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Abstract–– In this paper, we present a novel approach of re-
covering a 3-D human pose from a single human body depth 
silhouette using nonrigid point set registration. In our metho-
dology, a human body depth silhouette is presented as a 3-D 
points set that is matched to the next 3-D points set through 
point correspondences between them. To recognize and main-
tain the body part labels, we first initialize the initial points set 
and their corresponding body parts, then transform them to 
the next points set according the point correspondences via 
nonrigid point set registration. Upon the point registration, we 
use the information of the transformed body labels of the reg-
istered pose to create a human skeleton model. Finally, a 3-D 
human pose is recovered by mapping the skeleton’s position 
and orientation information to a 3-D synthetic human model. 
Our quantitative and qualitative evaluation on synthetic and 
real data show that complex poses could be tracked and recov-
ered reliably. 

Keyword— Human pose estimation, coherent point drift, 
depth image, point set registration. 

I. INTRODUCTION 

Recently, 3-D human pose recovery from depth sil-
houettes has become an active research topic in computer 
vision, especially for complex human poses. This research 
work is triggered with an introduction of depth imaging 
devices which provide pixel-by-pixel distance images. Fur-
thermore, from a sequence of depth images, a series 3-D 
poses, representing motion could be tracked and recovered. 
This research challenge is driven by many potential applica-
tions such as entertainment game, surveillance, sport 
science, health care technology, human computer interac-
tions, motion tracking, and human activity recognition [1]. 

Many studies of this human pose recovery from depth 
silhouette have appeared in recent years [2]. To recover a 3-
D human body pose from depth data, the techniques could 
be categorized into three, namely the graph-based, labeled 
body parts-based, or point set registration-based.  

In the category of the graph-based, in [3], [4], and [5], to 
recover a 3-D human pose, they represented the depth data in 
a graph-based representation and then estimated geodesic dis-
tances of the graph to find the positions and orientations of 
primary human body parts such as head, hands, and feet. The 
computation cost of this technique is effective. However,  

these methods revealed some limitations. The number of de-
tected body parts based on primary landmarks is limited and 
the detected parts do not identified left or right body parts. In 
addition, the graph topology is sensitive to occlusions of body 
parts in where geodesic distance could not find a continuous 
path since 3-D data is disconnected or interrupted, therefore, 
the results of detected body parts are unstable.  

In the category of body parts labeling-based, in [6], [7], 
and [8], they proposed the effective method to human pose 
recognition in body parts from a single depth silhouette in-
ferred from a per-pixel classification via some randomized 
decision trees. This approach allows efficient recognition of 
human body parts. It could recognize up to 31 body parts 
from a single human depth silhouette. However, these stu-
dies required a large database for training. The training da-
tabase has to be created from prerecorded motion data for 
automatic pixel labeling. For this reason, misrecognitions 
will occur if the database used for training is not properly 
and adequate. In addition, in some complex human poses, 
which contain hands or legs crossing body parts, had a low 
recognition accuracy of these body parts.  

In the third category, the point set registration is to find 
point correspondences between two different point sets of 
rigid or nonrigid objects. For registration of 3-D shape ob-
jects, many algorithms have been proposed in [9]. Iterative 
Closest Point (ICP) is one of the well-known fitting or reg-
istration algorithms between two sets and it has been widely 
used for several applications such as 3-D model fitting, 
shape registration, and human motion tracking [9]. For in-
stance, in [10] and [11], they utilized ICP algorithm to fit 
the 3-D human body model on the 3-D articulation data in a 
hierarchical manner. However, the main drawback of ICP 
requires that the initial position of two given point sets is 
adequately close. Therefore, this method may return the 
local optima in some complex poses of a nonrigid object 
like the human body.  

As the approaches mentioned above, to improve robust 3-D 
human pose recovery from depth silhouette including complex 
poses, we propose a new methodology to recover 3-D human 
pose from depth data by tracking human body parts using non-
rigid point set registration as presented in Fig. 1. Coherence 
Point Drift (CPD) [12-14] is used for nonrigid point set  
registration. This technique allows recovered human poses to 
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• The aligned point set is SC=SC_init+GW 
• The probability of correspondence is given by P

 

Where β is Gaussian smoothing filter size, λ 

regularization weight, б is standard deviation,θ
transformation parameters, G is a Gaussian ker
SC, Pr is a posterior probability, W is a matrix o
Fig. 3 shows the result of point set registration on
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determined. The orientation vectors of the body parts were 
estimated by joint pairs. These orientations were finally 
mapped on to the 3-D human body model similar to de-
scribed in [8], resulting in the estimated 3-D human body 
pose. The testing process was run on a standard desktop PC 
with an Intel Pentium IV Dual-core, 2.5 GHz CPU, and 3G 
RAM. 

B. Experimentation on Synthetic Data 

We performed a quantitative evaluation using a series of 
500 depth silhouettes containing various unconstrained 
movements. In this experiment, the evaluation results with 
the synthetic poses of our proposed methods are provided in 
Fig. 5. At each plot of Fig. 5 corresponds to an estimated 
joint angle by our proposed method. The solid and dashed 
lines indicate our estimated and its ground truth joint angles, 
respectively.   

 
Based on the results of estimated joint angles and the 

ground truth joint angles, we have computed the average 
reconstruction error as  
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where n is the number of frames, i is the frame index, grd
iθ

is the ground-truth angle, and est
iθ isthe estimated angle. The 

average errors of the experiment at the two joints are given in 
Table 1.  

 
 
 
 

Table 1 The average reconstruction error of the joint angles in degree 

Evaluated angles 
 

Left elbow 
 

Right elbow 
 

Average reconstruction 
error 

 

6.08 
 

6.02 
 

C. Experimentation on Real Data 

For qualitative assessment of real data, we asked the sub-
ject to perform some complex pose sequences of intersected 
body parts. Because the ground truth joint angles are not 
available for real data. We only performed by visual inspec-
tion of the results of recovered poses and RGB images. Fig. 
6 shows sample results of our proposed method on depth 
images with the occlusion of arm or leg body parts. The 1st  
 

and 4th column are RGB images, the 2nd and 5th human depth 
silhouettes, and the 3rd and 6th recovered 3-D human poses. 

IV. CONCLUSION 

We have presented a novel approach of recovering a 3-D 
human pose from a single human body depth silhouette us-
ing nonrigid point set registration. The quantitative assess-
ments indicated the average reconstruction error of 6.06 
degree. The experiments on real data show that our system 
reliably performs on sequences containing occlusion 
movements of various appearance. This approach can also  
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Fig. 5 A comparison between the ground-truth and the estimated joint angles in synthetic data: (a) joint angle of left elbow and (b) joint angle of right 

elbow. 
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reconstruct some 3-D human complex pose recovery. 
Moreover, this method does not require any matching or 
training data and it is able to tracking arbitrary movements. 
However, the computational cost of the CPD algorithm is 
still high. 
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Fig. 6 Sample illustrations of our proposed 3-D human pose recovery method on depth images with the occlusion of arm or leg body parts 
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