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Abstract. A self-stabilizing system is one that guarantees reaching a
set of legitimate states from any arbitrary initial state. Designing dis-
tributed self-stabilizing protocols is often a complex task and developing
their proof of correctness is known to be significantly more tedious. In
this paper, we propose an SMT-based method that automatically synthe-
sizes a self-stabilizing protocol, given the network topology of distributed
processes and description of the set of legitimate states. We also report
successful automated synthesis of Dijkstra’s token ring and distributed
maximal matching.

1 Introduction

Self-stabilization is a versatile technique for forward fault recovery. A
self-stabilizing system has two key features:

– Strong convergence. When a fault occurs in the system and, consequently,
reaches some arbitrary state, the system is guaranteed to recover proper
behavior within a finite number of execution steps.

– Closure. Once the system reaches such good behavior, typically specified
in terms of a set of legitimate states, it remains in this set thereafter in the
absence of new faults.

Self-stabilization has a wide range of application domains, including network-
ing [8] and robotics [17]. The concept of self-stabilization was first introduced
by Dijkstra in the seminal paper [5], where he proposed three solutions for de-
signing self-stabilizing token circulation in ring topologies. Twelve years later, in
a follow up article [6], he published the correctness proof, where he states that
demonstrating the proof of correctness of self-stabilization was more complex
than he originally anticipated. Indeed, designing correct self-stabilizing algo-
rithms is a tedious and challenging task, prone to errors. Also, complications in
designing self-stabilizing algorithms arise, when there is no commonly accessible
data store for all processes, and the system state is based on the valuations of
variables distributed among all processes [5]. Thus, it is highly desirable to have
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access to techniques that can automatically generate self-stabilizing protocols
that are correct by construction.

With this motivation, in this paper, we focus on the problem of automated
synthesis of self-stabilizing protocols. Program synthesis (often called the holy
grail of computer science) is an algorithmic technique that takes as input a
logical specification and automatically generates as output a program that sat-
isfies the specification. Automated synthesis is generally a highly complex and
challenging problem due to the high time and space complexity of its decision
procedures. For this reason, synthesis is often used for developing intricate but
small-sized components of systems. Synthesizing self-stabilizing distributed pro-
tocols involves an additional level of complexity, due to constraints caused by
read-write restriction of processes in the shared-memory model.

Based on the input specification and the type of output program, there are
various synthesis techniques. Our technique in this paper to synthesize self-
stabilizing protocols takes as input the following specification:

1. A topology that specifies (1) a finite set V of variables allowed to be used in
the protocol and their respective finite domains, (2) the number of processes,
and (3) read-set and write-set of each process; i.e., subsets of V that each
process is allowed to read and write.

2. A set of legitimate states in terms of a Boolean expression over V .

Synthesis of a self-stabilizing protocol is a highly complex problem, since syn-
thesizing strong convergence is shown to be NP-complete in the size of the state
space, which itself is exponential in the size of variables of the protocol [14]. Our
synthesis approach in this paper, is SMT1-based. That is, given the five above in-
put constraints, we encode them as a set of SMT constrains. If the SMT instance
is satisfiable, then a witness solution to its satisfiability is a distributed protocol
that meets the input specification. If the instance is not satisfiable, then we are
guaranteed that there is no protocol that satisfies the input specification. To the
best of our knowledge, unlike the work in [3, 9], our approach, is the first sound
and complete technique that synthesizes self-stabilizing algorithms. That is, our
approach guarantees synthesizing a protocol that is correct by construction, if
theoretically, there exists one.

Our technique for transforming the input specification into an SMT instance
consists in developing the following two sets of constraints:

– State and transition constraints capture requirements from the input spec-
ification that are concerned with each state and transition of the output
protocol. For instance, read-write restrictions constrain transitions of each
process; i.e., in all transitions, a process should only read and write vari-
ables that it is allowed to. Encoding these constraints in an SMT instance
is relatively straightforward.

1 Satisfiability Modulo Theories (SMT) are decision problems for formulas in first-order
logic with equality combined with additional background theories such as arrays, bit-
vectors, etc.
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– Temporal constraints in our work are only concerned with ensuring closure
and strong convergence. Our approach to encode weak/strong convergence in
an SMT instance is inspired by bounded synthesis [11]. In bounded synthesis,
temporal logic properties are first transformed into a universal co-Büchi au-
tomaton. This automaton is subsequently used to synthesize the next-state
function or relation, which in turn identifies the set of transitions of each
process.

Solving the satisfiability problem for the conjunction of all above state/transition
and temporal properties results in synthesizing a stabilizing protocol. In order to
demonstrate the effectiveness of our approach, we conduct a diverse set of case
studies for automatically synthesizing well-known protocols from the literature
of self-stabilization. These case studies include Dijkstra’s token ring [5] (for the
three-state machine) and maximal matching [16]. Given different input settings
(i.e., in terms of the network topology), we report and analyze the total time
needed for synthesizing these protocols using the constraint solver Alloy [13].

Organization The rest of the paper is organized as follows. In Section 2, we
present the preliminary concepts on the shared-memory model and
self-stabilization. Then, Section 3 formally states the synthesis problem in the
context of self-stabilizing systems. In Section 4, we describe our SMT-based tech-
nique, while Section 5 is dedicated to our case studies. Related work is discussed
in Section 6. Finally, we make concluding remarks and discuss future work in
Section 7.

2 Preliminaries

2.1 Distributed Programs

Throughout the paper, let V be a finite set of discrete variables, where each
variable v ∈ V has a finite domain Dv. A state is a valuation of all variables;
i.e., a mapping from each variable v ∈ V to a value in its domain Dv. We call
the set of all possible states the state space. A transition in the state space is an
ordered pair (s0, s1), where s0 and s1 are two states. A state predicate is a set of
states and a transition predicate is a set of transitions. We denote the value of a
variable v in state s by v(s).

Definition 1. A process π over a set V of variables is a tuple 〈Rπ,Wπ , Tπ〉,
where

– Rπ ⊆ V is the read-set of π; i.e., variables that π can read,
– Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and
– Tπ is the transition predicate of process π, such that (s0, s1) ∈ Tπ implies

that for each variable v ∈ V , if v(s0) �= v(s1), then v ∈ Wπ. ��
Notice that Definition 1 requires that a process can only change the value of

a variable in its write-set (third condition), but not blindly (second condition).
We say that a process π = 〈Rπ,Wπ , Tπ〉 is enabled in state s0 if there exists a
state s1, such that (s0, s1) ∈ Tπ.
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Definition 2. A distributed program is a tuple D = 〈ΠD, TD〉, where
– ΠD is a set of processes over a common set V of variables, such that:

• for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩Wπ2 = ∅
• for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following
read restriction holds:

∀s′0, s′1 : (∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v �∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s

′
1) ∈ Tπ (1)

– TD is a transition predicate that is the union of transition predicates of all
processes. I.e.,

TD =
⋃

π∈ΠD

Tπ

��
Intuitively, the read restriction in Definition 2 imposes the constraint that for
each process π, each transition in Tπ depends only on reading the variables that
π can read (i.e. Rπ). Thus, each transition in TD is in fact an equivalence class in
TD, which we call a group of transitions. The key consequence of read restrictions
is that during synthesis, if a transition is included (respectively, excluded) in TD,
then its corresponding group must also be included (respectively, excluded) in
TD. Also, notice that TD is defined in such a way D resembles an asynchronous
distributed program, where process transitions execute in an interleaving fashion.

Example We use the problem of distributed self-stabilizing maximal match-
ing as a running example to describe the concepts throughout the paper. In
an undirected graph a maximal matching is a maximal set of edges, in which
no two edges share a common vertex. Consider the graph in Fig. 1 and sup-
pose each vertex is a process in a distributed program. In particular, let V =
{match0,match1,match2} be the set of variables and D = 〈ΠD, TD〉 be a dis-
tributed program, where ΠD = {π0, π1, π2}. We also have Dmatch0

= {1,⊥},
Dmatch1

= {0, 2,⊥}, and Dmatch2
= {1,⊥}. In other words, each process can

be matched to one of its adjacent processes, or to no process (i.e., the value
⊥). Each process πi can read and write variable matchi and read the vari-
ables of its adjacent processes. For instance, π0 = 〈Rπ0 ,Wπ0 , Tπ0〉, with Rπ0 =
{match0,match1} and Wπ0 = {match0}. Notice that following Definition 2 and
read/write restrictions of π0, (arbitrary) transitions

t1 = ([match0 = match2 =⊥,match1 = 0], [match0 = 1,match1 = 0,match2 =⊥])

t2 = ([match0 =⊥,match1 = 0,match2 = 1], [match0 = match2 = 1,match1 = 0])

have the same effect as far as π0 is concerned (since π0 cannot readmatch2). This
implies that if t1 is included in the set of transitions of a distributed program,
then so should t2. Otherwise, execution of t1 by π0 will depend on the value
of match2, which, of course, π0 cannot read. Notice that the target state in
t2, where match0 = 1, match1 = 0, and match2 = 1, is not a good matching
state. However, such states in a distributed program may be reachable due to
occurrence of faults or wrong initialization.
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π0 π1 π2

Fig. 1. Example of a maximal matching problem

Definition 3. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states
s = s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a
computation reaches a state si, from where there is no state s �= si, such that
(si, s) ∈ TD, then the computation stutters at si indefinitely. Such a computation
is called a terminating computation. ��

As an example, in maximal matching, computations may terminate when a
matching between processes is established.

We now define the notion of topology. Intuitively, a topology specifies only the
architectural structure of a distributed program (without its set of transitions).
The reason for defining topology is that one of the inputs to our synthesis solution
is a topology based on which a distributed program is synthesized as output.

Definition 4. A topology is a tuple T = 〈VT , |ΠT |, RT ,WT 〉, where

– VT is a finite set of finite-domain discrete variables,

– |ΠT | ∈ N≥1 is the number of processes,

– RT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its read-set,

– WT is a mapping {0 . . . |ΠT | − 1} �→ 2V that maps a process index to its
write-set, such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |ΠT | − 1). ��

Example The topology of our matching problem is a tuple 〈V, |ΠT |, RT ,WT 〉,
where

– V = {match0,match1,match2}, with domains Dmatch0 = {1,⊥}, Dmatch1 =
{0, 2,⊥}, and Dmatch2

= {1,⊥},
– |ΠT | = 3,

– RT (0) = {match0,match1}, RT (1) = {match0,match1,match2},
RT (2) = {match1,match2}, and

– WT (0) = {match0}, WT (1) = {match1}, and WT (2) = {match2}.

Definition 5. A distributed program D = 〈ΠD, TD〉 has topology
T = 〈VT , |ΠT |, RT ,WT 〉, iff

– each process π ∈ ΠD is defined over VT
– |ΠD| = |ΠT |
– there is a mapping g : {0 . . . |ΠT | − 1} �→ ΠD such that

∀i ∈ {0 . . . |ΠT | − 1} :(RT (i) = Rg(i)) ∧ (WT (i) = Wg(i)) ��
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2.2 Self-Stabilization

Pioneered by Dijkstra [5], a self-stabilizing system is one that always recovers a
good behavior (typically, expressed in terms of a set of legitimate states), even if
it starts execution from any arbitrary initial state. Such an arbitrary state may
be reached due to wrong initialization or occurrence of transient faults.

Definition 6. A distributed program D = 〈ΠD, TD〉 is self-stabilizing for a set
LS of legitimate states iff the following two conditions hold:

– (Strong) convergence: In any computation s = s0s1 · · · of D, where s0 is an
arbitrary state of D, there exists i ≥ 0, such that si ∈ LS. That is, the linear
temporal logic (LTL) [10] property:

SC = ♦LS (2)

– Closure: For all transitions (s0, s1) ∈ TD, if s0 ∈ LS, then s1 ∈ LS as well.
That is, the LTL property:

CL = LS ⇒ ©LS (3)

��
Notice that the strong convergence property ensures that starting from any state,
any computation will converge to a legitimate state of D within a finite number
of steps. The closure property ensures that starting from any legitimate state,
execution of the program remains within the set of legitimate states. Also, since
all states in a self-stabilizing distributed program are considered as initial states,
LTL formula 3 is evaluated over all possible states. This is why the formula is
not of form �(LS ⇒ ©LS ).

Example In our maximal matching problem, the set of legitimate states is:

LS = { [match0 = 1,match1 = 0,match2 =⊥],
[match0 =⊥,match1 = 2,match2 = 1]}

Notation We denote the fact that a distributed program D satisfies a temporal
logic property ϕ by D |= ϕ. For example, D |= SC means that distributed
program D satisfies convergence.

3 Problem Statement

Our goal is to synthesize self-stabilizing distributed programs by starting from
the description of its set of legitimate states and the architectural structure of
processes. Formally, the goal is to devise a synthesis algorithm that takes the
following as input:

– a topology T = 〈V, |ΠT |, RT ,WT 〉,
– a set LS of legitimate states,
– the LTL specification of self-stabilization,

and generates a distributed program as output that respects the above input
specification.



SMT-Based Synthesis of Distributed Self-stabilizing Systems 171

4 SMT-Based Synthesis Solution

In this section, we propose a technique that transforms the synthesis problem
stated in Section 3 into an SMT solving problem. An SMT instance consists
of two parts: (1) a set of entity declarations (in terms of sets, relations, and
functions), and (2) first-order modulo-theory constraints on the entities. An
SMT-solver takes as input an SMT instance and determines whether or not
the instance is satisfiable; i.e., whether there exists concrete SMT entities (also
called an SMT model) that satisfy the constraints. We transform the input to our
synthesis problem into an SMT instance. If the SMT instance is satisfiable, then
the witness generated by the SMT solver is the answer to our synthesis problem.
We describe the SMT entities obtained in our transformation in Subsection 4.1.
SMT constraints appear in Subsection 4.2.

4.1 SMT Entities

Recall that the inputs to our problem are a topology T = 〈V, |ΠT |, RT ,WT 〉,
and a set LS of legitimate states. Let D = 〈ΠD, TD〉 denote the distributed
program to be synthesized that has topology T and legitimate states LS . In our
SMT instance, we include:

– A set Dv for each v ∈ V , which contains the elements in the domain of v.

– A set called S, whose cardinality is

∣∣∣∣
∏
v∈V

Dv

∣∣∣∣ (i.e., the Cartesian product of

all variable domains). This set represents the state space of the synthesized
distributed program. Notice that in a self-stabilizing program, any arbitrary
state can be an initial state and, hence, we need to include the entire state
space in the SMT instance.

– An uninterpreted function v val for each variable v, v val : S �→ Dv that
maps each state in the state-space to a valuation of that variable.

– A relation TD that represents the transition relation of the synthesized dis-
tributed program (i.e., TD ⊆ S × S). Obviously, the main challenge in
synthesizing D is identifying TD, since variables (and, hence, states) and
read/write-sets of ΠD are given by topology T .

– A Boolean function LS : S �→ {0, 1}. LS (s) is true iff s is a legitimate
state.

– An uninterpreted function ψ, from each state to a natural number (ψ : S �→
N). We will discuss this function in detail in Subsection 4.2.

Example In our maximal matching problem, the SMT entities are as follows:

– Dmatch0
= {⊥, 1}, Dmatch1

= {⊥, 0, 2}, Dmatch2
= {⊥, 1}

– set S, where |S| = 12
– match0 val : S �→ Dmatch0

, match1 val : S �→ Dmatch1
, match2 val : S �→

Dmatch2

– TD ⊆ S × S
– ψ : S �→ N
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4.2 SMT Constraints

In this section, we present the SMT constraints formulated based on our synthesis
problem.

State Distinction. As mentioned, we specify the size of the state space in the
model. The first constraint in our SMT instance stipulates that any two distinct
states differ in the value of some variable:

∀s0, s1 ∈ S : (s0 �= s1) =⇒ (∃v ∈ V : v val(s0) �= v val(s1)) (4)

Example In our maximal matching problem, the state distinction constraint is:

∀s0, s1 ∈ S : (s0 �= s1) =⇒ (match0 val(s0) �= match0 val(s1)) ∨
(match1 val(s0) �= match1 val(s1)) ∨
(match2 val(s0) �= match2 val(s1))

Closure (CL). The formulation of the CL constraint in our SMT instance is
as follows:

∀s, s′ ∈ S : (LS (s) ∧ (s, s′) ∈ TD) =⇒ LS (s′) (5)

Strong Convergence (SC ). Our formulation of the SMT constraints for SC
is an adaptation of the concept of bounded synthesis [11]. Inspired by bounded
model checking techniques [4], the goal of bounded synthesis is to synthesize an
implementation that realizes a set of linear-time temporal logic (LTL) properties,
where the size of the implementation is bounded (in terms of the number of
states). One difficulty with bounded model checking and synthesis is to make
an estimate on the size of reachable states of the program under inspection.
We argue that this difficulty is not an issue in the context of synthesizing self-
stabilizing systems, since it is assumed that any arbitrary state is either reachable
or can be an initial state. Hence, the bound will be equal to the size of the
state space; i.e., the size is a priori known by the input topology. The bounded
synthesis technique for synthesizing a state-transition system from a set of LTL
properties consists in two steps [11]:

– Step 1: Translation to universal co-Büchi automaton. First, we
transform each LTL property ϕ into a universal co-Büchi automaton Bϕ.
Roughly speaking, a universal co-Büchi automaton is a tuple
Bϕ = 〈Q,Q0,Δ, G〉, where Q is a set of states, Q0 ⊆ Q is the set of ini-
tial states, Δ ⊆ Q × Q is a set of transitions, and G maps each transition
in Δ to propositional conditions. Each state could be accepting (depicted
by a circle), or rejecting (depicted by a double-circle). For instance, Fig. 2
shows the universal co-Büchi automaton for the strong convergence property
SC = ♦LS .
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q0 q1
LS

¬LS true

Q = {q0, q1}, Q0 = {q0}, Δ = {(q0, q0), (q0, q1), (q1, q1)}, G(q0, q0) = {¬LS},
G(q0, q1) = {LS}, G(q1, q1) = {true}

Fig. 2. Universal co-Büchi automaton for strong convergence ϕ = ♦LS

Let ST = 〈S, S0, TD〉 be a state-transition system, where S is a set of states,
S0 ⊆ S is the set of initial states, and TD ⊆ S×S is a set of transitions. We
say that Bϕ accepts ST iff on every infinite path of ST running on Bϕ,
there are only finitely many visits to the set of rejecting states in Bϕ [15].
For instance, if a state-transition system is self-stabilizing for the set LS of
legitimate states, all its infinite paths visit a state in ¬LS only finitely many
times. Hence, the automaton in Fig. 2 accepts such a system.

– Step 2: SMT encoding. In this step, the conditions for the co-Büchi
automaton to satisfy a state-transition system are formulated as a set of
SMT constraints. To this end, we utilize the technique proposed in [11] for
developing an annotation function λ : Q × S �→ N ∪ {⊥}, such that the
following three conditions hold:

∀q0 ∈ Q0 : ∀s0 ∈ S0 : λ(q0, s0) ∈ N (6)

If (1) λ(q, s) �= ⊥ for some q ∈ Q and s ∈ S, (2) there exists q′ ∈ Q such
that q′ is an accepting state and (q, q′) ∈ Δ with the condition g ∈ G, and
(3) g is satisfied in the state s, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) �=⊥ ∧ λ(q′, s′) ≥ λ(q, s)) (7)

and if q′ is a rejecting state in the co-Büchi automaton, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) �=⊥ ∧ λ(q′, s′) > λ(q, s)) (8)

It is shown in [11] that the acceptance of a finite-state state-transition system by
a universal co-Büchi automaton is equivalent to the existence of an annotation
function λ. The natural number assigned to (q, s) by λ can represent the maxi-
mum number of rejecting states that occur on some path to (q, s) when running
the state-transition system on the universal co-Büchi automaton.

To ensure that the synthesized distributed program D = 〈ΠD, TD〉 satisfies
strong convergence, we use the bounded synthesis technique explained above.
In the first step, we construct the universal co-Büchi automaton for the LTL
property ♦LS (see Fig. 2). The annotation constraints for the transitions in TD
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with the set of states S for the automaton in Fig. 2 are as follows:

∀s ∈ S : λ(q0, s) �=⊥ (9)

∀s, s′ ∈ S : (λ(q0, s) �=⊥ ∧LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) �=⊥ ∧ λ(q1, s
′) ≥ λ(q0, s)) (10)

∀s, s′ ∈ S : (λ(q1, s) �=⊥ ∧ true ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) �=⊥ ∧ λ(q1, s
′) ≥ λ(q1, s)) (11)

∀s, s′ ∈ S : (λ(q0, s) �=⊥ ∧ ¬LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q0, s

′) �=⊥ ∧ λ(q0, s
′) > λ(q0, s)) (12)

Notice that Constraint 9 is obtained from Constraint 6 (since in a self-stabilizing
system, every state can be an initial state). Similarly, Constraints 10 and 11 are
instances of Constraint 7 for transitions (q0, q1) and (q1, q1), respectively. Also,
Constraint 12 is an instance of Constraint 8 for transition (q0, q0) (see Fig 2).
We now claim that Constraints 10 and 11 can be eliminated.

Lemma 1. There always exists a non-trivial annotation function λ, which eval-
uates Constraints 10 and 11 as true.

Proof. We show that we can always find an annotation function that satisfies
Constraints 10 and 11 without violating the other constraints. To this end, as-
sume that there is an annotation that satisfies all properties except for the
Constraint 10. Hence, we have:

∃s, s′ ∈ S : LS (s) ∧ (s, s′) ∈ TD ∧ (λ(q1, s
′) =⊥ ∨ λ(q1, s

′) < λ(q0, s))

We can simply assign λ(q0, s) to λ(q1, s
′), without violating Constraints 9 and 12.

This assignment can be done in a fixpoint iteration, until no more violation exists.
We can develop a similar proof for Constraint 11. Intuitively, for each state s,
we assign to λ(q1, s), the maximum number assigned to λ(q1, s

′), for every state
s′ in any path reaching s. ��

Following Lemma 1, since Constraints 10 and 11 can be removed from the
SMT instance, all constraints involving λ will have q0 as their first argument.
This observation results in replacing λ by a simpler annotation function ψ as
follows:

– Function ψ takes only one argument, since the state of the co-Buchi automa-
ton is always q0.

– Due to Constraint 9, the value ⊥ is irrelevant in the range of the annotation
functions. Hence, we define our annotation function as:

ψ : S �→ N (13)

As a result, one can simplify Constraints 9-12 as follows:

∀s, s′ ∈ S : ¬LS (s) ∧ (s, s′) ∈ TD =⇒ ψ(s′) > ψ(s) (14)
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The intuition behind Constraints 13 and 14 can be understood easily. If we can
assign a natural number to each state, such that along each outgoing transition
from a state in ¬LS , the number is strictly increasing, then the path from each
state in ¬LS should finally reach LS or get stuck in a state, since the size of
state space is finite. Also, there can not be any loops whose states are all in ¬LS ,
as imposed by the annotation function.

Finally, the following constraint ensures that there is no deadlock state in
¬LS :

∀s ∈ S : ¬LS (s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD (15)

Constraints for an Asynchronous System. To synthesize an asynchronous
distributed program, instead of a transition relation TD, we introduce a transition
relation Ti for each process index i ∈ {0, . . . , |ΠT |−1} (TD = T0∪· · ·∪T|ΠT |−1),
and add the following constraint for each transition relation:

∀(s0, s1) ∈ Ti : ∀v /∈ WT (i) : v val(s0) = v val(s1) (16)

Constraint 16 ensures that in each relation Ti, only process πi can execute. By
introducing |ΠT | transition relations, we consider all possible interleaving of
processes execution.

Example To synthesize an asynchronous version of our maximal matching ex-
ample, we define three relations T0, T1, and T2 and add a constraint for each to
the SMT instance. For example, the constraint for T0 is:

∀(s0, s1) ∈ T0 : (match1 val(s0) = match1 val(s1)) ∧
(match2 val(s0) = match2 val(s1))

Read Restrictions. To ensure that D meets the read restrictions given by T ,
we add the following constraint for each process index i ∈ {0, . . . , |ΠT | − 1}:

∀(s0, s1) ∈ Ti : ∀s′0, s′1 ∈ S : (∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v �∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s

′
1) ∈ Ti

(17)

which is similar to Condition 1 in Definition 2.

5 Case Studies and Experimental Results

We used the Alloy [13] model finder tool for our experiments. Alloy solver per-
forms the relational reasoning over quantifiers, which means that we did not
have to unroll quantifiers over their domains. All experiments in this section are
run on a machine with Intel Core i5 2.6 GHz processor with 8GB of RAM. We
note that since our synthesis method is deterministic, we do not replicate ex-
periments for statistical confidence. We also conducted experiments using Z3 [2]
and Yices [1] SMT solvers as well. In the majority of cases studies Alloy was the
fastest solver.
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5.1 Maximal Matching

Our first case study is our running example, distributed self-stabilizing maximal
matching [12, 16, 18]. Table 1 presents our results for different sizes of line and
star topologies. As expected, by increasing the number of processes, synthesis
time also increases. Another observation is that synthesizing a solution for the
star topology is in general faster than the line topology. This is because a pro-
tocol that intends to solve maximal matching for the star topology deals with a
significantly smaller problem space.

Table 1. Results for synthesizing maximal matching

Topology # of Processes Time (sec)

line 3 0.19

star 4 2.95

line 4 3.5

star 5 53.75

line 5 65.88

5.2 Dijkstra’s Token Ring with Three-State Machines

In the token ring problem, a set of processes are placed on a ring network.
Each process has a so-called privilege (token), which is a Boolean function of its
neighbors’ and its own states. When this function is true, the process has the
privilege.

Dijkstra [5] proposed three solutions for the token ring problem. In the three-
state token ring, each process πi maintains a variable xi with domain {0, 1, 2}.
The read-set of a process is its own and its neighbors’ variables, and its write-set
contains its own variable. As an example, for process π1, RT (1) = {x0, x1, x2}
and WT (1) = {x1}. Token possession is formulated using the conditions on a
machine and its neighbors [5]. Briefly, in a state s, process π0 (called the bottom
process) has the token, when x0(s)+1 mod 3 = x1(s), process π(|ΠT |−1) (called
the top process) has the token, when (x0(s) = x(|ΠT |−2)(s)) ∧ (x(|ΠT |−2)(s) + 1
mod 3 �= x(|ΠT |−1)(s)), and any other process πi owns the token, when either
xi(s) + 1 mod 3 equals to the variable of its left or right process. The set
of legitimate states are those in which exactly one process has the token. For
example, for a ring of size three, the set of legitimate states is formulated by the
following expression:

((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 �= x2(s))) ∨
((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 �= x2(s))) ∨
((x0(s) + 1 mod 3 �= x1(s)) ∧ (x1(s) + 1 mod 3 = x0(s)) ∨
(x1(s) + 1 mod 3 = x2(s)))
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Table 2. Results for synthesizing three-state token ring

# of Processes Time (sec)

3 1.26

4 63.02

Table 2 presents the result for synthesizing solutions for the three-state ver-
sion. We note that the synthesized stabilizing programs using our technique are
identical to Dijkstra’s solution in [5].

6 Related Work

In [14], the authors show that adding strong convergence is NP-complete in the
size of the state space, which itself is exponential in the size of variables of
the protocol. Ebnenasir and Farahat [9] also proposed an automated method to
synthesize self-stabilizing algorithms. Our work is different in that the method
in [9] is not complete for strong self-stabilization. This means that if it cannot
find a solution, it does not necessarily imply that there does not exist one.
However, in our method, if the SMT-solver declares “unsatisfiability”, it means
that no self-stabilizing algorithm that satisfies the given input constraints exists.

In bounded synthesis [11], given is a set of LTL properties, which are trans-
lated to a universal co-Büchi automaton, and then a set of SMT constraints are
derived from the automaton. Our work is inspired by this idea for finding the
SMT constraints for strong convergence. For other constraints, we used a dif-
ferent approach from bounded synthesis. The other difference of our work with
bounded synthesis is that the main idea in bounded synthesis is to put a bound
on the number of states in the resulting state-transition systems, and then in-
crease the bound if a solution is not found. In our work, since the purpose is
to synthesize a self-stabilizing system, the bound is the number of all possible
states, derived from the given topology.

The other line of work related to the synthesis of self-stabilizing algorithms
is the area of synthesizing fault-tolerant systems. The proposed algorithm in [3]
synthesizes a fault-tolerant distributed algorithm from its fault-intolerant ver-
sion. The distinction of our work with this study is (1) we emphasize on self-
stabilizing systems, where any system state could be reachable due to the occur-
rence of any possible fault, (2) the input to our problem is just a system topology,
and not a fault-intolerant system, and (3), the proposed algorithm in [3] is not
complete. In [7], a synthesis algorithm is proposed to determine whether a fault-
tolerant implementation exists for a fully connected topology and a temporal
specification, and, in case the answer is positive, automatically derives such an
implementation. Our work is different in (1) considering any kind of distributed
topology, and (2) focusing on self-stabilizing systems.
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7 Conclusion

In this paper, we proposed an automated technique for synthesis of finite-size
self-stabilizing algorithms using SMT-solvers. The first benefit of our technique
is that it is sound and complete; i.e., it generates distributed programs that are
correct by construction and, hence, no proof of correctness is required, and if
it fails to find a solution, we are guaranteed that there does not exist one. The
latter is due to the fact that all quantifiers range over finite domains and, hence,
finite memory is needed for process implementations. This assumption basically
ensures decidability of the problem under investigation. Secondly, our method is
fully automated and can save huge effort from designers, specially when there is
no solution for the problem. Third, the underlying technique is based on SMT-
solving, which is a fast evolving area, and hence, by introducing more efficient
SMT-solvers, we expect better results from our proposed method.

For future work, we plan to work on synthesis of probabilistic self-stabilizing
systems. Another challenging research direction is to devise synthesis methods
where the number of distributed processes is parameterized as well as cases where
the size of state space of processes is infinite. We would also like to investigate
techniques such as counter-example guided inductive synthesis (CEGIS) that
may be an interesting solution to the problem of scaling the synthesis process
for larger number of processes.
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