
Pascal Felber
Vijay Garg (Eds.)

 123

LN
CS

 8
75

6

16th International Symposium, SSS 2014
Paderborn, Germany, September 28 – October 1, 2014
Proceedings

Stabilization, Safety,
and Security
of Distributed Systems

Lecture Notes in Computer Science 8756
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Pascal Felber Vijay Garg (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
16th International Symposium, SSS 2014
Paderborn, Germany, September 28 – October 1, 2014
Proceedings

13

Volume Editors

Pascal Felber
Université de Neuchâtel
Institut d’informatique
Rue Emile-Argand 11
2000 Neuchâtel, Switzerland
E-mail: pascal.felber@unine.ch

Vijay Garg
University of Texas at Austin
Electrical and Computer Engineering Department
1 University Station
Austin, TX 78712-0240, USA
E-mail: garg@ece.utexas.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11763-8 e-ISBN 978-3-319-11764-5
DOI 10.1007/978-3-319-11764-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014949157

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The papers in this volume were presented at the 16th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), held during
September 28 to October 1, 2014 in Paderborn, Germany.

SSS is an international forum for researchers and practitioners in the design
and development of distributed systems with self-* properties: (classical) self-
stabilizing, self-configuring, self-organizing, self-managing, self-repairing, self-
healing, self-optimizing, self-adaptive, and self-protecting. Research in distributed
systems is now at a crucial point in its evolution, marked by the importance of
dynamic systems such as peer-to-peer networks, large-scale wireless sensor net-
works, mobile ad-hoc networks, cloud computing, robotic networks, etc. More-
over, new applications such as grid and web services, banking and e-commerce,
e-health and robotics, aerospace and avionics, automotive, industrial process
control, etc. have joined the traditional applications of distributed systems.

The theory of self-stabilization has been enriched in the last 30 years by
high quality research contributions in the areas of algorithmic techniques, formal
methodologies, model theoretic issues, and composition techniques. All these
areas are essential to the understanding and maintenance of self-* properties in
fault-tolerant distributed systems.

This year the ProgramCommittee was organized into several tracks reflecting
most topics related to self-* systems. The tracks were: (i) Self-Stabilization,
(ii) Ad-Hoc, Sensor and Mobile Networks, Cyberphysical Systems (iii) Fault-
Tolerant and Dependable Systems, (iv) Formal Methods, Safety and Security,
and (v) Cloud Computing, P2P, Self-organizing and Autonomous Systems.

We received 44 submissions from 20 countries. Each submission was reviewed
by at least three Program Committee members with the help of external review-
ers. Out of the 44 submissions, 21 papers were selected as regular papers, and
8 papers were accepted as brief announcements. Among the 21 regular papers,
we considered 2 papers for special awards. The best paper award was given to
Giang T. Nguyen, Mathias Fischer and Thorsten Strufe for “On the Resilience of
Pull-based P2P Streaming Systems against DoS Attacks”, and the best student
paper award was given to Fathiyeh Faghih and Borzoo Bonakdarpour for “SMT-
based Synthesis of Distributed Self-Stabilizing Systems”. This year, we were very
fortunate to have three distinguished keynote speakers: Christian Cachin, Pierre
Fraigniaud, and Nir Shavit.

On behalf of the Program Committee, we would like to thank all the authors
who submitted their work to SSS. We sincerely acknowledge the tremendous
time and effort the program track chairs and the Program Committee members
invested in the symposium. We are also grateful to the external reviewers for their
valuable and insightful comments and to Easychair for tremendously simplifying
the review process and the generation of the proceedings. Finally, we also thank

VI Preface

the Steering Committee members for their valuable advice and the Organizing
Committee members for their time and effort to ensure a successful meeting.

Organizing this event would not have been possible without the financial
support of the German Research Foundation (DFG).

October 2014 Pascal Felber
Vijay K. Garg

Organization

Program Committee

James Aspnes Yale University, USA
Chen Avin Ben-Gurion University, Israel
Lelia Blin LIP6-UPMC and University of Evry-Val

d’Essonne, France
Borzoo Bonakdarpour McMaster University, Canada
Janna Burman Université Paris-Sud, France
Costas Busch Louisiana State University, USA
Fei Chen BloomReach Inc., USA
Sylvie Delaët Université Paris Sud, France
Murat Demirbas University at Buffalo, USA
Stéphane Devismes Université Grenoble-Alpes, France
Danny Dolev Hebrew University, Israel
Ittay Eyal Cornell University, USA
Pascal Felber University of Neuchatel, Switzerland
Felix Freiling Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Germany
Vijay Garg The University of Texas at Austin, USA
Seth Gilbert National University of Singapore, Singapore
Jason Hallstrom Clemson University, USA
Urs Hengartner University of Waterloo, Canada
Ted Herman University of Iowa, USA
Matti Hiltunen AT&T Labs - Research, USA
Taisuke Izumi Nagoya Institute of Technology, Japan
Arshad Jhumka University of Warwick, UK
Sayaka Kamei Hiroshima University, Japan
Erez Kantor MIT, USA
Adrian Kosowski Inria, Université Paris Diderot, France
Sandeep Kulkarni Michigan State University, USA
Petr Kuznetsov Telecom ParisTech, France
Sven Köhler Tel Aviv University, Israel
Mikel Larrea University of the Basque Country UPV/EHU,

Spain
Xiaolin Li University of Florida, USA
Victor Luchangco Oracle Labs, USA
Raimundo Macêdo Federal University of Bahia (UFBA), Brazil
Tom Maibaum McMaster University, Canada
Stephan Merz Inria Nancy, France
Mikhail Nesterenko Kent State University, USA

VIII Organization

Rotem Oshman Princeton University, USA
Marina Papatriantafilou Chalmers University of Technology, Sweden
José Pereira University of Minho, Portugal
Yvonne-Anne Pignolet ABB Corporate Research, Switzerland
Rajmohan Rajaraman Northeastern University, USA
Kui Ren University at Buffalo, State University of

New York, USA
Luis Rodrigues Universidade de Lisboa, Portugal
Rei Safavi-Naini University of Calgary, Canada
Elad Michael Schiller Chalmers University of Technology, Sweden
Christian Schindelhauer University of Freiburg, Germany
Stefan Schmid TU Berlin and Telekom Innovation

Laboratories, Germany
Marco Serafini Qatar computing research institute, Qatar
Alexander Shvartsman University of Connecticut, USA
Oleg Sokolsky University of Pennsylvania, USA
Tatsuhiro Tsuchiya Osaka University, Japan
Volker Turau Hamburg University of Technology, Germany
Mark Tuttle Intel Corporation, USA
Helmut Veith Vienna University of Technology, Austria
Yukiko Yamauchi Kyushu University, Japan
Hongwei Zhang Wayne State University, USA
Marco Zuniga TU Delft, The Netherlands

Table of Contents

Separating Data and Control: Asynchronous BFT Storage with 2t + 1
Data Replicas . 1

Christian Cachin, Dan Dobre, and Marko Vukolić

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 18
Lélia Blin, Pierre Fraigniaud, and Boaz Patt-Shamir

On the Resilience of Pull-Based P2P Streaming Systems against DoS
Attacks . 33

Giang Nguyen, Mathias Fischer, and Thorsten Strufe

On Stabilizing Departures in Overlay Networks . 48
Dianne Foreback, Andreas Koutsopoulos, Mikhail Nesterenko,
Christian Scheideler, and Thim Strothmann

CloudSylla: Detecting Suspicious System Calls in the Cloud 63
Marc Kührer, Johannes Hoffmann, and Thorsten Holz

Postman: An Elastic Highly Resilient Publish/Subscribe Framework
for Self Sustained Service Independent P2P Networks 78

Gil Einziger and Roy Friedman

A Self-stabilizing Algorithm for Edge Monitoring Problem 93
Brahim Neggazi, Mohammed Haddad, Volker Turau, and
Hamamache Kheddouci

Self-stabilizing Leader Election in Polynomial Steps 106
Karine Altisen, Alain Cournier, Stéphane Devismes,
Anäıs Durand, and Franck Petit

Disconnected Components Detection and Rooted Shortest-Path Tree
Maintenance in Networks . 120

Glacet Christian, Hanusse Nicolas, Ilcinkas David, and
Johnen Colette

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 135
Thomas Janson and Christian Schindelhauer

Robots with Lights: Overcoming Obstructed Visibility without
Colliding . 150

Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri,
Nicola Santoro, and Giovanni Viglietta

X Table of Contents

SMT-Based Synthesis of Distributed Self-stabilizing Systems 165
Fathiyeh Faghih and Borzoo Bonakdarpour

Stateless Stabilization Bootstrap (Extended Abstract) 180
Shlomi Dolev, Ramzi Martin Kahil, and Reuven Yagel

Self-healing Computation . 195
George Saad and Jared Saia

Optimal Gathering on Infinite Grids . 211
Gabriele Di Stefano and Alfredo Navarra

Incremental Verification of Computing Policies . 226
Ehab S. Elmallah, Hrishikesh B. Acharya, and Mohamed G. Gouda

On the Synthesis of Mobile Robots Algorithms: The Case of Ring
Gathering . 237

Laure Millet, Maria Potop-Butucaru, Nathalie Sznajder, and
Sébastien Tixeuil

Synthesizing Self-stabilization through Superposition
and Backtracking . 252

Alex Klinkhamer and Ali Ebnenasir

Configuration Hopping: A Secure Communication Protocol without
Explicit Key Exchange . 268

Yue Qiao, Kannan Srinivasan, and Anish Arora

Dependable Decentralized Cooperation with the Help of Reliability
Estimation . 283

Seda Davtyan, Kishori M. Konwar, and Alexander A. Shvartsman

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing
Model . 299

Florence Levé, Khaled Mohamed, and Vincent Villain

Edge Coloring Despite Transient and Permanent Faults 314
Alexandre Maurer and Toshimitsu Masuzawa

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks . . . 328
Hung Tran-The and Lúıs Rodrigues

Brief Announcement: Publish/Subscribe on Virtual Rings 343
Gerry Siegemund, Khaled Maâmra, and Volker Turau

Brief Announcement: Sweep Coverage with Mobile and Static
Sensors . 346

Barun Gorain and Partha Sarathi Mandal

Table of Contents XI

Brief Announcement: Designing Dining-Philosophers to Optimize
Experimental Performance . 349

Jordan Adamek, Mikhail Nesterenko, and Sébastien Tixeuil

Brief Announcement: Introducing Recurrence in Self-Stabilization 352
Oday Jubran and Oliver Theel

Brief Announcement: Tamper-Evident Stabilization 355
Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni

Brief Announcement: A Stabilizing Algorithm for Finding Two
Node-Disjoint Paths . 359

Hadid Rachid, Mehmet Hakan Karaata, and Vincent Villain

Brief Announcement: Region-Adherent Algorithms – Bounding the
Impact of Faults in Space . 362

Jan Steffen Becker, Dilshod Rahmatov, and Oliver Theel

Brief Announcement: Entropy Adaptive On-Line Compression 366
Shlomi Dolev, Sergey Frenkel, and Marina Kopeetsky

Author Index . 369

Separating Data and Control: Asynchronous BFT
Storage with 2t + 1 Data Replicas

Christian Cachin1, Dan Dobre2, and Marko Vukolić3

1 IBM Research - Zurich, Switzerland
cca@zurich.ibm.com

2 Work done at NEC Labs Europe, Germany
dan@dobre.net
3 Eurécom, France

vukolic@eurecom.fr

Abstract. The overhead of Byzantine fault tolerant (BFT) storage is a primary
concern that prevents its adoption in practice. The cost stems from the need to
maintain at least 3t+1 copies of the data at different storage replicas in the asyn-
chronous model, so that t Byzantine replica faults can be tolerated. This paper
presents MDStore, the first fully asynchronous BFT storage protocol that reduces
the number of replicas that store the payload data to as few as 2t+1 and maintains
metadata at 3t+1 replicas on (possibly) different servers. At the heart of MDStore
lies a metadata service built upon a new abstraction called “timestamped storage.”
Timestamped storage allows for conditional writes (facilitating the implementa-
tion of the metadata service) and has consensus number one (making it imple-
mentable with wait-free semantics in an asynchronous system despite faults). In
addition to its low replication overhead, MDStore offers strong guarantees by emu-
lating a multi-writer multi-reader atomic register, providing wait-free termination,
and tolerating any number of Byzantine readers and crash-faulty writers.

1 Introduction

Byzantine fault-tolerant (BFT) protocols are notoriously costly to deploy. Their over-
head stems from the extra resources that must be installed compared to systems that
tolerate less severe faults, such as crashes. For example, in the asynchronous communi-
cation model, BFT storage protocols that emulate a simple register abstraction need at
least N > 3t server replicas so that t faults can be tolerated [32]. This stands in contrast
to the required number of replicas when only server crashes are tolerated, where 2t+1
replicas suffice. Such crash-tolerant systems based on quorums [34] are in production
use today, in cloud-storage systems and other contexts. But the additional cost of han-
dling Byzantine faults compared to crashes represents one of the main concerns for the
adoption of BFT systems in practice.

In this paper, we show that the gap between crash-tolerance and Byzantine-tolerance
in distributed storage can be reduced significantly. By separating the functions that han-
dle metadata from those that store the payload data, the number of expensive servers
with large storage capacity can be reduced to N > 2t while tolerating Byzantine faults.
We introduce protocol MDStore, which emulates a storage register abstraction in an

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014

2 C. Cachin, D. Dobre, and M. Vukolić

asynchronous message-passing model; it requires only N > 2t storage replicas that
store payload data (of which t may be Byzantine) and M > 3f metadata replicas
that maintain short control information (of which f may be Byzantine). Storage and
metadata replicas may be separated physically or co-hosted on the same servers.

Despite achieving lower replication cost, MDStore does not sacrifice other desir-
able features: MDStore implements a multi-writer multi-reader (MWMR) atomic reg-
ister [21, 24] with wait-free semantics [20], tolerates any number of Byzantine read-
ers and crash-faulty writers, and works without any synchrony assumption. Compared
to other BFT storage protocols that reduce the number of storage replicas to 3t or
less [11,12,22,33], MDStore is the first one that achieves this without trusted hardware
components. Moreover, because MDStore is fully asynchronous and does not employ
a consensus primitive, it fundamentally differs from other related systems that separate
the control plane from the data plane for providing, e.g., consensus [19], state-machine
replication [26, 37], and distributed storage [2] — these are all subject to the FLP im-
possibility result [17] and require partial synchrony [15].

Protocol MDStore has a modular architecture. The clients exchange metadata about
the stored data through a metadata service (MDS). The metadata related to a stored
value v consists of a cryptographic hash of v, a logical timestamp, and pointers to
t + 1 among the N storage replicas that store v. Our MDS implementation contains
an array of simple read/write registers with safe semantics for the hash values and a
novel timestamped storage function for the other metadata. Timestamped storage offers
conditional operations to multiple readers and writers, is linearizable, and has wait-free
semantics. The storage replicas, on the other hand, simply store data values associated
to timestamps.

The timestamped storage function is very similar to a classical atomic register [24],
except that it also exposes a timestamp associated with the stored value. This permits
the clients to execute conditional writes, i.e., write operations that take effect depending
on the timestamp value. Interestingly, despite its support of conditional writes, times-
tamped storage has consensus number equal to one [20], and this paves the way for a
wait-free BFT distributed implementation of the MDS in the asynchronous model. We
show how to realize the MDS for MDStore from asynchronous BFT safe [1,18,31] and
atomic [3, 9, 13, 30] single-writer storage protocols using M > 3f metadata replicas.

In a preliminary version of this work [6], we also show why the number N of stor-
age replicas cannot be reduced to 2t or less, even when only crashes are tolerated.
Furthermore, we argue that cryptographic techniques, in particular, collision-free hash
functions, appear to be necessary for any BFT storage emulation that uses 3t or fewer
replicas.

The rest of the paper is organized as follows. The next section further discusses the
relation of MDStore to other work; Section 3 introduces the system model and defini-
tions. In Section 4, protocol MDStore is presented with an overview, pseudocode, an
example execution, and a formal correctness argument.

2 Related Work

The formal study of registers as abstractions for concurrently accessed read/write stor-
age starts with Lamport’s classical paper [24]; this work also introduced safe, regular,

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 3

and atomic consistency properties. Martin et al. [32] establish a tight lower bound of
3t + 1 replicas for any register implementation that tolerates t Byzantine replicas in
an asynchronous system. Their bound applies even to a single-writer single-reader safe
register, where the reader and the writer may only fail by crashing. In this paper, we
refine our understanding of this bound by logically separating the replicas into stor-
age replicas and metadata replicas. Protocol MDStore shows that the lower bound of
3t + 1 replicas [32] applies only to metadata replicas that exercise a control function.
The number of storage replicas, which take care of storing the data, can be lowered to
2t+ 1 in the presence of t Byzantine faults, assuming cryptographic techniques.

Some elements of MDStore are similar to mechanisms in Farsite [2], a virtual file
service that tolerates some Byzantine nodes, and Hybris [14], a recent hybrid cloud
storage system. In particular, Farsite and Hybris separate metadata from data, they store
cryptographic hashes and maintain directory information in a metadata service, and they
both use only 2t+1 storage replicas that are subject to Byzantine faults. However, unlike
MDStore, the metadata services of Farsite and Hybris are based on a generic service
implemented by a replicated state machine. Hence, Farsite and Hybris are subject to
the FLP impossibility result [17] and require at least partial synchrony [15], whereas
MDStore is asynchronous. The replication mechanism in Farsite assumes there is a
single writer and uses read/write locks for concurrency control. On the other hand,
Hybris is not wait-free as it only provides reads that are live in the presence of finitely
many concurrent writes (so-called FW-termination [1]). Protocol MDStore, in contrast,
supports multiple concurrent writers, offers atomic semantics, and provides wait-free
termination without resorting to locks.

Many practical storage systems separate data and control for reasons related to per-
formance and modularity [36]. In an asynchronous model where nodes are subject to
crashes, several replicated storage systems have divided the control path for metadata
from the data path for bulk data [10, 16, 35]. Interestingly, on a conceptual level, this
separation does not pay off with crash-faulty replicas, as it does not allow to lower the
number of storage replicas to below 2t+1. These related systems all require 2t+1 stor-
age replicas. It can be shown that this is inherent: 2t+ 1 storage replicas are necessary,
even with a fault-free metadata service [6].

In the context of state-machine replication and the consensus problem, separating
data from control functions is a well-known technique. Lamport’s Paxos consensus al-
gorithm [25, 26] introduces three roles for the participant processes and distinguishes
between proposers, acceptors, and learners. The lower bound of 3t+1 replicas for par-
tially synchronous BFT consensus only applies to the acceptors but not to proposers
or learners [27]. For example, there is a partially synchronous BFT consensus pro-
tocol in which any number of proposers and learners may be Byzantine [19]. Yin et
al. [37] separate the agreement function from an execution component in a BFT system
for generic state-machine replication, with 3t + 1 replicas needed for agreement and
2t+1 replicas for storing state and executing commands. However, just like Farsite [2]
and Hybris [14], these designs are fundamentally different from the principle under-
lying MDStore. As these are based on consensus, they are subject to the impossibility
of consensus in asynchronous systems [17]; therefore, they rely on stronger timing as-
sumptions [15].

4 C. Cachin, D. Dobre, and M. Vukolić

3 System Model and Definitions

System model. We consider an asynchronous distributed system of process abstrac-
tions that communicate with each other. There are at least four kinds of processes: (1) a
setM = {m1, . . . ,mM} of M metadata replicas that act as servers for (small) meta-
data, (2) a set S = {s1, . . . , sN} of N storage replicas that store (large) values, (3) a set
W of writers and (4) a setR of readers. The readers and writers together form the set C
of clients, which run operations on the storage service. The setR =M∪S denotes all
replicas, which provide the storage service. Clients are disjoint from replicas. Processes
may be correct, benign, or Byzantine, as defined later.

The processes interact asynchronously by exchanging events. A protocol specifies a
collection of algorithms with instructions for all processes; equivalently, a distributed
algorithm can be seen as a collection of deterministic automata, where each process
is assigned an automaton. An execution of an algorithm is an infinite sequence of the
steps taken by the correct and benign processes according to their algorithms, together
with the actions of the Byzantine processes. More formal descriptions appear in the
literature [7, 29].

A process may fail by crashing or by exhibiting Byzantine faults. A benign process
executes its algorithm until it crashes and takes no further steps. A Byzantine process
may perform arbitrary actions, such as sending arbitrary messages or changing its state
in an arbitrary manner (NR-arbitrary faults). We assume an adversary that coordinates
the Byzantine processes and controls the scheduling of events.

All writers are benign (they are correct or may crash), readers may be Byzantine, up
to f metadata replicas are Byzantine, where M > 3f , and up to t storage replicas are
Byzantine, where N > 2t. Processes that do not fail are called correct.

Channels. We assume that every process can communicate with every other process
over point-to-point perfect asynchronous communication channels with FIFO order [7].
Perfect channels guarantee reliable communication among correct processes, i.e., that
every message sent from a correct process is eventually delivered to a correct receiver
exactly once. In an actual implementation, the channels between clients and repli-
cas are authenticated in the sense that the adversary cannot modify or insert mes-
sages on the channels. Using point-to-point channels and a message-authentication code
(MAC) [23], such authenticated channels can be implemented easily.

Notation. Protocols are presented in a modular way using an event-based notation [7].
A process exposes an interface to other processes, which defines the events that it ex-
poses. Processes are specified either through abstract properties or via an implemen-
tation. A process may react to a received event by doing computation and triggering
further events. Every process is named by an identifier. Events are qualified by the pro-
cess identifier to which the event belongs and may take parameters. An event Sample
of a process m with a parameter x is denoted by 〈 m-Sample | x 〉.

Objects and histories. An object is a special type of process for which every input
event (called an invocation in this context) triggers exactly one output event (called a

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 5

response). Every such pair of invocation and response define an operation of the object.
An operation completes when its response occurs.

A history σ of an execution of an object O consists of the sequence of invocations
and responses of O occurring in σ. An operation is called complete in a history if it
has a matching response. An operation o precedes another operation o′ in a sequence of
events σ, denoted o <σ o′, whenever o completes before o′ is invoked in σ. If o precedes
o′ then o′ follows o. A sequence of events π preserves the real-time order of a history σ
if for every two operations o and o′ in π, if o <σ o′ then o <π o′. Two operations are
concurrent if neither one of them precedes the other. A sequence of events is sequential
if it does not contain concurrent operations.

An execution is well-formed if the events at every object are alternating invocations
and matching responses, starting with an invocation. An execution is fair, informally, if
it does not halt prematurely when there are still steps to be taken or triggered events to
be consumed (see the standard literature for a formal definition [28]).

Registers. A read/write register r is an object that stores a value from a domain V and
supports exactly two operations, for writing and reading the value. More precisely:

– A Write operation to r is triggered by an invocation 〈 r-Write | v 〉 that takes a value
v ∈ V as parameter and terminates by generating a response 〈 r-WriteAck 〉 with
no parameter.

– A Read operation from r is triggered by an invocation 〈 r-Read 〉with no parameter;
the register signals that the read operation completes by triggering a response 〈 r-
ReadVal | v 〉, which contains a parameter v ∈ V .

The behavior of a register is given through its sequential specification, which requires
that every r-Read operation returns the value written by the last preceding r-Write
operation in the execution, or the special symbol⊥ �∈ V if no such operation exists. For
simplicity, we will assume that every distinct value is written only once.

In this work, there are multiple readers and writers for the emulated storage, but only
readers may invoke Read operations and only writers may invoke Write operations on
the emulated register. Such a register is also called a multi-writer multi-reader (MWMR)
register (we will also use a single-writer variant, abbreviated SWMR). Furthermore, we
assume that all clients invoke a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an object O through its
operations, defined in terms of an invocation and a response event of O. We say that
a client c executes an operation between the corresponding invocation and response
events. When accessed concurrently by multiple processes, executions of objects con-
sidered in this work are linearizable, that is, the object appears to execute all operations
atomically.

More formally, a sequence of events π is called a view of a history σ at a client c
w.r.t. an object O whenever:
1. π is a sequential permutation of some subsequence of complete operations in σ;
2. all complete operations executed by c appear in π; and
3. π satisfies the sequential specification of O.

Definition 1 (Linearizability [21]). A history σ is linearizable w.r.t. an object O if
there exists a sequence of events π such that:

6 C. Cachin, D. Dobre, and M. Vukolić

1. π is a view of σ at all clients w.r.t. O; and
2. π preserves the real-time order of σ.

The goal of this work is to describe a protocol that emulates a linearizable register
abstraction among the clients; such a register is also called atomic. Some of the clients
may crash and some replicas may be Byzantine, but every client operation should ter-
minate in all cases, irrespective of how other clients and replica behave.

Definition 2 (Wait-freedom [20]). A protocol is called wait-free if every operation
invoked by a correct client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imagine that
these are implemented by a distributed oracle accessible to all processes [7]. A hash
function H maps an input value x of arbitrary length (e.g., represented as a bit string)
to a short, unique representation in a small domain (e.g., a bit string of fixed length).
We use a collision-free hash function; this property means that no process, not even a
Byzantine process, can find two distinct values x and x′ such that H(x) = H(x′).

4 Protocol MDStore

MDStore emulates a MWMR atomic wait-free register. Our implementation of MDStore
is modular. We begin this section by specifying an abstract metadata service (MDS).
Then we given an overview of MDStore, which uses the MDS abstraction and N > 2t
storage replicas, describe its implementation, and illustrate it through a sample execu-
tion. Subsequently we discuss possible implementations of the MDS in a distributed
system from M > 3f metadata replicas. Finally, we argue why MDStore provides a
wait-free atomic register.

4.1 Timestamped Storage and the Metadata Service

The metadata service used by MDStore is assumed to be a wait-free abstraction pro-
vided by a correct process. The MDS comprises two independent functions: the first is
a storage abstraction called timestamped storage, which resembles a register object with
a versioned interface and a particular sequential specification; the second one models
an array of registers for storing hash values associated to timestamps.

The specification of the MDS appears in Alg. 1. The timestamped storage function
is accessed through the MDS-WriteTs and MDS-ReadMax operations and maintains a
timestamp ts and a value data. In order to write a timestamped value, a client supplies
a write-timestamp wts and a data value v. The MDS stores (wts, v) in its state (ts, data)
if and only if wts ≥ ts. In a read operation for the timestamped value, the MDS returns
the stored ts and data.

In the specification of timestamped storage it is critical that the guard for a MDS-
WriteTs operation to “take effect” requires wts to be greater than or equal to the
stored ts. With this condition, timestamped storage has consensus number one [20]
and can be implemented from simple atomic registers, as discussed later in Section 4.4.

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 7

In contrast, Cachin et al. [8] define a “replica” object that is the same as the times-
tamped storage function, except that the guard for the conditional write requires the
write-timestamp to be strictly greater than the stored timestamp; this object, however,
is much more powerful and more difficult to implement, as it has an infinite consensus
number [8].

The second function of the MDS stores an array of independent hash values associ-
ated with timestamps. The operations MDS-WriteHash and MDS-ReadHash implement
these in the canonical way.

Algorithm 1. Timestamped-storage metadata service MDS.

1: Types
2: TS = N0 ×

(
C ∪ {⊥}

)
, with fields num and c // ts = (ts.num, ts.c) for ts ∈ TS

3: State
4: ts ∈ TS, initially (0,⊥) // Timestamp of stored value
5: data ∈ Σ∗, initially ⊥ // Stored metadata associated with ts
6: hashes[ts] ∈ Σ∗, initially ⊥, for ts ∈ TS // Hash values associated to timestamps

7: upon 〈 MDS-WriteTs | wts, v 〉 do
8: if wts ≥ ts then
9: (ts, data) ← (wts, v)

10: invoke 〈 MDS-WriteTsAck 〉

11: upon 〈 MDS-ReadMax 〉 do
12: invoke 〈 MDS-ReadMaxVal | ts, data 〉

13: upon 〈 MDS-WriteHash | ts, h 〉 do
14: hashes[ts] ← h
15: invoke 〈 MDS-WriteHashAck | ts 〉

16: upon 〈 MDS-ReadHash | ts 〉 do
17: invoke 〈 MDS-ReadHashVal | ts, hashes[ts] 〉

4.2 Description

Protocol MDStore operates similar to related algorithms and associates an increasing
timestamp, chosen by the writer, to every written value. It employs the MDS for storing
metadata of two kinds according to the previous section. First, the timestamped storage
function of the MDS maintains the authoritative timestamp ts, i.e., the one of the most
recently written value; it also acts as a directory by pointing to a set of t + 1 storage
replicas that store the value associated with ts. This resembles the role of metadata in
Farsite [2] and LDR [16]. The second function of the MDS permits to store hash values
associated with timestamps, and writers in MDStore store the hash of a written value
there, indexed by the timestamp. The hash ensures the integrity of the value towards

8 C. Cachin, D. Dobre, and M. Vukolić

readers, as a majority of the storage replicas may be Byzantine. Every client may write
to and read from the MDS, but the hash values for a particular timestamp is written only
once by a single client.

A timestamp ts in MDStore (see also Alg. 1) is a classical multi-writer timestamp [5,
7], consisting of a pair (num, c), where num is an integer and c is a client identifier (of
the writer). The latter serves to break ties. Comparison of timestamps uses lexicographic
ordering such that ts1 > ts2 if and only if ts1.num > ts2.num or ts1.num = ts2.num and
ts1.c > ts2.c.

The pseudocode for clients is given in Alg. 2 and the pseudocode for storage replicas
appears in Alg. 3. At a high level, a r-Write operation that writes value v to register r
proceeds as follows (Alg. 2): (1) the writer cw invokes MDS-ReadMax and obtains the
latest timestamp ts from the MDS (line 22); (2) it produces a write-timestamp wts by
incrementing ts and writes the hash of v to the MDS under wts (lines 23–25); (3) cw now
invokes si-Write on all storage replicas si for i ∈ [1, N] with wts and v, and waits for a
set Q of t+1 replicas to acknowledge the write (lines 26–30); (4) cw writes (wts, Q) to
MDS with the timestamped storage function (line 31); (5) cw now invokes si-Commit
on all storage replicas with parameter wts, such that they may garbage collect the stored
values associated to timestamps smaller than ts (lines 32–33); and, finally, (6) the writer
resets its internal state (lines 34–35). In response to a si-Write operation, a storage
replica saves the written value indexed by the write-timestamp, as long as the write-
timestamp exceeds the most recently committed timestamp at si. This means that a
storage replica may store multiple values at one time.

On the other hand, when a reader cr invokes r-Read, it first obtains the authoritative
metadata (ts, replicas) from the MDS, where replicas denotes the t+1 storage replicas
which have stored the value and acknowledged it to the writer (Alg. 2, line 38). The
reader then invokes si-Read with parameter rts = ts on si for i ∈ replicas (lines 42–44).
The storage replica si responds with the value indexed by the timestamp rts supplied
by cr; however, if si has already committed a higher timestamp than rts and thus deleted
the corresponding value, then it advances the timestamp to the committed timestamp
and responds with that value (lines 61–64, Alg. 3). Hence, the reader cr obtains a value
associated to timestamp rts or to a higher one.

Since clients cannot trust replicas, the reader validates the value received through
si-ReadVal from the replica. To this end, cr consults the MDS and verifies that the
hash of the value v with timestamp ts received from the replica matches the hash stored
at the MDS as follows (lines 45–51): (1) cr retrieves the hash value h′ corresponding
to ts from the MDS; (2) cr will check that H(v) = h′ (line 51); (3) if ts (which was
obtained from si) is higher than rts (which the reader requested) due to a concurrent
write operation, then cr validates ts by retrieving the authoritative metadata with the
currently highest timestamp ts from the MDS and by checking that ts lies between rts
and ts (lines 47–51).

As a side remark to Alg. 2, the values data and data′ obtained in lines 22 and 48,
respectively, are ignored.

Intuitively, the register emulation preserves safety because the MDS stores an author-
itative hash of the value stored by the (Byzantine) storage replicas. Furthermore, client
operations are linearizable because of the atomic operations on the MDS primitive. For

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 9

Algorithm 2. Protocol MDStore, atomic register instance r for client c.

18: State
19: wts, rts ∈ TS, initially (0,⊥) // Timestamp of written and read value, resp.
20: Q ∈ 2N, initially ∅ // Storage replicas that have acknowledged write

21: upon 〈 r-Write | v 〉 do
22: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, data 〉
23: wts ← (ts.num + 1, c)
24: invoke 〈 MDS-WriteHash | wts,H(v) 〉
25: wait for 〈 MDS-WriteHashAck | ts′ 〉 such that ts′ = wts
26: forall i ∈ [1, N] do
27: invoke 〈 si-Write | wts, v 〉

28: upon 〈 si-WriteAck | ts 〉 such that ts = wts do
29: Q ← Q ∪ {i}
30: if |Q| > t then
31: invoke 〈 MDS-WriteTs | wts, Q 〉; wait for 〈 MDS-WriteTsAck 〉
32: forall i ∈ [1, N] do
33: invoke 〈 si-Commit | wts 〉
34: wts ← (0,⊥)
35: Q ← ∅
36: invoke 〈 r-WriteAck 〉

37: upon 〈 r-Read 〉 do
38: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, replicas 〉
39: if ts = (0,⊥) then
40: invoke 〈 r-ReadVal | ⊥ 〉
41: rts ← ts
42: forall i ∈ replicas do
43: invoke 〈 si-Read | rts 〉

44: upon 〈 si-ReadVal | ts, v 〉 do
45: invoke 〈 MDS-ReadHash | ts 〉
46: wait for 〈 MDS-ReadHashVal | ts′, h′ 〉 such that ts′ = ts
47: if ts > rts then
48: invoke 〈 MDS-ReadMax 〉; wait for 〈 MDS-ReadMaxVal | ts, data′ 〉
49: else
50: ts ← rts
51: if rts ≤ ts ≤ ts ∧H(v) = h′ then
52: rts ← (0,⊥)
53: invoke 〈 r-ReadVal | v 〉

showing liveness and that the emulation is wait-free, note that the writer never blocks,
assuming a wait-free MDS abstraction. Moreover, the timestamp ts obtained by the
reader together with v is higher and therefore “more recent” than the timestamp rts,
which the reader initially requested, due to the protocol logic at the storage replicas.

10 C. Cachin, D. Dobre, and M. Vukolić

Algorithm 3. Protocol MDStore, implementation of storage replica si.

54: State
55: ts ∈ TS, initially (0,⊥) // Committed timestamp
56: values[ts] ∈ V , initially ⊥, for ts ∈ TS // Map of stored values

57: upon 〈 si-Write | wts, v 〉 do
58: if wts > ts then
59: values[wts] ← v
60: invoke 〈 si-WriteAck | wts 〉

61: upon 〈 si-Read | rts 〉 do
62: if rts < ts then
63: rts ← ts
64: invoke 〈 si-ReadVal | rts, values[rts] 〉

65: upon 〈 si-Commit | cts 〉 do
66: if cts > ts ∧ values[cts] �= ⊥ then
67: ts ← cts
68: forall freets ∈ TS such that freets < ts do
69: values[freets] ← ⊥
70: invoke 〈 si-CommitAck | cts 〉

The range check rts ≤ ts ≤ ts by the reader ensures that ts is also permitted with
respect to the authoritative timestamp ts. The formal analysis appears in Section 4.5.

4.3 Illustration

We illustrate MDStore using an execution σ, depicted in Figure 1. In σ, we assume
t = 1 and N = 3 storage replicas. Replica s1 does not receive any message due to
asynchrony in a timely manner, whereas replica s3 is Byzantine.

The execution starts with a complete operation ow,1 = r-Write(v1) that writes
(ts1, v1) to the storage replicas s2 and s3; the timestamp ts1 is a pair (1, w1) that the
writer w1 generated in line 23 during ow,1. The operation ow,1 is not contained in the
figure, only the state of the MDS upon completion of ow,1 is shown.

The initial write ow,1 is followed by two concurrent operations shown in Figure 1:
first, ow,2 = r-Write(v2) by a writer w2, and, second, or = r-Read by a reader r1. Upon
invoking ow,2, writer w2 in Step 1© (referring to the numbers in Fig. 1) first invokes
MDS-ReadMax on the MDS (line 22). When the MDS responds, the writer w2 obtains
the highest timestamp ts1 = (1, w1). Then, w2 computes the timestamp of its operation
as ts2 = (2, w2) (line 23) and invokes MDS-WriteHash with ts2 and H(v2) in Step 2©
(line 24). Notice that the hash is written to the MDS before the write ow,2 is exposed to
other clients via the timestamp through the MDS; this will prevent a Byzantine storage
replica from forging values with a given timestamp. Eventually, the MDS responds and
w2 then invokes si-Write(ts2, v2) on the storage replicas for i = 1, . . . , 3 in Step 3©

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 11

Fig. 1. An execution of MDStore with a concurrent r-Write and r-Read operation

(lines 26–27). The messages carrying these operations are received only by the storage
replicas s2 and s3 (but recall that s3 is Byzantine). Since s2 is correct, it stores v2 in
values[ts2] (line 59). At this point in the execution, the writer w2 stalls, waiting for two
si-WriteAck replies from the storage replicas.

Concurrently with ow,2, a reader r1 invokes or = r-Read . The reader first queries
the MDS through a MDS-ReadMax operation in Step 4© to determine the latest time-
stamp rts and the set replicas, which store the corresponding value (line 38). The MDS
responds such that rts = ts1 and replicas = {2, 3}. Next, in Step 5©, r1 invokes si-
Read(ts1) on the storage replicas s2 and s3 (lines 42–44). According to the algorithm,
a storage replica responds to this with the value that it stores under ts1 or under its
committed timestamp cts, and not necessarily with the value from data with the highest
timestamp at the replica; for instance, at this time in σ, for replica s2, it holds cts = ts1
since no s2-Commit(ts2) has been invoked yet. However, the Byzantine replica s3 could
mount a sophisticated attack and include (ts2, v2) in its s3-ReadVal response, see Step
6©. Although value v2 is in fact being written concurrently, it would be wrong for r1

to return v2, since readers do not write back data in MDStore and the write of v2 is not
yet complete — this may violate atomicity. For preventing this attack, the reader subse-
quently invokes MDS-ReadMax again to determine whether ts2 (or a higher timestamp)
has become authoritative meanwhile, in Step 7© (lines 47–48). Since this is not the case
here, client r1 discards the response from s3 (after the test in line 51) and waits for an
additional reply (this will arrive from s2).

An alternative attack by the Byzantine replica s3 could be to make up a value v∗ with
a large timestamp, say ts∗ = (100, w2). In this case, r1 would also check with the MDS
whether ts∗ or a higher timestamp has been written (just like in Step 7©). Moreover,
r1 would check the integrity of the value reported by s3 by retrieving the hash at ts∗

from the MDS and by checking if it matches the hash of v∗ (lines 45–51). As the hash
function is collision-free and the MDS is correct, this check will fail.

Returning to σ, in Step 8©, s2 eventually responds to r1 with the pair (ts1, v1)
(lines 61–64). According to the protocol, r1 successfully verifies the integrity of v1
after obtaining the hash value at ts1 from the MDS in Step 9© (lines 45–51), and the
r-Read of r1 returns v1.

Eventually, the writer w2 in ow,2 receives two si-WriteAck responses from repli-
cas s2 and s3. Then, it invokes MDS-WriteTs with ts2 and the set {2, 3} in Step 10©

12 C. Cachin, D. Dobre, and M. Vukolić

(line 31). Note that the write of v2 only “takes effect” at this point in time; in other
words, the linearization point of ow,2 coincides with the linearization point of the MDS-
WriteTs operation with ts2, and it is safe subsequently for readers to read v2 from r.

Finally, the writer invokes si-Commit on all storage replicas, so as to allow them to
garbage collect stale data (lines 32–33). Storage replicas update their local variable ts,
which determines the value that they will send to a reader, only upon processing this
si-Commit operation (lines 65–70).

Let us point out that MDStore uses timestamped storage at the MDS as a way to avoid
storing an entire history of values at the storage replicas. One could not achieve this
saving if the MDS would only expose a standard read/write register interface, since this
would allow that a stored value is overwritten by a value with a lower timestamp. Given
the implementation of storage replicas (notably lines 57–60) and our goal of avoiding
to store entire histories, such an overwrite might cause inconsistent states between the
MDS and the storage replicas.

4.4 Implementation of the Metadata Service

We show how to implement the MDS abstraction with existing asynchronous BFT stor-
age protocols that rely on M > 3f metadata replicas. In order to qualify for the imple-
mentation, such a BFT protocol should also tolerate an arbitrary number of Byzantine
readers, permit multiple benign writers (which may crash), and, ideally, make no cryp-
tographic assumptions. Recall that the MDS has two completely independent functions,
providing the timestamped storage and the array of hash values. Hence, we will imple-
ment them through different components.

First, the wait-free atomic timestamped storage function can be implemented as a
straightforward extension of the classical SWMR to MWMR transformation on atomic
storage objects (e.g., [7, page 163]). In this transformation, there is one SWMR storage
object per writer and every writer maintains a timestamp/value pair in “its” storage
object, after first reading and incrementing the highest timestamp found in any other
storage object. In our extension, the reader determines the timestamp/value pair with
the highest timestamp among the SWMR storage objects as usual, and simply returns
also the timestamp together with the value. This implementation may be realized from
existing SWMR atomic wait-free storage (using M > 3f replicas); some permit a
computationally unbounded adversary [3,13], whereas others assume cryptography, that
is, they tolerate only a computationally bounded adversary [9, 30].

Second, the function related to the hash values consists simply of an array of SWMR
safe storage objects. These may be directly implemented from the protocols with atomic
semantics mentioned above. Furthermore, as one may relax the consistency guarantee
for them to safe semantics, one might also employ protocols with weaker semantics,
such as (1) SWMR safe wait-free storage [1] or (2) its regular variant, both without
cryptographic assumptions [18], or (3) regular storage with digital signatures [31].

Finally, note that more efficient, direct, implementations of the MDStore metadata
service can be obtained easily, but these are beyond the scope of this paper.

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 13

4.5 Analysis

In this section we prove that protocol MDStore in Alg. 2–3 emulates an atomic MWMR
register and is wait-free.

We define the timestamp of an operation o on the register as follows: If o is r-Write,
then its timestamp is the value of variable wts after the assignment in line 23; otherwise,
if o is r-Read, its timestamp is the value of variable ts obtained through si-ReadVal
(line 44) at the time when o returns by invoking r-ReadVal.

Lemma 1 (Monotonicity of timestamped storage). Consider the timestamped stor-
age function of the MDS and suppose an operation or = MDS-ReadMax returns
(ts′, v′). If or follows an operation ow = MDS-WriteTs(ts, v) or an operation o′r =
MDS-ReadMax that returns (ts, v) then ts′ ≥ ts.

Proof. This follows directly from the sequential specification of timestamped storage
in Alg. 1. ��

Lemma 2 (Sandwich). Let or be a complete r-Read operation with timestamp ts, let rts
denote the timestamp returned by the MDS in line 38 and let rts′ denote the timestamp
returned by the MDS in line 48. Then rts ≤ ts ≤ rts′.

Proof. According to the definition of the operation timestamp, the timestamp of or is
the value of the variable ts at line 53. Consider the test that rts ≤ ts ≤ ts in line 51.
According to the algorithm, if ts > rts, then the variable ts contains rts′. ��

Lemma 3 (Partial Order). Let o and o′ be two operations with timestamps ts and ts′,
respectively, such that o precedes o′. Then ts ≤ ts′ and if o′ is a r-Write operation, then
ts < ts′.

Proof. Suppose o is a r-Read operation. Then its timestamp is either equal to rts, which
is returned by MDS-ReadMax in line 38, or ts is not larger than ts, which is returned by
MDS-ReadMax in line 48. On the other hand, if o is a r-Write operation, its timestamp
is written to the MDS through MDS-WriteTs. Hence, at the time when o completes,
the monotonicity of the timestamped storage (Lemma 1) implies that any subsequent
MDS-ReadMax operation returns a timestamp that is at least as large as ts.

In the following we consider operation o′ that follows o and distinguish two cases:
1. Suppose o′ is a r-Read operation. Then its timestamp ts′ is at least as large as

the timestamp rts, which is returned by MDS-ReadMax in line 38, and the lemma
follows.

2. Otherwise, o′ is a r-Write operation. Then its timestamp ts′ = wts is computed
in line 23 from the timestamp returned by MDS-ReadMax by incrementing its first
component. Hence wts and the timestamp of o′ are strictly larger than the timestamp
returned by MDS-ReadMax and, hence, also strictly larger than ts.

Lemma 4 (Unique writes). If o and o′ are two r-Write operations with timestamps ts
and ts′, respectively, then ts �= ts′.

Proof. If o and o′ are executed by different clients, then the two timestamps differ in
their second component. If o and o′ are executed by the same client, then the client
executed them sequentially. By Lemma 3, it follows ts �= ts′.

14 C. Cachin, D. Dobre, and M. Vukolić

Lemma 5 (Integrity). Let or be a r-Read with timestamp tsr that returns a value
v �= ⊥. Then there exists a unique r-Write operation ow that writes v such that its
timestamp tsw is equal to tsr. Furthermore ow does not follow after or.

Proof. Since or returns v and has timestamp tsr, the reader receives a si-ReadVal re-
sponse containing tsr and v from one of the storage replicas. Suppose for the purpose
of contradiction that v was never written. Then, then by the collision resistance of H ,
the check in line 51 fails and or does not return v. Therefore, we conclude that some
r-Write operation ow has invoked si-Write(tsr, v) on a storage replica in line 27. Since
this timestamp tsr is equal to variable wts and the timestamp tsw of ow, it follows
that tsw = tsr. Finally, by Lemma 4, no other r-Write operation has the same time-
stamp, which completes the proof.

Theorem 1 (Linearizability). Every execution of protocol MDStore is linearizable.

Proof. Let σ be the history of any execution of MDStore. By Lemma 5 the timestamp
of a r-Read operation has either been written by some r-Write operation or the r-Read
operation returns⊥.

We first construct σ′ from σ by completing all operations of the form r-Write(v)
such that v has been returned by some complete r-Read. Then we construct a sequential
permutation π of σ′ by ordering all operations in σ′, excluding the r-Read operations
that returned⊥, according to their timestamps and by placing all r-Read operations that
did not return⊥ immediately after the r-Write operation with the same timestamp. The
r-Read operations that returned ⊥ are placed at the beginning of π. Note that (concur-
rent) r-Read operations with the same timestamp may appear in any order, whereas all
other r-Read operations appear in the same order as in σ′.

To prove that π preserves the sequential specification of a MWMR register we must
show that every r-Read returns the value written by the latest r-Write that precedes it
in π, or the initial value ⊥ if there is no preceding r-Write in π. Let or be a r-Read
operation returning a value v. If v = ⊥, then by construction or is ordered before any
r-Write in π.

Otherwise, v �= ⊥, and by Lemma 5, there exists a r-Write(v) operation with the
same timestamp tsr. In this case, this write is placed in π before or by construction. Ac-
cording to Lemma 4, every other r-Write in π has a different timestamp and, therefore,
appears in π either before r-Write(v) or after or.

It remains to show that π preserves real-time order of σ. Consider two complete
operations o and o′ in σ′ such that o precedes o′ with timestamps ts and ts′, respectively.
Lemma 3 implies that ts′ ≥ ts. If ts′ ≥ ts, then o′ follows o in π by construction.
Otherwise ts′ = ts and Lemma 3 implies that o′ is a r-Read operation. If o is a r-Write
operation, then o′ appears after o since we placed every r-Read after the r-Write with
the same timestamp. Otherwise, if o is a r-Read, then it appears in π before o′, as it does
in σ′.

Theorem 2 (Wait-freedom). Every execution of protocol MDStore is wait-free.

Proof. Since the MDS abstraction used by Alg. 2 is wait-free, every operation invoked
on the MDS eventually completes. It remains to show that no r-Write always fails the

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 15

test in line 30 and that no r-Read operation permanently fails the check of line 51 and
never returns a value.

For a r-Write operation ow, the condition in line 30 is eventually satisfied because
there is a time after which all correct storage replicas have responded with si-WriteAck
and because there are more than t correct replicas, from the assumption N > 2t.

On the other hand, let or be a r-Read operation and suppose for the sake of contra-
diction that the condition in line 51 is never satisfied — therefore, or never returns. Let
si be a correct storage replica with i ∈ replicas. Since the reader has previously invoked
si-Read on si during or, it eventually receives a si-ReadVal(ts, v) in response.

If ts satisfies the clause rts ≤ ts ≤ ts in line 51, then the second clause of the con-
dition, H(v) = h′, is also true because si is correct, and or would return. Therefore,
we continue the argument assuming that ts < rts or that ts > ts. Recall that the reader
requested timestamp rts in si-Read. If ts < rts, then si has replied with a smaller time-
stamp than rts, which is not possible according to the algorithm for a replica (lines 62–
64). Otherwise, if ts > ts, then by Lemma 2, it holds ts > rts, and therefore si has
replied from its committed timestamp variable; to avoid confusion, we call this value ts∗

and note that ts∗ = ts. According to the replica code, line 67 is the only place where its
committed timestamp variable may change. Furthermore, if the replica sets this variable
to ts∗, then there exists a r-Write operation o∗w that committed with timestamp ts∗. Ac-
cording to the r-Write code, o∗w commits only after invoking MDS-WriteTs containing
timestamp ts∗. Hence, if ts > ts, then or invokes MDS-ReadMax in line 48 and does
so after the corresponding r-Write wrote ts∗ to the MDS. According to Lemma 1, the
reader obtains from the MDS in line 48 a timestamp ts that is a least as large as ts∗. This
implies that ts ≥ ts∗ = ts, which contradicts the assumption that ts > ts, and the result
follows.

5 Conclusion

This paper has explored how to separate the maintenance of metadata from the storage
of bulk-data in distributed storage. It introduces MDStore, the first fully asynchronous
wait-free BFT storage protocol that reduces the number of replicas that store bulk data
to as few as 2t+1, with t Byzantine faults. Recent work shows that the same approach
also improves erasure-coded protocols for distributed storage that tolerate Byzantine
faults [4], reducing the storage overhead even further.

Acknowledgment. We thank Elli Androulaki, Alessandro Sorniotti, and Nikola
Knežević for inspiring discussions about this work. This work is supported in part by
the EU CLOUDSPACES (FP7-317555) and SECCRIT (FP7-312758) projects.

References

[1] Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk Paxos: Optimal resilience
with Byzantine shared memory. Distributed Computing 18(5), 387–408 (2006)

[2] Adya, A., Bolosky, W.J., Castro, M., et al.: FARSITE: Federated, available, and reliable
storage for an incompletely trusted environment. In: Proc. 5th Symp. Operating Systems
Design and Implementation, OSDI (2002)

16 C. Cachin, D. Dobre, and M. Vukolić

[3] Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Bounded wait-free implementation of optimally re-
silient Byzantine storage without (unproven) cryptographic assumptions. In: Pelc, A. (ed.)
DISC 2007. LNCS, vol. 4731, pp. 7–19. Springer, Heidelberg (2007)

[4] Androulaki, E., Cachin, C., Dobre, D., Vukolić, M.: Erasure-coded Byzantine storage with
separate metadata. Report ArXiv:1402.4958, CoRR (2014)

[5] Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced
Topics. McGraw-Hill, London (1998)

[6] Cachin, C., Dobre, D., Vukolić, M.: BFT storage with 2t + 1 data replicas. Report
ArXiv:1305.4868, CoRR (2013)

[7] Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure Distributed
Programming, 2nd edn. Springer (2011)

[8] Cachin, C., Junker, B., Sorniotti, A.: On limitations of using cloud storage for data repli-
cation. In: Proc. 6th Workshop on Recent Advances in Intrusion Tolerance and reSilience,
WRAITS 2012 (2012)

[9] Cachin, C., Tessaro, S.: Optimal resilience for erasure-coded Byzantine distributed storage.
In: Proc. International Conference on Dependable Systems and Networks (DSN-DCCS),
pp. 115–124 (2006)

[10] Cho, B., Aguilera, M.K.: Surviving congestion in geo-distributed storage systems. In: Proc.
USENIX Annual Technical Conference, pp. 439–451 (2012)

[11] Chun, B.-G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only memory:
Making adversaries stick to their word. In: Proc. 21st ACM Symposium on Operating Sys-
tems Principles (SOSP), pp. 189–204 (2007)

[12] Correia, M., Neves, N.F., Verı́ssimo, P.: How to tolerate half less one Byzantine nodes in
practical distributed systems. In: Proc. 23rd Symposium on Reliable Distributed Systems
(SRDS), pp. 174–183 (2004)

[13] Dobre, D., Karame, G., Li, W., Majuntke, M., Suri, N., Vukolić, M.: PoWerStore: Proofs
of writing for efficient and robust storage. In: Proc. ACM Conference on Computer and
Communications Security, CCS (2013)

[14] Dobre, D., Viotti, P., Vukolić, M.: Hybris: Consistency hardening in robust hybrid cloud
storage. Research Report RR-13-291, Eurécom (2013)

[15] Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of the ACM 35(2), 288–323 (1988)

[16] Fan, R., Lynch, N.A.: Efficient replication of large data objects. In: Fich, F.E. (ed.) DISC
2003. LNCS, vol. 2848, pp. 75–91. Springer, Heidelberg (2003)

[17] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

[18] Guerraoui, R., Vukolić, M.: How fast can a very robust read be. In: Proc. 25th ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 248–257 (2006)

[19] Guerraoui, R., Vukolić, M.: Refined quorum systems. Distributed Computing 23(1), 1–42
(2010)

[20] Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Languages
and Systems 11(1), 124–149 (1991)

[21] Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

[22] Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S.V., Schröder-
Preikschat, W., Stengel, K.: CheapBFT: Resource-efficient Byzantine fault tolerance. In:
Proc. 7th European Conference on Computer Systems (EuroSys), pp. 295–308 (April 2012)

[23] Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Protocols.
Chapman & Hall/CRC (2007)

[24] Lamport, L.: On interprocess communication. Distributed Computing 1(2), 77–85, 86–101
(1986)

Separating Data and Control: Asynchronous BFT Storage with 2t+ 1 Data Replicas 17

[25] Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems 16(2),
133–169 (1998)

[26] Lamport, L.: Paxos made simple. SIGACT News 32(4), 51–58 (2001)
[27] Lamport, L.: Lower bounds for asynchronous consensus. In: Schiper, A., Shvartsman,

M.M.A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed Com-
puting. LNCS, vol. 2584, pp. 22–23. Springer, Heidelberg (2003)

[28] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
[29] Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quaterly 2(3),

219–246 (1989)
[30] Malkhi, D., Reiter, M.: Secure and scalable replication in Phalanx. In: Proc. 17th Sympo-

sium on Reliable Distributed Systems, SRDS (1998)
[31] Malkhi, D., Reiter, M.K.: Byzantine quorum systems. Distributed Computing 11(4),

203–213 (1998)
[32] Martin, J.-P., Alvisi, L., Dahlin, M.: Minimal Byzantine storage. In: Malkhi, D. (ed.) DISC

2002. LNCS, vol. 2508, pp. 311–325. Springer, Heidelberg (2002)
[33] Veronese, G.S., Correia, M., Bessani, A., Lung, L.C., Verı́ssimo, P.: Efficient Byzantine

fault tolerance. IEEE Transactions on Computers 62(1), 16–30 (2011)
[34] Vukolić, M.: Quorum Systems: With Applications to Storage and Consensus. Synthesis

Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2012)
[35] Wang, Y., Alvisi, L., Dahlin, M.: Gnothi: Separating data and metadata for efficient and

available storage replication. In: Proc. USENIX Annual Technical Conference, pp. 413–424
(2012)

[36] Wilkes, J., Hoover, C., Keer, B., Mehra, P., Veitch, A.: Storage, Data, and Information
Systems. HP Laboratories (2008)

[37] Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agreement from
execution for Byzantine fault-tolerant services. In: Proc. 19th ACM Symposium on Oper-
ating Systems Principles (SOSP), pp. 253–268 (2003)

On Proof-Labeling Schemes versus

Silent Self-stabilizing Algorithms

Lélia Blin1,�, Pierre Fraigniaud2,��, and Boaz Patt-Shamir3,���

1 LIP6-UPMC, University of Evry-Val d’Essonne, France
2 CNRS and University Paris Diderot, France

3 Department of Electrical Engineering, Tel-Aviv University, Israel

Abstract. It follows from the definition of silent self-stabilization, and
from the definition of proof-labeling scheme, that if there exists a silent
self-stabilizing algorithm using �-bit registers for solving a task T , then
there exists a proof-labeling scheme for T using registers of at most �
bits. The first result in this paper is the converse to this statement. We
show that if there exists a proof-labeling scheme for a task T , using �-bit
registers, then there exists a silent self-stabilizing algorithm using regis-
ters of at most O(�+ log n) bits for solving T , where n is the number of
processes in the system. Therefore, as far as memory space is concerned,
the design of silent self-stabilizing algorithms essentially boils down to
the design of compact proof-labeling schemes. The second result in this
paper addresses time complexity. We show that, for every task T with
k-bits output size in n-node networks, there exists a silent self-stabilizing
algorithm solving T in O(n) rounds, using registers of O(n2 + kn) bits.
Therefore, as far as running time is concerned, every task has a silent
self-stabilizing algorithm converging in a linear number of rounds.

1 Introduction

1.1 Context and Objective

A distributed algorithm is self-stabilizing [12] if it eventually reaches a legal
state starting from any arbitrary state, and remains in a legal state whenever
starting from a legal state. A self-stabilizing algorithm is therefore well suited
to withstand transient failures in which the content of the variables can be
arbitrarily corrupted. In the context of network algorithms, and assuming a
computational model in which every node has atomic read/write access to its
single-writer multiple-readers public register, and atomic read-only access to the
public register of each of its neighbors in the network, three main criteria have
been considered for measuring the quality of algorithms:

� Additional supports from ANR project IRIS.
�� Additional support from ANR project DISPLEXITY, INRIA project GANG, and

the French-Israeli Laboratory on Foundations of Computer Science (FILOFOCS).
��� Additional support from the French-Israeli Laboratory on Foundations of Com-

puter Science (FILOFOCS).

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 18–32, 2014.
c© Springer International Publishing Switzerland 2014

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 19

1. Time, i.e., either the number of individual steps, or the number of collective
rounds, or both, required to reach a legal state;

2. Compactness, i.e., the size of the public registers;

3. Silence, i.e., the fact that nodes keep their registers unmodified once a legal
state has been reached.

Minimizing time is crucial for evident efficiency reasons. Nevertheless, compact-
ness and silentness are also crucial in many contexts. In particular, keeping the
registers small enables to limit the amount of data exchanged between the pro-
cessors, and hence it avoids overloading the system with a heavy traffic among
nodes [1]. Silentness is also desirable as it guarantees that, whenever the system
is in a legal state, nodes stop taking unnecessary steps, and hence it enables
self-stabilization not to burden the system with unnecessary computations [13].
Silentness can be viewed as a kind of termination mechanism combined with a
trigger mechanism, the former insuring that the self-stabilization protocol be-
comes quiet when the system is in legal state, while the latter insures that the
self-stabilization protocol wakes up in case the system enters an illegal state.

In this paper we address the issue of designing fast and/or compact silent
self-stabilizing network algorithms for arbitrary tasks.

There is an abundant literature (see Section 1.3) on the design of compact
silent self-stabilizing network algorithms for specific tasks, including the election
of a leader, and the construction of various types of spanning trees (BFS, min-
degree, MST, etc.). In each of these algorithms, silentness is guaranteed thanks
to the — implicit or explicit — use of a mechanism known as proof-labeling
scheme [19]. This mechanism provides each solution of the considered task with
a distributed certificate consisting of a collection of individual certificates (also
called labels) assigned to all nodes. When each node has its own certificate as
well as the certificates of its neighbors at hand, the nodes can collectively de-
cide whether the current state is legal or not. More precisely, in a proof-labeling
scheme, each node has a local predicate over its label and its neighbors’ labels,
such that the state is legal if and only if all local predicates are satisfied. That
is, if a state is not legal then the scheme must insure that some inconsistencies
between the certificates will be detected locally by some node(s). In the context
of self-stabilization, a node detecting some local inconsistency between the cer-
tificates rejects. In the spirit of [2], the rejection of a state by some process(es)
leads the processes to continue their attempt to reach a legal state, potentially
resetting the entire system, or just carrying on the execution leading to eventual
convergence to a legal state.

It follows from the definition of the aforementioned concepts that any mecha-
nism insuring silent self-stabilization is essentially equivalent to a proof-labeling
scheme. Slight differences may occur because of small variants in the computa-
tional model, including, e.g., (1) link-registers versus node-registers, or (2) the
ability to read only the certificates of the neighbors versus the ability to read
the certificates as well as the data stored by these neighbors, etc. Nevertheless,
conceptually, silentness mechanisms and proof-labeling schemes are essentially
equivalent under all reasonable variants.

20 L. Blin, P. Fraigniaud, and B. Patt-Shamir

More specifically, it follows from the definition of silent self-stabilization and of
proof-labeling scheme that, if there exists a silent self-stabilizing algorithm using
�-bit node-registers for solving some task T , then there exists a proof-labeling
scheme for T using registers of at most � bits. An important consequence of
this result is that any lower bound B on the size of certificates in a proof-
labeling scheme for a task T implies a lower bound B on the size of the registers
required for any silent stabilizing implementation of T . Establishing such kind
of space lower bounds for silent self-stabilizing algorithms was, among others,
one motivation for introducing proof-labeling schemes [19].

This paper is concerned with converses of this latter statement. More gener-
ally, we study the issue of designing fast and/or compact silent self-stabilizing
algorithms for arbitrary tasks, taking advantage of various kinds of proof-labeling
schemes for these tasks. Table 1 summarizes our results, which are detailed next.

Table 1. Space and time complexities of silent self-stabilizing algorithms in n-node
networks for an arbitrary task T , as a function of the minimum size � of a proof-
labeling scheme for T , or of the output size k of T .

size of registers number of rounds

lower bound Ω(�) –

algorithm csss O(�+ log n) O(n2n�)

algorithm fsss O(n2 + nk) O(n)

1.2 Our Results

First, we show that if there exists a proof-labeling scheme for a task T , using
�-bit node-registers, then there exists a silent self-stabilizing algorithm using
node-registers of at most O(�+ logn) bits for solving T , where n is the number
of processes in the network. Therefore, as far as memory space is concerned, the
design of silent self-stabilizing algorithms essentially boils down to the design of
compact proof-labeling schemes. Note that the latter is significantly easier than
the former. Indeed, proof-labeling schemes just deal with the set up of static
distributed data structures, while self-stabilization must cope with dynamic cor-
ruptions of variables, and with the actions of the scheduler governing the way
processes take steps.

Second, we prove that, for every task T with k-bits output size at each node
in n-node networks, there exists a silent self-stabilizing algorithm solving T in
O(n) rounds with registers of O(n2 + kn) bits. Therefore, we prove that every
task enjoys a silent self-stabilizing algorithm converging in a linear number of
rounds. This algorithm uses register of polynomial size, which can be larger
than the optimal for some tasks. Nevertheless, the bound O(n2 + kn) bits for
the size of the registers is existentially optimal in the sense that for some tasks,
Ω(n2 + kn) bits are required by any proof-labeling scheme (see [3,14,15]).

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 21

All our results are constructive, in the sense that we provide explicit descrip-
tions of algorithms reaching these bounds, respectively called csss and fsss, for
compact and fast silent self-stabilizing algorithm, respectively. The complexity
analysis of the algorithms is done with respect to an unfair scheduler.

1.3 Related Work

The reader is referred to the textbook [12] for an introduction to the main
techniques used for designing self-stabilizing algorithms. There is a large volume
of literature focussing on the design of silent self-stabilizing protocols for various
kinds of tasks. In particular, a significant effort has been dedicated to different
forms of spanning tree constructions, as the presence of a spanning tree is an
effective tool for the design of many self-stabilizing algorithms (this is the case of
the algorithms in this paper as well). It is thus worth mentioning the construction
of spanning trees in [9,20], as well as the construction of breadth-first search
(BFS) trees in [1,10,16]. These constructions have optimal Θ(log n)-bit space-
complexity.

The case of minimum-weight spanning tree (MST) construction is also worth
being mentioned here as well, because of the non-trivial lower bound established
in [17], which proves that any silent MST construction algorithm requires regis-
ters on Ω(log2 n) bits. Proof-labeling schemes matching this bound can be found
in [17] and [19]. Papers [5,7,18] have proposed compact self-stabilizing construc-
tions, using just O(log n) bits of memory per node. These compact algorithms are
however not silent. ([18] is uniform and converges in O(n) rounds, while [7] is just
semi-uniform, and converges in O(n3) rounds). Recently [6] designed a space-
optimal Θ(log n)-bit register silent self-stabilizing algorithm for approximating
minimum-degree spanning tree within additive 1 from the optimal, converging
in a polynomial number of rounds. The techniques in [6] can be generalized to
design a silent self-stabilizing MST construction using registers of optimal size
Θ(log2 n) bits.

In addition, several papers address the leader election task, which is inher-
ently related to spanning tree construction. In particular, [4,11] have proposed
silent self-stabilizing leader election algorithms. See also [8] for an exponential
gap between the size of the registers in silent and non-silent leader election
algorithms. More generally, the reader is especially referred to [13] where the in-
terplay between space complexity and silentness is thoroughly investigated, for
various problems, including tree construction and leader election, under different
hypotheses.

Before completing this non exhaustive survey of related work, it is worth point-
ing out that there are subtle but important differences between the notion of
proof-labeling scheme [19] and the notion of non-deterministic local distributed
decision [14]. Both are assuming the ability to use distributed certificates. How-
ever, the latter does not impose restriction on the number of communication
rounds before taking decision, while, in essence, proof-labeling scheme performs
in one single rounds. Nevertheless, the theory of proof-labeling scheme can easily
be extended to allowing more rounds [15]. In fact, the main difference between

22 L. Blin, P. Fraigniaud, and B. Patt-Shamir

the two concepts is that, in a proof-labeling scheme, the certificate may depend
on the current identity of the node, while, in non-deterministic local distributed
decision, the certificates must not depend on this identity. That is, in particular,
proof-labeling scheme allows the certificates to be functions of the node IDs,
while non-deterministic local distributed decision does not.

Finally, [3] recently aimed at investigating possible generalizations of proof-
labeling scheme, and of local distributed decision, where legality is not necessarily
the logical conjunction of the local predicates.

2 Framework

In this section, we specify our computational model. More importantly, we
also precisely define the different concepts of configurations, states, tasks, self-
stabilization, and proof-labeling schemes, so that to appropriately formulate our
general results in Sections 3 and 4.

2.1 Computational Model

We are dealing with a system in which each computational entity is the node of an
asynchronous network modeled as a simple connected n-node graph G = (V,E).
The nodes act as autonomous computing entities. More specifically, every node
u ∈ V has a distinct identity, denoted by id(u) ∈ {1, . . . , nc} for some constant
c ≥ 1, and is a processor with read/write access to a single-writer multiple-
readers public register. In one atomic step, every node can (1) read its own
register as well as the registers of its neighbors in G, (2) perform individual
computations, and (3) update its register accordingly.

Describing self-stabilizing distributed algorithms is often done by describing
the actions of an abstract state machine. Each node executes the same instruction
set which consists in one or more rules of the form:

name-of-rule : guard −→ command (1)

where guard is a boolean predicate over the variables in the registers of the node
as well as in the registers of its neighbors, and command is a statement assigning
new values to the variables of the node. An enabled, or activatable, node is a node
for which at least one guard is true. A non activatable node is idle. The network
is asynchronous in the sense that nodes take step of computation in arbitrary
order, under the control of a scheduler. For instance, an unfair scheduler is free to
make arbitrary choices about which node to activate among the set of activatable
nodes. It is only bounded to activate one of the currently activatable nodes. Such
scheduler is indeed “unfair” because a node may be perpetually activatable, yet
the scheduler may never activate it.

The model described above is sometime called the node-register state model.
Some results in this paper extend to the link-register version of the model. In
this latter (stronger) model, instead of one public register per node, every node

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 23

has one single-writer multiple-reader public register for each of its incident links,
readable by the node at the other extremity of the link.

A fault is the corruption of some variable(s) in the register(s) of one or more
node(s) in the network. After a fault has occurred, the system may be in an
illegal state (to be formalized in the next section). It is the role of the algorithm
to detect the illegality of the current state, and to make sure that the system
returns to a legal state.

Remark. The algorithms described in this paper could be expressed in the ab-
stract state machine format of Eq. (1). However, in this paper, we shall not
provide such algorithm descriptions because, although conceptually not diffi-
cult, this would result in long and tedious codes which would not enlighten the
main ideas in our contributions. Nevertheless, the reader aware of the program-
ming methodology in the context of self-stabilization can easily convince himself
or herself that our algorithms can be implemented appropriately so that to run
under any unfair scheduler.

2.2 Configurations, Tasks, and States

In this subsection, we formalize the concept of tasks. For this purpose, we dis-
tinguish two closely related notions: configuration and state. While the former
focusses solely on the value of the outputs, the latter also focusses on the local
variables used to compute these outputs.

a) Configurations. An identity assignment, id, to the nodes of a graph G is
the assignment to every node u ∈ V (G) of an identity, id(u) ∈ N, such that
id(u) �= id(v) for every two distinct nodes u and v. Following the terminology
of [14], we call configuration any triple

C = (G, id, x)

where G is an n-node connected graph, id is an identity assignment to the nodes
of G, and x is a set of n binary strings, x = {x(u) ∈ {0, 1}∗, u ∈ V (G)}.

b) Tasks. A task is defined as a collection T of configurations satisfying the
following two properties:

1. Feasibility: for every connected graph G, and any identity assignment id to
the nodes of G, there must exist x such that (G, id, x) ∈ T ;

2. Computability: T is computable, in the classical sense of (sequential) com-
putability theory, that is, there exists an algorithm which, given (G, id, x),
decides whether (G, id, x) ∈ T .

We insist on computable tasks since, otherwise, even a system aware of an entire
configuration may not be able to decide whether it is legal or not. Intuitively,

24 L. Blin, P. Fraigniaud, and B. Patt-Shamir

the feasibility property guaranties that, for each possible system (G, id) consist-
ing of a network G with node-identities provided by id, there exists a possible
“output” x for the nodes such that (G, id, x) ∈ T .

The configurations in T are said to be legal for T , and configurations not in
T are said to be illegal for T .

For instance, the task of constructing a spanning tree can be specified by the
set of configurations (G, id, x) where, for every node u, x(u) is either ⊥ or the
identity of some neighbor v of u, and the 1-factor

{(u, x(u)) : u ∈ V (G) and x(u) �= ⊥} (2)

forms a rooted spanning tree of G. (Hence, x(u) is the parent of u, each arc
(u, x(u)) points upward in the tree, and the root r satisfies x(r) = ⊥). Note that
a task needs not to depend on the identity assignments, in which case, for every
n-node connected graph G, and any n-dimensional vector x of binary strings,
we have:

(G, id, x) ∈ T ⇒ (G, id′, x) ∈ T
for any two identity assignments id and id′. On typical example is the leader
election task specified as the set of configurations (G, id, x) where, for every
node u, x(u) ∈ {0, 1}, and there is a unique node u in G satisfying x(u) = 1. (In
this latter setting, one does not insist on having every node know the identity
of the leader).

In some contexts, the collection of networks under consideration may not be
the class of all connected graphs, but be restricted to some families of graphs,
like, e.g., planar graphs, trees, rings, etc. All what follow also holds if networks
are a priori restricted to belong to some arbitrary class G of networks.

c) States. In the node-register state model, the state of a node u is a pair

S(u) = (x(u), y(u))

of binary strings, respectively called the output string and the auxiliary string.
The state of a network G with identity assignment id is then represented as the
triple (G, id, (x, y)) where x and y are two sets of n binary strings. The legality
of a state depends on the task T to be solved, but, above all, on the actual
algorithm A solving that task. The legality property must satisfy the following
two properties:

1. Soundness: if a state (G, id, (x, y)) is legal for A, then the configuration
(G, id, x) must be legal for T ;

2. Completeness: if a configuration (G, id, x) is legal for T , then there must
exist y such that (G, id, (x, y)) is legal for A.

The soundness property simply states that the algorithm cannot consider as
legal a state that does not fit with any legal configuration of the task, and the
completeness property simply states that the algorithm must not disqualify any
legal configuration of the task.

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 25

2.3 Self-stabilization

A self-stabilizing algorithm solving a task T is a distributed algorithm A satis-
fying the following two properties:

1. Convergence: starting from an arbitrary state, A eventually reaches a legal
state;

2. Closure: starting from a legal state, A remains in legal states.

The register-space complexity of the algorithm is usually expressed as a func-
tion of the number of nodes n. It is the maximum, taken over all initial states
(G, id, (x0, y0)) on networks with at most n nodes, all possible execution starting
from (G, id, (x0, y0)), and all nodes u, of the size of u’s register. The latter is the
amount of bits |x(u)| + |y(u)| used to store the current output string x(u) and
the current auxiliary string y(u) of node u, where |s| denotes the number of bits
in a binary string s.

Note that the size of a register cannot be made arbitrarily large by a corruption
of the variables once the range of each variable is well specified. For instance,
a variable storing a node-identity cannot exceed �log2(idmax)� bits where idmax

is the largest node-identity in the network. In our context in which nodes have
identities that are polynomially bounded by the size of the network, a variable
storing a node-identity cannot exceed O(log n) bits.

In any execution of a self-stabilizing algorithm A, a round is any shortest
sequence of steps of the execution in which every activatable node at the be-
ginning of the round was activated by the scheduler by the end of the round. If
A constructs and stabilizes on the states in some family F of states, then the
round-complexity of A is the maximum, taken over all initial states γ, and over
all executions E of A starting from γ and ending in a state γ′ ∈ F , of the number
of rounds in E . The latter is the integer k such that E can be decomposed in a
sequence γ0 = γ, γ1, . . . , γk = γ′ such that, for every i = 0, . . . , k − 1, the round
of E starting from γi ends in γi+1.

A self-stabilizing algorithm is silent if, once the algorithm has reached a legal
state, the content of the register at each node remains unchanged. Hence, in par-
ticular, starting from a legal state, a silent self-stabilizing algorithm A remains
the same state.

Since the algorithm must converge starting from any state, being silent re-
quires a mechanism that is performed locally at each node, which enables the
nodes to collectively detect whether a global state is legal or not. Indeed, if the
state is illegal then some action(s) has to be performed at some node(s) in order
to update their states, which requires to modify the content of some register(s).
Instead, if the state is legal then no actions have to be performed, and the regis-
ters must not be modified. Such a mechanism is well captured by the notion of
proof-labeling schemes, partially introduced in [17], extensively studied in [19],
and recalled below.

26 L. Blin, P. Fraigniaud, and B. Patt-Shamir

2.4 Proof-Labeling Schemes

A proof-labeling scheme for a task T is a pair (p, v) where p is called the prover,
and v the verifier. The prover has unlimited computational power, and assigns
a certificate z(u) ∈ {0, 1}∗ to every node u of each configuration (G, id, x) ∈ T .
Such a certificate may depend on the whole configuration (G, id, x). The verifier
is a distributed algorithm running at every node u, which takes as input the
local information available at u, i.e., the triple (id(u), x(u), z(u)), as well as the
set {(x(v), z(v)), v ∈ N(u)}, where N(u) denotes set of neighborhs of node u
in G. Based on this input, every node u must decide either to accept or to reject.

To be correct, the proof-labeling scheme must satisfy the following two con-
ditions:

– if (G, id, x) is legal for T , then the prover p must assign certificates to the
nodes such that the verifier v accepts at all nodes;

– if (G, id, x) is illegal for T , then, for every certificates assigned to the nodes,
the verifier v must reject in at least one node.

For instance, a proof-labeling scheme for the aforementioned spanning tree
construction task, specified in Section 2.2, consists, for the prover, to endow
each node u of every legal configuration with the certificate z(u) = (id(r), d(u))
where r is the root of the tree, and d(u) is the distance of u from r in the tree.
The verifier then checks at each node u that u agrees with all its neighbors
regarding the identity of the root, and that x(u) satisfies d(x(u)) = d(u)− 1 (a
root, i.e., a node with x(u) = ⊥, checks that d(u) = 0). If this is the case, then
u accepts, otherwise u rejects. It is easy to check that, if the configuration is
illegal, that is, if the 1-factor of Eq. (2) does not form a spanning tree (i.e., it is
disconnected, or has a cycle), then no certificates can make the prover accepting
such a configuration.

The size of a proof-labeling scheme is usually expressed as a function of
the number of nodes n. It is the maximum, taken over all legal configurations
(G, id, x) on networks with at most n nodes, of maxu∈V (G)(|x(u)|+|z(u)|). When
looking for a proof-labeling scheme for a task T , one is therefore interested in
using certificates whose sizes do not exceed the size of the output at each node.
This is however not always possible, even for natural problems, at witnessed
by the minimum-weight spanning tree (MST) construction task. Indeed, while
encoding the tree consumes only O(log n) bits at each node (using the pointer-
to-parent encoding), proving the correctness of the tree requires certificates on
Ω(log2 n) bits [17].

3 A Compact Universal Silent Self-stabilizing Algorithm

The following result is to the least implicit inmostpapers on silent self-stabilization.
For the sake of completeness, we provide a formal proof of it.

Theorem 1. If there exists a silent self-stabilizing algorithm solving a task T
with register-space complexity at most k bits, then there exists a proof-labeling
scheme for T with size at most k bits.

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 27

Proof. Let A be a silent self-stabilizing algorithm solving T with k-bit register.
We define a proof-labeling scheme for T as follows. First, the certificate assign-
ment by the prover acts like this. Let (G, id, x) be a legal configuration for T .
By the completeness property, there exists y such that (G, id, (x, y)) is a legal
state for A. The prover sets z(u) = y(u) for every node u. The verifier is then
essentially A. More specifically, given an arbitrary state (G, id, (x, y)), if node u
is idle in that state, then the verifier at u decides to accept, otherwise, i.e., if
node u is activatable in that state, then the verifier at u decides to reject.

By construction, the size of this proof-labeling scheme is at most k bits. It
just remains to show that it is correct. Let (G, id, x) be a legal configuration,
and let (G, id, (x, y)) be any corresponding legal state. Since A is silent, no nodes
are activatable in this state. Therefore, all nodes accept. In particular, all nodes
accepts in state (G, id, (x, z)), as desired. Instead, let (G, id, x) be an illegal
configuration. By the soundness property, the state (G, id, (x, y)) is illegal, for
every y. Therefore, at least one node is activatable in state (G, id, (x, y)), and
thus at least one node decides to reject, as desired. ��

As we already pointed out in the introduction, Theorem 1 is mostly interesting
for it enables to derive lower bounds on the size of the registers to be used by
a silent self-stabilizing algorithm. For instance, since any proof-labeling scheme
for MST requires certificates on Ω(log2 n) bits [17], it follows that any silent self-
stabilizing algorithm for MST construction must use registers of Ω(log2 n) bits.
Designing self-stabilizing algorithms for MST using logarithmic-size registers is
doable [5,7,18] , but such an algorithm cannot be silent.

Our first main result is a reciprocal to Theorem 1.

Theorem 2. If there exists a proof-labeling scheme for T with size at most k
bits, then there exists a silent self-stabilizing algorithm solving T with register-
space complexity O(k + logn) bits in n-node networks.

Proof. Let T be a task for which there exists a proof-labeling scheme (p, v) of size
at most k bits. We describe a silent self-stabilizing algorithm csss, for Compact
Silent Self-Stabilization, solving T with registers of at most O(k + logn) bits
in n-node networks. Let (G, id, x) be a valid configuration for T . We denote by
p(G, id, x) the certificates assigned by the prover p to the nodes of the n-node

graph G with identities assigned by id. We define the new task T̂ as:

T̂ = {(G, id, (x, z)) : (G, id, x) ∈ T and p(G, id, x) = z}

Note that, for every configuration (G, id, (x, z)) in T̂ , and for every node u ∈
V (G), we have |x(u)| + |z(u)| ≤ k. Algorithm csss solves task T̂ . For this
purpose, it handles states of the form (G, id, ((x, z), y)), using an additional
auxiliary string y(u) of length O(log k + logn) bits at each node u.

Given a k-bit string σ, we use 2�log2 k� bits of the auxiliary string y(u) at
node u to position two commas at two indexes i and j in σ so that to get
σ = (σ′, σ′′, σ′′′) where |σ′| + |σ′′| + |σ′′′| = k. In essence, Algorithm csss is
aiming at testing all pairs (x(u), z(u)) with |x(u)| + |z(u)| ≤ k at every node

28 L. Blin, P. Fraigniaud, and B. Patt-Shamir

u ∈ V (G). This is achieved by enumerating all binary strings s(u) = (σu, iu, ju)
of length k + 2�log2 k� bits at every node u ∈ V (G), where x(u) is expected
to be the sub-string of s(u) from index 1 to iu, and z(u) is expected to be the
sub-string of s(u) from index iu + 1 to ju. For a given n-dimensional vector
s = (s(u))u∈V (G) whose every entry is a (k + 2�log2 k�)-bit string, Algorithm
csss tests whether the verifier v accepts s, that is, whether s(u) is accepted
at every node u. If one node rejects s, then csss proceeds with another vector.
Instead, if all nodes accept s, then an appropriate pair s = (x, z) has been found,

satisfying (G, id, (x, z)) ∈ T̂ . Indeed, by the definition of proof-labeling scheme,
for an x such that (G, id, x) /∈ T , the verifier cannot be fooled by any distributed
certificate z.

Hence, our problem boils down to enumerating and testing all n-dimensional
vectors of q-bit strings, with q = k+2�log2 k�, in a silent self-stabilizing manner.
Algorithm csss uses the k-bit proof-labeling scheme (p, v) as a black box. It
proceeds with enumerating all vectors, and testing them. (Note that q need
not be constant, but may be a function of n. Thus, to derive the actual value
of q, Algorithm csss may also need to compute n). For enumerating and testing
all n-dimensional vectors of q-bit strings, csss builds up a spanning tree T of
the network, and labels the nodes of T from 1 to n according to some DFS
traversal of T . Each n-dimensional vector s of q-bit strings is viewed as a non
negative integer s = snsn−1 . . . s2s1 on qn bits where si are the q bits handled
by the node with DFS number i. To test all vectors, Algorithm csss actually
successively considers all integers from 0 to 2nq − 1, and, for each of them, tests
whether the verifier accepts or reject, until it eventually accepts.

The skeleton of Algorithm csss is displayed in Algorithm 1.

Algorithm 1. Skeleton of Algorithm csss

1: construct a spanning tree T of G, and let r be its root
2: label the nodes from 1 to n according to some DFS traversal of T starting from r
3: for every i = 1, . . . , n, set si = 0 at node labeled i
4: while verifier v rejects s = snsn−1 . . . s1 do
5: update s to s+ 1
6: end while

Instruction 1 can be implemented by the silent algorithm in [11] using reg-
isters on O(log n) bits. (Alternatively, one can also use the recent simple tree
construction algorithm in [6]). The setting of the DFS labeling of the nodes in
the resulting tree T in Instruction 2 can be implemented by having every node v
computing the size |Tv| of the subtree Tv of T rooted at v. This can be done by
a convergecast operation from the leaves to the root. Silentness is here achieved
by having every node v verifying that |Tv| =

∑
u∈ch(v) |Tu| where ch(v) denotes

the children of v in T , and verifying that the DFS numbers of its children are
correct. The verification in Instruction 4 is performed by applying the verifier v
bottom-up, along the tree T . If one descendent of a node v rejects, then v must

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 29

reject. The root eventually accepts or rejects. If the root rejects, Instruction 5
is performed. That is, the root triggers the update of the current value of the
string s. The root has DFS number 1, and holds s1. If adding 1 to s1 generates
a carry, then this carry is propagated to the node with DFS number 2, which
performs s2 ← s2 + 1. And so on. In general if the node vi with DFS number i
generates a carry when updating si to si + 1, then this carry is propagated to
the node vi+1 with DFS number i + 1 as follows. If vi+1 is a child of vi, this is
immediate. Instead, if vi+1 is not a child of vi, then the carry must be “routed”
to vi+1. However, routing in T can be easily implemented thanks to the DFS
numbering of T .

Of course, there are several implementation details to fix, in particular for
avoiding overlappings between the update phases, and the verification phases.
Nevertheless, fixing these details does not offer any conceptual challenges.

Note that the implementation of Algorithm csss can me made under an unfair
scheduler because the algorithm proceeds by bottom-up waves of updates, or by
executing a “sequential” addition, where nodes perform one after the other,
respecting the DFS ordering.

Eventually, the verifier will accept at all nodes, and Algorithm csss becomes
quiet, until some fault eventually occurs. ��

Algorithm csss described in the proof of Theorem 2 is very compact, but may
stabilize in an exponential number of rounds. In the next section, we address the
issue of designing fast silent self-stabilizing algorithms.

4 A Fast Universal Silent Self-stabilizing Algorithm

Having in mind that every task with k-bits output size in n-node networks
has a proof-labeling scheme using certificates on O(n2 + kn) bits, an immediate
corollary of Theorem 2 is that, for every task T with k-bits output size in n-node
networks, there exists a silent self-stabilizing algorithm solving T with register of
O(n2+kn) bits. Interestingly enough, since the certificates of the aforementioned
proof-labeling scheme are easily computable, one can even bound the number of
rounds of the algorithm. This is our second main result:

Theorem 3. For every task T with output on at most k bits at every node of
n-node networks, there exists a silent self-stabilizing algorithm solving T and
converging in O(n) rounds, with register-space complexity O(n2 + kn) bits.

Proof. Let T be a task with k-bits output size in n-node networks. We describe
a silent self-stabilizing algorithm fsss, for Fast Silent Self-Stabilization, solving
T in O(n) rounds, using registers of at most O(n2+kn) bits in n-node networks.

It is known [3,14,15] that any task T with k-bits output size in n-node net-
works has a proof-labeling scheme (p, v) using certificates on O(n2 + kn) bits.
Specifically, in an n-node graph G with identity assignment id, the certificate at
each node u assigned by p consists in the following:

30 L. Blin, P. Fraigniaud, and B. Patt-Shamir

– an n× n adjacency matrix M of G, and
– an array X with n entries, X [i] = (idi, xi) for i = 1, . . . , n, where idi is the

identity of the node corresponding to the ith row and ith column in M , and
xi is the output of that node.

The verifier v acts as follows. Every node checks that the certificates are locally
consistent (i.e., in particular, that the neighbors have identities and outputs
such as specified in the certificate). Whenever a node notices some inconsis-
tencies, it rejects. Otherwise, it carries on the verification by checking whether
(G, id, x) ∈ T . Note that every node is aware of the triple (G, id, x), since all
the required information are available in its certificate (M,X). Thus checking
whether (G, id, x) ∈ T can be done since tasks were defined as a computable sets.

Hence, our problem boils down to construct the certificate (M,X) in a silent
self stabilizing manner. The skeleton of Algorithm csss is displayed in Algo-
rithm 2.

Algorithm 2. Skeleton of Algorithm fsss

1: construct a spanning tree T of G, and let r be its root
2: gather all edges at r along T , and root r assembles (G, id)
3: root r computes x such that (G, id, x) ∈ T , and sets the pair (M,X) accordingly
4: broadcast (M,X) from r to all nodes along T
5: every node u sets (x(u), (M,X)) as its pair (output,certificate)
6: if verifier v rejects (x, (M,X)) then
7: reset
8: end if

Again, Instruction 1 can be implemented by any of the silent algorithms
in [6,11], both using registers on O(log n) bits. All gatherings and broadcasts
(cf. Instruction 2 and 4) can be implemented by convergecast and divergecast
operations, under an unfair scheduler. The computation of x in Instruction 3
can be done since tasks are computable. ��

Note that, in the statement of Theorem 3, we only refer to the size of the
public registers, but do not intend to reflect the space complexity (in the usual
sense of computational complexity theory) required to perform “internal” indi-
vidual computations. Obviously, in order for the proof of Theorem 3 to apply, we
must allow each process to use arbitrarily large private memory for performing
arbitrarily complex computations, e.g., for computing x such that (G, id, x) ∈ T ,
as well as for deciding whether (G, id, x) ∈ T given any x.

5 Discussion and Open Problem

On the one hand, our “compact” algorithm csss is optimizing the size of the
registers, and is in fact almost as compact as the most compact proof-labeling
scheme for each considered task. It uses registers on O(�+ logn) bits in n-node

On Proof-Labeling Schemes versus Silent Self-stabilizing Algorithms 31

networks, with a lower bound ofΩ(�) bits, where � is the minimum size of a proof-
labeling scheme for the task. On the down side, csss suffers from an exponential
number of rounds, even in the case in which it is built upon a proof-labeling
scheme of constant size. As it was already mentioned in the introduction of this
paper, there exist many tasks (e.g., spanning tree construction, leader election,
MST construction, etc.) for which space-efficient and time-efficient silent self-
stabilizing algorithms do exist. However, each of these algorithms is tuned and
optimized for one specific task. Instead, our algorithm is generic, and applies to
all tasks. It may thus not be surprising that one has to pay for this generality.

On the other hand, our “fast” algorithm fsss performs in a linear number of
rounds, but it uses registers on O(n2+nk) bits, where k is the size of the output.
Hence, for some tasks, like the aforementioned ones, the size of the registers used
by algorithm fsss is much larger than the size of the registers used by dedicated
algorithms. However, it is known [15] that there are tasks requiring certificates
on Ω(n2 + nk) bits for every proof-labeling scheme, and this holds even if the
interpretation of the individual decision by the verifier is relaxed compared to
the logical conjunction interpretation of proof-labeling schemes [3]. Therefore,
the space-complexity of Algorithm fsss is actually optimal, from a worst-case
analysis perspective.

Open problem. Does there exist a universal compact and fast silent self-stabilizing
algorithm?

In particular, for tasks with proof-labeling schemes of size at most � bits, we
question the existence of a universal silent self-stabilizing algorithm converging
in poly(n) number of rounds, with registers of O(�) + o(n2 + kn) bits, where k
is the size of the output.

References

1. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol. 486,
pp. 15–28. Springer, Heidelberg (1991)

2. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self-stabilization. Theoretical Computer Science 186(1-2), 199–229 (1997)

3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local Decision and Verification with Bounded-
Size Outputs. In: 15th International Symposium on Stabilization, Safety, and Se-
curity of Distributed Systems, SSS, pp. 133–147 (2013)

4. Arora, A., Gouda, M.: Distributed reset. IEEE Trans. Computers 43(9), 1026–1038
(1994)

5. Blin, L., Dolev, S., Potop-Butucaru, M.G., Rovedakis, S.: Fast self-stabilizing mini-
mum spanning tree construction – using compact nearest common ancestor labeling
scheme. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 480–494. Springer, Heidelberg (2010)

6. Blin, L., Fraigniaud, P.: Polynomial-Time Space-Optimal Silent Self-Stabilizing
Minimum-Degree Spanning Tree Construction. Tech. Report arXiv 1402.2496
(2014)

32 L. Blin, P. Fraigniaud, and B. Patt-Shamir

7. Blin, L., Potop-Butucaru, M., Rovedakis, S., Tixeuil, S.: A new self-stabilizing
minimum spanning tree construction with loop-free property. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 407–422. Springer, Heidelberg (2009)

8. Blin, L., Tixeuil, S.: Compact Deterministic Self-stabilizing Leader Election – The
Exponential Advantage of Being Talkative. In: Afek, Y. (ed.) DISC 2013. LNCS,
vol. 8205, pp. 76–90. Springer, Heidelberg (2013)

9. Cournier, A.: A new polynomial silent stabilizing spanning-tree construction al-
gorithm. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869,
pp. 141–153. Springer, Heidelberg (2010)

10. Cournier, A., Rovedakis, S., Villain, V.: The first fully polynomial stabilizing algo-
rithm for bfs tree construction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 159–174. Springer, Heidelberg (2011)

11. Datta, A., Larmore, L., Vemula, P.: Self-stabilizing leader election in optimal space
under an arbitrary scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)

12. Dolev, S.: Self-Stabilization. MIT Press (2000)
13. Dolev, S., Gouda, M.G., Schneider, M.: Memory Requirements for Silent Stabiliza-

tion. Acta Inf. 36(6), 447–462 (1999)
14. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-

tributed computing. J. ACM 60(5), 35 (2013)
15. Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on

Principles of Distributed Computing (PODC), pp. 159–168 (2011)
16. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-

first trees. Inf. Process. Lett. 41(2), 109–117 (1992)
17. Korman, A., Kutten, S.: Distributed verification of minimum spanning tree. Dis-

tributed Computing 20, 253–266 (2007)
18. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing veri-

fication, computation, and fault detection of an MST. In: 30th ACM Symp. on
Principles of Distributed Computing (PODC), pp. 311–320 (2011)

19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distributed Comput-
ing 22(4), 215–233 (2010)

20. Kosowski, A., Kuszner, �L.: A self-stabilizing algorithm for finding a spanning tree
in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N.,
Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidelberg
(2006)

On the Resilience of Pull-Based P2P Streaming

Systems against DoS Attacks

Giang Nguyen1, Mathias Fischer1, and Thorsten Strufe2

1 Department of Computer Science, TU Darmstadt
{nguyen,fischer}@cs.tu-darmstadt.de

2 Department of Computer Science, TU Dresden
thorsten.strufe@tu-dresden.de

Abstract. The robustness of pull-based streaming systems to node fail-
ure and churn has been extensively analyzed. Their resistance to sabo-
tage, however, is not well understood, so far. Recent measurement studies
on a large deployed pull-based system have discovered stable source-to-
peer paths and the convergence of the content dissemination to rather
static topologies over time. Thus, an attack on central nodes within these
static topologies, which causes serious service disruptions, is feasible.
This paper demonstrates attacks that significantly reduce the system’s
performance. As a countermeasure, we introduce a novel striping scheme,
which decreases the dependencies between peers and thus the impact of
attacks. A thorough simulation study indicates that our scheme achieves
a high resistance against sabotage attacks at negligible overhead and
performance penalties.

Keywords: Resilience, pull-based P2P streaming, DoS attacks.

1 Introduction

Peer-to-Peer (P2P) streaming has been becoming a viable solution to distribute
live streaming content over the Internet. Systems following this paradigm incor-
porate peers in the content distribution and make use of their upload bandwidth.
Therefore, the provision for server resources is reduced and the service scales with
an increasing number of users.

Most popular P2P streaming systems in practical deployment, e.g., PPLive1

and Sopcast2, can be classified as pull-based. In such systems [5,8] the stream is
divided into equally sized chunks and peers download and forward those chunks
between each other. This requires that each peer establishes and maintains part-
nership with other peers via bidirectional connections. This results in an unstruc-
tured and randomized mesh overlay. Peers inform others about the chunks that
are downloaded and stored in the video buffers via Buffer Maps (BMs). A BM is
a signaling packet containing an array of binary-valued elements that indicates

1 http://www.pplive.com
2 http://www.sopcast.com

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 33–47, 2014.
c© Springer International Publishing Switzerland 2014

http://www.pplive.com
http://www.sopcast.com

34 G. Nguyen, M. Fischer, and T. Strufe

chunk availability. After receiving BMs from its partners, a peer needs to decide
from which partners it requests which chunks, e.g., via a Rarest-First scheduling
strategy. Hence, a randomized distribution tree is formed implicitly per chunk,
but in case of failures the mesh topology provides redundant connectivity via
alternative source-to-peer paths. Even when one or several partners fail, each
peer can quickly react to failures by downloading the video chunks from other
partners. For this reason, pull-based systems are inherently robust to node churn
and peer failures.

However, measurement studies [6,13] of one of the largest pull-based P2P
streaming systems reveal that peers form different tiers in terms of play-out
lags. The stable tiering effect allows for inferring the flow of the video content
distribution. As stable source-to-peer paths evolve, the topologies established for
subsequent chunks become highly similar. This might not affect the robustness
of these systems to node churn and failures, but is of concern during attacks,
e.g., DDoS attacks, on the most relevant nodes in the content distribution. As
in tree structures the majority of nodes is residing in leaf positions and close
to them, random failures of nodes will affect only few other nodes in average.
However, attacks on nodes in the tier close to the source of the stream will
affect nearly the whole overlay. Trees are robust against random failures, but
not very resilient against attacks that target the most relevant nodes, e.g., nodes
adjacent to the source (so-called head nodes). For this reason, we suggest to
study the total resilience which we define as the robustness to failures as well as
the resistance to attacks. For that, we assume an attacker with global knowledge
that attacks head nodes only. To the best of our knowledge, this paper is the
first that addresses this problem.

Our contributions in this paper are two-fold: (i) First, we demonstrate that
the performance of pull-based systems is significantly affected by practical and
simple attacks. (ii) Second, we introduce a striping scheme that enforces diversi-
fication as a countermeasure. Aiming at reducing the direct dependency between
peers, our scheme divides the video stream into several stripes and enforces each
peer to request the stripes from diversified groups of partners. Simulation results
indicate that the striping scheme effectively reduces the maximum and average
chunk miss ratios by 50% and 30% respectively, even with a conservative number
of two stripes.

The remainder of this paper is structured as follow: Section 2 discusses related
work. The striping scheme is described in Section 3. After discussing the results
in Section 4, Section 5 concludes the paper.

2 Related Work

Studies on the resilience of P2P streaming systems mostly address either failure
recovery or the resistance to attacks.

To prevent overlay partitioning, Probabilistic Resilient Multicast (PRM) [1]
allows for redundant connections alongside a single multicast tree. Each peer
can establish additional connections, with a low probability, to a few others and

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 35

forward video chunks to them. It has been shown that the whole system can
maintain a high delivery ratio.

In FatNemo [2] nodes with higher bandwidth are placed closer to the source,
while nodes with lower bandwidth are placed further away. The resulting tree
topology is low and broad. Intuitively, the less number of predecessors a peer
has the more likely the peer can receive a stable video stream.

The above approaches are not resistant to targeted attacks since they intro-
duce relevant nodes that are close to the source. Attacks on them can disrupt
the whole system.

DagStream [10] introduces directed links on top of a mesh overlay. Each peer
separates its mesh partners into parents and children. The peer requests chunks
from its parents and sends chunks upon requests from its children. To optimize
the topology, each peer has a level that is calculated from the ones of its parents.
The farther the peer is from the source, the higher its level is. To avoid loops, a
peer has to find a parent whose levels are lower than its level. This way of ordering
peers hinders the collaboration between peers when there is a disruption in the
overlay. Furthermore, the parent selection policies in DagStream prioritize peers
that are close to the source. As a result, many peers might depend on a few
parents. Attacks on those nodes can cause a heavy impact on a large fraction of
peers.

To tackle both problems of node failure and sabotage, systems such as [3,4]
extend the publish-subscribe design and minimize the direct dependency between
any two peers. Each peer has multiple parents. Those forward a fraction of the
whole video stream, so-called a stripe, to their children. Peers are organized
into inner-node disjoint spanning trees, each delivers the chunks in one stripe.
The resilience of those systems was proven theoretically, but they have not been
adopted in a wide real-world deployment.

To summarize the discussion, building a resilient P2P streaming system is an
open question. One promising approach to achieve system’s resilience to both
random failure and targeted attacks is to: (i) leverage the resilience properties of
pull-based systems with the mesh topology and (ii) reduce the direct dependency
between peers.

3 Striping Scheme

The tiering effect in pull-based systems allows an outsider to gain information on
the structure of the whole network and to infer the flow of video chunks between
tiers. Attacks by shutting down peers on a certain tier can disrupt the flow of
the video distribution. Furthermore, the damage can be severe when an attacker
targets head nodes, which are the peers adjacent to the source in the overlay
topology.

There are two potential approaches to mitigate the damage caused by at-
tacking head nodes: (i) To decrease the direct dependency between peers by
increasing the connectivity among them, which consequently increases the num-
ber of head nodes; and (ii) To remove the tiering effect completely. We reserve

36 G. Nguyen, M. Fischer, and T. Strufe

the second approach for future work and instead, in this paper, focus on the first
approach which allows us to answer a more urgent question: Assuming that the
structure is revealed, what can we do to mitigate the damaging effect when head
nodes are attacked? We also assume that recovery measures, such as rejoining
upon isolation or disconnection are always available.

Increasing connectivity among the source and peers is challenging due to re-
source constraints and inherent behavior of the pull-based protocol. Without in-
creasing the bandwidth of the source and peers, the straightforward method that
increases their number of partners does not work. Head nodes might gradually
prefer to download chunks directly from the source due to its high availability of
chunks. The higher the number of head nodes, the more likely that they have to
compete with each other for a fixed source bandwidth. This leads to increasing
delay and probably chunk miss since the source cannot response timely to all
chunk requests.

In this section, we present our striping scheme for pull-based P2P streaming
systems that reduces the direct dependency between peers. This scheme miti-
gates the negative effects of attacking on head nodes, which we demonstrate in
Section 4. We begin with the idea of the scheme first. After that, we describe
the design and the specification of the scheme.

3.1 Idea to Enforce Diversification by Out Striping Scheme

Current pull-based protocols do not diversify chunk requests exhaustively, i.e.
peers can steadily download chunks from a few among several partners as long as
they respond reliably. This leads to an implicit yet direct dependency between
peers. To reduce this dependency, each peer needs to download video chunks
from diverse partners. This implies that it needs to send chunk requests to more
diverse partners. Towards this end, each peer enforces itself to request subsets
of the required chunks from different groups of partners.

At this point there are three methods to diversify the requests. (i) In the
first method, each peer alternates between different groups of partners to request
chunks at different scheduling cycles. Over the long run, the average number of
requested chunks per peer is reduced. However, certain peers might, by chance,
receive many chunk requests in a short period. Consequently, local overloading
might happen, which affects the overall chunk dissemination. (ii) The second
method is to split the needed set of chunks by their play-out deadlines, from most
to least urgent. On-time delivery of the most urgent chunks is more critical since
there might not be enough time to request them again in the next scheduling
cycles. When the peer requests the most urgent chunks from a subset of partners
that is not reliable, the urgent chunks might not be delivered on time. This leads
to more missed chunks. (iii) The third method is to divide the video stream in
an interleaved manner into stripes. This way, diversification is achieved while
avoiding the drawbacks of the above two methods.

Subsequently to dividing chunks into stripes, each peer needs to locally sep-
arate its partners into different groups. There are two methods: (i) In the first
method, the grouping is based on partners’ identities, e.g., the IP addresses.

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 37

This partner grouping is inflexible because it depends highly on the fluctua-
tion of the partner list. A group might not have partners with certain identities
among the peer’s available partners. (ii) In the second method, each peer as-
signs its partners into different logical groups, regardless of partners’ identities.
Fluctuation of partners in each group can be quickly compensated by adjusting
partners among the groups or even by reassigning.

We summarize our idea to enforce diversification as follows:

1. The video stream is divided into stripes.
2. Each peer logically forms separate groups of partners.
3. Each peer enforces itself to request a certain stripe from a certain group of

partners

By doing that, the chunk downloading demand to a peer from its partners
can be efficiently reduced. In conventional pull-based systems, a peer with m
partners can, in principal, receive chunk requests of m times the streaming rate
in the worst case. However, the demand for each peer with striping is reduced
by a factor of k, the number of stripes, when the number of partners is fixed.

Consequently, the diversification enforcement allows a peer to have more part-
ners, given the same upload bandwidth. Thus, the peer has more source-to-peer
paths and at the same time avoids overloading itself. More importantly, the
source can significantly increase its number of partners, or the number of head
nodes, with the same upload bandwidth. The critical connectivity between the
source and the peers is therefore enhanced, thus, potentially strengthens the
resilience of the system against both failures and attacks.

In the coming section, we elaborate the idea of diversification enforcement
into the design of the striping scheme.

3.2 Design of the Striping Scheme

Following the high-level sketch discussed in Section 3.1, this section details the
design of the striping scheme. This includes the division of the video stream into
stripes and the assignment of partners to different groups.

First, a stripe i consists of chunks whose sequence numbers equal to i mod k.
Second, partners of a peer are assigned to k groups, each contains a subset of
the partner list. This way, a peer requests chunks of the stripe i from partners of
the group i. Figure 1 illustrates the design of our scheme for a generic peer. In
this example, the video stream is divided into three stripes. Accordingly, seven
partners are assigned to three groups.

The assignment of partners to groups has to satisfy several constraints. (i)
First, every group has at least one partner to ensure the existence of chunk
providers for the respective stripe. (ii) Second, all partners should be assigned
to groups since partners that are not assigned to any group are not considered
in requesting chunks. (iii) Third, the difference in the number of partners of
any two groups should be minimized. Otherwise, chunks in the stripe whose
respective group has very few partners have a lower chance to be requested and

38 G. Nguyen, M. Fischer, and T. Strufe

Fig. 1. An example of grouping and striping: partners in each group receives requests
for chunks of the respective stripe

delivered successfully. (iv) Lastly, the assignment should minimize the difference
between the number of groups assigned to each partner. Assigning a partner to
several groups increases its chance to be requested more frequently, which might
overloads it. We formulate the above assignment problem as follows.

Given the set of partners P = {p1, ..., pm} and the set of groupsG = {g1, .., gk},
and let aij ∈ {0, 1} (1 ≤ i ≤ k and 1 ≤ j ≤ m) denotes the assignment of partner
pj to group gi, where aij = 1 if group gi has partner pj and aij = 0 otherwise.
Define NP

i =
∑m

j=1 aij as the total number of partners assigned to group gi, and

NG
j =
∑k

i=1 aij as the total number of groups to which partner pj is assigned.
Consequently, the problem of assigning partners to groups is to find aij such

that:

z = minimize

⎧⎨⎩
k∑

i=1

m∑
j=1

aij

⎫⎬⎭ (1)

s.t.

m∑
j=1

aij ≥ 1, i = 1..k (2)

k∑
i=1

aij ≥ 1, j = 1..m (3)

argmax
i
{

m∑
j=1

aij} − argmin
i
{

m∑
j=1

aij} ≤ 1 (4)

argmax
j
{

k∑
i=1

aij} − argmin
j
{

k∑
i=1

aij} ≤ 1 (5)

In this formulation, the objective function in (1) is to minimize the total num-
ber of assignments of partners to groups. The constraints in (2) & (3) ensure
that every partner is assigned to groups and every group has partners. The con-
straints in (4) & (5) are used to prevent groups from having too many partners
and assigning a partner to many groups.

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 39

With the Round-Robin assignment of partners to groups, we achieve the op-
timal solution [14] with min{

∑k
i=1

∑m
j=1 aij} = max(k,m).

Determining Parameters. Following the above design, in this section, we
discuss the constraints for the two system parameters introduced in the design
of the striping scheme.

The first parameter is the number of stripes k. Its value is constrained by the
number of requested chunks C in each scheduling cycle which is asymptotically
proportional to the streaming rate (in chunks per second) and the scheduling
interval. When k > C, over-striping happens, i.e. one or more stripes contain no
chunks. Consequently, there are groups of partners that are redundant for chunk
request. The striping in this case is not efficient. At the other extreme, when
k = 1, all partners are in the same group. The striping scheme operates simi-
larly to a conventional pull-based system. The second parameter is the number
of partners m. When m is too small, diversification is eventually limited be-
cause there are a few options for each chunks request. When m is too large, the
necessary communication overhead can overload the system.

In the coming section, we refine the design of the striping scheme with speci-
fications to integrate it into conventional pull-based systems.

3.3 Specification

Integrating the striping scheme into current pull-based protocols requires a few
modification. At the source, the number of partners scales up with the number of
stripes k. At each peer, the chunk scheduling operation does not search exhaus-
tively available chunks from all partners. Instead, for a chunk with the sequence
number s, the peer only considers partners in the group s mod k. Additionally,
the assignment of partners to groups needs to be adapted when there are up-
dates on the partner list. The adjustment should be fast to react promptly to the
dynamics of peers to minimize the computational cost. The simple Round-Robin
assignment introduces little computational cost. Even with a naive implemen-
tation when partners are re-assigned upon each update of the partner list, the
cost would be negligible.

In the next section, we integrate the striping scheme with Round-Robin as-
signment into DONet – a conventional pull-based protocol and evaluate its per-
formance.

4 Evaluation

In this section, the proposed striping scheme for pull-based systems is evaluated
with respect to its provided resilience against attacks on head nodes. In addition,
the efficiency of the proposed scheme is evaluated in detail. The evaluation aims
at answering the following three questions:

1. What damage does attacking head nodes cause to the performance of the
conventional pull-based systems?

40 G. Nguyen, M. Fischer, and T. Strufe

2. What resilience against the head node attacks is provided by our striping
scheme?

3. What trade-offs in terms of signaling overhead does the striping scheme in-
troduce?

To answer the above questions, we need to identify metrics to quantify the
performance of the streaming system and an accurate simulation model with
realistic settings. Their in-depth discussions are presented next.

4.1 Metrics

In live streaming, timely delivery of video chunks is critical to ensure that the
video stream can be played out smoothly. Therefore, each video chunk has its
own play-out deadline for decoding. When a chunk arrives after its deadline it
is considered missing. A missed chunk causes the video player to either stall or
skip the chunk. In the former case, the smooth video play-out is not achieved.
In the later case, the visual display of the video is impaired. Both cases reduce
the perceived quality of the decoded video.

There are several methods to estimate the quality of a streaming system.
Among them, the amount of missed chunks is one useful indicator because it
tells how properly the system is working. It is also convenient since the cal-
culation is straight-forward. The disadvantage of this method is that it hardly
reflects the quality of experience (QoE) from users’ perspective. To better quan-
tify system’s performance as perceived by users, studies in the literature [7] use
QoE metrics, such as the Peak Signal-to-Noise Ratio (PSNR) which compares
the decoded video at end users with the original one. However, this method has
several drawbacks: First, calculating this metric is costly since it requires a con-
siderable CPU power to decode the video. Second, the calculation depends on
the video codec types and the benchmark video. It is therefore difficult to make
general statements on the performance of a protocol.

From the above discussion, we select chunk miss to quantify system’s perfor-
mance for simplicity and flexibility. Specifically, we define the chunk miss ratio as
the fraction of chunks that missed their play-out deadline divided by all chunks
that should be played out. Note that the ratio is complementary to the Con-
tinuity Index that is commonly used in the literature. The chunk miss ratio is
favored in this paper because it is more intuitive to quantify the damages caused
by the attackers to the system’s performance.

Furthermore, to comprehend the effects to the system after being attacked,
we introduce three additional micro metrics to look at chunk miss ratio from
three different perspectives:

– Average Miss Ratio which is the average miss ratio over a significant
period of time after the attack.

– Maximum Miss Ratio which is the maximum instantaneous chunk miss
ratio per second. It estimates the upper limit of damage that the attacks can
cause to the system.

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 41

– Per-chunk Miss Ratio which is the fraction of peers missing a certain
chunk. The metric quantifies how significantly missing a specific chunk can
affect the system.

One immediate concern over the striping scheme is its signaling overhead. Due
to an increased size of the partner list, additional overhead arises as (i) each peer
sends more chunk requests to its partners and (ii) peers exchange more BMs with
each other. Subsequently, we introduce the Signaling Overhead Ratio metric,
which is the fraction of the volume coming from signaling packets divided by the
total volume of both video and signaling packets.

4.2 Simulation Model

Simulation framework: To evaluate the resilience of pull-based P2P streaming
against attacks, we developed OSSim, our generic simulation framework for P2P
streaming, which is built on top of OMNeT++3. The framework allows packet-
level simulations of different classes of P2P streaming systems. Its source code,
including the one used in this study, is available online 4.

Representative pull-based P2P streaming system: Using the OSSim framework we
developed DONet [16] – a popular deployed pull-based system in the literature.
We select DONet as the benchmark system due to several reasons. (i) First, the
design and protocol description of DONet is described in detail, which supports
a verifiable implementation of the system in simulation. (ii) Second, its Rarest-
First chunk scheduling strategy produces comparable performance to the state-
of-the-art algorithms [17]. (iii) Third, the simulation model of DONet is also
validated in our previous study [11].

Underlying networks: To emulate the characteristics of the underlying Internet,
we used the GT-ITM [15] topology generator to generate a transit-stub core
network consisting out of 20 core and 400 edge routers that are inter-connected
by 1212 links. In particular, we use the following parameters for the topology
generator: diameter 14, node degree 2.843, and path length 6.231. The latencies
in the links connecting the routers are uniformly distributed in the range [1, 60]
ms. Peers are randomly attached to the 400 edge routers at the beginning of
each simulation.

Workload: We use a synthetic churn model from a measurement study in [12],
in which the authors analyze traces from a popular live program over a period
of 90 days. From this model, the distributions of inter-arrival times of users and
session durations are Pareto and Lognormal respectively. Specifically, we use
a = 2.52 and b = 0.35 for the Pareto distribution and μ = 1.44 and λ = 5.19
for the Lognormal one. In addition, we allow leaving peers to rejoin the system
after a random period, to maintain a rather stable peer population.

3 http://omnetpp.org
4 http://www.p2p.tu-darmstadt.de/research/ossim

http://omnetpp.org
http://www.p2p.tu-darmstadt.de/research/ossim

42 G. Nguyen, M. Fischer, and T. Strufe

Attack strategy: We assume that the strength of the attacker is represented by a
budget (A). This tells the maximum number of head nodes the attackers can shut
down simultaneously or in a relatively short period. We assume that the head
nodes can be identified. For example, the attackers can apply a similar technique
which was introduced in [6]. The implementation of such technique is, however,
beyond the scope of this study. Given a list of head nodes, the attacker randomly
selects nodes to shut down simultaneously. The attacker stops attacking when
either all head nodes are shut down or the number of selected head nodes reaches
its budget.

Parameters: In all experiments, the following parameters are used unless other-
wise stated. The streaming rate is 400 kbps. Each video buffer stores up to 30
seconds of video chunks whose sizes are 2500 Bytes. A peer starts playing out
video chunks when the downloaded chunks are equivalent to around six seconds.
We simulate one source and 1000 peers. The upload bandwidth of the source and
peers are 8 Mbps and 800 kbps respectively. Even though it is not realistic to
assume that all peers have the same, it is reasonable as we are only interested in
the resilience of pull-based systems against attacks. Using an homogeneous peer
bandwidth eliminates the impact of the peers’ characteristics in the results. The
simulation duration is 1200 seconds. In the first 500 seconds, no data is collected
to avoid unstable system behavior. We repeat each simulation setting at least
35 times.

4.3 Results

In the following, we summarize our main simulation findings and describe the
effects of attacking head nodes first. Afterwards, we present a comparison of the
striping scheme to a conventional protocol – DONet. Finally, we investigate the
tradeoff of the striping scheme in terms of signaling overhead.

Effects of Attacking Head Nodes: In the following, we answer the ques-
tion: What damage does attacking head nodes cause to the performance of the
conventional pull-based systems?

In this experiment, the maximum number of partners of the peers and the
source was eight and ten respectively. To perform the attack, all of the ten head
nodes which are the partners of the source were shut down simultaneously at the
900th second, after the system has reached its steady-state. The instantaneous
chunk miss ratio per second were plotted in dependence on time.

Figure 2 presents chunk miss ratio for DONet under the attack. For clarity,
the figure includes only the relevant period after the attacks. It can be seen that,
during the first 20 seconds, the chunk miss ratio remains as low as 1% . In the
next 20 seconds, the miss ratio increases dramatically to reach its maximum of
almost 35%. It then reduces quickly and remain low since the 960th second.

Intuitively, the results have agreed with expectation on the behavior of pull-
based protocols and can be explained as follows: Head nodes serve as intermedi-
ate sources of video chunks for the rest of the peers. When they are shut down,

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 900 910 920 930 940 950 960 970 980

C
hu

nk
 M

is
s

R
at

io

Time (s)

DONet

Fig. 2. Instantaneous chunk miss ratio of
DONet versus time, after attacking all ten
head nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 17000 17500 18000 18500 19000

P
er

−
ch

un
k

M
is

s
R

at
io

Sequence number

DONet

Fig. 3. Chunk miss ratio of DONet versus
sequence number of chunks, after attacking
all ten head nodes

their partners cannot request chunks from them. However, chunk missing does
not occur immediately after the attack, because the peers have large buffers.
Chunk missing might start from the peers connecting to the head nodes previ-
ously. It then spreads to other peers that locate further away from the source.
Chunk missing reduces when the connections between the source and the peers
are established again.

To estimate more precisely the impact of missed chunks to the system’s perfor-
mance we recorded the sequence number of all missed chunks and calculate the
chunk miss ratio per chunk’s sequence number. The results are plotted in Figure
3. The figure shows that the chunk miss ratio increases sharply from around
1% to a maximum of 55% in accordance with an increase in sequence number
from around 18000 to 18100. It diminishes steadily for subsequent chunks and
remains low for sequence numbers greater than 18500.

The spread of missed chunks to a significant fraction of peers as shown in
Figure 3 indicates the strong and negative impact to the system’s performance.
A certain chunk can be more important than others, depending on whether it
carries an intra-coded (I), a predictive-coded (P) or a bidirectionally predictive-
coded (B) frame. A successfully decoded I-frame is required to decode the P-
frames and B-frames in the same Group of Picture (GoP). Losing an I frame,
therefore, fails the decoding of the GoP, which leads to a perceptible picture
degradation at users. More severely, given the small number of head nodes a
malicious party can periodically trigger attacks. Perceived quality by users in
this case can be further degraded.

Comparing the Striping Scheme with a Conventional Protocol: The
second question we studied was: What resilience against the head node attacks
is provided by our striping scheme?

In this experiment, we compare the effect of attacking head nodes on the
conventional DONet (k = 1) versus the adapted one with striping (k = 2, 3, 4).
The number of partners of the source and peers in the striping scheme scales

44 G. Nguyen, M. Fischer, and T. Strufe

with the number of stripes. The attacker budget in terms of the number of nodes
that is attacked varies between 5 and 60. Maximum chunk miss ratio and average
chunk miss ratio over a period of 60 seconds have been recorded and plotted.

We expect that the impact of attacks with the same budget is stronger in the
conventional DONet than in the striping scheme. Since the number of head nodes
in DONet is less than in the striping scheme, the same number of attacked head
nodes reduces a larger portion of the number of connections for distributing
video chunks from the source to the peers. Consequently, chunk miss ratio in
DONet is larger than in the striping scheme.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50 60

M
ax

im
um

 M
is

s
R

at
io

Attacker budget (A)

k = 1
k = 2
k = 3
k = 4

Fig. 4. Comparing the conventional DONet (k = 1) to the adapted one with Striping
(k = 2, 3, 4) in terms of maximum chunk miss ratio after attacks

Figure 4 plots maximum chunk miss ratio of DONet and the striping scheme
in dependence on the attacker budget. The results agree with our expectation.
First, it can be observed that when more stripes are applied, the attacker needs
significantly larger budget to achieve the same damage to the system. The miss
ratios reach their maxima when the attacker budget equals to the number of head
nodes, at least. Second, it is also shown that even a conservative diversification
with two stripes can reduce the maximum chunk miss ratio by around 50%.

To comprehend better the effect of attacks on the system, we plot in Figure
5 the average chunk miss ratio over a period of 60 seconds after attacks in
dependence on the attacker budget. The figure compares the conventional DONet
(k = 1) versus the adapted one with striping (k = 2, 3, 4). As seen from the figure,
the striping scheme reduces the maximum of the average chunk miss ratio from
30% to 50% when the number of stripes varies from two to four. Additionally,
the attacker budget has to increase proportionally to the number of stripes to
maximize the damage.

One unanticipated but interesting finding in Figures 4 and 5 was that the
striping scheme effectively reduced the maximum damage even when all head

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 45

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50 60

A
ve

ra
ge

 M
is

s
R

at
io

Attacker budget (A)

k = 1
k = 2
k = 3
k = 4

Fig. 5. Comparing the conventional DONet (k = 1) to the adapted one with Striping
(k = 2, 3, 4) in terms of average chunk miss ratio over 60 seconds after attacks

nodes are attacked. Note that in all experiments we applied the same process and
parameters for recovering a node from isolation. The finding can be explained
by two reasons: (i) The striping scheme disseminates chunks better due to the
diversification enforcement. When chunks are requested in small numbers from
diverse partners, they can be quickly downloaded. Consequently, chunk avail-
ability in the whole network is improved. (ii) The increased number of partners
that each peer has also allows it to connect to partners that have its required
chunks with a higher probability.

Trade-off of the Striping Scheme. In this section, we studied the tradeoff
of the striping scheme in terms of signaling overhead when there is no attacks.
We varied the number of stripes from two to nine. We expect that the striping
scheme produces more signaling overhead since each peer has more partners. The
exchanged BMs are increased subsequently. Furthermore, each peer probably
sends more chunk requests per scheduling cycle because the peer should diversify
the requests to different partners.

Figure 6 shows the signaling overhead in dependence on the number of stripes.
In this figure, the lower horizontal line represents the average signaling overhead
of DONet. As expected, the overhead increases steadily with an increasing num-
ber of stripes. Specifically, for each additional stripe, the signaling overhead
increases by around one percent. The total signaling overhead is less than 10%
when the number of stripes equals to four, which significantly reduces damages
caused by attacks. Note that a significant portion of the total signaling overhead
would stem from exchanging BMs. This overhead, however, can be strongly re-
duced by techniques such as one described in [9].

46 G. Nguyen, M. Fischer, and T. Strufe

 0

 0.05

 0.1

 0.15

 0.2

2 3 4 5 6 7 8 9

S
ig

na
lin

g
O

ve
rh

ea
d

Number of stripes

no−striping
Striping

Fig. 6. Comparing the signaling overhead of the conventional DONet (no-striping) and
the adapted one with striping when there is no attacks

5 Conclusion

In this paper, we investigated how attacks on head nodes affect pull-based P2P
streaming systems. Results demonstrate that conventional pull-based streaming
systems exhibit serious vulnerabilities to these rather simple attacks.

Subsequently, we introduced a striping scheme as a countermeasure against
such attacks. The scheme enforces peers to request separate sets of chunks from
diverse groups of partners. Simulation results reveal that the striping scheme
effectively reduces both the maximum and average chunk miss ratios by 50%
and 30% respectively. The scheme is light-weight and can be integrated easily
to current pull-based systems with minimum modifications.

This study opens several interesting research questions that we would like
to conduct. We plan to investigate the effect of the striping scheme on different
chunk scheduling algorithms as well as the impact of varying partner assignment
algorithms in our future work.

Acknowledgment. This work was supported by the German Academic Ex-
change Service (DAAD), Grant number A/09/97565.

References

1. Banerjee, S., Lee, S., Bhattacharjee, B., Srinivasan, A.: Resilient multicast using
overlays. IEEE/ACM Trans. Netw. 14, 237–248 (2006)

2. Birrer, S., Lu, D., Bustamante, F.E., Qiao, Y., Dinda, P.A.: Fatnemo: Building a
resilient multi-source multicast fat-tree. In: Chi, C.-H., van Steen, M., Wills, C.
(eds.) WCW 2004. LNCS, vol. 3293, pp. 182–196. Springer, Heidelberg (2004)

On the Resilience of Pull-Based P2P Streaming Systems against DoS Attacks 47

3. Brinkmeier, M., Schafer, G., Strufe, T.: Optimally dos resistant p2p topologies for
live multimedia streaming. IEEE Transactions on Parallel and Distributed Sys-
tems 20(6), 831–844 (2009)

4. Fischer, M., Grau, S., Nguyen, G., Schaefer, G.: Resilient and underlay-aware P2P
live-streaming. Computer Networks 59, 122–136 (2014)

5. Hei, X., Liu, Y., Ross, K.: Iptv over p2p streaming networks: the mesh-pull ap-
proach. IEEE Communications Magazine 46(2), 86–92 (2008)

6. Hei, X., Liu, Y., Ross, K.: Inferring network-wide quality in p2p live streaming
systems. IEEE JSAC 25(9), 1640–1654 (2007)

7. Kiraly, C., Abeni, L., Lo Cigno, R.: Effects of p2p streaming on video quality. In:
IEEE ICC, pp. 1–5 (May 2010)

8. Li, B., Wang, Z., Liu, J., Zhu, W.: Two decades of internet video streaming:
A retrospective view. ACM Trans. Multimedia Comput. Commun. Appl. 9(1s),
33:1–33:20 (2013)

9. Li, C., Chen, C., Chiu, D.: Buffer map message compression based on relevant
window in p2p streaming media system. CoRR abs/1108.6293 (2011)

10. Liang, J., Nahrstedt, K.: Dagstream: locality aware and failure resilient peer-to-
peer streaming. vol. 6071, p. 60710+. SPIE (2006)

11. Nguyen, G., Fischer, M., Strufe, T.: Ossim: A generic simulation framework for
overlay streaming. In: Summer Computer Simulation Conference (2013)

12. Veloso, E., Almeida, V., Meira, W., Bestavros, A., Jin, S.: A hierarchical charac-
terization of a live streaming media workload. In: Proceedings of the 2nd ACM
SIGCOMM / IMW 2002, New York, NY, USA, pp. 117–130 (2002)

13. Wang, F., Liu, J., Xiong, Y.: Stable peers: Existence, importance, and application
in peer-to-peer live video streaming. In: IEEE INFOCOM, pp. 1364–1372 (2008)

14. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers. 2nd edn. Prentice-Hall,
Upper Saddle River (2005)

15. Zegura, E.: Gt-itm: Georgia tech internetwork topology models (1996),
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

16. Zhang, X., Liu, J., Li, B., Yum, Y.S.: Coolstreaming/donet: A data-driven overlay
network for peer-to-peer live media streaming. In: IEEE INFOCOM, vol. 3, pp.
2102–2111 (2005)

17. Zhou, Y., Chiu, D.M., Lui, J.C.S.: A simple model for chunk-scheduling strategies
in p2p streaming. IEEE/ACM Trans. Netw. 19, 42–54 (2011)

http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html

On Stabilizing Departures in Overlay Networks

Dianne Foreback1, Andreas Koutsopoulos2, Mikhail Nesterenko1,
Christian Scheideler2, and Thim Strothmann2

1 Kent State University
2 University of Paderborn

Abstract. A fundamental problem for peer-to-peer systems is to maintain con-
nectivity while nodes are leaving, i.e., the nodes requesting to leave the peer-to-
peer system are excluded from the overlay network without affecting its connec-
tivity. There are a number of studies for safe node exclusion if the overlay is in a
well-defined state initially. Surprisingly, the problem is not formally studied yet
for the case in which the overlay network is in an arbitrary initial state, i.e., when
looking for a self-stabilizing solution for excluding leaving nodes. We study this
problem in two variants: the Finite Departure Problem (FDP) and the Finite
Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide
when it is safe to leave the network, whereas in the FSP, this leaving decision
does not have to be final: the nodes may resume computation if necessary. We
show that there is no self-stabilizing distributed algorithm for the FDP , even
in a synchronous message passing model. To allow a solution, we introduce an
oracle called NIDEC and show that it is sufficient even for the asynchronous
message passing model by proposing an algorithm that can solve the FDP using
NIDEC. We also show that a solution to the FSP does not require an oracle.

1 Introduction

Peer-to-peer systems allow computers to interact and share resources without the need
for a central server or centralized authority. This ability to self-organize makes peer-to-
peer systems very popular. Since participation in such systems is usually voluntary, the
peers may arrive and depart at any time. A peer may even leave the network without
notice. Therefore, maintaining a connected overlay network is a challenging task. Many
strategies help to alleviate this problem. They include using an overlay network with a
high expansion or separating the peers into more reliable super-peers forming an overlay
network on behalf of the other peers that just connect to one or more super-peers. While
these strategies may work well in practice, rigorous research on when it is safe to leave
the network is still in its infancy. The goal of this paper is to lay the foundation for a
rigorous treatment of node departures in the context of self-stabilization. In fact, we are
the first to provide answers to the question:

Is it possible to design a distributed algorithm that allows any collection of nodes to
eventually leave a network from any initial state without losing connectivity?

Self-stabilization makes the above question non-trivial. A self-stabilizing algorithm
recovers from an arbitrary initial state. Hence, a self-stabilizing node departure algo-
rithm has to handle the states where the departing node is about to leave and may dis-
connect the network.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 48–62, 2014.
c© Springer International Publishing Switzerland 2014

On Stabilizing Departures in Overlay Networks 49

1.1 System Model

We consider a distributed system consisting of a fixed set of processes with fixed identi-
fiers, IDs for short, that are globally ordered. We refer to processes and their identifiers
interchangeably. The system is controlled by an algorithm that specifies the variables
and actions that are available in each process. In addition to the algorithm-based vari-
ables there is a process-based variable called channel whose values are sets of messages.
The channel message capacity is unbounded, and messages will never get lost. We as-
sume non-FIFO message delivery, fair-message receipt and point-to-point communica-
tions (multi-cast and broadcast primitives are not considered). We treat all messages
sent to a process p as belonging to a single incoming channel Cp. Each process has a
read-only boolean variable called leaving. If this variable is true, the process is leaving;
the process is staying otherwise.

The format of an action is 〈label〉 : 〈guard〉 −→ 〈command〉. label is a name
to differentiate actions. guard either detects the presence of a particular message type
in the incoming channel, or it is a predicate over local variables. We call an action
whose guard is simply true a timeout action. command is a sequence of statements that
assigns new values to process variables or sends messages to other processes. Two other
possible statements are exit and sleep. If a process executes exit it enters a designated
exit state. Such a process is gone. If a process executes sleep, it enters the sleep state.
Such a process is asleep. If a process is neither gone nor asleep, it is called awake.

The system state is an assignment of a value to every variable of each process and
messages to each channel. An action in some process p is enabled in some system state
if its guard evaluates to true in this state and p is awake, or its guard detects the presence
of a particular message type in Cp and p is not gone. If in the latter case p is asleep,
p becomes awake again, i.e., it leaves its sleep state. The action is disabled otherwise.
Hence, while a gone process will never wake up again, an asleep process may wake up
again when receiving an appropriate message.

A computation is an infinite fair sequence of states such that for each state si, the
next sate si+1 is obtained by executing an action that is enabled in si. This disallows
the overlap of action execution. That is, action execution is atomic. We assume two
kinds of fairness of computation: weak fairness of action execution and fair message
receipt. Weak fairness of action execution means that if an action is enabled in all but
finitely many states of the computation in which its process is awake, then this action is
executed infinitely often. Hence, unless a process is gone or permanently asleep (i.e., it
never wakes up again) at some point, its timeout action is executed infinitely often.

Fair message receipt means that if the computation contains a state where there is
a message M in a channel Cp that enables at least one action in p, then there is also a
later state in which either p is gone or M is not present in Cp, i.e., one of these actions
is executed with M by p. Besides these fairness assumptions, we place no bounds on
message propagation delay or relative process execution speeds, i.e. we consider fully
asynchronous computations.

A computation suffix is a sequence of computation states past a particular state of
this computation. In other words, the suffix of the computation is obtained by removing
the initial state and finitely many subsequent states. Note that a computation suffix is
also a computation.

50 D. Foreback et al.

We consider algorithms that do not manipulate the internals of process identifiers.
Specifically, an algorithm is copy-store-send if the only operations that it executes on
process IDs is copying them, storing them in local process memory and sending them
in a message. That is, operations on IDs such as addition, radix computation, hashing,
etc. are not used. In a copy-store-send algorithm, if a process does not store an ID in
its local memory, the process may learn of this ID only by receiving it in a message. A
copy-store-send algorithm cannot introduce new IDs to the system. It can only operate
on the IDs that are already there.

1.2 Problem Statement

An algorithm is self-stabilizing if it satisfies the following two properties. Convergence:
starting from an arbitrary system state, the algorithm is guaranteed to arrive at a legiti-
mate state. Closure: starting from a legitimate state the algorithm remains in legitimate
states thereafter. A self-stabilizing algorithm is thus able to recover from transient faults
regardless of their nature. Moreover, a self-stabilizing algorithm does not have to be ini-
tialized as it eventually starts to behave correctly regardless of its initial state.

Before we define a legitimate state for the problems considered in this paper, we
restrict the set of initial states to exclude trivially useless states. For this we first need
some notation.

A (directed) link is a pair of identifiers (a, b) that is defined as follows: either a
message carrying identifier b is in the incoming channel of process a, or process a
stores identifier b in its local memory. We say that process a points to b or has a link to
b. When we describe a link, we always state the pointing process first. The links form a
directed process (multi-)graph PG. A (weakly) connected component in some directed
graph G is a subgraph of G of maximum size so that for any two nodes u and v in that
subgraph there is a (not necessarily) directed path from u to v. Two nodes that are not
in the same weakly connected component are disconnected. A process p is hibernating
if p is asleep and Cp is empty and all processes q that have a directed path to p in PG
are also asleep and have an empty Cq .

Proposition 1. For any copy-store-send algorithm and any system state of the algo-
rithm in which process p is hibernating, p is permanently asleep.

Proof. Let PG(p) be the subgraph containing all processes q with a directed path to p.
A process q in PG(p) can only be woken up by a message, but such a message must
arrive from a process q′ outside of PG(p). Hence, a link (q′, q) in PG is required. Since
such a link does not exist, the proposition follows. ��

Also initially gone processes are useless as they will never perform any computation.
Hence, we assume that the initial state only consists of non-gone and non-hibernating
processes. We also restrict the initial state to contain only messages that can trigger
an action since the others will be ignored. Finally, we do not allow the presence of
identifiers that do not belong to a process in the system. Their handling requires fail-
ure/presence detectors which is beyond the scope of this paper. From now on, an initial
system state will always satisfy all of these constraints.

On Stabilizing Departures in Overlay Networks 51

A system state is legitimate if (i) every staying process is awake, (ii) every leaving
process is either hibernating or gone, and (iii) for each weakly connected component
of the initial process graph, the staying processes in that component still form a weakly
connected component. Now we are ready to formally state our two problems.

Finite Departure Problem (FDP): eventually reach a legitimate state for the case that
only the exit command is available.

Finite Sleep Problem (FSP): eventually reach a legitimate state for the case that only
the sleep command is available.

A self-stabilizing solution for these problems must be able to solve these from any
initial state and to satisfy the closure property afterwards. Notice that (i) and (ii) can
trivially be maintained in a legitimate state, so for the closure property one just needs
to ensure that (iii) is also maintained.

In the following, a process is called relevant if it is neither gone nor hibernating.
Otherwise we call it irrelevant. A process p can safely leave a system if the removal of
p and its incident edges from PG does not disconnect any relevant processes. As we
will see later, there is no distributed algorithm within our model that can decide when
it is safe for a process p to leave the system. Hence, we need oracles.

1.3 Oracles

An oracle O is a predicate that depends on the system state and the process calling it.
In the context of the FDP , an oracle is supposed to advise a leaving process when it
is safe to leave the network, so we restrict our attention to algorithms that only allow
a leaving process to call exit if the oracle is true for it. Such an algorithm is also said
to rely on the oracle. Moreover, we restrict our attention to oracles that only depend
on the current process graph of the relevant processes and the calling process, i.e., the
oracles are of the form O: PG × P → {true,false} where PG is the set of process
graphs and P is the set of processes. For example, we may define oracle EXIT to be
true for some process u if u can safely leave the system. Certainly, this oracle needs
global information and is therefore expensive to implement. So we are focusing on local
oracles. To define these oracles we need to introduce additional notation.

A link (v, w) in PG with v �= w is relevant for some process u if u = w and v is not
gone, or it is implied by a message in Cu carrying the ID of w (i.e., u = v). Otherwise,
the link is irrelevant for u. Note that the links implied by process IDs stored in u are
also irrelevant (meaning that u does not have to learn about them since it already knows
them).

An oracleO is id-sensitive for some process u if its output depends on links relevant
for u. An oracle O is strictly id-sensitive if for every process u the oracle’s output only
depends on the links relevant for u. Hence, the oracle ignores irrelevant links. Note that
an action that changes the system state without affecting relevant links also does not
affect the output of a strictly id-sensitive oracle. Naturally, a strictly id-sensitive oracle
is also (regularly) id-sensitive. An oracle is id-insensitive if it is not id-sensitive. That
is, the output of an id-insensitive oracle does not depend on the links relevant for the
process.

52 D. Foreback et al.

We define the following strictly id-sensitive oracles. Oracle NID (no identifiers)
evaluates to true if the system does not contain an identifier of u in v or Cv for some
relevant process v �= u. Oracle EC (empty channel) evaluates to true for a particular
process u if the incoming channel of u is empty. Oracle NIDEC is a conjunction of
NID and EC. That is,NIDEC evaluates to true if bothNID and EC evaluate to true.
Note that NIDEC is less powerful than NID and EC used jointly since the algorithm
usingNIDEC is not able to differentiate between the conditions separately reported by
NID and EC. Oracle ONESID evaluates to true for a process u if u shares relevant
links with at most one relevant process.

Within a class of oracles C, an oracle O is necessary for the FDP if for every
algorithm A relying on an oracle O’∈C with O′(s, u) =true while O(s, u) =false for
some system state s and process u,A cannot be a self-stabilizing solution to the FDP .

1.4 Our Contribution

First, we show that without an id-sensitive oracle there is no self-stabilizing solution
for the FDP within our model. Afterwards we show that among all id-sensitive oracles
ONESID is necessary to solve the FDP . On the other hand, we prove that NIDEC
is sufficient to solve the FDP by providing a self-stabilizing algorithm for the FDP
relying on NIDEC.

ProblemFSP , in contrast to the FDP , does not require the processes to irrevocably
exit the system. This will allow us to design a self-stabilizing algorithm for the FSP
that does not need any oracle.

1.5 Related Work

The difficulty of the Finite Departure Problem resembles that of fault-tolerant agree-
ment in distributed systems. Fault-tolerant agreement is studied in the context of the
famous Consensus Problem. It is shown [17] that the problem is not solvable in an
asynchronous system even if only a single process may crash, which implies that there
is no self-stabilizing solution for the Consensus Problem. This impossibility is circum-
vented through the use of specialized oracles known as failure detectors [12].

Due to the popularity of peer-to-peer networks, the research literature on this sub-
ject is extensive [2,3,4,9,19,26,29,30,34]. While departure algorithms are proposed in
these papers, none are self-stabilizing. In fact, a rigorous treatment of when it is safe
to leave the system is not yet attempted. Cases in which the rate of churn is limited
are already considered [1,20,25]. Kuhn et al [1,20,25] handle this limitation by or-
ganizing the nodes into cliques of Θ(log n) size that they call super-nodes. Hayes et
al. [20] handle limited churn with a topological repair strategy called Forgiving Graph.
For the case that the nodes have a sufficient amount of time to react, Saia et al. [31]
propose a network maintenance algorithm called DASH to repair the network result-
ing from an arbitrary number of deletions. Limited churn is studied in the context of
adversarial nodes [5,6,32]. While there is no work on self-stabilizing node departures,
several self-stabilizing peer-to-peer algorithms are proposed [10,11,13,14,21,22,27,24].
The studied topologies range from a simple line and ring [33,18], to skip lists and skip
graphs [27,22], expanders [16], the Delaunay graph [23], hypertree [15], and Chord [7].

On Stabilizing Departures in Overlay Networks 53

Also a universal algorithm for topological self-stabilization is known [8]. However,
none of these provide any means to exclude nodes that want to leave the network.

2 Basic Properties of the FDP
In this section we show that the FDP requires an id-sensitive oracle. Moreover, if only
strictly id-sensitive oracles are considered, then ONESID is necessary. The below
proposition is a restatement of the results obtained in [27,28]. Intuitively it says that
once disconnected, the system may not be able to reconnect again.

Proposition 2. [27,28] If a computation of a copy-store-send algorithm starts in a state
where two processes u and v are disconnected in PG, u and v remain disconnected in
PG in every state of this computation.

Theorem 1. Any self-stabilizing solution to the FDP has to rely on an id-sensitive
oracle.

Proof. Assume that algorithm A is a self-stabilizing solution to the FDP that relies
on an id-insensitive oracle O. We consider the following counter example. Consider
a system of at least three processes. The computation of A starts in a state where all
processes but one, process v, are weakly connected. Hence, by Proposition 2, v remains
disconnected from the system for the rest of the computation. Among the connected
processes, u is leaving. SinceA is a solution to the FDP , the computation will eventu-
ally reach a state s1 in which u calls exit in some action A enabled in s1. See Figure 1
for an illustration.

u v

s1

u v

u’s incoming
channel

s2

connected component connected component

Fig. 1. Illustration for the proof of Theorem 1

We take s1 and construct another state s2 where there is a message carrying the ID
of v in the incoming channel of process u. In s2, all processes of the system are weakly
connected. Observe that the process graphs PG1 for state s1 and PG2 for state s2 differ
only by the new, relevant link (u, v). SinceO is id-insensitive, both the state of u and the
output of O for u are the same for s1 and s2. Hence, action A is also enabled in u, and
it may execute in the same way in s2 as in s1, which implies that u may call exit. This
disconnects v from the rest of the system. By Proposition 2, v remains disconnected
from the system for the rest of the computation.

Hence, contrary to our initial assumption, A is not a self-stabilizing solution to the
FDP . A similar argument applies to the case in which process v or Cv holds an iden-
tifier of u. ��

Theorem 1 immediately implies the following corollary.

54 D. Foreback et al.

Corollary 1. A self-stabilizing solution to the FDP is impossible without an oracle.

Interestingly, the impossibility even holds in a synchronous communication model.
Consider the model in which each round consists of two stages: in stage 1, every process
receives all messages from the previous round, and in stage 2, every process executes
any number of its enabled actions. Let us transform the state s1 in the proof of Theo-
rem 1 into a state s2 in which v has a link to u. If this is the state of the initial round, u
cannot receive a message from v in that round, since there was no prior round, so u still
executes the exit statement. Hence, the system gets disconnected. We now address the
strict id-sensitivity property of oracles.

Lemma 1. If a self-stabilizing solution to the FDP relies on a strictly id-sensitive
oracle, then this oracle evaluates to true only if a process has relevant links with at
most one relevant process.

Proof. Assume there exists an algorithm A that is a self-stabilizing solution to the
FDP which uses a strictly id-sensitive oracle O such that there exists a state s1 where
the oracle evaluates to true for some leaving process u while it shares relevant links
with at least two staying processes v and w. That is, either u has an identifier of v or w
in its incoming channel or u’s identifier is in the memory of v or w or their respective
incoming channels. We construct state s2 by removing all links from w except for the
links to u. Since O is strictly id-sensitive, this does not change the output of O. Notice
that in s2, process w is disconnected from the system except for the links to u.

Let us now consider a computation σ of A where u is leaving. Since A is a solution
to the FDP , u should eventually reach a state s3 in σ in which it executes the exit
statement in some enabled action A. Since A relies on O, O must be true in this case.

We construct a system state s4 where the state of u is the same as in s3 while the
state of the rest of the system is the same as in s2. Since this does not change the links
relevant for u compared to s2, this does not change the output ofO compared to s2. On
the other hand, the local state of u and the output of O for u is the same in s4 as in s3.
Hence, action A must be enabled in s4, and it may execute in the same way in s4 as in
s3, which implies that u may call exit. This, however, disconnects process w from the
rest of the staying processes. According to Proposition 2, w remains disconnected from
the system for the rest of the computation. Thus, contrary to the initial assumption, A
is not a self-stabilizing solution to the FDP . ��

Lemma 1 leads to the following theorem.

Theorem 2. Among all strictly id-sensitive oracles, the oracleONESID is necessary
to obtain a self-stabilizing solution to the FDP .

SinceNIDEC is true only ifONESID is true,NIDEC is a potential candidate for
solving theFDP problem, and the next section demonstrates that it is indeed sufficient.

3 Solution for the FDP
In this section we present a self-stabilizing algorithm called SDA that solves the Finite
Departure Problem with the help ofNIDEC . We focus on the case that PG consists of

On Stabilizing Departures in Overlay Networks 55

a single weakly connected component. However, the results transfer to PG being split
up into multiple components. The algorithm is shown in Figure 2.

For ease of exposition, we write that identifier q is to the right of identifier p if
q > p and to the left of p if q < p. In algorithm SDA, to maintain connectivity, each
process p contains variables left and right that store process IDs that are less than
resp. greater than p. If left or right does not contain an identifier, it contains −∞ or
+∞ respectively. To ensure a safe process departure, SDA uses the NIDEC oracle.

Algorithm SDA uses two message types: intro and reverse. Message intro carries a
single process ID and serves as a way to introduce processes to one another. Message
reverse does not carry an ID. Instead, this message carries a boolean value denoted as
revright or revleft. This message is a request for the receiving process to remove the
respective left or right ID from its memory and send its own ID back.

We now describe the actions of the algorithm. Some of the actions contain message
sending statements involving IDs stored in the left and right variables. If the variable
contains ±∞, the sending action is skipped. To simplify the presentation of the algo-
rithm, this is omitted in Figure 2.

The algorithm has three actions. The first action, called timeout, periodically intro-
duces the process to its neighbors unless it is leaving. If the process is leaving, it sends
messages to its neighbors requesting them to remove its ID from their memory. If ad-
ditionally the NIDEC oracle signals that it is safe to leave, the process introduces its
neighbors to each other to preserve system connectivity and then exits by executing the
exit statement. The second action is introduce. It receives and handles intro messages
received by a node. The operation of this action depends on the relation between the
ID carried by the message and the IDs stored in left and right. The process either for-
wards intro(id) to its left or right neighbor to handle it; or, if id happens to be closer to
p than left or right, then p replaces the respective neighbor and instead introduces the
old neighbor identifier to id. The third action, reverse, handles the neighbors’ requests
to leave, i.e. the rev messages received by a node. If p receives this message, it sets the
respective variable to +∞ or to−∞ and, to preserve system connectivity, sends its own
ID to this process. To break symmetry, if p itself is leaving, it ignores the request from
its left neighbor.

3.1 Correctness Proof

For SDA to be a self-stabilizing solution to theFDP it remains to show two properties.
Safety: SDA never disconnects any relevant processes. Liveness: All leaving processes
eventually exit the system.

Lemma 2. If a computation of SDA starts in a state where the graph PG of the non-
gone processes is weakly connected, the graph PG of the non-gone processes remains
weakly connected in every state of this computation.

Proof. We demonstrate the correctness of the lemma by showing that none of the ac-
tions of SDA disconnects PG. Action timeout only adds links to PG if NIDEC is
false and cannot disconnect it in this case. If NIDEC is true, PG does not contain
links pointing to p and the only outgoing links are (p, left) and (p, right). If p is con-
nected to the rest of PG by at most one link (i.e., left or right does not store an ID),

56 D. Foreback et al.

constant p : process identifier
variables leaving : boolean, read only, true when p wants to leave

left : process ID less than p, −∞ if undefined
right : process ID greater than p, +∞ if undefined
p.C: channel of incoming messages of process p

messages intro(id), introduces process identifier
rev(direction), requests recipient to reverse edge

direction is revleft or revright

actions
timeout: true −→

if not leaving then
send intro(p) to left,
send intro(p) to right

else // leaving
send rev(revleft) to right
send rev(revright) to left

* if NIDEC then
if left �= −∞ and right �= +∞ then

send intro(left) to right
send intro(right) to left

** exit
introduce: intro ∈ p.C −→

receive intro(id)
if id < left then

send intro(id) to left
if left < id < p then

send intro(left) to id
left := id

if p < id < right then
send intro(right) to id
right := id

if right < id then
send intro(id) to right

reverse: rev ∈ p.C −→
receive rev(direction)
if direction = revleft then

if not leaving then
send intro(p) to left
left := −∞

else // direction is revright
send intro(p) to right
right := +∞

Fig. 2. Algorithm SDA for process p. SSA is obtained by omitting the line marked with * (i.e.
the use of NIDEC) and replacing the line indicated with ** (i.e. the exit command) by the sleep
command

On Stabilizing Departures in Overlay Networks 57

the departure does not disconnect PG. If both left and right store an ID, the leaving
of p does not disconnect PG because p sends intro(left) to right and intro(right)
to left and thereby preserves weak connectivity between the remaining processes.

Let us consider introduce. If the received id is the same as p or as left or right , the
message is ignored. However, this does not disconnect PG. Let us consider the case
of id < p. The case of id > p is similar. There are two sub-cases to address. In case
id < left , p sends intro(id) to left . That is, in PG, the link (p, id) is replaced with
(left , id). Since p stores the recipient identifier in left , i.e. PG has a link (id, left), the
graph connectivity is preserved. The other case is left < id < p. In this case, p replaces
left with id and forwards the old value to id. That is, the links (p, id) and (p, left) are
replaced by (p, id) and (id, left). This replacement preserves PG connectivity.

The rev message received by a reverse action may force p to set either right or left
to infinity thus removing a link from PG. Let us consider the case of right being set to
+∞, the other case is similar. This operation removes (p, right) from PG. However,
reverse sends a message intro(p) to right. That is, it replaces the link (p, right) with
(right, p), so weak connectivity of PG is preserved. ��

The liveness part of the correctness proof is more involved. Due to the way IDs
are handled by SDA, the development of a link can be traced over the course of the
computation. Recall that a link (p, q) is associated with an ID of q stored in p or a
message in Cp. The actions of SDA may transform (p, q) into a different link (p′, q′).
Only the following cases can occur:

1. The introduce action stores q in left or right or drops the q since it is equal to p,
left or right. In both cases, we stay with the link (p, q).

2. The introduce action may delegate the ID of q to some process p′: then (p, q)
changes to (p′, q). Note that whenever this happens, p′ ∈ [p, q].

3. The reverse action reverses the link (p, q) to (q, p). Note that whenever this hap-
pens, p is staying or p is leaving and p < q.

The changes (i.e., cases 2 and 3) to a link (p, q) over time form a sequence of links
(p, q) = (p0, q0), (p1, q1), (p2, q2), . . . that we call the trace of (p, q). The cases listed
above imply the following Monotonicity lemma.

Lemma 3. (Monotonicity) For every (p′, q′) in the trace of (p, q), p′, q′ ∈ [p, q].

This and the fact that we have a finite number of processes may seem to imply that
every trace is finite, but for now we cannot exclude the case that a link is reversed
infinitely often between two processes. It will only be implied later when we know that
eventually all leaving processes will exit the system.

Consider an arbitrary fixed computation of SDA. A link that does not change any
more is called stable. A steady chain of processes xk, . . . , x0 is a sequence of leaving
and not yet gone processes of increasing order with stable links (xi, xi−1). A steady
chain is maximal if it cannot be extended to the left or right. See Figure 3 for an illus-
tration. Note that at every state of the computation, every leaving process is part of at
least one maximal steady chain (which might just be a chain consisting of itself). Also,
the following holds:

58 D. Foreback et al.

x0wxi vxk x1

Fig. 3. Illustration of a steady chain

Lemma 4. A maximal steady chain can only change in two ways: either (1) process xk

exits the system, or (2) the chain is extended to the left or right due to new stable edges.

Since the number of processes is finite, this means that eventually a maximal steady
chain is stable, i.e., it does not change any more for the rest of the computation. We call
this a stable chain. Now, we can prove the following lemma.

Lemma 5. In every computation of SDA, the only stable chain is the empty chain.

Proof. Consider the contrary that we have a non-empty stable chain xk, . . . , x0. Our
goal will be to prove that eventually there is no incoming link from non-gone processes
in PG to xk. This implies that eventually xk has no more messages to process, so
NIDEC will eventually be true. Therefore, xk can exit the system, which contradicts
our assumption that the chain is stable.

First, suppose there is an incoming link (p, xk) with p < xk. If there is a reversal
in the trace of that link, then we end up with a link (xk, p

′) with p ≤ p′ < xk. If this
causes xk to delegate p′ away, then due to the Monotonicity Lemma that link will never
include xk again. Otherwise, xk stores p′ in left , and since a leaving process never
reverses its link to left , xk either eventually delegates p′ away, which will mean that the
link never includes xk again, or xk holds on to that link, which means that (xk, p

′) can
never become an incoming link to xk again. So suppose that there is no reversal in the
trace of (p, xk). Then its trace is finite, which means that eventually it becomes a stable
link (p′, xk). We will argue via two cases that this cannot happen.

(1a) If p′ is staying, then p′ will eventually introduce itself to xk. This will create a
new edge (xk, p

′) in PG. If this link is not delegated by xk, xk will eventually ask p′ to
reverse its link to xk, which it will do, but this contradicts the assumption that (p′, xk)
is stable. If xk delegates (xk, p

′), then we keep track of that link until we get to a link
(x, p′) that gets reversed or is stable. In the former case, p′ delegates xk to x, and in the
latter case, p′ also either delegates xk to x or reverses (p′, xk), depending on whether x
is staying or leaving. Hence, in any case, (p′, xk) is not be stable, a contradiction.

(1b) If p′ is leaving, then we distinguish between two cases. If xk is not aware of p′,
then the chain can be extended to p′ because (p′, xk) is stable, which contradicts our
assumption to have a stable chain. If xk is aware of p′, then xk will eventually ask p′

to reverse its right edge, which will cause the link (p′, xk) to be reversed which again
contradicts our assumption that (p′, xk) is stable.

Next, consider the case that there is an incoming link (p, xk) with p > xk . If there is a
reversal in the trace of that link, we end up with a link (xk, p

′) with xk < p′ ≤ p. If this
causes xk to delegate p′ away, then due to the Monotonicity Lemma the trace of that link
will never include xk again. Otherwise, it must hold that xk < p′ ≤ xk−1. If p′ = xk−1,
the edge becomes stable, and otherwise, xk delegates xk−1 to p′, which contradicts the

On Stabilizing Departures in Overlay Networks 59

assumption that (xk, xk−1) is stable. So in any case this link will eventually not be an
incoming link to xk any more. Thus, suppose that there is no reversal in the trace of
(p, xk). Then its trace is finite, which means that eventually it becomes a stable link
(p′, xk). We will again argue via two cases that this cannot happen.

(2a) If p′ is staying, then p′ eventually introduces itself of xk. If xk < p′ < xk−1,
then xk delegates xk−1 away, contradicting our assumption that (xk, xk−1) is stable. If
p′ > xk−1, then similar arguments as for case (1a) above will show that (p′, xk) is not
stable, also contradicting our assumption.

(2b) If p′ is leaving, p′ will eventually ask xk to reverse its right edge, which it will
do, contradicting our assumption that (xk, xk−1) is stable.

Moreover, xk never creates an incoming link to itself since this occurs only if re-
quested to reverse (xk, xk−1), but since (xk, xk−1) is stable, this does not happen.
Hence, eventually xk has no incoming link, which completes the proof. ��

Lemmas 2 and 5 lead to the following theorem.

Theorem 3. Algorithm SDA and the NIDEC oracle provide a self-stabilizing solu-
tion to the FDP .

4 Solution for the FSP
We can overcome the use of oracles by changing to the Finite Sleep Problem. Algorithm
SSA, which solves this problem, is almost identical to SDA shown in Figure 2. The
only differences are that no oracle is checked and that the sleep command is used instead
of exit.

For the correctness proof of SSA, we show that the safety and liveness properties
hold. We first define and prove the conditions that must prevail for a process to remain
permanently asleep.

Lemma 6. In the SSA algorithm, a process p is permanently asleep if and only if p is
hibernating.

Proof. The backwards direction (if p is hibernating then p is permanently asleep) di-
rectly follows from Proposition 1. So it remains to prove the other direction.

Suppose that there is a process q that has a directed path along the processes q0 =
q, q1, . . . , q� = p to p and q is either not asleep, or Cq is non-empty. Without loss of
generality, we may assume that for all other processes qi with i ≥ 1, Cq is empty.
Hence, for all i ≥ 1, qi+1 is initially stored in qi. Since q is either awake and knows q1,
or Cq contains a message with q1, q is guaranteed to eventually process the link (q, q1)
by either calling the timeout (which may contact q1), introduce (which may contact or
delegate q1), or reverse action (which may contact q1). If q1 gets delegated, the receiving
process is also guaranteed to process q1. We continue the trace of (q, q1) in this case
until we reach a process q′ where q1 is not delegated any more. This must eventually
happen since the number of processes is finite. Hence, q1 is eventually contacted, which
will wake up q1. Since q1 initially stores q2, q1 is therefore also guaranteed to eventually
process the link (q1, q2). The same arguments as for q1 then guarantee that also q2
eventually processes the link (q2, q3). Hence, by induction, eventually p is woken up,
which completes the proof. ��

60 D. Foreback et al.

The lemma implies that given our initial state satisfies the conditions in Section 1.2,
no process will initially be permanently asleep. Additionally, the following lemma
holds, where we use NIDEC as a predicate and not an oracle.

Lemma 7. For any process p that calls the sleep command in timeout it holds that p is
hibernating afterwards if and only if NIDEC(p) is true.

Proof. If NIDEC(p) is true, then no relevant process has a directed path to p, and
there are no more messages in Cp, which means that p is hibernating.

On the other hand, if p is hibernating, then there is no directed path from a relevant
node to p and no message in Cp, which means that NIDEC(p) is true. ��

Now we are ready to prove the following lemma.

Lemma 8. If a computation of SDA starts in a state where the graph PG of the non-
hibernating processes is weakly connected, the graph PG of the non-hibernating pro-
cesses remains weakly connected in every state of this computation.

Proof. We know from Lemma 2 that none of the actions of SSA disconnects the graph
PG of the non-exited processes. Thus, as long as no process falls asleep after an action
(which can only happen if a leaving process calls timeout), the lemma holds. Suppose
now that a leaving process p calls timeout. Our first goal is to show that no other process
can become hibernating in this case. Consider any process q �= p that is non-hibernating
and that has a directed path from p. We distinguish between two cases.

(1) If the directed path from p to q leads through a process q′ stored in a message
in Cp, then p cannot become hibernating and therefore q cannot become hibernating as
well.

(2) If the directed path from p to q leads though left or right of p, then q cannot
become hibernating because p will contact left and right in timeout.

Hence, only p can potentially become hibernating. However, due to Lemma 7, this
happens only if NIDEC(p) is true. Since we know from Lemma 2 that in this case
p may even exit the system without causing a disconnection, we can also allow p to
hibernate without risking disconnection from the non-hibernating processes. ��

Lemmas 6 and 8 imply safety. So it remains to prove liveness. Notice that due to
Lemma 7, a process p calling sleep is permanently asleep if and only if NIDEC(p) is
true. Hence, the liveness proof follows along the same lines as the liveness proof of
SDA, which implies the following theorem.

Theorem 4. SSA provides a self-stabilizing solution to the FSP .

5 Conclusion

In this paper, we showed that among the strictly id-sensitive oracles, ONESID is
necessary for a solution to the FDP . We also showed that a more restrictive oracle,
NIDEC , is sufficient by presenting an algorithm that solves the FDP usingNIDEC .
Note that there cannot be a more restrictive strictly id-sensitive oracle than NIDEC

On Stabilizing Departures in Overlay Networks 61

since NIDEC(p) is only true if there is no relevant link left for p. On the other hand,
it would be interesting to find out whether ONESID is also sufficient for the FDP
since it would allow nodes to leave earlier than NIDEC .

Observe that the SDA algorithm, besides solving the FDP , also organizes the stay-
ing processes in a sorted list. It would be interesting to consider building more complex
and robust topologies such as the skip list or skip graph [13,27,24].

It would also be interesting to study the power of individual components ofNIDEC:
NID and EC. Specifically, we would like to determine the extent of the states from
which the algorithm using only one of the components may recover.

References

1. Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable peer-to-peer systems withstanding
dynamic adversarial churn. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Sys-
tems: Software, Computing, Networks. LNCS, vol. 4028, pp. 275–294. Springer, Heidelberg
(2006)

2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In:
SOSP, pp. 131–145. ACM, New York (2001)

3. Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37 (2007)
4. Awerbuch, B., Scheideler, C.: The hyperring: A low-congestion deterministic data structure

for distributed environments. In: SODA, pp. 318–327. Society for Industrial and Applied
Mathematics, Philadelphia (2004)

5. Awerbuch, B., Scheideler, C.: Towards scalable and robust overlay networks. In: IPTPS
(2007)

6. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput. Syst. 45(2),
234–260 (2009)

7. Benter, M., Divband, M., Kniesburges, S., Koutsopoulos, A., Graffi, K.: Ca-re-chord: A
churn resistant self-stabilizing chord overlay network. In: NetSys, pp. 27–34 (2013)

8. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the
transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS,
vol. 6976, pp. 62–76. Springer, Heidelberg (2011)

9. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: A dynamic over-
lay network for routing, data management, and multicasting. In: SPAA, pp. 170–179. ACM,
New York (2004)

10. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial filters. In:
ICDCS, p. 27. IEEE Computer Society, Washington, DC (2007)

11. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-to-peer
systems. Parallel Processing Letters 20(1), 15–30 (2010)

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J.
ACM 43(2), 225–267 (1996)

13. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list
and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)

14. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant overlay net-
work. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–
357. Springer, Heidelberg (2007)

15. Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. In: NCA, pp. 25–32
(2004)

16. Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput. Pro-
gram. 78(5), 544–555 (2013)

62 D. Foreback et al.

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. J. ACM 32(2), 374–382 (1985)

18. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time complexity of
distributed topological self-stabilization: The case of graph linearization. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305. Springer, Heidelberg (2010)

19. Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable over-
lay network with practical locality properties. In: USENIX Symposium on Internet Tech-
nologies and Systems (2003)

20. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: A distributed data structure for low
stretch under adversarial attack. Distributed Computing 25(4), 261–278 (2012)

21. Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announcement: Self-
stabilizing spanning tree algorithm for large scale systems. In: Datta, A.K., Gradinariu, M.
(eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Heidelberg (2006)

22. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic
time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140 (2009)

23. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological
self-stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457,
137–148 (2012)

24. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: A self-stabilizing chord overlay
network. In: SPAA, pp. 235–244 (2011)

25. Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-to-peer sys-
tems. Distributed Computing 22(4), 249–267 (2010)

26. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the
butterfly. In: PODC, pp. 183–192. ACM, New York (2002)

27. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic message-
passing skip list. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
356–370. Springer, Heidelberg (2011)

28. Nor, R.M., Nesterenko, M., Tixeuil, S.: Linearizing peer-to-peer systems with oracles. Tech-
nical Report TR-KSU-CS-2012-02, Dept. of Computer Science, Kent State University (July
2012)

29. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161–172. ACM, New York (2001)

30. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp. 329–350. Springer, Heidelberg (2001)

31. Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In:
IPDPS, pp. 1–12 (2008)

32. Scheideler, C.: How to spread adversarial nodes?: rotate. In: STOC, pp. 704–713 (2005)
33. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Peer-to-

Peer Computing, pp. 39–46 (2005)
34. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-

nan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM
Trans. Netw. 11(1), 17–32 (2003)

CloudSylla : Detecting Suspicious

System Calls in the Cloud

Marc Kührer, Johannes Hoffmann, and Thorsten Holz

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{firstname.lastname}@ruhr-uni-bochum.de

Abstract. To protect computer systems against the tremendous num-
ber of daily malware threats, security software is typically installed on
individual end hosts and the responsibility to keep this software updated
is often assigned to (inexperienced) users. A critical drawback of this
strategy, especially in enterprise networks, is that a single unprotected
client system might lead to severe attacks such as industrial espionage. To
overcome this problem, a potential approach is to move the responsibility
to utilize the latest detection mechanisms to a centralized, continuously
maintained network service to identify suspicious behavior on end hosts
and perform adequate actions once a client invokes malicious activities.
In this paper, we propose a security approach called CloudSylla (Cloud -
based SY scaLL Analysis) in which we utilize a centralized network ser-
vice to analyze the clients’ activities directly at the API and system call
level. This enables, among other advantages, a centralized management
of signatures and a unified security policy. To evaluate the applicability
of our approach, we implemented prototypes for desktop computers and
mobile devices and found this approach to be applicable in practice as
no substantial limitations of usability are caused on the client side.

1 Introduction

Malicious software needs to invoke API, respectively, system calls to cause sub-
stantial damage, thus monitoring these calls is a promising approach for detect-
ing suspicious activities [1, 2]. Consequently, this technique is often adopted by
security and malware protection services, which are typically deployed locally
on end hosts. The drawback of this strategy is that each client is responsible for
keeping its security software updated in short-time intervals to also detect latest
zero-day attacks. When the software is not updated on a regular basis, the host
might somehow get infected with malware. Especially in large-scale networks,
this is a severe problem since an infected client machine might be used as an
entrance point for more substantial attacks such as industrial espionage.

A reasonable approach is to move the identification of malicious activities to
a centralized and more powerful network service. In the past, several approaches
were proposed [3–5], in which the actual analysis process is performed in the
Cloud. The clients are then no longer required to keep their detection mecha-
nisms updated continuously, reducing the amount of required computing power

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 63–77, 2014.
c© Springer International Publishing Switzerland 2014

64 M. Kührer, J. Hoffmann, and T. Holz

on end hosts significantly—particularly important for mobile devices with lim-
ited power capabilities. Nevertheless, all these approaches operate on a rather
coarse-grained level, e.g., CloudAV [3] only analyzes whether executables are
detected by antivirus engines which might fail for obfuscated malware. To per-
form a more fine-granular inspection of the clients’ behavior in the Cloud, we
introduce an analysis mechanism that operates directly on API and system calls
invoked on the end hosts. Outsourcing the inspection of these operations to a
Cloud implies several benefits, yet might also induce serious drawbacks. To eval-
uate the applicability of our security mechanism, we implemented prototypes
for desktop computers using Windows and mobile devices using Android and
find our approach to efficiently detect malicious activities on the end hosts by
analyzing invoked API and system calls at a centralized network service.

In summary, this paper makes the following contributions:
– We propose an approach to move the detection of malicious behavior from

individual end hosts to a centralized network service. To perform a fine-
granular inspection of end host activities, we analyze the corresponding API
and system calls in the Cloud to determine if these activities are malicious.

– We implemented prototypes for desktop computers and mobile devices to
monitor and forward invoked API and system calls to the Cloud service.

– In empirical evaluations, we demonstrate the feasibility of our approach.
The typical runtime overhead of our implementation is negligible for already
known applications due to efficient caching mechanisms. New and therefore
unknown applications can still be analyzed in a satisfying amount of time.

2 General Approach

A fine-granular approach to improve the clients’ security, particularly applicable
in enterprise networks with good connectivity and low latency, is to outsource lo-
cal malware detection to a less vulnerable and more powerful Cloud service that
identifies malicious activities by inspecting API and system calls—both referred
to as syscall in the following although we focus on API calls in our Windows
prototype. This Cloud-based strategy reduces the administrative overhead sig-
nificantly, since end hosts are no longer required to maintain local detection
mechanisms and keep signatures updated in short-time intervals. Updating de-
tection mechanisms can be accomplished more easily as changes need to be
performed on the Cloud side only, which enables a unified security policy. This
centralized analysis also enables a correlation of the behavior of all hosts that
send data to the Cloud service, enabling detection mechanisms like BotMiner [6].

To detect malicious activities, we require each end host to forward specific
events at the API and system call level to the Cloud and await approval or denial
to perform these actions locally. More specific, once a syscall is invoked by a client
process, the corresponding syscall arguments (e.g., filenames and URLs) are
individually looked up in locally stored caching instances, containing information
for trusted, malicious, and analyzed but unsuspicious values. If not cached, the
syscall including the arguments is forwarded to the Cloud. The Cloud first applies

CloudSylla: Detecting Suspicious System Calls in the Cloud 65

signatures matching, i.e., probes if the syscall is part of a signature, a sequence of
consecutively invoked syscalls. Afterwards, the individual arguments are checked
against blacklists and looked up at external sources. If no argument is found to
indicate malicious behavior, the syscall is executed on the end host. If malicious
behavior is identified, the end host terminates the malicious application or, more
restrictive, is automatically blocked from accessing critical infrastructure such
as the local network, depending on a specifiable local security policy.

Selecting a reasonable set of syscalls to monitor is a critical but necessary
task to reduce the overall number of analysis requests forwarded to the Cloud.
Monitoring irrelevant syscalls wastes network bandwidth and execution time of
the clients, however, tracking an insufficient set of syscalls might miss impor-
tant activities to detect malicious behavior. Modern operating systems provide
a large number of syscalls, and in some cases, multiple syscalls perform almost
the same operation (e.g., creating a process). We thus need to find basic syscalls
(e.g., ShellExecuteExW which is called by ShellExecuteA/W/ExA on Windows)
to significantly reduce the number of monitored syscalls. We also have to con-
sider the frequency at which specific syscalls are triggered. To give a concrete
example, let us assume we monitor the syscall NtCreateFile. When executing
Office applications we might not experience a large number of new files, how-
ever, executing a web browser presumably increases the quantity of invocations
considerably because of web content being cached. Furthermore, we have to se-
lect the syscalls based on the information they provide. Monitoring syscalls that
solely pass handles or similar memory addresses might not be that effective since
most of these addresses differ on each end host. Yet, intercepting syscalls operat-
ing on executable memory might lead to malicious activities on a client system.
To comply with these restrictions, our approach mainly focuses on API and sys-
tem calls that can be compared to blacklists, signatures, and reports gathered
from automated malware analysis systems such as Anubis [7]. More precisely, we
monitor syscalls providing information such as mutex-, file-, and service names,
file hashes of executables, and IP addresses, domain names, URLs, and network
messages to trace most of the outgoing communication to other end hosts such as
botnet Command & Control (C&C) servers or SMTP servers for spam delivery.

3 Implementation

In this section, we introduce the caching mechanism utilized in our approach
and describe the Cloud-to-client communication protocol. We then focus on the
prototype of the Cloud service and the individual end host implementations.

3.1 Caching

When limiting the set of syscalls to those providing the information mentioned
above, we would still have to handle a vast number of invocations by the client
processes. To achieve a sufficient performance, our approach thus has to adopt
an efficient caching strategy. As a result, the Cloud and the end host prototypes

66 M. Kührer, J. Hoffmann, and T. Holz

implement fast and cost-efficient Bloomfilter [8] caches to store and query already
processed syscall arguments. Each prototype allocates three caching instances for
every type of argument (e.g., filename and URL). Two instances store trusted (T)
and malicious (M) entries, which are gathered from external sources. The third
cache covers entries which are neither trusted nor malicious but were analyzed
by the Cloud before. We name the last category unsuspicious (U).

3.2 Communication

The communication between the Cloud and the clients is performed by inter-
changing a custom protocol that keeps the required network usage at a low level.

Notation: A syscall is denoted by its name and one or multiple arguments,
defined as S := { name, A+ }. A syscall argument is represented by A :=
{ type, data, L }. The parameter type denotes the argument type (e.g., filename
or URL), and data contains the actual value of the argument. We define the
label L := M | T | U | T A | ACP | CR , whereas we distinguish between the
categories malicious, trusted, unsuspicious, temporarily approved, approved but
caching prohibited, and caching revoked.

Fig. 1. Protocol

Protocol: As shown in Figure 1, the protocol mainly
utilizes five distinct message types. The message client
hello is sent by each running and newly executed client
process and includes its command line and the file hash
of the corresponding executable. To complete the two-
way hand-shake, the Cloud service looks up the com-
mand line and file hash in its caches and transmits the
server hello message including the analysis result L.
When the process is associated to an already known ma-
licious executable, L is defined asmalicious and security
measures are applied, defined by the specified security
policies. If the file hash is not cached at the Cloud, the hash value is requested at
external data sources and analysis modules. Depending on the security policies,
the execution of the syscall is either denied or delayed to prioritize the safety of
the end host or temporarily approved by setting the label to T A to avoid a delay
on the client. Once we receive the analysis results from the external modules,
we transmit an updated server hello message including the final label to the
client. Update messages, however, might not be received by a device, e.g., during
offline phases, hence the host could unknowingly perform malicious activities.
We thus implemented fail-over solutions in the individual end host prototypes.

The remaining three messages are exchanged when end hosts forward invoked
syscalls to the Cloud service as discussed in the following.

3.3 Cloud Implementation

The prototype of our Cloud service is implemented as a light-weight, extensible
Python script and leverages an external database containing data from malware

CloudSylla: Detecting Suspicious System Calls in the Cloud 67

analysis systems and blacklists. We also utilize the third-party services VirusTo-
tal [9] and Google Safebrowsing [10] to obtain details about syscall arguments.

Fig. 2. Cloud implementation

Figure 2 illustrates the process-
ing stages of the Cloud service
once it receives a system call

message from a client process (1).
First, the syscall S is compared
to locally stored signatures, char-
acterizing malicious behavior and
security policies. As signatures
may consist of multiple consecu-
tively executed syscalls, we verify
if the currently processed syscall
is part of a signature and whether
additional syscalls are required to match the complete signature. When a com-
plete signature is triggered, we forward the signature match message including
the name of the triggered signature to the client, invoke security measures, and
skip further analyses (2). If no signature is triggered but the syscall was part of
a signature, the labels of all arguments in S are set to approved but caching pro-
hibited (ACP)—unless they are flagged as malicious in the succeeding analysis
steps. When prohibiting caching of these arguments, we require the end hosts
to always forward the corresponding syscalls to the Cloud for repeated analysis.
In step (3), the syscall arguments are extracted from S and then individually
checked against the caches (4). When an argument is not cached, the database
is queried (5). If the query was successful, the result is added to the appropriate
cache and written to the label L of the argumentA (6). If the argument is neither
cached nor stored in the database, we forward the argument (i.e., file hash, URL,
domain, or IP address) to external analysis modules (7) and continue processing
the next arguments. Once an analysis result from an external module is returned
to the Cloud, it is added to the corresponding cache (8). When all arguments of
S are analyzed locally and external modules still process arguments, we either
decline or delay the execution of the syscall to ensure the end hosts’ security or
temporarily approve the syscall (9), similar to the server hello message.

On signature updates, we distribute caching revoked messages for all syscall
arguments in the new signatures. This ensures that these arguments are removed
from the client caches and always forwarded to the Cloud for signature matching.

3.4 Windows Implementation

Our prototype for desktop computers running Windows is split into two com-
ponents, a background service and a syscall hooking library. The service is a
light-weight application running in the background of each client system and
utilizes the madCodeHook framework [11] to inject the library into each running
and every new process. The hooking library is based on a heavily modified ver-
sion of the cuckoomon library utilized by the Cuckoo Sandbox [12] and allocates
a dedicated hook function for each monitored syscall. Once a syscall is invoked

68 M. Kührer, J. Hoffmann, and T. Holz

by a client process, the execution flow is redirected to the respective hook func-
tion, which first performs a look up of the syscall arguments in the locally stored
caches. If not cached at the client, a system call message is sent to the Cloud.
Depending on the results obtained from the caches or the Cloud, the execution
of the native syscall function is then performed or prohibited.

As stated in Section 2, we have to closely select the monitored syscalls to
achieve sufficient performance, thus we limit our monitoring to 29 syscalls and
explain in the following the process how these system calls were chosen. To
discover malware copying or renaming files to hide its presence, we monitor
NtCreateFile and NtFileOpen. Hooking these syscalls, however, might induce
a huge number of invocations, thus we limit the monitoring to two situations.
We monitor NtCreateFile to obtain the filenames of newly created files. Note
that we cannot perform any other investigations as no content is written yet.
We also monitor both syscalls when the file contains a Portable Executable (PE)
header, indicating a Windows executable. As the file paths provided by these
syscalls might include client data such as the user name, we have to pre-process
these paths and normalize user data with predefined values before forwarding
the arguments to the Cloud to enable a comparison across multiple clients. We
further hook syscalls responsible for DNS requests and opening URLs and mon-
itor the socket functions connect, send, and sendto as these syscalls allow us
to closely monitor target IPs and messages sent over the network. To only in-
spect the header data of a transmission, we limit the size of monitored messages
to a minimum of 64 bytes and a maximum of 25% of the message length and
only investigate the very first message sent over each socket. To protect the data
privacy, we operate on hashed values only, thus split the network messages at
specific delimiters, perform cryptographic hash operations on each argument in-
dividually, and look up every hash value in a cache covering malicious message
fragments (e.g., keywords used by malware). As malware often creates distinct
mutex names when probing for an already infected client system and installs
itself as a service using a specific name, we also monitor syscalls related to these
events. To detect and prevent the execution of malware at the earliest possible
time, we trace ShellExecuteExW and CreateProcessInternalW.

To also track malicious activities in offline phases, we implement multiple fail-
over solutions. First, we rely on adjustable security policies such as terminating
the application or prohibiting specific types of syscalls (e.g., network operations)
once uncached syscalls are invoked. Further, the hooking library maintains a
local storage in which invoked syscalls are logged, while we approve or decline
the syscalls depending on the security policies. Once the connection to the Cloud
is restored, the recorded syscall information is replayed. The end host further
logs invoked syscalls once a syscall is temporarily approved until an updated
analysis result is received. To prevent manipulations by malware, we make use
of secure log files [13] in which each entry is part of a cryptographic hash chain to
validate all previous entries. We acknowledge that this solution does not protect
the device against getting infected with malware, yet, the Cloud will block an
infected device once the syscalls resembling the malicious behavior are replayed.

CloudSylla: Detecting Suspicious System Calls in the Cloud 69

3.5 Android Implementation

To also evaluate our approach on mobile devices, we developed a prototype for
Android, a middleware running a modified Linux kernel. We split our prototype
into two components, a kernel module and a Java application. The kernel module
is the sensitive part of our implementation since even minor issues can destabi-
lize the entire OS. We thus implemented the syscall hooking in the kernel and
moved less essential components such as caching and the Cloud communication
into the app. Similar to Windows, we implemented hook functions to intercept
syscall invocations. Again, these syscalls were systematically chosen to have only
limited impact while maintaining a good visibility into the behavior of the sys-
tem. To monitor file operations, we trace seven file syscalls (e.g., sys creat and
sys rename). We again monitor the network operations sys connect, sys send,
and sys sendto and shorten the inspected messages. Equally to the Windows
prototype, we also track the execution of new processes, defined by sys execve.
In order to filter syscalls of presumably benign default Android processes, we
implemented a whitelist containing paths of common processes, files, and IP ad-
dresses used for inter-process communication. After whitelisting carefully-chosen
services and filenames such as SensorService and /dev/urandom, we were able
to reduce the noise of syscall invocations considerably.

When a process invokes a monitored syscall, the name and path of the pro-
cess and carefully-selected syscall arguments are checked against the whitelist. If
whitelisted, the syscall is approved and the process execution is resumed imme-
diately, otherwise the syscall is forwarded to the app, which checks if the syscall
arguments are stored in the local caching instances. If not cached, we forward the
syscall to the Cloud. Depending on the results obtained from the caches or the
Cloud, the execution of the native syscall function is performed or prohibited.

Particularly for mobile devices, we cannot rely on a stable network connec-
tivity and have to provide fail-over solutions during offline phases (e.g., loss of
signal). Similarly to the Windows prototype, the app maintains a local storage
in which invoked syscalls are logged using secure log files, while we approve or
decline the syscalls depending on the security policies. Again, this information
is replayed once the connection to the Cloud service is restored.

3.6 Signature Generation

There already exists a large body of work on signature generation based on
syscalls [1, 14, 15], thus we do not focus on that part and stick to a straightfor-
ward way to generate the signatures for the evaluation of our approach. Note
that arbitrary signature generation algorithms can be used. To generate signa-
tures based on invoked syscalls, we execute samples of various malware families
in a virtualized analysis environment and record the invoked syscalls. We then
search for sequences of syscalls that can be found in a certain amount of the
samples using a longest common substring (LCS) algorithm. If a LCS of syscalls
is found, it is known to be characteristic for the specific malware family. We
then apply the Levenshtein distance function to measure the similarity of these

70 M. Kührer, J. Hoffmann, and T. Holz

LCS sequences and their arguments. Matching on syscall arguments, however,
can be problematic as specific types of values are defined by a certain amount
of randomness, e.g., file-, or mutex names. To compensate randomness, we first
compute the LCS using the syscall names only (e.g., NtCreateFile), ignor-
ing any arguments. Afterwards, we combine the syscall names with the set of
arguments that have been observed. To perform signature matching, we again
apply the distance function to detect similarities between signatures and invoked
syscalls. We verified our signatures against benign sample sets as discussed in
the next section to avoid side effects caused by common system operations.

4 Evaluation

We now discuss the results of the performed experiments to verify the applica-
bility and reliability of our approach. The evaluation of our Windows prototype
is conducted on a desktop computer using an Intel i7-2600 CPU with 3 GB of
memory and Windows XP (SP 3)—later versions of Windows, however, can also
be deployed. We chose Windows XP to leverage the analysis reports of vari-
ous automated malware analysis systems such as Anubis, which are mostly still
running Windows XP. The mobile prototype is evaluated on a Samsung Galaxy
Nexus device using Android 4.1.2 and kernel version 3.0.31, utilizing WiFi to con-
nect to the Cloud service. The prototype further supports the official Android
emulator using Android 4.2 and kernel 2.6.29 to perform automated analyses of
Android malware samples. During our evaluation, the network latency between
the desktop computer and the Cloud, directly connected via LAN, resulted in an
average of 0.52 ms, respectively, 11.7 ms between mobile device and the Cloud.

4.1 Caching

Table 1. Performance impact of caching

Native Disabled Cloud Full

Test sec. sec. % sec. % sec. %

Windows:
1000 Files 2.74 3.57 130 3.04 111 2.78 101
2000 Mutexes 0.03 1.17 3,900 0.82 2,733 0.03 100
100 Processes 0.52 0.69 133 0.65 125 0.64 123
1000 Sockets 0.31 0.79 255 0.68 219 0.31 100

Android:
200 Files 0.20 1.89 945 1.76 880 0.37 185
100 Processes 2.55 5.71 224 5.62 220 2.59 102
200 Sockets 1.06 2.33 220 1.98 187 1.20 113

We first evaluate the influence of
caching on the performance of the
individual end host implementa-
tions. While conducting this ex-
periment, we disabled external
modules and signature matching
to only measure the impact of
our caching implementation and
the Cloud-to-client communica-
tion. On the desktop computer,
we perform the following exper-
iment consisting of four different tests: i) we create empty files using unique
filenames, ii) create a substantial number of unique mutexes, iii) repeatedly exe-
cute a dummy application that terminates right after invocation, and iv) allocate
multiple sockets and establish connections to an external host in the local net-
work without transmitting data. We repeat each test ten times and calculate the
average on the measured execution times. To determine the impact of caching,

CloudSylla: Detecting Suspicious System Calls in the Cloud 71

we run this experiment four times: i) without injecting our hooking library
(native Windows system), ii) injected library but disabled caches, iii) enabled
caching at the Cloud, iv) enabled caching at the Cloud and the client side. We
perform almost the same experiment on the Galaxy Nexus, except that we skip
Test 2 as Android does not support mutexes. Before starting a test, we flush the
caches to make sure each test run has the same preconditions.

As outlined in Table 1, each individual test lasts considerably longer when
caching is disabled. Enabling the Cloud caches reduces the number of requests
sent to the database as we can rely on already fetched results. Activating the
caches on the client has the largest influence on the execution time since the client
does not interrupt the execution to wait for analysis results from the Cloud. In
fact, full caching improves the performance to a level where the execution times
almost approximate to the results when no syscalls are monitored.

4.2 Windows

Table 2. Cached (C) and
uncached (U) syscalls in-
voked by Windows software

Software C U Total

Adobe Reader 27 3 30
Google Chrome 98 10 108
Internet Explorer 62 5 67
Mozilla Firefox 13 0 13
Ms Media Player 15 1 16
Ms Paint 9 1 10
Notepad 8 0 8
Regedit 8 0 8
Services.msc 197 0 197
Skype 43 2 45
Taskmanager 2 0 2
WinZip 26 1 27

Total 508 23 531

Caching has a huge impact on the performance of
our Cloud-based approach, thus we attempt to cache
as many syscall arguments as possible by creating a
ground truth of trusted arguments, which can be
used as initial values for the caching instances. To
obtain a ground truth set, we set up a fresh installa-
tion of Windows, installed commonly used software
such as browsers, file archivers, and Office software
and executed each application for a few minutes.

Software: To determine the number of syscalls that
still have to be forwarded to the Cloud when full
caching is enabled, we enumerate the cached and
uncached syscalls of common software, as depicted
in Table 2. The software was already installed when
generating the ground truth, thus each program was executed at least once. We
find 508 syscalls cached at the client and 23 syscalls not stored in the caches.
Without caching, we would have to forward 531 syscalls to the Cloud, thus
caching reduces the communication between Cloud and clients significantly. Ex-
ecuting unknown software certainly requires a higher number of requests to the
Cloud on the first execution, however, on second execution, most of these syscalls
presumably are also cached.

Signatures: To evaluate the feasibility of a Cloud-based signature matching,
we leverage the set SMal covering 1,508 clustered malware samples [16]. This
set includes 13 malware families. To obtain signatures, we apply the algorithm
introduced in Section 3.6 on all samples of each family using a Levenshtein-ratio
of 90%. The signature length (i.e., the number of consecutive syscalls required
by a signature) varies between one and nine syscalls.

To verify the correctness and detection capabilities of the signatures, we ana-
lyzed 234,829 samples randomly taken from the malware analysis service Anubis

72 M. Kührer, J. Hoffmann, and T. Holz

since August 2012 and obtained 18,493,498 syscalls to perform signature match-
ing upon. When comparing our signatures against these syscalls, we find 3,323
signature matches. To verify that all matches hit a malicious executable, we re-
quest analysis results of various malware detection services from VirusTotal. As
stated in Table 3, we find 3,406 Anubis samples to belong to one of the malware
families in SMal, while the remaining samples are associated to other families
not covered by our signature generation set. 2,140 matches (62.8%) are detected
as the exact malware variant as found in SMal and are therefore considered cor-
rectly identified by our signatures. For 1,027 samples (30.2%), the signatures do
not hit the exact variant of the family as stated in SMal, yet the VirusTotal re-
sults imply that we detected a different variant from the same family. This shows
that our approach has the capability to tolerate differences malware authors pre-
sumably integrate to evade detection by antivirus software. For 156 signature
matches (4.6%), VirusTotal results include different family names than stated
by our signatures. When manually checking the samples, we discovered multiple
Sality samples to be erroneously flagged by the antivirus vendors. Overall, our
signatures correctly identified 97.6% of the malware samples as malicious. The
false negative rate (i.e., the samples that are not detected by our signatures) is at
2.4%, which is mostly caused by the family Spygames. The signature is a single
send call that transmits a partially randomized string. To detect this family we
would have to set the Levenshtein ratio to a value below 50%, however, that
would lead to thousands of false positives for the other signatures. Other mal-
ware families in the set SMal (e.g., Adultbrowser) are not included in the Anubis
sample set at all, thus we cannot evaluate our signatures for these families.

Table 3. Signature matching results (EF
= Exact Family, FV = Family Variant, FM =
Family Mismatch, FN = False Negative)

(in %)

Family #Samples EF FV FM FN

Allaple 1,951 99.3 0.6 0.0 0.1
Bancos 33 9.1 36.4 54.5 0.0
Casino 27 0.0 100.0 0.0 0.0
Flystudio 38 0.0 10.5 89.5 0.0
Magiccasino 1 100.0 0.0 0.0 0.0
Poison 54 50.0 20.4 14.8 14.8
Porndialer 3 0.0 0.0 0.0 100.0
Sality 1,239 13.9 77.6 7.7 0.8
Spygames 60 0.0 0.0 0.0 100.0

Total 3,406 62.8 30.2 4.6 2.4

Samples submitted to a malware
analysis system commonly are of ma-
licious character. Yet, according to
VirusTotal the Anubis data set also
contains 14,729 unsuspicious samples
of which none is falsely classified to
be malicious by our signatures. To
further verify that our signatures are
not triggered by benign software, e.g.,
ordinary Windows software, we per-
form three additional experiments: i)
we prepare a system with five web
browsers (i.e., Mozilla Firefox, Internet
Explorer, Google Chrome, Opera, and
Apple Safari), disable Flash, Java, and JavaScript and visit the Alexa Top 5,000
websites [17] twice with each browser, ii) repeat the experiment in i), whereas
Flash, Java, and JavaScript are enabled, and iii) set up a fresh Windows host and
manually install and execute several types of updates, commonly used software,
and games. In total, 1,058 different applications are executed. While perform-
ing these experiments, we compared the invoked syscalls against our malware
signatures. Overall, 81,256,875 syscalls with 624,125,933 individual arguments
are invoked. As aimed for, we do not experience a single hit of a signature,

CloudSylla: Detecting Suspicious System Calls in the Cloud 73

thus assume these signatures to be reliable to protect against known malware
without classifying benign software to be malicious.

The third experiment simultaneously serves as a survey to evaluate the user
experience, i.e., whether noticeable delays or problems are encountered. We re-
peat this test three times and find none of the 1,058 applications causing any
problems such as crashes or error messages. For the majority of applications, we
do not encounter any noticeable delays, however, while installing specific soft-
ware (e.g., Microsoft Visual Studio 2012), which copies thousands of files onto
the hard disk drive, we observe minor delays during the installation phase of
the first run. These delays emerge as most of the accessed filenames are nei-
ther included in the initial ground truth nor cached at the Cloud service. When
performing the second and third run, the filenames are still not included in the
initial ground truth of the client (which is wiped after each run), but stored in
the Cloud caches, resulting in almost no noticeable delays during these runs.

4.3 Android

Table 4. Cached (C)
and uncached (U)
syscalls invoked by
pre-installed apps

Application C U Total

Browser 25 2 27
Calculator 25 1 26
Calendar 19 1 20
Contacts 20 1 21
Deskclock 20 1 21
Gallery 26 2 28
MMS 25 0 25
Settings 21 1 22
Videoeditor 23 1 24

Total 204 10 214

We again build a ground truth data set containing
syscall arguments of pre-installed and therefore likely
benign software. Similarly to Windows, we execute
these apps and classify each invoked syscall argument
as trusted.

Apps: We execute nine pre-installed apps to determine
how many syscalls are not covered by the ground truth
and have to be analyzed by the Cloud. As shown in Ta-
ble 4, we experience a small amount of uncached syscalls
as most of the data is already stored in the caches.

Android is heavily built around the feature to install
third-party apps, thus we also investigate how many
syscalls are uncached when executing external apps for
the first, respectively, second time as their syscall arguments might not be cov-
ered by the ground truth. As depicted in Table 5, we select ten commonly used
apps and record the number of syscall invocations. We execute each app once
to remove potential welcome screens and specify credentials of test accounts for
specific apps (e.g., Facebook and Twitter). We then reset the caches to the initial
ground truth values to ensure that none of the values got cached when preparing
these apps. When executing the apps for the first time, 516 syscalls are already
covered by the ground truth, yet we still have to analyze 221 unknown syscalls
at the Cloud. When executing the apps a second time, the caching strategy re-
quires merely 25 syscall analyses at all, most of them caused by Instagram. We
thus argue that caching improves the performance of our approach significantly,
on desktop computers and mobile devices for known and unknown software.

Signatures: To evaluate the Cloud-based signature matching on Android, we
select two distinct malware families, namely the spy app Gone in 60 seconds
(Gi60s) and the banking trojan Carberp. We execute one sample of each family

74 M. Kührer, J. Hoffmann, and T. Holz

and manually extract a signature based on the invoked syscalls. The signature of
Gi60s depends on two consecutive sys sendto syscalls that forward user data to
external servers. The signature of Carberp is based on five syscalls invoked at the
initialization phase of the app. To validate the signature matching we execute
four different samples of Gi60s and two samples of Carberp on the mobile device
and find our signatures to correctly classify all samples as malicious.

5 Discussion

Table 5. Cached (C) and uncached (U)
syscalls invoked by commonly used apps

1st run 2nd run

Application C U Total C U Total

Adobe Reader 11 3 14 14 0 14
Angry Birds 36 19 55 50 0 50
Google Chrome 46 71 117 108 3 111
Facebook 191 12 203 101 0 101
Mozilla Firefox 53 38 91 83 0 83
Instagram 31 18 49 33 18 51
Shazam 35 14 49 47 2 49
Twitter 47 7 54 38 0 38
VLC Player 4 4 8 27 1 28
Winamp 62 35 97 93 1 94

Total 516 221 737 594 25 619

The main argument to move the de-
tection of malicious activities from end
hosts to a Cloud service is that we as-
sume the end hosts to be significantly
less secure compared to the Cloud
since a centralized system is maintained
by experienced personal. Especially the
currentness of detection algorithms and
signatures is presumably better on a
Cloud-based service than on individual
end hosts, mostly maintained by regular
users. Since operators have to maintain
a single service only, updates of the de-
tection mechanisms can be conducted in an easy way to quickly react to incidents
or to enforce security policies. Further, the centralized strategy permits the op-
erators to closely monitor and quarantine recently infected clients. If operators
would have to be responsible for updating the security software on every client
individually, they probably would be overwhelmed by the number of clients, es-
pecially when also considering mobile devices that are becoming more popular.

The Cloud service is connected to existing firewall and intrusion detection
systems to immediately apply security measures such as blocking a client from
accessing particular infrastructure in the case of an incident. Further, when a
client connects to the network, it is limited to communicate with the Cloud ser-
vice at first. If the client does not instantiate a connection to the Cloud or stops
communicating with the Cloud (e.g., after approving a syscall temporarily), the
device is flagged as potentially dangerous and its network connectivity is revoked.
A client not communicating with the Cloud can have multiple reasons: either
the host is not participating in the Cloud-based security strategy yet (e.g., a new
mobile device) or the device got infected during an offline phase and malware
deactivated the security mechanisms. Nevertheless, as long as unprotected and
infected clients are blocked from the network, no other clients can be harmed.

Applying a Cloud-based security approach, however, might also raise severe
drawbacks. Forwarding syscalls to the Cloud and delaying the execution of end
hosts’ processes causes an overhead due to the high number of invoked syscalls on
every client. Without selecting a partial set of syscalls to monitor and applying
efficient caching, this would be a serious issue for the clients’ performance and

CloudSylla: Detecting Suspicious System Calls in the Cloud 75

users’ experience. Our approach thus makes exhaustively use of mechanisms to
limit the number of requests to the Cloud. The evaluation results indicate that
the overhead is reasonable in practice as almost no noticeable delays are induced.

A further limitation of a Cloud-based approach is the requirement of a con-
tinuous network connectivity, which cannot be guaranteed for specific types of
end hosts like mobile devices. Still, we consider our approach to be feasible in
well-established networks in which most of the clients such as desktop computers
are permanently connected. Mobile devices could fall back to UMTS/GSM in
areas without WiFi connectivity, however, GSM networks are significantly slower
than WiFi connections. When evaluating the impact of caching in Section 4.1,
creating 200 files or executing 100 processes both required 8 seconds using GSM
and full caching. Yet, the number of uncached syscalls highly depends on the
app, as shown in Table 5. Many apps invoke only a limited number of uncached
syscalls that can also be transferred in a reasonable time using GSM networks.

A general limitation of a network service is the central point of failure. This
problem can be avoided by providing fail over solutions to ensure the availability
of the centralized system. Further, we can split the Cloud service into one master
node and multiple slaves to distribute the load and to make the service resilient
to faults of single servers. An additional benefit is that clients connect to the
nearest node to reduce the network latency and the delay on the clients’ side.

A centralized protection service is a promising target for adversaries, e.g., by
infiltrating or taking down the service. The Cloud service thus has to be protected
by reasonable security measures and monitored closely to identify and prevent
attacks. It also has to be taken care of end hosts attempting to trick the Cloud,
e.g., by malware taking over the clients’ security application and emulating the
communication to the Cloud. A solution includes the usage of a kernel-based
client application. Encrypted and signed communication channels between Cloud
and clients are mandatory to protect the integrity and confidentiality of the
inter-communication. Secure channels also eliminate the risks of eavesdropping,
replay, man-in-the-middle, and other serious attacks. We further have to address
the issue of processing plain syscall arguments at a network service as proprietary
data is relayed to a centralized system not under the control of the individual
user. Yet, this drawback can be bypassed, e.g., by operating on hashed arguments
only. Information sent to the Cloud thus cannot be converted back to plain text,
hence we gain a privacy preserving approach, assuring the users’ confidentiality.
The functionality of detection mechanisms is not affected by hashed arguments,
yet techniques such as blacklist comparison need to be altered to operate on hash
values. When switching to hash functions, we have to ensure the hashes to be
resilient against attacks, e.g., by applying Hash-based Message Authentication
Codes [18] using individually shared keys between the Cloud and the end hosts.

6 Related Work

Analyzing system calls to detect malicious behavior has a long history on desk-
top computers. Some approaches [1, 19] develop benign behavior profiles based

76 M. Kührer, J. Hoffmann, and T. Holz

on multiple consecutively invoked system calls to identify anomalous behavior.
Mutz et al. [20] analyze the relationship between system call arguments and the
invocation context to detect malicious actions. Stinson and Mitchell [2] perform
botnet detection based on system calls in combination with tainting untrusted
memory values. Srivastava and Giffin [21] propose an approach that combines
the analysis of network traffic with a hypervisor-based identification of malicious
behavior at the user-, and kernel-level. Burguerae et al. [22] show that system
call analysis is also feasible on mobile devices.

The idea of detecting malicious software at a centralized service is already
explored in many approaches [3–5]. Oberheide et al. [3] present CloudAV, which
utilizes a light-weight application running on end hosts to suspend the exe-
cution of an unknown binary, forward the binary to the Cloud, and perform
or decline its execution based on the analysis result of the Cloud. Further-
more, Oberheide et al. [5] discuss an approach to move CloudAV from desktop
computers to mobile devices. A more sophisticated approach is presented by
Martignoni et al. [23] in which users may delegate the execution of potentially
malicious applications to a Cloud service. As a result, the unknown process is
executed in the Cloud, however, by interchanging specific system calls, the ap-
plication acts like it is executed locally on the client.

7 Conclusion

We introduced a Cloud-based security approach to move the detection of ma-
licious activities from individual end hosts to a centralized network service. To
determine if activities on client systems are malicious, every end host forwards
selected API and system calls to a Cloud service and awaits approval or denial to
execute these operations locally. To evaluate the applicability of our approach,
we implemented prototypes for desktop computers and mobile devices and found
this protection strategy to be feasible in practice as almost no delays are caused
on the client which would interfere with the usability of the end hosts.

Acknowledgment. This workwas supported by the German FederalMinistry of
Education and Research (Grants 16BY1110/MoBE and 16BY1020/MobWorm).

References

1. Forrest, S., Hofmeyr, S., Somayaji, A.: The Evolution of System-Call Monitoring.
In: Proceedings of the 2008 Annual Computer Security Applications Conference,
ACSAC 2008, pp. 418–430. IEEE Computer Society, Washington, DC (2008)

2. Stinson, E., Mitchell, J.C.: Characterizing Bots’ Remote Control Behavior. In:
Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 89–108.
Springer, Heidelberg (2007)

3. Oberheide, J., Cooke, E., Jahanian, F.: CloudAV: N-Version Antivirus in the Net-
work Cloud. In: Proceedings of the 17th Conference on Security Symposium, SS
2008, pp. 91–106. USENIX Association, Berkeley (2008)

CloudSylla: Detecting Suspicious System Calls in the Cloud 77

4. Harrison, K., Bordbar, B., Ali, S.T.T., Dalton, C.I., Norman, A.: A Framework for
Detecting Malware in Cloud by Identifying Symptoms. In: Proceedings of the 2012
IEEE 16th International Enterprise Distributed Object Computing Conference,
EDOC 2012, pp. 164–172. IEEE Computer Society, Washington, DC (2012)

5. Oberheide, J., Veeraraghavan, K., Cooke, E., Flinn, J., Jahanian, F.: Virtualized
In-Cloud Security Services for Mobile Devices. In: Proceedings of the First Work-
shop on Virtualization in Mobile Computing, MobiVirt 2008, pp. 31–35. ACM,
New York (2008)

6. Gu, G., Perdisci, R., Zhang, J., Lee, W.: BotMiner: Clustering Analysis of Network
Traffic for Protocol- and Structure-Independent Botnet Detection. In: Proceedings
of the 17th Conference on Security Symposium, SS 2008, pp. 139–154. USENIX
Association, Berkeley (2008)

7. Bayer, U., Krügel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware.
In: Proceedings of the 15th European Institute for Computer Antivirus Research
(EICAR 2006) Annual Conference (April 2006)

8. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching,
vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)

9. Virustotal: VirusTotal Private API v2.0 (2014)
10. Google: Safe Browsing API v2.0 (2014)
11. Rauen, M.: madcodehook Framework (2014), http://madshi.net/
12. Guarnieri, C.: Cuckoo Sandbox (2014), http://www.cuckoosandbox.org/
13. Schneier, B., Kelsey, J.: Secure Audit Logs to Support Computer Forensics. ACM

Trans. Inf. Syst. Secur. 2(2), 159–176 (1999)
14. Wang, L., Li, Z., Chen, Y., Fu, Z., Li, X.: Thwarting Zero-Day Polymorphic

Worms With Network-Level Length-Based Signature Generation. IEEE/ACM
Trans. Netw. 18(1), 53–66 (2010)

15. Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically
Generating Models for Botnet Detection. In: Backes, M., Ning, P. (eds.) ESORICS
2009. LNCS, vol. 5789, pp. 232–249. Springer, Heidelberg (2009)

16. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic Analysis of Malware Be-
havior using Machine Learning. J. Comput. Secur. 19(4), 639–668 (2011)

17. Alexa Internet, Inc.: Top 1,000,000 Websites (2014)
18. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-

thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

19. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection using Sequences of
System Calls. J. Comput. Secur. 6(3), 151–180 (1998)

20. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.A.: Exploiting Execution Con-
text for the Detection of Anomalous System Calls. In: Kruegel, C., Lippmann,
R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 1–20. Springer, Heidelberg
(2007)

21. Srivastava, A., Giffin, J.: Automatic Discovery of Parasitic Malware. In: Jha, S.,
Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 97–117. Springer,
Heidelberg (2010)

22. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-Based Mal-
ware Detection System for Android. In: Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM 2011, pp. 15–26.
ACM, New York (2011)

23. Martignoni, L., Paleari, R., Bruschi, D.: A Framework for Behavior-Based Malware
Analysis in the Cloud. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS,
vol. 5905, pp. 178–192. Springer, Heidelberg (2009)

http://madshi.net/
http://www.cuckoosandbox.org/

Postman: An Elastic Highly Resilient Publish/Subscribe
Framework for Self Sustained Service Independent P2P

Networks�

Gil Einziger and Roy Friedman

Computer Science Department
Technion

Haifa 32000, Israel
{gilga,roy}@cs.technion.ac.il

Abstract. Self sustained service independent P2P networks aim to serve as a
cheap alternative to traditional cloud providers. In such networks, users who add
resources to the network are given strong (typically monetary) incentives to keep
their devices connected for long periods of time. Further, in such networks, there
is a decoupling between the machines that form the P2P network and the devices
used to consume services from the network. In particular, users may access ser-
vices offered by the network through their mobile devices. In fact, a user may
obtain services even if he did not donate any resources, but is willing to pay for
the services he consumes either through a service fee or by viewing ads, similarly
to cloud services.

This work introduces Postman, a publish/subscribe architecture tailored for
self sustained service independent P2P networks. Postman is designed to pro-
vide its users with a self-organizing, scalable, efficient and churn resilient pub-
lish/subscribe service. Postman achieves this using a novel client/mailbox archi-
tecture where a publish/subscribe system delivers content to a highly diverse
set of mailboxes. Mailboxes are hosted on elastically selected set of peers and
each mailbox accumulates multiple topics from many clients. Clients then ful-
fill their subscriptions by polling the relevant mailboxes, while the mailboxes act
as subscribers of the actual publish/subscribe mechanism. Our experimental re-
sults show that the client/mailbox architecture significantly reduces the number
of subscriptions the publish/subscribe mechanism handles. In addition, the pub-
lish/subscribe mechanism handles a much more uniform subscription pattern than
the real subscription pattern, obtains very high delivery rates and is highly robust
to failures and churn.

1 Introduction

Publish/subscribe is a popular programming paradigm for distributed computing as
it offers decoupling of information producers from consumers [3,8,13]. Commercial
applications in various domains such as social applications (e.g., micro blogging and
status), finance (e.g., stock quotes), command and control (both military and civilian)
utilize this paradigm. In particular, in publish/subscribe, information producers, called

� This work is partially supported by ISF grant 1247/09 and the Technion HPI center.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 78–92, 2014.
c© Springer International Publishing Switzerland 2014

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 79

publishers, publish events to the system, without knowing who exactly will receive it.
Yet, the information is often characterized with one or more tags (sometimes also called
topics). Information consumers, called subscribers, register subscriptions that describe
the types of information they are interested in. It is then the job of the system, or middle-
ware, to match published events to corresponding subscribers, and deliver each event
to all of its subscribers. Publish/subscribe systems differ in the expressiveness power
that they offer to their clients, as well as in their architecture, scalability and efficiency.
Specifically, some systems only enable subscribers to register to a single topic and are
referred to as topic based publish/subscribe. At the other extreme, subscriptions can re-
fer to multiple topics and even be expressed as range queries on these topics, resulting
in what is known as content based publish/subscribe. As an example, one may wish
to register to all events that refer to weather forecasts for Hawaii that are issued on
Mondays or Tuesdays with wind force above 10 Knots.

Publish/subscribe systems can be implemented centrally or in a distributed manner.
Centralized systems have the advantage of retaining a global image of the system at all
times, enabling intelligent optimizations during the matching process. However, pro-
viding scalable publish/subscribe in a centralized manner is costly.

Distributed, and in particular P2P-based, publish/subscribe systems have been in-
troduced in the past to facilitate scalability at a greatly reduced cost compared to the
centralized ones. However, in the vast majority of these systems, it is assumed that a
user always consumes his content at the same peer. In particular, most P2P systems do
not distinguish between the user and his/her hardware. Also, some of these systems as-
sume that the entire P2P network is dedicated for the publish/subscribe application, and
therefore manipulate the network’s overlay to fit the publish/subscribe goals.

In contrast, we target a new generation of P2P systems in which individuals are given
strong incentives to keep their donated machines and resources available to the P2P net-
work for long periods of time. For example, owners of donated machines can be paid for
the services they provide with money generated by the system, collected from the end
users of the system either through subscription and usage fees or through advertisements.

This way, such P2P networks can serve as cheap alternatives to traditional cloud
providers since it saves much of the expenses of buying and maintaining the cloud
infrastructure. Further, this model decouples between the devices used to access the
service and the machines used to run the service, which makes it adequate for the realm
of mobile clients.

Virtual coins such as Bitcoin are a degenerated example that validate the promise
of this model. People donate machines to the Bitcoin network in order to help mine
Bitcoins and process Bitcoin transactions in exchange for being rewarded with Bit-
coins. Another example is SpaceMonkey.com, which rents special storage devices that
its customers place at their homes and connect to the Internet. Each such customer gets
a cloud-like sharing and backup service with a very large capacity cheaper than the
cost of similar true cloud based services. The data itself is replicated among the devices
rented by other users.1

1 Let us also mention AoTerra GmbH and the European ParaDIME project, in which a cloud
is built from racks placed at people’s houses in exchange for these racks serving as heating
devices for these homes as a side effect of acting as cloud servers.

80 G. Einziger and R. Friedman

In these two example, the clients benefit from the service regardless of the devices
they use to access the network, and there is a strong incentive to keep the machine
available to the network as much as possible. Yet, in the full fledged version of the self
sustained service independent P2P networks, the same P2P network can host multiple
services rather than being dedicated to one of them. In this work, we investigate how
to implement publish/subscribe systems over self sustained service independent P2P
networks.

Specifically, we introduce Postman, a self-organizing elastic publish/subscribe ser-
vice based on a flexible distributed architecture. Unlike most P2P systems however,
and in accordance with the self-sustained P2P networks model, postman decouples the
machines that operate the service from the users of the service. To that end, Postman
envelops a traditional publish/subscribe mechanism with a layer of indirectness. The
subscribers of the publish/subscribe mechanism are called mailboxes and each of them
serves as a proxy (or rendezvous point) for many clients. Thus, instead of disseminat-
ing every event to a potentially large number of devices, in Postman an event is only
propagated to a small set of relevant mailboxes. Interested clients fetch the events that
match their interests by periodically polling only the corresponding mailboxes.

Below, we describe Postman, including its internals and its implementation and ex-
plore its performance characteristics. The performance study was carried by emulation,
in which the actual implementation was run with both artificial and Twitter based traces,
as well as large scale simulations using the same traces. The results show that Postman
obtains very high delivery ratios. Moreover, the mailbox architecture reduces the scale
of the publish/subscribe problem (w.r.t. traditional P2P approaches), making the deliv-
ery process highly efficient. Finally, since each mailbox aggregates multiple subscrip-
tions, the subscription pattern exposed to the publish/subscribe infrastructure is much
more uniform and stable than the subscription pattern exposed by any individual sub-
scriber. This simplifies the dissemination mechanism and reduces the rate of changes
that this mechanism needs to deal with.

An important aspect of Postman that becomes evident in our performance evaluation
is its significant robustness to failures and churn. In particular, low rates of failures
and churn make no noticeable impact on the delivery rates and latencies of Postman.
Further, Postman is able to self recover from massive failure and churn events within
several minutes of operation, as explained below. The rest of this paper is organized
as follows: In Section 2, we present our basic assumptions and goals. We introduce
Postman in Section 3. The experimental performance results are shown in Section 4.
We discuss related work in Section 5 and conclude with a discussion in Section 6.

2 Assumptions and Goals

We assume a distributed network composed of donated machines that act as peers in
the system. The P2P system serves as a substance for the implementation of multiple
distributed services and applications. Users access the network from (potentially mo-
bile) client devices, which are (potentially) different from the set of donated machines.
Hence, peers are typically relatively strong computers connected to the Internet through
a fixed broadband connection, whereas clients are often battery operated resource lim-
ited devices with intermitted connectivity and lower effective bandwidth.

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 81

Donated machines may fail by crashing or disconnecting from the network. Such
disconnections may be temporary or permanent. In addition, new donated machines
may be added to the network. The rate at which donated machines (new or old) connect
and disconnect (or fail) is called the churn rate of the system. It is an a-priori unknown
parameter that can change from one deployment to another as well as during the lifetime
of the network.

The goal of this work is to implement an efficient, scalable, churn and failure resilient
publish/subscribe service for this network. The service should be elastic is the number
of donated machines it employs, reflecting the temporal load on the publish/subscribe
service as well as the network conditions. Further, we rely on the existence of an un-
derlying logical overlay [3,13,16]. Yet, as the service is only one of potentially many
services running over the P2P network, its implementation should not alter the existing
P2P infrastructure, as the latter could hurt the performance of other services utilizing it.

Given that the churn rate is unknown and can change over time, our solution should
self-adapt to it. In particular, during stable periods, in which the churn rate is very low,
we expect the publish/subscribe service to be communication efficient. In other times,
we are willing to accept higher communication overheads in return for failure resiliency.
This adaptivity should take place autonomously.

Finally, we assume the existence of an incentive based mechanism that motivates
users to donate resources to the system, whose implementation is out of scope for this
paper. An example to such a mechanism can be found in [9] that explain how to im-
plement a P2P advertisement mechanism. Given the above mentioned incentive mech-
anism, our load sharing goal is simply to refrain from overloading nodes beyond what
they are willing to tolerate rather than obtaining load balancing.

3 Postman

As mentioned above, in Postman we divide the notion of a subscriber into a client and
a mailbox. Mailboxes are donated machines that are used as subscription proxies for
clients, as depicted in Figure 1. Hence, Postman defines a unique way in which clients
discover mailboxes and interact with them in order to register their subscriptions and
obtain their corresponding events. As elaborated below, this mechanism is also the one
that provides Postman with its elasticity property. In addition, Postman has a protocol
for disseminating events among the relevant mailboxes in a way that is efficient when
the system is static, yet is robust to failures and churn when they occur. To that end, the
rest of this section is divided in two parts: Section 3.1 explains the interaction between
clients and mailboxes while Section 3.2 presents the event dissemination protocol be-
tween mailboxes.

3.1 Client/Mailbox Interaction

Here, we focus on the clinet/mailbox interaction. This includes how to locate an existing
mailbox and subscribing to it, prompting the creation of a new mailbox (when needed),
as well as how subscribed clients obtain their corresponding events from the mailboxes.

82 G. Einziger and R. Friedman

Fig. 1. General Postman architecture - clients use the home node to discover mailboxes, and then
contact these mailboxes directly

Client Application and Home Node. As indicated above, a publish/subscribe client
application is a light weight application, used to grant access to the network. The ap-
plication is responsible for identifying the user and remembering the list of mailboxes
the user is subscribed to. Machines running client applications are often not part of the
network and cannot perform network related activities on their own. Instead, these ap-
plications contact one of the donated machines, e.g., through a REST API. We call the
machine a client is connected to the home node for that client. This node can either
come from some centralized bootstrap service publishing random node IP addresses, or
be a machine that is owned by the client.

The client application discovers mailboxes through the home node. This is done us-
ing the probabilistic lookup service (PLS) described below. After mailboxes are discov-
ered, the application accesses them directly. The applications maintain a data structure
containing their subscriptions, the mailboxes that provide them and other topics these
mailboxes provide. As we discuss in more details below, the client application polls
these mailboxes in order to obtain events matching its subscriptions.

Probabilistic Lookup Service (PLS). In order to discover mailboxes, Postman uses
a hints/random lookup technique. That is, each mailbox distributes a hint message of
the form <Predicate, Owner> to all its overlay neighbors at a specific radius. The
Predicate is a Bloom filter containing all the topics the Owner is subscribed to,
while Owner contains the contact details of the mailbox that distributed the hint.

In order to discover mailboxes, we use a random walk message of the following
form: <Origin, TTL, Topics, Visited, Hits, Message>. These ran-
dom walk lookups are routed in the system until the TTL runs out, at which point they
return back to the sender using the Origin field. Each node that participates in routing
the lookup adds its ID to the Visited list. This way, lookup messages avoid revisiting

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 83

nodes multiple times. Each node that receives a lookup message checks whether all the
Topics included in the message are satisfied by the Predicate field of any of its
stored hints. When a match is found, the lookup message is routed directly to the hint’s
Owner.

Since Bloom filters may have false positives, mailboxes have to check if they indeed
provide the topics of the message (according to the Topics field). Mailboxes will
add their contact details to the Hits field either if the mailbox is already subscribed to
the lookup topics, or if the Hits field is empty and the mailbox is still available for
handling additional topics (as described later). In case the mailbox is subscribed to the
topic, it also records all other mailboxes included in the Hits field of the lookup as
additional mailboxes subscribed to these topics for future dissemination.

Ultimately, at the end of the TTL, the lookup message is routed back to its original
sender (according to its Origin field). We say that a random lookup was successful if
it returned to the original sender with a non-empty list of mailboxes in the Hits field.

Finally, to overcome failures and churn, when a node discovers that a hint Owner is
no longer online, it can simply remove the corresponding hint.

Client Application Subscribing Mechanism. For a client application, being sub-
scribed to a topic means knowing at least a single mailbox that provides the topic. Thus,
when the user orders the client application to subscribe to a new topic, the client appli-
cation first checks if it is aware of a matching mailbox. If so, all the client application
needs to do in order to subscribe is to ask this mailbox about the requested topic. Else,
if the client application is not aware of a matching mailbox, it issues a small number
of random lookups as described above and waits. These lookups are sent through the
home node, and the result will be returned directly to the client. If any of the lookups
succeeds, the client adds the mailboxes listed in the lookup Hits field to its data struc-
ture. The client is now subscribed to the topic and can contact these mailboxes to fetch
publications. In addition, clients also ask mailboxes about all the topics they provide,
for future use.

Polling and Temporary Subscribing. Mobile users are typically not connected con-
tinuously to the network and many may even connect for brief periods at a time. Hence,
we combine two complementing mechanisms in order to ensure delivery of all relevant
events to the client application. Specifically, mailboxes hold all publications they re-
ceive for a certain period, typically 24 hours (this corresponds to typical social network
behavior, in which publications typically have a relatively short period of relevance).
When a client logs into the network, it polls the mailboxes it is aware of for all match-
ing publications it has not received since it was last updated.

In order to continue getting publications, the client can poll the mailboxes period-
ically. However, that would entail both a noticeable delay and excessive traffic when
the rate of relevant events is low. Thus, instead, the client temporarily subscribes to the
mailbox by sending a <Predicate, Owner> like hint to the mailbox. The mail-
box maintains a list of all the clients that subscribed with a TTL of several minutes.
When a publication arrives, the mailbox will distribute it to all subscribers based on
their Predicate and Owner fields. Due to the temporary nature of this subscription,

84 G. Einziger and R. Friedman

the client does not have to notify the mailbox if it leaves the network. Hence, clients that
remain connected must renew their subscriptions before they expire. In order to avoid
clock synchronization issues, each such subscription renewal also doubles as a polling
request.

3.2 The Publish/Subscribe Mechanism

So far, we discussed the delivery mechanism between clients and mailboxes. Next, we
describe how publications are disseminated between mailboxes. To that end, we use
3 complementing mechanisms that enable mailboxes to both learn about each other
and disseminate publications among themselves. First, each mailbox that obtains a new
publication disseminates it through a spanning tree of the mailboxes it is aware of that
are also interested in the publication. Second, mailboxes send periodic PLS messages,
disseminated as random walks, in order to both disseminate publications to interested
mailboxes they are unaware of and learn on the fly about such mailboxes. Finally, in or-
der to reduce the number of required PLS messages, and following the observation that
clients in any case interact with multiple mailboxes, we transform clients interactions
into an out-of-band gossip mechanism that helps disseminate publications to mailboxes
and enable mailboxes to learn about each other. The rest of this section is devoted to
explaining these mechanisms and their orchestration.

Specifically, when a user wishes to publish a new event, we assume the user is already
subscribed to this event’s topics. This means the user already knows a mailbox m for
the topic. The user will send a publication message of the form <Topic, Content>
to mailbox m. As a result, mailbox m will publish the message in two different ways.
First, it uses the spanning tree distribution algorithm described in Section 3.2 to deter-
ministically distribute the publication to all other mailboxes it is aware of in an efficient
manner. Second, it sends a small number of PLS random walk messages in which the
publication is stored in the Message field. However, in order to avoid reaching mail-
boxes that already appear in the spanning tree, the Visited and Hits fields of the
PLS message is initiated with the list of the mailboxes known to this node.

Clearly, when a node receives a publication over the spanning tree, it continues its
dissemination as well as forwards the publication to subscribed clients (if any) and
storing it for possible future polling by clients. Yet, in the case of the first delivery of
a PLS message for a given publication, the receiving node adds itself to the Hits list
and forwards two copies of the PLS message to random unvisited nodes. Additionally, it
extracts previously unknown mailboxes for this topic from the Hits list of the received
PLS message.

Notice that when a mailbox subscribes to a topic, the PLS messages that it generates
and the ones passed by it automatically notify this fact to other mailboxes. Hence, there
is no need for a special mailbox subscribing mechanism.

Spanning Tree Distribution Algorithm. As all mailboxes that need to participate in
the spanning tree are known to the mailbox that initiates the dissemination, any known
deterministic construction of a spanning tree can be used. E.g., to generate a tree of
degree k, the IDs of these mailboxes can be sorted into an array that is split into k equal

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 85

(a) Each publication is published to
known mailboxes (green) on a span-
ning tree. In addition, a PLS mes-
sage is routed attempting to dis-
cover unknown mailboxes (red). It
is enough for a single PLS message
from the green group to discover a
single mailbox in the red group.

(b) In this case, both groups merge
and subsequent publications reach
the new group through the spanning
tree.

Fig. 2. An example of the publish/subscribe mechanism

Algorithm 1. Handle Publish Algorithm
1: function HANDLEPUBLISH(LookupMessage lookup)
2: if isNew(lookup.Messageh) then
3: SpanningTreeDistribution(lookup.Message)
4: ProbobalisticDistribution(lookup.Message)
5: AddNewPublication(lookup.Message)
6: end if
7: return
8: end function

ranges. The message is then disseminated to the first node in each range. If the length
of each range is more than k, this process repeats recursively until all nodes get their
message.

Client/Mailbox Gossip Mechanism. As mentioned above, we utilize client polling
messages as an out-of-band gossip mechanism to disseminate both publications and in-
formation about mailboxes. Recall that clients poll a different set of mailboxes every
time they log-in. Each time the client contacts a mailbox, it shares with the mailbox
some of the publications it has previously received. Mailboxes that missed publications
can recover them this way. The client also notifies each such mailbox about other mail-
boxes it is aware of that handle the requested topic(s).

Typically, clients do not connect all the mailboxes every poll round. However, when
the client encounters an unresponsive mailbox or a missed publication. The client per-
form an additional poll round, this time contacting all known mailboxes. This behaviour

86 G. Einziger and R. Friedman

helps the client ensure that all relevant publications are delivered, it also improves the
consistency of mailboxes.

Failure and Churn Recovery. In Postman, when all mailboxes are lost, a client simply
resubscribes. In order to speed the mailbox heal rate, we allow clients to perform a
second polling round in case resubscribing took place due to churn. The second polling
round ensures that new mailboxes discovered or created by the resubscribing are also
polled. This second polling significantly reduces the time it takes Postman to recover
from failures and churn, since otherwise the client has to wait for the next polling round
in order to satisfy all its subscriptions (typically, several minutes).

4 Experimental Results

In our experimental evaluation, we measure the delivery rate and message cost of our
protocol. We also evaluate the merits of the Postman mailboxes approach, by comparing
the mailboxes topic distributions and the amount of topics clients need to poll in order
to satisfy their subscriptions, as well as study the ability of Postman to handle failures
and churn, and in particular to recover from massive churn events.

Our measurements where performed over our Java based implementation of Post-
man [1] in two complementing settings: (1) a full implementation in which Postman
was run above the [6] implementation of the Kademlia DHT [14] over a real LAN net-
work, and (2) a simulated network setup in which Postman was run above a network
simulation layer. Let us stress that both settings have exercised the actual Postman code!
The simulated network setup enabled us to reach network sizes of tens of thousands of
nodes. In contrast, due to resource constrains, using the full implementation we were
only able to experiment with up to 1,500 nodes, but it served to validate the results of
the simulated network settings.

We have used two sets of workloads: a synthetic workload in order to study the per-
formance characteristics of our system as well as a real life Twitter trace containing
the behavior of over 30k users produced by [20]. In the synthetic workload, we have
generated subscriptions and events whose topics were chosen from the uniform distri-
bution and the heavy-tailed Zipf-like distribution (with α = 0.9). In the case of Twitter,
the events and subscriptions were extracted from the trace as described below. As been
reported in [12,17], Twitter subscription patterns contain two different kinds of user
types, celebrities with thousands of followers and social users with a small number of
followers. Last, we also implemented Quasar [19], and tested it as an example of a
probabilistic publish/subscribe algorithm2 (see Appendix).

4.1 Delivery Rate and Communication Load

In the following experiment, we give mailboxes 10 minutes to stabilize, and then pub-
lish a burst of publications. In the burst, each client publishes one event for each topic it

2 We note that Quasar was developed with a social network graph in mind rather than a structured
overlay

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 87

(a) Synthetic with P2P nodes. (b) Twitter (c) Total number of messages
handled in the system. The
busy nodes are mailboxes

Fig. 3. Delivery ratio as a function of preparation time

Fig. 4. Comparing the registration pattern of Postman to the client registration pattern in the
system

is subscribed to. This is performed with 500 and 1,500 P2P nodes in the full implemen-
tation of the system as well as with 1,500 and 30,000 nodes in the case of the network
simulator environment. In both settings, each node has 3 clients and each client is sub-
scribed to 3 topics. Further, the mailbox polling frequency, which controls the delivery
latency, is set to once every 10 minutes.

In addition, we have run Postman over a selected time period of the Twitter trace and
measured delivery rate over time. Delivering events in this workload is tricky since we
measure delivery rate until the sampling ends. Events that where not delivered during
the sample are considered not delivered.

As can be seen from Figure 3, Postman achieves almost 100 percent delivery rate
after 10-20 minutes. Also, the results of the full implementation and the network simu-
lator environments are the same when ran with the same number of nodes.

The high delivery rate is coupled with a reasonable communication load. As can be
seen in Figure 3(c), even the most congested mailboxes only handle several messages
per second. Further, mailboxes can offload traffic from themselves by simply not an-
swering some of the poll requests. In that case, the poll requests will either be delegated
to another mailbox, or a new mailbox will be created.

4.2 Postman Subscription Pattern

We have studied both the client subscription patterns and the mailboxes subscription
patterns. This was done by having all clients register to all their topics and examining
the obtained pattern. As for the Twitter subscriptions, we have sampled the Twitter trace

88 G. Einziger and R. Friedman

(a) A single 10% churn event (b) Repetitive 10% churn
events

(c) Repetitive 100% churn
events

Fig. 5. Effect of suddenly mailbox churn on delivery rate

for one hour intervals and eliminated all users that where not active during this hour.
The obtained registration pattern is the active set of topics during that hour.

As shown in Figure 4, in Postman, all subscriptions concentrate into a relatively small
number of mailboxes. Consequently, the dissemination task of publications becomes
much more manageable than if each event would have to be routed directly to its end
clients. Further, as there is only a small number of mailboxes, there is also a high overlap
between the dissemination trees, enabling sharing of resources and overheads between
trees. Additionally, in the self sustained P2P network model, mailbox machines, being
donated machines whose users are given strong incentives to keep them connected for
long durations, are likely to have a much lower churn rate than client machines, enabling
a more stable and efficient dissemination infrastructure.

Figure 4(c) exhibits another important angle of the subscription pattern. Here, the X-
axis is the popularity of a given topic in terms of the number of clients interested in that
topic. The Y-axis is the average number of mailboxes registered to the corresponding
topic. As can be seen, there are much fewer mailboxes registered to each topic than
clients, and this trend intensifies as the popularity of the topic increases reaching up
to a two orders of magnitude reduction. In other words, the dissemination trees among
mailboxes are fairly small, which was one of the main goals of our work.

4.3 Effects of Churn

In order to test our system’s ability to sustain churn, we first added a small churn rate
of around 1 percent of the mailboxes every 10 minutes to our Twitter runs. However,
we have not seen any noticeable effect on the delivery rate. Hence, we then decided to
experiment with much more dramatic churn rates.

In this test, we first let the system stabilize for 30 minutes and then every 35 minutes
picked 10 percent of our mailboxes at random and crushed them as well as replaced 10
percent of our clients. We then have each client publish a single message on each of its
topics. We measure the message delivery rate every two minutes.

As can be observed in Figure 5, removing 10 percent of the mailboxes only resulted
in a slight increase in the miss rate, which returned to near zero within 20 minutes.
The reason for this is that some of the clients maintain more than one mailbox per
topic. In such a case, if a mailbox that disappeared is selected, after the timeout a new
mailbox will be contacted, resulting in a slight delay of delivery but no loss. As for
clients that know only a single mailbox, it will take these clients a few minutes to

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 89

notice the unavailability of the mailbox, since clients only actively contact mailboxes
every polling round (10 minutes in our configuration). After such a client discovers the
churn, it will re-subscribe to the system. Further, if following such re-subscribing a new
mailbox is created, then this mailbox needs some time to announce itself before it can
recover all lost publications.

In order to further explore the capability of the architecture to repair itself, we de-
cided to repeat the same experiment only this time we crushed 100 percent of our mail-
boxes every 50 minutes. The results of this experiment can be seen in Figure 5(c),
indicating that Postman can even self recover from such a disastrous event. The churn
resilience of our architecture comes from the inaccuracy of the PLS queries. Some-
times, when a client subscribes, it creates a new mailbox or causes a non full mailbox
to subscribe to that topic even though a matching mailbox already exists in the system.
In that case, we have more than one mailbox supplying each topic. These mailboxes
will eventually find each other and each of them will tell its clients about the other one.
Therefore, after the system stabilizes, all the clients are aware of the two mailboxes for
that topic. In addition, we notice an increase in the number of mailboxes after a churn
event, increasing the redundancy of the system.

Let us also note that during massive churn events, clients’ resubscribing and the
creation of new mailboxes generate a large number of PLS messages. The latter expedite
the creation of an updated spanning tree including all new mailboxes.

5 Related Work

Numerous publish/subscribe systems have been implemented and published [3,8,13],
therefore it is not practical to mention all of them. Instead, we discuss some of the
systems that are closer to our work either in concepts or in their goals.

Quasar [19] is a probabilistic publish/subscribe protocol that uses attenuated Bloom
filters [11], random walks and negative information in order to create a signature-less
publish/subscribe mechanism. Quasar was tested on MySpace data and used the social
graph as an overlay graph and yielded around 95 percent delivery rate. In contrast, our
system utilizes the existing P2P overlay since in our model the overlay might be shared
my multiple applications. Since both our scheme and Quasar use Bloom filters and
random walks, in the experimental performance section we compare Postman to Quasar.
Yet, our approach utilizes these concepts only for discovery and gossip, whereas Quasar
employs them for data dissemination.

In [4], the cost of publish/subscribe on a structured overlay is reduced by reorganiz-
ing the overlay network in order to encourage nodes with similar topics subscriptions to
form direct connection to each other. Such an approach is not applicable in our model
(as described in Section 2), as we assume that the P2P overlay is shared by multiple
services and therefore cannot be modified for the needs of a specific service.

SpiderCast constructs a distribution overlay with topic connectivity and low average
node degree [5]. Such an overlay enjoys the benefit that the number of uninterested
participants in the distribution process remains small and the size of the overlay is also
kept small. SpiderCast is also capable of handling churn. The main difference between
Postman and SpiderCast is the actual problem solved by each of them. SpiderCast can

90 G. Einziger and R. Friedman

only deliver information to online users. Users cannot retrieve publications that were
distributed when they where offline. Moreover, in SpiderCast there is no separation
between a user and a machine. E.g., if the machine of the user is online, publications
will be delivered to this machine even if the user is not there and vice versa.

Magnet focuses on reducing the distribution cost of publications using a special DHT
named Oscar [10]. In Magnet subscriptions are transformed into a key, which places
each node in the DHT such that its neighbors have similar interests. The join/leave op-
erations in Magnet are relatively expensive and therefore Magnet is not suitable for our
problem. In addition, Magnet builds and maintains a separate DHT just for the sake of
the publish/subscribe service. In contrast, we envision publish/subscribe as being only
one of many services offered by a larger system and therefore we rely on an unmodified
“standard” DHT.

Corona [15] introduces the concept of cooperative polling. In Corona, a server coor-
dinates the polling of existing RSS feeds over many peers. The coordination allows all
peers to enjoy significantly quicker RSS updates and reduces the load on the RSS server.
Corona’s polling is somewhat similar to our client/mailbox interaction. Yet, Corona
does not deal with disseminating the information to the mailboxes. It would be inter-
esting in the future to combine our dissemination strategy with Corona’s collaborative
polling mechanism.

In Cuckoo [20], a hybrid central server and peer-to-peer infrastructure is suggested
in order to reduce the load on a server using a peer to peer network. Using both a central
server and a peer-to-peer methods, they manage to greatly reduce the requirements from
the central server. This is different than our approach, which is pure P2P based.

In Pub2Sub [18], a virtual publish/subscribe network is deployed over an unstruc-
tured network. Their work shows an interesting alternative to gossiping as a delivery
mechanism and results in reduced bandwidth and storage. In addition, their mechanism
supports the usages of multiple publish/subscribe algorithms on the same network. Yet,
in Pub2Sub subscribers are assumed to be available and connected all the time. Thus,
information is disseminated immediately to all subscribers, whereas we hold events at
mailboxes for future consumption by client devices.

Publish/subscribe is also widely utilized in data centers and cloud networks. In par-
ticular, these networks utilize publish/subscribe for resource monitoring [2], binding
data centers together and synchronizing them with each other [7], maintaining a data
storage with updates [21] and many more.

6 Conclusions

In this paper, we have presented Postman, a novel publish/subscribe mechanism for
self sustained service independent P2P networks. Postman decouples between clients
and donated P2P machines by utilizing mailboxes as aggregation services for subscrip-
tions and publications. This architecture brings several advantages: As the number of
mailboxes is much smaller than the number of nodes in the system, the scale of the pub-
lish/subscribe problem is greatly reduced. Further, as mailboxes are dedicated machines
rather than client devices, their churn rate is likely to be lower than the one noticed in
end-user devices. Another benefit is that since each mailbox aggregates multiple top-
ics, the subscription patterns of mailboxes are much more uniform than the subscription

Postman: An Elastic Highly Resilient Publish/Subscribe Framework 91

patterns of individual clients, enabling sharing large parts of the dissemination trees and
their overheads.

Postman is designed to be on one hand highly failure and churn resilient and on
the other hand to have minimal message overheads. In order to do so, the distribution
and consistency mechanisms adjust themselves to the actual behaviour of the network.
In particular, for static networks dissemination of messages is done mainly on a span-
ning tree, as the random walks do not discover new mailboxes and are therefore never
duplicated. Further, in such networks clients rarely miss publications, or discover un-
responsive mailboxes and therefore only query a subset of their known mailboxes ev-
ery poll round. However, when the network is dynamic, random walks often discover
new mailboxes and their number increases. Further, clients often discover unresponsive
mailboxes and therefore contact all their mailboxes every round in order to ensure both
timely delivery and mailbox consistency.

We have also presented a performance study conducted on our real implementation
using both synthetic workloads as well as Twitter based traces. The results of our study
confirm the viability of Postman. They have also shown that low churn rates have no
noticeable impact on Postman, and it can even recover quickly from massive failures
and churn events.3 Postman is currently implemented in Java over Kademlia [6] and is
available in open source [1].

References

1. Postman implementation, https://code.google.com/p/postman-pubsub/
2. An, K., Pradhan, S., Caglar, F., Gokhale, A.: A publish/subscribe middleware for depend-

able and real-time resource monitoring in the cloud. In: Proc. of the Workshop on Secure
and Dependable Middleware for Cloud Monitoring and Management, SDMCMM 2012,
pp. 3:1–3:6. ACM, New York (2012)

3. Androutsellis-Theotokis, S., Spinellis, D.: A Survey of P2P Content Distribution Technolo-
gies. ACM Computing Survey 36, 335–371 (2004)

4. Baldoni, R., Beraldi, R., Querzoni, L., Virgillito, A., Italia, R.: Efficient publish/subscribe
through a self-organizing broker overlay and its application to siena. The Computer Journal
(2007)

5. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: A scalable interest-aware
overlay for topic-based pub/sub communication. In: Proc. of the 2007 Inaugural Int. Conf.
on Distributed Event-Based Systems, DEBS 2007, New York, USA, pp. 14–25 (2007)

6. Einziger, G., Friedman, R., Kibbar, E.: Kaleidoscope: Adding colors to kademlia. In: 2013
IEEE Thirteenth Int. Conf. on Peer-to-Peer Computing (P2P), pp. 1–10 (September 2013)

7. Esposito, C., Ficco, M., Palmieri, F., Castiglione, A.: Interconnecting federated clouds by
using publish-subscribe service. Cluster Computing, 1–17 (2013)

8. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

9. Friedman, R., Libov, A.: An advertising mechanism for p2p networks. In: 2013 IEEE Thir-
teenth Int. Conf. on Peer-to-Peer Computing (P2P), pp. 1–10 (September 2013)

3 “Neither snow nor rain nor heat nor gloom of night stays these couriers from the swift com-
pletion of their appointed rounds.”

https://code.google.com/p/postman-pubsub/

92 G. Einziger and R. Friedman

10. Girdzijauskas, S., Chockler, G., Vigfusson, Y., Tock, Y., Melamed, R.: Magnet: Practical
subscription clustering for internet-scale publish/subscribe. In: Proc. of the Fourth ACM
Int. Conf. on Distributed Event-Based Systems, DEBS 2010, New York, USA, pp. 172–183
(2010)

11. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.E., Eaton, P.R., Geels, D., Gummadi, R.,
Rhea, S.C., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.Y.: Oceanstore: An architec-
ture for global-scale persistent storage. In: Proc. of the 9th Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pp. 190–201 (2000)

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media?
In: Proc. of the 19th Int. Conf. on World Wide Web, WWW 2010, pp. 591–600. ACM,
New York (2010)

13. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A Survey and Comparison of P2P
Overlay Network Schemes. IEEE Comm. Surveys Tutorials 7(2), 72–93 (2005)

14. Maymounkov, P., Mazières, D.: Kademlia: A P2P Information System Based on the XOR
Metric, 3rd edn., vol. 3279 (2005)

15. Ramasubramanian, V., Peterson, R., Sirer, E.G.: Corona: A high performance publish-
subscribe system for the world wide web. In: Proc. of the 3rd Conf. on Networked Systems
Design & Implementation, NSDI 2006, vol. 3, p. 2. USENIX Association, Berkeley (2006)

16. Rodrigues, R., Druschel, P.: P2p systems. Communications of the ACM 53(10), 72–82
(2010)

17. Sandler, D.R., Wallach, D.S.: Birds of a fethr: open, decentralized micropublishing. In: Proc.
of the 8th Int. Conf. on P2P systems, IPTPS 2009, p. 1. USENIX Association, Berkeley
(2009)

18. Tran, D.A., Pham, C.: Pub-2-sub: A content-based publish/subscribe framework for co-
operative p2p networks. In: Fratta, L., Schulzrinne, H., Takahashi, Y., Spaniol, O. (eds.)
NETWORKING 2009. LNCS, vol. 5550, pp. 770–781. Springer, Heidelberg (2009)

19. Wong, B., Guha, S.: Quasar: A probabilistic publish-subscribe system for social networks.
In: Proc. of the 7th Int. Conf. on P2P Systems, IPTPS 2008, p. 2. USENIX Association,
Berkeley (2008)

20. Xu, T., Chen, Y., Fu, X., Hui, P.: Twittering by cuckoo: decentralized and socio-aware online
microblogging services. ACM SIGCOMM Computer Communication Review 41 (August
2010)

21. Zhu, Y., Wang, J., Wang, C.: Ripple: A publish/subscribe service for multidata item updates
propagation in the cloud. Journal of Network and Computer Applications 34(4), 1054–1067
(2011)

A Self-stabilizing Algorithm for Edge

Monitoring Problem

Brahim Neggazi1, Mohammed Haddad1, Volker Turau2,
and Hamamache Kheddouci1

1 University of Lyon, LIRIS UMR5205 CNRS, Claude Bernard Lyon 1 University
43 Bd du 11 Novembre 1918, F-69622, Villeurbanne, France

2 Hamburg University of Technology, Institute of Telematics,
Schwarzenbergstraße 95, 21073, Hamburg, Germany

Abstract. Self-monitoring is a simple and effective mechanism for the
security of wireless sensor networks (WSNs), especially to cope against
compromised nodes. A node v can monitor an edge e if both end-nodes
of e are neighbors of v; i.e., e together with v forms a triangle in the
graph. Moreover, some edges need more than one monitor. Finding a
set of monitoring nodes satisfying all monitoring constraints is called
the edge-monitoring problem. The minimum edge-monitoring problem
is long known to be NP-complete. In this paper, we present a novel
silent self-stabilizing algorithm for computing a minimal edge-monitoring
set. Correctness and termination are proven for the unfair distributed
daemon.

Keywords: Edge-monitoring, Self-stabilization, Self-monitoring, Secu-
rity, Sensor networks.

1 Introduction

A sensor network is a wireless ad-hoc network with a large number of nodes that
are micro-sensors to collect and transmit environmental data autonomously. Of-
ten, the deployment of these sensor nodes is done in a random manner. Sensor
networks find many applications such as military surveillance (detection intru-
sion, weapons locations, etc.), forest fire control, industrial process control, ma-
chine health monitoring, and so on.

The power limitation in wireless sensor networks (WSN) and hostile environ-
ments in which they can be deployed are factors that make this type of networks
very vulnerable. Furthermore, the security of these networks is very important,
especially for sensitive and critical applications.

One of the most difficult threats in the security of WSN is compromised
nodes. Several attacks may use the compromised nodes to divert the proper
functioning of the networks. Considering the real challenges to design secu-
rity mechanisms against these attacks, many approaches have been proposed
based on self-protection [16,17] and local monitoring (a.k.a watchdog) technique
[1,8,10,11,14,12,13]. In sensor and ad-hoc networks, the concept of local moni-
toring was introduced by Marti et al. in [13].

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 93–105, 2014.
c© Springer International Publishing Switzerland 2014

94 B. Neggazi et al.

The basic idea of local monitoring is assigning monitoring roles to some of
the nodes in the network. Usually, these monitors are placed somewhere in the
intersection of the communication ranges of the sending (S) and the receiving
nodes (R). Figure 1 illustrates the case where nodes M1 and M2 monitor the
communication from S to R, by analyzing the traffic that R receives from S and
forwards out to other nodes. In [13] these monitoring nodes are called watch-
dogs. They monitor nodes by listening promiscuously to the transmissions of
both nodes. When node S forwards a packet to R, the watchdog of this link ver-
ifies that node R also forwards the packet. If R does not forward the packet, then
it is misbehaving. Similar to this, monitoring nodes are able to detect any mali-
cious actions such as delaying, dropping, modifying, or even fabricated packets
[5,18]. The goal of monitoring considered in this paper is provide protection from
transient faults (mainly memory corruption) and not from malicious behavior
(i.e. Byzantine nodes). We assume that identifiers are not corrupted, e.g. they
are stored in ROM as opposed to RAM. Our algorithm only determines the set
of nodes that can monitor the edges, the actual monitoring task is a different
subject and not part of our work. In this sense we assume that nodes execute
their protocol as stated. Corruption of code, as a consequence of a fault or by a
deliberate action, is clearly beyond the scope of this paper.

S

M2

M1

R

Fig. 1. Local monitoring

In dense networks with randomly deployed sensors nodes the selection of a
minimal monitoring set of nodes is a challenging task, especially for large scale
WSNs using only 1-hop knowledge. Consider for example the deployment in
Figure 2. The black nodes can monitor all communication links depicted in bold.
In [5,6],Dong et al. proved that finding a minimum set of monitoring nodes is NP-
complete. The authors also propose two distributed polynomial algorithms with
provable approximation ratio. However, the algorithms assume a synchronous
model and distance-two knowledge. Moreover, their solution does not tolerate
transient faults. Furthermore, distance-two knowledge is not a realistic solution
in WSN. In this work, we assume the most general model that is asynchronous
communication with distance-one knowledge.

One original approach proposed for dealing with fault-tolerance was proposed
by Dijkstra [3], is called self-stabilization. A system is self-stabilizing if it can start
from any possible configuration and converge to a correct behavior in finite time
by itself without using any external intervention. Convergence is also guaranteed

A Self-stabilizing Algorithm for Edge Monitoring Problem 95

Fig. 2. Edge monitoring of a graph. The black nodes can monitors of the bold com-
munication links.

when the system is affected by transient faults. This makes self-stabilization an
elegant approach for non-masking fault-tolerance [4].

Hauck proposed the first self-stabilizing algorithm for the edge monitoring
problem [9]. His algorithm uses the expression model [15] and converges in O(n2)
moves under the central daemon. Using the transformer proposed by Turau in
[15], the transformed algorithm converges in O(mn2) moves under the unfair
distributed daemon.

In this paper, we improve the previous work by proposing a new algorithm
that operates under the distributed daemon without using any transformer as it
the case of Hauck’s work. Moreover, our algorithm converges in O(Δ2m) moves
where Δ is the maximum node degree in graph. Thus, in particular for networks
with low maximal node degree our algorithm converges much faster.

The rest of this paper is organized as follows: the next section defines the used
model and formally introduces the edges monitoring problem. In Section 3, we
present our new self-stabilizing algorithm for finding a minimal edge-monitoring
set. The proof of correctness is contained in Section 4 and the termination proof
in Section 5. Finally, Section 6 concludes the paper.

2 Model and Definitions

In this section, we give formal definitions for the concepts used in this work.

2.1 Edge Monitoring Problem

We consider sensor networks in which all communications are bidirectional. We
model the sensors network by a graph G = (V,E) where sensors are represented
by nodes, defined by the set V and their communications by edges, defined by
the set E. Let n = |V | and m = |E|. We assume each node to have a unique
identifier (id) within a distance two from it [2]. We denote by d(v) and N(v) the
degree and the open neighborhood of node v, respectively. Let Δ be the maximal
degree of a node.

Definition 1. A node v ∈ V can monitor an edge e = 〈u,w〉 ∈ E, if 〈v, u〉,
〈v, w〉 ∈ E, i.e. the three nodes v, u, w form a triangle in G.

96 B. Neggazi et al.

Definition 2. The edges 〈u,w〉 ∈ E where v, u, an w form a triangle in G are
called the monitored edges of v.

In some applications some edges must be monitored by more than one node
and others need no monitor at all. These situations are modeled by weighted
graphs. The weight ω(e) ≥ 0 of an edge e denotes the number of nodes required
to monitor e. The subset EM = {e ∈ E : ω(e) > 0} represents the set of edges
to be monitored. In the following we assume that nodes adjacent to an edge e
are aware of ω(e).

Definition 3. Let G = (V,E) be an edge-weighted graph. The minimal edge
monitoring problem consists of determining a minimal subset VM of V such that
for each edge e ∈ E there are at least ω(e) nodes in VM that can monitor e.

Note that whether there exists a solution for the minimal edge monitoring
problem depends ofG and ω. In the following we assume that for a given weighted
graph a solution exists. In other words, for each e = 〈v, u〉 ∈ EM we have
|N(v) ∩ N(u)| � ω(e). Note that we can always define a solvable instance be
setting ω′(e) = min{ω(e), |N(v) ∩N(u)|}.

2.2 Self-stabilization

A system is self-stabilizing if it can start from any possible configuration and
converges to a desired configuration in finite time by itself without using any
external intervention. Convergence is also guaranteed when the system is affected
by transient faults. This makes self-stabilization an elegant approach for non-
masking fault-tolerance [4]. The concept of self-stabilization was first introduced
by Dijkstra [3]. Every node has a set of local variables whose contents specify
the local state of the node. The union of the local states of all nodes defines the
system’s global state. Each node has only a partial view of the system. Based
on its local state and that of its neighbors, a node can decide to make a move.
Therefore, self-stabilizing algorithms are given as a set of rules of the form [If
p(v) then M], where p(v) is a predicate defined over v’s local view and M is a
move. Predicate p(v) is true when the node’s state v is locally illegitimate. In
this case, v is called an enabled.

Self-stabilizing algorithms can be designed according to different daemons
(a.k.a. schedulers). Two types of daemons are often assumed in the literature
on self-stabilizing algorithms: central and distributed daemon. At each step, the
central daemon selects exactly one enabled node to make a move. Whereas the
distributed daemon selects in each step a non-empty subset of all enabled nodes
to make their moves simultaneously. A taxonomy of existing daemons is proposed
in [7].

Daemons are also associated with the notion of fairness. A daemon can be
fair, or unfair. A daemon is fair if every node that is continuously enabled will
eventually be selected. The unfair daemon on the other hand may delay the move
of a node as long as there are other enabled nodes. Self-stabilizing algorithms are
designed for a specific daemon and cannot trivially operate under a more general

A Self-stabilizing Algorithm for Edge Monitoring Problem 97

daemon. Obviously, an algorithm designed for an unfair distributed daemon will
work with all other daemons. This paper assumes the most general daemon,
the unfair distributed daemon. As a communication model the shared variable
model is used.

3 Algorithm SEMS

This section presents the self-stabilizing algorithm SEMS for computing a min-
imal edge-monitoring set for a general graph G with edge weight function ω as
introduced above. In this algorithm, each node v maintains a variable state with
range {In,Wait, Out}. This variable indicates whether v belongs to the moni-
toring set or not. A node is called a monitor if its variable state has value IN .
Thus, the edge-monitoring set D of G is defined by D = {v ∈ V : v.state = In}.
The state Wait is an intermediate state from state In to Out required for sym-
metry breaking. It is used to inform neighbors that this node is not required to
be a monitor and can change its state to Out.

3.1 Informal Description of Algorithm SEMS

The monitors of an edge are administered by the end node with the smaller
identifier. Neighbors of v that are either monitors or potential monitors of an
edge adjacent to v are called target monitors. Thus, a node v maintains a set
of target monitors for each of its adjacent edges which it is responsible for. For
an edge 〈v, u〉, this includes all current monitors, i.e., all common neighbors of
v and u with state In or Wait. If the number of these nodes is not sufficient
(i.e., less than ω(v, u)) then this set is supplemented by the smallest common
neighbors of v and u with state Out until this set has ω(v, u) elements. If on
the other hand the number of these nodes exceeds ω(v, u) then the set of target
monitors is empty. Thus, the edge does not need this node as a monitor. The
union of target monitors of all adjacent edges of a responsible node is called the
“target monitoring set” of the node.

Note that there is one small drawback with this notion: A node does not know
the set of neighbors for each of its neighbors. This information is necessary to
compute the target monitoring set of a node. A node can avoid this pitfall by
exposing the set of neighbors in a variable and neighbors can use this variable
for their computations. Since this variable can be corrupted by a transient fault,
the target monitoring set may be faulty for some time.

The algorithm works as follows. Nodes keep a target monitoring set as well as
the exposed set of neighbors always up-to-date. A node with state In that is not
a target monitor for any of its neighbors will change its state. In order to avoid
an oscillating behavior such a node does not immediately change its state to Out.
It first transits into state Wait. In order to transit into state Out, all neighbors
must give permission to do such transition. A node only gives this permission to
the neighbor with state Wait that has the smallest identifier among these nodes.
This is realized by a public variable containing the identifier of the neighbor that

98 B. Neggazi et al.

can be removed from its monitoring set. So, only after all neighbors give this
permission, a node may transit from state Wait to state Out. If a node with
state Wait becomes a member of the target monitoring set of a neighbor then
it transits back to state In. There is also a rule for changing the state from
Out to In. The precondition for this rule is that the node is a target monitor
of a neighbor and none of its neighbors is currently giving this node the above
discussed permission.

3.2 Formal Description of Algorithm SEMS

Algorithm SEMS uses the following variables for each node v:

– S :: contains the open neighborhood of v.
– TM :: the set of target monitors. It is a set of neighbors that are either

monitors or potential monitors of an edge adjacent to v. TM will contain
a sufficient number of nodes to satisfy the monitor demands of all adjacent
edges. Note that |TM | ≤ Δ.

– PO :: used to give permissions to change state to Out. It either contains
the smallest identifier of all neighbors in state Wait not contained in TM
or null.

If v.PO = u (resp. u ∈ v.TM) then we say v points at u to leave (resp. to
enter) the monitoring set.

For a set X of node identifiers and a positive integer p denote by Xp the set
of the p smallest identifiers contained in X . If |X | ≤ p then Xp = X . Thus

Xp =

{
X if |X | ≤ p
the p smallest elements of X otherwise.

In Algorithm SEMS a node v uses the three functions Mon(v, u), Candidate
(v, u), and TMe(v, u), defined for all neighboring nodes v, u ∈ V . Function
Mon(v, u) returns the set of nodes that are supposingly monitoring edge 〈v, u〉.
These are neighbors of v and most likely also of u that have state In or Wait.
Formally,

Mon(v, u) = {z ∈ N(v) ∩ u.S | z.state = In ∨ z.state = Wait}

Function Candidate(v, u) returns the set of nodes that are supposingly new
candidates to monitor edge 〈v, u〉. These are neighbors of v and most likely also
of u that have state Out. Formally,

Candidate(v, u) = {z ∈ N(v) ∩ u.S | z.state = Out}

Function TMe(v, u) uses the first two functions to compute a target set of mon-
itors for edge 〈v, u〉. It is used to keep v.TM up-to-date. Formally,

if (|Mon(v, u)| � ω(v, u) ∧ v < u) then
TMe(v, u) = Mon(v, u) ∪ Candidate(v, u)ω(v,u)−|Mon(v,u)|;

A Self-stabilizing Algorithm for Edge Monitoring Problem 99

else
TMe(v, u) = ∅;

Note that TMe(v, u) = ∅ for an edge 〈v, u〉 if v > u.

Algorithm SEMS is specified by six rules that are divided into two categories.
Rules R1 and R2 belong to the first category. They are used to update the values
of the variables TM and PO.

Algorithm SEMS : Maintaining TM , PO and S

Nodes: v is the current node
S �= N(v) −→ S := N(v); [R1]

TM �=
⋃

u∈N(v)

TMe(v, u) ∨ PO �= min{u ∈ N(v) | u.state = Wait∧ u /∈ TM}

−→ TM :=
⋃

u∈N(v)

TMe(v, u);

PO := min{u ∈ N(v) | u.state = Wait ∧ u /∈ TM} ; [R2]

The remaining four rules of the second category maintain variable state.

Algorithm SEMS : Maintaining state

Nodes: v is the current node
state = Out ∧ ∃u ∈ N(v) : v ∈ u.TM ∧ ∀w ∈ N(v) : v �= w.PO

−→ state := In; [R3]

state = In ∧ ∀u ∈ N(v) : v /∈ u.TM −→ state := Wait; [R4]

state = Wait ∧ ∃u ∈ N(v) : v ∈ u.TM −→ state := In; [R5]

state = Wait ∧ ∀u ∈ N(v) : v = u.PO −→ state := Out; [R6]

If more than one rule is enabled, we assume that the rule with the smallest
number is executed.

3.3 Example

Figure 3 shows an execution of Algorithm SEMS under the synchronous daemon
for a graph with six nodes. Two of the edges require each one monitor. In the
initial configuration, all nodes are in state Out and the values of variable S are
consistent with the neighborhood relation. Furthermore, we assume v.TM = ∅
and v.PO = null for each node v.

100 B. Neggazi et al.

111

6

5

4

2

3

Out

Out

Out

Out

Out

Out

(a) Initial configuration

111

6

5

4

2

3

Out

Out

Out

Out

Out

Out
TM={1} TM={4}

(b) Nodes 2 and 5 execute R2

111

6

5

4

2

3

Out

Out
Out

Out

In In

TM={1} TM={4}

(c) Nodes 1 and 4 execute R3

111

6

5

4

2

3

Out

Out
Out

In In

TM={4}TM=O
Out

(d) Node 2 executes R2

111

6

5

4

2

3

Out

Out
Out

Out

InWait

TM={4}

(e) Node 1 executes R4

111

6

5

4

2

3

Out

Out
Out

Out

InWait

PO=1

PO=1

TM={4}

(f) Nodes 2 and 3 execute R2

111

6

5

4

2

3

Out

Out
Out

Out

InOut

TM={4}PO=1

PO=1

(g) Node 1 executes R6

111

6

5

4

2

3

Out

Out
Out

Out

InOut

TM={4}TM={4}

(h) Nodes 2 and 3 execute R2

Fig. 3. Example of an execution of Algorithm SEMS

4 Proof of Correctness

First, we prove that in a configuration where no node is enabled, the set D forms
a minimal edge monitoring set with respect to ω.

Lemma 1. In a configuration with no enabled node, the following properties
hold for each v ∈ V .

(a) v.S = N(v),
(b) if v.state = Wait then v �∈ u.TM for all u ∈ N(v),
(c) if v.state = Out then v �= u.PO for all u ∈ N(v),
(d) v.state ∈ {In,Out}.

Proof. Properties (a) and (b) are satisfied because rules R1 and R5 are disabled.
Note that v.PO = {u ∈ N(v) : u.state = Wait ∧ u /∈ v.TM} since rule R2 is

A Self-stabilizing Algorithm for Edge Monitoring Problem 101

disabled for each node v ∈ V . Thus, u.PO = null or u.PO.state = Wait. Hence,
v �= u.PO since v.state = Out. This proves property (c).

Assume Property (d) is false. Among all nodes violating this property choose
a node v with a minimal identifier. Then v.state = Wait. By minimality of v, if
v �∈ u.TM for a node u ∈ N(v) then v = u.PO. Since rule R6 is disabled there
exists a node u ∈ N(v) such that v �= u.PO. Hence, v ∈ u.TM and rule R5 is
enabled. Contradiction. ��

Lemma 2. In a configuration with no enabled node any edge has sufficiently
many monitors, i.e., |Mon(v, u)| � ω(v, u) for each 〈v, u〉 ∈ E.

Proof. The proof is by contradiction. Assume that there exists an edge 〈v, u〉 such
that |Mon(v, u)| < ω(v, u). Without loss of generality, let v < u. By definition,
Mon(v, u) = {z ∈ N(v) ∩ u.S | z.state ∈ {In,Wait}}. Using properties (d) and
(a) of Lemma 1, we have

Mon(v, u) = {z ∈ N(v) ∩N(u) | z.state = In}.

Since |Mon(v, u)| < ω(v, u) the set have Candidate(v, u)ω(v,u)−|Mon(v,u)| is not
empty (otherwise no solution would exist). Moreover, since rule R2 is disabled
for v the following holds:

∅ �= Candidate(v, u)ω(v,u)−|Mon(v,u)| ⊆ TMe(v, u) ⊆ v.TM

This shows that there exists a node z ∈ v.TM with z.state = Out. Also
z �= w.PO for all w ∈ N(z) by property (c) of Lemma 1. This yields that rule
R3 is enabled for node z. Contradiction. ��

Lemma 3. In a configuration with no enabled node, the set D = {v ∈ V |
state(v) = In} forms a minimal edge-monitoring set with respect to ω.

Proof. According to Lemma 2, D is an edge-monitoring set. Thus, it is sufficient
to prove that D is minimal. Assume there exists a node v ∈ D such that D′ =
D − {v} is an edge monitoring set of G with respect to ω (see Figure 4 for an
example). So v.state = In. Then for any pair u1, u2 ∈ N(v) with u1 < u2 edge
〈u1, u2〉 has more than ω(u1, u2) monitors, i.e., |Mon(u1, u2)| > ω(u1, u2). Thus,
TMe(u1, u2) = TMe(u2, u1) = ∅. Now, v �∈ u1.TM and v �∈ u2.TM since rule
R2 is disabled for u1 and u2. Let u1 ∈ N(v) such that N(u1) ∩N(v) = ∅. Then
v �∈ u1.TM by definition of u1.TM (note rules R1 and R2 are not enabled).
Hence, v �∈ u.TM for any u ∈ N(v). This implies that rule R4 is enabled for v.
Contradiction. ��

5 Proof of Termination

It remains to prove that Algorithm SEMS stabilizes in finite time for any starting
configuration under the distributed daemon. This will be accomplished by prov-
ing that every node makes only a finite number of moves, independently of its

102 B. Neggazi et al.

e
v2 1

1

u1

u2

Fig. 4. Non-minimal edge-monitoring set. Monitoring nodes are depicted in bold and
the edge labels denote ω. Node v is not needed as a monitor.

Out In

R3

Wait

R4

R1

R2

R5

R1R2

R2

R1

R6

Fig. 5. State Transition Diagram of Algorithm SEMS

neighbor’s concurrent moves or daemon’s fairness assumptions. Figure 5 shows
all transitions of a node with respect to variable state that can occur during an
execution of Algorithm SEMS.

Let c be a configuration of the system. Let

Dc = {v ∈ V | v.state ∈ {In,Wait}}.

Observe that nodes do not enter or leave the set TM if they change their state
from Wait to In or conversely.

The following lemma follows from the convention that rules with a higher
priority have precedence.

Lemma 4. Each node executes rule R1 at most once. If a node does execute R1

then in its first move.

This lemma implies that if a node v executes rules R2 to R6 then v.S = N(v).
A node v can change its state from In via Wait to Out because neighboring

nodes signal to v that all their edges are sufficiently monitored. This information
can be false because some neighbor u of v wrongly assumed that its neighbor
u1 could monitor edge 〈u, u2〉. The reason for such a wrong assumption is that
u2 ∈ u1.S but u2 �∈ N(u1). Once u1 executes rule R1 node u will realize this and
u can now consider v as a target monitor and include it into u.TM . This could

A Self-stabilizing Algorithm for Edge Monitoring Problem 103

then prompt v to change its state to In again. Now the situation is different,
all neighbors of v have executed a rule in the mean time. Because of priority of
rules then u.S = N(u) holds for all u ∈ N(v). If node v changes its state again
to Out with rule R6 then it is because all neighbors indicated with their variable
PO that their edges have a sufficient number of monitors without v. Since this
number never will fall again under the value given by ω, node v will never move
to state In again. This behavior is formally proved in the following two lemmas.

Lemma 5. Each node executes R6 at most twice, i.e., it changes from state
Wait to state Out at most twice.

Proof. Let c be a configuration in which a node v ∈ V has state Wait and
executes rule R6. For v to execute rule R6 again it must first change its state
back to Wait. This can only be achieved by first changing to state In with rule
R3 and then to state Wait with rule R4. Note that v = u.PO for all u ∈ N(v)
when v executed rule R6. For v to be enabled for rule R3 it is required that
v �= u.PO for all u ∈ N(v). Thus, all neighbors of v must have executed rule R2

before v can execute rule R3 again. A node executing rule R2 cannot be enabled
for rule R1. Thus, each neighbor u of v satisfies u.S = N(u) when u executes
rule R2. Hence, those neighbors of v that are responsible for edges that v can
monitor have all finally determined that v is not required as a monitor, i.e., v
will never enter u.TM for a neighbor u. Hence v will never change its state to
In again. ��

Lemma 6. Each node executes R3 at most three times, i.e., it changes from
state Out to state In at most three times.

Proof. A node executing rule R3 four times would execute rule R6 at least three
times. This contradicts Lemma 5. ��

Lemma 7. Each node executes R4 at most 6Δd(v) times, i.e., it changes from
state In to state Wait at most 6Δd(v) times.

Proof. A node v with state In executes rule R4 if v is not a target monitor of
any of its neighbors, i.e., v �∈ u.TM for all u ∈ N(v). In order to reenter state
In at least one of v’s neighbors must declare v as a target monitor, i.e., there
must be a node u ∈ N(v) with v ∈ u.TM . Note that for u to change its set of
target monitors, a neighbor of u must change its state from Out to In or from
Wait to Out or execute rule R1. According to Lemmas 4 to 6, each neighbor of
u can do this at most 6 times. Hence, node u can update u.TM at most 6d(u)
times. This implies that node v changes its state to Wait at most 6Δd(v). ��

Lemma 8. Each node executes R5 at most 6Δd(v) + 1 times, i.e., it changes
from state Wait to state In at most 6Δd(v) + 1 times.

Proof. Immediate consequence of Lemma 7. ��

Lemma 9. Any node v can execute R2 at most (6Δ2 + 9)d(v) times.

104 B. Neggazi et al.

Proof. Consider a node v. The execution of rule R2 depends on the values of
v.TM and v.PO. By definition, the value of v.TM itself depends on TMe(v, u)
for each neighbor u of v. Mon(v, u) depends on the neighbors w of v which are
in state Wait or In. Note that node w can change its value from state Out to
Wait at most three times (Lemma 6) and from state Wait to Out at most twice
(Lemma 5). Thus, each neighbor w of v changes Mon(v, u) at most five times
and once if w.S is incorrect. So, for each of v’s neighbor u, TMe(v, u) can change
at most 6 times. Hence, we deduce that v.TM can change at most 6d(v) times
for each neighbor of v.

Next we consider variable v.PO. By definition, PO depends on the neighbors
that have state Wait. Using Lemmas 5 and 8, each neighbor u of v changes its
state from Wait to state In or Out at most 6Δd(u) + 3 times. Thus, for each
neighbor of v, the value of v.PO can change at most d(v)(6Δ2 + 3) times.

In summary, v can execute rule R2 at most d(v)(6Δ2 + 9) times. ��

Lemma 10. Algorithm SEMS terminates in O(Δ2m) moves under the unfair
distributed daemon.

Proof. Lemmas 4 to 9 stated upper bounds on the number of executions for each
rule on each node. In the worst case these moves all occur sequentially. This gives
the following upper bound for the total number of moves:

n+
∑
v∈V

(6Δ2 + 9)d(v) + 3n+
∑
v∈V

6Δd(v) +
∑
v∈V

(6Δd(v) + 1) + 2n ∈ O(Δ2m)

��

Lemmas 3 and 10 yield our main result.

Theorem 1. Algorithm SEMS is self-stabilizing algorithm for finding a minimal
edge monitoring set for a given set of monitoring requirements of a general graph.
It uses O(Δlog n) memory space per node and stabilizes in O(Δ2m) moves under
the unfair distributed daemon.

6 Conclusion

In this paper, we presented a novel self-stabilizing algorithm to find minimal
edge-monitoring sets in general graphs. Such sets provide a valuable tool to
implement a simple and effective mechanism for building secure wireless sensor
networks. The algorithm has a lower move complexity as existing self-stabilizing
algorithm. As future work, we aim to either improve the analysis of the presented
algorithm, to come up with a more efficient algorithm or to prove that Ω(Δ2m)
moves is a lower bound of the problem for distributed daemon.

Acknowledgments. Thiswork is partially supported byP2GERhone-AlpesRe-
gion project. Research of the third author was funded by the Deutsche Forschungs-
gemeinschaft (DFG), contract number TU 221/6-1.

A Self-stabilizing Algorithm for Edge Monitoring Problem 105

References

1. Benahmed, K., Merabti, M., Haffaf, H.: Distributed monitoring for misbehaviour
detection in wireless sensor networks. Security & Com. Netw. 6(4), 388–400 (2013)

2. Blair, J.R.S., Manne, F.: An efficient self-stabilizing distance-2 coloring algorithm.
Theoretical Computer Science 444, 28–39 (2012)

3. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

4. Dolev, S.: Self-stabilization. MIT Press (2000)
5. Dong, D., Liao, X., Liu, Y., Shen, C., Wang, X.: Edge self-monitoring for wireless

sensor networks. IEEE Trans. on Parallel & Distr. Systems 22(3), 514–527 (2011)
6. Dong, D., Liu, Y., Liao, X.: Self-monitoring for sensor networks. In: Proc. 9th ACM

Int. Symp. on Mobile Ad Hoc Networking and Computing, MobiHoc 2008, New
York, USA, pp. 431–440 (2008)

7. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR,
abs/1110.0334 (2011)

8. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based framework for
high integrity sensor networks. ACM Trans. Sen. Netw. 4(3), 15:1–15:37 (2008)

9. Hauck, B.: Time-and Space-Efficient Self-Stabilizing Algorithms. dissertation,
Hamburg University of Technology (2012)

10. Khalil, I., Bagchi, S., Nina-Rotaru, C.: DICAS: Detection, Diagnosis and Isolation
of Control Attacks in Sensor Networks. In: First Int. Conf. on Security and Privacy
for Emerging Areas in Communications Networks, pp. 89–100 (2005)

11. Khalil, I., Bagchi, S., Shroff, N.: Liteworp: A lightweight countermeasure for the
wormhole attack. In: Multihop Wireless Network, the International Conference on
Dependable Systems and Networks (DSN), pp. 612–621 (2005)

12. Lian, S., Zhao, J., Zhao, X.: Near-optimal diagnosis system deployment in wireless
sensor networks. Int. Journal of Distributed Sensor Networks (2013)

13. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking, pp. 255–265 (2000)

14. Suk-Bok, L., Yoon-Hwa, C.: A resilient packet-forwarding scheme against mali-
ciously packet-dropping nodes in sensor networks. In: Proc. 4th ACM Workshop
on Security of Ad Hoc and Sensor Networks, New York, USA, pp. 59–70 (2006)

15. Turau, V.: Efficient transformation of distance-2 self-stabilizing algorithms. Journal
of Parallel and Distributed Computing 72(4), 603–612 (2012)

16. Wang, D., Zhang, Q., Liu, J.: The self-protection problem in wireless sensor net-
works. ACM Transaction Sensor Networks 3(4) (October 2007)

17. Wang, Y., Li, M., Zhang, Q.: Efficient algorithms for p-self-protection problem
in static wireless sensor networks. IEEE Transactions on Parallel and Distributed
Systems 19(10), 1426–1438 (2008)

18. Wei, G., Zhu, Z., Mao, Y., Xiong, N.: A distributed node self-monitoring mech-
anism in wireless sensor networks. In: 2nd Int. Conf. on Information Science and
Engineering, pp. 1684–1687 (December 2010)

Self-stabilizing Leader Election in Polynomial Steps�

Karine Altisen1, Alain Cournier2, Stéphane Devismes1,
Anaı̈s Durand1, and Franck Petit3

1 VERIMAG UMR 5104, Université Grenoble Alpes, France
2 MIS Lab., Université Picardie Jules Verne, France

3 LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, France

Abstract. In this paper, we propose a silent self-stabilizing leader election algo-
rithm for bidirectional connected identified networks of arbitrary topology. This
algorithm is written in the locally shared memory model. It assumes the dis-
tributed unfair daemon, the most general scheduling hypothesis of the model.
Our algorithm requires no global knowledge on the network (such as an upper
bound on the diameter or the number of processes, for example). We show that
its stabilization time is in Θ(n3) steps in the worst case, where n is the number
of processes. Its memory requirement is asymptotically optimal, i.e., Θ(log n)
bits per processes. Its round complexity is of the same order of magnitude — i.e.,
Θ(n) rounds — as the best existing algorithm [10] designed with similar settings.
To the best of our knowledge, this is the first self-stabilizing leader election al-
gorithm for arbitrary identified networks that is proven to achieve a stabilization
time polynomial in steps. By contrast, we show that the previous best existing al-
gorithm designed with similar settings [10] stabilizes in a non polynomial number
of steps in the worst case.

1 Introduction

In distributed computing, the leader election problem consists in distinguishing one
process, so-called the leader, among the others. We consider here identified networks.
So, as it is usually done, we augment the problem by requiring all processes to even-
tually know the identifier of the leader. The leader election is fundamental as it is a
basic component to solve many other important problems, e.g., consensus, spanning
tree constructions, implementing broadcasting and convergecasting methods, etc. Self-
stabilization [11] is a versatile technique to withstand any transient fault in a distributed
system: a self-stabilizing algorithm is able to recover, i.e., reach a legitimate configu-
ration, in finite time, regardless the arbitrary initial configuration of the system, and
therefore also after the occurrence of transient faults. Thus, self-stabilization makes no
hypotheses on the nature or extent of transient faults that could hit the system, and re-
covers from the effects of those faults in a unified manner. Such versatility comes at
a price. After transient faults, there is a finite period of time, called the stabilization
phase, before the system returns to a legitimate configuration. The stabilization time is

� This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) funded by the French program Investissement d’avenir and the AGIR project DI-
AMS.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 106–119, 2014.
c© Springer International Publishing Switzerland 2014

Self-stabilizing Leader Election 107

then the maximum time to reach a legitimate configuration starting from an arbitrary
one. Notice that efficiency of self-stabilizing algorithms is mainly evaluated according
to their stabilization time and memory requirement.

We consider (deterministic) asynchronous silent self-stabilizing leader election prob-
lem in bidirectional, connected, and identified networks of arbitrary topology. We inves-
tigate solutions to this problem which are written in the locally shared memory model
introduced by Dijkstra [11]. In this model, the distributed unfair daemon is known as
the weakest scheduling assumption. Under such an assumption, proving that a given
algorithm is self-stabilizing implies that the stabilization time must be finite in terms of
atomic steps. However, despite some solutions assuming all these settings (in particu-
lar the unfairness assumption) are available in the literature [8,9,10], none of them is
proven to achieve a polynomial upper bound in steps on its stabilization time. Actually,
the time complexities of all these solutions are analyzed in terms of rounds only.

Related Work. In [12], Dolev et al showed that silent self-stabilizing leader election
requires Ω(logn) bits per process, where n is the number of processes. Notice that non-
silent self-stabilizing leader election can be achieved using less memory, e.g., the non-
silent self-stabilizing leader election algorithm for unoriented ring-shaped networks
given in [5] requires O(log logn) space per process.

Self-stabilizing leader election algorithms for arbitrary connected identified networks
have been proposed in the message-passing model [1,4,6]. First, the algorithm of Afek
and Bremler [1] stabilizes in O(n) rounds using Θ(log n) bits per process. But, it as-
sumes that the link-capacity is bounded by a value B, known by all processes. Two
solutions that stabilize in O(D) rounds, where D is the diameter of the network, have
been proposed in [4,6]. However, both solutions assume that processes know some up-
per bound D on the diameter D; and have a memory requirement in Θ(logD logn)
bits.

Several solutions are also given in the shared memory model [3,13,8,9,10,14]. The
algorithm proposed by Dolev and Herman [13] is not silent, works under a fair dae-
mon, and assume that all processes know a bound N on the number of processes. This
solution stabilizes in O(D) rounds using Θ(N logN) bits per process. The algorithm
of Arora and Gouda [3] works under a weakly fair daemon and assume the knowledge
of some bound N on the number of processes. This solution stabilizes in O(N) rounds
using Θ(logN) bits per process.

Datta et al [8] propose the first self-stabilizing leader election algorithm (for arbi-
trary connected identified networks) proven under the distributed unfair daemon. This
algorithm stabilizes in O(n) rounds. However, the space complexity of this algorithm
is unbounded. (More precisely, the algorithm requires each process to maintain an un-
bounded integer in its local memory.)

Solutions in [9,10,14] have a memory requirement which is asymptotically optimal
(i.e. in Θ(log n)). The algorithm proposed by Kravchik and Kutten [14] assumes a
synchronous daemon and the stabilization time of this latter is in O(D) rounds. The two
solutions proposed by Datta et al in [9,10] assume a distributed unfair daemon and have
a stabilization time in O(n) rounds. However, despite these two algorithms stabilize
within a finite number of steps (indeed, they are proven assuming an unfair daemon),

108 K. Altisen et al.

no step complexity analysis is proposed. Finally, note that the algorithm proposed in [9]
assumes that each process has a bit of memory which cannot be arbitrarily corrupted.

Contribution. We propose a silent self-stabilizing leader election algorithm for arbitrary
connected and identified networks. Our solution is written in the locally shared memory
model assuming a distributed unfair daemon, the weakest scheduling assumption. Our
algorithm assumes no knowledge of any global parameter (e.g., an upper bound on D
or n) of network. Like previous solutions of the literature [9,10], it is asymptotically
optimal in space (i.e., it can be implemented using Θ(log n) bits per process), and it
stabilizes in Θ(n) rounds in the worst case. Yet, contrary to those solutions, we show
that our algorithm has a stabilization time in Θ(n3) steps in the worst case.

For fair comparison, we have also studied the step complexity of the algorithm given
in [10], noted here DLV . This latter is the closest to ours in terms of performance. We
show that its stabilization time is not polynomial, i.e., there is no constant α such that
the stabilization time of DLV is in O(nα) steps. More precisely, we show that fixing
α to any constant greater than or equal to 4, for every β ≥ 2, there exists a network of
n = 2α−1 × β processes in which there exists a possible execution that stabilizes in
Ω(nα) steps. Due to the lack of space, this latter result is not presented here. Refer to
the technical report online [2] for more details.

Roadmap. The next section is dedicated to computational model and basic definitions.
In Section 3, we propose our self-stabilizing leader election algorithm. In Section 4,
we outline the proof of correctness and the complexity analysis. A detailed proof of
correctness and a complete complexity analysis are available in the technical report
online [2]. Finally, we conclude in Section 5.

2 Computational Model

Distributed Systems. We consider distributed systems made of n processes. Each pro-
cess can communicate with a subset of other processes, called its neighbors. We denote
by Np the set of neighbors of process p. Communications are assumed to be bidirec-
tional, i.e. q ∈ Np if and only if p ∈ Nq . Hence, the topology of the system can be
represented as a simple undirected connected graph G = (V,E), where V is the set of
processes and E is a set of edges representing (direct) communication relations. We as-
sume that each process has a unique ID, a natural integer. IDs are stored using a constant
number of bits, b. As commonly done in the literature, we assume that b = Θ(log n).
Moreover, by an abuse of notation, we identify a process with its ID, whenever conve-
nient. We will also denote by � the process of minimum ID. (So, the minimum ID will
be also denoted by �.)

Locally Shared Memory Model. We consider the locally shared memory model in which
the processes communicate using a finite number of locally shared registers, called
variables. Each process can read its own variables and those of its neighbors, but can
only write to its own variables. The state of a process is the vector of values of all its
variables. A configuration γ of the system is the vector of states of all processes. We
denote by C the set of all possible configurations.

Self-stabilizing Leader Election 109

A distributed algorithm consists of one program per process. The program of a pro-
cess p is a finite set of actions of the following form: 〈label〉 :: 〈guard〉 → 〈statement〉.
The labels are used to identify actions. The guard of an action in the program of process
p is a Boolean expression involving the variables of p and its neighbors. If the guard of
some action evaluates to true, then the action is said to be enabled at p. By extension,
if at least one action is enabled at p, p is said to be enabled. We denote by Enabled(γ)
the set of processes enabled in configuration γ. The statement of an action is a sequence
of assignments on the variables of p. An action can be executed only if it is enabled. In
this case, the execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon.
In a configuration γ, if Enabled(γ) �= ∅, then the daemon selects a non empty subset
S of Enabled(γ) to perform an (atomic) step: ∀p ∈ S, p atomically executes one of
its actions enabled in γ, leading the system to a new configuration γ′. We denote by �→
the relation between configurations such that γ �→ γ′ if and only if γ′ can be reached
from γ in one (atomic) step. An execution is then a maximal sequence of configurations
γ0, γ1, . . . such that γi−1 �→ γi, ∀i > 0. The term “maximal” means that the execution
is either infinite, or ends at a terminal configuration γ in which Enabled(γ) is empty.

In this paper, the daemon is supposed to be distributed and unfair. “Distributed”
means that while the configuration is not terminal, the daemon should select at least
one enabled process, maybe more. “Unfair” means that there is no fairness constraint,
i.e., the daemon might never permit an enabled process to execute, unless it is the only
enabled process.

Rounds. To measure the time complexity of an algorithm, we also use the notion of
round. This latter allows to highlight the execution time according to the speed of the
slowest process. If a process p is enabled in a configuration γi but not enabled in the
next configuration γi+1 and does not execute any action between γi and γi+1, we said
that p is neutralized during the step γi �→ γi+1. The first round of an execution e,
noted e′, is the minimal prefix of e in which every process that is enabled in the initial
configuration either executes an action or becomes neutralized. Let e′′ be the suffix of
e starting from the last configuration of e′. The second round of e is the first round of
e′′, and so forth.

Self-Stabilization. Let A be a distributed algorithm. Let E be the set of all possible
executions of A. A specification SP is a predicate over E .
A is self-stabilizing for SP if and only if there exists a non-empty subset of config-

urations L ⊆ C, called legitimate configurations, such that:
– Closure: ∀e ∈ E , for each step γi �→ γi+1 ∈ e, γi ∈ L ⇒ γi+1 ∈ L.
– Convergence: ∀e ∈ E , ∃γ ∈ e such that γ ∈ L.
– Correction: ∀e ∈ E such that e starts in a legitimate configuration γ ∈ L, e satisfies
SP .

Every configuration that is not legitimate is called illegitimate. The stabilization time
is the maximum time (in steps or rounds) to reach a legitimate configuration starting
from any configuration.

110 K. Altisen et al.

Self-Stabilizing Leader Election. We define SPLE the specification of the leader elec-
tion problem. Let Leader : V �→ N be a function defined on the state of any process
p ∈ V in the current configuration that returns the ID of the leader appointed by p. An
execution e ∈ E satisfies SPLE if and only if:
1. For all configuration γ ∈ e, ∀p, q ∈ V, Leader(p) = Leader(q) and Leader(p) is

the ID of some process in V .
2. For all step γi �→ γi+1 ∈ e, ∀p ∈ V , Leader(p) has the same value in γi and γi+1.

An algorithm A is silent if and only if every execution is finite [12]. Let γ be a
terminal configuration. The set of all possible executions starting from γ is the singleton
{γ}. So, if A is self-stabilizing and silent, γ must be legitimate. Thus, to prove that a
leader election algorithm is both self-stabilizing and silent, it is necessary and sufficient
to show that: (1) in every terminal configuration γ, ∀p, q ∈ V , Leader(p) = Leader(q)
and Leader(p) is the ID of some process; (2) every execution is finite.

3 Algorithm LE
In this section, we present a silent and self-stabilizing leader election algorithm, called
LE . Its formal code is given in Algorithm 1. Starting from an arbitrary configuration,LE
converges to a terminal configuration, where the process of minimum ID, �, is elected.
More precisely, in the terminal configuration, every process p knows the identifier of �
thanks to its local variable p.idR. This means that, in particular, we instantiate the func-
tion Leader of the specification as follows: Leader(p) = p.idR, ∀p ∈ V . Moreover,
a spanning tree rooted at � is defined using two variables per process: par and level.
First, �.par = � and �.level = 0. Then, for every process p �= �, p.par points to the
parent of p in the tree and p.level is the level of p in the tree.

We now present a simple algorithm for the leader election in Subsection 3.1. We
show why this algorithm is not self-stabilizing in Subsection 3.2. We explain in Sub-
section 3.3 how to modify this algorithm to make it self-stabilizing.

3.1 Non Self-stabilizing Leader Election

We first consider a simplified version ofLE . Starting from a predefined initial configura-
tion, it elects � in all idR variables and builds a spanning tree rooted at �. Initially, every
process p declares itself as leader: p.idR = p, p.par = p, and p.level = 0. So, p sat-
isfies the two following predicates: SelfRoot(p) ≡ (p.par = p) and SelfRootOk′(p) ≡
(p.level = 0) ∧ (p.idR = p). Note that, in the sequel, we say that p is a self root when
SelfRoot(p) holds. From such an initial configuration, our non self-stabilizing algo-
rithm consists in the following single action:

J-Action′ :: ∃q ∈ Np, (q.idR < p.idR) → p.par ← min�{q ∈ Np};
p.idR ← p.par.idR;
p.level ← p.par.level+ 1;

where ∀x, y ∈ V, x � y ⇔ (x.idR ≤ y.idR) ∧ [(x.idR = y.idR) ⇒ (x < y)]

Informally, when p discovers that p.idR is not equal to the minimum identifier, it
updates its variables accordingly. Let q be the neighbor of p having idR minimum.
Then, p selects q as new parent (p.par ← q and p.level ← p.par.level + 1) and sets

Self-stabilizing Leader Election 111

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈5, 0〉

〈7, 0〉

〈6, 0〉

〈2, 0〉

〈4, 0〉

(a) Initial configuration. SelfRoot(p) ∧
SelfRootOk′(p) holds for every process p.

1

3

5

7

6

2

4〈1, 0〉

〈3, 0〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈2, 0〉

〈2, 1〉

(b) 4, 5, 6, and 7 have executed J-Action′.
Note that J-Action′ was not enabled at 2
because it is a local minimum.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈3, 1〉

〈1, 2〉

〈1, 2〉

(c) 2, 3, and 4 have executed J-Action′. 3
joins the tree rooted at 1, but the new value
of 3.idR is not yet propagated to its child 6.

1

3

5

7

6

2

4〈1, 0〉

〈1, 1〉

〈1, 1〉

〈1, 1〉

〈1, 2〉

〈1, 2〉

〈1, 2〉

(d) 6 has executed J-Action′. The configu-
ration is now terminal, � = 1 is elected, and
a tree rooted at � is available.

Fig. 1. An example showing an execution of the non self-stabilizing algorithm. Process identifiers
are given inside the nodes. 〈x, y〉 means idR = x and level = y. Arrows represent par pointers.
The absence of arrow means that the process is a self root.

p.idR to the value of q.idR. If there are several neighbors having idR minimum, the
identifiers of those neighbors are used to break ties.

Hence, the identifier of � is propagated, from neighbors to neighbors, into the idR
variables and the system reaches a terminal configuration in O(D) rounds. Figure 1
shows an example of such an execution.

Notice first that for every process p, p.idR is always less than or equal to its own
identifier. Indeed, p.idR is initialized to p and decreases each time p executesJ-Action′.
Hence, p.idR = p while p is a self root and after p executes J-Action′ for the first time,
p.idR is smaller than its ID forever.

Second, even in this simplified context, for each two neighbors p and q such that q is
the parent of p, it may happen that p.idR is greater than q.idR — an example is shown
in Figure 1c, where p = 6 and q = 3. This is due to the fact that p joins the tree of q
but meanwhile q joins another tree and this change is not yet propagated to p. Similarly,
when p.idR �= q.idR, p.level may be different from q.level+ 1.

According to those remarks, we can deduce that when p.par = q with q �= p, we
have the following relation between p and q:

GoodIdR(p, q) ≡ (p.idR ≥ q.idR) ∧ (p.idR < p)
GoodLevel(p, q) ≡ (p.idR = q.idR) ⇒ (p.level = q.level + 1)

3.2 Fake IDs

The algorithm presented in Subsection 3.1 is clearly not self-stabilizing. Indeed, in a
self-stabilization context, the execution may start in any arbitrary configuration. In par-

112 K. Altisen et al.

2 3 4 5
〈1, 1〉 〈3, 0〉 〈4, 0〉 〈1, 1〉

(a) Illegitimate initial configuration, where 2
and 5 have fake idR.

2 3 4 5
〈1, 1〉 〈1, 2〉 〈1, 2〉 〈1, 1〉

(b) 3 and 4 executed J-Action′. The configu-
ration is now terminal.

Fig. 2. Example of execution that does not converge to a legitimate configuration

ticular, idR variables can be initialized to arbitrary natural integer values, even values
that are actually not IDs of (existing) processes. We call such values fake IDs.

The existence of fake IDs may lead the system to an illegitimate terminal configura-
tion. Refer to the example of execution given in Figure 2: starting from the configuration
in 2a, if processes 3 and 4 move, the system reaches the terminal configuration given in
2b, where there are two trees and the idR variables elect the fake ID 1. In this example,
2 and 5 can detect the problem. Indeed, predicate SelfRootOk′ is violated by both 2
and 5. One may believe that it is sufficient to reset the local state of processes which de-
tect inconsistency (here processes 2 and 5) to p.idR← p, p.par ← p and p.level← 0.
After these resets, there are still some errors, as shown on Figure 3. Again, 3 and 4 can
detect the problem. Indeed, predicate GoodIdR(p, p.par) ∧ GoodLevel(p, p.par) is
violated by both 3 and 4. In this example, after 3 and 4 have reset, all inconsistencies
have been removed. So let define the following action:

R-Action′ ::
(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨
(
¬SelfRoot(p) → p.par ← p;

∧¬(GoodIdR(p, p.par) ∧GoodLevel(p, p.par))
)

p.idR ← p;
p.level ← 0;

2 3 4 5
〈2, 0〉 〈1, 2〉 〈1, 2〉 〈5, 0〉

Fig. 3. One step after Figure 2b, 2 and 5 have reset

Unfortunately, this additional action does not ensure the convergence in all cases
— refer to the example in Figure 4. Indeed, if a process resets, it becomes a self root
but this does not erase the fake ID in the rest of its subtree. Then, another process can
join the tree and adopt the fake ID which will be further propagated, and so on. In the
example, a process resets while another joins its tree at lower level, and this leads to
endless erroneous behavior, since we do not want to assume any maximal value for
level (such an assumption would otherwise imply the knowledge of some upper bound
on n). Therefore, the whole tree must be reset, instead of its root only. To that goal, we
first freeze the “abnormal” tree in order to forbid any process to join it, then the tree is
reset top-down. The cleaning mechanism is detailed in the next subsection.

3.3 Cleaning Abnormal Trees

To introduce the trees, we define what is a “good relation” between a parent and its
children. Namely, the predicate KinshipOk′(p, q) models that a process p is a real
child of its parent q = p.par. This predicate holds if and only if GoodLevel(p, q) and
GoodIdR(p, q) are true. This relation defines a spanning forest: a tree is a maximal set
of processes connected by par pointers and satisfying KinshipOk′ relation. A pro-
cess p is a root of such a tree whenever SelfRoot(p) holds or KinshipOk′(p, p.par)

Self-stabilizing Leader Election 113

3

5

2 6

4

〈1, 2〉

〈5, 0〉

〈2, 0〉 〈1, 4〉

〈1, 3〉

(a) Initial configuration.

3

5

2 6

4

〈3, 0〉

〈5, 0〉

〈1, 5〉 〈1, 4〉

〈1, 3〉

(b) 2 joins the tree. 3 leaves it.

3

5

2 6

4

〈3, 0〉

〈1, 6〉

〈1, 5〉 〈1, 4〉

〈4, 0〉

(c) 5 joins the tree. 4 leaves it.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈1, 5〉 〈6, 0〉

〈4, 0〉

(d) Both 3 and 6 move.

3

5

2 6

4

〈1, 7〉

〈1, 6〉

〈2, 0〉 〈6, 0〉

〈1, 8〉

(e) 4 joins, 2 leaves.

3

5

2 6

4

〈1, 7〉

〈5, 0〉

〈2, 0〉 〈1, 9〉

〈1, 8〉

(f) Configuration similar to 4a.

Fig. 4. The first process of the chain of bold arrows violates the predicate SelfRootOk′ and
resets by executing R-Action′, while another process joins its tree. This cycle of resets and joins
might never terminate.

is false. When SelfRoot(p) ∧ SelfRootOk′(p) is true, p is a normal root just as
in the non self-stabilizing case. In other cases, there is an error and p is called an
abnormal root: AbRoot′(p) ≡

(
SelfRoot(p) ∧ ¬SelfRootOk′(p)

)
∨

(
¬SelfRoot(p) ∧

¬KinshipOk′(p, p.par)
)
. A tree is said to be abnormal (resp. normal) when its root is

abnormal (resp. normal).
We now detail the different predicates and actions of Algorithm 1.

Variable status. Abnormal trees need to be frozen before to be cleaned in order to
prevent them from growing endlessly (see 3.2). This mechanism is achieved using an
additional variable, status, that is used as follows. If a process is clean (i.e., not in-
volved into any freezing operation), then its status is C. Otherwise, it has status EB
or EF and no neighbor can select it as its parent. These two latter states are actually
used to perform a “Propagation of Information with Feedback” [7] into the abnormal
trees. Status EB means “Error Broadcast” and EF means “Error Feedback”. From an
abnormal root, the status EB is broadcast down in the tree. Then, once the EB wave
reaches a leaf, the leaf initiates a convergecast EF -wave. Once the EF -wave reaches
the abnormal root, the tree is said to be dead, meaning that there is no process of status
C in the tree and no other process can join it. So, the tree can be safely reset from the
abnormal root toward the leaves. Notice that the new variable status may also get ar-
bitrary initialization. Thus, we enforce previously introduced predicates as follows. A
self root must have status C, otherwise it is an abnormal root:

SelfRootOk(p) ≡ SelfRootOk′(p) ∧ (p.status = C)

114 K. Altisen et al.

Algorithm 1. Algorithm LE for every process p
Variables: p.idR ∈ N; p.par ∈ Np ∪ {p}; p.level ∈ N; p.status ∈ {C,EB,EF} ;
Macros:

Childrenp ≡ {q ∈ Np | q.par = p}
RealChildrenp ≡ {q ∈ Childrenp | KinshipOk(q, p)}
p
 q ≡ (p.idR ≤ q.idR) ∧ [(p.idR = q.idR) ⇒ (p ≤ q)]
Minp ≡ min� {q ∈ Np | q.status = C}

Predicates:
SelfRoot(p) ≡ p.par = p
SelfRootOk(p) ≡ (p.level = 0) ∧ (p.idR = p) ∧ (p.status = C)
GoodIdR(s, f) ≡ (s.idR ≥ f.idR) ∧ (s.idR < s)
GoodLevel(s, f) ≡ (s.idR = f.idR) ⇒ (s.level = f.level + 1)
GoodStatus(s, f) ≡ [(s.status = EB) ⇒ (f.status = EB)]

∨[(s.status = EF) ⇒ (f.status �= C)]
∨[(s.status = C) ⇒ (f.status �= EF)]

KinshipOk(s, f) ≡ GoodIdR(s, f) ∧ GoodLevel(s, f) ∧ GoodStatus(s, f)
AbRoot(p) ≡ [SelfRoot(p) ∧ ¬SelfRootOk(p)]

∨[¬SelfRoot(p) ∧ ¬KinshipOk(p, p.par)]
Allowed(p) ≡ ∀q ∈ Childrenp, (¬KinshipOk(q, p) ⇒ q.status �= C)

Guards:
EBroadcast(p) ≡ (p.status = C) ∧ [AbRoot(p) ∨ (p.par.status = EB)]
EFeedback(p) ≡ (p.status = EB) ∧ (∀q ∈ RealChildrenp, q.status = EF)
Reset(p) ≡ (p.status = EF) ∧ AbRoot(p) ∧ Allowed(p)
Join(p) ≡ (p.status = C) ∧ [∃q ∈ Np, (q.idR < p.idR) ∧ (q.status = C)]

∧Allowed(p)
Actions:

EB-action :: EBroadcast(p) → p.status ← EB;
EF -action :: EFeedback(p) → p.status ← EF ;
R-action :: Reset(p) → p.status ← C; p.par ← p;

p.idR ← p; p.level ← 0;
J-action :: Join(p) ∧ ¬EBroadcast(p) → p.par ← Minp; p.idR ← p.par.idR;

p.level ← p.par.level + 1;

To be a real child of q, p should have a status coherent with the one of q. This is ex-
pressed with the predicate GoodStatus(p, q) which is used to enforce the
KinshipOk(p, q) relation:

GoodStatus(p, q) ≡ [(p.status = EB) ⇒ (q.status = EB)]
∨[(p.status = EF) ⇒ (q.status �= C)]
∨[(p.status = C) ⇒ (q.status �= EF)]

KinshipOk(p, q) ≡ KinshipOk′(p, q) ∧GoodStatus(p, q)
Precisely, when p has status C, its parent must have status C or EB (if the EB-wave

is not propagated yet to p). If p has status EB, then the status of its parent must be EB
because p gets status EB from its parent q and q will change its status to EF only
after p gets status EF . Finally, if p has status EF , its parent can have status EB (if the
EF -wave is not propagated yet to its parent) or EF .

Normal Execution. Remark that, after all abnormal trees have been removed, all pro-
cesses have status C and the algorithm works as in the initial version. Notice that the
guard of J-action has been enforced so that only processes with status C and which
are not abnormal root can execute it, and when executing J-action, a process can only
choose a neighbor of status C as parent. Moreover, remark that the cleaning of all ab-
normal trees does not ensure that all fake IDs have been removed. Rather, it guarantees
the removal of all fake IDs smaller than �. This implies that (at least) � is a self root at
the end of the cleaning and all other processes will elect � within the next D rounds.

Cleaning Abnormal Trees. Figure 5 shows how an abnormal tree is cleaned. In the first
phase (see Figure 5a), the root broadcasts status EB down to its (abnormal) tree: all the

Self-stabilizing Leader Election 115

processes in this tree execute EB-action, switch to status EB and are consequently
informed that they are in an abnormal tree. The second phase starts when the EB-
wave reaches a leaf. Then, a convergecast wave of status EF is initiated thanks to
action EF -action (see Figure 5b). The system is asynchronous, hence all the processes
along some branch can have status EF before the broadcast of the EB-wave is done
into another branch. In this case, the parent of these two branches waits that all its
children in the tree (processes in the set RealChildren) get status EF before executing
EF -action (Figure 5c). When the root gets status EF , all processes have status EF :
the tree is dead. Then (third phase), the root can reset (safely) to become a self root
by executing R-action (Figure 5e). Its former real children (of status EF) become
themselves abnormal roots of dead trees (Figure 5f) and reset.

Finally, we used the predicate Allowed(p) to temporarily lock the parent of p in two
particular situations — illustrated in Figure 6 — where p is enabled to switch its status
from C to EB. These locks impact neither the correctness nor the complexity of LE .
Rather, they allow us to simplify the proofs by ensuring that, once enabled, EB-action
remains continuously enabled until executed.

4 Correctness and Complexity Analysis

First, remark that idR and level can be stored in Θ(log n) bits. So, the memory require-
ment of LE is Θ(log n) bits per process.

Let us first distinguish between clean and dirty configurations. Given any configu-
ration γ, γ is clean if and only if in γ, ∀p ∈ V,¬EBroadcast(p) ∧ p.status = C.
In other words, a configuration is clean if and only if it contains no abnormal trees.
In particular, such a clean configuration does not contain fake IDs smaller than �. Any
configuration that is not clean is said to be dirty.

4.1 Correctness and Stabilization Time in Steps

Convergence from a Clean Configuration. Let us first consider any clean configuration,
γ. As γ is clean, γ may contain some fake IDs, but all of them (if any) are greater than �.
This implies, in particular, that � is a self root and �.idR = � forever from γ. Moreover,
in γ there are at most n different values disseminated into the idR variables. Every
process p �= � can only decrease its own value of idR by executing J-action (all other
actions are disabled forever at p because they deal with abnormal trees). Hence, overall
after at most (n−1)×(n−2)

2 executions of J-action, the configuration is terminal and �
is elected.

Convergence from an Arbitrary Configuration. The remainder of the proof consists
in showing that, from any arbitrary configuration, a clean configuration is reached in
O(n3) steps. So, let consider a dirty configuration γ. Then, γ contains some abnormal
trees. In the following, we say that a process p is called alive if and only if p.status =
C. Otherwise, it is said to be dead. By extension, a tree T is called an alive tree if and
only if ∃p ∈ T such that p is alive. Otherwise, it is called a dead tree.

116 K. Altisen et al.

EB-action

C

6

2 8

〈1, 0〉

〈1, 1〉 〈1, 1〉

(a) When an abnormal root detects an error, it
executes EB-action. The EB-wave is broad-
cast to the leaves. Here, 6 is an abnormal root
because it is a self root and its idR is different
from its ID (1 �= 6).

EF -action

C

EB

(b) When the EB-wave reaches a leaf, it exe-
cutes EF -action. The EF -wave is propagated
up to the root.

C EF

EB

5

4

7

9

〈1, 4〉

〈1, 5〉

〈1, 5〉

〈1, 5〉

(c) It may happen that the EF -wave reaches a
node, here process 5, even though theEB-wave
is still broadcasting into some of its proper sub-
trees: 5 must wait that the status of 4 and 7 be-
come EF before executing EF -action.

EF -action

EF

EB

(d) EB-wave has been propagated in the other
branch. An EF -wave is initiated by the leaves.

R-action

EF

(e) EF -wave reaches the root. The root can
safely reset (R-action) because its tree is dead.
The cleaning wave is propagated down to the
leaves.

R-action

EF EF

6

2 8

〈6, 0〉

〈1, 1〉 〈1, 1〉

(f) Its children become themselves abnormal
roots of dead trees and can execute R-action: 2
and 8 can clean because their status is EF and
their parent has status C.

Fig. 5. Schematic example of the cleaning mechanism. Trees are filled according to the status of
their processes: white for C, dashed for EB, gray for EF .

We first show that no abnormal alive tree can be created from γ. So, as there are at
most n abnormal alive trees in the initial configuration, and each of them may contain

Self-stabilizing Leader Election 117

4

9

〈3, 0〉

〈4, 1〉

(a) 4 and 9 are abnormal roots. If 4 executes
R-action before 9 executes EB-action, the
kinship relation between 4 and 9 becomes cor-
rect and 9 is no more an abnormal root. Then,
EB-action is no more enabled at 9.

6 3

4

9

〈2, 3〉 〈3, 0〉

〈3, 1〉

〈2, 5〉

(b) 9 is an abnormal root and Min4 is 6. If 4 ex-
ecutes J-action before 9 executes EB-action,
the kinship relation between 4 and 9 becomes
correct and 9 is no more an abnormal root.
Then, EB-action is no more enabled at 9.

Fig. 6. Example of situations where the parent of a process is locked

up to n processes, at most n2 EB-action, EF -action, and R-action respectively are
sufficient to freeze and remove all them. Notice that this way we clean abnormal trees
is the main difference between our algorithm LE and the algorithm proposed in [10],
DLV . Indeed, we have shown that, contrary to LE , the correction mechanism imple-
mented in DLV can involve a non-polynomial number of correction actions (see [2]).

Nevertheless, processes can execute J-action during the removal of abnormal trees.
In particular, a process p can leave an abnormal alive tree T by executing J-action
to join another (normal or abnormal) tree. However, in this case the value of p.idR
necessarily decreases. Later p can join T again, but this may happen only if p executes
actions EB-action, EF -action, and R-action at least once in the meantime. This
means that p participates to the removal of some abnormal tree. Thus, each time p joins
T again, the number of abnormal trees decreases, i.e., p can join and leave T at most
n− 1 times.

Thus, each process (n) can join each abnormal tree (at most n) at most n − 1 times
using J-action which gives an overall number of J-actions in O(n3).

To sum up, starting from any configuration, a terminal configuration where � is
elected is reached in O(n3) steps. (We prove a tighter bound in [2].)

4.2 Stabilization Time in Rounds

Let us consider a clean configuration γ. Again, γ may contain some fake IDs, but all
of them (if any) are greater than �. This implies, in particular, that � is a self root and
�.idR = � forever from γ. � being the minimum value in idR variables, � is propagated,
from neighbors to neighbors, into the idR variables and the system reaches a terminal
configuration in O(D) rounds.

Consider now a dirty configuration γ. From γ, all abnormal trees are frozen and
removed in parallel using three waves: (1) the broadcast of the value EB from the
abnormal roots to the leaves, (2) a convergecast of the value EF from the leaves to the
abnormal roots, and (3) finally, the cleaning is performed top-down. As the maximum
height of a tree is n, each of these waves is done in at most n rounds. Overall, abnormal
trees are removed in at most 3n rounds.

118 K. Altisen et al.

Hence, the stabilization time is at most 3n+D rounds.

5 Conclusion

We proposed a silent self-stabilizing leader election algorithm, called LE , for bidirec-
tional connected identified networks of arbitrary topology. Starting from any arbitrary
configuration, LE converges to a terminal configuration, where all processes know the
ID of the leader, this latter being the process of minimum ID. Moreover, as in most
of the solutions from the literature, a distributed spanning tree rooted at the leader is
defined in the terminal configuration.
LE is written in the locally shared memory model. It assumes the distributed unfair

daemon, the most general scheduling hypothesis of the model. Moreover, it requires
no global knowledge on the network (such as an upper bound on the diameter or the
number of processes, for example).LE is asymptotically optimal in space, as it requires
Θ(log n) bits per process, where n is the size of the network. We analyzed its stabiliza-
tion time both in rounds and steps. We showed that LE stabilizes in at most 3n + D
rounds, where D is the diameter of the network. We have also proven in the technical
report [2] that for every n ≥ 4, for every D, 2 ≤ D ≤ n − 2, there is a network of n
processes in which a possible execution exactly lasts this complexity.

Finally, we proved that LE achieves a stabilization time polynomial in steps. More
precisely, we have shown in the technical report [2] that its stabilization time is at most
n3

2 +2n2 + n
2 +1 steps. Still in [2], we have shown that for every n ≥ 4, there exists a

network of n processes (and of diameter 2) in which a possible execution exactly lasts
n3

6 + 5
2n

2 − 11
3 n+ 2 steps, establishing then that the worst case is in Θ(n3).

Perspectives of this work deal with complexity issues. In [10], Datta et al showed that
it is easy to implement a silent self-stabilizing leader election which works assuming an
unfair daemon, uses Θ(log n) bits per process, and stabilizes in O(D) rounds (where
D is an upper bound onD). Nevertheless, processes are assumed to know D. It is worth
investigating whether it is possible to design an algorithm which works assuming an
unfair daemon, uses Θ(log n) bits per process, and stabilizes in O(D) rounds without
using any global knowledge. We believe this problem remains difficult, even adding
some fairness assumption.

References

1. Afek, Y., Bremler-Barr, A.: Self-Stabilizing Unidirectional Network Algorithms by Power
Supply. Chicago J. Theor. Comput. Sci. 1998 (1998)

2. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-Stabilizing Leader Election
in Polynomial Steps. Tech. rep., CNRS (2014),
http://hal.archives-ouvertes.fr/hal-00980798

3. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Computers 43(9), 1026–1038 (1994)
4. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time Optimal Self-

stabilizing Synchronization. In: STOC, pp. 652–661 (1993)
5. Blin, L., Tixeuil, S.: Brief Announcement: Deterministic Self-stabilizing Leader Election

with O(log log n)-bits. In: PODC, pp. 125–127 (2013)

http://hal.archives-ouvertes.fr/hal-00980798

Self-stabilizing Leader Election 119

6. Burman, J., Kutten, S.: Time Optimal Asynchronous Self-stabilizing Spanning Tree. In: Pelc,
A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 92–107. Springer, Heidelberg (2007)

7. Chang, E.J.H.: Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE Trans.
Software Eng. 8(4), 391–401 (1982)

8. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stabilizing Leader Election in Dynamic Net-
works. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366,
pp. 35–49. Springer, Heidelberg (2010)

9. Datta, A.K., Larmore, L.L., Vemula, P.: An O(n)-time Self-stabilizing Leader Election Algo-
rithm. J. Parallel Distrib. Comput. 71(11), 1532–1544 (2011)

10. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing Leader Election in Optimal Space
under an Arbitrary Scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)

11. Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. Commun.
ACM 17(11), 643–644 (1974)

12. Dolev, S., Gouda, M.G., Schneider, M.: Memory Requirements for Silent Stabilization. Acta
Inf. 36(6), 447–462 (1999)

13. Dolev, S., Herman, T.: Superstabilizing Protocols for Dynamic Distributed Systems. Chicago
J. Theor. Comput. Sci. (1997)

14. Kravchik, A., Kutten, S.: Time Optimal Synchronous Self Stabilizing Spanning Tree. In:
Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 91–105. Springer, Heidelberg (2013)

Disconnected Components Detection and Rooted
Shortest-Path Tree Maintenance in Networks�

Glacet Christian1, Hanusse Nicolas2, Ilcinkas David2, and Johnen Colette1

1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
2 CNRS, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. Many articles deal with the problem of maintaining a rooted
shortest-path tree. However, after some edge deletions, some nodes can
be disconnected from the connected component Vr of some distinguished
node r. In this case, an additional objective is to ensure the detection
of the disconnection by the nodes that no longer belong to Vr. Without
any assumption on the asynchronous model (unfair daemon), with no
knowledge of the network and within an anonymous network, we present
a silent self-stabilizing algorithm solving this more demanding task and
running in less than 2n + D rounds for a network of n nodes and hop-
diameter D.

1 Introduction

Routing algorithms using the computation of distance/path vectors, like RIP
(Routing information protocol) or BGP (Border Gateway Protocol), are based
on the construction of shortest-path trees. For any destination r, a shortest-path
tree rooted at r is implicitly built by the routing scheme. Because of the dynam-
icity of the network, it may happen that the network is disconnected. Routing
to node r is only guaranteed from the nodes that belong to the same component
as r, namely Vr. For the other nodes, one should remove, in the routing tables,
information to reach r in order to prevent routing messages that will anyway
never reach r, and thus to save some bandwidth. A legitimate configuration is
characterized by the fact that every node that belongs to Vr knows a route to r
and every other node detects that r is not in its own component. The difficulty
of converging toward a legitimate configuration is called, in this context, the
count-to-infinity problem [LGW04]: for nodes that do not belong to Vr, some
control messages keep on being exchanged infinitely in order to find a path to r.
At the same time, the updates of routing tables for nodes belonging to Vr should
be done as fast as possible.

In practice, the most standard technics consist in exchanging distance/path
vectors periodically and in using some timers in order to guess if a node is still
within Vr . However, the convergence is not guaranteed without any assumption
� Partially supported by the anr project displexity (anr-11-bs02-014). This study
has been carried out in the frame of “the Investments for the future” Programme
IdEx Bordeaux – cpu (anr-10-idex-03-02).

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 120–134, 2014.
c© Springer International Publishing Switzerland 2014

Disconnected Components Detection 121

(i) on the asynchrony of the network and/or (ii) on some known upper bound
on the diameter or the size of the network. The convergence toward a legitimate
configuration can be often provided by self-stabilizing algorithms. However, so-
lutions that can be found in the literature are dedicated to the maintenance of
a BFS tree or shortest paths, but only for connected networks. Using them, we
still face the count-to-infinity problem in the disconnected components.

In the routing context, it is not always required to store information for every
node. In compact routing schemes [AGM+08, GGHI13], only some shortest-path
trees completely spanning the connected components are built and need to be
maintained. Given a set of roots r1, r2, . . . , rk, we aim at providing silent self-
stabilizing algorithms that both maintain a shortest-path tree toward each ri,
for nodes of Vri , and detect the nodes that no longer belong to Vri . In the
following, we present two algorithms for a single root for an unfair daemon but
our solutions hold for any k. The identifiers of nodes do not need to be unique.
Only ri’s identifiers should be different in order to distinguish the different roots.
Thus, for k = 1, our self-stabilizing algorithms work in anonymous networks in
the semi-uniform model.

1.1 Related Works

Self-stabilizing single-destination shortest-path constructions. The single-desti-
nation shortest-path problem is to find shortest paths from all vertices in the
graph to a single destination vertex r. Edges can have weights and the length
of a path corresponds to its sum of weights. The oldest distributed algorithms
are inspired by the Bellman-Ford algorithm. In the articles dedicated to self-
stabilizing algorithms, the difficulty is to find an algorithm running in the worst
sequence of processes execution in an asynchronous setting. Models of processes
execution are called daemons. In [CS94, HL02], self-stabilizing algorithms for the
single-destination shortest-path problem are presented; both protocols require a
central daemon, that is only one process can be executed at each instant. In
[Hua05b], Tetz Huang proves that the algorithms in [CS94, HL02] also work
under the unfair daemon, which is the most general daemon. However, no upper
bounds on the time (rounds or number of execution steps) are given. The same
author presents an algorithm under the read/write separate atomicity model
(Dolev Model) in [Hua05a].

In [AGH90, CG02, JT03], self-stabilizing algorithms for the single-destination
shortest-path problem are presented; these algorithms ensure the loop-free prop-
erty: after any edge cost changes, even during the re-building phase, there is
always a path from any node to the destination. To sum up, none of these arti-
cles provide tight bounds on the complexity of the convergence time in the most
general asynchronous model, the unfair daemon, and the presented algorithms
are not silent in the disconnected components.

Self-stabilizing breadth-first tree constructions. Whenever edges do not have any
weight, shortest-path trees correspond to breadth-first trees. To our knowledge,
this restriction does not help to get all the desirable guarantees. Chen et al.

122 G. Christian et al.

present the first self-stabilizing BFS tree construction in [CYH91] under the cen-
tral daemon. Huang et al. present the first self-stabilizing BFS tree construction
in [HC92] under the unfair distributed daemon. In [CYH91, HC92], the exact
network size has to be known by all nodes. Dolev, Israeli and Moran in [DIM93]
present the first self-stabilizing BFS spanning-tree construction algorithm under
read/write atomicity.

Blin et al. in [BPBRT10] present an universal transformer of self-stabilizing
tree construction with any metric on semi-uniform networks to a loop-free super
stabilizing algorithm under the fair daemon. All these cited works assume that
the network is a connected graph.

Self-stabilizing routing algorithm. In [BDV07], Bein et al. present a self-stabi-
lizing algorithm building local routing tables under the fair daemon (the tables
ensure the routing from any node v to its t closest nodes) in O(D) rounds in the
connected component, in but O(t) rounds within the disconnected component.
Choosing the parameter t correctly helps to tackle the count-to-infinity problem.
However, it means that in order to use their solution an upper bound on the
network size has to be known.

Leader election algorithms. Surprisingly, one way to get closer to our goal is
to focus on the problem of leader election, as in [DLV11, ACD+14], under the
very general daemon, the unfair one, without any knowledge about the network
topology. In [DLV11] (resp. in [ACD+14]), for each component, a BFS tree rooted
at the selected leader is built within 4n + 11D + 4 rounds (resp. 3n + D rounds).
Note that D stands for the diameter of the unweighted network.

Since, in each component, the selected leader is the node with smallest iden-
tifier, one could change a little bit these uniform algorithms into semi-uniform
algorithms, by forcing the node r to have the smallest identifier in adding a
single bit to every identifiers. However, this trick can work only for k = 1 and it
is not clear what would be the convergence time for a weighted network.

1.2 Model

A distributed system S is an undirected graph G = (V, E) where vertex set
V is the set of nodes and edge set E is the set of communication links. A
link {u, v} belongs to E if and only if u and v can directly communicate (links
are bidirectional); so, u and v are neighbors. We note by Γ (v) the set of v’s
neighbors: Γ (v) = {u ∈ V | {u, v} ∈ E}. Edges have positive weight. In the
following, D stands for the hop-diameter of the underlying graph, that is the
maximum over all pairs {u, v} of the minimum number of edges in a shortest
path from u to v.

Each node v maintains a set of shared variables such that v can read its own
variables and those of its neighbors, but it can modify only its variables. The state
of a node is defined by the values of its local variables. The union of states of all
nodes determines the configuration of the system. The program of each node is
a set of rules. Each rule has two parts, the guard and the action. The guard of

Disconnected Components Detection 123

a v’s rule is a Boolean expression involving the state of the node v, and those of
its neighbors. The action of a v’s rule updates v’s state. So, every rule will be
graphically described by two braces. The first brace contains the predicates such
that their conjunction is the rule guard; and the second brace contains the rule
action (i.e. one or several local variable updates).

A rule can be executed only if it is enabled, i.e., its guard evaluates to true. A
node is enabled if at least one of its rules is enabled. A configuration is said to be
terminal if and only if no node is enabled. In a semi-uniform algorithm, all nodes
except one, denoted r, perform the same distributed algorithm. Vr denotes the
connected component of distinguished node r. In anonymous networks, nodes
do not have distinct identifiers. However, we assume that a node can distinguish
its neighbors since out-links of every node can be locally numbered.

During a computation step under the daemon S, ci →S ci+1, one or several
enabled nodes in configuration ci are selected by the daemon S. Theses nodes will
simultaneously and atomically read their neighbors states and then perform their
actions so that the system reaches the configuration ci+1 from ci. An execution e
under daemon S is a sequence of configurations e = c0, c1, · · · , where ci+1 is
reached from ci by one computation step under S: ∀i � 0, ci →S ci+1. The
centralized daemon selects at each computation step only one node. The fair
daemon may select several nodes at each step, but it produces only fair executions
(an always enabled node is eventually activated). There is no requirement on the
unfair daemon; so unfair executions are produced by the unfair daemon.

We say that an execution e is maximal if it is infinite, or if it reaches a
terminal configuration. We note by C the set of all possible configurations, and
by ES the set of all maximal executions under the daemon S. The set of maximal
executions under the daemon S starting from a particular configuration c ∈ C is
denoted ES

c .

Definition 1 (Silent Self-stabilization to L). Let L be a subset of C, called
set of legitimate configurations. A distributed system is silent and self-stabilizing
under the daemon S to L if and only if the following conditions hold:

– all executions under S are finite;
– all terminal configurations belong to L.

Stabilization Time. We use the round notion to measure the time complex-
ity. The first round of an execution e = c1, c2, · · · is the minimal prefix e1 =
c1, · · · , cj , such that every node having an enabled rule in c1 either executes a
rule or is neutralized during a computation step of e1. A node v is neutralized
during a computation step ci → ci+1, if v is enabled in ci but not anymore in
configuration ci+1.
Let e′ be the suffix of e such that e = e1e′. The second round of e is the first
round of e′, and so on.

The stabilization time is the number of rounds of an execution reaching a legit-
imate configuration from any initial one.

124 G. Christian et al.

Definition 2 (Round of a component). The end of the i + 1-st round in the
(connected) component H ⊆ G in a computation e is defined recursively as the
configuration of the execution e where every node v ∈ H(V) that was enabled
at the end of the i-th round of e in H have been either activated or neutralized
once.

We can notice that the i-th round in a component H ⊆ G can end earlier
than the i-th round (when the component is not explicitly given then the round
is global).

Definition 3 (Node convergence). A node v is said to have converged to its
final state s under the daemon S at the configuration c1 if along all executions
under S from c1, the node v keeps its state s.

1.3 Our Contributions

We present two self-stabilizing silent algorithms on anonymous semi-uniform
weighted networks working under the unfair daemon. Both algorithms build a
shortest-path tree rooted at r in Vr, and isolate the nodes in the other connected
components.

We first present a simple distributed algorithm, namely Algorithm DcD, which
is quite natural. We show that the convergence time may unfortunately be as
high as Ω(n2) rounds in some n-node graphs of large diameter.

Changing a little bit this algorithm, we end up with a second algorithm FDcD.
This latter algorithm converges to a legitimate configuration within less than
2n + D rounds in any n-node weighted graph of hop-diameter D.

2 Our Algorithms

This section is devoted to the presentation of our two algorithms, DcD (Discon-
nection Detection) and FDcD (Fast Disconnection Detection). These algorithms
are using the same key idea and are thus very similar (although their perfor-
mances are different).

The value of variable st indicates the status of the node: I for isolated (the
node has no parent and no children); E for erroneous and C for correct.

A non-isolated node u (stu �= I) has two other meaningful variables: the
variable du containing the shortest weighted distance to r, and the variable
parentu containing a pointer to the first out-link on the shortest path to r.
Thus, only non-isolated nodes can belong to a branch (i.e. have children and/or
a parent).

The single rule for node r is the same for both algorithms (Figure 1).

Definition 4 (Children of node u). childrenu =
{v ∈ Γ (u) | (stu �= I) ∧ (stv �= I) ∧ (parentv = u) ∧ (dv ≥ du + ω{u, v})}

Definition 5 (Correct state). A node u is said to be in a correct state if:

Disconnected Components Detection 125

Rr

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{

Proot(u) ≡ (str �= C) ∨ (parentr �= r) ∨ (dr �= 0)

{
str ← C
parentr ← r
dr ← 0

Fig. 1. Algorithm DcD or FDcD on node r

– its status variable is C,
– its distance variable is set to d(u, r) the weighted distance from u to r and
– the weighted distance d(parentu, r) of parentu to r is du − ω{u, parentu}.

Definition 6 (Legitimate state). A node u is said to be in a legitimate state if:

– it belongs to Vr and is in a correct state;
– or it does not belong to Vr and it has status I.

Definition 7 (Legitimate configuration). A legitimate configuration is a
configuration where every node is in a legitimate state.

2.1 A First and Simple Algorithm : Algorithm DcD

Algorithm DcD is given in figure 2. It is roughly based on the following idea.
Whenever a node detects a local anomaly, it somehow detaches from its parent,
warns its whole sub-tree, and then reconnects to another tree.
A given node u detects an anomaly in the relationship with its parent in four
cases:

– the parent node is not in its neighborhood;
– it is not the best out-link for the destination r;
– the value of du is not coherent with the value of dparentu ;
– it, or its parent, has not status C.

When a node u detects an anomaly in the relationship with its parent, it takes
the status E (rule RC). Notice that the error status is propagated in sub-trees.
When a leaf has the error status, then it can quit its tree: either it becomes
isolated (rule RI) or it joins a “correct” branch (rule RC). So any erroneous
sub-trees are eventually deleted.

Only nodes with status C may gain new children; and only nodes without
children may change the value of their variable d or parent (rule RC) to join
a new branch. These two properties ensure that the execution of the rule RC

by a node u does not create anomaly (because a node u doing RC during a
computation step has no children and it cannot gain children during this step).

We can show that algorithm DcD converges to a legitimate configuration.
However, for graphs with large diameter (D = Θ(n)) it may converge in Ω(n2)
rounds. This lower bound is based on a graph Gn defined right after and presented
in Figure 3. It uses several copies of the undermentioned graph Hi.

126 G. Christian et al.

RC

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{

Pupdate(u) ≡ (stu �= C) ∧ (childrenu = ∅) ∧ (∃v ∈ Γ (u) | stv = C)
⎧
⎨

⎩

stu ← C
parentu ← argmin(v∈Γ (u))∧(stv=C)(dv + ω{u, v})
du ← dparentu + ω{u, parentu}

RE

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎨

⎪⎩

PfullError(u) ≡
[
(parentu �∈ Γ (u)) ∨ (stparentu �= C)
∨ (dparentu + ω{u, parentu} �= du)
∨ (∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} < du))

]

∧ (stu = C)
{

stu ← E

RI

⎧
⎪⎪⎨

⎪⎪⎩

{

Pisolate(u) ≡ (stu = E) ∧ (childrenu = ∅) ∧ (∀v ∈ Γ (u) | stv �= C)
{

stu ← I

Fig. 2. Algorithm DcD on node u

Definition 8 (Graph H). The graph called H is a 5-node graph composed by
a path (a, b, c, e) where node e and a are connected together via an intermediate
node f .

Definition 9 (Graph Gn). The graph Gn is composed of n copies of graph H:
H0, H1, . . . , Hn−1. To build Gn simply connect every Hi to Hi+1 by merging nodes
ei and ai+1 (the index indicates the copy).

This graph Gn has 4n + 1 nodes and diameter 2n.

a0 b0 c0 e0

a1 b1 c1 e1
a2 b2 c2 e2

f0 f1 f2

Fig. 3. G3 with the node names

Disconnected Components Detection 127

0 1 2 2 6 7 83 4 5

1 63

Fig. 4. Configuration X1 of G3

Lemma 1. For the graph Gn of O(n) nodes, algorithm DcD may converge to a
legitimate configuration within Ω(n2) rounds.

Proof. Let consider a graph G and set node a0 to be the root of Gn. In this proof
we will mainly consider two possible configurations for any graph Hi:

– An illegitimate configuration, called ic, where nodes bi, ci, ei, fi have their
parents variables respectively set to ai, bi, ci, ai, which leads node ei to have
its distance set to dai + 3.

– And also the legitimate configuration, where nodes bi, ci, ei, fi have their
parents variables respectively set to ai, bi, fi, ai and dai = 2i. This leads
node ei to have its distance set to 2i + 2.

First, we can notice that an illegitimate configuration can turn to a legitimate
configuration for graph Hi only if node ai already stores a distance of 2i, which
implies that every Hk such that k < i is in legitimate state.

Let us define the configuration Xi for 0 ≤ i ≤ n as follow. The root node a0 is
in correct state, every Hk for k < i is in the legitimate configuration and every
Hj for j ≥ i is in the illegitimate configuration. The configuration X1 is shown
on figure 4 for n = 3. Xn is the legitimate configuration of Gn.

We will study one execution from X0 in which configurations Xi such that
i ∈ (1, 2, . . . , n) are successively reached. This execution has n steps, during the
ith step, configuration Xi is reached from configuration Xi−1.

Let us compute the number of rounds required to execute the (i + 1)th step.
The node ei has to switch its parent from ci to fi, resulting in changing its
distance from 2i + 3 to 2i + 2. The difficulty is that to change its parent, node ei
must have the status I. The node ei will get the status I only after the status E
is propagated into ei sub-tree which takes 3 rounds. After what, the status I
is propagated from en−1 to ei which takes 3(n − i − 1) more rounds. Now, we
need to bring every Hj such that j > i into the illegitimate configuration. That
can be done by activating successively, for every Hj such that j > i, every node
except node fj , after what the remaining nodes (fj | j > i) can be activated in
an arbitrary order. Therefore, the (i + 1)th step takes at least 3(n − i − 1) + 3
rounds.

In this execution, the total number of rounds needed to converge to the legit-
imate configuration on Gn is thus greater than

∑n
i=1 3(n − i). Which gives the

lower bound of Ω(n2). �

128 G. Christian et al.

2.2 A More Efficient Solution
With algorithm FDcD, presented in Figure 5, a node u joins a correct branch
sooner than with algorithm DcD. Nevertheless, no anomaly is created when a
node modifies the value of its variable d or parent.

When an anomaly is detected by a node u in the relationship with its parent,
if there is an alternative parent to connect to, then u changes parent (rule RC).
Otherwise, u takes status E (rule RE). Algorithm FDcD’s rules are quite similar
to DcD’s, the only differences lie in RC and RE guards. A node p is an alternative
parent for node u if it has status C and if :

– p is a better out-link than parentu (i.e. the cost of the path from u to r going
through p is smaller than the cost of the path going through parentu);

– or du matches dp (i.e. dp + ω{p, u} = du).
Any configuration during the execution of algorithm FDcD induces a BFS tree

rooted at node r that spans a subset of Vr, a forest rooted at different illegal
roots and some isolated nodes.

RC

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pcreate(u) ≡ (stu �= C) ∧ (childrenu = ∅) ∧ (∃v ∈ Γ (u) | stv = C)
Pupdate(u) ≡ (∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} < du))
Pcorrect(u) ≡ [(parentu /∈ Γ (u)) ∨ (du �= dparentu + ω{u, parentu})

∨ (stparentu �= C) ∨ (stu �= C)]
∧ [∃v ∈ Γ (u) | (stv = C) ∧ (dv + ω{u, v} = du)]

⎧
⎨

⎩

stu ← C
parentu ← argmin(v∈Γ (u))∧(stv=C)(dv + ω{u, v})
du ← dparentu + ω{u, parentu}

RE

⎧
⎪⎪⎨

⎪⎪⎩

{

Perror(u) ≡ (stu = C) ∧ (∀v ∈ Γ (u) | (du < dv + ω{(v, u}) ∨ (stv �= C))
{

stu ← E

RI

⎧
⎪⎪⎨

⎪⎪⎩

{

Pisolate(u) ≡ (stu = E) ∧ (childrenu = ∅) ∧ (∀v ∈ Γ (u) | stv �= C)
{

stu ← I

Fig. 5. Algorithm FDcD on node u

3 Correctness and Convergence Time of Algorithm FDcD
All the proofs in this section hold for both algorithms, except Lemma 6 and
thus Theorem 1, that hold only for Algorithm FDcD. We start this section by

Disconnected Components Detection 129

proving that the set of terminal configurations coincides with the set of legitimate
configurations. This will be done thanks to the following two lemmas, the first
one dealing with the connected components that do not contain node r, if some
exist, and the second one dealing with the connected component Vr containing
root node r.

Lemma 2. For any connected component H not containing node r, any termi-
nal configuration in H is a legitimate configuration.

Proof. The proof is done by contradiction. So consider that for some connected
component H not containing node r, there exists a terminal configuration in
which at least one node has not status I.

Further assume that there exists some node that has status C. Consider the
node u ∈ H with status C having the smallest distance value du. By construction,
u can apply rule RE , which is in contradiction with the configuration being
terminal. Therefore any node that does not have status I must have status E.

Consider now the node u ∈ H that has status E having the largest distance
value du. By construction and from the previous point, this node has no child
and no neighbor have status C. Therefore node u can apply rule RI , and we
obtain again a contradiction, which concludes the proof of the lemma. �
Lemma 3. Any terminal configuration within the connected component Vr is
legitimate.

Proof. The proof is done by contradiction. Let consider it exists some non-
legitimate terminal configuration of the connected component Vr.

Further, assume that there exists some node that has status E. Consider the
node u of Vr with status E having the largest distance value du. Note that no
node v that has status C can be a child of u, otherwise v could apply rule RE or
rule RC . Therefore, node u has no child and thus can apply rule RI or rule RC ,
a contradiction.

Nodes have thus either status C or I. Assume now that there exists some
node that has status I. Consider some node u with status I having at least
one neighbor with status C. Such a neighbor node must exist because we are
considering a connected component without any node with status E, but with
at least one node that has status C, namely node r. Obviously, node u can apply
rule RC , a contradiction. So every node in Vr must have status C.

Now consider the node u in Vr having the smallest distance value du among
the nodes in Vr that are not in a correct state. Then, either it exists some node
v with status C in Γ (u) such that du ≥ dv + ω{u, v}, or not. If such a node v
exists then node u can apply rule RC . If it does not, then, by definition, it can
apply rule RE . In both those cases there is a contradiction, which concludes the
proof. �

After noticing that any legitimate configuration is a terminal one, we conclude
with the following corollary.

Corollary 1. The set of terminal configurations coincide with the set of legiti-
mate configurations.

130 G. Christian et al.

We now prove that algorithm FDcD always terminates within 2n+D−2 rounds
under a fair daemon, where D is the hop-diameter of the connected component
containing r. Before proceeding with the proof, let us introduce some useful
concepts.

Definition 10 (Branch). A branch is a maximal sequence of nodes v1, · · · , vk,
for some integer k ≥ 1, such that none of the nodes have status I and, for every
i ≤ k, we have vi ∈ childrenvi+1. The node vi is said to be at depth k − i. If
vk = r but the state of r is not terminal, or simply if vk �= r, the branch is said
to be illegal, otherwise, the branch is said to be legal.

The first lemma essentially claims that all nodes that are in illegal branches
progressively switch to status E within n rounds, in order of increasing depth.

Lemma 4. Fix any integer i ≥ 1, and any connected component H. Starting
from the beginning of round i in H, there does not exist any node of H both in
state C and at depth less than i − 1 in an illegal branch.

Proof. We prove this lemma by induction on i. The base case i = 1 is obvious
so assume that the lemma holds for some integer i ≥ 1. Consider any node u
of H both with status C and depth i − 1 in an illegal branch. If u = r, then
r executes Rr. Otherwise, by induction hypothesis, the parent of u is not in
state C. Therefore u is enabled at the beginning of round i. During round i, it
will either execute rule RE and thus switch to state E, or it will execute rule RC .

Note that, from the beginning of round i, no node can ever choose a parent
which is at depth smaller than i−1 in an illegal branch because those nodes will
never be in state C, by induction hypothesis. Therefore, no node can become in
state C at depth smaller than i. This is also true for node u if it applies rule RC

in round i. This concludes the proof of the lemma. �

Root node r does not belong to an illegal branch after the first round. There-
fore, after the first round, the number of nodes of an illegal branch cannot be
more than n − 1. We thus obtain the following corollary.

Corollary 2. For any connected component H, once round n − 1 in H has
terminated, no node in an illegal branch in H has status C.

The next lemma essentially claims that, within at most n − 1 subsequent
rounds, the maximal length of an illegal branch progressively decreases until no
illegal branches remain.

Lemma 5. Fix any integer i ≥ 0, any of the two algorithms, and any connected
component H. Starting from the beginning of round n + i in H, there does not
exist any node of H at depth larger or equal to n − i − 1 in an illegal branch.

Proof. We prove the lemma by induction on i. The base case i = 0 is obvious so
assume that the lemma holds for some integer i ≥ 0. By induction hypothesis,
at the beginning of round n + i, no node is at depth larger or equal to n − i − 1.

Disconnected Components Detection 131

Therefore, the nodes at depth n − i − 2 in an illegal branch have no children
and are thus enabled at the beginning of round n + i. These nodes will thus all
be executed within round n + i (they cannot be neutralized as no children can
connect to them). We conclude the proof by noticing that, from Corollary 2,
once round n − 1 has terminated, every node in an illegal tree is in state E, and
thus any node in an illegal branch that gets executed from this time will not be
anymore in any illegal branch. �

Corollary 3. For any connected component H, once round 2n − 2 in H has
terminated, there are no illegal branches in H.

Note that in a connected component that does not contain the root r, there are
no legal branches. Since the only way for a node to be in no branch is to have
status I, we obtain the following result.

Corollary 4. For any connected component H not containing r, after 2n − 2
rounds in H, every node v of H has status I.

After 2n − 2 rounds, the connected components not containing r are in a legiti-
mate state. In the connected component Vr containing r, Algorithm FDcD may
need additional rounds so that the correct distances to r are correctly propa-
gated.

In the following lemma, we use the notion of hop-distance to r defined below.

Definition 11 (Hop-distance to the root node r). A node v is said to be
at k hops from r if k is the minimum number of edges of a shortest path from v
to r.

Lemma 6. Consider any integer i ≥ 0. For any execution of Algorithm FDcD,
starting from the beginning of round 2n − 2 + i, every node in component Vr at
most i hops from r is in a correct state.

Proof. Let us prove the lemma by induction on i. Firstly, we need to remark
that after one single round, node r has necessary converged to the correct state.
So the base case i = 0 holds, as we can assume n to be at least 2. Secondly, at
round 2n−2, from Corollary 3, every node either belongs to a legal branch or have
status I, thus any node v ∈ Vr always stores a distance d such that d ≥ d(v, r),
its actual weighted distance to r. By induction hypothesis, every node at at most
i hops from r has converged to a correct state before round 2n+ i−1. Therefore,
at the beginning of round 2n + i − 1, every node v at i + 1 hops from r which is
not in a correct state has rule RC enabled. Thus, at the end of round 2n + i − 1,
every node at at most i + 1 hops from r is in a correct state (such nodes cannot
be neutralized during this round). Also, these nodes will never change their state
since there are no nodes other than their parent that can make them get closer
to r than their current parent. �

Note that algorithm DcD eventually reach an identical configuration where every
node is either isolated or belongs to the tree rooted at r. But from this particular

132 G. Christian et al.

configuration algorithm DcD takes more time to converge to a legitimate state.
We know from Lemma 1 that the convergence to a legitimate state can take at
least Ω(n2) additional rounds for some settings of graphs and configurations.

Putting together all the results of this section, we obtain, for algorithm FDcD,
the following theorem.

Theorem 1. Under a fair daemon, Algorithm FDcD always converges to a le-
gitimate state within 2n + D − 2 rounds, where D is the hop-diameter of the
connected component Vr containing node r.

4 Convergence under an Unfair Daemon

In this section, we will prove that algorithm FDcD always converges to a le-
gitimate state, even under an unfair daemon. The proof, by contradiction, will
go as follows. After noticing that a node activated infinitely often must execute
rule RC infinitely many times, we will prove that nodes activated infinitely of-
ten must have globally increasing distance values. This means that these nodes
will eventually behave as if the nodes activated a finite number of times do not
exist. This will lead to a contradiction, as we proved before that a connected
component has to become silent after a finite number of rounds. Note that all
the lemmas in this section also hold for Algorithm DcD.
Lemma 7. If at some time a node has been executed k times, then it must have
executed rule RC at least

⌊
k−2
3

⌋
many times.

Proof. When a node with status E is enabled, it can either execute rule RC or
rule RI . Moreover, a node with status I can only execute rule RC . Thus between
two consecutive executions of rule RC by a node, only two other rule executions
can happen. �

Let us now introduce a useful notation for the next lemmas.
Definition 12. A node u is said to execute a rule with (distance) value dist if
the distance value du is equal to dist immediately after this rule execution.

Lemma 8. rule RC cannot be executed infinitely often with the same distance
value.

Proof. For the purpose of contradiction, consider any (infinite) execution e of
algorithm FDcD in which rule RC is applied infinitely often with the same dis-
tance value. Let dmin be the minimum such infinitely often used value. Let v
be some node applying infinitely often rule RC with distance value dmin. Now
consider some suffix e′ of e in which no node with a distance value smaller than
dmin will ever apply any rule. Note that such a suffix e′ must exist, by definition
of dmin.

Let consider the maximal suffix e′′ of e′ starting when node v has a parent u
such that du = dmin − ω{u, v}. By definition of e′, node u will remain in state
C and be the better possible parent within e′′, therefore node v will not apply
any rule in e′′, contradicting the assumption that node v applies infinitely often
rule RC . �

Disconnected Components Detection 133

We are now ready to conclude about the convergence under an unfair daemon.

Lemma 9. Every execution is finite.

Proof. For the purpose of contradiction, let us assume that there exists an infinite
execution e. Let F , resp. F , be the set of nodes executed finitely, resp. infinitely,
many times in this execution, and let F ′ be the set of nodes in F that are
neighbors of at least one node in F . Note that the set F is necessarily non-
empty as it contains at least node r.

Let execution e1 be a suffix of e in which every node v ∈ F is never executed.
In e1, only the nodes from F will be executed. Let dmax be the maximum distance
stored in dv for any node v ∈ F within e1. From Lemma 8, if a node executes
an infinite number of steps during an execution of algorithm FDcD, then it will
necessary change its distance an infinite number of times. Moreover, distances
stored at a given node cannot be negative. Thus, there exists a suffix e2 of e1
such that for any node v in F , dv > dmax +ωv, where ωv is the maximum weight
of an edge incident to v.

Within e2, a node v′ ∈ F ′ cannot have status C, otherwise any node v that
belongs to Γ (v′)∩F would apply RC with distance value at most dmax+ω{v, v′}
which would be in contradiction with the definition of e2. Moreover, we have
dv > dv′ , and thus v′ does not belong to childrenv.

Looking at the algorithm, one can observe that, if a rule can be applied for a
node v ∈ F during e2, then it can still be applied after removing the nodes in F ′

from the graph. In other words, the nodes in F can have the same execution in
the graph obtained after removing the nodes in F . Now consider any connected
component H of F . Since all nodes in H are activated infinitely many times,
it means that there are an infinite number of rounds in H , without the nodes
reaching a terminal configuration in H . This is in contradiction with Corollary 4,
and this concludes the proof of this lemma. �

Summarizing the results proved so far, we obtain the following main theorem.

Theorem 2. Under an unfair daemon, Algorithm FDcD always converges to a
legitimate state within a finite number of steps and in at most 2n+D−2 rounds,
where D is the hop-diameter of the connected component Vr containing node r.

References

[ACD+14] Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-
stabilizing leader election in polynomial steps. Technical Report hal-
00980798, VERIMAG, MIS, LIP6, INRIA Rocquencourt (April 2014),
http://hal.archives-ouvertes.fr/hal-00980798

[AGH90] Arora, A., Gouda, M.G., Herman, T.: Composite routing protocols. In:
The 2nd IEEE Symposium on Parallel and Distributed Processing (SPDP
1990), pp. 70–78 (1990)

[AGM+08] Abraham, I., Gavoille, C., Malkhi, D., Nisan, N., Thorup, M.: Compact
name-independent routing with minimum stretch. ACM Transactions on
Algorithms 4(3), 37 (2008)

http://hal.archives-ouvertes.fr/hal-00980798

134 G. Christian et al.

[BDV07] Bein, D., Datta, A.K., Villain, V.: Self-stabilizing local routing in ad hoc
networks. The Computer Journal 50(2), 197–203 (2007)

[BPBRT10] Blin, L., Potop-Butucaru,M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-
stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M.,
Yung,M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg
(2010)

[CG02] Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. Jour-
nal of Parallel and Distributed Computing 62(5), 922–944 (2002)

[CS94] Chandrasekar, S., Srimani, P.K.: A self-stabilizing distributed algorithm
for all-pairs shortest path problem. Parallel Algorithms and Applica-
tions 4(1-2), 125–137 (1994)

[CYH91] Chen, N.S., Yu, H.P., Huang, S.T.: A self-stabilizing algorithm for con-
structing spanning trees. Information Processing Letters 39, 147–151
(1991)

[DIM93] Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems
assuming only Read/Write atomicity. Distributed Computing 7(1), 3–16
(1993)

[DLV11] Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in
optimal space under an arbitrary scheduler. Theoretical Computer Sci-
ence 412(40), 5541–5561 (2011)

[GGHI13] Gavoille, C., Glacet, C., Hanusse, N., Ilcinkas, D.: On the communication
complexity of distributed name-independent routing schemes. In: Afek, Y.
(ed.)DISC2013. LNCS, vol. 8205, pp. 418–432. Springer, Heidelberg (2013)

[HC92] Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters 41(2), 109–117 (1992)

[HL02] Huang, T.C., Lin, J.-C.: A self-stabilizing algorithm for the shortest path
problem in a distributed system. Computers & Mathematics with Appli-
cations 43(1), 103–109 (2002)

[Hua05a] Huang, T.C.: A self-stabilizing algorithm for the shortest path problem as-
suming read/write atomicity. Journal of Computer System Sciences 71(1),
70–85 (2005)

[Hua05b] Huang, T.C.: A self-stabilizing algorithm for the shortest path problem
assuming the distributed demon. Computers & Mathematics with Appli-
cations 50(5-6), 671–681 (2005)

[JT03] Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Huang, S.-T.,
Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 184–198. Springer,
Heidelberg (2003)

[LGW04] Leon-Garcia, A., Widjaja, I.: Communication Networks, 2nd edn.
McGraw-Hill, Inc., New York (2004)

Self-synchronized Cooperative Beamforming

in Ad-Hoc Networks

Thomas Janson and Christian Schindelhauer

University of Freiburg,
Germany

{janson,schindel}@informatik.uni-freiburg.de

Abstract. We investigate the unicast problem for ad-hoc networks in
the plane using MIMO techniques. In particular, we use the multi-node
beamforming gain and present a self-synchronizing algorithm for the nec-
essary carrier phase synchronization. First, we consider n nodes in a grid
where the transmission power per node is restricted to reach the neigh-
boring node. We extend the idea of multi-hop routing and relay the
message by multiple nodes attaining joint beamforming gain with higher
reception range. In each round, the message is repeated by relay nodes
at dedicated positions after a fixed waiting period. Such simple algo-
rithms can send a message from any node to any other node in time
O(log log n− log λ) and with asymptotical energy O(

√
n), the same en-

ergy an optimal multi-hop routing strategy needs using short hops be-
tween source and target. Here, λ denotes the wavelength of the carrier.
For λ ∈ Θ(1) we prove a tight lower time bound of Ω(log log n).

Then, we consider n randomly distributed nodes in a square of area
n and we show for a transmission range of Θ(

√
log n) and for a wave-

length of λ = Ω(log−1/2 n) that the unicast problem can be solved in
O(log log n) rounds as well. The corresponding transmission energy in-
creases to O(

√
n log n). Finally, we present simulation results visualizing

the nature of our algorithms.

Keywords: Ad-hoc networks, unicast, MIMO, beamforming, signal-to-
noise ratio, synchronization.

1 Introduction

Mobile devices reduce their wireless transmission power to prolong battery life-
time. An energy preserving extension of the transmission range is cooperative
beamforming. Here, nodes cooperate by sending the same message and produce
together a stronger signal than a single node. Without further adaption the dif-
ferent positions of the senders result in a delay skew such that the signals may
not be correlated at some receiver positions. When the sending times are coor-
dinated we achieve the so-called beamforming, where the radiant sender beams
result in a strongly correlated signal towards a certain direction. In [4], we study
fundamental features of phase-synchronized ad-hoc network nodes and show an
exponential speedup for the broadcast operation of nodes placed on a line. Here,
we are concerned in extending these observations to the two-dimensional plane.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 135–149, 2014.
c© Springer International Publishing Switzerland 2014

136 T. Janson and C. Schindelhauer

Unicast is defined as transfer of a message from a source node to a target
node. For wireless communication the straight-forward solution is a direct trans-
mission by increasing the signal strength at the sender such that the target node
can receive the signal. While the message delay is optimal, the necessary trans-
mission power is the drawback, since it quadratically increases with respect to
the distance between sender and receiver.

In a power constraint scenario direct communication is not always available.
Then, routes with multiple hops must be used. Messages are passed from the
source via relay nodes towards the target. Regarding the sum of transmission
energy, strategies with many short hops are better than single hop strategies. On
the other hand, the delay increases with the number of hops. Here, we consider
networks with n nodes in the plane placed on a

√
n × √n quadratic grid with

unit distance between neighbored nodes. The delay or routing time for multi-hop
routing with distances 1 each is O (

√
n). The energy consumption compared to

direct communication decreases by a factor of O (1/
√
n).

Multi-hop routing implements time multiplexing, i.e. using several time slots,
and spatial multiplexing by blocking a smaller area for communication compared
to direct communication. However, the simultaneously sending nodes can do
much better when one uses cooperative beamforming. One might expect that
doubling the power of two senders increases the transmission range by a factor
of
√
2. However, the superposition principle for electric fields implies that the

signal strengths add up and this strength is proportional to the square root
of the transmission energy. Therefore, the reception range of two close phase-
synchronized senders increases by a factor of two [4].

This is the beamforming aspect of MIMO (multiple input/multiple output)
technology in the line of sight case. Besides beamforming, MIMO allows to estab-
lish parallel channels with n senders (input) and m receivers (output), resulting
up to min{n,m} parallel transmission channels. For this it is necessary that sig-
nals are reflected from obstacles in the environment, if the sender and receiver
antennas are distant. However, MIMO signal processing is complex and MIMO
does not work in the line-of-sight scenario with distant sender and receiver an-
tenna arrays unlike beamforming.

In this paper we consider the line-of-sight model and beamforming. It is
achieved by adjusting the sender time points such that the received signal con-
sists of synchronized signals which add up because of the superposition principle.
A message can be received if this signal strength is larger than a given value, i.e.
the signal-to-noise ratio threshold.

Our main method is to assign rectangular areas for suitable relay nodes. These
nodes cooperate for the beamforming of the unicast message. For this, nodes
store the received message and resend it at time points depending on the re-
ception times. We restrict the corresponding transmission power such that each
node can only reach its neighborhood without beamforming. The overall goal is
to minimize the transmission time of a single unicast message.

Due to page limitations some proofs are presented in a technical report [5].

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 137

2 Related Work

Gupta and Kumar [2] analyze the throughput capacity of wireless networks.
The throughput capacity of a network node specifies the average data rate to a
communication partner multiplied by the communication distance. For the case
of nodes positioned independently at random in the plane and random commu-
nication pairings, they show that the capacity is Θ(1√

n logn
) in the best case.

Here, multiple hop routes using next neighbors turn out to be the best choice. It
turns out that the communication bottleneck is a cut through the middle of the
network, on which each node has to uphold O (

√
n) connections throttling the

throughput by a factor of O(1√
n
). It is necessary to increase the sending power

by O (logn) to guarantee network connectivity with high probability. By this,
the throughput is further reduced by a factor of O(1√

log n
). In such a model,

our beamforming approach reaches only a throughput capacity comparable to
direct point-to-point communication. Yet, for a scenario with only one point-to-
point communication, where the transmission power is limited to Θ(log n

n) (the

best case of [2]), the multi-hop scheme has a throughput of Θ(
√
logn√
n

), while our

unicast has a throughput of Θ(1
log logn).

In [4] we present broadcasting algorithms for nodes on a line in the line-of-sight
case. We prove that broadcasting can be done inO (logn) rounds for n nodes reg-
ularly placed on a line, where each node alone can only reach its next neighbor.
This is obtained by the beamforming gain and on-the-fly synchronization using
only the reception time of the message. This scheme produces only constant
factor increase of the energy consumption compared to direct neighbor com-
munication, which needs O (n) rounds. Here, we consider the two-dimensional
setting for the same model and reuse the one-dimensional variant as a startup
sub-routine.

In [7,8] communication schemes are presented that achieve order-optimal
throughput by using MIMO techniques. Here, nodes in designated areas coop-
erate in order to increase the communication capacity resulting in higher band-
width or increased transmission radius. In [7] the beamforming gain is exploited
at designated areas of relay nodes between sender and receiver. In [8] diver-
sity gain of highly parallel MIMO channels is used. An important step in many
MIMO protocols is encoding and decoding the transmitted signal, which needs
additional communication at the sender and receiver side. In practice, this is
achieved by wiring the sender/receiver antennas into one device. For ad-hoc net-
works this step has to be emulated via wireless communication. The authors use
a hierarchical approach, where the communication for the encoding at the sender
nodes is organized by a recursive algorithm (and vice versa for the decoding at
the receiver nodes). If this step can be done without a substantiate increase of
the original message size (which may be doubted), then this achieves a capac-
ity and time gain. The transmission time is O (logn), which corresponds to the
number of hierarchical steps and the capacity is up to linear depending on the
path loss model. However, a minimum message length is required depending on
the capacity and the authors assume a channel matrix with large eigenvalues, in

138 T. Janson and C. Schindelhauer

contrast to the free-space model underlying this work. Here, we solve unicasting
in time O(log logn) and the algorithms presented here are much simpler, since
they do not use any MIMO encoding/decoding.

The authors of [6] use a similar approach by using beamforming of rectangular
areas. Their algorithm spreads the information to a telescope-like region with
increasing adjacent rectangles. Then, a mirrored construction is appended in
order to reach the target node. They conclude that the beamforming gain is
maximized up to a constant factor at each receiver as long as the area size
of beamforming nodes is much smaller than

√
n for n nodes in the network.

The authors cannot give a closed form for the dimensions of the rectangles and
refer to a Matlab program computing optimal sizes. An important difference
to our approach is that they allow additional transmission power a > 1 for a
short period 1/a. Interestingly, their choice is a = Θ(1/n2/3) which results in
throughput T = O(n2/3). We show that the choice of adjacent rectangles might
be problematic, since our simulation results indicate that some receivers in the
adjacent rectangle might not be reached. In this paper, we emphasize the large
influence of the carrier wavelength and present a closed-form solution for the
placement and dimensions of rectangular beam-forming areas. Furthermore, we
present a solution which does not need the full channel state information.

3 Physical Model

The signal quality and the related transmission bandwidth of a communica-
tion channel between sender and receiver is difficult to model because of many
effects arising in practice, e.g. multi-path propagation, diffraction, changing en-
vironment, node movement, etc. We neglect these effects and use the free-space
model, where the signal strength as a function of the position of nodes in the
network. Following [9], the signal output y at the receiver depends on the signal
inputs at senders x1, . . . , xm as

y =

m∑
i=1

hi · xi . (1)

This establishes the physical input-output-model of a MISO channel (Multiple
Input Single Output). Inputs and outputs are seen from the communication
channel and not from the senders or receivers. We assume that all nodes emit
the same input signal x = xi with the same transmission power but with a time
shift in order to correlate the phases resulting in a beamforming gain at the
target with output y. We denote by j the imaginary number (j2 = −1). The
baseband channel gain hi for the i-th sender node is

hi =
1

‖ui,v‖
· e−

j2π
λ · ‖ui,v‖. (2)

The attenuation factor ‖ui,v‖−1 describes the path loss depending on the dis-
tance ‖ui,v‖ between the nodes at positions ui and v. Since the power is propor-
tional to the square of the signal strength this corresponds to the standard energy

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 139

path loss model for line-of-sight and the far-field assumption with ‖ui,v‖ > 2λ

where the energy decreases proportional to ‖ui,v‖−2
. The wavelength λ = c/f

of the carrier frequency f plays an important role for the beamforming. We de-
note by c the speed of light. In [3] we show that the sender geometry and the
wavelength determine the width of the main beam, as well as the size of side
beams. The distance between sender and receiver also results in a phase shift
described by a rotation of the signal in complex space.

This signal value describes the electric field produced by the sender, and
by the superposition principle the resulting field is the sum of the signals in
Equation (1).

Interfering radio signals and errors occurring during the modulation and de-
modulation are modeled as being uncorrelated to the line-of-sight signal as addi-
tive white Gaussian noise w, which is Gaussian distributed w ∼ N

(
0, σ2
)
with

variance σ2. So, the received signal is described by y + w.
A signal can be received if the signal to noise ratio is larger than a threshold

τ , i.e. SNR = P
N ≥ τ , where N is the energy of the noise.

We restrict the transmission power for each node in the grid such that only
the vertical and horizontal neighbors in distance can be reached, if only a single
sender is active. The received signal power is modeled by P = |y|2.

So, we choose τ = 1 and |xi| ≤ 1 to describe the situation in the grid. We
also consider the random placement model, where we randomly position n nodes
into a grid of area n. In [1] it is shown that the minimum transmission distance
for achieving connectivity in this model is Ω(

√
logn). Therefore, we increase the

maximum size |xi| ≤ k(logn)1/2 of the signal and let τ = 1 for some constant k.
According to the Shannon-Hartley theorem, it is possible to achieve an infor-

mation rate of B · log (1 + SNR). So, a higher signal-to-noise ratio can increase
the information rate. This effect is not used in this work, since at the relevant
receiver antennas the received signal power is close to the SNR threshold.

4 Loglog n Unicast

The basic idea of our unicast algorithm is a multi-hop algorithm with relays
between sender and receiver shown in Figure 1(a), but with the special property
that each relay consists of multiple nodes which cooperate to perform joint sender
beamforming, see Figure 1(b). With beamforming gain, the hop distance in-
creases double exponentially such that this unicast algorithm needs O (log logn)
hops from the source to the target.

We use beamforming for sending (MISO) which requires, when performed with
several senders in parallel, the distribution of the message to all senders and phase
synchronization between all senders. As Figure 1(b) indicates, we will show that
we can broadcast amessage from a sender to a receiver areawith rectangular shape
such that all nodes in the receiver area have the same message for cooperated
sender beamforming in the next round. For synchronizing the sender phases, we
present two algorithms. Algorithm 1 corrects the phase at the relay nodes using
the position of the nodes, whereas Algorithm 2 is self-synchronizing. Algorithm 1
outperforms Algorithm 2 regarding the transmission time by a constant factor.

140 T. Janson and C. Schindelhauer

sender s
receiver t

1st hop 2nd hop 3rd hop

joint
beamforming

(a) Multi-hop between rectangles of beamforming senders.

beamsender
area

receiver
area

(b) Beamforming from sender to receiver
rectangle

Fig. 1. Scheme of the O(log log n)-Unicast algorithm

We first describe the O(log logn)-unicast algorithm in a network with
√
n×
√
n

nodes placed in a grid. For unit grid distance we assume λ ≤ 1
2 to meet the far-

field assumption. We start to describe the algorithm for a message transmission
along the x-axis in the middle of the grid and generalize it for other coordinates,
later on. The source node is at s = (0, 0) and the target node at t = (

√
n, 0).

The algorithm consists of two phases, an initial phase (Fig. 1(a) 1st hop) where
we broadcast the message from the source to the first rectangle of relay nodes,
and a second phase where we perform multi-hop with distributed beamforming
(Fig. 1(a), 2nd, 3rd hop). The required rectangular area to be informed in phase
1 follows from the requirements of phase two, and thus we present phase 2 first.

We first describe how to set up phases for distributed beamforming when the
senders are placed on a line along the x-axis (see Fig. 2) and extend that for
rectangles in the plane, later on. Assume we have senders placed at (i, 0) with

1 2 3 4

initial signal for sync

x

senders receiver
beam

r

Fig. 2. Synchronization in the one-dimensional case

1 ≤ i ≤ n performing beamforming to a receiver r at (rx, 0) with rx > n. To
attain full beamforming gain, the senders start the transmission with a delay of
(n− i) /c for propagation speed c such that all transmissions arrive exactly at
the same time and consequently in the same phase. We synchronize all senders
with the initial signal containing the message. It is received at a node placed at
(i, 0) at time t = i/c and if each node resends the message immediately, it sends
the message with delay −i/c, which is the desired beamforming setup to receiver
r. Hence, broadcasting along a line achieves self-synchronization for distributed
beamforming.

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 141

For beamforming senders in a rectangle, we use the same synchronization
setup, and each node u at coordinates (ux, uy) sends at time t = ux/c − t0
which only depends on the x-coordinate and offset time t0 has to be chosen
such that the sender with smallest ux sends at time t = 0 without delay. If
it holds ‖u, r‖ = rx − ux, which is the case for nodes along the x-axis, the
synchronization is perfect. But for a rectangular area of nodes with width wi

and height hi, the reception delay depends also on the y-coordinate. The delay
function ψ (i, r) computes for a receiver at coordinates r = (rx, ry) the delay to
attain synchronization, which is phase angle arg[e−j2πrx/λ].

ψ (i, r) =
1

f
+

1

2πf
arg

⎡⎣ ∑
s∈(wi−1×hi−1)

e−j2π(‖s,r‖−rx)/λ

‖s, r‖

⎤⎦ (3)

When applying delay ψ (i, r) at each receiver r, all nodes are synchronized for
beamforming such that each node r sends with a delay of −rx/c. By a proper
choice of the dimensions of the rectangles (wi, hi), we can assure that the phase
shift is less than π/2 and thus ψ (i, r) > 0 (compare Lemma 1).

This leads to Algorithm 1 where the delay ψ (i, r) is used in line 3 in order
to synchronize the receivers in the i-th round for the wi × hi-receiver area. The
if-condition in Line 2 assures that only receivers in the correct receiver area
process the message.

Algorithm 1. Unicast I

1: procedure receive(receiver r, message m, time t)
2: if isInRectangle(round (t), r) then � only process in active rectangle
3: wait(ψ (round (t) , r)) � phase correction
4: send(m) � coordinated beamforming sending

5: function isInRectangle(round i, position p) � true for active receivers
6: return w0 + wi + 2

∑i−1
k=1 wk ≤ px ≤ w0 + 2

∑i
k=1 wk & 0 ≤ py ≤ hi

The following Lemmas 1-3 specify the dimensions and distances between rect-
angles of relay nodes where the multi-hop procedure of Algorithm 1 with dis-
tributed sender beamforming is possible.

Lemma 1. If a single sender s sends a signal to a w × h rectangular area in
a distance of at least w (see Figure 3), then the phase shift with respect to the
phase 2πrx/λ is at any receiver node r inside the area at most α if h2 ≤ α

πλw.

Proof: Let x denote the signal of the sender s and y the signal at r. Then,

y =
x

‖s, r‖ · e
− j2π

λ · ‖s, r‖ .

142 T. Janson and C. Schindelhauer

w

h

area with receiversw

δ
w

sender
target

Fig. 3. Broadcast of an single sender (red) to receivers in the green area

Thus, the phase shift is described by − arg(yx) =
2π
λ ‖s, r‖. The difference of

phase shifts is therefore

δ =
2π

λ
‖s, r‖ − 2πx

λ
=

2π

λ

(√
r2x + r2y − rx

)
=

2π

λ
rx

⎛⎝√1 +

(
ry
rx

)2

− 1

⎞⎠ .

This phase difference is maximized for ry = h and rx = w and by applying the

relation
√
1 + x2 − 1 ≤ x2

2 for all x ≥ 0 (see [5]) we get

δ ≤ π

λ

r2y
rx

=
π

λ

h2

w
.

From h2 ≤ α
πλw it follows that δ ≤ α. �

Note that the difference between the signal and the offset is so small, e.g. for α ≤
π/4, that it is less than one wavelength. So, if we repeat the message transmission
after a fixed time offset in the next round, then the message modulated upon
the carrier wave is in sync with all the other sender nodes provided by using the
same time offset.

Lemma 2. A wi×hi-rectangular area of beamforming senders S can reach any
node in a wi+1 × hi+1 rectangle at distance wi+1 if

hi+1 ≥ hi , (4)

wi+1 ≥ wi , (5)

wi+1 ≤
1

3
√
2
wihi , (6)

hi+1 ≤ wi+1 , and (7)

h2
i+1 ≤

1

4
λwi+1 . (8)

Proof: Remember that all sending nodes of a vertical column in the grid have
the same phase. The received signal y at node r is

y =
∑
s∈S

xs
e−

j2π
λ ·‖s,r‖

‖s, r‖ =
∑
s∈S

ej
2πux

λ
e−

j2π
λ ·‖s,r‖

‖s, r‖ =
∑
s∈S

e−
j2π
λ ·‖s,r‖+j 2πux

λ

‖s, r‖ .

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 143

And from Lemma 1 we get (α = π/4) for

βs,r :=
2πux

λ
− 2π

λ
· ‖s, r‖

from wi ≤ wi+1 and inequality (8)

0 ≤ βs,r ≤
π

4
. (9)

We want to prove that |y|2 = SNR ≥ τ = 1. For this it suffices to prove that for
the real part of y, i.e. that �(y) ≥ 1, since |y|2 = �(y)2 + �(y)2.

Using, ‖s, r‖ ≤ wi + 2wi+1 ≤ 3wi+1

by(6)
≤ 1√

2
wihi =

1√
2
|S| we get

�(y) =
∑
s∈S

�(e−jβs,r)

‖s, r‖ =
∑
s∈S

cosβs,r

‖s, r‖ ≥
∑
s∈S

1

wi + 2wi+1
cos

π

4
≥ wihi

3wi+1

1√
2
≥ 1.

�
Figure 4 illustrates the relation between the sender and the receiver area. The
delay δ illustrates the largest possible value βs,r in the range of Eq. (9). If the

wi

wi+1

hi+1

area with senders area with receiverswi+1

δ

hi

wi+1

Fig. 4. Area growth during broadcast step

sender and the receiver are at the margin of the grid, we cannot expand the
height of the relay node areas symmetrically along the line of sight between
sender and receiver. To apply the algorithm also at the margin of the network,
we only expand the height of the rectangle in one direction, i.e. towards the
center of the network. This has been already addressed in Equation (8).

This leads to the double exponential growth of the rectangles given in closed
form in the following lemma.

Lemma 3. The equations

wi =

(
72

λ

)(
λ

72
w0

)(3/2)i

, (10)

hi =
√
18
(
18−

1
2 h0

)(3/2)i
, (11)

for i ∈ {1, 2, . . .} satisfy inequalities (4-8) for h0 ≥ 18
1
2 , w0 ≥ 72

λ and h2
0 = 1

4λw0.

144 T. Janson and C. Schindelhauer

The proof can be found in [5].
So far, we assume that after the receipt of a message the relay node calculates

the received phase from the senders’ positions and readjusts the phase such that
all vertical nodes are in phase. This step is not necessary, if the dimensions of the
rectangles are chosen according to Lemma 4. Then, the received signal can be
sent without phase correction from each relay node. The algorithm then reduces
to two steps: If a message has been received, relay nodes check from the message
header whether they are in the correct rectangles. Then, each relay node repeats
the messages after the same time offset.

Algorithm 2. Unicast II

1: procedure receive(receiver r, message m, time t)
2: if isInRectangle(round (t), r) then � only process in active rectangle
3: send(m) � coordinated beamforming sending

Lemma 4. If the phase errors are not corrected in this routing, then the correct
signal can be received if we use the following inequality instead of (8).

h2
i ≤

3

2π2

1

(i+ 1)2
λwi . (12)

The main idea is that the phase shifts in each round form a convergent series
αi =

3π
2 ·

1
π2i2 , such that the sum of all phases

∑r
i=1 αi ≤ π

4 can be bound.
The dimensions of these rectangles can be chosen as follows.

Lemma 5. The following recursions satisfy equations (4-7,12) for h2
0 = 3

2π2 λw0

for w0 ≥ 96π2e·c4
λ , and h0 ≥ 4

√
18.

wi+1 =
1√
12π
·
√
λ

i+ 1
· w3/2

i (13)

hi+1 = 18−
1
4
1 + i

2 + i
· h3/2

i . (14)

The recursions are satisfied by the following equations.

wi ≤
(√

λ√
12π

)2(3/2)i−2

· c−(3/2)i

2 · w(3/2)i

0 with c2 ≥ 12.011 (15)

wi ≥
(√

λ√
12π

)2(3/2)i−2

· c−(3/2)i

3 · w(3/2)i

0 with c3 ≤ 1.58 (16)

hi = 18
−(3/2)i+1

2 ·
(
i + 1

i + 2

) 1
2 (i−1)·i

· h(3/2)i

0 (17)

Remember that we reach the constant length w0 in a logarithmic number of
rounds and therefore log3/2 (w0 · λ) = 25 for a moderate expansion. The lengthy
proofs of Lemma 4 and 5 are omitted here and can be found in [5].

It remains to show how to inform the first rectangle.

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 145

Lemma 6. A start phase of O (− logλ) rounds allows to inform an initial area
of nodes with w0 > 72

λ , h0 ≥
√
18, h2

0 ≤ 1
4λw0, and h0 ≤ w0.

m = 8 · w0 4 · w0

source

beam

w0

h0
broadcast on a line

Fig. 5. Initial phase with a broadcast on the line to m = 8w0 nodes followed by a last
hop of cooperative beamforming to the first rectangle with dimensions w0 × h0

Proof: To inform the first rectangle with dimensions w0 × h0, we first inform
8w0 subsequent nodes placed on a line which together can inform and synchro-
nize all nodes in the first rectangle with cooperative beamforming (compare
Fig. 5). To initially inform a line of m = 8w0 senders, we use the exponential
broadcast algorithm of [4], which informs m nodes placed on a line in O(logm)
rounds. Note that the exponential broadcast algorithm has informed at least
(3/2)i nodes after round i. We choose m = 8w0 which results in a runtime
k · log

(
8·72
λ

)
= O (− logλ) rounds for some constant k. Then, 8w0 nodes are in

phase to inform not only the next 4w0 nodes on the line but also all other nodes
in the beam including a rectangle with dimensions w0 × h0. However, there will
be a phase shift for the nodes of the rectangle, which are not on the line. By
Lemma 1 this offset attenuates the signal by a factor of at most 1√

2
. Therefore,

all nodes of this initial rectangle receive the message. We can compute the delay
error for each node with an invariant of Equation (3) where the sender area is
reduced to a line. �

The above lemmas lead to our main result of O(log logn) unicast.

Theorem 1. Given n nodes in a grid equipped with a transceiver with wave-
length λ ≤ 1

2 , placed within unit distance and possessing a transmission power
only to reach each neighbor, any node can send a message to any other node in
O(log logn− logλ) rounds.

Proof: The basic idea is, first to route on the x-axis until the correct y-
coordinate has been reached and then to relaunch the algorithm orthogonally
on the y-axis. Then, the claim follows by the above lemmas. �

The energy is given by the sum of sending nodes, i.e.
∑r

i=1 wihi for r rounds,
since each node sends with constant energy. Now, wihi = O(wi+1), where wr+1 =
O(d) and wi grows double exponentially. So, for the sum of transmission energy
the last term asymptotically bounds the sum.

Corollary 1. The overall transmission energy consumed by the O(log logn)
unicast algorithm for sending a message over distance d is O(d).

146 T. Janson and C. Schindelhauer

Now, we apply this observation to randomly placed nodes in the grid. First,
we establish a bound on the minimum number of nodes in some area.

Lemma 7. Given n nodes randomly distributed in a square of area n with trans-
mission range k

√
logn for some constant k. In every geometric object inside a

square of an area of at least k2 logn lie at least logn nodes with high probability,
i.e. 1− n−� for some constant �.

If the transmission distance is asymptotically smaller, the network is discon-
nected with probability 1 in the limit [1].

Theorem 2. Given n nodes randomly distributed in a square of area n with
transmission range k

√
logn for some constant k > 0. Then, for wavelength λ ≥

3k√
log n

a node can send a message to any other node in time O(log logn) with

high probability, i.e. 1 − n−O(1). The overall transmission energy for sending a
message over distance d is O(d log n).
The proofs of Lemma 7 and Theorem 2 are presented in [5].

The transmission time of each hop in a multi-hop algorithm consists of the
transmission delay between sender and receiver, the transmission of the message,
and processing the message at the receiver. The following theorem shows that
the double exponential growth of the transmission distance in the O (log logn)
unicast algorithm is such large that the transmission delay dominates the prop-
agation speed up to a constant factor (The proof is presented in [5]).

Theorem 3. For λ ∈ Ω(1) and a quadratic grid with n nodes with unit node
distance and unit transmission distance, it is possible to send a message from
any node to any other node with a speed of c(1 − o(1/n)), where c is the speed
of light.

5 Lower Bound for Time

We now investigate the principal lower bound of rounds for disseminating a
message in a two-dimension grid when each node has constant power P and
an omnidirectional antenna in the line-of-side path-loss model. The following
theorem shows the time optimality of our O(log logn) unicast algorithm.

Theorem 4. In a grid with n nodes with constant transmission power, every
unicast message takes at least Ω(log logn) rounds to reach its destination.

Proof: Let u be the start node and let Cd := {v ∈ V : |u, v| ≤ d} denote all
nodes within Euclidean distance at most d from u.

Now in round i, let di be the distance of the farthest node in this round
carrying the (or some parts of the) message. Now consider a node v in distance
d′ di.

The received energy is bounded by

Pv = |E2
v | ≤

∣∣∣∣∣∣
∑

u∈Cdi

su
‖u− v‖

∣∣∣∣∣∣
2

≤

⎛⎝ ∑
u∈Cdi

√
P

d′ − di

⎞⎠2

≤ P
|Cdi |2

(d′ − di)2
.

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 147

In order to receive the signal, this power must be larger than a constant τ > 0.
We want to investigate the case when we cannot receive a signal, i.e. Pv ≤ τ .
Then, d′ ≥ di + |Cdi |

√
τ
P which implies with |Cd| ≤ 2πd2 that

d′ ≥ di + 2πd2i
√
τ/P .

From this it follows that di+1 ≤ k · d2i for a constant k > 0 and thus

di+1 ≤ k2
i−1(d1)

2i .

Therefore, it takes at least some k′ log log d rounds (for a constant k′ > 0) to
inform a node in distance d. �

sender rectangle receiver rectangle

(a) SNR with color range [orange,white) over threshold τ and [purple, cyan) under τ

sender rectangle receiver rectangle

(b) Phase error with angle range [0, π) and colors [black, blue)

Fig. 6. Simulation of beamforming senders which are placed in a rectangle and pro-
duce a beam to the right. An animation with varying wavelength λ is available at
www.youtube.com/watch?v=3TJ2Gz8uhbc

6 Simulation

We have simulated cooperative sender beamforming for nodes placed in a rectan-
gle in the plane. The dimensions of the rectangles correspond to Unicast I (com-
pare Fig. 1(b)). Figure 6 shows the signal strength respectively phase shift of a
1705×186 grid network with grid distance 1 (one pixel=1 node) and the wave-
length is λ = 0.1. We see sender beamforming from a rectangle with 341×6=2046
nodes to a receiver area with 482×7=3374 nodes (the areas are white bordered).

The first picture 6(a) shows the signal strength where the blue color range
depicts amplitudes under the SNR threshold τ = 1 and the orange-white color
range represents signal strengths over τ . We can spot a sharp beam around the
receiver rectangle with a signal over the SNR threshold. The second figure 6(b)
shows the phase shift for synchronized beamforming. The black corridor from
sender to receiver rectangle makes clear, that all nodes receiving the message
within this corridor will be synchronized for beamforming to the right. The blue
lines around the corridor mark a phase shift of π and the subsequent next black
rays around have a phase error of 2π, i.e. one period 1/fc of carrier frequency

148 T. Janson and C. Schindelhauer

fc. Notably, the spatial variation of the phases of the super-posed signal is much
smaller than the wavelength (=0.1 pixels).

Figure 7(a) shows the beamforming gain for different wavelengths λ. The
n = 2048 cooperating senders are selected according to Unicast I and highlighted
with an orange rectangle on the left and the signal is over the SNR threshold
in the blue colored area. We did not intend to show the special case where the
wavelength is an integer multiple of the grid distance and thus added a small
ε to the wavelength. The reception distance of the beam is nearly equal to n
showing full beamforming gain in the middle of the beam. The height of the
beam increases with the wavelength λ.

In a second experiment, we manipulate for a constant wavelength λ = 0.5 the
ratio of the rectangle with factor k, i.e. w := A/k and h := A · k. When we
increase the height, we can spot two effects. First, the beam is sharper and we
cannot reach a rectangle with larger height in the multicast. In the examples
k ≥ 4 the height even shrinks. Second, the perception range decreases and we
can only multicast to a short distance.

7 Conclusions

We present a unicast algorithm for ad-hoc networks on a grid with n nodes,
which needs only O (log logn) rounds for wavelength λ ∈ Ω(1). This algorithm
combines beamforming with multi-hop routing. Beamforming increases the hop

distances to a double exponentially growth, i.e. O
(
w0

(bi)
)

for round i. This

growing beamforming gain is realized by a set of increasing rectangular areas
containing relay nodes. Similar results can be shown for randomly placed nodes
in a square, if the transmission range is increased by a factor of Ω(

√
logn).

The overall transmission velocity of such unicast algorithms converges towards
the speed of light and for the grid we show the optimality of the routing time
O (log log n). Such a unicast algorithm does not asymptotically use more energy
than the basic multi-hop algorithm.

Unlike in the one-dimensional case, the wavelength plays a large role in the
construction and performance of the algorithm. Short wavelengths compared to
the node distance increase the run-time, since it takes longer until the double
exponential growth phase begins. For random placement it is not clear how
beamforming can be utilized for wavelengths shorter than O(1/ logn), while for
larger wavelengths our algorithm provides a solution. In the grid, the unicast
algorithm has only logarithmic run-time if the wavelength is O(1/nc).

Since we only use beam-formed sending with Multiple Input Single Output
(MISO), the main component of the algorithm is to obey a fixed time delay bet-
ween receiving the message and residing it. Besides this, only a check is needed,
whether the relay node is in one of the rectangles necessary for transport. This
can be computed from the message header and the position information of the
relay node. An exact position information is therefore not necessary. This is an
extreme simplification compared to the way beamforming is usually achieved.

Self-synchronized Cooperative Beamforming in Ad-Hoc Networks 149

λ ≈ 1/8

λ ≈ 1/4

λ ≈ 1/2

λ ≈ 1

λ ≈ 2

204

256

341

409

512

(a) n = 1000, height h2 = λw.

k = 8

k = 1

k = 2

k = 4

341

157

33

39

k = 16

19

(b) n = 2048, λ = 1
2
and varying rectangle

sizes.

Fig. 7. Simulation of n beamforming senders placed in a rectangle (orange colored at
the left) which produce a beam to the right

References

1. Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity in wireless net-
works. In: Stochastic Analysis, Control, Optimization and Applications, pp. 547–
566. Springer (1998)

2. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions on
Information Theory 46, 388–404 (2000)

3. Janson, T., Schindelhauer, C.: Analyzing Randomly Placed Multiple Antennas for
MIMO Wireless Communication. In: Fifth International Workshop on Selected Top-
ics in Mobile and Wireless Computing (IEEE STWiMob), Barcelona (2012)

4. Janson, T., Schindelhauer, C.: Broadcasting in Logarithmic Time for Ad Hoc Net-
work Nodes on a Line using MIMO. In: Proceedings of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2013. ACM (July 2013)

5. Janson, T., Schindelhauer, C.: Ad-Hoc Network Unicast in O(log log n) using Beam-
forming, http://arxiv.org/abs/1405.0417 (May 2014)

6. Merzakreeva, A., Özgür, A., Lévêque, O.: Telescopic beamforming for large wireless
networks. In: IEEE Int. Symposium on Information Theory, Istanbul (2013)

7. Niesen, U., Gupta, P., Shah, D.: On Capacity Scaling in Arbitrary Wireless Net-
works. IEEE Transactions on Information Theory 55(9), 3959–3982 (2009)

8. Özgür, A., Leveque, O., Tse, D.: Hierarchical Cooperation Achieves Optimal Capac-
ity Scaling in Ad Hoc Networks. IEEE Transactions on Information Theory 53(10),
3549–3572 (2007)

9. Tse, D., Viswanath, P.: Fundamentals of wireless communication. Cambridge Uni-
versity Press, New York (2005)

http://arxiv.org/abs/1405.0417

Robots with Lights: Overcoming Obstructed Visibility
Without Colliding

Giuseppe Antonio Di Luna1, Paola Flocchini2, Sruti Gan Chaudhuri3,
Nicola Santoro4, and Giovanni Viglietta2

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti, Università
degli Studi di Roma “La Sapienza”, Rome, Italy

diluna@dis.uniroma1.it
2 School of Electrical Engineering and Computer Science,

University of Ottawa, Ottawa ON, Canada
flocchin@site.uottawa.ca, viglietta@gmail.com

3 Department of Information Technology, Jadavpur University, Kolkata, India
srutiganc@it.jusl.ac.in

4 School of Computer Science, Carleton University, Ottawa ON, Canada
santoro@scs.carleton.ca

Abstract. Robots with lights is a model of autonomous mobile computational
entties operating in the plane in Look-Compute-Move cycles: each agent has an
externally visible light which can assume colors from a fixed set; the lights are
persistent (i.e., the color is not erased at the end of a cycle), but otherwise the
agents are oblivious. The investigation of computability in this model is under
way, and several results have been recently established. In these investigations,
however, an agent is assumed to be capable to see through another agent.

In this paper we start the study of computing when visibility is obstructable,
and investigate the most basic problem for this setting, Complete Visibility: The
agents must reach within finite time a configuration where they can all see each
other and terminate. We do not make any assumption on a-priori knowledge of the
number of agents, on rigidity of movements nor on chirality. The local coordinate
system of an agent may change at each activation. Also, by definition of lights,
an agent can communicate and remember only a constant number of bits in each
cycle. In spite of these weak conditions, we prove that COMPLETE VISIBILITY

is always solvable, even in the asynchronous setting, without collisions and using
a small constant number of colors. The proof is constructive. We also show how
to extend our protocol for COMPLETE VISIBILITY so that, with the same number
of colors, the agents solve the (non-uniform) CIRCLE FORMATION problem with
obstructed visibility.

1 Introduction

1.1 Framework

In the traditional model of distributed computing by mobile entities in the plane, called
robots or agents, each entity is modelled as a point; it is provided with a local coordi-
nate system (not necessarily consistent with that of the other agents); it has sensorial
capabilities, called vision, enabling it to determine the position (within its own coordinate

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 150–164, 2014.
c© Springer International Publishing Switzerland 2014

Robots with Lights: Overcoming Obstructed Visibility 151

system) of the other agents. The agents are anonymous, they are indistinguishable, and
they execute the same code.

Agents operate in Look-Compute-Move cycles: when becoming active, an agent uses
its sensing capabilities to get a snapshot of its surroundings (Look), then this snapshot
is used to compute a destination point (Compute), and finally it moves towards this des-
tination (Move); after that, the agent becomes inactive. In the majority of investigations,
the agents are assumed to be oblivious: at the beginning of each cycle, an agent has no
recollection of its past observations and computations [11]. Depending on the assump-
tions on the activation schedule and the duration of the cycles, three main settings are
identified. In the fully-synchronous setting, all agents are activated simultaneously, and
each cycle is instantaneous. The semi-synchronous setting is like the fully synchronous
one except that the set of agents to be activated is chosen by an adversary, subject only to
a fairness restriction: each agent will be activated infinitely often. In the asynchronous
setting, there is no common notion of time, and no assumption is made on timing of
activation, other than fairness, nor on the duration of each computation and movement,
other than it is finite.

Vision and mobility provide the agents with stigmergy, enabling the agents to commu-
nicate and coordinate their actions by moving and sensing their relative positions. The
agents are otherwise assumed to be silent, without any means of explicit direct com-
munication [11]. This restriction enables deployment in extremely harsh environments
where communication is not possible, i.e an underwater deployment or a military sce-
nario where wireless communication are impossible or can be jammed. Nevertheless, in
many other situations it is possible to assume the availability of some sort of direct com-
munication. The theoretical interest is obviously for weak communication capabilities.

A model employing a weak explicit communication mechanism is that of robots with
lights: in this model, each agent is provided with a local externally visible light, which
can assume colors from a fixed set; the agents explicitly communicate with each other
using these lights [5, 6, 10, 12, 14, 16]. In this model, the lights are persistent (i.e., the
color is not erased at the end of a cycle), but otherwise the agents are oblivious.

The classical model of silent entities and the more recent model of entities with
visible lights share a common assumption, that visibility is unobstructed. That is, three
or more collinear agents are assumed to be mutually visible. It can be easily argued
against such an assumption, and for the importance of investigating computability when
visibility is obstructed by presence of the agents: given three collinear agents, the one
in the middle blocks the visibility between the other two and they cannot see each other.

Nothing is known on computing with obstructed visibility except for the study of
uniformly spreading agents operating in a one dimensional space (i.e., on a line) [3],
and the investigations on the so-called fat agents model, where agents are not points but
unit discs (e.g., [1, 2, 4]). Notice that the fat agents model and our model do share the
common assumption of visibility obstruction, but they are computationally orthogonal
otherwise, and a solution in one model cannot generally be transformed into a solu-
tion in the other. A noticeable difference, for example, is regarding collisions: for fat
agents collisions are allowed and can be used as an explicit computational tool, while for
punctiform agents collisions create unbreakable symmetries and, unless this is the re-
quired outcome of the problem, their avoidance is required by all solution protocols.

152 G.A. Di Luna et al.

In this paper we start to fill this void, and focus on agents with visible lights in
presence of obstructed visibility.

The problem we investigate is perhaps the most basic in a situation of obstructed
visibility, and it is the one of the agents reaching a configuration of complete un-
obstructeded visibility. More precisely, this problem, that we shall call COMPLETE

VISIBILITY, requires the agents, starting from an arbitrary initial configuration where
they are in distinct points but might be unable to see everybody and might not know the
total number of agents1, to reach within finite time a configuration in which every agent
is in a distinct location from which it can see all other agents, and no longer move.

Among the configurations that achieve complete visibility, a special class is that
where all agents are on the perimeter of a circle (not necessarily equally spaced). The
problem of forming any such a configuration is called CIRCLE FORMATION and it has
been extensively studied both in the classical model of silent agents and in the ones with
visible lights (e.g., [7–9, 13, 15]). Unfortunately, none of these investigations consider
obstructed visibility, and their algorithms do not work in the setting considered here.

1.2 Our Contributions

In this paper we study solving COMPLETE VISIBILITY by robots with lights. That is,
we consider autonomous and anonymous agents, each endowed with a visible light that
can assume a constant number of persistent colors, that are otherwise oblivious, and
whose visibility is obstructed by other agents in the line of sight; and we investigate
under what conditions they can solve COMPLETE VISIBILITY and at what cost (i.e.,
how many colors).

We do not make any assumptions on a-priori knowledge on the number of agents,
nor on agreement on coordinate systems, unit of distance and chirality; actually, the lo-
cal coordinate system of an agent may change at each activation. Neither we make any
assumption on rigidity of movements; that is, a move may be stopped by an adversary
before the agent reaches its destination; the only constraint is that, if interrupted before
reaching its destination, the agent moves at least a minimum distance δ > 0 (other-
wise, no destination can ever be reached). Also, by definition of lights, an agent can
communicate and remember only a constant number of bits in each cycle.

In spite of these weak conditions, we prove that COMPLETE VISIBILITY is always
solvable, even in the asynchronous setting, without collisions and using a small constant
number of colors. The proof is constructive. We first design a protocol that achieves
complete visibility with six colors under a semi-synchronous scheduler. We then show
how to transform it into an asynchronous algorithm with only four additional colors.
We also show how to extend the protocol so that, under the same weak conditions and
without increasing the number of colors, the agents can position themselves on the
perimeter of a circle. In other words, we also show how to solve the (non-uniform)
CIRCLE FORMATION problem with obstructed visibility.

Due to lack of space, some of the proofs are sketched and some omitted.

1 The actual number of agents may be unknown for several reasons; e.g., if the deployment of
agents has been done by an airplane, a subset of agents may be lost or destroyed during the
landing process.

Robots with Lights: Overcoming Obstructed Visibility 153

2 Model and Definitions

Consider a set of mobile anonymous agents A : {a1, a2, .., an}. Each agent ai has a
persistent state variable si, which may assume any value in a finite set of colors C.
We denote by xi(t) ∈ R2 the position occupied by agent ai at time t expressed in
some global coordinate system (used only for description purposes, and unknown to
the agents); when no ambiguity arises, we omit the indication of time. A configuration
C is a set of n tuples in C × R2 each defining the position and color of an agent; let Ct
denote the configuration at time t.

Each agent ai has its own system of coordinates centered in itself, which does not
necessarily agree with those of the other agents, i.e. there is no common unit of measure
and no common notion of clockwise orientation. Agents ai and aj are visible to each
other at time t if and only if the segment xi(t)xj(t) does not contain any other agents.
Let Ct[ai] denote the set of the positions and colors of the agents visible to ai at time
t. We shall call such a set local view. A configuration C is said to be obstruction-free if
∀ai ∈ A we have |C[ai]| = n; that is, if all agents can see each other. Two agents ai
and aj are said to collide at time t if xi(t) = xj(t).

At any time, agents can be active or inactive. When activated, an agent ai performs a
sequence of operations called Look-Compute-Move: it activates the sensors to obtain a
snapshot (called local view) of the positions of the visible agents expressed in its own
coordinate system (Look); it then executes an algorithm (the same for all agents) based
on its local view, which returns a destination point x ∈ R2 and a color c ∈ C (Compute);
it then sets its own state variable to c and moves towards x (Move), these operations are
considered atomic. The movement may be stopped by an adversary before the agent
reaches its destination; the only constraint on the adversary is that, if interrupted before
reaching its destination, a robot moves at least a minimum distance δ > 0 (otherwise,
no destination can ever be reached).

We consider two schedulers for the activation of the agents: Semi-Synchronous
(SSYNC) and Asynchronous (ASYNC). In SSYNC, the time is discrete; at each time in-
stant t (called a round) a subset of the agents is activated and performs its operational
cycle instantaneously. The choice of the activation is done by an adversary, which how-
ever activates each agent infinitely often. In ASYNC, there is no common notion of time;
each agent is activated independently, and each Compute and Move operation can take
an unpredictable (but bounded) amount of time, unknown to the agent.

At the beginning (time t = 0), the agents start in an arbitrary configuration C0 occu-
pying different positions, and they are black (the state variable of each one is set to a
special symbol ă). The goal is for the agents to reach, in finite time, an obstruction-free
configuration without ever colliding. We call this problem COMPLETE VISIBILITY. An
algorithm is said to solve the problem if it always achieves complete visibility regard-
less of the choices of the adversary, and from any initial configuration.

Let Ht be the convex hull defined by Ct, let ∂Ht = Vt ∪ Bt denote the agents on
the border of Ht, where Vt : {v1, . . . , vk} ⊆ A is the set of agents (corner-agents)
located at the corners of Ht and Bt : {b1, . . . , bl} is the set of those located on the
edges of Ht (edge-agents); let It be the set of agents that are interior of Ht (interior-
agents). Let nt = |Vt| be the number of corners in H0. Given an agent ai ∈ A, we
denote by Ht[ai] the convex hull of its local view Ct[ai]. Let Cct indicate the set of

154 G.A. Di Luna et al.

agents in Ct with color c at time t, similarly we define Hc
t [ai] as the convex hull, of

Cct [ai]. Analogously defined are the extensions of Vt,Bt, It. Given a configuration C,
we indicate by SEC(C) the smallest enclosing circle containing C (when no ambiguity
arises we just use the term SEC). Given two points x, y ∈ R2 with xy we indicate
the line that contains them, and we use the operator ∩ to indicate the intersection of
lines and segments. Let d(x, y) indicate the Euclidean distance between two points (or
a segment and a point); moreover, given x, y, z ∈ R2 we use ∠xyz to indicate the angle
with vertex y and sides xy, yz. In the following, with an abuse of notation, when no
ambiguity arises, we use ai to denote both the agent and its position.

3 Complete Visibility in SSYNC

In this Section we provide an Algorithm that reaches Complete Visibility in the semi-
synchronous setting. The algorithm is described assuming |V0| ≥ 3; we will then show
how the agents can easily move to reach this condition starting from a configuration
with |V0| = 2.

Our algorithm works in two phases: (1) Interior Depletion (ID) and (2) Edge Deple-
tion (ED). The purpose of the Interior Depletion phase is to reach a configuration CID
in which there are no interior-agents. In this phase, the interior-agents move towards
an edge they perceive as belonging to the border of the convex hull, and they position
themselves between two corner-agents. At the end of this phase, all agents are on ∂H0.
The goal of the Edge Depletion phase is to have all agents in BID to move so to reach
complete visibility.

3.1 Phase 1: Interior Depletion Phase

Initially all agents are black. The objective of this phase is to have all agents on ∂H0,
with the corner-agents colored red and the edge-agents colored brown.

Notice that corner (resp. edge) agents are able to recognize their condition in spite of
possible obstructions. In fact, if a black agent ai is activated at some round r, and it sees
that Cr[ai] contains a region of plane that is free of agents and wider than 180◦, then
ai knows it is a corner and sets its variable si to red. A similar rule is applied to edge-
agents; in this case, an edge-agent ai sets its variable si to brown if Cr[ai] contains a
region of plane free of agents and wide exactly 180◦ (see Coloring Case of Figure 1).

In the ID phase, corner-agents color themselves red, and no longer move, while edge-
agents color themselves brown. Each interior-agent a moves to position itself on one of
its nearest visible edges of ∂H0; note that an edge of ∂H0 can be recognized in a’s
local view once it is occupied only by brown and red agents. To prevent collisions,
the interior-agent moves towards the chosen edge e perpendicularly if and only if it is
one with minimum distance to e and its destination on e is empty; otherwise it does not
move. An edge-agent on the destination of an interior one, slightly moves to make room
for the interior-agent. The INTERIOR DEPLETION algorithm is detailed in Figure 1.

It is easy to see that at the end of this phase, all the agents will be positioned on a
convex hull.

Robots with Lights: Overcoming Obstructed Visibility 155

Algorithm INTERIOR DEPLETION (for the generic agent ai activated at round r)

– Coloring Case: if (si = black) then:
• If (ai is a corner-agent in Hr[ai])) then ai sets si = red
• If (ai is an edge-agent in Hr[ai])) then ai sets si = brown

– Interior Case: if (ai is interior in Hr[ai] and si = black) then:
• ai uses its local view Cr[ai] to determine the edges of ∂Hr[ai].
• If (∃e ∈ ∂Hr[ai] such that ∀aj ∈ Ir[ai], d(aj , e) ≤ d(ai, e)) then

∗ ai computes a point x of e such that aix ⊥ e; if x is empty, then ai moves
toward x

– Obstructing Edge Case: if (si = brown) then:

• Let e be the edge to which ai belongs; if (∃aj ∈ Ir[ai]∧sj = black∧ajai ⊥ e),
then ai moves toward the nearest point x ∈ e such that ∀ak ∈ Ir[ai], akx �⊥ e.

Fig. 1. Algorithm for the Interior Depletion Phase

Lemma 1. For any initial configuration C0 there exists a round r ∈ N+ such that in Cr
we have that Ir = ∅; furthermore, this occurs without collisions.

Theorem 1. There is a round r ∈ N+ such that the agents occupy different positions
onHr. Moreover, the corner-agents are red, and the edge-agents are brown.

3.2 Phase 2: Edge Depletion -ED

The purpose of the ED phase is to move the edge-agents out of the current convex hull
to reach a final configuration whose convex hull includes H0 and all agents are on the
corners, thus achieving complete visibility.

The algorithm makes an edge-agent move from its edge e = v0v1 to a point out of
the current convex hull, but within a safe zone. Safe zones are calculated so to guarantee
that red agents never cease to be located on corners of the current convex hull, in spite
of the movement of the edge-agents. More precisely, the safe zone S(e) of e consists
of the portion of plane outside the current convex hull, such that ∀x ∈ S(e) we have

∠xv0v1 < 180◦−∠v−1v0v1
4 and ∠v0v1x < 180◦−∠v0v1v2

4 (see Figure 2a).
Note that, due to the mutual obstructions that lead to different local views, edge-

agents cannot always compute S(e) exactly (see Figure 2b). In fact, only when there is
a single edge-agent between the two red corner-agents on e, the computation of S(e)
is exact; in any case, we can show that the safe area S′(e) computed by an agent is
S′(e) ⊆ S(e) and thus still safe.

The migration of edge-agents and their transformation into corner-agents occurs in
steps: in fact, if the edge e contains more than one edge-agent, our algorithm makes
them move in turns, starting from the two agents b1 and b0 that are immediate neigh-
bors of the corners v1 and v0, respectively. Only once they are out of the convex hull
and they are corner of a new edge e′, other agents on e will follow, always moving
perpendicularly to e′. Careful changes of colors are required to coordinate this process.

156 G.A. Di Luna et al.

In fact, once the first pair is in position, the two agents will become blue to signal the
other brown agents on e that it is their turn to move out; they will set their color to red
only when there is no interior-agent in the space delimited by e′ and e. Once red, their
color will never change until completion.

Due to the different estimations of S, to semi-synchronicity, and to the unpredictable
distance traversed by an agent (possibly stopped before destination), a variety of situa-
tions could disrupt this ideal behaviour. In particular, it could happen that only one of
the two agents, say b1, moves while the other stays still, or that b1 moves further from
e than b0. In both cases this leads to a configuration in which b0 becomes an interior or
edge-agent. This problem is however adjusted by b1 that, when noticing the situation,
moves towards v1 until b0 becomes a corner in H[b1]. A further complication is that b1
might wrongly perceive b0 as a corner and thus decide not to move; this occurs if v0b0
happens to be collinear with b1 obstructing visibility; such a case is however detected
by b0 itself, which uses a different color (orange) to signal that b1 has to move further
towards v1 to transform b0 into a corner (see Figure 2d).

v−1

v0 v1

v2

b0

Safe Area

b1

(a) Safe Area of edge v0v1: an agent moving inside the safe
area cannot create collinearity with agents on the neighboring
edges

v−1

v0 v1

v2

b0 b1

(b) Approximation of the safe area computed by agent b1
using as reference the two lines v1v2 and v−1b0 . This ap-
proximation is entirely contained in the real safe area

v−1

v0 v1

v2
b0 b1

(c) Creation of a new edge, due to non-rigid movements or
to different approximations of the safe area, agent b1 could
move making agent b0 interior, this condition is adjusted by
letting b1 move towards v1

v−1

v0 v1

v2
b0

b1

(d) b1 could move in such a way to become collinear to
v0b0 , b0 signals this condition by changing its color

Fig. 2. Edge Depletion Phase

The detailed algorithm for the ED phase is reported in Figure 3.

3.3 The case of |V0| = 2

The strategy of the previous Section works for |V0| > 2. It is however simple to have
the agent move to reach such a condition from |V0| = 2, as described below.

When |V0| = 2 the agents are necessarily disposed forming a line and |A| ≥ 2. First
notice that an agent a can detect that the configuration is a line, and whether it is an

Robots with Lights: Overcoming Obstructed Visibility 157

Algorithm EDGE DEPLETION
For agent ai activated at round r; to be executed if and only if �(black, aj) ∈ Cr[ai].

- Execute COMPUTE ORDER and appropriate case from the list below.

– BROWN EDGE CASE: ai belongs to an edge e of Cr[ai] and si = brown.
If ai is the only agent on e then

• ai computes the angles α = 180◦ − ∠v−1v0ai, β = 180◦ − ∠aiv1v2, and γ =
min(α

4
, β
4
); it then computes a point x such that ∠xv1ai < γ and ∠xv0ai < γ.

• ai sets si = yellow.
• ai moves perpendicularly to e with destination x.

If ai is not the only non-red agent on e and one of its neighbors on e is red (by routine
COMPUTEORDER, this agent is v1) then: let b be its other neighbor;
• ai computes the two angles α = 180◦ − ∠aiv1v2, β = 180◦ − ∠v−1bai, and

γ = min(α
4
, β
4
); it then computes a point x such that ∠xv1ai < γ ∧ ∠xbai < γ.

• ai sets si = yellow.
• ai moves perpendicularly to e with destination x.

– YELLOW CASE: si = yellow.
• if there is another yellow or blue agent aj with eai = eaj then

∗ if aiv1 ∩ ajv0 �∈ (aiv1 ∪ ajv0) then ai sets si = blue

∗ if aiv1 ∩ ajv0 ∈ aiv1 then ai moves towards v1 along aiv1 of d(ai,v1)
2

∗ if aj ∈ aiv1 then ai sets si = orange
• else if �(sj , aj) ∈ Cr[ai] with aj �= ai and eai = eaj and �(sj , aj) ∈ Cr[ai]∩eai

then
∗ ai set si = red

– ORANGE CASE: si = orange.
• if there is another blue agent aj with eai = eaj then

∗ if aj �∈ aiv1 then ai sets si = blue
– BLUE CASE: si = blue and ai ∈ e with e edge of Cr[ai].

• if there is another orange agent aj with eai = eaj then
∗ ai moves along aiv1 in direction of v1 towards the point at distance d(ai,v1)

2

• else if �(brown, aj) ∈ Cr[ai] such that aj could move to e then
∗ ai sets si = red

– BROWN INTERIOR CASE: ai is such that si = brown and ai ∈ Ir[ai].
• if there exists and edge e′ = axay with sx = sy = blue and ai could move

perpendicularly towards e′ without crossing any segment delimited by two red
agents, then ai moves towards e′.

• if ai ∈ e = a0a1 with e ∈ ∂H{red,brown}
r [ai] and ∃x ∈ R2 such that a0ai ⊥ xai

and �aj ∈ ∠a0aix or �aj ∈ ∠a1aix then ai executes the second subcase of the
BROWN EDGE CASE.

– CORNER CASE: ai is a corner of Cr[ai] and si = red.
• ai can check local termination and the global termination

∗ ai locally terminates when si = red
∗ ai detects the global termination of ED phase when �(sj , aj) ∈ Cr[ai] with

sj �= red

Fig. 3. Edge Depletion Phase algorithm

158 G.A. Di Luna et al.

Procedure COMPUTE ORDER

– if ai belongs to an edge e of Hr[ai] and si = brown, it orders the red agents in its
local view in a circular order, starting from the closest, (v1, v2, . . . , v0).

– if si ∈ {orange, blue, yellow}, then ai determines which of its current neighbors was
v1 in its previous computation and the edge eai = v1v0 to which it belonged:
• ai computes the nearest edge e = {u, v} ∈ Hred

r [ai]
• ai computes the point x ∈ R2 such that is uv ⊥ aix
• ai sets v1 = u, v0 = v if �aj ∈ ∠uxai otherwise it sets v1 = v, v0 = u.
• ai sets eai = v1v0

Color Meaning Transition to:

Black initial color of all agents {Red,Brown}
Brown agents on edges or having to move to a new edge of H Y ellow

Y ellow agents moving out of H to form a new edge {Blue,Orange,Red}
Orange agents needing to be transformed into corners Blue

Blue corner-agent now forming a new edge e, waiting for other
agents to move to e

Red

Red a stable corner-agent −

Fig. 4. Colors used in the COMPLETE VISIBILITY algorithm

extremity (i.e., it sees only one other agents a′), or an internal agent (i.e., it is between
two collinear agents). If a is an extreme, it does not move; if it is an internal agent, a
it moves perpendicular to the segment a′a. This means that, as soon as at least one of
the internal agents is activated, it will move (or they will move) creating a configuration
with |V| > 2. At that point, the algorithm previously described is applied.

3.4 Correctness of the ED Phase

With the following lemma we show that the global absence of interior-agents with re-
spect to the initial convex hull, can be locally detected by each agent.

Lemma 2. Given an agent ai ∈ A with si ∈ {red, brown} and a round r ∈ N+, if
�(black, aj) ∈ Cr[ai] then Cr does not contain interior-agents with respect toH0.

Proof. By contradiction, assume that �(black, aj) ∈ Cr[ai] but there exists at least an
interior-agent a with respect toH0. By the rules of the ID phase, agent a cannot change
its color from black to another because it can detect it is neither a corner nor a border.
Thus, a is not in Cr[ai] because Cr[ai], by assumption, does not contain black agents.
Thus, it must exist an agent ak that has color different from black and ak ∈ aia. But
since a is interior then also ak is interior, and so sk = black. �Lemma 2

We now show that the safe area S′(e) computed by an edge-agent on e is such that
S′(e) ⊆ S(e) and thus its movement is still safe (it does not transform a red corner into
an interior or edge-agent).

Robots with Lights: Overcoming Obstructed Visibility 159

Lemma 3. Given a configuration Cr and an edge e = v0v1 of Hr, if an agent aj ∈ e
moves from e, it moves inside the safe zone S(e)

Proof. The case when there is a single edge-agent b ∈ e is trivial because b can compute
exactly S(e). Consider now the case when there are two or more edge-agents on e;
among those, let b0 and b1 be the two that are neighbors of v0, v1. Those agents move
only when executing the Brown Edge Case or Brown Interior Case. Let us consider
the movement of the first that is activated, say b1. Agent b1 has two neighbors on e: a
brown neighbor b and the red corner v1. Agent b1 orders the corners in its view from
v1 to vlast, according to its local notion of clockwise, where vlast is the last corner
before b, i.e. v−1 in Figure 2b. Following the rules of the algorithm, b1 computes: α =
180◦ − ∠vlastbb1, β = 180◦ − ∠b1v1v2, and γ = min(α4 ,

β
4). Angle ∠vlastbb1 is

an upper bound on ∠vlastv0b1, otherwise we could get a contradiction since vlastb and
vlastv0 will intersect in two points: one is vlast and the other one is after the intersection
of vlastv0 and v0v1, that is impossible. Thus, α is a lower bound on the angle that a
single agent would compute on e, which implies that b1 will move inside S(e). The
same holds for b0. Notice that, given two points x and y inside the safe zone, any point
z ∈ xy is still inside the safe zone, thus any agent that moves on the lines connecting
two agents inside S(e) will still be in S(e), completing the proof. �Lemma 3

The next lemma shows that the moves of our algorithm cannot transform any red
corner-agents into an interior-agent.

Lemma 4. Consider a corner-agent v1 of Hr′ with s1 = red, we have that ∀r ∈ N+

with r > r′, v1 is also a red corner-agent ofHr.

Proof. It is easy to see that during the ID phase we have that Hr = H0 since the
interior-agents will never trespass the edges of H0, so the hypothesis holds. We have
to show that the same holds during the ED phase. We have that v1 never moves after
it sets s1 = red so if v1 is a corner it cannot become interior as a consequence of its
own move. Consider the two edges adjacent to v1: e1 = v0v1 and e2 = v1v2. Assume,
by contradiction, that there exists a round r in which the moves of a set X of agents on
these two edges is such that v1 is a corner-agent in Hr−1 but not in Hr. From Lemma
3 we have that agents in X move to points inside the safe zones S(e1) and S(e2) of
e1, e2. Let us consider two points x ∈ S(e1) and y ∈ S(e2), such that agents on them
will make v1 interior. If v1 is interior in Hr, we have that ∠xv1y > 180◦. It is easy
to see that ∠v0v1x < γ (see Brown Edge Case and Brown Interior Case of Figure 3)
and that γ ≤ 180◦−∠v0v1v2

4 , since γ = min(α4 ,
β
4), and that at least one of the two

among β, α is a lower bound on 180◦ − ∠v0v1v2. The same holds for y, so we have
∠v2v1y ≤ 180◦−∠v0v1v2

4 . Thus, we have ∠v0v1x + ∠v2v1y + ∠v0v1v2 < 180◦ and
then ∠xv1y < 180◦, which is a contradiction. So, v1 cannot be interior in Hr. The
same arguments hold if at round r−1 we consider a set of agents X on two edges e′, e′′

that are not adjacent to v1; this is easy to see since, given x ∈ S(e′) and y ∈ S(e′′) we
have ∠xv1y ≤ ∠v0v1v2 < 180◦, which is another contradiction to the hypothesis of v1
being interior in Hr. �Lemma 4

In the next sequence of lemmas, we show that, given an edge e in a configuration C
of the ED phase, all edge-agents in e will eventually became red corners.

160 G.A. Di Luna et al.

Lemma 5. Given a configuration Cr and an edge e of Hr with a single brown agent b
on e, eventually b will be a red corner.

Proof. Since red corners never move and no interior-agents can be moving on e, while
inactive, agent b maintains its single position inside e. When activated at some round
r′, agent b executes the Brown Edge Case with a single agent. Thus b switches color to
yellow and it moves perpendicularly to e of at least min(d(vh, x), δ). At round r′+1, b
is a corner-agent ofHr′+1; in the next activation, after executing the Yellow Case code,
b becomes red. �Lemma 5

Lemma 6. Given a configuration Cr and an edge e ofHr with exactly two brown agents
b0, b1 on e, eventually they will set their state variable to yellow and they will move
outside e.

Proof. Let b1 be the first to be activated at some round r′ ≥ r. At that time, b1 switches
its color to yellow and it moves perpendicularly to e (see Brown Edge Case). Agent b0
will do the same, no matter if it is activated in round r′ or in some successive rounds
(see Brown Edge Case and Brown Interior Case). �Lemma 6

Lemma 7. Given a configurationC, any agent b1 with s1 = yellow eventually becomes
corner and will sets its state variable to red.

Proof. If b1 is yellow then a1 has moved from an edge e = v0v1. If b1 was not the
only agent on e that could move, then there is (or there will be) another yellow agent
b0 moving from e. By construction, b1 waits until it sees the other yellow agent b0 (see
Yellow Case). If both b1 and b0 realize to be corners of the current convex hull, then they
eventually set their color to blue and then to red, thus the lemma is proved. However,
due to the non-rigidity or the different local views of b1 and b0, the pathological case of
Figure 2c may arise where one of the two, say b0, becomes an interior-agent. This case
is adjusted by the Yellow Case rule: each time a1 is activated, it will move towards v1
until a round r′′ is reached when b0 is not interior anymore in Cr′′ [b1]. Note that, since
b1 moves always half of the distance d(b1, v1), and the number of rounds until the next
activation of b0 is finite, we have that b1 will never touch v1. Two possible sub-cases
may happen at round r′′: (i) b1v1∩b0v0 �∈ (b0v0∪b1v1): in this case, in the subsequent
activations, b1 and b0 will set their colors to blue; (ii) b1 ∈ b0v0: this might not be
detected by the local view of b1, but it is detected by b0 that sets its color to orange ; in
the next activations b1 will move so to transform b0 into a corner and, after this move,
an activation of b0 will set s0 = blue. So, in both sub-cases we eventually reach a
configuration in which b1 and b0 are blue corner-agents. In the subsequent activations,
they will set their color to red , proving the lemma. �Lemma 7

Lemma 8. Given a configuration C, let e = v0v1 be an edge with q > 2 edge-agents
on it. Eventually all these agents will become corners and set their color to red.

Proof. The two edge-agents b0, b1 ∈ e that are neighbors of red corners, execute the
same code described in the previous lemma. So, they wil reach a configuration Cr′ in
which b0 and b1 are blue corner-agents. In this case, they wait until all the agents on

Robots with Lights: Overcoming Obstructed Visibility 161

e move on the segment b0b1; then, they set their color to red (see the rule 3 of Blue
Case). It is straightforward to see that each remaining agent on e will move now towards
this new edge without colliding, since all movements to the same edge are on parallels
trajectories. It follows that, in finite time, a new edge e′ is formed with q − 2 agents.
Iterating the reasoning we will end up in a case where the number of edge-agents on
the same edge is at most 2, hence, by Lemmas 5-7, the lemma follows. �Lemma 8

Theorem 2. The COMPLETE VISIBILITY problem is solvable in SSYNC by a team of
oblivious, obstructable agents, using five colors without creating any collision.

Proof. From Theorem 1 we have that from any configuration C0 we reach a config-
uration CID where IID = ∅. This is locally detected by agents (see Lemma 2), that
start executing the ED phase. By Lemma 4 we have that the number of red corners is
not decreasing during the execution of the algorithm. From Lemmas 5-8 we have that
eventually each edge-agent a of HID will became a red corner. So we will reach a
configuration Cfinal in which all agents are corner ofHfinal, thus, they cannot obstruct
each other. Moreover, It is easy to see that each agent is able to detect not only local
termination, when it sets its color to red, but also global termination of ED phase, and
thus of the algorithm, when each agent in its local view is red. �Theorem 2

4 Complete Visibility in ASYNC

In this section we consider the asynchronous model (ASYNC), where there is no com-
mon notion of time or rounds, there are no assumptions on time, on activation, on syn-
chronization; moreover, each Compute and Move operation and inactivity may take an
unpredictable (but finite) amount of time, unknown to the agent. As a consequence,
agents can be seen while moving, and their computations and movements may be based
on obsolete information.

Asynchronous Interior Depletion phase. The INTERIOR DEPLETION algorithm of
Sec. 3.1 works also in ASYNC without modifications. We only need to show that the
asynchronous behaviour of the agents, and in particular the asynchronous assignment
of colors, cannot induce a collision among interior-agents. Since agents always move
perpendicularly to the closest edge, it is easy to see that this does not happen and thus
Lemmas 1 and Theorem 1 hold also in the asynchronous case.

Asynchronous Edge Depletion phase. The Edge Depletion phase has to be modified
for ASYNC. To see why the EDGE DEPLETION algorithm would not work, consider,
for example, the Yellow Case in Algorithm 3: it is possible that a moving yellow agent
is seen by another yellow agent, this could lead to scenarios in which an agent assumes
color red while it is on the edge of the convex hull and not on a corner.

The source of inconsistencies is the fact that agents can be seen while in transit. To
prevent this problem we use new colors (yellow moving and blue moving) to signal
that the agents are in transit; those agents will take color yellow (resp. blue) once as
the movement is completed. Using these intermediate colors, we can simulate the ED
phase of the previous Section (for |V0| > 2).

162 G.A. Di Luna et al.

More precisely, in the Edge Depletion algorithm of Figure 3, instead of becoming
yellow, a brown agent becomes yellow moving, turning yellow at the next activation.
Similarly, instead of becoming blue, a yellow agent becomes blue moving, turning blue
only when seeing that the “companion” agent is blue moving or blue.

It is not difficult to see that, with these additional colors, since agents will always
move inside the safe zones ofH, the validity of Lemmas 4, 7-8 holds also in ASYNC.

The case of |V0| = 2. When the agents initially form a line, the algorithm described
for SSYNC where the agents first move to a configuration |V0| > 2, and then apply
the general Algorithm, would not work. Consider, for example, the following scenario:
both extreme agents compute and their destination is in opposite direction, but only one
of them actually moves. At this point, the agents on the line set their color to red or
brown , but they will became interior-agents as soon as the slower extreme agent moves
from the line towards its destination, thus changing the convex hull.

The idea is to use a completely different algorithm in ASYNC when the initial con-
figuration is a line (refer to Figure 5b). Two additional special colors (line-extreme and
line-moving) are used. The color line-extreme is taken by the two agents a1 and a2 lo-
cated at the extreme points of the line, x1 and xn, when activated; this color is used to
acknowledge the line condition, and to define the smallest enclosing circle SEC with
diameter x1, xn. Notice that, due to obstructed visibility, the diameter, and thus SEC,
is unknown to the agents. The two extreme agents will never move.

The general strategy is to have the other agents move to points on SEC. First notice
that an agent a can detect that the configuration is a line, either by geometric condi-
tions (i.e., it sees only one or two collinear agents), or by the special color of some
visible agents (line-extreme or line-moving). If an uncolred agent a located in x sees
a line-extreme agent (say a1), then a changes its color to line-moving and it moves
perpendicularly to xx1 toward the perimeter of the circle whose diameter is identified
by a1 and the closest agent b �= a1 on the line xx1 (note that there must be at least
one, possibly the other extreme). A line moving agent follows similar rules; if it can
detect SEC (e.g., it sees two line-extreme) it continues its perpendicular move towards
it. Otherwise, it does not move. It can be shown that, at any time, there is at least one
agent that, if activated, can move. A non extreme agent switches its color to red when
it sees only agents on the SEC; an extreme agents switches its color to red when it sees
only red or line-extreme agents.

It is not difficult to see that this set of rules will allow the agents to reach SEC in
finite time becoming red, and thus to solve the COMPLETE VISIBILITY problem.

Theorem 3. The COMPLETE VISIBILITY problem is solvable in ASYNC by a team of
oblivious, obstructable agents, using eight colors without creating any collision.

5 Circle Formation in ASYNC

When executing the previous algorithm, the agents reach a configuration Cfinal in
which all agents are corners of Hfinal. Starting from this particular configuration it
is possible to arrange the agents in such a way to reach a configuration Ccirc in which
each agent is positioned on the SEC(Cfinal). Note that the solution of the COMPLETE

Robots with Lights: Overcoming Obstructed Visibility 163

VISIBILITY problem when |V0| = 2 already form a circle, hence we focus on the case
|V0| > 2.

b

c a

(a) CIRCLE FORMATION: Agent a is neighbor of an agent b
on SEC , so it moves on line ca in direction of SEC . Dur-
ing this movement, the corner-agents of the convex hull are
not modified, and visibility with the other agents is preserved.

(b) ASYNCH FORMATION FOR |V0| = 2: the two extreme
agents signal the line configuration with color line-extreme,
the other agents move perpendicularly to them until they
reach the SEC whose diameter is defined by the extreme
agents.

Fig. 5. Edge Depletion Phase

Notice that, when all agents are on ∂Hfinal they can compute the sameSEC(Cfinal)
since all the local views are consistent. Moreover, there exists a set of agents X ⊆ A
that are already on SEC, and |X | ≥ 2. The idea of the algorithm is to move all agents
on SEC in such a way that in each point of their trajectories they can see a subset of
nodes Y such that SEC(Y) = SEC(X) = SEC(Cfinal). More precisely, the mov-
ing rule allows agents to move towards SEC if they are “neighbors” (i.e., neighboring
corner) of some agent on SEC in Cfinal (see Figure 5a). Let a be neighbor of some b
already on SEC, and let c be its other neighbor: a will move toward SEC on line ca
guaranteeing that the corner-agents of the convex hull stay corner-agents, and do not
loose visibility with any other agent. Note that, unless in final position, there is always
at least one agent that can move. The algorithm terminates when all the agents are on
SEC.

It is not difficult to see that:

Theorem 4. Starting from a configuration Cfinal in which all the agents are corners,
there is an algorithm in ASYNC that makes the agents reach a configuration Ccirc in
which each agent occupies a different position on SEC(Cfinal) without colliding.

Acknowledgements. This work has been supported in part by the National Science and
Engineering Research Council of Canada, under Discovery Grants, and by Professor
Flocchini’s University Research Chair.

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering
many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 250–259 (2013)

164 G.A. Di Luna et al.

2. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility and without
global navigation. In: Int. Symp. on Swarm and Evolutionary Comp., pp. 30–38 (2012)

3. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoretical
Computer Science 399, 71–82 (2008)

4. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theo-
retical Computer Science 410(6-7), 481–499 (2009)

5. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of lights: Syn-
chronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)

6. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Synchronized dancing of oblivious
chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496,
pp. 113–124. Springer, Heidelberg (2014)

7. Datta, S., Dutta, A., Gan Chaudhuri, S., Mukhopadhyaya, K.: Circle formation by asyn-
chronous fat robots. In: Hota, C., Srimani, P.K. (eds.) ICDCIT 2013. LNCS, vol. 7753,
pp. 195–207. Springer, Heidelberg (2013)

8. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots
with convergence toward uniformity. Theor. Comp. Sci. 396(1,3), 97–112 (2008)

9. Dieudonné, Labbani-Igbida, O., Petit, F.: Labbani-Igbida. Circle formation of weak mobile
robots. ACM Transactions on Autonomous and Adaptive Systems 3(4), 1–16 (2008)

10. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems. In: van
Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM
2007. SOFSEM, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool (2012)

12. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots with con-
stant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 189–200. Springer, Heidelberg (2013)

13. Katreniak, B.: Biangular circle formation by asynchronous mobile robots. In: Pelc, A.,
Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 185–199. Springer, Heidelberg
(2005)

14. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: New directions and
challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.) IWDC 2005. LNCS,
vol. 3741, pp. 1–12. Springer, Heidelberg (2005)

15. Sugihara, K., Suzuki, I.: Distributed motion coordination of multiple mobile robots. In: Pro-
ceedings of 5th IEEE Int. Symposium on Intelligent Control, pp. 138–143 (1990)

16. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis,
E., auf der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306.
Springer, Heidelberg (2014)

SMT-Based Synthesis of Distributed

Self-stabilizing Systems

Fathiyeh Faghih1 and Borzoo Bonakdarpour2

1 School of Computer Science, University of Waterloo, Canada
ffaghihe@uwaterloo.ca

2 Department of Computing and Software, McMaster University, Canada
borzoo@mcmaster.ca

Abstract. A self-stabilizing system is one that guarantees reaching a
set of legitimate states from any arbitrary initial state. Designing dis-
tributed self-stabilizing protocols is often a complex task and developing
their proof of correctness is known to be significantly more tedious. In
this paper, we propose an SMT-based method that automatically synthe-
sizes a self-stabilizing protocol, given the network topology of distributed
processes and description of the set of legitimate states. We also report
successful automated synthesis of Dijkstra’s token ring and distributed
maximal matching.

1 Introduction

Self-stabilization is a versatile technique for forward fault recovery. A
self-stabilizing system has two key features:

– Strong convergence. When a fault occurs in the system and, consequently,
reaches some arbitrary state, the system is guaranteed to recover proper
behavior within a finite number of execution steps.

– Closure. Once the system reaches such good behavior, typically specified
in terms of a set of legitimate states, it remains in this set thereafter in the
absence of new faults.

Self-stabilization has a wide range of application domains, including network-
ing [8] and robotics [17]. The concept of self-stabilization was first introduced
by Dijkstra in the seminal paper [5], where he proposed three solutions for de-
signing self-stabilizing token circulation in ring topologies. Twelve years later, in
a follow up article [6], he published the correctness proof, where he states that
demonstrating the proof of correctness of self-stabilization was more complex
than he originally anticipated. Indeed, designing correct self-stabilizing algo-
rithms is a tedious and challenging task, prone to errors. Also, complications in
designing self-stabilizing algorithms arise, when there is no commonly accessible
data store for all processes, and the system state is based on the valuations of
variables distributed among all processes [5]. Thus, it is highly desirable to have

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 165–179, 2014.
c© Springer International Publishing Switzerland 2014

166 F. Faghih and B. Bonakdarpour

access to techniques that can automatically generate self-stabilizing protocols
that are correct by construction.

With this motivation, in this paper, we focus on the problem of automated
synthesis of self-stabilizing protocols. Program synthesis (often called the holy
grail of computer science) is an algorithmic technique that takes as input a
logical specification and automatically generates as output a program that sat-
isfies the specification. Automated synthesis is generally a highly complex and
challenging problem due to the high time and space complexity of its decision
procedures. For this reason, synthesis is often used for developing intricate but
small-sized components of systems. Synthesizing self-stabilizing distributed pro-
tocols involves an additional level of complexity, due to constraints caused by
read-write restriction of processes in the shared-memory model.

Based on the input specification and the type of output program, there are
various synthesis techniques. Our technique in this paper to synthesize self-
stabilizing protocols takes as input the following specification:

1. A topology that specifies (1) a finite set V of variables allowed to be used in
the protocol and their respective finite domains, (2) the number of processes,
and (3) read-set and write-set of each process; i.e., subsets of V that each
process is allowed to read and write.

2. A set of legitimate states in terms of a Boolean expression over V .

Synthesis of a self-stabilizing protocol is a highly complex problem, since syn-
thesizing strong convergence is shown to be NP-complete in the size of the state
space, which itself is exponential in the size of variables of the protocol [14]. Our
synthesis approach in this paper, is SMT1-based. That is, given the five above in-
put constraints, we encode them as a set of SMT constrains. If the SMT instance
is satisfiable, then a witness solution to its satisfiability is a distributed protocol
that meets the input specification. If the instance is not satisfiable, then we are
guaranteed that there is no protocol that satisfies the input specification. To the
best of our knowledge, unlike the work in [3, 9], our approach, is the first sound
and complete technique that synthesizes self-stabilizing algorithms. That is, our
approach guarantees synthesizing a protocol that is correct by construction, if
theoretically, there exists one.

Our technique for transforming the input specification into an SMT instance
consists in developing the following two sets of constraints:

– State and transition constraints capture requirements from the input spec-
ification that are concerned with each state and transition of the output
protocol. For instance, read-write restrictions constrain transitions of each
process; i.e., in all transitions, a process should only read and write vari-
ables that it is allowed to. Encoding these constraints in an SMT instance
is relatively straightforward.

1 Satisfiability Modulo Theories (SMT) are decision problems for formulas in first-order
logic with equality combined with additional background theories such as arrays, bit-
vectors, etc.

SMT-Based Synthesis of Distributed Self-stabilizing Systems 167

– Temporal constraints in our work are only concerned with ensuring closure
and strong convergence. Our approach to encode weak/strong convergence in
an SMT instance is inspired by bounded synthesis [11]. In bounded synthesis,
temporal logic properties are first transformed into a universal co-Büchi au-
tomaton. This automaton is subsequently used to synthesize the next-state
function or relation, which in turn identifies the set of transitions of each
process.

Solving the satisfiability problem for the conjunction of all above state/transition
and temporal properties results in synthesizing a stabilizing protocol. In order to
demonstrate the effectiveness of our approach, we conduct a diverse set of case
studies for automatically synthesizing well-known protocols from the literature
of self-stabilization. These case studies include Dijkstra’s token ring [5] (for the
three-state machine) and maximal matching [16]. Given different input settings
(i.e., in terms of the network topology), we report and analyze the total time
needed for synthesizing these protocols using the constraint solver Alloy [13].

Organization The rest of the paper is organized as follows. In Section 2, we
present the preliminary concepts on the shared-memory model and
self-stabilization. Then, Section 3 formally states the synthesis problem in the
context of self-stabilizing systems. In Section 4, we describe our SMT-based tech-
nique, while Section 5 is dedicated to our case studies. Related work is discussed
in Section 6. Finally, we make concluding remarks and discuss future work in
Section 7.

2 Preliminaries

2.1 Distributed Programs

Throughout the paper, let V be a finite set of discrete variables, where each
variable v ∈ V has a finite domain Dv. A state is a valuation of all variables;
i.e., a mapping from each variable v ∈ V to a value in its domain Dv. We call
the set of all possible states the state space. A transition in the state space is an
ordered pair (s0, s1), where s0 and s1 are two states. A state predicate is a set of
states and a transition predicate is a set of transitions. We denote the value of a
variable v in state s by v(s).

Definition 1. A process π over a set V of variables is a tuple 〈Rπ,Wπ , Tπ〉,
where

– Rπ ⊆ V is the read-set of π; i.e., variables that π can read,
– Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and
– Tπ is the transition predicate of process π, such that (s0, s1) ∈ Tπ implies

that for each variable v ∈ V , if v(s0) �= v(s1), then v ∈Wπ. ��
Notice that Definition 1 requires that a process can only change the value of

a variable in its write-set (third condition), but not blindly (second condition).
We say that a process π = 〈Rπ,Wπ , Tπ〉 is enabled in state s0 if there exists a
state s1, such that (s0, s1) ∈ Tπ.

168 F. Faghih and B. Bonakdarpour

Definition 2. A distributed program is a tuple D = 〈ΠD, TD〉, where
– ΠD is a set of processes over a common set V of variables, such that:
• for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩Wπ2 = ∅
• for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following
read restriction holds:

∀s′0, s′1 : (∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v �∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s

′
1) ∈ Tπ (1)

– TD is a transition predicate that is the union of transition predicates of all
processes. I.e.,

TD =
⋃

π∈ΠD

Tπ

��
Intuitively, the read restriction in Definition 2 imposes the constraint that for
each process π, each transition in Tπ depends only on reading the variables that
π can read (i.e. Rπ). Thus, each transition in TD is in fact an equivalence class in
TD, which we call a group of transitions. The key consequence of read restrictions
is that during synthesis, if a transition is included (respectively, excluded) in TD,
then its corresponding group must also be included (respectively, excluded) in
TD. Also, notice that TD is defined in such a way D resembles an asynchronous
distributed program, where process transitions execute in an interleaving fashion.

Example We use the problem of distributed self-stabilizing maximal match-
ing as a running example to describe the concepts throughout the paper. In
an undirected graph a maximal matching is a maximal set of edges, in which
no two edges share a common vertex. Consider the graph in Fig. 1 and sup-
pose each vertex is a process in a distributed program. In particular, let V =
{match0,match1,match2} be the set of variables and D = 〈ΠD, TD〉 be a dis-
tributed program, where ΠD = {π0, π1, π2}. We also have Dmatch0

= {1,⊥},
Dmatch1

= {0, 2,⊥}, and Dmatch2
= {1,⊥}. In other words, each process can

be matched to one of its adjacent processes, or to no process (i.e., the value
⊥). Each process πi can read and write variable matchi and read the vari-
ables of its adjacent processes. For instance, π0 = 〈Rπ0 ,Wπ0 , Tπ0〉, with Rπ0 =
{match0,match1} and Wπ0 = {match0}. Notice that following Definition 2 and
read/write restrictions of π0, (arbitrary) transitions

t1 = ([match0 = match2 =⊥,match1 = 0], [match0 = 1,match1 = 0,match2 =⊥])

t2 = ([match0 =⊥,match1 = 0,match2 = 1], [match0 = match2 = 1,match1 = 0])

have the same effect as far as π0 is concerned (since π0 cannot readmatch2). This
implies that if t1 is included in the set of transitions of a distributed program,
then so should t2. Otherwise, execution of t1 by π0 will depend on the value
of match2, which, of course, π0 cannot read. Notice that the target state in
t2, where match0 = 1, match1 = 0, and match2 = 1, is not a good matching
state. However, such states in a distributed program may be reachable due to
occurrence of faults or wrong initialization.

SMT-Based Synthesis of Distributed Self-stabilizing Systems 169

π0 π1 π2

Fig. 1. Example of a maximal matching problem

Definition 3. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states
s = s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a
computation reaches a state si, from where there is no state s �= si, such that
(si, s) ∈ TD, then the computation stutters at si indefinitely. Such a computation
is called a terminating computation. ��

As an example, in maximal matching, computations may terminate when a
matching between processes is established.

We now define the notion of topology. Intuitively, a topology specifies only the
architectural structure of a distributed program (without its set of transitions).
The reason for defining topology is that one of the inputs to our synthesis solution
is a topology based on which a distributed program is synthesized as output.

Definition 4. A topology is a tuple T = 〈VT , |ΠT |, RT ,WT 〉, where

– VT is a finite set of finite-domain discrete variables,

– |ΠT | ∈ N≥1 is the number of processes,

– RT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its read-set,

– WT is a mapping {0 . . . |ΠT | − 1} �→ 2V that maps a process index to its
write-set, such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |ΠT | − 1). ��

Example The topology of our matching problem is a tuple 〈V, |ΠT |, RT ,WT 〉,
where

– V = {match0,match1,match2}, with domains Dmatch0 = {1,⊥}, Dmatch1 =
{0, 2,⊥}, and Dmatch2

= {1,⊥},
– |ΠT | = 3,

– RT (0) = {match0,match1}, RT (1) = {match0,match1,match2},
RT (2) = {match1,match2}, and

– WT (0) = {match0}, WT (1) = {match1}, and WT (2) = {match2}.

Definition 5. A distributed program D = 〈ΠD, TD〉 has topology
T = 〈VT , |ΠT |, RT ,WT 〉, iff

– each process π ∈ ΠD is defined over VT
– |ΠD| = |ΠT |
– there is a mapping g : {0 . . . |ΠT | − 1} �→ ΠD such that

∀i ∈ {0 . . . |ΠT | − 1} :(RT (i) = Rg(i)) ∧ (WT (i) = Wg(i)) ��

170 F. Faghih and B. Bonakdarpour

2.2 Self-Stabilization

Pioneered by Dijkstra [5], a self-stabilizing system is one that always recovers a
good behavior (typically, expressed in terms of a set of legitimate states), even if
it starts execution from any arbitrary initial state. Such an arbitrary state may
be reached due to wrong initialization or occurrence of transient faults.

Definition 6. A distributed program D = 〈ΠD, TD〉 is self-stabilizing for a set
LS of legitimate states iff the following two conditions hold:

– (Strong) convergence: In any computation s = s0s1 · · · of D, where s0 is an
arbitrary state of D, there exists i ≥ 0, such that si ∈ LS. That is, the linear
temporal logic (LTL) [10] property:

SC = ♦LS (2)

– Closure: For all transitions (s0, s1) ∈ TD, if s0 ∈ LS, then s1 ∈ LS as well.
That is, the LTL property:

CL = LS ⇒©LS (3)

��
Notice that the strong convergence property ensures that starting from any state,
any computation will converge to a legitimate state of D within a finite number
of steps. The closure property ensures that starting from any legitimate state,
execution of the program remains within the set of legitimate states. Also, since
all states in a self-stabilizing distributed program are considered as initial states,
LTL formula 3 is evaluated over all possible states. This is why the formula is
not of form �(LS ⇒©LS).

Example In our maximal matching problem, the set of legitimate states is:

LS = { [match0 = 1,match1 = 0,match2 =⊥],
[match0 =⊥,match1 = 2,match2 = 1]}

Notation We denote the fact that a distributed program D satisfies a temporal
logic property ϕ by D |= ϕ. For example, D |= SC means that distributed
program D satisfies convergence.

3 Problem Statement

Our goal is to synthesize self-stabilizing distributed programs by starting from
the description of its set of legitimate states and the architectural structure of
processes. Formally, the goal is to devise a synthesis algorithm that takes the
following as input:

– a topology T = 〈V, |ΠT |, RT ,WT 〉,
– a set LS of legitimate states,
– the LTL specification of self-stabilization,

and generates a distributed program as output that respects the above input
specification.

SMT-Based Synthesis of Distributed Self-stabilizing Systems 171

4 SMT-Based Synthesis Solution

In this section, we propose a technique that transforms the synthesis problem
stated in Section 3 into an SMT solving problem. An SMT instance consists
of two parts: (1) a set of entity declarations (in terms of sets, relations, and
functions), and (2) first-order modulo-theory constraints on the entities. An
SMT-solver takes as input an SMT instance and determines whether or not
the instance is satisfiable; i.e., whether there exists concrete SMT entities (also
called an SMT model) that satisfy the constraints. We transform the input to our
synthesis problem into an SMT instance. If the SMT instance is satisfiable, then
the witness generated by the SMT solver is the answer to our synthesis problem.
We describe the SMT entities obtained in our transformation in Subsection 4.1.
SMT constraints appear in Subsection 4.2.

4.1 SMT Entities

Recall that the inputs to our problem are a topology T = 〈V, |ΠT |, RT ,WT 〉,
and a set LS of legitimate states. Let D = 〈ΠD, TD〉 denote the distributed
program to be synthesized that has topology T and legitimate states LS . In our
SMT instance, we include:

– A set Dv for each v ∈ V , which contains the elements in the domain of v.

– A set called S, whose cardinality is

∣∣∣∣ ∏
v∈V

Dv

∣∣∣∣ (i.e., the Cartesian product of

all variable domains). This set represents the state space of the synthesized
distributed program. Notice that in a self-stabilizing program, any arbitrary
state can be an initial state and, hence, we need to include the entire state
space in the SMT instance.

– An uninterpreted function v val for each variable v, v val : S �→ Dv that
maps each state in the state-space to a valuation of that variable.

– A relation TD that represents the transition relation of the synthesized dis-
tributed program (i.e., TD ⊆ S × S). Obviously, the main challenge in
synthesizing D is identifying TD, since variables (and, hence, states) and
read/write-sets of ΠD are given by topology T .

– A Boolean function LS : S �→ {0, 1}. LS (s) is true iff s is a legitimate
state.

– An uninterpreted function ψ, from each state to a natural number (ψ : S �→
N). We will discuss this function in detail in Subsection 4.2.

Example In our maximal matching problem, the SMT entities are as follows:

– Dmatch0
= {⊥, 1}, Dmatch1

= {⊥, 0, 2}, Dmatch2
= {⊥, 1}

– set S, where |S| = 12
– match0 val : S �→ Dmatch0

, match1 val : S �→ Dmatch1
, match2 val : S �→

Dmatch2

– TD ⊆ S × S
– ψ : S �→ N

172 F. Faghih and B. Bonakdarpour

4.2 SMT Constraints

In this section, we present the SMT constraints formulated based on our synthesis
problem.

State Distinction. As mentioned, we specify the size of the state space in the
model. The first constraint in our SMT instance stipulates that any two distinct
states differ in the value of some variable:

∀s0, s1 ∈ S : (s0 �= s1) =⇒ (∃v ∈ V : v val(s0) �= v val(s1)) (4)

Example In our maximal matching problem, the state distinction constraint is:

∀s0, s1 ∈ S : (s0 �= s1) =⇒ (match0 val(s0) �= match0 val(s1)) ∨
(match1 val(s0) �= match1 val(s1)) ∨
(match2 val(s0) �= match2 val(s1))

Closure (CL). The formulation of the CL constraint in our SMT instance is
as follows:

∀s, s′ ∈ S : (LS (s) ∧ (s, s′) ∈ TD) =⇒ LS (s′) (5)

Strong Convergence (SC). Our formulation of the SMT constraints for SC
is an adaptation of the concept of bounded synthesis [11]. Inspired by bounded
model checking techniques [4], the goal of bounded synthesis is to synthesize an
implementation that realizes a set of linear-time temporal logic (LTL) properties,
where the size of the implementation is bounded (in terms of the number of
states). One difficulty with bounded model checking and synthesis is to make
an estimate on the size of reachable states of the program under inspection.
We argue that this difficulty is not an issue in the context of synthesizing self-
stabilizing systems, since it is assumed that any arbitrary state is either reachable
or can be an initial state. Hence, the bound will be equal to the size of the
state space; i.e., the size is a priori known by the input topology. The bounded
synthesis technique for synthesizing a state-transition system from a set of LTL
properties consists in two steps [11]:

– Step 1: Translation to universal co-Büchi automaton. First, we
transform each LTL property ϕ into a universal co-Büchi automaton Bϕ.
Roughly speaking, a universal co-Büchi automaton is a tuple
Bϕ = 〈Q,Q0,Δ, G〉, where Q is a set of states, Q0 ⊆ Q is the set of ini-
tial states, Δ ⊆ Q × Q is a set of transitions, and G maps each transition
in Δ to propositional conditions. Each state could be accepting (depicted
by a circle), or rejecting (depicted by a double-circle). For instance, Fig. 2
shows the universal co-Büchi automaton for the strong convergence property
SC = ♦LS .

SMT-Based Synthesis of Distributed Self-stabilizing Systems 173

q0 q1
LS

¬LS true

Q = {q0, q1}, Q0 = {q0}, Δ = {(q0, q0), (q0, q1), (q1, q1)}, G(q0, q0) = {¬LS},
G(q0, q1) = {LS}, G(q1, q1) = {true}

Fig. 2. Universal co-Büchi automaton for strong convergence ϕ = ♦LS

Let ST = 〈S, S0, TD〉 be a state-transition system, where S is a set of states,
S0 ⊆ S is the set of initial states, and TD ⊆ S×S is a set of transitions. We
say that Bϕ accepts ST iff on every infinite path of ST running on Bϕ,
there are only finitely many visits to the set of rejecting states in Bϕ [15].
For instance, if a state-transition system is self-stabilizing for the set LS of
legitimate states, all its infinite paths visit a state in ¬LS only finitely many
times. Hence, the automaton in Fig. 2 accepts such a system.

– Step 2: SMT encoding. In this step, the conditions for the co-Büchi
automaton to satisfy a state-transition system are formulated as a set of
SMT constraints. To this end, we utilize the technique proposed in [11] for
developing an annotation function λ : Q × S �→ N ∪ {⊥}, such that the
following three conditions hold:

∀q0 ∈ Q0 : ∀s0 ∈ S0 : λ(q0, s0) ∈ N (6)

If (1) λ(q, s) �= ⊥ for some q ∈ Q and s ∈ S, (2) there exists q′ ∈ Q such
that q′ is an accepting state and (q, q′) ∈ Δ with the condition g ∈ G, and
(3) g is satisfied in the state s, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) �=⊥ ∧ λ(q′, s′) ≥ λ(q, s)) (7)

and if q′ is a rejecting state in the co-Büchi automaton, then

∀s′ ∈ S : (s, s′) ∈ TD =⇒ (λ(q′, s′) �=⊥ ∧ λ(q′, s′) > λ(q, s)) (8)

It is shown in [11] that the acceptance of a finite-state state-transition system by
a universal co-Büchi automaton is equivalent to the existence of an annotation
function λ. The natural number assigned to (q, s) by λ can represent the maxi-
mum number of rejecting states that occur on some path to (q, s) when running
the state-transition system on the universal co-Büchi automaton.

To ensure that the synthesized distributed program D = 〈ΠD, TD〉 satisfies
strong convergence, we use the bounded synthesis technique explained above.
In the first step, we construct the universal co-Büchi automaton for the LTL
property ♦LS (see Fig. 2). The annotation constraints for the transitions in TD

174 F. Faghih and B. Bonakdarpour

with the set of states S for the automaton in Fig. 2 are as follows:

∀s ∈ S : λ(q0, s) �=⊥ (9)

∀s, s′ ∈ S : (λ(q0, s) �=⊥ ∧LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) �=⊥ ∧ λ(q1, s
′) ≥ λ(q0, s)) (10)

∀s, s′ ∈ S : (λ(q1, s) �=⊥ ∧ true ∧ (s, s′) ∈ TD) =⇒
(λ(q1, s

′) �=⊥ ∧ λ(q1, s
′) ≥ λ(q1, s)) (11)

∀s, s′ ∈ S : (λ(q0, s) �=⊥ ∧ ¬LS (s) ∧ (s, s′) ∈ TD) =⇒
(λ(q0, s

′) �=⊥ ∧ λ(q0, s
′) > λ(q0, s)) (12)

Notice that Constraint 9 is obtained from Constraint 6 (since in a self-stabilizing
system, every state can be an initial state). Similarly, Constraints 10 and 11 are
instances of Constraint 7 for transitions (q0, q1) and (q1, q1), respectively. Also,
Constraint 12 is an instance of Constraint 8 for transition (q0, q0) (see Fig 2).
We now claim that Constraints 10 and 11 can be eliminated.

Lemma 1. There always exists a non-trivial annotation function λ, which eval-
uates Constraints 10 and 11 as true.

Proof. We show that we can always find an annotation function that satisfies
Constraints 10 and 11 without violating the other constraints. To this end, as-
sume that there is an annotation that satisfies all properties except for the
Constraint 10. Hence, we have:

∃s, s′ ∈ S : LS (s) ∧ (s, s′) ∈ TD ∧ (λ(q1, s
′) =⊥ ∨ λ(q1, s

′) < λ(q0, s))

We can simply assign λ(q0, s) to λ(q1, s
′), without violating Constraints 9 and 12.

This assignment can be done in a fixpoint iteration, until no more violation exists.
We can develop a similar proof for Constraint 11. Intuitively, for each state s,
we assign to λ(q1, s), the maximum number assigned to λ(q1, s

′), for every state
s′ in any path reaching s. ��

Following Lemma 1, since Constraints 10 and 11 can be removed from the
SMT instance, all constraints involving λ will have q0 as their first argument.
This observation results in replacing λ by a simpler annotation function ψ as
follows:

– Function ψ takes only one argument, since the state of the co-Buchi automa-
ton is always q0.

– Due to Constraint 9, the value ⊥ is irrelevant in the range of the annotation
functions. Hence, we define our annotation function as:

ψ : S �→ N (13)

As a result, one can simplify Constraints 9-12 as follows:

∀s, s′ ∈ S : ¬LS (s) ∧ (s, s′) ∈ TD =⇒ ψ(s′) > ψ(s) (14)

SMT-Based Synthesis of Distributed Self-stabilizing Systems 175

The intuition behind Constraints 13 and 14 can be understood easily. If we can
assign a natural number to each state, such that along each outgoing transition
from a state in ¬LS , the number is strictly increasing, then the path from each
state in ¬LS should finally reach LS or get stuck in a state, since the size of
state space is finite. Also, there can not be any loops whose states are all in ¬LS ,
as imposed by the annotation function.

Finally, the following constraint ensures that there is no deadlock state in
¬LS :

∀s ∈ S : ¬LS (s) =⇒ ∃s′ ∈ S : (s, s′) ∈ TD (15)

Constraints for an Asynchronous System. To synthesize an asynchronous
distributed program, instead of a transition relation TD, we introduce a transition
relation Ti for each process index i ∈ {0, . . . , |ΠT |−1} (TD = T0∪· · ·∪T|ΠT |−1),
and add the following constraint for each transition relation:

∀(s0, s1) ∈ Ti : ∀v /∈WT (i) : v val(s0) = v val(s1) (16)

Constraint 16 ensures that in each relation Ti, only process πi can execute. By
introducing |ΠT | transition relations, we consider all possible interleaving of
processes execution.

Example To synthesize an asynchronous version of our maximal matching ex-
ample, we define three relations T0, T1, and T2 and add a constraint for each to
the SMT instance. For example, the constraint for T0 is:

∀(s0, s1) ∈ T0 : (match1 val(s0) = match1 val(s1)) ∧
(match2 val(s0) = match2 val(s1))

Read Restrictions. To ensure that D meets the read restrictions given by T ,
we add the following constraint for each process index i ∈ {0, . . . , |ΠT | − 1}:

∀(s0, s1) ∈ Ti : ∀s′0, s′1 ∈ S : (∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧
(∀v �∈ Rπ : v(s′0) = v(s′1))) =⇒ (s′0, s

′
1) ∈ Ti

(17)

which is similar to Condition 1 in Definition 2.

5 Case Studies and Experimental Results

We used the Alloy [13] model finder tool for our experiments. Alloy solver per-
forms the relational reasoning over quantifiers, which means that we did not
have to unroll quantifiers over their domains. All experiments in this section are
run on a machine with Intel Core i5 2.6 GHz processor with 8GB of RAM. We
note that since our synthesis method is deterministic, we do not replicate ex-
periments for statistical confidence. We also conducted experiments using Z3 [2]
and Yices [1] SMT solvers as well. In the majority of cases studies Alloy was the
fastest solver.

176 F. Faghih and B. Bonakdarpour

5.1 Maximal Matching

Our first case study is our running example, distributed self-stabilizing maximal
matching [12, 16, 18]. Table 1 presents our results for different sizes of line and
star topologies. As expected, by increasing the number of processes, synthesis
time also increases. Another observation is that synthesizing a solution for the
star topology is in general faster than the line topology. This is because a pro-
tocol that intends to solve maximal matching for the star topology deals with a
significantly smaller problem space.

Table 1. Results for synthesizing maximal matching

Topology # of Processes Time (sec)

line 3 0.19

star 4 2.95

line 4 3.5

star 5 53.75

line 5 65.88

5.2 Dijkstra’s Token Ring with Three-State Machines

In the token ring problem, a set of processes are placed on a ring network.
Each process has a so-called privilege (token), which is a Boolean function of its
neighbors’ and its own states. When this function is true, the process has the
privilege.

Dijkstra [5] proposed three solutions for the token ring problem. In the three-
state token ring, each process πi maintains a variable xi with domain {0, 1, 2}.
The read-set of a process is its own and its neighbors’ variables, and its write-set
contains its own variable. As an example, for process π1, RT (1) = {x0, x1, x2}
and WT (1) = {x1}. Token possession is formulated using the conditions on a
machine and its neighbors [5]. Briefly, in a state s, process π0 (called the bottom
process) has the token, when x0(s)+1 mod 3 = x1(s), process π(|ΠT |−1) (called
the top process) has the token, when (x0(s) = x(|ΠT |−2)(s)) ∧ (x(|ΠT |−2)(s) + 1
mod 3 �= x(|ΠT |−1)(s)), and any other process πi owns the token, when either
xi(s) + 1 mod 3 equals to the variable of its left or right process. The set
of legitimate states are those in which exactly one process has the token. For
example, for a ring of size three, the set of legitimate states is formulated by the
following expression:

((x0(s) + 1 mod 3 = x1(s)) ∧ (x1(s) + 1 mod 3 �= x2(s))) ∨
((x1(s) = x0(s)) ∧ (x1(s) + 1 mod 3 �= x2(s))) ∨
((x0(s) + 1 mod 3 �= x1(s)) ∧ (x1(s) + 1 mod 3 = x0(s)) ∨
(x1(s) + 1 mod 3 = x2(s)))

SMT-Based Synthesis of Distributed Self-stabilizing Systems 177

Table 2. Results for synthesizing three-state token ring

of Processes Time (sec)

3 1.26

4 63.02

Table 2 presents the result for synthesizing solutions for the three-state ver-
sion. We note that the synthesized stabilizing programs using our technique are
identical to Dijkstra’s solution in [5].

6 Related Work

In [14], the authors show that adding strong convergence is NP-complete in the
size of the state space, which itself is exponential in the size of variables of
the protocol. Ebnenasir and Farahat [9] also proposed an automated method to
synthesize self-stabilizing algorithms. Our work is different in that the method
in [9] is not complete for strong self-stabilization. This means that if it cannot
find a solution, it does not necessarily imply that there does not exist one.
However, in our method, if the SMT-solver declares “unsatisfiability”, it means
that no self-stabilizing algorithm that satisfies the given input constraints exists.

In bounded synthesis [11], given is a set of LTL properties, which are trans-
lated to a universal co-Büchi automaton, and then a set of SMT constraints are
derived from the automaton. Our work is inspired by this idea for finding the
SMT constraints for strong convergence. For other constraints, we used a dif-
ferent approach from bounded synthesis. The other difference of our work with
bounded synthesis is that the main idea in bounded synthesis is to put a bound
on the number of states in the resulting state-transition systems, and then in-
crease the bound if a solution is not found. In our work, since the purpose is
to synthesize a self-stabilizing system, the bound is the number of all possible
states, derived from the given topology.

The other line of work related to the synthesis of self-stabilizing algorithms
is the area of synthesizing fault-tolerant systems. The proposed algorithm in [3]
synthesizes a fault-tolerant distributed algorithm from its fault-intolerant ver-
sion. The distinction of our work with this study is (1) we emphasize on self-
stabilizing systems, where any system state could be reachable due to the occur-
rence of any possible fault, (2) the input to our problem is just a system topology,
and not a fault-intolerant system, and (3), the proposed algorithm in [3] is not
complete. In [7], a synthesis algorithm is proposed to determine whether a fault-
tolerant implementation exists for a fully connected topology and a temporal
specification, and, in case the answer is positive, automatically derives such an
implementation. Our work is different in (1) considering any kind of distributed
topology, and (2) focusing on self-stabilizing systems.

178 F. Faghih and B. Bonakdarpour

7 Conclusion

In this paper, we proposed an automated technique for synthesis of finite-size
self-stabilizing algorithms using SMT-solvers. The first benefit of our technique
is that it is sound and complete; i.e., it generates distributed programs that are
correct by construction and, hence, no proof of correctness is required, and if
it fails to find a solution, we are guaranteed that there does not exist one. The
latter is due to the fact that all quantifiers range over finite domains and, hence,
finite memory is needed for process implementations. This assumption basically
ensures decidability of the problem under investigation. Secondly, our method is
fully automated and can save huge effort from designers, specially when there is
no solution for the problem. Third, the underlying technique is based on SMT-
solving, which is a fast evolving area, and hence, by introducing more efficient
SMT-solvers, we expect better results from our proposed method.

For future work, we plan to work on synthesis of probabilistic self-stabilizing
systems. Another challenging research direction is to devise synthesis methods
where the number of distributed processes is parameterized as well as cases where
the size of state space of processes is infinite. We would also like to investigate
techniques such as counter-example guided inductive synthesis (CEGIS) that
may be an interesting solution to the problem of scaling the synthesis process
for larger number of processes.

Acknowledgements. This research was supported in part by Canada NSERC
Discovery Grant 418396-2012 and NSERC Strategic Grant 430575-2012.

References

1. Yices: An SMT Solver, http://yices.csl.sri.com
2. Z3: An efficient theorem prover,

http://research.microsoft.com/en-us/um/redmond/projects/z3/

3. Bonakdarpour, B., Kulkarni, S.S., Abujarad, F.: Symbolic synthesis ofmasking fault-
tolerant programs. Springer Journal onDistributedComputing 25(1), 83–108 (2012)

4. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

6. Dijkstra, E.W.: A belated proof of self-stabilization. Distributed Computing 1(1),
5–6 (1986)

7. Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer,
Heidelberg (2009)

8. Dolev, S., Schiller, E.: Self-stabilizing group communication in directed networks.
Acta Informatica 40(9), 609–636 (2004)

9. Ebnenasir, A., Farahat, A.: A lightweight method for automated design of con-
vergence. In: Proceedings of the 25th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 219–230 (2011)

http://yices.csl.sri.com
http://research.microsoft.com/en-us/um/redmond/projects/z3/

SMT-Based Synthesis of Distributed Self-stabilizing Systems 179

10. Emerson, E.A.: Handbook of Theoretical Computer Science. Temporal and Modal
Logics, vol. B, ch. 16. Elsevier Science Publishers B. V., Amsterdam (1990)

11. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software
Tools for Technology Transfer (STTT) 15(5-6), 519–539 (2013)

12. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Infor-
mation Processing Letters 43(2), 77–81 (1992)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press
Cambridge (2012)

14. Klinkhamer, A., Ebnenasir, A.: On the complexity of adding convergence. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 17–33. Springer,
Heidelberg (2013)

15. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of 46th
Annual IEEESymposiumon Foundations of Computer Science (FOCS), pp. 531–542
(2005)

16. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theoretical Computer Science 410(14), 1336–1345 (2009)

17. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in
uniform rings. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596,
pp. 49–63. Springer, Heidelberg (2012)

18. Tel, G.: Maximal matching stabilizes in quadratic time. Information Processing
Letters 49(6), 271–272 (1994)

Stateless Stabilization Bootstrap�

(Extended Abstract)

Shlomi Dolev1, Ramzi Martin Kahil1, and Reuven Yagel1,2

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva
84105, Israel

{dolev,kahilm,yagel}@cs.bgu.ac.il
2 Software Engineering Department, Azrieli - College of Engineering, Jerusalem

9103501, Israel

Abstract. Stateless protocols, servers, services and programs are inher-
ently self-stabilizing when repeatedly invoked, as any invocation starts
from scratch. We suggest to augment a given stateful program with a
stateless prefix that (upon invocation of the stateful program, and pos-
sibly periodically) verifies the consistency of the state of the stateful
program prior to the execution of the stateful program.

We demonstrate the new stateless stabilization bootstrap paradigm
by implementing stabilizing double linked list of the Linux kernel. In
particular we focus on the KVM linked list data structure consistency.

1 Introduction

Writing code that matches the required specification is the goal of every pro-
grammer, but also a very challenging task. There are several reasons for the
difficulty, such as, the human machine interface when specifying the require-
ment and the limited possible (rather than exhaustive) testing of the composed
program. Therefore many methods, frameworks, and even languages have been
developed trying to cope with mistakes that programmers make. Object oriented
programming [14], Design by Contract [13] and Test-Driven-Development [1] are
a few examples. Despite the fact that all these approaches reduced the amount of
errors, and the required testing, systems accumulate faults during long enough
runs, since they are not tested over all input lengths [3,12,10].

Related Work. Stateless programs are getting attention in the last few years, in
several different scopes, including MapReduce framework, monads in functional
programming, recovery oriented programming and reentrant code.

MapReduce design pattern [6] separates the Map part from the Reduce part,
where each part is purely functional, and therefore a restartable process. From

� Partially supported by Orange Labs under external research contract number
0050012310-C04021, the Rita Altura Trust Chair in Computer Sciences, Lynne and
William Frankel Center for Computer Sciences, and Israel Science Foundation (grant
number 428/11).

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 180–194, 2014.
c© Springer International Publishing Switzerland 2014

Stateless Stabilization Bootstrap 181

a stateful-stateless point of view MapReduce can be viewed as a design pat-
tern which minimizes the state that is shared among the parts of the system,
managing the state dependencies to allow independent computations in parallel.

Monads are used to pack inherently stateful tasks such as writing to a file,
into a functional program [15]. This is achieved by encapsulating the state. It
may therefore fit well into a multi-core architecture by allowing the migration
of state from one core to another. Modeling state as a functional concept also
allows a program to be abstracted as a mathematical entities, which is object
useful for proving correctness [11,17].

Reentrant code [16] is code that can be re-executed while being executed,
each execution starts in a different context, and still meets the semantics of a
single execution, as if the other executions do not exist [15]. Reentrant code
reconstructs a new state whenever executed, state that is independent of other
past and concurrent execution instances.

Another path of research is recovery oriented programming, see [3] and the
references therein, where procedures are augmented with code that ensures the
recovery of the system upon violations of the desired properties.

Our Contribution. Writing software that respects the desired specifications,
safety and liveness requirements, with no deadlocks and no livelocks is challeng-
ing. We suggest a design pattern in which a programmer adds a prefix segment
of code to existing code. The prefix of the code, upon every invocation, checks
and corrects the state of the existing code, ensuring convergence to the desired
behavior. The added prefix can be executed as a periodical consistency check
operation and/or as a triggered state consistency enforcement code segment exe-
cuted just before the execution of an original code segment in scope. Our stateless
bootstrap stabilization approach is a design pattern that can be implemented by
adding code manually or automatically. An advantage of our design pattern is
that no changes have to be made to the existing code. Thus making it applicable
to working systems with minimal overhead, and no new bugs will be introduced
into the system while adding typically simple stateless prefixes for consistency
checks and enforcement.

Recovery code can be inserted by a compiler as suggested in [3]. While this
is quite a general approach, we suggest a new scheme in which augmented code
will be added as a prefix to existing code, where the added code is stateless.
Our approach does not require the specification to be formalized and given as
input to a compiler which augments the main code with recovery actions as
suggested in [3]. In fact any stateless code which performs a consistency check
and has appropriate recovery actions will do. Another aspect of our work is that
re-execution of the (stateless) prefix has to be guaranteed, possibly, by using
a watchdog timer and interrupts. Our stateless prefix stabilization bootstrap
scheme can be automated by the use of a compiler that produces stateless prefix
code, according to given invariants and recovery actions for setting the state of
the relevant original code to a safe state.

We would like to emphasize that software segments designed for preserving
system security are often the first targets in attacks on the system, because after

182 S. Dolev, R.M. Kahil, and R. Yagel

subverting the security measures (e.g., anti-virus or kernel data structures) a
malicious program is almost free to sabotage the target machine. In addition
in most systems, a onetime manipulation of the state of some data structure
will grant an attacker privileged access until a re-installation of the subverted
module is performed. Therefore we believe that the system should be designed
to be self-stabilizing, since a self-stabilizing system, by definition, does not as-
sume that the state is correct, constantly ensures that the system converges
to a safe state. In context of kernel-data-structures, we examine a scenario of
virtualization with KVM/Linux, if an attacker has somehow manipulated the
VM-list (Virtual Machine-list), is such a way as to cause the host to traverse
the list forever, a self-stabilizing system should correct the VM-list to avoid such
infinite loops, and to reach a legal state. Beyond ensuring the convergence of the
state of the hypervisor to a safe state (including the VM-list) the self-stabilizing
hypervisor should also ensure that the state of every VM is safe, and possibly
restart a VM if the VM is corrupted (not acting as it should or even acting
maliciously).

In the next section we define the system settings and requirements. Section 3
demonstrates the stateless stabilization bootstrap technique over an example in
Java, which is merely an introduction to the full implementation of the stabilizing
VM Linked List example that is detailed in Section 4. Section 4 fully details and
demonstrates our framework in converting the linked list of the Linux kernel
to a stabilizing version. Section 5 discusses briefly some more examples that
have been implemented using our design pattern. Concluding remarks appear in
Section 6. Details of the exact implementation of the linked lists in the Linux
kernel appear in the Appendix.

2 Preliminaries and System Settings

A Random Access Machine (RAM) is a pair (CPUc,MEMm), where CPUc

is a state machine with c states and MEMm is a finite tape of size m bits,
with bounded access times. The CPU executes assembly commands whenever an
internal clock pulse takes place, we use the term atomic step for the transition of
the RAM due to the execution of a single assembly command. An atomic step,
changes the state of the CPU and the content of the MEM according to the
specifications of the RAM producer. The State is a pair C = (cpu,mem) where
cpu is the current state of the CPU and mem is the current content of MEM.
The definition of an execution follows quite naturally as a (possibly infinite)
sequence of states C1, C2, ... where each state Ci+1 is reached from Ci by the
execution of a single atomic step (one assembly instruction). A Legal Execution,
LE, is a set of sequenced states where the RAM exhibits a desired behavior. The
definition of desired behavior is task specific. The RAM continuously executes
an operating system and applications. Given an execution there is a mapping of
steps and states that are related to the operating system, and steps and states
that are related to the applications. Thus, an execution can be a legal execution
for the operating system but at the same time be an illegal execution for an
application.

Stateless Stabilization Bootstrap 183

A self-stabilizing program is a program that can be started in an arbitrary
state and exhibits the desired behavior in any infinite execution suffix that follows
a bounded number of steps.

A code segment Seg is stateless if: (1) Seg has reentrant properties, namely,
defining and initializing all state variables before using them, and (2) the exe-
cution of Seg is not a function of the state of the processor and the operating
system prior to the beginning of the execution of Seg. Thus, for example, the
state of Seg is not uploaded from the stack.

An Augmented program, P , will be the concatenation of P1 and P2 where P2

is the original program that does a certain task, and P1 is the stateless prefix.
For simplicity, we will assume that P1 is written in GCL (Guarded Commands
Language) [4]. Formally, we assume that P1 is a sequence of n guards and com-
mands, denoted as guard1 → command1, guard2 → command2, ..., guardn →
commandn. Every guard will check some aspect of the state C and at least one
will return true if the state of P2 is not safe, and the corresponding command
will be a procedure that corrects the state.

For simplicity we also assume that P2 first loads its state to continue execution.
Namely, program counter, stack, registers, etc. This assumption is based on how
P2 is executed if a scheduler and interrupt mechanism are present. Note that, we
do not restrict our stateless bootstrap stabilization scheme to be implemented
by a scheduler and interrupt mechanism.

We set apart the running time of P1 and P2. Since P1 considers the memory
mem of P2 as input, we denote the upper bound on the running time of P1 on
memory mem as t1(|mem|), and the upper bound on the running time of P2,
when started in a safe state, on input x as t2(|x|). Obviously the running time
of P on input x will be t1(|mem|) + t2(|x|).

Stateless Stabilizing Bootstrap Design Pattern. In this section we formally
define the stateless stabilizing bootstrap design pattern. The stateless stabilizing
bootstrap is based on realizing the following requirements for any procedure or
code segment P .

– stateless prefix requirement: We define that the stateless prefix requirement
of a program P holds if P has two consecutive portions, P1 and P2, where
P1 is stateless.

– repeated execution requirement : We define the repeated execution requirement
to hold if there is a mechanism which ensures that in any infinite execution
the program counter infinitely often points to the first (assembly) command
in P and the execution of P starts thereafter and executes for a sufficiently
long period. We define “sufficiently long” as the period required for fully
executing P1 and then P2, (when P2 is in a safe state). Thus P2’s execution
must be finite, bounded and predefined, when P2 execution starts in a safe
state.

– composition : If P1 is proven to check the state of P2 and enforce a safe
state for P2, then the execution continues with P2, and then we say that the
composition requirement of P1 and P2 is met.

184 S. Dolev, R.M. Kahil, and R. Yagel

One possible way to implement these requirements is by using a reset to enforce
invariants on the state, and by using the interrupt mechanism to ensure repeated
execution of code segments.

Lemma 1. Every execution of an augmented program P , which starts at P1 (at
the first assembly instruction) will result in an execution of P2 starting in a safe
state.

Proof. The procedure P1 is stateless, meaning that the state of the CPU is a pre-
defined state. P1 is proven to have a bounded number of steps, therefore P2 will
be reached eventually. In case the memory MEMm is in a safe state, all guards
in P1 will return false, and the content of the memory will remain unchanged.
In case the memory MEMm has an invalid state, because P1 starts from the
first instruction, we know that every guard will be executed. Furthermore we
know that if mem does not encode a safe state for P2, then there exists a guard
gi which will return true and the command ci will change mem into a safe
state mem′. After all guards have executed, the next instruction will be the first
instruction of P2, and MEMm will have a safe state by then, which is actually
a base for a legal execution of P2 starting in a safe state. ��
Lemma 2. Every infinite execution of an augmented program P , which satisfies
the stateless prefix requirement, repeated execution requirement and composition
requirement, will have a legal infinite execution suffix.

Proof. Consider a program P that is the concatenation of two programs P1, P2,
where P1 is a stateless program that checks if P2 is in a legal state and corrects it
if necessary. Consider the execution of P at some random state s = (cpu,mem).
If s is a legal state, then an invocation of P1 does not affect the memory tape
MEMm, and therefore P2 is in a safe state when the execution of P2 starts.
Furthermore, any state change according to the correct execution of an assembly
instruction from the program P2 will result in a safe state by the correctness
of P2. If s is an illegal state, then an illegal state can be preserved until the
invocation of P1 which is within a bounded number of steps. From Lemma 1 we
know that the execution of P1 will result in an execution of P2 that starts in a
safe state. The execution of P ensures the stabilization of the execution of the
original program P2. In case the state s belongs to the execution of P1 when it
is corrupted, then P2 may exhibit faulty behavior for at most t2(|x|) steps, then
(upon an interrupt) P1 will start again from the first assembly instruction, and
by Lemma 1 this will result in P2 executing correctly.

The worst case scenario is that the state s gets corrupted after the first in-
struction of P1. In this case the system may be in a faulty state for t1(|mem|)+
t2(|x|) − 1 steps. Since the execution of P1 starts infinitely often, following the
next execution of P1 the execution of P2 is a legal execution. ��

3 Stabilization Bootstrap for VM Linked List

The Linux kernel has an implementation for a linked list (located at
/include/linux/types.h) which has the same structure as the presented Java

Stateless Stabilization Bootstrap 185

example (See Figure 1), and this implementation is widely used throughout the
kernel. For example, the vm list is a doubly linked list used for maintaining the
resources allocated to virtual machines by the KVM module [18], which is used
for bookkeeping. A missing entry in the linked list may cause the user to be able
to unload the KVM module (rmmod kvm) while a virtual machine is running.
To demonstrate our conceptual approach we start with an example written in
Java, then we turn the example into the KVM doubly linked list. The code for
the Java example can be found in [20]. Note that this demonstration uses both
implementation variants, namely, prefixing a code segment to ensure that each
access after a fault is safe, and also periodical interrupts that ensure repeated ex-
ecution that deals with corruptions which occur during an execution of pervious
invocation of the prefix which has not terminated due to the corruption.

Listing 1. Implementation of a linked list (P2)

1 pub l i c void i n s e r t (Node〈E〉 newElem ,
2 Node〈E〉 prev , Node〈E〉 next){
3 next . prev = newElem ;
4 newElem . next = next ;
5 newElem . prev = prev ;
6 prev . next = newElem ;
7 }
8
9 pub l i c void i n s e r t (E o){

10 Node〈E〉 n = new Node〈E〉(o) ;
11 i f (head == nu l l){
12 t h i s . head = n ;
13 t h i s . head . next = t h i s . head ;
14 t h i s . head . prev = t h i s . head ;
15 } e l s e {
16 Node〈E〉 newElem = new Node〈E〉(o) ;
17 t h i s . i n s e r t (newElem , head , head . next) ;
18 }
19 }
20
21 pub l i c void de l e t e (Node〈E〉 n) {
22 Node〈E〉 next = n . next ;
23 Node〈E〉 prev = n . prev ;
24 next . prev = prev ;
25 prev . next = next ;
26 }
27
28 pub l i c Node〈E〉 forEach (Operator o) {
29 i f (head == nu l l) re turn nu l l ;
30 Node〈E〉 current = head ;
31 do{
32 o . a c t i on (current) ;
33 current = current . next ;
34 }whi l e (current != head) ;
35 re turn nu l l ;
36 }
37
38 I n t e r f a c e Operator{
39 ac t i on (Node〈E〉 n) ;
40 }

Please note that
the example was writ-
ten while holding in
mind the implemen-
tation of the C code
in the kernel. For ex-
ample we do not as-
sume that the Java
class contains a head
field, but rather re-
ceives a pointer to
the head as an ar-
gument. This is done
to adhere as much as
possible to the orig-
inal C implementa-
tion which will follow
in the next section.
A small flaw in the
Java implementation
is the fact that the
delete method does
not update the head
pointer if it is deleted,
this is dealt with in
a different way in
the C implementa-
tion, which has no
similar Java variant.
Please see the Appendix for details.

Assume we have a node object that stores data, a next pointer and a previous
pointer. We define a LinkedList interface in Figure 1 assuming a non-empty

186 S. Dolev, R.M. Kahil, and R. Yagel

list. The case of an empty list can be solved with a simple if statement, and is
left out for clarity.

The code in Figure 1 performs well when no transient faults (accidentally
or maliciously) occur. To overcome transient faults there is a need for repeated
consistency enforcement. For example, if the faults caused the linked list to
contain a loop which does not contain the head then the forEach method may
imply an infinite loop.

Listing 2. Derived class for consistency (P1)

1 p r i va t e void en forceCons i s tencyOnList (){
2 i f (super . head == nu l l) re turn ;
3 // Nothing to c o r r e c t − s t a t e i s empty .
4 Node〈E〉 current = super . head ;
5 do{
6 i f (current . next . prev != current){
7 // Problem detec ted !
8 // Trimming the r e s t o f the l i s t .
9 current . next = super . head ;

10 super . head . prev = current ;
11 re turn ;
12 }
13 current = current . next ;
14 }whi l e (current != super . head) ;
15 }
16
17 pub l i c void i n s e r t (E o){
18 t h i s . e n f o r c eCon s i s t ency () ;
19 super . i n s e r t (o) ;
20 }
21
22 pub l i c void de l e t e (Node〈E〉 o){
23 t h i s . e n f o r c eCon s i s t ency () ;
24 super . d e l e t e (o) ;
25 }
26
27 pub l i c Node〈E〉 forEach (Operator o) {
28 t h i s . e n f o r c eCon s i s t ency () ;
29 super . forEach (o) ;
30 }

We present in Figure 2 the following stateless consistency enforcement, which
checks if the linked list is in a consistent state, and if not, corrects it by trimming
the faulty section of the list. For simplicity we implement this by inheriting from
the previous class, and proxying all method calls, where the proxy invokes the
following method first, and then calls the parent method which does the actual
work.

The code in Figure 2 is an implementation of a prefix P1 that ensures a safe
state for the code in Figure 1 that is the augmented code P2. Lines 1-19 of Figure
1 are the insert method which adds one object to the end of the list. Lines 21-
26 are the delete method which when given a reference to a node, deletes the
node from the list. Lines 28-36 are the forEach method which takes an Operator
object, and applies it to all objects in the list. The execution of P1 will guarantee
that the list is in a valid state, and the methods in P2 will not enter an infinite
loop, or jump to a null pointer. We would like to emphasize the stateless aspect
of enforceConsistency, the only thing we access is the head of the list, and all

Stateless Stabilization Bootstrap 187

other decisions are made with no prior knowledge from past invocations of the
method.

The composition of these procedures and the existence of a (watchdog) mech-
anism that ensures reexecution of the code from its first line, results in a self-
stabilizing execution with respect to the required semantics of the vm list. We
prove the convergence following the arguments in Lemma 1 and 2.

We define a doubly linked list to be in a safe state iff there are vm1, vm2, . . . , vmi

such that the head of the list points to vm1 and for every 1 ≤ j < i : vmj .next =
vmj+1, for every 1 < j ≤ i : vmj .prev = vmj−1, vmi.next = vm1 and vm1.prev =
vmi. We say that a list that fulfills the mentioned properties is safe since these
are the properties needed by the methods of Figure 1 to function properly, with-
out executing infinite loops or accessing invalid memory. For the insert and delete
methods this property is important since they will preserve the structure that is
around the said node, and the forEach method traverses the list till it finds the
head again, using only the next pointer.

We would like to note that singly cyclic linked lists may get corrupted and have
a cycle which does not include the head (e.g. link1 → link2 → link3 → link2),
but for doubly linked lists, given a finite amount of memory, the requirement that
for every link accessible from the head, it holds that vmi → next→ prev = vmi,
also implies that the list is in a safe state. Furthermore we would like to note,
that unlike a singly linked list, no cycle which is in a safe state can include
a smaller cycle within it, which is also a required and sufficient property of a
safe state. The equivalence of the properties that define a safe state is proved
in two directions, clearly the definition based on vm1, vm2, . . . , vmi ensures the
vmi → next → prev = vmi, the other direction relies on Lemma 3. From
Lemma 3 we know that there cannot be a cycle C′ inside another cycle C and
that both are in a safe state, from that we can conclude that if we check the
invariant at each step, while iterating over the list, we will not enter an infinite
loop. Furthermore, if there exists a pointer that just points outside the list to
some random address, denote the vm that has a broken pointer as vmx, then
there will be two cases. (1) vmx → next is pointing to a random address, then
obviously that random address will not hold a structure which has a member
named prev which points back to vmx. (2) If vmx → prev is pointing to a random
address, then the condition for vmx−1 will not hold, because vmx−1 → next
points correctly to vmx, but as assumed, vmx → prev �= vmx−1. Either way
the condition at line 6 in Figure 2 will not hold and lines 9-11 will be executed.
We would like to note that also the extreme case of vmi and vm1 satisfy this
condition, because vmi → next = vm1 and vm1 → prev = vmi.

Lemma 3. For every cycle C = (vm1, vm2, ..., vmk) that is in a safe state, no
other cycle C′ can be included in C and also be in a safe state.

Proof. We assume that the cycle C = (vm1, vm2, ..., vmk) is in a safe state,
namely, let vmj be a vm from [1, k] then vmj → next → prev = vmj . For the
sake of contradiction we assume that there is a cycle C′ that includes C. Let’s
denote vmh a vm from C′ \ C such that vmh → next = vmj ∈ C, because

188 S. Dolev, R.M. Kahil, and R. Yagel

vmj ∈ C we know that vmh → prev ∈ C meaning vmh → prev �= vmj .
Therefore C is not in a safe state. ��

Now we would like to prove that the stateless prefix requirement, repeated
execution requirement and composition of P1 and P2 requirement are being sat-
isfied, and then leverage the proof from Section 2 to conclude that our example
is self-stabilizing.

Lemma 4. The prefix enforceConsistency from Figure 2 satisfies the stateless
prefix, repeated execution and composition of P1 and P2 requirements.

Proof. The stateless prefix requirement states that P has two consecutive por-
tions, P1 and P2, where P1 is stateless. Indeed the enforceConsistency method in
Figure 2 does not assume any knowledge from previous invocations. It only gets
a pointer to the head of the list, and starts checking consistency from scratch.

The repeated execution requirement states that we need a mechanism to en-
sure that the program counter points to the beginning of P1 infinitely often. In
an infinite execution the linked list should be addressed, by invocation of link
operations, infinitely often. Since we prefixed the method calls with the enforce-
Consistency method and then do the actual work, we conclude that P1 will be
executed infinitely often as required. We also want to note that the occurence
of a transient fault during the execution of P1 (which may cause it to enter an
infinite loop) will be handled through an interrupt mechanism which will force
a re-executed of the function, from the first assembly instruction, as required.

The composition of P1 and P2 requirement states that P1 has to enforce a safe
state on P2. We prove that the list will be in a safe state by induction on the
number of the algorithm’s iterations.

Assume, that for all l < k, if the algorithm has not terminated, then the list
is in a safe state. Namely, ∀l < k, vml → next→ prev = vml.

Induction step, considering the k-th iteration. From lines 13 and 14 we can
infer that at the k-th iteration, the variable current will point to vmk. If the
condition at line 6 is not met for vmk then the assumption holds, and at line 13
the algorithm will advance current to the vmk → next and at the next iteration
vmk+1 will be checked. Therefore vmk → next → prev = vmk as required. On
the other hand, if the condition at line 6 is met, then we will trim the rest of
the list and set head→ prev = vmk at line 10 and also set vmk → next = head
at line 9. By combining the two pointers assignments from lines 9, 10 one gets
vmk → next→ prev = vmk which is the definition of a safe state for the list. ��

4 Linux (KVM) Implementation

In this section we will convert the example from Section 3 into the linked list
from the Linux kernel. A patch file can be found in [21]. The patch file can be run
after downloading a fresh copy of the KVM module, and putting it outside the
downloaded directory, then one can run patch -p0 -s < linked-list.patch

to patch the code. The actual code for the linked list in the kernel is discussed

Stateless Stabilization Bootstrap 189

in the Appendix. For the sake of demonstration it is enough to hold in mind
that the structure is similar to the one presented in Section 3. Note that the
differences are implementation related issues due to the differences between the
Java and C languages. After translating the existing parts to C we discuss the
running time implications, and suggest a possible solution. We then demonstrate
that not only the structure, but also the data within the list should be and can
be forced into a safe state.

Listing 3. VM-list stabilizing prefix

1 void en f o r c eCon s i s t ency (
2 const s t ru c t l i s t h e a d ∗head){
3 s t ru c t kvm ∗ current ;
4 i n t counte r = 0 ;
5 current = head ;
6 do{
7 i f (current−>next−>prev != current){
8 // We have a problem ,
9 // trimming the r e s t o f the l i s t .

10 current−>next = head ;
11 head−>prev = current ;
12 re turn ;
13 }
14 current = current−>next ;
15 counte r++;
16 i f (counte r > MAXVMS){
17 head−>next = head ;
18 head−>prev = head ;
19 }
20 }whi l e (current != head) ;
21 }

This example illustrates
the same approach as be-
fore, when applied to the
vm list in KVM/Linux. Since
the vm list and mm struct
are used to allocate resources
to the VM, it is critical to
the correct execution of the
KVM module. For example, a
transient fault or an attacker
may cause a cycle which does
not include the head to ap-
pear in the list, in which
case any invocation of the
list for each entry macro will
cause an infinite loop. The
macros for initializing and accessing linked lists in the kernel are left for the
Appendix, since they utilize some non-trivial arithmetic tricks.

The presented prefix to the macros in Figure 3 fulfills the stateless stabilization
bootstrap requirements, and therefore if the macros are prefixed with this code,
it will never enter an infinite loop.

The proof is in fact the same as the proof presented in the previous section,
since we have the same prefix as in Figure 2 for the same data structure.

Despite having proved that no infinite loops can exists, one may wish to have
an upper bound on a specific list, because, in practice, iterating over a large
enough space of data is similar to entering an infinite loop. As a result lines 14-
19 (which are new compared to the example in Figure 3) enforce a limit on the
amount of elements in the list as an additional requirement. This is particularly
applicable to virtual machines because one may limit each machine to run no
more than, say, 1000 virtual machines.

We would like to note here that not all functions and macros have to be
augmented by the same consistency check. For example, a null pointer passed
to the insert function may cause invalid memory access, which in case of the
KVM module may cause a kernel oops. On the other hand, augmenting it with
a consistency check from Figure 3 will increase the running time from O(1)
to O(length of the list), which is quite poor performance. In this case we may
augment the insertmethod with a more local consistency check (see Figure 5 lines
1-8) that also runs in O(1) just like the insert function itself, thus, avoiding heavy

190 S. Dolev, R.M. Kahil, and R. Yagel

running time penalties. For the delete functions, similarly, if one of the pointers
is pointing to null, we may get a kernel oops. Therefore, one may augment the
delete function with a consistency check which appears in Figure 5 at lines 19-31,
and leave the rest of the list for when the data is actually needed.

Listing 4. VM-list stabilizing prefix including data
integrity check

1 void en f o r c eCon s i s t ency (
2 s t r u c t l i s t h e a d ∗head){
3 s t ru c t kvm ∗ current ;
4 current = head ;
5 do{
6 i f (current−>next−>prev != current){
7 // We have a problem ,
8 // trimming the r e s t o f the l i s t .
9 current−>next = head ;

10 head−>prev = current ;
11 re turn ;
12 }
13 current = current−>next ;
14 }whi l e (current != head) ;
15 l i s t f o r e a c h e n t r y (
16 current , head , vm l i s t){
17 i f (max vcpu ≤
18 kvm−>on l i n e v cpu s . counte r){
19 // Do something .
20 }
21 }
22 }

To further demonstrate the
capabilities of our design pat-
tern, one may add addi-
tional state checks that in-
clude the data records in
the list to the enforceCon-
sistency method. This consis-
tency will be invoked upon
data access, e.g. by using the
list for each entry macro. For
example if we want to test
that the number of allocated
virtual cpus for each VM does
not exceed the predefined
max vcpus constant, then we
may use the code in Fig-
ure 4. The maximum possible
value formax vcpus can be re-
trieved using the KVM CAP MAX VCPUS of the KVM CHECK EXTENSION
ioctl() at run-time, see [18] file api.txt section 4.7. Note that lines 1-14 of Fig-
ure 4 are identical to those of Figure 3, for which we already proved that once
executed the execution of list for each entrymacro will terminate. The new code
in lines 15-20, uses the list for each entry macro to traverse the list and check
for each entry that the counter of virtual cpus does not exceed the upper limit.

In this case we demonstrate that not only the safety of the structure of the
data structure be enforced, but also the content of the corresponding data. The
prefix maybe, as suggested in [3], a compiled code from a formal specification of
the system, or just a gross-grained invariant. It is up to the system administrator
to decide to what extent the checks and enforcement are relevant to the system,
making the design pattern widely configurable. Nonetheless, while writing the
consistency enforcement rules one should keep in mind the self-stabilizing prop-
erty, and make the system work towards a safe state, while ensuring progress in
the system.

We would like to point out that instead of just trimming the list, one may
also correct it. The simplest way to implement this would leave the enforceCon-
sistency mainly as it is, but replace the body of the if statement at lines 6-10 in
Figure 4 with code that assumes the rest of the list is a binary tree (with pos-
sible loops), and run an DFS exploration, numbering the nodes with discovered
timestamps. After that one would re-build a (safe) list using the timestamps to
order the nodes. That way only nodes that have absolutely no pointer pointing
to them will be lost.

Stateless Stabilization Bootstrap 191

5 Expanding the KVM Example

Listing 5. VM-list insert stabilizing prefix

1 void en f o r c eCon s i s t en cyFor In se r t (
2 s t ru c t l i s t h e a d ∗new ,
3 s t ru c t l i s t h e a d ∗head){
4 s t r u c t kvm ∗next , ∗prev ;
5 i f (head == nu l l){
6 head == new ;
7 re turn ;
8 }
9 i f (head−>next == nu l l | | head−>prev == nu l l){

10 head−>next = head ;
11 head−>prev = head ;
12 }
13 i f (head−>next−>prev != nu l l){
14 head−>next = head ;
15 head−>prev = head ;
16 }
17 a dd l i s t (new , head) ;
18 }
19 void en forceCons i s tencyForDe le te (
20 s t ru c t l i s t h e a d ∗ entry){
21 i f (entry == nu l l){
22 re turn ;
23 }
24 i f (entry−>next == nu l l){
25 INIT LIST HEAD(entry−>next) ;
26 }
27 i f (entry−>prev == nu l l){
28 INIT LIST HEAD(entry−>prev) ;
29 }
30 l i s t d e l (entry) ;
31 }

To further demon-
strate the power of
our design pattern we
introduce additional
consistency checks on
the kvm struct. These
new checks show how
one can enforce the
consistency on the
vcpu. Since the vcpu
should always point
to the kernel space of
the system, we sug-
gest enforcing this by
a simple check while
binding the pointer of
the vcpu to its corre-
sponding thread. The
check can be done
using a simple log-
ical and operation,
where we nullify all
significant bits, which
are over the CON-
FIG KERNEL STACK ORDER and check if we got a zero. Namely, once we
have a pointer to a vcpu, we can check (vcpu & ∼ mask) == 0 while
mask = (1 << CONFIG KERNEL STACK ORDER) − 1. This can be
done in the kvm sched in procedure in the virt/kvm/kvm main.c file.

The exact same method may be applied to the shadow pagetables which
convert the guest’s physical address into a host physical address. The shadow
pagetable can be found in the mm field of the same kvm struct. Each page
table entry (pte) is stored in the kernel space and serves only the kernel for
dereferencing purposes. Therefore the exact same check can be invoked on each
pte while it is being addressed.

Another kind of consistency check that can be performed by the kernel before
invoking the vm enter or vm exit, is to make sure that no fault has changed the
address of the function pointer. This can be done using the kallsyms file which
specifies for each exported symbol, where it resides in the kernel. Therefore a
simple comparison of two pointers will enforce that the jump into the function
will be to the correct address.

192 S. Dolev, R.M. Kahil, and R. Yagel

6 Concluding Remarks

We have presented the stateless self-stabilizing bootstrap design pattern, which
augments an existing code segment with a prefix that forces a safe state on the
existing code segment. We have also defined the requirements that the prefix
should fulfill, namely stateless prefix requirement, repeated execution requirement
and composition of P1 and P2 requirement, to achieve self-stabilization. Further-
more we provided proof that a prefix augmenting an existing code segment which
fulfills the mentioned requirements, will be self-stabilizing. Later we showed an
example of how to stabilize the list head struct, which is widely used in the
Linux kernel, specifically in the KVM module. As a quick takeaway, we have
presented a design pattern which will help developers make their working code
self-stabilizing. While we proved the general correctness of the design pattern,
its remains the developers duty to define what is a safe state for a given program,
and to prove that the prefix indeed enforces a safe state from any given state.
A natural path for future work would be the stabilization of other data struc-
ture like B-trees, Hashtables, etc. Also adding high level stabilization prefixes to
kernel modules to make them self-stabilizing could be a promising direction for
future work.

Acknowledgment. We thank with pleasure, Marc Lacoste for his comments
on the paper.

References

1. Beck, K.: Test-Driven Development by Example. Addison Wesley-Vaseem (2003)

2. Brooks, F.: No silver bullet. University of North Carolina at Chapel Hill (1987)

3. Burkman, O., Dolev, S.: Recovery oriented programming: runtime monitoring of
safety and liveness. International Journal on Software Tools for Technology Trans-
fer, STTT 13(4), 377–395 (2011)

4. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM 18, 453–457 (1975)

5. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17, 643–644 (1974)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: The 6th Conference on Symposium on Opearting Systems Design and Imple-
mentation (OSDI), vol. 6, pp. 107–113 (2004)

7. Dolev, S.: Self-Stabilization. MIT press, Cambridge (2000)

8. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
Byzantine faults. Journal of the ACM 51, 780–799 (2004)

9. Dolev, S., Israeli, A., Moran, S.: Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing 7, 3–16 (1993)

10. May, T.C., Woods, M.H.: Alpha-particle-induced soft errors in dynamic memories.
IEEE Transactions Electron Devices 26, 2–9 (1979)

11. Moggi, E.: Notions of computation and monads. In: IEEE Symposium on Logic in
Computer Science, vol. 93, pp. 55–92 (1991)

Stateless Stabilization Bootstrap 193

12. Musuvathi,M.,Qadeer, S.,Ball,T.,Basler,G.,Nainar,P.A.,Neamtiu, I.: Findingand
reproducing Heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, pp. 267–280 (2008)

13. Rist, R., Terwilliger, R.: Object-oriented programming in Eiffel. Prentice Hall
(1995)

14. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-
Oriented Modeling and Design. Prentice-Hall (1991)

15. Sharma, A., Welch, S.: Preserving the integrity of enterprise platforms via an As-
sured eXecution Environment (AxE). In: The 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI (2006)

16. Sloss, A.N., Symes, D., Wright, C., Rayfield, J.: ARM System Developer’s Guide,
pp. 342–346. Morgan Kaufmann Publications (2004)

17. Wadler, P.: Monads for functional programming. Advanced Functional Program-
ming 925, 24–52 (1995)

18. KVM official documentation. See Documentation/virtual/kvm/ in
git://git.kernel.org/pub/scm/virt/kvm/kvm.git

19. http://kernelnewbies.org/FAQ/LinkedLists

20. https://gist.github.com/RamziMartinKahil/11169599

21. https://gist.github.com/RamziMartinKahil/11083508

A Kernel Linked List

Kernel developers have unified the most common data structures, like linked lists, to
reduce the amount of redundant code in the kernel. The code for cyclic linked lists
appears in /include/linux/list.h and is made to be generic. Namely, it is indepen-
dent of the enclosing struct. We would like to note that this Appendix was greatly
influenced by [19] although no exact quotes are included.

List definition is done via the LIST HEAD INIT macro, which creates a list of one
element.

19 #de f i n e LIST HEAD INIT(name) { &(name) , &(name) }

So if we have a struct called mystruct which has a .data field, and wish to make a list
of it, we would embed a list head pointer in it.

s t r u c t mystruct {
i n t data ;
s t r u c t l i s t h e a d myl i s t ;

}

Note, that the mylist is not of type mystruct. This is the key to making the list
independent of the struct in which it is embedded.

To initialize two elements we would do the following to create two nodes which point
to themselves in the next and prev pointer.

s t r u c t mystruct f i r s t = {
. data = 10 ,
. myl i s t = LIST HEAD INIT(f i r s t . myl i s t)

}
s t r u c t mystruct second = {

. data = 20 ,

. myl i s t = LIST HEAD INIT(f i r s t . second)
}

git://git.kernel.org/pub/scm/virt/kvm/kvm.git
http://kernelnewbies.org/FAQ/LinkedLists
https://gist.github.com/RamziMartinKahil/11169599
https://gist.github.com/RamziMartinKahil/11083508

194 S. Dolev, R.M. Kahil, and R. Yagel

There are also a few macros and functions for manipulating the lists. For example to
add an element into a list there is the list add macro, which simply breakes the list
between next and prev and inserts the new element at that point. Note that next and
prev are assumed to be adjacent, therefore it is recommended to use the list add macro.

37 s t a t i c i n l i n e void l i s t a d d (s t r u c t l i s t h e a d ∗new ,
38 s t r u c t l i s t h e a d ∗prev ,
39 s t r u c t l i s t h e a d ∗next)
40 {
41 next−>prev = new ;
42 new−>next = next ;
43 new−>prev = prev ;
44 prev−>next = new ;
45 }

Continuing our example we can initialize a list anchor and add the two elements to
it with

LIST HEAD(my l i nked l i s t) ;
l i s t a d d (&f i r s t . myl i s t , &my l i nked l i s t) ;
l i s t a d d (&second . myl i s t , &my l i nked l i s t) ;

The following macro expands to a simple for loop.

369 #de f i n e l i s t f o r e a c h (pos , head) \
370 f o r (pos = (head)−>next ; pos != (head) ; pos = pos−>next)

The list entry macro uses the container of macro which is in common use in the
kernel. The container of macro returns the containing struct of a pointer. In our KVM
example, given the location of a vm list pointer, it returns the address of the enclosing
kvm struct.

350 #de f i n e l i s t e n t r y (ptr , type , member) \
351 c on t a i n e r o f (ptr , type , member)

The container of (defined in /include/linux/kernel.h) is a common technique in
the kernel, it casts the 0 pointer to the desired type to get the offset of a member
inside a struct, and subtracts that offset from the pointers location. The result of that
computation will be the address of the containing struct.

684 #de f i n e c on t a i n e r o f (ptr , type , member) ({ \
685 const typeof (((type ∗)0)−>member) ∗ mptr = (ptr) ; \
686 (type ∗) ((char ∗) mptr − o f f s e t o f (type ,member)) ; })

Continuing the example, we could print the data from the list with the following
code, which uses the list for each macro to iterate over the list elements, and list entry
to access the enclosing struct.

s t r u c t l i s t h e ad ∗ po s i t i o n = NULL ;
s t r u c t mystruct ∗ data s t ru c tu r ep t r = NULL ;
l i s t f o r e a c h (po s i t i o n , & my l i nked l i s t)

{
data s t ru c tu r ep t r = l i s t e n t r y (po s i t i on , s t r u c t mystruct , myl i s t) ;
p r intk (” data = %d\n” , da ta s t ru c tu r ept r−>data) ;

}

To make things even easier for programmers, the list for each entry macro combines
the container of macro with the list for each macro.

418 #de f i n e l i s t f o r e a c h e n t r y (pos , head , member) \
419 f o r (pos = l i s t e n t r y ((head)−>next , typeo f (∗ pos) , member) ; \
420 &pos−>member != (head) ; \
421 pos = l i s t e n t r y (pos−>member . next , typeo f (∗ pos) , member))

Self-healing Computation�,��

George Saad and Jared Saia

Department of Computer Science, University of New Mexico
{saad,saia}@cs.unm.edu

Abstract. In the problem of reliable multiparty computation (RC), there are n
parties, each with an individual input, and the parties want to jointly compute a
function f over n inputs. The problem is complicated by the fact that an omni-
scient adversary controls a hidden fraction of the parties.

We describe a self-healing algorithm for this problem. In particular, for a fixed
function f , with n parties and m gates, we describe how to perform RC repeat-
edly as the inputs to f change. Our algorithm maintains the following properties,
even when an adversary controls up to t ≤ (1

4
− ε)n parties, for any constant

ε > 0. First, our algorithm performs each reliable computation with the follow-
ing amortized resource costs: O(m+ n log n) messages, O(m + n log n) com-
putational operations, and O(�) latency, where � is the depth of the circuit that
computes f . Second, the expected total number of corruptions is O(t(log∗ m)2),
after which the adversarially controlled parties are effectively quarantined so that
they cause no more corruptions.

Keywords: Self-Healing Algorithms, Threshold Cryptography, Leader Election.

1 Introduction
How can we protect a network against adversarial attack? A traditional approach pro-
vides robustness through redundant components. If one component is attacked, the re-
maining components maintain functionality. Unfortunately, this approach incurs signif-
icant resource cost, even when the network is not under attack.

An alternative approach is self-healing, where a network detects the damage made
by attacks, inspects the corruption situation and automatically recovers. Self-healing
algorithms expend additional resources only when it is necessary to repair from attacks.

In this paper, we describe self-healing algorithms for the problem of reliable multi-
party computation (RC). In the RC problem, there are n parties, each with an individual
input, and the parties want to jointly compute a function f over n inputs. A hidden 1/4-
fraction of the parties are controlled by an omniscient Byzantine adversary. A party that
is controlled by the adversary is said to be bad, and the remaining parties are said to be
good. Our goal is to ensure that all good parties learn the output of f . 1

RC abstracts many problems that may occur in high-performance computing, sensor
networks, and peer-to-peer networks. For example, we can use RC to enable perfor-

� This research is partially supported by NSF grants: CISE-1117985 and CNS-1017509.
�� The full paper is located at: http://cs.unm.edu/˜saad/Papers/compute.pdf

1 Note that RC differs from secure multiparty computation (MPC) only in that there is no re-
quirement to keep inputs private.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 195–210, 2014.
c© Springer International Publishing Switzerland 2014

http://cs.unm.edu/~saad/Papers/compute.pdf

196 G. Saad and J. Saia

mance profiling and system monitoring, compute order statistics, and enable public
voting.

Our main result is an algorithm for RC that 1) is asymptotically optimal in terms
of total messages and total computational operations; and 2) limits the expected total
number of corruptions. Ideally, each bad party would cause O(1) corruptions; in our
algorithm, each bad party causes an expected O((log∗ m)2) corruptions.

1.1 Our Model
We assume a static Byzantine adversary that takes over t ≤ (14 − ε)n parties before
the algorithm begins, for any constant ε > 0. As mentioned previously, parties that
are compromised by the adversary are called bad, and the remaining parties are good.
The bad parties may arbitrarily deviate from the protocol, by sending no messages,
excessive numbers of messages, incorrect messages, or any combination of these. The
good parties follow the protocol. We assume that the adversary knows our protocol,
but is unaware of the random bits of the good nodes. We make use of a public key
cryptography scheme, and thus assume that the adversary is computationally bounded.

Also, we assume a partially synchronous communication model, where any message
sent from one good node to another good node requires at most h time steps to be
sent and received, and the value h is known to all nodes. We allow the adversary to be
rushing in the sense that the bad nodes receive all messages from good nodes in a round
before sending out their own messages.

We further assume that each party has a unique ID. We say that party p has a link to
party q if p knows q’s ID and can thus directly communicate with node q.

In the reliable multiparty computation problem, we assume that the function f can
be implemented with an arithmetic circuit over m gates, where each gate has two inputs
and at most two outputs.2 For simplicity of presentation, we focus on computing a single
function multiple times (with changing inputs). However, we can also compute multiple
functions with our algorithm.

1.2 Our Result
We describe an algorithm, COMPUTE, to efficiently solve reliable multiparty compu-
tation. Our main result is summarized in the following theorem.

Theorem 1. Assume we have n parties providing inputs to a function f that can be
computed by an arithmetic circuit with depth � and containing m gates. Then COM-
PUTE solves RC and has the following properties: 1) in an amortized sense3, any execu-
tion of COMPUTE requiresO(m+n log n)messages sent by all parties,O(m+n log n)
computational operations performed by all parties, and O(�) latency; and 2) the ex-
pected total number of times COMPUTE returns a corrupted output is O(t(log∗ m)2).

Due to space constraints, all proofs are provided in the full paper.

2 We note that any gate of any fixed in-degree and out-degree can be converted into a fixed
number of gates with in-degree 2 and out-degree at most 2.

3 In particular, if we call COMPUTE L times, then the expected total number of messages sent
will be O(L(m+n log n)+t(m log2 n)). Since t is fixed, for large L, the expected number of
messages per COMPUTE is O(m+n log n). Similar for the cost of computational operations.

Self-healing Computation 197

1.3 Technical Overview
Our algorithms make critical use of quorums and a quorum graph.

Quorums and the Quorum Graph: We define a quorum to be a set ofΘ(log n) parties,
of which at most 1/4-fraction are bad. Many results show how to create and maintain
a network of quorums [1,2,3,4,5,6,7]. All of these results maintain what we will call a
quorum graph in which each vertex represents a quorum. The properties of the quorum
graph are: 1) each party is in Θ(log n) quorums; 2) for any quorum Q, any party in Q
can communicate directly to any other party in Q; and 3) for any quorums Q and Q′

that are connected in the quorum graph, any party in Q can communicate directly with
any party in Q′ and vice versa. Moreover, we assume that for any two parties x and y
in a quorum, x knows all quorums that y is in.

Computing with Quorums: We maintain a quorum graph with m+n nodes: m nodes
for the gates of the circuit and n nodes for the inputs of the parties. The input nodes
are connected to the gates using these inputs, and the gate nodes are connected as in
the circuit. Quorums are mapped to nodes in this quorum graph as described above.
For simplicity of presentation, we let the computation be performed from the left to the
right, where the input quorums are the leftmost quorums and the output quorum is the
rightmost quorum in the quorum graph.

Naive Algorithm: A correct but inefficient way to solve RC is as follows. Each party
sends its input to all parties of the appropriate input quorum. Then the computation is
performed from left to right. All parties in each quorum compute the appropriate gate
operation on their inputs, and send their outputs to all parties in the right neighboring
quorums via all-to-all communication. At the next level, all parties in each quorum take
the majority of the received messages in order to determine the correct input for their
gate. At the end, the parties in the rightmost quorum will compute the correct output of
the circuit. They then forward this output back from right to left through the quorum
graph using the same all-to-all communication and majority filtering.

Unfortunately, this naive algorithm requires O((m + n) log2 n) messages and
O(m log n) computational operations. Our main goal is to remove the logarithmic
factors.4

Our Approach: A more efficient approach is for each quorum to have a leader, and
for this leader to receive inputs, perform gate computations, and send off the output.
Unfortunately, a single bad leader can corrupt the entire computation.

To address this issue, we provide CHECK (Section 2.3). This algorithm determines
if there has been a corruption, and if so, it calls UPDATE (Section 2.4), which identifies
at least one pair of parties that are in conflict. Informally, we say that a pair of parties
are in conflict if they each accuse the other of malicious behavior. In such a situation,
we know that at least one party in the pair is bad. Our approach is to mark both parties

4 We note that such asymptotic improvements can be significant for large networks. For exam-
ple, if n = 64,000, then we would expect our algorithm to reduce message cost by a factor of
log2 n = 255.

198 G. Saad and J. Saia

in each conflicting pair, and these marked parties are prohibited from participating in
future computation but they still can provide the inputs of the circuit. 5

The basic idea of CHECK is to redo the computation through subsets of parties; one
subset for each gate. CHECK runs in multiple rounds. Initially, all subsets are empty;
and in each round, a new party is selected uniformly at random from each quorum to
be added to each subset. We call these parties the checkers. For convenience of presen-
tation, we will refer to the leaders as the checkers for round 0. For each round i ≥ 1,
all i checkers at gate g: 1) receive inputs to g from the checkers at each input gate for
g; 2) compute the gate output for g based on these inputs; and 3) send this output to the
checkers at each output gate for g. If a good checker ever receives inconsistent inputs,
it calls UPDATE. Unfortunately, waiting until a round where each gate has had at least
one good checker would require O(log n) rounds.

To do better, we use the following approach. Let G be the quorum graph as defined
above and let the checkers be selected as above. Call a subgraph of G bad in a given
round if all checkers in the nodes of that subgraph are bad; note that such a subgraph
consists of the new checkers that are added to the subsets in that round. When the adver-
sary corrupts an output of a bad subgraph of G in one round, it has to keep corrupting
this output by nesting levels of bad subgraphs of G in all subsequent rounds.

Recall that in each round, new checkers are selected uniformly at random. When
CHECK selects a good checker at a quorum, it is as removing the node associated
with this quorum from the quorum graph. Thus, we can view CHECK as repeatedly
removing nodes from increasingly smaller subgraphs of G until no nodes remain, at
which the corruption is detected. A key lemma (Lemma 2) shows that for any rooted
directed acyclic graph (DAG), with m nodes and maximum indegree 2, when each node
is deleted independently with probability at least 1/2 + ε, for any constant ε > 0, the
probability of having a connected DAG, rooted at one node, with surviving nodes of
size Ω(logm), is at most 1/2. By this lemma, we show that CHECK requires only
O(log∗ m) rounds to detect a corruption with constant probability.6

CHECK requires O((m + n logn)(log∗ m)2) messages. Then, we can call it with
probability 1/(log∗ m)2 and obtain asymptotically optimal resource costs for the RC
problem, while incurring an expected O(t(log∗ m)2) corruptions.

1.4 Related Work
Our results are inspired by recent work on self-healing algorithms. Early work of
[8,9,10,11,12] discusses different restoration mechanisms to preserve network perfor-
mance by adding capacity and rerouting traffic streams in the presence of node or link
failures. This work presents mathematical models to determine global optimal restora-
tion paths, and provides methods for capacity optimization of path-restorable networks.

More recent work [13,14,15,16,17,18] considers models where the following process
repeats indefinitely: an adversary deletes some nodes in the network, and the algorithm

5 A technical point is that we may need to unmark all parties in a quorum if too many parties in
that quorum become marked. However, a potential function argument (Lemma 8) shows that
after O(t) markings, all bad parties will be marked.

6 This probability can be made arbitrarily close to 1 by adjusting the hidden constant in the
O(log∗ m) rounds.

Self-healing Computation 199

adds edges. The algorithm is constrained to never increase the degree of any node by
more than a logarithmic factor from its original degree. In this model, researchers have
presented algorithms that ensure the following properties: the network stays connected
and the diameter does not increase by much [13,14,15]; the shortest path between any
pair of nodes does not increase by much [16]; expansion properties of the network are
approximately preserved [17]; and keeping network backbones densely connected [18].

This paper particularly builds on [19]. That paper describes self-healing algorithms
that provide reliable communication, with a minimum of corruptions, even when a
Byzantine adversary can take over a constant fraction of the nodes in a network. While
our attack model is similar to [19], reliable computation is more challenging than re-
liable communication, and hence this paper requires a significantly different technical
approach. Additionally, we improve the fraction of bad parties that can be tolerated
from 1/8 to 1/4.

Reliable multiparty computation (RC) is closely related to the problem of secure
multiparty computation (MPC) which has been studied extensively for several decades
(see e.g. [20,21,22,23,24] or the recent book [25]). RC is simpler than MPC in that
it does not require inputs of the parties to remain private. Our algorithm for RC is
significantly more efficient than current algorithms for MPC, which require at least
polylogarithmic blowup in communication and computational costs in order to tolerate
a Byzantine adversary. We reduce these costs through our self-healing approach, which
expends additional resources only when corruptions occur, and is able to “quarantine”
bad parties after O(t(log∗ m)2) corruptions.

1.5 Organization of Paper
The rest of this paper is organized as follows. In Section 2, we describe our algorithms.
The analysis of our algorithms is shown in Section 3. Finally, we conclude and describe
problems for future work in Section 4.

2 Our Algorithms
In this section, we describe our algorithms: COMPUTE, COMPUTE-CIRCUIT, CHECK
and UPDATE.

Our algorithms aim at detecting corruptions and marking the bad parties. Note that
the parties that are marked are not allowed to participate in the computation; but they
still can provide inputs to the circuit. Note further that all parties are initially unmarked.

Recall that there are n parties, each provides an input to an input quorum, Qi, for
1 ≤ i ≤ n; and then the computation is performed through m quorums, Qj’s, for
n+ 1 ≤ j ≤ m+ n. The result is produced at an output quorum Qm+n, and it is sent
back to the senders through the m quorums.

Before discussing our main COMPUTE algorithm, we describe that when a party x
broadcasts a message msg, signed by the private key of a quorum Q, to a set of parties
S, it calls BROADCAST(msg,Q, S).

2.1 BROADCAST
In BROADCAST (Algorithm 1), we use threshold cryptography to avoid the overhead
of Byzantine Agreement. In a (η, η′)-threshold cryptographic scheme, a private key is
distributed among η parties in such a way that 1) any subset of more than η′ parties can

200 G. Saad and J. Saia

jointly reassemble the key; and 2) no subset of at most η′ parties can recover the key.
The private key can be distributed using a Distributed Key Generation (DKG) protocol
[26].

In particular, we use (|Q|, 3|Q|
4 − 1)-DKG to generate for each quorum Q the fol-

lowing: 1) a (distributed) private key of Q, where a private key share is generated for
each party in Q; 2) a public key of Q to verify each message signed by the (distributed)
private key of Q; and 3) a public key share for each party in Q in order to verify any
message signed by the private key share of this party.

Note that for each quorum, Q, the public key of Q and the public key share of each
party in Q are known to all parties in Q and all parties in the neighboring quorums.

Recall that a party x calls BROADCAST(msg,Q, S) in order to send a message
msg to all parties in S after signing msg by the private key of quorum Q. Signing a
message msg, by the private key of Q, is formally stated in SIGN (msg,Q) (Algorithm
2). Note that we let the message msg be signed by the private key of Q in order to fulfill
the following: 1) at least 3/4-fraction of the parties in quorumQ have received the same
message msg; 2) they agree upon the content of msg; and 3) they give permission to x
to broadcast this message.

Algorithm 1. BROADCAST(msg,Q, S) � A party x sends message msg to a set of
parties S after signing it by the private key of quorum Q.
1: Party x calls SIGN (msg,Q). � signs msg by the private key of quorum Q.
2: Party x sends this signed-message to all parties in S.

Each call to BROADCAST has O(log n+ |S|) messages and O(log n) computational
operations with latency O(1).

Algorithm 2. SIGN(msg,Q) � Signs message msg by the private key of quorum Q.
1: Party x sends message msg to all parties in Q.
2: Each party in Q signs msg by its private key share to obtain its message share.
3: Each party in Q sends its message share back to party x.
4: Party x interpolates at least 3|Q|

4
message shares to obtain a signed-message of Q.

2.2 COMPUTE
Now we describe our main algorithm, COMPUTE (Algorithm 3), which calls
COMPUTE-CIRCUIT (Algorithm 4). In COMPUTE-CIRCUIT, the n parties broad-
cast their inputs to the input quorums; note that we assume that all parties provide their
inputs to the circuit in the same round. The input quorums forward these inputs to a
circuit of m leaders in order to perform the computation and provide the result to the
output quorum. Then this result is sent back to all senders (all parties) through the same
circuit. Note that we define a leader of a quorum as a representative party of all par-
ties in this quorum, and its leadership is known to all parties in this quorum and the
neighboring quorums.

Self-healing Computation 201

Algorithm 3. COMPUTE � performs a reliable computation and sends the result
reliably to all parties.
1: COMPUTE-CIRCUIT � computes and sends back the result through a circuit of leaders.
2: TRIGGER-CHECK � The output quorum triggers CHECK with probability 1/(log∗ m)2.

In the presence of an adversary, COMPUTE-CIRCUIT is vulnerable to corruptions.
Thus, COMPUTE calls TRIGGER-CHECK (Algorithm 5), in which the parties of the
output quorum decide together, to trigger CHECK (Algorithm 7) with probability
1/(log∗ m)2, using secure multiparty computation (MPC) [22,23,24]. CHECK is trig-
gered in order to detect with probability at least 1/2 if a computation was corrupted in
the last call to COMPUTE-CIRCUIT.

Unfortunately, while CHECK can determine if a corruption occurred, it does not lo-
cate where the corruption originally occurred. Thus, when CHECK detects a corruption,
UPDATE (Algorithm 11) is called. In each call to UPDATE, two neighboring quorums
in the circuit are identified such that at least one pair of parties in these quorums is in
conflict and at least one party in this pair is bad. Then the parties that are in conflict
are marked in all quorums they are in, and in their neighboring quorums. Moreover,
for each pair of leaders that are in conflict, their quorums elect a new pair of unmarked
leaders uniformly at random. Note that if (1/2 − γ)-fraction of parties in any quorum
have been marked, for any constant γ > 0, e.g., γ = 0.01, they are set unmarked in all
their quorums and in all their neighboring quorums.

Moreover, we use BROADCAST in COMPUTE-CIRCUIT and CHECK in order to
handle any accusation issued in UPDATE against the parties that provide the inputs to
the input quorums, or those that receive the result in the output quorum.

Our model does not directly consider concurrency. In a real system, concurrent ex-
ecutions of COMPUTE that overlap at a single quorum may allow the adversary to
achieve multiple corruptions at the cost of a single marked bad party. However, this
does not effect correctness, and, in practice, this issue can be avoided by serializing
concurrent executions of COMPUTE. For simplicity of presentation, we leave the con-
currency aspect out of this paper.

2.3 CHECK
In this section, we describe CHECK algorithm, which is stated formally as Algorithm 7.
In this algorithm, we make use of subquorums, where a subquorum is a subset of un-
marked parties in a quorum. Let Uk be the set of all unmarked parties in quorum Qk,
for 1 ≤ k ≤ m+ n.

CHECK runs for O(log∗ m) rounds. For each round i, the parties of the output quo-
rum Qm+n elect an unmarked party r from Qm+n to be in charge of the recomputation
in round i, where this election process is stated formally in ELECT (Algorithm 6). Then,
the elected party r calls REQUEST (Algorithm 8) to send a request through a DAG of
subquorums,SA

j ’s, to the n senders in order to recompute. The recomputation process is
stated formally as RECOMPUTE (Algorithm 9), in which each sender that receives this
request provides its input to redo the computation through a DAG of subquorums,SB

j ’s,
producing the result at the output quorum. When r receives this result, it calls RESEND-

202 G. Saad and J. Saia

Algorithm 4. COMPUTE-CIRCUIT � performs a computation through a circuit
of leaders producing a result at the output quorum; then the result is sent back through
same circuit to all senders.
1: for i = 1, . . . , n do � provides the inputs to the circuit.
2: Party si calls BROADCAST (ai, Qi, Qi). � si broadcasts its input ai to all parties in Qi.
3: All parties in Qi send ai to the leaders of the right neighboring quorums of Qi.
4: end for
5: for i = n+ 1, . . . ,m+ n− 1 do � performs the computation.
6: Let Qi′ and Qi′′ be the right neighboring quorums of Qi in the circuit.
7: if leader qi ∈ Qi receives all its inputs then
8: qi performs an operation on its inputs producing an output, bi.
9: qi sends bi to leader qi′ ∈ Qi′ and to leader qi′′ ∈ Qi′′ .

10: end if
11: end for
12: if leader qm+n ∈ Qm+n receives all its inputs then
13: qm+n performs an operation on its inputs producing an output, bm+n.
14: qm+n broadcasts bm+n to all parties in Qm+n.
15: end if
16: for i = m+ n, . . . , n+ 1 do � sends back the result to the leftmost leaders.
17: Let Qi′ and Qi′′ be the left neighboring quorums of Qi in the circuit, for n+1 ≤ i′, i′′ ≤

m+ n. *
18: Leader qi ∈ Qi sends bm+n to leader qi′ ∈ Qi′ and to leader qi′′ ∈ Qi′′ .
19: end for
20: for i = 1, . . . , n do � sends result to all parties after broadcasting it to the input quorums.
21: The leaders of Qi’s right neighboring quorums call BROADCAST (bm+n, Qi, Qi).
22: All parties in Qi send bm+n to sender si.
23: end for

* Recall that there are no leaders in the input quorums.

Algorithm 5. TRIGGER-CHECK � The parties of the output quorum Qm+n trigger
CHECK with probability 1/(log∗ m)2.
1: Each party in Qm+n chooses an input: a real number uniformly distributed between 0 and 1.
2: The parties of Qm+n perform MPC to find the output, prob, which is the sum of all their

inputs modulo 1. � prob is the fractional part of the sum of their inputs.
3: if prob ≤ 1/(log∗ m)2 then
4: CHECK
5: end if

Algorithm 6. ELECT(Q) � Parties in Q elect an unmarked party in Q using MPC.
1: Let each party in the set of unmarked parties, U ⊂ Q, is assigned a unique integer from 0 to

|U | − 1.
2: Each party in Q chooses an input: an integer uniformly distributed between 0 and |U | − 1.
3: The parties of Q perform MPC to find the output: the sum of all their inputs modulo |U |.
4: The party in U associated with this output number is the elected party.

Self-healing Computation 203

Algorithm 7. CHECK � Party r calls CHECK to check for corruptions.
Declaration: Let Uk be the set of all unmarked parties in quorum Qk, for 1 ≤ k ≤ m+ n. Also
let m′ be the maximum number of parties in any quorum. Further, let subquorums, SA

j , SB
j and

SC
j , be initially empty, for all n+ 1 ≤ j ≤ m+ n.

1: for i ← 1, . . . , 8(log∗ m+ 2(log c+ 1))* do
2: ELECT(Qm+n) � elects an unmarked party r ∈ Qm+n.
3: Party r constructs Ai, Bi and Ci to be three, m by m′, arrays of random integers.**
4: REQUEST(i,Ai, Bi) � r requests all senders to recompute.
5: RECOMPUTE � recomputes, producing the result, bim+n, at r.
6: RESEND-RESULT(i,Ci, bim+n) � r sends back bim+n to all parties.
7: end for

* c = 2(1+2p)

log e(1−2p)2
; note that for any quorum Qk, p ≤ 1/2 − ε, is the probability of selecting a

bad party u.a.r. from Uk, for a constant ε > 0.
** Ai[k, k′], Bi[k, k′] and Ci[k, k′] are uniformly random integers between 1 and k′, for 1 ≤
k ≤ m and 1 ≤ k′ ≤ m′.

Note that: if a party has previously received kp, then it verifies each subsequent message with it;
also if a party receives inconsistent messages or fails to receive and verify an expected message,
then it initiates a call to UPDATE.

RESULT (Algorithm 10) in order to send the result back to the senders through a DAG
of subquorums SC

j ’s, for n+ 1 ≤ j ≤ m+ n.
Note that in ELECT (Q), the parties of quorum Q perform MPC [22,23,24] to elect

an unmarked party uniformly at random from Q. We know that at least half of the
unmarked parties in Q are good. Thus, the elected party is good with probability at
least 1/2. MPC requires a message cost and a number of computational operations that
are polylogarithmic functions in n, and it runs in O(1) time.

Note further that during CHECK, if any party receives inconsistent messages or fails
to receive and verify any expected message in any round, it initiates a call to UPDATE.

2.4 UPDATE
When a computation is corrupted and CHECK detects this corruption, UPDATE is
called. The UPDATE algorithm is described formally as Algorithm 11. When UPDATE
starts, all parties in each quorum in the circuit are notified.

The main purpose of UPDATE is to 1) determine the location in which the corruption
occurred; and 2) mark the parties that are in conflict.

To determine the location in which the corruption occurred, UPDATE calls INVES-
TIGATE (Algorithm 12) to investigate the corruption situation by letting each party in-
volved in COMPUTE-CIRCUIT or CHECK broadcast all messages they have received
or sent. Then, UPDATE calls MARK-IN-CONFLICTS (Algorithm 13) in order to mark
the parties that are in conflict, where a pair of parties is in conflict if at least one of these
parties broadcasted messages that conflict with the messages broadcasted by the other
party in this pair. Note that each pair of parties that are in conflict has at least one bad
party. Recall that if (1/2 − γ)-fraction of parties in any quorum are marked, for any

204 G. Saad and J. Saia

Algorithm 8. REQUEST(i, Ai, Bi) � r requests n senders through a DAG of
subquoums, SA

j ’s, for n+ 1 ≤ j ≤ m+ n, to redo the computation.

1: Party r calls SIGN ([i, Ai, Bi, r], Qm+n). � signs [i, Ai, Bi, r] by Qm+n’s private key.
2: Party r sets REQi = ([i, Ai, Bi, r]ks , kp). � (kp, ks) : public/private key pair of Qm+n.
3: Party r sends REQi to all parties of quorum Qm+n.
4: All parties in Qm+n calculate party, qim+n ∈ Um+n, of index Ai

m+n to be added to SA
m+n.*

5: for j ← m+ n, . . . , n+ 1 do � sends REQi through a DAG of subquorums.
6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤

j′, j′′ ≤ m+ n. **
7: All i parties in SA

j calculate parties, qij′ and qij′′ , of indices Ai
j′ and Ai

j′′ , to be added to
SA
j′ and SA

j′′ respectively.
8: Party qij calculate all parties in SA

j′ and SA
j′′ using A1

j′ , . . . , A
i
j′ and A1

j′′ , . . . , A
i
j′′ .

9: for k ← 1, . . . , i do � k refers to the rounds prior to round i.
10: Party qkj sends REQk to parties qij′ and qij′′ .
11: Party qij sends REQi to parties qkj′ and qkj′′ .
12: end for
13: end for
14: for k ← n, . . . , 1 do � The input quorums forward REQi to all senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.
16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (REQi, Qk, Qk).
17: All parties in Qk send REQi to sender sk.
18: end for

* Ai
j = Ai[j−n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in Uj

in round i of REQUEST; note that all parties in Uj are sorted by their IDs, for n+1 ≤ j ≤ m+n.
** Recall that there are no subquorums for the input quorums.

constant γ > 0, e.g., γ = 0.01, they are set unmarked. Also, for each pair of leaders
that get marked, their quorums elect another pair of unmarked leaders.

3 Analysis
In this section, we sketch the proof of Theorem 1. Due to space constraints, all proofs
are provided in the full paper. Throughout this section, all logarithms are base 2.

Recall that in each round of CHECK, a new unmarked party is selected u.a.r. from
each quorum in the circuit forming a new DAG of unmarked parties.

Definition 1. A Deception DAG, Di, is the maximal subgraph of the new DAG of un-
marked parties that are selected u.a.r. in round i, with the following properties: 1) it
has only bad parties; 2) it receives all its inputs, and each input is provided correct by
at least one good party; 3) it is rooted at one party, which does not provide the correct
output to at least one good party; and 4) all other outputs this DAG has are provided
correct.

If the adversary corrupts the output of the root party in a deception DAG in any
round, then it has to keep corrupting this output by a deception DAG in each subsequent
round; otherwise, the good parties that expect to receive this output in each round will
call UPDATE due to receiving inconsistent output messages.

Self-healing Computation 205

Algorithm 9. RECOMPUTE � n senders provide inputs to a DAG of subquorums,
SB
j ’s, for n+ 1 ≤ j ≤ m+ n, to recompute, producing a result, bim+n, at r.

1: for each sender sj that receives REQi, for 1 ≤ j ≤ n and n+ 1 ≤ j′, j′′ ≤ m+ n do
2: sj sets RECi to be a message consisting of its input aj and REQi.
3: sj broadcasts RECi to all parties in Qj .
4: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.
5: All parties in Qj calculate parties, qij′ and qij′′ , of indices Bi

j′ and Bi
j′′ , to be added to

SB
j′ and SB

j′′ respectively.*
6: All parties in Qj send RECi to all parties in SB

j′ and to all parties in SB
j′′ .

7: All parties in Qj send REC1, . . . , RECi−1 to qij′ and qij′′ .
8: end for
9: for j ← n+ 1, . . . ,m+ n− 1 do � recomputes

10: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.
11: All i parties in SB

j calculate parties, qij′ and qij′′ , of indices Bi
j′ and Bi

j′′ , to be added to
SB
j′ and SB

j′′ respectively.
12: Party qij calculate all parties in SB

j′ and SB
j′′ using B1

j′ , . . . , B
i
j′ and B1

j′′ , . . . , B
i
j′′ .

13: for all 1 ≤ k ≤ i, qkj performs its operation on its inputs producing an output, bkj .
14: for k ← 1, . . . , i do
15: qkj sends bkj and RECk to parties qij′ and qij′′ .
16: qij sends bij and RECi to parties qkj′ and qkj′′ .
17: end for
18: end for
19: All i parties in Sm+n broadcast bim+n and RECi to all parties in Qm+n.
20: All parties in Qm+n send bim+n and RECi to party r. � r receives the result.

* Bi
j = Bi[j − n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in

Uj in round i of RECOMPUTE; note that all parties in Uj are sorted by their IDs, for n + 1 ≤
j ≤ m+ n.

We say that a deception DAG, Di, in round i extends in round i+ 1 if there exists a
deception DAG, Di+1, in round i + 1 such that 1) there is at least one subquorum that
has a party in Di and a party in Di+1; and 2) there is at least one subquorum that has a
party in Di+1 but has no party in Di.

Also, we say that a deception DAG, Di, in round i shrinks in round i + 1 if there
exists a deception DAG, Di+1, in round i + 1 such that 1) each subquorum that has a
party in Di+1 has a party in Di; and 2) there is at least one subquorum that has a party
in Di but has no party in Di+1.

Further, we say that a deception DAG, Di, shrinks logarithmically from round i to
round i+ 1 if |Di+1| = O(log |Di|).

Note that in any round i, if a deception DAG, Di, shrinks to a deception DAG, Di+1,
of size zero in round i + 1, then the good party that did not receive the correct output
from Di in round i will receive the correct output in round i+ 1. As a result, this good
party will call UPDATE declaring that it has received inconsistent output messages.

In the following lemmas, we first show that any deception DAG in any round never
extends in any subsequent round. Then we show that with probability at least 1/2, any

206 G. Saad and J. Saia

Algorithm 10. RESEND-RESULT(i, Ci, bim+n) � Party r sends back the result,
bim+n, through a DAG of subquorums, SC

j ’s, to n senders, for n+ 1 ≤ j ≤ m+ n.

1: Party r calls SIGN ([i, Ci, bim+n, r], Qm+n). � signs it by Qm+n’s private key.
2: Party r sets RESi = ([i, Ci, bim+n, r]ks , kp). � (kp, ks) : public/private key pair of Qm+n.
3: Party r sends RESi to all parties of quorum Qm+n.
4: All parties in Qm+n calculate party, qim+n ∈ Um+n, of index Ci

m+n to be added to SC
m+n.*

5: for j ← m+ n, . . . , n+ 1 do � sends back the result through a DAG of subquorums.
6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤

j′, j′′ ≤ m+ n. **
7: All i parties in SC

j calculate parties, qij′ and qij′′ , of indices Ci
j′ and Ci

j′′ , to be added to
SC
j′ and SC

j′′ respectively.
8: Party qij calculate all parties in SC

j′ and SC
j′′ using C1

j′ , . . . , C
i
j′ and C1

j′′ , . . . , C
i
j′′ .

9: for k ← 1, . . . , i do � k refers to the rounds prior to round i.
10: Party qkj sends RESk to parties qij′ and qij′′ .
11: Party qij sends RESi to parties qkj′ and qkj′′ .
12: end for
13: end for
14: for k ← n, . . . , 1 do � The input quorums forward RESi to all senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.
16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (RESi, Qk, Qk).
17: All parties in Qk send RESi to sender sk.
18: end for

* Ci
j = Ci[j − n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties

in Uj in round i of RESEND-RESULT; note that all parties in Uj are sorted by their IDs, for
n+ 1 ≤ j ≤ m+ n.
** Recall that there are no subquorums for the input quorums.

Algorithm 11. UPDATE � Party q′ ∈ Q′ calls UPDATE after it detects a corruption.
1: q′ broadcasts to all parties in Q′ the fact that it calls UPDATE along with the messages it has

received in this call to COMPUTE.
2: The parties in Q′ verify that q′ received inconsistent messages before proceeding.
3: Q′ notifies all quorums in the circuit via all-to-all communication that UPDATE is called.
4: INVESTIGATE � investigates all participants to determine corruption locations.
5: MARK-IN-CONFLICTS � marks the parties that are in conflict.

Algorithm 12. INVESTIGATE � investigates the parties that have participated.
1: for each party, q, involved in the last call to COMPUTE-CIRCUIT or CHECK do
2: q compiles all messages they have received (and from whom) and they have sent (and to

whom) in the last call to COMPUTE-CIRCUIT or CHECK.
3: q broadcasts these messages to all parties in its quorum and neighboring quorums.
4: end for

Self-healing Computation 207

Algorithm 13. MARK-IN-CONFLICTS � marks the parties that are in conflict.
1: for each pair of parties, (qx, qy), that is in conflict*, in quorums (Qx, Qy) do
2: party qy broadcasts a conflict message, {qx, qy}, to all parties in Qy.
3: each party in Qy forwards {qx, qy} to all parties in Qx.
4: all parties in Qx (or Qy) send {qx, qy} to the other quorums that has qx (or qy).
5: each quorum has qx or qy sends {qx, qy} to its neighboring quorums.
6: end for
7: for each party q that receives conflict message {qx, qy} do
8: q marks qx and qy in its marking table.
9: end for

10: if (1/2− γ)-fraction of parties in any quorum have been marked, for γ = 0.01 then
11: each of these parties is set unmarked in all its quorums.
12: each of these parties is set unmarked in all its neighboring quorums.
13: end if
14: for each pair of leaders, (qx, qy), that is in conflict, in quorums (Qx, Qy) do
15: ELECT(Qx) and ELECT(Qy) to elect a pair of unmarked leaders, (q′x, q

′
y).

16: Qx and Qy notify their neighboring quorums with (q′x, q
′
y).

17: end for

* A pair of parties, (qx, qy), is in conflict if: 1) qx was scheduled to send an output to qy at some
point in the last call to COMPUTE-CIRCUIT or CHECK; and 2) qy does not receive an expected
message from qx in INVESTIGATE, or qy receives a message in INVESTIGATE that is different
than the message that it has received from qx in the last call to COMPUTE-CIRCUIT or CHECK.

deception DAG shrinks logarithmically from round to round. This will imply that the
expected number of rounds to shrink any deception DAG to size zero is O(log∗ m).

Lemma 1. Any deception DAG in any round never extends in any direction.

Now we show that any deception DAG shrinks logarithmically from round to round
with probability at least 1/2.

Definition 2. Rooted Directed Acyclic Graph (R-DAG) is a DAG in which, for a vertex
u called the root and any other node v, there is at least one directed path from v to u.

Lemma 2. Given any R-DAG, of size n, in which each node has indegree of at most d
and survives independently with probability at most p such that 0 < p ≤ 1

d − ε, for any
constant ε > 0, then the probability of having a subgraph, rooted at some node, with
surviving nodes, of size Ω(logn

(1−pd)2) is at most 1/2.

Corollary 1. For any R-DAG, of size n, the probability of having a subgraph, rooted at
one node, with surviving nodes, of size at least n/2 is at most 1/2.

Now, if a deception DAG shrinks logarithmically in a successful step, then how many
successful steps to shrink this deception DAG to a deception DAG of size zero or even
of a constant size?

Lemma 3. Assume that any deception DAG of size n′ shrinks to a deception DAG of
size c logn′ in a successful step, for any constant c ≥ 1. Then, for a deception DAG of

208 G. Saad and J. Saia

size n > c(2c+ log c+1), after log∗ n− log∗ (log c+ 1) successful steps, it shrinks to
a deception DAG of size at most c(2c+ log c+ 1).

Let p be the probability of selecting an unmarked bad party uniformly at random in
any quorum. Recall that the fraction of bad parties in any quorum is at most 1/4, and
the fraction of unmarked parties in any quorum is at least 1/2 + γ, for any constant
γ > 0. Thus, p ≤ 1/2

1+2γ . Now we show the expected number of rounds to shrink any
deception DAG to size zero.

Lemma 4. With probability at least 1/2, any deception DAG of size m shrinks to size
zero in 8(log∗ m+2(log c+1)) rounds, where c = 2(1+2p)

log e(1−2p)2 and p ≤ 1/2
1+2γ , for any

constant γ > 0.

Lemma 5. For the adversary to maximize the expected number of rounds, in which no
corruption detected, is to corrupt the output of the root party in the maximum deception
DAG of the first round.

The next lemma shows that CHECK catches corruptions with probability≥ 1/2.

Lemma 6. Assume some party selected uniformly at random in the last call to
COMPUTE-CIRCUIT has corrupted a computation. Then when the algorithm CHECK
is called, with probability at least 1/2, some party will call UPDATE.

Lemma 7. If some party selected uniformly at random in the last call to COMPUTE-
CIRCUIT or CHECK has corrupted a computation, then UPDATE will identify a pair
of neighboring quorums such that at least one pair of parties in these quorums is in
conflict and at least one party in such pair is bad.

The next lemma bounds the number of calls to UPDATE before all bad parties are
marked.

Lemma 8. UPDATE is called O(t) times before all bad parties are marked.

4 Conclusion and Future Work
We have presented algorithms for reliable multiparty computations. These algorithms
reduce message cost and number of computational operations to be asymptotically opti-
mal. The price we pay for this improvement is the possibility of computation corruption.
In particular, if there are t ≤ (14− ε)n bad parties, for any constant ε > 0, our algorithm
allows O(t(log∗ m)2) computations to be corrupted in expectation.

Many problems remain. First, it seems unlikely that the smallest number of corrup-
tions allowable by an attack-resistant algorithm with optimal message complexity is
O(t(log∗ m)2). Can we improve this to O(t) or else prove a non-trivial lower bound?
Second, we allow the inputs of parties to reveal. Can we maintain the privacy of these
inputs? Finally, we assume a partially synchronous communication model, which is
crucial for our CHECK algorithm to detect computation corruptions over rounds. Can
we extend this algorithm to fit for asynchronous computations?

Self-healing Computation 209

References
1. Fiat, A., Saia, J.: Censorship resistant peer-to-peer networks. Theory of Computing 3(1),

1–23 (2007)
2. Hildrum, K., Kubiatowicz, J.: Asymptotically efficient approaches to fault-tolerance in peer-

to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 321–336. Springer,
Heidelberg (2003)

3. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: Kaashoek, M.F.,
Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 88–97. Springer, Heidelberg (2003)

4. Scheideler, C.: How to spread adversarial nodes? rotate! In: STOC 2005, pp. 704–713 (2005)
5. Fiat, A., Saia, J., Young, M.: Making chord robust to Byzantine attacks. In: Brodal, G.S.,

Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer, Heidelberg (2005)
6. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. Theory of Computing

Systems 45(2), 234–260 (2009)
7. King, V., Lonargan, S., Saia, J., Trehan, A.: Load balanced scalable Byzantine agree-

ment through quorum building, with full information. In: Aguilera, M.K., Yu, H., Vaidya,
N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214.
Springer, Heidelberg (2011)

8. Frisanco, T.: Optimal spare capacity design for various protection switching methods in ATM
networks. ICC 1997, vol. 1, pp. 293–298 (1997)

9. Iraschko, R.R., MacGregor, M.H., Grover, W.D.: Optimal capacity placement for path
restoration in STM or ATM mesh-survivable networks. IEEE/ACM Transactions on Net-
working 6(3), 325–336 (1998)

10. Murakami, K., Kim, H.S.: Comparative study on restoration schemes of survivable ATM
networks. INFOCOM 1997, vol. 1, pp. 345–352 (1997)

11. Van Caenegem, B., Wauters, N., Demeester, P.: Spare capacity assignment for different
restoration strategies in mesh survivable networks, ICC 1997, vol. 1, pp. 288–292 (1997)

12. Xiong, Y., Mason, L.G.: Restoration strategies and spare capacity requirements in self-
healing ATM networks. IEEE/ACM Transactions on Networking 7(1), 98–110 (1999)

13. Boman, I., Saia, J., Abdallah, C.T., Schamiloglu, E.: Brief announcement: Self-healing algo-
rithms for reconfigurable networks. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS,
vol. 4280, pp. 563–565. Springer, Heidelberg (2006)

14. Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In:
IPDPS 2008, pp. 1–12 (2008)

15. Hayes, T., Rustagi, N., Saia, J., Trehan, A.: The forgiving tree: A self-healing distributed data
structure. In: PODC 2008, pp. 203–212 (2008)

16. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: A distributed data structure for low
stretch under adversarial attack. In: PODC 2009, pp. 121–130 (2009)

17. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In: PODC 2011,
pp. 301–310 (2011)

18. Sarma, A.D., Trehan, A.: Edge-preserving self-healing: keeping network backbones densely
connected. In: IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pp. 226–231 (2012)

19. Knockel, J., Saad, G., Saia, J.: Self-healing of Byzantine faults. In: Higashino, T., Katayama,
Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255,
pp. 98–112. Springer, Heidelberg (2013)

20. Yao, A.C.: Protocols for secure computations. In: SFCS 1982, pp. 160–164 (1982)
21. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J.

(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)
22. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic

fault-tolerant distributed computation. In: STOC 1988, pp. 1–10 (1988)

210 G. Saad and J. Saia

23. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest major-
ity. In: STOC 1989, pp. 73–85 (1989)

24. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-secure multiparty
computation. Electronic Colloquium on Computational Complexity (ECCC) 18, 36 (2011)

25. Prabhakaran, M., Sahai, A.: Secure Multi-Party Computation, vol. 10. IOS Press (2013)
26. Kate, A., Goldberg, I.: Distributed key generation for the internet. In: ICDCS 2009,

pp. 119–128 (2009)

Optimal Gathering on Infinite Grids�

Gabriele Di Stefano1 and Alfredo Navarra2

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Italy

gabriele.distefano@univaq.it
2 Dipartimento di Matematica e Informatica,

Università degli Studi di Perugia, Italy
alfredo.navarra@unipg.it

Abstract. The gathering problem has been largely studied in the last
years with respect to various basic graph topologies. The requirement
is to move a team of robots initially placed at different vertices of the
input graph towards a common vertex, and to let them remain at such a
vertex. Robots move based on the so called Look-Compute-Move model.
Each time a robot wakes-up, it perceives the current configuration in
terms of occupied vertices (Look), it decides whether to move towards
one of its neighbors (Compute), and in the positive case it makes the
computed move instantaneously (Move). All the phases are performed
asynchronously for each robot. So far, the goal has been mainly to detect
the minimal assumptions that allow to accomplish the gathering task,
without taking care of any cost measure of the provided solutions. In
this paper, we are interested in devising optimal algorithms in terms of
total number of moves the robots have to perform in order to finalize the
gathering. In particular, we consider infinite grids as input graphs, and
we fully characterize when optimal gathering is achievable by providing
a distributed algorithm.

1 Introduction

Robot-based computing systems have been largely addressed to the gathering (or
rendezvous) problem either concerning open spaces or discrete representations.
A team of robots, initially placed at different locations, have to gather at the
same place (not determined in advance) and remain there. Many variants of the
problem have attracted the interest of the research community (see e.g., [4, 7–10]
and references therein).

In this paper, we consider infinite grids as input graphs where robots are ini-
tially placed at different vertices. Robots are assumed to be oblivious (without

� Work partially supported by the following Research Grants: 2010N5K7EB “PRIN
2010” ARS TechnoMedia (Algoritmica per le Reti Sociali Tecno-mediate) and
2012C4E3KT “PRIN 2012” Amanda (Algorithmics for MAssive and Networked
DAta), both from the Italian Ministry of University and Research.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 211–225, 2014.
c© Springer International Publishing Switzerland 2014

212 G. Di Stefano and A. Navarra

memory of the past), uniform (running the same deterministic algorithm), au-
tonomous (without a common coordinate system, identities or chirality), asyn-
chronous (without central coordination), without the capability to communi-
cate. Neither vertices nor edges are labeled and no local memory is available
on vertices. Robots operate according to the so-called Look-Compute-Move cy-
cles [3, 5, 11, 12, 14]. In each cycle, a robot wakes-up and takes a snapshot of the
current global configuration (Look), then, based on the perceived configuration,
decides either to stay idle or to move to one of its adjacent vertices (Compute),
and in the latter case it makes an instantaneous move to this neighbor (Move).
As moves are instantaneous, robots are always detected on vertices during the
Look phase and not on edges. Cycles are performed asynchronously for each
robot. This means that the time between Look, Compute, and Move phases is
finite but unbounded, and is decided by the adversary for each robot. Hence,
robots may move based on significantly outdated perceptions. Robots are obliv-
ious, i.e., they do not have any memory of past observations. Thus, the target
vertex (which is either the current position of the robot or one of its neighbors)
is decided by the robot during a Compute phase solely on the basis of the lo-
cation of other robots perceived during the Look phase. Robots are anonymous
and execute the same deterministic algorithm. They cannot leave any marks at
visited vertices, nor send any messages to other robots.

The problem has been largely studied on ring topologies (see, e.g., [2, 3, 11]),
where another assumption has been proven to be necessary in order to allow
the accomplishment of the task. Robots are in fact equipped with the so called
multiplicity detection capability in one of its possible forms. This is the ability
of robots to acquire information during the Look phase about the number of
robots lying on a same vertex. A robot is always able to detect whether a vertex
is empty or occupied but if it is empowered with the global-strong multiplicity
detection, it is able to perceive the exact number of robots that occupy each
vertex. In the global-weak version, a robot perceives only whether a vertex is
occupied by one robot or if a multiplicity occurs, i.e., a vertex is occupied by an
undefined number of robots greater than one. The local versions instead of global
refer to the corresponding ability of a robot in perceiving the information about
multiplicities only concerning the vertex where it currently lies. The relevance of
the ring topology is motivated by its completely symmetric structure. It means
that algorithms for rings are more difficult to devise as they cannot exploit
any topological structure, assuming that all vertices look the same. In fact, the
devised algorithms are only based on robots’ disposal and not on topology.

In [1], gathering on finite grids has been fully characterized. In particular, even
if the global-strong multiplicity detection is assumed, a configuration remains
ungatherable if it is periodic (i.e., the same view can be obtained by rotating
the grid around its geometric center of an angle smaller than 360 degrees) on
a grid with at least an even side, or it is symmetric with respect to an axis of
symmetry passing through edges. For all the other cases, a gathering algorithm
has been provided which does not require any multiplicity detection (the only
exception is represented by 2×2 grids with three robots). In this case, the chosen

Optimal Gathering on Infinite Grids 213

topology plays a central role in the designed algorithms. The main criticism with
respect to the results in [1] has been that finite grids admit the existence of
special vertices like corners that make the problem solvable even without any
multiplicity detection.

In this paper, we are interested in infinite grids, that is no special vertices there
exist as there are no borders. This clearly makes the problem more difficult as it
was for rings where vertices look all the same and topological structure cannot be
exploited. Moreover, in most of the previous results, the aim has been concerning
the feasibility of the problem, without taking care of any cost measure for the
devised solutions. Here, we are interested in optimal gathering algorithms with
respect to the number of moves that robots have to perform.

Recently, in [6], basic results for optimal gathering have been introduced.
Namely, gathering has been studied on finite graphs with respect to both its
feasibility and the possibility to realize it by means of the minimum number of
asynchronous moves performed by robots. The paper introduces the concept of
Weber-point [13] on weighted graphs. A Weber-point for a discrete set of sample
points in the Euclidean space is the point minimizing the sum of distances to the
sample points. On graphs with robots, a Weber-point is a vertex of the graph
that minimizes the sum of the length of the shortest paths from it to each robot.
An algorithm that gathers all robots on a Weber-point via shortest paths is
optimum w.r.t. the total number of moves.

Our Results. In this paper, we fully characterize optimal gathering on in-
finite grids where the topology does not help in detecting a gathering vertex.
Nonetheless, the interest in infinite grids also arise by the fact they represent
a natural discretization of the plane. More specifically, we extend the theory
about optimal gathering to infinite grids. We detect all the specific configu-
rations where gathering cannot be performed. For all other configurations, we
devise a distributed algorithm that assures the gathering on a Weber-point by
letting move robots along the shortest paths towards such a vertex, i.e., our
algorithm is optimal in terms of moves.

Outline. In the next section, we introduce the notation used in the paper and
give some basic definitions. In Section 3, we first provide few impossibility results,
and then an optimal gathering algorithm for all the other cases is provided. In
Section 4, we sketch on the general idea behind the correctness of the proposed
algorithm. Finally, in Section 5, we conclude the paper.

2 Definitions and Preliminaries

In this section we provide all the basic definitions and notation necessary for the
understanding of the proposed results.

Given a graph G, a function � : V −→ N, represents the number of robots on
each vertex of G, and we call (G, �) a configuration whenever k =

∑
v∈V �(v) is

bounded and greater than zero. A configuration is initial if each robot lies on a
different vertex (i.e., �(v) ≤ 1 ∀v ∈ V). A configuration is final if all robots are
on a single vertex u (i.e., �(u) > 0 and �(v) = 0, ∀v ∈ V \ {u}). The distance

214 G. Di Stefano and A. Navarra

d(u, v) between two vertices u, v in V is the number of edges of a shortest path
connecting u to v.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if there is a
bijection ϕ from VG to VH such that {u, v} ∈ EG iff {ϕ(u), ϕ(v)} ∈ EH .

An automorphism on a graph G is an isomorphism from G to itself, that is a
permutation of its vertices mapping edges to edges and non-edges to non-edges.

We extend the concept of isomorphism to configurations in a natural way:
two configurations (G, �) and (G′, �′) are isomorphic if G and G′ are isomorphic
via a bijection ϕ and for each vertex v in G, �(v) = �′(ϕ(v)). An automorphism
on a configuration (G, �) is an isomorphism from (G, �) to itself and the set of
all automorphisms of (G, �) forms a group that we call automorphism group of
(G, �), denoted by Aut((G, �)).

Given an isomorphism ϕ ∈ Aut((G, �)), the cyclic subgroup of order p gen-
erated by ϕ is given by {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦ ϕ, . . . , ϕp−1} where ϕ0 is the
identity.

If H is a subgroup of Aut((G, �)), the orbit of a vertex v of G is Hv =
{γ(v) | γ ∈ H}.

(G, �) is said asymmetric if |Aut((G, �))| = 1, symmetric otherwise.

Definition 1. Let C = ((V,E), �) be a configuration. An isomorphism ϕ ∈
Aut(C) is called partitive if the cyclic subgroup H = {ϕ0, ϕ1 = ϕ, ϕ2 = ϕ ◦
ϕ, . . . , ϕp−1} generated by ϕ has order p > 1 and is such that |Hu| = p for each
u ∈ V ′.

Note that, in the above definition, the orbits Hu, for each u ∈ V form a partition
of V . The associated equivalence relation is defined by saying that x and y are
equivalent if and only if there exists a γ ∈ H with γ(x) = y. The orbits are then
the equivalence classes under this relation; two elements x and y are equivalent
if and only if their orbits are the same; i.e., Hx = Hy. Moreover, note that
�(u) = �(v) whenever u and v are equivalent.

Let an infinite path be the graph P = (Z, E) with E =
{
{i, i+ 1} : i ∈ Z

}
.

An infinite grid is defined as the Cartesian product G = P × P . A vertex of the
grid is then an ordered pair of integers called coordinates.

If we assume the infinite grid embedded in a Cartesian plane, it is not difficult
to see that it admits three types of automorphisms and combinations of them:
translations, that is a shifting of the vertices by applying the same displacement
to each vertex; rotations, defined by a center and an angle of rotation; reflections,
defined by a reflection axis which acts as a mirror. In an infinite grid, the center
of a rotation can be a vertex, or the center of an edge, or the center of the area
surrounded by four vertices, whereas the angle of rotation can be of 90 or 180
degrees. Reflections axis can be horizontal (vertical), passing through vertices or
through the middle of edges, or diagonal (45 degrees), passing through vertices.
Regarding translations, even if they are possible for infinite grids, they do not
belong to any automorphism group of configurations as these are defined for a
finite number of robots. Moreover the automorphism group of a configuration
with a finite number of robots is finite.

Optimal Gathering on Infinite Grids 215

Definition 2. Given a configuration (G, �), with G = (V,E), the centrality of
each v ∈ V , is cG,�(v) =

∑
u∈V d(u, v) · �(u).

A vertex v ∈ V is a Weber-point if it has the minimal centrality, that is,
cG,�(v) = min{cG,�(u) | u ∈ V }.

Whenever clear by the context, we refer to the centrality of a vertex v simply by
c(v). By definition, a Weber-point (WP) is a vertex that has the overall minimal
distance from all the robots in the configuration.

Definition 3. Given a configuration C = (G, �), GWP(C) is the subgraph induced
by its WPs.

An algorithm that gathers all robots on a WP via shortest paths is optimum
w.r.t. the total number of moves. More formally, a gathering algorithm must
define the sequence of moves for each robot, leading to a final configuration.
A move is the change of the position of a single robot from a vertex u to an
adjacent vertex v. This equals to change the configuration from, say (G, �) to
(G, �′), where �(w) = �′(w) ∀w ∈ V \{u, v}, �′(u) = �(u)−1 and �′(v) = �(v)+1.

Let SC be the minimal (finite) sub-grid containing all the occupied vertices of
G, and (SC , �) be the corresponding configuration. It is worth mentioning that
SC may change while robots move. As a consequence, even though SC is a finite
grid, the approach of [1] cannot be applied.

During the Look phase, a robot perceives (SC , �) and it is able to recognize its
position on SC if (G, �) is asymmetric. Whereas, if (G, �) admits an isomorphism
ϕ different from the identity, a robot cannot distinguish its position at u from
ϕ(u). As a consequence, two robots (e.g., one on u and one on ϕ(u)) can decide to
move simultaneously, as any algorithm is unable to distinguish between them.
This fact greatly increases the difficulty to devise a gathering algorithm for
symmetric configurations.

If an algorithm allows at least two robots to move concurrently, then there
might be a so called pending move. This occurs when, due to the asynchrony,
one of the robots allowed to move performs its entire Look-Compute-Move cycle
while one of the others does not perform the Move phase, i.e. its move is pending.
Clearly, all the other robots performing their cycles are not aware whether there
is a pending move.

A robot is said to move back if its movement is towards a direction not allowed
by the algorithm. This definition is required for analysis purposes only.

We say that an algorithm assures the gathering if it achieves the gathering
regardless any possible sequence of the moves it allows, and possible simultaneous
moves. We propose to measure the efficiency of a gathering algorithm by counting
the number of moves that it requires to gather all robots from an arbitrary initial
configuration to a single vertex. We say that an algorithm is optimal if it requires
the minimum possible number of moves. We say that an algorithm is exact if it
achieves the gathering with a number of moves equal to the centrality of a WP
in the initial configuration. Of course, this is a lower bound for each algorithm.
In general, there might be cases where optimal algorithms are not exact. As we
are going to see, this does not occur in infinite grids.

216 G. Di Stefano and A. Navarra

Theorem 1. [6] Given a configuration ((V,E), �) with WPs in X ⊆ V , a move
of a robot towards a WP x gives rise to a configuration ((V,E), �′) with WPs in
X ′ ⊆ V such that: c�′(v) = c�(v) − 1 for each v ∈ X ′; x ∈ X ′; X ′ ⊆ X.

When the configuration admits a unique WP, the above theorem suggests an
exact gathering algorithm that also exploits concurrency among robots. In fact,
regardless other robots, each one can move towards the only WP via the shortest
path, until finalizing the gathering.

Corollary 1. [6] If a configuration admits only one WP, and robots can detect
it, then exact gathering can be assured.

In what follows, configurations with one single WP are called of type S.

3 Gathering Algorithm

In this section, we first provide some impossibility results for the gathering task
on infinite grids. Then, an exact resolution algorithm for the gatherable cases is
provided, hence determining a full characterization of the problem.

3.1 Impossibility Results

Clearly, all the cases shown to be ungatherable in [1] for finite grids are inher-
ited here, as the absence of borders can only make the problem more difficult.
Assuming the global-strong multiplicity detection, the following theorems hold.

Theorem 2. [6] If a configuration admits a partitive automorphism, then it is
ungatherable.

In infinite grids, the above theorem implies that all initial configurations with
an axis of symmetry not passing through vertices or admitting a rotational center
not coinciding with a vertex, are ungatherable. In fact, all such configurations
are partitive with orbits of size at least two, and only those admitting rotations
of 90 degrees have orbits of size four.

In what follows we say that a symmetry is allowed if it is not partitive.

Theorem 3. If a configuration contains only two robots (or equivalently, two
multiplicities of the same size), then it is ungatherable.

Proof. Assume there exists an algorithm assuring the gathering of two robots
and that the adversary prevents simultaneous moves. In order to accomplish the
gathering task, robots must reach a configuration where they lie on two adjacent
vertices, eventually. In this case, the configuration admits a reflection where the
axis passes through the edge between the two occupied vertices, but not on
vertices. This configuration admits a partitive automorphism of order two, then
by Theorem 2 it is ungatherable.

Similar arguments can be applied when the initial configuration contains two
multiplicities of the same size. ��

Optimal Gathering on Infinite Grids 217

Theorem 4. If a configuration C = (G, �) contains only four robots (or equiv-
alently, four multiplicities of the same size) disposed on the corners of SC, then
C is ungatherable.

Proof. If SC has a side with an even number of vertices, C admits a partitive au-
tomorphism of order two, then by Theorem 2 the configuration is ungatherable.

Assume then all the sides of SC have an odd number of vertices. Since C
admits two orthogonal axes of reflections that meet at the central vertex of SC ,
any move can be made by all robots since they all look the same. The adversary
can make move only two robots for which the movement is performed towards
the same direction. This brings to a new configuration C′ where SC′ has a side
with a even number of vertices.

Similar arguments can be applied when the initial configuration contains four
multiplicities of the same size. ��

From now on, all initial configurations proved to be ungatherable are denoted
by the set U . It is worth noting that, differently from the finite grid case, the
next theorem shows that the multiplicity detection is necessary.

Theorem 5. If robots are not empowered by any multiplicity detection capabil-
ity, then the gathering problem is unsolvable on infinite grids.

Proof. The proof is by induction on the number of robots k. For k = 2, it follows
from Theorem 3. Assume the statement true for a generic k − 1, and consider
a gathering algorithm for k > 2 robots. Since the aim is to let robots meet at
some vertex, there must be a moment in which a multiplicity is created. Since
the system is asynchronous, the adversary can always decide to allow only one
robot at time to move towards an adjacent vertex occupied by another robot.
After this move, the number of vertices occupied by the robots decreases to k−1.
As robots are assumed to not detect the multiplicity, they behave like the case
of just k − 1 robots, as the adversary from now on can make synchronous the
two robots on the multiplicity. By the inductive hypothesis gathering is thus
impossible. ��

It is worth noting that in [1], gathering on finite grids was possible without any
multiplicity detection due to the existence of special vertices like corners. Here,
we are assuming robots empowered by global-strong multiplicity detection. As
shown by Figure 1, relaxing such an assumption makes ungatherable some con-
figurations. In Figure 1.a, it is shown a symmetric configuration which may lead
to two different configurations. Only two moves in fact can be defined in order
to gather all robots at one of the nine WPs available, towards shortest paths.
Any exact algorithm can allow each robot to move towards either the farthest or
the closest robot that shares one coordinate with it, any other move would lead
robots away from WPs. If all robots move synchronously, in the first case (in the
second case, resp.) configuration of Figures 1.b (Figures 1.c, resp.) is reached.
By Theorem 4, configuration in Figures 1.b is ungatherable. From configuration
in Figures 1.c, only the move towards the center (the unique WP left) can be

218 G. Di Stefano and A. Navarra

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
���

��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(c) (d)(b)(a) (e)

Fig. 1. Empty circles represent single robots; filled circles represent multiplicities. (a)
Symmetric configuration with nine WPs in the center. (b) Symmetric configuration
obtainable from (a) with nine WPs. (c) Symmetric configuration obtainable from (a)
with one WP in the center. (d) Symmetric configuration obtainable from (c) with one
WP recognizable only if robots are empowered by global-strong multiplicity detection.
(e) Symmetric configuration obtainable from (d) with one WP recognizable only if
robots are empowered by global-strong multiplicity detection.

allowed. If the adversary makes move all the robots for one step, configuration
in Figures 1.d is obtained. From there, if all the robots but those belonging to
only one multiplicity make another step, then configuration in Figures 1.e is
reached. From there, without global-strong multiplicity detection, the two mul-
tiplicities are indistinguishable and by Theorem 3 the reached configuration in
ungatherable.

3.2 Unidimensional Grids

We first consider infinite paths as grids with one row and infinite columns.

Lemma 1. If the number of robots k is odd, then there exists only one WP. If k
is even, then all vertices of the subpath delimited by the central robots (including
the vertices where such robots lie) are WPs.

Theorem 6. Exact gathering on unidimensional grids is always achievable but
for configurations with only two robots or admitting partitive automorphisms.

Proof. The ungatherable cases simply follow from Theorem 2 and Theorem 3.
When the number of robots is odd, from Lemma 1 there exists only one WP.
When the number of robots is even, if the configuration is symmetric, then the

subpath of WPs must be odd as otherwise the configuration is partitive. The idea
is then to let move the robots delimiting the WPs towards the central vertex. If
both move synchronously, the configuration remains symmetric but the interval
of WPs is reduced until only the WP at the central vertex remains. If only one
moves, it is possible to recognize the robot that has to move to re-establish the
symmetry. In fact, considering the two intervals of free vertices neighboring the
robots delimiting the WPs, the algorithm allows to move the robot delimiting
the shortest interval.

When the number of robots is even, but the configuration is asymmetric, then
either it is at one move from a possible symmetry which is allowed, or one of
the two robots delimiting the WPs can be chosen to move towards the other one
without creating a symmetry until only one WP remains.

Optimal Gathering on Infinite Grids 219

Finally, when there is only one WP, from Corollary 1, all robots can move
safely towards it. ��
It is worth noting that the algorithm provided by the proof of Theorem 6 also
works when the input configuration admits multiplicities.

3.3 Bidimensional Grids

In this section, we provide a general exact algorithm to solve the gathering
problem for each configuration C = (G, �) such that C �∈ U . From Corollary 1, if
the configuration C admits only one WP (that is, C ∈ S), then exact gathering
can be accomplished. Another characterization is provided by considering SC ,
and in particular the projections of the robots to the two generating paths P1

and P2 of G. Given a robot on a generic vertex (i, j) of G, its projections on P1

and P2 are a robot on vertex i and a robot on vertex j, respectively. This gives
rise to two configurations (P1, �1) and (P2, �2) such that �1(v) =

∑
j �((v, j)) and

�2(v) =
∑

i �((i, v)). As the movements on a grid are either vertical or horizontal,
solving the gathering with respect to the two dimensions separately, solves the
general problem.

Theorem 7. Given a configuration C = (G, �) with G = P1×P2, if (P1, �1) and
(P2, �2) are gatherable, then C is gatherable exactly.

Proof. The exact gathering is obtained by simply considering (P1, �1) and (P2, �2)
separately. Each time a robot wakes-up, it can move with respect to any of the
two instances indiscriminately, as they are independent to each other. Theorem 6
guarantees exact gathering on both the instances even though they might con-
tain multiplicities. ��

The next theorem provides a useful characterization about the disposal of WPs
in a configuration.

Theorem 8. Given a configuration C = (G, �) with G = P1 × P2, GWP(C) is a
finite grid defined by the Cartesian product of the subpaths induced by the WPs
belonging to (P1, �1) and (P2, �2).

Proof. Let v = (i, j) ∈ G be such that i is not a WP in P1 or j is not
a WP in P2. Then, cG,�(v) =

∑
u∈V d(u, v) · �(u) = cP1,�1(i) + cP2,�2(j) >

minx∈P1 cP1,�1(x) +miny∈P2 cP2,�2(y). The last inequality holds as i or j is not a
WP. Moreover, any vertex u in the grid defined by the Cartesian product of the
subpaths induced by the WPs belonging to (P1, �1) and (P2, �2) has centrality
cG,�(u) = minx∈P1 cP1,�1(x) + miny∈P2 cP2,�2(y) since the projections of u are
WPs in (P1, �1) and (P2, �2), respectively. Hence, v is not a WP in G. ��
By referring to Figure 2, it is worth noting that GWP(C), for some configuration
C, is in general a finite grid where robots can occupy only the corners. Moreover,
all the vertices belonging to the strips from GWP(C) to the borders of SC cannot
be occupied, but for the ones sharing coordinates with the border of GWP(C).
These robots will be said to determine GWP(C). Note that, given a configuration
C with k robots, evaluating the set of WPs has time complexity O(|SC | × k).

220 G. Di Stefano and A. Navarra

�����������������������
�����������������������
�����������������������
�����������������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2

(P2, �2)

(P1, �1)

SC

GWP(C)

Fig. 2. A sample configuration C which induces SC, GWP(C), and its projections to the
sides of SC

Corollary 2. If the number of robots in a grid G is odd, then exact gathering
can be accomplished.

Proof. By Lemma 1, an odd number of robots implies a single WP for each
instance on the two paths generating G. By Theorem 8, the Cartesian product
of those two WPs constitutes the only WP of the configuration, hence by Corol-
lary 1 exact gathering can be assured. ��

3.4 Grids with an Even Number of Robots

In this section, we provide a general strategy that solves the exact gathering
problem for all the configurations not in U .

First of all, if SC has both sides odd and the center is a WP then we can gather
all the robots in the center. The idea at the basis of the strategy is to let move
all the robots not determining the border of SC towards the center that becomes
the only WP of the current configuration. From there on, all the other robots
can join the unique WP. This can be easily realized if the number of robots is
“sufficiently” large, while for few robots specific strategies are required.

Lemma 2. Let C = (G, �) be a configuration inducing SC with both sides odd
and the center being a WP, there exists an exact gathering algorithm, unless
there are only four robots occupying the four corners of SC.

Configuration admitting rotations but not in U are solved by the above lemma
since their center is a vertex (i.e., SC has both sides odd) and it is a WP.

Let us consider the case where SC has at least one side even or its center
is not a WP. Before proceeding with the characterization of the algorithm, we
need to better specify the view of the robots during their Look phase when no
multiplicities occur.

Optimal Gathering on Infinite Grids 221

Let us consider the eight sequences of distances (number of empty vertices)
between occupied vertices obtained by traversing SC starting from its four corners
and proceeding towards the two possible directions. Note that the two sequences
associated to a corner occupied by a robot start with 0. We associate for each
corner the lexicographically biggest sequence between the two readings from such
corner. Note that, in square grids such two sequences are always different, but for
the two corners through which passes a possible axis of symmetry. In rectangular
grids, these two sequences can be equal, but we can distinguish one of them by
assuming that if two sequences are equal, the one read in the direction of the
largest side is bigger than the other.

We define the maximal sequence as the biggest one among the four sequences
associated to the four corners. We refer to the corner(s) defining the biggest
sequence as preferred corner(s), and to the direction(s) that implies the biggest
sequence as preferred direction(s).

In Figure 2, the preferred corner of SC is the bottom-leftmost
one, the preferred direction is horizontal, and the maximal sequence is
(10, 11, 21, 34, 19, 12, 21, 7).

We are now ready to describe the gathering algorithm for each configuration
C �∈ U with more than one WP, where SC has at least one side even or its center
is not a WP.

In general, if a configuration is symmetric, the algorithm may allow to move
two symmetric robots. If both move, the configuration remains symmetric. If only
one moves, the algorithm always forces to move the one that can re-establish the
symmetry. Moreover, it is possible to prove that from asymmetric configurations
at one step from an allowed symmetry, it is always possible to detect one unique
robot that has to move in order to (re)-establish the symmetry.

According to the number of corners of GWP(C) occupied by robots, different
strategies are applied. See Figure 3 for a visualization of the configurations that
will be considered.

Type F : No Corners Occupied. Among these configurations, F1 are the
asymmetric ones, F2 the symmetric configurations with an horizontal/vertical
axis, and F3 the symmetric configurations with a diagonal axis.

First we consider the cases when GWP(C) is not a path. If the configuration
admits an axis of symmetry, then among the robots determining GWP(C), consider
those closest to GWP(C) wrt the preferred direction. Ties are solved by considering
those closest to the preferred corner. Such robot(s) moves towards GWP(C). In
this case, either two symmetric robots move synchronously, or only one moves,
and the other one (if any) is possibly pending. Eventually, this process leads
to symmetric configurations with two corners of GWP(C) occupied and the axis
reflecting them, or with one corner occupied by a multiplicity.

If the configuration is asymmetric at more than one step from an allowed
symmetry, the closest robot to GWP(C) moves towards it. Ties are solved by
considering the preferred direction and the preferred corner.

222 G. Di Stefano and A. Navarra

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

F1 F2 F3 A M

B1 B2 C1 C3C2

E1 E2D SE3

Fig. 3. Types of configurations according to the number of corners of GWP(C) occupied
by robots/multiplicities. Dashed lines delimit GWP(C), empty circles represent single
robots, and filled circles represent multiplicities.

When GWP(C) is constituted by just a path, the strategy is the same as above
but limited to the robots determining the same direction of GWP(C) and not those
determining its extremities.

Type A: One Corner Occupied by a Single Robot. If the configura-
tion is asymmetric, first robots check whether an allowed symmetry can be (re-
)established. This can be done by simulating the move back of the unique robot
on the corner of GWP(C). If this occurs, then the possible pending robot is forced
to perform its move. In any other case, the single robot on the corner moves in
one of the two directions that reduce GWP(C), until obtaining only one WP.

Type M : One Corner Occupied by a Multiplicity. First, all robots sharing
one coordinate with the multiplicity move in turn (i.e., without creating another
multiplicity) until joining it, towards the shared coordinate. After that, if there
are more than one WP, among the robots determining GWP(C), consider those
closest to it. Such robots - at most four - move along the direction that reduces
GWP(C), until they share one coordinate with the multiplicity.

Types B and C: Two Corners Occupied. Among these configurations we
denote by B the set of configurations where the two corners occupied share one
coordinate but for symmetric configurations with the axis passing through the
two occupied corners. These last configurations and the remaining ones with two
corners occupied are denoted by C. B1 ⊂ B represents symmetric configurations,

Optimal Gathering on Infinite Grids 223

Procedure: compute-phase
Input: C = ((V,E), �)

1 Compute SC, GWP(C), and k =
∑

v∈V �(v);
2 if C �∈ U then
3 if C ∈ S then any robot moves towards the unique WP;
4 else
5 if SC has both sizes odd then Apply Lemma 2;
6 else
7 case C ∈ X , with X ∈ {A,B,C,D,E, F,M}
8 Apply the strategy designed for type X ;

Fig. 4. Procedure compute-phase

B2 ⊂ B the asymmetric ones. C1 ⊂ C represents asymmetric configurations,
C2 ⊂ C the symmetric ones with the axis passing through the occupied corners,
and C3 ⊂ C the remaining symmetric configurations.

FromB1, the two robots on the axis move towards each other, still maintaining
the symmetry. Note that, the two robots are separated by an odd path, as
otherwise the configuration is ungatherable by Theorem 2.

From B2 and C1, the algorithm (re-)establish an allowed symmetry, if any.
Otherwise, the robot closest to the preferred corner along the preferred direction
moves towards the other robot avoiding ungatherable configurations.

From C2, the robot that moves is the one on the corner of GWP(C) closest to
the corner of SC associated with the biggest sequence among the two corners on
the axis. The robot moves towards the other occupied corner of GWP(C).

From C3, the two robots on the corners of GWP(C) move towards the corner
of GWP(C) on the axis, closest to the corner of SC associated with the bigger
sequence.

In all the cases, a configuration in S with a multiplicity occupying the only
WP will be reached, eventually.

Type D: Three Corners Occupied. From D, the robot on the middle corner
moves towards one of the two other occupied corners. This leads to a configura-
tion with two corners occupied or with only one corner occupied by a multiplicity.

Type E: Four Corners Occupied. Among configurations E, we denote by
E1 the symmetric ones with a diagonal axis, by E2 the remaining symmetric
ones, and by E3 the asymmetric ones.

From E1, the robot onGWP(C) closest to the corner of SC on the axis associated
with the bigger sequence, moves reducing the WPs.

From E2, the two robots on GWP(C) closest to the preferred corners move
towards each other. Note that, if both move synchronously, then a symmetric
configuration with two corners occupied or with a multiplicity is obtained. If

224 G. Di Stefano and A. Navarra

only one moves, then a configuration of type D is obtained. According to that
case, the robot that will be allowed to move is the one with a possible pending
move, hence it does not create ambiguities.

From E3, the robot on GWP(C) closest to the preferred corner moves reducing
the WPs.

4 Correctness

The general scheme of the algorithm is shown in Figure 4. Clearly, if C ∈ U then
robots do not move. When C ∈ S, the correctness is guaranteed by Corollary 1.
By Theorem 8, S includes all configurations with an odd number of robots.

M

D E

C

AB

F

S

Fig. 5. Transitions among types of config-
urations allowed by the exact gathering al-
gorithm

If C contains an even number of robots
with SC admitting both sides odd
and its center being the non-unique
WP, the correctness is guaranteed by
Lemma 2.

When SC has at least one even side
or its center is not a WP, and there
are more than one WP, we have de-
fined different strategies according to
the type of C. The correctness proof is
achieved by showing that all types of
input configurations lead to S. From
there, the correctness is then guaran-
teed by Corollary 1. All possible tran-
sitions among types of configurations

are shown in Figure 5. The main difficulty faced concerns the design of an al-
gorithm that avoids ambiguities. This means that each time a robot starts its
Look-Compute-Move cycle, it must be sure whether it has to move or not, with-
out leading to ungatherable configurations. This requires for instance to identify
possible pending moves. Considering e.g., C ∈ B1 with GWP(C) composed of just
two vertices, there are six possible moves back in order to detect whether C
has been potentially obtained from a symmetric configuration, hence producing
pending moves.

Our strategies guarantee the desired behavior and all moves are performed
towards the final WP along shortest paths. Then, the next theorem holds.

Theorem 9 (Gathering). Given an initial configuration C = (G, �) on an
infinite grid G, exact gathering can be assured unless C ∈ U .

5 Conclusion

We have studied the gathering problem under the Look-Compute-Move model
with global-strong multiplicity detection on infinite grids. We have shown how

Optimal Gathering on Infinite Grids 225

the assumed model represents the minimal setting in order to assure exact gath-
ering. This means that the number of moves required by the designed algorithm
equals the minimal centrality among the vertices of the initial configuration.

We fully characterize exact gathering in terms of computed moves on infinite
grids. This is one of the most important topologies for robot-based computing
systems as it represents a natural discretization of the plane. Nonetheless, our
algorithm also works for finite grids, hence improving the results on that respect
to exact gathering. Other topologies might be worth investigating such as tori
and hypercubes.

References

[1] D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
(to appear)

[2] D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-
compute-move model. Distributed Computing 27(4), 255–285 (2014)

[3] D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious
robots on basic graph topologies under the look-compute-move model. In: Search
Theory: A Game Theoretic Perspective, pp. 197–222. Springer (2013)

[4] Degener, B., Kempkes, B., Langner, T., Meyer, F.: A tight runtime bound for
synchronous gathering of autonomous robots with limited visibility. In: Proc. of
the 23rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
pp. 139–148 (2011)

[5] Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid ex-
ploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.)
SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)

[6] Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anony-
mous graphs. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS,
vol. 8179, pp. 213–224. Springer, Heidelberg (2013)

[7] Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. In: Proc. of the 32nd ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pp. 92–99 (2013)

[8] Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mo-
bile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool (2012)

[9] Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

[10] Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized gathering of mobile
robots with local-multiplicity detection. In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 384–398. Springer, Heidelberg (2009)

[11] Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gath-
ering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411,
3235–3246 (2010)

[12] Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

[13] Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli
problem. Intuitive Geometry, vol. 6. Bolyai Society Math Studies (1997)

[14] Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

Incremental Verification of Computing Policies

Ehab S. Elmallah1, H.B. Acharya2, and Mohamed G. Gouda3

1 Department of Computing Science, University of Alberta
Edmonton, T6G 2E8, Canada

elmallah@ualberta.ca
2 Indraprastha Institute of Information Technology

Delhi, India
acharya@cs.utexas.edu

3 Department of Computing Science, University of Texas at Austin
Austin, Texas 78712, USA
gouda@cs.utexas.edu

Abstract. A computing policy is a sequence of rules, where each rule
consists of a predicate and an action, which can be either “accept” or
“reject”. A policy P is said to accept (or reject, respectively) a request
iff the action of the first rule in P , whose predicate matches the request,
is “accept” (or “reject”, respectively). An accept (or reject, respectively)
property of a policy P is a set of requests that should be accepted (or
rejected, respectively) by P . Policy P is said to satisfy an accept (or
reject, respectively) property pp iff every request that is specified by
property pp is accepted (or rejected, respectively) by policy P . In this
paper, we outline efficient methods for verifying whether any given policy
P satisfies any given property pp, provided that policy P results from
changing only one rule in another policy that is known to satisfy property
pp.

Keywords: Computing Policies, Access Control Policies, Routing Poli-
cies, Firewall Policies, Packet Classifiers, Logical Analysis, Incremental
Verification, NP-hard.

1 Introduction

A computing policy is a filter that is placed at the entry point of some resource.
Each request to access the resource needs to be first examined against the policy
to determine whether to accept or to reject the request. The decision of a policy
to accept or reject a request depends on two factors:

1. The values of some attributes that are specified in the request
2. The sequence of rules in the policy that are specified by the policy designer

Examples of computing polices are firewalls in the Internet, routing policies
in the Internet, software-defined networks in the Internet, and access control
policies [8].

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 226–236, 2014.
c© Springer International Publishing Switzerland 2014

Incremental Verification of Computing Policies 227

A rule in a policy consists of a predicate and an action, which is either accept
or reject. To examine a request against a policy, the rules in the policy are
considered one by one until the first rule, whose predicate satisfies the values of
the attributes in the request, is identified. Then the action of the identified rule
(whether accept or reject) is applied to the request.

Note that there are three sets of requests that are associated with each policy
P : (1) the set of requests that are accepted by P , (2) the set of requests that are
rejected by P , and (3) the set of requests that are neither accepted nor rejected
by P . This third set is usually empty.

An accept (or reject, respectively) property of a policy P specifies a set of
requests that should be accepted (or rejected, respectively) by P .

A policy P is said to satisfy an accept (or reject, respectively) property iff ev-
ery request that is specified by the property is accepted (or rejected, respectively)
by P .

The task of verifying whether a given policy satisfies a given property is not
an easy one [5,6,9] especially when the policy has thousands of rules, as usually
is the case.

In this paper, we outline efficient methods for verifying whether any given
computing policy P satisfies any given property pp, provided that P results
from adding or removing one rule from another policy that is known to satisfy
property pp. We start our presentation by discussing a concrete example of a
policy, four of its requests, and two of its properties.

Let u and v be two attributes whose integer values are taken from the interval
[1,9]. A policy P over these two attributes can be defined as follows:

((u ∈ [1, 4]) ∧ (v ∈ [8, 9]))→ reject
((u ∈ [1, 4]) ∧ (v ∈ [1, 9]))→ accept
((u ∈ [5, 8]) ∧ (v ∈ [4, 4]))→ accept
((u ∈ [1, 9]) ∧ (v ∈ [1, 9]))→ reject

This policy P consists of four rules. The first rule states that each request (u, v),
where the value of attribute u is an integer in the interval [1, 4] and where the
value of attribute v is an integer in the interval [8, 9], is to be rejected. The
second rule states that each request (u, v), that does not match the first rule
and where the value of u is an integer in the interval [1, 4] and where the value
of v is in the interval [1, 9], is to be accepted. And so on.

A request of policy P is a pair of values: a value of attribute u and a value of
attribute v. Four request examples of policy P , named rq1 through rq4, are as
follows:

rq1 : (4, 4)
rq2 : (5, 4)
rq3 : (5, 5)
rq4 : (5, 6)

Request rq1 does not match the first rule of policy P , but it matches the second
rule of P . Therefore P accepts request rq1. Request rq2 does not match the first

228 E.S. Elmallah, H.B. Acharya, and M.G. Gouda

and second rules of P , but it matches the third rule of P . Therefore, P accepts
rq2. Request rq3 does not match the first, second, and third rules of policy P ,
but it matches the fourth rule of P . Therefore, P rejects rq3. Similarly, request
rq4 does not match the first, second, and third rules of policy P , but it matches
the fourth rule of P . Therefore, P rejects rq3.

A property of policy P has the same syntax as a rule in P . Two property
examples of policy P , named pp1 and pp2, are as follows:

pp1 : ((u ∈ [4, 5]) ∧ (v ∈ [4, 4]))→ accept
pp2 : ((u ∈ [5, 5]) ∧ (v ∈ [4, 6]))→ reject.

Policy P satisfies an accept (or reject, respectively) property pp iff P accepts (or
rejects, respectively) every request that matches property pp. For example, there
are two requests that match the accept property pp1, namely requests (4, 4) and
(5, 4), and because policy P accepts both these requests, we conclude that policy
P satisfies the accept property pp1. Also, there are three requests that match the
reject property pp2, namely requests (5, 4), (5, 5), and (5, 6), and because policy
P accepts at least one of these requests, namely request (5, 4), we conclude that
policy P does not satisfy the reject property pp2.

2 Policy Preliminaries

In this section, we formally introduce the eight main concepts related to comput-
ing policies, or policies for short. These eight concepts are: Intervals, Attributes,
Requests, Predicates, Actions, Rules, Properties, and Policies. We present these
eight concepts one by one next.

2.1 Intervals

An interval is a finite and nonempty set of consecutive integers. An interval X
can be denoted by a pair of integers [y, z], where y is the smallest integer in X ,
and z is the largest integer in X . Note that an interval [y, y] has only one integer
y. Note also that any pair [y, z], where y > z, is not an interval.

Two intervals X = [y, z] and X ′ = [y′, z′] are said to be overlapping iff one
of the following two conditions holds: (1) y ≤ y′ and y′ ≤ z, and (2) y′ ≤ y and
y ≤ z′.

The intersection of two overlapping intervals X = [y, z] and X ′ = [y′, z′] is
defined to be the interval [max(y, y′),min(z, z′)]

2.2 Attributes

An attribute is a “variable” that has a “name” and has a “value”. Throughout
this paper, we assume that there are t attributes whose names are a1, a2, · · · , at.
The value of each attribute ai is taken from an interval that is called the domain
of attribute ai and is denoted D(ai).

Incremental Verification of Computing Policies 229

2.3 Requests

A request is a tuple (v1, · · · , vt) of t integers, where t is the number of attributes
and each integer vi is taken from the domain D(ai) of attribute ai.

2.4 Predicates

A predicate is of the form ((a1 ∈ X1) ∧ · · · ∧ (at ∈ Xt)), where each ai is
an attribute, each Xi is an interval that is contained in the domain D(ai) of
attribute ai, and ‘∧’ is the logical AND or conjunction operator.

The value of each conjunct (ai ∈ Xi) in a predicate is true iff the value of
attribute ai is an integer in interval Xi.

The value of a predicate is true iff the value of every conjunct (ai ∈ Xi) in
the predicate is true.

A predicate ((a1 ∈ X1)∧ · · · ∧ (at ∈ Xt)), where each interval Xi is the whole
domain of the corresponding attribute ai, is called the ALL predicate.

Let the pr and ps denote the following two predicates:

pr = ((a1 ∈ X1) ∧ · · · ∧ (at ∈ Xt))
ps = ((a1 ∈ Y1) ∧ · · · ∧ (at ∈ Yt)).

We use next these two predicates to define two concepts: “two overlapping pred-
icates” and “intersection of two predicates”.

Predicates pr and ps are said to be overlapping iff every interval Xi in pr and
every corresponding interval Yi in ps are overlapping.

If predicates pr and ps are overlapping, then the intersection of predicates pr
and ps is defined to be the predicate ((a1 ∈ Z1) ∧ · · · ∧ (at ∈ Zt)) where every
interval Zi is the intersection of the two corresponding intervals Xi and Yi.

A request (v1, · · · , vt) is said to match a predicate ((a1 ∈ X1)∧· · ·∧(at ∈ Xt))
iff each integer vi in the request is an element in the corresponding interval Xi

in the predicate.

2.5 Actions

We assume that there are two distinct actions: “accept” and “reject”. Hence-
forth, we write “accept” and “reject” with quotation marks to indicate the “ac-
cept” and “reject” actions, respectively. We also write accept and reject without
quotation marks to indicate the English words accept and reject, respectively.

2.6 Rules

A rule (in a policy) is defined as a pair, one predicate and one action, written
as follows:

< predicate >→ < action >

A rule whose action is “accept” is called an accept rule, and a rule whose
action is “reject” is called a reject rule. An accept rule whose predicate is the

230 E.S. Elmallah, H.B. Acharya, and M.G. Gouda

ALL predicate is called an accept-ALL rule, and a reject rule whose predicate is
the ALL predicate is called the reject-ALL predicate.

A request is said to match a rule iff the request matches the predicate of the
rule. (Note that each request matches every ALL rule.)

2.7 Properties

Like a rule, a property (of a policy) is defined as a pair, one predicate and one
action, written as follows:

< predicate >→ < action >

A property whose action is “accept” is called an accept property, and a prop-
erty whose action is “reject” is called a reject property.

A request rq is said to match a property pp iff rq matches the predicate of pp.
A rule r is said to overlap a property pp iff the predicate of r overlaps the

predicate of pp.
If a rule r overlaps a property pp, then the intersection of r and pp is the rule

whose predicate is the intersection of the two predicates of r and pp and whose
action (accept or reject) is the same as the action of r.

2.8 Policies

A policy is a (possibly empty) sequence of rules. A policy P is said to accept (or
reject, respectively) a request rq iff P has an accept (or reject, respectively) rule
r such that request rq matches rule r and does not match any rule that precedes
rule r in policy P .

A policy P is said to satisfy a property pp iff either pp is an accept property
and P accepts every request that matches pp, or pp is a reject property and P
rejects every request that matches pp.

3 Policy Verification Using the PSP Method

In this section, we briefly discuss a recent method [2] for verifying whether a
policy P satisfies a property pp. For convenience, we refer to this method as the
Projection-Slicing-Probing method, or the PSP method for short. Without any
loss of generality, we focus our discussion of the PSP method on the case where
pp is an accept property. (It is worth noting that the PSP method can also be
used in detecting redundant rules in a policy [1, 7] and in determining whether
any two given policies are equivalent.)

The PSP method for verifying whether a policy P satisfies an accept property
pp consists of three steps: (More explanations about these steps are presented
below.)

1. From policy P and the accept property pp, construct a new policy called the
projection of policy P over property pp. This new policy is denoted P/pp

Incremental Verification of Computing Policies 231

2. Divide the projection policy P/pp into a set of special policies {RS1, · · · , RSk}
called the reject slices of the projection P/pp.

3. Check whether each reject slice RSi rejects no request. If every reject slice
RSi is shown to reject no request, then policy P satisfies the accept property
pp. Otherwise P does not satisfy pp.

Next we describe these three steps in more detail.

Algorithm 1: Projection
Input:
A policy P and an accept property pp

Output:
A new policy called the projection of policy P over property pp. This
new policy is denoted P/pp

Step 1:
Add a reject-ALL rule at the end of policy P

Step 2:
Initially, P/pp is the empty policy

Step 3:
For every rule r in policy P do

– If rule r overlaps property pp then add the intersection of rule r and
property pp as a rule at the tail of policy P/pp

End Algorithm 1

The next theorem follows from Algorithm 1.

Theorem 1: A policy P satisfies an accept property pp iff the projection policy
P/pp rejects no request.

Algorithm 2: Slicing
Input:
A projection policy P/pp of a policy P over an accept property pp

Output:
A set of policies {RS1, · · · , RSk}, where each policy RSi is called a reject
slice of the projection policy P/pp and k is the number of reject rules in
the projection policy P/pp

Step 1:
For each i in the range 1 to k do

232 E.S. Elmallah, H.B. Acharya, and M.G. Gouda

– compute policy RSi as the sequence of all accept rules that precede
the i-th reject rule in policy P/pp followed by the i-th reject rule in
policy P/pp

End Algorithm 2

The next theorem follows from Algorithm 2.

Theorem 2: The projection P/pp of a policy P over an accept property pp
rejects no request iff every reject slice of the projection P/pp rejects no request.

Algorithm 3: Probing
Input:
A reject slice RSi of the projection P/pp of policy P over an accept
property pp

Output:
A determination of whether RSi rejects no request

Step 1:
For each attribute xj where j ranges from 1 to t do
– Compute a set Sj of values of xj as follows:
– Sj := empty set
– For each accept rule ar in RSi do

– If the predicate of ar has the conjunct (xj ∈ [u, v]) then add
element (v + 1) to set Sj

End for
– If the predicate of the reject rule rr in RSi has the conjunct (xj ∈
[u, v]) then add element u to set Sj

Step 2:
Compute set S of all “probe requests” as the Cartesian product (S1 ×
· · · × St)

Step 3:
– If no probe request in S is rejected by the reject sliceRSi then declare
that slice RSi rejects no request

– Else declare that slice RSi rejects at least one request
End Algorithm 3

The next theorem follows from Theorems 1 and 2 above.

Theorem 3: A policy P satisfies an accept property pp iff every reject slice of
the projection P/pp rejects no request.

Incremental Verification of Computing Policies 233

To verify whether a policy P satisfies an accept property pp, one needs to execute
Algorithm 1 once, execute Algorithm 2 once, and execute Algorithm 3 on k reject
slices, where k ≤ n and n is the number of rules in policy P . Because the time
complexity of Algorithms 1 and of Algorithm 2 is O(n∗ t), where t is the number
of attributes, and because the time complexity of Algorithm 3 is O(nt+1), the
time complexity of verifying whether P satisfies pp is O(nt+2).

This large time complexity is to be expected since it has been shown recently
that the problem of verifying whether a policy satisfies a property is NP-hard [4].
(Beside resorting to the PSP method, it has been suggested [4] that the large
time complexity of policy verification can be faced by using SAT solvers [10] or
probabilistic verification techniques [3].)

4 Incremental Verification of Policies

Let P be a policy and let Q be a policy that results after modifying one rule
in policy P , e.g. after adding one rule to policy P or after removing one rule
from policy P . Also let pp be a property that is satisfied by policy P . There are
two types of methods for verifying whether policy Q satisfies property pp: direct
methods and incremental methods.

a. Direct Verification Methods:
To verify that policy Q satisfies property pp, a direct verification method takes
into account only Q and pp. It completely ignores the two facts that (1) policy Q
is obtained from policy P by modifying only one rule, and (2) policy P satisfies
property pp.

b. Incremental Verification Methods:
To verify that policy Q satisfies property pp, an incremental verification method
takes into account Q, pp, and the two facts that (1) policy Q is obtained from
policy P by modifying only one rule, and (2) policy P satisfies property pp.

The main advantage of incremental methods over direct methods is that the
time complexity of incremental methods tends to be smaller than that of direct
methods.

An example of a direct verification method is the PSP method outlined in
the previous section, and two examples of incremental verification methods are
discussed in the next two sections.

5 Incremental Verification After Rule Addition

Let P be a policy and let Q be a policy that results after adding one reject
rule rr anywhere in policy P . (Extending the discussion to the case where the
added rule is an accept rule is straightforward.)

Also let pp be a property that is satisfied by policy P . Next, we describe an
efficient method for verifying whether policy Q satisfies property pp.

234 E.S. Elmallah, H.B. Acharya, and M.G. Gouda

First, observe that if pp is a reject property, then policy Q is guaranteed to
satisfy pp. Henceforth, we assume that pp is an accept property.

Second, the PSP method can be used to verify whether policy Q satisfies the
accept property pp by executing the following three steps:

(a) Compute the projection Q/pp
(b) Divide the projection Q/pp into a set RS of reject slices
(c) Check whether every reject slice in set RS rejects no request

Third, observe that set RS consists of all the reject slices of the projection P/pp
plus a new reject slice denoted rs. The new reject slice rs consists of all the
accept rules that precede the added reject rule rr in policy Q followed by rule
rr.

Fourth, because policy P satisfies the accept property pp, then by Theorem
2 above every reject slice of the projection P/pp rejects no request. Therefore,
the above three steps (a) to (c) for verifying whether policy Q satisfies the
accept property pp can be reduced to the following three steps for incrementally
verifying whether policy Q satisfies the accept property pp:

i. Construct the new reject slice rs to consist of all the accept rules
that precede the added reject rule rr in policy Q followed by rule rr.

ii. Use Algorithm 3 above, to check whether the new reject slice rs
rejects no request.

iii. Conclude that Q satisfies pp iff the new reject slice rs rejects no
request

The time complexity for executing these three steps is dominated by the time
complexity of executing Algorithm 3. Because the time complexity of executing
Algorithm 3 is O(nt+1), the time complexity for incrementally verifying whether
policy Q satisfies the accept property pp is O(nt+1), where n is the number of
rules in policy Q and t is the number of attributes. This time complexity is
better than O(nt+2), which is the time complexity for directly verifying whether
policy Q satisfies the accept property pp.

6 Incremental Verification After Rule Removal

Let P be a policy and let Q be a policy that results after removing one rule from
policy P . Without any loss of generality, let the removed rule be an accept rule
denoted ar. (Extending the discussion to the case where the removed rule is a
reject rule is straightforward.)

Also let pp be a property that is satisfied by policy P . Next, we describe an
efficient method for verifying whether policy Q satisfies property pp.

First, observe that if pp is a reject property, then policy Q is guaranteed to
satisfy pp. Henceforth, we assume that pp is an accept property.

Second, the PSP method can be used to verify whether policy Q satisfies the
accept property pp by executing the following three steps:

Incremental Verification of Computing Policies 235

(a) Compute the projection Q/pp
(b) Divide the projection Q/pp into a set RS of reject slices
(c) Check whether every reject slice in set RS rejects no request

Third, observe that there is a one-to-one correspondence between the reject
slices of the projection P/pp and those of the projectionQ/pp. Each reject slice of
projection Q/pp, whose corresponding slice of projection P/pp has the removed
accept rule ar, is called an affected slice. Similarly, each reject slice of projection
Q/pp, whose corresponding slice of projection P/pp does not have the removed
accept rule ar, is called an un-affected slice.

Note that each affected slice of projection Q/pp is identical to its correspond-
ing reject slice of projection P/pp with one exception, namely the removed accept
rule ar does not occur in the affected slice even though it occurs in the corre-
sponding reject slice. Note also that each un-affected slice of projection Q/pp is
identical to its corresponding reject slice of projection P/pp. Finally note that
the number of affected slices of projection Q/pp is at most (m+ 1), where m is
the number of reject rules that follow the removed accept rule ar in policy P ,
and the (m+ 1)st reject rule is added by Step 1 of Algorithm 1.

Fourth, because policy P satisfies the accept property pp, then by Theorem
2 above every reject slice of the projection P/pp rejects no request. Therefore,
the above three steps (a) to (c) for verifying whether policy Q satisfies the
accept property pp can be reduced to the following three steps for incrementally
verifying whether policy Q satisfies the accept property pp:

i. Construct all the affected slices of projection Q/pp. There are at
most (m + 1) of such slices, where m is the number of reject rules
that follow the removed accept rule ar in policy P .

ii. For each affected slice, use Algorithm 3 above, to check whether the
affected slice rejects no request.

iii. Conclude that Q satisfies pp iff every affected slice rejects no request.

The time complexity for executing these three steps is dominated by the time
complexity of executing Algorithm 3 in Step ii. Because the time complexity of
executing Algorithm 3 is O(nt+1), the time complexity for incrementally verify-
ing whether policy Q satisfies the accept property pp is O(m ∗ nt+1), where m
is the number of reject rules that follow the removed accept rule ar in policy
P , n is the number of rules in policy Q, and t is the number of attributes. This
time complexity is better than O(nt+2), which is the time complexity for directly
verifying whether policy Q satisfies the accept property pp.

7 Concluding Remarks

The time complexity of the best known algorithm [2] for verifying whether a
given policy P satisfies a given property pp is O(nt+2) where n is the number of
rules in policy P and t is the number of attributes. This time complexity is not
likely to improve significantly in the future since the policy verification problem
has been shown to be NP-hard [4].

236 E.S. Elmallah, H.B. Acharya, and M.G. Gouda

In this paper, we show that the time complexity of verifying whether any
policy P satisfies any property pp can be reduced to O(nt+1) in the case where
policy P is obtained by adding one rule to another policy that is known to satisfy
property pp.

Also in this paper, we show that the time complexity of verifying whether any
policy P satisfies any property pp can be reduced to O(m ∗ nt+1), where m is
the number of rules that have the same action in policy P , in the case where
policy P is obtained by removing one rule from another policy that is known to
satisfy property pp.

It is straightforward to show that similar techniques to those discussed in this
paper can be employed to reduce the time complexity of verifying whether any
policy P satisfies any property pp in the following three cases: (1) policy P is
obtained by flipping the action of one rule in another policy that is known to
satisfy property pp, (2) policy P is obtained by weakening the predicate of one
rule in another policy that is known to satisfy property pp, and (3) policy P
is obtained by strengthening the predicate of one rule in another policy that is
known to satisfy property pp.

References

1. Acharya, H.B., Gouda, M.G.: Firewall verification and redundancy checking are
equivalent. In: Proceedings of the 30th IEEE International Conference on Com-
puter Communication (INFOCOM). pp. 2123–2128 (2011)

2. Acharya, H.B., et al.: Projection and division: Linear space verification of firewalls.
In: Proceedings of the 30th International Conference on Distributed Computing
Systems (ICDCS), pp. 736–743 (2010)

3. Acharya, H.B., et al.: Linear-time verification of firewalls. In: Proceedings of the
17th IEEE International Conference on Network Protocols (ICNP), pp. 133–140
(2009)

4. Elmallah, E.S., Gouda, M.G.: Hardness of firewall analysis. In: Noubir, G., Raynal,
M. (eds.) NETYS 2014. LNCS, vol. 8593, pp. 153–168. Springer, Heidelberg (2014)

5. Hoffman, D., Yoo, K.: Blowtorch: A framework for firewall test automation. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2005, pp. 96–103 (2005)

6. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Computers and Security 22(3), 214–232 (2003)

7. Liu, A.X., et al.: Complete redundancy removal for packet classifiers in TCAMs.
IEEE Transactions on Parallel and Distributed Systems 21, 424–437 (2010)

8. Mayer, A., Wool, A., Ziskind, E.: Fang: A firewall analysis engine. In: IEEE Sym-
posium on Security and Privacy, pp. 177–187 (2000)

9. Wool, A.: A quantitative study of firewall configuration errors. Computer 37(6),
62–67 (2004)

10. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of fire-
walls using SAT and QBF. In: 20th IEEE International Conference on Network
Protocols (ICNP), pp. 1–6 (2012)

On the Synthesis of Mobile Robots Algorithms:
The Case of Ring Gathering

Laure Millet1,2, Maria Potop-Butucaru1,2,
Nathalie Sznajder1,2, and Sébastien Tixeuil1,2,3

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
2 CNRS, UMR 7606, LIP6, F-75005, Paris, France

3 Institut Universitaire de France, France

Abstract. Recent advances in Distributed Computing highlight models and algo-
rithms for autonomous swarms of mobile robots that self-organize and cooperate
to solve global objectives. The overwhelming majority of works so far considers
handmade algorithms and correctness proofs.

This paper is the first to propose a formal framework to automatically design
distributed algorithms that are dedicated to autonomous mobile robots evolving
in a discrete space. As a case study, we consider the problem of gathering all
robots at a particular location, not known beforehand. Our contribution is three-
fold. First, we propose an encoding of the gathering problem as a reachability
game. Then, we automatically generate an optimal distributed algorithm for three
robots evolving on a fixed size uniform ring. Finally, we prove by induction that
the generated algorithm is also correct for any ring size except when an impossi-
bility result holds (that is, when the number of robots divides the ring size).

1 Introduction

The Distributed Computing community, motivated by the variety of tasks that can be
performed by autonomous robots and their complexity, started recently to propose for-
mal models for these systems and to design and prove protocols in these models. The
seminal paper by Suzuki & Yamashita [24] proposes a robot model, two execution
models, and several algorithms (with associated correctness proofs) for gathering and
scattering a set of robots. In their model, robots are identical and anonymous (they ex-
ecute the same deterministic algorithm and they cannot be distinguished using their
appearance), robots are oblivious (they have no memory of their past actions) and they
have neither a common sense of direction, nor a common handedness (chirality). Fur-
thermore robots do not communicate in an explicit way. However they have the ability
to sense the environment and see the position of the other robots, which lets them find
their way in their environment. Also, robots execute three-phase cycles: Look, Compute
and Move. During the Look phase robots take a snapshot of the other robots’ positions.
The collected information is used in the Compute phase in which robots decide to move
or to stay idle. In the Move phase, robots may move to a new position computed in the
previous phase. The two execution models are denoted (using recent taxonomy [13])
FSYNC, for fully synchronous, and SSYNC, for semi-synchronous. In the SSYNC

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 237–251, 2014.
c© Springer International Publishing Switzerland 2014

238 L. Millet et al.

model an arbitrary non-empty subset of robots execute the three phases synchronously
and atomically. In the FSYNC model all robots execute the three phases synchronously.

A recent trend, motivated by practical applications such that exploration or surveil-
lance, is the study of robots evolving in a discrete space with a finite number of lo-
cations. This discrete space is modeled by a graph, where nodes represent locations
or sites, and edges represent the possibility for a robot to move from one site to the
other. The discrete setting significantly increases the number of symmetric configura-
tions when the underlying graph is also symmetric (e.g. a ring).

One of the benchmarking [13] problems for mobile robots evolving in a discrete
space is that of gathering. Regardless of their initial positions, robots have to move
in such a way that they are eventually located on the same location, not known be-
forehand, and remain there thereafter. The case of ring networks is especially intricate,
since its regular structure introduces a number of possible symmetric situations, from
which the limited abilities of robots make it difficult to escape. A particular disposal (or
configuration) of robots in the ring is symmetrical if there exists an axis of symmetry,
that maps single robots into single robots, multiplicities into multiplicities, and empty
nodes into empty nodes. A symmetric configuration can be edge-edge, node-edge or
node-node symmetrical if the axis goes through two edges, through one node and one
edge, or through two nodes, respectively. A periodic configuration is a configuration
that is invariant by non-trivial rotation.

On the negative side, it was shown [17] that gathering is impossible when the algo-
rithm run by every robot is deterministic and there are only two robots, or if the initial
configurations are periodic, or edge-edge symmetric, or if the ability for a robot to detect
multiple robots on a single location (denoted as multiplicity detection) is not available.
Running a probabilistic algorithm [20] permits to start from an arbitrary initial con-
figuration (including periodic and edge-edge symmetric) but still requires multiplicity
detection. In the deterministic setting, a number of ring gathering algorithms have been
proposed in the literature [16,10,11,23,9] for the cases left open by impossibility results,
focusing on the problem solvability for different initial configurations and different val-
ues for the size of the ring and the number of robots. When the robots are able to
fully detect the number of robots in each location, a unified strategy was proposed [10].
When multiplicity detection is only available on the current position of each robot, more
involved and specific approaches [14,15,16,9] are needed. Every aforementioned deter-
ministic solution considers problem solvability with particular hypotheses, and does not
consider performance issues (such as time needed to reach gathering, or the total num-
ber of moves before gathering is achieved). Also, only a handmade approach for both
algorithm design and proof of correctness was considered in those works.

Most related to our concern are recent approaches to mechanizing the algorithm de-
sign or the correctness proof in the context of autonomous mobile robots [5,12,4,2].
Model-checking proved useful to find bugs in existing litterature [4] and formally as-
sess published algorithms [12,4]. Proof assistants enabled the use of high order logic
to certify impossibility results [2]. To our knowledge, the only previous attempt to au-
tomatically generate mobile robots algorithms (for the problem of perpetual exclusive
exploration) is due to Bonnet et al. [5], but exhibits important limitations for studying
the gathering problem. Indeed their approach is brute force (it generate every possi-

On the Synthesis of Mobile Robots Algorithms 239

ble algorithm in a particular setting, regardless of the problem to solve) and specific
to configurations where (i) a location can only host one robot (so, gathering cannot be
expressed), and (ii) no symmetry appears.

Games and Protocols Synthesis. In the formal methods community, automatically
synthesizing programs that would be correct by design is a problem that raised interest
early [8,18,1,22]. Actually, this problem goes back to Church [7,6]. When the program
to generate is intended to work in an open system, maintaining an on-going interaction
with a (partially) unknown environment, it is known since [6] that seeing the problem
as a game between the system and the environment is a successful approach. The sys-
tem and its environment are considered as opposite players that play a game on some
graph, the winning condition being the specification the system should fulfill however
the environment behave. Then, the classical problem in game theory of determining
winning strategies for the players is equivalent to find how the system should act in any
situation, in order to always satisfy its specification. The case of mobile autonomous
robots that we focus on in this paper falls in this category of problems: the robots may
evolve (possibly indefinitely) on the ring, making decisions based on the global state of
the system at each time instant. The vertices of graph on which the players will play
would then be some representation of the different global positions of the robots on the
ring. The presence of an opposite player (or environment) is motivated by the absence
of chirality of the robots: when a robot is on an axis of symmetry, it is unable to dis-
tinguish its two sides one from another, hence to choose exactly where it moves ; this
decision is supposed to be taken by the opposite player.

Our Contribution. In this paper, we introduce the use of formal methods for auto-
matic synthesis of autonomous mobile robot algorithms, in the discrete space model.
As a case study, we consider the problem of gathering all robots at a particular location,
not known beforehand. Our contribution is threefold. First, we propose an encoding of
the gathering problem as a reachability game, the players being the robot algorithm on
the one side and the scheduling adversary (that is also capable for dynamically deciding
robot chirality at every activation) on the other side. Our encoding is general enough
to encompass classical FSYNC and SSYNC execution models for robots evolving on
ring-shaped networks, including (and contrary to the existing ad hoc solution [5]) when
several robots are located at the same node and when symmetric situations occurs. Then,
in the FSYNC model, we automatically generate an optimal distributed algorithm for
three robots evolving on a fixed size uniform ring. Our optimality criterion refers to
the number of robot moves that are necessary to actually achieve gathering. Finally, we
prove by induction that the mechanically generated algorithm is also correct for any
ring size except when an impossibility result holds (that is, when the number of robots
divides the ring size). Our method can be seen as a first step towards “correct by design”
actual robot protocol implementations.

2 Background

In this section we present a formal model for a robot system evolving on a ring and
definitions and notations for a reachability game.

240 L. Millet et al.

Move
Done

Sched
chosen

LookCompute
Done

Choose Sched ∏
i∈Sched

LookComputei

∏
i∈Sched

Movei

Fig. 1. The Semi-Synchronous Schedulers automaton

2.1 Robot Network Model

In the following we present the robots and system model using the formalism we pro-
posed in [4]. We consider a set of robots evolving on a ring.

Robot Model. A robot behavior can be described by a finite automaton. Each robot
executes a three-phase cycle composed of Look, Compute, Move phases. To start a cycle,
a robot takes a snapshot of its environment, which is represented by a Look transition.
Then it computes its future movement (Compute transition). Finally the robot moves
according to its previous computation, this effective movement is represented by a Move
transition, going back to its initial state. On a ring there are only three possibilities
for the move: stay idle, move in the clockwise direction or in the counterclockwise
direction. Note also that Look and Compute states can be merged in a single state -
LookCompute.

Scheduler Model. The three existing asynchrony models fully synchronous (FSYNC),
semi-synchronous (SSYNC) and asynchronous (ASYNC) in robot networks are called
schedulers. The scheduler can be modeled by a finite automaton. The synchronization
of these schedulers with robots automata is an automaton that represents the global
behavior of robots in the chosen model.

In the sequel we denote by LookComputei (respectively Movei), the LookCom-
pute (resp. Move) phase of ith robot. And for a subset Sched of robots, we denote
by ∏

i∈Sched
LookComputei (resp. ∏

i∈Sched
Movei) the synchronization of all LookComputei

(resp. Movei) actions of all robots in Sched.
In the SSYNC model, an arbitrary non-empty subset of robots is scheduled for ex-

ecution at every phase, and operations are executed synchronously. In this case, the
automaton consists of a cycle, where a set ”Sched” is first chosen, then the LookCom-
pute and Move phases are synchronized for this set. A generic automaton for SSYNC
is described in Figure 1.

The FSYNC model is a particular case of the SSYNC model, where all robots are
scheduled for execution at every phase, and operate synchronously thereafter.

System model. A configuration of k robots on a ring of size n encodes the position of
the robots in the ring. The system is modeled by the automaton obtained by the syn-
chronized product of k robot automata and the possible configurations. The scheduler is
used to define the synchronization function. The alphabet of actions is A = ∏i Ai, with

On the Synthesis of Mobile Robots Algorithms 241

Ai = {LookComputei,Movei, idle} for each robot i. From this definition, states are of
the form s = (s1, . . . ,sk,c) where si is the local state of robot i, and c the configuration.
A transition of the system is labeled by a tuple a = (a1, . . . ,ak), where ai ∈ Ai for all
1≤ i≤ k and (s1, . . . ,sk,c)

a−→ (s′1, . . . ,s
′
k,c
′) iff for all i, si

ai−→ s′i and c′ is obtained from c
by updating the positions of all robots i such that ai = Movei. To represent the schedul-
ing, we denote by ∏i∈SchedActi the action (a1, . . . ,ak) such that ai = idle if i /∈ Sched
and ai ∈ {LookComputei,Movei} otherwise.

2.2 Reachability Games

In the following we revisit the reachability games. We present here classical notions
on this subject. For more details, the interested reader can fruitfully consult the survey
[19]. If A is a set of symbols, A∗ is the set of finite sequences of elements of A (also
called words), and Aω the set of infinite such sequences, with ε the empty sequence. We
note A+ = A∗ \ {ε}, and A∞ = A∗ ∪Aω. For a sequence w ∈ A∞, we denote its length
by |w|. If w ∈ A∗, |w| is equal to its number of elements. If w ∈ Aω, |w| = ∞. For all
words w = a1 · · ·ak ∈ A∗, w′ = a′1 · · · ∈ A∞, we define the concatenation of w and w′ by
the word noted w ·w′ = a1 · · ·aka′1 · · · . We sometimes omit the symbol and simply write
ww′. If L⊆ A∗ and L′ ⊆ A∞, we define L ·L′ = {w ·w′ | w ∈ L,w′ ∈ L′}.

A game is composed of an arena and winning conditions.

Arena. An arena is a graph A = (V,E) in which the set of vertices V = Vp &Vo is
partitioned into Vp, the vertices of the protagonist, and Vo the vertices of the opponent.
The set of edges E ⊆V ×V allows to define the set of successors of some given vertex
v, noted vE = {v′ ∈V | (v,v′)∈E}. In the following, we will only consider finite arenas.

Plays. To play on an arena, a token is positioned on an initial vertex. Then the token is
moved by the players from one vertex to one of its successors. Each player can move
the token only if it is on one of her own vertices. Formally, a play is a path in the graph,
i.e., a finite or infinite sequence of vertices π = v0v1 · · · ∈V ∞, where for all 0 < i < |π|,
vi ∈ vi−1E . Moreover, a play is finite only if the token has been taken to a position
without any successor (where it is impossible to continue the game): if π is finite with
|π|= n, then vn−1E = /0.

Strategies. A strategy for the protagonist determines to which position she will bring
the token whenever it is her turn to play. To do so, the player takes into account the
history of the play, and the current vertex. Formally, a strategy for the protagonist is a
(partial) function σ : V ∗ ·Vp → V such that, for all sequence (representing the current
history) w ∈ V ∗, all v ∈ Vp, σ(w · v) ∈ vE (i.e. the move is possible with respect to the
arena). A strategy σ is memoryless if it does not depend on the history. Formally, it
means that for all w,w′ ∈ V ∗, for all v ∈ Vp, σ(w · v) = σ(w′ · v). In that case, we may
simply see the strategy as a function σ : Vp→V .

Given a strategy σ for the protagonist, a play π = v0v1 · · · ∈ V ∞ is said to be σ-
consistent if for all 0 < i < |π|, if vi−1 ∈Vp, then vi = σ(v0 · · ·vi−1). Given an initial ver-
tex v0, the outcome of a strategy σ is the set of plays starting in v0 that are σ-consistent.
Formally, given an arena A = (V,E), an intial vertex v0 and a strategy σ : V ∗Vp→ V ,
we let Outcome(A,v0,σ) = {v0π ∈V ∞ | v0π is a play and is σ-consistent}.

242 L. Millet et al.

P1P4

O1 P2

O3

O2

P3

Fig. 2. A two-player game. In this figure protagonist vertices are represented by rectangles and
antagonist vertices by circles. The winning condition is Reach({P3}). Any path in the graph is a
play. From P2 the protagonist has no winning strategy. From P1 a (memoryless) winning strategy
is to go to O2. Winning positions are {P1,P3}.

Winning Conditions, Winning Plays, Winning Strategies. We define the winning condi-
tion for the protagonist as a subset of the plays Win ⊆ V ∞. Then, a play π is winning
for the protagonist if π ∈Win. In this work, we focus on the simple case of reachability
games: the winning condition is then expressed according to a subset of vertices T ⊆V
by Reach(T) = {π= v0v1 · · · ∈V ∞ | ∃0≤ i < |π| : vi ∈ T}. This means that the protago-
nist wins a play whenever the token is brought on a vertex belonging to the set T . Once
it has happened, the play is winning, regardless of the following actions of the players.

Given an arena A = (V,E), an initial vertex v0 ∈ V and a winning condition Win,
a winning strategy σ for the protagonist is a strategy such that any σ-consistent play
is winning. In other words, a strategy σ is winning if Outcome(A ,v0,σ) ⊆Win. The
protagonist wins the game (A ,v0,Win) if she has a winning strategy for (A ,v0,Win).
We say that σ is winning on a subset U ⊆V if it is winning starting from any vertex in
U : if Outcome(A ,v0,σ)⊆Win for all v0 ∈U . A subset U ⊆V of the vertices is winning
if there exists a strategy σ that is winning on U .

Solving a Reachability Game. Given an arena A = (V,E), a subset T ⊆ V , one wants
to determine the set U ⊆ V of winning positions for the protagonist, and a strategy
σ : V ∗Vp→V for the protagonist, that is winning on U for Reach(T).

Figure 2 represents a reachability 2-player game. We recall now a well-known result
on reachability games:

Theorem 1. The set of winning positions for the protagonist in a reachability game
can be computed in linear time in the size of the arena. Moreover, from any position,
the protagonist has a winning strategy if and only if she has a memoryless winning
strategy.

3 Encoding the Gathering Problem into a Game

As we have claimed in the introduction, the gathering problem for synchronous robots
is actually a game between the robots, that have an objective (winning condition) and
evolve on a graph encoding the different configurations, and an opponent that can de-
cide the actual movement of a disoriented robot, i.e. a robot whose observation of the

On the Synthesis of Mobile Robots Algorithms 243

ring is symmetrical, hence is unable to distinguish its two sides from one another. It
may seem at first that the model actually needed is the one of distributed games, in
which each robot represents a distinct player, all of them cooperating against a hos-
tile environment. In distributed games, existence of a winning strategy for the team of
players is undecidable [21]. However, the fact that the system is synchronous or semi-
synchronous, and that the robots are able to sense their global environment, and thus
to always know the global state of the system, allows us to stay in the framework of
2-player games, and to encode the set of robots as a single player. Of course, the strat-
egy obtained will be centralized, but we will design the game in order to obtain only
strategies that can be distributed amongst anonymous, memoryless robots without chi-
rality. In the rest of the paper, we focus on the synchronous semantics for the system.
With minor modifications, the game can be modified to handle the semi-synchronous
semantics.

3.1 Encoding Robots Configurations: Symmetries and Equivalences

Consider a robot system consisting of k robots and n nodes (k < n). The configura-
tion of such a system is represented by the tuple (d1, · · · ,dk), such that Σk

i=1di = n− k,
and di ∈ {−1,0, · · · ,n− 1}. Each value di represents the number of free nodes be-
tween the ith robot and the next robot in the clockwise direction. When the two robots
occupy adjacent nodes, di = 0, and when these two robots occupy the same node,
di = −1. Let C = {(d1, · · · ,dk) | Σk

i=1di = n− k and di ∈ {−1,0, · · · ,n− 1}} the set
of all configurations (note that |C | = Cn

n+k−1). In a configuration, each robot can ob-
serve the entire ring, centered in its own position. Since the robots have no chiral-
ity, given a configuration C = (d1, · · · ,dk), the observation of robot i is obsi(C) =
{(di,di+1, · · ·dk,d1, · · ·di−1),(di−1, · · · ,d1,dk, · · ·di)}. Let Obs = {obsi(C) |C ∈ C ,1 ≤
i≤ k} be the set of all possible observations.

Several types of configurations can be distinguished (see Figure 3): periodic: if there
are several axis of symmetry, symmetric: if there is only one axis of symmetry (edge-
edge, node-edge, node-node), rigid configurations: all other configurations.

A configuration is called tower configuration if there are several robots on the same
node. Robots constituting this tower are the ones such that at least one tuple of their
observation begins with −1.

Since the robots take snapshots of the configuration, and their decisions are based on
this information, the states of the arena must represent the different configurations of
the ring. The robots are anonymous, hence, different rotations of a similar ring in fact
represent the same configuration. We define the rotation relation �⊆ C ×C as follows:
for all configurations C, C′ ∈ C , C � C′ if and only if C = (di,di+1, · · · ,di+k−1) and
C′ = (di+1,di+2, · · ·di+k), where the addition symbol + means sum modulo k. Since the
robots have no chirality, one can easily observe that, for two configurations C and C′, if
C = (d1, · · · ,dk) and C′ = (dk, · · · ,d1), then, for all robot i, obsi(C) = obsi(C′). We then
define the mirror relation ∼⊆ C ×C by C ∼C′ if and only if C = (d1, · · · ,dk) and C′ =
(dk, · · · ,d1). From these two relations, we define an equivalence relation ≡ ⊆ C ×C
on the configurations, that identify all the configurations on which the robots should

behave the same way: we let ≡ def
= (� ∪ ∼)∗.

244 L. Millet et al.

r3

r2
r1,r4

(a) A disoriented tower
obsr1={(2,3,2,−1),(−1,2,3,2)}

viewr1={(2,3,2)}

r3

r4

r2

r1

(b) A periodic configuration
obsr1={(1,2,1,2),(2,1,2,1)}

viewr1=obsr1

r4

r3

r2

r1

(c) A rigid configuration
obsr1={(3,0,1,2),(2,1,0,3)}

viewr1=obsr1

Fig. 3. Robot observations and Views

The following lemma states that our equivalence relation is correct with respect to
robots behavior.

Lemma 2. For all C ∈ C ,
⋃

1≤i≤k obsi(C) = [C]≡.

Then, an equivalence class of configurations can be seen as the set of observations
for the robots in such a configuration.

We let [C]≡ be the equivalence class of a configuration C ∈ C , and we define an
application rep : C/≡→ C , such that rep([C]≡) ∈ [C]≡ for all C ∈ C , that associates
to each equivalence class a unique representative in this class, say the smallest w.r.t
lexicographic order on tuples. For the rest of the paper, when we use the sum symbol
on indexes of elements of a configuration, it means sum modulo k.

3.2 Encoding the Moves of the Robots and Transitions between Configurations

To define precisely the transitions between the configurations, we need the following
auxiliary notations. We let M= {�,�,↑} be the different possible moves for a robot,
where, as one easily guesses, � means that the robot moves in the clockwise direction,
� means that it moves in the counter-clockwise direction, and ↑ means that the robot
does not move. We will use the fact that, for robots on a tower, a deterministic algorithm
will either make them all move, or none of them. However, if they are disoriented, they
can move in different directions. When a robot i moves, it modifies the distances di and
di−1 (increasing one of these two distances by one, and decreasing by one the other).
We can encode this by an algebraic notations, adding the configuration and one vector
of movement for each robot: the effect on the configuration of the move � of robot i
will be represented by the k-tuple mi,�, the effect of the move � will be represented
by mi,� and if the robot does not move, it will be represented by m0. These tuples are
defined as follows: for a robot 1 ≤ i ≤ k, mi,�

i = 1 and mi,�
i−1 = −1 and mi,�

j = 0 for

all other 1 ≤ j ≤ k. Similarly, mi,�
i = −1 and mi,�

i−1 = 1 and mi,�
j = 0 for all other

1≤ j ≤ k. The last tuple is m0
j = 0 for all 1≤ j ≤ k.

The idea is to add (in an element-by-element fashion) the current configuration to
all the tuples representing the movements of the robots to obtain the next configuration.
However, when the movements of two adjacent robots imply that they switch their posi-
tions in the ring, some absurd values (-2 or -3) may appear in the obtained configuration,

On the Synthesis of Mobile Robots Algorithms 245

if the sum is naively effected, so a careful treatment of these particular cases must be
done. To obtain the correct configuration, one should recall that robots are anonymous,
hence if two robots switch their positions, it has the same effect as if none of them has
moved. Also, if in a tower, some robots want to move clockwise, and the others want
to move counterclockwise, the exact robots that will move are of no importance: the
only important thing is the number of robots that move. We will then reorganize the
movements between the robots, in order to keep correct values in our configurations: in
a tower, we will assume that the robots that will move in the counterclockwise direction
will always be the bottom ones, and when a robot moves right and joins a tower, we
will assume that it will be placed at the bottom of the tower, and when it moves left and
joins a tower, it will be placed at the top of the tower. These conventions will ensure that
when adding the configuration and the different movements, we will not obtain aberrant
values.

Formally, given a configuration C = (d1, . . . ,dk), we define PosTower(C) = {(i, j) |
d j �=−1 and ∀i≤ � < j,d� =−1} that contains the positions of the towers, encoded by
the position of the first and the last robot in it. We then define Pos(C) = PosTower(C)∪
{(i, i) | 1 ≤ i ≤ k,∀1 ≤ � ≤ k,(i, �),(�, i) /∈ PosTower(C)}, that contains the positions
of the towers, and the positions of the isolated robots. Given a tuple of movements
(mi)1≤i≤k, given (i, j) ∈ Pos(C), N�

(i, j) = |{m�

� | i ≤ � ≤ j}| and N�

(i, j) = |{m�

� | i ≤
� ≤ j}|. We first reorganize the movements of the robots in the towers: for all (i, j) ∈
PosTower(C), we let m′� = m�,� for all i ≤ � ≤

(
N�

(i, j) + i− 1
)

and m′� = m�,� for all(
N�

(i, j) + i
)
≤ � ≤ j. For all (i, i) ∈ Pos(C)\PosTower(C), m′i = mi. Now, we iteratively

modify the tuple m′. Let (i, j) ∈ Pos(C) be the element of Pos(C) considered at the t th

iteration and let mt be the current tuple encoding the moves.

– If d j �= 0, mt+1 = mt .
– Otherwise, let r such that (j+1,r) ∈ Pos(C) (if r = j+1, the next robot is isolated,

otherwise it is a tower).
• If N�

(i, j) ≥ N�

(j+1,r), then mt+1
� = m�,� for all j−N�

(i, j) +N�

(j+1,r) + 1 ≤ � ≤ j,

mt+1
� = m�,0 for all j−N�

(i, j) ≤ � ≤ j−N�

(i, j) +N�

(j+1,r) and for all j+ 1≤ � ≤
j+N�

(j+1,r)− 1, and mt+1
� = mt

� for all other �.
• If N�

(i, j) < N�

(j+1,r), then the modification is symmetrical.

When all the elements of Pos(C) have been visited, we obtain a tuple (m f
i)1≤i≤k.

Proposition 3. For all configurations C ∈ C , for all tuples (mi)1≤i≤k, C+
k
∑

i=1
m f

i ∈ C ,

where (m f
i)1≤i≤k has been obtained as described above.

Proof (sketch). Let C = (d1, . . . ,dk). For all 1 ≤ i ≤ k, if di = 0, then if the robot i
wants to move in the clockwise direction, and the robot i+ 1 wants to move in the
counterclockwise direction, then by our construction, m f

i =mi,0 and m f
i+1 = mi+1,0, and

the resulting distance will stay 0. For all other decisions of the robots, the distance
obtained will be positive. If di =−1, by the reorganization of the robots on a tower, it is
impossible that robot i wants to move in the clockwise direction and that the robot i+1

246 L. Millet et al.

wants to move in the counterclockwise direction. Hence, the distance obtained is never
less than -1. In all other cases, the obtained distance is necessarily positive. ��

Definition 4 (successor of a configuration). Given a configuration C ∈ C and a tuple
of moves for the different robots (mi)i∈{1,...,k} ∈Mk, the successor configuration, noted

C⊕ (mi)i∈{1,...,k} is obtained by C+
k
∑

i=1
m f

i ∈ C , where (m f
i)1≤i≤k has been obtained as

described above.

3.3 The Gathering Game

We build an arena for a reachability game, such that the protagonist has a winning
strategy if and only if one can design an algorithm for the robots to gather on a single
node, starting from any configuration. The possible decisions of movements taken by
the robots will be noted by Δ= {�,�,↑,?}, which is the set M of possible movements,
added by a special decision ?, taken by a disoriented robot that nevertheless wants to
move. We will note � =�, � =�, ↑ =↑ and ? =?. We consider the arena Agather =
(Vp &Vo,E), where the set of protagonist states is Vp = (C/ ≡), the set of antagonist
states is Vo = C × (Δk), the size of the arena is thus linear in n and exponential in k.

The edge relation E will ensure a strict alternance between the two players: E ⊆
(Vp×Vo)∪ (Vo×Vp) and will be detailed in the rest of the subsection.

From Vp to Vo From a protagonist position, representing an equivalence class of
configurations, the play continues on an antagonist position memorizing the different
movements decided by each robot. Such a move is possible if, in a given equivalence
class of configurations, the robots with the same observation take the same decision.
However, our definition of observation does not capture what happens when several
robots are stacked to form a tower: consider two robots on a tower, in a configuration of
the form C =(−1,d2, · · · ,dk). Using our definition of observation, we obtain obs1(C) =
{(−1,d2, · · · ,dk),(dk, · · · ,d2,−1)} and obs2(C) = {(d2, · · · ,dk,−1),(−1,dk, · · · ,d2)},
hence obs1(C) �= obs2(C) whereas in reality they observe the same thing. Thus, we will
use the notion of view for a robot, where, if a robot is part of a tower, the distance from
other robots in the tower is removed from its observation. Formally, we define the view
of the robot i as follows:

Definition 5 (view). Let C ∈ C and 1 ≤ i ≤ k be a robot. Let (d1, . . . ,dk) ∈ obsi(C)
be the smallest observation of C, with respect to the lexicographic order. We define the
view of robot i by viewi(C) = {(di, . . . ,d j),(d j, . . . ,di)}, where i < j are respectively
the smallest and greatest index such that di �=−1 (respectively d j �=−1).

We let V = {viewi(C) |C ∈ C ,1≤ i≤ k} be the set of all possible views.

Note that if robot i does not belong to a tower then viewi(C) = obsi(C). Also, when
|viewi(C)| = 1, the robot is disoriented (see Figure 3). For o ∈ Obs an observation, we
let p(o) ∈ V be the projection from an observation to obtain a view.

A decision function is a function that suggests a movement to a robot, according to
its view.

On the Synthesis of Mobile Robots Algorithms 247

Definition 6 (decision function). A decision function is a function f : V → Δ such
that, for all V ∈ V , if |V |= 1, then f (V) ∈ {↑,?} and if f (V) =? then |V |= 1.

Given a configuration C = (d1, . . . ,dk) ∈ C , we translate a decision function f into
a real movement of each robot. For all 1 ≤ i ≤ k, let f (C, i) be defined as follows. If
(di, · · · ,dk,d1, · · ·di−1) is the smallest element of viewi(C) = {(di, · · · ,dk,d1, · · ·di−1),
(di−1, · · · ,d1,dk, · · ·di)} in the lexicographic order, then f (C, i) = f (viewi(C)). Other-
wise, f (C, i) = f (viewi(C)). This is so because, when applying the real movements
on a real configuration, the game (that makes the robots move) must be coherent on a
common direction.

We are able to determine now the edge relation from a protagonist state to an antago-
nist state: for all v∈Vp,v′ ∈Vo, (v,v′) ∈ E if and only if there exists a decision function
f such that v′ =

(
C,(a1, . . . ,ak)

)
defined as follows: C = rep(v) = (d1, . . . ,dk) and, for

all 1≤ i≤ k, ai = f (C, i).

From Vo to Vp The moves of the antagonist lead the game into the following con-
figuration of the system resulting of the application of the decisions of all the robots.
If one robot decides to move, but is disoriented, then the antagonist chooses the actual
move (� or �) the robot will make. The next configuration reached by the robots is
then determined by the actions chosen and by the decisions taken by the antagonist.

Definition 7. For a state v′ = (C,(a1, . . . ,ak)), we say that a tuple (mi)i∈{1,...,k} is v′-
compatible if,

– for all 1≤ i≤ k such that ai �=?, mi = ai,
– for all 1≤ i≤ k such that ai =?, mi �=↑.
A v′-compatible tuple is then a tuple in which the antagonist has chosen in which

directions disoriented robots will move.
Then, we can formally define the edge relation from an antagonist state to a protago-

nist state: for all v ∈Vp, v′ = (C,(a1, . . . ,ak)) ∈Vo, (v′,v) ∈ E if and only if there exists
a v′-compatible tuple (mi)i∈{1,...,k} such that v = [C⊕ (mi)i∈{1,...,k}]≡.

To sum up, in Agather
1,

E = {(v,v′) ∈Vp×Vo |
there exists a decision function f such that v′ =

(
rep(v),(f (C,1), . . . , f (C,k))

)
}

∪{(v′,v) ∈Vo×Vp | v′ = (C,(ai, . . . ,ak))

and there exists a v′-compatible tuple m(i)i∈{1,...,k},v = [C⊕ (mi)i∈{1,...,k}]≡}.

We now state the result that validates the construction: solving the reachability game
that we have just defined amounts to automatically synthesizing a deterministic algo-
rithm achieving the gathering for this system. Let W = [(−1, · · · ,−1,n− 1)]≡ ∈ Vp be
the equivalence class of all the configurations representing the case where all the robots
are positioned on a single node.

Theorem 8. The winning region for the game (Agather,W) corresponds exactly to the
set of configurations from which the robots can achieve the gathering.

1 To handle the semi synchronous semantics, the antagonist should also choose at each step the
subset of robots that will be activated.

248 L. Millet et al.

Proof (Sketch). An algorithm F can be turned into a decision function f : V → Δ
as follows: let {view1,view2} ∈ V , and assume that view1 < view2 with < being the
lexicographic order. Let o ∈ p−1(view1) be an observation compatible with the view
view1 (we recall that p is the projection of an observation for a robot in a tower to its
view that removes the elements equal to -1). Then f ({view1,view2}) = F (o). Since
the algorithm F takes the same decision for all the robots in a tower, hence for all
o ∈ p−1(view1), this definition indeed translates the algorithm into a decision function.
The strategy that chooses this decision function will visit the same configurations as the
algorithm on the real ring. Reciprocally, a winning strategy from a configuration class
gives a decision function. To turn the decision functions for each configuration class
into a distributed algorithm, we remark, thanks to Lemma 2, that one observation for
a robot belongs to exactly one equivalence class of configurations. To determine the
movement a robot takes according to its observation of the ring, it suffices to translate
the decision function associated to the corresponding equivalence class into a movement
in the ring. Then one can show that any sequence of configurations obtained by the
algorithm corresponds to a play in the game, visiting the same configurations. ��

4 Synthesis of 3-Robots Gathering Protocol

In the case of a system with three robots, there are 6 distinct types of configuration classes:

– The 3-robots tower configuration, which is the configuration to reach: [(−1,−1,n−
1)]≡. From this class of configuration the edge leads to (C,(a1,a1,a1) with a1 ∈
{↑,?}. However, this edge is not of interest for us since the gathering property is
verified.

– The disoriented tower is a configuration where there is an axis of symmetry pass-
ing through the tower and the isolated robot. This configuration belongs to the class
[(−1, n−1

2 , n−1
2)]≡ and occurs only when n is odd. In this case, all robots are disori-

ented and thus the outgoing edges lead to all the states {(−1, n−1
2 , n−1

2),(a1,a1,a2)}
with a1,a2 ∈ {↑,?}.

– The tower configurations are the configurations of the classes [(−1,d2,d3)]≡, with
rep([(−1,d2,d3)]≡) = (−1,d2,d3) and−1< d2 < d3 ∈N. The edges lead to all the
states {(−1,d2,d3),(a1,a1,a2} with a1,a2 ∈ {�,�,↑}.

– The symmetrical configurations, which is in [(d1,d1,d2)]≡ with −1 �= d1 �= d2 and
−1 �= d2. Recall that when k is odd and there is an axis of symmetry, the axis goes
through an occupied node. If d1 < d2, the edges lead to (C,(a1,a2,a1) with a1 ∈ {�
,�,↑} and a2 ∈ {↑,?}, otherwise edges lead to (C,(a1,a1,a2) with a1 ∈ {�,�,↑}
and a2 ∈ {↑,?}.

– The rigid configurations are all other configurations. For a class C such that
rep(C) =C does not fall into any of the above categories, the outgoing edges go to
states (C,(a1,a2,a3)) with a1,a2,a3 ∈ {�,�,↑}.

We implemented the arena for three robots and different ring sizes, in the game-solver
tool UPPAAL TIGA [3]. We verified the impossibility of the gathering from periodic con-
figurations. Moreover we obtained that there is a winning strategy from all protagonist

On the Synthesis of Mobile Robots Algorithms 249

vertices except from the periodic configurations, and we identified in the edges relation
that the edges that lead to {(C,(a,a,a))}with a∈M are not part of any winning strategy.

The arena without the periodic class of configuration {[(d,d,d)]≡}, and the edges
that lead to {(C,(a,a,a))} with a ∈ M from a protagonist vertex [C]≡, is the graph
such that all protagonist vertices are winning. In order to find the best winning strate-
gies, weights are added on the edges. In order to minimize the number of robot moves,
each edge is weighed by the number of robots that move. A strategy is a shortest path
algorithm on this graph such that the protagonist vertices and opponent vertices are
handled differently. The distance between a protagonist vertex and the configuration to
reach is the minimum distance, and the distance between an opponent vertex and this
configuration is the maximal distance between them.

We obtained all the optimal strategies, for each class of configurations [(d1,d2,d3)]≡,
the edge relation is restricted. From these strategies we outline the following pattern of
strategy.

– If all robots form a tower nobody moves. From [(−1,−1,n−1)]≡ the edge relation
leads to ((−1,−1,n− 1),(↑,↑,↑)).

– If 2 robots form a tower the last robot takes the shortest path to the tower. From
[(−1,d1,d2)]≡with −1 < d1 < d2, the edge relation leads to ((−1,d1,d2),(↑,↑,�
)). And from [(−1, n−1

2 , n−1
2)]≡ the edge relation leads to ((−1, n−1

2 , n−1
2),(↑,↑,?)).

– If the configuration is symmetrical, in[(d1,d1,d2)]≡ with −1 < d1 < d2, the pro-
posed strategy depends on whether rep([(d1,d1,d2)]≡) = (d1,d1,d2) or (d2,d1,d1).
• If rep([(d1,d1,d2)]≡) = (d1,d1,d2) then the two symmetrical robots get closer

to the last robot. The edge relation leads to ((d1,d1,d2),(�,↑,�)).
• If rep([(d1,d1,d2)]≡) = (d1,d1,d2) then the disoriented robot moves. The edge

relation leads to ((d2,d1,d1),(↑,↑,?)).
– If the configuration is rigid (in[(d1,d2,d3)]≡ with −1 < d1 < d2 < d3)the edge

relation leads to three possibilities :
• The robot with the minimum view gets closer to its nearest neighbor. In this

case the edge relation leads to ((d1,d2,d3),(�,↑,↑)).
• The robot with the maximum view gets closer to its nearest neighbor.In this

case the edge relation leads to ((d1,d2,d3),(↑,↑,�)).
• The robot with the minimum view and the robot with the maximum view

get closer to their nearest neighbor. In this case the edge relation leads to
((d1,d2,d3), (�,↑,�)). This strategy is the two above strategies made simul-
taneously.

Thus the edge relation for rigid configuration leads to: {((d1,d2,d3),(a1,↑,a2))},
with a1 ∈ {�,↑}, a2 ∈ {↑,�} and a1 �= a2.

From Theorem 8, one can translate the decision functions for each configuration into
a distributed algorithm. Among the possible strategies we present below the strategy
that moves the robot with the minimum view and the robot with the maximum view
closer to their nearest neighbor in the rigid configurations. Thus we obtain the following
distributed algorithm: if the view of the robot r is view(r) = {(y,−1,z),(z,−1,y)} with
y < z, r robot moves in order to increment z and decrement y. If view(r) = {(x,x,z),
(z,x,x)} with x < z then r moves to increment z and decrement x,if view(r) = {(z,x,z),
(z,x,z)} with x < z then r moves in any direction,if view(r) = {(x,y,z),(z,y,x)} with

250 L. Millet et al.

x < y < z then r moves to increment z and decrement x,if view(r) = {(y,x,z),(z,x,y)}
with x < y < z then r moves to increment z and decrement y, and when r has a different
view than the above, it remains idle.

The above algorithm is correct by construction for various values of n (3 ≤ n ≤ 15,
n= 100). The following theorem proves that it is also correct for any ring of size n. Due
to space limitation the proof by induction of the theorem is omitted.

Theorem 9. In a ring of any size n> 3 starting from any configuration (except periodic
ones) the above 3-gathering algorithm eventually reaches a gathering configuration.

5 Conclusions and Discussions

We proposed a formal method based on reachability games that permits to automatically
generate distributed algorithms for mobile autonomous robots solving a global task. The
task of gathering on a ring-shaped network was used as a case study. We hereby discuss
current limitations and future works.

While our construction generates algorithms for a particular number of robots k and
ring size n, the game encoding we propose enables to easily tackle the gathering prob-
lem for any given k and n, provided as inputs, since k and n are parameters of the arena
described in Section 3. Also, we focused on the atomic FSYNC and SSYNC models.
Breaking the atomicity of Look-Compute-Move cycles (that is, considering automatic
algorithm production for the ASYNC model [13]) implies that robots cannot maintain
a current global view of the system (their own view may be outdated), nor be aware of
the view of other robots (that may be outdated as well). Then, our two-players game en-
coding is not feasible anymore. A natural approach would be to use distributed games,
but they are generally undecidable as previously stated. So, a completely new approach
is required for the automatic generation of non-atomic mobile robot algorithms.

The problem of synthesis for parameterized systems is a challenging path for future
research. Also, the size of the game increases quickly with the number of robots; it is
expected that to-be-discovered optimizations and/or heuristics will help bringing algo-
rithm production more practical. Finally, we believe that part of our encoding (typically,
configurations and transitions between configurations) can be reused for different prob-
lems on ring-shaped networks, such as exploration with stop or perpetual exploration
and easily extended to other topologies.

References
1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of reactive

systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results
for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-
Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer,
Heidelberg (2013)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: UPPAAL-Tiga:
Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 121–125. Springer, Heidelberg (2007)

4. Bérard, B., Millet, L., Potop-Butucaru, M., Tixeuil, S., Thierry-Mieg, Y.: Vérification
formelle et robots mobiles. In: Proc. of Algotel 2013 (2013)

On the Synthesis of Mobile Robots Algorithms 251

5. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M.G., Tixeuil, S.: Brief announcement:
Discovering and assessing fine-grained metrics in robot networks protocols. In: Richa, A.W.,
Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 282–284. Springer, Heidelberg (2012)

6. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans.
Amer. Math. Soc. 138, 295–311 (1969)

7. Church, A.: Logic, arithmetics, and automata. In: Proc. of Int. Congr. of Mathematicians, pp.
23–35 (1963)

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

9. D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings under min-
imal assumptions. In: Chatterjee, M., Cao, J.-n., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN
2014. LNCS, vol. 8314, pp. 149–164. Springer, Heidelberg (2014)

10. D’Angelo, G., Di Stefano, G., Navarra, A.: How to gather asynchronous oblivious robots
on anonymous rings. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 326–340.
Springer, Heidelberg (2012)

11. D’Angelo, G., Stefano, G.D., Navarra, A., Nisse, N., Suchan, K.: A unified approach for dif-
ferent tasks on rings in robot-based computing systems. In: IPDPS Workshops, pp. 667–676
(2013)

12. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by
asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS,
vol. 7596, pp. 64–76. Springer, Heidelberg (2012)

13. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool Publishers (2012)

14. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local
weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS,
vol. 6058, pp. 101–113. Springer, Heidelberg (2010)

15. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from
symmetric configurations without global multiplicity detection. In: Kosowski, A., Yamashita,
M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011)

16. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd
ring without global multiplicity detection. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer, Heidelberg (2012)

17. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring.
Theor. Comput. Sci. 390(1), 27–39 (2008)

18. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic specifica-
tions. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

19. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata, Logics,
and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg (2002)

20. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in uniform rings.
In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 49–63. Springer,
Heidelberg (2012)

21. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proc. of FOCS 1979, pp. 348–363.
IEEE Computer Society Press (1979)

22. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL 1989, pp.
179–190. ACM (1989)

23. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs.
In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 213–224.
Springer, Heidelberg (2013)

24. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computing, 1347–1363 (1999)

Synthesizing Self-stabilization through

Superposition and Backtracking

Alex Klinkhamer and Ali Ebnenasir �,��

Department of Computer Science
Michigan Technological University, Houghton MI 49931, USA

{apklinkh,aebnenas}@mtu.edu

Abstract. While the design of self-stabilization is known to be a hard
problem, several sound (but incomplete) heuristics exist for algorithmic
design of self-stabilization. This paper presents a sound and complete
method for algorithmic design of self-stabilizing network protocols. The
essence of the proposed approach is based on variable superposition and
backtracking search. We have validated the proposed method by creat-
ing both a sequential and a parallel implementation in the context of
a software tool, called Protocon. Moreover, we have used Protocon to
automatically design self-stabilizing protocols for the problems that all
existing heuristics fail to solve.

1 Introduction

Self-stabilization is an important property of today’s distributed systems as it
ensures convergence in the presence of transient faults (e.g., loss of coordination
and bad initialization). That is, from any state/configuration, a Self-Stabilizing
(SS) system recovers to a set of legitimate states (a.k.a. invariant) in a finite num-
ber of steps. Moreover, from its invariant, the executions of an SS system satisfy
its specifications and remain in the invariant; i.e., closure. Design and verification
of convergence are difficult tasks [10,16,23] in part due to the requirements of (i)
recovery from any state; (ii) recovery under distribution constraints, where pro-
cesses can read/write only the state of their neighboring processes (a.k.a. their
locality), and (iii) the non-interference of convergence with closure. This paper
presents a novel method for algorithmic design of self-stabilization by variable
superposition [9] and a complete backtracking search.

Most existing methods for the design of self-stabilization are either man-
ual [5, 7, 10, 16, 18, 29, 31] or heuristics [1, 2, 13, 14] that may fail to generate
a solution for some systems. For example, Awerbuch et al. [7] present a method
based on distributed snapshot and reset for locally correctable systems; systems
in which the correction of the locality of each process results in global recovery to
invariant. Gouda and Multari [18] divide the state space into a set of supersets of

� This work was sponsored by the NSF grant CCF-1116546.
�� Superior, a high performance computing cluster at Michigan Technological Univer-

sity, was used in obtaining the experimental results presented in this paper.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 252–267, 2014.
c© Springer International Publishing Switzerland 2014

Synthesizing Self-stabilization through Superposition and Backtracking 253

the invariant, called convergence stairs, where for each stair closure and conver-
gence to a lower level stair are guaranteed. Stomp [29] provides a method based
on ranking functions for design and verification of self-stabilization. Gouda [16]
presents a theory for design and composition of self-stabilizing systems. Meth-
ods for algorithmic design of convergence [1,2,13,14] are mainly based on sound
heuristics that search through the state space of a non-stabilizing system in or-
der to synthesize recovery actions while ensuring non-interference with closure.
However, the aforementioned methods may fail to find a solution while there
exists one; i.e., they are sound but incomplete.

This paper proposes a sound and complete method for the synthesis of SS sys-
tems. The essence of the proposed approach includes (1) systematic introduction
of computational redundancy by introducing new variables, called superposed
variables, to an existing protocol’s variables, called underlying variables, and
(2) an intelligent and parallel backtracking method. The backtracking search
is conducted in a parallel fashion amongst a fixed number of threads that si-
multaneously search for an SS solution. When a thread finds a combination of
design choices that would result in the failure of the search (a.k.a. conflicts), it
shares this information with the rest of the threads, thereby improving resource
utilization during synthesis.

The contributions of this work are multi-fold. First, the proposed synthesis
algorithm is complete; i.e., if there is an SS solution, our algorithm will find it.
Second, we relax the constraints of the problem of designing self-stabilization by
allowing new superposed behaviors inside the invariant. This is in contrast to
previous work where researchers require that during algorithmic design of self-
stabilization no new behaviors are included in the invariant. Third, we provide
three different implementations of the proposed method as a software toolset,
called Protocon (http://cs.mtu.edu/~apklinkh/protocon/), where we pro-
vide a sequential implementation and two parallel implementations; one multi-
threaded and the other an MPI-based implementation. Fourth, we demonstrate
the power of the proposed method by synthesizing four challenging network pro-
tocols that all existing heuristics fail to synthesize. These case studies include
the 3-bit (8-state) token passing protocol (due to Gouda and Haddix [17]), col-
oring on Kautz graphs [21] which can represent a P2P network topology, ring
orientation and leader election on a ring.
Organization. Section 2 introduces the basic concepts of protocols, transient
faults, closure and convergence. Section 3 formally states the problem of design-
ing self-stabilization. Section 4 presents the proposed synthesis method. Section
5 presents the case studies. Section 6 summarizes experimental results. Section 7
discusses related work. Finally, Section 8 makes concluding remarks and presents
future/ongoing work.

2 Preliminaries

In this section, we present the formal definitions of protocols and self-
stabilization. Protocols are defined in terms of their set of variables, their actions
and their processes. The definitions in this section are adapted from [5,10,16,26].

http://cs.mtu.edu/~apklinkh/protocon/

254 A. Klinkhamer and A. Ebnenasir

For ease of presentation, we use a simplified version of Dijkstra’s token ring pro-
tocol [10] as a running example.
Protocols. A protocol p comprises N processes {P0, · · · , PN−1} that communi-
cate in a shared memory model under the constraints of an underlying network
topology Tp. Each process Pi, where i ∈ ZN and ZN denotes values modulo N ,
has a set of local variables Vi that it can read and write, and a set of actions
(a.k.a. guarded commands [11]). Thus, we have Vp = ∪N−1

i=0 Vi. The domain of
variables in Vi is non-empty and finite. Tp specifies what Pi’s neighboring pro-
cesses are and which one of their variables Pi can read; i.e., Pi’s locality. Each
action of Pi has the form grd→ stmt, where grd is a Boolean expression speci-
fied over Pi’s locality, and stmt denotes an assignment statement that atomically
updates the variables in Vi. A local state of Pi is a unique snapshot of its locality
and a global state of the protocol p is a unique valuation of variables in Vp. The
state space of p, denoted Sp, is the set of all global states of p, and |Sp| denotes
the size of Sp. A state predicate is any subset of Sp specified as a Boolean expres-
sion over Vp. We say a state predicate X holds in a state s (respectively, s ∈ X)
if and only if (iff) X evaluates to true at s. A transition t is an ordered pair of
global states, denoted (s0, s1), where s0 is the source and s1 is the target state
of t. A valid transition of p must belong to some action of some process. The set
of actions of Pi represent the set of all transitions of Pi, denoted δi. The set of
transitions of the protocol p, denoted δp, is the union of the sets of transitions of
its processes. A deadlock state is a state with no outgoing transitions. An action
grd → stmt is enabled in a state s iff grd holds at s. A process Pi is enabled in
s iff there exists an action of Pi that is enabled at s.
Example: Token Ring (TR). The Token Ring (TR) protocol (adapted from [10])
includes three processes {P0, P1, P2} each with an integer variable xj , where
j ∈ Z3, with a domain {0, 1, 2}. The process P0 has the following action (addition
and subtraction are in modulo 3):

A0 : (x0 = x2) −→ x0 := x2 + 1

When the values of x0 and x2 are equal, P0 increments x0 by one. We use the
following parametric action to represent the actions of processes Pj for 1 ≤ j ≤ 2:

Aj : (xj �= x(j−1)) −→ xj := x(j−1)

Each process Pj copies xj−1 only if xj �= xj−1, where j = 1, 2. By definition,
process Pj has a token iff xj �= xj−1. Process P0 has a token iff x0 = x2. We
define a state predicate ITR that captures the set of states in which only one
token exists, where ITR is

((x0 = x1) ∧ (x1 = x2)) ∨ ((x1 �= x0) ∧ (x1 = x2)) ∨ ((x0 = x1) ∧ (x1 �= x2))

Each process Pj is allowed to read variables xj−1 and xj , but can write only
xj . Process P0 is permitted to read x2 and x0 and can write only x0. �
Minimal Actions. Notice that the guard of an action A : grd → stmt of a
process Pi can be specified in terms of a proper subset of Vi. In such cases, the
actionA is the union of a set of k > 1 minimal actions grd1 → stmt1, · · · , grdk →
stmtk, where grd ≡ grd1 ∨ · · · ∨ grdk, and each grdj (1 ≤ j ≤ k) is specified
in terms of the values of all variables in Vi (where i ∈ ZN). More precisely, a

Synthesizing Self-stabilization through Superposition and Backtracking 255

minimal action of a process Pi includes a single valuation of all readable variables
for Pi in its guard and a single valuation of all writable variables for Pi in its
assignment statement. For example, consider an action x0 = 0 → x0 := x2 in
the TR protocol. This action is the union of the minimal actions x0 = 0 ∧ x2 =
0 → x0 := x2, x0 = 0 ∧ x2 = 1 → x0 := x2, and x0 = 0 ∧ x2 = 2 → x0 := x2.
The proposed synthesis algorithm by superposition and backtracking in Section
4 explores the space of all minimal actions that can be included in a solution.
Computations. Intuitively, a computation of a protocol p is an interleaving of
its actions. Formally, a computation of p is a sequence σ = 〈s0, s1, · · · 〉 of states
that satisfies the following conditions: (1) for each transition (si, si+1) in σ, where
i ≥ 0, there exists an action grd→ stmt in some process such that grd holds at
si and the execution of stmt at si yields si+1, and (2) σ is maximal in that either
σ is infinite or if it is finite, then σ reaches a state sf where no action is enabled.
A computation prefix of a protocol p is a finite sequence σ = 〈s0, s1, · · · , sm〉 of
states, where m > 0, such that each transition (si, si+1) in σ (where i ∈ Zm)
belongs to some action grd→ stmt in some process. The projection of a protocol
p on a non-empty state predicate X , denoted δp|X , consists of transitions of p
that start in X and end in X .
Specifications. We follow [25] in defining a safety specification sspec as a
set of bad transitions in Sp × Sp that should not be executed. A computation
σ = 〈s0, s1, · · · 〉 satisfies sspec from s0 iff no transition in σ is in sspec. A liveness
specification lspec is a set of infinite sequences of states [4]. A computation
σ = 〈s0, s1, · · · 〉 satisfies lspec from s0 iff σ has a suffix in lspec. A computation
σ of a protocol p satisfies the specifications spec of p from a state s0 iff σ satisfies
both safety and liveness of spec from s0.
Closure and Invariant. A state predicateX is closed in an action grd→ stmt
iff executing stmt from any state s ∈ (X ∧ grd) results in a state in X . We say
a state predicate X is closed in a protocol p iff X is closed in every action of p.
In other words, closure [16] requires that every computation of p starting in X
remains inX . We say a state predicate I is an invariant of p iff I is closed in p and
every computation of p that starts in some state in I satisfies its specifications.
TR Example. Starting from a state in the predicate ITR, the TR protocol generates
an infinite sequence of states, where all reached states belong to ITR. �
Remark. In the problem of synthesizing self-stabilization (Problem 1), we start
with a protocol that satisfies its liveness specifications from its invariant. Since
during synthesis by superposition and backtracking we preserve liveness spec-
ifications in the invariant, we do not explicitly specify the nature of liveness
specifications.
Convergence and Self-Stabilization. A protocol p strongly converges to I
iff from any state in Sp, every computation of p reaches a state in I. A protocol
p weakly converges to I iff from any state in Sp, there is a computation of p
that reaches a state in I. We say a protocol p is strongly (respectively, weakly)
self-stabilizing to I iff I is closed in p and p is strongly (respectively, weakly)
converging to I. For ease of presentation, we drop the term “strongly” wherever
we refer to strong stabilization.

256 A. Klinkhamer and A. Ebnenasir

3 Problem Statement

In this section, we state the problem of incorporating self-stabilization in non-
stabilizing protocols using superposition. Let p be a non-stabilizing protocol and
I be an invariant of p. When we fail to synthesize a self-stabilizing version of p, we
manually expand the state space of p by including new variables. Such superposed
variables provide computational redundancy in the hopes of giving the protocol
sufficient information to detect and correct illegitimate states without forming
livelocks. Let p′ denote the self-stabilizing version of p that we would like to
design and I ′ represent its invariant. Sp′ denotes the state space of p′; i.e., the
expanded state space of p. Such an expansion can be captured by a function
H : Sp′ → Sp that maps every state in Sp′ to a state in Sp. Moreover, we
consider a one-to-many mapping E : Sp → Sp′ that maps each state s ∈ Sp

to a set of states {s′ | s′ ∈ Sp′ ∧ H(s′) = s}. Observe that H and E can
also be applied to transitions of p and p′. That is, the function H maps each
transition (s′0, s

′
1), where s′0, s

′
1 ∈ Sp′ , to a transition (s0, s1), where s0, s1 ∈ Sp.

Moreover, E((s0, s1)) = {(s′0, s′1) | s′0 ∈ Sp′ ∧ s′1 ∈ Sp′ ∧ H((s′0, s′1)) = (s0, s1)}.
Furthermore, each computation (respectively, computation prefix) of p′ in the
new state space Sp′ can be mapped to a computation (respectively, computation
prefix) in the old state space Sp using H. Our objective is to design a protocol p′

that is self-stabilizing to I ′ when transient faults occur. That is, from any state
in Sp′ , protocol p′ must converge to I ′. In the absence of faults, p′ must behave
similar to p. Thus, each computation of p′ that starts in I ′ must be mapped
to a unique computation of p starting in I. This means that while we can have
new computations in the invariant I ′, each new computation should be mapped
to a computation of p in I (using H). We state the problem as follows1: (The
function Pre(δ) takes a set of transitions δ and returns the source states of δ.)

Problem 1. Synthesizing Self-Stabilization.

– Input: A protocol p and its invariant I for specifications spec, the function
H and the mapping E capturing the impact of superposed variables.

– Output: A protocol p′ and its invariant I ′ in Sp′ .
– Constraints:

1. I = H(I ′)
2. ∀s ∈ Pre(δp) ∩ I : E(s) ⊆ Pre(δp′)
3. δp|I = H({(s′0, s′1) | (s′0, s′1) ∈ (δp′ |I ′) ∧H(s′0) �= H(s′1)})
4. ∀s ∈ Pre(δp) ∩ I : δp′ |E(s) is cycle-free
5. p′ strongly converges to I ′

The first constraint requires that no states are added/removed to/from I; i.e.,
I = H(I ′). The second constraint requires that any non-deadlocked state in I
should remain non-deadlocked. The third constraint requires that any transition
in δp|I should correspond to some transitions in δp′ |I ′, and each transition in-
cluded in δp′ |I ′ must be mapped to a transition (s0, s1) in δp|I while ensuring

1 This problem statement is an adaptation of the problem of adding fault tolerance
in [26].

Synthesizing Self-stabilization through Superposition and Backtracking 257

s0 �= s1. Implicitly, this constraint requires that no transition in δp′ |I ′ violates
safety of spec. The fourth constraint stipulates that, for any non-deadlock state
s ∈ I, the transitions included in the set of superposed states of s must not form
a cycle; otherwise, liveness of spec may not be satisfied from I ′. Notice that
(i) the combination of Constraints 3 and 4 allows the inclusion of transitions
(s′0, s

′
1) ∈ δp′ |I ′ where H(s′0) = H(s′1) under the constraint that such transitions

do not form a cycle, and (ii) the combination of Constraints 1 to 4 ensure that
p′ would satisfy spec from I ′. Finally, p′ must converge to I ′.

Example 1. Token ring using one bit per process

Consider the non-stabilizing token ring protocol p with N processes, where each
process Pi owns a binary variable ti and can read ti−1. P0 is said to have a token
when tN−1 = t0 and each other process Pi is said to have a token when ti−1 �= ti.
P0 and the other processes Pi (where i > 0) have the following actions:

P0 : tN−1 = t0 −→ t0 := 1− t0;

Pi : ti−1 �= ti −→ ti := ti−1;

Let I denote the legitimate states, where exactly one process has a token,
written I ≡ ∃! i ∈ ZN : ((i = 0 ∧ ti−1 = ti) ∨ (i �= 0 ∧ ti−1 �= ti)), where
the quantifier ∃! means there exists a unique value of i. The above protocol is a
special case of the Token Ring protocol presented in Section 2 except that N > 3
and ti is a binary variable. Dijkstra [10] has shown that such a protocol is non-
stabilizing. In Section 5, we discuss how we automatically generate a constant
state space token ring, where the size of the local state space of each process is
constant, but N grows.
Deterministic, Self-Disabling Processes. The following theorem shows that
the assumptions of deterministic and self-disabling processes do not impact the
completeness of any algorithm that solves Problem 1. In general, convergence is
achieved by collaborative actions of all processes. That is, each process partially
contributes to the correction of the global state of a protocol. As such, starting
at a state s0 ∈ ¬I, a single process may not be able to recover the entire system
single-handedly. Thus, even if a process executes consecutive actions starting at
s0, it will reach a local deadlock from where other processes can continue their
execution towards converging to I. The execution of consecutive actions of a
process can be replaced by a single write action of the same process. As such,
we assume that once a process executes an action it will be disabled until the
actions of other processes enable it again. That is, processes are self-disabling.

Theorem 1. Let p be a non-stabilizing protocol with invariant I. There is an
SS version of p to I iff there is an SS version of p to I with deterministic and
self-disabling processes. (See proof in [24])

4 Synthesis Using Backtracking
We present an efficient and complete backtracking search algorithm to solve
Problem 1. Backtracking search is a well-studied technique [28] which is easy
to implement and can give very good results. Throughout this section, we use
actions and minimal actions interchangeably (unless otherwise stated).

258 A. Klinkhamer and A. Ebnenasir

4.1 Overview of the Search Algorithm
Like any other backtracking search, our algorithm incrementally builds upon a
guess, or a partial solution, until it either finds a complete solution or finds that
the guess is inconsistent. We decompose the partial solution into two pieces: (1)
an under-approximation formed by making well-defined decisions about the form
of a solution, and (2) an over-approximation which is the set of remaining possi-
ble solutions (given the current under-approximation). In a standard constraint
satisfaction problem, a backtracking search builds upon a partial assignment to
problem variables. The partial assignment is inconsistent in two cases: (i) the
constraints upon assigned variables are broken (i.e., the under-approximation
causes a conflict), or (ii) the constraints cannot be satisfied by the remaining
variable assignments (i.e., the over-approximation cannot contain a solution).
Each time a choice is made to build upon the under-approximation, the current
partial solution is saved at decision level j and a copy which incorporates the
new choice is placed at level j + 1. If the guess at level j + 1 is inconsistent, we
move back to level j and discard the choice which brought us to level j+1. If the
guess at level 0 is found to be inconsistent, then enough guesses have been tested
to determine that no solution exists. In the context of our work, we apply a back-
tracking search in the space of all valid minimal actions that can be included in
a solution. Specifically, we use a set of actions, called delegates, that plays the
role of the under-approximation, and another set of actions, called candidates,
that contains the remaining actions to potentially include in delegates. Thus,
the set (delegates∪ candidates) constitutes the over-approximation.

Figure 1 represents an abstract flowchart of the proposed backtracking al-
gorithm. We start with the non-stabilizing protocol p, its invariant I (which is
closed in p), the topology, and the mappings to (E) and from (H) its expanded
state space. Note that the inclusion of superposed variables is done manually
and the designer is responsible to use his/her experience in determining the su-
perposed variables and their domain sizes. Our approach has been to start with
the fewest variables and smallest domains. If no solution is found, we gradually
grow variable domains or add new variables. The algorithm in Figure 1 starts by
computing all valid candidate actions (in the expanded state space) that adhere
to the read/write permissions of all processes. The initial value of delegates is
often the empty set unless there are specific actions that must be in the solution
(e.g., to ensure the reachability of particular states). The algorithm in Figure 1
then calls ReviseActions to remove self-loops from candidates (since they violate
convergence), and checks for inconsistencies in the partial solution. The designer
may give additional safety specifications that forbid certain actions.

In general, ReviseActions (see the bottom dashed box in Figure 1) is in-
voked whenever we strengthen the partial solution by adding to the under-
approximation or removing from the over-approximation. It may further remove
from the over-approximation by enforcing the determinism and self-disablement
constraints (see Theorem 1). Then ReviseActions computes the largest possible
invariant I ′ which could be used by the current partial solution. That is, it finds
the weakest predicate I ′ for which the constraints of Problem 1 can be satis-
fied using some set of transitions δp′ permissible by the partial solution. The

Synthesizing Self-stabilization through Superposition and Backtracking 259

Initialize under-approximation as the empty set
and over-approximation as all possible minimal actions

ReviseActions
Remove self-loops from over-approximation

Is under-approximation
equal to over-approximation?

PickAction
Let A be a candidate action that resolves a
deadlock that the fewest candidate actions resolve

ReviseActions
Copy partial solution,
add A to its under-approximation

AddStabRec
Recurse with the copy of the partial solution

ReviseActions
Remove A from over-approximation

Inconsistent
partial solution

No solution exists

Inc
ons

iste
nt

Solution found

Okay Yes

No

Okay

In
co
n
si
st
en

t
In
co
n
si
st
en

t

In
co
n
si
st
en

t
Backtrack!

B
a
ck
tr
a
ck

fr
o
m

to
p
m
o
st

d
ec
is
io
n
le
v
el

Okay

Recurse!

AddStabRec

Add to under-approximation or
remove from over-approximation

Eliminate actions from over-approximation
that violate determinism or self-disablement

Use the partial solution to calculate the weakest
invariant I′ such that the partial solution
and I′ meet the constraints of Problem 1

Okay

Inconsistent
partial solution

I ′ exists

N
o
I

′ ex
ist
s

ReviseActions

Fig. 1. Overview of the backtracking algorithm.

260 A. Klinkhamer and A. Ebnenasir

partial solution requires δp′ to include all transitions corresponding to actions in
delegates. Additionally, δp′ can include any subset of transitions corresponding
to actions in candidates. For example, Constraint 5 of Problem 1 stipulates that
the transitions of delegates are cycle-free outside of I ′ and that the transitions
of delegates∪ candidates provide weak convergence to I ′. If such an I ′ does
not exist, then the partial solution is inconsistent.

If our initialized delegates and candidates give a consistent partial solution,
then we invoke the AddStabRec routine. The objective of AddStabRec (see the
top dashed box in Figure 1) is to go through all actions in candidates and
check their eligibility for inclusion in the self-stabilizing solution. In particular,
AddStabRec has a loop that iterates through all actions of candidates until it
becomes empty or an inconsistency is found. In each iteration, AddStabRec picks a
candidate action to resolve some remaining deadlock at the next decision level.
In general, the candidate action can be randomly selected. However, to limit
the possible choices, we use an intelligent method for picking candidate actions
described in Section 4.2. After picking a new action A, we invoke ReviseActions to
add action A to a copy of the current partial solution by including A in the copy
of delegates and removing it from the copy of candidates. If the copied partial
solution is consistent, then AddStabRec makes a recursive call to itself, using the
copied partial solution for the next decision level. If the copied partial solution
is found to be inconsistent (either by a call to ReviseActions or by the exhaustive
search in the call to AddStabRec), then we remove action A from candidates

using ReviseActions. If after removal of A the partial solution is consistent, then
we continue in the loop. Otherwise, we backtrack since no stabilizing protocol
exists with the current under-approximation.

Theorem 2 (Soundness and Completeness). The algorithm in Figure 1 is
sound and complete. (See proof in [24])

4.2 Picking Actions via the Minimum Remaining Values Method

The worst-case complexity of a depth-first backtracking search is determined by
the branching factor b and depth d of its decision tree, evaluating to O(bd). We
can tackle this complexity by reducing the branching factor. To do this, we use
a minimum remaining values (MRV) method in PickAction. MRV is classically
applied to constraint satisfaction problems [28] by assigning a value to a variable
which has the minimal remaining candidate values. In our setting, we pick an
action which resolves a deadlock with the minimal number of remaining actions
which can resolve it.

Algorithm 1 shows the details of PickAction that keeps an array
deadlock sets, where each element deadlock sets[i] contains all the dead-
locks that are resolved by exactly i candidate actions. We initially start with
array size |deadlock sets| = 1 and with deadlock sets[0] containing all un-
resolved deadlocks. We then loop through all candidate actions, shifting dead-
locks to the next highest element in the array (bubbling up) for each candidate
action which resolves them. After building the array, we find the lowest index i
for which the deadlock set deadlock sets[i] is nonempty, and then return an

Synthesizing Self-stabilization through Superposition and Backtracking 261

action which can resolve some deadlock in that set. Line 21 can only be reached
if either the remaining deadlocks cannot be resolved (but ReviseActions catches
this earlier) or all deadlocks are resolved.

Algorithm 1. Pick an action using the minimum remaining values method.

PickAction(p: protocol, E : mapping Sp → Sp′ , delegates, candidates: set of minimal
actions, I ′: state predicate)

Output: Next candidate action to pick.
1. let deadlock sets be a single-element array, where deadlock sets[0] holds a set

of deadlocks in ¬I ′ ∪ E(Pre(δp)) which actions in delegates do not resolve.
2. for all action ∈ candidates do
3. let i := |deadlock sets|
4. while i > 0 do
5. i := i− 1
6. let resolved := deadlock sets[i] ∩ Pre(action)
7. if resolved �= ∅ then
8. if i = |deadlock sets| − 1 then
9. let deadlock sets[i+ 1] := ∅ {Grow array by one element}
10. end if
11. deadlock sets[i] := deadlock sets[i] \ resolved
12. deadlock sets[i+ 1] := deadlock sets[i+ 1] ∪ resolved

13. end if
14. end while
15. end for
16. for i = 1, . . . , |deadlock sets| − 1 do
17. if deadlock sets[i] �= ∅ then
18. return An action from candidates which resolves a deadlock in

deadlock sets[i].
19. end if
20. end for
21. return An action from candidates. {This line may never execute!}

4.3 Optimizing the Decision Tree

This section presents the techniques that we use to improve the efficiency of our
backtracking algorithm.
Conflicts. Every time a new candidate action is included in delegates,
ReviseActions checks for inconsistencies, which involves cycle detection and reach-
ability analysis. These procedures become very costly as the complexity of the
transition system grows. To mitigate this problem, whenever an inconsistency is
found, we record a minimal set of decisions (subset of delegates) that causes it.
We reference these conflict sets to remove candidate actions which would cause
an inconsistency.
Randomization and Restarts. When using the standard control flow of a
depth-first search, a bad choice near the top of the decision tree can lead to
infeasible runtime. This is the case since the bad decision exists in the partial
solution until the search backtracks up the tree sufficiently to change the decision.
To limit the search time in these branches, we employ a method outlined by
Gomes et al. [15] which combines randomization with restarts. In short, we

262 A. Klinkhamer and A. Ebnenasir

limit the amount of backtracking to a certain height (we use 3). If the search
backtracks past the height limit, it forgets the current decision tree and restarts
from the root. To avoid trying the same unfruitful decisions after a restart,
PickAction randomly selects a candidate action permissible by the MRV method.
Parallel Search. In order to increase the chance of finding a solution, we
instantiate several parallel executions of the algorithm in Figure 1; i.e., search
diversification. The parallel tasks avoid overlapping computations due to the
randomization used in PickAction. Further, the parallel tasks share conflicts with
each other to prevent the re-exploration of branches that contain no solutions.
In our MPI implementation, conflict dissemination occurs between tasks using a
virtual network topology formed by a generalized Kautz graph [21] of degree 4.
This topology has a diameter logarithmic in the number of nodes and is fault-
tolerant in that multiple paths between two nodes ensure message delivery. That
is, even if some nodes are performing costly cycle detection and do not check for
incoming messages, they will not slow the dissemination of new conflicts.

5 Case Studies

In this section, we investigate the feasibility of designing a constant space token
ring protocol using the proposed algorithm. Section 5.1 presents a 4-state token
ring, Section 5.2 discusses how we automatically design the 8-state token ring
presented in [17], and Section 5.3 introduces a 6-state token ring synthesized
by Protocon. We also provide an overview of other case studies [24] we have
conducted (which have been omitted due to space constraints).

5.1 4-State Token Ring

To generate a stabilizing version of the 2-state token ring of Example 1, we add
a superposed binary variable xi to each process Pi. Each process Pi can also
read its predecessor’s superposed variable xi−1. One such protocol is stabilizing
for rings of size N = 2, . . . , 7 but contains a livelock when N = 8. It is defined
as follows for process P0 and other processes Pi where i > 0:

P0 : tN−1 = 0 ∧ t0 = 0 −→ t0 := 1;

P0 : tN−1 = 1 ∧ xN−1 = 0 ∧ t0 = 1 −→ t0 := 0; x0 := 1− x0;

P0 : tN−1 = 1 ∧ xN−1 = 1 ∧ t0 = 1 ∧ x0 = 1 −→ t0 := 0;

Pi : ti−1 = 0 ∧ ti = 1 −→ ti := 0; xi := 1− xi;

Pi : ti−1 = 1 ∧ xi−1 = 1 ∧ ti = 0 −→ ti := 1;

Pi : ti−1 = 1 ∧ xi−1 = 0 ∧ (ti = 0 ∨ xi = 1) −→ ti := 1; xi := 0;

5.2 8-State Token Ring

We further expand the state space by giving each process a third binary variable
ready i which no other process can read. This way, each process can read 25 = 32

Synthesizing Self-stabilization through Superposition and Backtracking 263

unique valuations and can assign variables in 23 = 8 unique ways, giving it
28 = 256 possible minimal actions. Process P0 remains distinguished and may
act differently from other processes. With the superposed variable ready i, the
backtracking synthesis algorithm begins with 2(28) = 512 candidate actions,
and it generates several solutions similar to the 3-bit token ring of Gouda and
Haddix [17]. To our knowledge, no previous method has been able to synthesize
such protocols automatically.

5.3 6-State Token Ring

In order to investigate the existence of a constant space token ring with fewer
than 8 states, we expand the domain of xi to {0, 1, 2} and remove ready i. This
way, each process has variables ti and xi, comprising 6 states. Thus, each process
can read 62 = 36 valuations of its 4 readable variables and can assign its 2
writable variables in 6 unique ways, giving it 63 = 216 possible actions. Process
P0 remains distinguished and may act differently from other processes. The
algorithm starts with 2(63) = 432 candidate actions and generates a 6-state
self-stabilizing protocol.

5.4 Other Case Studies

Due to space constraints, we have omitted the actions of the 6-state token ring
and other case studies including coloring on Kautz graphs, ring orientation and
leader election on a ring. (Please see [24] for details.)

6 Experimental Results

We synthesized Huang’s leader election [20] on a ring size 6, which gives an
agreement protocol as 6 is not prime. This ring size is chosen for its difficulty,
since a ring of size 5 is usually solved within 8 restarts. For this ring of size 6, we
performed 25 trials of the parallel search using different numbers of MPI pro-
cesses to measure the effect of parallelism on runtime. Averaging the times taken
by 8, 16, 32, and 64 MPI processes, we get 2468.36, 1120.76, 659.96, and 371.96
seconds respectively, giving a reasonable speedup. Using the specifications in
Section 5, we found that no single protocol is a stabilizing 4-state token ring for
sizes 2, . . . , 8 or more, but we did synthesize 6-state and 8-state versions which
we believe to be generalizable (verified up to size 25). Some of these converge
to having one enabled process like Dijkstra’s stabilizing toking ring [10]. We are
currently working on mechanical verification of their correctness for arbitrary
numbers of processes. Finally, we synthesized an odd-sized ring orientation pro-
tocol using the topology of Hoepman [19]. It was verified as self-stabilizing up
to rings of size 11.

264 A. Klinkhamer and A. Ebnenasir

7 Related Work and Discussion

This section discusses related work on manual and automated design of fault
tolerance in general and self-stabilization in particular. Manual methods are
mainly based on the approach of design and verify, where one designs a fault-
tolerant system and then verifies the correctness of (1) functional requirements
in the absence of faults, and (2) fault tolerance requirements in the presence
of faults. For example, Liu and Joseph [27] provide a method for augmenting
fault-intolerant systems with a set of new actions that implement fault tolerance
functionalities. Katz and Perry [22] present a general (but expensive) method for
global snapshot and reset towards adding convergence to non-stabilizing systems.
Varghese [30] and Afek et al. [3] provide a method based on local checking for
global recovery of locally correctable protocols. Varghese [31] also proposes a
counter flushing method for detection and correction of global predicates.

Methods for automated design of fault tolerance can be classified into
specification-based and model repair techniques. In specification-based meth-
ods [6] the inter-process synchronization mechanisms of programs are derived
from formal specifications often specified in some variant of temporal logic. By
contrast, in model repair one incorporates fault tolerance functionalities in an
existing system while ensuring that the resulting program would still satisfy its
specifications in the absence of faults. For example, Kulkarni and Arora [26]
study the addition of three different levels of fault tolerance, namely failsafe,
nonmasking and masking fault tolerance. A failsafe protocol meets its safety
specifications under all circumstances (i.e., in the absence and in the presence of
faults), whereas a nonmasking protocol ensures recovery to invariant from the
set of states that are reachable in the presence of faults (but not necessarily
equal to the entire state space). A masking fault-tolerant program is both fail-
safe and nonmasking. Ebnenasir [12] has investigated the automated addition of
recovery to distributed protocols for types of faults other than transient faults.
Nonetheless, their method has the option to remove deadlock states by making
them unreachable. A similar choice is utilized in Bonakdarpour and Kulkarni’s
work [8] on adding progress properties to distributed protocols. This is not an
option in the addition of self-stabilization; recovery should be provided from any
state in protocol state space.

Since it is unlikely that an efficient method exists for algorithmic design of self-
stabilization [23], most existing techniques [1, 2, 13, 14, 32] are based on sound
heuristics. For instance, Abujarad and Kulkarni [1, 2] present a heuristic for
adding convergence to locally-correctable systems. Zhu and Kulkarni [32] give a
genetic programming approach for the design of fault tolerance, using a fitness
function to quantify how close a randomly-generated protocol is to being fault-
tolerant. Farahat and Ebnenasir [14] provide a lightweight method for designing
self-stabilization even for non-locally correctable protocols. They also devise [13]
a swarm method for exploiting the computational power of computer clusters to-
wards automated design of self-stabilization. While the swarm synthesis method
inspires the proposed work in this paper, it has two limitations: it is incomplete
and forbids any change in the invariant.

Synthesizing Self-stabilization through Superposition and Backtracking 265

8 Conclusions and Future Work

This paper presents a method for algorithmic design of self-stabilization based
on variable superposition and backtracking. Unlike existing algorithmic meth-
ods [1,2,13,14] the proposed approach is sound and complete; i.e., if there is an
SS solution, our algorithm will find it. We have devised sequential and parallel
implementations of the proposed method in a software tool, called Protocon.
Variable superposition allows us to systematically introduce computational re-
dundancy where existing heuristics fail to generate a solution. Afterwards, we
use the backtracking search to intelligently look for a self-stabilizing solution.
The novelty of our backtracking method lies in finding and sharing design con-
flicts amongst parallel threads to improve the efficiency of search. We have used
Protocon to automatically generate self-stabilizing protocols that none of the
existing heuristics can generate (to the best of our knowledge). For example, we
have automatically designed an 8-state self-stabilizing token ring protocol for the
same topology as the protocol manually designed by Gouda and Haddix [17]. We
have even improved this protocol further by designing a 6-state version thereof
available at http://cs.mtu.edu/~apklinkh/protocon/. Besides token rings,
we have synthesized other protocols such as coloring on Kautz graphs, ring ori-
entation and leader election on a ring [24].

We are currently investigating several extensions of this work. First, we would
like to synthesize protocols such as Dijkstra’s 4-state token chain and 3-state to-
ken ring [10], where the invariant and legitimate behavior cannot be expressed
using the protocol’s variables without essentially writing the self-stabilizing ver-
sion. Second, we are using theorem proving techniques to figure out why a syn-
thesized protocol may not be generalizable. Then, we plan to incorporate the
feedback received from theorem provers in our backtracking method. A third
extension is to leverage the techniques used in SAT solvers and apply them in
our backtracking search.

References

1. Abujarad, F., Kulkarni, S.S.: Multicore constraint-based automated stabilization.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 47–61. Springer,
Heidelberg (2009)

2. Abujarad, F., Kulkarni, S.S.: Automated constraint-based addition of nonmasking
and stabilizing fault-tolerance. Theoretical Computer Science 412(33), 4228–4246
(2011)

3. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application
to self-stabilization. Theoretical Computer Science 186(1-2), 199–229 (1997)

4. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21,
181–185 (1985)

5. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

6. Attie, P.C.: anish Arora, and E. A. Emerson. Synthesis of fault-tolerant con-
current programs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 26(1), 125–185 (2004)

http://cs.mtu.edu/~apklinkh/protocon/

266 A. Klinkhamer and A. Ebnenasir

7. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: Proceedings of the 31st Annual IEEE Symposium on Founda-
tions of Computer Science, pp. 268–277 (1991)

8. Bonakdarpour, B., Kulkarni, S.S.: Revising distributed UNITY programs is NP-
complete. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS,
vol. 5401, pp. 408–427. Springer, Heidelberg (2008)

9. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

11. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1990)
12. Ebnenasir, A.: Automatic Synthesis of Fault-Tolerance. PhD thesis, Michigan State

University (May 2005)
13. Ebnenasir, A., Farahat, A.: Swarm synthesis of convergence for symmetric proto-

cols. In: Proceedings of the Ninth European Dependable Computing Conference,
pp. 13–24 (2012)

14. Farahat, A., Ebnenasir, A.: A lightweight method for automated design of con-
vergence in network protocols. ACM Transactions on Autonomous and Adaptive
Systems (TAAS) 7(4), 38:1–38:36 (2012)

15. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through
randomization. In: Mostow, J., Rich, C. (eds.) AAAI/IAAI, pp. 431–437. AAAI
Press / The MIT Press (1998)

16. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

17. Gouda, M.G., Haddix, F.F.: The stabilizing token ring in three bits. Journal of
Parallel and Distributed Computing 35(1), 43–48 (1996)

18. Gouda, M.G., Multari, N.J.: Stabilizing communication protocols. IEEE Transac-
tions on Computers 40(4), 448–458 (1991)

19. Hoepman, J.-H.: Uniform deterministic self-stabilizing ring-orientation on odd-
length rings. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp.
265–279. Springer, Heidelberg (1994)

20. Huang, S.-T.: Leader election in uniform rings. ACM Transactions on Programming
Languages and Systems (TOPLAS) 15, 563–573 (1993)

21. Imase, M., Itoh, M.: A design for directed graphs with minimum diameter. IEEE
Trans. Computers 32(8), 782–784 (1983)

22. Katz, S., Perry, K.: Self-stabilizing extensions for message passing systems. Dis-
tributed Computing 7, 17–26 (1993)

23. Klinkhamer, A.P., Ebnenasir, A.: On the hardness of adding nonmasking fault
tolerance. IEEE Transactions on Dependable and Secure Computing (in press,
2014)

24. Klinkhamer, A.P., Ebnenasir, A.: Synthesizing self-stabilization
through superposition and backtracking. Technical Report CS-
TR-14-01, Michigan Technological University (May 2014),
http://www.mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf

25. Kulkarni, S.S.: Component-based design of fault-tolerance. PhD thesis, Ohio State
University (1999)

26. Kulkarni, S.S., Arora, A.: Automating the addition of fault-tolerance. In: Joseph,
M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 82–93. Springer, Heidelberg (2000)

27. Liu, Z., Joseph, M.: Transformation of programs for fault-tolerance. Formal Aspects
of Computing 4(5), 442–469 (1992)

http://www.mtu.edu/cs/research/papers/pdfs/CS-TR-14-01.pdf

Synthesizing Self-stabilization through Superposition and Backtracking 267

28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-
tice Hall Press, Upper Saddle River (2009)

29. Stomp, F.: Structured design of self-stabilizing programs. In: Proceedings of the
2nd Israel Symposium on Theory and Computing Systems, pp. 167–176 (1993)

30. Varghese, G.: Self-stabilization by local checking and correction. PhD thesis, MIT
(October 1992)

31. Varghese, G.: Self-stabilization by counter flushing. In: The 13th Annual ACM
Symposium on Principles of Distributed Computing, pp. 244–253 (1994)

32. Zhu, L., Kulkarni, S.: Synthesizing round based fault-tolerant programs using
genetic programming. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-
Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 370–372.
Springer, Heidelberg (2013)

Configuration Hopping: A Secure

Communication Protocol without Explicit Key
Exchange

Yue Qiao1, Kannan Srinivasan1, and Anish Arora1,2

1 Department of Computer Science and Engineering,
The Ohio State Univeristy, Columbus, OH 43210, USA
2 The Samraksh Company, Dublin, OH 43017, USA

Abstract. By changing one or more physical layer parameters (such as
spreading code, symbol duration, symbol constellation, center frequency,
modulation method, transmission power, etc.) in an agreed upon manner
between two communication parties, we are able to realize communica-
tion that is hard to detect, identify, and decode. We present a formal
link layer protocol for secure communication based on this idea that,
along with the use of channel reciprocity, notably eschews the use of
cryptographic keys. We prove the security properties of the protocol in
the Canetti-Krawczyk framework and study the feasibility of changing
several physical layer parameters at the link packet level in Software
Defined Radios.

1 Introduction

Secret communication had been explored extensively before the theory of modern
cryptography emerged. The basis of secret communication (including cryptogra-
phy) is to encode plain messages into a form that is unbreakable by the adver-
sary [10]. Traditional cryptographic techniques focus on converting a plaintext
into a ciphertext that is decodable only by authorized parties. These crypto-
graphic conversions are typically performed at a logical level even though con-
versions at the physical level are also possible. We hypothesize that the main
reason for favoring the higher (logical) layers in the past is that manipulating
signals at the physical layer has not been as easy as encoding data bits. The re-
cent developments in Software-Defined Radios (SDRs), however, make physical
layer conversion much more convenient.

In fact, physical layer encryption is not new: hiding transmissions using spread
spectrum was done during World War II. However, physical layer encryption is
not as popular as cryptographic techniques that work with bits at the higher
layers. SDRs have opened up the physical layer and have fueled physical layer
systems research. Although nowadays SDRs are more expensive than existing
network devices, there is a growing tendency of employing SDRs because of the
emergence of low-cost SDRs and the promising prospect. This is why we believe
that it is timely to revisit physical layer encryption.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 268–282, 2014.
c© Springer International Publishing Switzerland 2014

A Secure Communication Protocol without Explicit Key Exchange 269

Since SDRs provide many opportunities for physical (PHY) layer encryption
beyond the traditionally used spread spectrum, we propose a generic hop-by-hop
secure communication protocol that adapts various PHY parameters on a per
link packet basis. We refer to this sort of PHY layer adaptation as Configura-
tion Hopping. Many PHY parameters can be adapted. For instance, modulation
constellation can be remapped in an agreed upon manner between two commu-
nicating ends in order to confuse the attackers. Pseudorandom number (PN) se-
quences used in direct sequence spreading spectrum (DSSS) can also be adapted
in a similar way. We discuss other feasible PHY layer encodings in Section 5.

Combining all the possible encodings at the link packet level (or possibly even
at the sub-packet level), we can achieve secure communication at a relatively low
cost compared to traditional cryptography. By adapting PHY parameters, i.e.,
changing configurations during wireless communication, radios can send and re-
ceive packets in a protected way without involving much computation and com-
munication overhead. In addition to cost considerations, PHY layer protection is
also graceful for the following reasons: First of all, it requires attackers to spend
more energy and effort to detect the communication as signals could be sent
in different frequencies, and/or spread by different PN codes. Secondly, even if
an attacker succeeds in detection, decoding still remains to be solved. Without
knowing the exact configuration in which signals are sent, an attacker must de-
code by brute-force search. Last but not least, localization and identification also
become hard for the adversary. A transmitter-receiver pair will not be traced by
its communication mode as it keeps changing during communication.

To realize the idea of configuration hopping in a link layer protocol for se-
cure communication, we propose two core modules. One adapts configuration
parameters for each link layer packet (we note that this adaptation is feasible
at a finer granularity as well, such as per symbol or per block, but we will not
dwell on this refinement in the paper). The other provides a mechanism of se-
curely exchanging the mutually agreed upon configurations online between the
two communicating parties. We design a protocol called Configuration Hopping
that exploits channel reciprocity to exchange the configuration implicitly. In Sec-
tions 4 and 5, we prove the security properties and study the implementation
feasibility of Configuration Hopping in SDRs.

2 Background

Goal. Our main goal is to propose a protocol which allows protected hop-to-
hop communication by adapting configurations at a fine granularity in a key-free
manner. To achieve a key-free exchange of adaptation values, we leverage channel
reciprocity. As the channel between two nodes is stable only for a short time, to
get matching estimates of the channel, the times at which the two nodes measure
the channel need to be as close as possible to each other. To realize this, we
adopt full-duplex techniques such as in-band full-duplex [9] and dialog codes [4]
in our protocol. In addition to enabling matching channel estimates, full-duplex
techniques also provide extra jamming-like protection against eavesdroppers.

270 Y. Qiao, K. Srinivasan, and A. Arora

Channel Reciprocity. In wireless communications, multi-path fading leads to
the fact that the signal observed by a wireless receiver is the superposition of mul-
tiple copies of the transmitted signal that have propagated over different paths.
In other words, the output signal carries the information of the propagation
paths. More importantly, if there is a propagation path from Alice to Bob, then
there must be an identical reverse path from Bob to Alice. Therefore, the paths
of electromagnetic wave propagation are identical in both directions between the
two communicating ends (henceforth called Alice and Bob). This phenomenon
is commonly known as channel reciprocity. In addition, as channels decorrelate
rapidly over space, wireless channel can act as a common random source between
two communicating parties and eavesdroppers which are half a wavelength away
from them will see uncorrelated channels [15]. So in a scattering environment, it
is infeasible for the eavesdroppers to derive the channel between legitimate users
even with collusion. A significant body of prior research [5,11–13] has considered
the extraction of secrets by exploiting channel reciprocity.

Full-duplex Radios. Note that if Alice and Bob wish to exploit channel reci-
procity to obtain matching measurements of the channel, they need to receive
signals from each other over a period of time in which the channel does not
change significantly. The time for which the wireless channel remains coher-
ent is called coherence time. The coherence time Tc is related to the maximum
Doppler frequency fd. In Clarke’s model, the 50% coherence time is defined by
Tc � 0.423

fd
[15]. In other words, Alice and Bob need to observe the channel

between them within the coherence time, which can be short in a mobile envi-
ronment. Full-duplex techniques [4,9] allow radios to transmit and receive at the
same time. Thus, two communicating radios can measure the channel between
them at (almost) the same time by performing simultaneous transmissions in
both directions. We, therefore, use two full-duplex radios in our communicating
parties. The two radios, Alice and Bob, exchange information in the same time
slot. Then, based on the messages they receive and the channel information they
derive from the signals, Alice and Bob could communicate with each other in a
protected and key-free way using our protocol.

3 System Model

Assumptions on the Knowledge and Capability of Legal Users. Given
two wireless nodes that are within each other’s transmission region, they share a
common configuration for the initial stage of communication. They are both able
to hop among different PHY layer configurations. The capability of such config-
uration hopping is defined by the SDRs used. Generally speaking, most SDRs
are able to adapt PHY parameters like frequency, modulation method, symbols
duration, PN sequences, and rotations of constellation maps (cf. Section 5.3).
These parameters individually have a number of options whose count ranges
from tens to hundreds. The combinatorial number of parameter options thus
yield a relatively large configuration hopping space. A more detailed discussion
of parameter change is given in Section 5.

A Secure Communication Protocol without Explicit Key Exchange 271

Attacker Model. Cryptographic protocols often formalize the adversary at the
network, session, or application layer. A powerful, standard cryptographic adver-
sary model is the Canetti Krawczyk(CK)-framework [7]. In the CK-framework,
a concurrent man-in-the-middle (CMIM) adversary A controls all the communi-
cation links. It can listen to all the transmissions, change transmitted messages
and inject its own traffic. It is also in charge of message passing and scheduling
of all protocol events. Besides these basic attacker capabilities, the adversary
is able to obtain secret information too. It has access to secret information via
three types of attacks:

1. Session-state leakage: the adversary gets the internal state of an incomplete
session;

2. Session-key query: the adversary queries the value of the session key gener-
ated by a completed session;

3. Corruption query: all of the information stored in the memory of the cor-
rupted parties is leaked to the adversary.

For our purposes, we will refine the CK-model to apply to the link layer, as
follows. We instantiate the CK-adversary actions on messages to corresponding
actions on link layer packets. And we instantiate the CK-adversary actions on
sessions to periods of time where the Configuration Hopping protocol uses the
same secret key (generated from the physical layer). We can thus analyze the
security of session keys in our protocol in the presence of the CK-adversary.

The security of our protocol relies on the secretly agreed upon configurations,
which are conceptually analogous to “session keys”. To break the system, at-
tackers need to compromise these session keys. We will show in Section 4 that
the complexity of discovering the configuration for the attackers is no less than
that of compromising the session key, as long as the size of the configuration
space is the same as the session key space.

Jamming is also a primary threat for a wireless protocol. Our adversary model
thus allows flexible narrow band jamming. Intuitively speaking, the Configura-
tion Hopping protocol tolerates even adaption in narrow band jamming since the
configuration used by the two communicating ends hop across a wide band in an
unpredictable, random manner. That said, more powerful wide band jamming
is a challenging problem, which all wireless communication suffers from, but is
beyond the scope of our paper.

SK-security Within the CK-framework. In the CK-framework, the input
of a session in a key-exchange (KE) protocol is of the form (Pi, Pj , s, role),
where Pi or Pj is the identity of a party, s is the identity of a session, and role
is either initiator or responder. A session of input (Pi, Pj , s, initiator) and
a session of input (Pj , Pi, s, responder) are collectively called a matching.
In our proposed protocol, the two nodes, Alice and Bob, transmit and listen
in an in-band full-duplex channel, so it may seem that there is no initiator or
responder. However, these roles are chosen in a higher layer before the commu-
nication stream commences. Therefore, ignoring the role, we define two sessions

272 Y. Qiao, K. Srinivasan, and A. Arora

are matching as long as the two parties are matching and the session ids are
identical.

Definition 1. A session is called complete when a key establishment event is
recorded.

Definition 2. A session is called locally exposed if it or its matching session
is subject to one or more of the three attacks.

Definition 3. The session-key security (SK-security) within the CK-framework
is captured as follows: a key-exchange (KE) protocol is secure as long as for any
unexposed complete session adaptively selected by A, referred as the test session,
it holds with overwhelming probability that:

1. The test session and its matching session output the same session-key.
2. The adversary A cannot distinguish the session-key output by the test session

from a random value.

4 Protocol

In this section, we first propose an abstract protocol which achieves secure com-
munication by letting Alice and Bob iterate through configurations in an agreed
upon manner. We then analyze its security properties and give the security proof
under the CK-framework. Our protocol provides a link layer solution that pro-
tects communication from active adversaries in a manner that can be integrated
with many existing link layer standards, such as 802.11. The coordination and
synchronization issues associated with our link layer protocol exchange would
be handled per these link layer standards.

4.1 Protocol Schema

Alice and Bob communicate with each other in the full-duplex mode, which al-
lows them to exchange messages msgAi and msgBi in parallel. We define the
parallel exchange of a message pair as spanning one round of communication.
In each round, Alice and Bob are assumed to get the same channel information
upon reception. Leveraging this, they can share the configuration of the next
round implicitly based on the channel information. While in the first round, the
configuration needs to be predetermined since configurations cannot be derived
without any information exchanged. Alice and Bob also exchange two param-
eters rAi and rBi in each round. The configuration of the ith round is derived
not only from the channel information chAi−1 /chBi−1 of the previous round, but
also from the parameters rAi−1 and rBi−1 chosen and sent by Alice and Bob
respectively in the previous round. We will explain the role of rAi−1 and rBi−1 in
Section 4.2. Figures 1 and 2 depict the protocol schema, where authentication
functions f and g take rAi−1 , rBi−1 , chAi−1 , and chBi−1 as keys to encode msgAi ,
msgBi , rAi , or rBi . The authentication functions f and g provide extra protection

A Secure Communication Protocol without Explicit Key Exchange 273

Table 1. Notations

A,B Communicating parties

i Index of the communication round

msgAi , msgBi Message sent by Alice and Bob respectively

rAi , rBi Random number generated by Alice and Bob respectively

chAi , chBi Secret derived from the channel by Alice and Bob respectively

confAi , confBi Configurations used by Alice and Bob respectively

conf (·) Deterministic function which maps the input (rAi , rBi , chAi) or
(rAi , rBi , chBi) to one of the pre-defined configurations

f (·), g(·) Authentication functions

from certain attackers (e.g., impersonation). It is worth noting that this schema
allows for several realizations. In the analysis of the security of Configuration
Hopping, we will simply treat f and g as commonly used MAC functions. For an
active eavesdropper (Eve) who tries to hijack during the ith round by guessing
the configuration and then impersonating Alice or Bob, Eve needs to success-
fully guess rAi−1 or rBi−1 , too. In our protocol, rAi−1 and rBi−1 play a role of
authenticators which provide a proof that the one that Alice/Bob is talking to
at the moment is the one Alice/Bob talked to in the previous round. A formal
description of the protocol schema is presented below; Table 1 lists the notations
used in the protocol schema.

– 1st round:
Alice → Bob : f(msgA1 , rB0), g(rA1 , rB0) with configuration = conf (rA0 , rB0)

Bob → Alice : f(msgB1 , rA0), g(rB1 , rA0) with configuration = conf (rA0 , rB0)

– ith round (i ≥ 2):
Alice → Bob : f(msgAi , rBi−1 , chAi−1), g(rAi , rBi−1)

with configuration = conf (chAi−1 , rAi−1 , rBi−1)

Bob → Alice : f(msgBi , rAi−1 , chBi−1), g(rBi , rAi−1)

with configuration = conf (chBi−1 , rAi−1 , rBi−1)

4.2 Security Properties

We can see that confAi might not be equal to confBi in every single round since
there is a possibility that Alice and Bob’s observations of the channel are slightly
different. Disagreement in the configuration in the next round may also happen
if rAi or rBi is not correctly received. When disagreement occurs, both parties
will likely not hear from each other. Fortunately, this lack of communication is
symmetric, i.e., when Alice does not hear from Bob then Bob also does not hear
from Alice. In other words, they detect the error simultaneously. We address this
protocol issue with a simple recovery mechanism that lets them retransmit the

274 Y. Qiao, K. Srinivasan, and A. Arora

With configuration =

Alice Bob

Fig. 1. 1st Round

With configuration =

Alice Bob

Fig. 2. ith Round

messages using the latest successful configuration. The procedure is shown in
Figure 3. We define a complete round, or a complete matching session as one in
which two parties could hear from each other and record the new configuration
establishment. Note that whether or not the messages are correctly received does
not matter. Higher layer retransmission mechanisms would resolve the issue.

In this section, we first show that confAi /confBi plays the role of a session key.
Then, we prove that the protocol meets the SK-security requirement in the CK-
framework. It is worth noting that the initial phase of authentication is assumed,
but the more detailed treatment of which is out of scope of our paper. This is
because, although PHY layer authentication approaches have been defined, this
is still an active area of research in terms of robustly tolerating a rich class of at-
tacks. And one can also resort to complementary approaches (i.e. crypto-based)
as well. Note that authentication can be used to seed the initial randoms. Alter-
natively, the initial random numbers may even be distributed publicly without
affecting the security of our system since the security of the first round is guar-
anteed by the authentication procedure and the security of the following rounds

A Secure Communication Protocol without Explicit Key Exchange 275

Msg sent with

configuration Z
Msg sent with

configuration Y

Bob

Detect/decode
with configuration Y

Msg sent with

configuration X
Msg sent with

configuration X

Retransmit

Msg sent with

configuration X
Msg sent with

configuration X

Alice

Detect/decode
with configuration X

Detect/decode
 with configuration X

Detect/decode
 with configuration Z

Retransmit

Fig. 3. Retransmission

is guaranteed by PHY layer assumptions and our protocol. And as our protocol
allows two communicating parties to agree upon new configurations implicitly
without exchanging any key materials, it follows that our protocol is key-free.

Claim. confAi and confBi represent session keys.

The rationale for this claim is as follows. In each session, the session key de-
termines the way to encode messages in a logical layer. Similarly, confAi /confBi

determine the way to encode the signal corresponding to a link layer packet at
the PHY layer. Without knowing the configuration (session key) used by the
encoder, the adversary cannot decode the received signals unless it applies a
brute-force search.

Claim. Let |Conf | be the size of the configuration space and |Sk| be the session
key space. If |Conf | = |Sk|, then the hardness of applying brute-force search
to decode signals encoded with an unknown configuration is at least equal to
decoding bits encoded with an unknown session key.

The rationale for this claim is as follows. If |Conf | = |Sk|, then the number
of possible ways to decode signals at PHY layer is the same as that to decode
bits at logic layer. Assume the transmitted signal is X, the received signals is Y
and the digit representation of Y is Z. The three variables form a Markov chain
X → Y → Z. For each try in brute-force search at PHY layer, the decoder needs
to deal with Y while a logic-layer brute-force decoder only needs to deal with
Z, which is a sufficient statistic of X and less noisy than Y. Although we do not
know the appropriate metric to compare the effort made at the PHY layer and
the logic layer, it is clear that the former is no less than the latter.

276 Y. Qiao, K. Srinivasan, and A. Arora

Ignoring the retransmission part, let us write the protocol in the following
form, where Econf (m) stands for a PHY layer encryption function which encrypts
m with a configuration conf :

– 1st round:
Alice → Bob :
EconfA1

(f(msgA1
, rB0), g(rA1 , rB0)), where confA1 is predefined .

Bob → Alice :
EconfB1

(f(msgB1
, rA0), g(rB1 , rA0)), where confB1 is predefined .

– ith round (i ≥ 2):
Alice → Bob :
EconfAi

(f(msgAi
, rBi−1 , chAi−1), g(rAi , rBi−1))

where confAi = conf (chAi−1 , rAi−1 , rBi−1)

Bob → Alice :
EconfBi

(f(msgBi
, rAi−1 , chBi−1), g(rBi , rAi−1))

where confBi = conf (chBi−1 , rAi−1 , rBi−1)

We can see that as long as confAi and confBi are kept from Eve, Eve could
not do anything better than a random guess to detect and decode the signals.
In other words, proving the security of the session key confAi /confBi is sufficient
to prove that the communication is protected. In the following part, we analyze
the SK-security of the protocol in CK-framework.

SK-security Analysis in the CK-framework. Now we prove that our pro-
tocol is robust against attackers in CK model with the following assumption:

Assumption 1. Eavesdroppers that are at least a half-wavelength away from
legitimate users will see uncorrelated channels. As a result, eavesdroppers at this
distance cannot successfully guess the secrets derived from the channel between
two communicating parties with a non-negligible probability.

According to the definition of SK-security in the CK-framework, we need to
prove that Configuration Hopping satisfies the following two requirements in the
presence of the CK-adversary:

Req. 1: If two parties, Alice and Bob, complete matching sessions, then their
session keys are the same.

Req. 2: There is no feasible adversary that could succeed in distinguishing the
session key of an unexposed session with a non-negligible probability.

Lemma 1. When Alice and Bob complete the (i−1)th round of communication,
for i > 0, they derive the same configuration for the ith round of communication,
i.e., confAi = confBi .

A Secure Communication Protocol without Explicit Key Exchange 277

Proof. In the first round, configuration is predetermined. Therefore,

confA1 = confB1 .

If Alice and Bob complete the (i − 1)th round, then it means that

confAi−1 = confBi−1 .

In the next round of exchanging messages, either Alice and Bob could hear from
each other, or they could not. In the first case, confAi = confBi . In the second
case, they both retransmit using the configuration confAi /confBi , which is equal
to conf Ai−1

/conf Bi−1
. In both the cases, the ith complete round ends in

confAi = confBi .

By mathematical induction, we have proved Lemma 1

Lemma 2. No feasible adversary in CK-model can distinguish the session key
of an unexposed session with a non-negligible probability.

Proof. Let us check what secret information adversaries can obtain by the three
types of attacks allowed in CK model:

Consider Eve picks ith session between Alice and Bob as a test session,
and assume that she can distinguish a random value from the session key of
(i + 1)th round generated by the test session with a non-negligible probability.
With session-key query, she has access to any session keys generated by all the
previous ones, including (i − 1)th session, so the transmission of the ith session
is public. It implies that she can obtain rAi and rBi . Since the (i + 1)th session
key confAi+1 and confBi+1 are respectively generated by one-way MAC function
conf (chAi , rAi , rBi) and conf (chBi , rAi , rBi), Eve must be able to guess chAi

or chBi successfully with a non-negligible probability. This contradicts Assump-
tion 1, therefore the claim is wrong.

Session-state leakage does not help Eve to access secret information. But in
half-duplex model, knowing the session state might help Eve to know the exact
time point to hijack the communication. For instance, in ith round, if Eve replies
to Alice before Bob, with rAi−1 , chBi−1 , and the right configuration obtained by
session-key query, then she can impersonate Bob. As Alice and Bob work in full-
duplex model, however, Eve cannot inject his own traffic without being exposed.

Corruption query does not help Eve either, since our protocol is pair-wise. No
corrupted party would reveal secret information between Alice and Bob to Eve.

1
|Conf| , where |Conf | is the cardinality of the space of configurations.

Theorem 1. Configuration Hopping achieves SK-security in the CK-framework.

Proof. The proof follows directly from Lemma 1, Lemma 2 and the requirements
of SK-security in the CK-framework.

278 Y. Qiao, K. Srinivasan, and A. Arora

Forward Secrecy. In cryptography, forward secrecy requires that a session
key derived from a set of long-term keys will not be compromised if one of the
long-term keys is compromised in the future. To be more specific, it could be
obtained by using new key materials for each session. In our protocol, the key
material ch changes when the channel between Alice and Bob changes. So, a
compromised key would affect Configuration Hopping only in a bounded time.
We call this type of forward secrecy as Bounded-Time Forward Secrecy (BTFS).
Fortunately the coherence time in which a channel remains stable is rather short
in practical environments. As a result, a leaked key would only affect the system
for the rather short time (on the scale of tens or hundreds of milliseconds [15]).
Therefore, we have the following claim:

Claim. Configuration Hopping achieves Bounded-Time Forward Secrecy in the
presence of the active adversary.

Protection Provided by PHY Layer. PHY layer encryption provides three
levels of protection in Configuration Hopping. First, in-band full-duplex prevents
the adversary from overhearing the communication. Similar Wyner-style tech-
niques like Dialog Codes [4] have previously evidenced feasibility of protecting
decodability for certain classes of adversary. Note that if an eavesdropper is very
close to the transmitter, then the protection provided by full-duplex radios van-
ishes. But that still does not compromise the security of our protocol. Second,
PHY layer encryption mechanisms such as changing PN sequences make signal
detection hard for eavesdroppers. Third, localization is also made hard since
power level and other location-dependent measurements are not predictable. We
discuss details regarding choices of PHY layer parameters in Section 5.

4.3 Overhead Comparison

The cost of hop-to-hop secure communication in our protocol consists of two
parts: the cost of distributing shared keys, and the cost of encryption in PHY
layer. Let us first look at the first part. Since the keys are extracted from the
channel information contained in the received signals, no extra messages are
needed to share keys beyond normal data transmissions. In contrast, to share
keys in traditional cryptography without violating perfect forward secrecy, com-
municating parties have to exchange new key materials. Therefore, at least two
additional messages have to be exchanged for key sharing (cf. Diffie-Hellman key
exchange [8]). And about the encryption part, as the configuration hopping idea
encrypts signals by hopping among different PHY parameters, little computa-
tion is involved. Therefore the computational overhead of our protocol is trivial
compared to traditional cryptography.

5 Implementation Feasibility

In this section, we first discuss the architecture of our proposed system, and then
discuss the feasibility of adapting different PHY parameters in SDRs. Finally,
we propose a configuration hopping scenario which is easy to implement.

A Secure Communication Protocol without Explicit Key Exchange 279

5.1 Architecture

Figure 4 shows the implementation architecture. The adaptation control module
lies below MAC and higher layers. The module determines at what granularity
(symbol, block or packet) the PHY parameters would be adapted. In the next,
the PHY parameter control module chooses the PHY parameters according to
the adaptation values, which should be agreed upon between the two communi-
cating parties. Then, data are processed at the PHY layer according to the PHY
parameters chosen by the control modules. The PHY parameters include stan-
dard ones like modulation, error correction coding method, carrier frequency,
and TX power control, and others like symbol duration and spreading code.

MAC and Higher Layer

Adaptation granularity
(symbol, block or packet)

control

Adaptation values

parameters mapping

Adaptation Control

Modulation, error correction
coding, center frequency,

TX power control

Symbol duration, spreading
code, additional modulation

and coding control

PHY Parameter Control

Dialog Code

In-band Full Duplex

Standard PHY Parameters Additional PHY Parameters

Fig. 4. Fine grain adaptive radio architecture

5.2 Feasibility of PHY Parameter Adaptations

Our previous work, Puzzle [14] shows that extracting secret from wireless channel
is feasible. In a 20MHz band, two communicating parties can share a 5-bit secret
per coherence interval using Puzzle with a mismatch rate below 5%. With the
assumption that the failure of the protocol is caused mainly by the disagreement
of the secret extracted from the wireless channel at two communicating ends, the
probability of failure of the protocol is below 5%. Experiments also show that
the secrets produced by Puzzle are robust against eavesdropping. Sub-packet
adaptation of PHY layer parameters is possible according to our preliminary
study of different software-defined radios (SDRs) [1, 3]. While adaptations of
some PHY layer parameters are straightforward, this is not the case for others.

One type of adaptation is coding. For example, when encoding data, nodes can
choose different kinds of modulations and simultaneously change the duration of
each symbol. Even within one modulation method, remapping the constellation
to different symbols is feasible and easy to implement. If two communicating ends
adopt DSSS technique, they can also update the PN code for each symbol. All

280 Y. Qiao, K. Srinivasan, and A. Arora

of these coding layer configuration hopping techniques provide obscurity against
eavesdroppers, and in addition, PN sequence hopping makes detection harder
for eavesdroppers, too.

Power level is also a choice for configuration adaptation. NI PXIe-1082 [1],
an SDR from National Instruments, can easily change transmit gain between
1 and 231. From the perspective of communication, randomly changing power
level may not appear at first blush to be reasonable, but from the perspective of
security, varying power level can hide the existence and identities of transmitters
from eavesdroppers. For instance, with fixed transmission power, it is easy for
eavesdroppers to estimate the number of transmitters, and even to tell each
captured packet belongs to which transmitter. And, clearly, localization is also
harder for attackers.

Fig. 5. Sub-Packet Adaptive Center Frequency Circuitry. PLLs can take time to sta-
bilize frequency source output. Provisioning multiple PLLs allows a radio to keep the
next frequency ready for the next symbol.

All of the above operations can be done in the digital domain, so they are easy
to realize. But adaptations in the (analog) RF domain need more effort. Take
frequency adaptation as an example. It is possible to change the frequency in
baseband. But, for center frequency variations beyond a certain range, the change
needs to be done in RF domain. To be more specific, phase locked loops (PLLs)
would lose the lock for a large jump in frequency. So, we need to send control
signals from the baseband to tune the PLL circuitry. As the PLLs take time to
stabilize, which is typically in the order of several microseconds (comparable to
a symbol duration), no data can be transmitted during the switch [6]. In other
words, a long switching time will reduce data rate. Therefore, fast FHSS can
only be implemented in narrow band with single PLL. We propose a design that
has two PLLs to avoid extensive time delays for the PLLs to settle. Figure 5
shows our design. The first PLL is used for the current symbol. Meanwhile, the
second PLL is tuned to the frequency to be used for the next symbol. At the
end of the current symbol, a switch triggers the connection to the second PLL
thus changing the frequency used for the next symbol. Here, the transition time
between the PLLs is dictated by the switch. There are commercial switches [2]
available that have a transition time in the order of nanoseconds. Note that if
the PLL’s tuning time is larger than the smallest symbol duration, then more

A Secure Communication Protocol without Explicit Key Exchange 281

than two PLLs can be tuned in advance and switched in a round-robin fashion.
Since the center frequencies for different symbols within a packet are derived
from the configuration, these values are available before sending a packet.

5.3 Example: Constellation Hopping

I

Q

0.707

0.707

Rotation
1
2
3 /6
… …

Fig. 6. Constellation is redefined by rotation

Constellation can be redefined by rotating the original constellation for mod-
ulation with different angles. In Figure 6, A1, B1, C1 and D1 represent the four
ideal points in a QPSK constellation. By rotating the constellation with π

12 , we
get a synonymous constellation with four ideal points A2, B2, C2 and D2. Con-
tinuing this rotation, we can get 24 different constellations for QPSK and then
modulation can be done according to the constellation chosen by the adaptation
control module. A transmitter can hop among these synonymous constellations
and the receiver who knows the rule of the hopping can decode the correspond-
ing packets easily. But an eavesdropper with no information about the chosen
constellation needs to collect a large amount of symbols to decide where the
ideal points are, since it receives noisy versions of the ideal points. Even with
the right ideal points, it still needs to go through all the four possible mappings
between the ideal points and the digital data bits.

6 Conclusion

In this paper, we proposed a secure communication protocol that takes advan-
tage of PHY layer operability provided by extant SDRs. We proved the security
properties of our link layer protocol and also discussed the protection provided
by configuration hopping at the PHY layer. We find that changing configurations
with in-band full-duplex prevents eavesdroppers from decoding messages. And
moreover, the adaptation that accommodates extant DSSS techniques can pro-
vide transmission with low signal to noise ratio (SNR) and therefore make trans-
mission detection correspondingly harder. Frequency hopping also increases the

282 Y. Qiao, K. Srinivasan, and A. Arora

degree of difficulty of detectability against eavesdroppers. In addition, changing
transmission gain helps hide the geolocation of a transmission source for those
cases where transmissions are detected.

References

1. NI PXIe-1082 user manual, http://www.ni.com/pdf/manuals/372752b.pdf
2. RF-switches, http://www.analog.com/en/switchesmultiplexers/rf-switches
3. USRP N210, https://www.ettus.com/product/details/UN210-KIT
4. Arora, A., Sang, L.: Dialog codes for secure wireless communications. In: Pro-

ceedings of the 2009 International Conference on Information Processing in Sensor
Networks, IPSN 2009, pp. 13–24. IEEE Computer Society (2009)

5. Azimi-Sadjadi, B., Kiayias, A., Mercado, A., Yener, B.: Robust key generation from
signal envelopes in wireless networks. In: Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS 2007 (2007)

6. Best, R.E.: Phase-Locked Loops. Professional Engineering. Mcgraw-hill (2003)
7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for

building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

9. Jain, M., Choi Il, J., Kim, T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P.,
Katti, S., Sinha, P.: Practical, real-time, full duplex wireless. In: Proceedings of
the 17th Annual International Conference on Mobile Computing and Networking,
MobiCom 2011 (2011)

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (Chapman & Hall/Crc
Cryptography and Network Security Series). Chapman & Hall/CRC (2007)

11. Madiseh, M.G., McGuire, M.L., Neville, S.S., Cai, L., Horie, M.: Secret key genera-
tion and agreement in UWB communication channels. In: Proceedings of the Global
Communications Conference, GLOBECOM 2008, pp. 1842–1846. IEEE (2008)

12. Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy: ex-
tracting a secret key from an unauthenticated wireless channel. In: Proceedings of
the 14th ACM International Conference on Mobile Computing and Networking,
MobiCom 2008 (2008)

13. Patwari, N., Croft, J., Jana, S., Kasera, S.K.: High-rate uncorrelated bit extraction
for shared secret key generation from channel measurements. IEEE Transactions
on Mobile Computing 9(1), 17–30 (2010)

14. Qiao, Y., Srinivasan, K., Arora, A.: Shape matters, not the size: A new approach
to extract secrets from channel. In: The Proccedings of the First ACM Workshop
on Hot Topics in Wireless, HotWireless 2014 (2014)

15. Rappaport, T.: Wireless Communications: Principles and Practice, 2nd edn.
Prentice Hall PTR (2001)

http://www.ni.com/pdf/manuals/372752b.pdf
http://www.analog.com/en/switchesmultiplexers/rf-switches
https://www.ettus.com/product/details/UN210-KIT

Dependable Decentralized Cooperation
with the Help of Reliability Estimation�

Seda Davtyan1, Kishori M. Konwar2, and Alexander A. Shvartsman1

1 Department of Computer Science & Engineering, University of Connecticut,
Storrs CT 06269, USA

{seda,aas}@engr.uconn.edu
2 University of British Columbia, Vancouver BC V6T 1Z3, Canada

kishori@mail.ubc.ca

Abstract. Internet supercomputing aims to solve large partitionable
computational problems by using vast numbers of computers. Here we
consider the abstract version of the problem, where n processors perform
t independent tasks, with n ≤ t, and each processor learns the results of
all tasks. An adversary may cause a processor to return incorrect results,
and to crash. Prior solutions limited the adversary by either (i) assuming
the average probability of returning incorrect results to always be inferior
to 1

2
, or (ii) letting each processor know such probabilities for all other

processors. This paper presents a new randomized synchronous algorithm
that deals with stronger adversaries while achieving efficiency compara-
ble to the weaker solutions. The adversary is constrained in two ways. (1)
The set of non-crashed processors must contain a hardened subset H of
the initial set of processors P , for which the average probability of return-
ing a bogus result is inferior to 1

2
. Notably, crashes may increase the aver-

age probability of processor misbehavior. (2) The adversary may crash a
set of processors F , provided |P −F | is bounded from below. We analyse
the algorithm for three bounds on |P −F |: (a) when the bound is linear
in n the algorithm takes Θ(t

n
log n) communication rounds, has work

complexity Θ(t log n), and message complexity O(n log2 n); (b) when the
bound is polynomial (|P −F | = Ω(na), for a constant a ∈ (0, 1)), the al-
gorithm takes O(t

na log n log log n) rounds, with work O(t log n log log n),
and message complexity O(n log2 n log log n); (c) when the bound is poly-
log in n, it takes O(t) rounds, has work O(t ·na), and message complexity
O(n1+a), for a ∈ (0, 1).

1 Introduction

Cooperative network supercomputing is becoming increasingly popular for har-
nessing the power of the global Internet computing platform. A typical Internet
supercomputer, e.g., [1,2], consists of a master computer and a large number of
computers called workers, performing computation on behalf of the master. De-
spite the simplicity and benefits of a single master approach, as the scale of such
computing environments grows, it becomes unrealistic to assume the existence
of the infallible master that is able to coordinate the activities of multitudes of

� This work is supported in part by the NSF award 1017232.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 283–298, 2014.
c© Springer International Publishing Switzerland 2014

284 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

workers. Large-scale distributed systems are inherently dynamic and are subject
to perturbations, such as failures of computers and network links, thus it is also
necessary to consider fully distributed peer-to-peer solutions.

One could address the single point of failure issue by providing redundant
multiple masters, yet this would remain a centralized scheme that is not suit-
able for big data processing that involves a large amount of input and output
data. For example, consider applications in molecular biology that require large
reference databases of gene models or annotated protein sequences, and large
sets of unknown protein sequences [11]. Dealing with such voluminous data re-
quires a large scale platform providing the necessary computational power and
storage. Therefore, a more scalable approach is to use a decentralized system,
where the input is distributed and, once the processing is complete, the output
is distributed across multiple nodes.

Interestingly, computers returning bogus results is a phenomenon of increasing
concern. While this may occur unintentionally, e.g., as a result of over-clocked
processors, workers may in fact wrongly claim to have performed assigned work
so as to obtain incentives associated with the system, e.g., higher rank. To ad-
dress this problem we introduced a decentralized approach [6,4]. Here, our syn-
chronous algorithms perform all tasks correctly with high probability (whp),
while dealing with misbehaving processors under a strong assumption that the
average probability of returning incorrect results remains inferior to 1

2 . Thus
the adversary is severely limited in its ability to crash processors that normally
return correct results. We also considered a linearly-bounded model [7], where
the average probability of returning bogus results can become greater than 1

2 .
However, a strong assumption is made that each processor knows the probability
of misbehavior for all processors. We addressed this assumption by developing
an algorithm that computes an (ε, δ)-approximation of such probabilities [5].

Here we present a decentralized algorithm that deals with much stronger types
of adversaries, where the adversary causes failure patterns that may increase the
average probability of processors returning bogus results above 1

2 .

Contributions. We consider the problem of performing t tasks in a distributed
system of n workers without centralized control. The tasks are independent, and
any task can be performed by one or more workers in constant time. The point-
to-point message-passing system is synchronous and reliable. The failure model
allows crash-prone workers to return incorrect results. Initially, the average prob-
ability of worker misbehavior is inferior to 1

2 , however crashes can increase this
probability. We present a randomized algorithm and analyze it for three adver-
saries of increasing strength. Here all surviving processors may return bogus
results with unconstrained probabilities, except that in each execution there is a
“hardened” subset of surviving processors that are likely to return correct results.
In more detail our contributions are as follows.

1. We define the following failure model. Given the initial set of processors
P , with |P | = n, and the initial average probability of worker misbehavior being
inferior to 1

2 , we begin to constrain the adversary in one of three ways with
respect to the set F of processors that may crash: a) The adversary is constrained
by a linear fraction, where |P − F | ≥ cn, with a constant c ∈ (0, 1) (as in [6]);

Dependable Decentralized Cooperation 285

b) the adversary is constrained by a fractional polynomial, where |P − F | =
Ω(na), for a constant a ∈ (0, 1); and c) the adversary is constrained by a poly-
log, where |P −F | = Ω(logc n), for a constant c ≥ 1 (as in [4]). Additionally, the
adversary may assign an arbitrary constant probability pi < 1 to each processor
i ∈ P of returning an incorrect result, except that in each execution there exists
some, unknown to the algorithm, hardened subset H of remaining survivors,
where H ⊆ P − F , with |H | ≥ h|P − F | for some constant h ∈ (0, 1), such that
processors in H return bogus results with the average probability inferior to 1

2 .
2. We provide a randomized algorithm that works in synchronous rounds and

consists of two phases. In the estimation phase, the probabilities of each processor
computing the result of a task incorrectly is estimated as in [5]. Our presentation
concentrates on the computation phase. Here processors perform tasks and share
their knowledge until the termination conditions are satisfied. Since for live pro-
cessors the average probability of misbehavior can become greater than 1/2, the
challenge is to determine for each task the set of processors whose results will
contribute to the calculation of the final result. Doing so efficiently and correctly
is a major departure from prior work. We formulate a new method that chooses
a correct subset of processors that satisfy the needed constraints.

3. We analyze the algorithm for each adversarial constraint and show that
workers obtain the correct results of all tasks whp (with high probability). We
show that the time complexity R (in terms of rounds), work complexity W , and
message complexityM hold whp as follows. a) For the linearly constrained model:
R = Θ(t

n logn), W = Θ(t log n), and M = O(n log2 n). b) For the polynomially
constrained model we have: R = O(t

na logn log logn), W = O(t log n log logn),

and M = O(n log2 n log logn). c) For the poly-log constrained model: R = O(t),
W = O(t · na), and M = O(n1+a), where a ∈ (0, 1). Prior work. Earlier

approaches explored ways of improving the quality of the results obtained from
untrusted workers in the settings where a bandwidth-unlimited and infallible
master is coordinating the workers. Fernandez et al. [9,8] and Konwar et al. [12]
designed algorithms that help the master determine correct results whp, while
minimizing work. The failure models assume that some fraction of processors
exhibits faulty behavior. Recent work by Christoforou et al. [3] pursues a game-
theoretic approach. Paquette and Pelc [13] study fault-prone systems where a
decision has to be made on the basis of unreliable information and design a
deterministic strategy for deciding correctly whp.

Our prior work [6,4] introduced the decentralized approach and provided syn-
chronous algorithms for the problem under a strong assumption that the average
probability of non-crashed processors returning incorrect results remains inferior
to 1

2 . We addressed this assumption by developing a decentralized algorithm that
estimates such probabilities [5] using an (ε, δ)-approximation, for 0 < ε < 1 and
δ > 0, that estimates the mean of a random variable.

A related problem, called Do-All [10], also deals with cooperative execution
of tasks, but the processors need not learn the results of the computation.

Document Structure. Section2 statesmodels anddefinitions. Section3 presents
our algorithm; its analysis is in Section 4. We conclude in Section 5.

286 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

2 Model of Computation and Definitions

We deal with a system, where a collection of not-entirely-dependable processors
cooperatively perform a large number of computation-intensive tasks.

System Model. There are n processors, each with a unique identifier (id) from
set P = [n]. We refer to the processor with id i as processor i. The fully-connected
message-passing system is synchronous and point-to-point reliable. However, we
do not assume that broadcast is reliable, i.e., if a processor that sends a message
to multiple destinations crashes, then the message may be delivered only to an
arbitrary subset of destinations. Computation is structured in terms of rounds.
The duration of each round is sufficient for a processor to (1) send messages, (2)
receive messages, and (3) perform one task and some local computation, where
the local computation time is assumed to be negligible compared to message
latency and the time required to perform the task. Messages sent at the beginning
of a round are received before the end of the same round.

Tasks. There are t tasks to be performed, each with a unique id from set T = [t].
We assume that tasks can be obtained from some repository. We refer to the task
with id j as task j. The tasks are (1) similar, meaning that any task can be done
in constant (possibly large) time by any processor, (2) independent, meaning
that each task can be performed independently, and (3) idempotent, meaning
that the tasks admit at-least-once semantics and can be performed concurrently.
The problem is most interesting when there are at least as many tasks as there
are processors, thus we consider t ≥ n.

Models of Adversity. Processors misbehave in two ways: (1) processors may
crash, and (2) processors may return incorrect results for tasks. (Clearly the
failure model is weaker than the byzantine model.) Once crashed, a processor
performs no further actions. We refer to non-crashed processors as live. The
adversary is oblivious in that it decides prior to the computation what processors
to crash and when. For an execution of an algorithm, we let F be the set of
processors that crash. The maximum number of processors that can crash is
established by three specific adversarial models.

Model F�f : The adversary is constrained by a linear fraction of the number of
processors: |P − F | ≥ cn, where c ∈ (0, 1).

Model Ffp : The adversary is constrained by a fractional polynomial : |P − F | =
Ω(na), for a constant a ∈ (0, 1).

Model Fpl : The adversary is constrained by a poly-logarithm: |P−F | = Ω(logc n),
for a constant c ≥ 1.

For each processor i ∈ P , we define pi to be the probability of processor i
returning incorrect results, independently of other processors. Initially the aver-
age probability of processors in P returning incorrect results is inferior to 1

2 , i.e.,
1
|P |
∑

i∈P pi <
1
2 − ζ, for a certain small ζ > 0, ensuring that this average prob-

ability does not become arbitrarily close to 1
2 as n tends to infinity. We define a

subset H of processors to be a hardened set if H ⊆ P−F , i.e., no processors in H
crash, and |H | ≥ h|P −F | for some constant h ∈ (0, 1), and 1

|H|
∑

i∈H pi <
1
2 −ζ.

Neither the existence of set H , not its cardinality are known to any processor.

Dependable Decentralized Cooperation 287

We choose ζ to be some multiple of Δ, where Δ, the chosen precision, is at least
the smallest floating point number supported across all nodes. (Any ζ > 0 works
for proving correctness, and assessing work, rounds, and message complexities.
The choice of Δ affects only the local computation as will be made clear in the
analysis.) For simplicity, in the remainder of the paper we assume ζ = Δ.

We note that while the average probability of returning incorrect results for
processors in a hardened set is inferior to 1

2 , the overall average probability of

all non-crashed processors returning result incorrectly can be greater than 1
2 .

Measures of Efficiency. We evaluate algorithms using three measures of effi-
ciency: communication rounds, work, and message complexity. Communication
rounds measure assesses the worst case number of rounds executed by an algo-
rithm. Work complexity accounts for the total number of tasks (counting mul-
tiplicities) performed by the algorithm. We assess message complexity as the
number of point-to-point messages sent during an execution. Lastly, we use the
common definition of an event E occurring with high probability (whp) to mean
that Pr[E] = 1−O(n−α) for some constant α > 0.

3 Algorithm Description

We now present algorithm dare (for Decentralized Algorithm with Reliability
Estimation). We first detail the algorithm for n processors and t = n tasks, then
we generalize it for t tasks, where t ≥ n. Algorithm dare is given in Figure 1.

The algorithm consists of two phases: estimation and computation. In the
estimation phase, processors estimate the probabilities of computing the result
of a task correctly for all processors. This phase begins by executing algorithm
Aest of [5], then each processor i calculates the estimates of probabilities of
computing results incorrectly and stores these probabilities in the array Ei[]. If
it is detected that processor j crashed, then this is recorded by setting Ei[j] to
−1.

The computation phase is the focus of our presentation. The main data struc-
ture at each processor is an array of size linear in n used to accumulate knowledge
gathered by the processors. The phase is structured as a loop. Each processor
starts as a worker, and in each iteration, it performs one randomly selected task
and sends its knowledge to one randomly selected processor. When a worker
obtains “enough” knowledge about the tasks, it computes the final results, and
becomes enlightened. Such processors “profess” their knowledge to other proces-
sors by means of multicasts to exponentially increasing random sets of processors.
The loop terminates when a certain number of messages is received from enlight-
ened processors. We now detail the algorithm.

Local Knowledge and State Variables. Every processor i maintains the
following information. Array of results Ri[1..t], where element Ri[j], for j ∈ T , is
a set of results for Task[j]. Each Ri[j] is a set of triples 〈v, k, r〉 representing the
result v computed for Task[j] by processor k in round r (this ensures that results
computed by processor k in different rounds are included). Array Resultsi[1..t]
stores the final results. Array Ei[1..n] stores the estimates of probabilities pj ,
rounded to the numerical precision Δ for each j ∈ P . If a crash of processor j is

288 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Procedure for processor i;
external n, t, km, kt /* n processors and t tasks; km, kt are constants */
Task[1..t] /* set of tasks */
Ei[1..n] init ⊥ /* estimates of pj for each j ∈ P */
Ri[1..t] init ∅n /* set of collected results */
Resultsi[1..t] init ⊥ /* array of results */
prof ctr init 0 /* number of profess messages received */
r init 0 /* round number */
� init 0 /* number of profess messages to send */
worker init true /* initially each processor is a worker */

estimation phase

Use procedure Aest [5] to compute Estimate i[1..n]
/* Estimate i[q] = if q crashes then −1 else (ε, δ)-approximation of 1− pq */
for each j ∈ P do /* Prob. of computing incorrectly */

Ei[j] ← if Estimate i[j] �= −1 then 1− Estimate i[j] else −1
/* Here Ei[j] is rounded to the numerical precision Δ */

computation phase

while prof ctr < km log n do
Send:

1: if worker then
2: Let q be a randomly selected processor from P
3: Send 〈share, Ri[]〉 to processor q
4: else
5: Let D be a set of 2� log n randomly selected processors from P
6: Send 〈profess, Ri[]〉 to processors in D
7: � ← �+ 1

Receive:
8: Let M be the set of received messages
9: prof ctr ← prof ctr + |{m : m ∈ M ∧m.type = profess}| /* count msgs */

10: for all j ∈ T do /* update knowledge */
11: Ri[j] ← Ri[j] ∪ (

⋃
m∈M m.R[j])

Compute:
12: r ← r + 1
13: if worker then
14: Randomly select j ∈ T and compute the result vj for Task[j]
15: Ri[j] ← Ri[j] ∪ {〈vj , i, r〉}
16: for all j ∈ T do
17: Let Q = {s : 〈 , s, 〉 ∈ Ri[j]}
18: S ← select(Q,Ri[j], Ei[], 2ζ)
19: Let Kj = {〈v, s, q〉 : 〈v, s, q〉 ∈ Ri[j] ∧ s ∈ S}
20: if minj∈T {|Kj |} ≥ kt log n then /* sufficient results for all tasks */
21: for all j ∈ T do
22: Resultsi[j] ← u such that triples 〈u, , 〉 form a plurality in Kj

23: worker ← false /* worker is enlightened */
end.

Fig. 1. Algorithm dare for t = n at processor i for i ∈ P

detected, Ei[j] is set to −1. The prof ctr stores the number of messages received
from enlightened processors. Variable r is the round (iteration) number that is
used by workers to timestamp the computed results. Variable � is the exponent
that controls the number of messages multicast by enlightened processors.

Dependable Decentralized Cooperation 289

Control Flow. The computation phase consists of the main while-loop, where
each iteration consists of three stages, viz., Send, Receive, and Compute. Proces-
sors communicate by means of messages m that contain pairs 〈type,R[]〉. Here
m.R[] is the sender’s array of results. When a processor is a worker, it sends
messages with m.type = share. When a processor becomes enlightened, it sends
messages with m.type = profess. The loop is controlled by counter prof ctr that
records the number of received profess messages. (In Section 4 we reason about
the compile-time constant km, and establish that km logn profess messages are
sufficient for our claims.) We next detail the stages.
Send stage: Any worker chooses a target processor q at random and sends it
the array of results R[] in a share message. Any enlightened processor chooses
a set D ⊆ P of processors at random and sends them the array of results R[] in
a profess message. The size of the set D is 2� logn, where initially � = 0, and �
is incremented by 1 in every round.
Receive Stage: Processor i receives messages (if any) sent to it in the preced-
ing Send stage. The processor increments its prof ctr by the number of profess
messages received. For each task j, the processor updates its Ri[j] by including
the results received in all messages.
Compute Stage: Any worker randomly selects task j, computes the result vj ,
and adds the triple 〈vj , i, r〉 for round r to Ri[j]. For each task the worker com-
putes the set of results received from the processors chosen in procedure select
(discussed below). Once at least kt logn results for each task are obtained, the
worker stores the final results in Resultsi[] by taking the plurality of results for
each task, and becomes enlightened. (In Section 4 we reason about the compile-
time constant kt, and establish that kt logn results are sufficient for our claims.)
Enlightened processors rest in subsequent Compute stages.

Procedure select in Figure 2 is called in line 18 of algorithm dare. Recall that
we do not require the average probability of returning bogus results to be inferior
to 1

2 (in contrast with [4,6]). Hence, the challenge for each worker is to find, for
each task, a “good” subset S of processors, whose set of computed results can be
used to determine the final result for the task. As will be shown in the analysis,
the selected subset S is such that: 1) each s ∈ S has computed a result for task
j, and 2) S is the maximal subset of P such that whp 1

|S|
∑

s∈S ps <
1
2−ζ, where

{ps} is the probability of processors s returning bogus results.

Procedure select(Q,Z, E[], η)
S1, S2 init ∅ /* subsets of selected processors */

1: S1 ← {s | s ∈ Q ∧ E[s] ≤ 1
2
− η}

2: Q′ ← Q \ S1

3: Let � = |Q′| and 〈s1, ..., s�〉 be some ordering of sk ∈ Q′

4: Let w = 〈E[s1]− 1
2
+η, . . . , E[s�]− 1

2
+η〉 /* the weight vector for sk ∈ Q′ */

5: Let v = 〈λ1, · · · , λ�〉, where λk = |{τ | τ = 〈 , sk, 〉 ∈ Z}|
/* λk is the number of results in Z calculated by processor sk ∈ Q′ */

6: W ←
∑

s∈S1
(1
2
− η − E[s])

7: S2 ←BinaryKnapSack(v,w,W)
8: return S1 ∪ S2

Fig. 2. select returns S = S1 ∪ S2 ⊆ P s.t. 1
|S|

∑
s∈S ps < 1

2
− η.

290 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Algorithm select returns the set of processors that satisfies the constraint
on the average probability, and also the set of results computed by the selected
processors is the maximal. Note that simply taking the maximum subset of re-
sults is not enough since we want the average probability of the processors erring
to be inferior to 1

2 . Therefore, for any task, we achieve our goal of computing the
final result correctly whp, and at the same time with as few tasks as possible.
Note that in order to provide the whp guarantee we need the average probability
constraint, and for probability amplification process (by taking the majority) we
need the number of results to be on the order of logn. In order to to be able to
decide on the final result for a task we search such a set of results using select.
We accomplish this with the help of a solution to the 0-1 Knapsack problem as
we detail in the next section. Once a sufficient number of results is obtained,
select returns a set of processors that satisfy our model constraint.

Additional Implementation Detail. It is possible for processors to exit the
estimation phase and enter the computation phase at different times. The dura-
tions of all rounds are identical, thus the actions of processors within rounds are
synchronized. We assume that processors ignore “out of phase” messages, but
we do not explicitly model this to avoid clutter. This is easily done by including
a phase indicator in each message, so that “out of phase” messages are ignored.

Extension for t ≥ n. We now modify the algorithm to handle any t tasks,
where t ≥ n. We segment the t tasks into chunks of �t/n� tasks, and construct a
new array of chunk-tasks with identifiers in [n], and so each chunk-task can be
performed in Θ(t/n) time by any processor. We now use algorithm dare, where
the only difference is that each Compute stage is extended by Θ(t/n) rounds to
perform a chunk-task (no communication is carried out during these rounds).

4 Complexity Analysis

We analyze algorithm dare in our three failure models. In each we first carry
out the analysis for n tasks, then extend the results for t ≥ n tasks.

The estimation phase is based on algorithm Aest [5], where we showed that for
the given δ > 0 and ε > 0 chosen by the user, algorithm Aest obtains estimates
q̃i that obey the following bound: Pr[qi(1 − ε) ≤ q̃i ≤ qi(1 + ε)] > 1 − δ, where
qi = 1 − pi is the probability of worker i returning correct result. The analysis
of algorithm Aest is given in [5] (Theorems 2, 3, and 4). These results translate
to the estimation phase of algorithm dare as summarized in Theorem 1.

Theorem 1. Algorithm Aest computes for every processor i ∈ P−F an (ε, δ)-
approximation of qi = 1−pi, for given ε, δ > 0, within the following bounds:.
• Model F�f : Time T (n) = O(log n), work W (n) = O(n log n), and message

complexity M(n) = O(n log2 n); • Model Ffp : T (n) = O(n1−a logn log logn),

W (n) = O(n log n log logn), and M(n) = O(n log2 n log logn); • Model Fpl :
T (n) = O(n), W (n) = O(n1+a), M(n) = O(n1+a).

We proceed to analyze the computation phase. The heart of the analysis rests
in the properties of procedure select. The first lemma shows that, for any task,

Dependable Decentralized Cooperation 291

select returns a subset S of processors such that the average probability of
processors in S erring is inferior to 1

2 , and that the set of results computed for
the task by processors in such S is the largest among all subsets of P that satisfy
the above constraint. In the sequel, for each s ∈ P , we let p̃s stand for the value
of E[s], the probability approximation computed in the estimation phase.

Lemma 1. If processor i invokes select(Q,Z = Ri[j], E[] = Ei[], η = 2ζ),
then it returns set S ⊆ Q, such that, 1

|S|
∑

s∈S p̃s ≤ 1
2 − 2ζ, where p̃s is the value

of E[s]. Additionally, the subset of results from Z, computed by the processors
in S, is maximal among all subsets X ⊆ Q, such that 1

|X|
∑

s∈X p̃s ≤ 1
2 − 2ζ.

Proof. select defines λs in line 5 as the number of results from Z computed
by a processor s ∈ Q for task j. The procedure is invoked with η = 2ζ. With
these we have the following optimization problem.

maxS⊆Q

∑
s∈S λs such that 1

|S|
∑

i∈S p̃i ≤ 1
2 − 2ζ = 1

2 − η

Here
∑

s∈S λs is the number of results in Z, computed by processors in S. This
problem can be written as

maxS⊆Q

∑
s∈S λs such that

∑
s∈S(p̃s − 1

2 + η) ≤ 0 .

We partition set Q into sets S− = {s : s ∈ S and p̃s − 1
2 + η ≤ 0} and S+ =

{s : s ∈ S and p̃s − 1
2 + η > 0}, where S− and S+ correspond to S1 and S2 in

Figure 2, respectively. Any optimal solution S∗ to this problem must include S−,
i.e., S− ⊆ S∗. To see this, suppose there exists a processor s′ ∈ S− such that
s′ �∈ S∗. Since s′ is in S− we have, by definition, p̃s′ − 1

2 +η ≤ 0. We can create a
new solution X = S∗ ∪ {s′}. Note that λs′ is positive, since there is at least one
result computed for task j by every s ∈ Q. Hence, we have

∑
s∈X λs >

∑
s∈S∗ λs

and X also satisfies the constraint
∑

s∈X(p̃s− 1
2 +η) ≤ 0. Therefore, X contains

more results from Z than the solution S∗, a contradiction. Hence S− ⊆ S∗.
Line 1 of select gives S− as it is a part of any optimal solution as argued

above. What remains is to select processors from S+ such that the average
probability constraint is satisfied and the number of results computed by the
selected processors is the largest. Notice, that the sets of results, for task j, in Z
computed by any two distinct processors are disjoint. We select the processors
from S+ as a solution to the next optimization problem∑

s∈S− λs +maxS⊆S+

∑
s∈S λs such that

∑
s∈S∪S−(p̃s − 1

2 + η) ≤ 0
that can be written as∑

s∈S− λs+maxS⊆S+

∑
s∈S λs such that

∑
s∈S(p̃s− 1

2 +η) ≤
∑

s∈S−(12−η− p̃s).

By letting W stand for
∑

s∈S−(12 − η − p̃s) and noting that W > 0, we have∑
s∈S− λs +maxS⊆S+

∑
s∈S λs such that

∑
s∈S(p̃s − 1

2 + η) ≤W .
Therefore, we would like to find the subset S of S+, that solves the following
optimization problem.

maxS⊆S+

∑
s∈S λs such that

∑
s∈S(p̃s − 1

2 + η) ≤W (1)

This is an instance of 0-1 Knapsack problem, where, as defined in lines 4 to 6
of procedure select, v = {λs}s∈S+ are the values of the items, w = {(p̃s −
1
2 + η)}s∈S+ are the set of weights of the items, and W is the capacity of the
knapsack. (Although the Knapsack optimization problem is NP-hard, we show

292 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

in Lemma 2 that it takes polylogarithmic time to solve our instance.) In select

the solution to the Knapsack problem is computed in line 7, and the resulting
solution, set S2, is included in the returned set in line 8. �

We next reason that whp procedure select takes local polylogarithmic time
to terminate for each task, thus each processor does not expend more than the
polynomial local computation time alloted to it by our model.

Lemma 2. Any invocation of select with the results parameter Z, such that
|Z| = O(log n · log logn), returns in local polylogarithmic time for each task whp.

We next show that the needed maximal set S returned by select satisfies
the constraint on the average probability, whp. Note that satisfying the average
probability constraint by the estimated values p̃i does not automatically imply
that the constraint is satisfied for the actual probabilities pi, i ∈ P .

Lemma 1 shows that the estimates p̃s satisfy 1
|S|
∑

s∈S p̃s ≤ 1
2 − 2ζ. The

following lemma shows that this implies that the actual probabilities ps, satisfy
the condition, 1

|S|
∑

i∈S ps ≤ 1
2 − ζ, whp (note the ζ vs. 2ζ difference).

Lemma 3. The subset S returned by select for any task j, satisfies
1
|S|
∑

s∈S pi ≤ 1
2 − ζ, whp.

Proof. The estimation phase computes p̃s, the probability of processor s re-
turning bogus results, as 1− q̃s, where q̃s is the estimate of the probability of s
returning correct results as computed by Aest [5]. As follows from the analysis
in [5], each estimation q̃s satisfies Pr[qs(1− ε) ≤ q̃s ≤ qs(1 + ε)] > 1− δ, for any
chosen constant ε > 0, and some δ > 0. Moreover, it is shown that by picking
δ = 1

nα , for some α > 1 we have qs(1 − ε) ≤ q̃s ≤ qs(1 + ε) whp, conversely, we
have ps(1− ε) ≤ p̃s ≤ ps(1 + ε) whp.

We know that for s ∈ S, we have Pr (ps(1− ε) ≤ p̃s ≤ ps(1 + ε)) > 1 − 1
nα ,

for α > 1. Let us denote by Es the event {p̃s ≥ ps(1 − ε)} and let us denote by
Ēs the complement of that event. It follows from above that, Pr[Ēs] ≤ 1

nα , for

α > 1. Now, by Boole’s inequality we have Pr[∪sĒs] ≤
∑

s Pr[Ēs] ≤ 1
nβ , where

β = α− 1 > 0, hence Pr[∩sEs] = Pr[∪sĒs] = 1−Pr[∪sĒs] ≥ 1− 1
nβ .

Given that ∩sEs =
⋂

s∈S{ps(1 − ε) ≤ p̃s}, it follows that
∑

s∈S ps(1 − ε) ≤∑
s∈S p̃s ≤ |S|(12−2ζ), where the second inequality comes from the properties of

the set S as returned by select and the result of Lemma 1. Therefore, we have
1
|S|
∑

s∈S ps ≤
(
1
2 − 2ζ

)
(1− ε)−1 ≤

(
1
2 − 2ζ

)
(1+O(ε)) ≤

(
1
2 − ζ

)
, for sufficently

small constant ε > 0, whp, because Pr[∩sEs] ≥ 1− 1
nβ . �

Remark: The choice of the precision Δ affects only the local time of procedure
select, but does not affect the correctness (whp) of the algorithm. This is
because we call select with 2ζ (i.e., 2Δ) as the value of the fourth parameter,
resulting in a more stringent constraint on probabilities than ζ. The choice of Δ
is completely immaterial in the analysis of the rounds and message complexities.

Next we analyze the performance of the computation phase. The complete
analysis of the performance is then obtained by adding the relevant complexities
of the two phases. Note that it is possible for processors to enter the computation

Dependable Decentralized Cooperation 293

phase in different rounds. However, all processors enter the phase whp in O(log n)
rounds after the first processor that computes the estimates (Lemma 4 in [5]).
In our analysis we assume without loss of generality that all live processors
start the computation phase together. In essence, this discounts any potential
computational progress made by the processors that start the phase “early.” We
will show that our algorithm takes at least logn rounds, and thus any “wasted”
work and communication done by “early” processors can be absorbed into the
respective complexities of the computation phase. We next show that if Θ(n logn)
profess messages are sent in the computation phase by the enlightened processors,
then every live processor terminates whp.

Lemma 4. Let r be the first round by which the total number of profess messages
is Θ(n log n). Then by the end of this round every live processor halts whp.

Lemmas 4 is proved along the lines of Lemmas 2 of [4]. (The constant km
from the proof is used as a compile-time constant in algorithm dare.)

Lemma 5. Once a processor v ∈ P−F becomes enlightened, every live processor
halts in additional O(log n) rounds whp.

Proof. Per Lemma 4 if Θ(n logn) profess messages are sent then every processor
halts whp. Given that processor v does not crash it takes v at most logn rounds
to send Θ(n log n) profess messages (line 5 in Figure 1), regardless of the actions
of other processors. Hence, whp every live processor halts in O(log n) rounds. �

We denote by L the number of iterations of the computation phase required
for a processor from the hardened set H to become enlightened. Let us further
denote by Fr the set of processors crashed before round r.

We will analyze the value of L for models F�f , Ffp and Fpl . The compile-time
constant kt appearing in algorithm dare is computed as max{k1, k2, k3}, where
k1, k2 and k3 are from the proofs of Lemmas 6, 8, and 12.

Here it is sufficient to be concerned with the tasks that are performed by the
hardened processors before any of them becomes enlightened, and by the pro-
cessors that computed more results than some hardened processors. The latter
is interesting because it is possible that for a task j select returns a subset of
processors that performed task j, yet H �⊆ S. Lemmas 1 and 3 teach that for
the task j subset S is the maximal subset that satisfied the problem constraint.
Hence, if some processor w ∈ H is not included in S, then there exists another
processor v ∈ P −H that obtained more results for task j, and moreover, the
inclusion of v in S does not violate the constraint on average probability.

Analysis for Model F�f . Here |Fr| is bounded as in model F of [6] with at
most a linear fraction of processor crashes. We show that L needs to be Θ(log n).
Next two lemmas can be respectively proved along the lines of the proofs of
Lemmas 5.1 and 5.2 in [6].

Lemma 6. In the computation phase of algorithm dare every task is performed
Θ(log n) times whp in Θ(log n) rounds by the processors in H.

294 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

Lemma 7. In the computation phase of algorithm dare, if every task becomes
performed Θ(log n) times by workers in H, then whp in additional Θ(log n)
rounds at least one worker in H becomes enlightened.

Lemma 5 shows that once a processor in H becomes enlightened, then every
live processor halts in Θ(log n) rounds whp. It remains to show that the cor-
rect result for each task is obtained from the collectively computed results by
processors in subset S returned by select just before Results are computed.

Theorem 2. Algorithm dare performs all n tasks correctly, and the results are
known at every live processor in Θ(log n) rounds whp.

The next theorem assesses work and message complexities.

Theorem 3. Algorithm dare in adversarial model F�f takes Θ(log n) rounds,

with work complexity Θ(n log n) and message complexity O(n log2 n).

Last, we assess the efficiency of algorithm dare for t tasks, where t ≥ n. As
discussed earlier, we extend each round by Θ(t/n) rounds during which a chunk
of t/n tasks are performed without any communication. Then the following result
is simply obtained from Theorem 3 for t = n by multiplying the number of rounds
and work complexities by Θ(t/n); the message complexity is unchanged.

Theorem 4. For t ≥ n algorithm dare in model F�f takes Θ(t
n logn) rounds,

with work complexity Θ(t log n) and message complexity O(n log2 n).

Analysis for Model Ffp . Here we have |F | ≤ n−na. For the purpose of analysis
we divide an execution of the algorithm into two epochs: epoch a consists of all
rounds r where |Fr| is at most linear in n, so that the number of live processors
is at least c′n for some suitable constant c′; epoch b consists of all rounds r,
starting with the first round r′ (it can be round 1) when the number of live
processors drops below some c′n and becomes b′na for some suitable constant b′.
For the small number of failures in epocha, we anchor the analysis to model F�f .
We analyze the cost of epoch b below. The final message and work complexities
will be at most the worst case complexity for model F�f plus the additional costs
incurred while |P − F | = Ω(na) per model Ffp .

We show that whp it takes L = Θ(n1−a logn log logn) rounds for a “hardened”
worker to become enlightened.

Lemma 8. In O(n1−a logn) rounds of the algorithm every task is performed
Θ(log n) times whp by processors in H.

We now focus only on the hardened set H with |H | ≥ cna. Our goal is to show
that in O(n1−a logn log logn) rounds of the computation phase of algorithm
dare at least one processor from H becomes enlightened.

We first show that in the computation phase any triple τ = 〈x, y, z〉 generated
by a processor in H is known to all processors in H in O(n1−a log n log logn)
iterations. We denote by S(d) ⊆ H the set of processors that know a certain
triple τ by round d, and let s(d) = |S(d)|. Next lemma shows that after r1 =
O(n1−a logn log logn) rounds s(r1) = Θ(log3 n).

Dependable Decentralized Cooperation 295

Lemma 9. After r1 = O(n1−a logn log logn) rounds of the computation phase
whp s(r1) = Θ(log3 n).

Next we reason about the growth of s(r1) after round r1.

Lemma 10. Let r2 be the first iteration after round r1 in the computation phase,
such that r2 − r1 = Θ(n1−a logn). Then s(r2) ≥ 3

5 |H | whp.

Next we calculate the number of rounds in the computation phase required
for the remaining 2

5 |H | processors in H to learn τ .

Lemma 11. Once every task is performed Θ(log n) times by processors
in H then at least one worker from H becomes enlightened whp in
O(n1−a logn log logn) rounds of the computation phase of algorithm dare.

Lemmas 8, 9, 10, and 11 can be respectively proved by arguing along the lines
of Lemmas 5, 6, 7 and 8 in [4].

Theorem 5. Algorithm dare performs n tasks correctly in the computation
phase, making the results known to all live processors in O(n1−a log n log logn)
rounds whp.

According to Lemma 11, after O(n1−a logn log logn) rounds of the computa-
tion phase, at least one processor inH becomes enlightened. Then, per Lemma 5,
after Θ(log n) rounds every live processor becomes enlightened and then termi-
nates, whp. Next we assess work and message complexities.

Theorem 6. Algorithm dare in model Ffp takes O(n1−a logn log logn) rounds
and its work complexity is O(n logn log logn), and message complexity
O(n log2 n log logn).

Lastly, we evaluate algorithm dare for t tasks such that t ≥ n using the
techniques we discussed earlier.

Theorem 7. For t ≥ n algorithm dare in model Ffp takes O(t
na log n log logn)

rounds, with work and message complexities O(t log n log logn) and
O(n log2 n log logn), respectively.

Failure Model Fpl . Here we have |P − F | = Ω(logc n). We let |P − F | be at
least b logc n, for specific constants b and c satisfying the model constraints. For
the purpose of analysis we divide an execution of the algorithm into two epochs:
epoch b′ consists of all rounds r where |Fr | remains bounded as in model Ffp
(for reference, this epoch combines epoch a and epoch b defined above); epoch c
consists of all rounds r starting with the first round r′′ (it can be round 1) when
the number of live processors drops below b′na, where b′ and a are specified by
the failure model Ffp , but remains Ω(logc n) per model Fpl . Observe that since
we are concerned with model Fpl , in the sequel we can chose any a, such that
0 < a < 1. Also note that either epoch may be empty.

296 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

In epoch b′ the algorithm incurs costs exactly as in model Ffp . If algorithm
dare terminates in round r′′, the first round of the epoch, the costs remain the
same as the costs analyzed for Ffp above.

If it does not terminate, it incurs additional costs associated with the pro-
cessors in P − Fr′′ , where b logc n ≤ |P − Fr′′ | ≤ b′na. We analyze the costs
for epoch c next. The final message and work complexities are then at most the
worst case complexity for epoch b′ plus the additional costs for epoch c.

The next lemma shows that within O(n) rounds of the computation phase
every task t is chosen for execution Θ(log n) times by processors in H whp.

Lemma 12. In O(n) rounds of the computation phase every task is performed
Θ(log n) times whp by processors in H.

Next we show that once each task is done a logarithmic number of times,
then every processor in H will acquire a sufficient collection of triples in linear
number of rounds to become enlightened.

Lemma 13. Once every task is performed Θ(log n) times in the computation
phase, by processors in H then at least one worker in H becomes enlightened
whp in O(n) rounds.

Lemmas 12 and 13 can be respectively proved by arguing along the lines of
Lemmas 9 and 10 in [4].

Theorem 8. Algorithm dare performs n tasks correctly in the computation
phase, making the results known to all live processors in O(n) rounds whp.

According to Lemma 13, after O(n) rounds of the computation phase at
least one processor in H becomes enlightened, and according to Lemma 5 af-
ter O(log n) additional rounds of the computation phase every live processor
becomes enlightened and then terminates, whp. Next we assess time, work and
message complexities (this is done similarly to Theorem 6).

Theorem 9. Algorithm dare, in model Fpl , takes O(n) rounds, with work com-
plexity O(n1+a) and message complexity O(n1+a).

Remark. It should be possible to derive tighter bounds than above because we
only assume for epoch c that the number of live processors is bounded by the
generous range b logc n ≤ |P−Fr| ≤ b′na. E.g., if in epochc there areΘ(poly logn)
live processors, then work and message complexities become O(n poly log n).

Finally, we consider algorithm dare for t tasks such that t ≥ n using the
techniques we discussed earlier.

Theorem 10. For t ≥ n, in model Fpl , algorithm dare takes O(t) rounds, with
work O(t · na) and message complexity O(n1+a).

Remark. In our analysis we let ε and ζ be constants based on the chosen floating
point precision Δ. However, one can pick ε and ζ to be O(1

logn), requiring, for
large n, an algorithmic implementation of arithmetic operations. This can be

Dependable Decentralized Cooperation 297

done in a straightforward manner in O(log2 n) time per operation using poly-
nomial representation of values. This cost can be lowered with an FFT-based
multiplication algorithms. In this case the complexity bounds for the estimation
phase would increase, e.g., for model F�f the time will increase by a factor of

log2 n. Also, the time required for solving Knapsack in procedure select will
increase, but remain polylogarithmic. The desired precision should guide the
selection of ε and ζ, and this affects only the local computation at the nodes.

5 Conclusion

We presented and analyzed a synchronous decentralized algorithm for the net-
work supercomputing problem. The algorithm copes with erring and crashing
processors by estimating processor reliability. The algorithm tolerates crashes
that may increase the average overall probability of processors returning wrong
results. Of independent interest, we presented an optimization technique for ex-
tracting correct results from the collections of results of unknown quality.

References

1. Distributed.net, http://www.distributed.net/
2. Seti@home, http://setiathome.ssl.berkeley.edu/
3. Christoforou, E., Anta, A.F., Georgiou, C., Mosteiro, M.A., Sánchez, A(A.):

Reputation-based mechanisms for evolutionary master-worker computing. In: Bal-
doni, R., Nisse, N., van Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 98–113.
Springer, Heidelberg (2013)

4. Davtyan, S., Konwar, K., Russell, A., Shvartsman, A.: Dealing with undependable
workers in decentralized network supercomputing. Technical report, Preliminary
results appear in Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha,
P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 27–41. Springer, Heidelberg (2013);
Preprint submitted to Elsevier, arXiv:1407.0442[cs.DC]

5. Davtyan, S., Konwar, K.M., Shvartsman, A.A.: Estimating reliability of workers for
cooperative distributed computing. Technical report, Extended abstract appeared
in Proc. of ISPDC 2013 (2013) arXiv:1407.0696 [cs.DC]

6. Davtyan, S., Konwar, K.M., Shvartsman, A.A.: Robust network supercomputing
without centralized control. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 435–450. Springer, Heidelberg (2011)

7. Davtyan, S., Konwar, K.M., Shvartsman, A.A.: Decentralized network supercom-
puting in the presence of malicious and crash-prone workers. In: ACM PODC 2012,
Madeira, Portugal, pp. 231–232 (2012)

8. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in
the presence of malicious processors. Technical Report RoSaC-2005-9, Sistemas y
Comunicaciones, Univ. Rey Juan Carlos (2005)

9. Fernandez, A., Georgiou, C., Lopez, L., Santos, A.: Reliably executing tasks in the
presence of untrusted entities. In: SRDS, pp. 39–50 (2006)

10. Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing; Algo-
rithms and Complexity. Morgan & Claypool Publishers (2011)

http://www.distributed.net/
http://setiathome.ssl.berkeley.edu/

298 S. Davtyan, K.M. Konwar, and A.A. Shvartsman

11. Hanson, N.W., Konwar, K.M., Wu, S.-J., Hallam, S.J.: Metapathways v2.0: A
master-worker model for environmental pathway/genome database construction on
grids and clouds. In: IEEE Conf. on Comput. Intelligence in Bioinf. and Comput.
Biology, Hawaii (to appear, 2014)

12. Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust network super-
computing with malicious processes. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 474–488. Springer, Heidelberg (2006)

13. Paquette, M., Pelc, A.: Optimal decision strategies in byzantine environments. Par-
allel and Distrib. Computing 66(3), 419–427 (2006)

Snap-Stabilizing PIF on Non-oriented Trees

and Message Passing Model

Florence Levé, Khaled Mohamed, and Vincent Villain

Laboratoire MIS, Université de Picardie, 33 Rue St Leu,
80039 Amiens Cedex 01, France

{florence.leve,khaled.mohamed,vincent.villain}@u-picardie.fr

Abstract. Starting from any configuration, a snap-stabilizing protocol
guarantees that the system always behaves according to its specification
while a self-stabilizing protocol only guarantees that the system will be-
have according to its specification in a finite time. So, a snap-stabilizing
protocol is a time optimal self-stabilizing protocol (because it stabilizes
in 0 rounds). That property is very suitable in the case of systems that
are prone to transient faults. There exist a lot of approaches of the con-
cept of self-stabilization, but to our knowledge, snap-stabilization is the
only variant of self-stabilization which has been proved power equivalent
to self-stabilization in the context of the state model (a locally shared
memory model) and for non anonymous systems. So the problem of the
existence of snap-stabilizing solutions in the message passing model is a
very crucial question from a practical point of view. In this paper, we
present the first snap-stabilizing propagation of information with feed-
back (PIF) protocol for non-oriented trees in the message passing model.
Moreover using slow and fast timers, the round complexity of our algo-
rithm is in θ(h×k) and θ((h×k)+k2), respectively, where h is the height
of the tree and k is the maximal capacity of the channels. We conjecture
that our algorithm is optimal.

1 Introduction

The concept of Propagation of Information with Feedback (PIF) has been intro-
duced by Chang [7] and Segall [20]. The PIF scheme can be described as follows:
a node, called root or initiator, initiates a wave by broadcasting a message m
into the network (broadcast phase). Each non root processor acknowledges to
the root the receipt of m (feedback phase). The wave terminates when the root
has received an acknowledgment from all other processors [13].

Self-stabilization has been introduced by Dijsktra in 1974 [18]. A distributed
algorithm is self-stabilizing if, starting from any arbitrary global state, the system
is able to recover itself in finite time. This property is crucial when considering
systems after any faulty behavior (even any byzantine behavior). In that case,
the resulting configurations (unexpected messages and memory states) can be
arbitrary and self stabilizing algorithms eventually recover without any external
action. So it is one of the most versatile techniques to handle transient faults
arising in distributed systems. Recently, snap-stabilization has been introduced

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 299–313, 2014.
c© Springer International Publishing Switzerland 2014

300 F. Levé, K. Mohamed, and V. Villain

by Bui et al. [4]. A distributed algorithm is snap-stabilizing if starting from
any arbitrary global state the system always satisfies the specification. In other
words, a snap-stabilizing algorithm is a self-stabilizing algorithm that stabilizes
in 0 rounds, i.e., it is optimal in terms of the stabilization time. For example, after
some transient faults, when a user starts a self-stabilizing PIF algorithm he is not
sure to receive the right feedback of all the processors at the first attempt, and
it is generally the same for all the other attempts until the algorithm stabilizes.
Moreover the number of attempts that fail can be not bounded depending on the
algorithm. On the contrary, if the algorithm is snap-stabilizing, the first attempt
is the right one.

There exist a lot of approaches of the concept of self-stabilization, some of
them try to overcome some of its drawbacks like a high complexity [16], some
of them try to make it stronger [17]. Snap-stabilization belongs to the second
family and enhances the safety of the system since the stabilization time is
nul. To our knowledge, snap-stabilization is the only variant of self-stabilization
which has been proved power equivalent to self-stabilization in the context of the
state model (a locally shared memory model) and for non anonymous systems,
meaning that each problem that admits a self-stabilizing solution also admits a
snap-stabilizing solution and reciprocally [10]. So the existence of snap-stabilizing
solutions in the message passing model is a very crucial problem from a practical
point of view.

Related work. Several snap-stabilizing PIF protocols have been proposed for
oriented trees [4,19,6], for non-oriented trees [5,9,11,6], for full-connected net-
works [15], and for general networks [8,3,13]. In [10,12,14] snap-stabilizing PIF
protocols are the key tools of the transformation of protocols into snap-stabilizing
versions. But all the literature above is written in the state model.

To the best of our knowledge there only exist two snap-stabilizing protocols in
the message passing model. A snap-stabilizing propagation of information with
feedback (PIF) protocol for full-connected networks has been presented in [15].
Another one for oriented trees has been evoked in [19] but no protocol nor proof
are provided.

Contributions. In this paper, we present the first snap-stabilizing PIF algorithm
for non-oriented trees in the message-passing model. Following the impossibility
result in [15] we consider that the capacity of the channels is bounded. Moreover
in order to tolerate message losses after the occurence of transient faults our
algorithm uses timers that regularly send duplicate messages. With slow timers,
we show that the round complexity of a complete execution is in θ(h× k) where
h and k are the height of the tree and the maximal capacity of the channels,
respectively. With fast timers, the round complexity only gets k2 as an addition-
nal term and is in θ((h× k) + k2). We conjecture that our algorithm is optimal
in terms of round complexity. That result is coherent with the round complexity
in [5] and [6] since they achieve θ(h) in the state model.

Outline of the paper. The paper is organized as follows. In Section 2 we present
the model assumed in this paper. We then present the snap-stabilizing PIF

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 301

algorithm and its proof in Section 3 and discuss the complexity in Section 4. We
then conclude in the last section.

2 Preliminaries

Notations. We consider a network as an undirected connected graph G = (V,E)
where V is a finite set of nodes (or processors) (|V | = n) and E is the set of
bidirectional asynchronous communication links. A bidirectional communication
link {p, q} exists iff p and q are neighbors, in this case p and q can communi-
cate together by sending messages through the link. This link can be viewed as
two channels (p, q) and (q, p), one by direction. The capacity of the channels is
bounded, otherwise no deterministic snap-stabilizing solution is available [15].
To simplify the presentation, we assume that the bound is the same for every
channel and is denoted by k. Channels are not reliable so messages can be lost
but they are fair, i.e., if a processor sends infinitely many messages through a
channel, then the channel will deliver infinitely many of them. Messages can be
lost when the channel has a faulty behavior or is full. When they are not lost,
messages transmitted through a channel are received in a finite but not bounded
time, moreover they arrive in the order they have been sent (FIFO). Every pro-
cessor p can distinguish and number all its channels from 0 to δ − 1, where δ
is the number of neighbors of p. For sake of simplicity, we sometimes refer to a
link {p, q} (or a channel (p, q)) of a processor p by the label q instead of its local
number. We consider networks which are tree structured, so |E| = n − 1. Our
algorithm will not use any identity for the processors except the one called the
root or r. Any other processor p is called an internal processor if it has at least
two neighbors, and a leaf processor otherwise.

We will call the neighbor of a processor p (p �= r) which is on the path from
r to p the topological parent of p. We will call any of the other neighbors of p a
topological child. In non-oriented trees, p does not know which of its neighbors
is its topological parent.

Programs. In our model, protocols are semi-uniform, i.e., according to δ, each
processor executes the same program except r. So, aside from r, we distinguish
between the case of internal processors (δ > 1) and leaf processors (δ = 1). We
consider the message-passing model of computation. The message receptions are
sequentially taken into account by the processors and the set of actions associated
to a message reception is atomically executed.

To compute the time complexity, we use the notion of round. Since in asyn-
chronous systems, the local execution time is considered as null, the definition of
a round captures the execution rate of the slowest messages in any computation.

Definition 1 (Round). Given an execution e of a protocol P , the first round
of e (let us call it e′) is the minimal prefix of e containing the reception or the
loss of every message sent or already in a channel from the initial configuration.
Let e′′ be the suffix of e such that e = e′e′′. The second round of e is the first
round of e′′, and so on.

302 F. Levé, K. Mohamed, and V. Villain

We assume that during a round the timers of every processor involved in the
execution are activated at least once.

PIF. PIF is a well-known problem, so we simply specify the problem as follows:

Specification 1 (PIF). An algorithm is a PIF algorithm if it satisfies the two
following conditions:

[PIF1] r initiates a PIF by broadcasting a message m,
[PIF2] after the initialization, PIF terminates at r and when that happens, all

processors have acknowledged the receipt of m.

Remark 1. In practice, to prove that a PIF protocol is snap-stabilizing we have
to show that every execution of the algorithm satisfies these two conditions: (i) if
r has a messagem to broadcast, it will do it in a finite time, and (ii) starting from
any configuration where r broadcasts m, the system satisfies Specification 1.

3 Snap-Stabilizing PIF Algorithm

3.1 Algorithm Description

We call our algorithm PIF, the formal description is given in Algorithms 1,
2, 3, and 4. The main idea follows that of [4,6] while cleaning the channels
follows that of [15] based itself on a sequence of integers as in [2,1]. Roughly
speaking, our algorithm is based on the sending of broadcast messages with
timestamp (Messages (“B”,X)) in order to stabilize the channels. An internal
processor must wait for a broadcast message with Timestamp M − 2 before it
begins to propagate the broadcast. The value M is discussed below in paragraph
Any Initial Configuration. In order to avoid wrong feedbacks, a processor which
has received the feedback (Message (“F”)) of all its children must wait for an
application (Message (“B”,M −1)) from its parent before it sends it a feedback.
We describe our algorithm more precisely in the two following paragraphs.

Safe Initial Configuration. Starting from a safe configuration, i.e., no processor is
involved in any execution of PIF (so Boolean End is True) and every channel is
empty, r sends (“B”,0) to all its topological children, see Actions Spontaneously
and Timer[C]=0 in Algorithm 2 and Macro InitBroadcast() in Algorithm 1.

At the reception of (“B”,0) from channel C, a neighbor p of r sets parentp
to C, Sp[C] to 0, and sends (“ACK”,0) to r by C, see Action At the reception
of (“B”,X) from C in Algorithms 4 or 3. At the reception of (“ACK”,0) from
channel C, r sets Sr[C] to 1 and sends (“B”,1) to C, see Action At the reception
of (“ACK”,X) from C in Algorithm 2. This exchange of messages goes on on
every channel of r. When for some C, Sr[C] reaches M − 2, r sends (“B”,M-
2) to C. When receiving this message, the neighbor p at the end of C sends
(“ACK”,M-2) to r, sets Sp[C] to M − 2, and starts broadcasting (“B”,0) to
all its topological children. At the reception of (“ACK”,M-2), r sets Sr[C] to

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 303

M − 1 and sends (“B”,M-1) to C. When p receives this message, it sets Sp[C]
to M − 1 meaning that r is now waiting for the feedback message (“F”) of p.
The broadcast goes on along the paths from r to the leaves. When a leaf has
received the sequence of (“B”,0), (“B”,1),..., (“B”,M-1) from its unique channel
0, it sends back (“F”), see At the reception of (“B”,X) from C in Algorithm 3.
After they send their sequence of (“B”,0), (“B”,1),..., (“B”,M-1), the internal
processors wait for a (“F”) from their topological children. Once an internal
processor p has received a (“F”) from all its children, Sp[C] equals M for all its
children, so that p satisfies the predicate EndWaitFeedback and it can sends
(“F”) to its topological parent. We can remark that Sp[parentp] can be equal
to M − 2 only because the system is asynchronous. In this case p waits for the
reception of (“B”,M-1) from its parent before p sends (“F”). Finally, the (“F”)
messages go up to r and the execution terminates.

Any Initial Configuration. Starting from any configuration, the channels can
contain some residual messages (messages already in the channels at the initial
configuration). Since M = (2k + 1) + 2 where k is the channel capacity, the
sequence of (“B”,0), (“B”,1),..., (“B”,M-2) ensures that when the sender re-
ceives the last acknowledgment (“ACK”,M-2) the receiver has received at least
(“B”,M-2) and that (“ACK”,M-2) is really an acknowledgment to this message.

But cleaning the channels is not enough to ensure a good behavior of the algo-
rithm, because residual messages may have bad consequences when proceeding
by a processor. The role of messages (“Broadcast?”), (“B:No”), and (“With-
draw”) is to limit the effects of a possible dysfunction. A broadcasting internal
processor p regularly sends (“Broadcast?”) to its neighbor parentp to be sure
that parentp is really broadcasting a message to p. If parentp is still broadcasting
to p then parentp does not answer directly to the question since it will eventually
send a broadcast message to p. Otherwise, parent sends a (“B:No”) message to
p. When a processor p, which is not involved in any PIF execution (i.e., Endp
is True), receives a (“B”,M-2) message from a neighbor q (i.e., q is waiting for
a feedback), it sends a (“Withdraw”) message to q, because the broadcast is not
valid. These messages allow to remove abnormal broadcasts, i.e., broadcasts the
source of which is not r.

3.2 Proof of Snap-Stabilization

To simplify the proofs, we will reduce the tree to a chain where r is the processor
at the top of the chain and the unique leaf is the processor at the bottom of the
chain. The validity of our results on trees is simply ensured by the synchroniza-
tion of the (“F”) sending, driven by the predicate EndWaitFeedback.

We now present several definitions before we prove our algorithm.

Definition 2 (Residual Message). A message which is already in a channel
in the initial configuration is called a residual message.

Definition 3 (Working Message). A message m received by p is a working
message if p executes at least one state change at the reception of m.

304 F. Levé, K. Mohamed, and V. Villain

Algorithm 1. Environment
Constant :

M // M=(2k+1)+2 where k is an integer bounding the channel capacity

α: positive integer // waiting time value of the timer

δ: positive integer // number of neighbors of the processor

Messages :
(“B”,X) where X ∈ {0, . . . , M − 1}
(“ACK”,X) where X ∈ {0, . . . ,M − 2}
(“F”)
(“F ACK”)
(“Broadcast?”)
(“Withdraw”)
(“B:No”)

Variables :
C, parent, i: channel number
S[0 . . . δ − 1]: array of values in {0, . . . ,M}
End: boolean
Prev: in {0, . . . ,M}

Predicates:
Broadcast[C] ≡ (S[C] ≤ M − 2) // r

Broadcast[C] ≡ (S[parent] ∈ {M − 2, M − 1} and S[C] ≤ M − 2) // internal proc.

WaitFeedback[C] ≡ (S[C] = M − 1) // r

WaitFeedback[C] ≡ (S[parent] ∈ {M − 2, M − 1} and S[C] = M − 1) // internal proc.

EndWaitFeedback ≡ (∀i ∈ {0, . . . , δ − 1}, S[i] = M) // r

EndWaitFeedback ≡ (∀i ∈ {0, . . . , δ − 1} \ {parent}, S[i] = M and S[parent] = M − 1)
// internal proc.

EndWaitFeedback ≡ (S[0] = M − 1) // leaves

Error ≡ (S[parent]
∈ {M − 2,M − 1} and ∃C ∈ {0, . . . , δ − 1} \ {parent} : S[C]
= 0)// internal

proc.

Macros :
ExecEnd() : (∀i ∈ {0, . . . , δ − 1}(S[i] ← 0);End ← True) // leaves and internal proc.

InitBroadcast() : (∀i ∈ {0, . . . , δ − 1}(S[i] ← 0;Timer[i] ← 0)) // r

InitBroadcast(C) : (∀i ∈ {0, . . . , δ − 1} \ {C}(S[i] ← 0;Timer[i] ← 0)) // internal proc.

Algorithm 2. r code
• Spontaneously
if End or EndWaitFeedback then

end ← False ; InitBroadcast() ;
end

• At the reception of (“ACK”,X) from C
if ¬(End) then

if S[C]=X then
S[C] ← S[C]+1;
if Broadcast[C] or WaitFeedback[C] then

Timer[C] ← 0; // Send (‘‘B’’, S[C]) to C

end

end

end

• At the reception of (“F”) from C
if ¬(Broadcast[C]) then

Send(“F ACK”) to C;
if ¬(End) and WaitFeedback[C] then

S[C] ← M;
if EndWaitFeedback then

ExecEnd();
end

end

end

• At the reception of (“Broadcast?”) from C
if End or EndWaitFeedback then

Send(“B:No”) to C;
end

• At the reception of (“Withdraw”) from C
if ¬(Broadcast[C]) and ¬(End) then

ExecEnd();
end

• Timer[C]=0
if ¬(End) then

if Broadcast[C] or WaitFeedback[C] then
Send(“B”,S[C]) to C;

end
Timer[C] ← α;

end

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 305

Algorithm 3. Leaves code
• At the reception of (“B”,X) from C // C=0

if End then
if X=M-1 then

Send(“Withdraw”) to 0 ;
else

if X < M-1 then
End ← False ;

end

end

else
Prev ←S[0] ;
S[0] ← X ;
if S[0] > M-1 or S[0] < Prev then

ExecEnd() ;
else

if S[0] < M-1 then
Send (“ACK”, X) to 0 ;

else// S[0]=M-1

Send (“F”) to 0 ;
end

end

end

• At the reception of (“F ACK”) from C // C=0

if ¬(End) then
ExecEnd() ;

end

• At the reception of (“Broadcast?”) from C // C=0

Send (“B:No”) to 0 ;

Definition 4 (Real Broadcast). Let p and q be two neighboring processors.
A (“B”,X) message received by p from channel (q, p) is a real broadcast if it has
been sent by q.

Definition 5 (Real Acknowledgment). Let p and q be two neighboring pro-
cessors. A (“ACK”,X) message received by p from channel (q, p) is a real ac-
knowledgment if it has been sent by q at the reception of a real broadcast (“B”,X)
sent by p.

Definition 6 (Real Feedback). Let p and q be two neighboring processors. A
(“F”) message received by p from channel (q, p) is a real feedback if it has been
sent by q at the reception of a real broadcast (“B”,M-1) sent by p.

Definition 7 (Right Feedback). Let p and q be two neighboring processors.
A (“F”) message received by p from channel (q, p) is a right feedback if it is a
real feedback sent by q and q satisfies one of the two following conditions:

1. q is a leaf,
2. q is not a leaf. Let q′ be the topological child of q. The last (“F”) message q

has accepted is a right feedback from q′.

Roughly speaking a (“F”) message is a right feedback if this message is a real
feedback which has originally been generated by the leaf.

We define an abnormal root as an internal processor which is broadcasting
while it must not. More formally:

Definition 8 (Abnormal Root). Let p be an internal processor. Processor p
is an abnormal root if all the following conditions are satisfied:

306 F. Levé, K. Mohamed, and V. Villain

Algorithm 4. Internal Processors code
• At the reception of (“B”,X) from C
if End then

if X=M-1 then
Send(“Withdraw”) to C ;

else
if X < M-1 then

End ← False ; parent ← C ;
end

end

end
if ¬(End) and C=parent then

Prev ← S[C] ; S[C] ← X ;
if S[C] > M − 1 or S[C] < Prev or (S[C] = M − 1 and Prev < M − 2) or Error then

ExecEnd();
else

if S[C] < M − 1 then
Send (“ACK”,X) to C ;
Timer[C] ← α ; // Avoid to send (‘‘Broadcast?’’) to parent

if S[C] = M − 2 and S[C]
= Prev then
InitBroadcast(C) ;

end

else// S[C]=M-1

if EndWaitFeedback then
Send(“F”) to C ;

end

end

end

end

• At the reception of (“ACK”,X) from C ∈ {0, . . . , δ − 1} \ {parent}
if ¬(End) then

if S[C]=X then
S[C] ← S[C]+1 ;
if Broadcast[C] or WaitFeedback[C] then

Timer[C] ← 0 ; // Send (‘‘B’’, S[C]) to C

end

end

end

• At the reception of (“F”) from C ∈ {0, . . . , δ − 1} \ {parent}
if ¬(Broadcast[C]) then

Send(“F ACK”) to C ;
if ¬(End) and WaitFeedback[C] then

S[C] ← M ;
if EndWaitFeedback then

Send(“F”) to parent ;
end

end

end

• At the reception of (“F ACK”) or (“B:No”) from parent
if ¬(End) then

ExecEnd();
end

• At the reception of (“Broadcast?’) from C
if ¬(Broadcast[C]) and ¬(WaitFeedback[C]) then

Send(“B:No”) to C ;
end
if C=parent then

ExecEnd() ;
end

• At the reception of (“Withdraw”) from C
if ¬(Broadcast[C]) and ¬(End) then

ExecEnd();
end

• Timer[C]=0
if ¬(End) then

if Error then
ExecEnd() ;

else
if Broadcast[C] or WaitFeedback[C] then

if C
= parent then
Send(“B”,S[C]) to C ;

else
Send(“Broadcast?”) to C ;

end

end

end
Timer[C] ← α;

end

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 307

1. ¬Endp,

2. Broadcastp ∨WaitFeedbackp,

3. Errorq∨Endq∨(¬Endq∧(parentq = p))∨(¬Endq∧(parentq �= p)∧(Sq [p] =
M)) where q = parentp.

Processor p is a top abnormal root or a bottom abnormal root if q is the topo-
logical parent of p or a topological child of p, respectively.

Definition 9 (Down and Up Broadcast). Let p be either r or a top ab-
normal root (respectively a bottom abnormal root). If p is sending (“B”,X)
messages, this broadcast is called a down broadcast (respectively an up broad-
cast).

Definition 10 (Up-Free Configuration). A configuration is called an up-
free configuration if it does not contain any bottom abnormal root nor any up
broadcast message.

We will often assume in the proofs that a processor which starts or has started
a broadcast is never disrupted by its parent (that is trivially satisfied by r since
it has no parent). We call such a processor a stop-free processor.

Definition 11 (Stop-Free Processor). Let p be a processor, p is a stop-free
processor if one of the two following conditions is satisfied:

1. p is r,

2. p is not r and all the following conditions are satisfied:

– p never receives from its parent a message (“B”,X) followed by (“B”,Y)
with X > Y ,

– p never receives from its parent any message (“F ACK”), (“B:No”),
(“Withdraw”).

In order not to overload the proofs, since after one round, every processor does
not satisfy Error forever, we now assume that no processor will satisfy Error
forever.

Lemma 1 (Abnormal Root Life). Let p be an abnormal root. Processor p
cannot remain an abnormal root forever.

Proof. Assume, by the contradiction, that p remains an abnormal root for-
ever. Let q be the neighbor of p such that parentp = q. Then p sends (“Broad-
cast?”) infinitely often to q. By fairness of (p, q), q will receive (“Broadcast?”)
infinitely often. Since p is an abnormal root forever, when q receives (“Broad-
cast?”) from (p, q), q follows one of these three cases:

– Endq is satisfied,

– q is not r and (¬Endq ∧ (parentq = p)) is satisfied,

– q is not r and (¬Endq ∧ (parentq �= p) ∧ (Sq[p] = M)) is satisfied.

308 F. Levé, K. Mohamed, and V. Villain

In all cases q sends (“B:No”) to p. So q sends (“B:No”) infinitely often to p and
by link fairness, p receives (“B:No”) infinitely often. Since at the reception of
(“B:No”) p executes ExecEnd(), p will stop being an abnormal root in a finite
time. A contradiction. �

The following lemma can be easily proved by induction on the distance to the
leaves:

Lemma 2 (Bottom Abnormal Root Appearance). Let p be an internal
processor. Processor p cannot become a bottom abnormal root infinitely often.

From Lemmas 1 and 2 we can easily deduce the following lemma:

Lemma 3 (No More Bottom Abnormal Root). The number of bottom
abnormal roots is nul in a finite time.

Since up broadcast messages can be only generated by bottom abnormal roots,
we can easily deduce the following corollary from Lemma 3.

Corollary 1 (No More Up Broadcast). The system does not contain any
message of an up broadcast in a finite time.

We first show that starting from an up-free configuration our algorithm always
satisfies Specification 1 (from Lemma 4 to Theorem 1). We then prove that
the result still holds from any initial configuration so even if this configuration
contains bottom abnormal roots.

Lemma 4 (Broadcast Progress). Let p and q be two neighboring processors
such that p sends (“B”,X) (X ∈ {0, . . . ,M − 2}) to q from an up-free configu-
ration. If p is stop-free it will eventually receive (“ACK”,X) by channel (q, p).

Proof. Assume that p never receives any message (“ACK”,X) from q. So
p sends infinitely many (“B”,X) to q. Since (p, q) is fair, q receives infinitely
many (“B”,X). The configuration is up-free, so parentq cannot be set to another
neighbor than p. Depending of the initial state of q, q can execute ExecEnd()
at the reception of the first (“B”,X) from p. But at each new reception q sends
(“ACK”,X) to p. So q sends infinitely many (“ACK”,X) and by fairness of (q, p)
p will eventually receive infinitely many (“ACK”,X). A contradiction. �

The following lemma states that if a processor sends all its (“B”,X) messages
to a neighbor, then it is ensured that its neighbor has received (“B”,M - 2).

Lemma 5 (Snap Local Broadcast). Let p and q be two neighboring proces-
sors such that p starts broadcasting to q (it sends (“B”,0) to q) from an up-free
configuration. If p is stop-free it will eventually send (“B”,M - 2) to q and, for
this message, it will receive a real acknowledgment from q.

Proof. From our algorithm, since p is stop-free, p increments Sp[q] at the
reception of (“ACK”,X) from q, then sends (“B”,Sp[q]) to q and goes on until it
receives (“ACK”,M-2) from channel (q, p). Thus from Lemma 4, if the processor

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 309

p starts broadcasting to q, we know that p will eventually receive a message
(“ACK”,M-2) by channel (q, p). Since M − 2 = 2k + 1 where k is the channel
capacity, this message cannot be a residual channel message, it has necessarily
been generated by q. �

The following lemma can be formally proved by induction on the distance to
the farthest leaf.

Lemma 6 (Partial Snap Up-Free PIF). Let p be a processor such that p
is not a leaf and p starts a down broadcast (it sends (“B”,0) to its topological
child) from an up-free configuration. If p is stop-free it will eventually receive a
unique working (“F”) message and this message is a right feedback.

Since by Definition 11 r is stop-free, r satisfies Lemma 6 and [PIF2] of Speci-
fication 1 holds. Moreover, if r is already involved in Algorithm PIF in the initial
up-free configuration, it is easy to show with a reasoning similar to that of the
proof of Lemma 6 that r will be able to initiate a complete PIF in a finite time,
so the following result holds:

Lemma 7 (Up-Free PIF1). Starting from an up-free configuration, Algorithm
PIF satisfies [PIF1] of Specification 1.

The following theorem is a corollary of Lemmas 6 and 7:

Theorem 1 (Snap Up-Free PIF). Starting from an up-free configuration,
Algorithm PIF is snap-stabilizing.

We now generalize Lemma 6 and Theorem 1 to any initial configuration.

Lemma 8 (Partial Snap PIF). Let p be a processor such that p is not a leaf
and p starts a down broadcast from any initial configuration. If p is stop-free
it will eventually receive a unique working (“F”) message and this message is a
right feedback.

Proof. We know from Lemma 6 that if a non-leaf processor p starts a down
broadcast from an up-free configuration, and if p is stop-free, it will eventually
accept a unique (“F”) message and this message is a right feedback.

Now consider the case when there exist abnormal roots in the configuration. A
top abnormal root does not cause any problem to the execution of the algorithm
since messages (“B”,X) coming from its parent are working messages (when its
state is different from X). Assume that q and q′ are two neighboring processors,
such that q starts a down broadcast towards q′ and q′ is a bottom abnormal root
(w.l.o.g. we can suppose there is no bottom abnormal root on the topological
path from the root to q′). No message can prevent q from broadcasting because:

– Since q′ is not the parent of q, if q receives (“B”,No) from q′, it does not
take it into account.

– Since Sq[q
′] < M − 1, if q receives (“Withdraw’,) from q′, it does not take it

into account.

310 F. Levé, K. Mohamed, and V. Villain

– Since q satisfies Broadcast, if q receives (“F”) from q′, it does nothing.
– Since the parent of q is stop-free, it does not send (“F ACK”) to q until it

receives F from q.

From Lemma 3, we know that the number of bottom abnormal roots is nul in a
finite time. Thus the broadcast will go on towards the leaves and, from Lemma 6,
p will eventually receive a unique working (“F”) message and this message is a
right feedback. �

Since r is stop-free, r satisfies Lemma 8 and [PIF2] of Specification 1 holds.
Moreover, as previously, if r is already involved in Algorithm PIF in the initial
configuration, it is easy to show that r will be able to initiate a complete PIF
in a finite time, so the following result holds:

Lemma 9 (PIF1). Starting from any configuration, Algorithm PIF satisfies
[PIF1] of Specification 1.

The following theorem is a corollary of Lemmas 8 and 9:

Theorem 2 (Snap PIF). Algorithm PIF is snap-stabilizing.

4 Complexity

Variable S[0 . . . δ − 1] which is an array of values in {0, . . . ,M} has the highest
complexity: θ(δ× log(M)) or θ(δ× log(k)) since M is proportionnal to k. So the
memory space needed on each processor is in θ(δ × log(k)).

In order not to mix up the network’s performances with the algorithm’s per-
formances, we assume in the rest of the paper that the only losses of messages
are due to full channels, this case can appear when timers are faster than a
round. However, as we will see, the round complexity is sensitive to the speed
of the timers. So we will consider two cases, the first one is slow timers (with a
period of the order of k rounds or a speed of the order of the speed of k rounds)
and the second one is fast timers (with a period at most of the order of a round
or a speed at least of the order of the round speed). We show that the round
complexity of Algorithm PIF is in θ(h × k) and θ((h × k) + k2) with slow and
fast timers, respectively, Of course in order to get the best performance of a
system the users have to adjust the speed of the timers to the expected average
frequency of message losses.

Lemma 10 (Round Complexity of Message Delivering). Let p and q be
two neighboring processors. Let M be a message sent by p to q, then q will
receive M in θ(k) rounds where k is the maximal capacity of the channels. More
precisely, the number of rounds is less than or equal to k + 1.

Proof. In the worst case Channel (p, q) is full and only one message is
consumed from (p, q) by round. So M reaches q in k + 1 rounds. �

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 311

Corollary 2 (Round Complexity of Neighboring Broadcast). Let p and
q be two neighboring processors. Assume that p starts to send (“B”,0) to q and
any message (“B”,X) (X ∈ {0, . . . ,M − 2}) from p is a working message for q,
then p will receive the acknowledgement of its message (“B”,M-2) in θ(k) rounds
and θ(k2) rounds with slow and fast timers, respectively, where k is the maximal
capacity of the channels.

Proof. In the worst case, when p starts to send (“B”,0), the channel is full
in both directions and contains neither (“B”,0) (in (p, q)) nor (“ACK”,0) (in
(q, p)). Moreover each (“B”,0) is a working message for q. From Lemma 10, p
will receive (“ACK”,0) in 2k + 2 rounds.

With slow timers when p receives the first (“ACK”,0), (p, q) and (q, p) contain
at most a constant number of (“B”,0) and (“ACK”,0), respectively. So when p
starts to send (“B”,1), it will receive the first (“ACK”,1) in a constant num-
ber of rounds. By induction on X it is clear that p sends θ(1) times each of
its M − 2 messages (“B”,X) (X ∈ {1, . . . ,M − 2}). Finally it will receive the
acknowledgement of its message (“B”,M-2) after θ(k) rounds.

With fast timers when p receives the first (“ACK”,0), (p, q) is full of (“B”,0)
and (q, p) is full of (“ACK”,0). So when p starts to send (“B”,1), the situation is
similar to that above and p will receive (“ACK”,1) in θ(k) rounds. By induction
on X it is clear that p sends θ(k) times each of its M − 1 messages (“B”,X)
(X ∈ {0, . . . ,M − 2}). Since M = 2k+3, it will receive the acknowledgement of
its message (“B”,M-2) after θ(k2) rounds. �

The following lemma can be formally proved for bottom abnormal roots by
induction on the distance to the farthest leaf and the result can be extended to
top abnormal roots.

Lemma 11 (Round Complexity of the Disappearance of the Abnor-
mal Roots). Starting from any configuration, the system will never contain
abnormal roots in θ(h× k) rounds, where h and k are the height of the tree and
the maximal capacity of the channels, respectively.

Let us call parasite messages the messages which do not concern the broad-
cast coming from r. After the disappearance of the abnormal roots, the only
parasite messages can be (“B”,M-1), (“ACK”,X), (“F”), (“F ACK”), (“B:No”),
(“Broadcast?”), or (“Withdraw”). Among those messages only (“B”,M-1), (“F”),
and (“Broadcast?”) can generate some response: (“Withdraw”), (“F ACK”), and
(“B:No”), respectively. So from Lemma 10 in θ(k) rounds, the system contains no
parasite messages until a new broadcast starts from r and the channels between
two processors satisfying End are empty whichever timer you use.

Now it is easy to see that the round complexity can be reduced to the round
complexity of the propagation of the broadcast, the extra term for fast timers is
due to the initial broacast in a full channel.

Theorem 3 (Round Complexity of Algorithm PIF). Starting from any
configuration, the round complexity of Algorithm PIF is in θ(h× k) and θ((h×

312 F. Levé, K. Mohamed, and V. Villain

k) + k2) rounds with slow and fast timers, respectively, where h is the height of
the tree and k is the maximal capacity of the channels.

We think that snap-stabilization of channels is unavoidable in order to get
a snap-stabilizing algorithm in the message passing model, so we conjecture
that Algorithm PIF is an optimal snap-stabilizing algorithm in terms of round
complexity.

5 Conclusion

There exist a lot of approaches of the concept of self-stabilization, but to our
knowledge, snap-stabilization is the only variant of self-stabilization which has
been proved power equivalent to self-stabilization in the context of the state
model (a locally shared memory model) and for non anonymous systems [10].
Moreover snap-stabilization enhances the safety of the system since the stabi-
lization time is nul. So the problem of the existence of snap-stabilizing solutions
in the message passing model is a very crucial question from a practical point
of view. In this paper, we have presented the first snap-stabilizing propagation
of information with feedback (PIF) protocol for non-oriented trees in the mes-
sage passing model. Following the impossibility result in [15] we consider that
the capacity of the channels is bounded. Using slow and fast timers, we show
that the round complexity of our algorithm is in θ(h × k) and θ((h × k) + k2),
respectively, where h is the height of the tree and k is the maximal capacity
of the channels. We conjecture that our algorithm is optimal in terms of round
complexity. The next problem to solve is the design of a snap-stabilizing PIF
algorithm for arbitrary networks and then to get the power equivalence with
self-stabilization in the message passing model.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media.
Distributed Computing 7(1), 27–34 (1993)

2. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction (extended abstract). In: 32nd Annual Symposium on Foundations
of Computer Science (FOCS), pp. 268–277. IEEE Computer Society (1991)

3. Blin, L., Cournier, A., Villain, V.: An improved snap-stabilizing PIF algorithm. In:
Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 199–214. Springer,
Heidelberg (2003)

4. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in
tree networks. In: Workshop on Self-stabilizing Systems (WSS), pp. 78–85. IEEE
Computer Society (1999)

5. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilizing pif algorithm in the
tree networks without sense of direction. In: SIROCCO 1999, 6th International
Colloquium on Structural Information & Communication Complexity, Lacanau-
Ocean, France, July 1-3, pp. 32–46. Carleton Scientific (1999)

6. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and pif in tree net-
works. Distributed Computing 20(1), 3–19 (2007)

Snap-Stabilizing PIF on Non-oriented Trees and Message Passing Model 313

7. Chang, E.J.H.: Echo algorithms: Depth parallel operations on general graphs. IEEE
Trans. Software Eng. 8(4), 391–401 (1982)

8. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilizing pif algorithm in
arbitrary networks. In: 22nd International Conference on Distributed Computing
Systems (ICDCS), pp. 199–208 (2002)

9. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Optimal snap-stabilizing pif in un-
oriented trees. In: Proceedings of the 5th International Conference on Principles
of Distributed Systems OPODIS 2001, Manzanillo, Mexico, December 10-12, pp.
71–90. Studia Informatica Universalis (2001)

10. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Enabling snap-stabilization. In:
23rd International Conference on Distributed Computing Systems (ICDCS 2003),
Providence, RI, USA, May 19-22, pp. 12–19. IEEE Computer Society (2003)

11. Cournier, A., Datta, A.K., Petit, F., Villain, V.: Optimal snap-stabilizing pif algo-
rithms in un-oriented trees. J. High Speed Networks 14(2), 185–200 (2005)

12. Cournier, A., Devismes, S., Villain, V.: From self- to snap- stabilization. In: Datta,
A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 199–213. Springer,
Heidelberg (2006)

13. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing pif and useless compu-
tations. In: 12th International Conference on Parallel and Distributed Systems
(ICPADS 2006), Minneapolis, Minnesota, USA, July 12-15, pp. 39–48. IEEE Com-
puter Society (2006)

14. Cournier, A., Devismes, S., Villain, V.: Light enabling snap-stabilization of funda-
mental protocols. TAAS 4(1), 1–27 (2009)

15. Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-
passing systems. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009.
LNCS, vol. 5408, pp. 281–286. Springer, Heidelberg (2008)

16. Devismes, S., Petit, F., Villain, V.: Autour de l’autostabilisation 1. techniques
généralisant l’approche. Technique et Science Informatiques 30(7), 873–894 (2011)

17. Devismes, S., Petit, F., Villain, V.: Autour de l’autostabilisation 2. techniques
spécialisant l’approche. Technique et Science Informatiques 30(7), 895–922 (2011)

18. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

19. Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing
distributed algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 230–243. Springer, Heidelberg (2006)

20. Segall, A.: Distributed network protocols. IEEE Transactions on Information
Theory 29(1), 23–34 (1983)

Edge Coloring Despite

Transient and Permanent Faults

Alexandre Maurer1 and Toshimitsu Masuzawa2

1 UPMC Sorbonne Universités, France
2 Osaka University, Japan

alexandre.maurer@lip6.fr,
masuzawa@ist.osaka-u.ac.jp

Abstract. We consider the problem of edge coloring in the presence of
transient and permanent faults: we must achieve a stable edge coloring
despite any initial state, and despite an unbounded number of Byzantine
nodes. In this paper, we consider that no local variable is allowed: we only
use the colors of the edges. We give a general algorithm to achieve edge
coloring at distance 2 of Byzantine failures. Then, we give a Byzantine
insensitive algorithm for edge coloring on a ring (we achieve a stable
coloring on the correct subgraph).

This paper is a regular submission, and should be considered for the best
student paper award (full-time student at the time of submission: Alexandre
Maurer). If this submission is not selected for a regular presentation, it should
also be considered for a brief announcement.

1 Introduction

We consider the problem of edge coloring: in a network, each communication
channel (or edge) must be attributed a number (or color) such that two adjacent
edges do not have the same color. This problem is more difficult than other
similar problems, such as node coloring or dining philosophers. Indeed, it requires
that two neighbor nodes agree on a same color for their common edge, without
disrespecting the aforementioned condition. This problem has many applications,
such as resource allocation in distributed systems – for instance, frequency or
time slot allocation in wireless networks.

Related Works

In this paper, we consider that the network can be subject to unbounded tran-
sient faults: in the initial configuration, the nodes can have any state. The
paradigm of self-stabilization [2,3] ensures that in a finite time, the network sat-
isfies the specification of the problem, despite the arbitrary initial configuration.
Self-stabilizing algorithms for the edge coloring problem have been proposed in
[9,5,8,1].

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 314–327, 2014.
c© Springer International Publishing Switzerland 2014

Edge Coloring Despite Transient and Permanent Faults 315

To be more general, we also consider that the network can be subject to
unbounded permanent faults: some nodes can be malicious (Byzantine) and
have an arbitrary behavior. Therefore, tolerating Byzantine faults implies to
ensure that there exists no strategy, however unlikely it may be, enabling the
Byzantine nodes to destabilize the network. Combining self-stabilization and
Byzantine resilience provides the strongest possible guarantees in the field of fault
tolerance. Self-stabilizing algorithms resilient to unbounded Byzantine failures
have been proposed in [4,7,8].

To our knowledge, only two papers consider the problem of edge coloring in
such an unfavourable setting. A first paper [7] studies edge coloring in oriented
tree networks, but assumes that each node has a unique identifier. A second
paper [6] relaxes this requirement, but uses local variables. Our objective here
is to relax both requirements.

Our Contribution

In this paper, we consider the problem of self-stabilizing Byzantine resilient edge
coloring in anonymous networks without local variables: we only use the colors
of the edges.

We first give an algorithm for edge coloring at distance 2 of Byzantine nodes.
We study its correctness under different schedulers, depending on the fairness
and the centrality hypotheses.

Then, we consider the more difficult problem of Byzantine insensitive edge
coloring: all correct edges should be correctly colored. We give a Byzantine in-
sensitive algorithm for edge coloring on a ring topology.

Organization of the Paper

The paper is organized as follows:

– In Section 2, we present the setting of the problem.
– In Section 3, we study edge coloring at distance 2 of Byzantine nodes.
– In Section 4, we study Byzantine insensitive edge coloring.

2 Setting

In this section, we present the setting of the problem and give some general
definitions.

2.1 Graph

Let G = (V,E) be the undirected graph representing the network. V is the set of
nodes, and E ⊆ V ×V is the set of edges. Two nodes p and q are neighbors when
{p, q} ∈ E. Let Np be the set of neighbors of a node p. Let Δ be the maximal
degree of the network (that is, the maximal number of neighbors per node).

316 A. Maurer and T. Masuzawa

2.2 Identification of Edges

As edge coloring is a local probem, we do not want to make the hypothesis that
each node has a unique identifier. However, the nodes need a way to distinguish
their neighbors. Therefore, we assume that each node attributes a number i ∈
{1, . . . , Δ} to each one of its edges (port numbering model).

If p and q are 2 neighbor nodes, let ep(q) be the number attributed by p to the
edge {p, q}. This is illustrated in Figure 1. We assume that p also knows eq(p)
(and reciprocally). Let Ep and Eq be the edge numbers used by p and q.

Fig. 1. Identification of edges

2.3 Correct and Byzantine Nodes

Some nodes are correct, and follow a given algorithm. The other are Byzan-
tine, and behave arbitrarily. The correct nodes do not know which nodes are
Byzantine. We do not put any limit to the number of Byzantine nodes.

2.4 Scheduling

We consider several schedulers in this paper. The hypotheses are on the fairness
and the centrality of the scheduler.

Fairness. We say that the scheduler is. . .

– Weakly fair if each correct node is activated infinitely often.
– Unfair if, when a correct node is continuously enabled, then eventually, an

enabled correct node is activated (but not necessarily this node).

The condition for a correct node to be enabled depends on the algorithm. This
condition must be chosen carefully: otherwise, the unfair scheduler can activate
a certain subset of nodes endlessly, and ignore the other correct nodes.

Centrality. We say that the scheduler is. . .

– Locally central when two neighbor nodes are never activated in the same
time.

– Periodically locally central when two neighbor nodes can be activated in
the same time, but each node is activated independently of its neighbors
infinitely often.

– Non locally central otherwise.

Edge Coloring Despite Transient and Permanent Faults 317

2.5 Edge Coloring

Colors. Let {1, . . . , Cp} be the set of colors that a node p can manipulate.
The usual assumption for the edge coloring problem is to assume that ∀p ∈ V ,
Cp = 2Δ−1. However, it requires the nodes to knowΔ, which is a global network
parameter.

To avoid making this assumption, we assume that Cp = 2Δp − 1, where
Δp = maxq∈Np∪{p} |Nq| ≤ Δ. Thus, p only requires knowledge about the degree
of its direct neighbors. Note that all the following is also correct if we simply
assume that ∀p ∈ V , Cp = 2Δ− 1.

State. The state of a node p is a function cp : Ep → {1, . . . , Cp} that associates
a color to each edge number. We make the usual assumption for self-stabilizing
algorithms, that is: a correct node that is activated can read the state of its
neighbors. Let c(p, q) = cp(ep(q)).

Definition 1 (Edge coloring). Let us define the following two predicates:

– distinct(p): ∀q ∈ Np, ∀r ∈ Np, q �= r ⇒ c(p, q) �= c(p, r)
– colored(p, q): c(p, q) = c(q, p)

We say that a graph G = (V,E) is colored when:

1. ∀p ∈ V , distinct(p)
2. ∀{p, q} ∈ E, colored(p, q)

This is illustrated in Figure 2.

Fig. 2. Example of edge coloring. Graph (a) is colored. Graph (b) is not colored, as we
do not have distinct(p) and colored(r, q).

Definition 2 (Stable coloring). Let G = (V,E) be a colored graph. We say
that this coloring is stable when the colors of the edges do not change, that is:
∀{p, q} ∈ E, the value of c(p, q) always remains the same.

318 A. Maurer and T. Masuzawa

2.6 Self-Stabilization

The property of self-stabilization ensures that, from any initial configuration,
the system eventually comes back to a legitimate configuration.

Nesterenko and Arora [7] generalized this property to strict stabilization, in
order to encompass the presence of permanent Byzantine failures. In this new
setting, we ensure that the system eventually comes back to a legitimate config-
uration at a certain distance of Byzantine failures. Therefore, we introduce the
notion of R-confined graph (for a non-negative integer R).

Definition 3 (R-confined graph). For a given graph G = (V,E) and a given
set of Byzantine nodes B ⊆ V , the R-confined graph is the graph obtained from
G after the removal of the Byzantine nodes and the correct nodes at distance R
or less from the Byzantine nodes (with their adjacent edges).

Definition 4 (Strict stabilization). An algorithm is strictly stabilizing for
the edge coloring problem with a containment radius R if for any graph G and
for any initial configuration, we always eventually reach a configuration where:

1. We have a stable coloring on the R-confined graph G′ extracted from G.

2. The state of the nodes of G′ does not change.

Strictly stabilizing edge coloring with a containment radius of 0 may be dif-
ficult or impossible, as the Byzantine nodes may force their correct neighbors
to recolor their common edge endlessly. Thus, the following definition was intro-
duced in [6].

Definition 5 (Byzantine insensitiveness). An algorithm is Byzantine in-
sensitive for the edge coloring problem if for any graph G and for any initial
configuration, we always eventually reach a configuration where:

1. We have a stable coloring on the 0-confined graph extracted from G.

2. The state of the nodes without Byzantine neighbors does not change.

3 Strictly Stabilizing Edge Coloring

In this section, we present a strictly stabilizing algorithm for edge coloring with
a containment radius of 1 (see 3.1). That is, we reach a stable coloring on the
graph formed by the correct nodes at distance 2 or more from Byzantine nodes.

We then study the correctness of this algorithm under different schedulers:

– Locally central weakly fair scheduler (see 3.2)

– Locally central unfair scheduler (see 3.3)

– Periodically locally central unfair scheduler (see 3.4)

– Non locally central unfair scheduler (see 3.5)

Edge Coloring Despite Transient and Permanent Faults 319

3.1 Algorithm

Let choice(p, q) be the smallest integer c ≥ 1 such that:

1. ∀i ∈ Ep − {ep(q)}, cp(i) �= c
2. ∀i ∈ Eq − {eq(p)}, cq(i) �= c

As Cp (resp. Cq) ≥ 2max(|Np|, |Nq|)− 1, the color c can be manipulated by
both p and q.

When a correct node p is activated, it executes the following 3 steps.
Informally:

– Step 1 eliminates the edges that have the same color.
– Step 2 colors an edge as soon as it is possible.
– Step 3 prepares the non colored edges for the next activation.

Step 1. If distinct(p) is false, then ∀k ∈ Ep, cp(k) := k.

Step 2. If there exists q ∈ Np such that ∀r ∈ Np, we have c(p, r) �= c(q, p), then
c(p, q) := c(q, p).

Step 3. For each neighbor q of p, taken in the order defined by the edge num-
bering: if colored(p, q) is false, then c(p, q) := choice(p, q).

3.2 Locally Central Weakly Fair Scheduler

We first assume a locally central weakly fair scheduler.
As the scheduler is weakly fair, we use asynchronous rounds to evaluate the

time complexity of our algorithm. An asynchronous round is the minimum period
necessary for each correct node to be activated at least once.

Let G′ = (V ′, E′) be the 1-confined graph obtained from G (see Definition 3).
Let us show that we reach a stable coloring on G′ in at most Δ+1 asynchronous
rounds.

Lemma 1. After one asynchronous round, for each correct node p, distinct(p)
is always true.

Proof. During the first asynchronous round, p is activated and executes step 1
of the algorithm. Thus, distinct(p) becomes true. Then, note that no step of the
algorithm can invalidate this predicate. Thus, distinct(p) always remains true
in the following of the execution.

Lemma 2. Let p and q be two correct neighbors. After the first asynchronous
round, if colored(p, q) is true, then colored(p, q) always remains true in the fol-
lowing of the execution.

320 A. Maurer and T. Masuzawa

Proof. According to Lemma 1, after the first asynchronous round, the condition
of step 1 of the algorithm is never satisfied anymore. Thus, only step 2 and 3
can be executed. Then, note that step 2 and 3 cannot invalidate colored(p, q).
Thus, the result.

Lemma 3. Let p ∈ V ′. After Δ+1 asynchronous rounds, ∀r ∈ Np, colored(p, r)
is and remains true.

Proof. As p ∈ V ′, all the neighbors of p are correct. Let q be a neighbor of p
such that colored(p, q) is false after the first asynchronous round. As q has been
activated previously, according to step 3 of the algorithm, we have c(q, p) =
choice(q, p). Thus, when p is activated in the second asynchronous round, the
condition of step 2 is satisfied, and there is a neighbor r of p (possibly q) such
that colored(r, q) becomes true. According to Lemma 2, colored(r, q) remains
true in the following of the execution.

The same reasoning works for the following asynchronous rounds. As there
are at most Δ neighbors r of q, after Δ + 1 asynchronous rounds, ∀r ∈ Nq,
colored(r, q) is and remains true.

Theorem 1. We have a stable coloring on G′ after Δ+1 asynchronous rounds,
and the algorithm is strictly stabilizing with a containment radius of 1.

Proof. Let p in V ′. After Δ+ 1 asynchronous rounds:

– According to Lemma 1, distinct(p) is true.
– According to Lemma 3, ∀r ∈ Np, colored(p, r) is and remains true.

Thus, G′ is colored. Besides, as ∀r ∈ Np, colored(p, r) is and remains true,
according to the algorithm, p never changes of state anymore. Therefore, the
coloring is stable, and the algorithm is strictly stabilizing with a containment
radius of 1.

3.3 Locally Central Unfair Scheduler

Now, let us assume an unfair scheduler. We say that a correct node p is enabled
when the activation p can change the state of p.

As we consider coloring at distance 2 from Byzantine nodes, we have no
guarantees on the behavior of correct nodes at distance 1. In particular, it is
possible that the Byzantine nodes perturb their correct neighbor such that the
unfair scheduler can activate them endlessly and ignore other correct nodes.
Therefore, we make the following restriction on the unfair scheduler: when a
node of V ′ is continuously enabled, then eventually, an enabled node of V ′ is
activated.

The asynchronous round complexity is not appropriate for the unfair sched-
uler. Instead, we us the number of activations of node. Let us show that we reach
a stable coloring in at most |V |+ |E| activations of nodes of V ′.

Lemma 4. If G′ is not colored, then a node of V ′ is eventually activated.

Edge Coloring Despite Transient and Permanent Faults 321

Proof. Let us suppose that G′ is not colored.
First, let us suppose that there exists a node p ∈ V ′ such that distinct(p) is

false. Thus, if p is activated, p can execute step 1 of the algorithm and change
its state. Then, p ∈ V ′ is continuously enabled until it is activated. Thus, a node
of V ′ is eventually activated.

Now, let us suppose that ∀p ∈ V ′, distinct(p) is true. As G′ is not colored,
it implies that there exists an edge {p, q} ∈ E′ such that colored(p, q) is false.
Thus, if p is activated:

– Either p can execute step 2 of the algorithm and change its state.
– Or p cannot execute step 2 of the algorithm. Then, if p executes step 3 of

the algorithm, p necessarily changes its state.

The same reasoning stands for q. Thus, as long as p and q are not activated, p
and q are continuously enabled. Thus, a node of V ′ (possibly p or q) is eventually
activated.

Now, let us define the following two metrics:

– A, the set of correct nodes that are “not enabled” at least once.
– B, the set of edges {p, q} such that p and q are correct and distinct(p),

distinct(q) and colored(p, q) are true.
– M = |A|+ |B|

Lemma 5. When a node p ∈ V ′ is activated, M increases.

Proof. If p /∈ A when activated, then p is added to A, and |A| increases.
If p ∈ A when activated:

– Either this is the first time p is activated.
– Or p has been activated before. As the scheduling is locally central, after the

last activation of p, p is not enabled.

Thus, in all cases, p is not enabled, then enabled, then activated. As p becomes
enabled, it implies that a set of nodes X ⊆ Np changes their states.

As p ∈ V ′, the nodes of X are correct. Thus, as the nodes ofX change of state,
they are necessarily activated and execute step 3 of the algorithm. Therefore,
when p is activated, p can execute step 2 of the algorithm, and there exists a
neighbor q ∈ X such that colored(p, q) becomes true. Besides, as p and q are
activated at least once, distinct(p) and distinct(q) are true. Thus, |B| increases.

Therefore, as either |A| and |B| increase, M increases.

Lemma 6. |A|, |B| and M cannot decrease.

Proof. |A| cannot decrease by definition. Now, let us show that |B| cannot de-
crease.

Let us suppose the opposite: |B| decreases. For a correct node p, no step of
the algorithm can invalidate distinct(p). Thus, there exists an edge {p, q} such

322 A. Maurer and T. Masuzawa

that p and q are correct, distinct(p) and distinct(q) are true, and colored(p, q)
becomes false. Let r ∈ {p, q} be a node activated when colored(p, q) becomes
false. The only step of the algorithm that can invalidate colored(p, q) is step 1,
so r necessarily executes step 1. However, as distinct(r) is true, r cannot execute
step 1 of the algorithm: contradiction.

Thus, |B| cannot decrease. Thus, the result.

Theorem 2. We reach a stable coloring on G′ after |V | + |E| activations of
nodes of V ′, and the algorithm is strictly stabilizing with a containment radius
of 1.

Proof. M is bounded by |V | + |E|. According to Lemma 4 and Lemma 5, as
long as G′ is not colored, a node of V ′ is eventually activated, and M eventually
increases. Besides, according to Lemma 6, M cannot decrease.

Therefore, after at most |V |+|E| activations of nodes of V ′,M cannot increase
anymore. According to Lemma 5, it implies that no node p ∈ V ′ is activated
anymore. According to Lemma 4, it implies that G′ is colored.

Besides, as no node p ∈ V ′ is activated anymore, the state of p does not
change anymore. Therefore, the coloring is stable, and the algorithm is strictly
stabilizing with a containment radius of 1.

3.4 Periodically Locally Central Unfair Scheduler

Now, let us assume that the scheduler is only periodically locally central (see 2.4).
Let us show that we reach a stable coloring in at most (Δ + 1)n locally central
activations of nodes of V ′.

First, let us notice that the proof of Lemma 6 remains valid, as it does not
use the locally central hypothesis.

Lemma 7. When a node p ∈ V ′ is activated independently of its neighbors, M
increases.

Proof. The proof of Lemma 5 remains true, as p is activated independently of q.

Theorem 3. We have a stable coloring on G′ after |V ′| + |E′| locally central
activations of nodes of V ′, and the algorithm is strictly stabilizing with a con-
tainment radius of 1.

Proof. The proof is the same as in Theorem 2, if we replace Lemma 5 by
Lemma 7.

3.5 Non Locally Central Unfair Scheduler

At last, let us remove the locally central hypothesis: some nodes may never be
activated independently of their neighbors.

It was shown in [6] that no deterministic algorithm can solve this problem.
Therefore, we modify our algorithm to make it probabilistic. The new algorithm

Edge Coloring Despite Transient and Permanent Faults 323

is as follows: when a correct node is activated, then with equal probability, it
chooses to do nothing or to execute the previous algorithm.

Let us show that the expected number of activations of nodes of V ′ to have a
stable coloring on G′ is at most 4(|V ′|+ |E′|).

Lemma 8. When a node p ∈ V ′ is activated, then with a probability of at least
1/4, M increases.

Proof. The proof of Lemma 5 remains true provided that, when p is activated,
p executes the algorithm and q does not executes the algorithm in the same
time. When p is activated, p executes the algorithm with probability 1/2. If q is
activated in the same time, q does not execute the algorithm with probability
1/2. Therefore, M increases with a probability of at least 1/4.

Theorem 4. The expected number of activations of nodes of V ′ to have a stable
coloring on G′ is at most 4(|V ′|+ |E′|).

Proof. As stated in Theorem 2, M is bounded by |V ′| + |E′|. According to
Lemma 6 and Lemma 8, the expected number of activations of nodes of V ′ for
M to increase is at most 4. Thus, the expected number of activations of nodes of
V ′ for M to reach its maximal value is at most 4(|V ′|+ |E′|). Thus, the result,
for the same argument as in Theorem 2.

4 Byzantine Insensitive Edge Coloring on a Ring

In this section, we propose a Byzantine insensitive edge coloring algorithm for
ring topologies.

4.1 Preliminaries

In the previous section, we considered strict stabilization with a containment
radius of 1, and proposed an algorithm working in the general case.

Now, we would like to have a Byzantine insensitive algorithm (see Defini-
tion 5). This is a more difficult problem, and the previous algorithm does not
work in this new setting. Indeed, let p and q be two correct nodes with Byzantine
neighbors. In this new setting, we must satisfy colored(p, q). However, when p
(for instance) wants to color the edge {p, q}, a Byzantine neighbor r of p can pro-
pose the same color as q, and p may choose to color {p, r} instead of {p, q}. The
same situation is possible for q. Thus, this malicious strategy can be repeated
endlessly.

In this paper, we propose a first solution to this problem on a ring topology,
in the case where no local variable is used.

Definition 6 (Ring topology). A ring is a graph formed by a sequence of
nodes (u1, . . . , un) such that:

324 A. Maurer and T. Masuzawa

– ∀i ∈ {1, . . . , n− 1}, ui and ui+1 are neighbors.
– u1 and un are neighbors.

As each node of a ring has exactly two neighbors, ∀p ∈ V , we have Cp = 3. A
simple justification of this is that it is impossible to color a ring of 3 nodes with
only 2 colors.

4.2 Algorithm

To solve this problem, we modify step 2 of the algorithm, and introduce a mech-
anism of priority. This mechanism is such that, for a given node p, a given edge
cannot have the priority endlessly. A similar mechanism (based on a queue) is
proposed in [6], but uses local variables. As local variable are not allowed in our
setting, this priority is based on the previous colors used by p.

For instance, let us suppose that p and q are two correct neighbors, and that
r is a Byzantine neighbor of p. In the worst case, the edge {p, r} may have the
priority, but eventually, the priority is given to another edge. Thus, as p has only
two neighbors on a ring topology, the priority is necessarily given to the correct
edge {p, q}.

More formally, here is how step 2 should be modified:

Step 2 (modified). If distinct(p) is true, let q and r be the two neighbors of
p, such that c(p, q) > c(p, r). We then execute the two following actions:

1. If c(p, r) �= c(q, p), then c(p, q) := c(q, p).
2. If c(p, q) �= c(r, p), then c(p, r) := c(r, p).

4.3 Correctness Proof

We assume a locally central weakly fair scheduler (see 2.4). Let us show that we
reach a stable coloring after 3 asynchronous rounds.

First, let us notice that the proofs of Lemma 1 and Lemma 2 are still valid
despite the modification of step 2 of the algorithm.

Lemma 9. Let p and q be two neighbor correct nodes. Let r be the other neighbor
of p. If c(p, q) > c(p, r) at the end of the ith asynchronous round (i ≥ 1), then
colored(p, q) is true at the end of the (i+ 1)th asynchronous round.

Proof. When p is activated in the (i + 1)th asynchronous round, as c(p, q) >
c(p, r), p first executes step 2.1 of the algorithm. Then, as q has been activated
previously and has executed step 3 of the algorithm, colored(p, q) becomes true.
Thus, the result.

Lemma 10. Let p and q be two neighbor correct nodes such that colored(p, q) is
false. Let r be the other neighbor of p, and let s be the other neighbor of q. Then,
if c(p, r) > c(p, q) and c(q, s) > c(q, p), we are in one of the following situations:

Edge Coloring Despite Transient and Permanent Faults 325

1. c(p, r) = 2, c(p, q) = 1, c(q, p) = 2 and c(q, s) = 3.
2. c(p, r) = 3, c(p, q) = 2, c(q, p) = 1 and c(q, s) = 2.
3. c(p, r) = 3, c(p, q) = 1, c(q, p) = 2 and c(q, s) = 3.
4. c(p, r) = 3, c(p, q) = 2, c(q, p) = 1 and c(q, s) = 3.

Proof. As c(p, r) > c(p, q) and c(q, s) > c(q, p), c(p, q) and c(q, p) cannot take
the value 3. As colored(p, q) is false, one of these values is 2 and the other is 1.
Then, only the 4 aforementioned situations remain.

Lemma 11. If we are in situation 1 or 2, then after at most 2 asynchronous
rounds, colored(p, q) is true.

Proof. Let us suppose the opposite: colored(p, q) is not true after 2 asynchronous
rounds. As situations 1 and 2 are symmetric, we only consider situation 1.

Let us suppose that p is activated before q. When p is activated, as c(p, r) >
c(p, q), if the condition of step 2.2 is satisfied, then colored(p, q) becomes true.
Thus, the assumption that this condition cannot be satisfied implies that c(p, r) =
c(q, p) = 2 after step 2.1. Therefore, after the execution of step 3, we still are in
situation 1. Thus, in all cases, when q is activated in the first round, we still are in
situation 1.

When q is activated in the first round, as c(q, s) > c(q, p), if the condition of
step 2.2 is satisfied, then colored(p, q) becomes true. Thus, the assumption that
this condition cannot be satisfied implies that c(q, s) = c(p, q) = 1 after step
2.1. Therefore, after the execution of step 3, we have c(q, p) = 3 and c(q, s) = 1.
Thus, as c(q, p) > c(q, s), according to Lemma 9, colored(p, q) is true in the next
asynchronous round: contradiction. Thus, the result.

Lemma 12. If we are in situation 3 or 4, then after at most 2 asynchronous
rounds, colored(p, q) is true.

Proof. Let us suppose the opposite: colored(p, q) is not true after 2 asynchronous
rounds. As situations 3 and 4 are symmetric, we only consider situation 3.

Let us suppose that p is activated before q. When p is activated, as c(p, r) >
c(p, q), if the condition of step 2.2 is satisfied, then colored(p, q) becomes true.
Thus, the assumption that this condition cannot be satisfied implies that c(p, r) =
c(q, p) = 2 after step 2.1.Therefore, after the execution of step 3,we reach situation
1. Thus, the result, according to the proof of Lemma 11.

Now, let us suppose that q is activated before p. When q is activated, as
c(q, s) > c(q, p), if the condition of step 2.2 is satisfied, then colored(p, q) becomes
true. Thus, the assumption that this condition cannot be satisfied implies that
c(q, s) = c(p, q) = 1 after step 2.1. Therefore, after the execution of step 3,
c(q, p) = 2 and c(q, s) = 1. Thus, as c(q, p) > c(q, s), according to Lemma 9,
colored(p, q) is true in the next asynchronous round: contradiction. Thus, the
result.

Lemma 13. Let p and q be two correct neighbors. After at most 3 asynchronous
rounds, colored(p, q) is true.

326 A. Maurer and T. Masuzawa

Proof. Let us suppose the opposite: colored(p, q) does not become true in 4
asynchronous rounds.

Let r be the other neighbor of p, and let s be the other neighbor of q. According
to Lemma 1, after one asynchronous round, distinct(p) and distinct(q) are true,
implying that c(p, r) �= c(p, q) and c(q, s) �= c(q, p). Thus, two possibilities:

– Either c(p, q) > c(p, r) or c(q, p) > c(q, s). Thus, we are in a situation such
as described in Lemma 9. Then, according to Lemma 9, colored(p, q) is true
after 2 asynchronous rounds.

– Or c(p, r) > c(p, q) and c(q, s) > c(q, p). Thus, we are in one of the 4 situa-
tions described in Lemma 10. Then, according to Lemma 11 and Lemma 12,
colored(p, q) is true after 3 asynchronous rounds.

Theorem 5. We reach a stable coloring after 3 asynchronous rounds, and the
algorithm is Byzantine insensitive.

Proof. Let p and q be two correct neighbors. According to Lemma 1, 2 and 13,
after 3 asynchronous rounds, distinct(p), distinct(q) and colored(p, q) are true
and always remain true. Besides, for the same argument as in Theorem 1, this
coloring is stable.

At last, let p be a node without Byzantine neighbors. As ∀r ∈ Np, colored(p, r)
is and remain true, p is never activated anymore, and never changes of state
anymore. Thus, the result.

5 Conclusion

In this paper, we considered the problem of Byzantine resilient edge coloring
without local variables. We proposed a general algorithm with a containment
radius of 1, and a specific Byzantine insensitive algorithm for ring topologies.
We also showed that this problem could be probabilistically solved without the
locally central hypothesis, in an expected linear time.

As we can see, a challenging open problem is the existence of a general Byzan-
tine insensitive algorithm in this setting. If a general algorithm does not exist,
an open question is the class of network topologies where this problem can be
solved.

References

1. Jiang, J.-R., Tzeng, C.-H., Huang, S.-T.: A self-stabilizing (delta+4)-edge-coloring
algorithm for planar graphs in anonymous uniform systems. Information Processing
Letters 101(4), 168–173 (2007)

2. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

3. Dolev, S.: Self-Stabilization. MIT Press (2000)
4. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in

stabilization. IEEE Transactions on Parallel and Distributed Systems, TPDS (2011)

Edge Coloring Despite Transient and Permanent Faults 327

5. Huang, S.-T., Tzeng, C.-H.: Distributed edge coloration for bipartite networks. In:
8th International Symposium on Stabilization, Safety and Security of Distributed
Systems, pp. 363–377 (2006)

6. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications of
Information Science and Technology (PAIST) 1(1), 1–13 (2007)

7. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer
Society (2002)

8. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In: Higashino, T. (ed.) OPODIS 2004.
LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

9. Pirwani, I., Herman, T., Pemmaraju, S.: Oriented edge coloring and link scheduling
in sensor networks. In: International Conference on Communication Software and
Middleware, pp. 1–6 (2006)

Tight Bounds for Stabilizing Uniform Consensus

in Mobile Networks

Hung Tran-The and Lúıs Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
tran.thehung@gsd.inesc-id.pt,

ler@ist.utl.pt

Abstract. This paper addresses the problem of solving stabilizing uni-
form consensus in mobile networks. In this problem, the input of nodes
may change multiple times before they eventually stabilize. However,
when the system stabilizes all correct nodes output a value and there are
no two non-crashed nodes (whether faulty or not) that output different
values. In contrast to stabilizing consensus, stabilizing uniform consensus
is not solvable with Byzantine faults. So we consider here weaker kinds of
faults, namely crash faults and omission faults. We show that for crash
and send-omission faults, n > 2t is a necessary and sufficient condition
for solving stabilizing uniform consensus, where n is the total number of
mobile nodes, out of which t may be faulty. Interestingly, when the input
of nodes are fixed, stabilizing uniform consensus is solvable with crash
faults for n > t and with send-omission faults for n > 2t (for t > 1).
When considering general omission faults, we show that stabilizing uni-
form consensus is not solvable, even for fixed inputs and t = 1.

1 Introduction

In this paper we address the problem of coordinating mobile nodes equipped
with sensors (for instance, autonomous robots). We consider that each node is
equipped with a sensor that captures information from the external world. In
this case, it is natural that during transition periods in the environment, the
input from the sensors flickers before stabilizing. For instance, a light sensor
may detect if the node is operating during the day (input 1) or the night (input
0). However, during sunset, and depending on the movement of the node among
regions of light and shadow, the sensor may change its input multiple times
before it stabilizes to 0.

Further, we assume that mobile nodes are not permanently within contact
with every other node. However, their movement ensures that eventually, every
node encounters every other node infinitely often. This should allow nodes to
cooperate and take coordinated actions based on the values of the stabilized
inputs. For instance, all correct nodes should be able to coordinate in order to
perform some action after the night has settled.

This realistic problem can be captured by an abstraction that has been named
stabilizing consensus in mobile networks [1]. In this paper we study a stronger

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 328–342, 2014.
c© Springer International Publishing Switzerland 2014

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 329

version, that we name stabilizing uniform, inspired by the classical uniform vari-
ant of the problem [11]. Informally, in the uniform consensus, no two nodes
(whether faulty or not) output different values. In the stabilizing setting, this
means that a faulty (non-crashed) node may never decide but, in any case, should
never stabilize its output to a value different from the stabilized output of cor-
rect nodes. In detail, this paper is concerned with identifying the conditions for
which it is possible to solve stabilizing uniform consensus in mobile networks.

The consensus problem: The consensus problem occurs in many contexts and
has therefore been extensively studied in the literature (e.g.,[2], [13],[16]). Rele-
vant applications of consensus are the consolidation of replicated states and the
synchronization of nodes. It is usually trivial to reach agreement in a reliable sys-
tem composed of n nodes, for example by performing a leader election. However,
if there are t < n faulty nodes, the consensus problem becomes much harder.
Nodes in the system are liable to fail by halting prematurely (crash faults), by
omitting to send messages (send-omission faults), by omitting to send or receive
messages (general omission faults), or by behaving arbitrarily (Byzantine faults).
Fischer, Lynch, and Paterson [8] showed that, in a fully asynchronous environ-
ment, there is no solution to the consensus problem even with a single crash
fault (t = 1). In a synchronous environment, where all nodes run at the same
speed, consensus is solvable for n > t, even for omission faults. For Byzantine
faults, consensus is only solvable if n > 3t [12].

Uniform consensus: For many applications, the regular version of the agreement
condition of consensus, namely “no two correct nodes decide differently”, is inad-
equate as it does not restrict the decision values of faulty nodes. A strengthen ver-
sion of consensus, namely the uniform consensus problem, is considered in [11].
It requires that no two nodes (whether faulty or not) decide differently. Clearly,
uniform consensus is trivially not solvable with Byzantine faults, because faulty
nodes have no constraints on their possible behaviors. In synchronous systems,
for crash faults only, it is not difficult to solve both consensus and uniform con-
sensus in the presence of any number of faulty nodes. Interestingly, Guerraoui
[9] showed that in most partially synchronous systems, any algorithm that solves
consensus also solves uniform consensus. For general omission faults, Neiger and
Toueg [15] showed that uniform consensus can be solved if and only if n > 2t.
When n > 2t, they also showed that any algorithm that solves uniform consen-
sus in the crash fault model is converted by means of this translation into an
algorithm that solves uniform consensus and tolerates omission faults.

Consensus in mobile networks: Fault-tolerance issues in mobile networks started
to be addressed in more recent years. A survey of fault tolerance in mobile
wireless networks is provided in [3]. For crash faults, [4,5] presented consensus
protocols using failure detectors. Randomization is also used for consensus with
omission faults and Byzantine faults in [14]. Beside using synchronization, failure
detectors and randomization, stabilization is also a viable way of circumventing
the impossibility result of Fischer, Lynch, and Paterson [8], specially in mobile

330 H. Tran-The and L. Rodrigues

environments. The problem of stabilizing consensus in mobile networks has been
addressed for the first time in [1]. Stabilizing consensus requires non-faulty nodes
to eventually agree on one of their inputs, but nodes do not necessarily know
when agreement is reached. It is possible to solve the regular version of consensus
with Byzantine nodes for n > 3t, as shown in [1]. More recently, [7] considered
the stabilizing consensus problem in the synchronous model and a T -bounded
adversary that knows the entire state of the system at the end of each commu-
nication round and may corrupt the state of up to T nodes in an arbitrary way
before the next round starts.

Stabilizing uniform consensus: When considering stabilizing inputs, the “stan-
dard” definition of uniform consensus cannot be applied. In fact, at a given time
all nodes may have the same input (say 0), which requires them to also output
0. Then a single node crashes and the inputs of all correct nodes flip to 1. In this
case, correct nodes must output 1 and must necessarily diverge from the (past)
output of the crashed node. However, for stabilizing inputs, it makes sense to
consider a stabilizing version of uniformity, that excludes crashed nodes but still
considers nodes subject to more benign faults. Informally, we say that an output
is stabilizing uniform if eventually, no two (correct or not) non-crashed nodes do
not stabilize their outputs to different values (a more precise definition is given
in Section 2). Unfortunately, as we show in this paper, even this weaker variant
of uniformity is difficult to achieve.

Contributions: We address the problem of stabilizing the outputs in face of sta-
bilizing inputs. We do not address self-stabilizing, in the classical sense [6], as we
do not address the problem recovering from arbitrary state-corruptions (instead,
we model an abritrary state corruption as a Byzantine fault). As discussed be-
fore, uniform consensus is not solvable with Byzantine faults and, in its classical
formulation, does not make sense in face of stabilizing inputs. So we consider
here a variant, named stabilizing uniform consensus in the presence of crash
faults and omission faults. We show that for crash and send omission faults,
n > 2t is a necessary and sufficient condition for solving stabilizing uniform
consensus, where n is the total number of mobile nodes, out of which t may be
faulty. Interestingly, when the input of the nodes are fixed, stabilizing uniform
consensus is solvable with crash faults for n > t and with send-omission faults
for n > 2t (for t > 1). However, when considering general omission faults, we
show that stabilizing uniform consensus is not solvable, even for fixed inputs
and t = 1. These results are summarized in Table 1 (entries that correspond to
new results are depicted with shaded background). Our results show that in con-
trast to synchronization, stabilization is not sufficient to assure the agreement
of nodes (faulty or not) in the presence of general omission faults. To the best
of our knowledge, this is the first paper that investigates the stabilizing uniform
consensus problem.

Roadmap: The remainder of the paper is structured as follows. Section 2 provides
a precise definition of the system model and of the problem we are tackling.

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 331

Table 1. Necessary and sufficient conditions on the number of nodes for solving the
uniform consensus in a system of n nodes and tolerating t faulty nodes

Synchronous Network Mobile Network

Fixed Inputs Fixed Inputs Stabilizing Inputs
(Uniform) (Uniform) (Stabilizing Uniform)

Crash n > t [15] n > t [1] n > 2t

Send-Omission n > t [15]
n > 2t for t > 1

n ≥ 2 for t = 1
n > 2t

General Omission n > 2t [15] Impossible Impossible

Then, Section 3 derives a number of new impossibility results for the problem
of stabilizing uniform consensus in mobile networks. An algorithm that solves
stabilizing uniform consensus with crash and send-omission faults is presented
in Section 4. Finally, Section 5 concludes the paper.

2 Model and Definitions

We consider a set of mobile nodes with distinct identifiers that may establish
pairwise interactions whenever their mobility pattern allows them to encounter
each other. An encounter is a directed interaction among two nodes, where one
node is denoted the initiator and the other is denoted the recipient. We say that
a node i encounters node j, when i is the initiator and j the recipient. When an
encounter occurs, the initiator sends a message to the recipient.

Network Fault Model We assume a wireless channel that is unable to store mes-
sages. Messages may get lost, but we assume that if node i sends a message
to j infinitely often (as a result of multiple encounters), j receives the message
infinitely often. If a fault occurs during an encounter, that prevents the message
from being received by the recipient, the message is lost and a new message will
need to be created and sent in the next encounter.

Node Fault Model We consider 3 different types of faults in this paper (if a node
never becomes faulty we say that it is correct):

– Crash Faults : A node that suffers a crash fault operates correctly until a
point where it crashes. After crashing, the node stops operating. A crashed
node does not output any value, no longer encounters any other node, and
is no longer encountered by any other node.

– Send-Omission Faults : A node that suffers from send-omission faults, when
it encounters other nodes, it may fail to send information to the recipient,
even if the recipient is correct. Nodes subject to send-omission faults, may
fail to send messages infinitely often.

332 H. Tran-The and L. Rodrigues

– General Omission Faults: A node that suffers from general omission faults
may fail to send information to the recipient when it plays the role of the
initiator and/or fail to receive the information that was sent by the initiator,
when it plays the role of the recipient. It may do so infinitely often.

Note that, since the network is unreliable, nodes cannot distinguish an en-
counter with a correct node where the network drops a message from an en-
counter with a node subject to send-omission faults. We say that i encounters
successfully j if the message sent by i is received by j (i.e., no faults occur during
the encounter, either in the network or in the nodes).

Mobility and Fairness Condition The mobility model considers node movement
and also captures the fact that to maintain bi-directional wireless communication
for an extended period may be hard to enforce in a real setting. Thus, a node
i may encounter node j at a given time, and its is possible that node j only
encounters i at a later time. Also, after node i encounters node j there is no pre-
defined time limit for node i to encounter any other node k (including j again).
Thus, the system is asynchronous. In fact, the mobility of nodes is controlled by
an adversary, but we assume the following fairness condition:

Local fairness: Every node encounters every other node infinitely often.

Note that while an individual encounter is directed, the fairness condition
guarantees eventually bidirectional communication.

Stabilizing Uniform Consensus Each node has access to an input whose value
may be read but may not be changed by the protocol. The values of the inputs
may change multiple times but eventually stabilize. Unlike classical consensus,
the output of nodes may be written many times but eventually, stabilize. More
precisely: A configuration includes the local state of all nodes (the state of a node
may change after each encounter where that node participates). A configuration
C is said to be output-stable if in all possible executions starting from C, the
output values of all nodes never change. If every correct node outputs v in an
output-stable configuration C, we say the outputs stabilize to v in C.

Definition 1. A protocol solves the stabilizing uniform consensus problem if the
following 3 properties are satisfied:

– Stabilization: If the inputs of the nodes stabilize, the system eventually
reaches an output-stable configuration.

– Validity: If all nodes have inputs stabilizing to the same value v, the outputs
of all correct nodes eventually stabilize to v.

– Stabilizing Uniform Agreement: In any reachable output-stable config-
uration, no two (correct or not) non-crashed nodes have different outputs
(note that crashed nodes have no output).

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 333

3 Impossibility Results

In this section, we provide bounds for the impossibility of solving stabilizing
uniform consensus in face of different types of faults.

3.1 Notation

We consider the configuration of the system at the end of each interaction. Such
configuration is composed of the state of each node. We say that a configuration
C is v-valent in some set of executions E, if in every execution of E starting from
C the only stable output value of all nodes is v. A configuration C is v-valent
if in all possible executions starting from C the only stable output value of all
nodes is v. C is bivalent if there is an execution where C is v-valent and another
execution where C is v′-valent such that v′ �= v.

Let n be the number of nodes, t of which may be subject to faults. Consider
the case where n = 2t and let G = G0∪G1 in which G0 is the set of t nodes with
initial input 0, and G1 is the set of t nodes with initial input 1. For simplicity, in
the impossibility results section we only consider binary protocols P solving the
stabilizing uniform consensus in the presence of up to t faults. For a configuration
C of G, we denote the sub-configuration of G0 by C0, sub-configuration of G1

by C1. Let I be the initial configuration of G. We denote by E(I) the set of
all possible executions of P starting from I and by F (I) the set of fault-free
executions of P starting from I.

For the crash failure model: we denote by α(C0) (resp., α(C1)) the set of
executions starting from configuration C, in which t nodes in G1 (resp., G0) are
crashed. If C is v-valent in α(C0) (resp., α(C1)), we say that C0 (resp., C1) is
v-valent.

For the send omission failure model: we denote by β(C0) (resp., β(C1)) set
of all possible executions starting from configuration C, in which no message
from group G1 (resp., G0) is delivered to the group G0 (resp., G1). This is
possible because t nodes in G1 may be subject to send omission faults. If C
is v-valent in β(C0) (resp., β(C1)), we say that C0 (resp., C1) is v-valent. Let
β(C) = β(C0)∪β(C1). We say that C is bivalent in β(C) if there exist v, v′ such
that (1) C0 is v-valent, C1 is v′-valent and (2) v �= v′.

From these notations, we obtain the following simple lemmas:

Lemma 1. If C is bivalent in β(C) then C is bivalent.

Lemma 2. For the crash failure model, if a configuration C can be reached in
a fault-free execution, then i) α(C0) ∈ E(I) (resp., α(C1) ∈ E(I)), and ii) if
the inputs stabilize starting from C then C0 (resp., C1) is either 0-valent, or
1-valent.

Lemma 3. For the send omission failure model, if a configuration C can be
reached in a fault-free execution, then i) β(C0) ∈ E(I) (resp., β(C1) ∈ E(I))
are possible in P , and ii) if the inputs stabilize starting from C then C0 (resp.,
C1) is either 0-valent, or 1-valent.

334 H. Tran-The and L. Rodrigues

3.2 Stabilizing Uniform Consensus with Crash Faults

Theorem 1. There is no protocol that solves stabilizing uniform consensus with
crash faults if the inputs are not fixed and n ≤ 2t.

Proof. It suffices to prove there is no protocol for stabilizing consensus when
n = 2t. Assume by contradiction that there exists such a protocol P . Consider the
systemG as described in Section 3.1, whereG = G0∪G1 and |G0| = |G1| = t > 0.
By Lemma 4, there is some reachable configuration C such that configuration
C1 of G1 is 0-valent. Recall that by definition, C1 is 0-valent means that C is
0-valent in α(C1). Consider a possible execution β of P starting from C such
that all nodes in G0 change their inputs to 1 and then crash. In this execution,
all nodes have inputs stabilizing to 1, so by the validity property of consensus,
the outputs of correct nodes eventually stabilize to 1 in β. But, nodes in G1

cannot distinguish β from an execution in α(C1) where nodes in G0 keep input
0 and crash. So they eventually output 0 in β. Contradiction.

Lemma 4. There is some configuration C reached in a fault-free execution such
that C1 is 0-valent.

Proof. Given Lemma 2 every configuration C reached in a fault-free execution
is either 0-valent or 1-valent. Assume by the sake of contradiction that C1 is 1-
valent. Consider executions in F (I) where the inputs of G are fixed. The system
must eventually reach some output stable configurationD in F (I). Without loss
of generality, assume the stable output value in D is v = 0. By hypothesis, we
have D1 is 1-valent. This means that there is an execution β in α(D1) where
the output of nodes in G1 eventually stabilizes to 1 after some point T . On the
other hand, consider a fault-free partial execution starting from D until point
T such that it is similar to β but nodes in G0 do not crash, instead, they do
not encounter nodes in G1 and nodes in G1 do not encounter nodes in G0. By
definition of D, nodes in G1 output 0 at T . But, nodes in G1 cannot distinguish
execution this execution from β, so they output 1 at T . Contradiction.

3.3 Stabilizing Uniform Consensus with Send-Omission Faults

For the case of send-omission faults, we start by considering first the case where
n ≤ 2t, n ≥ 4 and t ≥ 2 and later the particular case where n = 3 and t = 2. Here,
we use the bivalent argument and the contradiction argument by constructing
a fault-free execution that (1) satisfies the local fairness and the condition that
if a node i sends a message to a node j infinitely often, j receives the message
infinitely often, and that (2) violates the stabilization condition. We first consider
the case where n ≤ 2t, n ≥ 4 and t ≥ 2. We prove the following lemmas:

Lemma 5. I0 is 0-valent and I1 is 1-valent.

Proof. The lemma holds due to the validity condition of stabilizing uniform
consensus. The proof is omitted due to space constraints.

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 335

We denote by θ(G0) (resp., θ(G1)) the following execution (that we call a par-
titioned execution): first, all nodes in each group encounter successfully nodes
also in that group only one time. Next, all nodes in group G0 (resp., G1) en-
counter all nodes in group G1 (resp., G0) only one time but all messages from
G0 (resp., G1) to G1 (resp., G0) are not delivered. Finally we choose determina-
tively a couple nodes i, j where i in G1 (resp., G0) and j in G0 (resp., G1) and
node i encounter successfully j. We denote by θ(C0) (resp., θ(C1)) the set of
executions starting from C, in which we repeat the partitioned execution θ(G0)
(resp., θ(G1)) infinitely often and choose valid couples i, j such that every node
in G1 (resp., G0) encounters successfully other nodes in G0 (resp., G1) infinitely
often. It is easy to see that the executions in θ(C0) (resp., θ(C1)) satisfy the
local fairness condition and θ(C0) ⊂ β(C0), θ(C1) ⊂ β(C1).

Lemma 6. Consider a configuration C where C0 is v-valent and C1 is v′-valent
(v �= v′). Then there is a reachable configuration A in θ(C0) such that: i) A1 is
v′-valent; ii) for every configuration B reached from A by one encounter where
the initiator is in G0, the recipient is in G1, then B1 is always v-valent.

Proof. Since C0
k is 0-valent, then in every execution in β(C0

k), the only stable
output value of all nodes is 0. In particular, it is also true for a subset θ(C0

k) of
β(C0

k). By the argument similar to Lemma 4, for executions in θ(C0
k), there is a

configuration C reached from Ck, where C
1 is 0-valent. Since C1

k is 1-valent and
C1 is 0-valent, there is reachable configurations E and F such that F reached
from E by an encounter e and E1 is still 1-valent, F 1 is 0-valent. Moreover,
for encounter e, the initiator must be in G0 and the recipient must be in G1.
Indeed, recall if E1 is 1-valent then E is 1-valent in β(E1). It means that in
every possible execution in which all messages from G0 to G1 are not delivered,
then configurations reached from E is still 1-valent. Hence, in order that F 1 is
0-valent, the initiator of e must be in G0 and the recipient of e must be in G1.

By definition of θ(C0), such an encounter e is deterministically chosen. Hence
by the deterministic choice, the system may reach some configuration A such
that (1) A1 is still 1-valent and (2) every configuration B reached from A by one
encounter where the initiator is in G0, the recipient is in G1 then B1 is always
0-valent.

Similarly, we also get:

Lemma 7. Consider configuration C where C0 is v-valent and C1 is v′-valent
(v �= v′). Then there is a reachable configuration A in θ(C1) such that: i) A0 is
v-valent; ii) for every configuration B reached from A by one encounter where
the initiator is in G1, the recipient is in G0, then B0 is always v′-valent.

Lemma 8. There is no protocol solving stabilizing uniform consensus with send-
omission faults for n ≤ 2t, t ≥ 2 and n ≥ 4.

Proof. It suffices to prove there is no protocol for stabilizing consensus when
n = 2t. Assume by contradiction that there exists a protocol P solving stabilizing

336 H. Tran-The and L. Rodrigues

Fig. 1. An example of n = 4, t = 2. G0 = {a, p} and G1 = {b, q}

consensus. The idea of the proof is to construct a fault-free execution in which
there is an infinite sequence of bivalent configurations Ck. This contradicts the
stabilization condition of stabilizing uniform consensus.

Let C0 = I. Then C0 is the bivalent configuration. Now, assume we con-
structed a bivalent configuration Ck (k ≥ 0) by a fault-free execution. Assume
without loss of generality that in Ck, C

0
k is 0-valent, C1

k is 1-valent. We will
show that there is an execution of P such that from Ck, we can reach another
bivalent configuration Ck+1. If k is even we consider executions in β(C0

k), else
we consider executions in β(C1

k) (the odd even check is to guarantee the local
fairness condition).

Assume without loss of generality that k is even. We choose deterministically a
couple nodes p, q where p in G0 and q in G1. Let Sk = G0\{p} and Pk = G1\{q}.
By Lemma 6, there is configuration A reached in some execution α in θ(C0) such
that (1) A1 is 1-valent, and (2) for configuration B reached from A by encounter
e between p and q, B1 is 0-valent. Let θ be the partitioned execution in θ(C0)
that e belongs to. Consider a partial execution γ1 starting from Ck such that it
is similar to execution α except that all messages from nodes in Pk sent to nodes
in Sk in the partial execution θ are delivered. Clearly, in this partial execution,
all nodes still execute correctly and due to the fact that |Sk|, |Pk| ≥ 1, there is
at least one node in G1 that encounters a node in G0. Let D be the obtained
configuration after p encounters q. Since nodes in G1 cannot distinguish this
execution from execution α, D1 must be 0-valent. We consider the two cases: i)
if D0 is 1-valent then let Ck+1 = D; ii) if D0 is 0-valent then consider execution
γ2 that is similar to γ1 except that message from p to q is not delivered. Let
F be configuration obtained after p encounters q. Clearly, F 1 is 1-valent and
F 0 = D0 is 0-valent. Let Ck+1 = F .

In both cases, Ck+1 is obtained by a fault-free execution and it is bivalent (see
Figure 1). Hence, by induction, we obtain a fault-free execution in which there
is an infinite sequence of bivalent configurations Ci, where i ≥ 0. It remains
to show that such an execution satisfies the local fairness condition and the
condition that if a node i sends a message to a node j infinitely often, j receives
the message infinitely often. Indeed, if k is odd, as noticed above, nodes in each
group encounter successfully each other and we can choose deterministically the
sets Sk, Pk and assure that nodes from Pk always encounter successfully nodes
in Sk. Similarly, if k is even, nodes in each group encounter successfully each

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 337

other and we can choose deterministically the sets Sk, Pk and assure that nodes
from Sk encounter successfully nodes in Pk.

Lemma 9. There is no protocol that solves stabilizing uniform consensus with
send-omission faults for t = 2 and n = 3 even with fixed inputs.

Proof. (the proof is omitted due to space constraints).

Thus, for send-omission faults, we get the following impossibility:

Theorem 2. Stabilizing uniform consensus is unsolvable with send-omission
faults if t ≥ 2 and n ≤ 2t even inputs are fixed.

Proof. This result derives from Lemma 8 and Lemma 9.

3.4 Stabilizing Uniform Consensus with General Omission Faults

Theorem 3. There is no protocol solving stabilizing uniform consensus in the
presence of one node subject to general omission faults, even if inputs are fixed.

Proof. Assume by contradiction that there exists a protocol P solving stabilizing
consensus in the presence of one node subject to general omission fault and with
inputs of nodes are fixed. By the bivalency argument, it is not difficult to prove
that there are two initial configurations C and C′ which differ only by the initial
value of some node i and such that I is 0-valent and I ′ is 1-valent. Consider the
set α of executions of P in which node i is subject to general omission faults
end fails to send/receive all messages to/from other nodes. There must be some
output stable configuration D reached after some point T in α. Without loss of
generality, assume this stable output value is v = 1.

We choose deterministically a node j other than i. Then we get that j outputs
1 at T . Consider the set β of executions of P starting from point T , in which
node j subjects to general omission faults and fails to send/receive all messages
to/from other nodes. There must be some reachable output stable configuration
D′ after some point T ′ by some execution β1 in β. Without loss of generality,
assume this stable output value is v′. By stabilizing uniform consensus, node
j outputs either v′, or ⊥. Now consider a partial execution from T to T ′ such
that it is similar to execution β1 but node j does not fail to send/receive all
messages to/from other nodes, instead, all messages sent to/from j get lost.
Node j cannot distinguish the partial execution from execution β1 from T to T ′,
so it outputs either v′, or ⊥ in this partial execution. On the other hand, node
j cannot distinguish this partial execution from a possible execution in α where
node i subjects to general omission faults, so it outputs 1 at T ′ in the partial
execution. Thus, v′ = 1.

Note that such a partial execution from T to T ′ can be simulated by an
execution where nodes are not subject to faults given that, in a finite period,
a node may fail to send/receive messages due to network omissions. Repeating

338 H. Tran-The and L. Rodrigues

fault-free partial executions similar to above one infinitely often such that all
nodes can be chosen infinitely often, we obtain a fault-free execution that satisfies
the local fairness condition and the condition that if a node i sends a message
to a node j infinitely often, j receives the message infinitely often. Moreover, all
nodes do not have the stable output 0. This contradicts the hypothesis that I is
0-valent, i.e., every possible fault-free execution starting from I, the only stable
value of nodes is 0.

4 Solving Stabilizing Uniform Consensus with Crash and
Send-Omission Faults

The stabilizing uniform consensus algorithm tolerating crash faults and consid-
ering fixed inputs is similar to the one in [1]. For send-omission faults and fixed
inputs, if t = 1 and n = 2, the consensus algorithm is trivial. Thus, we only con-
sider the algorithm with stabilizing inputs tolerating t crash or send-omission
faults, assuming n > 2t, where t ≥ 1 and n is the total number of nodes. When
considering the case where inputs of nodes are fixed as in classical models, it is
not difficult to obtain consensus by using the majority and a flood set strategy
[10]. However, when inputs are not fixed, it is very difficult to use this strategy
on inputs. We here use a counter array to keep track of the number of times the
other nodes change their inputs. Since our solution relies on the value of these
counters being correctly initialized, our algorithm is not self-stabilizing, in the
classical sense [6], since it cannot recover from arbitrary state-corruptions.

Each node i maintains the following variables: my input i denotes the current
reading of the input port. A matrix inputs i[][] is used to maintain an estimate
of the input values known by every node (the line inputs i[i][] keeps the values
known by i). An array C INPUT i[] to maintain consistent input values of all
nodes. The counter array ci[] to keep track of the number of times each node
changes its input. In particular, ci[i] is used to keep track of how many times the
local input has changed. The details of the algorithm are presented in Figure 2.
In each encounter, the initiator sends arrays inputs i[i][] and ci[] to the recipient.
When node i is the recipient, it updates the array ci[], the matrix inputs i[][],
and also C INPUT i[]. The update of ci[] is based on the increasing order of
the counter and the update of C INPUT [] is based on the majority of values
in inputs i[][]. Eventually, correct nodes obtain an array C INPUT i[] containing
consistent values for the inputs.

Lemma 10. For any i, ci[i] eventually stabilizes.

Proof. Since the input of node i can only change a finite number of times, variable
ci[i] is bounded. Moreover, this variable cannot decrease. Thus, ci[i] eventually
stabilizes.

Lemma 11. For any i, j, ci[j] eventually stabilizes.

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 339

Code for node i

Variables:
1 my inputi, ci[],inputsi[][], C INPUT i []

Initialization:
2 for all k, j: inputsi[k][j] = 0, C INPUT i[k] = 0, ci[k] = 0

State update:
3 when inputsi[i, i] �=my inputi
4 ci[i] = ci[i] + 1
5 inputsi[i][i] = my inputi
6 when node i encounters node j
7 i sends inputsi[i][], ci[] to j
8 when node i receives inputsj [j][], cj[] from j do
9 inputsi[j][] = inputsj [j][]
10 for all k �= i:
11 if cj[k] > ci[k] then
12 ci[k] = cj [k]
13 inputsi[i][k] = inputsj [j][k]

Output:
14 for all j
15 if ∃v : |k : inputsi[k][j] = v| ≥ n − t then C INPUT [j] = v else C INPUT [j] = 0
16 if ∃v : |k : C INPUT i [k] = v| ≥ n − t then outputs v else outputs 0

Fig. 2. Stabilizing uniform consensus algorithm for n > 2t

Proof. If j = i then by Lemma 10, ci[i] eventually stabilizes. Consider case where
j �= i. By Lemma 10, cj [j] eventually stabilizes to some value after some time t.
Let cj be this value. Clearly, at any time cj [j] ≤ cj . Moreover, at any time for
any k: ck[j] ≤ cj [j]. Hence, at any time for any k: ck[j] ≤ cj [j]. After time t,
variable ci[j] cannot decrease, so ci[j] eventually stabilizes.

Lemma 12. For any i, j, inputi[i][j] eventually stabilizes.

Proof. Since the input of node i can only change a finite number of times,
inputs i[i][i] must stabilize. Consider j �= i: By Lemma 11, ci[j] eventually stabi-
lizes. It follows that eventually node i stops updating variable inputs i[i][j].

By Lemmas 11 and 12, we get that for any i, j: ci[j], inputi[i][j] eventually
stabilizes. Let T be a time where for any i, j: ci[j], inputi[i][j] stabilizes.

Lemma 13. Assume i to be a correct node and that inputsi[i][i] stabilizes to vi.
Then for any j: inputj [j][i] eventually stabilizes to vi.

Proof. By Lemma 11 cj [i] eventually stabilizes. Thus, node j eventually stops
updating variable inputj[j][i]. Since node i is correct and my input i stabilizes to
vi, node j eventually is encountered by i and sets inputj[j][i] = vi.

Lemma 14. If j, k are correct nodes then for any i if inputj[j][i] stabilizes to
vj and inputk[k][i] stabilizes to vk then vj = vk.

340 H. Tran-The and L. Rodrigues

Proof. If i = k or j = k then by Lemma 13, the lemma holds. Consider the case
where i �= j, k. Assume cj [i] stabilizes to cj and cj [i] stabilizes to ck. There are
two cases to consider: case 1) ck �= cj then without loss of generality, assume
ck > cj . Since j, k are correct, j encounters successfully i and i encounters
successfully j infinitely often. After T , when k receives messages from j, it will
set ck[i] = cj [i] and inputsk[k][i] = inputj[j][i] at lines 12,13. Thus, ck = cj and
vk = vj . case 2) ck = cj . There is some time tj where node i has ci[i] = cj
and inputs i[i][i] = vj and an other time tk where node i has ci[i] = ck and
inputs i[i][i] = vk. Since ci[i] only increase over time if node i changes its input,
if ck = cj then vk = vj .

Lemma 15. For any i, j, k: inputsi[j][k] stabilizes after time T .

Proof. It is direct from Lemma 12

Lemma 16. For any i, j: C INPUTi[j] stabilizes after T .

Proof. By Lemma 15, for any i, j, k: inputs i[k][j] eventually stabilizes after T .
Consider some time t1 after T :

If there is some value v s.t |k : inputi[k][j] = v| ≥ n − t then it sets
C INPUT i[j] to v. We prove that this value will not be changed any more.
Indeed, assume node i will changes this value at some time t′ > t1. There are
only two possibilities:

– there is some value v′ s.t |k : inputi[k][j] = v′| ≥ n − t at time t′. Thus,
there must be at least some node u s.t that inputs i[u][j] = v at t and
inputs i[u][j] = v′ at t′. This is a contradiction because after T , inputs i[u][j]
stabilizes.

– v �= 0 and |k : inputs i[k][j] = v| < n−t at time t′. Let S = {k : inputs i[k][j] =
v at time t}. Thus there must a some node u ∈ S s.t at time t′, inputs i[u][j] �=
v. This is a contradiction because after T , inputs i[u][j] stabilizes.

If there is not a value v s.t |k : inputs i[k][j] = v| ≥ n − t. Then node i sets
C INPUT i[j] = 0. So if node i changes this value then there must be some
t′′ > t1 s.t there is some v′′ �= 0 and |k : inputs i[k][j] = v′′| ≥ n− t. Since after
T , for any i, j, k: inputs i[k][j] eventually stabilizes, if at time t′′ > T we have
inputs i[k][j] = v′′ then at time t1 > T we also have inputs i[k][j] = v′′. Thus, at
time t1, we have |k : inputi[k][j] = v′′| ≥ n− t and node i sets C INPUT i[j] to
v′′, contradicting that v′′ �= 0. Thus, C INPUT i[j] stabilizes to 0.

Lemma 17. Assume i be a correct node and my inputi stabilizes to vi. For any
j, C INPUTj [i] eventually stabilizes to vi.

Proof. By Lemma 13, inputsk[k, i] eventually stabilizes to vi for every correct
node k. Consider any node j. If k is correct then after T , node j receives all
messages from k and so node j will have that inputsj [k][i] = vi. Moreover, since
there are at least n − t correct nodes, eventually the condition at line 15 is
satisfied and node j will have that C INPUT j [i] = vi.

Tight Bounds for Stabilizing Uniform Consensus in Mobile Networks 341

Lemma 18. For any i, j, k, if C INPUTj [i] stabilizes to vj and C INPUTk[i]
eventually stabilizes to vk then vj = vk.

Proof. If INPUTj[i] stabilizes to vj then after T we have that |k : inputsj[k][i] =
vj | ≥ n− t. Since n− t ≥ t+ 1, there must is at least some correct node u such
that inputsj[u][i] = vj . It follows that inputsu[u][k] = vj . By Lemma 13, for
every correct node p: inputsp[p][i] eventually stabilizes to vj . Similarly for node
k, we also have that for every correct node p: inputsp[p][i] eventually stabilizes
to vk. Since there is at least n − t correct nodes, there must be some correct
node q s.t inputsq[q][i] eventually stabilizes to vj and inputsq[q][i] eventually
also stabilizes to vk. Thus, vj = vk.

Theorem 4. The stabilizing uniform consensus with send-omission faults is
solvable if n > 2t.

Proof. We will prove that three conditions of stabilizing uniform consensus are
satisfied:

Stabilization condition: the proof is similar to Lemma 16. We omit the
proof due to space constraints.

Validity condition: if all nodes have the inputs stabilizing to v then by
Lemma 17, for any correct node i and any node k, we get that C INPUTk[i]
eventually stabilizes to v after T . Since there are at least n− t correct nodes, at
any time t after T , node k eventually has that |i : C INPUT k[i] = v| ≥ n − t.
Thus, it outputs v.

Agreement condition: Assume for the sake of contradiction that the out-
puts of two nodes i and j stabilize to different values, vi and vj . Thus, either
vi �= 0 or vj �= 0. Without loss of generality suppose that vi �= 0. Thus, at
some time after T , we have that |k : C INPUT i[k] = vi| ≥ n − t. Let S = {k :
C INPUT i[k] = vi}. By Lemma 18, for every k ∈ S: C INPUT j [k] also stabilizes
to vi. Thus, eventually node j will have that |k : C INPUT j [k] = vi| ≥ n − t
and it eventually outputs vi. Thus, vj = vi.

5 Conclusions

This paper addressed a variant of stabilizing consensus in mobile networks that
we have named stabilizing uniform consensus. Perhaps surprisingly, we show that
the problem is impossible to solve if a single node suffers from general omission
faults, even if the inputs are stable. Further, we identify the tight conditions for
solving the problem for more benign faults, such as crash and send-omissions.

Acknowledgments. We are grateful to the anonymous reviewers for their help
in improving the paper. This work was partially supported by Fundação para a
Ciência eTecnologia (FCT)via theprojectPEPITA(PTDC/EEI-SCR/2776/2012)
and via the INESC-ID multi-annual funding through the PIDDAC Program fund
grant, under project PEst-OE/EEI/LA0021/2013.

342 H. Tran-The and L. Rodrigues

References

1. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

3. Basile, C., Killijian, M.-O., Powell, D.: A survey of dependability issues in mobile
wireless networks. Technical report (2003)

4. Bonnet, F., Ezhilchelvan, P., Vollset, E.: Quiescent consensus in mobile ad-hoc
networks using eventually storage-free broadcasts. In: Proc. of the 21st ACM SAC,
Dijon, France, pp. 670–674 (2006)

5. Chockler, G., Demirbas, M., Gilbert, S., Newport, C., Nolte, T.: Consensus and
collision detectors in wireless ad hoc networks. In: Proc. of the 24th ACM PODC,
Las Vegas, NV, USA, pp. 197–206 (2005)

6. Dijkstra, E.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

7. Doerr, B., Goldberg, L., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing con-
sensus with the power of two choices. In: Proc. of the 23rd ACM SPAA, San Jose,
California, USA, pp. 149–158 (2011)

8. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. Journal of the ACM 32(2), 374–382 (1985)

9. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commit-
ment and consensus. In: Helary, J.-M., Raynal, M. (eds.) WDAG 1995. LNCS,
vol. 972, pp. 87–100. Springer, Heidelberg (1995)

10. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer-Verlag (2006)

11. Hadzilacos, V.: On the relationship between the atomic commitment and consensus
problems. In: Simons, B., Spector, A. (eds.) Fault-Tolerant Distributed Computing.
LNCS, vol. 448, pp. 201–208. Springer, Heidelberg (1990)

12. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

13. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco (1996)

14. Moniz, H., Neves, N., Correia, M.: Byzantine fault-tolerant consensus in wireless
ad hoc networks. IEEE Transactions on Mobile Computing 99(PrePrints), 1 (2012)

15. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed
algorithms. J. Algorithms 11(3), 374–419 (1990)

16. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228–234 (1980)

Brief Announcement: Publish/Subscribe

on Virtual Rings

Gerry Siegemund1, Khaled Maâmra2, and Volker Turau1

1 Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
{gerry.siegemund,turau}@tu-harburg.de

2 PRiSM Reseach Group, University of Versailles St-Quentin, Versailles, France
khaled.maamra@prism.uvsq.fr

Abstract. This paper introduces a scalable, self-stabilizing, channel-
based publish/subscribe system for wireless sensor networks. As base
structure a virtual ring is maintained. We consider message and memory
corruptions and also respect dynamic network changes, such as, node
and link removals and additions.

Keywords: Self-stabilization, publish/subscribe, wireless sensor networks.

1 Introduction

Wireless sensor networks (WSN) are resource-constrained and operate based on
multi-hop relay and ad hoc routing rather than on a robust infrastructure as the
Internet. Many applications of WSNs require data generated at a given node to
be efficiently forwarded to all nodes interested in that data. Publish/subscribe
systems provide an effective solution for this task [1]. They allow a group of
content publishers to notify content subscribers in an asynchronous style without
knowing the identities of the interested nodes. There are two roles in such systems
publishers and subscribers. Publishers publish messages without knowing the
identities of the receivers - the subscribers. Subscribers register their interests in
a category of information and asynchronously receive messages matching their
subscriptions. Interests can be specified with respect to the message’s content
using some form of patterns or by referring to a categorization of messages carried
out by the publishers. Such categories are called channels. In any case messages
do not contain destination addresses. The system must provide an infrastructure
to route a message from the publisher to all matching subscribers.

2 Overview

The publsih/subscribe system is build upon several foundations. Foremost, a
virtual ring layer. This is a kind of overlay network where all nodes are arranged
on a ring. Messages are routed on this ring. Scalability is achieved by using so
called shortcuts, these help to avoid sections of the ring with no subscribers for a
particular channel. The maintenance of the virtual ring layer is based on a span-
ning tree layer. Which is realized using a well-known self-stabilizing spanning

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 343–345, 2014.
c© Springer International Publishing Switzerland 2014

344 G. Siegemund, K. Maâmra, and V. Turau

tree algorithm. The lowest layer provides a stable and scalable neighborhood re-
lation. This is achieved with the self-stabilizing neighborhood protocol Mahalle+

[3] that achieves agility and stability at the same time. An important feature
of Mahalle+ is that it allows to specify an upper bound CN for the number of
neighbors of each node. The value CN allows to trade the average route length
of publications for memory space required for routing tables. Memory consump-
tion grows quadratically with CN while routing tables for a single channel grow
linearly. We expect CN to be in the range of 5 to 10. Thus, the size of a message
and the required storage fit the capabilities of current hardware used in WSNs.
Additionally, larger values of CN increase the number of shortcuts.

To achieve self-stabilization we use next to classical techniques the concept of
leasing, in particular for routing entries and subscriptions [2]. A routing entry
must be renewed before the leasing period expires to protect it from being dis-
carded. If a routing entry or a subscription is not renewed in time, it is removed
from the corresponding table. Such removals trigger update operations for the
virtual ring and the shortcuts.

3 Overall Approach

Routing of Publish/Subscribe Messages. The distributed system is mod-
eled as an undirected graph G = (V,E). Nodes in this graph are responsible
for forwarding subscriptions to all nodes and for delivering publications to sub-
scribers. In our model all nodes participate in the routing process. We aim to
balance the amount of memory used for routing tables and the number of mes-
sages used for forwarding subscriptions and publications. This way, we can adopt
to the varying resources found in WSNs.

Ideally, only nodes that are subscribers of a channel are involved in forwarding
publications for that channel. Obviously, this is not achievable in general. We use
an overlay network in the form of a ring. Since not every topology does contain
a ring with each node appearing exactly once we propose to use a virtual ring.
The main difference is that each node can appear more than once on the ring.
The total size of the ring is 2(n − 1) with n = |V |, i.e., on average each node
appears twice on the ring. Routing is performed counter clockwise on this ring.
A message is discarded just before it is forwarded to the originating node again.

Since this simple approach does not provide scalability we use shortcuts on the
virtual ring. A shortcut skips some nodes on the ring. For publications we must
guarantee that a shortcut does not jump over a subscriber for the corresponding
channel. To do so, each node maintains, for each of its positions and for each
channel, the position of the neighbor that comes closest to the next subscriber for
that channel on the virtual ring in a table F . On average, a node has to maintain
two forwarding positions per node. With this information routing becomes as
simple as a single look-up in this table. The main challenge is to keep F up-to-
date with respect to (un)subscriptions and transient faults. To perform this in
a distributed algorithm, each node must maintain two lists with positions: list
P with the own positions and R with those of all neighbors.

Brief Announcement: Publish/Subscribe on Virtual Rings 345

Example. The routing of publications is explained by the example given in
Fig. 1. Here, one publisher is indicated by P at Position 1 and 7. Furthermore,
there are two subscribers indicated by S at Position 25 and 27, respectively.
Note, that the actual node id is transparent to the publish/subscribe layer.

virtual ring (24 hops)
short cut (7 hops)
shortest path (4 hops)

Pos
fPos 16 16

1 7

Pos
fPos 19

18

 4 3 2 1 0|30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1
5

 14
 1

3

 1
2

 1
1

10
 9

 8 7

 6 5 P
 P

S
 S S

Pos
fPos

25
26

S Pos
fPos

27
11

10

8
99

Pos
fPos 11 1499 2777

10 13 26

6
151151511

Pos
fPos 17

16

2
21

22
21

222
21Pos

fPos 24 24
20 22

Fig. 1. Routing a publication to a single subscriber

In Fig. 1 for all
circled positions the
routing table F (cur-
rent position pos and
the message forward-
ing position fPos) is
depicted as well, for
other positions it is
omitted for readabil-
ity. Publishing always
begins at the small-
est position of a node.
In this case it is Posi-
tion 1. Thus, the publication is forwarded to Position 16. Since there exists no
shortcut from 16, messages will be forwarded to 17, as depicted in the routing
table next to Position 16. Routing proceeds in this style (i.e., without shortcuts)
until the message reaches Position 20. Now the forwarding position is 24. In the
next step Position 25 - one of the subscribers - is reached, the publication is
delivered, and the message will be forwarded until it reaches Position 27. Here,
the message is delivered once again and then discarded, because the forwarding
position of Position 27 is Position 11, which lies beyond the origin, i.e., Position
1. The figure furthermore depicts the traveled path from P to the first S, its
length is 7 hops, even though this is much shorter than using the virtual ring in
the typical way (24 hops), it is not the shortest path (4 hops).

4 Outlook

We will investigate some super-stabilizing aspects of the given protocol. Cur-
rently we are evaluating an implementation of the middleware in a simulation
and later in a real deployment. This will permit us to derive values for the lengths
of the various leading periods used.

Acknowledgments. Funded by Deutsche Forschungsgemeinschaft (TU 221/6-1).

References

[1] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

[2] Gray, C., Cheriton, D.: Leases: An efficient fault-tolerant mechanism for distributed
file cache consistency. SIGOPS Oper. Syst. Rev. 23(5), 202–210 (1989)

[3] Siegemund, G., Turau, V., Weyer, C., Lohs, S., Nolte, J.: An agile and stable
neighborhood protocol for wSNs. In: Higashino, T., Katayama, Y., Masuzawa, T.,
Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 376–378.
Springer, Heidelberg (2013)

Brief Announcement: Sweep Coverage with

Mobile and Static Sensors

Barun Gorain and Partha Sarathi Mandal

Department of Mathematics
Indian Institute of Technology Guwahati, India

{b.gorain,psm}@iitg.ernet.in

Abstract. The objective of a sweep coverage problem is to find the
minimum number of mobile sensors to ensure the periodic monitoring
for a given set of points of interest. In this paper we have remarked on
the flaw of approximation algorithms proposed in the paper [1] for sweep
coverage with mobile sensors and proposed a 3-approximation algorithm
to guarantee sweep coverage with mobile and static sensors.

Keywords: Sweep Coverage, TSP tour, Approximation Algorithm,
WSNs.

1 Introduction

Sweep coverage concept is recently introduced in the literature where periodic
patrol inspections are sufficient for a given set of points of interest (PoIs) by a
set of mobile sensors [1]. A point is said to be t−sweep covered if and only if at
least one mobile sensor visits the point within every t time period, where t is
called sweep period of the point. Objective of the sweep coverage problem is to
find minimum number of mobile sensors to guarantee sweep coverage for the set
of PoIs. Li et al. in [1] proved that finding minimum number of mobile sensors
to sweep cover a set of PoIs is NP hard and proposed a (2 + ε)−approximation
and a 3−approximation algorithm to find minimum number of mobile sensors.
Each algorithm in [1] computes approximate TSP tour through all the PoIs and
divides the tour into equal parts of length vt

2 , where v is the uniform speed of the
mobile sensors and t is the sweep period for all the PoIs. Then one mobile sensor
is deployed in every partition and let the mobile sensors move back and forth to
sweep cover all PoIs of the corresponding partitions. But there is a serious flaw
of the approximation algorithms proposed in [1] as explained below. In general,
if the distance between the PoIs is large compare to the length of the partitions
then there may not exist any PoI on some of the parts. For example, assume there
are only two PoIs on a plane, the distance between them is 100 meter and vt is 20
meter. Therefore, the length of the TSP tour is 200 meter and according to the
algorithms mentioned in [1], the total number of mobile sensors needed is 200/ vt

2
= 200/10=20. But practically it is sufficient to place only two sensors to monitor
two PoIs respectively and thus two sensors can guarantee sweep coverage. Hence

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 346–348, 2014.
c© Springer International Publishing Switzerland 2014

Brief Announcement: Sweep Coverage with Mobile and Static Sensors 347

the algorithms proposed by Li et al. in [1] does not provide a solution which
achieve approximation factors (2 + ε) or 3.

In this paper we introduce a variation of sweep coverage named as GSweep
coverage problem, where the PoIs are represented by vertices of a weighted graph.
We propose a 3−approximation algorithm to guarantee sweep coverage of all
vertices of the graph with mobile and static sensors.

2 GSweep Coverage

Let G = (U,E) be a weighted graph, where weight of an edge (ui, uj) for ui, uj ∈
U is denoted by |(ui, uj)|. Let n be the total number of vertices in G. For any
subgraph H of G, we denote |H | as the sum of the edge weights of H . The
definition of GSweep coverage is given below.

Definition 1. Let U = {u1, u2, · · · , un} be the vertices of a weighted graph,
S = {s1, s2, · · · , sp} and M = {m1,m2, · · · ,mq} be the sets of static and mobile
sensors respectively. The mobile sensors move with a uniform speed v along edges
of the graph. A vertex ui is said to be t−GSweep covered with (mobile and/or
static) sensors iff either at least one mobile sensor mj visits ui in every t time
period or one static sensor sj is deployed at ui which periodically monitors ui in
every t time period.

The objective of GSweep coverage problem is to find minimum number of sensors,
combination of static and mobile sensors, such that each vertex is t−GSweep
covered. The problem is NP hard, follows from the hardness proof given in [1].

We propose Algorithm 1: GSweepCoverage to find minimum number of
sensors for GSweep coverage problem. First two steps of the algorithm executes
n iterations for finding the best possible solution i.e., number of sensors. In kth
iteration (1 ≤ k ≤ n), the minimum spanning forest Fk with k connected com-
ponents C1, C2, · · · , Ck is computed. After that k disjoint tours T1, T2, · · · , Tk

are found by doubling all edges of each component. Partition each Ti into
⌈
|Ti|
vt

⌉
parts of length vt. Total number of partitions for an iteration is equal to the
number of sensors required for that iteration. Minimum over the number of sen-
sors of all iterations is chosen as the solution of our Algorithm 1. Initial positions
of mobile and static sensors are calculated in steps 5-13 of the algorithm with
movement scheduling of the mobile sensors.
Lemma 1. Let opt be the minimum number of sensors needed in the optimal
solution. Let opt′ be the minimum number of paths of length ≤ vt which span U
on G. Then opt ≥ opt′.

Proof. Let us assume that opt < opt′. Consider the path of movements by the
mobile and static sensors in the optimal solution during any time period [t0, t0+
t], where the path for a static sensor is of length zero. Let P1, P2, · · · , Popt be
the movement paths of the sensors with |Pi| ≤ vt. Since each vertex is visited
by a sensor at least once in time period t therefore

⋃
Pi spans all the vertices

of U . Hence, {P1, P2, · · · , Popt} is a collection of paths with |Pi| ≤ vt that spans
U , which contradicts the fact that opt < opt′. Therefore opt ≥ opt′. ��

348 B. Gorain and P.S. Mandal

Algorithm 1: GSweepCoverage

1: for k = 1 to n do
2: Find the minimum spanning forest Fk on G with n − k edges. Let C1, C2, · · · , Ck be

the connected components of Fk. Nk =

k∑

i=1

⌈
2|Ci|
vt

⌉
.

3: end for
4: Let j be the index ∈ [1, 2, · · · , n] such that Nj = min{N1, N2, · · · , Nn}
5: Let C1, C2, · · · , Cj be the connected components of Fj .
6: for i = 1 to j do
7: if Ci is a component having more than one vertices then

8: Find a tour Ti on Ci by doubling each edges of Ci. Partition the tour into
⌈

|Ti|
vt

⌉

parts and deploy one mobile sensor at each of the partitioning points.
9: else
10: Deploy one static sensor at the vertex of Ci.
11: end if
12: end for
13: All mobile sensors start moving at the same time along the respective tours in same

direction.

Theorem 1. The Algorithm 1 is a 3 factor approximation algorithm.

Proof. Let opt be the minimum number of sensors required in the optimal solu-
tion and opt′ be the minimum number of paths of length ≤ vt which span U on
G. Then by Lemma 1, opt′ ≤ opt.

Algorithm 1 chooses the minimum over all Nk for k = 1 to n. Let us consider
the iteration of the algorithm when k = opt′. Let Min path be the total sum of
the length of the edges in opt′. Then Min path ≤ k × vt. Again as there are k
disjoint connected components in opt′ and Fk is the minimum spanning forest
with k connected components, we have |Fk| ≤ Min path. After doubling edges
in step 8, the total length of the movement paths of the sensors is ≤ 2|Fk|.
Since

⌈
|Ti|
vt

⌉
≤ |Ti|

vt + 1, the number of sensors needed in our solution is N ≤
2|Fk|
vt + k ≤ 2Min path

vt + k ≤ 3k ≤ 3opt. Therefore the approximation factor of
the Algorithm 1 is 3. ��

3 Conclusion

In this paper we overcome the limitation of a previous study [1] on sweep cover-
age. The key argument is that when the graph is sparse, it is better to provide
sweep coverage with a combination of static and mobile sensors, instead of using
only mobile sensors as was done in the the previous study. We have proposed
a 3-approximation algorithm to solve this NP hard problem. Our solution over-
comes the flaw of the previous solution and it is more efficient in terms of cost
and energy utilization for sweep coverage.

Reference

1. Li, M., Cheng, W.-F., Liu, K., Liu, Y., Li, X.-Y., Liao, X.: Sweep coverage with
mobile sensors. IEEE Trans. Mob. Comput. 10(11), 1534–1545 (2011)

Brief Announcement: Designing

Dining-Philosophers to Optimize Experimental
Performance�

Jordan Adamek1, Mikhail Nesterenko1, and Sébastien Tixeuil2,��

1 Kent State University, Kent, OH 44242, USA
2 UPMC Sorbonne Universités & IUF, Paris, France

We evaluate five of the most widely known self-stabilizing solutions to the Dining-
Philosophers Problem. For the purposes of presentation we call them LRA [2],
Fuzzy [3], Transformation [5], Alternator [4], and Refinement [6].

In a dining-philosophers algorithm, processes compete for critical section (CS)
access. A solution to dining-philosophers ensures safety: only neighbor process
at at time is allowed to enter the CS; and liveness : every requesting process is
eventually allowed to enter the CS.

We determine that Transformation, Fuzzy and LRA are incorrect. All three
violate the safety of the Dining-Philosophers Problem even if no faults are in-
jected. Even though the algorithms are incorrect, we still consider them in case
they are used for applications that do not require perfect safety compliance.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y,

 n
um

be
r

of
 s

ta
te

s
to

 C
S

 a
cc

es
s

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(a) Latency.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100T
hr

ou
gh

pu
t,

nu
m

be
r

of
 C

S
 a

cc
es

se
s

pe
r

ac
tio

n

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(b) Throughput.

Fig. 1. Functional characteristics under no faults

We evaluate the dining-philosophers algorithms in all three common execution
semantics (also called schedulers or demons): interleaving (centralized), powerset
(distributed), and (maximally) synchronous. In interleaving semantics, all pro-
cess actions are executed sequentially. We present results for this semantics only.
See [1] for complete results.

� Refer to [1] for details.
�� This work was supported in part by LINCS.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 349–351, 2014.
c© Springer International Publishing Switzerland 2014

350 J. Adamek, M. Nesterenko, and S. Tixeuil

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

V
io

la
tio

ns
, n

um
be

r

Load, number of requesting processes

Transformation
Alternator

Refinement
LRA

Fuzzy

(a) fault rate of 50%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

V
io

la
tio

ns
, n

um
be

r

Faults, number

Transformation
Alternator

Refinement
LRA

Fuzzy

(b) load rate of 50%

Fig. 2. Safety violations

We evaluate algorithms using computations of 1, 000 states. A single fault of
varying extent is injected at a random state of the computation. For each par-
ticular data point, we run 1, 000 simulated computations. For each computation
we generate a new random graph topology.

For the simulated algorithms, we estimate two functional and one fault-
tolerance metric. The functional metrics are: latency — the average number
of states between request and corresponding CS access, and throughput — the
average number of CS accesses per action. Fault-tolerance of self-stabilizing al-
gorithms is usually measured in the number of states until the algorithm reaches
correct state. The standard metric is, however, inapplicable as three of the al-
gorithms we evaluate are incorrect. Hence, we measure the number of safety
violations per computation instead. The results of our evaluation are shown in
Figures 2 and 1.

Considering the functional properties of the two correct algorithms: Alternator
and Refinement, neither has a clear advantage. The throughput of Refinement is
better under low load while Alternator outperforms it under high load. Observing
this dichotomy, we design Combined Algorithm that computes the system load
and, depending on the load, switches between Alternator and Refinement.

Combined Algorithm is shown in Figure 3. The algorithm assumes there is a
rooted tree. Processes report their load up the tree. The root process evaluates
the accumulated load information and decides which basic algorithm, Alternator
or Refinement, to execute. To eliminate thrashing, the switching is done when
the load exceeds configurable thresholds low and high. This decision propagates
down the tree. To ensure safety, a process executes the CS only when all of its
neighbors are executing the same basic algorithm. Theorem 1 states the correct-
ness of the combined algorithm. If load keeps changing fast enough, Combined
Algorithm may preclude some process from entering the CS indefinitely. Hence,
the theorem states that the algorithm satisfies the liveness and safety properties
only when the load is high (every process is requesting) or low (a single process
is requesting).

Designing Dining-Philosophers to Optimize Experimental Performance 351

process Pi

constants
// identifier of father process, for root f = i
f,

// basic algorithm switch thresholds:
low, high : 1 ≤ low < high ≤ n

variables
basici, // executed algorithm, either a or r
loadi, // branch load

actions
loadi �= sum(load of children) + request −→

loadi := sum(load of children) + request

f = i ∧ loadi ≥ high ∧ basic �= a −→
basici := a

f = i ∧ load ≤ low ∧ basic �= r −→
basici := r

f �= i ∧ basicf �= basici −→
basici := basicf

process Pi

parameter j : (Pi, Pj) ∈ N
variables private

// private copy of neighbor Pj

// basic algorithm mode
bci.j

// controls correct switch start, either a or r
switchi

actions
// modified Refinement request initiating action
basici = r ∧ request initiating predicate −→

switchi := r
request initiating command

// modified Refinement CS execution action
CS execution predicate −→

if switchi = r ∧ basici = r ∧
(∀k : bci.k = r) then

critical section
CS execution command

// modified Refinement synchronization action
predicate −→

command,
bci.j := basic.j

// added action
bci.j �= basic.j −→

bci.j := basic.j

Fig. 3. Combined Algorithm, refinement and switching parts

Theorem 1. Under high and low load, Combined Algorithm satisfies safety and
liveness properties of the Dining-Philosophers Problem.

References

1. Adamek, J., Nesterenko, M., Tixeuil, S.: Comparing self-stabilizing dining philoso-
phers through simulation. Technical Report TR-KSU-CS-2013-01, Kent State
University (August 2013)

2. Cantarell, S., Datta, A.K., Petit, F.: Self-stabilizing atomicity refinement allowing
neighborhood concurrency. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS,
vol. 2704, pp. 102–112. Springer, Heidelberg (2003)

3. Huang, S.-T.: The fuzzy philosophers. In: Rolim, J. (ed.) IPDPS 2000 Workshop.
LNCS, vol. 1800, pp. 130–136. Springer, Heidelberg (2000)

4. Kulkarni, S.S., Bolen, C., Oleszkiewicz, J., Robinson, A.: Alternators in read/write
atomicity. Information Processing Letters 93(5), 207–215 (2005)

5. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Information Processing
Letters 66(6), 285–290 (1998)

6. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal of
Parallel and Distributed Computing 62(5), 766–791 (2002)

Brief Announcement:

Introducing Recurrence in Self-Stabilization�

Oday Jubran and Oliver Theel

Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
{jubran,theel}@informatik.uni-oldenburg.de

Abstract. We introduce the notion of recurrence, which denotes how
frequent a condition is satisfied in an execution of a system. We use this
notion in self-stabilization to address the convergence of a system to a
behavior that guarantees a minimum recurrence. We apply this notion
to show how the design of distributed mutual exclusion algorithms can
be altered, to achieve a high recurrence of granting unique privilege to
processes, under various time and space requirements.

Keywords: Self-Stabilization, Recurrence, Performance, Mutual
Exclusion.

1 Introduction

Self-stabilization ensures that a system’s desired behavior is eventually obtained
and never voluntarily violated regardless of the system’s initial behavior.
Self-stabilization requires that once the desired property is satisfied in a
configuration, any following configuration has to satisfy the property. With
this classical definition of self-stabilization, liveness properties, that do not
necessarily need to be satisfied in each configuration, are not covered. Such
properties may be the core of the system performance evaluation.

In this work, we introduce the notion of recurrence in self-stabilization, which
describes (1) how frequent a global condition is satisfied in an execution, and (2)
the convergence time to reach a configuration, from which a minimum recurrence
is guaranteed. We apply this notion to show how the design of synchronous
distributed mutual exclusion algorithms can be altered to achieve high recurrence
of granting unique privilege, under various time and space requirements.

We consider the classical shared memory model: the topology is a connected
graph, whose vertices are called processes, and each process has a unique id in
{0, ..., n− 1}. A distributed algorithm is a set of sub-algorithms, executed by the
processes. A configuration γ is a vector of the local states of all processes. An
execution is a sequence of configurations γ1, γ2, ... such that for i ≥ 1, γi+1 is
reachable from γi by executing guarded commands. An execution is synchronous
iff in each step, all processes with enabled commands execute their actions.

� This work was partially supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/).

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 352–354, 2014.
c© Springer International Publishing Switzerland 2014

Brief Announcement: Introducing Recurrence in Self-Stabilization 353

2 Recurrence in Self-Stabilization

Recurrence addresses the ratio of configurations, that satisfy some condition (i.e.
predicate) over configurations, in an execution. This ratio is a means to cover
finite and infinite executions.

Definition 1 (Recurrence). Let con be a condition over configurations, and
let Ξ : γi, γi+1, ... be an execution. The recurrence of con in Ξ, denoted by
Reccon,Ξ , is the ratio of the configurations satisfying con in Ξ. ♦

By Definition 1, considering subsequent configurations satisfying con : if a
condition is not satisfied infinitely often, or if the time between two subsequent
satisfactions of the condition increases with no bounds, then recurrence
approaches 0. If a condition holds in each configuration, then recurrence is 1.

Using recurrence, we define properties over executions as follows: the
recurrence of some condition in an execution is equal to Δ, where Δ ∈ [0, 1].
Our concern is to measure the worst case convergence (i.e. stabilization) time
to an execution suffix, that satisfies having Δ recurrence of some condition con .
We denote such convergence time by Δcon-Convergence time. Recall that in the
classical self-stabilization, the desired condition to be satisfied has to hold in
each configuration after the system stabilizes. This indicates that the recurrence
of the condition is required to be 1.

Definition 2 (Δcon-Convergence Time). Let A be an algorithm, con be a
condition, and Δ ∈ [0, 1] ⊂ R+

0 .

– An execution Ξ : γ0, γ1, ... is said to have a Δcon-Convergence time of k steps
iff k is the minimum number, such thatΔ = Reccon,Ξ′ for the execution suffix
Ξ ′ : γk, γk+1, ... of Ξ.

– Algorithm A is said to have Δcon-Convergence time of k steps iff k is the
maximum Δcon -Convergence time among all executions. ♦

Considering distributed algorithms that are defined by guarded commands,
recurrence can be used to measure the frequency of running particular
commands, by analyzing the recurrence of their guards. In the following, we
apply recurrence to alter the design of distributed mutual exclusion algorithms.

3 Mutual Exclusion Algorithms

We use [1, Algorithm 3], which is designed for synchronous environments,
to design three synchronous mutual exclusion algorithms. Mutual Exclusion,
denoted by ME , comprises two properties: (1) Safety: at most one process is
privileged in each configuration, and (2) Liveness: each process is privileged
infinitely often. We also aim to satisfy that the recurrence of granting unique
privilege is 1. We follow a similar approach to [2] to design our algorithms.

[1, Algorithm 3] results in an incrementing system with a finite domain.
Each process p has a variable rp, that is incremented modulo n, such that in a

354 O. Jubran and O. Theel

Table 1. Time and Space Complexities of Algorithms 1-3

Algorithm ME -Convergence Time 1privileged -Convergence Time Space

1 diam(G)−1 2diam(G) diam(G) + n

2 �diam(G)/2�−1 > 2diam(G) 2diam(G) + n

3 2diam(G)−1 2diam(G) n+ 1

legitimate behavior, (1) the value of rp is equal to the value of rq for each process
q, and (2) the value of rp is incremented in each step. We extend this system as
follows: (1) In the legitimate behavior, the value of rp has to be in {0, ..., n− 1}.
(2) A process is privileged if and only if the id of p is equal to rp. This ensures
that the algorithm is self-stabilizing wrt. ME . In addition, since these processes’
ids are {0, ..., n− 1}, in each step, exactly one process is privileged. In other
words, the recurrence of granting a unique privilege is 1. We write “1privileged”
to denote this. Due to limited space, we only show the time and space complexity
results of our three algorithms. The algorithms are presented in detail in [3].

Table 1 presents the time and space complexities of the three algorithms.
Considering the safety property of ME (granting unique privilege), Algorithm 2
has the shortest convergence time. However, the convergence time to 1privileged
is the largest. On the other hand, Algorithm 3 has the largest ME -Convergence
time, but the 1privileged-Convergence time is shorter than the one of Algorithm 2.
In particular, besides space requirements, the overall convergence time to achieve
both ME and 1privileged in Algorithm 3 is less than the time required by
Algorithm 2. In other words, Algorithm 3 guarantees to start granting unique
privilege, safely, before Algorithm 2 does, and with less space requirements.

4 Optimality of �diam(G)

2
�−1 ME-Convergence Time

As a particular interest, the convergence time wrt. ME , observed in Algorithm 2,
slightly improves the state-of-the-art �diam(G)/2�, introduced in [2]. In addition,
this result rectifies [2, Theorem 4] that �diam(G)/2� is a lower bound; in the
proof of [2, Theorem 4], the issue, that the privilege condition of a process p
may also cover the states of the neighbors of p, is missing. Considering this
point, while following the steps of the proof of [2, Theorem 4], we conclude that
�diam(G)/2�−1 is optimal for synchronous executions. Details are found in [3].

References

[1] Boulinier, C., Petit, F., Villain, V.: Synchronous vs. Asynchronous Unison.
Algorithmica 51(1) (2008)

[2] Dubois, S., Guerraoui, R.: Introducing Speculation in Self-Stabilization - An
Application to Mutual Exclusion. CoRR, abs/1302.2217 (2013)

[3] Jubran, O., Theel, O.: Introducing Recurrence in Self-Stabilization. Technical
Report No. 101 of SFB/TR 14 AVACS (July 2014), http://www.avacs.org/

http://www.avacs.org/

Brief Announcement:

Tamper-Evident Stabilization

Reza Hajisheykhi1, Ali Ebnenasir2, and Sandeep S. Kulkarni1

1 Michigan State University, Houghton, MI 49931, USA
2 Michigan Technological University, East Lansing, MI 48824, USA

Abstract. We propose the notion of tamper-evident stabilization –that
combines stabilization with the concept of tamper-evidence– for com-
puting systems. On the first glance, these notions are contradictory;
stabilization requires that eventually the system functionality is fully
restored whereas tamper-evidence requires that the system functional-
ity is permanently degraded in the event of tampering. Tamper-evident
stabilization captures the intuition that the system will tolerate pertur-
bation upto a limit. In the event that it is perturbed beyond that limit,
it will exhibit permanent evidence of tampering, where it may provide
reduced (possibly none) functionality.

1 Introduction

A tamper-resistant system ensures that an effort to tamper with the system
makes the system less inoperable (e.g., by zeroing out sensitive data in a chip or
voiding the warranty). The notion of tamper resistance is contradictory to the
notion of stabilization in that the notion of stabilization requires that in spite of
any possible tampering the system inherently acquires its usefulness eventually.

We envision that if the system is outside its normal legitimate states, it is in
one of two modes: recovery mode, where it is trying to restore itself to a legitimate
state, or tamper-evident mode, where it is trying to make itself inoperable. The
recovery mode is similar to the typical stabilizing systems in that the recovery
should be guaranteed after external perturbations stop. However, in the tamper-
evident mode, it is essential that the system makes itself inoperable even if
outside perturbations continue.

2 Tamper-Evident Stabilization Definition

Our program modeling utilizes standard approach for defining interleaving pro-
grams and stabilization [1, 3, 4] and active stabilization [2]. Thus, a program
includes a finite set of variables with (finite or infinite) domain. A program also
includes guarded commands [3] that update those program variables atomically.
Since these internal variables are not needed in the definitions involved in this
section, we describe a program in terms of its state space Sp, and its transitions
δp ⊆ Sp × Sp, where Sp is obtained by assigning each variable in p a value from
its domain.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 355–358, 2014.
c© Springer International Publishing Switzerland 2014

356 R. Hajisheykhi, A. Ebnenasir, and S.S. Kulkarni

Definition 1 (Convergence). Let p be a program with state space Sp and
transitions δp. Let S and T be state predicates of p; i.e., any subset of Sp. We
say that T converges to S in p iff

– S ⊆ T ,
– S is closed in p, (S is closed in p iff ∀s0, s1 ∈ Sp :: (s0 ∈ S ∧ (s0, s1) ∈

δp) ⇒ (s1 ∈ S))
– T is closed in p, and
– For any sequence σ (=〈s0, s1, s2, ...〉) if s0 ∈ T and σ is a computation of p

then there exists l such that sl ∈ S.

Definition 2 (Stabilization). Let p be a program with state space Sp and tran-
sitions δp. We say that program p is stabilizing for invariant S iff Sp converges
to S in p.

Definition 3 (Adversary). We define an adversary for program p = 〈Sp, δp〉
to be a subset of Sp × Sp.

Note that the above definition is general in that an adversary may include
any set of possible transitions. However, realizing a tamper-evident stabilizing
system would be feasible only when the power of the adversary is reasonable.
In particular, the motivation of tamper-evident stabilization is that if a system
is perturbed beyond an acceptable limit then it should become inoperable/less
useful. Moreover, an adversary should not be able to prevent this. Of course, in
order for this to be feasible, adversary must not have unrestricted power that
allows it to perturb the system to any state.

Definition 4 (〈p, adv, k〉-computation). Let p be a program with state space
Sp and transitions δp. Let adv be an adversary for program p. And, let k be
an integer greater than 1. We say that a sequence 〈s0, s1, s2, ...〉 is a 〈p, adv, k〉-
computation iff

– ∀j ≥ 0 :: sj ∈ Sp, and
– ∀j ≥ 0 :: (sj , sj+1) ∈ δp ∪ adv, and
– ∀j ≥ 0 :: ((sj , sj+1) �∈ δp) ⇒ (∀l | j < l < j + k :: (sl, sl+1) ∈ δp)

Observe that a 〈p, adv, k〉-computation guarantees that there are at least k−
1 program transitions/actions between any two adversary actions for k > 1.
Moreover, the adversary is not required to execute in a 〈p, adv, k〉-computation.

Definition 5 (Convergence in the presence of adversary). Let p be a
program with state space Sp and transitions δp. Let S and T be state predicates
of p. Let adv be an adversary for p and let k be an integer greater than 1. We
say that T 〈adv, k〉-converges to S in p in the presence of adversary adv iff

– S ⊆ T ,
– S is closed in p ∪ adv,
– T is closed in p ∪ adv, and

Brief Announcement: Tamper-Evident Stabilization 357

– For any sequence σ (=〈s0, s1, s2, ...〉) if s0 ∈ T and σ is a 〈p, adv, k〉-
computation then there exists l such that sl ∈ S.

Definition 6 (Tamper-evident stabilization). Let p be a program with state
space Sp and transitions δp. Let adv be an adversary for program p. And, let k be
an integer greater than 1. We say that program p is k-tamper-evident stabilizing
with adversary adv for invariants 〈S1, S2〉 iff there exists T

– T converges to S1 in p
– ¬T 〈adv, k〉-converges to S2 in p.

Notice that the definition of tamper-evident stabilization provides no guaran-
tees about program behaviors if the adversary executes in T .

RelationbetweenStabilization,Tamper-EvidentStabilizationandother
variations of Stabilization. Due to reasons of space, we cannot provide de-
tailed results about the relation between stabilization, tamper-evident stabiliza-
tion and other variations such as weak stabilization, active stabilization, mul-
titolerant stabilization, etc. The details of this comparison can be found in [5].
Also, in [5], we have identified an example of tamper-evident stabilizing pro-
grams. We have also identified how tamper-evident stabilizing programs can be
composed with parallel or sequential composition and evaluated properties such
as transitivity. While many of these properties are similar to that of stabilization,
we find that composing tamper-evident stabilizing programs introduces certain
new challenges that are absent in composing stabilizing programs.

3 Future Work

We are currently investigating the design and analysis of tamper-evident sta-
bilizing System-on-Chip (SoC) systems in the context of the IEEE SystemC
language. Our objective here is to design systems that facilitate reasoning about
what they do and what they do not do in the event of tampering. Second, we
will leverage our existing work on model repair and synthesis of stabilization in
automated design of tamper-evident stabilization. Third, we plan to study the
application of tamper-evident stabilization in game theory (and vice versa).

Acknowledgements. This work has been supported by National Science Foun-
dation awards CNS-1329807 and CNS-1318678, and CCF-1116546.

References

1. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

2. Bonakdarpour, B., Kulkarni, S.S.: Active stabilization. In: Défago, X., Petit, F.,
Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 77–91. Springer, Heidelberg (2011)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1990)

358 R. Hajisheykhi, A. Ebnenasir, and S.S. Kulkarni

4. Dolev, S.: Self-Stabilization. MIT Press (2000)
5. Hajisheykhi, R., Ebnenasir, A., Kulkarni, S.: Tamper-evident stabilization. Techni-

cal Report MSU-CSE-14-4, Department of Computer Science, Michigan State Uni-
versity, East Lansing, Michigan (June 2014)

Brief Announcement: A Stabilizing Algorithm

for Finding Two Node-Disjoint Paths

Hadid Rachid1, Mehmet Hakan Karaata2, and Vincent Villain3

1 Department of Computer Engineering, Istanbul Aydin University, Beşyol Mah.
İnönü Cad. No:38 Küçükçekmece, Istanbul, Turkey

2 Department of Computer Science P.O. Box 5969, Safat, Kuwait
3 MIS, Université de Picardie Jules Verne, 33, Rue St Leu, Amiens Cedex 01, France

Abstract. We present the first adaptive stabilizing algorithm for find-
ing two node disjoint paths in anonymous arbitrary networks. Given a
graph G = (V,E), two paths from source s ∈ V to target t ∈ V are
said to be node disjoint if they do not share any nodes except for the
endpoints. The proposed algorithm adapts to topology changes in the
form of process/link crashes and additions, i.e., upon a topology change,
it finds two disjoint paths from s to t. The algorithm has a wide range
of applications in ensuring reliability and security of sensor, mobile and
fixed communication networks.

Keywords: Two node disjoint paths, distributed systems, stabilization.

1 Introduction

The two node disjoint paths problem is one of the fundamental problems with
several applications in diverse areas including VLSI layout, reliable network rout-
ing, secure message transmission, and network survivability. The first distributed
algorithm for finding two node disjoint paths in arbitrary network is proposed
in [2]. The first self-stabilizing distributed algorithm for finding all node disjoint
paths in mesh networks is presented in [3]. In this paper, we present the first
stabilizing distributed algorithm for finding two node disjoint paths between two
distinct nodes s and t in anonymous arbitrary networks. This work was initially
proposed in [4]. Since the proposed solution is self-stabilizing [1], it does not
require initialization and withstands transient faults.

2 Basis of Algorithm

Let G = (V,E) be a graph with two distinct vertices s, t ∈ V such that G
contains two node-disjoint paths between s and t. Let P be a path between s
and t and dsv the distance of vertex v on P from vertex s. A link path of path P
in G is a path disjoint from P except for its endpoints that extends from a vertex
o on P to a vertex w on P such that w is the farthest vertex reachable from o,
i.e., distance from o to w is maximum. Let us now define SP = P1, P2, ..., Pk

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 359–361, 2014.
c© Springer International Publishing Switzerland 2014

360 H. Rachid, M.H. Karaata, and V. Villain

to be a maximal sequence of link paths of path P in G each of which has its
endpoints on P such that the following four conditions are satisfied by SP .
(I) P1 is the first link path with origin o1(= s) and terminus w1. (II) Each
link path Pi−1 where 1 < i ≤ k has a successor link path Pi that extends
from its origin oi to its terminus wi such that dso1 < dso2 < dsw1 (i = 2) and
dswi−2 ≤ dsoi < dswi−1 , 2 < i ≤ k, holds. (III) For each i, 1 < i ≤ k, vertex oi
on P is selected to maximize dswi . (IV) The terminus of the last link path Pk

is target wk = t. In order to illustrate the above concepts, Figure 1 depicts a
graph with source s, target t, and its four link paths P1, P2, P3, and P4 on path
P from s to t.
We now present the basis of the algorithm in the form of the following theorem.

955s t

P P

P

1 3

4
P2

woo 11 2 3o w2 o4 w3 w4

3

11

8

10

12

10

 5
4 872 3 6 9 100 1 5

Fig. 1. A graph with origins and terminus of its link paths P1, P2, P3, and P4

Theorem 1. A Graph G = (V,E) contains two node disjoint paths P1 and P2

between two arbitrary but distinct vertices s, t ∈ V iff there exists a maximal
sequence of link paths SP = P1, P2, ..., Pk on P in G satisfying the above four
conditions for being a sequence of link paths.

Proof. For the “if” direction, we prove the contrapositive. We assume that the
sequence of link paths SP = P1, P2, ..., Pk does not exist and we show that two
disjoint paths do not exist. Observe that the sequence SP = P1, P2, ..., Pk does
not exist if at least one of the link paths Pi,≤ i ≤ k do not exit. First, if the link
path P1 does not exist, then the successor of s on P is common for all the paths
starting from s. Now, consider the case where link paths P1, P2, ...Pi, 1 < i < k,
exist and the next link path Pi+1 does not exist. Analogously to the above, the
terminus of Pi is common for all the paths starting from s. Thus, in both cases,
two disjoint paths between s and t cannot exist, hence the result. For the “only
if” direction, we prove by construction. First, we need the following definitions.
P [v, w] denotes the subpath of P with origin v and terminus w. On the other
hand, P [v, w), P(v, w], and P(v, w) denote the same subpath excluding the ter-
minus, the origin, and both the origin and the terminus of the subpath P [v, w],
respectively. We assume that the sequence of link paths SP = P1, P2, ..., Pk ex-
ists, then two disjoint paths P1 and P2 exist and can be constructed as follows: (i)
If k is even (k = 2l), then P1 = P1,P(w1, o3), P3,P(w3, o5), ..., P2i+1,P(w2i+1,
o2i+3), ..., P2l−1,P(w2l−1, w2l = t] and P2 = P [o1 = s, o2), P2,P(w2, o4), P4, ..,
P(w2i, o2i+2), P2i+2, ...,P(w2l−2, o2l), P2l (see Figure 1).

A Stabilizing Algorithm for Finding Two Node-Disjoint 361

(ii) Otherwise, i.e., k is odd (k = 2l+1), then P1 = P1,P(w1, o3), P3,P(w3, o5),
P5, ...,P(w2i+1, o2i+3), P2i+3, ...,P(w2l−1, o2l+1), P2l+1 andP2=P [o1 = s, o2), P2,
P(w2, o4), P4,P(w4, o6), ..., P2i ,P(w2i, o2i+2), ..., P2l, P(w2l, w2l+1 = t].

3 Self-stabilizing Algorithm

The proposed algorithm constructs two node disjoint paths P1 and P2 between
s ∈ V and t ∈ V in the following four phases. In the first phase a self stabilizing
BFS tree construction gives a shortest path P between source s and target t.
During the second phase, a maximal BFS forest stabilizing construction where
each process on P but s are the root of a tree and a leaf of another tree allows
the discover of all the link paths. Moreover each process p in the system knows
its predecessor in the link path it belongs to, if any. In the third phase of the
algorithm, based on the previous two phases, the terminuses w1, w2, ..., wk on P
of the link paths P1, P2, ..., Pk, respectively, satisfying the above four conditions
(see Section 2) are gradually identified and marked one after the other. In the
fourth phase, the two node-disjoint paths P1 and P2 are constructed from target
t towards source s as follows. The first process of each of the two disjoint paths
P1 and P2 is determined to be t. Then, the second process of P1 is assumed to
be the predecessor of t in the link path to which t belongs. However, the second
process of P2 is determined to be the predecessor of t on P . After determining
the first two processes of P1 and P2, disjoint paths P1 and P2 are extended
concurrently in the same manner as follows. Let p be the last process of the
disjoint path, either P1 or P2, constructed thus far. Observe that process p can
either be a process on P or on a link path Pi, 1 ≤ i ≤ k. We first consider the
case where p is on path P . If p is a terminus of a link path Pi, then the next
process is determined to be the predecessor of p in the link path to which process
p belongs to. Otherwise, the next process is the predecessor of p on P . We now
consider the case where process p is on a link path Pi, 1 ≤ i ≤ k. Then, the
successor of process p on a link path Pi, hence on P1 or P2, is the predecessor
of p in the link path to which process p belongs to. This approach is repeated
and the construction of each disjoint path, either P1 or P2, terminates after the
source process s is added to the path.

References

1. Dijkstra, E.W.: Self-stabilizing in spite of distributed control. Commun. Assoc. Com-
put. Mach. 17(11), 643–644 (1974)

2. Mohanty, H., Bhattacharjee, G.P.: A distributed algorithm for edge-disjoint path
problem. In: Nori, K.V. (ed.) FSTTCS 1986. LNCS, vol. 241, pp. 344–361. Springer,
Heidelberg (1986)

3. Hadid, R., Karaata, M.H.: An adaptive stabilizing algorithm for finding all disjoint
paths in anonymous mesh networks. Computer Communications 32(5), 858–866
(2009)

4. Karaata, M.H., Hadid, R.: Brief Announcement: A Stabilizing Algorithm for Finding
Two Disjoint Paths in Arbitrary Networks. In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 789–790. Springer, Heidelberg (2009)

Brief Announcement:

Region-Adherent Algorithms – Bounding the
Impact of Faults in Space�

Jan Steffen Becker, Dilshod Rahmatov, and Oliver Theel

Carl von Ossietzky University of Oldenburg, D-26111 Oldenburg, Germany
www.svs.informatik.uni-oldenburg.de

1 Introduction

Self-stabilizing systems are famous realizations of non-masking fault-tolerant
systems. Such a system is always live, but due to faults or improper initial-
ization, it might not be safe. But because of its “inner design,” a self-stabilizing

t
T1

Not Safe
Safe

Not Safe

T2, T2−T1<B

Fig. 1. Behavior of a Self-
Stabilizing System over Time

system – as long as it is not in a state
from whereon it exhibits safe behavior – au-
tonomously works towards establishing or re-
establishing this safe behavior. And impor-
tantly, it does so in an upper-bounded num-
ber of execution steps (in the absence of
newly occuring faults), a property called con-
vergence (see Figure 1). Thus, one can regard
self-stabilizing systems as systems that limit
the invalidation of their safety property in time. An alternative, though, of re-
stricting the invalidation of the safety property in time is restricting it in space.

2 Notion of Region Adherence

Clearly, a system that is live and safe should provide the system service the
user is interested in. In this case, we assume that the system is delivering
100% of service quality. For example, the system correctly sorts all the values

100%

0% t

=< α

=< α3

2

1

r
=< α

Fig. 2. Worst Case and Particular
Behavior of a Region-Adherent Sys-
tem over Time

given to it in an increasing manner, if the sys-
tem’s service is “integer sorting, increasing.”
If faults occur, then this intended system be-
havior might be compromised. The rationale
behind restricting a system’s safety property
invalidation in space is to upper-bound the
reduction of service quality of the system per
fault of the underlying fault model, which can
– for obvious reasons – not be as strong as the
standard fault model used for self-stabilizing

� The work is partially supported by the German Research Foundation in the scope
of DFG GRK 1765/1 SCARE, DFG SFB/TR AVACS 14/3 and the European Com-
mission’s Erasmus Mundus TARGET II program.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 362–365, 2014.
c© Springer International Publishing Switzerland 2014

www.svs.informatik.uni-oldenburg.de

Region-Adherent Algorithms 363

systems. A particular behavior of such a system over time is given in Figure 2.
The solid blue line indicates the lower bound of service quality at a given time.
At the beginning, the system exhibits 100% service quality – it is live and safe.
After the first fault has occured (thunderbolt 1), the system is guaranteed to
exhibit a service quality of at least 100%−α. Assuming a maximal service qual-
ity reduction per fault of α = 25%, then the system is able to “survive” three
faults (of the underlying fault model) and is still able to provide a system service
above 0%, here, a “residual” quality of at least r = 25%. The dashed blue line
indicates a possible run of the system, represented by the actual service quality
provided at a particular time. Note, that in the example run given, the system
could survive more faults and still deliver a service quality of greater than 0%,
but without any a priori known minimal service quality above 0%. Furthermore,
notice that the actual service quality is always above the solid blue line. Figure
3 gives a topological interpretation of the behavior of a region-adherent system.

>=100%− α

system
space

>=100%−2α

>=100%−3α

100%

1

2

3

Fig. 3. Topological Interpretation
of a Region-Adherent System

In the absence of any fault, the system is re-
quired to always stay in a region of the state
space where the system is guaranteed to pro-
vide a service quality of 100%, indicated by
the innermost region in the figure. When the
first fault happens, then – by the effect of
the fault – the system may be “thrown” into
the neighboring region of the state space (but
not any further). Here, a service quality of at
least 100%− α is guaranteed. An alternative
also allowed (and not shown by the sample
run of the system indicated by the blue dashed line) is that the system remains
in the region, including included regions. Thus, after a second fault, the system is
allowed to adopt system states belonging to any of the three innermost regions,
thereby exhibiting a system quality of 100%− 2 · α minimum. So, contrary to a
self-stabilizing system, where no minimum service quality can be assumed (for
some time) even after the first fault, a region-adherent system, per fault up to
some maximal number of faults, at most enters a neighboring region of the state
space with a guaranteed quality-of-service behavior. Thus, the system behavior
is restricted in space since it is not allowed to transit into any other outer region.
In this sense, the system adheres to regions of known system quality. In the fol-
lowing, we give a more formal and more general definition of region adherence.

3 Definition of Region Adherence

We perceive a (distributed) system P as a finite set of n processes {P0, . . . , Pn−1}.
The state of a process is given by the valuation of a Cartesian product of its
variables. A Cartesian product of the states of all n processes defines the con-
figuration of the system. Let C be the set of all possible configurations of the
system. c0 ∈ C0 ⊆ C is an initial configuration of the set of initial configurations
C0. Every process executes a local algorithm in atomic steps according to the

364 J.S. Becker, D. Rahmatov, and O. Theel

read/write atomicity paradigm. An atomic step leads to a state change transfer-
ing the distributed system from the current configuration c to some subsequent
configuration c′. The set of all possible (fault-free) transitions of configurations
according to the algorithm is A. It presents the algorithm of the system. We
denote a configuration transition due to A from c to c′ by c →A c′. It is also
called computation step. The fault model F can be regarded as a specification
of all possible configuration transitions from a configuration c to a configuration
c′ due to a fault of the model, denoted by c→F c′. It is also called fault step. A
fault step, in our model, is also assumed to be an atomic step.

A nonempty sequence of configurations γ = coc1 · · · cn ∈ C+ with co being an
initial configuration and configuration ci, i > 0, leading to a configuration ci+1

by either A or F is called an execution. Every non-empty prefix of an execution
is also an execution. Executions can be finite or infinite. A configuration is called
reachable if there exists a finite execution ending in it.

Definition 1 (General Region Adherence of a System). We assume a
system with configurations C, initial configurations C0 and algorithm A under
fault model F . Let g : C �→ [0, 1] be a function stating the service quality of
the system and let f be a natural number. r : {0, . . . , f} �→ [0, 1) is a non-
decreasing function with r(0) = 0 and r(f) < 1. Algorithm A is called f -region-
adherent wrt. g, r, and F , if and only if for all reachable configurations c ∈ C,
all initial configurations c0 ∈ C0 and all executions γ = c0 · · · c ending in c with
#F\A(γ) ≤ f , the following holds:

g(c) ≥ 1− r
(
#F\A(γ)

)
, (1)

where #F\A(γ) represents the number of fault steps of execution γ. A system
executing an f -region-adherent algorithm is also called f -region-adherent.

A fault (step) having the same effect as computation step does not count as fault
(step). This is indicated by the “F \ A” subscript of the # function. The value
of g may also be interpreted as a percentage. The function r can be perceived
as the service’s loss or reduction of quality with r(i), 0 ≤ i ≤ f , upper-bounding
the loss due to the i-th fault. Note that an f -region-adherent system is able to
tolerate at least f faults and is still exhibiting a service quality higher than 0%.
For example, a loss-of-quality function r with r(i) = i · α for i = 0, . . . , f with
f = 3 and α = 0.25 < 1/f describes the non-masking fault-tolerance behavior
of the example system of Figures 2 and 3 as 3-region-adherent.

4 Further Work

Clearly, a region-adherent system exhibits desirable fault tolerance properties.
When region adherence is realized in a system, it manifests gracefully degrading,
quantified quality-of-service guarantees in case up to f faults happen. Thus, at
any time – knowing the number of faults that have happened –, the system user
can take an a priori known minimal service quality for granted: a very valuable
information in various critical settings! Similar to self-stabilizing systems, the

Region-Adherent Algorithms 365

construction of region-adherent systems is not an easy task and requires careful
algorithm design. In the future, we will report on example systems that we have
developed as well as on a design and verification methodology of region-adherent
systems along with a deeper analysis of accompanying system properties, fault
models and a suitable “self-stabilization co-design.”

Brief Announcement:

Entropy Adaptive On-Line Compression

Shlomi Dolev1,�, Sergey Frenkel2, and Marina Kopeetsky3

1 Department of Computer Science , Ben-Gurion University of the Negev,
Beer-Sheva, 84105, Israel
dolev@cs.bgu.ac.il

2 Institute of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
fsergei51@gmail.com

3 Department of Software Engineering, Shamoon College of Engineering, Beer-Sheva,
84100, Israel

marinako@sce.ac.il

Introduction. Self-organization is based on adaptivity. Adaptivity should start
with the very basic fundamental communication tasks such as encoding the infor-
mation to be transmitted or stored. One of the most challenging task of commu-
nicating entities in distributed systems and computer communication networks
is the way information is compressed. The sole traditional requirement for the
optimality of lossless data compression schemes is the stationary ergodic nature
of the information source. Nevertheless, due to the wide deployment of multime-
dia networks, heterogeneous ad-hoc network, and the wide range of communica-
tion tasks, the efficient compression techniques of the dynamic (non-stationary)
sources are of a special interest now-days. In particular, dynamic sources that
are characterized by non-stationary probability distribution and non constant
entropy, are the typical sources that transmit on-line multimedia (voice, video)
traffic.

Lempel and Ziv introduced compression algorithm defining a rule for parsing
strings of symbols from a finite alphabet into substrings, or words of bounded
length, and a coding scheme which maps these substrings sequentially into
uniquely decipherable codewords of fixed length over the same alphabet. It has
been demonstrated that for a stationary ergodic source as the input size and the
sliding window size both tend to infinity, the compression ratio approaches the
constant source entropy.

We consider the non-asymptotic case, which is characterized by a restricted
memory size at the encoder and the decoder sides. To the best of our knowledge,
we provide the first Entropy Adaptive on-line Compression (EAC) scheme. EAC
is practical and efficient on-line adaptive scheme that tracks the variable entropy
rate of the source and provides optimal compression of fixed-size data blocks on-

� Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer
Sciences, Israeli Internet Association, Israeli Ministry of Science, Lynne and William
Frankel Center and Israel Science Foundation (grant number 428/11). The second
author has partially been supported by the Russian Foundation for Basic Research
under grant RFBR 12-07-00109. The third author has partially been supported by
the internal research program of the Shamoon College of Engineering.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 366–368, 2014.
c© Springer International Publishing Switzerland 2014

Entropy Adaptive On-Line Compression 367

line without performing computationally and time expensive preprocessing. The
simulation results demonstrate that the EAC scheme can perform in many cases
better than LZ77 and achieves higher compression ratio on-line, comparing with
the standard LZ77 compression scheme.

Description of the EAC scheme. LZ77 uses lookahead for finding the
longest match in the previous window and the next information to encode. In
real time transmission the lookahead is bonded by the maximal latency (say
at most B bits). We suggest to optimize the window size each time new B
bits are about to be sent, and therefore react to the changing entropy in an
adaptive fashion. Apparently, the number of possible relevant window sizes is
logarithmic in the maximal window size. The detailed description of the scheme
is presented in Figure 1. Let the information source generate a random (may be
non-stationary) finite length string. Let the initial sliding window size N0 = nw0

be set according to (say, twice)the LZ77 (fixed) window definition. The first
nw0 bits of the initial window from the input are sent from the encoder E to
the decoder D (by using an agreed upon efficient algorithm (e.g., LZ77)), (lines
2-8). Upon accumulating the next B bits, generated by the source, the encoder
E searches for the optimal window size N for encoding these new accumulating
B bits. The search starts using LZ77 with a dictionary of the recent window of
N0 bits, which we call the pyramid base, then repeatedly tries smaller windows
(each time halving the size of the previous used window).

The initial window N0 is used as a pyramid base for testing all possible smaller
windows. The test stage for the current portion of size B bits is performed by
trying all windows of sizes N0/2

i for every 0, . . . , logN0. The EAC algorithm
starts using a dictionary of N0/2

i bits from the previously received and com-
pressed B bits, and then shift the window which is also of size N0/2

i until the
algorithm is done with the current portion of B bits (lines 8-10, 14-29). The total
length of each encoded phrase is composed from comma free binary encoding of
its length Li (denoted by e(Li)), and the length of the binary encoding of the
corresponding index mi. The total length of the compressed string determines
the redundancy that has been removed from the original uncompressed B bits
string. The window size N = nwi , that satisfies the shortest length of the com-
pressed string (and corresponding maximal compression ratio), is determined
as the current optimal size (lines 30-33). The current portion of B bits is com-
pressed using the optimal N and sent to D (line 10). Information concerning the
chosen size of the optimal window is sent as a prefix of the encoded B bits.

Experimental results and conclusions. The EAC scheme was tested with
different real-life files of different types (docx, ppt, jpeg, xls), and some artificial
ones generated as segments of homogeneous Markov Chains. In order to fairly
compare the EAC and LZ77 algorithms, the fixed window size nw, used by the
LZ77 algorithm, is equal to the maximal window size (pyramid base), applied
in our scheme.

The experimental results demonstrate that the EAC scheme can provide a
higher compression ratio (compared with the LZ77 algorithm) for rather short

368 S. Dolev, S. Frenkel, and M. Kopeetsky

1. EAC scheme for encoder E
2. Loop over whole file for each portion of B bits
3. int B
4. /* number of look ahead buffered bits respecting the maximal allowed latency */
5. int N0 initial window size
6. int Nprev window size optimal for compression of the previous portion of B bits
7. /* Bootstrap stage – establishing the first dictionary */
8. Compress the first N0 bits by agreed upon efficient algorithm (e.g., LZ77) and send to

decoder D
9. Upon the arrival of the next B bits of the (streaming) file
10. TestCompress(B, N0, Output)
11. Send Output to decoder D
12.
13.
14. Procedure TestCompress(LA, PB, Output)
15. /* Procedure TestCompress: search for the optimal window size N ≤ PB
16. for the portion of LA bits from input/*
17. Input:
18. int LA length in bits of InputString for compression
19. N0 = PB initial window size (pyramid base)
20. Perform LZ77 compression of LA bits using the last N0 bits of previous LA
21. as the dictionary
22. CompressedString = Output
23. /* CompressedString – LA bits, compressed in optimal window */
24. Compute A – length of CompressedString in bits
25. for int i = 1 .. log PB
26. Perform LZ77 compression of LA bits using the last PB/2i bits of previous LA
27. as the dictionary and
28. Compute length Li of string CompressedStringi
29. using window of size nwi

= PB/2i bits

30. N = PB
31. /* N optimal window size for LA bits */
32. if Li < A
33. Set A = Li, N = nwi

, CompressedString = CompressedStringi
34. if N = Nprev

35. Output = (N, CompressedString)

Fig. 1. Entropy Adaptive Compression Scheme

sequences since the asymptotic properties of the LZ77 are still not satisfied. In
addition, there is also an improvement in the compression ratio for long files.

Acknowledgment. We thanks Asaf Cohen for useful remarks and discussions.
We thanks Dmitry Zbarsky for implementing and testing our Entropy Adaptive
Compression scheme.

Reference

1. Dolev, S., Frenkel, S., Kopeetsky, M.: Entropy Adaptive On-line Compres-
sion, Technical Report 14-04, Department of Computer Science, Ben Gurion
University of the Negev, Beer Sheva, Israel (2014)

Author Index

Acharya, Hrishikesh B. 226
Adamek, Jordan 349
Altisen, Karine 106
Arora, Anish 268

Becker, Jan Steffen 362
Blin, Lélia 18
Bonakdarpour, Borzoo 165

Cachin, Christian 1
Christian, Glacet 120
Colette, Johnen 120
Cournier, Alain 106

David, Ilcinkas 120
Davtyan, Seda 283
Devismes, Stéphane 106
Di Luna, Giuseppe Antonio 150
Di Stefano, Gabriele 211
Dobre, Dan 1
Dolev, Shlomi 180, 366
Durand, Anäıs 106

Ebnenasir, Ali 252, 355
Einziger, Gil 78
Elmallah, Ehab S. 226

Faghih, Fathiyeh 165
Fischer, Mathias 33
Flocchini, Paola 150
Foreback, Dianne 48
Fraigniaud, Pierre 18
Frenkel, Sergey 366
Friedman, Roy 78

Gan Chaudhuri, Sruti 150
Gorain, Barun 346
Gouda, Mohamed G. 226

Haddad, Mohammed 93
Hajisheykhi, Reza 355
Hoffmann, Johannes 63
Holz, Thorsten 63

Janson, Thomas 135
Jubran, Oday 352

Kahil, Ramzi Martin 180
Karaata, Mehmet Hakan 359
Kheddouci, Hamamache 93
Klinkhamer, Alex 252
Konwar, Kishori M. 283
Kopeetsky, Marina 366
Koutsopoulos, Andreas 48
Kührer, Marc 63
Kulkarni, Sandeep S. 355

Levé, Florence 299

Maâmra, Khaled 343
Mandal, Partha Sarathi 346
Masuzawa, Toshimitsu 314
Maurer, Alexandre 314
Millet, Laure 237
Mohamed, Khaled 299

Navarra, Alfredo 211
Neggazi, Brahim 93
Nesterenko, Mikhail 48, 349
Nguyen, Giang 33
Nicolas, Hanusse 120

Patt-Shamir, Boaz 18
Petit, Franck 106
Potop-Butucaru, Maria 237

Qiao, Yue 268

Rachid, Hadid 359
Rahmatov, Dilshod 362
Rodrigues, Lúıs 328

Saad, George 195
Saia, Jared 195
Santoro, Nicola 150
Scheideler, Christian 48
Schindelhauer, Christian 135
Shvartsman, Alexander A. 283
Siegemund, Gerry 343
Srinivasan, Kannan 268
Strothmann, Thim 48
Strufe, Thorsten 33
Sznajder, Nathalie 237

370 Author Index

Theel, Oliver 352, 362

Tixeuil, Sébastien 237, 349

Tran-The, Hung 328

Turau, Volker 93, 343

Viglietta, Giovanni 150
Villain, Vincent 299, 359
Vukolić, Marko 1

Yagel, Reuven 180

	Preface
	Organization
	Table of Contents
	Separating Data and Control: Asynchronous BFT Storage with 2t + 1 Data Replicas
	1 Introduction
	2 Related Work
	3 System Model and Definitions
	4 Protocol
MDStore
	4.1 Timestamped Storage and the Metadata Service
	4.2 Description
	4.3 Illustration
	4.4 Implementation of the Metadata Service
	4.5 Analysis

	5 Conclusion
	References

	On Proof-Labeling Schemes versus
Silent Self-stabilizing Algorithms

	1 Introduction
	1.1 Context and Objective
	1.2 Our Results
	1.3 Related Work

	2 Framework
	2.1 Computational Model
	2.2 Configurations, Tasks, and States
	2.3 Self-stabilization
	2.4 Proof-Labeling Schemes

	3 A Compact Universal Silent Self-stabilizing Algorithm
	4 A Fast Universal Silent Self-stabilizing Algorithm
	5 Discussion and Open Problem
	References

	On the Resilience of Pull-Based P2P Streaming
Systems against DoS Attacks

	1 Introduction
	2 Related Work
	3 Striping Scheme
	3.1 Idea to Enforce Diversification by Out Striping Scheme
	3.2 Design of the Striping Scheme
	3.3 Specification

	4 Evaluation
	4.1 Metrics
	4.2 Simulation Model
	4.3 Results

	5 Conclusion
	References

	On Stabilizing Departures in Overlay Networks
	1 Introduction
	1.1 System Model
	1.2 Problem Statement
	1.3 Oracles
	1.4 Our Contribution
	1.5 Related
Work

	2 Basic Properties of the FDP

	3 Solution for the FDP

	3.1 Correctness Proof

	4 Solution for the FSP

	5 Conclusion
	References

	CloudSylla: Detecting Suspicious
System Calls in the Cloud

	1 Introduction
	2 General Approach
	3 Implementation
	3.1 Caching
	3.2 Communication
	3.3 Cloud Implementation
	3.4 Windows Implementation
	3.5 Android Implementation
	3.6 Signature Generation

	4 Evaluation
	4.1 Caching
	4.2 Windows
	4.3 Android

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Postman: An Elastic Highly Resilient Publish/Subscribe Framework for Self Sustained Service Independent P2P Networks
	1 Introduction
	2 Assumptions and Goals
	3 Postman
	3.1 Client/Mailbox Interaction
	3.2 The Publish/Subscribe Mechanism

	4 Experimental Results
	4.1 Delivery Rate and Communication Load
	4.2 Postman Subscription Pattern
	4.3 Effects of Churn

	5 Related Work
	6 Conclusions
	References

	A Self-stabilizing Algorithm for Edge
Monitoring Problem

	1 Introduction
	2 Model and Definitions
	2.1 Edge Monitoring Problem
	2.2 Self-stabilization

	3 Algorithm
	3.1 Informal Description of Algorithm SEMS

	3.2 Formal Description of Algorithm SEMS

	3.3 Example

	4 Proof of Correctness
	5 Proof of Termination
	6 Conclusion
	References

	Self-stabilizing Leader Election in Polynomial Steps
	1 Introduction
	2 Computational Model
	3 Algorithm
	3.1 Non Self-stabilizing Leader Election
	3.2 Fake IDs
	3.3 Cleaning Abnormal Trees

	4 Correctness and Complexity Analysis
	4.1 Correctness and Stabilization Time in Steps
	4.2 Stabilization Time in Rounds

	5 Conclusion
	References

	Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Networks
	1 Introduction
	1.1 Related Works
	1.2 Model
	1.3 Our Contributions

	2 Our Algorithms
	2.1 A First and Simple Algorithm : Algorithm DcD

	2.2 A More Efficient Solution

	3 Correctness and Convergence Time of Algorithm
	4 Convergence under an Unfair Daemon
	References

	Self-synchronized Cooperative Beamforming
in Ad-Hoc Networks

	1 Introduction
	2 Related Work
	3 Physical
Model
	4 Loglog n Unicast
	5 Lower Bound for Time
	6 Simulation
	7 Conclusions
	References

	Robots with Lights: Overcoming Obstructed Visibility Without Colliding
	1 Introduction
	1.1 Framework
	1.2 Our Contributions

	2 Model and Definitions
	3 Complete Visibility in SSYNC
	3.1 Phase 1: Interior Depletion Phase
	3.2 Phase 2: Edge Depletion -ED
	3.3 The case of |V0| = 2

	3.4 Correctness of the ED Phase

	4 Complete Visibility in ASYNC
	5 Circle Formation in ASYNC
	References

	SMT-Based Synthesis of Distributed
Self-stabilizing Systems

	1 Introduction
	2 Preliminaries
	2.1 Distributed Programs
	2.2 Self-Stabilization

	3 Problem Statement
	4 SMT-Based Synthesis Solution
	4.1 SMT Entities
	4.2 SMT Constraints

	5 Case Studies and Experimental Results
	5.1 Maximal Matching
	5.2 Dijkstra’s Token Ring with Three-State Machines

	6 Related Work
	7 Conclusion
	References

	Stateless Stabilization Bootstrap
	1 Introduction
	2 Preliminaries and System Settings
	3 Stabilization Bootstrap for VM Linked List
	4 Linux (KVM) Implementation
	5 Expanding the KVM Example
	6 Concluding Remarks
	References
	A Kernel Linked List

	Self-healing Computation
	1 Introduction
	1.1 Our Model
	1.2 Our Result
	1.3 Technical Overview
	1.4 Related
Work
	1.5 Organization of Paper

	2 Our Algorithms
	2.1 BROADCAST

	2.2 COMPUTE

	2.3 CHECK

	2.4 UPDATE

	3 Analysis
	4 Conclusion and Future Work
	References

	Optimal Gathering on Infinite Grids
	1 Introduction
	2 Definitions and Preliminaries
	3 Gathering Algorithm
	3.1 Impossibility Results
	3.2 Unidimensional Grids
	3.3 Bidimensional Grids
	3.4 Grids with an Even Number of Robots

	4 Correctness
	5 Conclusion
	References

	Incremental Verification of Computing Policies
	1 Introduction
	2 Policy Preliminaries
	2.1 Intervals
	2.2 Attributes
	2.3 Requests
	2.4 Predicates
	2.5 Actions
	2.6 Rules
	2.7 Properties
	2.8 Policies

	3 Policy Verification Using the PSP Method
	4 Incremental Verification of Policies
	5 Incremental Verification After Rule Addition
	6 Incremental Verification After Rule Removal
	7 Concluding Remarks
	References

	On the Synthesis of Mobile Robots Algorithms: The Case of Ring Gathering
	1 Introduction
	2 Background
	2.1 Robot Network Model
	2.2 Reachability Games

	3 Encoding the Gathering Problem into a Game
	3.1 Encoding Robots Configurations: Symmetries and Equivalences
	3.2 Encoding the Moves of the Robots and Transitions between Configurations
	3.3 The Gathering Game

	4 Synthesis of 3-Robots Gathering Protocol
	5 Conclusions and Discussions
	References

	Synthesizing Self-stabilization through
Superposition and Backtracking

	1 Introduction
	2 Preliminaries
	3 Problem Statement
	4 Synthesis Using Backtracking
	4.1 Overview of the Search Algorithm
	4.2 Picking Actions via the Minimum Remaining Values Method
	4.3 Optimizing the Decision Tree

	5 Case Studies
	5.1 4-State Token Ring
	5.2 8-State Token Ring
	5.3 6-State Token Ring
	5.4 Other Case Studies

	6 Experimental Results
	7 Related Work and Discussion
	8 Conclusions and Future Work
	References

	Configuration Hopping: A Secure
Communication Protocol without Explicit Key
Exchange

	1 Introduction
	2 Background
	3 System
Model
	4 Protocol
	4.1 Protocol Schema
	4.2 Security Properties
	4.3 Overhead Comparison

	5 Implementation Feasibility
	5.1 Architecture
	5.2 Feasibility of PHY Parameter Adaptations
	5.3 Example: Constellation Hopping

	6 Conclusion
	References

	Dependable Decentralized Cooperation
with the Help of Reliability Estimation

	1 Introduction
	2 Model of Computation and Definitions
	3 Algorithm Description
	4 Complexity Analysis
	5 Conclusion
	References

	Snap-Stabilizing PIF on Non-oriented Trees
and Message Passing Model

	1 Introduction
	2 Preliminaries
	3 Snap-Stabilizing PIF Algorithm
	3.1 Algorithm Description
	3.2 Proof of Snap-Stabilization

	4 Complexity
	5 Conclusion
	References

	Edge Coloring Despite
Transient and Permanent Faults

	1 Introduction
	2 Setting
	2.1 Graph
	2.2 Identification of Edges
	2.3 Correct and Byzantine Nodes
	2.4 Scheduling
	2.5 Edge Coloring
	2.6 Self-Stabilization

	3 Strictly Stabilizing Edge Coloring
	3.1 Algorithm
	3.2 Locally Central Weakly Fair Scheduler
	3.3 Locally Central Unfair Scheduler
	3.4 Periodically Locally Central Unfair Scheduler
	3.5 Non Locally Central Unfair Scheduler

	4 Byzantine Insensitive Edge Coloring on a Ring
	4.1 Preliminaries
	4.2 Algorithm
	4.3 Correctness Proof

	5 Conclusion
	References

	Tight Bounds for Stabilizing Uniform Consensus
in Mobile Networks

	1 Introduction
	2 Model and Definitions
	3 Impossibility Results
	3.1 Notation
	3.2 Stabilizing Uniform Consensus with Crash Faults
	3.3 Stabilizing Uniform Consensus with Send-Omission Faults
	3.4 Stabilizing Uniform Consensus with General Omission Faults

	4 Solving Stabilizing Uniform Consensus with Crash and Send-Omission Faults
	5 Conclusions
	References

	Brief Announcement: Publish/Subscribe
on Virtual Rings

	1 Introduction
	2 Overview
	3 Overall Approach
	4 Outlook
	References

	Brief Announcement: Sweep Coverage with
Mobile and Static Sensors

	1 Introduction
	2 GSweep Coverage
	3 Conclusion
	Reference

	Brief Announcement: Designing
Dining-Philosophers to Optimize Experimental
Performance

	References

	Brief Announcement:
Introducing Recurrence in Self-Stabilization

	1 Introduction
	2 Recurrence in Self-Stabilization
	3 Mutual Exclusion Algorithms
	4 Optimality of �diam(G)
2
�−1 ME-Convergence Time

	References

	Brief Announcement:
Tamper-Evident Stabilization

	1 Introduction
	2 Tamper-Evident Stabilization Definition
	3 Future Work
	References

	Brief Announcement: A Stabilizing Algorithm
for Finding Two Node-Disjoint Paths

	1 Introduction
	2 Basis of Algorithm
	3 Self-stabilizing Algorithm
	References

	Brief Announcement:
Region-Adherent Algorithms – Bounding the
Impact of Faults in Space

	1 Introduction
	2 Notion of Region Adherence
	3 Definition of Region Adherence
	4 Further
Work

	Brief Announcement:
Entropy Adaptive On-Line Compression

	Reference

	Author Index

