CRVex1 = 0.07
Finally, when we have: C = {ex1, ex3, ex4}
CRVex1,wc = (0.39− 0.32)2 + (0.28− 0.32)2 + (0.29− 0.32)2 = 0.01
CRVex1,oc = (0.0− 0.02)2 + (0.0− 0.02)2 + (0.07− 0.02)2 = 0.00
CRVex1 = 0.01

Single Layer Algorithm
It is possible to define the following bottom up clustering algorithm that is based
on the CRV score.

CRV score based single layer clustering
1) Each example is in its own cluster
2) Iteratively repeat steps 3-6
3) For each pair of clusters x,y compute

CRV x (mean CRVi for examples in cluster x)
CRV y (mean CRVi for examples in cluster y)
CRV xy (mean CRVi score in union of clusters x and y)
DIFF = mean(CRV x,CRV y)− CRV xy

4) Select pair of clusters x,y with maximal DIFF value
5) If maximal DIFF is positive then merge clusters x and y
6) Else stop.

The algorithm has a property that at first most similar examples will be
merged together. In this way it produces a hierarchy of clusters. It may be
noticed that in contrast to most other clustering algorithms, it has a very well
defined stopping criteria. The process stops when further merging cannot result
in reduction of the example variability measured by the CRV score. It means that
the algorithm automatically determines the optimal number of clusters and that
some examples may stay unclustered (more precisely, they remain as clusters
consisting of only one example).

2.2 Multilayer Algorithm

The basic lesson learnt from redescription mining and multi-view clustering is
that the reliability of clustering can be significantly improved by a requirement
that the result should be confirmed in two or more attribute layers. The approach
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for clustering based on example similarity has been presented in the previous
section for a single layer case. It can be easily extended to clustering in multilayer
domains.

If we have more than one attribute layer then for each of them we compute the
example similarity table independently. For each layer we have to construct its
own artificial classification problem and execute the supervised learning process
in order to determine similarity between examples. Regardless of the number
and type of attributes in different layers, the tables will be always matrices of
dimension N times N . The reason is that by definition we have the same set of
N examples in all layers.

After the computation of similarity tables, we execute the second step of
the clustering process. Conceptually it is identical to a single layer approach.
The main difference is that merging of two clusters is possible only if there
is variability reduction in all layers. For each possible pair of clusters we have
to compute potential variability reduction for all attribute layers and to select
the smallest value for this pair. If this minimal value is positive it means that
merging of the clusters enables variability reduction in all layers. When there
are more pairs with positive minimal value, we chose the pair with the largest
minimal value and then we merge these clusters in the current iteration.

CRV score based multilayer clustering
1) Each example is in its own cluster
2) Iteratively repeat steps 3-8
3) For each pair of clusters x,y do
4) For each attribute layer do

CRV x (mean CRVi for examples in cluster x)
CRV y (mean CRVi for examples in cluster y)
CRV xy (mean CRVi score in union of clusters x and y)
DIFF = mean(CRV x,CRV y)− CRV xy

5) For the given pair x,y select minimal DIFF for all layers
6) Select pair of clusters x,y with maximal DIFF value
7) If maximal DIFF is positive then merge clusters x and y
8) Else stop.

When we do clustering in two or more layers we have a conjunction of neces-
sary conditions for merging two clusters. A typical consequence is that resulting
clusters are smaller than in the case of a single layer clustering. This is illustrated
by the experiment presented in the next section.

3 Experimental Data and Results

Our experimental work was conducted on the trading data that are publicly
available from UNCTAD [11]. This database contains information for each pair
of countries about the value of trade for 106 different commodity types. We
have selected 155 countries from the database with relatively small number of
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unknown values for the year 2012. For them we have computed the total export
value for the 106 different commodities. Finally, for each country we normalized
indicator values by the value of country’s total export in the year 2012. The re-
sult is a table with 155 rows and 106 columns. All known values are in the range
0-100 representing the percentage of export that a country has in the respective
commodity type. Primary commodities, food and live animals, meat and meat
preparations, machinery and transport equipment are some examples of aggre-
gated commodity types. Some of the commodity types overlap. The prepared
data table is publicly available from http://lis.irb.hr/DS2014data/ accompanied
with the complete list of countries and the list of commodities.

The discovery task is to identify relevant subgroups of countries with a similar
export patterns. The results are potentially relevant for understanding global
trends, for example, by comparing the current subgroups with those obtained
from data in year 2000. Our work has been motivated by the necessity to analyse
and predict partial interests of EU countries in respect of a potential free trade
agreement with China.

Table 2. Three largest clusters from export data

Cluster with 27 countries: Exporters of primary commodities
Gambia, Seychelles, Zambia, Burkina Faso, Guyana, Ethiopia, Mali, Paraguay,
Malawi, Chile, DR Congo, Tajikistan, Afghanistan, Benin, Peru, Belize, Cote
d’Ivoire, Mozambique, Guinea, Papua New Guinea, Ghana, Australia, Bolivia,
Oman, Russian Federation, Kazakhstan, Romania

Cluster with 24 countries: Exporters of manufactured goods
Germany, Japan, Czech Republic, Slovakia, Italy, Slovenia, Austria, China-
Taiwan, R. Korea, Hungary, Poland, Portugal, Turkey, Finland, Sweden,
Bangladesh, Cambodia, Luxembourg, France, China, Thailand, USA, Mexico,
United Kingdom

Cluster with 17 countries: Fuel exporters
Algeria, Libya, Nigeria, Iraq, Angola, Congo, Brunei, Azerbaijan, Aruba, Gabon,
Venezuela, Yemen, Iran, Saudi Arabia, Kuwait, Qatar, Mongolia

Table 2 presents the three largest clusters constructed from the export data
layer by the single layer methodology described in Section 2. We have given
a name to each cluster based on the common properties of included countries
that have been identified by a simple statistical analyses. The largest cluster
includes 27 countries that are mainly primary commodity exporters. The other
two clusters contain exporters of manufactured goods and fuel exporters. It can
be recognized from the lists of countries included in these clusters that the al-
gorithm has been successful in identification of similarities between countries.
However, clusters also include some unexpected results such as: Australia, Rus-
sia, and Romania being in the cluster of primary commodity exporters together
with Guyana and Ethiopia, Bangladesh and Cambodia being in the cluster with
Germany and Japan, while Mongolia participates in the cluster of fuel exporters.
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Table 3. Three largest clusters from socio-economic data

Cluster with 22 countries: Rural and young population
Ethiopia, Malawi, Uganda, Rwanda, Papua New Guinea, Niger, Burkina Faso,
Tanzania, Afghanistan, Kenya, Tajikistan, Mozambique, Yemen, Togo, Zambia,
Zimbabwe, DR Congo, Guinea, Madagascar, Mali, Benin, Senegal

Cluster with 18 countries: Modest level of rural population
Estonia, Hungary, Ukraine, Latvia, Austria, Italy, Lithuania, Czech Republic, Ger-
many, Bulgaria, Belarus, Cuba, Spain, Greece, Poland, Croatia, Portugal, Switzer-
land

Cluster with 16 countries: Urban population
Denmark, France, Sweden, Finland, Netherlands, New Zealand, Iceland, Uruguay,
Japan, Belgium, Malta, Australia, Canada, Norway, UK, USA

One possible interpretation is that only export data is insufficient information
for effective and very consistent clustering of countries. In order to increase the
quality of the results we have prepared the second layer of attributes. It consists
of 105 World Bank indicators [12] that describe socio-economic characteristics
of countries in the year 2012. We have selected indicators from economic policy,
health, agriculture, and gender sets of public World Bank data. Our goal has
been to select the most representative indicators from each field. The additional
criterion was to use only relative indicators, that do not need normalization,
in order to be comparable between countries of different size. We present a
small sample of selected indicators for better insight: “Life expectancy at birth”,
“Percentage of population ages 15-64”, “Public health expenditure as percentage
of gross domestic product”, and “Central government debt as percentage of gross
domestic product” etc. The constructed attributes are all numeric and there is
a noticeable amount of missing values. The data set is prepared for the same set
of 155 countries as in the UNCTAD dataset and it is publicly available from our
web site.

Before using both layers, we will present the clustering result obtained with
socio-economic data in Table 3. It is interesting because it demonstrates that
a dominant socio-economic characteristic of a country is the ratio of rural and
urban population. The result is not coherent and it happens that the cluster
with moderate number of rural population includes countries like Germany and
Switzerland but also Cuba and Belarus. In the same way, the cluster of countries
with high percentage of urban population includes USA and Norway together
with Uruguay and Malta. From the methodological point of view this is not a
bad result but constructed clusters are not very useful for our discovery task
because they tend to group economically very different countries.

Next, we have merged the export and socio-economic data into a single layer
consisting of 211 attributes. The result obtained by the single layer methodol-
ogy on this data has been very similar to the result obtained only on export
data. Again, the three largest clusters represent primary commodity exporters,
manufactured goods exporters, and fuel exporters. The results are now more
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Table 4. Clusters detected by the multilayer approach in which export data and socio-
economic data are in different layers

Cluster 1 with 8 countries
Coted’Ivoire, Ghana, Guinea, Mozambique,
Papua New Guinea, Mali, DR Congo, Zambia

Cluster 2 with 4 countries
Czech Republic, Germany, Austria, Italy

Cluster 3 with 3 countries
Congo, Iraq, Angola

Cluster 4 with 3 countries
Poland, Portugal, Hungary

Cluster 5 with 3 countries
Finland, Sweden, Japan

Cluster 6 with 2 countries
Kuwait, Qatar

Cluster 7 with 2 countries
Ethiopia, Malawi

Cluster 8 with 2 countries
Latvia, Lithuania

consistent, Mongolia is discarded from the fuel exporters cluster and Romania
and Russia are not in the cluster of primary commodity exporters. However,
Australia and Iceland have been included in this cluster!

Finally, we present the result obtained by the multilayer approach in Table 4.
In this approach, export and socio-economic data have been treated as separate
layers. At first glance it can be noticed that the constructed clusters are sig-
nificantly smaller but more coherent. The largest cluster has 8 countries that
can be described as a group of countries with rural population that export pri-
mary commodities. Their basic common characteristic is that more than 87% of
their exports are primary commodities. For Mozambique it is aluminium, beryl-
lium, and tantalum, Ghana exports gold and diamonds, Zambia copper, Mali
exports gold and kaolin while Cote d’Ivoire is one important exporter of cocoa.
Some other common characteristics of these countries are that they export a low
amount of manufactured goods (less than 11%) and a low amount of other food
staff excluding tea, coffee, cocoa and spices (less than 24.5%).

For our discovery task, much more relevant result is the identification of a
group of four EU countries: Czech Republic, Germany, Austria and Italy. At
first, it may be a bit surprising that these countries have been identified as a
most coherent group of EU countries. Recognition of their common character-
istics is not a simple task because it is a small cluster and each of these four
countries share a lot of common characteristics with other developed economies,
especially those in EU. A potential solution is a simple statistical comparison
of properties with most similar examples not included in the cluster. In multi-
layer methodology most similar examples may be identified as those included
in larger clusters constructed for single layers that contain examples from mul-
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tilayer clusters. Figure 1 illustrates the relations for our domain in which, for
example, the cluster consisting of Czech Republic, Germany, Austria and Italy
is a subset of the clusters of manufactured goods exporters (layer 1) and the
cluster of countries with modest rural population (level 2). In this figure arrows
denote superset/subset relation and numbers denote sizes of clusters. Clusters
at the basic layers are identified by the given names representing dominant char-
acteristic of included countries while the clusters obtained by the combination
of layers are represented by lists of included countries.

Fig. 1. Approximative superset/subset relations among constructed clusters

By using this approach we have identified the following decisive characteristics
for the cluster consisting of Czech Republic, Germany, Austria, and Italy: a) high
export of medium-skill and technology-intensive manufactures, b) low export
of primary commodities, precious stones and non-monetary gold, c) low but
always present export of beverages and tobacco, d) very low percentage of young
population, d) low market capitalization of companies relative to gross domestic
product. Figure 2 presents distributions of these five characteristics in three
different clusters: in the cluster of 24 countries representing manufactured goods
exporters, cluster of 18 countries that have modest level of rural population, and
finally for the target cluster consisting of four countries. This figure demonstrates
that the resulting multilayer cluster has very narrow range of values for some
relevant attributes. Furthermore, this fact is also true for some properties which



Multilayer Clustering 97

Fig. 2. Distribution of values in three different clusters for five attributes: three from
the export layer and two from the socio-economic layer

do not occur in the supersets. In this way we identified that low percentage of
young population and low market capitalization of companies as percentage of
GDP are additional properties of this cluster of countries. Identification of these
properties may present a potentially relevant discovery result.

4 Conclusions

In this work we have presented a novel clustering methodology that may be useful
in different discovery tasks. The most decisive advantages are that it may be
successfully used on instances described by both numeric and nominal attributes
and that it has a well defined stopping criteria. Experimental evaluation of this
methodology and its comparison with other known approaches will be a topic
of our future work. In this paper we used the country level trading data for the
illustration of the results one can expect from this novel methodology. The results
are encouraging because we succeeded to get coherent clusters with examples
that have narrow ranges of attribute values in some relevant attributes. In the
interpretation of the common properties of the included examples, countries in
our case, we have used the property that clusters constructed by the multilayer
approach are typically subsets of clusters obtained on single layers. This approach
enables us to undertake a statistical comparison with most similar examples
that are not included in the resulting clusters. The most relevant problem of the
methodology is that constructed clusters are small and that they will tend to be
even smaller if additional data layers are included.
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Abstract. With an ever growing number of published scientific stud-
ies, there is a need for automated search methods, able to collect and
extract as much information as possible from those articles. We propose
a framework for the extraction and characterization of brain activity ar-
eas published in neuroscientific reports, as well as a suitable clustering
strategy of said areas. We further show that it is possible to obtain three-
dimensional summarizing brain maps, accounting for a particular topic
within those studies. After, using the text information from the articles,
we characterize such maps. As an illustrative experiment, we demon-
strate the proposed mining approach in fMRI reports of default mode
networks. The proposed method hints at the possibility of searching for
both visual and textual keywords in neuro atlases.

Keywords: Image mining, fMRI, meta-research, default mode network,
text mining, neuroscience, brain mapping.

1 Introduction

In the field of neuroscience, research results often take the form of activa-
tion/suppression of activity in the brain, as a response to particular stimuli
conditions, cognitive tasks, or pathological states, in a variety of image settings,
orientations and resolutions. By browsing through those images and looking for
specific areas, a neuroscientist is able to find corroborating evidence for his/her
own research findings or suggestions of new areas of interest. This manual search
stems from the lack of access to the original, raw data sets, resorting then to
search the surrogate data itself. With an exponential increase in the number of
published studies, that task becomes impractical, in view of the extent of human
efforts required, e.g. [7,8].

In a field such as neuroscience, any meta-analysis study would clearly benefit
from a more automated way to produce summaries of research findings from
different articles. Those findings are encoded both in text structures, as well as
in image content, providing ample scope for mining information at various levels.
Nevertheless, the extraction of such data is not simple, and is subject to intense
research in information retrieval and data mining [5].

It is, therefore, important that robust automated means of information ex-
traction are further developed. These methods should allow for comparisons

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 99–110, 2014.
© Springer International Publishing Switzerland 2014
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between articles, either focusing on particular areas of the brain or reported
experimental setups. A recent, fully automated framework was proposed in by
Yarkoni et al. [16], based on coordinate information explicitly reported in the
scientific manuscripts. By combining text-mining, meta-analysis and machine-
learning techniques, they generated probabilistic mappings between cognitive
processes and neural states. In addition to requiring the existence of activation
coordinates, which are not always reported, none of the vast visual information,
such as figures and charts, is used to generate the aforementioned mappings.

In this manuscript, we propose a new framework to retrieve and structure vi-
sual information from neuroscientific articles, and use co-occurring text to char-
acterize said information. We focus on the analysis of neuroscientific publications
using functional magnetic resonance imaging (fMRI) data. We also assume that
fMRI images contain summarizing results of the studies conducted, and that
they may provide further information than the one extracted from text alone.
To restrict the scope of application to a clear topic, we apply our method to
manuscripts focusing on studying the resting state or default mode networks
(RSN/DMN). These networks are a very active research topic, which still poses
specific conceptual and methodological difficulties [14].

Fig. 1 shows the main areas of activation of the DMN, with axial, sagittal and
coronal views from left to right, respectively. The highest areas of activity are the
typical five subsystems: the posterior cingulate cortex (PCC), the precuneous,
the medial pre-frontal cortex (mPFC) and the lateral parietal cortices. They
are active when the individual is not performing any goal-oriented task, and
suppressed during activity [11,3].

Axial SaggittalCoronal

Fig. 1. Average brain activity in the default mode network, superimposed on a Colin-
based brain template. From left to right are the axial, coronal and sagittal views of the
nodes. The slices selected correspond to the location of highest intensity.

Several methods exist that focus on extracting textual and visual informa-
tion for content retrieval [9]. Those multi-modal studies allow for an automatic
analysis and characterization of documents and their content. Nonetheless, since
they mostly restrict themselves to the analysis of complete images, the relation
between particular image regions is lost. Furthermore, those studies are often
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general, and do not attempt to access the data layer behind the reported images.
Here, as stated above, we aim at analyzing functional activity regions through
their reported images, in a meta-research framework. Such study allows for the
analysis of relations between blobs, independently of their reporting origins.

The main goal of this manuscript is to show how information contained in
fMRI images of published reports can be extracted and analyzed. In the fol-
lowing sections, we summarize the image extraction procedure used, as well as
the subsequent mapping of functional activity patterns onto a common brain
template. We then explain how to cluster common areas of activation, gathering
information present in different activity maps reported in different articles. The
next section explains how those clusters can be characterized, using the tex-
tual information in the manuscripts building each cluster. Finally, we conclude
the article with some remarks about the proposed approach, its limitations and
future directions of research.

This work expands the method proposed in [4], by introducing the textual
labeling component, and the clustering image mining strategy, which is used to
produce sub-maps of activation of distinct neuroscientific content.

2 Methods

Fig. 2 shows a summarizing flowchart of the proposed methodology. Starting
with the database of articles, the first step consists in finding and structuring all
activity maps found therein. After, we group those maps according to a similarity
measure, based on geometric overlap and proximity between maps. The next step
is a hierarchical clustering one, using information about which articles build the
group activity maps. Finally, we retrieve the textual information from the articles
and use it to characterize each node of the previously created dendrogram.

2.1 Data

We built a database of neuroscientific publications available on-line, with a com-
mon research topic. We chose, for this work, to focus on studies of the default
mode network. In addition, studies dealing with changes in DMN related to
Alzheimer and Schizophrenia were also included. To build this database, meth-
ods such as the ones proposed in the context of ImageCLEF [9] benchmark set
could be used. Due to the specificity of this work, we opted for a keyword based
search, allowing for a more targeted search. This search was carried out using
words such as DMN, Alzheimer, fMRI, cognitive impairment, Schizophrenia and
resting state. In that way, we collected 183 articles in pdf format, from journals
such as NeuroImage, Human Brain Mapping, Brain, Magnetic Resonance Imag-
ing, PNAS and PLOS ONE. The time-frame for these articles ranged from early
2000 to June 2013.

The images and text were extracted from each article, using the open source
command-line utilities pdfimages and pdftotext, respectively. This choice was due
to both utilities being wide-spread and easy to use in different platforms.
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Blob Mining

Wordcloud 
Creation

Dendogram 
Computation

Blob Clustering

- Figure extraction
- Object identification
- Image retrieval
- Blob identification

- Text extraction
- word->stem->word
- dictionary creation
- weigthing by tfidf

- Grouping by overlap 
and intensity profile

- Cluster using group 
geo-centroids

- Hierarchical clustering 
by article inclusion

Fig. 2. Flowchart of the methodology proposed. Starting with the blob mining and
clustering, the article information is used to group activity maps in a dendrogram,
where each node can be characterized using textual information.

2.2 Brain from Blobs

A quick glance at functional MRI brain images permits the identification of sev-
eral features of relevance, such as the kind of section of the image (axial, sagittal
or coronal), various anatomical landmarks, as well as functional activity regions,
often represented by colored ”blobs” superimposed into gray-level anatomical
MRI scans. We do this by relating the observed images to an internal represen-
tation of our anatomical and physiological knowledge of the brain.

With that in mind, we devised an image mining method [4], which extracts
and maps those images to a common template. After extracting each figure in the
article, we detect the various objects present in those figures, such as images,
plots, charts or text annotations. To discard the non-interesting objects, and
keep only fMRI images, we identify those frames that have properties specific
to brains and neural activations, e.g. a minimum percentage of color and an
aspect ratio typical of a brain image. After a further step to remove undesired
annotations, the brain images can then be properly analyzed. This procedure
is done automatically, with high accuracy [4]. Note that in fMRI reports, brain
images follow a typical standard of activation areas overlayed on an anatomical
image. When images differ from the standard, e.g. with too many annotations
or with a non-standard brain reference, they are discarded.

In order to map the images to a common scale, we need to identify the template
and section of the image. This allows for an estimation of the three-dimensional
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coordinates of the regions with activity changes, and the characterization of those
regions in more detail1. After a color-map detection procedure, we can then map
all blob intensity information to their respective coordinates. To do this, we use a
Colin [2] brain template as reference.The result is a four-dimensional intensitymap
I of size 36 × 43× 36 ×N , where element In(x, y, z) is the intensity of blob n, in
the original image, at location (x, y, z) of the summarizing template brain. Tab. 1
presents the number of articles, figures, images and blobs studied in the present
work.

For a complete description of the blob information extraction, we refer the
reader to [4].

Table 1. Number of articles, figures, images and blobs used in this study

Articles Figures Images Blobs
183 284 1487 6095

2.3 Grouping Similar Blobs

In order to identify the different regions represented in the various articles, one
can group the blobs according to their geometric and intensity similarities. The
main goal here being to group common activation patterns across various images,
figures or even articles. This similarity needs to take into account blob sizes,
overlaps and sections.

When considering the grouping of two blobs, we accepted only those with a
clear degree of overlap, and for which a considerable similarity in the intensity
patterns was evident. We decided to use the cosine[15] distance to compare pairs
of brains intensity maps, in1 and in2 :

d1(n1, n2) =
i∗n1

· i∗n2

‖i∗n1
‖‖i∗n2

‖ , (1)

where i∗n1
and i∗n2

are the vectors forms of In1 and In2 , for which both In have
values greater than 0.

After iteratively joining intensity maps with d1(n1, n2) > 0.75, we reached a
set of G functional activation groups.

Although these groups already gathered activation in similar locations in the
brain, we needed to reduce the number of individual functional basic areas, and
join maps from the same regions. Defining the [1× 3] vector gj , as the centroid
of group Gj , we clustered the previously found G groups using k-means. The
selected k corresponded to the one minimizing:

k = argmin
k

∑k
i=1

∑
gj∈Ki

∥∥gj − μi

∥∥∑k
i=1

∑
j �=i

∥∥μj − μi

∥∥ . (2)

1 Note that such processing would allow already for an automated annotation of activa-
tion coordinates, essential for the meta-research proposed in [16].
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where μi is the centroid of cluster Ki. The number of clusters k has a significant
impact in the overall performance. While low values of k force the grouping of
distant blobs, large ones create too many singular activity points for a proper
study of networks.

At this stage, we have k clusters representing several different regions of brain
activity per cluster.

2.4 Clustering Brain Regions through Article Similarity

In many situations, single locations do not fully represent the complete neu-
ral response of external stimuli. In fact, most images reported comprise several
regions of activation per depicted brains, e.g. bilateral activations.

After clearly identifying the various ”atomic” regions reported in all the stud-
ies, we decided to join those, based on the articles that built each region. The
main idea was to consider that different articles reporting the same basic acti-
vation sites will have a common research thread.

To find subtle relations between different brain regions, a new processing step
needs to be performed. This step uses information from which articles built the
previously mentioned clusters Ki. First we create a matrix V of size k×A, where
A is the total number of articles in the study (183). We denote vKi(j) as the
element corresponding to the number of blobs from article j, that are found in
cluster Ki and vKi as the corresponding vector for all articles. With this matrix,
we performed hierarchical clustering by joining all clusters through similitude of
articles building up each cluster of blobs.

Again we group all k clusters using the cosine distance:

d2(K1,K2) =
vK1 · vK2

‖vK1‖‖vK2‖
. (3)

This results in a dendrogram with k end leafs, where the branches are made
according to similarity between blob-article vectors.

We can now find those nodes with the least amount of article overlap between
them. This is done using with the highest Hamming distance between nodes. For
illustration purposes, we decided to select the 4 most disparate nodes, and will
refer to them using by the notation Mi. Such nodes should contain interesting
regions to analyze and compare. Since they correspond to viewpoint, as well as
from the pool of articles and studies that mentioned those regions.

2.5 Text Analysis

After the process described above, the resulting dendrogram nodes still lack an
easy way to be analyzed and characterized, besides the visual comparison of the
resulting intensity maps. Since we only used images and their originating articles
until now, there was still a considerable amount of information that remained
unused: the text in those articles.
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Therefore, we searched for interesting patterns and regions in the data, by
extracting text information from the respective articles in the referred nodes. To
avoid confounding topics in the text, we decided to use only the title, the ab-
stract and the conclusion/discussion sections. Furthermore, only the Porter[10]
stemmed versions of the words were analyzed. To allow for a human-readable
analysis and avoid misleading stems, we substituted them by their most com-
mon originating word. We also filtered out common stop words, as they do not
contribute significantly to the description of the intensity maps found.

Once the text was processed, we computed the words, bigrams and trigrams
for each article using the Ngram Statistics Package[1]. This resulted in a bag-
of-words matrix B, with size A ×W , where W is the total number of n-grams
found in all articles.

We then calculated the tf-idf [6,13], which gives more weight to words that
appear frequently (term-frequency, tf ) in a document and less to frequent terms
in the corpus (inverse document frequency, idf ). One could also use BM25 [12], as
it seems more robust. Yet, it tends to focus more on scoring documents, whereas
our interest lies in scoring terms representing a node. After applying the tf-idf
to B, we performed a node-by-node analysis on each of the four nodes identified
in the dendrogram. Since we searched for words that represented the nodes, we
ignored terms present only in a single article per node. Sorting the n-grams for
each article inside a cluster and computing the most common ones for the whole
cluster, we obtained a sorted dictionary per cluster.

Having identified the n-grams that represent each cluster, we can finally pro-
ceed to characterize each of the four interesting nodes. We can do this by finding
the most common words in all those clusters, and the ones that differentiate
them the most. The former is a logical intersection of the most prevalent terms
throughout the nodes, whereas the latter is akin to filtering out the prevalent
words of other clusters.

Using the weights obtained by the tf-idf on the dictionary of each cluster, we
can construct word-clouds, which help visualize the differences and commonali-
ties between the aforementioned clusters.

3 Results

3.1 Blob-Article Dendrogram

Fig. 3 shows the dendrogram obtained when grouping all blob clusters. This
dendrogram has k = 256 end nodes, and contains (k − 1) leafs.

After calculating the Hamming distance between all nodes, four of them were
selected to further analysis, since they had the biggest inter-distance, corre-
sponding to the least amount of article overlap. These nodes are shown in their
corresponding leafs in Fig. 3. The number of articles that have contributed for
each of the nodes is shown in Tab. 2. Due to the dissimilitude in the articles orig-
inating each node, it is not surprising to see that the chosen nodes are located
at very different branches of the dendrogram.
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M1 M2 M3 M4

Fig. 3. Dendrogram resulting from the grouping through similitude of articles compos-
ing each node. The nodes analyzed in this article, corresponding to the ones with the
least overlap of articles between them, are show in their respective location.

Table 2. Number of originating articles for each of the studied nodes

M1 M2 M3 M4

Articles 39 81 101 85

3.2 Intensity Maps

Fig. 4 shows a summary of all brain activity changes reported for the clusters
M1 to M4, from top to bottom, respectively. From left to right, are displayed
the axial, coronal and sagittal views of the activity map volumes, centered at
their maximum value of intensity.

As expected, they all represent different regions in the brain, since the inten-
sity maps originate from as different as possible sets of articles. For example, see
that all volumes have activation in the PCC region, in the central posterior part
of the brain, although each with a subtle change in location. Nevertheless, only
M2 and M4 show considerable frontal activity. Also, when compared to the over-
all DMN activity map image of Fig. 1, it is clear that none of the chosen nodes
focuses on the lateral parietal cortices. Finally, M4 seems to be the only node
highlighting the anterior-posterior cingulate cortex interaction in the DMN.

3.3 Word Clouds

The word-cloud representing node M1 is show on the top-left corner of Fig. 5.
The size of the n-grams in the clouds at the corners of the figure is proportional
to their weight in that node, where the biggest word corresponds to the most
common word found in that node, but not present in any of the others.
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Axial SaggittalCoronal

M1

M2

M3

M4

Fig. 4. Average brain activity change for four different nodes, superimposed on a Colin-
based brain template. Each row corresponds to a different cluster, from M1 to M4. From
left to right are the axial, coronal and sagittal views of the nodes.
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M1 M2

M3 M4

Fig. 5. Word-clouds for the analyzed clusters. On the corners are the word-clouds
corresponding to the n-grams representing the corresponding node but not on the other
nodes. The cloud in the middle contains the n-grams common to all four clusters.

Node M1 is characterized by n-grams mainly related with frequency analysis,
such as ’desynchronization’, ’coherence signal’ and ’alpha power’. From Fig. 4,
we also know that it is the node that focuses most on one particular part of the
PCC, possibly involved in the aforementioned communication mechanisms. On
the top-right, bottom-left and bottom-right corners of the same figure are the
word-clouds corresponding to M2, M3 and M4 respectively. Without going into
a thorough study of these nodes, one may nevertheless note that they are rather
distinct in nature, with M2 containing mostly methodology considerations, such
as ’preprocessing’ and ’decomposed ICA’, as well as distinct regions, namely the
’caudate nucleus’ or the ’eyes field’. M3’s n-grams of note include ’morphometry’
and ’spatio temporal’, and ’Stroop’. M4 seems to deal with more general matters
dealing with Alzheimer and Parkinson’s disease effects, such as ’gray matter
atrophy’, ’matter loss’ as well as studies in ’gray matter volume’ estimation.

The word-cloud in the middle of Fig. 5 contains words common to all nodes
Mi. As can be expected, n-grams referring to the resting state network, ’RSN’,
Alzheimer, ’AD’, and ’schizophrenia’ are prevalent in this cloud, as are the some-
what related ’patients’, ’age’ and mild cognitive impairment, ’MCI’. Notice also
that the main region-related term is ’PCC’, which is the only region that exists
in all studied nodes, as seen in Fig. 4.

4 Discussion and Conclusion

Without having access to the original fMRI raw data, neuroscience meta-research
is mostly human-based. Automation methods proposed in literature often rely
in heavy curator work, or mining of textual information. Yet, most of the images



Medical Document Mining Combining Image Exploration 109

contained in published articles, the first and foremost source of information used
by researchers, is totally discarded.

The methodology here proposed allows for an automated way to gather a
wider variety of information from the many neuroscientific articles published. It
retrieves fMRI images from articles, and maps the activity reported therein to
a template, allowing for an automatic summarization and comparison between
images from different studies. The set of articles used in the summarizing maps
can then be used to relate all studies, in a more general manner. Finally, the re-
sulting relations and maps are characterized using textual information, retrieved
from the original manuscripts. From the example study reported in the current
manuscript, it is clear that the proposed method dramatically increases the data
available for meta-studies in fMRI, by fully exploiting both image and textual
information. Such process opens the door for the construction of a common atlas
where to compare imaging results. In addition, a neuroscientist may also search
for a particular keyword, either from a functional, methodological or anatomical
origin, to find interesting activity maps and their corresponding studies.

Although the illustrative results are very promising, there are some limitations
to the proposed methodology. The method scales quadratically with respect to
the number of blobs, due to the calculation of pairwise distances. Nevertheless,
the addition of new data may require a completely new run. We are currently
exploring the use of incremental clustering strategies, to minimize this limitation.
In the blob mapping stage, different thresholds and methods are used by the
researchers in their publications. This will obviously impair the atlas creation,
since currently all images contribute equally for that atlas. On the textual side,
the set of stop-words may depend on the studied meta-research topic. The wrong
choice of such words may lead to useless labeling of the activity maps. Also,
one would need to create a match dictionary, to be able to replace acronyms by
their corresponding meanings. This thesaurus would allow for a better dictionary
creation stage, where acronyms and their opened versions would correspond to
the same entry. While some existing thesaurus deal specifically with medical
terms2, to our knowledge, one specific to general fMRI studies is not available.

The robustness of the methodology proposed in this manuscript is propor-
tional to the number of articles used to create the database. If the database
doesn’t contain enough information to populate the different regions of the brain,
then any search conducted therein will be limited. 183 articles may seem rather
limited, in particular when taking into account the vast amounts of published
data that are routinely analyzed. Nevertheless, often one is limited to the avail-
able data. One example is the current study, where the articles cover most of
the available material dealing with DMN, Alzheimer and Schizophrenia.

As future work, we can improve on the text information filtering and develop
a system of brain-atlases, or related search engines, capable of finding and dis-
playing information both from an anatomical and functional perspectives. These
search engines/atlases would also be able to find links between different studies.

2 http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/
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This would open new ways to create an ontology of the brain, bringing support
for further advancement of the neuroscience field.
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Abstract. Discovering patterns in graphs is a well-studied field of data
mining. While a lot of work has already gone into finding structural pat-
terns in graph datasets, we focus on relaxing the structural requirements
in order to find items that often occur near each other in the input graph.
By doing this, we significantly reduce the search space and simplify the
output. We look for itemsets that are both frequent and cohesive, which
enables us to use the anti-monotonicity property of the frequency mea-
sure to speed up our algorithm. We experimentally demonstrate that our
method can handle larger and more complex datasets than the existing
methods that either run out of memory or take too long.

1 Introduction

Graph mining is a popular field in data mining, with wide applications in bioin-
formatics, social network analysis, etc. Traditional approaches have been largely
limited to searching for frequent subgraphs, i.e., reoccurring structures consisting
of labelled nodes frequently interconnected in exactly the same way. However,
the concept of frequent subgraphs is not flexible enough to capture all patterns.
First of all, subgraphs are too strict. If we consider the graph given in Figure 1,
we see that items a, b and c make up a pattern that visibly stands out. How-
ever, this pattern will not be found by subgraph mining since the three items are
never connected in the same way. Subgraph mining approaches are also typically
computationally complex. To begin with, they are forced to deal with the graph
isomorphism problem. For small graphs, isomorphism checking is not really that
hard. However, when we want to mine large graphs, like social networks, the iso-
morphism checks become computationally very expensive. On top of this, due
to the fact that both edges and nodes must be added to the pattern, a large
number of candidate subgraphs is generated along the way.

In order to avoid these problems, Cule et al. [5] proposed a Cohesive Itemset
Approach for mining interesting itemsets in graphs. An interesting itemset is
defined as a set of node labels that occur often in the graph and are, on aver-
age, tightly connected to each other, but are not necessarily always connected in
exactly the same way. Although this method could find previously undetected
patterns, there are still a number of drawbacks. The proposed method consid-
ers an itemset frequent if a large enough proportion of the graph is covered
by items making up the itemset. As a result, large itemsets, sometimes partially
consisting of very infrequent items, can be found in the output. This undermines
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Fig. 1. A graph containing a pattern not discovered by subgraph mining

the attempts to prune the search space and results in prohibitive run-times and
memory usage. To overcome this problem, we propose to look for Frequent Co-
hesive Itemsets, where we only consider itemsets consisting of labels that are
all, as individual items, frequent, and look for those that on average occur near
each other. In this way, we greatly reduce the search space, resulting in a smaller
output and a significant reduction in the time and space complexity of our algo-
rithm. We further explore the possibility of pruning candidate itemsets based on
the cohesion measure as well. Cohesion is not anti-monotonic, but we develop
an upper bound that allows us to prune whole branches of the search tree if
certain conditions are satisfied. We experimentally confirm that our algorithm
successfully handles datasets on which the existing method fails. In further ex-
periments on an artificial dataset, with a limited alphabet size, we demonstrate
exactly where our algorithm outperforms the existing method.

The rest of the paper is organised as follows. In section 2 we discuss the main
related work. Section 3 formally describes our problem setting, and Section 4
presents our algorithm. In Section 5 we present the results of our experiments,
before ending the paper with our conclusions in Section 6.

2 Related Work

The problem of discovering patterns in graphs is an active data mining topic. A
good survey of the early graph based data mining methods is given by Washio
and Motoda [19]. Traditionally, pattern discovery in graphs has been mostly
limited to searching for frequent subgraphs, reoccurring patterns within which
nodes with certain labels are frequently interconnected in exactly the same way.

The first attempts to find subgraph patterns were made by Cook and Holder [4]
for a single graph, and by Motoda and Indurkhya [23] for multiple graphs. Both
use a greedy scheme that avoids the graph isomorphism problem, but may miss
some significant subgraphs. Dehaspe and Toivonen [6] perform a complete search
for frequent subgraphs by applying an Ilp-based algorithm.

Inokuchi et al. [9] and Kuramochi and Karypis [13] proposed theAgm and Fsg
algorithms for mining all frequent subgraphs, respectively, using a breadth-first
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Fig. 2. A graph on which the Grit algorithm gives counterintuitive results

search. These algorithms suffer from two drawbacks: costly subgraph isomor-
phism testing and an enormous number of generated candidates (due to the fact
that both edges and nodes must be added to the pattern). Yan and Han [20]
proposed gSpan, an algorithm that uses a depth-first search. A more efficient
tool, called Gaston, was proposed by Nijssen and Kok [15]. Further attempts
at subgraph mining have been made by Inokuchi et al. [10], Yan et al. [21, 22],
Huan et al. [8], Kuramochi and Karypis [14] and Bringmann and Nijssen [2].

At first glance, it may seem that itemsets, as patterns, are not as expressive
as subgraphs. Nevertheless, Karunaratne and Boström [11] showed that itemset
mining algorithms are computationally simpler than their graph mining counter-
parts and are competitive in terms of results. Recently, Cule et al. [5] proposed
the Grit algorithm for mining interesting itemsets in graphs. An itemset is de-
fined as a set of node labels which often occur in the graph and are, on average,
tightly connected to each other. Although the method is more flexible than the
traditional approaches, it has some drawbacks. The interestingness of an itemset
is defined as the product of its coverage and its cohesion, where the coveragemea-
sures what percentage of the graph is covered by items making up the itemset,
while the cohesion measures average distances between these items. Due to the
small world phenomenon, this approach can result in an item that occurs very
infrequently in the dataset being discovered as part of an interesting itemset.
Consider the graph given in Figure 2. The Grit algorithm will discover pattern
ab as interesting, because, per definition, the coverage of ab will be larger than
the coverage of the individual items a and b. Since each a is connected to a b and
vice versa, ab will also score well on cohesion. Although item a is not frequent
at all, it has made its way into the output thanks to having many neighbours
labelled b. However, itemset ab does not represent a reoccurring pattern and
should not be considered more interesting than item b on its own.

In this paper, we build on this work, and focus on mining frequent cohesive
itemsets, insisting that each item in a discovered itemset must itself be frequent.
A separate cohesion threshold ensures that itemsets we discover are also cohesive.
By using a two-step approach of first filtering out the infrequent items, and
then using the frequent items to generate candidate itemsets, which are then
evaluated on cohesion, we greatly reduce the search space and run-time of our
algorithm and produce more meaningful results. By searching for itemsets rather
than subgraphs, we also avoid the costly isomorphism testing, and by using a
depth-first search algorithm, we avoid the pitfalls of breadth-first search.

Another itemset mining approach has been proposed by Khan et al. [12],
where nodes propagate their labels to neighbouring nodes according to given
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probabilities. Labels are thus aggregated, and can be mined as itemsets in the
resulting graph. Silva et al. [16, 17] and Guan et al. [7] introduced methods
to identify correlation between node labels and graph structure, whereby the
subgraph constraint has been loosened, but not entirely dropped.

3 Frequent Cohesive Itemsets

In this section, we introduce our approach for mining Frequent Cohesive Itemsets
in a dataset consisting of a single graph. We assume that the graph consists of
labelled nodes and unlabelled edges, and we focus on connected graphs with at
most one label per node. However, we can also handle input graphs where each
node carries a set of labels, as will be shown in Section 5.

To start with, we introduce some notations and definitions. In a graph G, the
set of nodes is denoted V (G). Each node v ∈ V (G) carries a label l(v) ∈ S,
where S is the set of all labels. For a label i ∈ S, we denote the set of nodes
in the graph carrying this label as L(i) = {v ∈ V (G)|l(v) = i}. We define the
frequency of a label i ∈ S as the probability of encountering that label in G, or

freq(i) =
|L(i)|
|V (G)| .

From now on, we will refer to labels as items, and sets of labels as itemsets.
In order to compute the cohesion of an itemset X we first denote the set of

nodes labelled by an item in X as N(X) = {v ∈ V (G)|l(v) ∈ X}. In the next
step, for each occurrence of an item of X , we must now look for the nearest
occurrence of all other items in X . For a node v, we define the sum of all these
smallest distances as

W (v,X) =
∑
x∈X

minw∈N({x})d(v, w),

where d(v, w) is the length of the shortest path from node v to node w. Subse-
quently, we compute the average of such sums for all occurrences of items making
up itemset X :

W (X) =

∑
v∈N(X)W (v,X)

|N(X)| .

Finally, we define the cohesion of an itemset X , where |X |≥ 2, as

C(X) =
|X |−1
W (X)

.

If |X |< 2, we define C(X) to be equal to 1.
Cohesion measures how close to each other the items making up itemset X

are on average. If the items are always directly connected by an edge, the sum
of these distances for each occurrence of an item in X will be equal to |X |−1,
as will the average of such sums, and the cohesion of X will be equal to 1.
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Given user defined thresholds for frequency (min freq) and cohesion (min coh),
our goal is to discover each itemset X if ∀x ∈ X : freq(x) ≥ min freq and
C(X) ≥ min coh. To allow the user more flexibility, we use two optional size
parameters, minsize and maxsize, to limit the size of the discovered itemsets.

We will now illustrate the above definitions on the graph given in Figure 1.
Assume we are evaluating itemsets abc and ef , with thresholds min freq and
min coh set to 0.1 and 0.6, respectively. According to our definitions, we first
note that N(abc) = {v2, v4, v6, v13, v14, v15, v16, v17, v18, v19, v21} and N(ef) =
{v5, v7, v11, v12}. It follows that |N(abc)|= 11 and |N(ef)|= 4. To compute
the cohesion of itemset abc, we now search the neighbourhood of each node
in N(abc) and obtain the following: W (v4, abc) = W (v6, abc) = W (v16, abc) =
W (v17, abc) = W (v18, abc) = W (v19, abc) = 3, W (v15, abc) = W (v21, abc) = 4
and W (v2, abc) = W (v13, abc) = W (v14, abc) = 2. The average of the above sums
is W (abc) = 32

11 . Doing the same for itemset ef we get W (v5, ef) = W (v7, ef) =

W (v11, ef) = W (v12, ef) = 1. Therefore, W (ef) = 1. We can now compute the
cohesion of the two itemsets abc and ef as

C(abc) =
|abc|−1
W (abc)

=
3− 1

32
11

=
22

32
≈ 0.69 and C(ef) =

|ef |−1
W (ef)

=
2− 1

1
= 1.

We see that both abc and ef are cohesive enough, but, for an itemset to be
considered a frequent cohesive pattern, each item in the itemset must be frequent.
In our dataset, items a, b, c and e are frequent, but f is not. Therefore, although
ef is more cohesive than abc, it will not be discovered as a frequent cohesive
itemset. Note that we computed the cohesion of ef above only to illustrate the
example. Our algorithm, presented in Section 4, first finds frequent items and
then considers only itemsets that consist of these items, so itemset ef would not
even be considered, and the above computations would not take place.

4 Algorithm

Our algorithm for mining frequent cohesive itemsets in a given graph consists of
two main steps. The first step is to filter out the infrequent items. This can be
done while loading the dataset into the memory for the first time, counting the
frequency of each item as they occur, and then outputting only the frequent ones.
In the second step, given in Algorithm 1, candidates are generated by applying
depth-first search, using recursive enumeration. During this enumeration process,
a candidate consists of two sets of items, X and Y . X contains those items
which make up the candidate, while Y contains the items that still have to
be enumerated. The first call to the algorithm is made with X empty and Y
containing all frequent items appearing in the graph.

At the heart of the algorithm is the UBC pruning function (discussed in
detail below), which is used to decide whether to prune the complete branch
of the search tree, or to proceed deeper. If the branch is not pruned, the next
test evaluates if there are still items with which we can expand the candidate.
If not, we have reached a leaf node in the search tree, and discovered a frequent
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Algorithm 1. FCI(〈X,Y 〉) finds frequent cohesive itemsets

if UBC(〈X,Y 〉) ≥ min coh then
if Y = ∅ then

if |X|≥ minsize then output X
else

Choose a in Y
if |X ∪ {a}|≤ maxsize then FCI(〈X ∪ {a}, Y \ {a}〉)
if |X ∪ (Y \ {a})|≥ minsize then FCI(〈X,Y \ {a}〉)

end if
end if

cohesive itemset which is sent to the output. Otherwise, the first item in Y , for
example a, is selected and the FCI algorithm is recursively called twice: once
with item a added to X and once without. In both calls, a is removed from Y .

An important property of the cohesion measure is that it is neither monotonic
nor anti-monotonic. For example, consider the graph shown in Figure 3, and
assume the min coh threshold is set to 0.6. We can see that C(ac) < min coh
< C(abc) < C(a), even though a ⊂ ac ⊂ abc. Therefore, we will sometimes need
to go deeper in the search tree, even when we encounter a non-cohesive itemset,
since one of its supersets could still prove cohesive. However, traversing the
complete search space is clearly unfeasible. In this work, we deploy an additional
pruning technique using an upper bound for the cohesion measure, similar to the
upper bound for the interestingness measure used by Cule et al. [5]. In a nutshell,
we can prune a complete branch of the search tree if we are certain that no
itemset generated within this branch can still prove cohesive. To ascertain this,
we compute an upper bound for the cohesion measure of all the itemsets in that
branch, and if this upper bound is smaller than the cohesion threshold, the whole
branch can be pruned.

More formally, recall that a frequent cohesive itemset X , of size 2 or larger,
must satisfy the following requirement:

C(X) =
(|X |−1)|N(X)|∑
v∈N(X) W (v,X)

≥ min coh.

Assume now that we find ourselves in node 〈X,Y 〉 in the search tree, i.e., at
the root of the subtree within which we will generate each candidate itemset Z
such that X ⊆ Z ⊆ X ∪ Y . We know that cohesion is neither monotonic nor
anti-monotonic, so we cannot in advance know which such itemset will have the
highest cohesion, and we need to develop an upper bound that holds for all of
them. What we do know, however, is the cohesion of itemset X , C(X), as shown

Fig. 3. A small input graph
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above. We can now analyse the extent to which this cohesion can maximally
grow as items from Y are added to X . Note that if an item is added to X , both
the nominator and the denominator in the above expression will grow. In order
for the total value to grow maximally, we therefore need to find the case in which
the nominator will grow maximally, and the denominator minimally. Let us first
examine the case of adding just a single item y toX . Recall that the denominator
contains the total sum, for all occurrences of items in X in the graph, of the
sums of all minimal distances from such an occurrence to all other items in X .
Each such sum of minimal distances will now have to be expanded to include
the minimal distance to the new item y. In the worst case, y will be discovered
at a distance of 1 from all these occurrences. These sums will therefore grow by
exactly 1. Additionally, the total sum will now also include the sums of minimal
distances from each occurrence of y to all items in X . In the worst case, from
each y we will be able to find each item in X at a distance of 1. Therefore, these
sums will be equal to |X |. For the case of adding an item y to X , we thus obtain∑

v∈N(X∪{y})
W (v,X ∪ {y}) ≥ (

∑
v∈N(X)

(W (v,X) + 1)) + |N({y})||X |.

By induction, for adding the whole of Y to X , we obtain∑
v∈N(X∪Y )

W (v,X ∪ Y ) ≥ (
∑

v∈N(X)

(W (v,X) + |Y |)) + |N(Y )|(|X ∪ Y |−1).

What the above worst-case actually describes is a case of adding maximally
cohesive occurrences ofX∪Y to already known occurrences of X . For the overall
cohesion to grow as much as possible, we should add as many such occurrences
as possible. Clearly, we will obtain this maximal number of occurrences if we
add the whole of Y to X . Therefore, we can update the nominator accordingly,
and conclude that for any Z, such that X ⊆ Z ⊆ X ∪ Y , it holds that

C(Z) ≤ (|X ∪ Y |−1)|N(X ∪ Y )|
(
∑

v∈N(X) (W (v,X) + |Y |)) + |N(Y )|(|X ∪ Y |−1) .

We also need to consider the user-chosen maxsize parameter. If X ∪ Y is
larger than maxsize, the worst case will not be obtained by adding the whole of
Y to X , but only by adding items from Y to X until maxsize is reached. Before
proceeding with our analysis, we first abbreviate the new upper bounds for |Y ′|
and |N(Y ′)|, where Y ′ ⊂ Y and |X ∪ Y ′|≤ maxsize, with

UBY ′ = min(maxsize− |X |, |Y |)
and

UBNY ′ = min(|N(Y )|, max
Yi⊂Y,

|Yi|=maxsize−|X|

|N(Yi)|).

Finally, we develop the upper bound for the cohesion of all candidate itemsets
generated in the branch of the search tree rooted at 〈X,Y 〉 as

UBC(〈X,Y 〉) = (|X |−1 + UBY ′)(|N(X)|+UBNY ′)

(
∑

v∈N(X) (W (v,X) + UBY ′)) + (|X |−1 + UBY ′)UBNY ′ .
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This upper bound is only defined when |X |≥ 2. If X is either empty or a single-
ton, we define UBC(〈X,Y 〉) = 1.

At first glance, it seems that in order to compute UBNY ′, we would need to
evaluate all possible sets Yi, such that Yi ⊂ Y and |X ∪ Yi|= maxsize, which
would be computationally expensive. We avoid this problem by enumerating
the items in Y sorted on frequency in descending order. For example, if Y =
{y1, y2, . . . , yn}, given X = {a, b, c} and maxsize set to 5, it is obvious that

max
Yi⊂Y,

|X∪Yi|=maxsize

|N(X ∪ Yi)|= |N({a, b, c, y1, y2})|.

Similarly, it may seem that to compute
∑

v∈N(X) W (v,X) at each node in
our search tree, we would need to traverse the whole graph searching for the
minimal distances between all items in X for all relevant nodes, which would be
unfeasible. In order to avoid these costly database scans, we adopt the approach
that was used in the Grit algorithm [5] and express the sum of the minimal
distances between items making up an itemset and the remaining items in X as a
sum of separate sums of such distances for each pair of items individually. Each of
these sums between individual items are stored in a matrix which is generated
only once at the beginning of the algorithm. Since we are only interested in
itemsets consisting of frequent items, it is sufficient to compute the minimal
distances only for those frequent items. Consequently, the matrix we generate is
of size |F |×|F |, where F is the set of frequent items, which is, depending on the
min freq threshold, considerably smaller than the matrix of size |S|×|S|, where
S is the complete alphabet, generated by Grit.

Thanks to the above two optimisations, given a candidate 〈X,Y 〉, we can
compute UBC(〈X,Y 〉) in constant time.

5 Experiments

In this section, we experimentally compare the FCI and Grit algorithms. For
our experiments, we used two different datasets — a real-life graph dataset,
and a synthetic dataset. The first dataset we used in our experiments is a com-
bination of the yeast protein interaction network available in Saccharomyces
Genome Database (SGD) [3] and the yeast regulatory network available in
YEASTRACT [1]. In the combined network each node represents a yeast protein
and each edge represents an interaction between two proteins. The given inter-
action network consists of 5 811 protein-nodes and 62 454 edges. The node labels
are derived from gene ontology assignments [18], i.e., terms that are assigned
to proteins that describe their biological process. The mapping of each of these
labels to the list of yeast proteins was obtained from the annotation file pro-
vided by the SGD database [3]. In total there are 30 distinct labels. Since each
protein-node has multiple labels, we first had to transform the given network.
More formally, we expanded the graph by replacing each protein-node with a
unique dummy node, surrounded by a set of nodes, each carrying one of the
original labels. Our resulting graph consisted of 18 108 nodes and 74 751 edges.
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Table 1. Results of the FCI algorithm on the protein interaction network of yeast

min freq |F | C-Time (s) maxsize min coh #itemsets #candidates M-Time (ms)
0.001 23 8 974 5 0.40 12 24 774 88

0.35 154 75 091 224
0.30 7 989 122 752 586

0.005 15 7 966 5 0.40 9 5 720 37
0.35 127 9 976 55
0.30 3 196 13 923 205

0.010 10 6 453 5 0.40 9 1 127 10
0.35 91 1 290 19
0.30 612 1 473 70

0.005 15 7 966 ∞ 0.40 9 23 774 113
0.35 169 48 916 250
0.30 25 559 65 518 984

Table 1 reports the number of frequent items |F |, the time needed to generate
the |F |×|F | distance matrix (C-Time), the number of discovered itemsets, the
number of candidates that were considered, and the time needed for the mining
stage (M-Time), for varying values of min freq and min coh. In the first three
sets of experiments, minsize was set to 2 and maxsize to 5, while we set maxsize
to infinity in the fourth set of experiments. C-Time and M-Time are reported
separately because the frequent items are fixed for a given frequency threshold,
so the distance matrix needs to be computed just once and can then be reused
at various cohesion thresholds. The considerable reduction in mining times as
the cohesion threshold grows shows that our pruning function has the desired
effect. In Section 4, we presented two crucial elements in our pruning function,
using the properties of the cohesion measure, and the maxsize parameter. In the
fourth set of experiments, we set the maxsize parameter to infinity, to entirely
eliminate its effect on pruning. The results show that we still manage to produce
output quickly, while pruning large numbers of candidates.

The Grit algorithm failed to produce output in all of these settings, as the
required matrix and the resulting search space proved far too large. Therefore,
we can conclude that filtering out the infrequent items is a crucial step if we
wish to handle large real-life datasets.

Finally, let us have a closer look at the discovered itemsets. Having shown the
output to biologists, they confirmed that the most cohesive patterns were those
that could be expected for this type of network. For example, with min freq set
to 0.005 and min coh to 0.2, the highest scoring itemset consists of two terms
that are highly related, namely {cellular metabolic process, organic substance
metabolic process}. Indeed, many of the proteins in the studied network are
labelled with both terms as they describe overlapping biological processes in
yeast. However, besides the expected patterns, biologists discovered some other
patterns, such as {cellular metabolic process, organic substance metabolic pro-
cess, biosynthetic process, catabolic process, regulation of biological quality}, an
itemset of size 5 with a cohesion of 0.36. This itemset contains three terms that
never occur together on a node, namely biosynthetic process, catabolic process
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Fig. 4. Comparison of the output size
of the Grit and FCI algorithms

Fig. 5. Comparison of the mining
times for the Grit and FCI algorithms

and regulation of biological quality. Each of these three terms refers to very dif-
ferent, almost opposite, biological processes and thus no proteins exist in yeast
that are active in all three categories. However, from a biological point of view,
one can expect the nodes with these different terms to be close together in the
network due to the regulatory mechanisms that exist in yeast, which propagate
through the interactions described in the studied network.

For our second experimental setting, we generated a random graph with
100 000 nodes and 399 495 edges. The labels were randomly allocated and range
from 0 to 19. The probability of encountering a label differed for each label, as fol-
lows: we defined p0 = 1, p1 = 2 and for i = 2 . . . 19, pi =

∑
j=1...i j. The probabil-

ity of encountering label i was proportional to pi. Given that
∑

i=0...19 pi = 1332,
the probability of encountering label 0 was 1

1332 and the probability of encoun-
tering label 19 was 190

1332 . We built the graph by, at each step, adding either a new
node and connecting it to a random existing node, or adding a new edge between
two existing nodes. For this experiment, we set the probability of adding a new
node to 25%, and the probability of adding a new edge to 75%, resulting in an
average of approximately 8 edges per node

The main goal of this experiment was to be able to compare Grit and FCI
in terms of ouput size and run-time, since Grit failed to generate output for the
yeast protein interaction network. We applied the FCI algorithm with min coh
fixed at 0.1, minsize set to 2, maxsize to 5 and a varying min freq threshold. The
interestingness threshold, min int, for Grit was set to the product of min coh
and min freq, to guarantee that all itemsets found by FCI were also found by
Grit (since Grit defines interestingness as the product of coverage and cohe-
sion, and coverage is equal to the frequency in case of singletons). Figure 4 shows
the number of discovered itemsets for the two approaches. The mining times are
reported in Figure 5. The preprocessing stage of Grit took 2.5 days, while FCI
needed between 1 and 50 minutes, depending on the chosen frequency threshold
(as reported in Table 2). As we can see in the figures, the output size and the
run-time of FCI decrease considerably as we increase the frequency threshold,
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Table 2. Experimental results of the FCI algorithm on the artificial dataset

min coh maxsize min freq |F | C-Time (s) #itemsets #candidates M-Time (ms)
0.1 5 0.10 4 62 11 25 2

0.05 9 643 372 836 58
0.02 13 2 853 2 366 6 460 175

0.1 ∞ 0.10 4 62 11 25 2
0.05 9 643 502 1 012 64
0.02 13 2 853 8 178 16 368 427

since more items are filtered out to start with, which results in fewer candidate
itemsets. On the other hand, as the interestingness threshold, used by Grit,
increases, we see no change in the output size and run-times, since Grit still
generates a huge number of candidates. Finally, Table 2 shows a comparison of
using the FCI algorithm with the maxsize parameter set to 5 and to infinity,
respectively. Once again, we can see that our pruning shows good results, even
if we cannot rely on the maxsize parameter as a pruning tool.

6 Conclusions

In this paper, we present a novel method for mining frequent cohesive itemsets
in graphs. By first filtering out the infrequent items, and only then evaluating
the remaining candidate itemsets on cohesion, we achieve much better results
than existing algorithms, both in terms of run-times, and the quality of output.
Furthermore, by limiting ourselves to itemsets, we avoid the costly isomorphism
testing needed in subgraph mining. Using a depth-first search allows us to use
an upper bound for the cohesion measure to prune unnecessary candidates, thus
further speeding up our algorithm. Experiments demonstrate that the presented
method greatly outperforms the existing ones on a variety of datasets.
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Abstract. This paper addresses the problem of mining rank data, that
is, data in the form of rankings (total orders) of an underlying set of
items. More specifically, two types of patterns are considered, namely
frequent subrankings and dependencies between such rankings in the
form of association rules. Algorithms for mining patterns of this kind are
proposed and illustrated on three case studies.

1 Introduction

The major goal of data mining methods is to find potentially interesting patterns
in (typically very large) data sets. The meaning of “interesting” may depend on
the application and the purpose a pattern is used for. Quite often, interestingness
is connected to the frequency of occurrence: A pattern is considered interesting
if its number of occurrences in the data strongly deviates from what one would
expect on average. When being observed much more often, ones speaks of a
frequent pattern, and the problem of discovering such patterns is called frequent
pattern mining [6]. The other extreme is outliers and exceptional patterns, which
deviate from the norm and occur rarely in the data; finding such patterns is called
exception mining [10].

Needless to say, the type of patterns considered, of measures used to assess
their interestingness, and of algorithms used to extract those patterns being
highly rated in terms of these measures, strongly depends on the nature of the
data. It makes a big difference, for example, whether the data is binary, cate-
gorical, or numerical, and whether a single observation is described in terms of
a subset, like in itemset mining [6], or as a sequence, like in sequential pattern
mining [9].

In this paper, we make a first step toward the mining of rank data, that is,
data that comes in the form of rankings of an underlying set of items. This idea
is largely motivated by the recent emergence of preference learning as a novel
branch of machine learning [5]. While methods for problems such as “learning
to rank” have been studied quite intensely in this field, rank data has not yet
been considered from a data mining perspective so far.

To illustrate what we mean by rank data, consider a version of the well-known
SUSHI benchmark, in which 5000 customers rank 10 different types of sushi from

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 123–134, 2014.
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most preferred to least preferred.1 This data could be represented in the form
of a matrix as follows:

5 7 3 8 4 10 2 1 6 9

6 10 1 4 8 7 2 3 5 9

2 7 3 1 6 9 5 8 4 10

. . . . . . . . . .

In this matrix, the value in row i and column j corresponds to the position of
the jth sushi in the ranking of the ith customer. For example, the first customer
likes the eighth sushi the most, the seventh sushi the second best, and so on.

The above data consists of complete rankings, i.e., each observation is a rank-
ing of the complete set of items (the 10 types of sushi). While we do assume
data of that kind in this paper, there are many applications in which rank data
is less complete, especially if the underlying set of items is larger. We shall come
back to corresponding generalizations of our setting in the end of this paper.

The rest of the paper is organized as follows. In the next two sections, we ex-
plain more formally what we mean by rank data and rank patterns, respectively.
An algorithm for mining rank patterns in the form of what we call frequent sub-
rankings is then introduced in Section 4. Some experimental results are presented
in Section 5, prior to concluding the paper in Section 6.

2 Rank Data

Let O = {o1, . . . , oN} be a set of items or objects. A ranking of these items is a
total order that is represented by a permutation

π : [N ]→ [N ] ,

that is, a bijection on [N ] = {1, . . . , N}, where π(i) denotes the position of item
oi. Thus, the permutation π represents the order relation

oπ−1(1) � oπ−1(2) � · · · � oπ−1(N) ,

where π−1 is the inverse of π, i.e., π−1(j) is the index of the item on position j.
We assume data to be given in the form of a set D = {π1,π2, . . . ,πM} of

(complete) rankings πi over a set of items O. Returning to our example above,
O = {o1, . . . , o10} could be the 10 types of sushi, and πi the ranking of these
sushis by the ith customer.

3 Rank Patterns

In the context of rank data as outlined above, there is a large variety of rank
patterns that might be of interest. In this section, we introduce two examples of
rank patterns that we shall elaborate further in subsequent sections.

1 http://kamishima.new/sushi/

http://kamishima.new/sushi/
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3.1 Subrankings

An obvious example of such a pattern is a subranking. We shall use this term for
a ranking π of a subset of objects O ⊂ O. Here, π(j) is the position of item oj
provided this item is contained in the subranking, and π(j) = 0 otherwise. For
example, π = (0, 2, 1, 0, 0, 3) denotes the subranking o3 � o2 � o6, in which the
items o1, o4, o5 do not occur.

In the following, we will write complete rankings π in bold font (as we already
did above) and subrankings in normal font. The number of items included in a
subranking π is denoted |π|; if |π| = k, then we shall also speak of a k-ranking.

We denote by O(π) the set of items ranked by a subranking π. The other way
around, if O′ ⊂ O(π), then (π|O′) denotes the restriction of the ranking π to the
set of objects O′, i.e.,

(π|O′)(j) =

{
#{oi ∈ O′ |π(i) ≤ π(j)} if oj ∈ O′

0 if oj /∈ O′

If π is a subranking of O = O(π), then π is a (linear) extension of π if (π|O) = π;
in this case, the items inO are put in the same order by π and π, i.e., the former is
consistent with the latter. We shall symbolize this consistency by writing π ⊂ π
and denote by E(π) the set of linear extensions of π.

Now, we are ready to define the notion of support for a subranking π. In
analogy to the well-known problem of itemset mining (see also Section 4 below),
this is the relative frequency of observations in the data in which π occurs as a
subranking:

supp(π) =
1

M
·#{πi ∈ D |π ⊂ πi} (1)

A frequent subranking is a subranking π such that

supp(π) ≥ minsupp ,

where minsupp is a user-defined support threshold. A frequent subranking π is
maximal if there is no frequent subranking π′ such that π ⊂ π′ and π′ �⊂ π.

3.2 Association Rules

Association rules are well-known in data mining and have first been considered
in the context of itemset mining. Here, an association rule is a pattern of the
form A ⇀ B, where A and B are itemsets. The intended meaning of such a rule
is that a transaction containing A is likely to contain B, too. In market-basket
analysis, where a transaction is a purchase and items are associated with prod-
ucts, the association {paper, envelopes}⇀ {stamps} suggests that a purchase
containing paper and envelopes is likely to contain stamps as well.

Rules of that kind can also be considered in the context of rank data. Here,
we look at associations of the form

πA ⇀ πB , (2)
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where πA and πB are subrankings of O such that

#
(
O(πA) ∩O(πB)

)
≤ 1 . (3)

For example, the rule b � e � a ⇀ d � c suggests that if b ranks higher than e,
which in turn ranks higher than a, then d tends to rank higher than c. Note that
this rule does not make any claims about the order relation between items in the
antecedent and the consequent part. For example, d could rank lower but also
higher than b. In general, the (complete) rankings π that are consistent with a
rule (2) is given by E(πA) ∩ E(πB).

The condition (3) may call for an explanation. It plays the same role as the
condition of empty intersection between items in the rule antecedent A and rule
consequent B that is commonly required for association rules A ⇀ B in itemset
mining (A ∩ B = ∅), and which is intended to avoid trivial dependencies. In
fact, assuming an item a in the rule antecedent trivially implies its occurrence
in all transactions to which this rule is applicable. In our case, this is not com-
pletely true, since a subranking is modeling relationships between items instead
of properties of single items. For example, a rule like a � b ⇀ a � c is not at all
trivial, although the item a occurs on both sides. A redundancy occurs, however,
as soon as two or more items are included both in πA and πB. This is why we
restrict such occurrences to at most one item.

In itemset mining, the confidence measure

conf(A ⇀ B) =
supp(A ∪B)

supp(A)

that is commonly used to evaluate association rules A ⇀ B can be seen as an
estimation of the conditional probability

P(B |A) = P(A and B)

P(A)
,

i.e., the probability to observe itemset B given the occurrence of itemset A.
Correspondingly, we define the confidence of an association πA ⇀ πB as

conf(πA ⇀ πB) =
#{πi ∈ D |πA, πB ⊂ πi}
#{πi ∈ D |πA ⊂ πi}

=
supp(πA ⊕ πB)

supp(πA)
(4)

As an important difference between mining itemsets and mining rank data, note
that the class of patterns is closed under logical conjunction in the former but
not in the latter case: Requiring the simultaneous occurrence of itemset A and
itemset B is equivalent to requiring the occurrence of their union A∪B, which is
again an itemset. The conjunction of two subrankings πA and πB , denoted πA⊕
πB in (4), is not again a subranking, however, at least not a single one; instead, it
is represented by a set of subrankings πA⊕πB, namely the rankings π such that
O(π) = O(πA) ∪ O(πB), (π|O(πA)) = πA, (π|O(πB)) = πB. Correspondingly,
the joint support of πA and πB,

supp(πA ⊕ πB) = #{πi ∈ D |πA, πB ⊂ πi} , (5)
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is the support of this subset. As we shall see later on, this has an implication on
an algorithmic level.

Finally, and again in analogy with itemset mining, we define a measure of
interest or significance of an association as follows:

sign(πA ⇀ πB) = conf(πA ⇀ πB)− supp(πB) (6)

Just like for the measure of support, one is then interested in reaching certain
thresholds, i.e., in finding association rules πA ⇀ πB that are highly supported
(supp(πA ⇀ πB) ≥ minsupp), confident (conf(πA ⇀ πB) ≥ minconf), and/or
significant (sign(πA ⇀ πB) ≥ minsign).

3.3 Comparison with Itemset Mining

The connection between mining rank data and itemset mining has already been
touched upon several times. Moreover, as will be seen in Section 4, our algorithm
for extracting frequent subrankings can be seen as a variant of the basic Apriori
algorithm, which has first been proposed for the purpose of itemset mining [1].

Noting that a ranking can be represented (in a unique way) in terms of a
set of pairwise preferences, our problem could in principle even be reduced to
itemset mining. To this end, a new item oi,j is introduced for each pair of items
oi, oj ∈ O, and a subranking π is represented by the set of items

{oi,j | oi, oj ∈ O(π), π(i) < π(j)} .

This reduction has a number of disadvantages, however. First, the number of
items is increased by a quadratic factor, although the information contained in
these items is largely redundant. In fact, due to the transitivity of rankings, the
newly created items exhibit (logical) dependencies that need to be taken care of
by any mining algorithm. For example, not every itemset corresponds to a valid
ranking, only those that are transitively closed.

Apart from that, there are some important differences between the two set-
tings, for example regarding the number of possible patterns. In itemset mining,
there are 2N different subsets of N items, which is much smaller than the N !
number of rankings of these items. However, the N we assume for rank data (at
least if the rankings are supposed to be complete) is much smaller than the N in
itemset mining, which is typically very large. Besides, the itemsets observed in
a transaction database are normally quite small and contain only a tiny fraction
of all items. In fact, assuming an upper bound K on the size of an itemset, the
number of itemsets is of the order O(NK) and grows much slower in N than
exponential.

4 Algorithms

Our algorithm for mining frequent subrankings is based on the well-known Apri-
ori algorithm for mining frequent itemsets [1]. This algorithm constructs itemsets
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in a level-wise manner, starting with singletons and increasing the size by 1 in
each iteration. Candidate itemsets of size k are constructed from the frequent
itemsets of size k − 1 already found. In this step, Apriori exploits an important
monotonicity property for pruning candidates: If A is a frequent itemset, then
any subset of A must be frequent, too. Thus, by contraposition, any superset of
a non-frequent itemset cannot be frequent either.

This monotonicity property also holds for subrankings: If a subranking π is
frequent, then all rankings π′ ⊂ π are frequent, too. Thus, the Apriori approach is
in principle applicable to rank data. Nevertheless, since rankings and sets have
different properties, the construction and filtering steps need to be adapted.
The basic structure of our algorithm for finding frequent subrankings, that will
subsequently be explained in more detail, is the following:

1. Initial search for frequent 2-rankings F (2) (set k = 3).
2. LOOP:

(a) Construct potential frequent k-rankings from the set of frequent (k− 1)-
rankings F (k−1).

(b) Filter frequent k-rankings from the potential frequent k-ranking set.
(c) Stop the LOOP if no k-ranking passes the filtering.
(d) Set k = k + 1.

4.1 Searching Frequent 2-Rankings

While the smallest unit in itemset mining is an item, the smallest unit in the
case of subrankings is a preference pair a � b. Therefore, the initial step is to
exhaustively search for all frequent 2-rankings in the data set of rankings.

4.2 Construction of Candidate k-Rankings

Every k-ranking π(k) can be decomposed into a set of (k − l)-rankings

C(l)
(
π(k)

)
=
{
π
(k−l)
i |π(k−l)

i ⊂ π(k)
}

with 0 ≤ l < k. A k-ranking π(k) is fully consistent with F (k−1) if C(1)(π(k)) ⊂
F (k−1).

In this step, we search for all k-rankings that are fully consistent with F (k−1).

For this purpose, the algorithm iterates over all pairs (π
(k−1)
i , π

(k−1)
j ) ∈ F (k−1)×

F (k−1) with i < j and builds partially consistent k-rankings. These are rankings

π(k) such that {π(k−1)
i , π

(k−1)
j } ⊂ C(1)(π(k)). For example, from the 2-rankings

a � b and c � d, we are not able to build any 3-ranking, whereas from a � b
and b � c, we can build the 3-ranking a � b � c. Likewise, from the 2-rankings
a � c and b � c, we can build the two rankings a � b � c and b � a � c.

Being partially consistent with a single pair {π(k−1)
i , π

(k−1)
j } ⊂ F (k−1) is

necessary but not sufficient for being fully consistent with F (k−1). Let us again
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consider the 2-rankings a � b and b � c, and the only partially consistent 3-
ranking a � b � c. In order to assure that this ranking is fully consistent with
F (k−1), we have to check whether the ranking a � c is in F (k−1), too.

Instead of explicitly searching for a � c in F (k−1), we store a � b � c in a hash
map with a key (based on the object sequence abc) and a count as value. This
count is set to 1 the first time we put in a key and incremented every time we
apply the put(key) operation. The idea is that if a ranking π(k) is fully consistent
with F (k−1), we find exactly |C(1)(π(k))|(|C(1)(π(k))| − 1)/2 = k(k − 1)/2 pairs
of (k − 1)-rankings from which π(k) can be built. After iterating over all pairs,
we pass through the entries in our hash map and collect the keys with value
k(k − 1)/2. These rankings form the set of potentially frequent k-rankings. The
whole procedure is described in Algorithm 1.

Algorithm 1.

1: procedure NCR(F(k−1))
2: K = ∅ � set of candidates
3: initialize HashMap M
4: for i = 1 to |F(k−1)| − 1 do
5: for j = i+ 1 to |F(k−1)| do
6: Ci,j ← CONSTRUCT((π

(k−1)
i , π

(k−1)
j )) � constructs sub consistent

k-rankings
7: for π(k) ∈ Ci,j do
8: if M.getV alue(π(k)) = null then � π(k) is key
9: M.put(π(k), 1)
10: else
11: M.incrementV alue(π(k))
12: end if
13: end for
14: end for
15: end for
16: for entry ∈ M do
17: if entry.getV alue() = k(k − 1)/2 then
18: K.add(entry.getKey())
19: end if
20: end for
21: return K
22: end procedure

The task of CONSTRUCT is to take two (k − 1)-rankings and construct all
partially consistent k-rankings. The way CONSTRUCT works is actually quite
easy, although the implementation is a bit intricate. Roughly speaking, the two
rankings are compared position by position, and the algorithm has a special
handling for the last two positions. CONSTRUCT can be divided into two steps,
an alignment step and a construction step. Before we explain the basic principle
of operation, let us make a few observations.
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pb = 1 pt = 1

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

=⇒

pb = 2 pt = 2

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c

c

=⇒

pb = 3 pt = 4

ub = −1 ut = 2

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c a f

c − f

=⇒

pb = 4 pt = 4

ub = 3 ut = 2

πt :

πb :

↓
c a f z . . .

c f d z . . .
↑

c a f −

c − f d

Fig. 1. Illustration of the CONSTRUCT procedure. The second row shows how the
object pointers are set after every iteration—the upper arrow is the top object pointer
pt and the lower arrow the bottom object pointer pb. The alignment, which is implicitly
constructed by the algorithm, is shown in the bottom row.

The number of partially consistent k-rankings that can be constructed from
two (k− 1)-rankings is 0, 1 or 2. It is 0 if there is no k-ranking that is consistent

with π
(k−1)
i and π

(k−1)
j . By construction, π

(k−1)
i = π

(k−1)
j only if i = j, and we

only compare rankings with i �= j. Consequently, if there is a partially consis-

tent k-ranking, there is also exactly one object oi,ui = O(π
(k−1)
i ) \ O(π

(k−1)
j )

and exactly one object oj,uj = O(π
(k−1)
j ) \ O(π

(k−1)
i ). Using terminology from

sequence alignment, this means there are exactly two gaps in the alignment of

the sequences π
(k−1)
i and π

(k−1)
j , one in the former and one in the latter (Fi-

gure 1). However, the existence of one gap in each sequence is only a necessary
but not a sufficient condition. Additionally, we must have oi,ui �= oj,uj . For in-
stance, the sequences in Figure 2 contain the same elements but in another order.
In the alignment, there is one gap in each sequence, yet there is no consistent
(k − 1)-ranking.

The last observation is that the number of consistent k-rankings which can

be constructed from π
(k−1)
i and π

(k−1)
j is one if ui �= uj and two if ui = uj .

Thus, the key tasks consist of finding and counting the gaps—seeAlgorithm2 for
a description in pseudo code. The meaning of top- and bottom are like in Figure 1.

pb = 1 pt = 1

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

=⇒

pb = 2 pt = 2

ub = −1 ut = −1

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c

c

=⇒

pb = 3 pt = 4

ub = −1 ut = 2

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c a f

c − f

=⇒

pb = 4 pt = 4

ub = 3 ut = 2

πt :

πb :

↓
c a f z . . .

c f a z . . .
↑

c a f −

c − f a

Fig. 2. Here, the (k−1)-rankings differ by a swap of the objects a and f . Although it is
not possible to build a k-ranking, the alignment is the same as in Figure 1. Therefore,
the objects ob,ub

and ot,ut need to be checked for equality.
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Algorithm 2.

1: procedure construct(π
(k−1)
b , π

(k−1)
t )

2: ub ← −1; ut ← −1 � bottom and top gap position
3: pb ← 1; pt ← 1 � bottom and top object pointer
4: for pb to |π(k−1)

b | − 2 do
5: if oj,pb = oi,pt then
6: pt ← pt + 1
7: else if oj,pb �= oi,(pt+1) then
8: if ub > −1 then
9: return null � bottom gap already found
10: end if
11: ub ← pb � bottom gap is found
12: else
13: if ub > −1 then
14: return null � top gap already found
15: end if
16: ut ← pt and pt ← pt + 2 � the top gap is found
17: end if
18: end for

19:
... � Here the procedure deals with the cases pb > |π(k−1)

b | − 2, where you have
to be careful with the incrementation of pt

20: if ob,ub
= ot,ut then

21: return null � necessary gaps are caused by a swap, see Figure 2
22: end if
23: return INNERCONSTRUCT(π

(k−1)
b , π

(k−1)
t , ub, ut)

24: end procedure

While the “outer” CONSTRUCT procedure performs the alignment step, the
INNERCONSTRUCT procedure performs the construction step. The idea here

is simply to add ob,ub
and ot,ut to π

(k−1)
t with the help of the position information

ub and ut, so that the resulting k-rankings are consistent with π
(k−1)
b and π

(k−1)
t .

4.3 Filtering Frequent k-Rankings

Like in the original Apriori algorithm, we need to check for every potentially
frequent k-ranking whether or not it is indeed frequent. For this purpose, we
have to go through all rankings and count the appearance of the k-rankings.

4.4 Association Rule Mining

The mining of association rules of the form (2) is done on the basis of fre-
quent subrankings, just like in itemset mining. However, as mentioned before,
the conjunction πA ⊕ πB of two subrankings πA and πB is not again a subrank-
ing. Therefore, the support (5) of a candidate rule πA ⇀ πB cannot simply be
looked up.
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Instead, for each candidate rules πA ⇀ πB, where πA and πB are frequent
subrankings that meet the consistency constraint (3), we again pass through the
data in order to compute the support (5) as well as measures of confidence (4)
and interest (6).

5 Experiments

We used three real data sets for our experiments: The SUSHI data, that was
already mentioned in the introduction, consists of 5000 rankings of 10 types of
sushis. The STUDENTS data [2] comes from a psychological study and consists
of 404 rankings of 16 goals (want to get along with my parents, want to feel good
about myself, want to have nice things, want to be different from others, want
to be better than others, etc.), each one reflecting what a student considers to
be more or less important for himself or herself to achieve. Finally, the ESC14
data is derived from the European Song Contest 2014 in Denmark. It consists
of rankings of the 26 countries that reached the final. Since each of the 36
participating countries selected 5 jurors, the total number of rankings is 180.
There was a need for one adjustment, however: Since jurors are not allowed to
rank their own country, we completed such rankings (of length 25 instead of 26)
by putting that country on the bottom rank.
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Fig. 3. Number of patterns reaching a threshold minsupp (left bar) for the data sets
STUDENT, ESC14 and SUSHI (from left to right), compared to the same number for
synthetic data sets of the same dimension, in which rankings are generated uniformly
at random (right bar)

Figure 3 shows the number of frequent subrankings found in the data sets,
compared with the number of frequent subrankings found in synthetic data sets
taken from a uniform distribution.

For each of the three data set, we derived a most representative subranking,
namely the subranking π that maximizes the relation between its support and the
support one would expect under a uniform distribution (which is 1/|π|!). Figure 4
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Fig. 4. Distribution of the distance of rankings from the most representative pattern;
from left to right: STUDENTS (goal 2  goal 1  goal 9  goal 11  goal 14  goal 16),
ESC14 (Netherlands  Finland  UK  Italy  Greece), SUSHI (sushi 8  sushi 3 
sushi 9  sushi 7  sushi 10)

shows the distribution of the distances of all rankings from that representative,
where the distance is determined as the number of pairwise disagreements. As
can be seen, the pattern is indeed representative in the case of STUDENTS and
SUSHI, in the sense that the large majority deviates by at most 2-3 pairwise in-
versions. For ESC14, a representative pattern is more difficult to find, suggesting
that the preferences are more diverse in this case.

Finally, we also extracted association rules from the data sets, and found a
number of rules with high confidence and interest (for example, the rule goal 10
(material gain) � goal 3 (belongingness) � goal 7 (management) ⇀ goal 10 (ma-
terial gain) � goal 5 (social responsibility) in the STUDENTS data with confi-
dence 0.9038, interest 0.6544, and support 0.1149). Many of these rules also have
a quite interesting semantic interpretation. Due to reasons of space, however, we
refrain from a detailed discussion here.

6 Summary and Conclusion

In this paper, we introduced the problem of mining rank data as a novel data
mining task—to the best of our knowledge, mining patterns in this type of data
has not been studied systematically in the literature so far. Moreover, we have
given two concrete examples of rank patterns, namely frequent subrankings and
associations between such rankings, and proposed an algorithm for extracting
them from rank data. Our algorithm is a rather straightforward generalization
of the basic Apriori algorithm for itemset mining. Needless to say, there is much
scope for improving this approach, so as to make it scalable to very large data
sets. To this end, one may try to adopt ideas of faster algorithms for itemset
mining, such as Eclat [11] or FP-growth [7,8], although the data structures used
there are not immediately applicable to rank data.

More importantly, however, the problem of mining rank patterns itself can be
generalized in various directions:

– For example, as already mentioned, rank information will not always be
provided in the form of complete rankings of all items, i.e., the data itself
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may already be given in the form of subrankings, partial orders or “bags” of
order relations.

– In this regard, one may also think of a combination of mining rank and
itemset data. For instance, preference information is often given in the form
of top-k rankings, i.e., a ranking of the k most preferred alternatives [4]—
obviously, information of that kind can be seen as a ranking of a subset of
all items.

– Since the space of rankings is equipped with a natural topology, it would
make sense to search for approximate patterns, also allowing a ranking to be
supported by similar rankings, for example [3].

– Yet another direction is the incorporation of quantitative information about
rank positions. It could make a difference, for example, whether two objects
a and b share adjacent ranks (suggesting that a is only slightly preferred to
b), or whether a appears on the top and b on the bottom of the ranking.

Extensions and generalizations of that kind provide interesting challenges for
future work.
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Abstract. Retrieving and linking different segments of scientific infor-
mation into understandable and interpretable knowledge is a challenging
task. Literature-based discovery (LBD) is a methodology for automati-
cally generating hypotheses for scientific research by uncovering hidden,
previously unknown relationships from existing knowledge (published
literature). Semantic MEDLINE is a database consisting of semantic
predications extracted from MEDLINE citations. The predications pro-
vide a normalized form of the meaning of the text. The associations
between the concepts in these predications can be described in terms
of a network, consisting of nodes and directed arcs, where the nodes
represent biomedical concepts and the arcs represent their semantic re-
lationships. In this paper we propose and evaluate a methodology for link
prediction of implicit relationships in the Semantic MEDLINE network.
Link prediction was performed using different similarity measures in-
cluding common neighbors, Jaccard index, and preferential attachment.
The proposed approach is complementary to, and may augment, exist-
ing LBD approaches. The analyzed network consisted of 231,589 nodes
and 10,061,747 directed arcs. The results showed high prediction per-
formance, with the common neighbors method providing the best area
under the ROC curve of 0.96.

Keywords: Literature-based discovery, Network analysis, Link predic-
tion, Semantic network.

1 Introduction

The corpus of biomedical papers in online bibliographic repositories, nowadays
referred to as the bibliome, is of considerable size and complexity. Increase in
knowledge greatly depends on the synthesis of information from the existing
scientific literature. It is a challenging task to link diverse scientific information
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into coherently interpretable knowledge. Computer-based methods complement
manual literature management and knowledge discovery from biomedical data.
Common text mining tasks in biomedicine include information extraction from
the literature, document summarization, question answering and literature-based
discovery (LBD) [1].

LBD is a methodology for automatically generating hypotheses for scientific
research by uncovering hidden, previously unknown relationships from existing
knowledge. The LBD methodology was pioneered by Swanson [2], who proposed
that dietary fish oils might be used to treat Raynaud’s disease because they
lower blood viscosity, reduce platelet aggregation and inhibit vascular reactivity.
Swanson’s approach is based on the assumption that there exist two noninter-
secting scientific domains. Knowledge in one may be related to knowledge in the
other, without the relationship being known. The methodology of LBD relies
on the idea of concepts relevant to three literature domains: X, Y, and Z. For
example, suppose a researcher has found a relationship between disease X and
a gene Y. Further suppose that a different researcher has studied the effects of
substance Z on gene Y. The use of LBD may suggest an XZ relationship, indi-
cating that substance Z may potentially treat disease X (Fig. 1). For a recent
review of LBD tools and approaches, see [3].

X

Fish oil

Z

Raynaud’s disease

Y

High blood viscosity

Fig. 1. Swansons XYZ discovery model

Effective retrieval crucially underpins knowledge management applications,
such as LBD. Widely used document retrieval systems such as Google or PubMed
typically have no access to the meaning of the text being processed [4]. To fill
the gap between raw text and its meaning Rindflesch [5] introduced the SemRep
system. SemRep is a rule-based, symbolic natural language processing system
that recovers semantic propositions from the biomedical research literature. The
system relies on domain knowledge in the Unified Medical Language System
(UMLS) [6] to provide partial semantic interpretation in the form of predications
consisting of UMLS Metathesaurus concepts as arguments and UMLS Semantic
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Network relations as predicates. SemRep uses a partial syntactic analysis based
on the SPECIALIST Lexicon [7] and MedPost tagger [8]. Each noun phrase
in this analysis is mapped to a concept in the Metathesaurus using MetaMap
[9]. Both syntactic and semantic constraints are employed to identify proposi-
tional assertions. For example, three predications are extracted from the text
‘dexamethasone is a potent inducer of multidrug resistance-associated protein
expression in rat hepatocytes’:

1. Dexamethasone STIMULATES Multidrug Resistance Associated Proteins
2. Multidrug Resistance-Associated Proteins PART OF Rats
3. Hepatocytes PART OF Rats

SemRep extracts 30 predicate types expressing assertions in clinical medicine
(e.g., TREATS, ADMINISTERED TO), substance interactions (e.g., INTER-
ACTS WITH, STIMULATES), genetic etiology of disease (e.g. CAUSES,
PREDISPOSES), and pharmacogenomics (e.g., AUGMENTS, DISRUPTS). The
program has been run on all of MEDLINE and the extracted predications de-
posited in a MySQL database (SemMedDB [10]) updated quarterly and available
to researchers.

Knowledge of a particular biomedical domain can be viewed as a set of con-
cepts and the relationships among them [11]. For example relations among genes,
diseases, or chemical substances constitute an important part of biomedical
knowledge. These associations can be represented as a graph consisting of nodes
and edges, where the former represent concepts and the latter relationships.

Link (association) prediction is a novel research field at the intersection of
network analysis and machine learning. Understanding the mechanisms of link
formation in complex networks is a long-standing challenge for network analysis.
Link prediction refers to the discovery of associations between nodes that are
not directly connected in the current snapshot of a given network [12]. Seen in
this way, the link prediction problem is similar to LBD. Several techniques have
been proposed to predict new links by estimating the likelihood of link formation
between two nodes on the basis of the observed network topology.

In this paper we examine link prediction from the novel perspective of litera-
ture-based discovery. We propose a method for predicting and evaluating implicit
or previously unknown connections between biomedical concepts. Our approach
is complementary to traditional LBD. To evaluate the link prediction techniques
for LBD, we investigated performance on a network obtained from Semantic
MEDLINE.

2 Methods

2.1 Basic Terminology

A network can be represented as a graph G(V,A) that consists of a set of nodes
V representing concepts and a set of directed arcs A representing relationships
between the nodes [13].
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The link prediction problem can be formally represented as follows. Suppose
we have network G[t1, t2] which contains all interactions among nodes that take
place in the time interval [t1, t2]. Further suppose that [t3, t4] is a time interval
occurring after [t1, t2]. The task of link prediction is to provide a list of edges
that are present in G[t3, t4] but absent in G[t1, t2]. We refer to G[t1, t2] as the
training network and G[t3, t4] as the testing network.

2.2 Data Preparation

We prepared the experimental network based on SemMedDB distribution [10].
The current snapshot of SemMedDB (version 24.2) contains 32,505,704 argu-
ments and 69, 333, 420 semantic predications from 23, 659, 049 MEDLINE ci-
tations published between January 1 1990 and December 31 2012. We further
selected only those predications which refer to UMLS Metathesaurus concepts.

We applied Pearson’s chi-square (χ2) test for independence [14] for each re-
lation pair to obtain a statistic which indicates whether a particular pair of
concepts occurs together more often than by chance. To the best of our knowl-
edge, this technique is novel in the network analysis community. In the following
paragraphs, we provide a detailed description of the χ2 test for independence
and its application to network reduction.

For each co-occurrence pair (u, v) we are interested in co-occurrence frequency
and also in the co-occurrences of u and v with other terms. Complete frequency
information is summarized in a contingency table and yields four cell counts
(Table 1). O11 is the joint frequency of the co-occurrence, the number of times the
terms u and v in a co-occurrence are seen together. The cell O12 is the frequency
of pairs in which term u occurs, but term v does not occur. Likewise, the O21 is
the frequency of pairs in which term v occurs, but term u does not occur. The
cell O22 is the frequency of pairs in which neither term u nor term v occurs.
The marginal totals are denoted with Rs and Cs with subscripts corresponding
to the rows and columns. The grand total N is the total of all four frequencies
(i.e., O11 +O12 +O21 +O22).

Table 1. Contingency table of observed frequencies for pairs of concepts

V = v V �= v

U = u O11 O12 R1

U �= u O21 O22 R2

C1 C2

Next we calculated the corresponding expected frequencies Eij for each table
cell, as demonstrated in Table 2.

Given the observed and expected frequencies for each concept pair, the χ2

statistic was calculated as

χ2 =
2∑

i=1

2∑
j=1

(Oij − Eij)
2

Eij
. (1)



Link Prediction on the Semantic MEDLINE Network 139

Table 2. Calculation of expected frequencies for pairs of concepts

V = v V �= v

U = u E11 = (R1 × C1)/N E11 = (R1 × C2)/N

U �= u E11 = (R2 × C1)/N E11 = (R2 × C2)/N

If an expected value was less than five, we applied Yates’s correction for con-
tinuity by subtracting 0.5 from the difference between each observed frequency
and its expected frequency. The limiting distribution of χ2 statistic for 2 × 2
contingency table is a χ2 distribution with one degree-of-freedom. If the χ2 is
greater than the critical value of 3.84 (p ≤ 0.05), we can be 95% confident that
a particular concept relation occurs more often than by chance.

2.3 Experimental Setup

The link prediction approach we used follows the procedure first introduced by
Liben-Nowell and Kleinberg [15]. We performed link prediction using proximity
measures, which are used to find similarity between a pair of nodes. For each
node pair (u, v), a link prediction method gives score s(u, v), an estimate of the
likelihood of link formation between nodes u and v. Link prediction stated in
this form is a binary classification task in which links that form constitute the
positive class and links that do not form constitute the negative class. From
among various proximity measures proposed in the literature we selected com-
mon neighbors, Jaccard index, and preferential attachment.

Common Neighbors. For node u, let Γout(u) denote the set of outgoing neigh-
bors of u and similarly Γin(u) denote the set of incoming neighbors. The common
neighbors measure is the simple count of common neighbors of nodes u and v,
formally defined as

sCN
uv = |Γout(u) ∩ Γin(v)|. (2)

Two nodes are more likely to have a relation if they have many common
neighbors. In a directed network, a common neighbor exists if there is a neighbor
relationship between the source and target node.

Jaccard Index. This measure produces a similarity score corresponding to the
quotient of the intersection of the two neighbor sets and the union of the two
neighbor sets. Formally this is defined as

sJIuv =
|Γout(u) ∩ Γin(v)|
|Γout(u) ∪ Γin(v)|

. (3)

Preferential Attachment. The basic premise underling this measure is that
the probability that a new link has node u as a terminal point is proportional
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to the current number of neighbors of u. The probability that a new link will
connect u and v is thus proportional to

sPA
uv = |Γout(u)| · |Γin(v)|. (4)

Performance Evaluation. We examined how accurately we could predict
which node pairs will connect between times t3 and t4 despite not having any con-
nections before time t3. The training network was built on nodes and appropriate
links for the time period 2000–2005. Similarly, test network was constructed for
the period 2006–2011. Next, we computed the link prediction score s(u, v) for
each node pair that is not associated with any interaction before year 2006 by
using one of the similarity measures introduced in the previous paragraphs. We
assigned the class label ‘positive’ to this node pair if the connection occurs in
the test network and ‘negative’ otherwise.

As a measure of prediction performance we used area under the ROC curve
(AUC). The AUC can be interpreted as the probability that a randomly selected
link is given a higher link prediction score than a randomly selected non-existent
link.

3 Results

The semantic network consists of 231,589 nodes with 10,061,747 arcs. The global
density of the network was 2e-04. We filtered out all arcs with a χ2 statistic lower
than 3.84. After filtering non-useful relations, the number of arcs decreased to
7,801,995. The density of the reduced network decreased to 1e-04.

The network exhibited relatively short average path length between all pairs
of nodes; on average there are only about 3.41 hops from the selected node to
any other node. The clustering coefficient of the exploiting network was 0.04.
The network exhibits the small world property because of small average path
length and relatively high clustering.

Figure 2 shows the frequency distribution of co-occurrence pairs in the network
(i.e., number of sentences in which the concepts co-occur). Distribution is highly
right asymmetric with the majority of the counts falling in the first quartile.
Only about 9% of the co-occurrence pairs have a frequency greater than one. The
mean frequency of pairs between two concepts is 1.12 (±0.44), with a maximal
frequency of 81. We further computed the degree distribution of concept nodes.
The shape of the degree distribution is similar to Fig. 2. Mean and maximal
degree are 67.38 (±339.36) and 50,33, respectively. About 67% of the nodes
have degree greater than 1,000.

The prediction performance for all three similarity measures is summarized
in Fig. 3. Figure plots the false positive rate on the x axis vs. the true positive
rate on the y axis for different cutoff values. The point (0, 1) is a perfect pre-
dictor. Point (0, 0) represents a predictor that predicts all links to be negative
(i.e., no relationship between concept A and concept B), while the point (1, 1)
corresponds to a predictor that predicts each link to be positive (i.e., a link be-
tween concept A and concept B is present). The AUC was 0.94, 0.96, and 0.94
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for common neighbor, Jaccard index, and preferential attachment, respectively.
According to Swets’s guidelines for qualitative interpretation of the AUC scale
[17], our results demonstrate excellent prediction performance. Standard perfor-
mance measures (i.e., accuracy, precision, recall) are not suitable in our setting,
because class distribution is highly asymmetric (e.g., the ratio between positive
and negative predictions was only 2e-04 for all three predictors). We also re-
peated the prediction procedure without χ2 filtering, and AUC values decreased
slightly: the AUC was 0.88, 0.92, and 0.90 for common neighbor, Jaccard index,
and preferential attachment, respectively.
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As a case study we tried to replicate results from [18]; authors found an associ-
ation between concepts ‘Prostatic Neoplasms’ and ‘NF-kappa-B inhibitor alpha’
protein. For the period 1991–1995 there are no MEDLINE citations which in-
clude both concepts. For the same period in Semantic MEDLINE ‘Prostatic Neo-
plasms’ occurs in 2,673 citations, whereas ‘NF-kappa-B inhibitor alpha’ occurs
in 102 citations. In the period 1996–2000 these two concepts co-occur 13 times
in Semantic MEDLINE. In this context the training network was constructed as
a subnetwork of Semantic MEDLINE that included only the period 1991–1995.
Similarly we built the testing network for the period 1996–2000. We made sure
that the two concepts were not connected in the training network. Then we ran
the learning model and built a prediction for the pair ‘Prostatic Neoplasms’ –
‘NF-kappa-B inhibitor alpha’. Prediction estimates in terms of probability were
0.98, 0.60, and 0.72 for common neighbors, Jaccard coefficient, and preferential
attachment. All three predictors suggesting a strong link between target concepts
in the period 1996–2000.

4 Discussion

In this work we studied a novel approach to LBD using link discovery methods.
Link prediction was performed on Semantic MEDLINE, a large-scale relational
dataset of biomedical concepts. We also proposed a method for network reduction
using the χ2 statistic. Results showed excellent prediction performance in terms
of the AUC measure and suggest plausibility of link prediction for LBD. We
used three different similarity measures as predictors for link discovery, namely
common neighbors, Jaccard index and preferential attachment score. In contrast
to common expectation, all three measures perform very well. They correctly
predict practically all instances in the link prediction task.

There are several limitations of the current study. First, we have not con-
sidered the type of the semantic relation (e.g., CAUSES, TREATS) between
concepts. For future work we need to include semantic type as a covariate in
the prediction model. It is well known that nodes with similar attributes tend
to create connections to each other [19]. Second, our analysis was based on a
static view of the network, not taking temporal characteristics of the network
into account. The semantic network exploited is an evolving system in which
new concepts and relations are constantly added.

There are also many possible opportunities for future work. First, we will
implement a greater number of similarity measures and include them in the link
prediction task (e.g., PageRank, SimRank, Katz measure). In future settings we
also plan to include arc weights as an additional attribute. We expect that this
will significantly improve prediction performance. Our long-standing research
interest is also to develop a Web application that will exploit modern network
analysis methods for LBD.
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Abstract. In this paper we propose a system for medical image retrieval
using multimodal data. The system can be separated in an off-line and
on-line phase. The off-line phase deals with modality classification of
the images by their visual content. For this part we use state-of-the-art
opponentSIFT visual features to describe the image content, as for the
classification we use SVMs. The modality classification labels all images
in the database with their corresponding modality. The off-line phase,
also, implements the text-based retrieval structure of the system. In this
part we index the text associated with the images using the open-source
search engine Terrier IR. In the on-line phase the retrieval is performed.
In this phase the system receives a text query. The system processes the
query and performs the text-based retrieval with Terrier IR and the ini-
tial results are generated. Afterwards, the images in the initial results are
re-ranked based on their modality and the final results are provided. Our
system was evaluated against the standardized ImageCLEF 2013 medi-
cal dataset. Our system reported results with a mean average precision
of 0.32, which is state-of-the-art performance on the dataset.

Keywords: medical image retrieval, retrieval in medical texts, image
modality classification, visual image descriptors.

1 Introduction

Medical image collections are a valuable source of information and play an im-
portant role in clinical decision making, medical research and education. Their
size poses a serious technical problem, especially as technology advances and
imaging equipment is more accessible to medical institutions. The growth of the
size of the image collections is exponential, which in turn creates huge reposi-
tories of valuable information which is difficult to maintain and process in an
appropriate manner. This underlines the need for tools for efficient access to this
kind of information.

The Picture Archiving and Communication System (PACS) [1] is a stan-
dard way of accessing medical image databases by means of textual information.
PACS is a central entity which integrates imaging modalities and interfaces with
medical institutions to appropriately store and distribute the images to medical
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professionals. Organizing these collections was usually done manually. But, as the
collections grow it becomes a very expensive task and also prone to human-made
errors. Hence, this task needs to be automated with the end goal to organize and
retrieve large medical image collections [2].

The retrieval of medical images has usually been text-based i.e. the retrieval
relied on text annotations/descriptions of the images and by extent the queries
were also of textual nature. There is another approach where the retrieval is de-
pended on the actual visual content of the images which is referred as Content-
Based Image Retrieval (CBIR) [3]. The systems which follow these approaches
are called CBIR systems. CBIR systems have been proven to be effective in
somewhat narrowed medical domains such as lung CTs [4], head MRIs [5] and
mammography images [6]. Additionally, utilizing both visual and textual data in
the retrieval should increase overall retrieval performance [2]. In that situation,
the queries are composed of a text part (keywords) and/or visual part (cou-
ple of sample images). The text part may contain relevant medical information
about the patient such demographics, symptoms etc. So, the goal of this task
is for a given query (text and/or visual) to retrieve the most relevant medical
images from a given image collection. This task is referred as ad-hoc image-based
retrieval [7].

General medical image collections used for research or education purposes,
contain images from different modalities such as MRI, CT, x-ray etc. Image
modality is a crucial characteristic of an image and it can be used for the benefit
of the retrieval. Research has shown that physicians often prefer to filter the
retrieval by the image modality [8]. However, the annotations of the images usu-
ally do not contain that information. This is set afterwards, frequently manually
by a physician or radiologist, and that exposes this process to potential human
errors [9]. Hence, automated modality classification would be a useful feature,
which can be incorporated in a medical image retrieval system.

In this paper, we propose a system for medical image retrieval that utilizes,
both, text and visual features. As visual features we use the current state-of-the-
art Scale Invariant Feature Transform (SIFT) in opponent color space [10]. The
text features are resented with the bag-of-words model. The text-based retrieval
is further improved by incorporating query expansion. We have made additional
improvement over traditional medical image retrieval systems by adding infor-
mation for the medical modality of the images as input during the retrieval
phase.

The rest of the paper is organized as follows. Section 2 presents the relevant
state-of-the-art work in the field. The overall architecture of our proposed sys-
tem is described in Section 3. The textual part of the retrieval is described in
more details in Section 4. Section 5 contains the details of the modality classifica-
tion part. The experimental design and evaluation methodology is presented in
Section 6. Section 7 contains the results and discussion. Finally, the concluding
remarks and directions for further work are given in Section 8.
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2 Related Work

Typical approaches to medical image retrieval are text-based i.e. the images are
retrieved based on their annotations/descriptions. So, one part of the problem
is acquiring appropriate text-based representation of the images. Often, medical
images are used to provide better description of the content of medical articles
and are an essential piece of information in the context. Hence, the text data
from the medical articles can be used to make the image representation.

Medical image retrieval systems, which search for images within a collection
of medical articles usually represent and retrieve the images according to their
captions in the appropriate article [11]. For example, BioText uses Lucene 1 to
index over 300 journals and retrieves images based on their captions.

Stathopoulos et al. [12] make a field-based representation of the images and
index it using Lucene. In the retrieval phase they add different weights to the
fields of representation based on the part of the article they were extracted from.

Goldminer [13] is a search engine that retrieves images by looking at fig-
ure captions of journal articles from the Radiological Society of North America
(RSNA). They map keywords from the captions to UMLS 2 concepts. The Yale
Image Finder (YIF) [14] retrieves images by looking at title, captions and ab-
stract of medical journal articles. It uses optical character recognition (OCR) to
recognize the text in the images.

The above methods use primarily text data for the retrieval. Methods that rely
on visual data are also developed. Ozturkmenoglu et al [15] propose a retrieval
framework based on the Terrier IR search engine. The framework consists on two
parts. The first part is a classification mechanism, which classifies the modality of
the potential target image and filters out the images which do not belong in that
modality class. The retrieval is then performed within that filtered subset. The
drawback of this approach is the relatively lower retrieval performance compared
to the current best result on the given database (by roughly 10%).

Rahman et al. [16] also propose a similar filtering approach. Their system uses
multimodal data for the retrieval phase. The text-based part focuses on retriev-
ing the image representation with Essie search engine developed by the National
Library of Medicine (NLM). The visual part of the retrieval uses modality clas-
sification to filter out images that do not belong to the query image class and
then retrieves in that subset. The results from the text-based and visual search
are merged using weighted linear combination and final results are provided.
The major issues in their approach is scalability and efficiency, because they are
using many low level visual descriptors to obtain the medical modalities for each
image.

In our previous work we have concluded that BM25 is the best performing
weighting model for this type of problem [17]. Also, it has shown that merging
text-based and content-based retrieval does not directly provide a significant
boost in performance [18]. Hence, we were motivated to add value by using

1 http://lucene.apache.org
2 http://www.nlm.nih.gov/research/umls/

http://lucene.apache.org
http://www.nlm.nih.gov/research/umls/
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text-based retrieval and modality classification (based on visual content of the
images) to perform the retrieval.

3 System for Medical Image Retrieval

The architecture of the system for multimodal medical image retrieval is pre-
sented in Figure 1. The system consists of an off-line and on-line phase. The
off-line phase implements the algorithm for medical modality classification and
the data retrieval structure. The on-line phase implements the image querying
and results presentation.
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Fig. 1. Architecture of the proposed system for multimodal medial image retrieval

The off-line phase starts with the generation, preprocessing and indexing of
the text-based representation (data) for each image. This representation based
on the journal/article text the image belongs to. The proposed method for med-
ical modality classification is as follows. First, we generate visual features (op-
ponentSIFT) for a given dataset of training images. The generated features are
used to train the classifier (in our case SVMs). The obtained classifier is vali-
dated by a dataset of validation images with known modalities (ground-truth).
This model is capable of determining the modality of a given previously unseen
image based on its visual features. Once we have the model, we extract the same
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visual features for all images in the database and pass them through the model.
The label obtained from the classifier represents the image-modality index.

In the on-line phase the input in the system are textual queries. These queries
are preprocessed and retrieval is performed. Because, the queries often contain
keywords related to the modality of the images that need to be retrieved, in
stage we extract the modalities of the query based on simple keyword matching.
After the retrieval is performed the retrieved images are re-ranked using the
image-modality index and the final results are presented.

A more detailed explanation for each of these parts (mainly modality classi-
fication and text retrieval) is given in the following sections.

4 Text-Based Retrieval

The text-based retrieval part focuses on retrieving medical images based on the
text data associated with them i.e. based on their text representations. For this
part we turned to the open-source search engine Terrier IR [19] as a retrieval
platform, due to its flexibility and ability to work with large datasets.

The text data is first preprocessed. Tokenization is applied using the English
tokenizer of Terrier. This breaks up the text into words. Then, stop-words re-
moval is applied and all words that are often used are removed (words like: a, for,
from, of etc.). The used stop-words set is built-in with Terrier. In the final stage
of the preprocessing, stemming is applied with Porter stemmer [20]. Stemming
reduces the terms to their base/root form.

From the resulting terms an inverted index is created for effective and efficient
retrieval. In the retrieval phase, the queries are also preprocessed in the same
manner.

In order to find the most relevant images with respect to a given text query,
weighting models are applied to calculate the relevancy of each image (relevance
score). The relevance score is a number which shows us how much an image has
in common with a given query. The higher is the number the more relevant is
the image. Once the score is calculated the images are sorted and returned. For
the weighting model, we turn to BM25 [21], which has proven as one the best
performing models when used in this context as we have shown in our previous
work [22].

The text-based retrieval is further boosted by applying query expansion.
Query expansion is a process of reformulating a query with the aim to improve
retrieval performance. We implemented with pseudo-relevance feedback in Ter-
rier. Pseudo-relevance feedback analyzes the top n number of initially retrieved
documents and finds the m most informative terms. These terms are then added
to the query and another retrieval is performed. The results from this retrieval
are the final text-based results.

5 Modality Classification

Image modality is an important aspect of the image for medical retrieval pur-
poses. In user studies, clinicians have indicated that modality is one of the most
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important filters that they would like to have to limit their search [2]. The usage
of modality information often significantly improves the retrieval results.

5.1 Scale-Invariant Feature Transform Descriptors

Collections of medical images typically contain various images obtained using
different imaging techniques. To properly represent the images, different feature
extraction techniques that are able to capture the different aspects of an im-
age (e.g., texture, shapes, color distribution...) need to be used [23]. Texture
is especially important, because it is difficult to classify medical images using
shape or gray level information. Effective representation of texture is necessary
to distinguish between images with equal modality and layout. Furthermore, lo-
cal image characteristics are fundamental for image interpretation: while global
features retain information on the whole image, the local features capture the
details. Thus, they are more discriminative concerning the problem of inter and
intra-class variability [24].

Our approach to medical modality classification uses scale-invariant feature
transform (SIFT) image descriptors in combination with the bag of features
approach commonly used in many state-of-the-art image classification problems
[2]. The basic idea of this approach is to sample a set of local image patches
using some method (densely, randomly or using a key-point detector) and to
calculate a visual descriptor on each patch (SIFT descriptor, normalized pixel
values). The resulting set of descriptors is then matched against a pre-specified
visual codebook, which converts it to a histogram. The main issues that need to
be considered when applying this approach are: sampling of patches, selection
of visual patch descriptors and building a visual codebook.

We use dense sampling of the patches, which samples an image grid in a uni-
form fashion using a fixed pixel interval between patches. We use an interval
distance of 6 pixels and sample at multiple scales (σ = 1.2 and σ = 2.0 for
the Gaussian filter [10]). Due to the low contrast of some of the medical images
(e.g., radiographs), it would be difficult to use any detector for points of interest.
We calculate opponentSIFT (OSIFT) descriptors for each image patch [25], [10].
OpponentSIFT describes all channels in the opponent color space using SIFT
descriptors. The information in the O3 channel is equal to the intensity infor-
mation, while the other channels describe the color information in the image.
These other channels do contain some intensity information, but due to the nor-
malization of the SIFT descriptor they are invariant to changes in light intensity
[10].

The crucial aspects of a codebook representation are the codebook construc-
tion and assignment. An extensive comparison of codebook representation vari-
ables is given by van Gemert et al. [26]. We employ k-means clustering (a custom
implementation in the Python programming language was used) on 250K ran-
domly chosen descriptors from the set of images available for training. k-means
partitions the visual feature space by minimizing the variance between a prede-
fined number of k clusters. Here, we set k to 1000 and thus define a codebook
with 1000 codewords [24].
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5.2 Classifier Setup

The training database is taken from the ImageCLEF 2013 medical modality clas-
sification task which is a standardized benchmark for systems that automatically
classify medical image modality from PubMed journal articles [2]. The provided
dataset consists of images from 31 modalities. Figure 2 shows sample images
from the dataset. The number of images in the provided train set is 2901, and
the number of validation images is 2582.

Light microscopy

ElectromyographyEndoscopyUltrasound

Flowcharts Computerized Tomography

Fig. 2. Sample images from the ImageCLEF 2013 database

For classification, we used the libSVM implementation of support vector
machines (SVMs) [27] with probabilistic output [28]. To solve the multi-class
classification problems, we employ the one-vs-all approach. Namely, we build
a binary classifier for each modality/class: the examples associated with that
class are labeled positive and the remaining examples are labeled negative. This
results in an imbalanced ratio of positive versus negative training examples. We
resolve this issue by adjusting the weights of the positive and negative classes
[10]. In particular, we set the weight of the positive class to #pos+#neg

#pos and the

weight of the negative class to #pos+#neg
#neg , with #pos the number of positive

instances and #neg the number of negative instances in the train set.
We used SVMs with a precomputed χ2 kernel. We optimize the cost param-

eter C of the SVMs using an automated parameter search procedure. For the
parameter optimization, we used the validation set. In the final stage, using the
learned model we have predicted the modalities for 300K images which are part
of the retrieval system. These 300K images are a part of the ImageCLEF 2013
dataset for the same medical task.

5.3 Evaluation of the Classifier

To assess the performance of the classifiers, we use the overall recognition
rate/accuracy. This is a very common and widely used evaluation measure. It
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is calculated as the fraction of the validation images whose class/modality was
predicted correctly.

We can note that the opponentSIFT descriptor offers very good predictive
performance with accuracy of 76.21%. The opponentSIFT descriptor is able to
capture specific details from the images and is robust to noise, illumination, scale,
translation and rotation changes. The detailed performance per modality (class)
is given in Figure 3. The figure shows the confusion matrix for the validation set
and the main diagonal contains the per modality classification accuracy.

From the results we can note the high predictive performance for most of the
modalities. If we analyze the confusion matrix we can note that the classifier is
biased towards the class/modality denoted as compound figure (COMP).

6 Experimental Design

6.1 Dataset Description

ImageCLEF [2] has positioned itself as a valid platform for benchmarking of
medical image retrieval techniques, hence we turned to its dataset for our ex-
periments. Namely, we used the dataset from the ad-hoc image-based retrieval
subtask. The subtask is defined in the following manner. The input is a set of
keywords and/or sample medical images and the output is a sorted list of rel-
evant medical images. The goal is to find the most relevant images for a given
query. For evaluation purposes the top 1000 image are taken into consideration
as it was in the task.

The provided dataset contains sample images and medical journal articles
that contain the images. A set of queries is also provided, so they can be used
to evaluate the algorithms. The total number of images is 306,539 and the total
number of queries is 35.

Each test query consists of a textual part and come with 2-3 sample images.
The textual queries are usually short and contain a couple of keywords. Examples
queries: 1.osteoporosis x-ray, 2.nephrocalcinosis ultrasound images, 3.lymphoma
MRI images

The medical articles from which the images are extracted are organized in a
XML format and contain the following fields: title,abstract,article text - referred
as full-text,captions of images present in the article, Medical Subject Headings
(MeSH R©terms) of the article. The best runs from previous years [2] reported
that the best image representation consisted of the title, abstract, MeSH terms,
image caption and the snippets (sentences) of the text where the image is men-
tioned (referred as image mention). Hence, we choose the same representation
as well.

6.2 Evaluation Metrics

For evaluation of our system we applied the evaluation metrics used by Image-
CLEF: mean average precision (MAP), precision at first 10 (P10) and first 30
(P30) images retrieved [2].
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7 Results and Discussion

The goal of this study is to answer the following question: Does integrating modal-
ity information in the retrieval stage improve the regular retrieval performance
using only text data?

First, we conduct pure text-based retrieval, where only the text part of the
query is used. Then for each image in the initial results we check the image-
modality index to determine whether the image has the same modality as the
ones extracted from the query. If that is the case the relevance score of the

Fig. 3. Confusion matrix for the validation set. The image modalities are as follows:
Tables and forms (GTAB), Fluorescence microscopy (DMFL), Chromatography/Gel
(GGEL), Statistical figures/graphs/charts (GFIG), Other organs (DVOR), Chemi-
cal structure (GCHE), Light microscopy (DMLI), Angiography (DRAN), Screenshots
(GSCR), Endoscopy (DVEN), Hand-drawn sketches (GHDR), Gene sequence (GGEN),
System overviews (GSYS), Compound or multipane images (COMP), Ultrasound
(DRUS), Combined modalities in one image (DRCO), Electromyography (DSEM),
Program listing (GPLI), Electroencephalography (DSEE), Mathematics/formulae
(GMAT), Electrocardiography (DSEC), X-Ray/2D Radiography (DRXR), Transmis-
sion microscopy (DMTR), Flowcharts (GFLO), Dermatology/skin (DVDM), Electron
microscopy (DMEL), Computerized Tomography (DRCT), PET (DRPE), Non-clinical
photos (GNCP), Magnetic Resonance (DRMR), 3D reconstructions (D3DR)
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image is multiplied by a certain factor. We then re-rank the images based on
this modification and get the final results (this is done for the results from each
query separately). This should provide us with an answer on whether modality
improves the retrieval.

The results from the experiments are presented in Table 1.

Table 1. Results from ad-hoc image-based retrieval over ImageCLEF 2013 using text
and multimodal data with/without query expansion (denoted as qe in the table)

MAP P10 P30

text 0.26 0.32 0.22
text + modality 0.29 0.35 0.24
text + qe 0.30 0.38 0.24
text + qe + modality 0.32 0.39 0.25

We did four experiments to determine whether our proposed architecture
improves the retrieval process. The first run text is a pure textual retrieval over
the ImageCLEF 2013 collection. The run text + modality is the run from our
proposed architecture, which takes into account the image modality and the text-
based query. The proposed architecture provides improved MAP for roughly 3%.
The run text+ qe is the baseline textual retrieval with added query expansion.
Query expansion by itself adds improvements over the pure textual retrieval. The
run text+qe+modality is the textual retrieval with added query expansion and
modality re-ranking at the end. The highest performance is provided by this run.
It provides a roughly 2% increase in performance.

Incorporating modality increases performance in both cases. That confirms
our hypothesis that introducing modality information in this kind of retrieval
process can improve the performance. Furthermore, the obtained results are so
far the best on this database by our knowledge. Namely, the Natural Library
of Medicine (NLM) group at ImageCLEF 2013 reported a MAP of 0.32 on the
same dataset (with the same queries) as well.

8 Conclusion

In this paper we proposed an approach for retrieval of medical images, which
uses multimodal (textual and visual) features. For the visual features we used
the state-of-the-art opponentSIFT features, whereas, for the textual features we
referred to the standard bag-of-words representation. We applied query expan-
sion to further improve the text-based retrieval. At the end, we included the
medical modality of the images as input to the retrieval.

The results confirmed our hypothesis that introducing modality information to
the retrieval process can improve the overall performance. The modality classifi-
cation in the retrieval process boosts the retrieval by roughly 2-3%. We obtained
state-of-the-art results over the ImageCLEF 2013 dataset.

Our future work goes into the lines of implementing the proposed architecture
in a form of a publicly accessible website and including different databases.
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Abstract. We propose a new method for computing the tree edit dis-
tance between two unordered trees by problem encoding. Our method
transforms an instance of the computation into an instance of some IP
problems and solves it by an efficient IP solver. The tree edit distance
is defined as the minimum cost of a sequence of edit operations (either
substitution, deletion, or insertion) to transform a tree into another one.
Although its time complexity is NP-hard, some encoding techniques have
been proposed for computational efficiency. An example is an encoding
method using the clique problem. As a new encoding method, we pro-
pose to use IP solvers and provide new IP formulations representing the
problem of finding the minimum cost mapping between two unordered
trees, where the minimum cost exactly coincides with the tree edit dis-
tance. There are IP solvers other than that for the clique problem and
our method can efficiently compute ariations of the tree edit distance
by adding additional constraints. Our experimental results with Glycan
datasets and the Web log datasets CSLOGS show that our method is
much faster than an existing method if input trees have a large degree.
We also show that two variations of the tree edit distance could be com-
puted efficiently by IP solvers.

Keywords: tree edit distance, unordered tree, IP formulation.

1 Introduction

Computing similarities between tree structured data (e.g., RNA secondary struc-
tures [10], Glycan structures [12], markup documents) is an important task in
machine learning applications, and many efficient algorithms for the tree edit dis-
tance (distance, for short) of rooted labeled ordered trees have been proposed [13].
However, computing the distance between unordered trees is known to be NP-
hard [19] and MAX SNP-hard [20], which indicates that the problem does not
have any polynomial time approximation scheme (PTAS) unless P = NP.
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In this paper, we propose a new method to compute the tree edit distance for
rooted labeled unordered trees. The distance is formulated as the minimum cost
to transform a tree into another by applying edit operations (either substitution,
deletion, or insertion). It is known that the distance coincides with the minimum
cost of all possible Tai mappings between two trees [16]. Our key idea is to
transform every instance of the problem into an IP problem finding the minimum
cost mapping, and solve it using IP solvers. Though the time complexity of
IP problems is also NP-hard, there exist several IP solvers (e.g., SCIP [1] and
CPLEX [9]) that run in practical time, which is roughly 1000 times faster than
those in 90s without progresses of hardwares [4].

Existing methods for unordered trees are roughly classified into three groups.
The first group adopts heuristic search. Horesh et al. developed an A* algo-
rithm for unlabeled unordered trees [8] and Higuchi et al. extended it for labeled
trees [7]. The second one concerns parameterized algorithms. Shasha et al. pro-
posed O(4l1+l2poly(n1, n2)) time algorithm [15], where li and ni are the numbers
of leaves and nodes in input trees respectively. Another example is that proposed
by Akutsu et al., which is an O(1.26n1+n2) time algorithm [2]. The third one
performs problem reductions. Fukagawa et al. proposed a method to use an
maximum vertex weighted clique solver after transforming every instance of the
distance problem into some instance of the maximum vertex weighted clique
problem [5]. They showed that the the clique-based method is as fast as an
A* based method. Mori et al. improved it by introducing several heuristics [14].
They showed that their method is much faster than the previous study. Although
these clique-based methods are faster than the other previous methods, yet their
method can only solve moderate size trees. Moreover, there is a problem that
there are few available maximum vertex weighted clique solvers.

Our approach is classified into the third category, which uses IP solvers instead
of clique solvers. An IP problem is a linear programming (LP) problem with
additional restrictions on variables [3]. Compared to the clique-based methods,
we have two advantages: There exist IP solvers other than those for the clique
problem, and IP formulations could represent variations of the distance easily by
adding additional constraints. To explain our method, we give preliminaries in
Section 2 and propose our IP formulations in Section 3. In Section 4, we evaluate
the proposed method using Glycan datasets from KEGG [12] and the Web log
data CSLOGS [18]. We also evaluate our method for computing variations of
the tree edit distance. We conclude our work in Section 5.

2 Preliminaries

Let V be a (finite) set of nodes and ≤ be an order between nodes. A rooted
unordered tree T is a poset (V,≤) satisfying
1. There exists a unique element r ∈ V such that x ≤ r for all x ∈ V , and
2. for all x, y, z ∈ V , if x ≤ y and x ≤ z, then y and z are comparable.

The node r is called the root of T and denoted by root(T ). For two nodes x and
y, x < y means x ≤ y and x �= y. If x ≤ y, x is an descendant of y and y is an



158 S. Kondo et al.

Substitution
�→ε

Deletion
�→

Insertion
�→ε

Labels S T

Fig. 1. An example of a sequence of edit operations from S to T

ancestor of x. For a node x ∈ V \{r}, the minimum ancestor is called the parent
and denoted by par (x) and x is called a child of par(x). The set of all children
of x is denoted by ch(x). The degree deg(x) of a node x is defined as |ch(x)| and
that deg(T ) of a tree T is also defined as maxx∈T deg(x), respectively. A node x
is called leaf if deg(x) = 0, and leaves(T ) denotes the set of all leaves in T .

With a labeling function lT : V → Σ, a tuple (T, lT ) with T = (V,≤) is
called a labeled tree, where Σ is the alphabet. In the following, we often represent
labeled trees by rooted trees without labeling functions.

2.1 Tree Edit Distance

The tree edit distance between two trees is defined by using the cost of sequences
of edit operations which are required to transform a tree into another.

Definition 1 (Edit Operations). Let Σε = Σ ∪{ε} where ε is a special blank
symbol not in Σ. An edit operation is either

substitution replacing the label of a node in T with a new label,
deletion deleting a non-root node s of T , making all children of s be the children

of par(s), or
insertion inserting a new node t as a child of some node v in T , making some

children of v be the children of t.

For each of the edit operations, we define a pair in Σε ×Σε \ {(ε, ε)} as follows.
For substituting a label n of a node t in T by another label m, the pair is (n,m).
For deleting a node having a label n, the pair is (n, ε). For inserting a new node
having a label m, the pair is (ε,m). A cost function d : Σε × Σε \ {(ε, ε)} → R

defines the cost of the operations on trees according to pairs representing the
edit operations. In the following, we write d(s, t) for (s, t) ∈ S × T to mean
d(lS(s), lT (t)), where lS and lT are labeling functions of two trees S and T . In
this paper we adopt the unit cost, which is defined by using the Kronecker’s
delta δi,j as:

d(n1, n2) = 1− δlS(n1),lT (n2)

It is important that our IP formulation adopts not only the unit cost but also
various cost functions. Because of the space limitation, we discuss only the unit
cost in this paper. The cost of a sequence E = 〈e1, . . . , en〉 of edit operations is
defined as cost(E) =

∑
i cost(ei). Figure 1 shows an example of such a sequence

transforming S into T . With the cost of the edit operations, the tree edit distance
is defined as follows.
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Definition 2 (Edit Distance [16]). Let S and T be trees and E(S, T ) be the
set of all possible sequences of edit operations transforming S into T . The edit
distance D(S, T ) is defined as D(S, T ) = minE∈E(S,T ) cost(E).

The tree edit distance is closely related to Tai mappings.

Definition 3 (Tai Mapping [16]). Let S and T be trees. A Tai mapping M
is a subset of S × T satisfying constraints below for any (s1, t1), (s2, t2) in M :

One-to-one mapping : s1 = s2 ⇐⇒ t1 = t2, and
Preserving ancestor : s1 < s2 ⇐⇒ t1 < t2.

The set of all possible Tai mappings between S and T is denoted byMTai(S, T ).
For a mapping M ⊆ S × T , we let M (1) = {s ∈ S | (s, t) ∈M} and M (2) = {t ∈
T | (s, t) ∈M}. With a cost function d, we define the cost of a Tai mapping M ,
denoted by cost(M), as follows.

cost(M) =
∑

(s,t)∈M

d(s, t) +
∑

s∈S\M(1)

d(s, ε) +
∑

t∈T\M(2)

d(ε, t).

Based on the cost of Tai mappings, Tai showed the following theorem.

Theorem 1 ([16]). For trees S and T , D(S, T ) = minM∈MTai(S,T ) cost(M).

This well-known theorem means that the tree edit distance can be computed by
finding the minimum cost Tai mapping instead of finding directly the minimum
cost sequence of the edit operations.

2.2 Mixed Integer Linear Programming

We compute the tree edit distance by finding a tree mapping with the minimum
cost based on Theorem 1 by transforming the original problem into an instance
of IP problems instead of computing the distance directly. An IP problem is
a linear programming problem with constraints, where some or all variables
must be integer values. In this paper, we deal with only Mixed Integer Linear
Programming problems and call them IP problems.

Definition 4 (Mixed Integer Linear Programming). AMixed Integer Lin-
ear Programming (MILP) is defined as follows:

maximize
∑n

j=1 cjxj ,

subject to
∑

j=1,2,...,n aijxj ≤ bi (1 ≤ i ≤ m),

xj ≥ 0 (1 ≤ j ≤ n),
some or all xj must be integer,

where cj and aij are constant integers.

Because a large number of problems can be formulated as IP problems, the
expressiveness of IP formulations has been recognized since early times [6]. How-
ever, they had not been used in practice because their computational complexity
is NP-hard [4]. Recently several IP solvers have been improved drastically, and
they can handle IP problems with several hundred thousand constraints.
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s1

s2

s3 s4

S T
t1

t2 t3

(a) Trees S and T .

s1

s2

s3 s4

S T
t1

t2 t3

ms1t1 = 1

ms2t2 = 1

(b) Tai mapping M .

s1

s2

s3 s4

S T
t1

t2 t3

ms1t2 = 1

ms2t1 = 1

(c) Non-Tai mapping.

Fig. 2. A example of representing mappings by using binary variables msi,tj

3 Two IP Formulations for the Tree Edit Distance

As an example case, let we consider the trees S = {s1, s2, s3, s4} and T =
{t1, t2, t3} illustrated in Figure 2a. For representing mappings, we first prepare
binary variables msi,tj ∈ {0, 1} for each pair of nodes (si, tj) ∈ S × T . We
use these binary variables as indicators: ms,t = 1 if and only if (s, t) ∈ M for
s ∈ S, t ∈ T . In Figure 2b, a Tai mapping M = {(s1, t1), (s2, t2)} ⊆ S × T
is represented by ms1,t1 = ms2,t2 = 1. A mapping in Figure 2c is not a Tai
mapping.

We here design an objective function for computing D(S, T ) with binary vari-
ables by transforming a cost(M) into an objective function as follows:

cost(M) =
∑

(s,t)∈M

d(s, t) +
∑

s∈S\M(1)

d(s, ε) +
∑

t∈T\M(2)

d(ε, t),

=
∑

(s,t)∈S×T

d(s, t)ms,t

+
∑
s∈S

d(s, ε)

{
1−

∑
t∈T

ms,t

}
+
∑
t∈T

d(ε, t)

{
1−

∑
s∈S

ms,t

}
, (1)

=
∑

(s,t)∈S×T

{d(s, t)−d(s, ε)−d(ε, t)}ms,t+
∑
s∈S

d(s, ε)+
∑
t∈T

d(ε, t). (2)

where terms in Equation 1 indicate the costs of pairs in M , those of nodes only
in S which are removed, and those only in T which are inserted, respectively.
In IP formulations, we minimize cost(M) under constraints on binary variables
ms,t representing conditions of Tai mappings in Definition 3. The first condition
(one-to-one mapping) can be transformed into two types of linear constraints.

For all s ∈ S,
∑
t∈T

ms,t ≤ 1 and for all t ∈ T,
∑
s∈S

ms,t ≤ 1. (3)

The first constraint means that for a node s ∈ S (resp. t ∈ T ) we allow at most
one pair in M containing s (resp. t).
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∀s ∈ S ,
∑
t∈T

ms,t ≤ 1

∀t ∈ T ,
∑
s∈S

ms,t ≤ 1

Example
ms1,t1 +ms1,t2 +ms1,t3 ≤ 1

s1

s2

s3 s4

S T
t1

t2 t3

ms1t1 = 1

ms1,t2 = 1

ms1,t3 = 1

(Choose one of three)

(a) One-to-one mapping constraint.

∀(s1, t1), (s2, t2) ∈ S × T ,

s1 < s2 xor t1 < t2,
ms1,t1 +ms2,t2 ≤ 1

Example
ms1,t2 +ms2,t1 ≤ 1 (Choose one of two)

s1

s2

s3 s4

S T
t1

t2 t3

ms1,t2 = 1

ms2,t1 = 1

(b) Preserving ancestor constraint.

Fig. 3. Examples of constraints representing both one-to-one mapping constraint and
preserving ancestor constraint

The second condition (preserving ancestor) is transformed into linear con-
straints in the same manner:

For all (s1, t2), (s2, t2) ∈ S × T s.t. s1 < s2 � t1 < t2,ms1,t1 +ms2,t2 ≤ 1. (4)

This means that a mapping M cannot contain two pairs whose mapping from
S to T violates preserving ancestor relationships. Figure 3 shows examples for
these two constraints.

Putting all together, our formulation is given as follows.

Proposition 1 (IP Formulation for the Tree Edit Distance)

minimize
∑

(s,t)∈S×T {d(s, t)− d(s, ε)− d(ε, t)}ms,t

+
∑

s∈S d(s, ε) +
∑

t∈T d(ε, t)
subject to ms,t ∈ {0, 1} (for all (s, t) ∈ S × T )∑

t∈T ms,t ≤ 1 (for all s ∈ S)∑
s∈S ms,t ≤ 1 (for all t ∈ T )

ms1,t1 +ms2,t2 ≤ 1
(for all (s1, t2), (s2, t2) ∈ S × T s.t. s1 < s2 � t1 < t2)

As a result, given a pair of trees S and T , our IP formulation requires O(|S||T |)
binary variables and O(|S|2|T |2) constraints.

In general, there are many ways to obtain IP formulations, which depends on
how to represent constraints on variables. For example, we can transform the
problem also into the following form:

Proposition 2 (IP Formulation Using Big-M Method)

minimize
∑

(s,t)∈S×T {d(s, t)− d(s, ε)− d(ε, t)}ms,t

+
∑

s∈S d(s, ε) +
∑

t∈T d(ε, t)
subject to ms,t ∈ {0, 1} (for all (s, t) ∈ S × T )∑

t∈T ms,t ≤ 1 (for all s ∈ S)∑
s∈S ms,t ≤ 1 (for all t ∈ T )∑
(s′,t′)∈S×T
s.t. s<s′�t<t′

ms′,t′ ≤M(1−ms,t) (for all (s, t) ∈ S × T )
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Note that M is a large integer and the difference is the last constraint. This
formulation requires O(|S||T |) binary variables and O(|S||T |) constraints.

The IP formulations using a large constant integer M such as Proposition 2
are called the Big-M method [6], which are adopted when we want to represent
disjunction of constraints. We can interpret the inequality

∑
ms′,t′ ≤ M(1 −

ms,t) as follows: If ms,t = 1, the r.h.s. becomes 0 and it consequently means that
M cannot contain a pair (s′, t′) which violates the preserving ancestor condition
which we want to represent.

3.1 Constraints for Variations of the Tree Edit Distance

Since we have IP formulations for Tai mappings, we could easily extend them to
deal with other mappings. We provide two such mappings; segmental mappings
and bottom-up segmental mappings, which are seen in previous studies on varia-
tions of the tree edit distance [17, 11]. These types of mapping are useful when
we focus on mappings between connected trees as long as possible.

Definition 5 (Segmental Mapping). Let S and T be trees. A Tai mappingM
between S and T is a segmental mapping if it satisfies the following condition:
for any (s1, t1) and (s2, t2) in M such that s1 �= root(S) and t1 �= root(T ),
(s1 < s2 ∧ t1 < t2)⇒ (par(s1), par(t1)) ∈M .

This new constraint can be represented as follows: for all (s1, t1), (s2, t2) ∈
S × T such that s1 �= root(S), t1 �= root(T ), s1 ≤ s2, and t1 ≤ t2,

ms1,t1 +ms2,t2 ≤ mpar(s1),par(t1) + 1. (5)

Definition 6 (Bottom-up Segmental Mapping). Let S and T be trees. A
segmental mapping M between S and T is a bottom-up segmental mapping if it
satisfies the following conditions: for any (s1, t1) in M ,

((s1 ∈ leaves(S)) ∧ (t1 ∈ leaves(T )))∨
∃(s2, t2) ∈M. (s2 ≤ s1 ∧ t2 ≤ t1 ∧ s2 ∈ leaves(S) ∧ t2 ∈ leaves(T )) .

It is also possible to design constraints for bottom-up segmental mappings as
follows: for all (s1, t1) ∈ S × T satisfying s1 �∈ leaves(S) and t1 �∈ leaves(T ),

ms1,t1 ≤
∑

s∈leaves(S),t∈leaves(T ),s<s1,t<t1

ms,t. (6)

4 Experiments

The purposes of our experiments are comparing performances of our method
with an existing algorithm and evaluating our IP formulations including varia-
tions of the tree edit distance. We selected as our competitor the DpCliqueEdit-E
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developed by Mori et al. [14], which is much faster than the other existing meth-
ods on the third approach and methods based on A* algorithm. Note that we
added an additional constraint: mroot(S),root(T ) = 1 to our IP formulation for
fairness. because the minimum cost mapping computed by the DpCliqueEdit-E
always contains a pair (root(S), root(T )),

We implemented our IP-based method in C++ and used the IP solver CPLEX
12.5 [9]1. These methods run on a service provided by the Sakura Internet
Cloud2. We set the timeout to 60 minutes and adopted the unit cost.

Datasets. We used two datasets: Glycan datasets from KEGG [12] and CSLOGS
consisting of Web browsing log files [18]. We separated CSLOGS into two sub-
datasets: SUBLOG3 and SUBLOG49. Each sub-dataset has 15,000 trees in which
every tree T satisfies |T | ≤ 80. Every tree T in SUBLOG3 (resp. SUBLOG49)
is restricted to be deg(T ) ≤ 3 (resp. deg(T ) ≤ 49). Following the ways of ex-
periments in the previous work [14], we randomly selected 100 pairs of trees
structured data from each database with a specified range of the total number
of nodes (i.e., |S| + |T |). We measured the average CPU time, the standard
deviation of the time, and the number of problems causing timeout per pair.
Unbalanced cases on size in which the size of one structure was smaller than
one-third of the other structure were excluded.

4.1 Experimental Results and Discussions

Tables 1, 2, and 3 show the average of CPU time (in “avg.”), the standard
deviation of CPU time (in “s.d.”), and the number of timeout (in “t.o.”) for
each dataset Glycan, SUBLOG3, and SUBLOG49, respectively.

Experimental results show that the clique-based method DpCliqueEdit-E is
much faster than our method in Glycan (shown in Table 1) and SUBLOG3 (shown
in 2). While, Table 3 shows that our method works faster in SUBLOG49, where
our method is much more stable with respect to computational time shown in
columns of s.d., and there are no timeout pairs of trees in use of our method.
Note that for many pairs the DpCliqueEdit-E cannot complete the computations
by the timeout. From these observations, we can conclude that our method is
more efficient and reliable in computations of the tree edit distance if the average
of degrees of trees in a dataset is large.

Since there exists many heuristics to improve clique-based methods, it is more
efficient for databases in which trees have small degrees. For example, they deal
with nodes that have only one child in a special way [14]. This suggests that
we also could improve the performance of our method by introducing heuristics
and additional techniques to our IP formulations. Unfortunately, in general it is
not easy to analyze behaviors of IP solvers and IP formulations. We conjecture

1 We set IloCplex::Threads to 1, IloCplex::EpGap to 0.0, and IloCplex::EpAGap

to 0.0, respectively.
2 http://cloud.sakura.ad.jp/. We performed our experiments using 10 PCs with
Intel(R) Xeon(R) 3.07GHz CPU and 4GB RAM on the Ubuntu Server 13.10 (64bit).

http://cloud.sakura.ad.jp/
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Table 1. Experimental results with Glycan

# of nodes # of instances IP-based method DpCliqueEdit-E

avg. s.d. t.o. avg. s.d. t.o.

[50, 54] 100 4.488 3.030 0 0.656 0.086 0
[55, 59] 100 12.513 11.933 0 0.695 0.126 0
[60, 64] 88 68.616 180.805 0 0.778 0.208 0
[65, 69] 36 96.492 74.772 0 0.809 0.180 0
[70, 74] 100 40.321 72.647 0 1.508 3.002 0
[75, 79] 29 48.990 71.934 0 1.339 0.430 0
[80, 84] 9 113.092 90.738 0 2.171 0.797 0
[85, 89] 5 204.978 88.713 0 3.716 2.027 0
[90, 94] 4 1586.188 1083.090 0 15.793 10.954 0

Table 2. Experimental results with SUBLOG3

# of nodes # of instances IP-based method DpCliqueEdit-E
avg. s.d. t.o. avg. s.d. t.o.

[50, 54] 100 2.991 1.863 0 0.610 0.080 0
[55, 59] 100 5.774 4.136 0 0.905 2.238 0
[60, 64] 100 10.947 12.373 0 0.950 0.420 0
[65, 69] 100 21.023 21.026 0 1.078 0.548 0
[70, 74] 100 24.614 27.077 0 1.513 1.299 0
[75, 79] 100 73.684 165.768 0 1.714 0.840 0
[80, 84] 100 165.068 266.840 0 21.289 130.041 0
[85, 89] 100 212.862 406.964 0 6.024 14.441 0
[90, 94] 100 435.462 631.875 2 7.901 25.401 1
[95, 99] 100 527.586 673.865 11 18.018 74.920 1

that our approach is more useful than the existing approaches because we have
many possible choices for IP solvers and formulations, particularly for the case
databases consist of trees whose degree are relatively large.

In general there are many possible IP formulations for computing the tree
edit distance. Here we compare two IP Formulations in Section 3.

The results are shown in Table 4, which shows that Proposition 1 is faster
than Proposition 2 even though the former has more constraints than the latter.
This result coincides with a well-known statement: we should avoid to adopt the
Big-M methods for the numerical stability [4].
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Table 3. Experimental results with SUBLOG49

# of nodes # of instances IP-based method DpCliqueEdit-E
avg. s.d. t.o. avg. s.d. t.o.

[50, 54] 100 1.309 1.148 0 41.369 327.451 0
[55, 59] 100 2.077 1.854 0 77.050 273.540 4
[60, 64] 100 4.750 7.725 0 136.286 473.147 9
[65, 69] 100 6.333 6.405 0 151.853 474.503 18
[70, 74] 100 9.486 12.985 0 194.986 537.871 36
[75, 79] 100 10.732 11.198 0 366.557 818.226 40
[80, 84] 100 20.261 25.272 0 427.151 848.688 48
[85, 89] 100 39.072 72.938 0 426.430 853.436 60
[90, 94] 100 78.213 203.843 0 424.456 927.602 63
[95, 99] 100 163.556 385.869 0 204.049 376.761 71

Table 4. CPU time for comparing two IP Formulations in Proposition 1 and Propo-
sition 2 (using the Big-M method) with Glycan from KEGG

# of nodes # of instances Proposition 1 Proposition 2 (the Big-M method)
avg. s.d. t.o. avg. s.d. t.o.

[50, 54] 100 5.820 3.326 0 51.371 276.219 0
[55, 59] 100 13.197 16.608 0 88.716 129.957 0
[60, 64] 88 49.258 60.757 0 536.320 787.060 3
[65, 69] 36 91.514 41.501 0 797.209 735.258 1
[70, 74] 100 40.661 66.718 0 244.962 317.952 3
[75, 79] 25 41.759 19.081 0 442.778 450.224 0

4.2 Comparison of Two IP Formulations

4.3 Variations of the Tree Edit Distance

We computed two variations: segmental and bottom-up mappings based on our
IP formulation (Proposition 1). As far as we know, there are no competitive
counterparts for computing the distances of those mappings. We thus only com-
pare our results of those mappings with that of Tai mapping and show that our
algorithm works efficiently for variations of the tree edit distance.

The result is shown in Table 5. On the viewpoint of computational complexity,
computing the distance based on Tai mappings is NP-hard, and those based
on segmental mappings and bottom-up segmental mappings are MAX SNP-
hard [11]. In opposite to these computational intractability, Table 5 shows that
the computational time of the tree edit distance based on bottom-up segmental
mappings is shorter than one based on Tai mapping by using our algorithm.
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Table 5. Comparison computation time for three mappings: Tai mappings, segmental
mappings, and bottom-up segmental mappings with Glycan from KEGG

# of nodes # of instances Tai Segmental Bottom-up
avg. s.d. t.o. avg. s.d. t.o. avg. s.d. t.o.

[50, 54] 100 5.820 3.326 0 19.401 23.934 0 1.917 0.905 0
[55, 59] 100 13.197 16.608 0 51.857 72.340 0 3.308 1.971 0
[60, 64] 88 49.258 60.757 0 275.356 349.770 0 11.687 12.121 0
[65, 69] 36 91.514 41.501 0 357.015 202.331 1 24.781 10.312 0
[70, 74] 100 40.661 66.718 0 550.508 526.035 1 11.227 17.452 0
[75, 79] 25 41.759 19.081 0 716.843 556.473 0 20.914 36.057 0

5 Conclusion and Future Work

We proposed a new encoding method to compute the tree edit distance between
(rooted labeled) unordered trees based on IP solvers and IP formulations rep-
resenting the problem of finding the minimum cost mapping between two trees.
The proposed method has several advantages against existing methods. First,
once an IP formulation of the tree edit distance problems is found, the vari-
ations of the tree edit distance could be modeled conveniently by introducing
additional constraints to the base formulation as seen in Section 3 and its ex-
perimental evaluation in Section 4.3. Second, many IP solvers are available that
can solve even NP-hard problems in practice.

We performed experiments using real tree-structured datasets, the Glycan and
the Web log data CSLOGS. They showed that the our method outperforms the
DpCliqueEdit-E when the maximum degrees of input trees are large. However, in
simple problems such that nodes in input trees have small degrees, the proposed
method is less effective than the existing method.

In some applications, especially in computational biology, it is common that
degrees of most nodes are small. Thus there is need for more speed up against
such data by redesigning IP formulations or introducing heuristics used in the
existing methods. In addition, more experiments for other datasets, using other
IP solvers are our future work to clarify behaviors of IP-based methods.
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Abstract. Mining data with minimal annotation costs requires efficient active
approaches, that ideally select the optimal candidate for labelling under a user-
specified classification performance measure. Common generic approaches, that
are usable with any classifier and any performance measure, are either slow like
error reduction, or heuristics like uncertainty sampling. In contrast, our Proba-
bilistic Active Learning (PAL) approach offers versatility, direct optimisation of
a performance measure and computational efficiency. Given a labelling candi-
date from a pool, PAL models both the candidate’s label and the true posterior
in its neighbourhood as random variables. By computing the expectation of the
gain in classification performance over both random variables, PAL then selects
the candidate that in expectation will improve the classification performance the
most. Extending our recent poster, we discuss the properties of PAL and perform
a thorough experimental evaluation on several synthetic and real-world data sets
of different sizes. Results show comparable or better classification performance
than error reduction and uncertainty sampling, yet PAL has the same asymptotic
time complexity as uncertainty sampling and is faster than error reduction.

1 Introduction

Recently, the application of machine learning to large data pools and fast data streams
has gained attention. This application often requires classification of data where fea-
tures are cheap but labels are costly [8]. Examples are applications where features are
obtained from an automated process but labels require human annotation efforts. Active
learning (AL) [15, p. 4] addresses such applications, where the machine learning system
can actively select instances for labelling, rather than passively processing a given set
of labelled instances. Its tasks are to decide a) for which instance to request a label, and
b) whether to continue labelling at all, given some labels have already been acquired.

The ideal active learning strategy should select those instances first that, once incor-
porated into the training data, will result in the highest gain in terms of a classification
performance measure. Furthermore, it provides a quantification of this performance
gain, needed for a sound answer to the stop-criterion related second question. It there-
fore considers the already acquired amount of training data. Finally, it is fast, requiring
solely linear asymptotic computational time per instance with respect to the pool size,
in order to enable its application in large data pools and fast data streams. Active learn-
ing strategies that are usable in conjunction with any classifier technology provide some

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 168–179, 2014.
© Springer International Publishing Switzerland 2014



Probabilistic Active Learning 169

of the above qualities. However, as discussed further in Section 2, they do not offer a
combination of all these qualities in one single approach.

We address this challenge by a novel, probabilistic active learning (PAL) technique
for classification that combines the above qualities and constitutes an alternative to
other generic strategies like error reduction or uncertainty sampling. It is not limited to
a particular classifier technology, and usable with any point [12] performance perfor-
mance measure. Given a pool of candidates, it computes for each candidate the expected
gain in classification performance from obtaining its label. This expectation models the
candidate’s label and the true posterior at its location as a random variables, and uses
likelihood weights according to the already obtained labels in the candidate’s neigh-
bourhood. Subsequently, it selects the optimal candidate under this expected overall
performance gain for labelling. This active selection from a pool requires asymptotic
computational time that is solely linear in the size of the pool, as fast uncertainty sam-
pling approaches do. While deriving stop-criteria is not within the scope of this paper,
but our quantification of a label’s expected impact provides a fundamental first step.

This paper is a full-version of our recent poster [10], extending it by a more detailed
discussion of related work, an additional discussion of PAL’s properties, and additional
experiments. It is structured as follows: In the next section, we provide the necessary
background and discuss related approaches. In section 3, we present our probabilistic
active learning approach. In section 4, we report on our evaluation results, where we
compare PAL to the strategy considered to be optimal for minimising classification
error (error reduction), and to a popular fast heuristic strategy (uncertainty sampling). 1

2 Background and Related Work

This paper addresses pool-based active learning (AL) for binary classifiers, as described
in [15, p. 9] and [4]. In this scenario, an active classifier has access to a pool of unla-
belled instances U = {(x, .)}. From this pool of labelling candidates it repeatedly se-
lects an instance (x∗, .) for labelling. Upon receiving its label y∗, the instance (x∗, y∗)
is moved to a pool of labelled instances L = {(x, y)}, the classifier is retrained, and
the process is repeated. There exist various approaches for this scenario, recent surveys
are provided in [15], [6], [4] and [14]. We will focus on popular families of approaches
that are usable with any classification technique, and discuss the ones most related to
our approach: error reduction, uncertainty sampling and query-by-transduction.

Expected error reduction (ER) is a decision-theoretic approach. It considers the im-
provement in classification performance by selecting the candidate, that has the minimal
expected classification error if incorporated into the training pool. The seminal work of
[5], which coined the term “statistically optimal active learning”, derived closed-form
solutions for optimal data selection for two specific learning methods. In contrast, the
approach suggested in [13] is generic, both with respect to arbitrary performance mea-
sures and classifiers: using a Monte Carlo sampling approach, it estimates the perfor-
mance on a labelled validation sample V , rather than integrating over the full feature
distribution Pr (x). It uses the posterior estimate p̂ = P̂r (y|x) provided by the current
classifier as proxy for the true posterior Pr (y|x) that is required for the expectation over

1 For additional resources please consult http://kmd.cs.ovgu.de/res/pal/.

http://kmd.cs.ovgu.de/res/pal/
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the label realisations y. However, as discussed in [2], this proxy is not reliable if solely
few labels are available, requiring regularisation approaches such as using Beta priors.
Furthermore, the labelled (or self-labelled) validation sample V must be representative
of the data. Not only is this difficult, in particular at the beginning with few available la-
bels and a still unreliable classifier, but it also makes error reduction prohibitively slow
[14] for using it in applications that require fast processing of big amounts of data, as
even for incremental classifiers its asymptotic time complexity is O(|V| · |U|).

In comparison, a faster method [15, p.64] is uncertainty sampling (US), introduced
in [11]. It uses simple uncertainty measures, like sample margin, confidence, or entropy
as proxies for a candidate’s value, and selects the candidate with maximal uncertainty.
However, these proxies do not consider the number of similar instances on which pos-
terior estimates are made. This is problematic, as Figure 2 (next page) illustrates on
four exemplary active learning situations. These situations could, for example, occur
simultaneously in different regions of a feature space such that the next label must be
actively requested in either of them2 The first (in Roman numeral) and second situation
differ in the number of obtained labels (6 vs. 1), but lead to the same posterior estimate
P̂r (+|x) = 1, as all obtained labels are positive. Uncertainty sampling is indifferent be-
tween them, as both entropy and confidence are zero. This indicates equal and absolute
certainty, which is not justified as in II the single positive label can simply be due to
chance, even if the true posterior of the positive class is actually smaller than 0.5 and the
classifier is wrong. In contrast, in I a high true positive posterior is indeed very likely,
and additional labels have less impact on the classifier. Similarly, in IV the classifier’s
prediction is quite reliable, but uncertainty according to measures like entropy or con-
fidence is maximal. This leads to sampling in regions of high Bayesian error rate, even
if the classifier can not be further improved there.

Some of the many existing classifier-specific AL approaches offer high processing
speeds for particular applications. However, they require classifier selection to be made
with respect to the available active learning strategy, as sample reusability between
different types of classifiers for selector and consumer strategies is an open question
[16]. Finally, even recently proposed classifier-specific approaches are mostly either
information-theoretic (i.e. agnostic to the decision task at hand) or use the most likely
or most pessimistic posterior under the current model, thus ignoring the reliability as-
sociated with this estimate, as for example [7]. A very recent information-theoretic
approach that considers the reliability of a predictive model is Query-By-Transduction
(QbT) [9]. QbT is based on conformal prediction and selects the instances with respect
to the p-values obtained using transduction. This quantification of the reliability us-
ing p-values is related to ours, although we use the likelihood weights of the posterior
estimates and follow a decision-theoretic Bayes-optimal active learning approach that
directly optimises a classification performance measure.

2 For simplicity, this illustration assumes conditional independence of the posterior from the
feature given the region, i.e. Pr (y|x, z) = Pr (y|z), where y is the class, x the feature vector,
and z the region. Thus no further differentiation can be made within a region. We also assume
equal numbers of instances in all regions, making accuracy everywhere equally important.
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Fig. 1. Different AL situations, where entropy- or confidence-based uncertainty measures differ-
entiate only on a class’ relative (vert.) but not on all classes’ total (horiz.) number of labels

3 Probabilistic Active Learning

Following the common smoothness assumption [3], we consider that an instance x in-
fluences the classification the most in its neighbourhood. Thus, the impact of an addi-
tional label primarily depends on the already obtained labels in its neighbourhood. We
summarise these by their absolute number n, and the share of positives p̂ therein, yield-
ing the label statistics ls = (n, p̂). Here, n is obtained by counting the similar labelled
instances for pre-clustered or categorical data (as for the partitions in Figure 2), or ap-
proximated by frequency estimates such as kernel frequency estimates for smooth, con-
tinuous data. Thus, in x’s neighbourhood, n expresses the absolute quantity of labelled
information, whereas the density dx of unlabelled instances quantifies the importance
of this neighbourhood, i.e. the share of future classifications that will take place therein
compared to other regions of the feature space.

Given a labelling candidate (x, .) from a pool of unlabelled instances U for a user-
specified point classification performance measure [12] like accuracy, we want to com-
pute the expected overall gain in classification performance if requesting its label. This
requires knowledge of its label statistics ls , but also of its label y and the true posterior
p of the positive class within its neighbourhood. As the latter values of y and p are not
directly accessible, we use a probabilistic approach and model Y and P as random vari-
ables. This allows us to compute the expected value of the gain in performance over all
different true posteriors and label realisations, which we denote as probabilistic gain3

(pgain). Finally, we weight it by the neighbourhood’s density dx (over labelled and un-
labelled data) to consider the importance of the neighbourhood on the whole data set,
quantifying the overall expected performance change. Comparing the overall expected
performance change of all candidates, we select the optimal candidate for labelling.

We now first provide the modelling and derive the necessary equations, present the
framework of Probabilistic Active Learning (PAL ) with its pseudo-code, and close with
discussing its properties.

3 We do this to differentiate it from the expected gain as in expected error reduction methods
like [2], where expectation is solely over label outcomes, but not over the true posterior.
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3.1 Probabilistic Gain Calculation

Given a candidate (x, .), the label statistics ls summarise the obtained labels in its neigh-
bourhood. We model the true posterior P of the positive class (y = 1) in this neighbour-
hood as a Beta-distributed random variable, whose realisation p is itself the parameter
of the Bernoulli distribution controlling the label realisation y ∈ {0, 1} of any instance
within the neighbourhood. Consequently, the number of positives n · p̂ among the n al-
ready obtained labels in the neighbourhood is the realisation of a Binomial-distributed
random variable:

P ∼ Betan·p̂+1,n·(1−p̂)+1 (1)

Y ∼ Bernoullip = Berp (2)

(n · p̂) ∼ Binomialn,p (3)

The true posterior’s Beta distribution above results from its normalised likelihood given
the already observed labels, that is

ωls(p) =
L(p|ls)g(p)∫ 1

0
L(ψ|ls)g(ψ)dψ

= (1 + n) · L(p|ls) (4)

=
Γ (n+ 2) · pn·p̂ · (1− p)n·(1−p̂)

Γ (n · p̂+ 1) · Γ (n · (1− p̂) + 1)
= Betaα,β(p) (5)

where the parameters α = n · p̂+ 1 and β = n · (1− p̂) + 1 of the Beta-distribution’s
pdf Betaα,β(p) are obtained by following a Bayesian approach under a uniform prior
for P such that g() is a constant function, and by using the probability mass function
according to Eq. 3 for the likelihood L(p|ls), and (1 + n) · Γ (n+ 1) = Γ (n+ 2).

We take the expectation on the performance gain over these two random variables,
yielding the candidate’s probabilistic gain (pgain), that defines the expected change of
the performance measure for its neighbourhood:

pgain(ls) = Ep

[
Ey

[
gainp(ls , y)

] ]
(6)

=

∫ 1

0

Betaα,β(p) ·
∑

y∈{0,1}
Berp(y) · gainp(ls , y) dp (7)

Here, gainp(ls , y) is the candidate’s (x, .) performance gain given its label realisation y
and the neighbourhood’s true posterior p:

gainp(ls , y) = perfp

(
np̂+ y

n+ 1

)
− perfp(p̂) (8)

The definition of Eq. 7 and 8 allow the use of any point performance measure (see
e.g. [12]) for perf. An example is accuracy (acc), defined as

perfp(p̂) = 1− errp(p̂) = 1−
{
p p̂ < 0.5
1− p otherwise

(9)
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where errp(p̂) is the error rate under Bayes’ optimal classification, given a true posterior
p and observed posterior p̂ of the positive class.

Plugging this in Eq. 7 yields the probabilistic accuracy gain

pgainacc(ls) =

=

∫ 1

0

Betaα,β(p)
∑

y∈{0,1}
Berp(y)

(
errp(p̂)− errp

(
np̂+ y

n+ 1

))
dp

which we compute by trapezoidal numerical integration over p.
Finally, we weight each candidate’s probabilistic gain with the density dx over la-

belled and unlabelled instances in its neighbourhood, and select the candidate with the
highest density-weighted probabilistic gain for labelling:

x∗ = arg max
x∈U

(
dx · pgainacc(lsx)

)
(10)

3.2 PAL Algorithm

The pseudo-code for the resulting probabilistic, pool-based active learning algorithm is
given in Figure 2. Iterating over the candidate pool U (Lines 2-6), for each labelling
candidate x one computes its label statistics lsx = (nx, p̂x), its density weight dx,
and using numerical integration its probabilistic gain, which is weighted by its density
weight to obtain gx. Finally, the candidate with the highest gx is selected (Line 7).

1: function POOLBASEDPAL(U ,L)
2: for x ∈ U do
3: (nx, p̂x) ← labelstatistics(x,L)
4: dx ← densityweight(x,L ∪ U)
5: gx ← pgain((nx, p̂x)) · dx
6: end for
7: return arg maxx∈U(gx)
8: end function

Fig. 2. The PAL Algorithm

3.3 PAL’s Properties

Statistical Optimality in Disjoint Neighbourhoods. For a disjoint neighbourhood
concept, like in pre-clustered or categorical data, where instances are partitioned such
that instances having an influence on each others’ classification belong to the same
subset, the density-weighted probabilistic gain of a candidate corresponds precisely to
the expected change in overall performance from acquiring the candidate’s label. Thus
selecting the candidate with highest probabilistic gain is statistically optimal.

For smooth, continuous neighbourhoods, the density-weighted probabilistic gain is
the expected change at the candidate’s location, serving as an approximation of the
overall performance gain. We use this latter concept in our evaluation, as it applies to
more data sets and is better comparable to the baseline active learning algorithms.



174 G. Krempl, D. Kottke, and M. Spiliopoulou

Computational Efficiency. In this subsection, we discuss the asymptotic (with respect
to data set size) computational time complexity of PAL and related algorithms for ac-
tive learning of binary, incremental classifiers. For selecting a candidate from a pool U
of labelling candidates, the PAL algorithm above needs to iterate over all candidates in
the pool (Lines 2 – 6). Each iteration consists of 1) querying labelstatstics, 2) querying
density weights, and 3) computing the probabilistic gain. The first step requires absolute
frequency estimates of labels in the candidate’s neighbourhood, similar to the relative
frequency estimates needed by entropy or confidence uncertainty measures. These are
obtained in constant time by probabilistic classifiers. The second step requires density
estimates over all instances, that is over labelledL and unlabelledU ones. Precomputing
these density estimates once for all later calls of PAL leads to constant query time, as in
the pool-based setting the union L∪ U is constant. The third step consists of a numeric
integration over the true posterior p and a summing over possible label realisations y.
Both factors do not depend on the data set size. We used fifty numeric integration steps
in all our experiments to get highly precise estimates for expected classification accu-
racy gain, resulting in a constant factor of O(50 · 2) per probabilistic gain computation.
Overall, the iteration over the pool is done in O(|U|) time.

Selecting the candidate with highest density-weighted probabilistic gain in Line 7 is
done in constant time, by using a sweep line approach and storing the maximal value
and its corresponding candidate in the previous for-loop.

Overall, PAL requires O(|U|) time for selecting a candidate from the pool. Uncer-
tainty sampling, using probabilistic classifiers and entropy or confidence uncertainty
measures, requires asymptotically the same time, but due the simplicity of its compu-
tation with a smaller constant factor involved. In contrast, error reduction as discussed
in [15], requires O(|U| · |V|) time, where |V| ≈ |U|, as V needs to be a representative
sample of the data.

Characteristics of the Probabilistic Gain. For a better understanding of the proba-
bilistic gain function, Figure 3.3 shows the computed probabilistic gain (in terms of
accuracy) for different label statistics, i.e. combinations of different numbers of already
obtained labels n and observed posteriors P̂ r(+|x). The following main characteristics
of the curve underline its reasonable behaviour:

Monotonicity with variable n: With increasing n and a fixed P̂r (+|x) the probabilis-
tic gain decreases, because it is more likely that the posterior already is correct.

Symmetry with respect to P̂r (+|x) = 0.5: Evaluating accuracy, pos. and neg. labels
count the same, i.e. the probabilistic gain is equal for P̂r (+|x) and P̂r (−|x).

Zero for irrelevant candidates: If one label would not change the decision in its neigh-
bourhood, the accuracy remains the same. Thus, gain and probabilistic gain are 0.

This figure is inspired by an illustration of Settles, where different uncertainty mea-
sures are plotted as functions of the posterior of a class (see figure 2.4 in [15, p. 15]).
Comparing the least confident curve (plot (a) in [15]), it behaves nearly similarly as our
probabilistic gain for n = 1, but does not change with n.
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Fig. 3. Illustration of the probabilistic gain (pgain) as a function of P̂r (+|x), which is the observed
posterior of the positive class, and of n, which is the number of already obtained labels

4 Experimental Evaluation

From its theoretical characteristics, we expect PAL to be comparable to error-reduction
in terms of classification performance, yet faster, and we expect PAL to be better than
uncertainty sampling. This section will now verify these characteristics empirically. Af-
ter outlining the experimental setup, we will discuss the results in the second subsection.

4.1 Evaluation Settings

We compare our new base method PAL with expected error-reduction (in the extended
variant proposed by Chapelle in [2], denoted Chap), with uncertainty sampling (using
confidence [15] as uncertainty measure, den. Uncer), and with random sampling (den.
Rand). While error-reduction is considered as one of the best available AL-methods
[15, p. 64], uncertainty sampling is fast and very popular for large or streaming data.

We used Gaussian kernels for frequency estimation, and a Parzen window classi-
fier as in [2] for ensuring comparability with [2]. So, the estimated label frequencies
labelFreqc, c ∈ {+,−} at an instance x for the the positive L+ and the negative class
L− are calculated by an unnormalised Gaussian function. These frequencies build the
label statistics n = labelFreq+ + labelFreq− and p̂ = labelFreq+/n.

labelFreqc(x) =
∑

x′∈Lc

exp

(
−‖x

′ − x‖2
2σ2

)
Our framework starts without initial labels, and finishes after 40 label requests. The

classifiers, implemented in Octave/MATLAB and run separately on a cluster, use the
same pre-tuned, data set-specific bandwidth, and are re-evaluated in each of the 40 steps
on the same, dedicated (labelled) test sample. This ensures that only the difference in the
active learning strategy is influencing the performance. For better performance assess-
ment, we generated 100 random training and test subsets for each data set, and averaged
the results. Evaluation is done on 2 synthetic (based on [2]) and 6 real-world data sets
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(from [1]). The main characteristics (number of instances, number of attributes), such
as training and test set size and the σ of the Parzen window, are summarised in Table 4.
The synthetic data sets consist of 4x4 clusters, arranged in a checker-board formation.
While the clusters are low-density-separated in Che, they are adjoined in Che2. The
real-world data sets are Mammographic mass (Mam), Vertebral (Ver), Haberman’s sur-
vival (Hab), Blood transfusion (Blo), Seeds (See) and Abalone (Aba). All attributes
are scaled to a [0; 1]-range. We evaluate the performance over the first 40 active label
acquisitions and provide the results as learning curves for the optimised performance
measure accuracy for all data sets and algorithms.

4.2 Evaluation Results

In accordance to [2] and [15], we provide learning curves in the subfigures of Figure
6. These curves depict the progress in the active classifier’s accuracy as 40 training
instances are selected one after another for training. This allows to evaluate the perfor-
mance based on several criteria, and is more informative than tables of the performance
at arbitrarily selected learning stages.

(1) When does a curve become flat, i.e. when does the learner converge? On subfigure
g) for data set Seeds, the curves become flat already after reading 10 labels, while the
curves for data set Checkboard 2 (b) do not converge. Convergence indicates that addi-
tional labels do not provide additional use to the classifier, ideally a classifier converges
fast and to a high level of performance. This is seen on subfigures a and c, where PAL
in contrast to Random Sampling quickly converges to a high performance level.

(2) At what accuracy does a learner stop improving? Clearly, a learner that achieves
a 99% accuracy after reading 10 labels is better than one that needs 40 labels to reach
the same accuracy value, and also better than one that converges at 75%. Hence, PAL
outperforms all other algorithms except on Blood (f), Seeds (g) Abalone (h). The mo-
ment of convergence gives also indication on the appropriateness of the data set for

Dataset Inst Attr Pr (+) |Train| |Test| σ
See 210 7 33 % 160 50 0.1
Che 308 2 44 % 200 108 0.08
Che2 392 2 49 % 250 142 0.08
Hab 306 3 73 % 256 50 0.1
Ver 310 6 32 % 260 50 0.1
Aba 4177 8 50 % 400 1177 0.06
Blo 748 4 24 % 600 148 0.1
Mam 830 11 51 % 630 200 0.1

Fig. 4. Dataset characteristics and parame-
ters (number of instances, number of at-
tributes, proportion of positive instances,
training set size, test set size, bandwidth for
Parzen window classifier)

Dataset PAL Chap Uncer Rand
See 0.50 0.93 0.03 0.01
Che 0.61 1.16 0.03 0.01
Che2 0.92 1.54 0.03 0.02
Hab 0.89 1.72 0.03 0.02
Ver 0.91 1.84 0.04 0.02
Aba 1.51 3.82 0.07 0.04
Blo 2.34 6.14 0.1 0.05
Mam 2.56 8.48 0.25 0.12

Fig. 5. Average execution time (in seconds),
ordering of rows is in ascending training
dataset size
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active learning. If we contrast subfigures b and g, we must assert that data set Seeds is
not truly interesting in terms of active learning: after reading the labels of 5 or at most
10 instances, all learners converge to an accuracy very close to 1. Thus, comparative
performance of the active learners on Seeds is not truly informative; this data set is
not very appropriate for experiments on active learning (except as a counterexample).
The curves on the Blood Transfusion data set (cf. subfigure f) also indicate that active
learning is not truly beneficial on this data set.

(3) Does a learner recover from previous errors? If a curve becomes flat early, then
the learner might be trapped in low accuracy values. This is the case for the algorithm
Chapelle on data set Mammographic Mass (c). In contrast, PAL recovers on this data
set, as well as on data sets Checkboard, Vertebral and Habermans Survival (a, d, e).
Random Sampling never recovers from earlier choices: its performance curves are ei-
ther flat or go upwards, indicating that an early poor choice cannot be amended. Uncer-
tainty Sampling recovers in some data sets, while Chapelle and PAL always manages
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Fig. 6. a-h: accuracy curves for the algorithms on each dataset; early convergence to very high
values is best; improvement after a performance drop is better than a flat curve on low accuracy
values; j: runtime of PAL on a synthetic data set of varying size (100–1200 candidate instances)



178 G. Krempl, D. Kottke, and M. Spiliopoulou

to recover if they err in their early choices of label. Summarising the results on accu-
racy progress, PAL exhibits high performance in all data sets, manages to recover from
poor choices and makes best use of available labels, as long as needed (i.e. longer for
Checkboard 2 than for Seeds). PAL reaches the best accuracy values on 5 of the data
sets, achieves comparable accuracy to the other learners on two data sets (Seeds and
Blood Transfusion). PAL is only outperformed once on the Abalone data set.

(4) Execution time The execution time of PAL is shown in Table 5 and plot j of figure 6.
Table 5 indicates the execution times of all active learning algorithms on each dataset.
We see that PAL achieves better accuracy curves with lower (up to 1/2.5 times) exe-
cution time than the error-reduction algorithm of Chapelle. Nevertheless, the execution
time is still significantly higher than that of uncertainty sampling, but like the former its
time increases solely linearly with the training set size, i.e. the number of labelling can-
didates. This is also shown in plot j) of Figure 6, where the execution times on various
training set sizes of the same synthetic dataset are plotted. Overall, the uniformly low
execution time of uncertainty sampling is accompanied by a stronger variance among
the accuracy curves (cf. Figure 6): while PAL has very high performance on all data
sets, escapes from earlier errors and exploits well all labels (whenever reasonable, see
counterexample on Subfigure 6g), the accuracy curves of Uncertainty Sampling and
Random Sampling vary in dependence on the data set. Thus, PAL exhibits stable per-
formance at lower execution time than the expensive error-reduction mechanism, while
the simpler algorithms are affected stronger by the idiosyncrasies of the data sets.

5 Conclusion

In this paper, we introduced the probabilistic active learning approach (PAL). It uses
probabilistic estimates (label statistics) calculated within the neighbourhood of a la-
belling candidate. In contrast to Monte-Carlo-based error reduction approach proposed
in [13], it models both the true posterior and the candidate’s label as random variables.
Given a user-specified performance measure, PAL computes the probabilistic gain, that
is the expected performance gain over both random variables by numeric integration.
It subsequently selects the candidate with highest density-weighted probabilistic gain.
Like uncertainty sampling [11], PAL requires asymptotically linear time with respect to
the pool size, in contrast to quadratic time required by error reduction in [13].

Thus PAL combines two previously incompatible qualities: being fast, and computing
and optimising directly a point-performance measure. Given such a user-specified per-
formance measure and the label statistics as input, no additional parameters are required.
Our experimental evaluation shows that PAL yields comparable or better classification
performance than error-reduction, uncertainty-sampling or random active learning strate-
gies, while requiring less computational time than error-reduction.

Future work will comprise deriving specific closed-form solutions for some point-
performance measures such as misclassification loss, as this promises further improve-
ments in speed. Further research is also needed to address non-myopic scenarios, where
optimising the resulting performance gain from acquiring several labels is required. Fi-
nally, as PAL is fast and requires only label statistics but no samples to be kept, its
application in data streams seems a promising direction for future research.
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Abstract. In this paper, we focus on the problem of predicting some
particular user activities in social media. Our challenge is to consider
real events such as message posting to friends or forwarding received
ones, connecting to new friends, and provide near real-time prediction
of new events. Our approach is based on latent factor models which can
exploit simultaneously the timestamped interaction information among
users and their posted content information. We propose a simple strategy
to learn incrementally the latent factors at each time step. Our method
takes only recent data to update latent factor models and thus can reduce
computational cost. Experiments on a real dataset collected from Twitter
show that our method can achieve performances that are comparable
with other state-of-the-art non-incremental techniques.

Keywords: social media mining, incremental learning, latent factor
models, matrix factorization.

1 Introduction

Recent years have witnessed the explosion of social media on the Internet. Vast
amounts of user-generated content are created on social media sites every day.
Social media data are often characterized as vast, noisy, distributed, unstructured
and dynamic [7]. These characteristics make it difficult or impossible to apply
conventional data mining techniques on social media data.

One of the challenges in mining social media is how to leverage the inter-
action information (or relation) in the data. Interaction information in social
media can be any type of interactions between two users (e.g send a message,
write a comment) or relations between them (e.g friendship declared in a social
network). These interactions and relations are heterogeneous (can be different in
nature) and very rich in volume. In general, interaction information is worthy to
consider. Conventional machine learning techniques relying on attribute-value
data representation (i.e content information) cannot fully exploit this kind of
information.
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Another challenge of mining social media data lies in the fact that these data
are vast and continuously evolving. Social media provide a continuous stream
of data. Some applications in social media mining require building prediction
model to periodically extract useful information. Using offline learning tech-
niques (batch learning), we have to consider all data available from the past
until the present. This approach is not suitable for mining social media because
(1) as new data come, the size of the dataset grows, it gets more and more
expensive to learn and to apply the model (2) this approach treats old data
in the past and recent data the same way; intuitively, this may not be a good
choice because old data often contain less relevant information (in the context
of predicting future events).

These two challenges have not often been considered together. Recently, there
have been some works on mining social media stream, for example [1,9], but they
mostly concern topic extraction or trending topic detection on social media. We
are interested in predicting actions or attributes on each user. For this problem,
there have been a lot of works on exploring relational information in data. These
techniques are often referred to as statistic relational learning [5]. Unfortunately
they can only deal with static datasets. On the other hand, the second challenge
can be overcome by using incremental learning techniques [8], which are capable
of incrementally updating the model with new data. However, most incremental
learning algorithms only deal with attribute-value data.

This paper aims to tackle both these two challenges. We are interested in pre-
dicting some particular users’ actions in social media: post a message mentioning
a telecommunication brand on Twitter. The problem is described in details in
the next sections. We show that our proposed method based on latent factor
models achieves comparable or better performances than other learning tech-
niques in leveraging simultaneously interaction information and attribute-value
information in social media. The basic idea of our method has been introduced
in our previous work [14], but here we test it for a different task and in a dif-
ferent context. We also show that incremental learning is more appropriate for
mining social media: it is at least as good as batch learning in terms of prediction
performance and can gain a lot in computational time.

2 Data Representation and Problem Statement

For reasons of convenience, we adopt the concept of the social attribute network
(SAN) [6] to represent the data from social media. A SAN is a social network
Gs=(Vs, Es) where Vs is the set of nodes and Es is the set of (undirected)
edges. The social graph is augmented with a bipartite graph Ga = (Vs ∪ Va, Ea)
connecting the social nodes in Vs with attribute nodes in Va. The edges in Es are
social links and the edges in Ea (connecting social nodes and attribute nodes)
are attribute links. The value of an attribute a for a social node u is represented
by the weight of the link (u, a). Social media data can be represented by a SAN
as follows: social nodes represent the users, social links represent their relations
or interactions and attribute links represent known values of attributes (profiles,
user-generated content) on these users.
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The advantage of the SAN model is that it can easily represent data stream
from social media. When data come in stream, at each new time step, we can
have new users and new attributes. We can also have new social relations and
interactions between users and new values of attributes for each user. All of these
elements can be represented by an ”incremental” SAN: at each time step new
nodes (social nodes or attribute nodes) and new links (social links or attribute
links) are added. The new links can be social links or attribute link and concern
both existing nodes and new nodes. To be clear, we do not consider node and
link disappearance.

Our objective is to predict a target variable on the users in the next time step
t + 1 using data up to (including) t. In this paper, we consider a binary target
variable (label) which concerns some particular real-time action of the users. In
each time step, it takes the value 1 (positive) if the user take the action and
0 (negative) otherwise. This is a near real-time prediction problem (i.e requires
building prediction model at each time step). We aim to design prediction models
that can be learned incrementally from an ”incremental” SAN . Our problem is,
with new nodes and new links added at each time step, how to adapt the model
built at the previous time step to get a new model.

3 Related Work

The problem stated above is concerned with building classifiers from both
attribute-value data and the social graph. To use attribute-value data, any con-
ventional machine learning technique can be employed. Among these techniques,
support vector machine (SVM) [4] is one of the most robust.

To explore the social graph, many techniques of statistical relational learning
have been proposed. We cite here some interesting graph-based approaches. The
neighbor-based approach [12] infers the target attribute of a node from that of
its neighbors as follows:

P (yi = 1) =

∑
j∈Ni

yjSij∑
j∈Ni

Sij
(1)

where yi denotes the attribute value of the node t (0, 1 where 1 corresponds to
a positive label), Sij denotes the weight of the social link (i, j) and Ni is the set
of neighbors of t. This is a very simple approach it was proven to be better than
other relational techniques in some particular datasets [12].

Another approach of using the social graph for classification is Social Dimen-
sion [13]. The basic idea of this method is to transform the social network into
features of nodes using a graph clustering algorithm (where each cluster, also
called a social dimension, corresponds to a feature) and then train a discrimina-
tive classifier (SVM) using these features. Any graph clustering algorithm can
be used to extract social dimensions but spectral clustering [11] was shown to be
the best. This approach helps exploiting the graph globally, not just the neigh-
borhood of a node. It was shown in [13] that the Social Dimension outperforms
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other well-known methods of graph-based classification on many social media
datasets.

There have also been efforts to use both the social graph and the attributes to
improve prediction performances. For example, the Social Dimension approach
[13] was extended to handle attribute on nodes. It is a simple combination of
features extracted from the social graphs with attributes on nodes to learn a
SVM classifier.

Another class of interesting techniques for mining both the social graph and
the attributes are based on latent factor models(LFM ) [2]. LFMs represent data
points (in this case social nodes and attribute nodes) as vectors of unobserved
variables (latent factors or latent features). All observation on nodes (in this
case, links between nodes) depend on their latent factors. When we only have
attribute-value data, latents factors can be learned using matrix factorization
(MF) techniques, which consists of decomposing the data matrix into two ma-
trices: one contains latent features and one contains those of attributes. To use
the relational information in the social graph, in [10] the authors proposed an ex-
tension of MF, called relation regularized matrix factorization (RRMF ). RRMF
simultaneously exploits the social graph and the attribute graph. Suppose that
we have a dataset represented by a SAN G, RRMF learns latent factors by
minimizing:

Q (U, P, G) =α
∑

(i, j)∈Es

Sij ‖ui − uj‖2 +
∑

(i, k)∈Ea

(
Aik − uip

T
k

)2
+ λ

(
ns∑
i=1

‖ui‖2 +
na∑
k=1

‖pk‖2
)

(2)

where Es is the set of social links, Ea is the set of attribute links; S is the
adjacent matrix of the social graph and A is the adjacent matrix of the bipartite
attribute graph; U is the matrix constituted of the latent vectors of all the
social nodes and similarly, P is the matrix constituted of the latent vectors
of all the attribute nodes of G. The parameter α allows to adjust the relative
importance of the social network in the model. The third term is a regularization
term to penalize complex models with large magnitudes of latent vectors. λ is
a regularization parameter. We can see that this is in fact the factorization of
the attribute matrix A when adding regularization term α

∑
(i, j)∈Es

Sij ‖ui − uj‖2.

This term is called the relational regularization term which allows to minimize
the distances between connected social nodes in the latent space. The RRMF
approach assumes that connected social actors tend to have similar profiles. In
some cases, it is better to use the normalized Laplacian of the social graph and

the regularization term becomes α
∑

(i, j)∈Es

Sij

∥∥ui/
√
di − uj/

√
dj
∥∥2 where di is

the degree of the node i in the social graph (see [10] for more details). The
latent factors learned with RRMF are then used to train a classifier for label
prediction problem.
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All techniques mentioned above concern batch learning, i.e learning from a
static dataset. In their problem setting, they assume that the set of social nodes
is partially labeled and the problem is to infer labels of unlabeled nodes. Our
problem (near real-time prediction problem) is not in same context but we can
use the same idea : using latent factors to train a classifier at each time step. In
the next sections, we describe our method in which we learn LFM (more precisely
RRMF) incrementally and then use these factors to predict labels at each time
step. We describe our strategy (based on least squares regularization) and show
that it works well in a real world problem with data collected via Twitter.

4 Incremental Learning with Latent Factor Model

In the incremental learning context defined in Section 2, we need to learn a
model (i.e the latent features of nodes) at each time step. The batch learning
approach suggests that we learn the latent features at each time step using the
whole snapshot of the SAN G (t) (which contains all nodes and links collected
up to t)

U� (t) , P � (t) = argmin
U, P

Q (U, P, G (t)) (3)

where Q is the objective function defined above (Equation 2).
The incremental method learns a model (latent factors of nodes) only from

new data (i.e the incremental part of the SAN, denoted by SAN ΔG (t)) when
reusing the old model, i.e latent features of nodes calculated in the previous time
step. To do this, we minimize the following objective function:

Qinc (U, P, t) =Q (U, P, ΔG (t))

+μ

⎛⎝ ∑
i∈Vs(t−1)

‖ui − u�
i (t− 1)‖2 +

∑
k∈Va(t−1)

‖pk − p�k (t− 1)‖2
⎞⎠
(4)

where Vs (t− 1) and Va (t− 1) are respectively the set of social nodes and the set
of attribute nodes in the previous time step; u�

i (t− 1) and p�k (t− 1) are respec-
tively the latent vectors of the social node i and the attribute node k learned
in the previous time step and μ is a parameter of the model. This objective
function consists of two terms. The first term is the objective function of MF
on the incremental graph ΔG (t). The second term is a regularization term for
minimizing the shifts of latent features of the same nodes between time steps.
By minimizing the two terms simultaneously, we learn latent features of nodes
both from the new data and from the latent features of existing nodes of the
previous time step. We can easily see that the latent features of an existing node
are updated if and only if there are new links connecting to it. With the second
regularization term, we ensure that the latent space does not change much from
a time step to the next. The parameter μ allows to tune the contribution of the
previous model to the current model.
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After having calculated latent factors of nodes at the time step t, we have
a low-dimensional representation of the data points (nodes) at this time step.
It can be used for any standard machine learning task on the nodes. For our
prediction problem, we are based on the hypothesis that data collected up to t
are informative for the target variable in t + 1 on the social nodes. With this
hypothesis, we can use these factors (low dimensional representation of the data
up to t) of the social nodes to train a classifier and then use the classifier to
predict in the next time step.

In terms of optimization, we can use standard algorithms (e.g gradient-based)
to minimize Q in Equation 3 for batch learning or Qinc in Equation 4 for in-
cremental learning. In this work, we adapt the Alternating Least Squared (ALS)
algorithm [15]. The basic idea of this algorithm is to solve the least square prob-
lem with respect to the latent features of one node at a time (when fixing those of
the others) until convergence. The complexity of the algorithm linearly depends
on the number of squared terms in the objective function, which is the total
number of nodes and number of links in the SAN. In other words, the learning
algorithm has linear complexity with respect to the size of the data. In case of
incremental learning, when optimizing only on recent data (ΔG (t)), we can gain
a lot in terms of computational cost.

5 Experiments

5.1 Data Description and Experimental Setup

The dataset was collected via Twitter API1 in the period from July to December
2012. The data concern the followers of the Sosh account on Twitter (@Sosh fr2)
in this period. We keep the identities of the followers of @Sosh fr in our database.
During the period, new followers of @Sosh fr were constantly added. For each
follower, we regularly get the following elements: all the tweets, all the retweets,
the list of followers (from which we can build the who-follow-whom graph among
these users). We also collected some elements of the profile of each user (e.g.
some variables related to the global centrality of the user such as the number of
followers, the number of tweets posted, etc.).

We collected the data regularly enough to be able to build 20 week-based
snapshots (the first week begins on 15/07/2012) of the dataset. We have totally
30 400 users, about 9 × 105 who-follow-whom links, about 36× 104 tweets and
26× 104 retweets (on average 18× 103 tweets and 13× 103 retweets per week).
We want to use both the social interactions (follower-followee relation, retweet)
and the tweets of users. We represent each snapshots by a SAN, the SAN for the
week t is built as follows:

– The social graph. We put a social link between two users if they are linked
(one follows the other) or if they have retweeted a common tweet in the

1 https://dev.twitter.com/docs/api
2 Sosh is a French mobile brand, developed in France by the French operator Orange
since 6 October 2011. Sosh is on Twitter at http://twitter.com/Sosh_fr.

https://dev.twitter.com/docs/api
http://twitter.com/Sosh_fr.
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period t. We can see that this is a sum of follower graph and co-retweet
graph (we aggregate these two graphs to get a denser graph).

– The attributes.We consider each word in the tweet(s) of users as an attribute.
We put an attribute link between a user and a word if the user posted a tweet
containing the word in the period. The link is weighted by how many times
this occurred.

We are interested in predicting who will talk about the brand Sosh (i.e mention
@Sosh fr, write the word ”sosh” in their tweets) in the week t + 1 using data
up to (including) the week t. Among the followers of @Sosh fr, the ones who
will talk about ”sosh” are often customers of Sosh or just people interested in
the brand who could become the future customers of the brand. At each time
step (week), the prediction problem is a classification problem where positive
labels correspond to who talk about ”sosh” in the next week. Figure 1 presents
the number of users and number of positive labels in each week. The portion of
positive labels in each week is relatively small (less than 1%).

We apply our method (incremental LFM ) for this prediction problem. For
each time step, we calculate latent factors of all nodes by minimizing the objec-
tive function defined in Equation 4. At the time step t, we use the latent factors
to learn an SVM classifier with positive labels in the next time step t + 1. At
t + 1, we use the model learned in the previous time step to predict positive
labels in the next time step t + 2. We use Area Under ROC Curve (AUC) [3]
to measure the prediction performance. AUC is a rank measure which allows to
measure prediction performance across all possible cut-off thresholds. Roughly
speaking, it is the probability that a classifier will rank a randomly chosen pos-
itive instance higher than a randomly chosen negative one. The advantage of
using AUC is that we do not need to fix a cut-off threshold for each method.

The number of latent factors D is set to 20. In the objective function we use
the normalized Laplacian regularization term as we see that it achieved better
performance than normal graph regularization. We fixed the number of iterations
in our ALS optimization problem to 20 since we observed no improvement of
performance beyond 20 iterations. The regularization parameter λ is set to 50; λ
is set to 100 and μ is set to 100. The influences of these parameters are studied
in Subsection 5.5.

5.2 Baselines

At each time step (week) t we apply the following baseline techniques to compare
with our incremental method:

Trivial solution 1 Since a user can talk about ”sosh” more than once, it is
interesting to know if this is a repeated action: if a user have talked about
”sosh”, how likely will she/he talk about it again. This is the idea of this
first baseline: who ever had a positive label (at least once) in the past will
have a positive label the next week t+ 1.

Trivial solution 2 In Twitter, users have different levels of usage. There are
users who write a lot of tweets, have lots of friends or followers, etc. These
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Fig. 1. Number of users and number of users having positive labels in each time step

users are more likely to talk about ”sosh”. From this observation, we build
a prediction method that predicts the label of a user based on a score that
measures how active she/he is in Twitter. We tried different measures of
”activeness” of users, but we see that the number of tweets posted in the
past is the best measure to differentiate between active and non-active users.

Neighbor-based method This method use the neighborhood of each user in
the social graph (described in Section 3). This method does not require a
learning step, the label of a node in t+1 is inferred from that of its neighbors
in the previous time step t (Equation 1).

Social dimension This method uses the social graph. At each time step we
extract the social dimensions (described in Section 3) and then use these
dimensions to train an SVM classifier with positive labels of the next time
step (same procedure as with the latent factors in our method). The number
of dimensions is set to 10. We do not see any improvement of performance
setting this value bigger than 10.

SVM on attributes We use supervised classification with the attributes. At
the time step t, we train an SVM classifier from all known values of attributes
up to t and positive labels in t+1. Because the attributes are words (in the
tweets), this means that we use the ”bag of words” produced by each user
up to t.

Social dimensions + attributes This is a combination of the social dimen-
sions and the attributes. We use supervised classification (SVM) with the
social dimension and the attributes.
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Fig. 2. Performances of different methods

5.3 Performance

Figure 2 presents the performances of all learning techniques. First of all, we
can see that both the social graph and the attributes (bag of words for each
user) are informative. The methods using these data (non-trivial) are often bet-
ter than the trivial method. The neighbor-based method is not well adapted to
this dataset : it gives even worse performance than the trivial solution 2. Com-
bining these two sources gives even better performances (our method and Social
Dimension+attributes).

Except for some perturbations in the beginning, our method (incremental
LFM) achieves the highest AUC in all time steps. We conclude that, by exploit-
ing both the social graph and the attributes we can enhance significantly the
prediction performance and our incremental method based on LFM achieves rel-
atively good performance in comparison with the best batch-learning technique.

5.4 Gain in Computational Time

Figure 3 shows computational times of the incremental LFM method and by
the best baseline method - a combination of Social Dimension and attributes.
For our incremental method, computational time at each time step consists of
learning latent factors (optimization) and training an SVM classifier. For the
other methods, computational time consists of spectral clustering of the social
graph and training an SVM classifier. We measure only the learning time (i.e
optimization). To be fair, the two methods are implemented and executed on
the same machine (Linux 64bit, CPU 8x2.1GHz). The figure shows significant
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gain in time using incremental learning. This is an illustration of our theoretical
analyses in previous sections: learning with aggregated data becomes more and
more expensive as new data are added; incremental learning only requires time
to deal with new data.

5.5 Sensitivity to Parameters

We examine the sensibility of 3 important parameters of our incremental LFM
method : α, μ and the number of latent factors D. We average the performance
(AUC) of all time steps to get a global performance for each parameter config-
uration. As shown in Figure 4a, too small or too large values of the parameter
α hurt the performance. Larger α means that the social interactions have more
contribution to the prediction model. When α = 0, no interaction information
is used. Maximum AUC is achieved around α = 100. The effect of with the pa-
rameter μ is shown in Figure 4b. This parameter controls the contribution of the
prediction model learned in the previous time step to the current model. μ = 0
corresponds to the case where we learn latent factors only from recent data and
latent factors learned in previous time step are not used. We see that when μ in-
creases, the performance increases and achieves its maximum at μ = 100. About
the number of latent factors D, we observe a small influence of this parameter
on the performance. We see that small values of D are adequate because we can
not improve significantly the performance setting it bigger than 10.
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Fig. 4. Sensitivity to parameters of the incremental LFM method

6 Conclusion

We have proposed an incremental learning method based on latent factor model
for a prediction problem with data collected from Twitter. Our strategy (adding
a regularization term) for incremental learning leads to very promising experi-
mental results in both performance and computational cost. The main limitation
of our method is how to choose the right values of its parameters to achieve its
best performance. In future work, we will consider automatic configuration for
the parameters at each time step to improve the performance. We plan on ex-
tended tests on other datasets or synthetic data to understand deeply the nature
of the data where the method is efficient and robust. We keep working on the
Twitter dataset but for other prediction problems (other type of events), the
most interesting problem is to predict whether a user talks positively or nega-
tively about the brand. We also consider other possible extensions of our models
to handle more complicated data structure from social media: there are more
than one types of social links in the SAN, directed links between social nodes,
link disappearance etc.
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Abstract. Dependencies between the labels is commonly regarded as the crucial
issue in multilabel classification. Rules provide a natural way for symbolically de-
scribing such relationships, for instance, rules with label tests in the body allow
for representing directed dependencies like implications, subsumptions, or ex-
clusions. Moreover, rules naturally allow to jointly capture both local and global
label dependencies.

We present a bootstrapped stacking approach which uses a common rule learner
in order to induce label-dependent rules. For this, we learn for each label a sep-
arate ruleset, but we include the remaining labels as additional attributes in the
training instances. Proceeding this way, label dependencies can be made explicit
in the rules. Our experiments show competitive results in terms of the standard
multilabel evaluation measures. But more importantly, using these additional at-
tributes is shown to allow to discover and consider label relations as well as to
better comprehend the available multilabel datasets.

However, this approach is only a first step towards integrating the multilabel
rule learning directly in the rule induction process, e.g., in typical separate-and-
conquer rule learners. We present future perspectives, advantages, and arising
issues in this regard.

1 Introduction

Rule learning has a very long history and is a well-known problem in the machine
learning community. Over the years many different algorithms to learn a set of rules
were introduced. The main advantage of rule-based classifiers are interpretable models
as rules can be easily comprehended by humans. Also, the structure of a rule offers the
calculation of overlapping of rules as well as more specific and more general-relations.
Thus, the rule set can be easily modified as opposed to most statistical models such as
SVMs or neural networks. However, most rule learning algorithms are currently limited
to binary or multi-class classification.

On the other hand, many problems involve assigning more than a single class to an
object. These so-called multilabel problems can often be found when text is classified
into topics or tagged with keywords, but there are also many examples from other media
such as the recognition of music instruments or emotions in audio recordings or the
classification of scenes in images.

It is widely accepted that one major issue in learning from multilabel data is the
exploitation of label dependencies. Learning algorithms may greatly benefit from con-
sidering label correlations, and we believe that rule induction algorithms provide a good

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 192–203, 2014.
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base for this. Firstly, so called global dependencies between only labels can be explicitly
modeled and expressed in form of rules. But also, and much more interesting, depen-
dencies that include both label and regular features can be constituted, which we refer to
as local dependencies. Secondly, such rules are directly interpretable and comprehensi-
ble for humans. Even if complex and long rules are generated, the implication between
classes can be estimated more easily than with other approaches by focusing on the part
of the rules that considers the classes. Hence, one is able to directly analyze the induced
rule models and may greatly benefit from these explicit notations, in contrast to other
types of models where the key information is not accessible directly.

We propose in this work to learn such interdependencies by providing the true label
information directly to the rule learner. This is done by stacking the label features as
additional input instance features. Although this is not the first work in making use of
stacking in order to consider label dependencies (cf. Sec. 3.1), it is to our knowledge the
first time that rule induction was used in order to make the label dependencies explicit.
We show that the proposed method, though conceptually very simple, is suitable in
order to reveal global as well as local label dependencies. Almost more importantly,
the induced models allow for a detailed analysis of the datasets commonly used in the
community for benchmarking w.r.t. the contained dependencies.

The proposed bootstrapping in the prediction phase remains open for discussion,
though its performance is competitive to straight-forward approaches. But our ultimate
goal is to have a complete framework for multilabel rule induction instead of employing
special schemes for learning and predicting. We give some perspectives and ideas for
further research in the end of the paper.

2 Multilabel Classification and Inductive Rule Learning

2.1 Multilabel Classification

Multilabel classification refers to the task of learning a function h(x) that maps in-
stances x = (x1, . . . ,xm) ∈X to label subsets or label vectors y = (y1, . . . ,yn)∈ {0,1}n,
where L = {λ1, . . . ,λn}, n = |L | is a finite set of predefined labels and where each
label attribute yi corresponds to the absence (0) or presence (1) of label λi . Thus, in
contrast to multiclass learning, alternatives are not assumed to be mutually exclusive,
such that multiple labels may be associated with a single instance. This, and especially
the resulting correlations and dependencies between the labels in L , make the multi-
label setting particularly challenging and interesting compared to the classical field of
binary and multiclass classification.

From a probabilistic point of view, this is one of the main differences. In binary and
multiclass problems the only observable probabilistic dependence is between the input
variables, i.e., the attributes x j, and the label variables yi. A learning algorithm tries to
learn exactly this dependence in form of a classifier function h. In fact, if a classifier
provides a score or confidence for its prediction ŷ = h(x), this is often regarded as an
approximation of P(y = ŷ

∣∣ x), i.e., the probability that ŷ is true given a document x.
From the early beginning of multilabel classification, there have been attempts to

exploit these types of label correlations [e.g. 12, 7, 17]. A middle way is followed by
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Read et al. [14] and Dembczyński et al. [5] and their popular (probabilistic) classi-
fier chains by stacking the underlying binary relevance classifiers with the predictions
of the previous ones. However, only recently Dembczyński et al. provided a clarifica-
tion and formalization of label dependence in multilabel classifications. Following their
argumentation, one must distinguish between unconditional and conditional label de-
pendence. Roughly speaking, the unconditional dependence or independence between
labels does not depend on a specific given input instance (the condition) while condi-
tional dependence does. We may also refer to these as global and local dependencies,
since they are revealed globally or only in subspaces of the input space.

An example may illustrate this: Suppose a label space indicating topics from news
articles and a subtopic foreign affairs of the topic politics. Obviously, there will be a
dependency between both labels, since the presence of a subtopic implies the presence
of the super topic and the probability of foreign affairs would be higher than average if
politics is observed. These probabilities are unconditional or global since they do not
depend on a particular document. Suppose now that a particular news article is about
the Euro crisis. Under this condition, the conditional probabilities for both labels as
well as the dependency between would likely increase and hence be different from the
unconditional ones. However, if an article was about the cardiovascular problems of
Ötzi, we would observe that both labels are conditionally independent for this instance,
since the probability for one label would very likely not depend on the presence of the
other label (both being very low).

The predominant approach in multilabel classification is binary relevance (BR) learn-
ing [cf. e.g. 16]. It tackles a multilabel problem by learning one classifier for each label,
using all objects of this label as positive examples and all other objects as negative ex-
amples. There exists hence a strong connection to concept learning, which is dedicated
to infer a model or description of a target concept from specific examples of it [see, e.g.,
4]. When several target concepts are possible or given for the same set of instances, we
formally have a multilabel problem. The problem of this approach is that each label
is considered independently of each other, and as we have seen by the example given
before, this can lead to loss of useful information for classification.

A possible simple solution to generate rules that may consider several labels in the
head is to use the label powerset (LP) transformation [cf. 16], which decomposes the
initial problem into a multiclass problem with {y

∣∣ (x,y) ∈ training set} ⊆ {0,1}n as
possible classes. This problem can then be processed with common rule induction al-
gorithms, which will thus produce rules with several labels in the head.

This approach is potentially able to consider conditional dependencies, namely the
case of label co-occurrences. The main drawback is that the number of classifiers that
have to be learned grows exponentially. Another obvious disadvantage is that we can
only predict label relations and combinations which were seen in the training data.

2.2 Inductive Rule Learning

As the goal of this paper is to make label dependencies explicit by using rules, we will
also shorty introduce inductive rule learning. This is one of the oldest and therefore
best researched fields in machine learning. Many algorithms were proposed over the
years, Ripper [3] being one of the most popular and used ones. In this work, we used
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this algorithm, but the proposed method does also naturally work with other rule learn-
ing algorithms. Ripper is a so-called separate-and-conquer (SeCo) algorithm [6], i.e., it
proceeds by learning a good rule on the data, then adds the rule to the ruleset, removes
all examples covered by this rule, and searches the next one as long as (positive) ex-
amples are left in the dataset. In order to prevent overfitting, the two constraints that
all examples have to be covered (completeness) and that negative examples must not
be covered (consistency) can be relaxed so that some positive examples may remain
uncovered and/or some negative examples may be covered by the set of rules. SeCo
usually only works for binary datasets. Hence, a natural way of addressing multilabel
problems is to consider each label separately (cf. BR), resulting in a model consisting
of separate rulesets for each label.

2.3 Different Forms of Multilabel Rules

A rule learner has a set of rules (ruleset) as result. These rules are of the form

head ← body

where the body consists of a number of conditions (attribute-value tests) and, in the
regular case, the head has only one single condition of the form yi = 0 or 1 (in our
case). We refer to this type of rules as single-label head rules in contrast to multi-
label head rules, which contain several label assignments in their head and can thus
conveniently express label co-occurrences. Commonly, the conditions in the body are
on attributes from the instance space. However, in order to reflect label dependencies
(e.g., implications, subsumptions, or exclusions), we would need to have labels on both
sides of the rule. Hence, if a rule may contain conditions on the labels, we refer to it as
label-dependent rules (also referred to as contextual rules [4]), and label-independent if
this is not the case. Global dependencies are hence best reflected by full label-dependent
bodies, whereas local dependencies can be described by partially label-dependent rules
with mixed attributes in the body.

In summary: We start from label-independent single-label rules. Label dependen-
cies can already be captured by label-independent multi-label rules. The next section
describes a straight-forward approach for obtaining such rules. Future extensions are
proposed in Sec. 6. This particular work focuses on learning label-dependent single-
label rules (Sec. 3), which, as shown, are well suited for modeling and expressing label
dependencies. The full expressiveness is though obtained by label-dependent multi-
label rules, which we leave for further research (Sec. 6).

3 Learning Label-Dependent Rules

We present in the next subsection a straight-forward, yet effective approach in order to
learn label-dependent rules which allows to discover valuable information in data.

3.1 Stacking of Label Features

The recently very popular classifier chains [14] were found to be an effective ap-
proach for exploiting conditional label dependencies. Classifier chains (CC) make use
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of stacking the previous BR classifiers’ predictions in order to implement the chain
rule P(y1, . . . ,yn) = P(yn

∣∣ y1, . . . ,yn−1) in probability theory, since they learn the bi-
nary classifiers hi with training examples of the form (x1, . . . ,y1, . . . ,yi−1) [cf. 5]. One
drawback of CC is the (randomly chosen) predetermined, fixed order of the classifiers
(and hence the labels) in the chain, which makes it impossible to learn dependencies in
the contrary direction. This was already recognized by D. Malerba and Esposito [4] in
1997, who built up a very similar system in order to learn multiple dependent concepts.
In this case, the chain on the labels was determined beforehand by a statistical analy-
sis of the label dependencies. Still, using a rule learner for solving the resulting binary
problems would only allow to induce rules between two labels in one direction.

Thus, we propose to use a full stacking approach in order to overcome the main
disadvantage of CC, i.e., the fixed order. Like in binary relevance, we learn one theory
for each label, but we expand our training instances by the label information of the
other labels, i.e., the training examples vectors for learning label yi are of the type
(x1, . . . ,y1, . . . ,yi−1,yi+1, . . . ,yn) for an instance x. The result of using this as training
data is exactly what we are seeking for, namely label-dependent single-label rules. The
amount of label-features in the body additionally allows us to determine the type of
dependency. We refer to this technique as stacked binary relevance (SBR) in contrast
to plain, unstacked BR.

This is very similar to the approaches of Godbole and Sarawagi [8], Guo and Gu [9],
and very recently, Montañés et al. [13]. They all have in common that they are using
label presence information (either directly from the training data, or from the outputs
of underlying BR classifiers) as (either sole or additional) features in order to learn an
ensemble of binary relevance classifiers on top. The closest related approaches to our
proposition are the conditionally dependency networks (CDN) [9] and the dependent
binary relevance (DBR) models [13]. Both learn their models as indicated before but
with one major difference: Since they are concerned with estimating probability dis-
tributions (especially joint distribution), they both use logistic regression as their base
classifier, which is particularly adequate for estimating probabilities. This type of mod-
els are obviously much harder to comprehend than rules, especially for higher number
of input features. Therefore, the label dependencies would remain hidden somewhere in
the model, even though they may have been taken into account and accurate classifiers
may have been obtained. To make the dependencies explicit and at the same time keep a
high prediction quality, we propose to use rule-based models. One additional difference
between the approaches is how the prediction is conducted, which is discussed next.

3.2 Prediction by Bootstrapping

For the prediction we propose to use a bootstrapping approach in the sense that we
apply our models iteratively on our own previous predictions until the predictions are
stable or any other stopping criterium is met. More formally, we use the learned models
h′i to produce a prediction ŷ j = (ŷ j,1, ŷ j,2, . . .) where ŷ j,i = h′i(x, ŷ j−1) is based on the
predictions in the previous iteration j− 1.

One obvious issue with this approach is the initialization of ŷ0. A possible option,
also proposed by DBR, is to use the predictions of a BR ensemble, i.e., ŷ0,i = hi(x).
We also evaluate the option of initializing with unknown label information, i.e., ŷ0 =
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(?,?, . . .), and to benefit from the natural support of symbolic approaches for such at-
tribute states (missing, don’t care, etc.). On the other hand, this approach only works
if the rule learner found enough rulesets with label-independent rules so that the boot-
strapping can proceed, which is in fact somehow contradictory to the objective of de-
tecting as much dependencies as possible. In the future, we also plan to use random
initialization. Together with enough iterations of Gibbs sampling, this was shown to be
very effective for CDN.

We also may make use of an additional capability of rule learners, namely to abstain
from classifying if no appropriate rule was found (instead of predicting the default rule)
so that the label attribute may be filled up in consequent iterations.

4 Evaluation

An overview of the used datasets1 is given in Tab. 1. They are from different domains
and have varying properties. Details of the data are given in the analysis when needed.
As rule learner, we use the JRip implementation of Ripper [3] with default parameters,
except for the pruning, which is turned off or on depending on the experiment.

We use micro-averaged precision and recall to evaluate our results, i.e., we compute
a two-class confusion matrix for each label (yi = 1 vs. yi = 0) and eventually aggregate
the results by (component-wise) summing up all n matrices into one global confusion
matrix (cf. [16]). Recall and precision is computed based on this global matrix in the
usual way, F1 denotes the unweighted harmonic mean between precision and recall. In
addition, we measure the subset accuracy, which is the percentage 1

m ∑m
i=1 [[yi = ŷi]] of

the m test instances for which the labelsets were exactly correctly predicted ([[z]] returns
1 if z is true, otherwise 0). The measures, as well as other statistics, are averaged over
the ten-fold cross validation results, which we use for all our experiments.

4.1 Model and Data Analysis

Tab. 2 shows the properties of the rulesets generated by using plain BR and stacked BR
decomposition with JRip. As we will see in the following, these statistics not only help
to analyze the algorithm, but even more importantly, they are of great use for analyzing
and understanding the datasets at hand. Though it is commonly assumed that there exist
label dependencies between the labels in multilabel datasets, and many works deal with
exploiting such dependencies, this assumption is most often not explicitly examined.
To our knowledge, this is the first work providing a systematic analysis of the label
dependencies contained in seven of the most popular benchmarks.

Column (5) shows the percentage of conditions on labels w.r.t. to all conditions in the
model. We see that there is a great divergence between the datasets. E.g., the models for
GENBASE do not use label features at all, i.e., their rules’ bodies are completely label-
independent. This is a strong indicator that we have completely independent labels in
this dataset, or, at least, very weak dependencies. This is remarkable, since this breaks

1 We refer to the MULAN repository for details and sources:
http://mulan.sf.net/datasets.html

http://mulan.sf.net/datasets.html
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Table 1. Statistics of the used datasets: name of the dataset, domain of the input instances, number
of instances, number of nominal/binary and numeric features, total number of unique labels,
average number of labels per instance (cardinality), average percentage of relevant labels (label
density), number of distinct labelsets in the data

name domain instances nominal numeric labels cardinality density distinct
EMOTIONS music 593 0 72 6 1.87 0.311 27
SCENE image 2407 0 294 6 1.07 0.179 15
YEAST biology 2417 0 103 14 4.24 0.303 198
GENBASE biology 662 1186 0 27 1.25 0.046 32
MEDICAL text 978 1449 0 45 1.25 0.028 94
ENRON text 1702 1001 0 53 3.38 0.064 753
CAL500 music 502 0 68 174 26.0 0.150 502

the main assumption, mentioned before, and yet this dataset may have often been used
in the literature to show the ability of a certain algorithm to exploit label dependen-
cies. In this case though, learning each label independently is already sufficient and
exploiting (possibly non-existing) label dependencies clearly will not yield better per-
formance. A look into columns (1)-(4), the prediction quality (Tab. 3) and eventually
into the models, reveals that the presence of one single short amino acid chain (instance
feature) is often enough to correctly predict a particular functional family (label).

For (5) it is also remarkable that pruning substantially increases the percentage of
used label features. Pruning tries to remove conditions and rules which work good on a
training set, but do not generalize well on a separate validation set. Hence, this increase
indicates that label features are more useful for obtaining more general models than the
original instance features. However, the increase does not come hand in hand with a
decrease in the size of the models comparing BR and stacked BR, as can be seen by the
average size of the rulesets (columns (1) and (2)) and rules ((3) and (4)), which does
not reveal any trend.

While (5) may serve as an indicator of general dependency between labels, columns
(6) and (7) allow to further differentiate. E.g., 20.8% of fully label-dependent rulesets
for YEAST, i.e., rulesets with rules only having conditions on label features, show that
(at least) 20.8% of the labels in YEAST are unconditionally dependent on other labels.
On the other hand, by leaving out the 6.2% of labels which are independent, we can
derive that (at most) 73.0% of the labels are conditionally dependent on other labels.
Note that (6) should be considered as a lower bound, since the rate substantially suffers
from the high number of instance features due to a kind of instance feature flooding:
The probability of selecting an instance feature in the refinement step of a rule instead
of an equally good label feature increases with growing number of instance features.
However, the same effect cannot be observed for (7).

The datasets with the highest observed degree of label dependency are YEAST and
CAL500. For CAL500, this may be explained by the categorizations of songs into emo-
tions, which often come hand in hand or completely contradict, like Angry-Agressive
against Carefree-Lighthearted.

Examples of learned rulesets for YEAST are given in Fig. 1. In this particular case,
we see a much more compact and less complex ruleset for Class4 for the stacked model
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Table 2. Statistics. From left to right, for BR model: (1) avg. # rules per label ruleset, (2) avg. #
conditions per rule. For stacked model: (3) avg. # rules per label ruleset, (4) avg. # conditions per
rule, (5) percentage of conditions with label feature tests, (6) perc. of label rulesets depending
only on other labels, (7) perc. of label rulesets depending only on instance features.

dataset pruning (1) (2) (3) (4) (5) (6) (7)
EMOTIONS yes 3.26 2.78 2.74 3.09 35.0% 18.0% 0.0%
EMOTIONS no 11.50 4.02 11.02 4.18 17.6% 0.0% 0.0%
SCENE yes 6.72 4.27 5.44 4.44 16.0% 0.0% 18.0%
SCENE no 13.58 5.40 11.10 5.09 10.2% 0.0% 2.0%
YEAST yes 2.47 3.72 3.78 2.56 63.0% 20.8% 6.2%
YEAST no 7.20 5.95 10.58 3.78 31.3% 0.0% 0.0%
GENBASE yes 0.90 1.05 0.90 1.05 0.0% 0.0% 100.0%
GENBASE no 0.99 1.29 0.99 1.29 0.0% 0.0% 100.0%
MEDICAL yes 1.08 1.72 1.07 1.81 17.4% 0.0% 79.3%
MEDICAL no 2.46 3.47 2.00 3.17 13.6% 0.0% 73.6%
ENRON yes 1.54 3.38 1.89 3.37 35.9% 3.3% 35.0%
ENRON no 5.82 4.97 6.94 4.68 25.1% 0.0% 11.0%
CAL500 yes 0.45 2.23 1.37 2.07 60.7% 29.0% 23.8%
CAL500 no 6.03 3.88 6.82 3.51 29.7% 1.2% 1.7%

than for the independently learned BR classifier. The ruleset also seems more appropri-
ate for a domain expert to understand coherences between proteins (instance features)
and protein functions (labels).

Fig. 1 also shows the models for the diagnosis Cough in the MEDICAL task. This
dataset is concerned with the assignment of international diseases codes (ICD) to real,
free text radiological reports. Interestingly, the stacked model reads very well, and the
found relationship seems to be even comprehensible by non-experts: If the patient does
not have Pneumonia, a Pulmonary_collapse or Asthma and “cough”s or is “coughing”,
he just has a Cough. Otherwise, he may also have a “mild” Asthma, in which case he is
also considered to have a Cough.

In ENRON, which is concerned with the categorization of emails during the Enron
scandal, the model is less comprehensible, as it is also for the BR model. However,
the relation between Personal and Joke can clearly be explained from the hierarchical

Approach YEAST MEDICAL ENRON

BR Class4 ← x23 > 0.08, x49 < -0.09 Cough ← “cough”, “lobe” Joke ← “mail”, “fw”,
Class4 ← x68 < 0.05, x33 > 0.00, x24 > 0.00, Cough ← “cough”, “atelectasis” ”didn”

x66 > 0.00, x88 > -0.06 Cough ← “cough”, opacity
Class4 ← x3 < -0.03, x71 > 0.03, x91 > -0.01 Cough ← “cough”, airways
Class4 ← x68 < 0.03, x83 > -0.00, Cough ← “cough” , “pneumonia”, “2”

x44> 0.029, x93 < 0.01 Cough ← “coughing”
Class4 ← x96 < -0.03, x10 > 0.01, x78< -0.07 Cough ← “cough”, “early”

Stacked Class4 ← Class3, Class2 Cough ← “cough” , Pneumonia , Joke ← Personal,
BR Class4 ← Class5, Class6 Pulmonary_collapse , Asthma “day”, “mail”

Class4 ← Class3, Class1, x22 > -0.02 Cough ← “coughing”
Cough ← Asthma, “mild”

Fig. 1. Example rulesets for one exemplary label, respectively, learned by the normal and the
stacked BR approach. Attribute names in italic denote label attributes, attributes with an overline
denote negated conditions.



200 E. Loza Mencía and F. Janssen

structure on the topics. This also shows the potential of using rule learning in multilabel
classification for reconstructing underlying hierarchies.

4.2 Prediction Performance
Tab. 3 shows the predictive performance of the different approaches. We compare BR,
LP, Stacked BR with BR initialization and abstaining (SBRBR/?) or predicting the de-
fault label (SBRBR/d), respectively, in the case of the default rule firing, and lastly SBR
with empty initialization and abstaining (SBR?/?). For all approaches, we used the prun-
ing version of JRip. Due to the space limit, we only report the results after the 10th

bootstrapping iteration in the case of SBR.2

As expected, LP is the best approach w.r.t. subset accuracy. Somehow surprisingly,
BR and both first SBRs obtain very similar avg. ranks, although the stacking of the
label features is considered to particularly address the correct prediction of labelsets
[5, 9, 13]. SBR?/? clearly suffers from the cold start problem when many label de-
pendencies were encountered, best seen by the high precision but very low recall and
subset accuracy obtained. BR is best for precision, but is always worse than SBRBR/?

and SBRBR/d on recall,3 which in general find the better trade-off between recall and
precision, beating all other approaches on F1. Recall that BR’s predictions are inputs
for SBRBR/? and SBRBR/d . Apparently, the additional iterations applying the stacked
models allow labels which were initially missed to be found due to the label context.

5 Related Work
Many rule-based approaches to multilabel learning rely on association rules as those
can have many conditions in the head. However, as the goal is classification, usually
Classification Association Rules (CARs) are used, instead of regular association rules
that would also find relations between instance-features. E.g., in Ávila et al. [2] a genetic
algorithm is used to induce single-label association rules. A multilabel prediction is then
built by using a combination of all covering rules of the BR rule sets. A good distribution
of the labels is also ensures by using a token-based re-calculation of the fitness value of
each rule. Li et al. [10] learn single-label association rules as well. For prediction, exactly
those labels are set that have a probability greater than 0.5 in the covering rules.

A different idea is to introduce multi-label instead of single-label rules. Those are
able to directly classify a multi-label-instance without the need to combine single-label
rules [1]. Interestingly, the proposed rules also allow for postponing the classification
by offering a “don’t care"-value. The classification is then done by using a weighted
voting scheme as many multilabel rules may cover the example.

Another multilabel rule algorithm is MMAC [15]. Here a multi-class, multilabel asso-
ciative classification approach is used by not only generating from all frequent itemsets
the rules that pass the confidence threshold but also include the second best rules and
so on. Multilabel rules are then generated from these association rules by the frequent
itemsets where covered instances are removed then. Rules with same conditions are
then merged which enables a total ranking of all labels for each test instance.

2 We found that more iterations consistently decrease subset acc. and recall, but increases preci-
sion and F1. However, the average absolute difference was consistently below 1%.

3 Except of course for GENBASE, where all plain and stacked BR models are equal.
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Table 3. Experimental performance on the seven datasets. The small number after the result
indicates the rank of the particular approach. The last block shows the average over these ranks.

Approach Subset Acc. Precision Recall F1 Subset Acc. Precision Recall F1
SCENE EMOTIONS

BR 46.24% 2 68.82% 2 60.94% 4 64.55% 3 23.60% 3 65.54% 2 57.23% 3 60.97% 3

LP 58.33% 1 63.61% 4 61.09% 3 62.32% 4 20.56% 4 56.47% 5 55.66% 4 56.01% 4

SBRBR/? 46.11% 3 65.56% 3 65.68% 2 65.58% 2 24.28% 2 64.02% 3 62.73% 2 63.24% 2

SBRBR/d 45.32% 4 58.31% 5 77.79% 1 66.63% 1 24.96% 1 57.46% 4 75.54% 1 65.24% 1

SBR?/? 29.13% 5 75.83% 1 33.28% 5 46.08% 5 9.09% 5 70.03% 1 21.97% 5 32.54% 5

GENBASE MEDICAL

BR 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.96% 2 80.26% 2 84.29% 3 82.19% 1

LP 95.77% 5 97.30% 5 94.78% 5 95.99% 5 68.20% 1 80.18% 3 73.97% 4 76.93% 4

SBRBR/? 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.86% 3 79.38% 4 84.78% 2 81.96% 2

SBRBR/d 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.25% 4 78.21% 5 86.01% 1 81.89% 3

SBR?/? 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 28.93% 5 82.39% 1 36.16% 5 50.13% 5

ENRON CAL500
BR 9.17% 3 62.75% 1 49.09% 3 55.03% 2 0.00% 3 52.73% 1 24.88% 4 33.76% 3

LP 11.51% 1 41.06% 5 15.11% 4 22.08% 4 0.00% 3 31.90% 4 31.80% 1 31.84% 4

SBRBR/? 9.17% 4 57.96% 2 55.09% 2 56.40% 1 0.00% 3 47.61% 2 30.90% 2 37.42% 1

SBRBR/d 9.87% 2 43.13% 4 59.06% 1 49.71% 3 0.00% 3 44.76% 3 30.43% 3 36.20% 2

SBR?/? 0.06% 5 53.10% 3 7.50% 5 13.08% 5 0.00% 3 26.48% 5 0.26% 5 0.51% 5

YEAST Average rank
BR 9.18% 4 68.47% 1 55.33% 4 61.19% 3 2.79 3 1.64 1 3.36 3 2.50 3

LP 16.92% 1 60.04% 4 57.10% 3 58.52% 4 2.29 1 4.29 5 3.43 4 4.14 4

SBRBR/? 10.18% 2.5 66.88% 2 57.63% 2 61.90% 2 2.86 4 2.64 3 2.07 2 1.79 1

SBRBR/d 10.18% 2.5 58.31% 5 66.21% 1 61.98% 1 2.71 2 4.07 4 1.50 1 1.93 2

SBR?/? 0.25% 5 65.35% 3 1.31% 5 2.56% 5 4.36 5 2.36 2 4.64 5 4.64 5

Other approaches are from the inductive logic programming field. Here, some also
allow for having label features in the rule bodies, but due to the different nature dis-
closed by relational rules, these methods are not in the scope of this paper. In summary,
label dependencies are not tackled explicitly though they might be taken into account
by algorithm-specific properties. Please consider [11] for a more extensive discussion.

6 Future Challenges

All presented approaches for learning multilabel models, BR, LP and SBR decomposi-
tion, have one aspect in common, namely that they transform the original problem into
several subproblems, which are then solved independently. This might be appropriate
or even advantageous for certain use cases, for instance when the objective is to obtain
isolated theories representing each label (cf. concept learning), or w.r.t. efficiency. But
often it is more desirable to obtain one global theory comprehensively explaining a par-
ticular multilabel dataset. The induction of one global model also allows a better control
over the objective loss, an important issue in multilabel classification due to the variety
of existing measures, resulting directly from the diversity of the real life scenarios.

Regarding the introduced stacked BR approach which we used for learning label-
dependent single-label rules, we propose to integrate the stacking of label features di-
rectly into the SeCo induction process. The idea is to start with unset label features,
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consequently only label-independent rules will be learnt in the beginning. However, the
covered rules are not separated, but labeled accordingly and readded to the training set.
Hence, we would get rid of the cold start and deadlock problem and no bootstrapping
or sampling would be necessary.

Multiple labels in the head allow for representing co-occurrence relationships. In
addition, only label-dependent multi-label rules allow to express all types of possible
dependencies. The solution using LP can learn multilabel head rules, but with the men-
tioned shortcomings (Sec. 2.1). Therefore, we propose the following modifications.

In order to obtain one single global theory, we learn so-called multiclass decision
lists, which allow to use different heads in consecutive rules of the decision list. If
we limit ourselves to labelsets seen in the training data, this corresponds to using LP
transformation with a multiclass decision list learner. However, the evaluation for each
possible labelset can be very expensive (O(2n) in the worst case). The following greedy
approach may solve this. It starts by evaluating the condition candidates w.r.t. to each
label independently in order to determine the best covered label. Having selected the
best covered label for the given rule body, we can only stay the same or get worse
if we now add an additional label to our head, since the number of covered examples
remain the same and the number of covered positives, for which the head applies, cannot
increase. Hence, depending on the heuristic used, we can safely prune great part of the
label combinations by exploiting the anti-monotonicity of the heuristic.

Challenges to both proposed extensions, and to the self-evident combination of both,
concern the rule learning process itself: The right selection of the heuristic was already
a complex issue in traditional rule induction and has to be reviewed for multilabel learn-
ing. Furthermore, using unordered and multiclass decision lists gain new relevance, too.

We plan to use our method in order to analyze the datasets, and further benchmark
datasets commonly used in the literature, in more detail. Regarding prediction quality,
we expect to improve our performance by adopting the extensions presented in Sec. 3.
An extended empirical study with additional state-of-the-art algorithms would reveal
any development and allow further comparisons.

7 Conclusions

In this work, we introduced a simple yet effective approach to making label dependen-
cies explicit with the means of rules. The proposed stacking approach is able to induce
rules with labels as conditions in the bodies of the rules. In our analyses on seven mul-
tilabel datasets, the resulting models turned out to be indeed very useful in order to
discover interesting aspects a normal rule learner is unable to uncover. For instance, we
found out that the GENBASE dataset exhibits only very weak label dependencies, if any
at all, despite the fact that it is frequently used for evaluating multilabel algorithms. In
contrast to other approaches, the proposed method naturally allows for discovering and
expressing local as well as global label dependencies.

The second part of the evaluation showed that our approach works particularly well
for trading-off recall and precision, obtaining the best result w.r.t. F-measure. For sub-
set accuracy, it is beaten by LP, which is particularly tailored towards this measure.
However, the introduced technique of bootstrapping predictions still requires the initial
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input of a plain BR. Therefore, we presented two different but combinable directions
for learning global theories as future challenges in the field of multilabel rule learning.
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Abstract. Recommender Systems are used to build models of users’
preferences. Those models should reflect current state of the preferences
at any timepoint. The preferences, however, are not static. They are sub-
ject to concept drift or even shift, as it is known from e.g. stream mining.
They undergo permanent changes as the taste of users and perception of
items change over time. Therefore, it is crucial to select the actual data
for training models and to forget the outdated ones.

The problem of selective forgetting in recommender systems has not
been addressed so far. Therefore, we propose two forgetting techniques
for incremental matrix factorization and incorporate them into a stream
recommender. We use a stream-based algorithm that adapts continu-
ously to changes, so that forgetting techniques have an immediate effect
on recommendations. We introduce a new evaluation protocol for recom-
mender systems in a streaming environment and show that forgetting of
outdated data increases the quality of recommendations substantially.

Keywords: Forgetting Techniques, Recommender Systems, Matrix Fac-
torization, Sliding Window, Collaborative Filtering.

1 Introduction

Data sparsity in recommender systems is a known and thoroughly investigated
problem. A huge number of users and items together with limited capabilities
of one user to rate items result in a huge data space that is to a great extent
empty. However, the opposite problem to the data sparsity has not been studied
extensively yet. In this work we investigate, whether recommender systems suffer
from too much information about selected users. Although, the most algorithms
for recommender systems try to tackle the problem of an extreme data sparsity,
we show that it is beneficial to forget some information and not consider it
for training models any more. Seemingly, forgetting information exacerbates the
problem of having not enough data. We show, however, that much of the old
information does not reflect the current preferences of users and training models
upon this information decreases the quality of recommendations.

Reasons for the information about users being outdated are manifold. Users’
preferences are not static - they change over time. New items emerge frequently,
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depending on the application scenario, e.g. news in the internet. Also the per-
ception of existing items changes due to external factors such as advertisement,
marketing campaigns and events related to the items. The environment of a rec-
ommender system is dynamic. A recommender system that does not take those
changes into account and does not adapt to them deteriorates in quality. Retrain-
ing of a model does not help, if the new model is again based on the outdated
information. Consequently, the information that a recommender is trained upon
has to be selected carefully and the outdated information should be forgotten.

Since a recommender should be able to adapt constantly to changes of the
environment, ideally in the real time, in our work we use an incremental, stream-
based recommender. It does not learn upon a batch of ratings, but it considers
them as a stream, as it is known from e.g. stream mining. Incremental methods
have the advantage of learning continuously as new ratings in the stream arrive
and, therefore, are always up to date with the current data. The batch-based
methods on the other hand use a predefined batch of ratings to train the model
and are, after arrival of new ratings, constantly out of date. Our method that
uses matrix factorization still requires a retraining of latent item factors. How-
ever, the latent user factors are kept up to date constantly between the retraining
phases. Also, since the general perception of items changes slower than prefer-
ences of a single user, the retraining is not needed as frequently as in the case of
batch learners. A further essential advantage of incremental methods is that they
can adapt immediately as changes occur. Because an incremental recommender
learns upon ratings as soon as they arrive, it can react to changes immediately.
Hence, it can capture short term changes, whereas a batch learner has to wait
for the next retraining phase to adapt to changes.

Gradual changes in users’ preferences and changes in item perception speak
in favour of forgetting the outdated information in recommender systems. This
type of changes can be related to concept drift in stream mining. It describes slow
and gradual changes. There is also a second type of changes called concept shift.
These changes are sudden, abrupt and unpredictable. In recommender systems
those changes can be related e.g. to situations, where multiple persons share an
online account. If we consider an online shop scenario, a recommender would ex-
perience a concept shift, when the owner of an account buys items for a different
person (e.g. presents). When recommending movies a person can be influenced
by preferences of other people, which can be a short-lived, single phenomenon,
but it also can be a permanent change. In both cases a successful recommender
system should adapt to those changes. This can be achieved by forgetting the
old outdated information and learning a model based on information that re-
flects the current user preferences more accurately. In summary the contribution
of our work is threefold: 1) We propose two selective forgetting techniques for
incremental matrix factorization. 2) We define a new evaluation protocol for
stream-based recommender systems. 3) We show that forgetting selected ratings
increases the quality of recommendations.

This paper is structured as follows. In section 2 we discuss related work we
used in our method, stressing the differences to existing approaches. Section 3
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explains our forgetting mechanisms. The experimental settings and evaluation
protocol are described in Section 4. Our results are explained in Section 5. Fi-
nally, in section 6, we conclude our work and discuss open issues.

2 Related Work

Recommender systems gained in popularity in recent years. The most widely
used category of recommender systems are collaborative filtering (CF) methods.
An intuitive, item-based approach in CF has been published in 2001 [6]. Despite
its simplicity this method based on neighbourhoods of items has shown to have a
strong predictive power. In contrast to content-based recommenders, CF works
only with user feedback and without any additional information about users or
items. Those advantages as well as the ability to cope with extremely sparse
data made CF a highly interesting category of algorithms among practitioners
and researchers. Consequently, many extensions of those methods have been
developed. A comprehensive survey on those methods can be found in [1].

In 2012 Vinagre and Jorge noticed the need for forgetting mechanisms in rec-
ommender systems and proposed forgetting techniques for neighbourhood-based
methods [9]. They introduced two forgetting techniques: sliding window and fad-
ing factors, which are also often used in stream mining. They also considered
a recommender system as a stream-based algorithm and used those two tech-
niques to define which information was used for computing a similarity matrix.
According to the sliding window technique only a predefined number of the most
recent user sessions was used for calculating the similarity matrix making sure
that only the newest user feedback is considered for training a model. Their sec-
ond technique, fading factors, assigns lower weight to old data than to new ones
and, thereby, diminishes the importance of potentially outdated information. In
our method we also use the sliding window technique, there are, however, three
fundamental differences to Vinagre and Jorge: 1) Our method has been designed
for explicit feedback e.g. ratings, whereas the method in [9] was designed for
positive-only feedback. 2) We propose forgetting strategies for matrix factoriza-
tion algorithms as opposed to neighbourhood-based methods in [9]. 3) Vinagre
and Jorge apply forgetting on a stream of sessions of all users. Our forgetting
techniques are user-specific i.e. we consider ratings of one user as a stream and
apply a sliding window selectively on it. Vinagre and Jorge have shown that non-
incremental algorithms using forgetting have lower computational requirements
without a significant reduction of the predictive power, when compared to the
same kind of algorithms without forgetting.

Despite the popularity of the neighbourhood-based methods, the state-of-
the-art algorithms for recommenders are matrix factorization algorithms. They
became popular partially due to the Netflix competition, where they showed
a superior predictive performance, competitive computational complexity and
high extensibility. Koren et. al proposed a matrix factorization method based on
gradient descent [3], [4], where the decomposition of the original rating matrix
is computed iteratively by reducing prediction error on known ratings. In the
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method called ”TimeSVD++” Koren et al. incorporated time aspects accounting
for e.g. changes in user preferences. Their method, however, does not encompass
any forgetting strategy i.e. it always uses all available ratings no matter, if they
are still representative for users’ preferences. Additionally, some of the changes of
the environment of a recommender cannot be captured by time factors proposed
by Koren et. al. To this category of changes belong the abrupt, non-predictable
changes termed before as concept shift. Furthermore, the method by Koren et.
al is not incremental, therefore it cannot adapt to changes in real time.

An iterative matrix factorization method has been developed by Takács et.
al in [8]. They termed the method biased regularized incremental simultaneous
matrix factorization (BRISMF). The basic variant of this method is also batch-
based. Takács et. al, however, proposed an incremental variant of the algorithm
that also uses stochastic gradient descent. In this variant the model can be
adapted incrementally as new ratings arrive. The incremental updates are carried
out by fixating the latent item factors and performing further iterations of the
gradient descent on the user latent factors. This method still requires an initial
training and an eventual retraining of the item factors, but the latent user factors
remain always up to date. In our work we use the BRISMF algorithm and extend
it by forgetting techniques.

3 Method

Our method encompasses forgetting techniques for incremental matrix factor-
ization. We incorporated forgetting into the algorithm BRISMF by Takács et.
al [8]. The method is general and can be applied to any matrix factorization
algorithm based on stochastic gradient descent analogously. BRISMF is a batch
learning algorithm, the authors, however, proposed an incremental extension for
retraining user features (cf. Algorithm 2 in [8]). We adopted this extension to
create a forgetting, stream-based recommender. Our recommender system still
requires an initial training, which is the first of its two phases.

3.1 Two Phases of Our Method

Phase I - Initial Training creates latent user and items features using the ba-
sic BRISMF algorithm in its unchanged form [8]. It is a pre-phase for the actual
stream-based training. In that phase the rating matrix R is decomposed into a
product of two matrices R ≈ PQ, where P is a latent matrix containing user
features and Q contains latent item vectors. For calculating the decomposition
stochastic gradient descent (SGD) is used, which requires setting some param-
eters that we introduce in the following together with the respective notation.

As an input SGD takes a training rating matrix R and iterates over ratings
ru,i for all users u and items i. SGD performs multiple runs called epochs. We
estimate the optimal number of epochs in the initial training phase and use it
later in the second phase. The results of the initial phase are the matrices P
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and Q. As pu we denote hereafter the latent user vector from the matrix P .
Analogously, qi is a latent item vector from the matrix Q. Those latent matrices
serve as input to our next phase. The vectors pu and qi are of dimensionality k,
which is set exogenously. In each iteration of SGD within one epoch the latent
features are adjusted by a value depending on the learning rate η according to
the following formulas [8]:

pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k) (1)

qi,k ← qi,k + η · (predictionError · pu,k − λ · qi,k) (2)

To avoid overfitting long latent vectors are penalized by a regularization term
controlled by the variable λ. As −→r u∗ we denote a vector of all ratings provided
by the user u. For further information on the initial algorithm we refer to [8].

Despite the incremental nature of SGD, this phase, as also the most of matrix
factorization algorithms, is a batch algorithm, since it uses a whole training set
at once and the evaluation is performed after the learning on the entire training
set has been finished. In our second phase evaluation and learning take place
incrementally same as e.g. in stream mining.

Phase II - Stream-Based Learning. After the initial training our algorithm
changes into a streaming mode, which is its main mode. From this time point
it adapts incrementally to new users’ feedback and to potential concept drift or
shift. Also the selective forgetting techniques are applied in this mode, where they
can affect the recommendations immediately. Differently from batch learning,
evaluation takes place iteratively before the learning of a new data instance, as
it is known from stream mining under the name ”prequential evaluation” [2].
We explain our evaluation settings more detailed in Section 4.

In Algorithm 1 is pseudo-code of our method, which is an extension and
modification of the algorithm presented in [8]. This code is executed at arrival
of a new rating, or after a predefined number n of ratings. A high value of n
results in a higher performance in terms of computation time, but also in a slower
adaptation to changes. A low n means that the model is updated frequently, but
the computation time is higher. For our experiments we always use n = 1.

The inputs of the algorithm are results of the initial phase and parameters
that we also defined in the previous subsection. When a new rating ru,i arrives,
the algorithm first makes a prediction r̂u,i for the rating, using the item and
user latent vectors trained so far. The deviation between r̂u,i and ru,i is then
used to update an evaluation measure (cf. line 4 in Algorithm 1). It is crucial
to perform an evaluation of the rating prediction first, before the algorithm uses
the rating for updating the model. Otherwise the separation of the training and
test datasets would be violated. In line 6 the new rating is added to the list of
ratings provided by the user u. From this list we remove the outdated ratings
using one of our forgetting strategies (cf. line 7). The forgetting strategies are
described in Section 3.2. In the line 9 SGD starts on the newly arrived rating.
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It uses the optimal number of epochs estimated in the initial training. Contrary
to the initial phase, here only user latent features are updated. For updating the
user features the SGD iterates over all ratings of the corresponding user that
remained after a forgetting technique has been applied. For the update of each
dimension k the formula in line 16 is used.

Algorithm 1 Incremental Learning with Forgetting

Input: ru,i, R,P, Q, η, k, λ
1.

−→pu ← getLatentUserVector(P, u)
2.

−→qi ← getLatentItemVector(Q, i)
3. r̂u,i =

−→pu · −→qi //predict a rating for ru,i
4. evaluatePrequentially(r̂u,i, ru,i) //update evaluation measures
5.

−→r u∗ ← getUserRatings(R, u)
6. (−→r u∗).addRating(ru,i)
7. applyForgetting(−→r u∗) //old ratings removed
8. epoch = 0
9. while epoch < optimalNumberOfEpochs do

10. epoch++; //for all retained ratings
11. for all ru,i in

−→r u∗ do
12.

−→pu ← getLatentUserVector(P, u)
13.

−→qi ← getLatentItemVector(Q, i)
14. predictionError = ru,i −−→pu · −→qi
15. for all latent dimensions k �= 1 in −→pu do
16. pu,k ← pu,k + η · (predictionError · qi,k − λ · pu,k)
17. end for
18. end for
19. end while

Our variant of the incremental BRISMF method has the same complexity as
the original, incremental BRISMF. In terms of computation time, it performs
even better, since the number of ratings that the SGD has to iterate over is
lower due to our forgetting technique. The memory consumption of our method
is, however, higher, since the forgetting is based on a sliding window (cf. Section
3.2) that has to be kept in the main memory.

3.2 Forgetting Techniques

Our two forgetting techniques are based on a sliding window over data instances
i.e. in our case over ratings. Ratings that enter the window are incorporated into
a model. Since the window has a fixed size, some data instances have to leave it,
when new ones are incorporated. Ratings that leave the window are forgotten
and their impact is removed from the model. The idea of sliding window has
been used in numerous stream mining algorithms, especially in a stream-based
classification e.g. in Hoeffding Trees. In stream mining the sliding window is,
however, defined over the entire stream. This approach has also been chosen
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Fig. 1. Conventional definition of a sliding window a) vs. a user-specific window b).
In case a) information on some users is forgotten entirely and no recommendations are
possible (e.g. for user ux). In case b) only users with too much information are affected
(e.g. u2). Ratings of new users, such as ux, are retained.

Algorithm 2 applyForgetting(ru,∗) - Instance-based Forgetting

Input: ru,∗ a list of ratings by user u sorted w.r.t. time, w - window size
1. while |ru,∗| > w do
2. removeFirstElement(ru,∗)
3. end while

by Vinagre and Jorge in [9]. Our approach is user-specific i.e. a virtual sliding
window is defined for each user separately. Figure 1 illustrates this difference.

On the left side of the figure there is a website that generates streams of rat-
ings by different users. The upper part a) of the figure represents a conventional
definition of a sliding window (blue frame) over an entire stream. In this case
all ratings are considered as one stream. In our example with a window of size
2 this means that in case a) the model contains the ratings ru1,i2 and ru1,i1. All
remaining ratings that left the window have been removed from the model. This
also means that all ratings by the user ux have been forgotten. Consequently,
due to the cold start problem, no recommendations for that user can be created.
Case b) represents our approach. Here each user has his/her own window. In this
case all ratings of the user ux are retained. Only users, who provided more rat-
ings than the window can fit, are affected by the forgetting (e.g. u1). User with
very little information are retained entirely. Due to the user-specific forgetting
the cold start problem is not exacerbated. The size of the window can be de-
fined in multiple ways. We propose two implementations of the applyForgetting()
function from Algorithm 1, but further definitions are also possible.

Instance-Based Forgetting. The pseudo code in Algorithm 2 represents a
simple forgetting function based on the window size w. In Algorithm 1 new
ratings are added into the list of user’s ratings ru,∗. If due to that the window
grows above the predefined size, the oldest rating is removed as many times as
needed to reduce it back to the size w.
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Time-Based Forgetting. In certain application scenarios it is reasonable to
define current preferences with respect to time. For instance, we can assume that
after a few years preferences of a user have changed. In very volatile applications
a time span of one user session might be reasonable. Algorithm 3 implements a
forgetting function that considers a threshold a for the age of user’s feedback.
In this implementation the complexity of forgetting is less than O(w), where w
is size of the window, since it does not require a scan over the entire window.

Algorithm 3 applyForgetting(ru,∗) - Time-based Forgetting

Input: ru,∗ a list of ratings by user u sorted w.r.t. time, a - age threshold
1. forgettingApplied ← true
2. while forgettingApplied == true do
3. oldestElement ← getFirstElement(ru,∗) //the oldest rating
4. if age(oldestElement) > a then
5. removeFirstElement(ru,∗)
6. forgettingApplied ← true
7. else
8. forgettingApplied ← false
9. end if

10. end while

4 Evaluation Setting

We propose a new evaluation protocol for recommender systems in a streaming
environment. Since our method requires an initial training, the environment
of our recommender is not entirely a streaming environment. The evaluation
protocol should take the change from the batch mode (for initial training) into
streaming mode (the actual method) into account.

4.1 Evaluation Protocol

Figure 2 visualizes two modes of our method and how a dataset is split between
them. The initial training starts in a batch mode, which corresponds to the
part 1) in the Figure (batch train). For this part we use 30% of the dataset.
The ratios are example values we used in our experiments, but they can be
adjusted to the idiosyncrasies of different datasets. The gradient descent used in
the initial training iterates over instances of this dataset to adjust latent features.
The adjustments made in one epoch of SGD are then evaluated on the batch test
dataset (part 2). After evaluation of one epoch the algorithm decides, if further
epochs are needed. After the initial phase is finished the latent features serve as
input for the streaming mode.

For the stream based evaluation we use the setting proposed by Gama et al.
called prequential evaluation [2]. In this setting ratings arrive sequentially in a
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Fig. 2. Visualization of two modes of our method and split between the training and
test datasets. The split ratios are example values.

stream. To keep the separation of a test and training dataset every rating is
first predicted and the prediction is evaluated before it is used for training. This
setting corresponds to part 3) of our Figure. Two different colours symbolize
that this part is used both for training and evaluation. This also applies to
part 2) of the figure. Since the latent features have been trained on part 1) and
the streaming mode starts in part 3) this would mean a temporal gap in the
training set. Since temporal aspects play a big role in forgetting we should avoid
it. Therefore, we also train the latent features incrementally on part 2). Since this
part has been used for evaluation of the batch mode already, we do not evaluate
the incremental model on it. The incremental evaluation starts on part 3).

The incremental setting also poses an additional problem. In a stream new
users can occur, for whom no latent features in the batch mode have been trained.
In our experiments we excluded those users. The problem of inclusion of new
users into a model is subject to our future work.

4.2 Evaluation Measure - slidingRMSE

A popular evaluation measure is the root mean squared error (RMSE), which is
based on the deviation between a predicted and real rating [7]:

RMSE =

√√√√ 1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (3)

where T is a test set. This evaluation measure was developed for batch algo-
rithms. It is a static measure that does not allow to investigate, how the per-
formance of a model changes over time. We propose slidingRMSE - a modified
version of RMSE that is more appropriate for evaluating stream recommenders.
The formula for calculating slidingRMSE is the same as for RMSE, but the test
set T is different. slidingRMSE is not calculated over the entire test set, but
only over a sliding window of the last n instances. Prediction error of ratings
that enter the sliding window are added to the squared sum of prediction errors
and the ones that leave it are subtracted. The size of the window n is indepen-
dent from the window size for forgetting techniques. A small n allows to capture
short-lived effects, but it also reveals a high variance. A high value of n reduces
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the variance, but it also makes short-lived phenomena not visible. For our ex-
periments we use n = 500. slidingRMSE can be calculated at any timepoint in
a stream, therefore, is is possible to evaluate how RMSE changes over time.

Since we are interested in measuring how the forgetting techniques affect
the prediction accuracy, we measure the performance of an algorithm with and
without forgetting, so that the difference can be explained only by application
of our forgetting techniques. Forgetting is applied only on a subset of users, who
have sufficiently many ratings. Consequently, all other users are treated equally
by both variants of the algorithm. Thus, we measure slidingRMSE only on those
users, who were treated differently by the forgetting and non-forgetting variants.

5 Experiments

We performed our experiments on four real datasets: Movielens 1M1, Movielens
100k, Netflix (a random sample of 1000 users) and Epinions (extended) [5]. The
choice of datasets was limited by the requirement to have timestamped data. In
all experiments we used our modified version of the BRISMF algorithm [8] with
and without forgetting. Since BRISMF requires parameters to be set, on each
dataset we performed a grid search over the parameter space to find approxi-
mately optimal parameters. In Fig. 3 we present the results of the best param-
eters found by the grid search. As an evaluation measure we used slidingRMSE
(lower values are better). The left part of Fig. 3 represents the slidingRMSE
over time. The red curves represent our method with forgetting technique de-
noted in the legend and the blue ones the method without forgetting. ”Last20”
stands for an instance-based forgetting, when only 20 last ratings of a user are
retained. The best results were achieved constantly by the instance-based for-
getting. Time-based forgetting also performed better than no forgetting on all
datasets. However, we do not present its results due to space constraints.

The box plots on the right side are centred around the median of slidingRMSE.
They visualize the distribution of slidingRMSE.Please, consider that box plots
are normally used for visualizing independent observations, this is, however, not
the case here. From Fig. 3 we see that our method with forgetting dominates
the non-forgetting strategy on all datasets at nearly all timepoints. In Table 1
we present numeric, averaged values of slidingRMSE for each dataset.

Table 1. Average values of slidingRMSE for each dataset (lower values are better).
Our forgetting strategy outperforms the non-forgetting strategy on all datasets.

Dataset ML1M ML100k Epinions Netflix

avg. slidingRMSE - Forgetting 0.9151 1.0077 0.6627 0.9138

avg. slidingRMSE - NO Forgetting 1.1059 1.0364 0.8991 1.0162

1 http://www.movielens.org/

http://www.movielens.org/
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Fig. 3. SlidingRMSE on four real datasets with and without forgetting (lower values
are better). Application of forgetting techniques yields an improvement on all datasets
at nearly all timepoints.
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6 Conclusions

In this work we investigated, whether selective forgetting techniques for matrix
factorization improve the quality of recommendations. We proposed two tech-
niques, an instance-based and time-based forgetting, and incorporated them into
a modified version of the BRISMF algorithm. In contrast to existing work, our
approach is based on a user-specific sliding window and not on a window defined
over an entire stream. This has an advantage of selectively forgetting information
about users, who provided enough feedback.

We designed a new evaluation protocol for stream-based recommenders that
also takes the initial training and temporal aspects into account. We introduced
an evaluation measure, slidingRMSE, that is more appropriate for evaluating
recommender systems over time and capturing also short-lived phenomena. In
experiments on real datasets we have shown that a method that uses our for-
getting techniques, outperforms the non-forgetting strategy on all datasets at
nearly all timepoints. This also proves that user preferences and perception of
items change over time. We have shown that it is beneficial to forget the outdated
user feedback despite the extreme data sparsity known in recommenders.

In our future work we plan to develop more sophisticated forgetting strate-
gies for recommender systems. Our immediate next step is also a research on a
performant inclusion of new users into an existing, incremental model.

References

1. Desrosiers, C., Karypis, G.: A Comprehensive Survey of Neighborhood-based Rec-
ommendation Methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.)
Recommender Systems Handbook, pp. 107–144. Springer US

2. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In: KDD (2009)

3. Koren, Y.: Collaborative filtering with temporal dynamics. In: KDD (2009)
4. Koren, Y., Bell, R., Volinsky, C.: Matrix Factorization Techniques for Recommender

Systems. Computer 42(8), 30–37 (2009)
5. Massa, P., Avesani, P.: Trust-aware bootstrapping of recommender systems. In:

ECAI Workshop on Recommender Systems, pp. 29–33. Citeseer (2006)
6. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: WWW 2001 (2001)
7. Shani, G., Gunawardana, A.: Evaluating Recommendation Systems. In: Ricci, F.,

Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook
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Abstract. Known pattern discovery algorithms for finding tilings (cov-
ers of 0/1-databases consisting of 1-rectangles) cannot be integrated in
instant and interactive KD tools, because they do not satisfy at least one
of two key requirements: a) to provide results within a short response
time of only a few seconds and b) to return a concise set of patterns
with only a few elements that nevertheless covers a large fraction of the
input database. In this paper we present a novel randomized algorithm
that works well under these requirements. It is based on the recursive
application of a simple tile sample procedure that can be implemented
efficiently using rejection sampling. While, as we analyse, the theoretical
solution distribution can be weak in the worst case, the approach per-
forms very well in practice and outperforms previous sampling as well as
deterministic algorithms.

Keywords: Instant Pattern Mining, Sampling Closed Itemsets, Tiling
Databases.

1 Introduction

Recently, data mining tools for interactive exploration of data have attracted
increased research attention [7,9,11,19]. For such an interactive exploration pro-
cess, a tight coupling between user and system is desired [4,17], i.e., the user
should be allowed to pose and refine queries at any moment in time and the
system should respond to these queries instantly [16]. This allows to transfer
subjective knowledge and interestingness better as opposed to a batch setting
with high computational overhead [4,17].

When finding collections of patterns that cover large fractions of the input
data, existing techniques often fail to deliver the requirement of instant results.
The reason is that they iteratively find the best pattern that covers the remain-
ing data [10,13], which involves an NP-hard problem [10]. Another approach
employed in the literature is first enumerating a large collection of patterns and
then selecting distinct patterns that optimize the quality [20]. The large bottle-
neck for such procedures is the enumeration of many patterns.

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 216–227, 2014.
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In this paper, we address the issue of finding patterns that have good descrip-
tive capabilities, i.e., they individually describe a substantial amount of data,
and that can together be used to describe the data. Such collections are helpful
in exploratory data mining processes to get a quick overview of the prominent
structures in the data [20]. Then, iteratively a user can drill down to specific
parts of the data to explore even further. To this end, we propose a random-
ized procedure to quickly find small collections of patterns consisting of large
tiles. Our method is based on a recursive sampling scheme that selects individ-
ual cells in a conditional database. The sampling process is based on a heuristic
computation reflecting the potential of a cell for being part of a large pattern.

In summary, the contributions of our work are:

– We introduce a sampling method for finding database covers in binary data
with near instants results in Section 3. Our sampling method heuristically
optimizes the area of individual tiles using a recursive extension process.

– We introduce a new measure for evaluating pattern collections specifically in
interactive systems which ensures the total representativeness of a pattern
collection while guaranteeing the individual quality of patterns.

– We evaluate our novel sampling method with respect to the proposed mea-
sure in a real-time setting, in which algorithms are given only a short time
budget of one second to produce results. We compare to state-of-the-art
techniques and show that our method outperforms these techniques.

2 Preliminaries

In this paper we consider binary databases, as in itemset mining and formal
concept analysis. A formal context is a triple (O,A,R) with a set of objects O,
a set of attributes A and a binary relation or database defined between the
objects and attributes R ⊆ O ×A. We use ok and al as mappings to individual
objects and attributes from the sets. Two Galois operators are defined as O[X ] =
{o ∈ O : ∀a ∈ X, (o, a) ∈ R} and A[Y ] = {a ∈ A : ∀o ∈ Y, (o, a) ∈ R}. O[X ]
is also called the cover cov(X). Applying both Galois operators sequentially,
yields two closures operators, õ[.] = O[A[.]] and ã[.] = A[O[.]].

The binary relation is essentially a binary matrix {0, 1}|O|×|A| such that a
region consisting of only 1’s is called a tile T = (X,Y ) [10]. A tile can be adopted
directly to transactional databases as an itemset X and its corresponding cover
Y , such that ∀a ∈ X, ∀o ∈ Y : (o, a) ∈ R. A tile is said to support a cell
(k, l) ∈ R if ok ∈ Y and al ∈ X . In this work we are interested specifically in
formal concepts (also maximal tiles or closed itemsets), such that X = A[Y ]
and Y = O[X ]. The interestingness of a tile is defined by its area in the data
area(T ) = |X | · |Y |. Note that the area of a tile is neither monotonic nor anti-
monotonic. Hence, typical enumeration strategies [21] can not be used directly.

Geerts et al. [10] developed an algorithm for mining all tiles with at least
a given area by adopting Eclat [21]. Using an upper bound on the maximum
area of tiles that can still be generated, they prune single attributes during the
mining process. Given a set of attributes X and a test attribute a, they count
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the number of objects o ∈ O[X ] such that (o, a) ∈ R and |A[{o}]| ≥ �. Denote
this count as count≥�(X, a). The upper bound on the area of a tile with |X | = s
is given by s · count≥s. The total upper bound over all sizes and possible tiles
is obtained by taking the maximum:

UBX∪{a} = arg max
�∈|X|+1,...

(� · count≥�(X, a)). (1)

A database tiling is a collection of possibly overlapping tiles [10]. The prob-
lem statement we consider, is finding a tiling covering as much of the data as
possible with only few patterns, in short time budgets. Therefore, each pattern
should individually have large area. We stress that our setting is new [7,9,11] and
existing measures do not satisfy these requirements. Given a collection of tiles
F , then the quality combines total collection and individual pattern qualities:

qual(F) =
cov(F)

|R| · 1

|F|
∑
T ∈F

area(T )

|R| , (2)

with cov(F) the total number of cells covered. If known, for comparison purposes
the normalization for area can be replaced by the area of the largest tile in the
data Tlarg. Note that this measure indirectly favors small pattern collections.

3 Biased Sampling of Large Tiles

In this section we introduce a sampling procedure on individual cells from a
conditional database. Our method heuristically optimizes the area of tiles.

3.1 Sampling Individual Cells

The upper bound from Equation (1) is good but intensive to compute. We
propose to use a less intensive bound to guide the search for large area pat-
terns. Consider a cell (k, l) ∈ R, corresponding to object ok and attribute al. If
(ok, al) ∈ R, the maximum area of a tile having this cell is given by the max-
imum upper bound MB(k, l) = |O[{al}]| · |A[{ok}]|, where the first part is
called the column marginal MA, and the second part the row marginal MO.

Proposition 1. Given a cell (k, l) in a dataset, MB(k, l) is never less than the
true area of a tile containing the cell.

Proof. Suppose T = (X,Y ) contains cell (k, l) but has area greater thanMB(k, l).
Then T either (1) contains object oi �∈ O[{al}], or (2) contains attribute aj �∈
A[{ok}]. Since the cover of T is an intersection relation over the covers of the at-
tributes, (1) is not possible. Suppose (2) holds, then ok will never be part of the
cover of T , which is in contrast with the original assumption.  !

We can use MB as probabilities for sampling individual cells from a binary
database by using them as probabilities for sampling a single cell from the data:

Pr(k, l) =
MB(k, l)

Z
=
|O[{al}]| · |A[{ok}]|

Z
. (3)
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Algorithm 1 RTS(R, S)

Require : relation R, current state S
Return : collection of large tiles

1: (i, j) ∼ Pr(k, l, S)
2: S ← (SA ∪ {aj}, SO ∪ {oi})
3: T iles ← {TV , TH} // Closures of S
4: if A(SO) \ SA �= φ and O(SA) \ SO �= φ then
5: T iles ← T iles ∪RTS(R, S)
6: end if
7: return T iles

The heuristic behind this sampling scheme is that a cell which is part of tiles
with large area, also has a larger sampling probability. Using the Equation 3 we
sample individual cells having higher chance of being in a large area tile.

3.2 Recursive Tile Sampling

Large tiles can be sampled by repeatedly sampling individual cells that consitute
a tile. As such, instead of sampling cells independently, we restrict the sampling
of new cells, to those that definitely form a tile. We do so by considering only
the conditional database constructed by the previous samples.

We define a current state S by a set of current attributes SA and a set of
current objects SO (in fact a current state is an intermediate tile). The sam-
pling probabilities from Equation 3 can be updated to incorporate the previous
knowledge reflected by the current state. The new probabilities become

Pr(k, l, S) =
|O[{al}] ∩O[SA]| · |A[{ok}] ∩A[SO]|

Z
, (4)

with Z a normalization constant over remaining cells. The intersections construct
the conditional database RS . As we condition on the current state we know that
an object in O[SA] or an attribute in A[SO] contains only ones. We therefore
remove these cells from the conditional database.

Pseudo code for Recursive Tile Sampling, RTS, is given in Algorithm 1.
The sampling procedure extends a current state in two directions simultaneously
(see Figure 1). When either no attributes or no objects remain, the algorithm
stops. Therefore, the current state S itself, never represents a rectangular tile.
As such, each time when constructing the conditional database we report a pair
of tiles defined by the Galois and closure operators on S: the tile containing all
remaining attributes is TH = (A[SO], õ[SO]) and the tile containing all remaining
objects is TV = (ã[SA], O[SA]). TH is also called a horizontal extension tile and
õ[SO] ⊇ SO. Likewise, TV is also called a vertical extension tile and ã[SA] ⊇ SA.
In the end we return all tiles that are found during the recursive steps.
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a1 a2 a3 a4

o1 1 1 1 1
o2 1 1 1 0
o3 1 1 1 0
o4 1 1 0 1
o5 1 0 1 0
o6 0 1 1 1

(a) Toy 0/1 data

a1 a2 a3 a4

o1 20 20 20 12
o2 15 15 15 0
o3 15 15 15 0
o4 15 15 0 9
o5 10 0 10 0
o6 0 15 15 9

(b) Potentials

a1 a2 a3 a4

o1 1 1 1 1
o2 1 1 1 0
o3 1 1 1 0
o4 1 1 0 1
o5 1 0 1 0
o6

(c) Step 1

a1 a2 a3 a4

o1 0 0 0 0
o3 0 12 12 0
o3 0 12 12 0
o4 0 12 0 6
o5 0 0 8 0

(d) Step 1 Potentials

a1 a2 a3 a4

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4 1 1 0
o5
o6

(e) Step 2

a1 a2 a3

o1 0 0 0
o2 0 0 0
o3 0 0 9
o4 0 0 0

(f) Step 2 Poten-
tials

a1 a2 a3 a4

o1 1 1 1
o2 1 1 1
o3 1 1 1
o4
o5
o6

(g) Step 3

a1 a2 a3

o1 0 0 0
o2 0 0 0
o3 0 0 0

(h) Step 3 Poten-
tials

Fig. 1. Running example of RTS: dark gray = S, light gray = cells without sampling
probability, black = cells that are not extensions of S

Example 1. Given the toy dataset from Figure 1a, the initial unnormalized sam-
pling probabilities (or potentials) are given in Figure 1b. First cell (1,1) is sam-
pled and object o6 is removed because (o6, a1) /∈ R. Two extension tiles are
formed by applying the closure operators: TH1 = ({a1, a2, a3, a4}, {o1}) and
TV1 = ({a1}, {o1, o2, o3, o4, o5}). The recursive step is applied to the database
excluding attributes ai �∈ A[{o1}] and objects oj �∈ O[{a1}]. In step 2, cell (2,2)
is sampled and TH2 = ({a1, a2, a3}, {o1, o2, o3}) and TV2 = ({a1, a2}, {o1, o2, o3,
o4})) are reported. In the last step, (3, 3) is sampled and the last extension tiles
are found: TH3 = TV3 = ({a1, a2, a3}, {o1, o2, o3, }). The process then stops as no
recursion can be applied.

3.3 Efficient Sampling of Individual Cells

The distribution f (k, l, S), f (x) for simplicity, defined by Equation 4 is

f (x) =

{
MB(k, l, S)/Z if (k, l) ∈ RS , tk /∈ SO, il /∈ SA

0 otherwise.
(5)

We show how to sample efficiently from f (x) without completely material-
izing it. We can use rejection sampling with non-uniform distributions for this
purpose. Rejection sampling is a general method for sampling from a probability
distribution f by sampling from an auxiliary distribution g that acts as an enve-
lope. It uses the fact that we can sample uniformly from the density of the area
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under the curve cg(x) [15], c > 1. Samples from cg that are generated outside
of the density region of f ′ = βf are then rejected, β > 1. Formally, we have
f ′(x) < cg(x) and acceptance probability α ≤ f ′(x)/cg(x), with α ∼ Unif [0, 1].

To use rejection sampling we first set f ′ to the unnormalized version of the
true distribution f , using the same condition (i, j) ∈ R and β = Z. As auxiliary
distribution we choose g(x) = (|O[{al}]∩O[SA]| · |A[{ok}]∩A[SO]|)/Z, without
the condition on the presence of (k, l). Setting c = Z we obtain two rules

f ′(x) =

{
cg(x) if (k, l) ∈ R
0 ≤ cg(x) if (k, l) /∈ R,

(6)

such that by construction the acceptance probability boils down to accepting if
the cell is present, rejecting if not.

What is left is obtaining samples from g . Since this distribution is based on
the independence of rows and columns we sample al with probability PrA(l, S) =
|O[{al}] ∩ O[SA]|/Z and ok with probability PrO(k, S) = |A[{ok}] ∩ A[SO]|/Z
independently. This results in exact samples from g .

3.4 Incorporating Knowledge

Our sampling method can integrate prior knowledge by assigning weights to cells
instead of marginal counts. Suppose a weight function w : (k, l)→ [0, 1], then we
have marginalsMO(ok) =

∑
ai∈A[{ok}] w(k, i) and MA(al) =

∑
oj∈O[{al}] w(j, l).

and potentials Pr(k, l) = (
∑

ai∈A[{ok}] w(k, i) ·
∑

oj∈O[{al}] w(j, l))/Z, with Z a
normalization constant to obtain a probability distribution. For the weights we
propose the use of multiplicative weights [12] based on the number of times a
cell has already been covered by previous knowledge, i.e., w(k, l) = γm, with m
the number of times a cell has been covered and γ a discounting factor.

The main bottleneck of this weighting scheme is the computation of individ-
ual marginals. When explicitly storing the previous marginal, we can efficiently
update them. Suppose for each of the attributes and objects we keep the cur-
rent marginals in memory. Given that new knowledge is provided in the form
of a tile Tn = (X,Y ), then only marginals of attributes and objects supporting
cells described by Tn have to be updated. Using the following scheme over the
individual cells of the tile we obtain fast incorporation of knowledge:

∀al ∈ X, ∀ok ∈ Y

→
MA(al) = MA(al)− wold(k, l) + wnew(k, l)

MO(ok) = MO(ok)− wold(k, l) + wnew(k, l).

This results in updates in O(2|X ||Y |) time rather than an update for the com-
plete database in O(2|A||O|) time. The factor 2 comes from the fact that we
have to update the margins for attributes as well as for objects.
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3.5 Worst Case Analysis

Individual Cell Sampling. We analyze the worst case performance of our
sampling probabilities wrt area2, which is the distribution that is closest to
the distribution simulated by our sampling method. We define the worst case
scenario as a dataset where the sampling probabilities do not reflect the area2 of
sampled closed tiles. In our framework this happens when {0, 1}n×n contains all
ones except on the diagonal. Then, the number of closed tiles equals 2n− 2 and
the largest tile in the region has area #n/2$%n/2&. The total sampling potential
is n(n− 1)3, because each row and column has a count of (n− 1) and there are
n(n− 1) non-zero entries. The true area2 mass induced by all closed tiles equals∑

k=1,··· ,n−1

(
n
k

)
(k(n−k−1))2 ≥ n(n−1)3 and holds for all n ≥ 2. Moreover for

n ≥ 4 it holds that the second parts is strictly smaller and we have a constant
undersampling of this density region.

Rejection Sampling. We first analyze the general sampling complexity and
then the worst-case time complexity when many samples are rejected.

Using Section 3.3 we sample independently one column and one row. The
materialization of the marginal distributions has O(|A| + |O|) time and space
complexity. (A näıve direct approach for sampling relies on full materialization
of the matrix and therefore has time and space complexity O(|A||O|)) For the
time complexity we also have to take into account the time for sampling one
element. This can be achieved in logarithmic time using a binary seach. The total
sampling time with rejection sampling becomes O((|A|+log |A|)+(|O|+log |O|))
compared to O(|A||O|) + (log |A| log |O|) for the direct approach.

This does not yet conclude our time analysis as we did not yet take into
account the number of times we have to resample due to rejections. We use as
basis the worst-case scenario for rejection sampling, which is the setting where
the binary representation of the data is an identity matrix In of size n× n. The
marginal probabilities equal 1/n and the probability of sampling a single 1-valued
cell equals 1/n2. Since the data contains exactly n ones, the total probability
of sampling a valid cell with rejection sampling, and thus accepting the sample,
equals n·1/n2 = 1/n. Setting |R| to n we obtain a total time sampling complexity
for rejection sampling equal to O((|A|+ |O|)+(log |A|+log |O|) · |R|). Note that
the first term is the time for materializing the distribution and has to be done
just once. The last part is the time for sampling the distribution, which has to
be repeated in worst case |R| times.

4 Experiments

We experimented with our sampling method on several real world datasets shown
in Table 1 together with their main characteristics. Pumsb, Connect and Acc are
publicly available from the FIMI Repository [2]. Adult, Cens-Inc, CovType and
Pokhand are made available at the UCI Machine Learning Repository [1].

For the experiments our interests are two-fold:
– How well does RTS work in real instant conditions?
– How does the quality of patterns evolve over time?
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Table 1. Characteristics for different datasets, quality of pattern collections and the
number of patterns in the collection obtained in 1 second

R |O| |A| RTS CDPSarea∗fq2 Asso Tileminerfirst Tileminerunif

quality |F| quality |F| quality |F| quality |F| quality |F|

Adult 48,842 97 0.64 25.0 0.40 24.8 0.58 7.0 0.55 25.0 0.61 25.0
Pumsb 49,046 2.113 0.31 25.0 0.00 1.10 0.00 0.0 0.00 0.0 0.00 0.0
Connect 67,557 129 0.47 25.0 0.09 25.0 0.00 0.0 0.00 25.0 0.00 25.0
Cens-Inc 199,523 519 0.35 12.7 0.03 25.0 0.00 0.0 0.04 25.0 0.04 25.0
Acc 340,183 468 0.18 10.5 0.00 0.3 0.00 0.0 0.00 0.0 0.00 0.0
CovType 581,012 5.858 0.28 3.0 0.33 24.5 0.00 0.0 0.45 14.0 0.45 14.0
Pokhand 1,000,000 95 0.09 9.2 0.02 5.1 0.00 0.0 0.00 0.0 0.00 0.0
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Fig. 2. Quality of 100 patterns over time in millisecond (log scale) for Cens-Inc
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Fig. 3. Quality of 100 patterns over time in millisecond (log scale) for Acc

The first topic is related to intensive interactive environments: a user is explor-
ing data and is assisted by several pattern mining algorithms. The user hereby
expects instant condense results. The second topic is related also to an interac-
tive environment with more relaxed conditions. For instance, instead of having
instant results, a user is willing to wait up to 1 minute. Due to space limitations,
we do not show our evaluation for the incorporation of knowledge.

For the experiments we compared our method to three other techniques for
finding tiles. As deterministic baseline we used a boolean matrix factorization
algorithm called Asso [13], which greedily optimizes the coverage of k basis
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Fig. 4. Quality of 100 patterns over time in millisecond (log scale) for CovType

vectors. Asso is implemented in C++. We used a Tileminer implementation
that finds all tiles given a minimum area, which can be seen as a baseline for
finding large area tiles. Tileminer is also written in C++. We use Controlled
Direct Pattern Sampling [8] (CDPS), written in Java, as alternative sampling
method and as baseline for a fast anytime sampling technique. CDPS provides
i.i.d. samples in rapid succession from a user customizable distribution over the
complete pattern space. At last, RTS1 is implemented in Java. In our experiments
we reported a single pattern for each recursive run, which is the largest area
pattern produced. The tests themselves are executed on our local server running
Ubuntu 12.04. The machine contains 32 Intel Xeon CPUs and 32 GB of RAM.

4.1 Instant Pattern Quality

We evaluated the representativeness of pattern collections in combination with
the individual quality of patterns, while simulating an interactive environment:
we set a hard constraint on the number of patterns generated and on the time
budget. The first constraint makes sure that the user is not overwhelmed by the
patterns he receives for investigation. The second constraint allows explorability
while retaining the attention span of the user [16]. In fact, we envision a setting
where a user clicks a mining button and wants to obtain good results instantly.
Moreover the mining can only start when the user tells the system to start, such
that knowledge from a previous mining round can be taken into account.

We used a hard time budget of 1 second for all datasets and reported the top 25
results obtained. Throughout the experiments we did not take into account the
loading times because in interactive environments the data is already in memory.
ForAsso we did not allow to find fault-tolerant covers and set the penalty to 100.
Since Asso is greedy, the first 25 results are the top 25. For Tileminer we made
a sweep over the parameter space, varying the area threshold from 5% to 95% of
area(Tlarg) (area of largest tile) with a 5% step increase. Moreover, we used two
settings: Tileminerfirst, uses the first k patterns obtained and Tileminerunif ,
selects k patterns uniformly at random from all tiles found in one second. For
CDPS we used several area distribution settings [8]. However, in the results

1 Implementation can be found at http://adrem.ua.ac.be/rts
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we show only CDPSarea∗fq2 which is the setting that performed best overall.
We selected the first 25 non duplicates. For the samplers we made 10 runs and
averaged over the results. Each collection was scored wrt Equation (2). For
comparison, we normalized the areas over area(Tlarg) rather than |R|.

The qualities of pattern collections are shown in Table 1. It shows per dataset
and for each of the algorithms the quality and the number of patterns obtained
when running for at most 1 second and selecting 25 top patterns. The exper-
iments show that RTS performs good on our quality measure and even out-
performs other algorithms on 6 out of 7 datasets. Only for the sparse dataset
CovType it is not able to produce enough patterns to beat the other methods.
Moreover, it is the only method that produces at least one pattern within one
second. Aside from quality this also is very important in our experiment because
even while retrieving just one pattern the knowledge of the user is influenced!
The user can then incorporate this knowledge when exploring the data further.
It is clear that RTS outperforms all other methods on this experiments.

4.2 Pattern Quality over Time

We evaluate the quality using larger time budgets and show the evolving quality
over time. In this scenario all algorithms are given at most one hour to produce
100 patterns. For Tileminer we used the same parameter selection procedure as
in Section 4.1. We selected the setting giving the highest overall total coverage for
the first 100 patterns and generated a random selection of 100 patterns for that
complete collection of patterns. Evolving scores for quality, relative coverage and
average relative area are shown in Figures 2, 3 and 4 for a selection of datasets.
The graphs show elapsed time in milliseconds in log scale on the x-axis and the
respective qualities, with areas normalized by area(Tlarg) rather than |R|.

The results show similar behaviour except again on CovType, a sparse dataset
with a low number of high area patterns. Generally, the experiments show that
Asso is good at providing large covers while maximizing new information. How-
ever, the mining process often takes long and due to optimization of uncovered
parts, the area of tiles reduces drastically after the first pattern. Tileminer is
good at providing multiple large area patterns but lacks the ability to cover the
data with the patterns found. This is due to the enumeration strategy. CDPS is
not able to outperform other methods due to i.i.d sampling of area ∗ fq2, which
does not optimize enough the area. It is however one of the fastest methods.
RTS is the only method that is quick and robust in terms of quality. For all
datasets it is at least an order of magnitude faster than Asso with only slightly
lower total coverage. It is possible to obtain better coverage by also incorporating
previous samples (Section 3.4). This, however, negatively influences the score.

5 Related Work

We describe some related research to this paper. We cite two types of research
material, work based on finding database covers and work based on sampling.
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Geerts et al. [10] adopted Eclat to mine non fault-tolerant (FT) large area
tiles, i.e., tiles with no false positives (0 values) in the result. They also describe
how to produce tilings, by recursively finding the largest tile in the data excluding
previous tiles. Vreeken et al. [18] optimize the Minimum Description Length in
pattern collections. As such, they maximize the number of times patterns are
used when encoding the data, rather than maximizing the total coverage.

In the FT setting multiple algorithms exist that try to find database covers.
These methods allow false positives in their patterns. Miettinen et al. [13] use
boolean matrix factorization in Asso, to find products of matrices that recon-
struct the complete data with a low number of errors. Asso can be adopted
to mine non FT patterns in binary data. Xiang et al. [20] use the concept of
hyperrectangles, which is similar to hierarchical tiles. They find hyperrectangles
by combining frequent itemsets with a given budget of false positives.

Sampling the output space is relatively new in pattern set mining. Existing
algorithms enumerate a large fraction of the pattern space and filter a selection
of patterns a posteriori. Not many techniques exist that sample the output space
directly. Al Hasan and Zaki [3] coined the term output space sampling on graphs.
They used a simple random walk on the partially ordered graph (POG), by
allowing only extensions of the current POG. Moens and Goethals [14] used the
same technique to sample maximal itemsets. They use an objective functions to
prune the search space and to propose new transitions for the random walk.

Boley et al. [6] introduced two-step sampling procedures for the discovery
of patterns following a target distribution. In step one a single data object is
materialized and in step two a pattern is sampled from the object. Boley et al. [8]
extended this into a general framework, where a user specifies a full distribution
in terms of frequency factors over specific parts of the data. This framework
can not optimize enough the area of patterns to find good covers. Boley [5] uses
Metropolis-Hastings to uniformly sample closed itemsets, however he does not
incorporate the area of patterns for biasing the results towards large area tiles.

6 Conclusion and Future Work

Interactive KD tools demanding short response times and concise pattern col-
lections are becoming increasingly popular. Existing techniques for finding large
covers in 0/1 databases fail in at least one of the two requirements and can
therefore not be integrated properly in such frameworks. We presented a novel
technique for sampling large database covers given a real-time situation of inter-
active data mining with very short time budgets. We showed how our method can
be implemented efficiently using rejection sampling. Moreover, we showed that
our technique outperforms existing techniques for finding large database cov-
ers given very short time. For larger time budgets we showed that our method
obtains comparable results to greedy optimizations, yet, much faster.

Interesting future work on this topic relates to tiles that are enumerated in
one recursive step. In the current implementation we select only the largest tile
in the collection. Another technique is to maintain an evolving list of top-k tiles
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using for instance reservoir sampling. Other reseach directions for this technique
are the FT setting and probabilistic databases.
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Abstract. We address a problem of efficiently estimating value of a centrality
measure for a node in a large social network only using a partial network gen-
erated by sampling nodes from the entire network. To this end, we propose a
resampling-based framework to estimate the approximation error defined as the
difference between the true and the estimated values of the centrality. We ex-
perimentally evaluate the fundamental performance of the proposed framework
using the closeness and betweenness centralities on three real world networks,
and show that it allows us to estimate the approximation error more tightly and
more precisely with the confidence level of 95% even for a small partial network
compared with the standard error traditionally used, and that we could potentially
identify top nodes and possibly rank them in a given centrality measure with high
confidence level only from a small partial network.

Keywords: Error estimation, resampling, node centrality, social network analy-
sis.

1 Introduction

Recently, Social Media such as Facebook, Digg, Twitter, Weblog, Wiki, etc. becomes
increasingly popular on a worldwide scale, and allows us to construct large-scale so-
cial networks in cyberspace. An article that is posted on social media can rapidly and
widely spread through such networks and can be shared by a large number of people.
Since such information can substantially affect our thought and decision making, a large
number of studies have been made by researchers in many different disciplines such as
sociology, psychology, economy, and computer science [8,4] to analyze various aspects
of social networks and information diffusion on them.

In the domain of social network analysis, several measures called centrality have
been proposed so far [7,5,1,3,13]. They characterize nodes in a network based on its
structure, and give an insight into network performance. For example, a centrality pro-
vides us with the information of how important each node is through node ranking
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derived directly from the centrality. It also provides us with topological features of a
network. For example, scale free property is derived from the degree distribution. As
a social network in World Wide Web easily grows in size, it is becoming pressingly
important that we are able to efficiently compute values of a centrality to analyze such a
large social network. However, if a centrality measure is based not only on local struc-
ture around a target node, e.g. its neighboring nodes, but also on global structure of a
network, e.g. paths between arbitrary node pairs, its computation becomes harder as the
size of the network increases. Thus, it is crucial to reduce the computational cost of
such centralities for large social networks. Typical examples are the closeness and the
betweenness centralities which we consider in this paper (explained later).

It is worth noting that such a centrality is usually defined as a summarized value of
more primitive ones that are derived from node pairs in a network. For example, the
closeness centrality is defined as the average of the shortest path lengths from a target
node to each of the remaining nodes in a network. Considering this fact, it is inevitable
to employ a sampling-based approach as a possible solution of this kind of problem on
scalability. It is obvious that using only a limited number of nodes randomly sampled
from a large social network can reduce the computational cost. However, the resulting
value is an approximation of its true value, and thus it becomes important to accurately
estimate the approximation error. It is well known from the statistical view point that
the margin of error (difference between sample mean and population mean) is ±2 ×
σ/
√

N with the confidence level of 95%, where σ and N are the standard deviation of a
population and the number of samples, respectively. However, this traditional boundary
does not necessarily give us a tight approximation error.

In this paper, we propose a framework that provides us with a tighter error estimate
of how close the approximation is to the true value. The basic idea is that we consider
all possible partial networks of a fixed size that are generated by resampling nodes
according to a given coverage ratio, and then estimate the approximation error, referred
to as resampling error, using centrality values derived from those partial networks. We
test our framework using two well-known centrality measures, the closeness and the
betweenness centralities, both of which require to use the global structure of a network
for computing the value of each node. Extensive experiments were performed on three
real world social networks varying the sample coverage for each centrality measure.
We empirically confirmed that the proposed framework is more promising than the
traditional error bound in that it enables us to give a tighter approximation error with
a higher confidence level than the traditional one under a given sampling ratio. The
framework we proposed is not specific to computation of node centralities for social
network analysis. It is very generic and is applicable to any other estimation problems
that require aggregation of many (but a finite number of) primitive computations.

The paper is organized as follows. Section 2 gives the formal definitions of both the
resampling-based framework that we propose and the traditional bound of approxima-
tion error. Section 3 explains the closeness and the betweenness centralities we used to
evaluate our framework and presents how to estimate their approximation error. Sec-
tion 4 reports experimental results for these centralities on three real world networks.
Section 5 concludes this paper and addresses the future work.
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2 Related Work

As mentioned above, it is crucial to employ a sampling-based approach when analyz-
ing a large social network. Many kinds of sampling methods have been investigated
and proposed so far [6,11,10]. Non-uniform sampling techniques give higher proba-
bilities to be selected to specific nodes such as high-degree ones. Similarly, results by
traversal/walk-based sampling are biased towards high-degree nodes. In our problem
setting the goal is to accurately estimate centralities of an original network and thus
uniform sampling that selects nodes of a given network uniformly at random is es-
sential because biased samples might skew centrality values derived from a resulting
network.

This motivates us to propose the framework that ensures the accuracy of the approxi-
mations of centrality values under uniform sampling. Although we use a simple random
sampling here, our framework can adopt a more sophisticated technique such as MH-
sampling [6] in so far as it falls under uniform sampling. In this sense, our framework
can be regarded as a meta-level method that is applicable to any uniform sampling tech-
nique.

3 Resampling-Based Estimation Framework

For a given set of objects S whose number of elements is L = |S |, and a function f which
calculates some associated value of each object, we first consider a general problem of
estimating the average value μ of the set of entire values { f (s) | s ∈ S } only from its
arbitrary subset of partial values { f (t) | t ∈ T ⊂ S }. For a subset T whose number of
elements is N = |T |, we denote its partial average value by μ(T ) = (1/N)

∑
t∈T f (t).

Below, we formally derive an expected estimation error RE(N) which is the difference
between the average value μ and the partial average value μ(T ), with respect to the
number of elements N. Hereafter, the estimated error based on RE(N) is referred to as
resampling error.

Now, let T ⊂ 2S be a family of subsets of S whose number of elements is N, that is,
|T | = N for T ∈ T . Then, we obtain the following estimation formula for the expected
error:

RE(N) =
√

〈(μ − μ(T ))2〉T∈T

=

√√√(
L
N

)−1∑

T∈T

⎛
⎜⎜⎜⎜⎜⎝μ −

1
N

∑

t∈T
f (t)

⎞
⎟⎟⎟⎟⎟⎠

2

=

√√√(
L
N

)−1 1
N2

∑

T∈T

⎛
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∑

t∈T
( f (t) − μ)

⎞
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2

=

√√√(
L
N

)−1 1
N2

⎛
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(
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)∑

s∈S
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(
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)∑

s∈S

∑
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(
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s∈S
( f (s) − μ)
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= C(N)σ. (1)
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Here the factor C(N) and the standard deviation σ are given as follows:

C(N) =

√
L − N

(L − 1)N
, σ =

√
1
L

∑

s∈S
( f (s) − μ)2.

In this paper we consider a huge social network consisting of millions of nodes as
a collection of a large number of objects, and propose a framework in which we use
the partial average value as an approximate solution with an adequate confidence level
using the above estimation formula, Equation (1). More specifically, we claim that for
a given subset T whose number of elements is N, and its partial average value μ(T ),
the probability that |μ(T ) − μ| is larger than 2 × RE(N), is less than 5%. This is because
the estimation error of Equation (1) is regarded as the standard deviation with respect
to the number of elements N. Hereafter this framework is referred to as the resampling
estimation framework.

In order to confirm the effectiveness of the proposed resampling estimation frame-
work, we also consider a standard approach based on the i.i.d. (independently identical
distribution) assumption for comparison purpose. More specifically, for a given subset
T whose number of elements is N, we assume that each element t ∈ T is indepen-
dently selected according to some distribution p(t) such as an empirical distribution
p(t) = 1/L. Then, by expressing elements of T as T = {t1, · · · , tN}, we obtain the fol-
lowing estimation formula for the expected error:

S E(N) =
√
〈(μ − μ(T ))2〉

=

√√√√
∑

t1∈S
· · ·
∑

tN∈S
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N
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N∑

n=1
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N∏

n=1

p(tn)

= D(N)σ, (2)

where D(N) = 1/
√

N and σ is the standard deviation. Hereafter, the estimated error
based on S E(N) is referred to as standard error. The difference between Equations (1)
and (2) is only their coefficients, C(N) and D(N). We can easily see that C(N) ≤ D(N),
C(L) = 0 and D(L) � 0. For more details, we empirically compare these resampling
error RE(N) and standard error S E(N) through experiments on node centrality calcula-
tion of social networks as described below. Note that the standard deviation σ is needed
in both Equations (1) and (2). We are assuming that |S | is too large to compute σ. Oth-
erwise, sampling is not needed. We can use, instead of σ, the standard deviation σ′ that
is derived from a subset S ′ (⊂ S ) such that |S ′| = L′ is small enough to compute σ′

within a reasonable time.

4 Application to Node Centrality Estimation

We investigate our proposed resampling framework on node centrality estimation of a
social network represented by a directed graph G = (V, E), where V and E (⊂ V × V)
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are the sets of all the nodes and the links in the network, respectively. When there is a
link (u, v) from node u to node v, u is called a parent node of v and v is called a child
node of u. For any node v ∈ V , let A(u) and B(v) respectively denote the set of all child
nodes of u and the set of all parent nodes of v in G, i.e., A(u) = {v ∈ V; (u, v) ∈ E} and
B(v) = {u ∈ V; (u, v) ∈ E}.

4.1 Closeness Centrality Estimation

The closeness clsG(u) of a node u on a graph G is defined as

clsG(u) =
1

(|V | − 1)

∑

v∈V,v�u

1
splG(u, v)

, (3)

where splG(u, v) stands for the shortest path length from u to v in G. Namely, the close-
ness of a node u becomes high when a large number of nodes are reachable from u
within relatively short path lengths. Here note that we set splG(u, v) = ∞ when node
v is not reachable from node u on G. Thus, in order to naturally cope with this infinite
path length, we employ the inverse of the harmonic average as shown in Equation (3).

The burning algorithm [12] is a standard technique for computing clsG(u) of each
node u ∈ V . More specifically, after initializing a node subset X0 to X0 ← {u}, and path
length d to d ← 0, this algorithm repeatedly calculates a set Xd+1 of newly reachable
nodes from Xd and set d ← d + 1 unless Xd is empty. Here, newly reachable nodes
from Xd−1 is defined by Xd = (

⋃
v∈Xd−1

A(v)) \ (
⋃

c<d Xc). Then the shortest path length
of node v ∈ Xd from u is obtained as splG(u, v) = d. Here recall that splG(u, v) = ∞ if v
is not reachable from u. Since the computational complexity of computing clsG(u) for
each node u ∈ V become O(|E|), it takes a large amount of computation time for a huge
social networks consisting of millions of nodes.

Now, we present a method for computing clsG(u) of each node u ∈ V under our
resampling estimation framework. The method first constructs the reverse network of
G = (V, E) by reversing the direction of each link from (u, v) to (v, u). Namely, the
reverse network is defined by H = (V, F) and F = {(v, u) | (u, v) ∈ E}. Then, by using
the burning algorithm starting from node v over the reverse network, we can calculate
each shortest path length from v to u as splH(v, u). Clearly, splH(v, u) is the shortest
path length from node u to v, i.e., splG(u, v). Namely, for each node u ∈ V , by setting
S u = V \ {u} and fu(v) = splH(v, u), we can calculate partial average value from an
arbitrary subset T ⊂ S u∪{u}. Here note that, due to the nature of the burning algorithm,
we can obtain such partial average value simultaneously for all nodes u ∈ V .

4.2 Betweenness Centrality Estimation

The betweenness btwG(u) of a node u on a graph G is defined as

btwG(u) =
1

(|V | − 1)(|V | − 2)

∑

v∈V,v�u

⎛
⎜⎜⎜⎜⎜⎜⎝

∑

w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (4)

where nspG(v,w) is the number of the shortest paths from v to w in G and nspG(v,w; u)
is the number of the shortest paths from v to w in G that passes through node u. Namely,
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the betweenness of a node u becomes high when a large number of shortest paths be-
tween two nodes pass through node u. Here note that although clsG(u) and clsH(u) is
not generally equal, since any node pair (v,w) is examined in Equation (4) we can easily
see that btwG(u) = btwH(u).

The Brandes algorithm [2] is a standard technique for computing btwG(u) of each
node u ∈ V . The algorithm utilizes a series of node subsets (X0, · · · , XD) produced
by the burning algorithm described in Section 4.1 starting from node v ∈ V , where D
stands for the maximum burning step. Then, after setting nspG(v,w) ← 1 for w ∈ X1,
the algorithm in turn computes nspG(v,w) ←

∑
x∈B(w)∩Xd−1

nspG(v, x) for w ∈ Xd from
d = 2 to D. Next, we define the following betweenness btwG(u; v) of node u, which
restricts its starting node to v,

btwG(u; v) =
∑

w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

. (5)

Then, after setting btwG(u; v)← 0 for u ∈ XD, the algorithm in turn computes btwG(u; v)
←
∑

x∈A(u)∩Xd+1
(nspG(v, u)/nspG(v, x))(1 + btwG(u; x)) for u ∈ Xd from d = D − 1 to 2.

Finally, by computing and summing btwG(u; v) by changing the starting node v, we
can obtain the betweenness btwG(u) of each node u ∈ V . Again, the computational
complexity of computing btwG(u) for each node u ∈ V become O(|E|).

Now, we present a method based on the Brandes algorithm for computing btwG(u)
of each node u ∈ V under our resampling estimation framework. Namely, for each node
u ∈ V , by setting S u = V \ {u} and fu(v) = btwG(u; v)/(|V | − 2), we can calculate partial
average value from an arbitrary subset T ⊂ S u ∪ {u}. Again note that, due to the nature
of the Brandes algorithm, we can obtain such partial average value simultaneously for
all nodes u ∈ V .

5 Experiments

5.1 Datasets

To experimentally evaluate the methods proposed in the previous sections, we employed
three datasets of real networks, where all networks are represented as directed graphs.
The first one is a reader network extracted from a Japanese blog service site “Ameba”1,
in which each blog can have a list of reader links. A reader link is directional and
a link is constructed from blog u to blog v if blog v registers blog u as her favorite
one. We crawled the lists of 117, 374 blogs of “Ameba” in June 2006, and extracted a
large connected network that has 56, 604 nodes and 734, 737 directed links. We refer
to this network as the Ameblo network. The second one is a network extracted from
“@cosme”2, a Japanese word-of-mouth communication site for cosmetics, in which
each user page can have fan links. A fan link (u, v) means that user v registers user u
as her favorite user. We traced up to ten steps in the fan-link network from a randomly
chosen user in December 2009, and extracted a large connected network consisting

1 http://www.ameba.jp/
2 http://www.cosme.net/
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(a) Ameblo(closeness) (b) Cosme(closeness) (c) Enron(closeness)

(d) Ameblo(betweenness) (e) Cosme(betweenness) (f) Enron(betweenness)

Fig. 1. Results for “centrality value vs. standard deviation”

of 45, 024 nodes and 351, 299 directed links. We refer to this directed network as the
Cosme network. The last one is a network derived from the Enron Email Dataset [9],
in which an email address that appears in the dataset as either a sender or a recipient is
regarded as a node and two email addresses u and v are linked by a directional link (u, v)
if u sent an email to v. We refer to this directed network as the Enron network, which has
19, 603 nodes and 210, 950 links. These three networks are not very huge, i.e., networks
with millions of nodes. We dare chose them to investigate the basic performance from
various angles.

5.2 Statistical Analysis

For each of the three real networks, G = (V, E), we first computed the value of the
closeness centrality clsG(u) and betweenness centrality btwG(u) of each node u ∈ V by
means of the algorithms presented in Sections 4.1 and 4.2, respectively. In addition, we
investigated their standard deviations given by

σcls(u) =

√√
1

|V | − 1

∑

v∈V,v�u

(
1

splG(u, v)
− clsG(u)

)2

for the closeness centrality, and

σbtw(u) =

√√
1

|V | − 1

∑

v∈V,v�u

(
btwG(u; v)
|V | − 2

− btwG(u)

)2
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for the betweenness centrality. Figures 1(a) to 1(c) plot the pair (clsG(u), σcls(u)) for the
Ameblo, Cosme, and Enron networks, and Figs. 1(d) to 1(f) plot the pair
(btwG(u), σbtw(u)) for the same three networks. In each figure, the horizontal and ver-
tical axes indicate the values of corresponding centrality, clsG(u) or btwG(u), and its
standard deviation, σcls(u) or σbtw(u), respectively.

We can observe that there exists positive correlation between the centrality value of
each node and its standard deviation. This tendency can be found more clearly in the
results for the closeness centrality compared to the results for the betweenness centrality
in which nodes are scattered over a larger area. It is noted that, for every network,
higher-ranked nodes in each centrality measure are distinguishable from each other
because of their distinctive values of the centrality, while it looks hard to do the same
for lower-ranked nodes. This implies that there is a possibility that we can detect a
cluster of such high ranked nodes or estimate their ranking with a high confidence level
only using a smaller partial network if we can secure a tight approximation error.

5.3 Results

In this section, we evaluated the fundamental performance of the resampling error
RE(N), i.e., how tightly and accurately it estimates the approximation error, using the
closeness and betweenness centralities on the three networks. To this end, we consid-
ered a problem of estimating μG(u), the true value of a centrality measure for node u in
network G(V, E) using its partial network G′ generated by sampling N nodes from V ,
and empirically investigated whether or not the estimation μG′ (u), the partial average
derived from G′, falls within the range of μG(u) ± 2 × RE(N). Here, μG(u) stands for
either clsG(u) or btwG(u). In addition, we considered the range of μG(u) ± 2 × S E(N)
for comparison.

Figures 2 and 3 show the results for the closeness and betweenness centralities, re-
spectively. In this experiment, we considered the top and second nodes in each network
that respectively have the largest and second largest true values of the corresponding
centrality in Fig. 1. In each figure, the horizontal axis “coverage” means the ratio of the
number of sampled nodes N to the total number of nodes L, i.e., N/L, in each network,
while the vertical axis means the value of the centrality, and how the estimated value
fluctuates as a function of the coverage is depicted. We conducted five independent tri-
als for each of these two nodes in each network, and plotted estimated values μG′ (u) for
a given coverage N/L with green jagged lines. The red horizontal center line in each
figure presents the true value of the centrality μG(u) for node u, while the red broken
and blue chain lines show the ranges of μG(u) ± 2 × RE(N) and μG(u) ± 2 × S E(N),
respectively.

From these results, we can confirm that the boundary determined by RE(N) estimates
the approximation error more tightly and converges to 0.0 as the coverage approaches
1.0, while the boundary by S E(N) is looser and does not converge to 0.0 even if the
coverage becomes 1.0. Furthermore, in most cases, the estimated value falls within the
range of μG(u) ± 2 × RE(N) for every network regardless of the centrality used. From
these results, we can say that the resampling error RE(N) provides us with a better
error bound with the confidence level of 95% compared to the standard error S E(N).
Besides, it is found that in Fig. 2(d) the value of the upper-bound of the range given
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(a) Ameblo (top) (b) Cosme (top) (c) Enron (top)

(d) Ameblo (second) (e) Cosme (second) (f) Enron (second)

Fig. 2. Fluctuation of the estimated value of the closeness centrality as a function of the coverage
for the top and second nodes that respectively have the largest and second largest true values of
the centrality in the Ameblo, Cosme, and Enron networks

by RE(N) is approximately 0.3505 when the coverage is 0.2, and it is smaller than the
corresponding value of the lower-bound of the range given by RE(N) in Fig. 2(a), which
is approximately 0.3628. These observations enable us to decide that in the Ameblo
network the value of the closeness centrality of node 43702 (the top node) is higher than
the value of node 32968 (the second node) with the confidence level of 95% only from
the results obtained under the coverage of 0.2 because their error bounds derived from
RE(N) for the confidence level of 95% do not overlap each other. The same holds for the
results of the Ameblo network in Fig. 3 although the coverage must be slightly larger
in this case. This may not necessarily generalize to other networks, but it suggests that
we could potentially detect top-K nodes and possibly their ranking in a given centrality
measure with such a high confidence level even under a small coverage.

Next, we quantitatively confirmed the accuracy of the proposed resampling error in
Fig. 4, in which it is shown how the difference δ(N) between the true approximation
error and the estimated error fluctuates as a function of coverage in the same fashion as
in Figs. 2 and 3. Here, we computed RMSE (Root Mean Squared Error) by conducting
R = 1, 000 independent trials for each value of N, which is defined as follows:

ERMS E(N) =

√√√
1
R

R∑

r=1

(μG′ ,r(u) − μG(u))2,
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(a) Ameblo (top) (b) Cosme (top) (c) Enron (top)

(d) Ameblo (second) (e) Cosme (second) (f) Enron (second)

Fig. 3. Fluctuation of the estimated value of the betweenness centrality as a function of the cover-
age for the top and second nodes that respectively have the largest and second largest true values
of the centrality in the Ameblo, Cosme, and Enron networks

where μG′ ,r(u) denotes the estimated value of the centrality of node u for partial graph
G′ in the r-th trial. Then, we used ERMS E(N) as the true approximation error, and RE(N)
and S E(N) as the estimated error.

Namely, in Fig. 4, the difference δ(N) is defined as RE(N) − ERMS E(N) for the re-
sampling error (the red curves), and S E(N)−ERMS E(N) for the standard error (the blue
broken curves). Here, we only show the results for the top node of each network in both
centralities and omit the results for the second node because the tendency observed for
the second node was quite similar to the one for the top nodes.

From these results, we can observe that the difference fluctuates when the value of
coverage is less than 0.2 in both cases of RE(N) and S E(N), but for a larger coverage
it becomes remarkably stable and almost equal to 0.0 in the case of RE(N), while it
increases as the value of coverage becomes larger in the case of S E(N). This tendency
is common to every network regardless of the centrality used. These results show that
the proposed resampling error can precisely estimate the approximation error from the
true values of a centrality measure if the coverage is larger than a certain threshold, say
0.2, while the standard error tends to overestimate the true approximation error.

Consequently, we can say that the resampling error we proposed is more promising
than the standard error in this kind of estimation problem, and can give a tighter and
more precise estimate of the approximation error with high confidence level than the
standard error does.
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(a) Ameblo(closeness) (b) Cosme(closeness) (c) Enron(closeness)

(d) Ameblo(betweenness) (e) Cosme(betweenness) (f) Enron(betweenness)

Fig. 4. Fluctuation of the difference between the true and the estimated approximation errors as
a function of the coverage for the top node that has the largest true value of the centrality in the
Ameblo, Cosme, and Enron networks.

6 Conclusion

In this paper, we addressed a problem of estimating the value of a centrality measure
for a node in a social network. Centrality measure plays an important role in social
network analysis since it characterizes nodes in a network and its values indicate the
importance of nodes in some respects. Thus, it is crucial to efficiently calculate the
value of a centrality measure for each node, but its computation could be intractable for
those centrality measures that require use of a global network structure for their com-
putation when the network becomes very large. It is inevitable to take a sampling-based
approach to deal with the scalability problem, in which we approximate the true value
of a centrality only from a partial network that can be generated by sampling nodes
from the whole network. What is important is that we ensure the accuracy of the ap-
proximations without knowing the truth. To this end, we proposed a resampling-based
framework to estimate the approximation error of the estimated values of a centrality
measure for each node. We have conducted extensive experiments on three real world
networks varying the coverage ratio of nodes to be sampled, and evaluated the pro-
posed framework by comparing it with the standard error known in statistics using two
typical centrality measures, the closeness and betweenness centralities. We empirically
confirmed that the proposed framework enables us to estimate the approximation error
more tightly and more precisely with the confidence level of 95% even for a partial
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network whose coverage is small, say 0.2, than using the standard error estimate. Fur-
thermore, the experimental results suggest that we could potentially estimate top-K
nodes for a small K, say 10, and possibly their ranking in a given centrality measure
with high confidence level only from a small partial network. It is noted that the frame-
work we proposed is not specific to computation of centrality measures. Indeed, it is
very generic and applicable to any other estimation problems that require aggregation
of many (but a finite number of) primitive computations. We believe that the conclusion
obtained in this paper can generalize but we have yet to test out the proposed framework
in a broader setting and also in different domains, too.
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Abstract. In this paper, we are concerned with the notion of k-plex ,
a relaxation model of clique, where degree of relaxation is controlled
by the parameter k. Particularly, we present an efficient algorithm for
detecting a maximum k-plex in a given simple undirected graph. Ex-
isting algorithms for extracting a maximum k-plex do not work well for
larger k-values because the number of k-plexes exponentially grows as k
becomes larger. In order to design an efficient algorithm for the prob-
lem, we introduce a notion of properness of k-plex . Our algorithm tries
to iteratively find a maximum proper �-plex, decreasing the value of �
from k to 1. At each iteration stage, the maximum size of proper �-
plex found so far can work as an effective lower bound which makes our
branch-and-bound pruning more powerful. Our experimental results for
several benchmark graphs show that our algorithm can detect maximum
k-plexes much faster than SPLEX, the existing most efficient algorithm.

Keywords: proper k-plex , maximum k-plex , clique relaxation model.

1 Introduction

Given a graph or a network G, finding dense subgraphs in G is one of the impor-
tant challenging tasks for many domains. For example, detecting communities
as dense subgraphs is a fundamental problem in Social Network Analysis [12].

In order to formalize meaningful and useful dense subgraphs, various relax-
ation models of cliques have been proposed and investigated (e.g. [17,3,13]).
Some of those including k-clique, k-club and k-plex have been surveyed in [11].
In this paper, we are especially concerned with one of the relaxation models,
k-plex [13], and try to tackle a problem of finding a k-plex with the maximum
cardinality also known as Maximum k-Plex Problem [1].

Given a graph G, a set of vertices S is called a k-plex in G if each vertex
in S is not adjacent to at most k vertices in S 1. Since the number of non-
neighbors of each vertex is restricted to be at most k− 1, a k-plex is regarded as
a familiarity-based relaxation model of clique, where familiarity is an important

1 Since we assume a simple undirected graph, each vertex in G is not adjacent to itself.

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 240–251, 2014.
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property required for meaningful communities in Social Network Analysis. It is,
however, obvious that such a relaxation model would be also useful in graph-
based data mining applications such as Systems Biology.

Although the problem of finding a k-plex with the maximum cardinality has
been theoretically proved NP-complete [1], several practical and exact algorithms
for the problem have already been proposed due to its wide applicability. For
example, BC is a system based on a 0/1 integer linear programming formulation
and IPBC is a variant of BC [1]. OsterPlex proposed in [8] is an adapted version of
an algorithm for detecting a clique with the maximum cardinality [10]. Moreover,
SPLEX is an algorithm based on bounded-degree vertex deletion process [9]. As
the authors have ever known, SPLEX is the most efficient system for the problem.

Those existing systems can actually work well in the range of smaller k (that
is, degree of clique relaxation is relatively small). However, if the value of k
becomes larger, they often fail to detect solutions with reasonable computation
times. We therefore try to design an algorithm based on a different idea which
can exactly and efficiently solve the problem even for larger values of k.

Concretely speaking, following the success in finding a maximum clique [15],
we present in this paper a depth-first branch-and-bound algorithm for detecting
a maximum k-plex . In this type of algorithms, it is very important to detect a
tentative solution close to the optimal one as early as possible so that we can
enjoy powerful branch-and-bound prunings. In order to realize it in our search
process, we introduce a notion of properness of k-plex .

Based on properness, we can divide the family of k-plexes in G into k disjoint
classes, P1, . . . ,Pk, where the class P� is the set of proper �-plexes. Therefore, by
finding a maximum �-plex in each P�, we can detect an optimal k-plex with the
maximum size in G. It should be emphasized here that in general, k-plexes with
larger size in G tend to be contained in Pk. It is, thus, very probable that a
maximum proper k-plex in Pk is in fact an optimal k-plex . Therefore, changing
the value of � from k to 1, we iteratively try to find a maximum proper �-plex in
P�. At each iteration, since a maximum �-plex found to be maximum in previous
iterations works as a lower bound of the optimal size, we can expect our branch-
and-bound pruning becomes more powerful. In addition, at each iteration, we
can concentrate on finding only proper �-plex with a particular �. This provides
us some pruning rules which are very effective in reducing our search space.

Compared with the most efficient existing algorithm, our experimental results
for several benchmark graphs show rationality and practicality of our approach.

2 Preliminaries

In this paper, we are concerned with simple undirected graphs.
A graph is denoted by G = (V,E), where V is a set of vertices and E ⊆ V ×V

a set of edges. For any vertices x, y ∈ V , if (x, y) ∈ E, x is said to be adjacent to
y and vice versa. For a vertex x ∈ V , the set of vertices adjacent to x is denoted
by NG(x), that is, NG(x) = {v ∈ V |(x, v) ∈ E}, where |NG(x)| is called the
degree of x. The degree of x is often referred to as degG(x). If it is clear from the
context, they are just denoted by N(x) and deg(x), respectively.
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Given a graph G = (V,E), for a vertex v ∈ V and a set of vertices X ⊆ V ,
the number of vertices in X not adjacent to v is denoted by #miss(v,X), that
is, #miss(v,X) = |{u ∈ X | (u, v) /∈ E}| = |X \N(v)|. Note here that if v ∈ X ,
then #miss(v,X) ≥ 1 because each vertex has no edge connecting to itself.

For a graph G = (V,E) and a subset X ⊆ V , a graph G[X ] defined by
G[X ] = (X,E ∩ (X × X)) is called a subgraph of G and is said to be induced
by X . If each pair of vertices in the subgraph are connected, then it is called a
clique in G. A clique G[X ] is simply referred to as the set of vertices X .

For a graph G = (V,E), let us consider a sequence of vertices in V , P =
(v0, v1, . . . , v�). If (vi, vi+1) ∈ E for any i such that 1 ≤ i < �, P is called a path
from v0 to v� and its length is defined by �. For any pair of vertices u, v ∈ V , the
distance between u and v in G is defined as the minimum length of path from u
and v in G. It is often denoted by distG(u, v).

3 Maximum k-Plex Problem

Given a graph (network), cliques can be regarded as a perfect structure of com-
munities in the graph. However, it seems to be difficult to find them in real-world
except trivial ones like triangles. The notion of k-plex has been introduced as a
relaxation model of cliques [13].

Definition 1 (k-Plex). Let G = (V,E) be a graph and G[S] a subgraph of G
induced by S ⊆ V . If for each v ∈ S, #miss(v, S) ≤ k, then S is called a k-plex
in G.

As is similar to the case of cliques, a k-plex is just referred to as the set of
vertices by which it is induced.

A k-plex is regarded as a pseudo-clique in the sense that it can be obtained
by deleting at most k − 1 edges from each vertex in a clique. Thus, a clique is a
special case of k-plex with k = 1.

From the definition, it is easy to see that a k-plex has the following anti-
monotone property.

Observation 1. Let S be a k-plex in G. Then for any S′ such that S′ ⊆ S, S′

is also a k-plex in G.

As is easily imagined, since the number of k-plexes found in a graph is very
huge in general, finding a k-plex with the maximum-cardinality is an interesting
challenge to be tackled [1]. It is formalized as Maximum k-Plex Problem.

Definition 2 (Maximum k-Plex Problem). Given a graph G = (V,E),
Maximum k-Plex Problem is to identify a set of vertices X ⊆ V such that

1. X is a k-plex .

2. There exists no k-plex X ′ in G such that |X ′| > |X |.
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Several exact algorithms for the problem have already been proposed (e.g.
[1,8,9]). As the authors have ever known, SPLEX is the most efficient exact
algorithm for finding a maximum k-plex in a given graph [9]. For many bench-
mark graphs publicly available, the algorithm has succeeded in finding maximum
k-plexes with reasonable computation times for small k-values.

In the following sections, we present our depth-first branch-and-bound algo-
rithm for the problem and verify its effectiveness.

4 Algorithm for Finding Maximum k-Plex with Iterative
Proper �-Plex Search

As has been mentioned, existing algorithms for Maximum k-Plex Problem can
work only with relatively smaller k-values. We present in this section an efficient
algorithm which can identify a maximum k-plex for larger k-values.

In case of k = 1, it has been reported that a depth-first branch-and-bound al-
gorithm is highly successful in finding the target, that is, a maximum clique [15].
Since it is expected the search strategy would be still effective for k larger than 1,
our algorithm is also designed with a depth-first branch-and-bound strategy. Be-
fore going to details of our algorithm, we discuss useless k-plexes to be excluded
from our consideration.

4.1 Useless k-Plexes

As we have seen, the definition of k-plex is very simple. According to the def-
inition, k-plexes with larger size (cardinality) are regarded as pseudo-cliques.
From the following observation, on the other hand, we can find a number of
k-plexes with smaller size difficult to be pseudo-cliques.

Observation 2. For a graphG = (V,E), any (non-empty) set of verticesX ⊆ V
such that |X | ≤ k is a k-plex in G.

That is, every vertex set with at most k vertices is always a k-plex . As a
critical case, even any independent set with at most k vertices must be a k-plex .
In this sense, taking such k-plex into our consideration would be quite nonsense.
Therefore, we exclude all k-plexes with at most k vertices as trivial ones 2.

In addition to k-plexes with size at most k, we exclude every k-plex which is
not connected (that is, consists of two or more connected components).

As has been mentioned above, our algorithm takes a depth-first branch-and-
bound search strategy. The most important point in this type of algorithms is to
find tentative solutions close to the optimal one as early as possible so that the
branch-and-bound pruning can work well. In order to realize it in our search, we
consider properness for k-plexes .

2 Although one might claims that even cliques and dense subgraphs with at most k
vertices are excluded, their size would be too small to be actually meaningful ones
as long as we assume the relaxation parameter k.
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4.2 Partitioning Family of k-Plexes Based on Properness

From the definition of k-plex , we can easily observe the following property.

Observation 3. Given a graph G, if S is a k-plex , then for any k′ such that
k′ ≥ k, S is also a k′-plex.

Then, we introduce a notion of k-properness for k-plexes .

Definition 3. LetG be a graph and S a k-plex inG. If maxv∈S{#miss(v, S)} =
k, then S is called a proper k-plex .

From the above observation, it is easy to see that a k-plex is not always a
proper k-plex . In other words, the family of k-plexes in G can be partitioned into
k classes. More formally speaking, let P(k) be the family of k-plexes in G. Based
on the properness, P(k) can be divided into k classes as P(k) = P1 ∪ · · · ∪ Pk,
where P� is the set of proper �-plex in P(k), that is,

P� = {S ∈ P(k) | max
v∈S

{#miss(v, S)} = �}.

From the partition of P(k), it is possible to identify a maximum k-plex in
G. More precisely speaking, for each � such that 1 ≤ � ≤ k, we try to detect a
proper �-plex, referred to as S�, in P� with the maximum cardinality. Then, a
maximum k-plex in G, Smax, can be extracted as

Smax = argS∈{S1,...,Sk} max{|S|}.

It is easy to see the procedure can correctly detect a maximum k-plex in G.
This simple idea provides us an iterative algorithm for detecting a maximum

k-plex in G with powerful branch-and-bound prunings.

4.3 Finding Maximum k-Plex with Iterative Search of Maximum
Proper �-Plex

In algorithms with branch-and-bound strategy, a tentative solution found so far
gives a lower bound of evaluation value which the optimal solution must have.
The procedure just discussed above can be modified so that we can enjoy this
powerful pruning mechanism.

More concretely speaking, assume some (total) ordering on {1, . . . , k}, say
�1 ≺ · · · ≺ �k. At i-th iteration stage, we try to find a maximum proper �i-plex,
S�i , which must be larger than S̃ already found to be a (tentatively) maximum
one at the previous stages. Thus, in our search at i-th stage, we can safely prune
every search path which can never generate a proper �i-plex with cardinality
larger than |S̃|. If we can find a maximum proper �i-plex S�i larger than S̃, S�i

is used as the updated S̃ at the following iteration stage.
Efficiency of this iterative procedure is strongly affected by the ordering

�1 ≺ · · · ≺ �k on {1, . . . , k}. As has been mentioned above, we strongly desire
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to detect a larger S̃ as early as possible in order to make our branch-and-bound
pruning more powerful. As a reasonable ordering, we propose to begin our iter-
ation in descending order of {1, . . . , k}, that is, we first try to find a maximum
proper k-plex, then try to find a maximum proper (k − 1)-plex, and so forth.
Rationality and practicality of this ordering are supported by an empirical fact
that cardinality of �-plex tends to become larger as the value of � becomes larger.
It is, therefore, quite probable that a maximum proper k-plex found at the first
iteration stage is actually a maximum k-plex in G.

4.4 Finding Maximum Proper �-plex

Given a graph G = (V,E) and a value of k, we present here our algorithm for
finding a maximum proper �-plex for a given � such that 1 ≤ � ≤ k.

Assume that we have a tentative maximum k-plex already found at some
previous iteration stage. Its size is given by a global variable maxsize.

Basic Search Strategy
We assume a total ordering on V , ≺. In what follows, we suppose that a set of
vertices X ⊆ V is always arranged in the ordering of ≺, where the last vertex
in X is referred to as tail(X). Particularly, if X = ∅, then tail(X) = ⊥, where
⊥ ≺ v for any vertex v ∈ V . Moreover, for v ∈ V and X ⊆ V , the set of vertices
in X preceding v is referred to as X≺v and those in X succeeding to v as X�v.

We now introduce the notion of primary vertex in a proper �-plex.

Definition 4 (Primary Vertex). For an �-plex S, the minimum vertex v in
S such that #miss(v, S) = � is called the primary vertex in S.

Let P� be the family of proper �-plex in G and P�(v) the family of proper
�-plex with the primary vertex v. Then it is easy to see that P� =

⋃
v∈V P�(v).

That is, for each vertex v ∈ V , if we can identify a maximum proper �-plex with
the primary vertex v, a maximum proper �-plex in G can be exactly identified.

We can search for a maximum proper �-plex with the primary vertex v in
a depth-first manner. Roughly speaking, a k-plex X containing the vertex v is
expanded with a vertex x resulting in a larger k-plex , X ∪ {x}, which possi-
bly becomes a proper �-plex. Starting with the initial singleton k-plex with v,
this expansion process is recursively performed in depth-first manner until no
k-plex remains to be examined.

To provide a more precise description, we define a set of vertices, called can-
didate vertices, which may be added to a k-plex in our expansion process.

Definition 5 (Candidate Vertices for k-Plex). Let S be a k-plex in G =
(V,E). For a vertex v ∈ V \S, if S∪{v} is still a k-plex, then v is said to expand
S and is called a candidate vertex for S. The set of candidate vertices for S is
denoted by cand(S), that is,

cand(S) = {v ∈ V | S∪{v} is a k-plex}.
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In our search for finding a maximum proper �-plex with the primary vertex v,
it is sufficient to examine every k-plex containing v. Such a k-plex can always be
represented in the form of {v}∪X , where X ⊆ V \{v}. Therefore, initializing X
to ∅, we try to expand X by adding a vertex x ∈ cand({v} ∪X) in a depth-first
manner. The resultant k-plex , {v}∪X ∪{x}, is further expanded with a vertex
in cand({v} ∪X ∪ {x}), and so forth.

More precisely speaking, along with a set enumeration tree, each k-plex {v}∪
X is tried to expand with each vertex x ∈ cand({v}∪X) such that tail(X) ≺ x.
Thus, we can completely examine every k-plex containing v without duplication.

Pruning Useless Search Branches
Our final target is a maximum k-plex in G. As its subtask, we try to detect a
maximum proper �-plex with the primary vertex v for each v ∈ V . From the
assumption that we already have a lower bound on the optimal size, referred to
as maxsize, any set of vertices from which we can never obtain a proper �-plex
with size smaller than or equal to maxsize is of no interest. Furthermore, any
set of vertices from which no proper �-plex with the primary vertex v can be
obtained is also useless. In our search, those hopeless vertex sets can be excluded
with some pruning mechanisms.

Branch-and-Bound Pruning Based on maxsize: For any pair of k-plexes ,
S and S′, such that S ⊆ S′, S∪cand(S) ⊇ S′∪cand(S′) holds. Assume here that
in our search, a k-plex vX = {v} ∪X is expanded to a k-plex vX ′ = {v} ∪X ′
3. Then, from the observation, we have vX ′ ∪ cand(vX ′) ⊆ vX ∪ cand(vX).
Particularly, at each expansion step for vX , since we expand vX with a vertex
in cand(vX) succeeding to tail(X), we have vX ′ ∪ cand(vX ′)�tail(X′) ⊆ vX ∪
cand(vX)�tail(X). That is, for any k-plex obtained by expanding vX , its size is at
most |vX ∪cand(vX)�tail(X)|. Therefore, if |vX ∪cand(vX)�tail(X)| < maxsize
holds, we can never detect a maximum k-plex in G by expanding vX . In this
case, we can safely prune any expansion of vX without loosing completeness.

Pruning Based on Unconnectivity to Primary Vertex: From the defini-
tion, for a proper �-plex with the primary vertex v, vX̃ = {v}∪X̃, we must have
#miss(v, vX̃) = �. Let us assume here that we try to obtain a proper �-plex
with the primary vertex v by expanding a k-plex vX = {v}∪X with vertices in
cand(vX)�tail(X). In order to make v the primary vertex, vX must be expanded
by adding �−#miss(v, vX) vertices in cand(vX)�tail(X) which are not adjacent
to v. That is, cand(vX)�tail(X) must contain at least �−#miss(v, vX) vertices
not adjacent to v. If it is not the case, we can obtain no proper �-plex with the
primary vertex v by expanding vX . Thus we can prune any expansion of vX .

Pruning Based on Connectivity to Primary Vertex: By expanding a
k-plex vX = {v} ∪X with vertices in cand(vX)�tail(X), we now try to obtain a

3 For concise expression, curly brackets of singleton set are often omitted. A set {a}∪
X ∪ {b} is simply abbreviated to aXb.
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proper �-plex with the primary vertex v and size larger than maxsize. In order
to get such a proper �-plex, we have to add at least

m = (maxsize+ 1)− |vX | − (� −#miss(v, vX))

vertices which are adjacent to v. In other words, cand(vX)�tail(X) is required to
have at least m vertices adjacent to v. Therefore, if cand(vX)�tail(X) does not
have such vertices, any proper �-plex with enough size can never be detected by
expanding vX . In that case, any expansion of vX is hopeless and can be safely
pruned without affecting completeness.

Excluding Useless Candidate Vertices: Our basic procedure is to expand a
k-plex X with a vertex x ∈ cand(X). Therefore, if cand(X) contains useless ver-
tices, efficiency of our computation would become worse. The following property
implies that we can exclude some of them from our candidate vertices.

Observation 4. Let S be a connected k-plex in G = (V,E). For any pair of
vertices u, v ∈ S, we have distG[S](u, v) ≤ k.

The observation tells us that in our search for finding a maximum proper �-
plex with a primary vertex v, the initial set of candidate vertices can be reduced
from cand({v}) to cand({v}) ∩ D�(v), where D�(v) is the set of vertices in G
each of which is far from v with distance no larger than �, that is, D�(v) = {x ∈
V | distG(v, x) ≤ �}. Such a reduction of candidate vertices is very effective in
improving our computational cost.

It should be emphasized here that for a larger k-plex , we can observe a more
desirable property.

Observation 5. Let S be a k-plex in G = (V,E) such that |S| ≥ 2k − 1. For
any pair of vertices u, v ∈ S, we have distG[S](u, v) ≤ 2.

Based on the property, if we concentrate on finding a maximum proper �-plex
with the primary vertex v and size no less than 2�−1, the initial set of candidates
can be further reduced to cand({v})∩D2(v), likely to be much smaller than the
original cand({v}).

From the above, it would be reasonable to divide our computational procedure
into two phases, one for finding a maximum proper �-plex with size no less than
2� − 1 and the other for that with size less than 2� − 1. Once we succeed in
finding some proper �-plex in the former phase, the latter is no longer necessary.

Iterative Algorithm for Finding Maximum k-Plex
Summarizing the above discussion, we propose an iterative algorithm for finding
a maximum k-plex . Its pseudo-code is presented in Figure 1. In the algorithm,
decreasing the value of � from k to 1, the procedure MaximumProperKPlex
tries to find a maximum proper �-plex with the help of a lower bound of the
optimal size, maxsize, identified so far. For each vertex v, the procedure calls a
sub-procedureMaxKPlexWithPrimaryVertex to detect a maximum proper
�-plex with the primary vertex v and size larger than maxsize. The pruning
mechanisms presented above are all incorporated into the algorithm.
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procedure Main(G, k):
[Input] G = (V,E): an undirected graph.

k: an integer for k-plex such that k > 1.
[Output]: a maximum k-plex in G.
[Global Variables] G, Smax, k, phase, maxsize and maxdist
begin
phase ← 1; // Search in phase 1 (for finding larger k-plexes )
maxsize ← 0; // Initializing tentative maximum size
� ← k;
Smax ← ∅;
while � > 0

MaximumProperKPlex(�); // Finding a maximum proper �-plex in phase 1
� ← � − 1;

endwhile
if maxsize ≥ 2k − 1 then return Smax; // Output a maximum proper k-plex in G
else phase ← 2 // Search in phase 2 (for finding smaller k-plexes )
� ← k;
while � > 0

MaximumProperKPlex(�); // Finding a maximum proper �-plex in phase 2
� ← � − 1;

endwhile
return Smax; // Output a maximum proper k-plex in G

end

procedure MaximumProperKPlex(�):
begin
if phase == 1 then
maxdist ← 2; //maximum distance in Phase 1 (Observation 5.)

else
maxdist ← �; //maximum distance in Phase 2 (Observation 4.)

endif
for each v ∈ V

Cv ← {u ∈ V \ {v} | distG(u, v) ≤ maxdist}; // Based on Observation 4. and 5.
MaxKPlexWithPrimaryVertex(v, ∅, V \ {v}, Cv , �);

endfor
end

procedure MaxKPlexWithPrimaryVertex(v, X, Cand, Cv , �);
if Cand ∩ Cv = ∅ then
if |vX| > maxsize and vX is a proper �-plex with primary vertex v then
maxsize ← |vX| ;
Smax ← vX ;

endif
return;

endif
for each x ∈ Cand

Nx ← {u ∈ V \ {x} | distG(x, u) ≤ maxdist};
NextCand ← cand(vXx)�x ∩Nx ∩ Cv;
if |vXx ∪ NextCand| ≤ maxsize then
continue; // Branch-and-bound pruning based on tentative maximum size

endif
m ← (maxasize + 1) − |vXx| − (� − #miss(v, vXx));
Adj ← NextCand ∩ N(v); // Candidate vertices adjacent to v
if |Adj| < m then
continue; // Pruning based on connectivity to primary vertex

endif
m ← � − #miss(v, vXx);
NonAdj ← NextCand \ N(v); // Candidate vertices not adjacent to v
if |NonAdj| < m then
continue; // Pruning based on unconnectivity to primary vertex

endif
MaxKPlexWithPrimaryVertex(v, Xx, NextCand, Cv, �);

endfor

Fig. 1. Iterative Algorithm for Finding Maximum k-Plex
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Table 1. Scale of Graphs

Name # of Vert. # of Edges Density

ERDÖS-97-1 472 1314 0.01182
ERDÖS-98-1 485 1381 0.01177
ERDÖS-99-1 492 1417 0.01173
ERDÖS-97-2 5488 8972 0.00060
ERDÖS-98-2 5822 9505 0.00056
ERDÖS-99-2 6100 9939 0.00053
GEOM-0 7343 11898 0.00044
GEOM-1 7343 3939 0.00015
GEOM-2 7343 1976 0.00007
DAYS-3 13332 5616 0.00006
DAYS-4 13332 3251 0.00004
DAYS-5 13332 2179 0.00003
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Fig. 2. Computation Time for ERDÖS-99-2

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2  3  4  5  6  7  8  9  10

C
om

pu
ta

tio
n 

T
im

e 
[s

ec
]

k-values

SPLEX
Ours

Fig. 3. Computation Time for GEOM-2
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Fig. 4. Computation Time for DAYS-3

5 Experimental Results

We present in this section our experimental results 4.
In order to verify effectiveness of our system, we compare it with SPLEX5

[9], the most efficient system for Maximum k-Plex Problem. The literature
has reported that for many benchmark graphs, SPLEX can detect maximum
k-plexes much faster than existing systems, BC [1], IPBC [1] and OsterPlex [8].
For several benchmark graphs used in the literature and publicly available,
ERDÖS [5], GEOM [2] and DAYS [2], we observe computation times by each system.
ERDÖS and GEOM are collections of collaboration networks and DAYS is that of
word co-occurrence networks. Scale of those networks (graphs) are summarized
in Table 1.

For each graph, we have observed computation times taken by SPLEX and our
system, changing values of k from 2 to 10. Due to space limitation, three of them

4 Our system has been implemented in C and executed on a PC with IntelR© Core
TM

-i7
(1.7GHz) processor and 8GB memory.

5 http://ftp.akt.tu-berlin.de/splex/
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are presented in Figure 2 – 4. We can observe similar computational behavior
for the other graphs.

In the figures, a missing data point means that the system has failed to detect
a solution within 1 hour. The results show that for most of the cases, our system
has detected the optimal solutions much faster than SPLEX. Particularly, in range
of larger k, our system clearly outperforms the existing system. In some cases,
we can observe drastic improvements in computation times (e.g., several orders
of magnitude faster). It is due to our iterative search of �-plex for each � from k
to 1.

In fact, the maximum k-plexes in the benchmark graphs are proper k-plexes .
That is, the tentative solutions detected by our system at the first iteration are
actually optimal. Throughout the following iterations, therefore, those tentative
solutions can work as the most effective lower bounds which provide us the most
powerful branch-and-bound pruning. Actually, computation times taken at the
following iterations are much less than those at the first iteration. The authors
consider that our experimental results convincingly show rationality and practi-
cality of our iterative approach based on properness of k-plex .

6 Concluding Remarks

In this paper, we presented an iterative algorithm for finding a maximum
k-plex in a given graph. Decreasing the value of � from k to 1, our algorithm
tries to detect a maximum proper �-plex. Particularly, we can strongly expect
that a larger tentative solution can be found at early iteration stages, say, the
first iteration in many cases. We can therefore enjoy powerful branch-and-bound
prunings and detect an optimal solution very efficiently. Compared with the
most efficient existing system, rationality and practicality of our approach were
shown by experimental results for several benchmark graphs.

Effectiveness for larger scale graph and another types of graphs still remains
to be verified. Analyzing computational complexity of our algorithm would be
also important future work to be investigated. A polynomial-time solvability of
finding a maximum clique has been proved under a certain condition on the
maximum degree in a given graph [14]. Our computation at each iteration stage
can be regarded as an extension of a depth-first algorithm based on which the
complexity has been analyzed. As a future direction, therefore, it would be in-
teresting to analyze our algorithm following [14].

Although efficient methods for enumerating maximal cliques have already
been proposed [16,4], such an enumerator for maximal k-plexes has not been
developed except [18]. An algorithm for the task based on our iterative strat-
egy would be worth investigating. Since there are in general a huge number of
maximal k-plexes with smaller size, it would be required to impose some reason-
able constraint on our target to be enumerated. In this direction, a promising
algorithm based on the notion of j-core [11] has been designed in [6,7] and is
currently under further improvement.
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Abstract. Collaborative Filtering (CF) is one of the most successful approaches
for personalized product recommendations. Neighborhood based collaborative
filtering is an important class of CF, which is simple and efficient product rec-
ommender system widely used in commercial domain. However, neighborhood
based CF suffers from user cold-start problem. This problem becomes severe
when neighborhood based CF is used in sparse rating data. In this paper, we pro-
pose an effective approach for similarity measure to address user cold-start prob-
lem in sparse rating dataset. Our proposed approach can find neighbors in the
absence of co-rated items unlike existing measures. To show the effectiveness of
this measure under cold-start scenario, we experimented with real rating datasets.
Experimental results show that our approach based CF outperforms state-of-the
art measures based CFs for cold-start problem.

Keywords: data sparsity, cold-start problem, Bhattacharyya measure, similarity
measure, neighborhood based CF.

1 Introduction

Recommender system (RS) is a tool to cope with information overload problem. The
primary task of RS is to provide personalized suggestions of products or items to indi-
vidual user so that user can select desired products or items directly without surfing over
long list of items (products). Many recommender systems have been developed in vari-
ous domains such as e-commerce, digital library, electronic media, on-line advertising,
etc. [1–3].

Collaborative Filtering (CF) is the most successful and widely used recommendation
system [1, 4]. In CF, item recommendations to an user are performed by analyzing
rating information of the other users or other items in the system. There are two main
approaches for recommending items in CF category, viz. neighborhood based CF and
model based CF.

Neighborhood based CF relies on a simple intuition that an item might be interesting
to an active user if the item is appreciated by a set of similar users (neighbors) or she
has appreciated similar items in the system. Generally, a similarity measure is used for
finding similar items or similar users.

� On leave from National Institute of Technology Rourkela, Odisha, PIN- 769 008, India.

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 252–263, 2014.
c© Springer International Publishing Switzerland 2014



Exploiting Bhattacharyya Similarity Measure 253

Model-based CF algorithms learn a model from the training rating data using ma-
chine learning and other techniques [5, 4]. Subsequently, model is used for predictions.
Main advantage of the model-based approach is that it does not need to access whole
rating data once model is built. Few model based approaches provide more accurate
results than neighborhood based CF [6, 7]. However, most of the electronic retailers
such as Amazon, Netflix deployed neighborhood based recommender systems to help
out their customers. This is due to the fact that neighborhood based approach is simple,
intuitive and it does not have learning phase so it can provide immediate response to
new user after receiving upon her feedback [8].

Despite the huge success of neighborhood based CF in industry, it suffers from lim-
ited coverage and data sparsity problems [9]. The limited coverage appears due to
improper choice of similarity measures while finding neighbors of an active user. The
problem of data sparsity becomes severe for a RS when it encounts a new user. Rec-
ommender system cannot provide recommendation as traditional similarity measures
cannot compute neighbors of the new user. As a result, a new user may stop using
RS after providing few ratings- a problem commonly known as user cold-start. Few
methods incorporate additional information into the neighborhood based CF to tackle
this problem [10, 11]. However, extracting additional information is hard from many
domains such as multimedia data. Therefore, researchers address this problem using
ratings information only. Few similarity measures [12–14] are introduced to deal with
the cold-start problem. Main constrain of these measures is that a new user must rate on
items (co-rated) on which a number of existing users rated.

To address above problem, we propose a formulation for similarity measure which
can find neighbors effectively and it can compute similarity between two users if there is
no co-rated item between them unlike most of the existing solutions [12–14]. We do not
intend to introduce yet another similarity measure. However, we propose a generalized
formula in which existing similarity measure can be incorporated to tackle data sparsity
problem. The proposed formulation is simple and it can easily be deployed into the
neighborhood based CF. The proposed approach utilizes global information of items
and local information of ratings of active users. The Bhattacharyya measure [15] is
exploited to find global information of the items (item similarity) on which the active
users rated. To show the effectiveness, proposed scheme is implemented and tested on
real rating datasets. Experimental results show that our measure based CF outperforms
CFs using PIP [12], MJD [14] measures for cold-start problem.

The rest of the paper is structured as follows. In section 2, we discuss necessary
background and related work. In Section 3, we present our similarity measure. Experi-
mental results of proposed similarity based CF are provided in Section 4. We conclude
our paper in Section 5.

2 Background and Related Work

In this section, we discuss working principle of neighborhood based CF and different
similarity measures introduced to address user cold-start problem.
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2.1 Neighborhood-Based CF

The neighborhood (memory) based algorithms use entire rating dataset to generate a
prediction for an item or a product. LetR = [rui]

M×N be a given rating matrix (dataset)
in a CF based recommender system with M users and N items, where each entry rui
represents a rating value made by an user Uu on an item i. Generally, rating values are
confined within a range (say, 1-5 in MovieLens dataset). The task of neighborhood-
based CF algorithm is to predict rating of the ith item using the neighborhood informa-
tion of the uth user or ith item. There are two types of approaches for finding prediction:
user-based and item-based. In this paper, we focus on the former approach. The user-
based method makes prediction using the ratings made by the neighbors of uth user on
the ith item [9, 16]. For this purpose, it computes similarity between an active user
(here, Uu ) and Up, p = 1 . . .M, p �= u. Subsequently, it selects K closest users to
form neighborhood of the active user. Finally, it computes a prediction of ith item us-
ing each neighbor’s rating on ith item weighted by similarity between the neighbor and
active user [16]. Traditional similarity measures such as pearson correlation coefficient,
cosine similarity and their variants are frequently used to find neighbors of an active
user.

2.2 The User Cold-Start Problem

The user cold-start problem is a situation in which a new user cannot get personalized
recommendations after providing ratings on few items. The common strategy to tackle
this problem is to use additional information along with the ratings of new users. Kim
et al. [10] proposed collaborative tagging to address the user cold-start problem. Loh
et al. [11] extract information from user’s scientific publications. Park et al. [17] use
filterbots and surrogate users to extract additional information of new users. The main
disadvantages of these approaches are that additional information are not always reli-
able and complete. Therefore, research community in recommender system addresses
cold-start problem using only rating information [12–14]. It is hard to find intersection
between items rated by a new user and an existing user oftenly, hence system could not
compute neighbors of the new user using traditional similarity measures.

PIP [12] is the most popular (cited) measure after traditional similarity measures
in RS. The PIP measure captures three important aspects (factors) namely, Proximity,
Impact and Popularity between a pair of ratings on the same item. These factors are
combined to obtain PIP value between each pair of ratings made on a co-rated item.
PIP based CF outperforms correlation based CF in providing recommendations to the
new users. Heung et al. [13] address the cold-start problem building a model which
first predicts rating and computes prediction error on known ratings for each user. From
this error information finally an error-reflected model is built. However, approach uses
traditional similarity measures for initial predictions.

Bobadilla et al. in [14] proposed a similarity measure for cold start users called
MJD (Mean-Jaccard-Difference). The MJD has started gaining popularity among the
research community. In MJD, six basic measures are combined. It computes five basic
measures (v0, v1, v3, v4 and μ) using numerical values of the ratings and one basic
measure (Jaccard measure) using distributions (variation) of ratings. Let IUV be the
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set of co-rated items between a pair of users U and V . Let rUi be the rating made by user
U on an item i. Each rating difference measure vk (k = 0, 1, 3, 4) is ratio of the number
of co-rated items on which rating difference is ′k′ (| {i | i ∈ IUV , |rUi − rV i| = k} |)
to the total number of co-rated items (| IUV |). The mean difference (μ) is the function
of ratings made on corated items. Neural learning technique is used to compute weight
of each basic measure. They showed that the MJD based CF outperforms PIP based CF,
error-reflected model based CF and traditional measures based CFs. However, all these
measures use only co-rated ratings for similarity computations. Therefore, these could
not be used for sparse rating data under cold-start scenario.

3 Proposed Similarity Measure

The proposed measure uses Bhattacharyya Coefficient [15], which is discussed next.
Subsequently, we show how this measure can be used to alleviate cold-start problem.

3.1 Bhattacharyya Measure

The Bhattacharyya measure has been widely used in signal and image processing do-
mains [18–20]. It measures similarity between two probability distributions. Let p1(x)
and p2(x) be two density distributions over discrete domain X . Bhattacharyya Coef-
ficient (BC) (similarity) between these densities is defined as follows (equation (1)).

BC(p1, p2) =
∑
x∈X

√
p1(x) p2(x) (1)

The BC Coefficient is exploited to find similarity between a pair of items in a sparse
rating data. Densities of p1(x) and p2(x) are estimated from the given rating data. His-
togram formulation can be used to estimate these densities. Let p̂i and p̂j be the esti-
mated discrete densities of the two items i and j obtained from rating data. The BC
similarity between item i and item j is computed as

BC(i, j) = BC(p̂i, p̂j) =

m∑
h=1

√
(p̂ih) (p̂jh) (2)

where, m is the number of bins (number of distinct rating values, i.e., 5 for MovieLens)
and p̂ih = #h

#i , where #i is the number of users rated the item i, #h is the number of
users rated the item i with rating value ′h′,

∑m
h=1 p̂ih =

∑m
h=1 p̂jh = 1.

3.2 Proposed Similarity Measure for New User in Neighborhood Based CF

In this section, we propose a generalized formula for similarity measure which can work
in the absence of co-rated items. Any existing measure in RS can be incorporated in the
proposed formulation. To the best of our knowledge, this is the first approach to provide
a generalized formula in which any existing measure can be incorporated to tackle data
sparsity problem [9] in general and cold-start problem in particular. Main idea of the
proposed measure is based on the fact that a new user may rate few co-rated items but
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she also rates items which are similar to the items rated by a significant number of
existing users in the system. We aim to utilize ratings made on co-rated items as well
as ratings made on all pair of similar items. The correlation (similarity) between a pair
of ratings made on a pair of similar items can be computed in the same way that an
existing measure computes similarity (correlation) between ratings on co-rated items.

Let U be a new user and V be an existing user in a system. Let IU and IV be the
two sets of items on which user U and V rated, respectively. The set of all pairs of
rated items I = IU × IV can be divided into two subsets: IUV and I \ IUV , where
IUV denotes pair of co-rated item set, and I \ IUV denotes relative complement set of
IUV in I. The proposed approach finds each pair of similar items (i, j) ∈ I \ IUV and
computes similarity (correlation) between ratings (rUi, rV j) made on items i and j. The
Bhattacharyya measure is exploited to find all pairs of similar items between U and V
using Definition 1. We choose BC measure over other measures (adjusted cosine) as
BC can compute similarity between a pair of items in absence of users rated both items.
Mutual information cannot be used to find similar item pairs [21].

Definition 1 (Similar item) An item j is called similar to another item i, if BC simi-
larity between them is maximum, i.e., BC(i, j) = 1.

The proposed measure is termed as Bhattacharyya Coefficient in Sparse data (BCS).
Proposed generalized formula for similarity measure is given as follows.

BCS(U, V ) = C1

∑
(i,i)∈IUV

sim(rUi, rV i)+ C2

∑
(i,j)∈I\IUV ∧ BC(i,j)=1

sim(rUi, rV j)

(3)
where sim(.) denotes similarity between a pair of ratings, and constants C1, C2 are
normalization factors. The function sim(.) can be computed using any standard mea-
sure directly in case of co-rated items and with little modification in case of similar item
pairs (second term in equation (3)).

It can be noted that BC value on a same (co-rated) item is 1, i.e, BC(i, i) = 1
(equation (2)). Therefore, co-rated item-pairs (IUV ) and similar item-pairs ({(i, j) |
(i, j) ∈ I \ IUV ∧ BC(i, j) = 1}) can be combined into a set of relevant item pairs
Ir = {(i, j) | (i, j) ∈ I ∧ BC(i, j) = 1}. Recent study [14, 22] combines non
numerical similarity measure (such as Jaccard ) with simialrity on numerical ratings
(sim(.)). Finally, generalized formula is modified as

BCS(U, V ) = Cf f(U, V ) � C0

∑
(i,j)∈I ∧ BC(i,j)=1

sim(rUi, rV j) (4)

where f(U, V ) denotes additional similarity function such as non-numerical similarity
measure between two rated item sets IU , IV , � denotes binary (combination) opera-
tor such as +,×, and Cf , C0 are normalized factors. It can be noted that values of
Cf , C0 are assumed 1 if one uses normalized similarity measures for computing f(.)
and summation term in the equation (4), respectively.

Commonly used similarity measures in RS such as pearson correlation coefficient
(PC), constrained PC, cosine vector similarity, adjusted cosine can be incorporated in
the proposed generalized equation to work with sparse rating data. With little modifi-
cation PIP can also be incorporated. These measures emphasize only numerical values
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Table 1. Existing measures incorporated into proposed BCS measure

BCS(U,V ) = Cf f(U, V ) � C0

∑
Ir={(i,j) ∈ I | BC(i,j)=1} sim(rUi, rV j)

Measure Cf f(U, V ) � C0

∑
Ir

sim(rUi, rV j)

Pearson 1 0 + 1
∑

(i,j)∈Ir
(rUi−r̄U )(rV j−r̄V )√∑

(i,.)∈Ir
(rUi−r̄U )2

√∑
(.,j)∈Ir

(rV j−r̄V )2
,∑

(i,.) = summation over first items.
r̄U= average rating of user U .

Constrained PC 1 0 + 1
∑

Ir
(rUi−r̄med)(rV j−r̄med)√∑

(i,.)∈Ir
(rUi−r̄med)

2
√∑

(.,j)∈Ir
(rV j−r̄med)

2
,

r̄med = median of rating scale.

Cosine 1 0 + 1
∑

(i,j)∈Ir
rUi×rV j√∑

(i,.)∈Ir
r2
Ui

√∑
(.,j)∈Ir

r2
V j

JMSD 1 |IU∩IV |
|IU∪IV | × 1 1−

∑
(i,j)∈Ir

(rUi−rV j)
2

|Ir|
PIP 1 0 + 1

∑
(i,j)∈Ir

proximity(rUi, rV j) ∗ impact(.) ∗ pop(.),
pop(rUi, rV j) = 1 + (

rUi+rV j

2
− (μi+μj)

2
)2,

μi = average ratings of item i.
MJD wf

|IU∩IV |
|IU∪IV | + 1

∑
k∈{0,1,3,4} wk vk + wμ μ,

vk = |Ik|
|Ir | , Ik = {(i, j) ∈ Ir | |rUi − rV j | = k},

μ = 1− 1
|Ir |

∑
(i,j)∈Ir

(
rUi−rV j

Rmax−Rmin
)2,

Rmax(= 5), Rmin(= 1) are maximum and minimum
values in rating scale, respectively.

{wf , w0, w1, w3, w4, wμ} are computed using neural learning technique
as described in [14].

of the ratings. Therefore, additional similarity function takes the value 0 (f(.) = 0) for
these measures (Table 1). Numerical and non-numerical information are combined in
JMSD [22] and it is incorporated in BCS. Similarly, MJD can also be incorporated in the
proposed formula. Table 1 shows how existing similarity measures can be incorporated
in BCS to tackle sparsity problem.

The proposed BCS measure has important properties: (i) BCS does not depend on
the number of co-rated items, (ii) BCS removes the main constrain (co-rated items) of
the existing measures by exploiting global item similarity from sparse rating data.

4 Experimental Evaluation

To evaluate performance of proposed similarity based CF, we implemented user-based
collaborative filterings using BCS, PIP and MJD similarity measures. For the sake of
experimental analysis, we incorporate MJD in the present paper as described in Table 1.
We used two real datasets, namely MovieLens 1 and Netflix 2 in experiments. Brief
description of these datasets is given in Table 2. To show effectiveness of our BCS

1 http://www.grouplens.org
2 http://www.netflixprize.com

http://www.grouplens.org
http://www.netflixprize.com
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Table 2. Description of the datasets used in the experiments

Dataset Purpose #User #Item #Rating Density index Rating domain
(M) (N) (R) (κ = R×100

M×N
)

MovieLens Movie 6, 040 3706 1 M 4.46 {1, 2, 3, 4, 5}
Netflix Movie 480, 189 17770 100 M 1.17 {1, 2, 3, 4, 5}

Table 3. Statistics of Sparse subsets

Dataset Data- #User #Item #Rating Density index Rating per Rating per
(original) subset (M) (N) (R) (κ = R×100

M×N
) user ( R

M
) item ( R

N
)

Netflix Net1 8141 9318 196, 656 0.25 24.2 21.1
Net2 8141 9318 72, 184 0.10 8.8 7.4

Movie- ML1 6040 3706 40, 957 0.18 6.8 11.1
Lens ML2 1000 2994 6, 000 0.20 6.0 2.0

measure in sparse data, we obtained four subsets in various sparsity levels removing
ratings randomly from these original datasets. The sparsity level is parametarized by the
density index (κ), which is the percentage of all possible ratings available in a dataset.
The characteristics of all these subsets is summarized in Table 3.

We used popular evaluation metrics Mean Absolute Error (MAE) and F1 metric
in the experiments. The MAE is the average absolute errors over all valid predictions
and a smaller value indicates a better accuracy. Let ri and r̂i be the actual rating and
predicted rating by a CF algorithm, respectively. Let MAX be the number of times
valid predictions performed by the CF algorithm. The MAE is calculated as follows.
MAE = 1

MAX

∑MAX
i=1 | ri − r̂i |. The F1 metric provides qualitative performance

of a recommender system. The F1 measure is the combination of other two important
performance metrics (Precision and Recall) in information retrieval domain.

In addition to the above two metrics, we also report number of successful (valid)
predictions and number of perfect predictions of each CF. Many neighborhood based
CF cannot make a valid prediction for a target item due to absence of an user who
rates the target item in its neighborhood. Therefore, number of valid predictions is an
important metric of a CF. The number of successful prediction is the number of valid
prediction made by a CF. The number of perfect prediction is the number of times a CF
correctly predicts the actual ratings.

To evaluate the performance of these CF approaches, we selected a fixed number
(say, 5 for MovieLens and 3 for Netflix subsets) of good movies (rating ≥ 4) randomly
as the target items for each user. We created artificial cold-start scenarios in each sparse
subset removing ratings of an user under consideration keeping the ratings of all other
users unchanged.

4.1 Experiments and Results Analysis

We made detailed analysis on all subsets. In this study, we consider each user as an
active user and find average number of users who rate on same items as the active user
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Fig. 2. Under cold-start scenario (new user’s ratings < 4) on Net1 subset

rates. In Net1 subset, each active user has 570, 57, 13 neighbors (users) who respec-
tively, share one, two and three co-rated items (Fig. 1). The Net2 has an average of 247
users who share only one co-rated item with an active user. The ML1 subset has an
average of less than 275 users who share only one (1) co-rated item with each (active)
user. The ML2 has an average of less than 20 users who share only one co-rated item
(Fig. 1).

We executed each CF on Net1 subset and two important performance metrics such
as MAE and F1 measures are reported in Fig. 2. It is observed that MJD based CF
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Table 4. Experimental results with ML1 subset

# K Method Rating < 4 Ratings < 6
MAE F1 # Valid #perfect MAE F1 # Valid #perfect

metric predictions predictions metric prediction prediction

40 BCS 0.873 0.320 8325 982 0.849 0.324 8434 894
PIP 0.897 0.312 8067 890 0.885 0.316 8390 747

MJD 0.879 0.317 8146 970 0.849 0.322 8310 870
80 BCS 0.873 0.430 12700 1350 0.841 0.444 13333 1221

PIP 0.896 0.413 11895 1167 0.870 0.433 13012 1032
MJD 0.870 0.418 11907 1289 0.842 0.442 13121 1212

120 BCS 0.860 0.477 14772 1459 0.839 0.508 16530 1340
PIP 0.882 0.454 13648 1319 0.863 0.491 15901 1175

MJD 0.860 0.458 13562 1378 0.839 0.501 15997 1291
160 BCS 0.862 0.501 15958 1486 0.834 0.545 18562 1334

PIP 0.881 0.472 14462 1370 0.859 0.524 17701 1218
MJD 0.857 0.477 14369 1390 0.834 0.533 17714 1306

200 BCS 0.858 0.512 16541 1500 0.828 0.569 19932 1335
PIP 0.879 0.481 14848 1392 0.854 0.545 18761 1224

MJD 0.854 0.485 14763 1404 0.829 0.553 18762 1274
240 BCS 0.857 0.519 16873 1498 0.820 0.584 20840 1298

PIP 0.879 0.481 14848 1392 0.854 0.545 18761 1224
MJD 0.852 0.489 14936 1398 0.821 0.564 19423 1248

provides better MAE compared to PIP based CF. However, our proposed BCS based CF
starts outperforming both (MJD and PIP based) CFs in MAE measure after K-nearest
neighbor reaches above 150.

To show effectiveness of our measure based CF in providing good (relevant) items in
their recommendation lists, we computed F1 measure of each CF and F1 measures are
plotted over number of K nearest neighbors (Fig. 2(b)). Our BCS measure based CF
substantially well in F1 measures in wide range of K values (100-600). The CFBCS is
the best for recommending relevant items (F1 > 0.60) to active users on subset Net1 at
K = 600.

We tested the quality of neighborhood of an active user in terms of providing the
number of successful predictions by each CF on Net1 subset. The plot (Fig. 2(c)) shows
that BCS based CF provides maximum number of successful predictions (20, 363),
which is close to the number of requested prediction to the system. The closest com-
petitor is the PIP based CF, which makes as much as 15, 095 successful predictions at
K = 600. Number of perfect predictions by each CF is also reported in Fig. 2(d). The
BCS based CF performs significantly well with large range of K values ([100, 600]).

Detailed results are reported in Table 4 after executed all three CFs on ML1 subset
under two different cold-start situations. It is found that our BCS measure based CF
can make more successful predictions than MJD based CF and PIP based CF when new
user has less than four and six ratings, respectively (Table 4). Number of successful
predictions of each CF increases with the size of neighborhood (K). However, CFBCS

provides more valid predictions than the other two approaches. This shows that BCS is
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Fig. 3. F1 metric under cold-start scenario ( new user’s # ratings < 4)

more suitable for sparse data to draw effective neighbors for new users. Proposed BCS
based CF outperforms PIP based CF and MJD based CF in providing number of per-
fect predictions. Proposed BCS based CF makes highest number of perfect predictions
(1500) at K = 200 (Table 4).

The BCS based CF has better MAE value compared to PIP based CF over wide range
of K values (Table 4). The BCS measure based CF provides MAE values, which are
close to the MAE values provided by MJD based CF. It can be noted that MAE of BCS
based CF is computed over more number of valid predictions than the number of valid
predictions used to compute MAE for MJD based CF3.

Proposed BCS based CF make more reliable recommendations (F1 metric) to new
users compared to MJD and PIP based measures. Under first situation (new user has
less than four ratings), BCS based CF has F1 = 0.512, whereas MJD has F1 = 0.485
and PIP has F1 = 0.481 with K = 200 (Table 4). Similar trend is found under another
cold-start situation (number of ratings of new user is less than 6).

We executed all three CFs on ML2 and Net2 subsets and results are shown in Fig. 3.
Analysis of ML2 subset shows that each user has on an average less than 20 neighbors
who rate at most one co-rated item (Fig. 1). This might be a typical situation in a dataset
with very large item space. As expected, PIP and MJD based CFs could not improve
F1 metric with the increasing of K values (Fig. 3(a)). However, BCS measure is inde-
pendent of number of co-rated items. As a results, BCS based CF keeps on improving
F1 measures (F1 = 0.151 to F1 = 0.471) with the increasing of K values from 40 to
280 (Fig. 3(a)). The MJD and PIP based CFs provide F1 metric of less than 0.05 over
wide range of K values. Proposed BCS based CF makes valid predictions (successful)
for more than 62% of requested predictions (1000 ∗ 5 = 5000) at K = 280 whereas
MJD based CF could make predictions for only 3% of requested predictions. The BCS
based CF also outperforms PIP and MJD based CFs in producing number of perfect
predictions. Number of perfect predictions by BCS based CF is more than number of
valid predictions (3%) by MJD based CF.

Experiments with Net2 subset shows that our BCS based CF can provide reliable
recommendations on highly sparse data with κ = 0.10. The F1 value of BCS based

3 Experimentally, it is found that BCS based CF outperforms MJD based CF in MAE measure
if MAE is computed over top T ( ≤ # predictions by MJD) predictions.
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CF can reach close to 0.45, whereas closest competitor MJD based CF can produce
F1 < 0.28 (Fig. 3(b)). The BCS based CF and MJD based CFs make 49% and 24%
valid predictions at K = 600, respectively. Similar trend is found in perfect prediction
metric (4% for BCS based CF and 2% for MJD based CF at K = 600). Experiments
with these subsets show that PIP and MJD measures are not suitable for providing
suggestions to new users.

5 Conclusion

In this paper, we introduced a formulation for similarity measure, which is suitable in
new user cold-start scenarios in sparse data. Proposed measure based CF can provide
reliable recommendations to new users after receiving few ratings from them. Main
advantage of the proposed measure is that it can find effective neighbors of a new user in
the absence of co-rated items. Experiments with highly sparse data show that proposed
measure based CF can produce significantly better accuracy in recommending items
compared to the existing solutions.
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Abstract. Machine or system failures have high impact both at tech-
nical and economic levels. Most modern equipment has logging systems
that allow us to collect a diversity of data regarding their operation and
health. Using data mining models for novelty detection enables us to ex-
plore those datasets, building classification systems that can detect and
issue an alert when a failure starts evolving, avoiding the unknown devel-
opment up to breakdown. In the present case we use a failure detection
system to predict train doors breakdowns before they happen using data
from their logging system. We study three methods for failure detection:
outlier detection, novelty detection and a supervised SVM. Given the
problem’s features, namely the possibility of a passenger interrupting
the movement of a door, the three predictors are prone to false alarms.
The main contribution of this work is the use of a low-pass filter to pro-
cess the output of the predictors leading to a strong reduction in the
false alarm rate.

1 Introduction

Predicting the future is an activity that has always captured the interest of
humanity. As the Greek poet C. P. Cavalfy said: ’Ordinary mortals know what
is happening now, the gods know what the future holds because They alone are
totally enlightened. Wise men are aware of the future things just about to happen.’

The ability to predict what is about to happen can make signicant changes
in how to run a business. It is hoped that the practical demonstration of the
improvements achievable through the application of a data mining system to a
specific day-to-day problem can be a further contribution to this area of knowl-
edge, pointing out the advantages at hand to a wide range of corporations once
they embrace this kind of approach. This paper presents our study on a train
door failure prediction problem, using outlier detection sequence analysis.

Doors are one of the most heavily used parts of a train. On a metro, a single
door has to open and close more than 600 times in one day. Door failures cause
delays, trip cancellation and other types of operational inefficiencies. In railways’
early days, doors were locally and manually operated, but the challenges posed
by the need to reduce on-board human resources, higher safety requirements and
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faster operation led to the sophistication of this equipment. Indeed, nowadays
doors are a highly complex system, comprising electronic circuit control and
pneumatic or electric drive systems, allowing opening cycles faster than two
seconds and safety devices such as anti-pinch. The growing complexity of these
functionalities has increased reliability and maintenance issues. In fact, modern
doors comprise several pieces of equipment such as pneumatic valves, sensors, call
buttons, microprocessors and others, which greatly contribute to the likelihood
of a failure. The growing number of components and the increasing complexity
of their control poses additional problems in terms of reliability. In the case
of train doors, its failure often causes relevant damages to the operation, not
only at service level, but also on the costs of operating the system, such as:
delays, trip cancellation and operational inefficiencies. In this scenario, a great
deal of attention has been paid to door maintenance. As a result of this effort,
new methodologies have been tested, such as Reliability Centered Maintenance
(RCM) [8], but its application is associated with some difficulties, like attribute
selection or setting the right threshold. Data Mining tools in the field of Novelty
Detection and more specifically Failure Prediction systems seem very promising
opportunities to address some of the challenges that the railway industry must
face to remain economically competitive.

The goal of this paper is to develop a system that signals an alarm when
a sequence of door operations indicates a deterioration of the system. We must
point out that we are not interested in signaling alarms when a single operation is
abnormal. This is not an indication of a problem in the train opening system but,
most probably, the interference of a passenger. Most of the predictive machine
learning approaches for anomaly or failure prediction assume i.i.d. observations.
They do not deal with sequential nor temporal information. In this study, we
propose the use of a low-pass filter over the output of the predictive model to
identify sequences of abnormal predictions that represent a deterioration of the
train opening system.

The paper is organized as follows. In this Section we have explained the prob-
lem and the motivation. In Section 2 we discuss the anomaly detection techniques
related to our target problem. In Section 3 we present our case study and, in
Section 4, we show the results obtained. We conclude in Section 5.

2 Related Work

Automatic methods for fault detection [7,15] have been studied for a long time.
In [7] techniques, such as expert systems, fuzzy logic and data mining, are used
to address a diversity of application areas including aerospace, process controls,
automotive, manufacturing, nuclear plants, etc. The methods we review here are
the most common approaches using data mining: novelty, outlier detection and
supervised learning [16].

Novelty Detection is often defined as the ability of a machine learning system
to identify new or unknown concepts that were not present during the learning
phase [9,12]. This feature is essential in a good classifier because in practical ap-
plications, especially when data streams are involved, the test examples contain
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information on concepts that were not known during the training of the decision
model. The ability to identify what are the new concepts is vital if a classifier can
learn continuously, which will require that: 1) the classifier represents the cur-
rent state, i.e. normal behaviour and 2) systematically checks the compatibility
between the current model and recent data.

Automatic anomaly detection to forecast potential failures on railway mainte-
nance tasks appears in [10,11]. Authors start by characterizing normal behaviour
taking into account the contextual criteria associated to railway data (itinerary,
weather conditions, etc.). After that, they measure the compliance of new data,
according to extracted knowledge, and provide information about the seriousness
and possible causes of a detected anomaly.

One of the most globally accepted outlier definition states that an outlier is a
data object that deviates significantly from the rest of the objects, as if it were
generated by a different mechanism. According to [4], an outlier can be further
divided into three different types: global, contextual and collective. In this paper
our focus is on global outliers, also called point anomalies, data objects that are
unlikely to follow the same distribution as the other objects in the data set.

Similarly to other learning tasks, depending on the existence of labeled in-
stances, outlier detection techniques can be divided into three main groups: 1)
unsupervised; 2) semi-supervised; 3) supervised. In the following subsections,
we briefly describe these three different approaches and their application to our
target problem.

Unsupervised Methods. According to [3], unsupervised outlier detection methods
can be grouped into statistical methods, clustering methods, distance-based and
density-based methods. The choice of the appropriate method relies on several
factors, such as the number of dimensions of the data, data type, sample size,
algorithms efficiency and, ultimately, on the user understanding of the problem.

Whenever the goal is to identify univariate outliers, such as in the context
of our problem, the statistical methods are among the most simple methods.
Assuming a Gaussian distribution and learning the parameters from the data,
parametric methods identify the points with low probability as outliers. One of
the methods used to spot such outliers is the boxplot method. Based on the
first quartile (Q1), the third quartile (Q3) and the interquantile range (IQR =
Q3−Q1) of data, it determines that the interval [Q1−1.5∗IQR,Q3+1.5∗IQR]
contains 99.3% of data. Therefore, points outside that interval are considered as
mild outliers, and points outside the interval [Q1 − 3 ∗ IQR,Q3 + 3 ∗ IQR] are
considered extreme outliers.

We have decided to apply the boxplot method to identify extreme outliers in
our target problem.

Semi-supervised Methods. Frequently, in day-to-day problems in the mainte-
nance field, there are numerous examples belonging to the Normal class and very
few from the Outlier class, maybe not even representing all the failure modes. As
stated by [6], in engineering anomaly detection problems, often only examples
from a single class, the normal, are available, whereas examples from the counter
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class might be very rare or expensive to obtain. This kind of problems is usually
dubbed as one-class classification (OCC) or learning from positive-only exam-
ples [14]. There are various ways to address OCC, such as one-class SVMs [4],
auto-associative neural networks, also known as autoencoders [6].

In this paper, we have chosen to use the OCC algorithm available in Weka by
Hempstalk et al. [5], which combines density and class probability estimation.
In this algorithm only the Normal class examples are used for training, as the
learning phase is done without using any information from other classes. Firstly,
a density approach is applied to training data so as to generate artificial data
used to form an artificial outlier class. Then a classifier is built with examples
from both Normal and Outlier classes.

Supervised Methods. Supervised outlier detection techniques assume the exis-
tence of historical information on all the normal and outlier instances from where
predictive models for outliers can be built. Most of the work regarding this area
focus on classification tasks and, in particular, on binary classification as it con-
siders only two classes: Normal and Outlier. By the implicit definition of outlier,
these classification tasks have an imbalanced class distribution, a well known
problem and subject of research [1].

This paper covers the spectrum of supervised fault detection techniques by
using a Support Vector Machine (SVM) [4]. In the scope of our problem, the
SVM will search for an optimal hyperplane that can be used as decision boundary
separating the examples from the Normal and Outlier classes.

3 The Case Study

The purpose of this paper is to develop a data mining system that issues an
alarm whenever an automatic door is predicted to suffer a failure. In this case
study we focus our attention on the behaviour of the pneumatic doors from one
specific train. Each door is activated by a linear pneumatic actuator, equipped
with one pressure transductor on both the inlet and outlet chamber, providing
a pressure reading every 1/10 second whenever the door is commanded to move.
The available data, representing operations from September to December 2012,
consists of almost 500 thousand readings, corresponding to 4500 opening and
closing cycles. We must note that current opening systems are equipped with
sensors that react (inverse the operation) when a passenger interferes. This fact,
a feature of the system, triggers false alarms in fault detection systems that we
need to avoid.

To accomplish this task we have come up with a two-stage classification pro-
cess. First, each cycle is classified as Normal or Abnormal, afterwards we use a
low-pass filter on the output to decide if there is evidence that a door break-
down is about to happen. For the cycle classification problem we have exper-
imented three different methods: 1) unsupervised learning based on boxplot;
2) semi-supervised learning with OneClassClassification; 3) supervised learning
with Support Vector Machine.
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3.1 Data Transformation

Considering that our plan involved working with classification algorithms, we
defined an attribute value matrix, with each tuple representing a cycle, as our
input data. For that purpose, we have created a new set of five variables, as
described in detail below. In order to transform a time series dataset into an
attribute value matrix, we started by calculating the difference between the
inlet and outlet pressure at each moment. Then, for each cycle, we considered
five bins of equal time length and calculated the average pressure for each one.
Bearing in mind that the duration of each bin, and therefore the total cycle
length, was vital information, we generated five new variables, multiplying the
bin average pressure by its duration. Finally, we could rearrange our dataset,
transforming 500 thousand pressure readings into 4950 door cycles, described by
five variables. The new set of attributes was named B1 to B5, with B1 being the
first bin, when the door has just started to move, and B5 representing the last
bin, when the cycle has finished. Figure 1 shows the evolution of pressure and
duration of the two types of cycles, opening and closing door movements, by the
mean and standard deviation of each of these five bins.

(a) (b)

Fig. 1. Opening and closing door movements evolution

Bearing in mind that the temporal information was an important aspect of the
dataset, daily averages were also calculated for each attribute. From the analysis
of Figure 2 one can observe that, especially in closing movement, attributes
average suffered an important shift in September, in what could be concept
evolution or the development of a failure.

3.2 Labeling

Regarding labeling the dataset, two new attributes were introduced, one about
the normality of the cycle itself, the cycle class, and another, the sequence class,
with information on whether a particular sequence of cycles should be considered
as Abnormal or Normal. As usual for these tasks, a domain expert was called in
to classify each tuple in the data matrix. It is important to notice that a cycle can
be labeled as Abnormal even though there is no failure associated. Such case may
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Fig. 2. Daily average of the five bins for closing door movements

arise from a door being blocked by a passenger, which must not be considered
as a door failure. As for the sequence class label, door failure moments were
identified from the Maintenance Reports, and failure windows were determined
by encompassing the cycles that occurred before and that should be related to
one specific failure.

In the end, after expert classification, there were 194 door cycles labeled as
Abnormal, less than 3% of the total and three failure events, one of them occuring
in both the opening and closing door movements (cf. Tables 1 and 2).

Table 1. Identification of Abnormal cycles by the domain expert

Month
Total Cycles Abnormal Cycles % Abnormal Cycles
Open Close Open Close Open Close

Sept. 578 569 20 45 3% 8%
Oct. 628 612 20 9 3% 1%
Nov. 630 628 49 25 8% 4%
Dec. 480 465 19 7 4% 2%
Total 2316 2274 108 86 5% 4%

Table 2. Identification of Failures by the domain expert

Door
Week Date

Nr Abnormal Cycles
Failure Open Close

Failure 1 36 09/07/2012 52 0
Failure 2 48 11/28/2012 18 0

11/29/2012 29 31
11/30/2012 22 24

Failure 3 49 12/06/2012 33 0
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3.3 Cycle Classification

To address the cycle classification problem we have divided it into two smaller
problems: one for the opening door movements; and another for the closing door
movements. For each problem, we have tested cycle classification under three dif-
ferent approaches: 1) unsupervised learning based on boxplot; 2) semi-supervised
learning with OneClassClassification; 3) supervised learning with Support Vector
Machine. In order to maintain the work as close as possible to a real scenario,
training was done using examples belonging only to the two previous weeks,
except in the supervised case where we also included the Abnormal examples
occurring before that time window. The decision model is then used to predict
the following week. To assess the performance of the classification task we used
the approach suggested by Hempstalk [5]. For each classification we calculated
two ratios: false alarm rate (FAR) and the impostor pass rate (IPR). The false
alarm rate is the ratio of normal instances incorrectly identified as outliers. The
impostor pass rate is the ratio of outlier instances that are wrongly classified
as normal. These metrics are often used in outlier detection domains. A higher
FAR results in a lower IPR and vice versa.

3.4 Sequence Classification

Once cycle classification was done, further treatment was applied to the dataset.
In fact, the purpose of this work consists on the ability to issue an alarm whenever
a door is about to have a breakdown, not to distinguish between normal and
abnormal cycles. To achieve this part of the process, we use a low-pass filter,
as described before. In each problem, we have tuned the low-pass filter with a
specific parameterization, setting the threshold level and smoothing factor, in
order to obtain the best possible result under that specific scenario.

Low-Pass Filter. A filter is a device that removes from a signal some unwanted
component or feature [13]. The defining feature of filters is the complete or
partial suppression of some aspect of the signal. Often, this means removing
some frequencies and not others in order to suppress interfering signals and
reduce background noise. There are several filters that can be designed to achieve
specific goals taking application into account. A low-pass filter is a filter that
smoothes abrupt changes in the signal attenuating (reducing the amplitude of)
signals with frequencies higher than the cutoff frequency. The low-pass algorithm
is detailed by the equation yi = yi−1+α∗(xi−yi−1), where yi is the filter output
for the original signal xi for instant i and α is the smoothing parameter. The
change from one filter output to the next is proportional to the difference between
the previous output and the next input. This exponential smoothing property
matches the exponential decay seen in the continuous-time system. As expected,
as α decreases, the output samples respond more slowly to a change in the input
samples: the system will have more inertia.
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4 Experimental Evaluation

The main goal of this experimental study is to test the impact of the low-pass
filter in the reduction of false alarms. We have evaluated three decision models
in which results are post-processed by the low-pass filter. As already stated,
we have trained a decision model using a sliding window of two weeks of data
and evaluated using the following week. In a set of experiments, not reported
here due to space limitations, training a static model with data from September
resulted in a degradation of the performance in all models as the time horizon
increased.

Results using Outlier detection. Applying the boxplot method for the two pre-
vious weeks for all five variables, outliers were detected if at least one of the
variables value was an extreme outlier. Even though this approach could be
considered too simplistic, assuming independent and Gaussian distributions, it
turned out to work very well, especially when its output was post-processed with
a low-pass filter. This method granted accurate results, with low IPR and man-
ageable FAR from the cycle classification level. This performance (see Table 3
and Figure 3) was then enhanced with the low-pass filter setting the threshold
at 0.5 and smoothing factor at 0.15. In the end, this system was able to correctly
detect the three failures present in the dataset with small and acceptable lag,
with just one incipient False Alarm at week 45. Overall, both failures on the end
of week 48 and 49 could have been signaled with at least 24 hours in advance.

Table 3. Results using boxplot-based outlier detection

Open Close
Before Filter After Filter Before Filter After Filter

False Alarms 68 0 76 1

Cycle Label Abnormal Normal Total Abnormal Normal Total
Abnormal 103 5 108 66 20 86
Normal 11 2197 2208 24 2164 2188

Cycle
Classification

Open Close
W49 W39 Other W48 W38 Other

False Alarm Rate 44% 43% 4% 67% 0% 19%
Impostor Pass Rate 0% 0% 5% 0% 45% 13%

Results using Novelty Detection. As stated before, in a failure detection problem
we must train the classifier with examples only belonging to Normal class or
at least with unbalanced datasets. To deal with this challenge we have used
the OCC algorithm available in Weka [5], which combines density and class
probability estimation. The method we have chosen for the class probability
estimation was a decision tree with pruning. To reduce variance, bagging was
applied with 10 time iterations and bag size set to 100%. Training was done with
normal cycles from the preceding two weeks, previously labeled by an expert.
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Fig. 3. The impact of the low-pass filter using boxplot-based outlier detection

Aggregated cycle classifications looked acceptable, comparing to unsupervised
classification, but a closer look at a week level showed an enormous concentration
on False Alarms (see Table 4 and Figure 4). In fact, the false alarms recorded
from week 38 to 41 could not be attenuated enough by the low-pass filter.

Table 4. Results using OCC for novelty detection

Open Close
Before Filter After Filter Before Filter After Filter

False Alarms 171 5 319 18

Cycle Label Abnormal Normal Total Abnormal Normal Total
Abnormal 105 3 108 81 5 86
Normal 133 2075 2208 280 1908 2188

Cycle
Classification

Open Close
W41 W49 Other W38 W39 Other

False Alarm Rate 69% 82% 49% 56% 98% 70%
Impostor Pass Rate 0% 0% 3% 0% 0% 9%

As mentioned before, the false alarm concentration in week 39 could not be
sufficiently attenuated by the low-pass filter, causing several incorrect door fail-
ure alarms. In this scenario, we can distinguish between the performance achieved
before week 43 and after. Until week 43 the system was unable to correctly iden-
tify abnormal cycles, raising incorrect false alarms, whereas afterwards the level
of accuracy increased significantly, even though clearly worse than that obtained
with the unsupervised method. One justification for this behaviour might come
from concept evolution. When looking at the evolution of the attributes along
the time window, there is a strong change in the daily average from week 36 to
40. Nevertheless, there were no records of door failures. As one might expect,
the OCC classifier was not able to spot the new outliers when the data model
was evolving at that pace.



Failure Prediction – An Application in the Railway Industry 273

Fig. 4. The impact of the low-pass filter using OCC for novelty detection

Table 5. Results using SVM supervised learning

Open Close
Before Filter After Filter Before Filter After Filter

False Alarms 77 3 170 11

Cycle Label Abnormal Normal Total Abnormal Normal Total
Abnormal 66 42 108 47 39 86
Normal 45 2163 2208 137 2051 2188

Cycle
Classification

Open Close
W48 W49 Other W38 W39 Other

False Alarm Rate 0% 86% 19% 11% 99% 33%
Impostor Pass Rate 88% 0% 0% 74% 50% 28%

Fig. 5. The impact of the low-pass filter using SVM supervised learning

Supervised Classification - SVM. The last experiment conducted in this study
consisted on testing the application of a supervised classifier. After initial trials,
we chose a Support Vector Machine, as implemented in Knime [2]. As mentioned
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before SVM training was done in a two-week sliding window training set, includ-
ing all the Abnormal examples that had already occured, trying to deal with an
unbalanced dataset. Once more, overall results seemed acceptable (see Table 5
and Figure 5), but looking at a week level showed the lack of capacity of SVM
to deal with this problem. In fact, false alarm rate from week 38 to 39 was so
high that it was impossible for the low-pass filter to accommodate all the errors.
Moreover, SVM was not able to spot 30 Abnormal cycles in week 48, missing
the 29-30 November failure on the opening movement.

5 Conclusions

The paper’s main goal was to point out the high value of data mining tools
for maintenance management, with a specific study case in the railway field.
We started by applying an unsupervised technique, spotting outliers as exam-
ples with at least one attribute with an outlier value determined by the boxplot
method. Classification results were processed with a low-pass filter, enabling us
to anticipate door failures by 24 hours. One Class Classification algorithm, an
approach widely used for novelty detection, was also tested. Unfortunately, we
were not able to guarantee an adequate level of reliability, presumably due to con-
cept evolution. Finally, a more standard, supervised, method was experimented,
trying a two class classification problem using a Support Vector Machine. SVM
granted good aggregated results, but on the opening cycles it totally missed the
most important door failure at the end of week 48 and on the closing movements.
The False Alarms issued at week 38 and 39 must be considered an important
weakness. To conclude, we must stress out that we have demonstrated that, at
least in specific problems, failure prediction can be achieved with a two stage
algorithm: 1) event classification and 2) sequence analysis applying a low-pass
filter. The main goal of the paper was to point out the use of a low-pass filter
to process the output of the predictors leading to a strong reduction in the false
alarm rate. As final conclusion, we could say we have proved that with small
investment in sensors, data logging and post-processing, we are able to minimize
maintenance costs and increase systems reliability.

Acknowledgments. This work was supported by Sibila research project
(NORTE-07-0124-FEDER-000059), financed by North Portugal Regional Opera-
tional Programme (ON.2 O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the Development Fund (ERDF), and by national
funds, through the Portuguese funding agency, Fundação para a Ciência e a Tec-
nologia (FCT), and by European Commission through the project MAESTRA
(Grant number ICT-2013-612944).



Failure Prediction – An Application in the Railway Industry 275

References

1. Aggarwal, C.C.: Outlier Analysis. Springer (2013)
2. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl,

P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner.
In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL
2007). Springer (2007)

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Com-
put. Surv. 41(3) (2009)

4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann Publishers Inc., San Francisco (2011)

5. Hempstalk, K., Frank, E., Witten, I.H.: One-class classification by combining den-
sity and class probability estimation. In: Daelemans, W., Goethals, B., Morik, K.
(eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 505–519. Springer,
Heidelberg (2008)

6. Japkowicz, N., Myers, C., Gluck, M.A.: A novelty detection approach to classifica-
tion. In: IJCAI, pp. 518–523. Morgan Kaufmann (1995)

7. Katipamula, S., Michael, P., Brambley, R.: Methods for fault detection, diagnostics,
and prognostics for building systems–a review, part i (2004)

8. Nowlan, F.S., Heap, H.F.: Reliability-centered Maintenance. Dolby Access Press
(1978)

9. Petsche, T., Marcantonio, A., Darken, C., Hanson, S.J., Kuhn, G.M., Santoso, I.: A
neural network autoassociator for induction motor failure prediction, pp. 924–930.
MIT Press (1996)

10. Rabatel, J., Bringay, S., Poncelet, P.: SO MAD: SensOr mining for anomaly detec-
tion in railway data. In: Perner, P. (ed.) ICDM 2009. LNCS, vol. 5633, pp. 191–205.
Springer, Heidelberg (2009)

11. Rabatel, J., Bringay, S., Poncelet, P.: Anomaly detection in monitoring sensor data
for preventive maintenance. Expert Syst. Appl. 38(6), 7003–7015 (2011)

12. Saxena, A., Saad, A.: Evolving an artificial neural network classifier for condi-
tion monitoring of rotating mechanical systems. Appl. Soft Comput. 7(1), 441–454
(2007)

13. Shenoi, B.A.: Introduction to Digital Signal Processing and Filter Design. John
Wiley & Sons (2005)

14. Tax, D.: One-class classification: Concept learning in the absence of counter-
examples. PhD thesis, Technische Universiteit Delft (2001)

15. Yilboga, H., Eker, O.F., Guculu, A., Camci, F.: Failure prediction on railway
turnouts using time delay neural networks. In: IEEE International Conference on
Computational Intelligence for Measurement Systems and Applications, pp. 134–
137 (2010)

16. Zhang, J., Yan, Q., Zhang, Y., Huang, Z.: Novel fault class detection based on
novelty detection methods. In: Huang, D., Li, K., Irwin, G. (eds.) Intelligent Com-
puting in Signal Processing and Pattern Recognition. LNCIS, vol. 345, pp. 982–987.
Springer, Heidelberg (2006)



Wind Power Forecasting

Using Time Series Cluster Analysis

Sonja Pravilovic1,2, Annalisa Appice1,
Antonietta Lanza1, and Donato Malerba1

1 Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro
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Abstract. The growing integration of wind turbines into the power grid
can only be balanced with precise forecasts of upcoming energy produc-
tions. This information plays as basis for operation and management
strategies for a reliable and economical integration into the power grid.
A precise forecast needs to overcome problems of variable energy produc-
tion caused by fluctuating weather conditions. In this paper, we define a
data mining approach, in order to process a past set of the wind power
measurements of a wind turbine and extract a robust prediction model.
We resort to a time series clustering algorithm, in order to extract a
compact, informative representation of the time series of wind power
measurements in the past set. We use cluster prototypes for predicting
upcoming wind powers of the turbine. We illustrate a case study with
real data collected from a wind turbine installed in the Apulia region.

1 Introduction

The capacity of renewable energy sources constantly increases world-wide and
challenges the maintenance of the electric balance between power demand and
supply. In Italy, with an installed capacity of more than 8.700 MWp at the end of
2012, wind power prediction services are becoming an essential part of the grid
control. On the local scale, storage management and smart grid applications
define a sector with increasing need for renewable energy power forecasting.
As the benefit of using a forecast is directly related to the forecast accuracy,
continuous research is performed to enhance wind turbine power predictions.

Several wind power forecasting models have been reported in the literature
over the past few years (see [16] and [1] for recent surveys of these models). They
vary widely in their time horizons, factors determining actual outcomes, types
of data patterns and many other aspects. In this study, we decide to work with
a cluster data pattern that is exclusively based on the time series of the past
wind power measurements of a turbine. The cluster model is learned, in order
to summarize day-ahead wind power values of a turbine. It is noteworthy that
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this summarization goal is out of the scope of the plethora of predictive methods
traditionally developed for the time series forecasting. Daily powers, collected
over several days, are grouped in clusters. A cluster will group day-ahead wind
power time series that have a similar efficiency over the day. Distinct clusters
will group day-ahead wind power time series that have different daily efficiency.
The efficiency is measured by the area under the time series clustered. The
existence of different daily models can be caused by several external factors (e.g.
weather conditions), which may keep happening repeatedly over the time. The
main contribution of this paper is that of leveraging the power of the cluster
analysis in the time series analysis, in order to gain insights into clusters of day-
ahead wind power time series measured by a turbine. We use the cluster model
associated with a turbine, in order to yield day-ahead predictions of the wind
power measures outcoming at the same turbine. We select the cluster prototype
that matches the wind power measurements collected up to the present. This
selection is done, in order to derive a robust prediction of the upcoming wind
powers until dying day. The advantage of integrating the cluster analysis in a
forecasting process is twofold. First, the discovery of a cluster pattern allows us
to produce a compact, but knowledgeable model of the observed wind power of a
turbine. This descriptive model, which is unavailable with traditional forecasting
models (e.g. exponential smoothing models or autoregressive models), can be
used as a descriptive summary of the past performances of a turbine. Second,
the cluster model can be computed offline once, and used online, repeatedly, in
order to produce forecasts in (near) real time.

The paper is organized as follows. In the next Section, we review the state
of art of related literature. In Section 3, we illustrate the characteristics of the
power wind time series. In Section 4, we describe a data mining system that
allows us to compute a cluster model of the wind power time series data. In
Section 5, we illustrate how a forecasting phase can be built on a clustering
wind power modeling phase. Finally, in Section 6, we illustrate a case study
with data collected by a wind turbine installed in the Apulia region.

2 Related Work

Several wind power forecasting methods are reported in the literatures. They
can be classified based on the model into physical models, statistical models
and hybrid models. Physical models (e.g. [2,11]) describe a physical relationship
between wind speed, atmospheric conditions, local topography and the output
from the wind power turbine. These models consist of several sub models that,
together, deliver the translation from both the wind forecast at a specific site
and the model level to the power forecast at the considered site and at the tur-
bine hub height. This consists of two main steps: downscaling and conversion to
power. The downscaling step scales the wind speed and direction to the turbine
hubs height. It consists of finding the best performing numeric weather predic-
tion model. The conversion-to-power step consists of converting the wind speed
to power by using a power curve. Statistical models (e.g. [15,6,14,10,13]) estimate
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Fig. 1. The month-long window decomposition of day-ahead time series

a statistical relationship between relevant input data and the wind power gener-
ation. They involve a direct transformation of the input variables into the wind
generation using a statistical model. With these models, a direct estimation of
the wind power from the input parameters is possible in a single step. The out-
put models can include most of the data mining based models (e.g. ANN, SVM,
fuzzy model, model trees), as well as time series analysis models (e.g. ARIMA,
fractional ARIMA). Finally, hybrid models (e.g. [12,7,9]) are based on the com-
bination of the physical and statistical models, the combination of models with
several time horizons and the combination of alternative statistical models.

3 Basics and Data Setting

The data mining problem we address here is described by the following premises.
First, the statistical model of the wind power may depend on the characteristics
and location of a turbine. Second, the statistical model of a turbine can be
mined by processing the past measurements of the wind power collected by the
turbine under analysis. Third, the statistical model may change with time. In
the following, we build on such premises to define the data setting we consider,
in order to predict the power wind of a turbine.

A wind power time series is a chronological sequence of observations of the
wind power variable routinely measured by a wind turbine. As documented in [1],
this time series is, in general, characterized by seasonal as well as diurnal effects.
The diurnal effect corresponds to possible daily periodic behavior of wind. The
seasonal effect corresponds to possible seasonally periodic behavior of wind. The
existence of a seasonal effect inspires the idea of a wind model that changes
with seasons. In this study, we account for the expected seasonal effect of the
wind power by dividing the yearlong time series of the wind power measured
by a turbine into twelve month-long data windows. We decide to split data into
month-long learning periods as they are a reasonable compromise between fine-
grained week periods and coarse-grained season periods. Then, for each calendar
month, we account for the expected daily effect by dividing month-ahead data



Wind Power Forecasting Using Time Series Cluster Analysis 279

Fig. 2. A cluster based model of wind power time series

into day-ahead time series (see Figure 1). In this way, we can compute a distinct
(cluster) model for each calendar month. This model describes the expected
behavior of a day-ahead time series observable in the specific month. The turbine
may use this model to forecast day-ahead wind powers expected for a calendar
day falling in the same month of the model (e.g. the July’s day-ahead data model
is considered, in order to predict upcoming wind powers of a July’s day).

4 Cluster Data Model

The modeling phase uses a clustering algorithm, in order to compute the data
model of a turbine. We organize day-ahead time series observed in a calendar
month into homogeneous groups where the within-group-object similarity is min-
imized and the between-group-object dissimilarity is maximized. For each com-
puted cluster C, we determine the cluster prototype z and the cluster strength
s (see Figure 2). The cluster prototype is a time series summarizing training
times series grouped in the cluster. The cluster strength is the percentage of
the number of training time series that are grouped in the cluster. The strength
represents the frequency of a model over the month.

Clustering algorithm. To determine the cluster model, we use the Quality Thresh-
old (QT) algorithm [8]. This is a partitioning clustering algorithm, originally
defined to cluster gene, that is here used, in order to group time series in high
quality clusters. Quality is ensured by finding a dense cluster whose diameter
does not exceed a given user-defined diameter threshold. We opt for this clus-
tering algorithm since it prevents dissimilar time series from being forced into
the same cluster and ensures that only good quality clusters will be formed. The
basic idea of QT is as follows. We select a random, unclustered time series as
cluster center and add this center to the candidate cluster. We iteratively add
other unclustered time series, with each iteration adding the time series that
minimizes the increase in cluster diameter. The diameter is the maximum dis-
similarity between the cluster center and each time series grouped in the cluster.
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In this study, the diameter is a percentage of the maximum dissimilarity com-
puted between each pair of times series of the training set. For each cluster, the
center time series is the cluster prototype.

Time Series Representation. To compute the cluster model, we represent the
training time series by resorting to the piecewise linear model. This model repre-
sents the time series as a sequence of line segments (see Figure 3) where each line
segment represents a small subset of time series data points, determined using
linear least-squares regression. The advantages of this model data are summa-
rized in [17]. The piecewise linear model is succinct, since only few line segments
are needed to represent a large amount of time series data. It is representative
as essential information (e.g. significant patterns) in the data is captured. It is
robust to changes in the time series model parameters as well as to faults and
noise in time series measurements. Formally, let Z be a time series, the piecewise
linear model plm(Z) is defined as follows:

plm(Z) =
(t1start, ẑ

1
start) (t

1
end, ẑ

1
end)

. . . . . .
(tkstart, ẑ

k
start) (t

k
end, ẑ
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where t is the time at which a data point was collected, while ẑ represents
the piecewise linear estimate of the actual time series data value collected at
the time t. In particular (tistart, ẑ

i
start) is the starting point of a line segment,

while (tiend, ẑ
i
end) is the ending point of the line segment i. We note that t1start

is the starting time point of the time series, tkend is the ending time point of
the time series and tistart is the time point consecutive to ti−1

end in the time series
Z. We compute the piecewise linear model of a time series by determining the
linearization error between a time series data point and the line segment covering
it. We define this error as the perpendicular distance between the point and the
line segment. The linearization error for a piecewise linear model representing a
time series is the maximum linearization error across all the data points in the
time series. For a fixed choice of the maximum linearization error, we start with
the first two data points of the time series and fit a line segment to them by using
the linear least-square regression theory [4]. Then we consider the data points
one at a time and recompute the line segment, in order to fit the new data point.
We compute the perpendicular distance of the new data point from the new line
segment. If this distance is greater than ε, we start a new line segment. We keep
repeating this process until we exhaust all data points in the time series.

Dissimilarity Measure. We compute a (dis)similarity measure, based on the area
under curve, in order to measure the diameter of a QT cluster. This measure is
used, in order to group days, which display similar daily efficiency of the turbine,
in the same cluster. Let T1 and T2 be two day-ahead time series of n equally
spaced wind power measures, the dissimilarity d(·, ·) is computed as follows:

d(Z1, Z2) = ‖(area(plmZ1)− area(plmZ2)‖, (2)
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Fig. 3. The piecewise linear model of a time series

where plmT (t) is the piecewise linear model of the time series Z so that

area(plmT ) =

k∑
t=1

(ẑkstart + ẑkend) ∗ (tkend − tkstart)

2
is the area under the curve

plm(Z).

5 Data Forecasting

The prediction phase uses the cluster model P(C) associated with the same
month of the current calendar day, as well as the wind powers z[1], z[2], . . . z[t−
1], z[t] measured on the current day, up to the present time t. Both information
are used to produce forecasts ẑ[t+1], ẑ[t+2], . . . ẑ[n] till dying day. Operatively,
forecasts are produced by predicting ẑ[i] = z[i] with i > t, where z is the cluster
prototype of P(C) that best fits observed data up to t. Formally,

z = argmin
(z,s)∈P(C)

d(z|1...t, z|1...t), (3)

where d(·, ·) is the dissimilarity measure according to P(C) was computed (see
Formula 2). In Formula 3, we compute the dissimilarity between the actual
wind powers measured by the turbine until the time t strikes (denoted as z|1...t)
and the corresponding data points of a selected cluster prototype z (denoted
as z|1...t). The selected cluster prototype is that minimizing the dissimilarity
with actual measures collected up to t (see Figures 4(a)-4(c)). According to this
formulation, when a turbine records a new actual measure of the wind power,
remaining forecasts are updated accordingly.

6 Case Study

We evaluate the accuracy of the model in a real case study. Experiments are
run on an Intel(R) Core(TM) i7-2670QM CPU@2.20GHz running Windows 7
Professional.
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(a) Cluster prototype 1 (b) Cluster prototype 1 (c) Forecasts

Fig. 4. Forecasting phase: 4(a)-4(b) cluster prototypes and 4(c) forecasts. Forecasts
(red colored time series in Figure 4(c)) are produced by selecting the cluster prototype
(dotted red line in Figure 4(a)) that best fits data up to t (black line in Figure 4(c))
according to Formula 3.

Data, Metrics and Competitors. We consider the wind power measured by an
anemometer installed in Foggia province (Apulia, Italy). Training data are col-
lected every ten minutes on 2008 and 2009. Testing data are available for three
calendar days on 2007 (04-10-2007, 15-11-2007 and 18-12-2007) and three calen-
dar days on 2010 (01-01-2010, 16-03-2010 and 23-04-2010). We learn the cluster
model from the training data, and use this model to produce predictions for
testing data. The goals of this empirical study is to evaluate the efficacy of the
clustering phase, as well as the accuracy of the forecasting phase.

We analyze the quality of the detected clusters discovered by varying the QT
diameter threshold. We compute the Davis Bouldein index, in order to measure
the efficacy of clustering. It is a function of the ratio of the within cluster scat-
ter, to the between cluster separation. Thus, the best cluster model minimizes
the Davies Bouldin value. We analyze the accuracy of the series of day-ahead
forecasts produced until dying day as they are updated at the consecutive time
points of a testing day. We compute the root mean square error. We start fore-
casting from the time point 2:00 on each testing day. For each testing time point
t, we compute the error of forecasting the day-ahead wind powers after t. There-
fore, we measure rmse(t), that is, the root mean square error over the forecasts
ẑ[t+ 1], . . . z[tn] of the day.

The forecasting ability of our cluster-based model is compared to the forecast-
ing ability of a regressionmodel. For this comparative study, we consider the data
mining system CLUS [3] as a competitor. CLUS (http://dtai.cs.kuleuven.be
/clus/) is a decision tree induction system that implements the predictive clus-
tering framework. This framework unifies unsupervised clustering and predictive
modeling and allows for a natural extension to more complex prediction settings
such as multi-target learning. For each time point t of a day, we formulate a
multi target regression problem where each wind power measured before t in the
day is dealt as a descriptive (independent) variable, while each wind power mea-
sured after t in the day is dealt as target variable. By using the monthly-defined
training set we learn a predictive clustering tree for each time point t. We use
the predictive clustering tree learned with descriptive variables associated to the
daily measures before t, in order to forecast the wind power values after t.

http://dtai.cs.kuleuven.be/clus/
http://dtai.cs.kuleuven.be/clus/
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Results and Discussion We describe results of our evaluation of both clustering
and forecasting phases.

Clustering Evaluation. The clustering phase is repeated by varying the radius
threshold of the QT clustering. The radius is computed as a percentage of the
maximum dissimilarity between pairs of time series in the training set. Formally,

r(M) = r% ∗ max
z1,z2∈D(M)

d(Z1, Z2), (4)

where M is a calendar month, D(M) is a training data set collected for M , r(M)
is the QT radius chosen for discovering a cluster model associated with the month
M and d(·, ·) is the dissimilarity measure computed as reported in Formula 2.
Figures 5(a)-5(f) 6(a)-6(f) show the number of clusters detected, monthly, by
varying the radius percentage of Formula 4 between 5% and 100%. They also
show the Davies Bouldein value for each computed cluster model. We can observe
that, in general, a local minimum of the Davis Boldein index is achieved when
the QT radius is between 20% and 30% of maximum dissimilarity between the
training time series. The number of clusters in the clustering model achieved with
these thresholds is always between 2 and 3. This means that few day-ahead time
series prototypes can allow us to summarize efficaciously observed data. Based
on this analysis, we select the cluster model discovered with r% = 25% as radius
percentage, in order to forecast wind powers in new days. This cluster model
is used for the forecasting evaluation. As example, the January-stamped model
learned with this parameter set-up, is reported in Figure 7. We can observe that
this model provides also a descriptive pattern of the wind power produced in the
training period.

Table 1. Cluster-based forecasting model vs CLUS model: The result of the pairwise
Wilcoxon signed rank test comparing errors of the two models is reported in the second
column. + (-) means that the cluster model is better (worse) than the predictive model
learned by CLUS. ++ (–) is reported in the case H0 (hypothesis of equal performance)
is rejected at the 0.05 significance level.

testing day Wilcoxon test (rmse) p value testing day Wilcoxon test (rmse) p value 1

04-10-2007 - .20 01-01-2010 – < .05
15-11-2007 ++ < .05 16-03-2010 + .71
18-12-2007 ++ < .05 23-04-2010 + .98

Forecasting Evaluation. Figures 8(a)-8(f) report the root means squared errors
of the forecasts computed until dying day. In order to compare the predictive
capabilities of the cluster-based forecasting model and CLUS model, we use the
non-parametric Wilcoxon two-sample paired signed rank test. Results of this
statistical test are collected in Table 1. Finally, the computation times spent
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(a) January (b) February

(c) March (d) April

(e) May (f) June

Fig. 5. Cluster models January-June: Number of cluster (nC on X axis) and Davies
Bouldein value (Y axis) by varying the QT radius percentage (r% on X axis)

to compute the yearlong model used for the forecasting phase are reported in
Table 2. We observe that, for this comparison, we computed one cluster model
monthly with out algorithm, while we computed 132 predictive clustering trees
monthly with CLUS. The analysis of these results reveals that our algorithm
gives statistically better forecasts than CLUS in two out of six testing days (++
in Table 1), whereas CLUS performs statistically better than our algorithm in
only one testing day (– in Table 1). For the other testing days, results obtained
by our algorithm are generally better than results obtained by CLUS, but not
significantly (+ in Table 1). On the other hand, the cluster model computed by
our algorithm provides an interpretable description of the expected day-ahead
trend of the wind power, which is missed by CLUS (see Figure 7). Finally,
computing a single cluster model monthly is less expensive than computing 132
predictive clustering trees monthly.
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(a) July (b) August

(c) September (d) October

(e) November (f) December

Fig. 6. Cluster models July-December: Number of cluster (nC on X axis) and Davies
Bouldein value (Y axis) by varying the QT radius percentage (r% on X axis)

Fig. 7. The January-stamped cluster model mined from the wind power data collected
on January 2008 and January 2009
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(a) 04-10-2007 (b) 15-11-2007

(c) 18-12-2007 (d) 01-01-2010

(e) 16-03-2010 (f) 23-04-2010

Fig. 8. Cluster-based forecasting model vs CLUS model: for each time point t (X axis)
of the calendar day (t ≥ 02 : 00), rmse(t) is plotted (Y axis)

Table 2. Cluster-based forecasting model vs CLUS model: The total time (in ms)
spent to compute the yearlong forecasting model. Times are averaged on five trials

Cluster-based forecasting model CLUS model

580 551.49e3

7 Conclusion

This paper presents a data mining system that leverages the power of the time
series cluster analysis for producing day-ahead forecasts of the wind power. The
presented study investigates the efficacy of the proposed model compared to a
state of art regression model. As future work, we plan to fit the cluster modeling
phase to (multiple) data collected from multiple turbines, in order to account
for the property of spatial autocorrelation of the wind power. Furthermore, we
intend to investigate the performance alternative dissimilarity measures (e.g. the
traditional Euclidean distance, the Dynamic Time Warping) in the clustering
phase, the discovery of clustering models at fine-grained (e.g. week) and coarse-
grained (e.g. quarter or season) level, as well as the use of predictive clustering
framework defined for time series in the forecasting phase [5].
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Abstract. Feature selection is an important preprocessing step in data
mining, which has an impact on both the runtime and the result quality
of the subsequent processing steps. While there are many cases where hi-
erarchic relations between features exist, most existing feature selection
approaches are not capable of exploiting those relations. In this paper,
we introduce a method for feature selection in hierarchical feature spaces.
The method first eliminates redundant features along paths in the hier-
archy, and further prunes the resulting feature set based on the features’
relevance. We show that our method yields a good trade-off between
feature space compression and classification accuracy, and outperforms
both standard approaches as well as other approaches which also exploit
hierarchies.

Keywords: Feature Subset Selection, Hierarchical Feature Spaces, Fea-
ture Space Compression.

1 Introduction

In machine learning and data mining, data is usually described as a vector of
features or attributes, such as the age, income, and gender of a person. Based on
this representation, predictive or descriptive models are built.

For many practical applications, the set of features can be very large, which
leads to problems both with respect to the performance as well as the accuracy
of learning algorithms. Thus, it may be useful to reduce the set of features in a
preprocessing step, i.e., perform a feature selection [2,8]. Usually, the goal is to
compress the feature space as good as possible without a loss (or even with a
gain) in the accuracy of the model learned on the data.

In some cases, external knowledge about attributes exist, in particular about
their hierarchies. For example, a product may belong to different categories,
which form a hierarchy (such as Headphones < Accessories < Consumer Elec-
tronics). Likewise, hyponym and hyperonym relations can be exploited when
using bag-of-words features for text classification [3], or hierarchies defined by
ontologies when generating features from Linked Open Data [10].

In this paper, we introduce an approach that exploits hierarchies for feature
selection in combination with standard metrics, such as information gain or
correlation. With an evaluation on a number of synthetic and real world datasets,

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 288–300, 2014.
c© Springer International Publishing Switzerland 2014



Feature Selection in Hierarchical Feature Spaces 289

we show that using a combined approach works better than approaches not using
the hierarchy, and also outperforms existing approaches for feature selection that
exploit the hierarchy.

The rest of this paper is structured as follows. In section 2, we formally define
the problem of feature selection in hierarchical feature spaces. In section 3, we
give an overview of related work. Section 4, we introduce our approach, followed
by an evaluation in section 5. We conclude with a summary and an outlook on
future work.

2 Problem Statement

We describe each instance as an n-dimensional binary feature vector
〈v1, v2, ..., vn〉, with vi ∈ {0, 1} for all 1 ≤ i ≤ n. We call V = {v1, v2, ..., vn} the
feature space.

Furthermore, we denote a hierarchic relation between two features vi and vj
as vi < vj , i.e., vi is more specific than vj . For hierarchic features, the following
implication holds:

vi < vj → (vi = 1→ vj = 1) , (1)

i.e., if a feature vi is set, then vj is also set. Using the example of product
categories, this means that a product belonging to a category also belongs to
that product’s super categories. Note that the implication is not symmetric, i.e.,
even if vi = 1→ vj = 1 holds for two features vi and vj , they do not necessarily
have to be in a hierarchic relation. We furthermore assume transitivity of the
hierarchy, i.e.,

vi < vj ∧ vj < vk → vi < vk (2)

The problem of feature selection can be defined as finding a projection of V to
V ′, where V ′ ⊆ V . Ideally, V ′ is much smaller than V .

Feature selection is usually regarded with respect to a certain problem, where
a solution S using a subset V ′ of the features yields a certain performance p(V ′),
i.e., p is a function

p : P(V )→ [0, 1], (3)

which is normalized to [0, 1] without loss of generality. For example, for a clas-
sification problem, the accuracy achieved by a certain classifier on a feature
subset can be used as the performance function p. Besides the quality, another
interesting measure is the feature space compression, which we define as

c(V ′) := 1− |V ′|
|V | (4)

Since there is a trade-off between the feature set and the performance, an overall
target function is, e.g., the harmonic mean of p and c.

For most problems, we expect the optimal features to be somewhere in the
middle of the hierarchy, while the most general features are often too general
for predictive models, and the most specific ones are too specific. The hierarchy
level of the most valuable features depends on the task at hand. Fig. 1 shows a
small part of the hierarchical feature space extracted for dataset Sports Tweets
T (see section 5.1). If the task is to classify tweets into sports and non sports
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Fig. 1. An example hierarchy of binary features

related, the optimal features are those in the upper rectangle, if the task is to
classify them by different kinds of sports, then the features in the lower rectangle
are more valuable.

3 Related Work

Feature selection is a very important and well studied problem in the literature.
The objective is to identify features that are correlated with or predictive of
the class label. Generally, all feature selection methods can be divided into two
broader categories: wrapper methods and filter methods (John et al. [4] and Blum
et al. [1]). The wrapper methods use the predictive accuracy of a predetermined
learning method to evaluate the relevance of the feature sub set. Because of
their large computational complexity, the wrapper methods are not suitable
to be used for large feature spaces. Filter methods are trying to select the most
representative sub-set of features based on a criterion used to score the relevance
of the features. In the literature several techniques for scoring the relevance of
features exist, e.g., Information Gain, χ2 measure, Gini Index, and Odds Ratio.
However, standard feature selection methods tend to select the features that have
the highest relevance score without exploiting the hierarchical structure of the
feature space. Therefore, using such methods on hierarchical feature spaces, may
lead to the selection of redundant features, i.e., nodes that are closely connected
in the hierarchy and carry similar semantic information.

While there are a lot of state-of-the-art approaches for feature selection in
standard feature space [8], only few approaches for feature selection in hierarchi-
cal feature space are proposed in the literature. Jeong et al. [3] propose the TSEL
method using a semantic hierarchy of features based on WordNet relations. The
presented algorithm tries to find the most representative and most effective fea-
tures from the complete feature space. To do so, they select one representative
feature from each path in the tree, where path is the set of nodes between each
leaf node and the root, based on the lift measure, and use χ2 to select the most
effective features from the reduced feature space.

Wang et al. [13] propose a bottom-up hill climbing search algorithm to find
an optimal subset of concepts for document representation. For each feature in
the initial feature space, they use a kNN classifier to detect the k nearest neigh-
bors of each instance in the training dataset, and then use the purity of those
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Algorithm 1. Algorithm for initial hierarchy selection strategy.

Data: H : Feature hierarchy, F : Feature set, t: Importance similarity threshold,
s:= Importance similarity measurement {”Information Gain”,
”Correlation”}

Result: F : Feature set
1 L := leaf nodes from hierarchy H
2 foreach leaf l ∈ L do
3 D := direct ascendants of node l
4 foreach node d ∈ D do
5 similarity = 0
6 if s == ”Information Gain” then
7 similarity = 1-ABS(IGweight(d)-IGweight(l))
8 else
9 similarity =Correlation(d,l)

10 end
11 if similarity ≥ threshold then
12 remove l from F
13 remove l from H
14 break

15 end

16 end
17 add direct ascendants of l to L

18 end

instances to assign scores to features. As shown in section 5.3, the approach is
computationally expensive, and not applicable for datasets with a large number
of instances. Furthermore, the approach uses a strict policy for selecting features
that are as high as possible in the feature hierarchy, which may lead to selecting
low-value features from the top levels of the hierarchy.

Lu et al. [6] describe a greedy top-down search strategy for feature selection
in a hierarchical feature space. The algorithm starts with defining all possible
paths from each leaf node to the root node of the hierarchy. The nodes of each
path are sorted in descending order based on the nodes’ information gain ratio.
Then, a greedy-based strategy is used to prune the sorted lists. Specifically, it
iteratively removes the first element in the list and adds it to the list of selected
features. Then, removes all ascendants and descendants of this element in the
sorted list. Therefore, the selected features list can be interpreted as a mixture
of concepts from different levels of the hierarchy.

4 Approach

Following the implication shown in Eq. 1, we can assume that if two features
subsume each other, they are usually highly correlated to each other and have
similar relevance for building the model. Following the definition for ”relevance”
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by Blum et al. [1], two features vi and vj have similar relevance if 1 − |R(vi)−
R(vj)| ≥ t, t→ [0, 1], where t is a user specified threshold.

The core idea of our SHSEL approach is to identify features with similar rele-
vance, and select the most valuable abstract features, i.e. features from as high as
possible levels of the hierarchy, without losing predictive power. In our approach,
to measure the similarity of relevance between two nodes, we use the standard
correlation and information gain measure. The approach is implemented in two
steps, i.e, initial selection and pruning. In the first step, we try to identify, and
filter out the ranges of nodes with similar relevance in each branch of the hier-
archy. In the second step we try to select only the most valuable features from
the previously reduced set.

The initial selection algorithm is shown in Algorithm 1. The algorithm takes
as input the feature hierarchy H , the initial feature set F , a relevance similarity
threshold t, and the relevance similarity measure s to be used by the algorithm.
The relevance similarity threshold is used to decide whether two features would
be similar enough, thus it controls how many nodes from different levels in the
hierarchy will be merged. The algorithm starts with identifying the leaf nodes
of the feature hierarchy. Then, starting from each leaf node l, it calculates the
relevance similarity value between the current node and its direct ascendants d.
The relevance similarity value is calculated using the selected relevance measure
s. If the relevance similarity value is greater or equal to the similarity thresh-
old t, then the node from the lower level of the hierarchy is removed from the
feature space F . Also, the node is removed from the feature hierarchy H , and
the paths in the hierarchy are updated accordingly. For the next iteration, the
direct ascendants of the current node are added in the list L.

The algorithm for pruning is shown in Algorithm 2. The algorithm takes as
input the feature hierarchy H and the previously reduced feature set F . The
algorithm starts with identifying all paths P from all leaf nodes to the root node
of the hierarchy. Then, for each path p it calculates the average information gain
of all features on the path p. All features that have lower information gain than
the average information gain on the path, are removed from the feature space F ,
and from the feature hierarchy H . In cases where a feature is located on more
than one path, it is sufficient that the feature has greater information gain than
the average information gain on at least one of the paths. This way, we prevent
removing relevant features. Practically, the paths from the leafs to the root node,
as well as the average information gain per path, can already be precomputed
in the initial selection algorithm. The loop in the lines 3 − 6 is only added for
illustrating the algorithm.

Fig. 2a shows an example hierarchical feature set, with the information gain
value of each feature. Applying the initial selection algorithm on that input
hierarchical feature set, using information gain as a relevance similarity mea-
surement, would reduce the feature set as shown in Fig. 2b. We can see that all
feature pairs that have high relevance similarity value, are replaced with only
one feature. However, the feature set still contains features that have a rather
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Algorithm 2. Algorithm for pruning strategy.

Data: H : Feature hierarchy, F : Feature set
Result: F : Feature set

1 L := leaf nodes from hierarchy H
2 P := ∅
3 foreach leaf l ∈ L do
4 p = paths from l to root of H
5 add p to P

6 end
7 foreach path p ∈ P do
8 avg = Information gain average of path p
9 foreach node n ∈ path p do

10 if IGweight(n) < avg then
11 remove n from F
12 remove n from H

13 end

14 end

15 end

a) Initial Feature Space b) SHSEL Initial Selection c) SHSEL Pruning

Fig. 2. Illustration of the two steps of the proposed hierarchical selection strategy

small relevance value. In Fig. 2c we can see that running the pruning algorithm,
removes the unnecessary features.

For n features and m instances, iterating over the features, and computing
the correlation or information gain with each feature’s ancestor takes O(am),
given that a feature has an average of a ancestors.1 Thus, the overall compu-
tational complexity is O(amn). It is, however, noteworthy that the selection of
the features in both algorithms can be executed in parallel.

5 Evaluation

We perform an evaluation, both on real and on synthetic datasets, and com-
pare different configurations of our approach to standard approaches for feature
selection, as well as the approaches described in Section 3.

1 a is 1 in the absence of multiple inheritance, and close to 1 in most practical cases.
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5.1 Datasets

In our evaluation, we used five real-world datasets and six synthetically gener-
ated datasets. The real-world datasets cover different domains, and are used for
different classification tasks. Initially, the datasets contained only the instances
with a given class label, which afterwards were extended with hierarchical fea-
tures.

For generating the hierarchical features, we used the RapidMiner Linked Open
Data extension [11], which is able to identify Linked Open Data resources inside
the given datasets, and extract different types of features from any Linked Open
Data source. In particular, we used DBpedia Spotlight [7], which annotates a
text with concepts in DBpedia, a structured data version of Wikipedia [5]. From
those, we can extract further features, such as the types of the concepts found
in a text. For example, when the concept Kobe Bryant is found in a text, we can
extract a hierarchy of types (such as Basketball Player < Athlete < Person),
as well as a hierarchy of categories (such as Shooting Guards < Basketball <
Sports). The generation of the features is independent from the class labels of
the instances (i.e., the classification task), and it is completely unbiased towards
any of the feature selection approaches.

The following datasets were used in the evaluation (see Table 1):

– Sports Tweets T dataset was used for existing Twitter topic classifier2, where
the classification task is to identify sports related tweets. The hierarchical
features were generated by extracting all types of the discovered DBpedia
concepts in each tweet.

– Sports Tweets C is the same dataset as the previous one, but using categories
instead of types.

– The Cities dataset was compiled from the Mercer ranking list of the most
and the least livable cities, as described in [9]. The classification task is
to classify each city into high, medium, and low livability. The hierarchical
features were generated by extracting the types for each city.

– The NY Daily dataset is a set of crawled news texts, which are augmented
with sentiment scores3. Again, the hierarchical features were generated by
extracting types.

– The StumbleUpon dataset is the training dataset used for the StumbleUpon
Evergreen Classification Challenge4. To generate the hierarchical features,
we used the Open Directory Project5 to extract categories for each URL in
the dataset.

To generate the synthetic datasets, we start with generating features in a
flat hierarchy, i.e. all features are on the same level. The initial features were

2 https://github.com/vinaykola/twitter-topic-classifier/blob/master/

training.txt
3 http://dws.informatik.uni-mannheim.de/en/research/identifying-disputed-

topics-in-the-news
4 https://www.kaggle.com/c/stumbleupon
5 http://www.dmoz.org/

https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
https://github.com/vinaykola/twitter-topic-classifier/blob/master/training.txt
http://dws.informatik.uni-mannheim.de/en/research/identifying-disputed-topics-in-the-news
http://dws.informatik.uni-mannheim.de/en/research/identifying-disputed-topics-in-the-news
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Table 1. Evaluation Datasets

Name Features # Instances Class Labels # Features

Sports Tweets T DBpedia Direct Types 1,179 positive(523); negative(656) 4,082

Sports Tweets C DBpedia Categories 1,179 positive(523); negative(656) 10,883

Cities DBpedia Direct Types 212 high(67); medium(106); low(39) 727

NY Daily Headings DBpedia Direct Types 1,016 positive(580); negative(436) 5,145

StumbleUpon DMOZ Categories 3,020 positive(1,370); negative(1,650) 3,976

generated using a polynomial function, and then discretizing each attribute into
a binary one. These features represent the middle layer of the hierarchy, which
are then used to build the hierarchy upwards and downwards. The hierarchical
feature implication (1) and the transitivity rule (2) hold for all generated features
in the hierarchy. By merging the predecessors of two or more neighboring nodes
from the middle layer, we are able to create more complex branches inside the
hierarchy. We control the depth and the branching factor of the hierarchy with
two parameters D and B, respectively. Each of the datasets that we use for the
evaluation contains 1000 instances, and contains 300 features in the middle layer.
The datasets are shown in Table 2.

5.2 Experiment Setup

In order to demonstrate the effectiveness of our proposed feature selection in
hierarchical feature space, we compare the proposed approach with the following
methods:

– CompleteFS : the complete feature set, without any filtering.
– SIG: standard feature selection based on information gain value.
– SC : Standard feature selection based on feature correlation.
– TSEL Lift : tree selection approach proposed in [3], which selects the most

representative features from each hierarchical branch based on the lift value.
– TSEL IG: this approach follows the same algorithm as TSEL Lift, but uses

information gain instead of lift.
– HillClimbing: bottom-up hill-climbing approach proposed in [13].We use k =

10 for the kNN classifier used for scoring.
– GreedyTopDown: greedy based top-down approach described in [6], which

tries to select the most valuable features from different levels of the hierarchy.
– initialSHSEL IG and initialSHSEL C : our proposed initial selection ap-

proach shown with Algorithm 1, using information gain and correlation as
relevance similarity measurement, respectively.

– pruneSHSEL IG and pruneSHSEL C : our proposed pruning selection ap-
proach shown with Algorithm 2, applied on previously reduced feature set,
using initialSHSEL IG and initialSHSEL C, respectively.

For all algorithms involving a threshold (i.e., SIG, SC, and the variants of
SHSEL), we use thresholds between 0 and 1 with a step width of 0.01.

For conducting the experiments, we used the RapidMiner machine learning
platform and the RapidMiner development library. For SIG and SC, we used the
built-in RapidMiner operators. The proposed approach for feature selection, as
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Table 2. Synthetic Evaluation Datasets

Name Feature Generation Strategy # Instances Classes # Features

S-D2-B2 D=2; B=2 1,000 positive(500); negative(500) 1,201

S-D2-B5 D=2; B=5 1,000 positive(500); negative(500) 1,021

S-D2-B10 D=2; B=10 1,000 positive(500); negative(500) 961

S-D4-B2 D=4; B=2 1,000 positive(500); negative(500) 2,101

S-D4-B5 D=4; B=5 1,000 positive(500); negative(500) 1,741

S-D4-B10 D=4; B=10 1,000 positive(500); negative(500) 1,621

well as all other related approaches, were implemented in a separate operator
as part of the RapidMiner Linked Open Data extension. All experiments were
run using standard laptop computer with 8GB of RAM and Intel Core i7-3540M
3.0GHz CPU. The RapidMiner processes and datasets used for the evaluation
can be found online6.

5.3 Results

To evaluate how well the feature selection approaches perform, we use three clas-
sifiers for each approach on all datasets, i.e., Näıve Bayes, k-Nearest Neighbors
(with k = 3), and Support Vector Machine. For the latter, we use Platt’s sequen-
tial minimal optimization algorithm and a polynomial kernel function [12]. For
each of the classifiers we were using the default parameters values in RapidMiner,
and no further parameter tuning was undertaken. The classification results are
calculated using stratified 10-fold cross validation, where the feature selection is
performed separately for each cross-validation fold. For each approach, we report
accuracy, feature space compression (4), and their harmonic mean.

Results on Real World Datasets. Table 3 shows the results of all approaches.
Because of the space constrains, for the SIG and SC approaches, as well as
for our proposed approaches, we show only the best achieved results. The best
results for each classification model are marked in bold. As we can observe from
the table, our proposed approach outperforms all other approaches in all five
datasets for both classifiers in terms of accuracy. Furthermore, we can conclude
that our proposed approach delivers the best feature space compression for four
out of five datasets. When looking at the harmonic mean, our approach also
outperforms all other approaches, most often with a large gap. From the results
for the harmonic mean we can conclude that the pruneSHSEL IG approach, in
most of the cases, delivers the best results

Additionally, we report the runtime of all approaches on different datasets in
Fig. 3. The runtime of our approaches is comparable to the standard feature
selection approach, SIG, runtime. The HillClimbing approach has the longest
runtime due to the repetitive calculation of the kNN for each instance. Also, the
standard feature selection approach SC shows a long runtime, which is due to
the computation of correlation between all pairs of features in the feature set.

6 http://dws.informatik.uni-mannheim.de/en/research/feature-selection-

in-hierarchical-feature-spaces

http://dws.informatik.uni-mannheim.de/en/research/feature-selection-in-hierarchical-feature-spaces
http://dws.informatik.uni-mannheim.de/en/research/feature-selection-in-hierarchical-feature-spaces
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Table 3. Results on real world datasets

Sports Tweets T Sports Tweets C StumbleUpon Cities NY Daily Headings

NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM

Classification Accuracy

CompleteFS .655 .759 .797 .943 .920 .946 .582 .699 .730 .625 .562 .684 .534 .586 .577

initialSHSEL IG .836 .768 .824 .974 .768 .953 .661 .709 .733 .671 .609 .674 .688 .629 .635

initialSHSEL C .819 .765 .811 .946 .937 .953 .689 .723 .732 .640 .671 .683 .547 .580 .596

pruneSHSEL IG .791 .793 .773 .909 .909 .946 .717 .695 .737 .687 .669 .689 .688 .659 .671

pruneSHSEL C .786 .791 .772 .946 .918 .935 .711 .707 .732 .656 .687 .646 .665 .659 .661

SIG .819 .788 .814 .966 .936 .940 .681 .707 .729 .656 .640 .671 .675 .652 .668

SC .816 .765 .813 .937 .918 .932 .587 .711 .726 .625 .656 .677 .534 .583 .606

TSEL Lift .641 .740 .787 .836 .855 .893 .570 .613 .690 0 0 0 .498 .544 .565

TSEL IG .632 .734 .782 .923 .909 .935 .579 .661 .724 .640 .580 .580 .521 .560 .610

HillClimbing .528 .647 .742 .823 .836 .876 .548 .653 .683 .622 .562 .551 .573 .583 .530

GreedyTopDown .658 .788 .800 .943 .929 .944 .582 .698 .727 .625 .562 .679 .534 .570 .595

Feature Space Compression

initialSHSEL IG .456 .207 .222 .318 .708 .288 .672 .843 .642 .781 .902 .779 .858 .322 .631

initialSHSEL C .231 .173 .290 .321 .264 .228 .993 .445 .644 .184 .121 .116 .285 .572 .790

pruneSHSEL IG .985 .986 .969 .895 .907 .916 .976 .957 .975 .823 .466 .452 .912 .817 .817

pruneSHSEL C .971 .965 .965 .897 .857 .861 .966 .968 .959 .305 .265 .308 .519 .586 .566

SIG .360 .741 .038 .380 .847 .574 .940 .615 .604 .774 .775 04 .240 .289 .565

SC .667 .712 .635 .887 .710 .792 .585 .821 .712 .631 .704 .598 .632 .927 .620

TSEL Lift .247 .247 .247 .511 .511 .511 .412 .412 .412 0 0 0 .956 .956 .956

TSEL IG .920 .920 .920 .522 .522 .522 .471 .471 .471 .126 .126 .126 .926 .926 .926

HillClimbing .770 .770 .770 .748 .748 .748 .756 .756 .756 .817 .817 .817 .713 .713 .713

GreedyTopDown .136 .136 .136 .030 0.030 .030 .285 .285 .285 .048 .048 .048 .135 .135 .135

Harmonic Mean of Classification Accuracy and Feature Space Compression

initialSHSEL IG .590 .326 .350 .480 .737 .442 .666 .770 .684 .722 .727 .723 .764 .426 .633

initialSHSEL C .360 .282 .427 .479 .412 .368 .814 .551 .686 .286 .205 .199 .375 .576 .679

pruneSHSEL IG .877 .879 .860 .902 .908 .931 .827 .805 .840 .749 .549 .546 .784 .729 .737

pruneSHSEL C .869 .869 .858 .921 .886 .896 .820 .817 .830 .416 .383 .417 .583 .620 .610

SIG .500 .764 .073 .545 .889 .713 .789 .658 .660 .710 .701 08 .354 .401 .612

SC .734 .738 .713 .911 .801 .856 .586 .762 .719 .628 .679 .635 .579 .716 .613

TSEL Lift .356 .370 .376 .634 .640 .650 .479 .493 .516 0 0 0 .655 .693 .711

TSEL IG .749 .817 .846 .667 .663 .670 .520 .550 .571 .211 .207 .207 .667 .698 .735

HillClimbing .626 .703 .756 .784 .790 .807 .636 .701 .718 .706 .666 .658 .635 .641 .608

GreedyTopDown .225 .232 .232 0.058 .058 .058 .383 .405 .409 .089 .088 .089 .216 .219 .221

Results on Synthetic Datasets. Table 4 shows the results for the different
synthetic datasets. Our approaches achieve the best results, or same results as
the standard feature selection approach SIG. The results for the feature space
compression are rather mixed, while again, our approach outperforms all other
approaches in terms of the harmonic mean of accuracy and feature space com-
pression. The runtimes for the synthetic datasets, which we omit here, show the
same characteristics as for the real-world datasets.

Overall, pruneSHSEL IG delivers the best results on average, with an impor-
tance similarity threshold t in the interval [0.99; 0.9999]. When using correlation,
the results show that t should be chosen greater than 0.6. However, the selection
of the approach and the parameters’ values highly depends on the given dataset,
the given data mining task, and the data mining algorithm to be used.
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Table 4. Results on synthetic datasets

S D2 B2 S D2 B5 S D2 B10 S D4 B2 S D4 B5 S D4 B10

NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM NB KNN SVM

Classification Accuracy

CompleteFS .565 .500 .500 .700 .433 .530 .600 .466 .610 .666 .600 .560 .566 .566 .600 .533 .466 .630

initialSHSEL IG 1.0 .833 .880 1.0 .766 .850 1.0 .866 .890 1.0 .866 .880 1.0 .936 .870 .956 .733 .910

initialSHSEL C .666 .633 .833 .700 .633 .740 .666 .633 .780 .766 .666 .740 .600 .633 .730 .633 .533 .860

pruneSHSEL IG 1.0 .933 .920 1.0 .800 .910 1.0 .833 .960 1.0 .866 .960 1.0 .866 .980 1.0 .800 .986

pruneSHSEL C .866 .666 .910 .866 .700 .900 .800 .766 .900 .800 .766 .910 .933 .833 .880 .933 .666 .930

SIG .960 .900 .830 1.0 .800 .900 .930 .766 .933 1.0 .833 .933 1.0 .900 .966 1.0 .733 .966

SC .700 .700 .733 .700 .666 .733 .730 .600 .700 .733 .666 .700 .700 .666 .766 .700 .700 .733

TSEL Lift .553 .500 .540 .633 .666 .630 .400 .500 .540 .566 .533 .540 .500 .566 .510 .466 .533 .480

TSEL IG .866 .533 .810 .666 .566 .700 .733 .500 .770 .766 .666 .720 .533 .600 .700 .500 .566 .710

HillClimbing .652 .633 .630 .633 .636 .580 .633 .566 .640 .676 .566 .620 .676 .534 .586 .689 .523 .590

GreedyTopDown .666 .600 .800 .703 .633 .780 .633 .466 .830 .703 .566 .820 .752 .700 .850 .833 .500 .830

Feature Space Compression

initialSHSEL IG .846 .572 .864 .948 .907 .880 .861 .810 .886 .914 .789 .740 .929 .868 .746 .912 .750 .918

initialSHSEL C .267 .557 .875 .104 .888 .938 .279 .956 .656 .441 .893 .890 .831 .742 .786 .627 .805 .805

pruneSHSEL IG .930 .911 .796 .925 .933 .824 .899 .944 .850 .956 .877 .877 .955 .969 .863 .956 .873 .791

pruneSHSEL C .697 .896 .800 .639 .636 .667 .781 .696 .823 .795 .776 .849 .692 .726 .742 .731 .826 .750

SIG .922 .922 .861 .842 .842 .753 .865 .930 .865 .886 .595 .708 .891 .719 .525 .900 .704 .704

SC .717 .909 .880 .693 .900 .159 .750 .692 .869 .379 .493 .769 .628 .736 .742 .667 .727 .289

TSEL Lift .750 .750 .750 .706 .706 .706 .687 .687 .687 .857 .857 .857 .827 .827 .827 .814 .814 .814

TSEL IG .836 .836 .836 .866 .866 .866 .856 .856 .856 .926 .926 .926 .965 .965 .965 .970 .970 .970

HillClimbing .770 .770 .770 .751 .751 .751 .805 .805 .805 .792 .792 .792 .776 .776 .776 .795 .795 .795

GreedyTopDown .399 .399 .399 .370 .370 .370 .356 .356 .356 .470 .470 .470 .404 .404 .404 .438 .438 .438

Harmonic Mean of Classification Accuracy and Feature Space Compression

initialSHSEL IG .917 .679 .872 .973 .831 .865 .925 .837 .888 .955 .826 .804 .963 .901 .803 .933 .741 .914

initialSHSEL C .381 .592 .853 .182 .739 .827 .394 .762 .713 .560 .763 .808 .697 .683 .757 .630 .641 .832

pruneSHSEL IG .964 .922 .854 .961 .861 .865 .946 .885 .901 .977 .871 .916 .977 .915 .918 .977 .835 .878

pruneSHSEL C .773 .764 .851 .736 .666 .766 .790 .729 .859 .797 .771 .878 .795 .776 .805 .819 .737 .830

SIG .940 .911 .845 .914 .820 .820 .896 .840 .898 .940 .694 .805 .942 .799 .680 .947 .718 .815

SC .708 .791 .800 .696 .766 .262 .740 .642 .775 .500 .567 .733 .662 .700 .754 .683 .713 .415

TSEL Lift .636 .600 .628 .667 .685 .665 .505 .579 .605 .682 .657 .662 .623 .672 .631 .593 .644 .604

TSEL IG .851 .651 .822 .753 .685 .774 .790 .631 .810 .839 .775 .810 .687 .740 .811 .660 .715 .820

HillClimbing .706 .695 .693 .687 .689 .654 .709 .665 .713 .730 .660 .695 .723 .633 .668 .738 .631 .677

GreedyTopDown .499 .479 .533 .485 .467 .502 .456 .404 .499 .564 .514 .598 .526 .513 .548 .574 .467 .573

6 Conclusion and Outlook

In this paper, we have proposed a feature selection method exploiting hierarchic
relations between features. It runs in two steps: it first removes redundant fea-
tures along the hierarchy’s paths, and then prunes the remaining set based on
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the features’ predictive power. Our evaluation has shown that the approach out-
performs standard feature selection techniques as well as with recent approaches
which use hierarchies.

So far, we have only considered classification problems. A generalizing of the
pruning step to tasks other than classification would be an interesting extension.
While a variant for regression tasks seems to be rather straight forward, other
problems, like association rule mining, clustering, or outlier detection, would
probably require entirely different pruning strategies.

Furthermore, we have only regarded simple hierarchies so far. When features
are organized in a complex ontology, there are other relations as well, which
may be exploited for feature selection. Generalizing the approach to arbitrary
relations between features is also a relevant direction of future work.

Acknowledgements. The work presented in this paper has been partly funded
by the German Research Foundation (DFG) under grant number PA 2373/1-1
(Mine@LOD).
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8. Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: A survey and
experimental evaluation. In: International Conference on Data Mining (ICDM),
pp. 306–313. IEEE (2002)

9. Paulheim, H.: Generating possible interpretations for statistics from linked open
data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012)



300 P. Ristoski and H. Paulheim

10. Paulheim, H., Fürnkranz, J.: Unsupervised Generation of Data Mining Features
from Linked Open Data. In: International Conference on Web Intelligence, Mining,
and Semantics, WIMS 2012 (2012)

11. Paulheim, H., Ristoski, P., Mitichkin, E., Bizer, C.: Data mining with background
knowledge from the web. In: RapidMiner World (to appear, 2014)

12. Platt, J.C.: Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical report, Advances in Kernel Methods - Support Vector
Learning (1998)

13. Wang, B.B., Bob Mckay, R.I., Abbass, H.A., Barlow, M.: A comparative study
for domain ontology guided feature extraction. In: Australasian Computer Science
Conference (2003)



Incorporating Regime Metrics into Latent

Variable Dynamic Models to Detect
Early-Warning Signals of Functional Changes

in Fisheries Ecology

Neda Trifonova1, Daniel Duplisea2, Andrew Kenny3, David Maxwell3,
and Allan Tucker1

1 Department of Computer Science, Brunel University, London, UK
2 Fisheries and Oceans, Canada

3 Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK

Abstract. In this study, dynamic Bayesian networks have been applied
to predict future biomass of geographically different but functionally
equivalent fish species. A latent variable is incorporated to model func-
tional collapse, where the underlying food web structure dramatically
changes irrevocably (known as a regime shift). We examined if the use
of a hidden variable can reflect changes in the trophic dynamics of the
system and also whether the inclusion of recognised statistical metrics
would improve predictive accuracy of the dynamic models. The hidden
variable appears to reflect some of the metrics’ characteristics in terms
of identifying regime shifts that are known to have occurred. It also ap-
pears to capture changes in the variance of different species biomass.
Including metrics in the models had an impact on predictive accuracy
but only in some cases. Finally, we explore whether exploiting expert
knowledge in the form of diet matrices based upon stomach surveys is
a better approach to learning model structure than using biomass data
alone when predicting food web dynamics. A non-parametric bootstrap
in combination with a greedy search algorithm was applied to estimate
the confidence of features of networks learned from the data, allowing us
to identify pairwise relations of high confidence between species.

1 Introduction

Some spectacular collapses in fish stocks have occurred in the past 20 years but
the most notable is the once largest cod (Gadus morhua) stock in the world, the
Northern cod stock off eastern Newfoundland, which experienced a 99% decline in
biomass (the total quantity or weight of organisms in a given area or volume). Such
regions have experienced a “regime shift” ormoved to an “alternative stable state”
and are unlikely to return to a cod dominated community without some influence
beyond human control [9]. The main question for environmental management is
whether such changes could have been detected by early-warning signals. There is
a growing literature that addresses indicators that can be used as early-warning
signals of an approaching critical transition (or regime shift) [3].

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 301–312, 2014.
c© Springer International Publishing Switzerland 2014
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Regime (functional) changes can affect the abundance and distribution of fish
populations, either directly or by affecting prey or predator populations [9]. Dif-
ferent species may have similar functional roles (the functional status of an organ-
ism) within a system depending on the region. For example, one species may act
as a predator of another which regulates a population in one location, but another
species may perform an almost identical role in another location. If we can model
the function of the interaction rather than the species itself, data from different
regions can be used to confirm key functional relationships, to generalise over sys-
tems and to predict impacts of forces such as fishing and climate change.

We explored functional relationships (such as predator, prey) that are gener-
alizable between different oceanic regions allowing predictions to be made about
future biomass. In particular, we exploited multiple fisheries datasets in order to
identify species with similar functional roles in different fish communities. The
species were then used to predict functional collapse in their respective regions
through the use of Dynamic Bayesian Networks (DBNs) with latent variables.
Formally, a Bayesian Network (BN) exploits the conditional independence rela-
tionships over a set of variables, represented by directed acyclic graphs (DAG)
[6]. Modelling time series is achieved by the DBN, where nodes represent vari-
ables at particular time slices [6]. Closely related to the DBN is the Hidden
Markov Model (HMM) which models the dynamics of a dataset through the
use of a latent or hidden variable. This latent variable is used to infer some
underlying state of the series and can be applied through an autoregressive link
which can capture relationships of a higher order. Hidden variables can also
be incorporated to model unobserved variables and missing data by using the
EM algorithm [2]. This represents the most challenging inference problem here
as we make computationally complex predictions involving dynamic processes.
However, the hidden variable is chosen to most easily reflect such complex inter-
dependencies between the acting variables. See Fig. 1 for an illustration of the
architecture of the DBN used in this paper including a hidden variable.

In this paper, we investigate the reliability of our modelling approach in de-
tecting early-warning signals of functional change across different geographic
regions. We explore how the latent variable reflects the regime metrics (the ap-
plied statistical indicators of functional changes in the study) and the variability
of exploited fisheries and to what extent including them in our models impacts
the expected values of the latent variable. We also explore how these models
can be used to identify species that are key to regime shifts in different re-
gions. An earlier work by [12] explores functionally equivalent species but here
we further adopt the approach to predict functional collapse by investigating
early-warning signals and comparing learned BN topology prior to and after
suspected regime changes. At larger spatial scales, although fishing can still be
the dominant driver of regime changes, the consequences of fishing are not pre-
dictable without understanding the trophic (relating to the feeding habits of
different organisms in a food chain) dynamics [9]. A clear example is the Scotian
Shelf, where fishing has led to a restructuring of the ecosystem [9]. We inves-
tigate whether exploiting expert knowledge (in the form of diet matrix, that
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represents the prey-predator functional relationships between species) of this re-
gion or learning model structure from the data alone is a better approach when
predicting food web dynamics.

Fig. 1. The Dynamic Bayesian Model with N variables used in this study where H
denotes the unmeasured hidden variable

2 Methods

We apply our modelling approach to predict species biomass and functional
change in three different geographical regions: North Sea (NS), Georges Bank
(GB) and East Scotian Shelf (ESS) (Fig. 2). For all of the datasets, the biomass
was determined from research vessel fish trawling surveys assuring consistent
sampling from year to year, resulting in 44 species for NS (1967-2009), 44 species
for GB (1963-2008), and 42 for ESS (1970-2006). Large groundfish declines oc-
curred on GB and ESS which resulted in the year 1988 being designated as a
collapse year for GB and 1992 for ESS. Despite the extremely high fishing pres-
sure in NS and complex climate-ocean interactions, it is difficult to distinguish
a radical switch in the system that might be termed a regime shift. However,
experts refer to some ecosystem changes in the period of late 1980s to mid-1990s.
In addition to survey data on fish abundance, grey seal abundance and plankton
time series were also included in the analysis.

The experiments involve the prediction of a pre-selected variable (here func-
tional collapse, represented by the latent variable) based on the values of other

Fig. 2. Regions of the three surveys (shaded area) corresponding to the three datasets:
Georges Bank (GB), East Scotian Shelf (ESS) and the North Sea (NS)
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variables (here species biomass). We select a number of species that are as-
sociated with cod collapse by using wrapper feature selection with a Bayesian
Network Classifier on GB data where the class node is a binary variable that rep-
resents functional collapse in GB. The greedy K2 search algorithm [4] is used to
build the BN classifiers. A bootstrap approach is employed to repeat the follow-
ing 1000 times: learn BN structure with the K2 algorithm and score the propor-
tion of times that links are associated with the class node during the bootstrap.
This is a form of wrapper feature selection [8] and scores each variable by taking
into account their interaction with other variables through the use of a classifier
model. Next, we identify the equivalent species in the other two datasets using
the features discovered using Algorithm 1. The functional equivalence search al-
gorithm [12] works by using a BN model, where the given function is in the form
of a predefined structure, BN1, and a set of variables, vars1, parameterised on
data1, (here a BN model parameterised on the GB data). Simulated annealing
[10] is applied to identify variables in another dataset, data2, (here species in
the ESS and NS datasets) that best fit this model. We set iterations = 1000
and tstart = 1000 as these were found through experimentation to allow con-
vergence to a good solution. The fit is scored using the log likelihood score [4].
In Algorithm 1 UnifRand represents a random value generated from uniform
distribution with limits between (0,1).

After choosing the species, we want to predict their biomass and the functional
collapse in the relevant geographic region. For example to predict functional
collapse we compute P (Ht|Xt, Xt−1), where Ht represents the hidden variable
(functional collapse) and Xt represents all observed variables at times t. First,
we infer the biomass at time t (Fig.1) by using the observed evidence and then
use the predicted variable states to infer the hidden state at time t. The hidden
variable was parameterised using the EM algorithm.

The metrics: variance and autocorrelation were calculated on a window of
data, set to size 10, so that each metric captures the value of interest over
the previous 10 years. Two sets of experiments were then conducted: one that
excludes the regime metrics to examine the expected state of the fitted hidden
variable (HDBN) and in the other, metrics were included in the model (HDBN
+ metrics) to see if they improve prediction of species biomass. Non-parametric
bootstrap analysis [6] was applied 250 times for each variant of the model to
obtain statistical validation in the predictions. An F-test was performed over
a sliding window of five years to detect any significant changes in the slope of
the hidden variable from both models before and after the expected collapse
[7]. Given a breakpoint in the time series, the minimum of this sequence of p-
values gives a potential estimate of the first signals of ecosystem change in time.
Levene’s test on homoscedasticity was performed on the variance before and
after the predicted functional change [7]. All statistical tests were reported at
5% significance level.

For the next part of the study- learning the model structure, the species
biomass data was discretised and a greedy search algorithm: REVEAL [11] was
applied to learn the structure of the DBN model for each region. The non-
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parametric bootstrap was also applied 250 times to identify statistical confidence
in the discovered network links with threshold ≥ 0.5. Features with statistical
confidence above the threshold are labelled “positive” or “negative” if the confi-
dence is below the threshold. We measure the number of “true positives”, correct
features of the generating network (based upon a pre-defined diet matrix, estab-
lished by stomach content surveys for the relevant region) or “false negatives”,
correct features labelled as negatives [6].

Algorithm 1. The functional equivalence search algorithm.

1: Input: tstart, iterations, data1, data2, vars1, BN1

2: Parameterize Bayesian Network, BN1, from data1

3: Generate randomly selected variables in data2 : vars2
4: Use vars2 to score the fit with selected model BN1 : score
5: Set bestscore = score
6: Set initial temperature: t = tstart
7: for i = 1 to iterations do
8: Randomly replace one selected variable in data2 and rescore: rescore
9: dscore = rescore - bestscore
10: if dscore ≥ 0 OR UnifRand and (0,1) < exp(dscore/t) then
11: bestscore = rescore
12: else
13: Undo variable switch in vars2
14: end if
15: Update the temperature: t = t x 0.9
16: end for
17: Output: vars2

3 Results

The wrapper feature selection approach managed to identify the species likely to
be associated with cod collapse on GB, Table 1 illustrates the resulting ordered
list of most relevant variables (BN wrapper confidence reported in brackets).
For example, herring (Clupea harengus) was identified as a key species and it is
known that there were large abundance changes in the late 1980s [1].

The species from ESS and NS that were identified by the functional equivalence
searchalgorithmare rankedbased upon the confidence associatedwith their equiv-
alent species in GB (Table 2, confidence reported in brackets). A striking feature of
the identified ESS species is the presence of many deepwater species like argentine
(Argenti silus) and grenadier (Nezumia bairdi). That could be an indication of the
water cooling that occurred in the late 1980s and early 1990s. In theNS,most of the
selected species are commercially desirable and some experienced large declines in
biomass in this period, though the nature of the species is not dissimilar to GB
when compared with ESS, which showed the appearance of some qualitatively dif-
ferent species. For example, megrim (Lepidorhombus whiffiagonis) and solenette
(Buglossidium luteum), not fished commercially, are also selected as being impli-
cated by other groundfish decline. Such species would probably be less likely to



306 N. Trifonova et al.

Table 1. Wrapper feature selection results for GB region

GB Wrapper Feature Selection

1. Thorny skate (1.0) 14. Lady crab (0.24)
2. Blackbelly rosefish (0.98) 15. Spotted flounder (0.23)
3. Herring (0.97) 16. Calanus spp. (0.20)
4. Fourbeard rockling (0.82) 17. American lobster (0.13)
5. Cusk (0.75) 18. American plaice (0.13)
6. Pseudocalanus spp. (0.65) 19. Ocean pout (0.09)
7. Gulf stream flounder (0.47) 20. Little skate (0.07)
8. Centropages typicus (0.44) 21. Sea scallop (0.07)
9. Atlantic rock crab (0.41) 22. Sand lance (0.05)
10. Witch flounder (0.29) 23. Winter flounder (0.03)
11. American angler (0.28) 24. Moustache sculpin (0.02)
12. White hake (0.26) 25. Silver hake (0.02)
13. Krill (0.25) 26. Longfin hake (0.02)

Table 2. The functionally equivalent species to GB dataset for ESS and NS. These
are each ordered based upon their relevance to species in Table 1.

Functionally Equivalent Species

ESS NS

1. Cod (1.0) 1. European plaice (0.98)
2. Pollock (0.58) 2. Atlantic halibut (0.93)
3. Grenadier (0.51) 3. Cod (0.87)
4. White hake (0.50) 4. Lumpfish (0.78)
5. Mackerel (0.23) 5. Thorny skate (0.53)
6. Rockfish (0.22) 6. Whiting (0.50)
7. Grey seals (0.20) 7. Argentine (0.42)
8. Argentine (0.15) 8. Megrim (0.35)
9. Atlantic halibut (0.12) 9. Haddock (0.29)
10. Spiny dogfish (0.11) 10. Atlantic wolfish (0.24)
11. Little skate (0.09) 11. American plaice (0.21)
12. Atlantic wolfish (0.07) 12. Common dragonet (0.20)
13. American plaice (0.04) 13. Solenette (0.16)
14. Red hake (0.04) 14. Poor cod (0.13)
15. Silver hake (0.03) 15. Sprat (0.05)
16. Little hake (0.01) 16. Pollock (0.02)

be considered as indicator species of regime shifts elsewhere. However, here the
functional equivalence search algorithm performed well in terms of identifying key
species, associated with functional changes in the relevant regions which would be
potentially beneficial when investigating the reliability of our modelling approach
in terms of detecting signals of functional change.
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We now explore the latent variable models for ESS and NS learnt from the
selected functionally equivalent species. We also focus on the relationship of the
latent variable to the two regime metrics. The expected value of the hidden
variable for ESS managed to capture some of the key predictive qualities of the
metrics in terms of identifying a regime shift that is known to have occurred.
The ESS latent variable model (HDBN) in Fig. 3a demonstrates a large fluctu-
ation between 1980 and 1990 with a steep increase in 1984 and 1989 prior to
the time of the expected regime shift and it was then followed by a consistent
decline following the collapse in 1992. The hidden variable increase coincides
with a steep increase in variance (Fig.3c) in 1985, all above the 95% confidence
upper interval. However, lowest p-value (F21,13 = 11.59, p < .0001) was reported
at the time of the known collapse in 1992 (balanced design of the sliding win-
dow). The assumption of homoscedasticity was not met (F1,25 = 4.05, p < .05),
indicating variance inequality before and after the collapse. The autocorrela-
tion showed little variation and it remained close to 1, as already illustrated for
ecosystems undergoing a transition [5]. According to theoretical expectations
of critical slowing down, both latent variable and variance appear to increase
prior to the expected regime shift and follow a consistent decline throughout
time following the collapse correctly resulting in a clear early-warning signal to
forewarn a major ecosystem change. After the addition of the metrics in the
model, the latent variable was more stable and still reflective of capturing the
correct dynamics and characterised by rising trends in time prior to the expected
transition (HDBN + metrics in Fig. 3b - Note this starts from 1980 due to the
windowing required for calculating the metrics). In 1990, the lowest p-value was
recorded (F9,15 = 23.90, p < .0001) which was actually lower than the p-value
reported by the HDBN, suggesting that the latent variable in combination with
the metrics might be performing better in earlier detection of change in the
time series, though having a negative impact on the predictive performance of
biomass (SSE HDBN: 4.83 and SSE HDBN+ metrics: 13.65) (Fig.4).

(a) Expected hidden value (HDBN) (b) Expected hidden value (HDBN+
metrics)
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(c) Mean variance

Fig. 3. The expected values of the discovered hidden variable from HDBN (a), HDBN+
metrics (b) and mean variance (c) for ESS. The dashed line indicates the time of the
regime shift in 1992. The solid line indicates upper and lower 95% confidence intervals,
obtained from bootstrap predictions’ mean and standard deviation.

Fig. 4. Biomass predictions generated by HDBN+ metrics of cod (left), and silver
hake (right) for ESS region. 95% confidence intervals report bootstrap predictions’
mean and standard deviation. Dashed line indicates predictions by the model, whilst
solid indicates standardised observed biomass for the time period 1980-2006.

The expected value of the hidden variable for NS (Fig.5a) was characterised
by some fluctuation up to early 1980s followed by a small decrease below the
lower confidence level coinciding with the time around the functional changes in
late 1980s to mid-1990s. Nevertheless, the F-test did not detect any significantly
different changes in the slope of the hidden variable. These values are much
smaller than for the expected values of the latent variables in GB and ESS.
Perhaps this is not surprising as it was found in [12] that the latent variable
in the NS data did not seem to reflect a distinct regime shift and this fits with
the general consensus that the NS has not suffered such a radical switch as the
other two regions. Both latent variable and variance (Fig.5c) show a trough in
late 1980s which could be a reflection of the end of the “gadoid outburst” where
groundfish were very abundant for about the previous 25 years [1]. Here, the
condition for equality of variance before and after the predicted functional change
was fulfilled (F1,31 = 1.40, p = 0.08). The latent variable from the HDBN+
metrics (Fig.5b) was more explicit and clear, finding the lowest p-value (F10,12 =
0.27, p < .05) in 1988 when first functional changes are believed to have occurred
in the system according to experts. NS is a diverse system, subject to external
anthropogenic forcing and internal environmental variation and as such, it is
suggested that it seems to exhibit a range of discontinuous disturbances which
would be more difficult to interpret by the hidden variable alone [3]. However, the
effect of the metrics on the latent variable assisted in the correct identification of
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the time period where we would expect some functional change or disturbance in
NS. Results for NS showed reliable prediction of species biomass, with improved
ability of the dynamic models when used in combination with the published
metrics (SSE model: 5.50, SSE model+ metrics: 2.82).

(a) Expected hidden value (HDBN) (b) Expected hidden value
(HDBN+metrics)

(c) Mean variance

Fig. 5. The expected value of the discovered hidden variable from HDBN (a), HDBN+
metrics (b) and mean variance (c) for NS. The dashed lines indicate the time period
of the regime shift. The solid line indicates upper and lower 95% confidence intervals,
obtained from bootstrap predictions’ mean and standard deviation.

Fig. 6. Biomass predictions generated by HDBN+ metrics of cod (left), and haddock
(right) for NS region. 95% confidence intervals report bootstrap predictions’ mean
and standard deviation. Dashed line indicates predictions by the model, whilst solid
indicates standardised observed biomass for the time period 1977-2009.

To summarise, the models that included the regime metrics performed better
in terms of capturing the correct dynamics earlier in the time series. The latent
variable alone managed to reflect the ecosystem dynamics but that was more
evident in the ESS region with a larger regime shift.

We now turn to the analysis of the learned networks by separating the data
before and after the regime shift according to experts and comparing them to
the networks generated by data split from our latent variable models (timing
identified from F-test significant results in the first part of the study). Some
high confidence relationships were identified which represent likely models of
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the functional interactions between species. The direction of the discovered sig-
nificant links did not mean causation and it was not considered in the comparison
with the generating diet matrix as we were interested in finding correctly iden-
tified species associations. Note that some of the discovered links, not directly
relating to the diet matrix, could have been explained by either intermediate
variables not included in the model or common observed effects acting on the
model variables, however this was not the purpose here.

For ESS the learned network before the regime shift based on the experts’ split
was complex, identifying 7 significant features (four true positives) whilst the net-
work after was rather simplified, finding only two significant links (one true posi-
tive), suggesting the influence of a radical switch in the system following the fish-
eries collapse. The network before 1990 (Fig.7b) (as found by HDBN+metrics)
identified 8 significant links (four true positives) and after (Fig.7c)- five signifi-
cant links (four true positives). When comparing the networks of experts’ split
and data split, three of the significant links were preserved, one of them was a
true positive. Learning the structure before and after the data split for ESS was
a much better case in terms of detecting more correct associations with the diet
matrix (Fig.7a). To recap, species selected in ESS were based on a regime shift in
GB using the functional equivalence search, suggesting the successful algorithm
performance in terms of capturing the correct structure and food web dynamics.

For NS, the learned network before the experts’ split identified five signifi-
cant features (one true positive) and the network after- 7 significant features
but none of them were true positives. The network before 1988 (as found by
HDBN+metrics) identified four significant links and after: one significant link,
no true positives. The relative simplicity of the NS networks and much lower
number of correctly identified associations with the diet matrix compared to
ESS, could be due to the possible influence of factors such as climate or fisheries
exploitation that might have some common effects on different variables. The
NS diet matrix was also relatively “poor” compared to ESS in terms of quan-
tity of species recorded. To summarise, the bootstrap methodology of learning
the model structure in combination with the data split from our latent variable
models managed to detect pairwise relations of high confidence between species
providing us with assumptions about the relevant food web structure and dy-
namics. Also, in both regions, significant links found before the data split, were
generally reduced after, implying a signal of functional changes in the ecosys-
tems.
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(a) Diet matrix

(b) Network before regime shift

(c) Network after regime shift

Fig. 7. Diet matrix (a) with the network before (b) and after (c) the regime shift for
ESS, generated by the data split using REVEAL. The width of edges corresponds to
the computed confidence level (bold line: 0.5 and light line: 0.1). The squared nodes are
significant themselves. For the diet matrix direction of links represents predator-prey
interactions. In bottom network (c): AP- American plaice and GA- Greater argentine.
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4 Conclusion

In this paper we have explored the use of regime metrics in conjunction with
latent variables which proved useful (compared to these without) in terms of
detecting early-warning signals (significantly rising variance and latent variable
fluctuations) of functional changes but it seemed to have an impact on biomass
prediction. The latent variables fitted to models that exclude these metrics ap-
pear to reflect some of their characteristics in terms of capturing the correct
trophic dynamics. The learned network links managed to find some overlap with
the diet matrices, though not many, maybe due to implicit correlations (and so
more latent variables may need to be structured into the models to deal with
this). Nevertheless, the general finding was that prior to collapse there were more
correctly identified links and these seemed to disappear after the regime shift.
Further work will involve informative priors based upon available expertise to
create scenarios for environmental management purposes.
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Abstract. A chordless cycle (induced cycle) C of a graph is a cycle
without any chord, meaning that there is no edge outside the cycle con-
necting two vertices of the cycle. A chordless path is defined similarly.
In this paper, we consider the problems of enumerating chordless cy-
cles/paths of a given graph G = (V,E), and propose algorithms taking
O(|E|) time for each chordless cycle/path. In the existing studies, the
problems had not been deeply studied in the theoretical computer sci-
ence area, and no output polynomial time algorithm has been proposed.
Our experiments showed that the computation time of our algorithms
is constant per chordless cycle/path for non-dense random graphs and
real-world graphs. They also show that the number of chordless cycles
is much smaller than the number of cycles. We applied the algorithm to
prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased
the accuracy of the prediction.

1 Introduction

Enumeration is a fundamental problem in computer science, and many algo-
rithms have been proposed for many problems, such as cycles, paths, trees and
cliques[5, 8, 10, 12, 13, 17]. However, their applications to real world problems
have not been studied intensively, due to the handling needed for the huge
amount of and the high computational cost. However, this situation is now chang-
ing, thanks to the rapid increase in computational power, and the emergence of
data centric science. For example, the enumeration of all substructures frequently
appearing in a database, i.e., frequent pattern mining, has been intensively stud-
ied. This method is adopted for capturing the properties of databases, or for
discovering new interesting knowledge in databases. Enumeration is necessary
for such tasks because the objectives cannot be expressed well in mathematical
terms. The use of good models helps to reduce the amount of output, and the use
of efficient algorithms enables huge databases to be more easily handled[9, 1, 11].
More specifically, introducing a threshold value for the frequency, which enables
controlling the number of solutions. In such areas, minimal/maximal solutions
are also enumerated to reduce the number of solutions. For example, enumer-
ating all cliques is usually not practical while enumerating all maximal cliques,
i.e. cliques included in no other cliques, is often practical[13, 10]. In real-world
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sparse graphs, the number of maximal cliques is not exponential, so, even in
large-scale graphs, the maximal cliques can often be enumerated in a practically
short time by a stand alone PC even for graphs with millions of vertices. How-
ever, the enumeration of maximum cliques, that have the maximum number of
vertices among all cliques, is often not acceptable in practice, since the purpose
of enumeration is to find all locally dense structures, and finding only maximum
cliques will lose relatively small dense structures, thus it does not cover whole
the data.

Paths and cycles are two of the most fundamental graph structures. They ap-
pear in many problems in computer science and are used for solving problems,
such as optimizations (e.g. flow problems) and information retrieval (e.g. con-
nectivity and movement of objects). Paths and cycles themselves are also used to
model other objects. For example, in chemistry, the size and the fusing pattern
of cycles in chemical graphs, representing chemical compounds, are considered
to be essential structural attributes affecting on several important properties of
chemical compounds, such as spectroscopic output, physical property, chemical
reactivity, and biological activity.

For a path/cycle P , an edge connecting two vertices of P but not included in P
is called a chord. A path/cycle without a chord is called a chordless path/cycle.
Since a chordless cycle includes no other cycle as a vertex set, it is considered
minimal. Thus, chordless cycles can be used to represent cyclic structures. For
instance, the size and fusing pattern of chordless cycles in chemical graphs as
well as other properties of chemical structures are taken into account when se-
lecting data for prediction of nuclear magnetic resonance (NMR) chemical shift
values[14]. Most chemical compounds contain cycles. In chemistry, the term ‘ring’
is used instead of ‘cycle’, for example a cycle consisting of 5 vertices is called
5-membered ring. Since the character of ring structures of chemical compounds
is assumed to be important to study the nature of the structure-property rela-
tionships, the ring perception is one of classical questions [2–4, 7] in the context
of chemical informatics, so called chemoinformatics. Several kinds of ring struc-
tures, such as all rings and the smallest set of smallest ring (SSSR) are usually
included in a basic dataset of chemical information. NMR chemical shift predic-
tion is a successful case where the information about chordless cycles is employed
to improve the accuracy of the prediction. The path/cycle enumeration is sup-
posed to be useful also for analysis of network systems such as Web and social
networks.

In this paper, we consider the problem of enumerating all chordless paths
(resp., cycles) of the given graph. While optimization problems for paths and
cycles have been studied well, their enumeration problems have not. This is be-
cause there are huge numbers of paths and cycles even in small graphs. However,
we can reduce the numbers so that the problem becomes tractable by introducing
the concept of chordless. The first path/cycle enumeration algorithm was pro-
posed by Read and Tarjan in 1975[12]. Their algorithm takes as input a graph
G = (V,E) and enumerates all cycles, or all paths connecting given vertices s and
t, in O(|V |+ |E|) time for each. The total computation time is O((|V |+ |E|)N)
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Fig. 1. Left bold cycle is a chordless cycle, right bold cycle has two chords

where N is the number of output cycles/paths. Ferreira et al. [6] recently pro-
posed a faster algorithm, that takes time linear in the output size, that is the
sum of the lengths of the paths.

The chordless version was considered by Wild[19]. An algorithm based on the
principle of exclusion is proposed, but the computational efficiency was not con-
sidered deeply. In this paper, we propose algorithms for enumerating chordless
cycles and chordless paths connecting two vertices s and t (reported in 2003[18]).
Note that chordless cycles can be enumerated by chordless path enumeration.
The running time of the algorithm is O(|V |+ |E|) for each, the same as the Read
and Tarjan algorithm.

We experimentally evaluate the practical performance of the algorithms for
random graphs and real-world graphs. The results show that its practical com-
putation time is much smaller than O(|V | + |E|), meaning that the algorithms
can be used for large-scale graphs with non-huge amount of solutions. The re-
sults also show that the number of chordless cycles is drastically small compared
to the number of usual cycles.

2 Preliminaries

A graph is a combination of a vertex set and an edge set such that each edge is
a pair of vertices. A graph G with vertex set V and edge set E is denoted by
G = (V,E). An edge e of pair v and u is denoted by {u, v}. We say that the
edge connects u and v, e is incident to u and v, and v and u are adjacent to
each other, and call u and v end vertices of e. An edge with end vertices that are
the same vertex is called a self-loop. Two edges having the same end vertices u
and v are called multi-edges. We deal only with graphs with neither a self-loop
nor a multi-edge. This restriction does not lose the generality of the problem
formulation.

A path is a graph of vertices and edges composing a sequence v1, {v1, v2}, v2,
{v2, v3}, . . . , {vk−1, vk}, vk satisfying vi �= vj and i �= j. The v1 and vk are called
the end vertices of the path. If the end vertices of P are s and t, the path is called
an s-t path. When v1 = vk holds, a path is called a cycle. Here we represent
paths and cycles by vertex sequences, such as (v1, . . . , vk). An edge connecting
two vertices of a path/cycle P and not included in P is called a chord of P .
A path/cycle P such that the graph includes no chord of P is called chordless.
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Figure 1 shows examples. In a set system composed of the vertex sets of cycles
(resp., s-t paths), the vertex set of a chordless cycle (resp., s-t path) is a minimal
element.

For a graph G and a vertex subset S of G, G \ S denotes the graph obtained
from G by removing all vertices of S and all edges incident to some vertices in
S. For a vertex v, N(v) denotes the neighbor of v, that is, the set of vertices
adjacent to v. For a vertex set S and a vertex v, S \ v and S ∪ v denote S \ {v}
and S ∪ {v}, respectively. For a path P and its end vertex v, P \ v denotes the
path obtained by removing v from P .

Property 1. There is a chordless s-t path if and only if there is an s-t path.

Proof. A chordless s-t path is an s-t path, thus only if part is true. If an s-t path
exists, a shortest path from s to t is a chordless s-t path, and thus it always
exists.  !

Property 2. A vertex v is included in a cycle if and only if v is included in a
chordless cycle.

Proof. If v is not included in any cycle, it obviously is not included in any
chordless cycle. Hence, we investigate the case in which v is included in a cycle
C. If C is chordless, we are done. If C has a chord, the addition of the chord
splits C into two smaller cycles, and v is always included in one of them. We
then consider the cycle as C. The cycle with three vertices can not have a chord,
thus we always meet a chordless cycle including v.  !

For a recursive algorithm, an iteration means the computation from the begin-
ning of a recursive call to its end, excluding any computation done in recursive
calls generated in the iteration. If an iteration I recursively calls an iteration I ′,
I ′ is called a child of I, and I is called the parent of I ′.

3 Algorithm for Chordless s-t Path Enumeration

Our enumeration problem is formulated as follows.

Chordless s-t Path Enumeration Problem
For a given graph G = (V,E) and two vertices s and t, enumerate all chordless
s-t paths included in G.

We first observe that chordless cycle enumeration is done with chordless s-t
path enumeration by repeating steps; (1) for a vertex s, enumerate chordless s-t
paths in G \ {s, t} for each vertex t adjacent to s, and (2) remove s from the
graph. Here G \ {s, t} is the graph obtained from G by removing the edge {s, t}.
This implies that we only have to consider chordless s-t path enumeration.

Lemma 1. For a vertex v ∈ N(s), P is a chordless s-t path including v if and
only if P \ s is a chordless v-t path of the graph G \ (N(s) \ v).
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Fig. 2. Tree on the right represents recursive structure of s-t path enumeration in
the graph on left; bold lines correspond to recursive calls in step 2, and dotted lines
correspond to those in step 6

Proof. If P \s is a chordless v-t path in G\ (N(s)\v), P is an s-t path all whose
chords are incident to s. Since P has no vertex in N(s) \ v, no vertex of P other
than v is adjacent to s. Thus, P has no chord incident to s, and is chordless.

If P is a chordless s-t path including v, no vertex u ∈ N(s) \ v is included
in P , since the edge {s, u} would be a chord if was included. Thus, P \ s is a
chordless v-t path in G \ (N(s) \ v).  !

Lemma 2. The set of chordless s-t paths of G is partitioned into disjoint sets
of chordless s-t paths in the graphs G \ (N(s) \ v) for each v.

Proof. Suppose that P is a chordless s-t path in G. Then, from lemma 1, P
includes exactly one vertex among N(s). If P includes v ∈ N(s), P \ s is a
chordless v-t path in G\(N(s)\v), thus P is a chordless s-t path in G\(N(s)\v).
Since P is not an s-t path in G \ (N(s) \ u) for any u ∈ N(s) \ v, the statement
holds.  !

From the lemma, we obtain the following algorithm. The Q is the sequence
of vertices attached to the paths in the ancestor iterations, and set to be empty
at the start of the algorithm.

Algorithm EumChordlessPath (G = (V,E), s, t, Q)
1. if edge {s, t} exists in E then output Q ∪ t; return
2. for each v ∈ N(s) s.t. a v-t path exists in G \ (N(s) \ v) do
3. call call EnumChordlessPath ((G \ (N(s) \ v)) \ s, v, t, Q ∪ v)
4. end for

When a recursive call is generated in an iteration of the algorithm,G\(N(s)\v)
is generated from G by removing vertices and edges. The removed vertices and
edges are kept in memory so that G can be reconstructed from the graph. A
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removed edge or vertex is not removed again in the descendants of the iteration.
Thus, the accumulated memory usage for these removed vertices and edges is
O(|V |+ |E|), and the space complexity of the algorithm is O(|V |+ |E|).

In step 2, all vertices v ∈ N(s) such that a v-t path exists in G \ (N(s) \ v)
must be listed. If and only if the condition in step 2 holds, there is a vertex
u ∈ N(v) such that a u-t path exists in (G \N(s)) \ s. Thus, those vertices can
be listed by computing the connected component including t in G \N(s) \ s and
checking the condition in step 2 for all u ∈ N(v) for all v ∈ N(s). This can
be done in O(|V | + |E|) time. The construction of (G \ (N(s) \ v)) \ s is done
in O(|N(v)|) time by constructing it from (G \ N(s)) \ s. Therefore, the time
complexity of an iteration is O(|V |+ |E|).

Let us consider the recursion tree of the algorithm which is a tree representing
the recursive structure of the algorithm. The vertex of the recursion tree corre-
sponds to an iteration, and each iteration and its parent are connected by an
edge. The leaves correspond to the iterations generating no recursive calls, and
the algorithm outputs a solution on each leaf. Because of the condition given
placed on vertices in step 2, there is always at least one s-t path in the given
graph. This implies that at least one recursive call occurs when step 2 is exe-
cuted. Hence, the algorithm outputs a solution at every leaf of the recursion tree.
The depth of the recursion tree is O(|V |) since at least one vertex is removed
from the graph to generate a recursive call. We can conclude from these obser-
vations that the time complexity of the algorithm is O(N |V |(|V | + |E|)) where
N is the number of chordless s-t paths in G. Next, we discuss the reduction of
the time complexity to O(N(|V |+ |E|)).

We first rewrite the above algorithm as follows. We denote the vertex next to
v in path P by nxt(v). Note that although we introduce several variables, the
algorithms are equivalent.

Algorithm EnumChordlessPath2 (G = (V,E), s, t, Q)
1. if s is adjacent to t then output Q ∪ t ; return
2. P := a chordless s-t path in G
3. call EnumChordlessPath2 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s) )
4. for each v ∈ N(s), v �= nxt(s) do
5. if there is a v-t path in G \ (N(s) \ v) then
6. call EnumChordlessPath2 (G \ (N(s) \ v), v, t, Q ∪ v)
7. end for

We further rewrite the algorithm as follows. We compute the chordless s-
t path P computed in step 2 of the above algorithm, before the start of the
iteration, i.e., in its parent, and give it as a parameter to the recursive call.

Algorithm EnumChordlessPath3 (G = (V,E), s, t, Q, P )
1. if s is adjacent to t then output Q ∪ t ; return
2. call EnumChordlessPath3 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s), P \ s)
3. for each v ∈ N(s), v �= nxt(s) do
4. if there is an v-t path in G \ (N(s) \ v) then
5. P := a chordless v-t path in G \ (N(s) \ v) (found by a breadth first search)



An Efficient Algorithm for Enumerating Chordless Cycles 319

6. call EnumChordlessPath3 (G \ (N(s) \ v), v, t, Q ∪ v, P )
7. end if
8. end for

Figure 2 illustrates an example of the recursive structure of this algorithm.
The tail of an arrow is a parent and the head is its child. We call the child
generated in step 2 first child, and the arrow pointing at the first child is drawn
with a bold line. We can make a path by following the bold-arrows, and we call
a maximal such path a straight path. Since the bottom of a straight path is a
leaf, the number of straight paths is bounded by the number of chordless paths.
Since the head of a non-bold arrow always points an end of a straight path, the
number of non-bold arrows, that correspond to the recursive calls done in step
6, is bounded by the number of straight paths.

From these observations, we infer the following points regarding time com-
plexity.

– An iteration takes O(|V |+ |E|) time when a chordless path is output. This
computation time is O(|V |+ |E|) per chordless path.

– Steps 1 and 2 take O(N∗(s)) time where N∗(s) is the number of edges
adjacent to vertices in N(s). This time is spent checking the adjacency of s
and t and constructing G \ (N(s) \ v) for all v ∈ N(s). This comes from that
G \ (N(s) \ v) can be constructed from G \ N(s) by adding edges adjacent
to v in O(|N(v)|) time.

– The number of executions of the for loop in step 3 is bounded by |N(s)|.
Their sum over all iterations in a straight path does not exceed the number
of edges.

– Steps 5 and 6 take O(|V | + |E|) time to find a chordless v-t path, and to
construct G \ (N(s) \ v). Since the recursive call in step 6 corresponds to a
straight path, this computation time is O(|V |+ |E|) per chordless path.

– The execution time for step 4 is O(|V |+ |E|).

We see from the above that the bottle neck in terms of time complexity is
step 4. The other parts of the algorithm takes O(|V | + |E|) time per chordless
s-t path. We speed up step 4 by using the following property.

Property 3. G \ {v} includes a v-t path for v ∈ N(s) if and only if there is a
vertex u ∈ N(v) \N(s) such that G \N(s) includes a u-t path.  !

In each iteration we put mark on vertices u such that there is a u-t path in
G \N(s). Step 4 is then done in O(|N(v)|) time by looking at the marks on the
vertices in N(v). The marks can be put in short time, by updating the marks
put in the first child. The condition of step 4 is checked by finding all vertices
in G \N(s) from which going to t is possible. This also takes O(|V |+ |E|) time,
but the time is reduced by re-using the results of the computation done for the
first child. In the first child, marks are put according to the reachability to t in
G \ (N(s) ∪N(nxt(s))). To put marks for G \N(s), we find all vertices u such
that any u-t path in G \ N(s) includes a vertex of N(nxt(s)) \ N(s). This is
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done by using a graph search starting from the vertices of N(nxt(s))\N(s) that
are adjacent to a marked vertex, and visiting only unmarked vertices. The time
taken is linear in the number of edges adjacent to newly marked vertices.

Consider the computation time with respect to step 4, for the iterations in a
straight path. In these operations, a vertex (resp., an edge) gets a mark at most
once, i.e., it never gets a mark twice. Thus, the total computation time for this
computation is linear in the sum of the degrees of marked vertices and vertices
in N(nxt(s)), and is bounded by O(|V |+ |E|). The computation time for step 4
is thus reduced to O(|V |+ |E|) per chordless s-t path. When a recursive call for
a non-first child is made, all marks are deleted. We then perform a graph search
starting from t to put the marks. Both steps take O(|V |+ |E|) time. Since this
computation is done only when generating non-first child, the total number of
occurrences of this computation is bounded by the number of maximal paths,
i.e., the number of chordless paths. Thus, this computation takes O(|V | + |E|)
time for each chordless path. The algorithm is written as follows.

Algorithm EnumChordlessPath4 (G = (V,E), s, t, Q, P )
1. if s is adjacent to t then output Q ∪ t; go to 11
2. call EnumChordlessPath4 (G \ (N(s) \ nxt(s)), nxt(s), t, Q ∪ nxt(s), P \ s )
3. put mark by graph search on G \N(s) from vertices in N(nxt(s))
4. for each v ∈ N(s), v �= nxt(s) do
4. if a vertex adjacent to v is marked then
5. delete marks from all vertices in G
6. P := a chordless v-t path in G \ (N(s) \ v)
7. call EnumChordlessPath4 (G \ (N(s) \ v), v, t, Q ∪ v, P )
8. recover the marks deleted in step 5, by graph search starting from t on G \N(s)
9. end if
10. end for

Theorem 1. The chordless s-t paths in a given graph G = (V,E) can be enu-
merated in O(|V |+ |E|) time per chordless path, in particular, polynomial time
delay.

Proof. We can see the correctness in the above. The time complexity of an
iteration is O(|V |+ |E|), and each iteration outputs an s-t-path. Moreover, the
height of the recursion tree is at most |V |, thus the time between two consecutive
output paths is bounded by O(|V |+ |E|)+O(|V |) = O(|V |+ |E|). This concludes
the theorem.  !

Theorem 2. The chordless cycles in a given graph G = (V,E) can be enumer-
ated in O(|V | + |E|) time per chordless cycle, in particular, polynomial time
delay.  !

4 Computational Experiments

The practical efficiency of the proposed algorithms is evaluated by computational
experiments. The results were compared with those of the cycle enumeration



An Efficient Algorithm for Enumerating Chordless Cycles 321

Table 1. Computational time (in seconds) for randomly generated graphs

edge density 10% 20% 30% 40% 50% 60% 70% 80% 90%

no. of vertices 50 0.18 0.12 0.098 0.089 0.082 0.08 0.085 0.1 0.11
75 0.17 0.12 0.099 0.088 0.079 0.074 0.077 0.088 0.1

100 0.17 0.12 0.099 0.09 0.083 0.081 0.089 0.095 0.12
150 0.2 0.12 0.099 0.098 0.077 0.075 0.083 0.103 0.14
200 0.18 0.12 0.1 0.088 0.081 0.078 0.085 0.11 0.17
300 0.19 0.12 0.1 0.087 0.082 0.083 0.091 0.12 0.21
400 0.17 0.12 0.1 0.089 0.08 0.086 0.1 0.15 0.26
600 0.18 0.11 0.12 0.12 0.11 0.1 0.13 0.23 0.42
800 0.2 0.12 0.14 0.13 0.11 0.11 0.13 0.26 0.54

1200 0.23 0.17 0.17 0.13 0.12 0.12 0.15 0.28 1
1600 0.24 0.19 0.14 0.13 0.13 0.14 0.21 0.29 1.3
2400 0.25 0.19 0.17 0.15 0.16 0.16 0.19 0.44 1.4
3200 0.29 0.23 0.2 0.19 0.18 0.2 0.25 0.61 1.79
4800 0.28 0.28 0.27

algorithm proposed in [12]. The difference between the number of cycles and of
chordless cycles was also compared. The program was coded in C, and compiled
using gcc. The experiments were done on a PC with a Core i7 3GHz CPU. The
code is available at the author’s web site (http://research.nii.ac.jp/˜uno/codes.
html). We did not use multiple cores, and the memory usage by the algorithm
was less than 4MB. The instance graphs were random graphs and the real-world
graphs taken from the UCI machine learning repository[16]. All the test instances
shown here are downloadable from the author’s web site, except for those from
UCI repository. Tables 1 to 4 summarize the computation time, number of cycles,
and number of chordless cycles for each instance, and clarify the effectiveness of
the chordless cycle model and our algorithm.

The computation time results for randomly generated graphs are shown in
Table 1. The edge density means the probability of being connected by an edge
for any two vertices. Execution of an enumeration algorithm involves many it-
erations with different input graphs, thus we thought that there are sufficiently
many samples even in one execution of the algorithm. Therefore, we generated
just one instance for each parameter. Each cell represents the computation time
needed for 10,000 cycles or chordless cycles. When the computation time was
too long so that the number of output cycles exceeded one million, we stopped
the computation.

When the edge density was close to 100%, almost all the chordless cycles were
triangles. In this case, intuitively, the algorithm spent O(|V ||E|) = O(|V |3) time
to find O(|V |2) chordless cycles. In contrast, it took almost constant time for
each chordless cycle in sparse graphs. This is because the graph was reduced by
repeated recursive calls, and at the bottom levels, the graph sizes were usually
constant.

Table 2 shows that the number of chordless cycles exponentially increased
against with the edge density, but not as much as usual cycles. Table 3 shows
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Table 2. Number of chordless cycles (upper) and of cycles (lower)

edge density 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

no. of vertices 10 1 3 14 20 41 45 63 81 120
0 1 4 116 352 2302 3697 24k 108k

15 0 10 34 116 165 193 247 297 350 455
0 36 1470 613k 6620k 55525k - - - -

20 1 78 298 523 637 752 771 846 908 1140
1 56k 9114k - - - - - - -

25 8 1218 2049 2387 2099 1891 1775 1854 1928 2300

50 64k 395k 267k 146k 82k 49k 34k 23k 18k 19k

75 119379k 69357k 14504k 3679k 1158k 465k 221k 119k 73810 67525

100 - - - 40436k 8269k 2395k 877k 393k 199k 161k

150 - - - - 149022k 27483k 6641k 2167k 854k 551k

200 - - - - - 167408k 30334k 7755k 2466k 1313k

300 - - - - - - - 51043k 11457k 4455k

400 - - - - - - - - 35154k 10586k

Table 3. Computation time and number of chordless cycles for sparse graphs

graph size (no. of vertices) 10 20 30 40 50 60 70 80 90

no. of chordless cycles 12 90 743 5371 89164 853704 4194491 45634757 -
time for 10,000 chordless cycles 16.6 3.33 0.53 0.22 0.18 0.2 0.23 0.24 -

the experimental results for sparse graphs. The graphs were generated by adding
chords randomly to a cycle of n vertices so that the average degree was four.
These sparse graphs included so many chordless cycles. The graphs with at most
100 vertices were solved in a practically short time, and the computation time
for each chordless cycle were almost the same.

Table 4 shows the number of chordless cycles with limited lengths including a
vertex (the first vertex) for the real-world data, taken from the UCI repository.
The number of all chordless cycles is shown at the bottom for reference. The
graphs were basically sparse, and globally well connected, and thus included a
large number of cycles. Even in such cases, by giving an upper bound of the
length, Some graphs can be made tractable in such cases by placing an upper
bound on the length. These results show the possibility of using chordless cycles
with limited lengths for practical data analysis of real-world graphs such as those
for social networks.

4.1 Application to NMR Prediction

Chordless cycle enumeration has already been implemented as a part of a
database system of chemoinformatics[14], composed of structural data of chem-
ical compounds. In this system, the number of chordless cycles in the chemical
graph of a chemical compound is considered to be an attribute of the compound.
In response to a query about the chemical structure of a compound, the system
searches in the database for structures partially similar to the structure of query
compound, and predict some functions of the query compound. A chemical graph
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Table 4. Number of chordless cycles including a vertex (of ID 0), for real-world graphs

adjnoun astro-ph breast celegen cond-mat-2005 cond-mat large dolphins

(no. of vertices) 114 16708 7539 298 40423 30561 64
(no. of edges) 425 121251 5848 2359 175693 24334 159

length < 5 8 327 - 3342 393 6 26
length < 8 251 - 1738k - 6 320

length < 16 65350 - - - - 6 1780
#chord. cyc. 66235k - - - - - 6966

football human ppi karate lesmis netscience polblogs polboopks power

(no. of vertices) 117 10347 36 79 1591 1492 107 4943
(no. of edges) 616 5418 78 254 2742 19090 441 6594

length < 5 81 1838 37 3 1 35881 21 0
length < 8 11869 - 38 3 1 - 187 4

length < 16 256664k - 38 3 1 - 34742 60
#chord. cyc. - - 103 594 5760 - 2273k -

is usually sparse and is globally a tree or a combination of several large cycles.
Small components can be attached to the large cycles. Thus, the number of
chordless cycles is not so huge and is tractable in most cases.

The program code was implemented in the CAST/CNMR system for predict-
ing the 13C-NMR chemical shift[14, 15]. The codes and a more precise description
of this system are available at http://research.nii.ac.jp/˜hsatoh/subjects/NMR-
e.html. The information obtained about chordless cycles is used to improve the
accuracy for the predicted values when the ring attributes affects the NMR spec-
trum. The CAST/CNMR system predicts chemical shifts by using a chemical
structure-spectrum database, containing mainly natural organic products and
their related synthetic compounds. Since most of the compounds include chains
of fused rings, enumerating all rings for these compounds would greatly increase
the output size, with lots of data useless for NMR prediction. Therefore, the
chordless cycle was adopted as a relevant ring attribute for the CAST/CNMR
system. For accurate NMR prediction for carbon atoms, an error within 1.0 ppm
(parts per million) is generally required. Use of chordless cycle information re-
duced error values of -4.1 to 1.6 ppm for some problematic carbon atoms to less
than 1.0 ppm[14].

5 Conclusion

Weproposedanalgorithmfor enumerating all chordless s-tpaths, that is applicable
to chordless cycle enumerationwithout increasing the time complexity. By reusing
the results of the subroutines, the computation time is reduced toO(|V |+ |E|) for
each chordless path. The results of the computational experiments showed that the
algorithmworks well for both random graphs and real-world graphs; the computa-
tion time was O(|V |) in dense graphs, and almost constant for sparse graphs. The
results also showed that the number of chordless cycles is small compared to the
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number of usual cycles. This algorithm thus paves the way to efficient use of cycle
enumeration in data mining.
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Abstract. We explore the possibilities of meta-learning on data streams,
in particular algorithm selection. In a first experiment we calculate the
characteristics of a small sample of a data stream, and try to predict
which classifier performs best on the entire stream. This yields promis-
ing results and interesting patterns. In a second experiment, we build a
meta-classifier that predicts, based on measurable data characteristics in
a window of the data stream, the best classifier for the next window. The
results show that this meta-algorithm is very competitive with state of
the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging.
The results of all experiments are made publicly available in an online
experiment database, for the purpose of verifiability, reproducibility and
generalizability.

Keywords: Meta Learning, Data Stream Mining.

1 Introduction

Modern society produces vast amounts of data coming, for instance, from sensor
networks and various text sources on the internet. Various machine learning
algorithms are able to capture general trends and make predictions for future
observations with a reasonable success rate. The number of algorithms is large,
and most of these work well on a varying range of data streams. However, there
is not much knowledge yet about on which kinds of data certain algorithms
perform well and when a certain algorithm should be preferred over another.

In this work we investigate how to predict what algorithm will perform well on
a given data stream. This problem is generally known as the algorithm selection
problem [14]. For each data stream, we measure the performance of various
data stream classifiers and we calculate measurable data characteristics, called
meta-features. In addition to many existing meta-features, we introduce a new
type of meta-feature, based on concept drift detection methods. Next, we build
a model that predicts which algorithms will work well on a given data stream
based on its characteristics. Indeed, having knowledge about which classifier to
apply on what data could greatly increase the performance of predictive tools in
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real world applications. For example, it is common for the performance curves of
data stream algorithms to cross as the stream evolves. This means that at certain
points in the stream, the data is best modelled with algorithm A, while at a later
point, the data is better modelled with algorithm B. As such, selecting the right
algorithm at each point in the stream has the potential to increase performance.
In this work we focus on data streams with a nominal target. Although much
work has been done on both data streams and meta-learning, to the best of our
knowledge, this is the first effort to do meta-learning on data streams.

The remainder of this paper is structured as follows. Section 2 contains a de-
scription of related work. Section 3 describes how the meta-dataset was created,
the data streams that it contains, how they are characterized, and how we have
measured the performance of data stream algorithms. Section 4 describes an
experiment in which we calculate the characteristics of a small sample of a data
stream, and predict which classifier performs best on the entire stream. Next,
Section 5 describes a second experiment, in which we continuously measure the
characteristics of a sliding window on the data stream, and use a meta-algorithm
to predict the best classifier for the next window. In Section 6 we present and
discuss some emerging patterns from the data. Section 7 concludes.

2 Related Work

It has been recognized that mining data streams differs from conventional batch
data mining [4,13]. In the conventional batch setting, usually a limited amount
of data is provided and the goal is to build a model that fits the data as well as
possible, whereas in the data stream setting, there is a possibly infinite amount
of data, with concepts possibly changing over time, and the goal is to build a
model that captures general trends.

More specifically, the requirements for processing streams of data are: process
one example at a time (and inspect it only once), use a limited amount of time
and memory, and be ready to predict at any point in the stream [3,13]. These re-
quirements inhibit the use of most batch data mining algorithms. However, some
algorithms can trivially be used or adapted to be used in a data stream setting,
for example, NaiveBayes, k Nearest Neighbour, and Stochastic Gradient

Descent, as done in [13]. Also, many algorithms have been created specifically
to operate on data streams. Most notably, the Hoeffding Tree [6] is a tree based
algorithm that splits based on information gain, but using only a small sample
of the data determined by the Hoeffding bound. The Hoeffding bound gives an
upper bound on the difference between the mean of a variable estimated after a
number of observations and the true mean, with a certain probability.

Conventional batch data mining methods can also be adapted for use in the
data streams setting by training them on a set of instances sampled from recent
data. Typically, a set of w (window size) training instances is formed. Every w
instances form a batch and are provided to the learner, which builds a model
based on these instances. The disadvantages of this approach are that the most
recent examples are not used until a batch is complete, and old models need to
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be deleted to make room for new models. Read et al. [13] distinguish between
instance incremental methods and batch incremental methods and compare the
performance of both approaches. Their main conclusion is that the performance
in terms of accuracy is equivalent. However, the instance incremental algorithms
use fewer resources.

Ensembles of classifiers are among the best performing learning algorithms in
the traditional batch setting. Multiple models are produced that all vote for the
label of a certain instance. The final prediction is made according to a predefined
voting schema, e.g., the class with the most votes wins. In [10] it is proven that
the error rate of an ensemble in the limit goes to zero if two conditions are met:
first, the individual models must do better than random guessing, and second,
the individual models must be diverse, meaning that their errors should not be
correlated. Popular ensemble methods in the traditional batch setting are Bag-
ging [5], Boosting [17] and Stacking [7]. Bagging and Boosting have equivalents
in the data stream setting, e.g., OzaBag [11], OzaBoost [11] and Leveraging Bag-
ging [4]. The Average Weighted Ensemble [20] tracks which individual classifiers
perform well on recent data, and uses this information to weight the votes.

The field of meta-learning addresses the question what machine learning algo-
rithms work well on what data. The algorithm selection problem, formalised by
Rice in [14], is a natural problem from the field of meta-learning. According to
the definition of Rice, the problem space P consists of all machine learning tasks
from a certain domain, the feature space F contains measurable characteristics
calculated upon this data (called meta-features), the algorithm space A is the set
of all considered algorithms that can execute these tasks and the performance
space Y represents the mapping of these algorithms to a set of performance
measures. The task is for any given x ∈ P , to select the algorithm α ∈ A that
maximizes a predefined performance measure y ∈ Y , which is a classification
problem. Similar ranking and regression problems are derived from this.

Much effort has been devoted to the development of meta-features that effec-
tively describe the characteristics of the data (called meta-features). Commonly
used meta-features are typically categorised as one of the following: simple (num-
ber of instances, number of attributes, number of classes), statistical (mean
standard deviation of attributes, mean kurtosis of attributes, mean skewness
of attributes), information theoretic (class entropy, mean entropy of attributes,
noise-signal ratio) or landmarkers [12] (performance of a simple classifier on the
data). The authors of [18] give an extensive description of many meta-features.
Furthermore, they propose a new type of meta-feature, pair-wise meta-rules.

Another recent development is the concept of experiment databases [15,19],
databases which contain detailed information about a large range of experiments.
Experiment databases enable the reproduction of earlier results for verification
and reusability purposes, and make much larger studies (covering more algo-
rithms and parameter settings) feasible [19]. Above all, experiment databases
allow a variety of studies to be executed by a database look-up, rather than
setting up new experiments. An example of such an online experiment database
is OpenML [15].
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3 Meta-dataset

For the purpose of meta-learning, we need to obtain data on previous experi-
ments, i.e., runs of various algorithms on various data streams (from here on
referred to as base datasets, or base data streams). From this we construct a so-
called meta-dataset, in which each instance is a data stream characterized by a
number of measurable characteristics, the meta-features, as well as performance
scores of various machine learning algorithms.

3.1 Bayesian Network Generator

Unfortunately, the data stream literature contains few publicly available data
streams. In order to obtain a reasonable number of experiments on data streams,
we propose a new type of data generator that generates data streams based on
real world data [16]. It takes a dataset as input, preferably consisting of real world
data and a reasonable number of features, and builds a Bayesian Network over it,
which is then used to generate instances based on the probability tables. These
streams can also be combined together to simulate concept drift, similar to what
is commonly done with the Covertype, Pokerhand and Electricity dataset [4].

The generator takes a dataset as input, and outputs a data stream containing
a similar concept, with a predefined number of instances. The input dataset is
preprocessed with the following operations: all missing values are first replaced
by the majority value of that attribute, and numeric attributes are discretized
using Weka’s binning algorithm [9]. Values for attributes that are numeric in the
original dataset can be determined using two strategies. The nominal strategy
assigns one of the bins as the attribute value, determining the bin based on the
probability tables. The numeric strategy takes the bin with the highest proba-
bility value and draws a number from this bin based on its normal distribution.
The generated data streams are denoted as BNG(data, strategy, num instances),
with data denoting the original dataset, strategy denoting the chosen strategy
for numeric values, and instances denoting the number of generated instances.
The algorithm is implemented in the OpenML MOA package1.

Figure 1 shows the meta-features as calculated over the two Bayesian Network
Generated data streams based on the glass dataset, compared to the values of the
original dataset. As many of these qualities are quite similar, there is some indica-
tion that there is a similar concept underlying the data. The dimensionality indi-
cates the ratio between the number of instances and the number of attributes. The
decrease of this value can be explained by the fact that the number of attributes
is the same, yet the number of instances has increased. Furthermore, data streams
generated using the nominal strategy do not have any numeric attributes, hence
meta-features likeMean Skewness Of Numeric Attributes andMean StDev Of Nu-
meric Attributes are zero. Themeta-features indicating the J48 landmarkers (with
varying confidence factors) have better values on the generated data streams, hint-
ing at a slightly easier concept represented by the data. Similar patterns can be
found for other generated data streams.

1 Can be obtained from http://www.openml.org/

http://www.openml.org/
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Fig. 1. Meta-features of two Bayesian Network Generated data streams, where each
value is divided by the corresponding meta-feature value of the original dataset

3.2 Base Data Streams

The data streams generated by the Bayesian Network Generator form the basis
of our meta-dataset. We took datasets from the UCI repository [1] as input for
the Bayesian Network generator. We aimed to generate data streams of 1,000,000
instances, or less if the original dataset did not have enough attributes to obtain
a million different instances. We used both the nominal and the numeric strategy
in those cases where the original dataset had numeric attributes. In addition to
these, we also generate data streams by commonly used data generators from the
literature. We used the following data generators, as implemented in the MOA
workbench [3]: the SEA Concepts Generator, Rotating Hyperplane Generator,
Random RBF Generator and the LED Generator. For the generation of these
data streams we used the same parameters as described in [13].

Additionally, we also included the commonly used datasets Covertype, Elec-
tricity and Pokerhand, and a combination of these in order to generate concept
drift, as is done in [4]. We also included large text datasets, i.e., the IMDB
dataset and the 20 Newsgroups dataset. We converted the IMDB dataset into a
binary classification problem, having the drama genre as target. The 20 News-
groups dataset is first converted into 20 binary classification problems (one for
every Newsgroup) and then appended again into one big binary-class dataset,
as is done in [13]. This simulates a data stream with 19 concept drifts.

3.3 Meta-Features

We have characterized the base data streams using a wide variety of meta-
features. Most of the features are already described in the literature, e.g., in [18],
and are either of the type simple, statistical, information theoretic or landmarker.
We also introduce stream specific meta-features, based on a change detector. We
have run both Hoeffding Trees and NaiveBayes with both the ADWIN [2] and
DDM [8] change detectors over all data streams, and have recorded the number
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Table 1. Algorithms used in the experiments. Batch incremental classifiers have a
window of size 1,000; ensembles contain 10 base classifiers; k-NN is used with k = 10.

Key Classifier Type

NB NaiveBayes Instance incremental
SGD Stochastic Gradient Descent Instance incremental
SPeg SPegasus Instance incremental
k-NN k Nearest Neighbour Instance incremental
HT Hoeffding Tree Instance incremental
SMO Support Vector Machine / Polynomial Kernel Batch incremental
J48 C4.5 Decision Tree Batch incremental
REP Reduced-Error Pruning Decision Tree Batch incremental
OneR One Rule Batch incremental
LB-kNN Leveraging Bagging / k-NN Ensemble
LB-HT Leveraging Bagging / Hoeffding Tree Ensemble
Bag-HT OzaBag / Hoeffding Tree Ensemble
Boost-HT OzaBoost / Hoeffding Tree Ensemble

of changes detected (both ADWIN and DDM) and the number of warnings (DDM
only). All these meta-features are calculated for each window of 1,000 instances
on each data stream.

3.4 Algorithms

The algorithms included in this study are shown in Table 1, and can be grouped
into three types: instance incremental classifiers, batch incremental classifiers
and ensembles. For all classifiers, we have recorded the predictive accuracy, the
runtime, and RAM Hours on each data stream. The predictive accuracy was de-
termined using the Interleaved Test Then Train procedure, where each instance
is first used as a test instance, before it can be used to train the classifier.

4 Algorithm Selection in the Classical Setting

In the classical setting of the algorithm selection problem, the goal is to predict,
for a certain dataset, what algorithm would perform best.

4.1 Experimental Setup

In prior studies, the algorithm selection problem was treated as either a clas-
sification problem, regression problem, or ranking problem [18]. To investigate
what kind of information can be obtained from the data, we treat the algorithm
prediction problem on data streams as a classification problem. We create a
meta-dataset2 using the experimental data described in Section 3. For each base

2 All meta-datasets that were created for this study can be obtained from
http://www.openml.org/d/
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Table 2. Results of the algorithm selection problems in the classical setting

Task A Majority % Decision Stump Random Forest

Instance incremental 5 HT 71.25 79.63 88.46
Batch incremental 4 SMO 67.86 65.07 68.73
Ensembles 4 LB-HT 62.25 63.98 67.11
All classifiers 13 LB-HT 61.43 60.14 69.57

data stream, the meta-features are recorded in the first window of 1,000 obser-
vations. By the definition of Rice [14], this means that we are working on the
algorithm selection problem with A = 13 (algorithms), P = 75 (data streams),
Y = predictive accuracy (performance measure) and F = 58 (meta-features).

The goal is to predict which algorithm performs best, measured over the whole
data stream. In order to obtain deeper insight into what kind of targets we can
predict, we also defined three sub tasks, i.e., predicting the best instance incre-
mental classifier (A = 5), predicting the best batch incremental classifier (A = 4)
and predicting the best ensemble (A = 4). We have selected the “Decision
Stump” and “Random Forest” classifiers (as implemented in Weka 3.7.11 [9])
as meta-algorithms. The Random Forest algorithm has proven to be a useful
meta-algorithm in prior work [18], while models obtained from a single decision
tree or stump are especially easy to interpret. Both classifiers are tree-based,
which guards them against modeling irrelevant features. We ran the Random
Forest algorithm with 100 trees and 10 attributes. We estimate the performance
of the meta-algorithm by doing 10 times 10 fold cross-validation, and compare
its performance against predicting the majority class. For each meta-dataset, we
have filtered out the instances that contain a unique class value; since they will
either only appear in the training or test set, these do not form a reliable source
for estimating the accuracy.

4.2 Results

Table 2 shows the results obtained from the various tasks. It shows for every
task which classifier performs best in most cases (and therefore is the major-
ity class of the task) and in what percentage of the data streams that is the
case. Column “A” denotes the number of classes that were distinguished in
the tasks; column “Majority” and “%” denote the majority class and its size.
The other columns denote the accuracy score of the respective meta-algorithms.
The Random Forest algorithm performs better than the baseline on all defined
tasks. The Decision Stump algorithm performs well only at predicting both the
best instance incremental classifiers and ensembles. The results of both meta-
algorithms on the task of predicting the best instance incremental were marked
as significantly better than predicting majority class, tested using a Paired T-
Test with a confidence of 95%. Since the data characteristics were obtained over
only the first 1,000 instances of each stream, algorithm selection on data streams
can improve results of classifiers at already very low computational cost.
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5 Algorithm Selection in the Stream Setting

In data stream prediction, it is common for performance curves of different
algorithms to cross each other multiple times. Whereas, at a certain interval of
the stream, one of the algorithms performs best, this might be different for other
intervals of the stream. By applying algorithm selection in a stream setting, our
goal is to predict what algorithm will perform best for the next window of data.

5.1 Experimental Setup

In this experiment we want to determine whether meta-knowledge can improve
the predictive performance of data stream algorithms in the following setting.
Consider an ensemble of algorithms that are all trained on the same data stream.
For each window of size w, an abstract meta-algorithm determines which al-
gorithm will be used to predict the next window of instances, based on data
characteristics measured in the previous window and the meta-knowledge. Note
that the performance of the meta-algorithm depends on the size of this win-
dow. Meta-features calculated over a small window size are probably not able to
adequately represent the characteristics of the data, whereas calculating meta-
features over large windows is computationally expensive. Since our previous
experiment obtained good results with a window size of 1,000, we perform our
experiments with the same window size.

We have constructed a new meta-dataset, containing for each window the
meta-features measured over the previous interval, and the performance of all
base-classifiers trained on the entire data stream up to that window. We only
include a subset of the generated data streams. Indeed, since the Bayesian Net-
work Generator was used to generate multiple data streams based upon the same
source data (using the nominal strategy and the numeric strategy), it is likely
that these data streams contain a similar concept. We therefore remove all data
streams generated using the nominal strategy, if a version generated by the nu-
meric strategy also exists. After filtering out these data streams, there are still
49 data streams left. The meta-dataset consists of roughly 45,000 instances, each
describing a window of 1,000 observations from one of these base data streams.

For each of the base data streams, a meta-algorithm is trained using only
the intervals of the other data streams. We use a Random Forest (100 trees,
10 attributes) as meta-algorithm, since it proved to be a reasonable choice in
the previous experiment. We measure how it performs on the meta-learning
task of predicting the right algorithm for a given interval, as well as how it
would actually perform on the base data streams. To the best of our knowl-
edge, Leveraged Bagging Hoeffding Trees is the state of the art algorithm
on these data streams, so we will compare it against our abstract algorithm.
As in the previous experiment, we distinguish the tasks of selecting the best
instance incremental classifier, the best batch incremental classifier and the best
ensemble.
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Table 3. Results of the algorithm selection problems in the stream setting

Task A Majority % RFmeta ZeroRbase RFbase MAXbase
Instance incremental 5 HT 59.75 80.78 80.98 84.07 84.59
Batch incremental 4 SMO 65.56 68.17 74.38 75.33 76.02
Ensembles 4 LB-HT 57.78 56.20 84.27 85.15 86.12
All classifiers 13 LB-HT 50.97 50.92 84.27 85.31 86.30

5.2 Results

Table 3 shows the results obtained from this experiment. As with the results
of the previous experiment, column A indicates the number of classes in the
classification problem, “Majority” denotes which classifier is the majority class
(i.e., the classifier that performs best in most observations), and “%” shows the
size of the majority class. We measure two types of accuracy, meta-level accu-
racy and base-level accuracy. Meta-level accuracy records the performance using
a zero-one loss function. Consequently, it indicates for how many windows the
meta-algorithm predicted the best classifier. Column RFmeta shows the meta-
level accuracy of a Random Forest. Base-level accuracy records the performance
using a loss function equivalent to the performance of the predicted classifier. For
example, when the meta-algorithm predicts k-NN to be the best classifier on a
certain interval, the accuracy of k-NN on this interval will be used as loss. Accord-
ingly, base-level accuracy indicates the performance of the meta-classifier on the
base data streams when dynamically selecting the base-classifier. The base-level
score of the Random Forest meta-algorithm is shown in column RFbase. Column
ZeroRbase shows the base-level accuracy when the majority class is always pre-
dicted. Note that this is the score obtained by the majority class base-classifier,
measured over all base data streams. Column MAXbase shows what the base-level
score would be, if for any interval the best classifier would have been predicted.

As in the classical setting, it appears that determining the best instance-
incremental classifier yields good results. In more than 80% of the cases, the
correct classifier is predicted.This also results in anotable increase inbase level per-
formance, in such a way that it is comparable with Leveraged Bagged Hoeffding

Trees (84.27), and outperforms the scores obtained by OzaBag (82.58) and
OzaBoost (80.55). The results also show a consistent increase in performance. For
all defined tasks, the meta-algorithm outperforms the use of the single best classi-
fier in its pool, even though, on the ensemble task,RFmeta performs no better than
predicting themajority class.Apparently, themeta-algorithmwas able to avoid the
use of Leveraged Bagged Hoeffding Trees on windows where the performance is
very low. Furthermore, the base level performances are in many cases close to the
maximum possible value given the pool of classifiers. This indicates that the main
challenge is to find ways to improve this limit. This could be done by using a larger
set of algorithms, or by using other techniques such as parameter optimisation.
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Fig. 2. The difference in predictive accuracy of k-NN and Leveraged Bagging k-NN.
(k = 10, 10 base classifiers).

6 Discoveries

In this section we discuss interesting patterns that were obtained while analysing
the meta-datasets, some of which corroborate earlier findings in the literature.
Other findings will form the basis of our future work.

Discovery 1. An abstract meta-classifier consisting of 5 instance incremental clas-
sifiers (NaiveBayes, 10 Nearest Neighbour, SPegasus, SGD and a Hoeffding

Tree) is competitive with state of the art ensembles, tested over a large range
of data streams. It is likely that this result generalizes to an even larger num-
ber of data streams, because both conditions for an ensemble of classifiers to be
successful are met [10]: the base classifiers are diverse and do better than ran-
dom guessing. Moreover, the experiment in Section 4 shows that it is possible
to predict which one will perform well based on prior data.

Discovery 2. In contrast to the increase in performance that Leveraging Bagging

obtains when applied to Hoeffding Trees, it barely increases performance when
applied to k Nearest Neighbour. Figure 2 shows the difference in performance
of both algorithms. Note that, although Leveraged Bagging k-NN performs
slightly better, the difference is minuscule. This may be due to the fact that
even in a stream setting, k-NN is extremely stable; Bagging exploits the varia-
tion in the predictions of classifiers. In [5], it was already shown that Bagging

will not improve k-NN in the batch setting, due to its stability.

Discovery 3. The data streams on which k-NN or Leveraging Bagging k-NN
performs best all have a negative Mean Skewness of attributes. Skewness is a
measure of the asymmetry in the distribution of a range of values. A nega-
tive Skewness indicates that there are some outliers with low values. This was
already observed in the first interval of 1,000 instances, the Decision Stump ex-
tensively uses this feature to distinguish between predicting k-NN and Hoeffding

trees. This is surprising, since it has been reported that simple, statistical and
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information theoretic meta-features do not add much predictive power to land-
markers [18].

Discovery 4. NaiveBayes works well when the meta-feature measuring the num-
ber of changes detected by an ADWIN-equipped Hoeffding Tree has a high
value. The NaiveBayes algorithm generally needs only relatively few observa-
tions to achieve good accuracy compared to more sophisticated algorithms such
as Hoeffding Trees. Assuming that a high number of changes detected by this
landmarker indicates that the concept of the stream is indeed changing quickly,
this could explain why a classifier like NaiveBayes outperforms more sophisti-
cated learning algorithms that need more observations of the same concept to
perform well.

7 Conclusions

We have performed an extensive experiment on meta-learning on data streams,
running a wide range of steam mining algorithms over a large number of data
streams, and published all results online in OpenML [15], so that others can
verify, reproduce and build upon these results. Containing more than 1,000 ex-
periments on data streams, with extensive meta-information calculated over data
(windows), this now forms a rich source of meta-learning experiments on data
streams. In order to obtain a good number of data streams, the Bayesian Net-
work Generator was introduced, a new data stream generator used to generate
a comprehensive set of data streams describing various concepts.

Our approach to perform meta-learning on these streams seems promising:
Meta-features calculated on a small interval at the start of the data stream al-
ready provide information about which classifier will outperform others. Beyond
the classical setting of the algorithm selection problem, we can even use the
meta-models obtained from earlier experiments to improve the current state of
the art classifiers. We have sketched an abstract algorithm that uses multiple
classifiers and a voting schema based on meta-models that outperforms the per-
formance of the individual classifiers in its ensemble, but also is very competitive
with state of the art ensembles, measured over 49 data streams spanning more
that 46,000,000 instances. In addition, we discussed interesting patterns that
emerged from the meta-dataset, which will form a basis for future work.

Moreover, in this work we have treated the algorithm selection problem as a
classification task. In future work we will focus on ranking or regression tasks.
We will also include more data streams containing concept drift, and study the
effect on classifier performance. Due to the use of data generators this study
may potentially be biased towards this kind of generated data. We hope that
making our meta-dataset publicly available will persuade others to share more
data streams, eventually enabling much larger studies on even more diverse data.
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Abstract. The size of networks now needed to model real world phe-
nomena poses significant computational challenges. Key node selection
in networks, (KNSIN) presented in this paper, selects a representative
set of nodes that preserves the sketch of original nodes in the network
and thus, serves as a useful solution to this challenge. KNSIN is accom-
plished via a sparse coding algorithm that efficiently learns a basis set
over the feature space defined by the nodes. By executing a stop crite-
rion, KNSIN automatically learns the dimensionality of the node space
and guarantees that the learned basis accurately preserves the sketch of
the original node space. In experiments, we use two large scale network
datasets to evaluate the proposed KNSIN framework. Our results on the
two datasets demonstrate the effectiveness of the KNSIN algorithm.

Keywords: Node Selection, Sparse Coding, Social Networks, Recon-
struction Cost.

1 Introduction

The network paradigm has proved to be a crucial mathematical framework for
the articulation and understanding of a wide range of phenomena (see e.g.,
[16,29]). In particular, social networks have emerged as among the most im-
portant mathematical frameworks for the analysis of the structure of societal
interactions [17,22,26,7,6]. The size of many of the networks that are part of the
modern “data deluge” often poses challenges for various forms of analysis (e.g.,
[8,15]). Perhaps, nowhere is this more true than in the case of social networks
[20].

One way to address this obstacle is by selecting a set of representative nodes
that preserves the characteristics of the original network. Such a set and the
induced network derived from original network is called a sketch [9]. Such an idea
is directly analogous to the various kinds of sampling done in signal processing
[32] or statistics [3]. In the context of network analysis we call this the problem of
key node selection. It is a problem that remains almost untouched in the network
setting and is addressed in this paper.

Our approach to the key node selection problem is inspired by the technique of
sparse coding, an idea originally discovered in computer vision [30]. Sparse coding
derives a collection of vectors optimized to produce a sparse representation (in

S. Džeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 337–349, 2014.
c© Springer International Publishing Switzerland 2014
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terms of the number of vectors used) of any representative element of a given
kind of phenomenon. For example, in image processing, given a collection of
images of some fixed size, a sparse coding methodology will produce a set of
basis vectors (they need not be linearly independent) that efficiently represent
(i.e., require only a small number of nonzero elements for a good approximation)
a random image patch [33].

Sparse coding has a number of important attributes. First, it provides sparse
and efficient representation for original data. This in turn enables the efficient
interpretation of the original data. Second, sparse coding naturally offers an in-
dex scheme that facilitates quick data reduction and retrieval [5]. Sparse coding
may learn an overcomplete basis. This allows for more stable and powerful rep-
resentations compared with original data [36]. Due to its effectiveness, sparse
coding has been widely used in various domains such as speech recognition [21],
image restoration [24], and objection detection [19].

In this paper, we use a form of sparse coding to produce a node selection
framework that we call key node selection in networks (KNSIN). The key nodes
are determined by using sparse coding as applied to the feature space (the so-
called “node space”) that we assume is a part of the network data. Specifically,
by considering the dependence relation between nodes, KNSIN incrementally
extracts an independent basis set. We also make use of a novel efficient data
skipping technique, so that KNSIN learns basis sets using only a portion of ob-
served nodes rather than all the nodes of the network. By designing an adaptive
acceptance threshold technique, KNSIN is capable of automatically deciding the
suitable dimensionality for the node space. Finally, using the derived basis for
the node space, we are then able to go back to the original set of nodes to
determine the subset of key nodes that make up the sketch. In summary, the
contributions of the paper are as follow: (1) We design a node selection frame-
work over network data that is driven by sparse coding in node space. As far as
we know, it is the first key node selection framework via coding in network sce-
nario. (2) We develop an effective sparse coding algorithm to learn the basis for
the node space. Our proposed KNSIN automatically estimates the dimensional-
ity of the node space and learns an independent basis set. It deserves noting that
the learned dimensionality for node space is completely dependent on the data.
(3) We give a theoretical analysis showing that the learned basis set guarantees
a small reconstruction cost [35]. Here, reconstruction cost is a measure to evalu-
ate if the basis vectors accurately preserve the sketch of original data [9,47]. (4)
We validate the method on two large-scale email network datasets from diverse
sources: a large university and a large IT corporation.

2 Related Work

Due to its powerful modeling ability, networks have drawn much attention in var-
ious domains. Prominent examples include the use of networks in social sciences
[11,12], biology [40,38] , and finance [1]. A wide range of algorithms have been pro-
posed and implemented in order to uncover various aspects of the structure of net-
works. Examples relevant to our paper include work on node interaction [22,48],
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graphlet analysis [2,37], and node classification [28,39]. Many of these algorithms
are challengedwhen the network size is large. For instance, in [8] we learn that anal-
ysis on networks might be prohibitively expensive as the number of nodes exceeds
more than a few thousand. It is mentioned in [2] that as the scale of the network
becomes large, the computation cost is excessively large for even simply counting
the frequency of each type of graphlet. Examples like these show that it is essen-
tial for us to develop a scheme to select key nodes from original networks. A few
attempts [20] to solve the challenge were made using statistic techniques such as
random sampling. However, the performance is not good.

Our work is inspired by sparse coding. Sparse coding learns basis vectors in
order to capture high-level semantics from original data. Increasingly, ideas de-
rived from the sparse coding methodology are finding applications in many areas
[19,21,24,43,13]. Generally speaking, these methods can be divided into several
classes. The first class are greedy algorithms [25,41]. For this, basis vectors are
chosen sequentially based on certain criteria. Greedy methods are simple and
straightforward, addressing the NP-hard l0-decomposition problem directly [4].
The homotopy method represents another important class of techniques [10,31],
wherein a set of solutions are indexed by a particular convergence-control pa-
rameter in the constructed homotopy. Homotopy algorithms are effective for
relatively small networks, but may fail as the scale of networks increases [10].
Several soft-thresholding based methods [18,42] have also been proposed to solve
the optimization problem of sparse coding. For example, a feature-sign search
method was proposed in [18] to reduce the non-differentiable L1-norm prob-
lem in an L1-regularized least square method, and accelerate the optimization
procedure. Another example is the work of Wright et al. [42] making use of a
Barzilai-Borwein step length [34] in the negative gradient direction which is then
applied to the soft-thresholding mechanism to learn basis vectors.

3 Sparse Coding for Networks

3.1 Problem Description

Before presenting the proposed algorithm in detail, we give a formal description
of key node selection in networks. Let G = (V,E) denote a network, where V
is the set of nodes and E is the set of edges. The task of key node detection
is formulated as follows: given a graph G = (V,E) with original node set V =
{x1,x2, ...,xN} (xi represents the feature vector for node i), select a subset
V � from V such that V � accurately represents the original node set, i.e., V �

is capable of preserving the sketch [9] of the original node set. The notion of
“sketch” depends upon a measure of distance between the original node set and
learned basis set. Often this is evaluated in terms of reconstruction cost [35]
which is defined as follows:

E(M) =
1

N

N∑
j=1

‖xj − span{w1,w2, ...,wd}‖2. (1)
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Here M = {w1,w2, ...,wd} is the learned basis set and E(M) is the reconstruc-
tion cost of basis M.

3.2 Learning the Basis Set

In what follows, we describe the sparse coding algorithm KNSIN used to select

“key” nodes over networks. Initially, we assume V = V (0) = [x
(0)
1 ,x

(0)
2 , ...,x

(0)
N ],

where xi ∈ RD. (Here D is the dimensionality of each node features.) The
learned basis M starts as empty.

For every iteration, we conduct column pivoting to exchange the current node
vector with the one that has the largest 2-norm as follows: (Suppose the first
k pivot columns have been found and the interchange processes have been per-
formed.)

j = arg max
k<i≤N

‖x(k)
i ‖2. (2)

Then we interchange the pivot column j with column k+1, where k is the current
number of components. After the process of column pivoting and exchange, we
calculate the norm of the (k + 1)

th
column vector rk+1,k+1 by

rk+1,k+1 = ‖x(k)
k+1‖2. (3)

And we learn the potential basis vector wk+1 by

wk+1 =
x
(k)
k+1

rk+1,k+1
. (4)

By “potential basis vector” we mean the learned basis vectors that may be ac-
cepted or rejected determined by a threshold policy that is discussed later. If
wk+1 is accepted, the node matrix V (k) is updated using orthogonal transfor-
mation:

x
(k+1)
j ← x

(k)
j − rk+1,jwk+1, j = k + 2, ..., N. (5)

Therein, rk+1,j is computed by

rk+1,j = wk+1
�x

(k)
j , j = k + 2, ..., N. (6)

We then obtain node matrix V (k+1) = [w1, ...,wk+1,x
(k+1)
k+2 , ...,x

(k+1)
N ]. If the

threshold condition is not satisfied, we will stop the whole algorithm.
It deserves noting that many sparse coding methods work on all training

data to learn the basis vectors. This can be very computationally expensive. In
KNSIN, a “training data skipping” scheme is designed to overcome this short-
coming (see Section 3.2.3). In the rest of the section, we analyze KNSIN in
detail.

3.2.1 Measuring Independence between Nodes and Learned Basis
To incrementally learn representative basis vectors and reduce the redundancy
in basis, we need to consider the independence between an incoming node and
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the basis set that is already learned [44,47]. Suppose we have learned basis
vectors {w1,w2, ...,wk}. If a node xk+1 is dependent on the learned basis, the
corresponding computedwk+1 is unsuitable to be accepted as a new basis vector.
It is because that if a basis vector is transformed from a node that has strong
dependence on learned basis set, the independence among the whole basis set
would be affected [14]. Thus it is necessary to consider the independence between
the current set of basis vectors and subsequent input vectors.

In KNSIN we use the projection distance of xk+1 onto the subspace
span{w1,w2, ...,wk} to measure the degree of independence between xk+1 and
the learned basis for node space (w1,w2, ...,wk are the learned basis vectors for
node space):

‖span{w1,w2, ...,wk} − xk+1‖2. (7)

We define the matrixWk = [w1,w2, ...,wk] ∈ RD×k. The column vectors inWk

are orthogonal. Thereby, based on wk, we easily construct an orthogonal square
matrix Q2 in the following form: Q2 = [Wk,Q1]. Therein, Q1 ∈ R

D×(D−k) is a
rectangular matrix whose columns are orthogonal to each column of Wk. It is
straightforward to see that the value of (7) equals ‖Q1

�xk+1‖2.
On the other hand, from (3) and (5), we know rk+1,k+1 is the projection of the

original dataxk+1 onto the orthogonal complement space span{w1,w2, ...,wk}⊥,
thus rk+1,k+1 = ‖Q1

�xk+1‖2. Therefore, rk+1,k+1 (computed by (3)) measures
the independence between the learned basis and incoming node xk+1.

3.2.2 Estimating Intrinsic Dimension by Threshold Policy
As discussed above, the dependence between the learned basis M and node xk+1

is measured by rk+1,k+1. If rk+1,k+1 is small, the vector xk+1 is almost entirely
or entirely in the space span{w1,w2, ...,wk}. In this case, xk+1 has a strong
dependence on the space span{w1,w2, ...,wk}. As a result, it is not reasonable
to add the potential base vector wk+1 into the basis M because wk+1 is learned
from xk+1. On the contrary, if rk+1,k+1 is large, the computed vector wk+1 is
an ideal potential basis vector. Due to the fact that r1,1 is not smaller than
ri,i for all i > 1 (this will be demonstrated in Theorem 2), for the purposes of
convenient comparison, we use the value of

rk+1,k+1

r1,1
as a criterion to make the

final decision whether the computed potential vector wk+1 should be accepted
as a basis vector or not.

Besides obtaining an independent basis, we need to guarantee that the learned
basis preserves the sketch (á la [9]) of the original node space. Namely, the
reconstruction cost E(M) indicated in Eq. 1 is small.

To satisfy the above constraints, we propose an adaptive threshold as follows:
we accept the computed potential basis vector wk+1 if

rk+1,k+1

r1,1
≥ T = f(

Dim(M)

N
) (8)

Therein,N is the number of original nodes, and f(t) is a monotonically increasing
function with 0 ≤ f(t) ≤ 1 for 0 ≤ t ≤ 1.
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Now we specify that the designed threshold technique accurately preserves
the sketch of original data space via the following Theorem.

Theorem 1. E(M) < r1,1f(
Dim(M)

N ).

Proof. Suppose at the end of the algorithm, we obtain d basis vectorsw1,w2, ...,
wd (i.e.,Dim(M) = d). Therefore, for nodes xj (j ≤ d), we have ‖xj − span{w1,

w2, ...,wd}‖2 =

√
‖xj‖22 −

∑d
i=1(wi

�xj)2 = 0. And for those nodes xj (j > d),

due to the non-increasing monotonicity of ri,i, (see Theorem 2), we have ‖xj −
span{w1,w2, ...,wd}‖2 = ‖xj −

∑d
i=1(wi

�xj)wi‖2 ≤ rd+1,d+1. As a result,
E(M) ≤ 1

N (N − d)rd+1,d+1. Hence, we obtain

E(M) <
N − d

N
r1,1f(

Dim(M)

N
) < r1,1f(

Dim(M)

N
),

which completes the proof. �
Since f(t) ≤ 1 is monotonically increasing and Dim(M) << N , the value

of r1,1f(
Dim(M)

N ) will be small. It means that the adaptive threshold technique
guarantees that basis vectors obtained by KNSIN accurately preserves the sketch
of the original node space.

3.2.3 Learning the Basis Set by Data Skipping
In KNSIN, we design a data skipping policy to learn basis vectors from a portion
of rather than all data based on the following theorem.

Theorem 2. {ri,i}Ni=1 achieved in every iteration of KNSIN is monotone non-
increasing, i.e., if j ≤ k then rj,j ≥ rk,k.

Proof. Suppose currently we have learned k basis vectors w1,w2, ...,wk, and

data matrixA(k) = [w1, ...,wk,x
(k)
k+1, ...,x

(k)
N ]. From (3) and (4), we have x

(k+1)
j =

x
(k)
j − rk+1,j

x
(k)
k+1

rk+1,k+1
for j > k + 1. Because x

(k+1)
j is orthogonal to wk+1, we

obtain

‖x(k+1)
j ‖22 = x

(k)
j

�
x
(k)
j − r2k+1,j ≤ ‖x(k)

j ‖22.

Due to the column pivoting policy, ‖x(k)
j ‖22 ≤ r2k+1,k+1 for j > k + 1 and

rk+2,k+2 = maxj≥k+2 ‖x(k+1)
j ‖2. Therefore,we conclude that rk+1,k+1 ≥ rk+2,k+2,

which completes the proof. �

In KNSIN, we skip training data by a stop policy: we stop the algorithm if we
arrive at the first potential basis vector wk satisfying the following inequality:

rk,k
r1,1

< T = f(
Dim(M)

N
). (9)

Suppose wk is the first potential basis vector that does not satisfy the thresh-
old condition, i.e.,

rk,k

r1,1
< T .

rk,k

r1,1
is monotone nonincreasing (in k). Therefore,
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if the integer k does not satisfy
rk,k

r1,1
≥ T , all the integers j > k does not satisfy

the threshold condition either. This means that even if we continue to consider
the remaining nodes, the potential basis vectors learned later ({wj}Nj=k+1) also
will not satisfy the threshold condition defined in (8). Therefore, those potential
basis vectors will be rejected. It implies that the learned basis set remains the
same even if we consider all nodes.

Therefore, we need not execute the KNSIN any longer if we meet a potential
basis vector that does not satisfy the threshold condition. Based on this stop
policy (9), KNSIN is able to effectively skip the training data that are numerically
dependent on the learned basis, which in turn reduces computing complexity.
Without this data skipping scheme, KNSIN has to process all the data; the
time complexity for learning basis vectors would have reached O(N2D). By the
skipping scheme, the time complexity of KNSIN reduces to O(NDd). Here, N
is the size of training set, D is the dimensionality of original data, and d is
number of learned basis vectors. d << N , thus the skipping scheme reduces the
computation complexity to linear.

3.3 Summary of KNSIN

In Algorithm 1 we give pseudocode for KNSIN. The algorithm generates in-
dependent basis vectors and learns the proper dimension for node space. The
learned basis guarantees that the sketch of original node space is accurately
preserved.

Input: Node matrix V (0) = [x
(0)
1 ,x

(0)
2 , ...,x

(0)
N ].

1. Initialize the basis M = ∅ and its dimensionality k = Dim(M) = 0.
2. repeat
3. Column pivoting and interchange.
4. Compute rk+1,k+1 by (3) and wk+1 by (4).
5. Accept wk+1 as a basis vector and add it into M.
6. Update x

(k)
j by (5), for j = k + 2 : N .

7. Update basis dimensionality k ← k + 1.
8. until Threshold condition (8) is not satisfied.
9. Obtain key node set according to learned basis.

Output: Key node set and basis M for node space

Algorithm 1. Key Node Selection In Networks

4 Experiments

In what follows, we introduce two real-world network datasets to evaluate the
proposed KNSIN Algorithm. The first dataset was collected in a major university
over 6 semesters (three years). Another dataset was collected from a large IT
corporation over three years. We first verify whether the sketch of the original
data [9] is preserved by the learned basis vectors by calculating the reconstruction
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cost E(M) indicated in Eq. (1). Then to evaluate whether the encoded subgraph
is close to the original network, we evaluate the link prediction accuracy under
the selected key node based subgraph (i.e., the subgraph is constructed using
the selected nodes along with the edges among them.). We use the statistic
based network sampling algorithm Random Node Sampling (RNS) introduced
in [20], a typical Sparse Coding algorithm (SC) [18] and Principal Component
Analysis (PCA), a classic method to learn principal components from original
data to compare with KNSIN. Meanwhile, the original representation (OR) of
the un-sampled network is applied as another baseline.

Table 1. The reconstruction cost E(M) using KNSIN, SC, and PCA under the uni-
versity email network datasets

E(M) KNSIN SC PCA

Semester1 0.153± 0.012 0.323 ± 0.024 0.322 ± 0.031

Semester2 0.200± 0.016 0.326 ± 0.027 0.317 ± 0.028

Semester3 0.254± 0.021 0.413 ± 0.049 0.314 ± 0.034

Semester4 0.076± 0.008 0.392 ± 0.037 0.310 ± 0.041

Semester5 0.119± 0.011 0.366 ± 0.033 0.301 ± 0.038

Semester6 0.222± 0.019 0.430 ± 0.052 0.270 ± 0.045

Table 2. The link prediction accuracy AC (%) over subgraph generated using KNSIN,
SC,PCA, RNS, and OR under the university email network datasets

AC KNSIN SC PCA RNS OR

Semester1 86.8± 1.7 84.2 ± 2.0 76.9 ± 2.1 72.9 ± 3.0 85.1 ± 1.3

Semester2 91.0± 0.6 84.3 ± 2.1 80.5 ± 2.4 77.2 ± 2.7 87.5 ± 1.7

Semester3 92.0± 1.0 86.7 ± 1.7 78.3 ± 2.9 80.3 ± 3.2 87.9 ± 1.4

Semester4 87.8± 1.8 83.8 ± 2.4 78.9 ± 2.3 72.2 ± 2.9 85.6 ± 1.9

Semester5 89.3± 1.1 84.0 ± 1.6 80.2 ± 1.9 75.4 ± 2.5 87.8 ± 1.2

Semester6 92.0± 0.5 81.3 ± 2.2 80.0 ± 1.8 75.2 ± 3.1 89.0 ± 1.4

4.1 University Email Network Dataset

In this section, we use a university email network dataset. The dataset con-
tains email messages delivered to users via the university email system over six
separate semesters. The email user population is a mix of students, faculty mem-
bers, staff, and “affiliates” (a category including postdocs, visiting scholars, and
alumni) in a major university in the United States. Every email record is com-
posed of date, time, sender, and list of recipients. Out of privacy and security
concerns, the contents of email messages are discarded and the email addresses
are encrypted. However, in this email system, we are allowed to access an email
user table that describes the personal information of each user, namely occupa-
tion, birth, gender, home country, postal code, years at the university, academic
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department (for student and faculty), division (for student only), and dormi-
tory building (for student only). Besides those observable features, we calculate
latent features for each node. A few models have been proposed to extract la-
tent features for network, such as Latent Feature Relational Model [27] etc. In
our experiments, we extract latent features by Multidimensional Scaling (MDS)
– a widely used technique to learn latent features in networks (see e.g., [46]).
Each person is represented by a node in the network, and we say there is an
edge between two nodes (persons) if and only if the two persons have an email
communication. The average number of email users for each dataset is 67, 736,
and the average number of edges is 14, 253, 468. Detailed information about the
dataset can be found in [45].

First we evaluate the quality of learned basis set. We execute KNSIN to obtain
the basis vectors under each of the six datasets respectively. Then we calculate
the reconstruction cost E(M) of the learned basis vectors based on Eq.(1), and
list the results in Table 1. To compare with KNSIN, we also list the reconstruc-
tion cost computed using basis vectors learned from SC and PCA respectively.
Note that in KNSIN, the dimensionality of basis M is automatically learned
by the algorithms themselves. But for SC and PCA, it necessitates that users
predetermine the basis dimension as a learning parameter. The predetermined
dimensionality affects the reconstruction cost of the learned basis. Therefore, for
SC and PCA, we adopt the same basis dimensionality as KNSIN to guarantee
that the comparison is fair.

Compared with SC and PCA, KNSIN achieves the smallest reconstruction
cost under all datasets, which demonstrates that the basis learned by KNSIN is
able to accurately preserve the sketch of original data better than two baselines.

To further verify if the selected key nodes preserve the characteristic of original
node space, we perform the link prediction task under the selected subgraph, i.e.,
the graph containing selected nodes along with the edges among selected nodes.
For the subgraph obtained using each algorithm, we apply the supervised link
prediction algorithm described in [23], and employ the 10-fold cross validation
scheme to calculate the average prediction accuracy. Besides SC and PCA, the
link prediction accuracy under the subgraph derived using RNS, and the original
graph (OR) is calculated as a baseline. We list the link prediction accuracy results
under all methods in Table 2.

The results in Table 2 indicates that the subgraph generated by KNSIN
achieves better link prediction accuracy than SC, PCA, and RNS under all the
datasets. Compared with OR, KNSIN still obtains comparable or even better
accuracy. It demonstrates that KNSIN can effectively select key nodes that ac-
curately preserve the characteristic of original networks.

4.2 IT Company Email Network Dataset

In what follows, an email network dataset collected from a large information tech-
nology company is employed to evaluate the proposed KNSIN framework. The
dataset contains the complete record, as drawn from the company’s servers, of
email communications among 30,328 employees from 2006 to 2008. The
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employees in the company are located in 289 different offices around 50 states
in United States and collectively comprise about one quarter of the company’s
employee population. Each email record comprises the timestamp, sender, lists
of recipients, and the size of the message. Privacy laws and corresponding com-
pany policies preclude the collection of the content of messages. However, some
personal information for each employee is accessible from the HR department of
the company, namely work years in the company, employee’s job function, office
location code, the state of the office, and employee’s group ID. Email messages
from each of the three years are treated as a separate dataset. Each person is
regarded as a node in the network while all people appearing in one email mes-
sage are regarded as vertices associated with the edge. The personal information
for each employee obtained from HR department is treated as observed features.
The average number of vertices for each network is 28, 199, and the average
number of links is 846, 882.

For each of the three datasets, we run KNSIN. Then reconstruction cost E(M)
is computed and listed in Table 3. We also compare KNSIN with SC and PCA.
Similarly to last subsection, the dimensionality of basis learned by KNSIN is
automatically determined, while the dimensionality of basis learned by SC and
PCA is set up as the same as KNSIN. The results in Table 3 show that the basis
learned by KNSIN obtains the smallest reconstruction cost under each condition,
indicating that KNSIN is able to accurately preserve the sketch of original data.

Table 3. The reconstruction cost E(M) using KNSIN, SC, PCA, RNS, under the IT
company email network datasets

E(M) KNSIN SC PCA

2006 0.217± 0.068 0.302 ± 0.072 0.514 ± 0.078

2007 0.149± 0.056 0.227 ± 0.053 0.512 ± 0.074

2008 0.211± 0.107 0.243 ± 0.123 0.511 ± 0.157

Table 4. The link prediction accuracy AC (%) over subgraph generated using KNSIN,
SC,PCA, RNS, and OR under the IT company email network datasets

AC KNSIN SC PCA RNS OR

2006 76.1± 1.8 70.9 ± 2.8 71.9 ± 3.2 67.8± 3.1 74.6± 2.9

2007 76.8± 1.6 70.8 ± 3.1 69.8 ± 3.4 66.9± 3.3 72.3± 2.8

2008 76.7± 2.1 71.8 ± 3.2 72.3 ± 2.7 70.2± 3.5 75.5± 2.2

In this Company Email Network dataset, we still verify the effectiveness of our
proposed node selection framework by the link prediction task. Similar to the last
subsection, we construct a subnetwork (subgraph) based on the selected nodes us-
ing KNSIN, and calculate the link prediction accuracy over the subnetwork. SC,
PCA, and RNS are still used to compare with the proposed KNSIN. Meanwhile,
the link prediction accuracy over the original network (OR) is computed as a base-
line. All link prediction results are listed in Table 4. FromTable 4, we can conclude
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that KNSIN selects a set of nodes that accurately preserves the characteristics of
original network.

5 Conclusion

In this paper, we propose a node selection framework for networks, KNSIN, to
learn the basis for the node space via a sparse coding algorithm. By designing
a stop criterion technique, KNSIN automatically determines the dimensionality
of node space and extracts a set of independent basis vectors. The learned ba-
sis vectors guarantee that the sketch of original node space can be accurately
preserved. By proposing a “data skipping scheme”, KNSIN learns the basis effi-
ciently from a portion rather than all of the data. The results from experiments
run on two large email networks from diverse sources demonstrate the effective-
ness of KNSIN.
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Abstract. This paper presents a dependent multi-output Gaussian pro-
cess (GP) for modeling complex dynamical systems. The outputs are
dependent in this model, which is largely different from previous GP
dynamical systems. We adopt convolved multi-output GPs to model the
outputs, which are provided with a flexible multi-output covariance func-
tion. We adapt the variational inference method with inducing points
for approximate posterior inference of latent variables. Conjugate gra-
dient based optimization is used to solve parameters involved. Besides
the temporal dependency, the proposed model also captures the depen-
dency among outputs in complex dynamical systems. We evaluate the
model on both synthetic and real-world data, and encouraging results
are observed.

Keywords: Gaussian process, variational inference, dynamical system,
multi-output modeling.

1 Introduction

Dynamical systems are widespread in machine learning applications. Multi-
output time series such as motion capture data and video sequences are typical
examples of these systems. Modeling complex dynamical systems has a number of
challenges such as only time as inputs, nonlinear mapping from time to observa-
tions, large data sets and possible dependency among multiple outputs. Gaussian
processes (GPs) provide an elegant method for modeling nonlinear mappings in
the Bayesian nonparametric learning framework [15]. Some extensions of GPs
have been developed in recent years, which aim to solve these challenges.

Lawrence [9, 10] proposed the GP latent variable model (GP-LVM) as a non-
linear extension of the probabilistic principal component analysis [18]. GP-LVM
can provide a visualization of high dimensional data by optimizing the latent
variables with the maximum a posterior (MAP) solution. To overcome the dif-
ficulty of time and storage complexities for large data sets, some approximate
methods, e.g., sparse GP [11] have been proposed for learning GP-LVM. By
adding a Markov dynamical prior on the latent space, GP-LVM is extended to
the GP dynamical model (GPDM) [21, 22] which is able to model nonlinear
dynamical systems. GPDM captures the variability of outputs by constructing
the variance of outputs with different parameters.
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Instead of seeking a MAP solution for the latent variables as in the former
methods, Titsias and Lawrence [20] introduced a variational Bayesian method
for training GP-LVM. This method computes a lower bound of the logarith-
mic marginal likelihood by variationally integrating out the latent variables that
appear nonlinearly in the inverse kernel matrix of the model. It was built on
the method of variational inference with inducing points [19, 16]. This Bayesian
GP-LVM was later adapted to multi-view learning [5] through introducing a
softly shared latent space. Similarly, Damianou et al. [6] extended the Bayesian
GP-LVM by imposing a dynamical prior on the latent space to the variational
GP dynamical system (VGPDS). Park et al. [14] developed an almost direct ap-
plication of VGPDS to phoneme classification. Besides variational approaches,
expectation propagation based methods [7] are also capable of conducting ap-
proximate inference in Gaussian process dynamical systems (GPDS).

However, all the models mentioned above for GPDS ignore the dependency
among multiple outputs, which usually assume that the outputs are conditionally
independent. Actually, modeling the dependency among outputs is necessary in
many applications such as sensor networks, geostatistics and time-series fore-
casting, which helps to make better predictions. Indeed, there are some recent
works that explicitly considered the dependency of multiple outputs in GPs
[3, 2, 23]. Latent force models (LFMs) [3] are a recent state-of-the-art mod-
eling framework, which can model multi-output dependencies. Later, a series
of extensions of LFMs were presented such as linear, nonlinear, cascaded and
switching dynamical LFMs [1]. People also gave sequential inference methods for
LFMs [8]. Álvarez and Lawrence [2] employed convolution processes to account
for the correlations among outputs to construct a convolved multiple outputs
GP (CMOGP) which can be regarded as a specific case of LFMs. Wilson et al.
[23] combined neural networks with GPs to construct a GP regression network
(GPRN). However, CMOGP and GPRN are neither introduced nor directly
suitable for dynamical system modeling. When a dynamical prior is imposed,
marginalizing over the latent variables is needed, which can be very challenging.

This paper proposes a variational dependent multi-output GP dynamical sys-
tem (VDM-GPDS). The convolved process covariance function [2] is employed
to capture the dependency among all the data points across all the outputs.
To learn VDM-GPDS, we first approximate the latent functions in the convo-
lution processes, and then variationally marginalize out the latent variables in
the model. This leads to a convenient lower bound of the logarithmic marginal
likelihood, which is then maximized by the scaled conjugate gradient method
to find out the optimal parameters. Our model is applicable to general depen-
dent multi-output dynamical systems rather than being specially tailored to a
particular application. We adapt the model to different applications and obtain
promising results.

2 The Proposed Model

Suppose we have multi-output time series data {yn, tn}Nn=1, where yn ∈ RD is an
observation at time tn ∈ R

+. We assume that there are low dimensional latent
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variables that govern the generation of the observations and a GP prior for the
latent variables conditional on time captures the dynamical driving force of the
observations, as in Damianou et al. [6]. However, a large difference compared
with their work is that we explicitly model the dependency among the outputs
through convolution processes [2].

Our model is a four-layer GP dynamical system. Here t ∈ R
N represents

the input variables in the first layer. Matrix X ∈ RN×Q represents the low
dimensional latent variables in the second layer with element xnq = xq(tn).
Similarly, matrix F ∈ RN×D denotes the latent variables in the third layer, with
element fnd = fd(xn) and matrix Y ∈ RN×D denotes the observations in the
fourth layer whose nth row corresponds to yn. The model is composed of an
independent multi-output GP mapping from t to X , a dependent multi-output
GP mapping from X to F , and a linear mapping from F to Y .

Specifically, for the first mapping, x is assumed to be a multi-output GP in-
dexed by time t similarly to Damianou et al. [6], that is xq(t) ∼ GP(0, κx(t, t

′)),
q = 1, ..., Q, where individual components of the latent function x(t) are in-
dependent sample paths drawn from a GP with a certain covariance function
κx(t, t

′) parameterized by θx. There are several commonly used covariance func-
tions such as the squared exponential covariance function (RBF) and Matern
3/2 function [6]. Given the above assumption, we have

p(X |t) =
Q∏

q=1

p(xq|t) =
Q∏

q=1

N (xq|0,Kt,t), (1)

where Kt,t is the covariance matrix. The covariance matrix may be constructed
with any of the above covariance functions according to different applications.

For the second mapping, we assume that f is another multi-output GP indexed
by x, whose outputs are dependent, that is fd(x) ∼ GP(0, κfd,fd′ (x,x

′)), d, d′ =
1, ..., D, where κfd,fd′ (x,x

′) is a convolved process covariance function which can
capture the dependency among all the data points across all the outputs with
parameters θf = {{Λk}, {Pd}, {Sd,k}} . The detailed formulation of κfd,fd′ (x,x

′)
will be given in Sect. 2.1. From the conditional dependency among the latent
variables {fnd}N,D

n=1,d=1, we have

p(F |X) = p(f |X) = N (f |0,Kf ,f ), (2)

where f is a shorthand for [f�1 , ..., f�D ]� andKf ,f sizedND×ND is the covariance
matrix in which the elements are calculated by κfd,fd′ (x,x

′).
The third mapping, which is from fnd to the observation ynd can be written

as ynd = fnd + εnd, where εnd ∼ N (0, β−1). Thus, we get

p(Y |F ) =

D∏
d=1

N∏
n=1

N (ynd|fnd, β−1). (3)

Given the above setting, the graphical model for the proposed VDM-GPDS
on the training data {yn, tn}Nn=1 can be depicted as Fig. 1. From (1), (2) and
(3), the joint probability distribution for the VDM-GPDS model is given by
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p(Y, F,X |t) = p(f |X)
D∏

d=1

N∏
n=1

p(ynd|fnd)
Q∏

q=1

p(xq|t). (4)

t

qx
1q Q

y
nd

1n N
x

fnd

1d D

f

Fig. 1. The graphical model for VDM-GPDS

2.1 Convolved Process Covariance Function

Since the outputs in our model are dependent, we need to capture the corre-
lations among all the data points across all the outputs. Bonilla et al. [4] and
Luttinen and Ilin [12] used a Kronecker product covariance matrix, which is very
limited and actually a special case of some general covariances when covariances
calculated from output dimensions and inputs are independent. In this paper,
we use a more general and flexible model in which these two covariances are not
separated. In particular, the convolution processes [2] are employed to model the
latent function F (X).

Now we introduce how to construct the convolved process covariance functions.
Using latent functions {uk(x)}Kk=1 and smoothing kernels {Gd,k(x)}D,K

d=1,k=1, fd(x)
is supposed to be expressed through a convolution integral,

fd(x) =
K∑

k=1

∫
X

Gd,k(x− x̃)uk(x̃)dx̃. (5)

The smoothing kernel is assumed to be Gaussian and formulated as Gd,k(x) =
Sd,kN (x|0, Pd), where Sd,k is a scalar value that depends on the output index
d and the latent function index k, and Pd is assumed to be diagonal. The latent
process uk(x) is assumed to be Gaussian with covariance function

κk (x,x
′) = N (x− x′|0, Λk) . (6)

Thus, the covariance between fd(x) and fd′(x′) is

κfd,fd′ (x,x
′) =

K∑
k=1

Sd,kSd′,kN (x|x′, Pd + Pd′ + Λk). (7)

The covariance between fd(x) and uk(x
′) is

κfd,uk
(x,x′) = Sd,kN (x− x′|0, Pd + Λk) . (8)

These covariance functions will be used for approximate inference in Sect. 3.
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3 Inference and Optimization

The fully Bayesian learning for our model requires maximizing the logarithm of
the marginal likelihood

p(Y |t) =
∫

p(Y |F )p(F |X)p(X |t)dXdF. (9)

Note that the integration w.r.t X is intractable, because X appears nonlinearly
in the inverse of the matrix Kf ,f . We attempt to make approximations for (9).

To begin with, we approximate p(F |X) which is constructed by convolu-
tion process fd(x) in (5). Similarly to Álvarez and Lawrence [2], a generative
approach is used to approximate fd(x) as follows. We first draw a sample,

uk(Z) = [uk(z1), ..., uk(zM )]
�
, where Z = {zm}Mm=1 are introduced as a set

of input vectors for uk(x̃) and will be learned as parameters. We next sample
uk(x̃) from the conditional prior p(uk(x̃)|uk). According to the above generating
process, uk(x̃) in (5) can be approximated by the expectation E(uk(x̃)|uk). Let
U = {uk}Kk=1 and u = [u�

1 , ...,u
�
K ]�. We get the probability distribution of f

conditional on u, X, Z as follows

p(f |u, X, Z) = N (f |Kf ,uK
−1
u,uu,Kf ,f −Kf ,uK

−1
u,uKu,f ), (10)

where Kf ,u is the cross-covariance matrix between fd(x) and uk(z) with element
κfd,uk

(x,x′) in (8), block-diagonal matrix Ku,u is the covariance matrix between
uk(z) and uk(z

′) with element κk (x,x
′) in (6), and Kf ,f is the covariance matrix

between fd(x) and fd′(x′) with element κfd,fd′ (x,x
′) in (7). Therefore, p(F |X)

is approximated by p(f |X,Z)=
∫
p(f |u, X, Z)p(u|Z)du and p(Y |t) is converted

to

p(Y |t) =
∫

p(y|f)p(f |u, X, Z)p(u|Z)p(X |t)dFdUdX, (11)

where p(u|Z) = N (0,Ku,u) and y = [y�
1 , ...,y

�
D]�. It is worth noting that (11)

is still intractable as the integration w.r.t X remains difficult.
Then, we introduce a lower bound of the log p(Y |t). We construct a variational

distribution q(F,U,X |Z) to approximate the distribution p(F,U,X |Y, t) and
compute the Jensen’s lower bound on the log p(Y |t) as

L =

∫
q(F,U,X |Z) log

p(Y, F, U,X |t, Z)

q(F,U,X |Z)
dXdUdF. (12)

The variational distribution is assumed to be factorized as

q(F,U,X |Z) = p(f |u, X, Z)q(u)q(X). (13)

p(f |u, X, Z) in (13) is the same as the second term in (11), which will be
eliminated during the variational computation. q(u) is an approximation to
p(u|X,Y ), which is arguably Gaussian by maximizing the variational lower
bound [6, 20]. q(X) is an approximation to p(X |Y ), which is assumed to be

a product of independent Gaussian distributions q(X) =
∏Q

q=1N (xq |μq, Sq).
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After some calculations and simplifications, the optimal lower bound becomes

L = log

[
β

ND
2 |Ku,u|

1
2

(2π)
ND
2 |βψ2+Ku,u|

1
2

exp{−1

2
y�Wy}

]

− βψ0

2
+

β

2
Tr(K−1

u,uψ2)−KL[q(X)||p(X |t)],
(14)

where W = βI−β2ψ1(βψ2 +Ku,u)
−1ψ�

1 , ψ0 = Tr(〈Kf ,f 〉q(X)), ψ1 = 〈Kf ,u〉q(X)

and ψ2 = 〈Ku,fKf ,u〉q(X). KL[q(X)||p(X |t)] defined by
∫
q(X) log q(X)

p(X|t)dX is

KL[q(X)||p(X |t)] =Q

2
log |Kt,t| −

1

2

Q∑
q=1

log |Sq|

+
1

2

Q∑
q=1

[Tr(K−1
t,tSq) + Tr(K−1

t,tμqμ
�
q )] + const.

(15)

Note that although the lower bound in (14) and the one in VGPDS [6] look
similar, they are essentially distinct and have different meanings. In particular,
the variables U in this paper are the samples of the latent functions {uk(x)}Kk=1

in the convolution process while in VGPDS they are samples F . Moreover, the
covariance functions of F involved in this paper are multi-output covariance
functions while VGPDS adopts single-output covariance functions. As a result,
our model is more flexible and challenging.

3.1 Computation of ψ0, ψ1, ψ2

Recall that the lower bound (14) requires computing the statistics {ψ0, ψ1, ψ2}.
We now detail how to calculate them. ψ0 is a scalar that can be calculated as

ψ0 =

N∑
n=1

D∑
d=1

∫
κfd,fd(xn,xn)N (xn|μn, Sn) dxn =

D∑
d=1

K∑
k=1

NSd,kSd,k

(2π)
Q
2 |2Pd + Λk|

1
2

.

(16)

ψ1 is a V ×W matrix whose elements are calculated as1

(ψ1)v,w =

∫
κfd,uk

(xn, zm)N (xn|μn, Sn)dxn = Sd,kN (zm|μn, Pd + Λk + Sn) ,

(17)

where V = N×D, W = M ×K, d = % v−1
N &+1, n = v− (d−1)N , k = %w−1

M &+1
and m = w − (k − 1)M . Here the symbol “%&” means rounding down. ψ2 is a

1 We borrow the density formulations to express ψ1 as well as ψ2.
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W ×W matrix whose elements are calculated as

(ψ2)w,w′ =

D∑
d=1

N∑
n=1

∫
κfd,uk

(xn, zm)κfd,uk′ (xn, zm′)N (xn|μn, Sn)dxn

=
D∑

d=1

N∑
n=1

Sd,kSd,k′N (zm|zm′ , 2Pd + Λk + Λk′)N (
zm + zm′

2
|μn, Σψ2),

(18)

where k = %w−1
M &+1, m = w− (k− 1)M , k′ = %w′−1

M &+1, m′ = w′ − (k′− 1)M
and Σψ2 = (Pd + Λk)

�(2Pd + Λk + Λk′)−1(Pd + Λk′) + Sn.

3.2 Conjugate Gradient Based Optimization

The parameters involved in (14) include the model parameters {β, θx, θf} and

the variational parameters {{μq, Sq}Qq=1, Z}. In order to reduce the variational
parameters to be optimized and speed up convergence, we reparameterize the
variational parameters μq and Sq as μ̄q and Λ̄q, respectively, as in Opper and
Archambeau [13] and Damianou et al. [6]. The corresponding transformations are
Sq = (K−1

t,t + Λ̄q)
−1 and μq = Kt,tμ̄q. All the parameters are jointly optimized

by the scaled conjugate gradient method to maximize the lower bound in (14).

4 Prediction

4.1 Prediction with Only Time

In the Bayesian framework, we need to compute the posterior distribution of the
predicted outputs Y∗ ∈ RN∗×D on some given time instants t∗ ∈ RN∗ . With the
parameters and time t∗ omitted, the posterior density is given by

p (Y∗|Y ) =

∫
p (Y∗|F∗) p (F∗|X∗, Y ) p (X∗|Y ) dF∗dX∗, (19)

where F∗ ∈ RN∗×D denotes the set of latent variables (the noise-free version of
Y∗) and X∗ ∈ RN∗×Q denotes the latent variables in the low dimensional space.

The distribution p (F∗|X∗, Y ) is approximated by the variational distribution

q(f∗|X∗) =

∫
p(f∗|u, X∗)q(u)du, (20)

where f�∗ = [f�∗1, ..., f
�
∗D], and p(f∗|u, X∗) is Gaussian expressed as N (f∗|Kf∗,u

K−1
u,uu,Kf∗,f∗−Kf∗,uK

−1
u,uKu,f∗). Since the optimal setting for q(u) is Gaussian,

q(f∗|X∗) is Gaussian that can be computed analytically.
The distribution p (X∗|Y ) is approximated by the variational distribution

q (X∗) formulated as q (X∗) = N (μX∗ ,ΣX∗), where μX∗ is composed of col-
umn vector μx∗q with μx∗q = Kt∗,tK

−1
t,tμq and block-diagonal matrix ΣX∗ has

diagonal element Σx∗q with Σx∗q = Kt∗,t∗ −Kt∗,tK
−1
t,t (Kt,t∗ − SqK

−1
t,tKt,t∗).
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However, the integration of q(f∗|X∗) w.r.t q(X∗) is not analytically feasible.
Following Damianou et al. [6], we give the expectation of f∗ as E(f∗) and its
element-wise autocovariance as vector C(f∗) whose (ñ×d)th entry is C(fñd) with
ñ = 1, ..., N∗ and d = 1, ..., D.

E(f∗) = ψ1∗b, (21)

C(fñd) = b�(ψd
2ñ − (ψd

1ñ)
�ψd

1ñ)b+ ψd
0∗ − Tr

[
(K−1

u,u − (Ku,u + βψ2)
−1)ψd

2∗
]
,

where ψ1∗ = 〈Kf∗,u〉q(X∗), b = β(Ku,u + βψ2)
−1ψ�

1 y, ψd
1ñ = 〈Kfñd,u〉q(xñ),

ψd
2ñ = 〈Ku,fñd

Kfñd,u〉q(xñ), ψ
d
0∗ = Tr(〈Kf∗d,f∗d〉q(X∗)), ψ

d
2∗ = 〈Ku,f∗dKf∗d,u〉q(X∗).

Since Y∗ is the noisy version of F∗, the expectation and element-wise auto-
covariance of Y∗ are E(y∗) = E(f∗) and C(y∗) = C(f∗) + β−11N∗D, where
y�
∗ = [y�

∗1, ...,y
�
∗D].

4.2 Prediction with Time and Partial Observations

In this case which is referred as reconstruction, we need to predict Y m
∗ which

represents the outputs on missing dimensions, given Y pt
∗ which represents the

outputs observed on partial dimensions. The posterior density of Y m
∗ is given by

p(Y m
∗ |Y pt

∗ , Y ) =

∫
p(Y m

∗ |Fm
∗ )p(Fm

∗ |X∗, Y
pt
∗ , Y )p(X∗|Y pt

∗ , Y )dFm
∗ dX∗. (22)

p(X∗|Y pt
∗ , Y ) is approximated by q(X∗) whose parameters need to be optimized

for the sake of considering the partial observations Y pt
∗ . This requires maximizing

a new lower bound of log p(Y pt
∗ , Y ) which can be computed analogously to (14).

Moreover, parameters of the new variational distribution q(X,X∗) are jointly
optimized because of the coupling of X and X∗. Then the marginal distribution
q(X∗) is obtained from q(X,X∗). Note that multiple sequences where X∗ and X
are independent, only the separated variational distribution q(X∗) is optimized.

5 Experiment

5.1 Synthetic Data

In this section, we evaluate our method on synthetic data generated from a
complex dynamical system. The latent variables X are independently generated
by the Ornstein-Uhlenbeck (OU) process

dxq = −γxqdt+
√
σ2dW, q = 1, ..., Q. (23)

The outputs Y are generated through a multi-output GP

yd(x) ∼ GP(0, κfd,fd′ (x,x
′)), d, d′ = 1, ..., D, (24)

where κfd,fd′ (x,x
′) employs the convolution process with one latent function. In

this paper, the number of the latent functions in (5) is set to one, i.e., K = 1,
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which is also the common setting used in Álvarez and Lawrence [2]. We sample
the synthetic data by two steps. First we use the differential equation with
parameters γ = 0.5, σ = 0.01 to sample N = 200, Q = 2 latent variables at
time interval [−1, 1]. Then we sample D = 4 dimensional outputs, each of which
has 200 observations through the multi-output GP with parameters S1,1 = 1,
S2,1 = 2, S3,1 = 3, S4,1 = 4, P1 = [5, 1]�, P2 = [5, 1]�, P3 = [3, 1]�, P4 = [2, 1]�

and Λ = [4, 5]�. In addition, white Gaussian noise is added to each output.

Prediction. Here we evaluate the performance of our method for predicting
the outputs given only time compared with CMOGP, GPDM and VGPDS. We
randomly select 50 points from each output for training with the remaining 150
points for testing. This is repeated for ten times. The latent variables X in
VGPDS and VDM-GPDS with two dimensions are initialized by using principal
component analysis on the observations. Moreover, the Matern 3/2 covariance
function and 30 inducing points are used in VGPDS and VDM-GPDS.

Table 1 presents the averaged root mean square error (RMSE) with the stan-
dard deviation (std) for predictions. The best results are shown in bold. Since
the data in this experiment are generated from a complex dynamical system that
combines two GP mappings, CMOGP which consists of only one GP mapping
can not capture the complexity well. Moreover, VDM-GPDS models the explicit
dependency among the multiple outputs while GPDM and VGPDS does not.
Therefore, our model gives the best performance among the four models as ex-
pected. Besides highest accuracies, VDM-GPDS also has the smallest variances.
In addition, to verify the flexibility of VDM-GPDS, we do experiments on the
independent output data which are generated analogously to Sect. 5.1. GPDM
and VGPDS which do not make the assumption of output dependency is in-
cluded as comparisons. The results are given in Table 2 where we can see that
our model performs as well as VGPDS and significantly better than GPDM.

Table 1. Averaged RMSE (%) with std (%) for predictions on the dependent output
data

CMOGP GPDM VGPDS VDM-GPDS

y1 1.75±0.38 1.70±0.18 1.51±0.31 1.43± 0.23
y2 3.46±0.67 3.32±0.27 2.99±0.53 2.82± 0.35
y3 5.19±0.99 4.83±0.28 4.24±0.85 4.09± 0.59
y4 7.50±0.94 5.98±0.55 5.16±0.92 5.00± 0.60

Reconstruction. In this part, we compare VDM-GPDS with the k-nearest
neighbor best (k-NNbest) method which chooses the best k from {1, . . . , 5},
CMOGP and VGPDS for recovering missing points given time and partially
observed outputs. Here, we do not include the results of GPDM because that
GPDM is not directly suitable for reconstructing some dimensions given data
of other. We set S4,1 = −4 to generate data in this part, which makes that the
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Table 2. Averaged RMSE (%) with std (%) for predictions on the independent output
data

GPDM VGPDS VDM-GPDS

y1 3.82±1.55 2.18± 0.06 2.21±0.06
y2 3.45±1.70 2.06±0.19 2.05± 0.13
y3 3.57±1.71 1.68± 0.09 1.72±0.12
y4 7.10±1.28 4.48±0.23 4.45± 0.20

output y4 be negatively correlated with the others. We remove all outputs y1
or y4 at time interval [0.5, 1] from the 50 training points, resulting in 35 points
as training data. Note that CMOGP considers all the present outputs as the
training set while VGPDS and VDM-GPDS only consider the outputs at time
interval [−1, 0.5) as the training set. Table 3 shows the results with four methods
for reconstructions on the missing points for y1 and y4. It indicates the superior
performance of our model for the reconstruction task.

Table 3. Averaged RMSE (%) with std (%) for reconstructions on y1 and y4

k-NNbest CMOGP VGPDS VDM-GPDS

y1 1.87±0.62 1.90±0.31 1.49±0.94 0.98± 0.34
y4 13.51±2.54 9.31±0.87 6.79±6.07 5.56± 1.88

5.2 Human Motion Capture Data

Here the sequences of runs/jogs from subject 35 in the CMU motion capture
database are employed for the reconstruction task. We preprocess the data as
in Lawrence [11], which leads to nine independent training sequences and one
testing sequence. The average length of each sequence is 40 frames and the output
dimension is 59.

The RBF kernel is adopted in this set of experiments to construct Kt,t which
is a block-diagonal matrix because the sequences are independent. We compare
our model with the nearest neighbor in the angle space (NN) and the scaled
space (NN sc.) [17] and VGPDS. For parameter optimization of VDM-GPDS
and VGPDS, the maximum numbers of iteration steps are set to be identical.

Table 4 gives results of four methods. LS and LA correspond to the recon-
structions on the right leg in the scaled space and angle space. Similarly, BS
and BA correspond to the upper body in the same two spaces. Clearly, our
model outperforms the other approaches. We conjecture that this is because
VDM-GPDS effectively considers both the dynamical characteristics and the
dependency among the outputs in the complex dynamical system. Since GPDM
cannot reconstruct the missing outputs on some dimensions given the others as
explained in Sect. 5.1. We do experiments according to Wang et al. [22] to recon-
struct the missing frames 21− 43 on all dimensions of the test data. We get the
RMSE for reconstruction: 0.7323 with VDM-GPDS versus 0.9448 with GPDM
and 5.1099 with VDM-GPDS versus 7.8984 with GPDM in the scaled space and
angle space, respectively. It turns out that our model also defeats GPDM.
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Table 4. The RMSE for reconstructions on the motion capture data

NN sc. NN CMOGP VGPDS VDM-GPDS

LS 0.8170 0.8493 1.1468 0.6502 0.6379
LA 6.7495 7.9441 13.5338 5.5356 5.3026
BS 1.0027 1.4018 3.5564 0.6569 0.5961
BA 5.6332 9.5748 5.0171 2.8108 2.6033

6 Conclusion

In this paper we have proposed a dependent multi-output GP for modeling com-
plex dynamical systems. The convolved process covariance function is employed
to model the dependency among all the data points across all the outputs. We
adapt the variational inference method involving inducing points to our model
so that the latent variables are variationally integrated out.

Modeling the possible dependency among multiple outputs can help to make
better predictions. The effectiveness of the proposed model is empirically demon-
strated. However, when the dimensionality of the output is very high, our model
may take a long time to converge. This opens the possibility for future work to
accelerate training for high dimensional dynamical systems.
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Lavrač, Nada 1, 87
Le Tran, Duc Kinh 180
Loskovska, Suzana 144
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