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Preface

The papers in this volume were presented at the 16th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), held during
September 28 to October 1, 2014 in Paderborn, Germany.

SSS is an international forum for researchers and practitioners in the design
and development of distributed systems with self-* properties: (classical) self-
stabilizing, self-configuring, self-organizing, self-managing, self-repairing, self-
healing, self-optimizing, self-adaptive, and self-protecting. Research in distributed
systems is now at a crucial point in its evolution, marked by the importance of
dynamic systems such as peer-to-peer networks, large-scale wireless sensor net-
works, mobile ad-hoc networks, cloud computing, robotic networks, etc. More-
over, new applications such as grid and web services, banking and e-commerce,
e-health and robotics, aerospace and avionics, automotive, industrial process
control, etc. have joined the traditional applications of distributed systems.

The theory of self-stabilization has been enriched in the last 30 years by
high quality research contributions in the areas of algorithmic techniques, formal
methodologies, model theoretic issues, and composition techniques. All these
areas are essential to the understanding and maintenance of self-* properties in
fault-tolerant distributed systems.

This year the Program Committee was organized into several tracks reflecting
most topics related to self-* systems. The tracks were: (i) Self-Stabilization,
(ii) Ad-Hoc, Sensor and Mobile Networks, Cyberphysical Systems (iii) Fault-
Tolerant and Dependable Systems, (iv) Formal Methods, Safety and Security,
and (v) Cloud Computing, P2P, Self-organizing and Autonomous Systems.

We received 44 submissions from 20 countries. Each submission was reviewed
by at least three Program Committee members with the help of external review-
ers. Out of the 44 submissions, 21 papers were selected as regular papers, and
8 papers were accepted as brief announcements. Among the 21 regular papers,
we considered 2 papers for special awards. The best paper award was given to
Giang T. Nguyen, Mathias Fischer and Thorsten Strufe for “On the Resilience of
Pull-based P2P Streaming Systems against DoS Attacks”, and the best student
paper award was given to Fathiyeh Faghih and Borzoo Bonakdarpour for “SMT-
based Synthesis of Distributed Self-Stabilizing Systems”. This year, we were very
fortunate to have three distinguished keynote speakers: Christian Cachin, Pierre
Fraigniaud, and Nir Shavit.

On behalf of the Program Committee, we would like to thank all the authors
who submitted their work to SSS. We sincerely acknowledge the tremendous
time and effort the program track chairs and the Program Committee members
invested in the symposium. We are also grateful to the external reviewers for their
valuable and insightful comments and to Easychair for tremendously simplifying
the review process and the generation of the proceedings. Finally, we also thank
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the Steering Committee members for their valuable advice and the Organizing
Committee members for their time and effort to ensure a successful meeting.

Organizing this event would not have been possible without the financial
support of the German Research Foundation (DFG).

October 2014 Pascal Felber
Vijay K. Garg
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Separating Data and Control: Asynchronous BFT
Storage with 2¢ + 1 Data Replicas

Christian Cachin!, Dan Dobre2, and Marko Vukoli¢?

1 IBM Research - Zurich, Switzerland
cca@zurich.ibm.com
2 Work done at NEC Labs Europe, Germany
dan@dobre.net
3 Eurécom, France
vukolic@eurecom. fr

Abstract. The overhead of Byzantine fault tolerant (BFT) storage is a primary
concern that prevents its adoption in practice. The cost stems from the need to
maintain at least 3t 4 1 copies of the data at different storage replicas in the asyn-
chronous model, so that ¢ Byzantine replica faults can be tolerated. This paper
presents MDStore, the first fully asynchronous BFT storage protocol that reduces
the number of replicas that store the payload data to as few as 2¢ 4 1 and maintains
metadata at 3¢+ 1 replicas on (possibly) different servers. At the heart of MDStore
lies a metadata service built upon a new abstraction called “timestamped storage.”
Timestamped storage allows for conditional writes (facilitating the implementa-
tion of the metadata service) and has consensus number one (making it imple-
mentable with wait-free semantics in an asynchronous system despite faults). In
addition to its low replication overhead, MDStore offers strong guarantees by emu-
lating a multi-writer multi-reader atomic register, providing wait-free termination,
and tolerating any number of Byzantine readers and crash-faulty writers.

1 Introduction

Byzantine fault-tolerant (BFT) protocols are notoriously costly to deploy. Their over-
head stems from the extra resources that must be installed compared to systems that
tolerate less severe faults, such as crashes. For example, in the asynchronous communi-
cation model, BFT storage protocols that emulate a simple register abstraction need at
least N > 3t server replicas so that ¢ faults can be tolerated [32]. This stands in contrast
to the required number of replicas when only server crashes are tolerated, where 2t + 1
replicas suffice. Such crash-tolerant systems based on quorums [34] are in production
use today, in cloud-storage systems and other contexts. But the additional cost of han-
dling Byzantine faults compared to crashes represents one of the main concerns for the
adoption of BFT systems in practice.

In this paper, we show that the gap between crash-tolerance and Byzantine-tolerance
in distributed storage can be reduced significantly. By separating the functions that han-
dle metadata from those that store the payload data, the number of expensive servers
with large storage capacity can be reduced to N > 2t while tolerating Byzantine faults.
We introduce protocol MDStore, which emulates a storage register abstraction in an

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 1-17, 2014.
(© Springer International Publishing Switzerland 2014



2 C. Cachin, D. Dobre, and M. Vukoli¢

asynchronous message-passing model; it requires only N > 2t storage replicas that
store payload data (of which ¢ may be Byzantine) and M > 3f metadata replicas
that maintain short control information (of which f may be Byzantine). Storage and
metadata replicas may be separated physically or co-hosted on the same servers.

Despite achieving lower replication cost, MDStore does not sacrifice other desir-
able features: MDStore implements a multi-writer multi-reader (MWMR) atomic reg-
ister [21, 24] with wait-free semantics [20], tolerates any number of Byzantine read-
ers and crash-faulty writers, and works without any synchrony assumption. Compared
to other BFT storage protocols that reduce the number of storage replicas to 3¢ or
less [11,12,22,33], MDStore is the first one that achieves this without trusted hardware
components. Moreover, because MDStore is fully asynchronous and does not employ
a consensus primitive, it fundamentally differs from other related systems that separate
the control plane from the data plane for providing, e.g., consensus [19], state-machine
replication [26,37], and distributed storage [2] — these are all subject to the FLP im-
possibility result [17] and require partial synchrony [15].

Protocol MDStore has a modular architecture. The clients exchange metadata about
the stored data through a metadata service (MDS). The metadata related to a stored
value v consists of a cryptographic hash of v, a logical timestamp, and pointers to
t + 1 among the N storage replicas that store v. Our MDS implementation contains
an array of simple read/write registers with safe semantics for the hash values and a
novel timestamped storage function for the other metadata. Timestamped storage offers
conditional operations to multiple readers and writers, is linearizable, and has wait-free
semantics. The storage replicas, on the other hand, simply store data values associated
to timestamps.

The timestamped storage function is very similar to a classical atomic register [24],
except that it also exposes a timestamp associated with the stored value. This permits
the clients to execute conditional writes, i.e., write operations that take effect depending
on the timestamp value. Interestingly, despite its support of conditional writes, times-
tamped storage has consensus number equal to one [20], and this paves the way for a
wait-free BFT distributed implementation of the MDS in the asynchronous model. We
show how to realize the MDS for MDStore from asynchronous BFT safe [1,18,31] and
atomic [3,9, 13, 30] single-writer storage protocols using M > 3 f metadata replicas.

In a preliminary version of this work [6], we also show why the number IV of stor-
age replicas cannot be reduced to 2¢ or less, even when only crashes are tolerated.
Furthermore, we argue that cryptographic techniques, in particular, collision-free hash
functions, appear to be necessary for any BFT storage emulation that uses 3¢ or fewer
replicas.

The rest of the paper is organized as follows. The next section further discusses the
relation of MDStore to other work; Section 3 introduces the system model and defini-
tions. In Section 4, protocol MDStore is presented with an overview, pseudocode, an
example execution, and a formal correctness argument.

2 Related Work

The formal study of registers as abstractions for concurrently accessed read/write stor-
age starts with Lamport’s classical paper [24]; this work also introduced safe, regular,
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and atomic consistency properties. Martin et al. [32] establish a tight lower bound of
3t 4 1 replicas for any register implementation that tolerates ¢ Byzantine replicas in
an asynchronous system. Their bound applies even to a single-writer single-reader safe
register, where the reader and the writer may only fail by crashing. In this paper, we
refine our understanding of this bound by logically separating the replicas into stor-
age replicas and metadata replicas. Protocol MDStore shows that the lower bound of
3t + 1 replicas [32] applies only to metadata replicas that exercise a control function.
The number of storage replicas, which take care of storing the data, can be lowered to
2t + 1 in the presence of ¢ Byzantine faults, assuming cryptographic techniques.

Some elements of MDStore are similar to mechanisms in Farsite [2], a virtual file
service that tolerates some Byzantine nodes, and Hybris [14], a recent hybrid cloud
storage system. In particular, Farsite and Hybris separate metadata from data, they store
cryptographic hashes and maintain directory information in a metadata service, and they
both use only 2¢+1 storage replicas that are subject to Byzantine faults. However, unlike
MDStore, the metadata services of Farsite and Hybris are based on a generic service
implemented by a replicated state machine. Hence, Farsite and Hybris are subject to
the FLP impossibility result [17] and require at least partial synchrony [15], whereas
MDStore is asynchronous. The replication mechanism in Farsite assumes there is a
single writer and uses read/write locks for concurrency control. On the other hand,
Hybris is not wait-free as it only provides reads that are live in the presence of finitely
many concurrent writes (so-called FW-termination [1]). Protocol MDStore, in contrast,
supports multiple concurrent writers, offers atomic semantics, and provides wait-free
termination without resorting to locks.

Many practical storage systems separate data and control for reasons related to per-
formance and modularity [36]. In an asynchronous model where nodes are subject to
crashes, several replicated storage systems have divided the control path for metadata
from the data path for bulk data [10, 16, 35]. Interestingly, on a conceptual level, this
separation does not pay off with crash-faulty replicas, as it does not allow to lower the
number of storage replicas to below 2¢ + 1. These related systems all require 2¢ 41 stor-
age replicas. It can be shown that this is inherent: 2¢ 4 1 storage replicas are necessary,
even with a fault-free metadata service [6].

In the context of state-machine replication and the consensus problem, separating
data from control functions is a well-known technique. Lamport’s Paxos consensus al-
gorithm [25, 26] introduces three roles for the participant processes and distinguishes
between proposers, acceptors, and learners. The lower bound of 3¢ 4 1 replicas for par-
tially synchronous BFT consensus only applies to the acceptors but not to proposers
or learners [27]. For example, there is a partially synchronous BFT consensus pro-
tocol in which any number of proposers and learners may be Byzantine [19]. Yin et
al. [37] separate the agreement function from an execution component in a BFT system
for generic state-machine replication, with 3¢ + 1 replicas needed for agreement and
2t + 1 replicas for storing state and executing commands. However, just like Farsite [2]
and Hybris [14], these designs are fundamentally different from the principle under-
lying MDStore. As these are based on consensus, they are subject to the impossibility
of consensus in asynchronous systems [17]; therefore, they rely on stronger timing as-
sumptions [15].
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3 System Model and Definitions

System model. We consider an asynchronous distributed system of process abstrac-
tions that communicate with each other. There are at least four kinds of processes: (1) a
set M = {my,...,mp} of M metadata replicas that act as servers for (small) meta-
data, (2)asetS = {s1,...,sn} of N storage replicas that store (large) values, (3) a set
W of writers and (4) a set R of readers. The readers and writers together form the set C
of clients, which run operations on the storage service. The set R = M U S denotes all
replicas, which provide the storage service. Clients are disjoint from replicas. Processes
may be correct, benign, or Byzantine, as defined later.

The processes interact asynchronously by exchanging events. A protocol specifies a
collection of algorithms with instructions for all processes; equivalently, a distributed
algorithm can be seen as a collection of deterministic automata, where each process
is assigned an automaton. An execution of an algorithm is an infinite sequence of the
steps taken by the correct and benign processes according to their algorithms, together
with the actions of the Byzantine processes. More formal descriptions appear in the
literature [7,29].

A process may fail by crashing or by exhibiting Byzantine faults. A benign process
executes its algorithm until it crashes and takes no further steps. A Byzantine process
may perform arbitrary actions, such as sending arbitrary messages or changing its state
in an arbitrary manner (NR-arbitrary faults). We assume an adversary that coordinates
the Byzantine processes and controls the scheduling of events.

All writers are benign (they are correct or may crash), readers may be Byzantine, up
to f metadata replicas are Byzantine, where M > 3f, and up to ¢ storage replicas are
Byzantine, where N > 2t. Processes that do not fail are called correct.

Channels. We assume that every process can communicate with every other process
over point-to-point perfect asynchronous communication channels with FIFO order [7].
Perfect channels guarantee reliable communication among correct processes, i.e., that
every message sent from a correct process is eventually delivered to a correct receiver
exactly once. In an actual implementation, the channels between clients and repli-
cas are authenticated in the sense that the adversary cannot modify or insert mes-
sages on the channels. Using point-to-point channels and a message-authentication code
(MAC) [23], such authenticated channels can be implemented easily.

Notation. Protocols are presented in a modular way using an event-based notation [7].
A process exposes an inferface to other processes, which defines the events that it ex-
poses. Processes are specified either through abstract properties or via an implemen-
tation. A process may react to a received event by doing computation and triggering
further events. Every process is named by an identifier. Events are qualified by the pro-
cess identifier to which the event belongs and may take parameters. An event Sample
of a process m with a parameter x is denoted by ( m-Sample | z ).

Objects and histories. An object is a special type of process for which every input
event (called an invocation in this context) triggers exactly one output event (called a



Separating Data and Control: Asynchronous BFT Storage with 2¢ 4+ 1 Data Replicas 5

response). Every such pair of invocation and response define an operation of the object.
An operation completes when its response occurs.

A history o of an execution of an object O consists of the sequence of invocations
and responses of O occurring in o. An operation is called complete in a history if it
has a matching response. An operation o precedes another operation ¢’ in a sequence of
events o, denoted 0 <, o', whenever o completes before o’ is invoked in o. If o precedes
o' then o follows o. A sequence of events T preserves the real-time order of a history o
if for every two operations o and o’ in m, if 0 <, o then 0 <, o’. Two operations are
concurrent if neither one of them precedes the other. A sequence of events is sequential
if it does not contain concurrent operations.

An execution is well-formed if the events at every object are alternating invocations
and matching responses, starting with an invocation. An execution is fair, informally, if
it does not halt prematurely when there are still steps to be taken or triggered events to
be consumed (see the standard literature for a formal definition [28]).

Registers. A read/write register r is an object that stores a value from a domain ) and
supports exactly two operations, for writing and reading the value. More precisely:

— A Write operation to r is triggered by an invocation ( r-Write | v ) that takes a value
v € V as parameter and terminates by generating a response { r- WriteAck ) with
no parameter.

— A Read operation from r is triggered by an invocation ( 7-Read ) with no parameter;
the register signals that the read operation completes by triggering a response ( r-
ReadVal | v ), which contains a parameter v € V.

The behavior of a register is given through its sequential specification, which requires
that every r-Read operation returns the value written by the last preceding r- Write
operation in the execution, or the special symbol L ¢ V if no such operation exists. For
simplicity, we will assume that every distinct value is written only once.

In this work, there are multiple readers and writers for the emulated storage, but only
readers may invoke Read operations and only writers may invoke Write operations on
the emulated register. Such a register is also called a multi-writer multi-reader (MWMR)
register (we will also use a single-writer variant, abbreviated SWMR). Furthermore, we
assume that all clients invoke a well-formed sequence of operations.

Consistency and availability. Recall that clients interact with an object O through its
operations, defined in terms of an invocation and a response event of O. We say that
a client ¢ executes an operation between the corresponding invocation and response
events. When accessed concurrently by multiple processes, executions of objects con-
sidered in this work are linearizable, that is, the object appears to execute all operations
atomically.
More formally, a sequence of events 7 is called a view of a history o at a client ¢

w.r.t. an object O whenever:

1. 7 is a sequential permutation of some subsequence of complete operations in c;

2. all complete operations executed by c appear in 7; and

3. 7 satisfies the sequential specification of O.

Definition 1 (Linearizability [21]). A history o is linearizable w.r.t. an object O if
there exists a sequence of events m such that:
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1. wis aview of o at all clients w.r.t. O; and
2. m preserves the real-time order of 0.

The goal of this work is to describe a protocol that emulates a linearizable register
abstraction among the clients; such a register is also called atomic. Some of the clients
may crash and some replicas may be Byzantine, but every client operation should ter-
minate in all cases, irrespective of how other clients and replica behave.

Definition 2 (Wait-freedom [20]). A protocol is called wait-free if every operation
invoked by a correct client eventually completes.

Cryptography. We make use of cryptographic hash functions. One can imagine that
these are implemented by a distributed oracle accessible to all processes [7]. A hash
function H maps an input value x of arbitrary length (e.g., represented as a bit string)
to a short, unique representation in a small domain (e.g., a bit string of fixed length).
We use a collision-free hash function; this property means that no process, not even a
Byzantine process, can find two distinct values x and =’ such that H(x) = H (z').

4 Protocol MDStore

MDStore emulates a MWMR atomic wait-free register. Our implementation of MDStore
is modular. We begin this section by specifying an abstract metadata service (MDS).
Then we given an overview of MDStore, which uses the MDS abstraction and N > 2¢
storage replicas, describe its implementation, and illustrate it through a sample execu-
tion. Subsequently we discuss possible implementations of the MDS in a distributed
system from M > 3f metadata replicas. Finally, we argue why MDStore provides a
wait-free atomic register.

4.1 Timestamped Storage and the Metadata Service

The metadata service used by MDStore is assumed to be a wait-free abstraction pro-
vided by a correct process. The MDS comprises two independent functions: the first is
a storage abstraction called timestamped storage, which resembles a register object with
a versioned interface and a particular sequential specification; the second one models
an array of registers for storing hash values associated to timestamps.

The specification of the MDS appears in Alg. 1. The timestamped storage function
is accessed through the MDS-WriteTs and MDS-ReadMax operations and maintains a
timestamp ts and a value data. In order to write a timestamped value, a client supplies
a write-timestamp wts and a data value v. The MDS stores (wfs, v) in its state (s, data)
if and only if wts > zs. In a read operation for the timestamped value, the MDS returns
the stored ts and data.

In the specification of timestamped storage it is critical that the guard for a MDS-
WriteTs operation to “take effect” requires wts to be greater than or equal to the
stored fs. With this condition, timestamped storage has consensus number one [20]
and can be implemented from simple atomic registers, as discussed later in Section 4.4.
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In contrast, Cachin et al. [8] define a “replica” object that is the same as the times-
tamped storage function, except that the guard for the conditional write requires the
write-timestamp to be strictly greater than the stored timestamp; this object, however,
is much more powerful and more difficult to implement, as it has an infinite consensus
number [8].

The second function of the MDS stores an array of independent hash values associ-
ated with timestamps. The operations MDS-WriteHash and MDS-ReadHash implement
these in the canonical way.

Algorithm 1. Timestamped-storage metadata service MDS.

1: Types

2: TS = No x (CU{L}), with fields num and ¢ Il ts = (ts.num, ts.c) for ts € TS
3: State

4: ts € TS, initially (0, L) // Timestamp of stored value
5: data € X*, initially L /I Stored metadata associated with zs
6: hashes[ts] € X, initially L, for ts € TS // Hash values associated to timestamps
7: upon { MDS-WriteTs | wis,v ) do

8: if wts > ts then

9: (ts, data) < (wits,v)

_-
=4

invoke ( MDS-WriteTsAck )

11: upon ( MDS-ReadMax ) do
12: invoke ( MDS-ReadMax Val | ts, data )

13: upon ( MDS-WriteHash | ts, h ) do
14: hashes|ts] < h
15:  invoke ( MDS-WriteHashAck | ts )

16: upon ( MDS-ReadHash | ts ) do
17:  invoke ( MDS-ReadHashVal | ts, hashes|ts] )

4.2 Description

Protocol MDStore operates similar to related algorithms and associates an increasing
timestamp, chosen by the writer, to every written value. It employs the MDS for storing
metadata of two kinds according to the previous section. First, the timestamped storage
function of the MDS maintains the authoritative timestamp fs, i.e., the one of the most
recently written value; it also acts as a directory by pointing to a set of ¢ 4+ 1 storage
replicas that store the value associated with zs. This resembles the role of metadata in
Farsite [2] and LDR [16]. The second function of the MDS permits to store hash values
associated with timestamps, and writers in MDStore store the hash of a written value
there, indexed by the timestamp. The hash ensures the integrity of the value towards
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readers, as a majority of the storage replicas may be Byzantine. Every client may write
to and read from the MDS, but the hash values for a particular timestamp is written only
once by a single client.

A timestamp s in MDStore (see also Alg. 1) is a classical multi-writer timestamp [5,
7], consisting of a pair (num, c), where num is an integer and ¢ is a client identifier (of
the writer). The latter serves to break ties. Comparison of timestamps uses lexicographic
ordering such that ts; > tso if and only if ts1.num > tso.num or ts1.num = tso.num and
ts1.c > ts2.C.

The pseudocode for clients is given in Alg. 2 and the pseudocode for storage replicas
appears in Alg. 3. At a high level, a r-Write operation that writes value v to register
proceeds as follows (Alg. 2): (1) the writer ¢,, invokes MDS-ReadMax and obtains the
latest timestamp ts from the MDS (line 22); (2) it produces a write-timestamp wts by
incrementing ¢s and writes the hash of v to the MDS under wts (lines 23-25); (3) ¢, now
invokes s;- Write on all storage replicas s; for ¢ € [1, N| with wes and v, and waits for a
set Q of ¢ + 1 replicas to acknowledge the write (lines 26-30); (4) ¢,, writes (wts, Q) to
MDS with the timestamped storage function (line 31); (5) ¢,, now invokes s;-Commit
on all storage replicas with parameter wts, such that they may garbage collect the stored
values associated to timestamps smaller than zs (lines 32-33); and, finally, (6) the writer
resets its internal state (lines 34-35). In response to a s;- Write operation, a storage
replica saves the written value indexed by the write-timestamp, as long as the write-
timestamp exceeds the most recently committed timestamp at s;. This means that a
storage replica may store multiple values at one time.

On the other hand, when a reader c¢,. invokes r-Read, it first obtains the authoritative
metadata (ts, replicas) from the MDS, where replicas denotes the ¢ + 1 storage replicas
which have stored the value and acknowledged it to the writer (Alg. 2, line 38). The
reader then invokes s;-Read with parameter rts = tson s; for ¢ € replicas (lines 42-44).
The storage replica s; responds with the value indexed by the timestamp rts supplied
by c,; however, if s; has already committed a higher timestamp than rzs and thus deleted
the corresponding value, then it advances the timestamp to the committed timestamp
and responds with that value (lines 61-64, Alg. 3). Hence, the reader ¢, obtains a value
associated to timestamp rts or to a higher one.

Since clients cannot trust replicas, the reader validates the value received through
s;-ReadVal from the replica. To this end, ¢, consults the MDS and verifies that the
hash of the value v with timestamp zs received from the replica matches the hash stored
at the MDS as follows (lines 45-51): (1) ¢, retrieves the hash value h’ corresponding
to ts from the MDS; (2) ¢, will check that H(v) = A’ (line 51); (3) if ts (which was
obtained from s;) is higher than rzs (which the reader requested) due to a concurrent
write operation, then ¢, validates ts by retrieving the authoritative metadata with the
currently highest timestamp #s from the MDS and by checking that zs lies between rts
and ts (lines 47-51).

As a side remark to Alg. 2, the values data and datd’ obtained in lines 22 and 48,
respectively, are ignored.

Intuitively, the register emulation preserves safety because the MDS stores an author-
itative hash of the value stored by the (Byzantine) storage replicas. Furthermore, client
operations are linearizable because of the atomic operations on the MDS primitive. For
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Algorithm 2. Protocol MDStore, atomic register instance r for client c.

18: State
19: wis, rts € TS, initially (0, L) // Timestamp of written and read value, resp.
20: Q € 2V, initially /I Storage replicas that have acknowledged write

21:upon ( r-Write | v ) do

22: invoke ( MDS-ReadMax ); wait for ( MDS-ReadMaxVal | ts, data )
23: wis < (ts.num + 1, c)

24: invoke ( MDS-WriteHash | wis, H (v) )

25:  wait for { MDS-WriteHashAck | ts' ) such that ts' = wts

26:  foralli € [1, N] do

27: invoke ( s;-Write | wts, v )

28: upon ( s;-WriteAck | ts ) such that ts = wts do

29:  Q+« Qu{i}

30:  if |Q| > ¢ then

31: invoke ( MDS-WriteTs | wts, Q ); wait for ( MDS-WriteTsAck )
32: forall i € [1, N] do

33: invoke ( s;-Commit | wis )

34: wis < (0, 1)

35: Q+ 0

36: invoke ( r-WriteAck )

37:upon ( r-Read ) do
38: invoke ( MDS-ReadMax ); wait for ( MDS-ReadMaxVal | ts, replicas )
39:  ifzs = (0, L) then

40: invoke ( r-ReadVal | L)
41: rts <— ts

42: forall i € replicas do

43: invoke ( s;-Read | rts )

44:apon ( s;-ReadVal | ts,v ) do

45: invoke ( MDS-ReadHash | ts )

46:  wait for ( MDS-ReadHashVal | ts', 1’ ) such that ts" = ts
47: if ts > rts then

48: invoke { MDS-ReadMax ); wait for ( MDS-ReadMax Val | ts, data’ )
49: else

50: ts < rts

51:  ifrts <ts <tsA H(v) =} then

52: rts < (0,1)

53: invoke ( r-ReadVal | v )

showing liveness and that the emulation is wait-free, note that the writer never blocks,
assuming a wait-free MDS abstraction. Moreover, the timestamp fs obtained by the
reader together with v is higher and therefore “more recent” than the timestamp rts,
which the reader initially requested, due to the protocol logic at the storage replicas.
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Algorithm 3. Protocol MDStore, implementation of storage replica s;.

54: State
55: ts € TS, initially (0, L) /I Committed timestamp
56: values(ts| € V), initially L, for ts € TS /I Map of stored values

57:upon { s;-Write | wts, v ) do

58: if wts > ts then

59: values[wits] < v

60: invoke ( s;-WriteAck | wts )

61:upon ( s;-Read | rts ) do

62: if rs < ts then

63: rts — ts

64:  invoke ( s;-ReadVal | rts, values|rts] )

65: upon ( s;-Commit | cts ) do
66:  if cts > ts A valuescts] # L then

67: ts < cts

68: forall freets € TS such that freets < ts do
69: values|freets] < L

70: invoke ( s;-CommitAck | cts )

The range check rts < ts < ts by the reader ensures that £s is also permitted with
respect to the authoritative timestamp zs. The formal analysis appears in Section 4.5.

4.3 Illustration

We illustrate MDStore using an execution o, depicted in Figure 1. In o, we assume
t = 1and N = 3 storage replicas. Replica s; does not receive any message due to
asynchrony in a timely manner, whereas replica s3 is Byzantine.

The execution starts with a complete operation o,,1 = r-Write(vy) that writes
(ts1,v1) to the storage replicas so and s3; the timestamp £s7 is a pair (1,w;) that the
writer w; generated in line 23 during o,,,1. The operation o,, 1 is not contained in the
figure, only the state of the MDS upon completion of 0,1 is shown.

The initial write o,,,1 is followed by two concurrent operations shown in Figure 1:
first, 0, 2 = r- Write(v2) by a writer ws, and, second, o,, = r-Read by areader r;. Upon
invoking o0y, 2, writer wy in Step (D (referring to the numbers in Fig. 1) first invokes
MDS-ReadMax on the MDS (line 22). When the MDS responds, the writer w9 obtains
the highest timestamp zs; = (1, w1 ). Then, wy computes the timestamp of its operation
as ts2 = (2, ws) (line 23) and invokes MDS-WriteHash with ts3 and H (vz) in Step @
(line 24). Notice that the hash is written to the MDS before the write o,,,2 is exposed to
other clients via the timestamp through the MDS; this will prevent a Byzantine storage
replica from forging values with a given timestamp. Eventually, the MDS responds and
ws then invokes s;-Write(ts2, v2) on the storage replicas for ¢ = 1,...,3 in Step @
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Fig. 1. An execution of MDStore with a concurrent - Write and r-Read operation

(lines 26-27). The messages carrying these operations are received only by the storage
replicas so and s3 (but recall that s3 is Byzantine). Since s is correct, it stores v in
values|ts2] (line 59). At this point in the execution, the writer wy stalls, waiting for two
s;- WriteAck replies from the storage replicas.

Concurrently with oy, 2, a reader r; invokes o, = r-Read. The reader first queries
the MDS through a MDS-ReadMax operation in Step @ to determine the latest time-
stamp rts and the set replicas, which store the corresponding value (line 38). The MDS
responds such that rzs = tsq and replicas = {2,3}. Next, in Step &), 1 invokes s;-
Read (ts1) on the storage replicas so and s3 (lines 42-44). According to the algorithm,
a storage replica responds to this with the value that it stores under #s; or under its
committed timestamp cts, and not necessarily with the value from data with the highest
timestamp at the replica; for instance, at this time in o, for replica ss, it holds cts = 51
since no so-Commit(ts2) has been invoked yet. However, the Byzantine replica s5 could
mount a sophisticated attack and include (¢s2, v2) in its s3-ReadVal response, see Step
®. Although value v is in fact being written concurrently, it would be wrong for 71
to return vy, since readers do not write back data in MDStore and the write of v5 is not
yet complete — this may violate atomicity. For preventing this attack, the reader subse-
quently invokes MDS-ReadMax again to determine whether s (or a higher timestamp)
has become authoritative meanwhile, in Step (7) (lines 47-48). Since this is not the case
here, client 7; discards the response from s3 (after the test in line 51) and waits for an
additional reply (this will arrive from s3).

An alternative attack by the Byzantine replica s3 could be to make up a value v* with
a large timestamp, say s* = (100, ws). In this case, 1 would also check with the MDS
whether #s* or a higher timestamp has been written (just like in Step (D). Moreover,
r1 would check the integrity of the value reported by s3 by retrieving the hash at s*
from the MDS and by checking if it matches the hash of v* (lines 45-51). As the hash
function is collision-free and the MDS is correct, this check will fail.

Returning to o, in Step @), sz eventually responds to 71 with the pair (ts1,v1)
(lines 61-64). According to the protocol, r1 successfully verifies the integrity of vy
after obtaining the hash value at £s; from the MDS in Step Q) (lines 45-51), and the
r-Read of ry returns v;.

Eventually, the writer w2 in o, 2 receives two s;-WriteAck responses from repli-
cas sy and s3. Then, it invokes MDS-WriteTs with tso and the set {2,3} in Step (0
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(line 31). Note that the write of vy only “takes effect” at this point in time; in other
words, the linearization point of o,, 2 coincides with the linearization point of the MDS-
WriteTs operation with £s9, and it is safe subsequently for readers to read vy from r.

Finally, the writer invokes s;-Commit on all storage replicas, so as to allow them to
garbage collect stale data (lines 32-33). Storage replicas update their local variable ts,
which determines the value that they will send to a reader, only upon processing this
s;-Commit operation (lines 65-70).

Let us point out that MDStore uses timestamped storage at the MDS as a way to avoid
storing an entire history of values at the storage replicas. One could not achieve this
saving if the MDS would only expose a standard read/write register interface, since this
would allow that a stored value is overwritten by a value with a lower timestamp. Given
the implementation of storage replicas (notably lines 57-60) and our goal of avoiding
to store entire histories, such an overwrite might cause inconsistent states between the
MDS and the storage replicas.

4.4 Implementation of the Metadata Service

We show how to implement the MDS abstraction with existing asynchronous BFT stor-
age protocols that rely on M > 3 f metadata replicas. In order to qualify for the imple-
mentation, such a BFT protocol should also tolerate an arbitrary number of Byzantine
readers, permit multiple benign writers (which may crash), and, ideally, make no cryp-
tographic assumptions. Recall that the MDS has two completely independent functions,
providing the timestamped storage and the array of hash values. Hence, we will imple-
ment them through different components.

First, the wait-free atomic timestamped storage function can be implemented as a
straightforward extension of the classical SWMR to MWMR transformation on atomic
storage objects (e.g., [7, page 163]). In this transformation, there is one SWMR storage
object per writer and every writer maintains a timestamp/value pair in “its” storage
object, after first reading and incrementing the highest timestamp found in any other
storage object. In our extension, the reader determines the timestamp/value pair with
the highest timestamp among the SWMR storage objects as usual, and simply returns
also the timestamp together with the value. This implementation may be realized from
existing SWMR atomic wait-free storage (using M > 3f replicas); some permit a
computationally unbounded adversary [3,13], whereas others assume cryptography, that
is, they tolerate only a computationally bounded adversary [9, 30].

Second, the function related to the hash values consists simply of an array of SWMR
safe storage objects. These may be directly implemented from the protocols with atomic
semantics mentioned above. Furthermore, as one may relax the consistency guarantee
for them to safe semantics, one might also employ protocols with weaker semantics,
such as (1) SWMR safe wait-free storage [1] or (2) its regular variant, both without
cryptographic assumptions [18], or (3) regular storage with digital signatures [31].

Finally, note that more efficient, direct, implementations of the MDStore metadata
service can be obtained easily, but these are beyond the scope of this paper.
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4.5 Analysis

In this section we prove that protocol MDStore in Alg. 2-3 emulates an atomic MWMR
register and is wait-free.

We define the timestamp of an operation o on the register as follows: If o is r- Write,
then its timestamp is the value of variable wts after the assignment in line 23; otherwise,
if o is r-Read, its timestamp is the value of variable ts obtained through s;-ReadVal
(line 44) at the time when o returns by invoking r-ReadVal.

Lemma 1 (Monotonicity of timestamped storage). Consider the timestamped stor-
age function of the MDS and suppose an operation o, = MDS-ReadMax returns
(ts',0"). If o, follows an operation o,, = MDS-WriteTs(ts,v) or an operation o, =
MDS-ReadMax that returns (ts,v) then ts' > ts.

Proof. This follows directly from the sequential specification of timestamped storage
in Alg. 1. O

Lemma 2 (Sandwich). Let o, be a complete r-Read operation with timestamp ts, let rts
denote the timestamp returned by the MDS in line 38 and let rts’ denote the timestamp
returned by the MDS in line 48. Then rts < ts < rts’.

Proof. According to the definition of the operation timestamp, the timestamp of o, is
the value of the variable fs at line 53. Consider the test that rzs < s < ts in line 51.
According to the algorithm, if zs > rs, then the variable ts contains rts’. O

Lemma 3 (Partial Order). Let 0 and o' be two operations with timestamps ts and ts’,
respectively, such that o precedes o'. Then ts < ts' and if o' is a r-Write operation, then
ts < ts'.

Proof. Suppose o is a r-Read operation. Then its timestamp is either equal to rts, which
is returned by MDS-ReadMax in line 38, or ts is not larger than ts, which is returned by
MDS-ReadMax in line 48. On the other hand, if o is a r- Write operation, its timestamp
is written to the MDS through MDS-WriteTs. Hence, at the time when o completes,
the monotonicity of the timestamped storage (Lemma 1) implies that any subsequent
MDS-ReadMax operation returns a timestamp that is at least as large as fs.

In the following we consider operation o’ that follows o and distinguish two cases:

1. Suppose o' is a r-Read operation. Then its timestamp s’ is at least as large as
the timestamp rts, which is returned by MDS-ReadMax in line 38, and the lemma
follows.

2. Otherwise, o’ is a r-Write operation. Then its timestamp ¢’ = wis is computed
in line 23 from the timestamp returned by MDS-ReadMax by incrementing its first
component. Hence wis and the timestamp of o’ are strictly larger than the timestamp
returned by MDS-ReadMax and, hence, also strictly larger than ts.

Lemma 4 (Unique writes). If o and o' are two r-Write operations with timestamps ts
and ts', respectively, then ts # ts'.

Proof. If 0 and o' are executed by different clients, then the two timestamps differ in
their second component. If 0 and o’ are executed by the same client, then the client
executed them sequentially. By Lemma 3, it follows s # s’
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Lemma 5 (Integrity). Let o, be a r-Read with timestamp ts, that returns a value
v # L. Then there exists a unique r-Write operation o,, that writes v such that its
timestamp ts,, is equal to ts,. Furthermore o, does not follow after o,..

Proof. Since o, returns v and has timestamp ts,., the reader receives a s;-ReadVal re-
sponse containing zs,. and v from one of the storage replicas. Suppose for the purpose
of contradiction that v was never written. Then, then by the collision resistance of H,
the check in line 51 fails and o,- does not return v. Therefore, we conclude that some
r-Write operation o,, has invoked s;- Write(#s,, v) on a storage replica in line 27. Since
this timestamp ts,. is equal to variable wts and the timestamp fs,, of o,, it follows
that ts,, = ts,.. Finally, by Lemma 4, no other r- Write operation has the same time-
stamp, which completes the proof.

Theorem 1 (Linearizability). Every execution of protocol MDStore is linearizable.

Proof. Let o be the history of any execution of MDStore. By Lemma 5 the timestamp
of a r-Read operation has either been written by some r- Write operation or the r-Read
operation returns L.

We first construct o’ from o by completing all operations of the form r-Write(v)
such that v has been returned by some complete r-Read. Then we construct a sequential
permutation 7 of ¢’ by ordering all operations in ¢’, excluding the r-Read operations
that returned L, according to their timestamps and by placing all r-Read operations that
did not return L immediately after the r- Write operation with the same timestamp. The
r-Read operations that returned L are placed at the beginning of 7. Note that (concur-
rent) r-Read operations with the same timestamp may appear in any order, whereas all
other r-Read operations appear in the same order as in o’.

To prove that 7 preserves the sequential specification of a MWMR register we must
show that every r-Read returns the value written by the latest - Write that precedes it
in 7, or the initial value L if there is no preceding r-Write in 7. Let o, be a r-Read
operation returning a value v. If v = L, then by construction o, is ordered before any
r-Write in .

Otherwise, v # L, and by Lemma 53, there exists a r-Write(v) operation with the
same timestamp zs,.. In this case, this write is placed in 7 before o,- by construction. Ac-
cording to Lemma 4, every other r- Write in 7 has a different timestamp and, therefore,
appears in 7 either before r-Write(v) or after o,..

It remains to show that 7 preserves real-time order of ¢. Consider two complete
operations o and o’ in ¢’ such that o precedes o’ with timestamps zs and #s’, respectively.
Lemma 3 implies that zs' > ts. If ts’ > s, then o' follows o in 7 by construction.
Otherwise ts’ = ts and Lemma 3 implies that o’ is a r-Read operation. If o is a r- Write
operation, then o’ appears after o since we placed every r-Read after the r-Write with
the same timestamp. Otherwise, if o is a r-Read, then it appears in 7 before o, as it does
ino’.

Theorem 2 (Wait-freedom). Every execution of protocol MDStore is wait-free.

Proof. Since the MDS abstraction used by Alg. 2 is wait-free, every operation invoked
on the MDS eventually completes. It remains to show that no r-Write always fails the
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test in line 30 and that no r-Read operation permanently fails the check of line 51 and
never returns a value.

For a r-Write operation o,,, the condition in line 30 is eventually satisfied because
there is a time after which all correct storage replicas have responded with s;- WriteAck
and because there are more than ¢ correct replicas, from the assumption N > 2¢.

On the other hand, let o, be a r-Read operation and suppose for the sake of contra-
diction that the condition in line 51 is never satisfied — therefore, o,- never returns. Let
s; be a correct storage replica with ¢ € replicas. Since the reader has previously invoked
s;-Read on s; during o,, it eventually receives a s,-ReadVal (ts, v) in response.

If ts satisfies the clause rts < ts < ts in line 51, then the second clause of the con-
dition, H(v) = h/, is also true because s; is correct, and o, would return. Therefore,
we continue the argument assuming that zs < rts or that zs > fs. Recall that the reader
requested timestamp rzs in s;-Read. If ts < rts, then s; has replied with a smaller time-
stamp than rts, which is not possible according to the algorithm for a replica (lines 62—
64). Otherwise, if ts > ts, then by Lemma 2, it holds zs > rts, and therefore s; has
replied from its committed timestamp variable; to avoid confusion, we call this value £s*
and note that ts* = £s. According to the replica code, line 67 is the only place where its
committed timestamp variable may change. Furthermore, if the replica sets this variable
to £s*, then there exists a r- Write operation o}, that committed with timestamp #s*. Ac-
cording to the - Write code, o}, commits only after invoking MDS-WriteTs containing
timestamp #s*. Hence, if ts > ts, then o, invokes MDS-ReadMax in line 48 and does
so after the corresponding r- Write wrote ts* to the MDS. According to Lemma 1, the
reader obtains from the MDS in line 48 a timestamp zs that is a least as large as ts*. This
implies that ts > ts* = ts, which contradicts the assumption that ¢s > s, and the result
follows.

5 Conclusion

This paper has explored how to separate the maintenance of metadata from the storage
of bulk-data in distributed storage. It introduces MDStore, the first fully asynchronous
wait-free BFT storage protocol that reduces the number of replicas that store bulk data
to as few as 2¢ + 1, with £ Byzantine faults. Recent work shows that the same approach
also improves erasure-coded protocols for distributed storage that tolerate Byzantine
faults [4], reducing the storage overhead even further.
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Abstract. It follows from the definition of silent self-stabilization, and
from the definition of proof-labeling scheme, that if there exists a silent
self-stabilizing algorithm using ¢-bit registers for solving a task 7, then
there exists a proof-labeling scheme for 7 using registers of at most ¢
bits. The first result in this paper is the converse to this statement. We
show that if there exists a proof-labeling scheme for a task 7, using ¢-bit
registers, then there exists a silent self-stabilizing algorithm using regis-
ters of at most O(¢ 4 logn) bits for solving 7, where n is the number of
processes in the system. Therefore, as far as memory space is concerned,
the design of silent self-stabilizing algorithms essentially boils down to
the design of compact proof-labeling schemes. The second result in this
paper addresses time complexity. We show that, for every task 7 with
k-bits output size in n-node networks, there exists a silent self-stabilizing
algorithm solving 7 in O(n) rounds, using registers of O(n® + kn) bits.
Therefore, as far as running time is concerned, every task has a silent
self-stabilizing algorithm converging in a linear number of rounds.

1 Introduction

1.1 Context and Objective

A distributed algorithm is self-stabilizing [12] if it eventually reaches a legal
state starting from any arbitrary state, and remains in a legal state whenever
starting from a legal state. A self-stabilizing algorithm is therefore well suited
to withstand transient failures in which the content of the variables can be
arbitrarily corrupted. In the context of network algorithms, and assuming a
computational model in which every node has atomic read/write access to its
single-writer multiple-readers public register, and atomic read-only access to the
public register of each of its neighbors in the network, three main criteria have
been considered for measuring the quality of algorithms:
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1. Time, i.e., either the number of individual steps, or the number of collective
rounds, or both, required to reach a legal state;

2. Compactness, i.e., the size of the public registers;

3. Silence, i.e., the fact that nodes keep their registers unmodified once a legal
state has been reached.

Minimizing time is crucial for evident efficiency reasons. Nevertheless, compact-
ness and silentness are also crucial in many contexts. In particular, keeping the
registers small enables to limit the amount of data exchanged between the pro-
cessors, and hence it avoids overloading the system with a heavy traffic among
nodes [1]. Silentness is also desirable as it guarantees that, whenever the system
is in a legal state, nodes stop taking unnecessary steps, and hence it enables
self-stabilization not to burden the system with unnecessary computations [13].
Silentness can be viewed as a kind of termination mechanism combined with a
trigger mechanism, the former insuring that the self-stabilization protocol be-
comes quiet when the system is in legal state, while the latter insures that the
self-stabilization protocol wakes up in case the system enters an illegal state.

In this paper we address the issue of designing fast and/or compact silent
self-stabilizing network algorithms for arbitrary tasks.

There is an abundant literature (see Section 1.3) on the design of compact
silent self-stabilizing network algorithms for specific tasks, including the election
of a leader, and the construction of various types of spanning trees (BFS, min-
degree, MST, etc.). In each of these algorithms, silentness is guaranteed thanks
to the — implicit or explicit — use of a mechanism known as proof-labeling
scheme [19]. This mechanism provides each solution of the considered task with
a distributed certificate consisting of a collection of individual certificates (also
called labels) assigned to all nodes. When each node has its own certificate as
well as the certificates of its neighbors at hand, the nodes can collectively de-
cide whether the current state is legal or not. More precisely, in a proof-labeling
scheme, each node has a local predicate over its label and its neighbors’ labels,
such that the state is legal if and only if all local predicates are satisfied. That
is, if a state is not legal then the scheme must insure that some inconsistencies
between the certificates will be detected locally by some node(s). In the context
of self-stabilization, a node detecting some local inconsistency between the cer-
tificates rejects. In the spirit of [2], the rejection of a state by some process(es)
leads the processes to continue their attempt to reach a legal state, potentially
resetting the entire system, or just carrying on the execution leading to eventual
convergence to a legal state.

It follows from the definition of the aforementioned concepts that any mecha-
nism insuring silent self-stabilization is essentially equivalent to a proof-labeling
scheme. Slight differences may occur because of small variants in the computa-
tional model, including, e.g., (1) link-registers versus node-registers, or (2) the
ability to read only the certificates of the neighbors versus the ability to read
the certificates as well as the data stored by these neighbors, etc. Nevertheless,
conceptually, silentness mechanisms and proof-labeling schemes are essentially
equivalent under all reasonable variants.
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More specifically, it follows from the definition of silent self-stabilization and of
proof-labeling scheme that, if there exists a silent self-stabilizing algorithm using
£-bit node-registers for solving some task 7, then there exists a proof-labeling
scheme for 7 using registers of at most ¢ bits. An important consequence of
this result is that any lower bound B on the size of certificates in a proof-
labeling scheme for a task 7 implies a lower bound B on the size of the registers
required for any silent stabilizing implementation of 7. Establishing such kind
of space lower bounds for silent self-stabilizing algorithms was, among others,
one motivation for introducing proof-labeling schemes [19].

This paper is concerned with converses of this latter statement. More gener-
ally, we study the issue of designing fast and/or compact silent self-stabilizing
algorithms for arbitrary tasks, taking advantage of various kinds of proof-labeling
schemes for these tasks. Table 1 summarizes our results, which are detailed next.

Table 1. Space and time complexities of silent self-stabilizing algorithms in n-node
networks for an arbitrary task T, as a function of the minimum size £ of a proof-
labeling scheme for T, or of the output size k of T.

size of registers ~ number of rounds

lower bound 02(0) -
algorithm csss  O(£ + logn) O(n2™)
algorithm Fsss O(n? + nk) O(n)

1.2 Our Results

First, we show that if there exists a proof-labeling scheme for a task 7, using
{-bit node-registers, then there exists a silent self-stabilizing algorithm using
node-registers of at most O(¢ + logn) bits for solving 7, where n is the number
of processes in the network. Therefore, as far as memory space is concerned, the
design of silent self-stabilizing algorithms essentially boils down to the design of
compact proof-labeling schemes. Note that the latter is significantly easier than
the former. Indeed, proof-labeling schemes just deal with the set up of static
distributed data structures, while self-stabilization must cope with dynamic cor-
ruptions of variables, and with the actions of the scheduler governing the way
processes take steps.

Second, we prove that, for every task 7 with k-bits output size at each node
in n-node networks, there exists a silent self-stabilizing algorithm solving 7 in
O(n) rounds with registers of O(n? + kn) bits. Therefore, we prove that every
task enjoys a silent self-stabilizing algorithm converging in a linear number of
rounds. This algorithm uses register of polynomial size, which can be larger
than the optimal for some tasks. Nevertheless, the bound O(n? + kn) bits for
the size of the registers is existentially optimal in the sense that for some tasks,
2(n? + kn) bits are required by any proof-labeling scheme (see [3,14,15]).
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All our results are constructive, in the sense that we provide explicit descrip-
tions of algorithms reaching these bounds, respectively called ¢sss and Fsss, for
compact and fast silent self-stabilizing algorithm, respectively. The complexity
analysis of the algorithms is done with respect to an unfair scheduler.

1.3 Related Work

The reader is referred to the textbook [12] for an introduction to the main
techniques used for designing self-stabilizing algorithms. There is a large volume
of literature focussing on the design of silent self-stabilizing protocols for various
kinds of tasks. In particular, a significant effort has been dedicated to different
forms of spanning tree constructions, as the presence of a spanning tree is an
effective tool for the design of many self-stabilizing algorithms (this is the case of
the algorithms in this paper as well). It is thus worth mentioning the construction
of spanning trees in [9,20], as well as the construction of breadth-first search
(BFS) trees in [1,10,16]. These constructions have optimal ©(logn)-bit space-
complexity.

The case of minimum-weight spanning tree (MST) construction is also worth
being mentioned here as well, because of the non-trivial lower bound established
in [17], which proves that any silent MST construction algorithm requires regis-
ters on £2(log? n) bits. Proof-labeling schemes matching this bound can be found
in [17] and [19]. Papers [5,7,18] have proposed compact self-stabilizing construc-
tions, using just O(log n) bits of memory per node. These compact algorithms are
however not silent. ([18] is uniform and converges in O(n) rounds, while [7] is just
semi-uniform, and converges in O(n?) rounds). Recently [6] designed a space-
optimal ©(log n)-bit register silent self-stabilizing algorithm for approximating
minimum-degree spanning tree within additive 1 from the optimal, converging
in a polynomial number of rounds. The techniques in [6] can be generalized to
design a silent self-stabilizing MST construction using registers of optimal size
O(log® n) bits.

In addition, several papers address the leader election task, which is inher-
ently related to spanning tree construction. In particular, [4,11] have proposed
silent self-stabilizing leader election algorithms. See also [8] for an exponential
gap between the size of the registers in silent and non-silent leader election
algorithms. More generally, the reader is especially referred to [13] where the in-
terplay between space complexity and silentness is thoroughly investigated, for
various problems, including tree construction and leader election, under different
hypotheses.

Before completing this non exhaustive survey of related work, it is worth point-
ing out that there are subtle but important differences between the notion of
proof-labeling scheme [19] and the notion of non-deterministic local distributed
decision [14]. Both are assuming the ability to use distributed certificates. How-
ever, the latter does not impose restriction on the number of communication
rounds before taking decision, while, in essence, proof-labeling scheme performs
in one single rounds. Nevertheless, the theory of proof-labeling scheme can easily
be extended to allowing more rounds [15]. In fact, the main difference between
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the two concepts is that, in a proof-labeling scheme, the certificate may depend
on the current identity of the node, while, in non-deterministic local distributed
decision, the certificates must not depend on this identity. That is, in particular,
proof-labeling scheme allows the certificates to be functions of the node IDs,
while non-deterministic local distributed decision does not.

Finally, [3] recently aimed at investigating possible generalizations of proof-
labeling scheme, and of local distributed decision, where legality is not necessarily
the logical conjunction of the local predicates.

2 Framework

In this section, we specify our computational model. More importantly, we
also precisely define the different concepts of configurations, states, tasks, self-
stabilization, and proof-labeling schemes, so that to appropriately formulate our
general results in Sections 3 and 4.

2.1 Computational Model

We are dealing with a system in which each computational entity is the node of an
asynchronous network modeled as a simple connected n-node graph G = (V, E).
The nodes act as autonomous computing entities. More specifically, every node
u € V has a distinct identity, denoted by id(u) € {1,...,n°} for some constant
¢ > 1, and is a processor with read/write access to a single-writer multiple-
readers public register. In one atomic step, every node can (1) read its own
register as well as the registers of its neighbors in G, (2) perform individual
computations, and (3) update its register accordingly.

Describing self-stabilizing distributed algorithms is often done by describing
the actions of an abstract state machine. Each node executes the same instruction
set which consists in one or more rules of the form:

name-of-rule : guard — command (1)

where guard is a boolean predicate over the variables in the registers of the node
as well as in the registers of its neighbors, and command is a statement assigning
new values to the variables of the node. An enabled, or activatable, node is a node
for which at least one guard is true. A non activatable node is idle. The network
is asynchronous in the sense that nodes take step of computation in arbitrary
order, under the control of a scheduler. For instance, an unfair scheduler is free to
make arbitrary choices about which node to activate among the set of activatable
nodes. It is only bounded to activate one of the currently activatable nodes. Such
scheduler is indeed “unfair” because a node may be perpetually activatable, yet
the scheduler may never activate it.

The model described above is sometime called the node-register state model.
Some results in this paper extend to the link-register version of the model. In
this latter (stronger) model, instead of one public register per node, every node
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has one single-writer multiple-reader public register for each of its incident links,
readable by the node at the other extremity of the link.

A fault is the corruption of some variable(s) in the register(s) of one or more
node(s) in the network. After a fault has occurred, the system may be in an
illegal state (to be formalized in the next section). It is the role of the algorithm
to detect the illegality of the current state, and to make sure that the system
returns to a legal state.

Remark. The algorithms described in this paper could be expressed in the ab-
stract state machine format of Eq. (1). However, in this paper, we shall not
provide such algorithm descriptions because, although conceptually not diffi-
cult, this would result in long and tedious codes which would not enlighten the
main ideas in our contributions. Nevertheless, the reader aware of the program-
ming methodology in the context of self-stabilization can easily convince himself
or herself that our algorithms can be implemented appropriately so that to run
under any unfair scheduler.

2.2 Configurations, Tasks, and States

In this subsection, we formalize the concept of tasks. For this purpose, we dis-
tinguish two closely related notions: configuration and state. While the former
focusses solely on the value of the outputs, the latter also focusses on the local
variables used to compute these outputs.

a) Configurations. An identity assignment, id, to the nodes of a graph G is
the assignment to every node u € V(G) of an identity, id(u) € N, such that
id(u) # id(v) for every two distinct nodes u and v. Following the terminology
of [14], we call configuration any triple

C = (G,id, z)

where G is an n-node connected graph, id is an identity assignment to the nodes
of G, and z is a set of n binary strings, z = {z(u) € {0,1}*,u € V(G)}.

b) Tasks. A task is defined as a collection 7 of configurations satisfying the
following two properties:

1. Feasibility: for every connected graph G, and any identity assignment id to
the nodes of G, there must exist = such that (G, id,z) € T;

2. Computability: 7 is computable, in the classical sense of (sequential) com-
putability theory, that is, there exists an algorithm which, given (G, id, z),
decides whether (G, id,z) € T.

We insist on computable tasks since, otherwise, even a system aware of an entire
configuration may not be able to decide whether it is legal or not. Intuitively,
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the feasibility property guaranties that, for each possible system (G, id) consist-
ing of a network G with node-identities provided by id, there exists a possible
“output” x for the nodes such that (G,id,z) € T.

The configurations in 7 are said to be legal for 7, and configurations not in
T are said to be illegal for T.

For instance, the task of constructing a spanning tree can be specified by the
set of configurations (G, id, z) where, for every node u, x(u) is either L or the
identity of some neighbor v of u, and the 1-factor

{(u,z(u)) : v € V(G) and x(u) # L} (2)

forms a rooted spanning tree of G. (Hence, xz(u) is the parent of u, each arc
(u, z(u)) points upward in the tree, and the root r satisfies z(r) = L). Note that
a task needs not to depend on the identity assignments, in which case, for every
n-node connected graph G, and any n-dimensional vector x of binary strings,
we have:

(G,id,z) € T = (G,id ,x) € T

for any two identity assignments id and id’. On typical example is the leader
election task specified as the set of configurations (G, id,z) where, for every
node u, z(u) € {0,1}, and there is a unique node u in G satisfying z(u) = 1. (In
this latter setting, one does not insist on having every node know the identity
of the leader).

In some contexts, the collection of networks under consideration may not be
the class of all connected graphs, but be restricted to some families of graphs,
like, e.g., planar graphs, trees, rings, etc. All what follow also holds if networks
are a priori restricted to belong to some arbitrary class G of networks.

c) States. In the node-register state model, the state of a node u is a pair

S(u) = (x(u), y(u))

of binary strings, respectively called the output string and the auziliary string.
The state of a network G with identity assignment id is then represented as the
triple (G, id, (z,y)) where z and y are two sets of n binary strings. The legality
of a state depends on the task 7 to be solved, but, above all, on the actual
algorithm A solving that task. The legality property must satisfy the following
two properties:

1. Soundness: if a state (G,id, (z,y)) is legal for A, then the configuration
(G, id,x) must be legal for T;

2. Completeness: if a configuration (G, id,z) is legal for T, then there must
exist y such that (G, id, (x,y)) is legal for A.

The soundness property simply states that the algorithm cannot consider as
legal a state that does not fit with any legal configuration of the task, and the
completeness property simply states that the algorithm must not disqualify any
legal configuration of the task.
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2.3 Self-stabilization

A self-stabilizing algorithm solving a task 7 is a distributed algorithm A satis-
fying the following two properties:

1. Convergence: starting from an arbitrary state, A eventually reaches a legal
state;

2. Closure: starting from a legal state, A remains in legal states.

The register-space complexity of the algorithm is usually expressed as a func-
tion of the number of nodes n. It is the maximum, taken over all initial states
(G, id, (x0,y0)) on networks with at most n nodes, all possible execution starting
from (G, id, (zg, yo)), and all nodes u, of the size of u’s register. The latter is the
amount of bits |z(u)| + |y(u)| used to store the current output string z(u) and
the current auxiliary string y(u) of node u, where |s| denotes the number of bits
in a binary string s.

Note that the size of a register cannot be made arbitrarily large by a corruption
of the variables once the range of each variable is well specified. For instance,
a variable storing a node-identity cannot exceed [logs(idmaz)] bits where idp,qz
is the largest node-identity in the network. In our context in which nodes have
identities that are polynomially bounded by the size of the network, a variable
storing a node-identity cannot exceed O(logn) bits.

In any execution of a self-stabilizing algorithm A, a round is any shortest
sequence of steps of the execution in which every activatable node at the be-
ginning of the round was activated by the scheduler by the end of the round. If
A constructs and stabilizes on the states in some family F' of states, then the
round-complexity of A is the maximum, taken over all initial states =y, and over
all executions &£ of A starting from « and ending in a state 4’ € F, of the number
of rounds in €. The latter is the integer k£ such that £ can be decomposed in a
sequence Yo = v, V1,---,7k = 7 such that, for every ¢ =0,...,k — 1, the round
of &€ starting from ~; ends in ;1.

A self-stabilizing algorithm is silent if, once the algorithm has reached a legal
state, the content of the register at each node remains unchanged. Hence, in par-
ticular, starting from a legal state, a silent self-stabilizing algorithm A remains
the same state.

Since the algorithm must converge starting from any state, being silent re-
quires a mechanism that is performed locally at each node, which enables the
nodes to collectively detect whether a global state is legal or not. Indeed, if the
state is illegal then some action(s) has to be performed at some node(s) in order
to update their states, which requires to modify the content of some register(s).
Instead, if the state is legal then no actions have to be performed, and the regis-
ters must not be modified. Such a mechanism is well captured by the notion of
proof-labeling schemes, partially introduced in [17], extensively studied in [19],
and recalled below.
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2.4 Proof-Labeling Schemes

A proof-labeling scheme for a task T is a pair (p,v) where p is called the prover,
and v the verifier. The prover has unlimited computational power, and assigns
a certificate z(u) € {0,1}* to every node u of each configuration (G, id,x) € T.
Such a certificate may depend on the whole configuration (G, id, ). The verifier
is a distributed algorithm running at every node w, which takes as input the
local information available at u, i.e., the triple (id(u),x(u), z(u)), as well as the
set {(z(v), z(v)),v € N(u)}, where N(u) denotes set of neighborhs of node u
in G. Based on this input, every node u must decide either to accept or to reject.

To be correct, the proof-labeling scheme must satisfy the following two con-
ditions:

— if (G,id, z) is legal for T, then the prover p must assign certificates to the
nodes such that the verifier v accepts at all nodes;

— if (G, id, x) is illegal for T, then, for every certificates assigned to the nodes,
the verifier v must reject in at least one node.

For instance, a proof-labeling scheme for the aforementioned spanning tree
construction task, specified in Section 2.2, consists, for the prover, to endow
each node u of every legal configuration with the certificate z(u) = (id(r), d(u))
where 7 is the root of the tree, and d(u) is the distance of u from r in the tree.
The verifier then checks at each node u that u agrees with all its neighbors
regarding the identity of the root, and that xz(u) satisfies d(z(u)) = d(u) — 1 (a
root, i.e., a node with z(u) = L, checks that d(u) = 0). If this is the case, then
u accepts, otherwise u rejects. It is easy to check that, if the configuration is
illegal, that is, if the 1-factor of Eq. (2) does not form a spanning tree (i.e., it is
disconnected, or has a cycle), then no certificates can make the prover accepting
such a configuration.

The size of a proof-labeling scheme is usually expressed as a function of
the number of nodes n. It is the maximum, taken over all legal configurations
(G, id, x) on networks with at most n nodes, of max,cv (q)(|z(u)|+|2z(u)[). When
looking for a proof-labeling scheme for a task 7, one is therefore interested in
using certificates whose sizes do not exceed the size of the output at each node.
This is however not always possible, even for natural problems, at witnessed
by the minimum-weight spanning tree (MST) construction task. Indeed, while
encoding the tree consumes only O(logn) bits at each node (using the pointer-
to-parent encoding), proving the correctness of the tree requires certificates on
2(log? n) bits [17].

3 A Compact Universal Silent Self-stabilizing Algorithm

The following result is to the least implicit in most papers on silent self-stabilization.
For the sake of completeness, we provide a formal proof of it.

Theorem 1. If there exists a silent self-stabilizing algorithm solving a task T
with register-space complexity at most k bits, then there exists a proof-labeling
scheme for T with size at most k bits.
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Proof. Let A be a silent self-stabilizing algorithm solving 7 with k-bit register.
We define a proof-labeling scheme for 7 as follows. First, the certificate assign-
ment by the prover acts like this. Let (G, id,z) be a legal configuration for 7.
By the completeness property, there exists y such that (G, id, (z,y)) is a legal
state for A. The prover sets z(u) = y(u) for every node u. The verifier is then
essentially A. More specifically, given an arbitrary state (G, id, (z,y)), if node u
is idle in that state, then the verifier at u decides to accept, otherwise, i.e., if
node wu is activatable in that state, then the verifier at u decides to reject.

By construction, the size of this proof-labeling scheme is at most k bits. It
just remains to show that it is correct. Let (G,id,z) be a legal configuration,
and let (G, id, (z,y)) be any corresponding legal state. Since A is silent, no nodes
are activatable in this state. Therefore, all nodes accept. In particular, all nodes
accepts in state (G,id, (z,z)), as desired. Instead, let (G,id,z) be an illegal
configuration. By the soundness property, the state (G, id, (z,y)) is illegal, for
every y. Therefore, at least one node is activatable in state (G, id, (z,y)), and
thus at least one node decides to reject, as desired. a

As we already pointed out in the introduction, Theorem 1 is mostly interesting
for it enables to derive lower bounds on the size of the registers to be used by
a silent self-stabilizing algorithm. For instance, since any proof-labeling scheme
for MST requires certificates on £2(log? n) bits [17], it follows that any silent self-
stabilizing algorithm for MST construction must use registers of £2(log? n) bits.
Designing self-stabilizing algorithms for MST using logarithmic-size registers is
doable [5,7,18] , but such an algorithm cannot be silent.

Our first main result is a reciprocal to Theorem 1.

Theorem 2. If there exists a proof-labeling scheme for T with size at most k
bits, then there exists a silent self-stabilizing algorithm solving T with register-
space complexity O(k + logn) bits in n-node networks.

Proof. Let T be a task for which there exists a proof-labeling scheme (p, v) of size
at most k bits. We describe a silent self-stabilizing algorithm csss, for Compact
Silent Self-Stabilization, solving T with registers of at most O(k + logn) bits
in n-node networks. Let (G, id, z) be a valid configuration for 7. We denote by
p(G,id, x) the certificates assigned by the prover p to the nodes of the n-node
graph G with identities assigned by id. We define the new task T as:

T ={(G,id, (z,2)) : (G,id,z) € T and p(G, id, z) = 2}

Note that, for every configuration (G, id, (z,z)) in '7', and for every node u €
V(G), we have |z(u)| + |z(u)| < k. Algorithm csss solves task 7. For this
purpose, it handles states of the form (G,id, ((x,2),y)), using an additional
auxiliary string y(u) of length O(log k + logn) bits at each node u.

Given a k-bit string o, we use 2[log, k] bits of the auxiliary string y(u) at
node u to position two commas at two indexes ¢ and j in o so that to get
o = (0',0"”,0") where |o'| + |0”| + |0"'| = k. In essence, Algorithm CsSs is
aiming at testing all pairs (z(u), z(u)) with |z(u)| + |2(u)] < k at every node
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u € V(G). This is achieved by enumerating all binary strings s(u) = (04, tu, ju)
of length k + 2[log, k| bits at every node u € V(G), where z(u) is expected
to be the sub-string of s(u) from index 1 to 4,, and z(u) is expected to be the
sub-string of s(u) from index i, + 1 to j,. For a given n-dimensional vector
5 = (s(u))yev(e) whose every entry is a (k + 2[log, k1)-bit string, Algorithm
Csss tests whether the verifier v accepts s, that is, whether s(u) is accepted
at every node u. If one node rejects s, then €SSS proceeds with another vector.
Instead, if all nodes accept s, then an appropriate pair s = (x, z) has been found,
satisfying (G, id, (x, 2)) € T. Indeed, by the definition of proof-labeling scheme,
for an z such that (G, id,z) ¢ T, the verifier cannot be fooled by any distributed
certificate z.

Hence, our problem boils down to enumerating and testing all n-dimensional
vectors of ¢-bit strings, with ¢ = k+2[log, k], in a silent self-stabilizing manner.
Algorithm csss uses the k-bit proof-labeling scheme (p,v) as a black box. It
proceeds with enumerating all vectors, and testing them. (Note that g need
not be constant, but may be a function of n. Thus, to derive the actual value
of ¢, Algorithm €sss may also need to compute n). For enumerating and testing
all n-dimensional vectors of ¢-bit strings, ¢sss builds up a spanning tree T' of
the network, and labels the nodes of T from 1 to n according to some DFS
traversal of T'. Each n-dimensional vector s of g-bit strings is viewed as a non
negative integer s = $,5,_1...5281 on qn bits where s; are the ¢ bits handled
by the node with DFS number i. To test all vectors, Algorithm csss actually
successively considers all integers from 0 to 2™¢ — 1, and, for each of them, tests
whether the verifier accepts or reject, until it eventually accepts.

The skeleton of Algorithm csss is displayed in Algorithm 1.

Algorithm 1. Skeleton of Algorithm csss
: construct a spanning tree 7" of G, and let r be its root
label the nodes from 1 to n according to some DF'S traversal of T starting from r
for every i = 1,...,n, set s; = 0 at node labeled 7
while verifier v rejects s = spSn—1...51 do
update s to s + 1
end while

Instruction 1 can be implemented by the silent algorithm in [11] using reg-
isters on O(logn) bits. (Alternatively, one can also use the recent simple tree
construction algorithm in [6]). The setting of the DFS labeling of the nodes in
the resulting tree T in Instruction 2 can be implemented by having every node v
computing the size |T,,| of the subtree T, of T rooted at v. This can be done by
a convergecast operation from the leaves to the root. Silentness is here achieved
by having every node v verifying that |T,| = 3, c () |Tul Where ch(v) denotes
the children of v in T', and verifying that the DFS numbers of its children are
correct. The verification in Instruction 4 is performed by applying the verifier v
bottom-up, along the tree T. If one descendent of a node v rejects, then v must
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reject. The root eventually accepts or rejects. If the root rejects, Instruction 5
is performed. That is, the root triggers the update of the current value of the
string s. The root has DFS number 1, and holds s;. If adding 1 to s; generates
a carry, then this carry is propagated to the node with DFS number 2, which
performs s < so + 1. And so on. In general if the node v; with DFS number 4
generates a carry when updating s; to s; + 1, then this carry is propagated to
the node v;41 with DFS number i + 1 as follows. If v;11 is a child of v;, this is
immediate. Instead, if v;41 is not a child of v;, then the carry must be “routed”
to v;+1. However, routing in 7' can be easily implemented thanks to the DFS
numbering of T'.

Of course, there are several implementation details to fix, in particular for
avoiding overlappings between the update phases, and the verification phases.
Nevertheless, fixing these details does not offer any conceptual challenges.

Note that the implementation of Algorithm CSSs can me made under an unfair
scheduler because the algorithm proceeds by bottom-up waves of updates, or by
executing a “sequential” addition, where nodes perform one after the other,
respecting the DFS ordering.

Eventually, the verifier will accept at all nodes, and Algorithm CSss becomes
quiet, until some fault eventually occurs. a

Algorithm csss described in the proof of Theorem 2 is very compact, but may
stabilize in an exponential number of rounds. In the next section, we address the
issue of designing fast silent self-stabilizing algorithms.

4 A Fast Universal Silent Self-stabilizing Algorithm

Having in mind that every task with k-bits output size in m-node networks
has a proof-labeling scheme using certificates on O(n? + kn) bits, an immediate
corollary of Theorem 2 is that, for every task 7 with k-bits output size in n-node
networks, there exists a silent self-stabilizing algorithm solving 7 with register of
O(n?+kn) bits. Interestingly enough, since the certificates of the aforementioned
proof-labeling scheme are easily computable, one can even bound the number of
rounds of the algorithm. This is our second main result:

Theorem 3. For every task T with output on at most k bits at every node of
n-node networks, there exists a silent self-stabilizing algorithm solving T and
converging in O(n) rounds, with register-space complexity O(n? + kn) bits.

Proof. Let T be a task with k-bits output size in n-node networks. We describe
a silent self-stabilizing algorithm Fsss, for Fast Silent Self-Stabilization, solving
T in O(n) rounds, using registers of at most O(n? + kn) bits in n-node networks.

It is known [3,14,15] that any task 7 with k-bits output size in n-node net-
works has a proof-labeling scheme (p,v) using certificates on O(n? + kn) bits.
Specifically, in an n-node graph G with identity assignment id, the certificate at
each node u assigned by p consists in the following:
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— an n X n adjacency matrix M of G, and

— an array X with n entries, X[i] = (id;, x;) for i = 1,...,n, where id; is the
identity of the node corresponding to the ith row and ¢th column in M, and
x; is the output of that node.

The verifier v acts as follows. Every node checks that the certificates are locally
consistent (i.e., in particular, that the neighbors have identities and outputs
such as specified in the certificate). Whenever a node notices some inconsis-
tencies, it rejects. Otherwise, it carries on the verification by checking whether
(G,id,z) € T. Note that every node is aware of the triple (G, id, ), since all
the required information are available in its certificate (M, X). Thus checking
whether (G, id, z) € T can be done since tasks were defined as a computable sets.

Hence, our problem boils down to construct the certificate (M, X) in a silent
self stabilizing manner. The skeleton of Algorithm csss is displayed in Algo-
rithm 2.

Algorithm 2. Skeleton of Algorithm Fsss

: construct a spanning tree 7" of G, and let r be its root
gather all edges at r along T', and root r assembles (G, id)
root 7 computes z such that (G, id, z) € T, and sets the pair (M, X) accordingly
broadcast (M, X) from r to all nodes along T'
every node u sets (z(u), (M, X)) as its pair (output,certificate)
if verifier v rejects (x, (M, X)) then
reset
end if

Again, Instruction 1 can be implemented by any of the silent algorithms
in [6,11], both using registers on O(logn) bits. All gatherings and broadcasts
(cf. Instruction 2 and 4) can be implemented by convergecast and divergecast
operations, under an unfair scheduler. The computation of = in Instruction 3
can be done since tasks are computable. a

Note that, in the statement of Theorem 3, we only refer to the size of the
public registers, but do not intend to reflect the space complexity (in the usual
sense of computational complexity theory) required to perform “internal” indi-
vidual computations. Obviously, in order for the proof of Theorem 3 to apply, we
must allow each process to use arbitrarily large private memory for performing
arbitrarily complex computations, e.g., for computing x such that (G, id,z) € T,
as well as for deciding whether (G, id,z) € T given any x.

5 Discussion and Open Problem

On the one hand, our “compact” algorithm €ssS is optimizing the size of the
registers, and is in fact almost as compact as the most compact proof-labeling
scheme for each considered task. It uses registers on O(¢ 4 logn) bits in n-node
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networks, with a lower bound of £2(¢) bits, where £ is the minimum size of a proof-
labeling scheme for the task. On the down side, Csss suffers from an exponential
number of rounds, even in the case in which it is built upon a proof-labeling
scheme of constant size. As it was already mentioned in the introduction of this
paper, there exist many tasks (e.g., spanning tree construction, leader election,
MST construction, etc.) for which space-efficient and time-efficient silent self-
stabilizing algorithms do exist. However, each of these algorithms is tuned and
optimized for one specific task. Instead, our algorithm is generic, and applies to
all tasks. It may thus not be surprising that one has to pay for this generality.

On the other hand, our “fast” algorithm FSss performs in a linear number of
rounds, but it uses registers on O(n?+nk) bits, where k is the size of the output.
Hence, for some tasks, like the aforementioned ones, the size of the registers used
by algorithm Fsss is much larger than the size of the registers used by dedicated
algorithms. However, it is known [15] that there are tasks requiring certificates
on 2(n? + nk) bits for every proof-labeling scheme, and this holds even if the
interpretation of the individual decision by the verifier is relaxed compared to
the logical conjunction interpretation of proof-labeling schemes [3]. Therefore,
the space-complexity of Algorithm Fsss is actually optimal, from a worst-case
analysis perspective.

Open problem. Does there exist a universal compact and fast silent self-stabilizing
algorithm?

In particular, for tasks with proof-labeling schemes of size at most £ bits, we
question the existence of a universal silent self-stabilizing algorithm converging
in poly(n) number of rounds, with registers of O(¢) + o(n? + kn) bits, where k
is the size of the output.
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Abstract. The robustness of pull-based streaming systems to node fail-
ure and churn has been extensively analyzed. Their resistance to sabo-
tage, however, is not well understood, so far. Recent measurement studies
on a large deployed pull-based system have discovered stable source-to-
peer paths and the convergence of the content dissemination to rather
static topologies over time. Thus, an attack on central nodes within these
static topologies, which causes serious service disruptions, is feasible.
This paper demonstrates attacks that significantly reduce the system’s
performance. As a countermeasure, we introduce a novel striping scheme,
which decreases the dependencies between peers and thus the impact of
attacks. A thorough simulation study indicates that our scheme achieves
a high resistance against sabotage attacks at negligible overhead and
performance penalties.

Keywords: Resilience, pull-based P2P streaming, DoS attacks.

1 Introduction

Peer-to-Peer (P2P) streaming has been becoming a viable solution to distribute
live streaming content over the Internet. Systems following this paradigm incor-
porate peers in the content distribution and make use of their upload bandwidth.
Therefore, the provision for server resources is reduced and the service scales with
an increasing number of users.

Most popular P2P streaming systems in practical deployment, e.g., PPLive!
and Sopcast?, can be classified as pull-based. In such systems [5,8] the stream is
divided into equally sized chunks and peers download and forward those chunks
between each other. This requires that each peer establishes and maintains part-
nership with other peers via bidirectional connections. This results in an unstruc-
tured and randomized mesh overlay. Peers inform others about the chunks that
are downloaded and stored in the video buffers via Buffer Maps (BMs). A BM is
a signaling packet containing an array of binary-valued elements that indicates
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chunk availability. After receiving BMs from its partners, a peer needs to decide
from which partners it requests which chunks, e.g., via a Rarest-First scheduling
strategy. Hence, a randomized distribution tree is formed implicitly per chunk,
but in case of failures the mesh topology provides redundant connectivity via
alternative source-to-peer paths. Even when one or several partners fail, each
peer can quickly react to failures by downloading the video chunks from other
partners. For this reason, pull-based systems are inherently robust to node churn
and peer failures.

However, measurement studies [6,13] of one of the largest pull-based P2P
streaming systems reveal that peers form different tiers in terms of play-out
lags. The stable tiering effect allows for inferring the flow of the video content
distribution. As stable source-to-peer paths evolve, the topologies established for
subsequent chunks become highly similar. This might not affect the robustness
of these systems to node churn and failures, but is of concern during attacks,
e.g., DDoS attacks, on the most relevant nodes in the content distribution. As
in tree structures the majority of nodes is residing in leaf positions and close
to them, random failures of nodes will affect only few other nodes in average.
However, attacks on nodes in the tier close to the source of the stream will
affect nearly the whole overlay. Trees are robust against random failures, but
not very resilient against attacks that target the most relevant nodes, e.g., nodes
adjacent to the source (so-called head nodes). For this reason, we suggest to
study the total resilience which we define as the robustness to failures as well as
the resistance to attacks. For that, we assume an attacker with global knowledge
that attacks head nodes only. To the best of our knowledge, this paper is the
first that addresses this problem.

Our contributions in this paper are two-fold: (i) First, we demonstrate that
the performance of pull-based systems is significantly affected by practical and
simple attacks. (i) Second, we introduce a striping scheme that enforces diversi-
fication as a countermeasure. Aiming at reducing the direct dependency between
peers, our scheme divides the video stream into several stripes and enforces each
peer to request the stripes from diversified groups of partners. Simulation results
indicate that the striping scheme effectively reduces the maximum and average
chunk miss ratios by 50% and 30% respectively, even with a conservative number
of two stripes.

The remainder of this paper is structured as follow: Section 2 discusses related
work. The striping scheme is described in Section 3. After discussing the results
in Section 4, Section 5 concludes the paper.

2 Related Work

Studies on the resilience of P2P streaming systems mostly address either failure
recovery or the resistance to attacks.

To prevent overlay partitioning, Probabilistic Resilient Multicast (PRM) [1]
allows for redundant connections alongside a single multicast tree. Each peer
can establish additional connections, with a low probability, to a few others and
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forward video chunks to them. It has been shown that the whole system can
maintain a high delivery ratio.

In FatNemo [2] nodes with higher bandwidth are placed closer to the source,
while nodes with lower bandwidth are placed further away. The resulting tree
topology is low and broad. Intuitively, the less number of predecessors a peer
has the more likely the peer can receive a stable video stream.

The above approaches are not resistant to targeted attacks since they intro-
duce relevant nodes that are close to the source. Attacks on them can disrupt
the whole system.

DagStream [10] introduces directed links on top of a mesh overlay. Each peer
separates its mesh partners into parents and children. The peer requests chunks
from its parents and sends chunks upon requests from its children. To optimize
the topology, each peer has a level that is calculated from the ones of its parents.
The farther the peer is from the source, the higher its level is. To avoid loops, a
peer has to find a parent whose levels are lower than its level. This way of ordering
peers hinders the collaboration between peers when there is a disruption in the
overlay. Furthermore, the parent selection policies in DagStream prioritize peers
that are close to the source. As a result, many peers might depend on a few
parents. Attacks on those nodes can cause a heavy impact on a large fraction of
peers.

To tackle both problems of node failure and sabotage, systems such as [3,4]
extend the publish-subscribe design and minimize the direct dependency between
any two peers. Each peer has multiple parents. Those forward a fraction of the
whole video stream, so-called a stripe, to their children. Peers are organized
into inner-node disjoint spanning trees, each delivers the chunks in one stripe.
The resilience of those systems was proven theoretically, but they have not been
adopted in a wide real-world deployment.

To summarize the discussion, building a resilient P2P streaming system is an
open question. One promising approach to achieve system’s resilience to both
random failure and targeted attacks is to: (i) leverage the resilience properties of
pull-based systems with the mesh topology and (i) reduce the direct dependency
between peers.

3 Striping Scheme

The tiering effect in pull-based systems allows an outsider to gain information on
the structure of the whole network and to infer the flow of video chunks between
tiers. Attacks by shutting down peers on a certain tier can disrupt the flow of
the video distribution. Furthermore, the damage can be severe when an attacker
targets head nodes, which are the peers adjacent to the source in the overlay
topology.

There are two potential approaches to mitigate the damage caused by at-
tacking head nodes: (i) To decrease the direct dependency between peers by
increasing the connectivity among them, which consequently increases the num-
ber of head nodes; and (i7) To remove the tiering effect completely. We reserve



36 G. Nguyen, M. Fischer, and T. Strufe

the second approach for future work and instead, in this paper, focus on the first
approach which allows us to answer a more urgent question: Assuming that the
structure is revealed, what can we do to mitigate the damaging effect when head
nodes are attacked? We also assume that recovery measures, such as rejoining
upon isolation or disconnection are always available.

Increasing connectivity among the source and peers is challenging due to re-
source constraints and inherent behavior of the pull-based protocol. Without in-
creasing the bandwidth of the source and peers, the straightforward method that
increases their number of partners does not work. Head nodes might gradually
prefer to download chunks directly from the source due to its high availability of
chunks. The higher the number of head nodes, the more likely that they have to
compete with each other for a fixed source bandwidth. This leads to increasing
delay and probably chunk miss since the source cannot response timely to all
chunk requests.

In this section, we present our striping scheme for pull-based P2P streaming
systems that reduces the direct dependency between peers. This scheme miti-
gates the negative effects of attacking on head nodes, which we demonstrate in
Section 4. We begin with the idea of the scheme first. After that, we describe
the design and the specification of the scheme.

3.1 Idea to Enforce Diversification by Out Striping Scheme

Current pull-based protocols do not diversify chunk requests exhaustively, i.e.
peers can steadily download chunks from a few among several partners as long as
they respond reliably. This leads to an implicit yet direct dependency between
peers. To reduce this dependency, each peer needs to download video chunks
from diverse partners. This implies that it needs to send chunk requests to more
diverse partners. Towards this end, each peer enforces itself to request subsets
of the required chunks from different groups of partners.

At this point there are three methods to diversify the requests. (i) In the
first method, each peer alternates between different groups of partners to request
chunks at different scheduling cycles. Over the long run, the average number of
requested chunks per peer is reduced. However, certain peers might, by chance,
receive many chunk requests in a short period. Consequently, local overloading
might happen, which affects the overall chunk dissemination. (i) The second
method is to split the needed set of chunks by their play-out deadlines, from most
to least urgent. On-time delivery of the most urgent chunks is more critical since
there might not be enough time to request them again in the next scheduling
cycles. When the peer requests the most urgent chunks from a subset of partners
that is not reliable, the urgent chunks might not be delivered on time. This leads
to more missed chunks. (#4) The third method is to divide the video stream in
an interleaved manner into stripes. This way, diversification is achieved while
avoiding the drawbacks of the above two methods.

Subsequently to dividing chunks into stripes, each peer needs to locally sep-
arate its partners into different groups. There are two methods: (i) In the first
method, the grouping is based on partners’ identities, e.g., the IP addresses.
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This partner grouping is inflexible because it depends highly on the fluctua-
tion of the partner list. A group might not have partners with certain identities
among the peer’s available partners. (i) In the second method, each peer as-
signs its partners into different logical groups, regardless of partners’ identities.
Fluctuation of partners in each group can be quickly compensated by adjusting
partners among the groups or even by reassigning.

We summarize our idea to enforce diversification as follows:

1. The video stream is divided into stripes.

2. Each peer logically forms separate groups of partners.

3. FEach peer enforces itself to request a certain stripe from a certain group of
partners

By doing that, the chunk downloading demand to a peer from its partners
can be efficiently reduced. In conventional pull-based systems, a peer with m
partners can, in principal, receive chunk requests of m times the streaming rate
in the worst case. However, the demand for each peer with striping is reduced
by a factor of k, the number of stripes, when the number of partners is fixed.

Consequently, the diversification enforcement allows a peer to have more part-
ners, given the same upload bandwidth. Thus, the peer has more source-to-peer
paths and at the same time avoids overloading itself. More importantly, the
source can significantly increase its number of partners, or the number of head
nodes, with the same upload bandwidth. The critical connectivity between the
source and the peers is therefore enhanced, thus, potentially strengthens the
resilience of the system against both failures and attacks.

In the coming section, we elaborate the idea of diversification enforcement
into the design of the striping scheme.

3.2 Design of the Striping Scheme

Following the high-level sketch discussed in Section 3.1, this section details the
design of the striping scheme. This includes the division of the video stream into
stripes and the assignment of partners to different groups.

First, a stripe ¢ consists of chunks whose sequence numbers equal to i mod k.
Second, partners of a peer are assigned to k groups, each contains a subset of
the partner list. This way, a peer requests chunks of the stripe i from partners of
the group ¢. Figure 1 illustrates the design of our scheme for a generic peer. In
this example, the video stream is divided into three stripes. Accordingly, seven
partners are assigned to three groups.

The assignment of partners to groups has to satisfy several constraints. (7)
First, every group has at least one partner to ensure the existence of chunk
providers for the respective stripe. (ii) Second, all partners should be assigned
to groups since partners that are not assigned to any group are not considered
in requesting chunks. (éii) Third, the difference in the number of partners of
any two groups should be minimized. Otherwise, chunks in the stripe whose
respective group has very few partners have a lower chance to be requested and
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Fig. 1. An example of grouping and striping: partners in each group receives requests
for chunks of the respective stripe

delivered successfully. (iv) Lastly, the assignment should minimize the difference
between the number of groups assigned to each partner. Assigning a partner to
several groups increases its chance to be requested more frequently, which might
overloads it. We formulate the above assignment problem as follows.

Given the set of partners P = {p1, ..., pm } and the set of groups G = {¢1, .., g }
and let a;; € {0,1} (1 <4 < kand 1 < j < m) denotes the assignment of partner
pj to group g;, where a;; = 1 if group g; has partner p; and a;; = 0 otherwise.
Define NP = ZT:1 a;; as the total number of partners assigned to group g;, and

N JG = Zle ai; as the total number of groups to which partner p; is assigned.
Consequently, the problem of assigning partners to groups is to find a;; such

that:

kK m
z = minimize Z Z aij (1)

i=1 j=1
st. Y ag>1, i=1.k (2)
j=1
k
Zaij >1, j=1.m (3)
=1

argmax{z a;;} — argmin{z a;} <1 (4)
% =1 7 =1

k k
argmaX{Z ai;} — argmin{z a;;} <1 (5)
Ia= =

In this formulation, the objective function in (1) is to minimize the total num-
ber of assignments of partners to groups. The constraints in (2) & (3) ensure
that every partner is assigned to groups and every group has partners. The con-
straints in (4) & (5) are used to prevent groups from having too many partners
and assigning a partner to many groups.
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With the Round-Robin assignment of partners to groups, we achieve the op-
timal solution [14] with min{Zle Z;"Zl ai; } = max(k,m).

Determining Parameters. Following the above design, in this section, we
discuss the constraints for the two system parameters introduced in the design
of the striping scheme.

The first parameter is the number of stripes k. Its value is constrained by the
number of requested chunks C' in each scheduling cycle which is asymptotically
proportional to the streaming rate (in chunks per second) and the scheduling
interval. When k > C', over-striping happens, i.e. one or more stripes contain no
chunks. Consequently, there are groups of partners that are redundant for chunk
request. The striping in this case is not efficient. At the other extreme, when
k = 1, all partners are in the same group. The striping scheme operates simi-
larly to a conventional pull-based system. The second parameter is the number
of partners m. When m is too small, diversification is eventually limited be-
cause there are a few options for each chunks request. When m is too large, the
necessary communication overhead can overload the system.

In the coming section, we refine the design of the striping scheme with speci-
fications to integrate it into conventional pull-based systems.

3.3 Specification

Integrating the striping scheme into current pull-based protocols requires a few
modification. At the source, the number of partners scales up with the number of
stripes k. At each peer, the chunk scheduling operation does not search exhaus-
tively available chunks from all partners. Instead, for a chunk with the sequence
number s, the peer only considers partners in the group s mod k. Additionally,
the assignment of partners to groups needs to be adapted when there are up-
dates on the partner list. The adjustment should be fast to react promptly to the
dynamics of peers to minimize the computational cost. The simple Round-Robin
assignment introduces little computational cost. Even with a naive implemen-
tation when partners are re-assigned upon each update of the partner list, the
cost would be negligible.

In the next section, we integrate the striping scheme with Round-Robin as-
signment into DONet — a conventional pull-based protocol and evaluate its per-
formance.

4 Evaluation

In this section, the proposed striping scheme for pull-based systems is evaluated
with respect to its provided resilience against attacks on head nodes. In addition,
the efficiency of the proposed scheme is evaluated in detail. The evaluation aims
at answering the following three questions:

1. What damage does attacking head mnodes cause to the performance of the
conventional pull-based systems?



40 G. Nguyen, M. Fischer, and T. Strufe

2. What resilience against the head mode attacks is provided by our striping
scheme?

3. What trade-offs in terms of signaling overhead does the striping scheme in-
troduce?

To answer the above questions, we need to identify metrics to quantify the
performance of the streaming system and an accurate simulation model with
realistic settings. Their in-depth discussions are presented next.

4.1 Metrics

In live streaming, timely delivery of video chunks is critical to ensure that the
video stream can be played out smoothly. Therefore, each video chunk has its
own play-out deadline for decoding. When a chunk arrives after its deadline it
is considered missing. A missed chunk causes the video player to either stall or
skip the chunk. In the former case, the smooth video play-out is not achieved.
In the later case, the visual display of the video is impaired. Both cases reduce
the perceived quality of the decoded video.

There are several methods to estimate the quality of a streaming system.
Among them, the amount of missed chunks is one useful indicator because it
tells how properly the system is working. It is also convenient since the cal-
culation is straight-forward. The disadvantage of this method is that it hardly
reflects the quality of experience (QoE) from users’ perspective. To better quan-
tify system’s performance as perceived by users, studies in the literature [7] use
QoE metrics, such as the Peak Signal-to-Noise Ratio (PSNR) which compares
the decoded video at end users with the original one. However, this method has
several drawbacks: First, calculating this metric is costly since it requires a con-
siderable CPU power to decode the video. Second, the calculation depends on
the video codec types and the benchmark video. It is therefore difficult to make
general statements on the performance of a protocol.

From the above discussion, we select chunk miss to quantify system’s perfor-
mance for simplicity and flexibility. Specifically, we define the chunk miss ratio as
the fraction of chunks that missed their play-out deadline divided by all chunks
that should be played out. Note that the ratio is complementary to the Con-
tinuity Index that is commonly used in the literature. The chunk miss ratio is
favored in this paper because it is more intuitive to quantify the damages caused
by the attackers to the system’s performance.

Furthermore, to comprehend the effects to the system after being attacked,
we introduce three additional micro metrics to look at chunk miss ratio from
three different perspectives:

— Average Miss Ratio which is the average miss ratio over a significant
period of time after the attack.

— Maximum Miss Ratio which is the maximum instantaneous chunk miss
ratio per second. It estimates the upper limit of damage that the attacks can
cause to the system.
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— Per-chunk Miss Ratio which is the fraction of peers missing a certain
chunk. The metric quantifies how significantly missing a specific chunk can
affect the system.

One immediate concern over the striping scheme is its signaling overhead. Due
to an increased size of the partner list, additional overhead arises as (i) each peer
sends more chunk requests to its partners and (i) peers exchange more BMs with
each other. Subsequently, we introduce the Signaling Overhead Ratio metric,
which is the fraction of the volume coming from signaling packets divided by the
total volume of both video and signaling packets.

4.2 Simulation Model

Simulation framework: To evaluate the resilience of pull-based P2P streaming
against attacks, we developed OSSim, our generic simulation framework for P2P
streaming, which is built on top of OMNeT++3. The framework allows packet-
level simulations of different classes of P2P streaming systems. Its source code,
including the one used in this study, is available online .

Representative pull-based P2P streaming system: Using the OSSim framework we
developed DONet [16] — a popular deployed pull-based system in the literature.
We select DONet as the benchmark system due to several reasons. (i) First, the
design and protocol description of DONet is described in detail, which supports
a verifiable implementation of the system in simulation. (i) Second, its Rarest-
First chunk scheduling strategy produces comparable performance to the state-
of-the-art algorithms [17]. (44) Third, the simulation model of DONet is also
validated in our previous study [11].

Underlying networks: To emulate the characteristics of the underlying Internet,
we used the GT-ITM [15] topology generator to generate a transit-stub core
network consisting out of 20 core and 400 edge routers that are inter-connected
by 1212 links. In particular, we use the following parameters for the topology
generator: diameter 14, node degree 2.843, and path length 6.231. The latencies
in the links connecting the routers are uniformly distributed in the range [1, 60]
ms. Peers are randomly attached to the 400 edge routers at the beginning of
each simulation.

Workload: We use a synthetic churn model from a measurement study in [12],
in which the authors analyze traces from a popular live program over a period
of 90 days. From this model, the distributions of inter-arrival times of users and
session durations are Pareto and Lognormal respectively. Specifically, we use
a = 2.52 and b = 0.35 for the Pareto distribution and p = 1.44 and A = 5.19
for the Lognormal one. In addition, we allow leaving peers to rejoin the system
after a random period, to maintain a rather stable peer population.

3 http://omnetpp.org
4 http://www.p2p.tu-darmstadt.de/research/ossim
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Attack strategy: We assume that the strength of the attacker is represented by a
budget (A). This tells the maximum number of head nodes the attackers can shut
down simultaneously or in a relatively short period. We assume that the head
nodes can be identified. For example, the attackers can apply a similar technique
which was introduced in [6]. The implementation of such technique is, however,
beyond the scope of this study. Given a list of head nodes, the attacker randomly
selects nodes to shut down simultaneously. The attacker stops attacking when
either all head nodes are shut down or the number of selected head nodes reaches
its budget.

Parameters: In all experiments, the following parameters are used unless other-
wise stated. The streaming rate is 400 kbps. Each video buffer stores up to 30
seconds of video chunks whose sizes are 2500 Bytes. A peer starts playing out
video chunks when the downloaded chunks are equivalent to around six seconds.
We simulate one source and 1000 peers. The upload bandwidth of the source and
peers are 8 Mbps and 800 kbps respectively. Even though it is not realistic to
assume that all peers have the same, it is reasonable as we are only interested in
the resilience of pull-based systems against attacks. Using an homogeneous peer
bandwidth eliminates the impact of the peers’ characteristics in the results. The
simulation duration is 1200 seconds. In the first 500 seconds, no data is collected
to avoid unstable system behavior. We repeat each simulation setting at least
35 times.

4.3 Results

In the following, we summarize our main simulation findings and describe the
effects of attacking head nodes first. Afterwards, we present a comparison of the
striping scheme to a conventional protocol — DONet. Finally, we investigate the
tradeoff of the striping scheme in terms of signaling overhead.

Effects of Attacking Head Nodes: In the following, we answer the ques-
tion: What damage does attacking head nodes cause to the performance of the
conventional pull-based systems?

In this experiment, the maximum number of partners of the peers and the
source was eight and ten respectively. To perform the attack, all of the ten head
nodes which are the partners of the source were shut down simultaneously at the
900" second, after the system has reached its steady-state. The instantaneous
chunk miss ratio per second were plotted in dependence on time.

Figure 2 presents chunk miss ratio for DONet under the attack. For clarity,
the figure includes only the relevant period after the attacks. It can be seen that,
during the first 20 seconds, the chunk miss ratio remains as low as 1% . In the
next 20 seconds, the miss ratio increases dramatically to reach its maximum of
almost 35%. It then reduces quickly and remain low since the 960*" second.

Intuitively, the results have agreed with expectation on the behavior of pull-
based protocols and can be explained as follows: Head nodes serve as intermedi-
ate sources of video chunks for the rest of the peers. When they are shut down,
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Fig. 2. Instantaneous chunk miss ratio of Fig. 3. Chunk miss ratio of DONet versus
DONet versus time, after attacking all ten sequence number of chunks, after attacking
head nodes all ten head nodes

their partners cannot request chunks from them. However, chunk missing does
not occur immediately after the attack, because the peers have large buffers.
Chunk missing might start from the peers connecting to the head nodes previ-
ously. It then spreads to other peers that locate further away from the source.
Chunk missing reduces when the connections between the source and the peers
are established again.

To estimate more precisely the impact of missed chunks to the system’s perfor-
mance we recorded the sequence number of all missed chunks and calculate the
chunk miss ratio per chunk’s sequence number. The results are plotted in Figure
3. The figure shows that the chunk miss ratio increases sharply from around
1% to a maximum of 55% in accordance with an increase in sequence number
from around 18000 to 18100. It diminishes steadily for subsequent chunks and
remains low for sequence numbers greater than 18500.

The spread of missed chunks to a significant fraction of peers as shown in
Figure 3 indicates the strong and negative impact to the system’s performance.
A certain chunk can be more important than others, depending on whether it
carries an intra-coded (I), a predictive-coded (P) or a bidirectionally predictive-
coded (B) frame. A successfully decoded I-frame is required to decode the P-
frames and B-frames in the same Group of Picture (GoP). Losing an I frame,
therefore, fails the decoding of the GoP, which leads to a perceptible picture
degradation at users. More severely, given the small number of head nodes a
malicious party can periodically trigger attacks. Perceived quality by users in
this case can be further degraded.

Comparing the Striping Scheme with a Conventional Protocol: The
second question we studied was: What resilience against the head node attacks
1s provided by our striping scheme?

In this experiment, we compare the effect of attacking head nodes on the
conventional DONet (k = 1) versus the adapted one with striping (k = 2,3,4).
The number of partners of the source and peers in the striping scheme scales
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with the number of stripes. The attacker budget in terms of the number of nodes
that is attacked varies between 5 and 60. Maximum chunk miss ratio and average
chunk miss ratio over a period of 60 seconds have been recorded and plotted.
We expect that the impact of attacks with the same budget is stronger in the
conventional DONet than in the striping scheme. Since the number of head nodes
in DONet is less than in the striping scheme, the same number of attacked head
nodes reduces a larger portion of the number of connections for distributing
video chunks from the source to the peers. Consequently, chunk miss ratio in

DONet is larger than in the striping scheme.
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Fig. 4. Comparing the conventional DONet (k = 1) to the adapted one with Striping
(k= 2,3,4) in terms of maximum chunk miss ratio after attacks

Figure 4 plots maximum chunk miss ratio of DONet and the striping scheme
in dependence on the attacker budget. The results agree with our expectation.
First, it can be observed that when more stripes are applied, the attacker needs
significantly larger budget to achieve the same damage to the system. The miss
ratios reach their maxima when the attacker budget equals to the number of head
nodes, at least. Second, it is also shown that even a conservative diversification
with two stripes can reduce the maximum chunk miss ratio by around 50%.

To comprehend better the effect of attacks on the system, we plot in Figure

5 the average chunk miss ratio over a period of 60 seconds after attacks in
dependence on the attacker budget. The figure compares the conventional DONet
(k = 1) versus the adapted one with striping (k = 2, 3,4). As seen from the figure,
the striping scheme reduces the maximum of the average chunk miss ratio from
30% to 50% when the number of stripes varies from two to four. Additionally,
the attacker budget has to increase proportionally to the number of stripes to
maximize the damage.

One unanticipated but interesting finding in Figures 4 and 5 was that the
striping scheme effectively reduced the maximum damage even when all head
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Fig. 5. Comparing the conventional DONet (k = 1) to the adapted one with Striping
(k= 2,3,4) in terms of average chunk miss ratio over 60 seconds after attacks

nodes are attacked. Note that in all experiments we applied the same process and
parameters for recovering a node from isolation. The finding can be explained
by two reasons: (i) The striping scheme disseminates chunks better due to the
diversification enforcement. When chunks are requested in small numbers from
diverse partners, they can be quickly downloaded. Consequently, chunk avail-
ability in the whole network is improved. (i7) The increased number of partners
that each peer has also allows it to connect to partners that have its required
chunks with a higher probability.

Trade-off of the Striping Scheme. In this section, we studied the tradeoff
of the striping scheme in terms of signaling overhead when there is no attacks.
We varied the number of stripes from two to nine. We expect that the striping
scheme produces more signaling overhead since each peer has more partners. The
exchanged BMs are increased subsequently. Furthermore, each peer probably
sends more chunk requests per scheduling cycle because the peer should diversify
the requests to different partners.

Figure 6 shows the signaling overhead in dependence on the number of stripes.
In this figure, the lower horizontal line represents the average signaling overhead
of DONet. As expected, the overhead increases steadily with an increasing num-
ber of stripes. Specifically, for each additional stripe, the signaling overhead
increases by around one percent. The total signaling overhead is less than 10%
when the number of stripes equals to four, which significantly reduces damages
caused by attacks. Note that a significant portion of the total signaling overhead
would stem from exchanging BMs. This overhead, however, can be strongly re-
duced by techniques such as one described in [9].
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5 Conclusion

In this paper, we investigated how attacks on head nodes affect pull-based P2P
streaming systems. Results demonstrate that conventional pull-based streaming
systems exhibit serious vulnerabilities to these rather simple attacks.

Subsequently, we introduced a striping scheme as a countermeasure against
such attacks. The scheme enforces peers to request separate sets of chunks from
diverse groups of partners. Simulation results reveal that the striping scheme
effectively reduces both the maximum and average chunk miss ratios by 50%
and 30% respectively. The scheme is light-weight and can be integrated easily
to current pull-based systems with minimum modifications.

This study opens several interesting research questions that we would like
to conduct. We plan to investigate the effect of the striping scheme on different
chunk scheduling algorithms as well as the impact of varying partner assignment
algorithms in our future work.
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Abstract. A fundamental problem for peer-to-peer systems is to maintain con-
nectivity while nodes are leaving, i.e., the nodes requesting to leave the peer-to-
peer system are excluded from the overlay network without affecting its connec-
tivity. There are a number of studies for safe node exclusion if the overlay is in a
well-defined state initially. Surprisingly, the problem is not formally studied yet
for the case in which the overlay network is in an arbitrary initial state, i.e., when
looking for a self-stabilizing solution for excluding leaving nodes. We study this
problem in two variants: the Finite Departure Problem (FDP) and the Finite
Sleep Problem (FSP). In the FDP the leaving nodes have to irrevocably decide
when it is safe to leave the network, whereas in the FSP, this leaving decision
does not have to be final: the nodes may resume computation if necessary. We
show that there is no self-stabilizing distributed algorithm for the 7 DP, even
in a synchronous message passing model. To allow a solution, we introduce an
oracle called NZDEC and show that it is sufficient even for the asynchronous
message passing model by proposing an algorithm that can solve the /" DP using
NTIDEC. We also show that a solution to the FSP does not require an oracle.

1 Introduction

Peer-to-peer systems allow computers to interact and share resources without the need
for a central server or centralized authority. This ability to self-organize makes peer-to-
peer systems very popular. Since participation in such systems is usually voluntary, the
peers may arrive and depart at any time. A peer may even leave the network without
notice. Therefore, maintaining a connected overlay network is a challenging task. Many
strategies help to alleviate this problem. They include using an overlay network with a
high expansion or separating the peers into more reliable super-peers forming an overlay
network on behalf of the other peers that just connect to one or more super-peers. While
these strategies may work well in practice, rigorous research on when it is safe to leave
the network is still in its infancy. The goal of this paper is to lay the foundation for a
rigorous treatment of node departures in the context of self-stabilization. In fact, we are
the first to provide answers to the question:

Is it possible to design a distributed algorithm that allows any collection of nodes to
eventually leave a network from any initial state without losing connectivity?

Self-stabilization makes the above question non-trivial. A self-stabilizing algorithm
recovers from an arbitrary initial state. Hence, a self-stabilizing node departure algo-
rithm has to handle the states where the departing node is about to leave and may dis-
connect the network.

P. Felber and V. Garg (Eds.): SSS 2014, LNCS 8756, pp. 48-62, 2014.
(© Springer International Publishing Switzerland 2014
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1.1 System Model

We consider a distributed system consisting of a fixed set of processes with fixed identi-
fiers, IDs for short, that are globally ordered. We refer to processes and their identifiers
interchangeably. The system is controlled by an algorithm that specifies the variables
and actions that are available in each process. In addition to the algorithm-based vari-
ables there is a process-based variable called channel whose values are sets of messages.
The channel message capacity is unbounded, and messages will never get lost. We as-
sume non-FIFO message delivery, fair-message receipt and point-to-point communica-
tions (multi-cast and broadcast primitives are not considered). We treat all messages
sent to a process p as belonging to a single incoming channel C,,. Each process has a
read-only boolean variable called leaving. If this variable is true, the process is leaving;
the process is staying otherwise.

The format of an action is (label) : (guard) — (command). label is a name
to differentiate actions. guard either detects the presence of a particular message type
in the incoming channel, or it is a predicate over local variables. We call an action
whose guard is simply true a timeout action. command is a sequence of statements that
assigns new values to process variables or sends messages to other processes. Two other
possible statements are exit and sleep. If a process executes exit it enters a designated
exit state. Such a process is gone. If a process executes sleep, it enters the sleep state.
Such a process is asleep. If a process is neither gone nor asleep, it is called awake.

The system state is an assignment of a value to every variable of each process and
messages to each channel. An action in some process p is enabled in some system state
if its guard evaluates to true in this state and p is awake, or its guard detects the presence
of a particular message type in C, and p is not gone. If in the latter case p is asleep,
p becomes awake again, i.e., it leaves its sleep state. The action is disabled otherwise.
Hence, while a gone process will never wake up again, an asleep process may wake up
again when receiving an appropriate message.

A computation is an infinite fair sequence of states such that for each state s;, the
next sate s;11 is obtained by executing an action that is enabled in s;. This disallows
the overlap of action execution. That is, action execution is atomic. We assume two
kinds of fairness of computation: weak fairness of action execution and fair message
receipt. Weak fairness of action execution means that if an action is enabled in all but
finitely many states of the computation in which its process is awake, then this action is
executed infinitely often. Hence, unless a process is gone or permanently asleep (i.e., it
never wakes up again) at some point, its timeout action is executed infinitely often.

Fair message receipt means that if the computation contains a state where there is
a message M in a channel C), that enables at least one action in p, then there is also a
later state in which either p is gone or M is not present in C,, i.e., one of these actions
is executed with M by p. Besides these fairness assumptions, we place no bounds on
message propagation delay or relative process execution speeds, i.e. we consider fully
asynchronous computations.

A computation suffix is a sequence of computation states past a particular state of
this computation. In other words, the suffix of the computation is obtained by removing
the initial state and finitely many subsequent states. Note that a computation suffix is
also a computation.
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We consider algorithms that do not manipulate the internals of process identifiers.
Specifically, an algorithm is copy-store-send if the only operations that it executes on
process IDs is copying them, storing them in local process memory and sending them
in a message. That is, operations on IDs such as addition, radix computation, hashing,
etc. are not used. In a copy-store-send algorithm, if a process does not store an ID in
its local memory, the process may learn of this ID only by receiving it in a message. A
copy-store-send algorithm cannot introduce new IDs to the system. It can only operate
on the IDs that are already there.

1.2 Problem Statement

An algorithm is self-stabilizing if it satisfies the following two properties. Convergence:
starting from an arbitrary system state, the algorithm is guaranteed to arrive at a legiti-
mate state. Closure: starting from a legitimate state the algorithm remains in legitimate
states thereafter. A self-stabilizing algorithm is thus able to recover from transient faults
regardless of their nature. Moreover, a self-stabilizing algorithm does not have to be ini-
tialized as it eventually starts to behave correctly regardless of its initial state.

Before we define a legitimate state for the problems considered in this paper, we
restrict the set of initial states to exclude trivially useless states. For this we first need
some notation.

A (directed) link is a pair of identifiers (a,b) that is defined as follows: either a
message carrying identifier b is in the incoming channel of process a, or process a
stores identifier b in its local memory. We say that process a points to b or has a link to
b. When we describe a link, we always state the pointing process first. The links form a
directed process (multi-)graph PG. A (weakly) connected component in some directed
graph G is a subgraph of G of maximum size so that for any two nodes u and v in that
subgraph there is a (not necessarily) directed path from u to v. Two nodes that are not
in the same weakly connected component are disconnected. A process p is hibernating
if p is asleep and C}, is empty and all processes ¢ that have a directed path to p in PG
are also asleep and have an empty C,.

Proposition 1. For any copy-store-send algorithm and any system state of the algo-
rithm in which process p is hibernating, p is permanently asleep.

Proof. Let PG(p) be the subgraph containing all processes ¢ with a directed path to p.
A process ¢ in PG(p) can only be woken up by a message, but such a message must
arrive from a process ¢’ outside of PG(p). Hence, a link (¢, ¢) in PG is required. Since
such a link does not exist, the proposition follows. O

Also initially gone processes are useless as they will never perform any computation.
Hence, we assume that the initial state only consists of non-gone and non-hibernating
processes. We also restrict the initial state to contain only messages that can trigger
an action since the others will be ignored. Finally, we do not allow the presence of
identifiers that do not belong to a process in the system. Their handling requires fail-
ure/presence detectors which is beyond the scope of this paper. From now on, an initial
system state will always satisfy all of these constraints.
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A system state is legitimate if (i) every staying process is awake, (ii) every leaving
process is either hibernating or gone, and (iii) for each weakly connected component
of the initial process graph, the staying processes in that component still form a weakly
connected component. Now we are ready to formally state our two problems.

Finite Departure Problem (FDP): eventually reach a legitimate state for the case that
only the exit command is available.

Finite Sleep Problem (FSP): eventually reach a legitimate state for the case that only
the sleep command is available.

A self-stabilizing solution for these problems must be able to solve these from any
initial state and to satisfy the closure property afterwards. Notice that (i) and (ii) can
trivially be maintained in a legitimate state, so for the closure property one just needs
to ensure that (iii) is also maintained.

In the following, a process is called relevant if it is neither gone nor hibernating.
Otherwise we call it irrelevant. A process p can safely leave a system if the removal of
p and its incident edges from PG does not disconnect any relevant processes. As we
will see later, there is no distributed algorithm within our model that can decide when
it is safe for a process p to leave the system. Hence, we need oracles.

1.3 Oracles

An oracle O is a predicate that depends on the system state and the process calling it.
In the context of the F/'DP, an oracle is supposed to advise a leaving process when it
is safe to leave the network, so we restrict our attention to algorithms that only allow
a leaving process to call exit if the oracle is true for it. Such an algorithm is also said
to rely on the oracle. Moreover, we restrict our attention to oracles that only depend
on the current process graph of the relevant processes and the calling process, i.e., the
oracles are of the form O: PG x P — {true,false} where PG is the set of process
graphs and P is the set of processes. For example, we may define oracle EXZT to be
true for some process u if u can safely leave the system. Certainly, this oracle needs
global information and is therefore expensive to implement. So we are focusing on local
oracles. To define these oracles we need to introduce additional notation.

Alink (v, w) in PG with v # w is relevant for some process v if u = w and v is not
gone, or it is implied by a message in C,, carrying the ID of w (i.e., u = v). Otherwise,
the link is irrelevant for u. Note that the links implied by process IDs stored in u are
also irrelevant (meaning that u does not have to learn about them since it already knows
them).

An oracle O is id-sensitive for some process  if its output depends on links relevant
for u. An oracle O is strictly id-sensitive if for every process u the oracle’s output only
depends on the links relevant for u. Hence, the oracle ignores irrelevant links. Note that
an action that changes the system state without affecting relevant links also does not
affect the output of a strictly id-sensitive oracle. Naturally, a strictly id-sensitive oracle
is also (regularly) id-sensitive. An oracle is id-insensitive if it is not id-sensitive. That
is, the output of an id-insensitive oracle does not depend on the links relevant for the
process.
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We define the following strictly id-sensitive oracles. Oracle NZD (no identifiers)
evaluates to true if the system does not contain an identifier of u in v or C, for some
relevant process v # u. Oracle £C (empty channel) evaluates to true for a particular
process u if the incoming channel of u is empty. Oracle N ZDEC is a conjunction of
NZID and EC. Thatis, NIDEC evaluates to true if both NZD and £C evaluate to true.
Note that NZDEC is less powerful than A'ZD and £C used jointly since the algorithm
using N'ZDEC is not able to differentiate between the conditions separately reported by
NZID and EC. Oracle ONESID evaluates to true for a process u if u shares relevant
links with at most one relevant process.

Within a class of oracles C, an oracle O is necessary for the FDP if for every
algorithm A relying on an oracle O’C with O’(s,u) =true while O(s, u) =false for
some system state s and process u, A cannot be a self-stabilizing solution to the FDP.

1.4 Our Contribution

First, we show that without an id-sensitive oracle there is no self-stabilizing solution
for the 7" DP within our model. Afterwards we show that among all id-sensitive oracles
ONESID is necessary to solve the FDP. On the other hand, we prove that NZDEC
is sufficient to solve the F'D'P by providing a self-stabilizing algorithm for the FDP
relying on NZDEC.

Problem FSP, in contrast to the FDP, does not require the processes to irrevocably
exit the system. This will allow us to design a self-stabilizing algorithm for the FSP
that does not need any oracle.

1.5 Related Work

The difficulty of the Finite Departure Problem resembles that of fault-tolerant agree-
ment in distributed systems. Fault-tolerant agreement is studied in the context of the
famous Consensus Problem. It is shown [17] that the problem is not solvable in an
asynchronous system even if only a single process may crash, which implies that there
is no self-stabilizing solution for the Consensus Problem. This impossibility is circum-
vented through the use of specialized oracles known as failure detectors [12].

Due to the popularity of peer-to-peer networks, the research literature on this sub-
ject is extensive [2,3,4,9,19,26,29,30,34]. While departure algorithms are proposed in
these papers, none are self-stabilizing. In fact, a rigorous treatment of when it is safe
to leave the system is not yet attempted. Cases in which the rate of churn is limited
are already considered [1,20,25]. Kuhn et al [1,20,25] handle this limitation by or-
ganizing the nodes into cliques of ©(logn) size that they call super-nodes. Hayes et
al. [20] handle limited churn with a topological repair strategy called Forgiving Graph.
For the case that the nodes have a sufficient amount of time to react, Saia et al. [31]
propose a network maintenance algorithm called DASH to repair the network result-
ing from an arbitrary number of deletions. Limited churn is studied in the context of
adversarial nodes [5,6,32]. While there is no work on self-stabilizing node departures,
several self-stabilizing peer-to-peer algorithms are proposed [10,11,13,14,21,22,27,24].
The studied topologies range from a simple line and ring [33,18], to skip lists and skip
graphs [27,22], expanders [16], the Delaunay graph [23], hypertree [15], and Chord [7].
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Also a universal algorithm for topological self-stabilization is known [8]. However,
none of these provide any means to exclude nodes that want to leave the network.

2 Basic Properties of the FDP

In this section we show that the 7 DP requires an id-sensitive oracle. Moreover, if only
strictly id-sensitive oracles are considered, then ONESZD is necessary. The below
proposition is a restatement of the results obtained in [27,28]. Intuitively it says that
once disconnected, the system may not be able to reconnect again.

Proposition 2. [27,28] If a computation of a copy-store-send algorithm starts in a state
where two processes u and v are disconnected in PG, u and v remain disconnected in
PG in every state of this computation.

Theorem 1. Any self-stabilizing solution to the FDP has to rely on an id-sensitive
oracle.

Proof. Assume that algorithm A is a self-stabilizing solution to the FDP that relies
on an id-insensitive oracle 0. We consider the following counter example. Consider
a system of at least three processes. The computation of A starts in a state where all
processes but one, process v, are weakly connected. Hence, by Proposition 2, v remains
disconnected from the system for the rest of the computation. Among the connected
processes, v is leaving. Since A is a solution to the ZDP, the computation will eventu-
ally reach a state s; in which w calls exit in some action A enabled in s;. See Figure 1
for an illustration.
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Fig. 1. Illustration for the proof of Theorem 1

We take s; and construct another state sy where there is a message carrying the ID
of v in the incoming channel of process u. In s, all processes of the system are weakly
connected. Observe that the process graphs PG for state s; and PG», for state so differ
only by the new, relevant link (u, v). Since O is id-insensitive, both the state of v and the
output of O for u are the same for s; and so. Hence, action A is also enabled in u, and
it may execute in the same way in s» as in s1, which implies that v may call exit. This
disconnects v from the rest of the system. By Proposition 2, v remains disconnected
from the system for the rest of the computation.

Hence, contrary to our initial assumption, A is not a self-stabilizing solution to the
FDP. A similar argument applies to the case in which process v or C,, holds an iden-
tifier of w. O

Theorem 1 immediately implies the following corollary.
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Corollary 1. A self-stabilizing solution to the F'DP is impossible without an oracle.

Interestingly, the impossibility even holds in a synchronous communication model.
Consider the model in which each round consists of two stages: in stage 1, every process
receives all messages from the previous round, and in stage 2, every process executes
any number of its enabled actions. Let us transform the state s; in the proof of Theo-
rem 1 into a state so in which v has a link to w. If this is the state of the initial round, u
cannot receive a message from v in that round, since there was no prior round, so u still
executes the exit statement. Hence, the system gets disconnected. We now address the
strict id-sensitivity property of oracles.

Lemma 1. If a self-stabilizing solution to the FDP relies on a strictly id-sensitive
oracle, then this oracle evaluates to true only if a process has relevant links with at
most one relevant process.

Proof. Assume there exists an algorithm A that is a self-stabilizing solution to the
FDP which uses a strictly id-sensitive oracle O such that there exists a state s; where
the oracle evaluates to true for some leaving process u while it shares relevant links
with at least two staying processes v and w. That is, either u has an identifier of v or w
in its incoming channel or «’s identifier is in the memory of v or w or their respective
incoming channels. We construct state so by removing all links from w except for the
links to u. Since O is strictly id-sensitive, this does not change the output of O. Notice
that in so, process w is disconnected from the system except for the links to u.

Let us now consider a computation o of A where u is leaving. Since A is a solution
to the /DP, u should eventually reach a state s3 in ¢ in which it executes the exit
statement in some enabled action A. Since A relies on O, O must be true in this case.

We construct a system state s4 where the state of u is the same as in s3 while the
state of the rest of the system is the same as in ss. Since this does not change the links
relevant for u compared to s2, this does not change the output of O compared to s3. On
the other hand, the local state of « and the output of O for u is the same in s4 as in s3.
Hence, action A must be enabled in sy, and it may execute in the same way in s4 as in
s3, which implies that v may call exit. This, however, disconnects process w from the
rest of the staying processes. According to Proposition 2, w remains disconnected from
the system for the rest of the computation. Thus, contrary to the initial assumption, A
is not a self-stabilizing solution to the FDP. O

Lemma 1 leads to the following theorem.

Theorem 2. Among all strictly id-sensitive oracles, the oracle ON' ESTD is necessary
to obtain a self-stabilizing solution to the FDP.

Since NIDEC is true only if ONESTD is true, NIDEC is a potential candidate for
solving the /DP problem, and the next section demonstrates that it is indeed sufficient.

3 Solution for the #DP

In this section we present a self-stabilizing algorithm called SD.A that solves the Finite
Departure Problem with the help of N ZDEC. We focus on the case that PG consists of
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a single weakly connected component. However, the results transfer to PG being split
up into multiple components. The algorithm is shown in Figure 2.

For ease of exposition, we write that identifier q is to the right of identifier p if
q > p and to the left of p if ¢ < p. In algorithm SD.A, to maintain connectivity, each
process p contains variables left and right that store process IDs that are less than
resp. greater than p. If left or right does not contain an identifier, it contains —oo or
+oo respectively. To ensure a safe process departure, SD.A uses the NIDEC oracle.

Algorithm SDA uses two message types: intro and reverse. Message intro carries a
single process ID and serves as a way to introduce processes to one another. Message
reverse does not carry an ID. Instead, this message carries a boolean value denoted as
revright or revleft. This message is a request for the receiving process to remove the
respective left or right ID from its memory and send its own ID back.

We now describe the actions of the algorithm. Some of the actions contain message
sending statements involving IDs stored in the left and right variables. If the variable
contains oo, the sending action is skipped. To simplify the presentation of the algo-
rithm, this is omitted in Figure 2.

The algorithm has three actions. The first action, called timeout, periodically intro-
duces the process to its neighbors unless it is leaving. If the process is leaving, it sends
messages to its neighbors requesting them to remove its ID from their memory. If ad-
ditionally the N'ZDEC oracle signals that it is safe to leave, the process introduces its
neighbors to each other to preserve system connectivity and then exits by executing the
exit statement. The second action is infroduce. It receives and handles infro messages
received by a node. The operation of this action depends on the relation between the
ID carried by the message and the IDs stored in left and right. The process either for-
wards intro(id) to its left or right neighbor to handle it; or, if ¢d happens to be closer to
p than left or right, then p replaces the respective neighbor and instead introduces the
old neighbor identifier to ¢d. The third action, reverse, handles the neighbors’ requests
to leave, i.e. the rev messages received by a node. If p receives this message, it sets the
respective variable to 4-co or to —oo and, to preserve system connectivity, sends its own
ID to this process. To break symmetry, if p itself is leaving, it ignores the request from
its left neighbor.

3.1 Correctness Proof

For SDA to be a self-stabilizing solution to the FDP it remains to show two properties.
Safety: SDA never disconnects any relevant processes. Liveness: All leaving processes
eventually exit the system.

Lemma 2. If a computation of SDA starts in a state where the graph PG of the non-
gone processes is weakly connected, the graph PG of the non-gone processes remains
weakly connected in every state of this computation.

Proof. We demonstrate the correctness of the lemma by showing that none of the ac-
tions of SDA disconnects PG. Action timeout only adds links to PG if NIDEC is
false and cannot disconnect it in this case. If NZDEC is true, PG does not contain
links pointing to p and the only outgoing links are (p, left) and (p, right). If p is con-
nected to the rest of PG by at most one link (i.e., le ft or right does not store an ID),
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constant
variables

messages

actions
timeout:

introduce:

reverse:

p : process identifier

leaving : boolean, read only, true when p wants to leave

left : process ID less than p, —oo if undefined

right : process ID greater than p, +oo if undefined

p.C': channel of incoming messages of process p

intro(id), introduces process identifier

rev(direction), requests recipient to reverse edge
direction is revleft or revright

true —
if not leaving then
send intro(p) to left,
send intro(p) to right
else //leaving
send rev(revleft) to right
send rev(revright) to left
* if NIDEC then
if left £ —oo and right # +oc then
send intro(left) to right
send intro(right) to left
o exit
intro € p.C' —
receive intro(id)
if id < left then
send intro(id) to left
if left < id < p then
send intro(left) to id
left :=id
if p < id < right then
send intro(right) to id
right := id
if right < i¢d then
send intro(id) to right
rev € p.C —
receive rev(direction)
if direction = revleft then
if not leaving then
send intro(p) to left
left := —o0
else // direction is revright
send intro(p) to right
right := 400

Fig. 2. Algorithm SDA for process p. SS.A is obtained by omitting the line marked with * (i.e.
the use of NZDEC) and replacing the line indicated with ** (i.e. the exit command) by the sleep

command
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the departure does not disconnect PG. If both le ft and right store an ID, the leaving
of p does not disconnect PG because p sends intro(left) to right and intro(right)
to le ft and thereby preserves weak connectivity between the remaining processes.

Let us consider introduce. If the received id is the same as p or as left or right, the
message is ignored. However, this does not disconnect PG. Let us consider the case
of id < p. The case of id > p is similar. There are two sub-cases to address. In case
id < left, p sends intro(id) to left. That is, in PG, the link (p, id) is replaced with
(left,id). Since p stores the recipient identifier in left, i.e. PG has a link (id, left), the
graph connectivity is preserved. The other case is left < id < p. In this case, p replaces
left with id and forwards the old value to id. That is, the links (p, id) and (p, left) are
replaced by (p, id) and (id, left). This replacement preserves PG connectivity.

The rev message received by a reverse action may force p to set either right or left
to infinity thus removing a link from PG. Let us consider the case of right being set to
+00, the other case is similar. This operation removes (p, right) from PG. However,
reverse sends a message intro(p) to right. That is, it replaces the link (p, right) with
(right, p), so weak connectivity of PG is preserved. g

The liveness part of the correctness proof is more involved. Due to the way IDs
are handled by SDA, the development of a link can be traced over the course of the
computation. Recall that a link (p, ¢) is associated with an ID of ¢ stored in p or a
message in C). The actions of SD.A may transform (p, ¢) into a different link (p’, ¢).
Only the following cases can occur:

1. The introduce action stores q in left or right or drops the ¢ since it is equal to p,
left or right. In both cases, we stay with the link (p, q).

2. The introduce action may delegate the ID of ¢ to some process p’: then (p,q)
changes to (p’, ). Note that whenever this happens, p’ € [p, ¢].

3. The reverse action reverses the link (p, ¢) to (¢, p). Note that whenever this hap-
pens, p is staying or p is leaving and p < q.

The changes (i.e., cases 2 and 3) to a link (p, q) over time form a sequence of links
(p,q) = (po,q0), (P1,q1), (P2, q2), . . . that we call the frace of (p, q). The cases listed
above imply the following Monotonicity lemma.

Lemma 3. (Monotonicity) For every (p', q') in the trace of (p,q), p’, ¢’ € [p,q].

This and the fact that we have a finite number of processes may seem to imply that
every trace is finite, but for now we cannot exclude the case that a link is reversed
infinitely often between two processes. It will only be implied later when we know that
eventually all leaving processes will exit the system.

Consider an arbitrary fixed computation of SD.A. A link that does not change any
more is called stable. A steady chain of processes i, . .., g is a sequence of leaving
and not yet gone processes of increasing order with stable links (z;,z;—1). A steady
chain is maximal if it cannot be extended to the left or right. See Figure 3 for an illus-
tration. Note that at every state of the computation, every leaving process is part of at
least one maximal steady chain (which might just be a chain consisting of itself). Also,
the following holds:
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Fig. 3. [llustration of a steady chain

Lemma 4. A maximal steady chain can only change in two ways: either (1) process xj,
exits the system, or (2) the chain is extended to the left or right due to new stable edges.

Since the number of processes is finite, this means that eventually a maximal steady
chain is stable, i.e., it does not change any more for the rest of the computation. We call
this a stable chain. Now, we can prove the following lemma.

Lemma 5. In every computation of SDA, the only stable chain is the empty chain.

Proof. Consider the contrary that we have a non-empty stable chain zy, ..., zq. Our
goal will be to prove that eventually there is no incoming link from non-gone processes
in PG to xj. This implies that eventually z; has no more messages to process, SO
NZIDEC will eventually be true. Therefore, 75 can exit the system, which contradicts
our assumption that the chain is stable.

First, suppose there is an incoming link (p, zx) with p < . If there is a reversal
in the trace of that link, then we end up with a link (z,p") with p < p’ < xy. If this
causes xy to delegate p’ away, then due to the Monotonicity Lemma that link will never
include xj again. Otherwise, xj stores p’ in left, and since a leaving process never
reverses its link to left, ;. either eventually delegates p’ away, which will mean that the
link never includes x) again, or 5, holds on to that link, which means that (z,p’) can
never become an incoming link to x; again. So suppose that there is no reversal in the
trace of (p, xi ). Then its trace is finite, which means that eventually it becomes a stable
link (p’, 1, ). We will argue via two cases that this cannot happen.

(1a) If p/ is staying, then p’ will eventually introduce itself to x. This will create a
new edge (zx,p’) in PG. If this link is not delegated by x, z; will eventually ask p’ to
reverse its link to xy, which it will do, but this contradicts the assumption that (p’, z)
is stable. If z;, delegates (zx,p’), then we keep track of that link until we get to a link
(z,p’) that gets reversed or is stable. In the former case, p’ delegates x, to x, and in the
latter case, p’ also either delegates x, to x or reverses (p’, x ), depending on whether x
is staying or leaving. Hence, in any case, (p’, xy) is not be stable, a contradiction.

(1b) If p/ is leaving, then we distinguish between two cases. If zy, is not aware of p/,
then the chain can be extended to p’ because (p’, xy) is stable, which contradicts our
assumption to have a stable chain. If x;, is aware of p/, then xj, will eventually ask p’
to reverse its right edge, which will cause the link (p’, z) to be reversed which again
contradicts our assumption that (p’, z;,) is stable.

Next, consider the case that there is an incoming link (p, ) with p > xj. If thereis a
reversal in the trace of that link, we end up with a link (x, p) with z, < p’ < p.If this
causes z, to delegate p’ away, then due to the Monotonicity Lemma the trace of that link
will never include xj, again. Otherwise, it must hold that xy, < p’ < xp_1.Ifp’ = 211,
the edge becomes stable, and otherwise, z, delegates x_1 to p’, which contradicts the
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assumption that (xy, zx—1) is stable. So in any case this link will eventually not be an
incoming link to x; any more. Thus, suppose that there is no reversal in the trace of
(p, xi). Then its trace is finite, which means that eventually it becomes a stable link
(p', x1,). We will again argue via two cases that this cannot happen.

(2a) If p’ is staying, then p’ eventually introduces itself of xy. If zp < p’ < zp_1,
then xj, delegates xj_1 away, contradicting our assumption that (x, xx—1) is stable. If
p’ > x_1, then similar arguments as for case (1a) above will show that (p’, zx) is not
stable, also contradicting our assumption.

(2b) If p’ is leaving, p’ will eventually ask xj, to reverse its right edge, which it will
do, contradicting our assumption that (x, xx—1) is stable.

Moreover, xj, never creates an incoming link to itself since this occurs only if re-
quested to reverse (z, Zx—1), but since (zy,zr—1) is stable, this does not happen.
Hence, eventually x;, has no incoming link, which completes the proof. O

Lemmas 2 and 5 lead to the following theorem.

Theorem 3. Algorithm SDA and the NITDEC oracle provide a self-stabilizing solu-
tion to the FDP.

4 Solution for the FSP

We can overcome the use of oracles by changing to the Finite Sleep Problem. Algorithm
SS A, which solves this problem, is almost identical to SD.A shown in Figure 2. The
only differences are that no oracle is checked and that the sleep command is used instead
of exit.

For the correctness proof of SS.A, we show that the safety and liveness properties
hold. We first define and prove the conditions that must prevail for a process to remain
permanently asleep.

Lemma 6. In the SSA algorithm, a process p is permanently asleep if and only if p is
hibernating.

Proof. The backwards direction (if p is hibernating then p is permanently asleep) di-
rectly follows from Proposition 1. So it remains to prove the other direction.

Suppose that there is a process ¢ that has a directed path along the processes ¢y =
4,41,---,q¢ = ptop and q is either not asleep, or C; is non-empty. Without loss of
generality, we may assume that for all other processes ¢; with i > 1, C, is empty.
Hence, for all ¢ > 1, g;4 is initially stored in ¢;. Since g is either awake and knows ¢,
or C, contains a message with ¢1, ¢ is guaranteed to eventually process the link (g, ¢1)
by either calling the timeout (which may contact q;), introduce (which may contact or
delegate q;), or reverse action (which may contact gy ). If ¢; gets delegated, the receiving
process is also guaranteed to process ¢;. We continue the trace of (g, 1) in this case
until we reach a process ¢’ where ¢ is not delegated any more. This must eventually
happen since the number of processes is finite. Hence, ¢; is eventually contacted, which
will wake up ¢;. Since ¢; initially stores g2, ¢1 is therefore also guaranteed to eventually
process the link (g1,¢2). The same arguments as for ¢; then guarantee that also go
eventually processes the link (g2, ¢3). Hence, by induction, eventually p is woken up,
which completes the proof. O
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The lemma implies that given our initial state satisfies the conditions in Section 1.2,
no process will initially be permanently asleep. Additionally, the following lemma
holds, where we use N'ZDEC as a predicate and not an oracle.

Lemma 7. For any process p that calls the sleep command in timeout it holds that p is
hibernating afterwards if and only if NTDEC(p) is true.

Proof. It NITDEC(p) is true, then no relevant process has a directed path to p, and
there are no more messages in C),, which means that p is hibernating.

On the other hand, if p is hibernating, then there is no directed path from a relevant
node to p and no message in Cp, which means that NZDEC(p) is true. O

Now we are ready to prove the following lemma.

Lemma 8. If a computation of SDA starts in a state where the graph PG of the non-
hibernating processes is weakly connected, the graph PG of the non-hibernating pro-
cesses remains weakly connected in every state of this computation.

Proof. We know from Lemma 2 that none of the actions of SS.4 disconnects the graph
PG of the non-exited processes. Thus, as long as no process falls asleep after an action
(which can only happen if a leaving process calls timeout), the lemma holds. Suppose
now that a leaving process p calls timeout. Our first goal is to show that no other process
can become hibernating in this case. Consider any process g 7 p that is non-hibernating
and that has a directed path from p. We distinguish between two cases.

(1) If the directed path from p to g leads through a process ¢’ stored in a message
in C}, then p cannot become hibernating and therefore ¢ cannot become hibernating as
well.

(2) If the directed path from p to ¢ leads though left or right of p, then ¢ cannot
become hibernating because p will contact le ft and right in timeout.

Hence, only p can potentially become hibernating. However, due to Lemma 7, this
happens only if NZDEC(p) is true. Since we know from Lemma 2 that in this case
p may even exit the system without causing a disconnection, we can also allow p to
hibernate without risking disconnection from the non-hibernating processes. O

Lemmas 6 and 8 imply safety. So it remains to prove liveness. Notice that due to
Lemma 7, a process p calling sleep is permanently asleep if and only if NZDEC(p) is
true. Hence, the liveness proof follows along the same lines as the liveness proof of
SDA, which implies the following theorem.

Theorem 4. SSA provides a self-stabilizing solution to the FSP.

5 Conclusion

In this paper, we showed that among the strictly id-sensitive oracles, ONESTD is
necessary for a solution to the FDP. We also showed that a more restrictive oracle,
NIDEC, is sufficient by presenting an algorithm that solves the FDP using NZDEC.
Note that there cannot be a more restrictive strictly id-sensitive oracle than NZDEC
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since NIDEC(p) is only true if there is no relevant link left for p. On the other hand,
it would be interesting to find out whether ONESTD is also sufficient for the FDP
since it would allow nodes to leave earlier than N'ZDEC.

Observe that the SD.A algorithm, besides solving the FDP, also organizes the stay-

ing processes in a sorted list. It would be interesting to consider building more complex
and robust topologies such as the skip list or skip graph [13,27,24].

It would also be interesting to study the power of individual components of NZDEC:

NZID and EC. Specifically, we would like to determine the extent of the states from
which the algorithm using only one of the components may recover.

References

1.

98]

12.

13.

14.

15.

16.

Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable peer-to-peer systems withstanding
dynamic adversarial churn. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Sys-
tems: Software, Computing, Networks. LNCS, vol. 4028, pp. 275-294. Springer, Heidelberg
(2006)

. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In:

SOSP, pp. 131-145. ACM, New York (2001)

. Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37 (2007)
. Awerbuch, B., Scheideler, C.: The hyperring: A low-congestion deterministic data structure

for distributed environments. In: SODA, pp. 318-327. Society for Industrial and Applied
Mathematics, Philadelphia (2004)

. Awerbuch, B., Scheideler, C.: Towards scalable and robust overlay networks. In: IPTPS

(2007)

. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput. Syst. 45(2),

234-260 (2009)

. Benter, M., Divband, M., Kniesburges, S., Koutsopoulos, A., Graffi, K.: Ca-re-chord: A

churn resistant self-stabilizing chord overlay network. In: NetSys, pp. 27-34 (2013)

. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the

transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS,
vol. 6976, pp. 62-76. Springer, Heidelberg (2011)

. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: A dynamic over-

lay network for routing, data management, and multicasting. In: SPAA, pp. 170-179. ACM,
New York (2004)

. Bianchi, S., Datta, A., Felber, P., Gradinariu, M.: Stabilizing peer-to-peer spatial filters. In:

ICDCS, p. 27. IEEE Computer Society, Washington, DC (2007)

. Caron, E., Desprez, F., Petit, F., Tedeschi, C.: Snap-stabilizing prefix tree for peer-to-peer

systems. Parallel Processing Letters 20(1), 15-30 (2010)

Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J.
ACM 43(2), 225-267 (1996)

Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list
and skip graph. Theor. Comput. Sci. 428, 18-35 (2012)

Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant overlay net-
work. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343—
357. Springer, Heidelberg (2007)

Dolev, S., Kat, R.I.: Hypertree for self-stabilizing peer-to-peer systems. In: NCA, pp. 25-32
(2004)

Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput. Pro-
gram. 78(5), 544-555 (2013)



62

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

D. Foreback et al.

. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one

faulty process. J. ACM 32(2), 374-382 (1985)

Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Tdubig, H.: Time complexity of
distributed topological self-stabilization: The case of graph linearization. In: Lépez-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 294-305. Springer, Heidelberg (2010)

Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable over-
lay network with practical locality properties. In: USENIX Symposium on Internet Tech-
nologies and Systems (2003)

Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: A distributed data structure for low
stretch under adversarial attack. Distributed Computing 25(4), 261-278 (2012)

Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief announcement: Self-
stabilizing spanning tree algorithm for large scale systems. In: Datta, A.K., Gradinariu, M.
(eds.) SSS 2006. LNCS, vol. 4280, pp. 574-575. Springer, Heidelberg (2006)

Jacob, R., Richa, A., Scheideler, C., Schmid, S., Tdubig, H.: A distributed polylogarithmic
time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131-140 (2009)

Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological
self-stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457,
137-148 (2012)

Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: A self-stabilizing chord overlay
network. In: SPAA, pp. 235-244 (2011)

Kuhn, E., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-to-peer sys-
tems. Distributed Computing 22(4), 249-267 (2010)

Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the
butterfly. In: PODC, pp. 183-192. ACM, New York (2002)

Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A stabilizing deterministic message-
passing skip list. In: Défago, X., Petit, E., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
356-370. Springer, Heidelberg (2011)

Nor, R.M., Nesterenko, M., Tixeuil, S.: Linearizing peer-to-peer systems with oracles. Tech-
nical Report TR-KSU-CS-2012-02, Dept. of Computer Science, Kent State University (July
2012)

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161-172. ACM, New York (2001)

Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218,
pp- 329-350. Springer, Heidelberg (2001)

Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In:
IPDPS, pp. 1-12 (2008)

Scheideler, C.: How to spread adversarial nodes?: rotate. In: STOC, pp. 704—713 (2005)
Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In: Peer-to-
Peer Computing, pp. 39-46 (2005)

Stoica, 1., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrish-
nan, H.: Chord: A scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM
Trans. Netw. 11(1), 17-32 (2003)



CloudSylla: Detecting Suspicious
System Calls in the Cloud

Marc Kiihrer, Johannes Hoffmann, and Thorsten Holz

Horst Gortz Institute for IT-Security, Ruhr-University Bochum, Germany
{firstname.lastname}@ruhr-uni-bochum.de

Abstract. To protect computer systems against the tremendous num-
ber of daily malware threats, security software is typically installed on
individual end hosts and the responsibility to keep this software updated
is often assigned to (inexperienced) users. A critical drawback of this
strategy, especially in enterprise networks, is that a single unprotected
client system might lead to severe attacks such as industrial espionage. To
overcome this problem, a potential approach is to move the responsibility
to utilize the latest detection mechanisms to a centralized, continuously
maintained network service to identify suspicious behavior on end hosts
and perform adequate actions once a client invokes malicious activities.
In this paper, we propose a security approach called CloudSylla (Cloud-
based SYscaLL Analysis) in which we utilize a centralized network ser-
vice to analyze the clients’ activities directly at the API and system call
level. This enables, among other advantages, a centralized management
of signatures and a unified security policy. To evaluate the applicability
of our approach, we implemented prototypes for desktop computers and
mobile devices and found this approach to be applicable in practice as
no substantial limitations of usability are caused on the client side.

1 Introduction

Malicious software needs to invoke API, respectively, system calls to cause sub-
stantial damage, thus monitoring these calls is a promising approach for detect-
ing suspicious activities [1,2]. Consequently, this technique is often adopted by
security and malware protection services, which are typically deployed locally
on end hosts. The drawback of this strategy is that each client is responsible for
keeping its security software updated in short-time intervals to also detect latest
zero-day attacks. When the software is not updated on a regular basis, the host
might somehow get infected with malware. Especially in large-scale networks,
this is a severe problem since an infected client machine might be used as an
entrance point for more substantial attacks such as industrial espionage.

A reasonable approach is to move the identification of malicious activities to
a centralized and more powerful network service. In the past, several approaches
were proposed [3-5], in which the actual analysis process is performed in the
Cloud. The clients are then no longer required to keep their detection mecha-
nisms updated continuously, reducing the amount of required computing power
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on end hosts significantly—particularly important for mobile devices with lim-
ited power capabilities. Nevertheless, all these approaches operate on a rather
coarse-grained level, e.g., CloudAV [3] only analyzes whether executables are
detected by antivirus engines which might fail for obfuscated malware. To per-
form a more fine-granular inspection of the clients’ behavior in the Cloud, we
introduce an analysis mechanism that operates directly on API and system calls
invoked on the end hosts. Outsourcing the inspection of these operations to a
Cloud implies several benefits, yet might also induce serious drawbacks. To eval-
uate the applicability of our security mechanism, we implemented prototypes
for desktop computers using Windows and mobile devices using Android and
find our approach to efficiently detect malicious activities on the end hosts by
analyzing invoked API and system calls at a centralized network service.

In summary, this paper makes the following contributions:

— We propose an approach to move the detection of malicious behavior from
individual end hosts to a centralized network service. To perform a fine-
granular inspection of end host activities, we analyze the corresponding API
and system calls in the Cloud to determine if these activities are malicious.

— We implemented prototypes for desktop computers and mobile devices to
monitor and forward invoked API and system calls to the Cloud service.

— In empirical evaluations, we demonstrate the feasibility of our approach.
The typical runtime overhead of our implementation is negligible for already
known applications due to efficient caching mechanisms. New and therefore
unknown applications can still be analyzed in a satisfying amount of time.

2 General Approach

A fine-granular approach to improve the clients’ security, particularly applicable
in enterprise networks with good connectivity and low latency, is to outsource lo-
cal malware detection to a less vulnerable and more powerful Cloud service that
identifies malicious activities by inspecting API and system calls—both referred
to as syscall in the following although we focus on API calls in our Windows
prototype. This Cloud-based strategy reduces the administrative overhead sig-
nificantly, since end hosts are no longer required to maintain local detection
mechanisms and keep signatures updated in short-time intervals. Updating de-
tection mechanisms can be accomplished more easily as changes need to be
performed on the Cloud side only, which enables a unified security policy. This
centralized analysis also enables a correlation of the behavior of all hosts that
send data to the Cloud service, enabling detection mechanisms like BotMiner [6].

To detect malicious activities, we require each end host to forward specific
events at the API and system call level to the Cloud and await approval or denial
to perform these actions locally. More specific, once a syscall is invoked by a client
process, the corresponding syscall arguments (e.g., filenames and URLSs) are
individually looked up in locally stored caching instances, containing information
for trusted, malicious, and analyzed but unsuspicious values. If not cached, the
syscall including the arguments is forwarded to the Cloud. The Cloud first applies
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signatures matching, i.e., probes if the syscall is part of a signature, a sequence of
consecutively invoked syscalls. Afterwards, the individual arguments are checked
against blacklists and looked up at external sources. If no argument is found to
indicate malicious behavior, the syscall is executed on the end host. If malicious
behavior is identified, the end host terminates the malicious application or, more
restrictive, is automatically blocked from accessing critical infrastructure such
as the local network, depending on a specifiable local security policy.

Selecting a reasonable set of syscalls to monitor is a critical but necessary
task to reduce the overall number of analysis requests forwarded to the Cloud.
Monitoring irrelevant syscalls wastes network bandwidth and execution time of
the clients, however, tracking an insufficient set of syscalls might miss impor-
tant activities to detect malicious behavior. Modern operating systems provide
a large number of syscalls, and in some cases, multiple syscalls perform almost
the same operation (e.g., creating a process). We thus need to find basic syscalls
(e.g., ShellExecuteExW which is called by ShellExecuteA/W/ExA on Windows)
to significantly reduce the number of monitored syscalls. We also have to con-
sider the frequency at which specific syscalls are triggered. To give a concrete
example, let us assume we monitor the syscall NtCreateFile. When executing
Office applications we might not experience a large number of new files, how-
ever, executing a web browser presumably increases the quantity of invocations
considerably because of web content being cached. Furthermore, we have to se-
lect the syscalls based on the information they provide. Monitoring syscalls that
solely pass handles or similar memory addresses might not be that effective since
most of these addresses differ on each end host. Yet, intercepting syscalls operat-
ing on executable memory might lead to malicious activities on a client system.
To comply with these restrictions, our approach mainly focuses on API and sys-
tem calls that can be compared to blacklists, signatures, and reports gathered
from automated malware analysis systems such as Anubis [7]. More precisely, we
monitor syscalls providing information such as mutex-, file-, and service names,
file hashes of executables, and IP addresses, domain names, URLs, and network
messages to trace most of the outgoing communication to other end hosts such as
botnet Command & Control (C&C) servers or SMTP servers for spam delivery.

3 Implementation

In this section, we introduce the caching mechanism utilized in our approach
and describe the Cloud-to-client communication protocol. We then focus on the
prototype of the Cloud service and the individual end host implementations.

3.1 Caching

When limiting the set of syscalls to those providing the information mentioned
above, we would still have to handle a vast number of invocations by the client
processes. To achieve a sufficient performance, our approach thus has to adopt
an efficient caching strategy. As a result, the Cloud and the end host prototypes
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implement fast and cost-efficient Bloomfilter [8] caches to store and query already
processed syscall arguments. Each prototype allocates three caching instances for
every type of argument (e.g., filename and URL). Two instances store trusted (T)
and malicious (M) entries, which are gathered from external sources. The third
cache covers entries which are neither trusted nor malicious but were analyzed
by the Cloud before. We name the last category unsuspicious ().

3.2 Communication

The communication between the Cloud and the clients is performed by inter-
changing a custom protocol that keeps the required network usage at a low level.

Notation: A syscall is denoted by its name and one or multiple arguments,
defined as S := { name, A" }. A syscall argument is represented by A :=
{ type, data, L }. The parameter type denotes the argument type (e.g., filename
or URL), and data contains the actual value of the argument. We define the
label L := M| T |U|TA| ACP | CR , whereas we distinguish between the
categories malicious, trusted, unsuspicious, temporarily approved, approved but
caching prohibited, and caching revoked.

Protocol: As shown in Figure 1, the protocol mainly Cloud _ Client
utilizes five distinct message types. The message client - c;df':izth:::h -
hello is sent by each running and newly executed client 2 server hello
process and includes its command line and the file hash 3

of the corresponding executable. To complete the two- 3 systemaall
way hand-shake, the Cloud service looks up the com- £el
mand line and file hash in its caches and transmits the
server hello message including the analysis result L. 5. systemn call reply
When the process is associated to an already known ma- LA™Y
licious executable, L is defined as malicious and security
measures are applied, defined by the specified security
policies. If the file hash is not cached at the Cloud, the hash value is requested at
external data sources and analysis modules. Depending on the security policies,
the execution of the syscall is either denied or delayed to prioritize the safety of
the end host or temporarily approved by setting the label to 7.4 to avoid a delay
on the client. Once we receive the analysis results from the external modules,
we transmit an updated server hello message including the final label to the
client. Update messages, however, might not be received by a device, e.g., during
offline phases, hence the host could unknowingly perform malicious activities.
We thus implemented fail-over solutions in the individual end host prototypes.

The remaining three messages are exchanged when end hosts forward invoked
syscalls to the Cloud service as discussed in the following.

4. signature match
{ signature name }

Fig. 1. Protocol

3.3 Cloud Implementation

The prototype of our Cloud service is implemented as a light-weight, extensible
Python script and leverages an external database containing data from malware
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analysis systems and blacklists. We also utilize the third-party services VirusTo-
tal [9] and Google Safebrowsing [10] to obtain details about syscall arguments.

Figure 2 illustrates the process- Cloud
ing stages of the Cloud service o Sorarors v e L) @
once it receives a system call Analysis Modules o o
message from a client process (1). | e ol .
First, the syscall S is compared - o] e
to locally stored signatures, char- l @ e
acterizing malicious behavior and Database —
security policies. As signatures S
may consist of multiple consecu- -
tively executed syscalls, we verify

if the currently processed syscall Fig. 2. Cloud implementation
is part of a signature and whether
additional syscalls are required to match the complete signature. When a com-
plete signature is triggered, we forward the signature match message including
the name of the triggered signature to the client, invoke security measures, and
skip further analyses (2). If no signature is triggered but the syscall was part of
a signature, the labels of all arguments in S are set to approved but caching pro-
hibited (ACP)—unless they are flagged as malicious in the succeeding analysis
steps. When prohibiting caching of these arguments, we require the end hosts
to always forward the corresponding syscalls to the Cloud for repeated analysis.
In step (3), the syscall arguments are extracted from S and then individually
checked against the caches (4). When an argument is not cached, the database
is queried (5). If the query was successful, the result is added to the appropriate
cache and written to the label £ of the argument A (6). If the argument is neither
cached nor stored in the database, we forward the argument (i.e., file hash, URL,
domain, or IP address) to external analysis modules (7) and continue processing
the next arguments. Once an analysis result from an external module is returned
to the Cloud, it is added to the corresponding cache (8). When all arguments of
S are analyzed locally and external modules still process arguments, we either
decline or delay the execution of the syscall to ensure the end hosts’ security or
temporarily approve the syscall (9), similar to the server hello message.

On signature updates, we distribute caching revoked messages for all syscall
arguments in the new signatures. This ensures that these arguments are removed
from the client caches and always forwarded to the Cloud for signature matching.

3.4 Windows Implementation

Our prototype for desktop computers running Windows is split into two com-
ponents, a background service and a syscall hooking library. The service is a
light-weight application running in the background of each client system and
utilizes the madCodeHook framework [11] to inject the library into each running
and every new process. The hooking library is based on a heavily modified ver-
sion of the cuckoomon library utilized by the Cuckoo Sandbox [12] and allocates
a dedicated hook function for each monitored syscall. Once a syscall is invoked
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by a client process, the execution flow is redirected to the respective hook func-
tion, which first performs a look up of the syscall arguments in the locally stored
caches. If not cached at the client, a system call message is sent to the Cloud.
Depending on the results obtained from the caches or the Cloud, the execution
of the native syscall function is then performed or prohibited.

As stated in Section 2, we have to closely select the monitored syscalls to
achieve sufficient performance, thus we limit our monitoring to 29 syscalls and
explain in the following the process how these system calls were chosen. To
discover malware copying or renaming files to hide its presence, we monitor
NtCreateFile and NtFileOpen. Hooking these syscalls, however, might induce
a huge number of invocations, thus we limit the monitoring to two situations.
We monitor NtCreateFile to obtain the filenames of newly created files. Note
that we cannot perform any other investigations as no content is written yet.
We also monitor both syscalls when the file contains a Portable Ezecutable (PE)
header, indicating a Windows executable. As the file paths provided by these
syscalls might include client data such as the user name, we have to pre-process
these paths and normalize user data with predefined values before forwarding
the arguments to the Cloud to enable a comparison across multiple clients. We
further hook syscalls responsible for DNS requests and opening URLs and mon-
itor the socket functions connect, send, and sendto as these syscalls allow us
to closely monitor target IPs and messages sent over the network. To only in-
spect the header data of a transmission, we limit the size of monitored messages
to a minimum of 64 bytes and a maximum of 25% of the message length and
only investigate the very first message sent over each socket. To protect the data
privacy, we operate on hashed values only, thus split the network messages at
specific delimiters, perform cryptographic hash operations on each argument in-
dividually, and look up every hash value in a cache covering malicious message
fragments (e.g., keywords used by malware). As malware often creates distinct
mutex names when probing for an already infected client system and installs
itself as a service using a specific name, we also monitor syscalls related to these
events. To detect and prevent the execution of malware at the earliest possible
time, we trace ShellExecuteExW and CreateProcessInternalW.

To also track malicious activities in offline phases, we implement multiple fail-
over solutions. First, we rely on adjustable security policies such as terminating
the application or prohibiting specific types of syscalls (e.g., network operations)
once uncached syscalls are invoked. Further, the hooking library maintains a
local storage in which invoked syscalls are logged, while we approve or decline
the syscalls depending on the security policies. Once the connection to the Cloud
is restored, the recorded syscall information is replayed. The end host further
logs invoked syscalls once a syscall is temporarily approved until an updated
analysis result is received. To prevent manipulations by malware, we make use
of secure log files [13] in which each entry is part of a cryptographic hash chain to
validate all previous entries. We acknowledge that this solution does not protect
the device against getting infected with malware, yet, the Cloud will block an
infected device once the syscalls resembling the malicious behavior are replayed.
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3.5 Android Implementation

To also evaluate our approach on mobile devices, we developed a prototype for
Android, a middleware running a modified Linux kernel. We split our prototype
into two components, a kernel module and a Java application. The kernel module
is the sensitive part of our implementation since even minor issues can destabi-
lize the entire OS. We thus implemented the syscall hooking in the kernel and
moved less essential components such as caching and the Cloud communication
into the app. Similar to Windows, we implemented hook functions to intercept
syscall invocations. Again, these syscalls were systematically chosen to have only
limited impact while maintaining a good visibility into the behavior of the sys-
tem. To monitor file operations, we trace seven file syscalls (e.g., sys creat and
sys rename). We again monitor the network operations sys connect, sys send,
and sys sendto and shorten the inspected messages. Equally to the Windows
prototype, we also track the execution of new processes, defined by sys execve.
In order to filter syscalls of presumably benign default Android processes, we
implemented a whitelist containing paths of common processes, files, and IP ad-
dresses used for inter-process communication. After whitelisting carefully-chosen
services and filenames such as SensorService and /dev/urandom, we were able
to reduce the noise of syscall invocations considerably.

When a process invokes a monitored syscall, the name and path of the pro-
cess and carefully-selected syscall arguments are checked against the whitelist. If
whitelisted, the syscall is approved and the process execution is resumed imme-
diately, otherwise the syscall is forwarded to the app, which checks if the syscall
arguments are stored in the local caching instances. If not cached, we forward the
syscall to the Cloud. Depending on the results obtained from the caches or the
Cloud, the execution of the native syscall function is performed or prohibited.

Particularly for mobile devices, we cannot rely on a stable network connec-
tivity and have to provide fail-over solutions during offline phases (e.g., loss of
signal). Similarly to the Windows prototype, the app maintains a local storage
in which invoked syscalls are logged using secure log files, while we approve or
decline the syscalls depending on the security policies. Again, this information
is replayed once the connection to the Cloud service is restored.

3.6 Signature Generation

There already exists a large body of work on signature generation based on
syscalls [1, 14, 15], thus we do not focus on that part and stick to a straightfor-
ward way to generate the signatures for the evaluation of our approach. Note
that arbitrary signature generation algorithms can be used. To generate signa-
tures based on invoked syscalls, we execute samples of various malware families
in a virtualized analysis environment and record the invoked syscalls. We then
search for sequences of syscalls that can be found in a certain amount of the
samples using a longest common substring (LCS) algorithm. If a LCS of syscalls
is found, it is known to be characteristic for the specific malware family. We
then apply the Levenshtein distance function to measure the similarity of these
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LCS sequences and their arguments. Matching on syscall arguments, however,
can be problematic as specific types of values are defined by a certain amount
of randomness, e.g., file-, or mutex names. To compensate randomness, we first
compute the LCS using the syscall names only (e.g., NtCreateFile), ignor-
ing any arguments. Afterwards, we combine the syscall names with the set of
arguments that have been observed. To perform signature matching, we again
apply the distance function to detect similarities between signatures and invoked
syscalls. We verified our signatures against benign sample sets as discussed in
the next section to avoid side effects caused by common system operations.

4 Evaluation

We now discuss the results of the performed experiments to verify the applica-
bility and reliability of our approach. The evaluation of our Windows prototype
is conducted on a desktop computer using an Intel i7-2600 CPU with 3 GB of
memory and Windows XP (SP 3)—later versions of Windows, however, can also
be deployed. We chose Windows XP to leverage the analysis reports of vari-
ous automated malware analysis systems such as Anubis, which are mostly still
running Windows XP. The mobile prototype is evaluated on a Samsung Galaxy
Nezus device using Android 4.1.2 and kernel version 3.0.31, utilizing WiFi to con-
nect to the Cloud service. The prototype further supports the official Android
emulator using Android 4.2 and kernel 2.6.29 to perform automated analyses of
Android malware samples. During our evaluation, the network latency between
the desktop computer and the Cloud, directly connected via LAN, resulted in an
average of 0.52 ms, respectively, 11.7 ms between mobile device and the Cloud.

4.1 Caching

We first evaluate the influence of Table 1. Performance impact of caching
caching on the performance of the Native Disabled Cloud Full
individual end host implementa- Test sec.  sec. %  sec. % sec. %

tions. While conducting this ex- windows:
eriment. we disabled external 1000 Files 274 357 130 3.04 111 2.78 101
p ’ . . 2000 Mutexes 0.03 1.17 3,900 0.82 2,733 0.03 100
modules and signature matching 100 Processes 0.52 0.69 133 0.65 125 0.64 123
to only measure the impact of 1000 Sockets 031 0.79 255 0.68 219 0.31 100
our caching implementation and Android:
] . 200 Files 0.20 1.89 945 1.76 880 0.37 185
the Cloud-to-client communica- 7100 Processes 2.55 5.71 224 5.62 220 2.59 102
tion' On the desktop Computer, 200 Sockets 1.06 2.33 220 1.98 187 1.20 113
we perform the following exper-
iment consisting of four different tests: i) we create empty files using unique
filenames, ii) create a substantial number of unique mutexes, iii) repeatedly exe-
cute a dummy application that terminates right after invocation, and iv) allocate
multiple sockets and establish connections to an external host in the local net-
work without transmitting data. We repeat each test ten times and calculate the

average on the measured execution times. To determine the impact of caching,
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we run this experiment four times: i) without injecting our hooking library
(native Windows system), ii) injected library but disabled caches, iii) enabled
caching at the Cloud, iv) enabled caching at the Cloud and the client side. We
perform almost the same experiment on the Galaxy Nexus, except that we skip
Test 2 as Android does not support mutexes. Before starting a test, we flush the
caches to make sure each test run has the same preconditions.

As outlined in Table 1, each individual test lasts considerably longer when
caching is disabled. Enabling the Cloud caches reduces the number of requests
sent to the database as we can rely on already fetched results. Activating the
caches on the client has the largest influence on the execution time since the client
does not interrupt the execution to wait for analysis results from the Cloud. In
fact, full caching improves the performance to a level where the execution times
almost approximate to the results when no syscalls are monitored.

4.2 Windows

Caching has a huge impact on the performance of
our Cloud-based approach, thus we attempt to cache
as many syscall arguments as possible by creating a

Table 2. Cached (C) and
uncached (U) syscalls in-
voked by Windows software

ground truth of trusted arguments, which can be goftware C U Total
used as initial values for the caching instances. To agobe Reader 27 3 30
obtain a ground truth set, we set up a fresh installa- Google Chrome 98 10 108
t £ Wind installed 1 d ft Internet Explorer 62 5 67
ion of Windows, installed commonly used software yililla Firefox 13 0 13
such as browsers, file archivers, and Office software Ms Media Player 15 1 16
. . . Ms Paint 9 1 10

and executed each application for a few minutes. Notepad s 0 3
. Regedit 8 0 8

Software: To determine the number of syscalls that  services.msc 197 0 197
still have to be forwarded to the Cloud when full Skype 43 2 45
N ) Taskmanager 2 0 2
caching is enabled, we enumerate the cached and winzip 26 1 27
uncached syscalls of common software, as depicted o¢a 508 23 531

in Table 2. The software was already installed when

generating the ground truth, thus each program was executed at least once. We
find 508 syscalls cached at the client and 23 syscalls not stored in the caches.
Without caching, we would have to forward 531 syscalls to the Cloud, thus
caching reduces the communication between Cloud and clients significantly. Ex-
ecuting unknown software certainly requires a higher number of requests to the
Cloud on the first execution, however, on second execution, most of these syscalls
presumably are also cached.

Signatures: To evaluate the feasibility of a Cloud-based signature matching,
we leverage the set Spsa covering 1,508 clustered malware samples [16]. This
set includes 13 malware families. To obtain signatures, we apply the algorithm
introduced in Section 3.6 on all samples of each family using a Levenshtein-ratio
of 90%. The signature length (i.e., the number of consecutive syscalls required
by a signature) varies between one and nine syscalls.

To verify the correctness and detection capabilities of the signatures, we ana-
lyzed 234,829 samples randomly taken from the malware analysis service Anubis
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since August 2012 and obtained 18,493,498 syscalls to perform signature match-
ing upon. When comparing our signatures against these syscalls, we find 3,323
signature matches. To verify that all matches hit a malicious executable, we re-
quest analysis results of various malware detection services from VirusTotal. As
stated in Table 3, we find 3,406 Anubis samples to belong to one of the malware
families in Sp;q;, while the remaining samples are associated to other families
not covered by our signature generation set. 2,140 matches (62.8%) are detected
as the exact malware variant as found in Sjp;4; and are therefore considered cor-
rectly identified by our signatures. For 1,027 samples (30.2%), the signatures do
not hit the exact variant of the family as stated in Sjzq;, yet the VirusTotal re-
sults imply that we detected a different variant from the same family. This shows
that our approach has the capability to tolerate differences malware authors pre-
sumably integrate to evade detection by antivirus software. For 156 signature
matches (4.6%), VirusTotal results include different family names than stated
by our signatures. When manually checking the samples, we discovered multiple
Sality samples to be erroneously flagged by the antivirus vendors. Overall, our
signatures correctly identified 97.6% of the malware samples as malicious. The
false negative rate (i.e., the samples that are not detected by our signatures) is at
2.4%, which is mostly caused by the family Spygames. The signature is a single
send call that transmits a partially randomized string. To detect this family we
would have to set the Levenshtein ratio to a value below 50%, however, that
would lead to thousands of false positives for the other signatures. Other mal-
ware families in the set Syrq (e.g., Adultbrowser) are not included in the Anubis
sample set at all, thus we cannot evaluate our signatures for these families.
Samples submitted to a malware ) )
analysis system commonly are of ma- Eagit?}asr’;igl;a;%riI%anci}ll;n\%afiii%}t;hfi
licious character. Yet, according to Family Mismatch, FN = False Negative)
VirusTotal the Anubis data set also

. . (in %)
contains 14,729 unsuspicious samples Fammil ool o BV FM PN
. . . amil amples
of which none is falsely classified to y #Samp
. : Allaple 1,951 993 0.6 00 0.1
be mahCIO}lS by our sngnatures. To  Boeos 33 9.1 364 545 00
further verify that our signatures are Casino 27 0.0 100.0 0.0 0.0
. . Flystudio 38 0.0 105 895 0.0
not'trlggerec'l by benign software, e.g., Magiceasino 1 1000 00 00 00
ordinary Windows software, we per- Poison 54 50.0 20.4 14.8 148
s . . :\ Porndialer 3 00 00 0.0 100.0
form three additional experlments. i) Sality 1230 139 776 77 08
we prepare a system with five web Spygames 60 0.0 0.0 0.0 100.0
browsers (i.e., Mozilla Firefox, Internet  Total 3,406 62.8 302 4.6 2.4

Explorer, Google Chrome, Opera, and

Apple Safari), disable Flash, Java, and JavaScript and visit the Alexa Top 5,000
websites [17] twice with each browser, ii) repeat the experiment in i), whereas
Flash, Java, and JavaScript are enabled, and iii) set up a fresh Windows host and
manually install and execute several types of updates, commonly used software,
and games. In total, 1,058 different applications are executed. While perform-
ing these experiments, we compared the invoked syscalls against our malware
signatures. Overall, 81,256,875 syscalls with 624,125,933 individual arguments
are invoked. As aimed for, we do not experience a single hit of a signature,
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thus assume these signatures to be reliable to protect against known malware
without classifying benign software to be malicious.

The third experiment simultaneously serves as a survey to evaluate the user
experience, i.e., whether noticeable delays or problems are encountered. We re-
peat this test three times and find none of the 1,058 applications causing any
problems such as crashes or error messages. For the majority of applications, we
do not encounter any noticeable delays, however, while installing specific soft-
ware (e.g., Microsoft Visual Studio 2012), which copies thousands of files onto
the hard disk drive, we observe minor delays during the installation phase of
the first run. These delays emerge as most of the accessed filenames are nei-
ther included in the initial ground truth nor cached at the Cloud service. When
performing the second and third run, the filenames are still not included in the
initial ground truth of the client (which is wiped after each run), but stored in
the Cloud caches, resulting in almost no noticeable delays during these runs.

4.3 Android

We again build a ground truth data set containing Table 4. Cached (C)
syscall arguments of pre-installed and therefore likely and  uncached (U)
benign software. Similarly to Windows, we execute Syscalls —invoked by
these apps and classify each invoked syscall argument pre-installed apps

as trusted. Application C U Total

Apps: We execute nine pre-installed apps to determine Browser 25 227
Calculator 25 1 26
how many syscalls are not covered by the ground truth cajendar 19

120
and have to be analyzed by the Cloud. As shown in Ta- Contacts 20 1 21
. Deskclock 20 1 21

ble 4, we experience a small amount of uncached syscalls  Gallery 26 2 928
as most of the data is already stored in the caches. g/ﬂt\/tfs g? (1’ gg

. . . . . ettings

Android is heavily built around the feature to install Videoeg:iitor 03 1 24
third-party apps, thus we also investigate how many ... 204 10 214

syscalls are uncached when executing external apps for

the first, respectively, second time as their syscall arguments might not be cov-
ered by the ground truth. As depicted in Table 5, we select ten commonly used
apps and record the number of syscall invocations. We execute each app once
to remove potential welcome screens and specify credentials of test accounts for
specific apps (e.g., Facebook and Twitter). We then reset the caches to the initial
ground truth values to ensure that none of the values got cached when preparing
these apps. When executing the apps for the first time, 516 syscalls are already
covered by the ground truth, yet we still have to analyze 221 unknown syscalls
at the Cloud. When executing the apps a second time, the caching strategy re-
quires merely 25 syscall analyses at all, most of them caused by Instagram. We
thus argue that caching improves the performance of our approach significantly,
on desktop computers and mobile devices for known and unknown software.

Signatures: To evaluate the Cloud-based signature matching on Android, we
select two distinct malware families, namely the spy app Gone in 60 seconds
(Gi60s) and the banking trojan Carberp. We execute one sample of each family
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and manually extract a signature based on the invoked syscalls. The signature of
Gi60s depends on two consecutive sys sendto syscalls that forward user data to
external servers. The signature of Carberp is based on five syscalls invoked at the
initialization phase of the app. To validate the signature matching we execute
four different samples of Gi60s and two samples of Carberp on the mobile device
and find our signatures to correctly classify all samples as malicious.

5 Discussion

The main argument to move the de- Table 5. Cached (C) and uncached (U)
tection of malicious activities from end syscalls invoked by commonly used apps

hosts to a Cloud service is that we as- Ist run 2nd run
sume the end hosts to be significantly Application C U Total C U Total
less secure compared to the Cloud Adobe Reader 11 3 14 14 0 14
: : : : : Angry Birds 36 19 55 50 0 50
since a antrallzed system is ma}ntalned Coogle Chrome 46 71 117 108 3 111
by experienced personal. Especially the Facebook 191 12 203 101 0 101
. : Mozilla Firefox 53 38 91 83 0 83
c.urrentness.of detection algorithms and Instagram 31 18 49 3318 51
signatures is presumably better on a Shazam 35 14 49 47 2 49
: i Twitter 47 7 54 38 0 38
Cloud-based service "char} on individual VLC Player 1 s 97 1 o8
end hosts, mostly maintained by regular ~Winamp 62 35 97 93 1 94
users. Since operators have to maintain  Total 516 221 737 594 25 619

a single service only, updates of the de-
tection mechanisms can be conducted in an easy way to quickly react to incidents
or to enforce security policies. Further, the centralized strategy permits the op-
erators to closely monitor and quarantine recently infected clients. If operators
would have to be responsible for updating the security software on every client
individually, they probably would be overwhelmed by the number of clients, es-
pecially when also considering mobile devices that are becoming more popular.
The Cloud service is connected to existing firewall and intrusion detection
systems to immediately apply security measures such as blocking a client from
accessing particular infrastructure in the case of an incident. Further, when a
client connects to the network, it is limited to communicate with the Cloud ser-
vice at first. If the client does not instantiate a connection to the Cloud or stops
communicating with the Cloud (e.g., after approving a syscall temporarily), the
device is flagged as potentially dangerous and its network connectivity is revoked.
A client not communicating with the Cloud can have multiple reasons: either
the host is not participating in the Cloud-based security strategy yet (e.g., a new
mobile device) or the device got infected during an offline phase and malware
deactivated the security mechanisms. Nevertheless, as long as unprotected and
infected clients are blocked from the network, no other clients can be harmed.
Applying a Cloud-based security approach, however, might also raise severe
drawbacks. Forwarding syscalls to the Cloud and delaying the execution of end
hosts’ processes causes an overhead due to the high number of invoked syscalls on
every client. Without selecting a partial set of syscalls to monitor and applying
efficient caching, this would be a serious issue for the clients’ performance and
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users’ experience. Our approach thus makes exhaustively use of mechanisms to
limit the number of requests to the Cloud. The evaluation results indicate that
the overhead is reasonable in practice as almost no noticeable delays are induced.
A further limitation of a Cloud-based approach is the requirement of a con-
tinuous network connectivity, which cannot be guaranteed for specific types of
end hosts like mobile devices. Still, we consider our approach to be feasible in
well-established networks in which most of the clients such as desktop computers
are permanently connected. Mobile devices could fall back to UMTS/GSM in
areas without WiF1i connectivity, however, GSM networks are significantly slower
than WiFi connections. When evaluating the impact of caching in Section 4.1,
creating 200 files or executing 100 processes both required 8 seconds using GSM
and full caching. Yet, the number of uncached syscalls highly depends on the
app, as shown in Table 5. Many apps invoke only a limited number of uncached
syscalls that can also be transferred in a reasonable time using GSM networks.
A general limitation of a network service is the central point of failure. This
problem can be avoided by providing fail over solutions to ensure the availability
of the centralized system. Further, we can split the Cloud service into one master
node and multiple slaves to distribute the load and to make the service resilient
to faults of single servers. An additional benefit is that clients connect to the
nearest node to reduce the network latency and the delay on the clients’ side.
A centralized protection service is a promising target for adversaries, e.g., by
infiltrating or taking down the service. The Cloud service thus has to be protected
by reasonable security measures and monitored closely to identify and prevent
attacks. It also has to be taken care of end hosts attempting to trick the Cloud,
e.g., by malware taking over the clients’ security application and emulating the
communication to the Cloud. A solution includes the usage of a kernel-based
client application. Encrypted and signed communication channels between Cloud
and clients are mandatory to protect the integrity and confidentiality of the
inter-communication. Secure channels also eliminate the risks of eavesdropping,
replay, man-in-the-middle, and other serious attacks. We further have to address
the issue of processing plain syscall arguments at a network service as proprietary
data is relayed to a centralized system not under the control of the individual
user. Yet, this drawback can be bypassed, e.g., by operating on hashed arguments
only. Information sent to the Cloud thus cannot be converted back to plain text,
hence we gain a privacy preserving approach, assuring the users’ confidentiality.
The functionality of detection mechanisms is not affected by hashed arguments,
yet techniques such as blacklist comparison need to be altered to operate on hash
values. When switching to hash functions, we have to ensure the hashes to be
resilient against attacks, e.g., by applying Hash-based Message Authentication
Codes [18] using individually shared keys between the Cloud and the end hosts.

6 Related Work

Analyzing system calls to detect malicious behavior has a long history on desk-
top computers. Some approaches [1,19] develop benign behavior profiles based
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on multiple consecutively invoked system calls to identify anomalous behavior.
Mutz et al. [20] analyze the relationship between system call arguments and the
invocation context to detect malicious actions. Stinson and Mitchell [2] perform
botnet detection based on system calls in combination with tainting untrusted
memory values. Srivastava and Giffin [21] propose an approach that combines
the analysis of network traffic with a hypervisor-based identification of malicious
behavior at the user-, and kernel-level. Burguerae et al. [22] show that system
call analysis is also feasible on mobile devices.

The idea of detecting malicious software at a centralized service is already
explored in many approaches [3-5]. Oberheide et al. [3] present CloudAV, which
utilizes a light-weight application running on end hosts to suspend the exe-
cution of an unknown binary, forward the binary to the Cloud, and perform
or decline its execution based on the analysis result of the Cloud. Further-
more, Oberheide et al. [5] discuss an approach to move CloudAV from desktop
computers to mobile devices. A more sophisticated approach is presented by
Martignoni et al. [23] in which users may delegate the execution of potentially
malicious applications to a Cloud service. As a result, the unknown process is
executed in the Cloud, however, by interchanging specific system calls, the ap-
plication acts like it is executed locally on the client.

7 Conclusion

We introduced a Cloud-based security approach to move the detection of ma-
licious activities from individual end hosts to a centralized network service. To
determine if activities on client systems are malicious, every end host forwards
selected API and system calls to a Cloud service and awaits approval or denial to
execute these operations locally. To evaluate the applicability of our approach,
we implemented prototypes for desktop computers and mobile devices and found
this protection strategy to be feasible in practice as almost no delays are caused
on the client which would interfere with the usability of the end hosts.
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Abstract. Self sustained service independent P2P networks aim to serve as a
cheap alternative to traditional cloud providers. In such networks, users who add
resources to the network are given strong (typically monetary) incentives to keep
their devices connected for long periods of time. Further, in such networks, there
is a decoupling between the machines that form the P2P network and the devices
used to consume services from the network. In particular, users may access ser-
vices offered by the network through their mobile devices. In fact, a user may
obtain services even if he did not donate any resources, but is willing to pay for
the services he consumes either through a service fee or by viewing ads, similarly
to cloud services.

This work introduces Postman, a publish/subscribe architecture tailored for
self sustained service independent P2P networks. Postman is designed to pro-
vide its users with a self-organizing, scalable, efficient and churn resilient pub-
lish/subscribe service. Postman achieves this using a novel client/mailbox archi-
tecture where a publish/subscribe system delivers content to a highly diverse
set of mailboxes. Mailboxes are hosted on elastically selected set of peers and
each mailbox accumulates multiple topics from many clients. Clients then ful-
fill their subscriptions by polling the relevant mailboxes, while the mailboxes act
as subscribers of the actual publish/subscribe mechanism. Our experimental re-
sults show that the client/mailbox architecture significantly reduces the number
of subscriptions the publish/subscribe mechanism handles. In addition, the pub-
lish/subscribe mechanism handles a much more uniform subscription pattern than
the real subscription pattern, obtains very high delivery rates and is highly robust
to failures and churn.

1 Introduction

Publish/subscribe is a popular programming paradigm for distributed computing as
it offers decoupling of information producers from consumers [3,8,13]. Commercial
applications in various domains such as social applications (e.g., micro blogging and
status), finance (e.g., stock quotes), command and control (both military and civilian)
utilize this paradigm. In particular, in publish/subscribe, information producers, called
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publishers, publish events to the system, without knowing who exactly will receive it.
Yet, the information is often characterized with one or more tags (sometimes also called
topics). Information consumers, called subscribers, register subscriptions that describe
the types of information they are interested in. It is then the job of the system, or middle-
ware, to match published events to corresponding subscribers, and deliver each event
to all of its subscribers. Publish/subscribe systems differ in the expressiveness power
that they offer to their clients, as well as in their architecture, scalability and efficiency.
Specifically, some systems only enable subscribers to register to a single topic and are
referred to as topic based publish/subscribe. At the other extreme, subscriptions can re-
fer to multiple topics and even be expressed as range queries on these topics, resulting
in what is known as content based publish/subscribe. As an example, one may wish
to register to all events that refer to weather forecasts for Hawaii that are issued on
Mondays or Tuesdays with wind force above 10 Knots.

Publish/subscribe systems can be implemented centrally or in a distributed manner.
Centralized systems have the advantage of retaining a global image of the system at all
times, enabling intelligent optimizations during the matching process. However, pro-
viding scalable publish/subscribe in a centralized manner is costly.

Distributed, and in particular P2P-based, publish/subscribe systems have been in-
troduced in the past to facilitate scalability at a greatly reduced cost compared to the
centralized ones. However, in the vast majority of these systems, it is assumed that a
user always consumes his content at the same peer. In particular, most P2P systems do
not distinguish between the user and his/her hardware. Also, some of these systems as-
sume that the entire P2P network is dedicated for the publish/subscribe application, and
therefore manipulate the network’s overlay to fit the publish/subscribe goals.

In contrast, we target a new generation of P2P systems in which individuals are given
strong incentives to keep their donated machines and resources available to the P2P net-
work for long periods of time. For example, owners of donated machines can be paid for
the services they provide with money generated by the system, collected from the end
users of the system either through subscription and usage fees or through advertisements.

This way, such P2P networks can serve as cheap alternatives to traditional cloud
providers since it saves much of the expenses of buying and maintaining the cloud
infrastructure. Further, this model decouples between the devices used to access the
service and the machines used to run the service, which makes it adequate for the realm
of mobile clients.

Virtual coins such as Bitcoin are a degenerated example that validate the promise
of this model. People donate machines to the Bitcoin network in order to help mine
Bitcoins and process Bitcoin transactions in exchange for being rewarded with Bit-
coins. Another example is SpaceMonkey.com, which rents special storage devices that
its customers place at their homes and connect to the Internet. Each such customer gets
a cloud-like sharing and backup service with a very large capacity cheaper than the
cost of similar true cloud based services. The data itself is replicated among the devices
rented by other users.!

! Let us also mention AoTerra GmbH and the European ParaDIME project, in which a cloud
is built from racks placed at people’s houses in exchange for these racks serving as heating
devices for these homes as a side effect of acting as cloud servers.
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In these two example, the clients benefit from the service regardless of the devices
they use to access the network, and there is a strong incentive to keep the machine
available to the network as much as possible. Yet, in the full fledged version of the self
sustained service independent P2P networks, the same P2P network can host multiple
services rather than being dedicated to one of them. In this work, we investigate how
to implement publish/subscribe systems over self sustained service independent P2P
networks.

Specifically, we introduce Postman, a self-organizing elastic publish/subscribe ser-
vice based on a flexible distributed architecture. Unlike most P2P systems however,
and in accordance with the self-sustained P2P networks model, postman decouples the
machines that operate the service from the users of the service. To that end, Postman
envelops a traditional publish/subscribe mechanism with a layer of indirectness. The
subscribers of the publish/subscribe mechanism are called mailboxes and each of them
serves as a proxy (or rendezvous point) for many clients. Thus, instead of disseminat-
ing every event to a potentially large number of devices, in Postman an event is only
propagated to a small set of relevant mailboxes. Interested clients fetch the events that
match their interests by periodically polling only the corresponding mailboxes.

Below, we describe Postman, including its internals and its implementation and ex-
plore its performance characteristics. The performance study was carried by emulation,
in which the actual implementation was run with both artificial and Twitter based traces,
as well as large scale simulations using the same traces. The results show that Postman
obtains very high delivery ratios. Moreover, the mailbox architecture reduces the scale
of the publish/subscribe problem (w.r.t. traditional P2P approaches), making the deliv-
ery process highly efficient. Finally, since each mailbox aggregates multiple subscrip-
tions, the subscription pattern exposed to the publish/subscribe infrastructure is much
more uniform and stable than the subscription pattern exposed by any individual sub-
scriber. This simplifies the dissemination mechanism and reduces the rate of changes
that this mechanism needs to deal with.

An important aspect of Postman that becomes evident in our performance evaluation
is its significant robustness to failures and churn. In particular, low rates of failures
and churn make no noticeable impact on the delivery rates and latencies of Postman.
Further, Postman is able to self recover from massive failure and churn events within
several minutes of operation, as explained below. The rest of this paper is organized
as follows: In Section 2, we present our basic assumptions and goals. We introduce
Postman in Section 3. The experimental performance results are shown in Section 4.
We discuss related work in Section 5 and conclude with a discussion in Section 6.

2 Assumptions and Goals

We assume a distributed network composed of donated machines that act as peers in
the system. The P2P system serves as a substance for the implementation of multiple
distributed services and applications. Users access the network from (potentially mo-
bile) client devices, which are (potentially) different from the set of donated machines.
Hence, peers are typically relatively strong computers connected to the Internet through
a fixed broadband connection, whereas clients are often battery operated resource lim-
ited devices with intermitted connectivity and lower effective bandwidth.
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Donated machines may fail by crashing or disconnecting from the network. Such
disconnections may be temporary or permanent. In addition, new donated machines
may be added to the network. The rate at which donated machines (new or old) connect
and disconnect (or fail) is called the churn rate of the system. It is an a-priori unknown
parameter that can change from one deployment to another as well as during the lifetime
of the network.

The goal of this work is to implement an efficient, scalable, churn and failure resilient
publish/subscribe service for this network. The service should be elastic is the number
of donated machines it employs, reflecting the temporal load on the publish/subscribe
service as well as the network conditions. Further, we rely on the existence of an un-
derlying logical overlay [3,13,16]. Yet, as the service is only one of potentially many
services running over the P2P network, its implementation should not alter the existing
P2P infrastructure, as the latter could hurt the performance of other services utilizing it.

Given that the churn rate is unknown and can change over time, our solution should
self-adapt to it. In particular, during stable periods, in which the churn rate is very low,
we expect the publish/subscribe service to be communication efficient. In other times,
we are willing to accept higher communication overheads in return for failure resiliency.
This adaptivity should take place autonomously.

Finally, we assume the existence of an incentive based mechanism that motivates
users to donate resources to the system, whose implementation is out of scope for this
paper. An example to such a mechanism can be found in [9] that explain how to im-
plement a P2P advertisement mechanism. Given the above mentioned incentive mech-
anism, our load sharing goal is simply to refrain from overloading nodes beyond what
they are willing to tolerate rather than obtaining load balancing.

3 Postman

As mentioned above, in Postman we divide the notion of a subscriber into a client and
a mailbox. Mailboxes are donated machines that are used as subscription proxies for
clients, as depicted in Figure 1. Hence, Postman defines a unique way in which clients
discover mailboxes and interact with them in order to register their subscriptions and
obtain their corresponding events. As elaborated below, this mechanism is also the one
that provides Postman with its elasticity property. In addition, Postman has a protocol
for disseminating events among the relevant mailboxes in a way that is efficient when
the system is static, yet is robust to failures and churn when they occur. To that end, the
rest of this section is divided in two parts: Section 3.1 explains the interaction between
clients and mailboxes while Section 3.2 presents the event dissemination protocol be-
tween mailboxes.

3.1 Client/Mailbox Interaction

Here, we focus on the clinet/mailbox interaction. This includes how to locate an existing
mailbox and subscribing to it, prompting the creation of a new mailbox (when needed),
as well as how subscribed clients obtain their corresponding events from the mailboxes.
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Postman— General architecture.

Client
Applicatio

. Home Node
onated Machinesp_

Mailboxes
(Publish/Subscribe)

Fig. 1. General Postman architecture - clients use the home node to discover mailboxes, and then
contact these mailboxes directly

Client Application and Home Node. As indicated above, a publish/subscribe client
application is a light weight application, used to grant access to the network. The ap-
plication is responsible for identifying the user and remembering the list of mailboxes
the user is subscribed to. Machines running client applications are often not part of the
network and cannot perform network related activities on their own. Instead, these ap-
plications contact one of the donated machines, e.g., through a REST API. We call the
machine a client is connected to the home node for that client. This node can either
come from some centralized bootstrap service publishing random node IP addresses, or
be a machine that is owned by the client.

The client application discovers mailboxes through the home node. This is done us-
ing the probabilistic lookup service (PLS) described below. After mailboxes are discov-
ered, the application accesses them directly. The applications maintain a data structure
containing their subscriptions, the mailboxes that provide them and other topics these
mailboxes provide. As we discuss in more details below, the client application polls
these mailboxes in order to obtain events matching its subscriptions.

Probabilistic Lookup Service (PLS). In order to discover mailboxes, Postman uses
a hints/random lookup technique. That is, each mailbox distributes a hint message of
the form <Predicate, Owner> to allits overlay neighbors at a specific radius. The
Predicate is a Bloom filter containing all the topics the Owner is subscribed to,
while Owner contains the contact details of the mailbox that distributed the hint.

In order to discover mailboxes, we use a random walk message of the following
form: <Origin, TTL, Topics, Visited, Hits, Message>. These ran-
dom walk lookups are routed in the system until the TTL runs out, at which point they
return back to the sender using the Origin field. Each node that participates in routing
the lookup adds its ID to the Visited list. This way, lookup messages avoid revisiting
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nodes multiple times. Each node that receives a lookup message checks whether all the
Topics included in the message are satisfied by the Predicate field of any of its
stored hints. When a match is found, the lookup message is routed directly to the hint’s
Owner.

Since Bloom filters may have false positives, mailboxes have to check if they indeed
provide the topics of the message (according to the Topics field). Mailboxes will
add their contact details to the Hits field either if the mailbox is already subscribed to
the lookup topics, or if the Hits field is empty and the mailbox is still available for
handling additional topics (as described later). In case the mailbox is subscribed to the
topic, it also records all other mailboxes included in the Hits field of the lookup as
additional mailboxes subscribed to these topics for future dissemination.

Ultimately, at the end of the TTL, the lookup message is routed back to its original
sender (according to its Origin field). We say that a random lookup was successful if
it returned to the original sender with a non-empty list of mailboxes in the Hits field.

Finally, to overcome failures and churn, when a node discovers that a hint Owner is
no longer online, it can simply remove the corresponding hint.

Client Application Subscribing Mechanism. For a client application, being sub-
scribed to a topic means knowing at least a single mailbox that provides the topic. Thus,
when the user orders the client application to subscribe to a new topic, the client appli-
cation first checks if it is aware of a matching mailbox. If so, all the client application
needs to do in order to subscribe is to ask this mailbox about the requested topic. Else,
if the client application is not aware of a matching mailbox, it issues a small number
of random lookups as described above and waits. These lookups are sent through the
home node, and the result will be returned directly to the client. If any of the lookups
succeeds, the client adds the mailboxes listed in the lookup Hi ts field to its data struc-
ture. The client is now subscribed to the topic and can contact these mailboxes to fetch
publications. In addition, clients also ask mailboxes about all the topics they provide,
for future use.

Polling and Temporary Subscribing. Mobile users are typically not connected con-
tinuously to the network and many may even connect for brief periods at a time. Hence,
we combine two complementing mechanisms in order to ensure delivery of all relevant
events to the client application. Specifically, mailboxes hold all publications they re-
ceive for a certain period, typically 24 hours (this corresponds to typical social network
behavior, in which publications typically have a relatively short period of relevance).
When a client logs into the network, it polls the mailboxes it is aware of for all match-
ing publications it has not received since it was last updated.

In order to continue getting publications, the client can poll the mailboxes period-
ically. However, that would entail both a noticeable delay and excessive traffic when
the rate of relevant events is low. Thus, instead, the client temporarily subscribes to the
mailbox by sending a <Predicate, Owner> like hint to the mailbox. The mail-
box maintains a list of all the clients that subscribed with a TTL of several minutes.
When a publication arrives, the mailbox will distribute it to all subscribers based on
their Predicate and Owner fields. Due to the temporary nature of this subscription,
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the client does not have to notify the mailbox if it leaves the network. Hence, clients that
remain connected must renew their subscriptions before they expire. In order to avoid
clock synchronization issues, each such subscription renewal also doubles as a polling
request.

3.2 The Publish/Subscribe Mechanism

So far, we discussed the delivery mechanism between clients and mailboxes. Next, we
describe how publications are disseminated between mailboxes. To that end, we use
3 complementing mechanisms that enable mailboxes to both learn about each other
and disseminate publications among themselves. First, each mailbox that obtains a new
publication disseminates it through a spanning tree of the mailboxes it is aware of that
are also interested in the publication. Second, mailboxes send periodic PLS messages,
disseminated as random walks, in order to both disseminate publications to interested
mailboxes they are unaware of and learn on the fly about such mailboxes. Finally, in or-
der to reduce the number of required PLS messages, and following the observation that
clients in any case interact with multiple mailboxes, we transform clients interactions
into an out-of-band gossip mechanism that helps disseminate publications to mailboxes
and enable mailboxes to learn about each other. The rest of this section is devoted to
explaining these mechanisms and their orchestration.

Specifically, when a user wishes to publish a new event, we assume the user is already
subscribed to this event’s topics. This means the user already knows a mailbox m for
the topic. The user will send a publication message of the form <Topic, Content>
to mailbox m. As a result, mailbox m will publish the message in two different ways.
First, it uses the spanning tree distribution algorithm described in Section 3.2 to deter-
ministically distribute the publication to all other mailboxes it is aware of in an efficient
manner. Second, it sends a small number of PLS random walk messages in which the
publication is stored in the Message field. However, in order to avoid reaching mail-
boxes that already appear in the spanning tree, the Visited and Hits fields of the
PLS message is initiated with the list of the mailboxes known to this node.

Clearly, when a node receives a publication over the spanning tree, it continues its
dissemination as well as forwards the publication to subscribed clients (if any) and
storing it for possible future polling by clients. Yet, in the case of the first delivery of
a PLS message for a given publication, the receiving node adds itself to the Hits list
and forwards two copies of the PLS message to random unvisited nodes. Additionally, it
extracts previously unknown mailboxes for this topic from the Hi t s list of the received
PLS message.

Notice that when a mailbox subscribes to a topic, the PLS messages that it generates
and the ones passed by it automatically notify this fact to other mailboxes. Hence, there
is no need for a special mailbox subscribing mechanism.

Spanning Tree Distribution Algorithm. As all mailboxes that need to participate in
the spanning tree are known to the mailbox that initiates the dissemination, any known
deterministic construction of a spanning tree can be used. E.g., to generate a tree of
degree k, the IDs of these mailboxes can be sorted into an array that is split into & equal
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(a) Each publication is published to (b) In this case, both groups merge

known mailboxes (green) on a span- and subsequent publications reach
ning tree. In addition, a PLS mes- the new group through the spanning
sage is routed attempting to dis- tree.

cover unknown mailboxes (red). It
is enough for a single PLS message
from the green group to discover a
single mailbox in the red group.

Fig. 2. An example of the publish/subscribe mechanism

Algorithm 1. Handle Publish Algorithm

1: function HANDLEPUBLISH(LookupM essage lookup)
2: if isNew(lookup.Messageh) then

3: SpanningTreeDistribution(lookup.Message)
4: ProbobalisticDistribution(lookup.Message)
5: AddNewPublication(lookup.Message)

6: end if

7: return

8:

end function

ranges. The message is then disseminated to the first node in each range. If the length
of each range is more than k, this process repeats recursively until all nodes get their
message.

Client/Mailbox Gossip Mechanism. As mentioned above, we utilize client polling
messages as an out-of-band gossip mechanism to disseminate both publications and in-
formation about mailboxes. Recall that clients poll a different set of mailboxes every
time they log-in. Each time the client contacts a mailbox, it shares with the mailbox
some of the publications it has previously received. Mailboxes that missed publications
can recover them this way. The client also notifies each such mailbox about other mail-
boxes it is aware of that handle the requested topic(s).

Typically, clients do not connect all the mailboxes every poll round. However, when
the client encounters an unresponsive mailbox or a missed publication. The client per-
form an additional poll round, this time contacting all known mailboxes. This behaviour
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helps the client ensure that all relevant publications are delivered, it also improves the
consistency of mailboxes.

Failure and Churn Recovery. In Postman, when all mailboxes are lost, a client simply
resubscribes. In order to speed the mailbox heal rate, we allow clients to perform a
second polling round in case resubscribing took place due to churn. The second polling
round ensures that new mailboxes discovered or created by the resubscribing are also
polled. This second polling significantly reduces the time it takes Postman to recover
from failures and churn, since otherwise the client has to wait for the next polling round
in order to satisfy all its subscriptions (typically, several minutes).

4 Experimental Results

In our experimental evaluation, we measure the delivery rate and message cost of our
protocol. We also evaluate the merits of the Postman mailboxes approach, by comparing
the mailboxes topic distributions and the amount of topics clients need to poll in order
to satisfy their subscriptions, as well as study the ability of Postman to handle failures
and churn, and in particular to recover from massive churn events.

Our measurements where performed over our Java based implementation of Post-
man [1] in two complementing settings: (1) a full implementation in which Postman
was run above the [6] implementation of the Kademlia DHT [14] over a real LAN net-
work, and (2) a simulated network setup in which Postman was run above a network
simulation layer. Let us stress that both settings have exercised the actual Postman code!
The simulated network setup enabled us to reach network sizes of tens of thousands of
nodes. In contrast, due to resource constrains, using the full implementation we were
only able to experiment with up to 1,500 nodes, but it served to validate the results of
the simulated network settings.

We have used two sets of workloads: a synthetic workload in order to study the per-
formance characteristics of our system as well as a real life Twitter trace containing
the behavior of over 30k users produced by [20]. In the synthetic workload, we have
generated subscriptions and events whose topics were chosen from the uniform distri-
bution and the heavy-tailed Zipf-like distribution (with a = 0.9). In the case of Twitter,
the events and subscriptions were extracted from the trace as described below. As been
reported in [12,17], Twitter subscription patterns contain two different kinds of user
types, celebrities with thousands of followers and social users with a small number of
followers. Last, we also implemented Quasar [19], and tested it as an example of a
probabilistic publish/subscribe algorithm? (see Appendix).

4.1 Delivery Rate and Communication Load

In the following experiment, we give mailboxes 10 minutes to stabilize, and then pub-
lish a burst of publications. In the burst, each client publishes one event for each topic it

2 We note that Quasar was developed with a social network graph in mind rather than a structured
overlay
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system

is subscribed to. This is performed with 500 and 1,500 P2P nodes in the full implemen-
tation of the system as well as with 1,500 and 30,000 nodes in the case of the network
simulator environment. In both settings, each node has 3 clients and each client is sub-
scribed to 3 topics. Further, the mailbox polling frequency, which controls the delivery
latency, is set to once every 10 minutes.

In addition, we have run Postman over a selected time period of the Twitter trace and
measured delivery rate over time. Delivering events in this workload is tricky since we
measure delivery rate until the sampling ends. Events that where not delivered during
the sample are considered not delivered.

As can be seen from Figure 3, Postman achieves almost 100 percent delivery rate
after 10-20 minutes. Also, the results of the full implementation and the network simu-
lator environments are the same when ran with the same number of nodes.

The high delivery rate is coupled with a reasonable communication load. As can be
seen in Figure 3(c), even the most congested mailboxes only handle several messages
per second. Further, mailboxes can offload traffic from themselves by simply not an-
swering some of the poll requests. In that case, the poll requests will either be delegated
to another mailbox, or a new mailbox will be created.

4.2 Postman Subscription Pattern

We have studied both the client subscription patterns and the mailboxes subscription
patterns. This was done by having all clients register to all their topics and examining
the obtained pattern. As for the Twitter subscriptions, we have sampled the Twitter trace
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for one hour intervals and eliminated all users that where not active during this hour.
The obtained registration pattern is the active set of topics during that hour.

As shown in Figure 4, in Postman, all subscriptions concentrate into a relatively small
number of mailboxes. Consequently, the dissemination task of publications becomes
much more manageable than if each event would have to be routed directly to its end
clients. Further, as there is only a small number of mailboxes, there is also a high overlap
between the dissemination trees, enabling sharing of resources and overheads between
trees. Additionally, in the self sustained P2P network model, mailbox machines, being
donated machines whose users are given strong incentives to keep them connected for
long durations, are likely to have a much lower churn rate than client machines, enabling
a more stable and efficient dissemination infrastructure.

Figure 4(c) exhibits another important angle of the subscription pattern. Here, the X-
axis is the popularity of a given topic in terms of the number of clients interested in that
topic. The Y-axis is the average number of mailboxes registered to the corresponding
topic. As can be seen, there are much fewer mailboxes registered to each topic than
clients, and this trend intensifies as the popularity of the topic increases reaching up
to a two orders of magnitude reduction. In other words, the dissemination trees among
mailboxes are fairly small, which was one of the main goals of our work.

4.3 Effects of Churn

In order to test our system’s ability to sustain churn, we first added a small churn rate
of around 1 percent of the mailboxes every 10 minutes to our Twitter runs. However,
we have not seen any noticeable effect on the delivery rate. Hence, we then decided to
experiment with much more dramatic churn rates.

In this test, we first let the system stabilize for 30 minutes and then every 35 minutes
picked 10 percent of our mailboxes at random and crushed them as well as replaced 10
percent of our clients. We then have each client publish a single message on each of its
topics. We measure the message delivery rate every two minutes.

As can be observed in Figure 5, removing 10 percent of the mailboxes only resulted
in a slight increase in the miss rate, which returned to near zero within 20 minutes.
The reason for this is that some of the clients maintain more than one mailbox per
topic. In such a case, if a mailbox that disappeared is selected, after the timeout a new
mailbox will be contacted, resulting in a slight delay of delivery but no loss. As for
clients that know only a single mailbox, it will take these clients a few minutes to
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notice the unavailability of the mailbox, since clients only actively contact mailboxes
every polling round (10 minutes in our configuration). After such a client discovers the
churn, it will re-subscribe to the system. Further, if following such re-subscribing a new
mailbox is created, then this mailbox needs some time to announce itself before it can
recover all lost publications.

In order to further explore the capability of the architecture to repair itself, we de-
cided to repeat the same experiment only this time we crushed 100 percent of our mail-
boxes every 50 minutes. The results of this experiment can be seen in Figure 5(c),
indicating that Postman can even self recover from such a disastrous event. The churn
resilience of our architecture comes from the inaccuracy of the PLS queries. Some-
times, when a client subscribes, it creates a new mailbox or causes a non full mailbox
to subscribe to that topic even though a matching mailbox already exists in the system.
In that case, we have more than one mailbox supplying each topic. These mailboxes
will eventually find each other and each of them will tell its clients about the other one.
Therefore, after the system stabilizes, all the clients are aware of the two mailboxes for
that topic. In addition, we notice an increase in the number of mailboxes after a churn
event, increasing the redundancy of the system.

Let us also note that during massive churn events, clients’ resubscribing and the
creation of new mailboxes generate a large number of PLS messages. The latter expedite
the creation of an updated spanning tree including all new mailboxes.

5 Related Work

Numerous publish/subscribe systems have been implemented and published [3,8,13],
therefore it is not practical to mention all of them. Instead, we discuss some of the
systems that are closer to our work either in concepts or in their goals.

Quasar [19] is a probabilistic publish/subscribe protocol that uses attenuated Bloom
filters [11], random walks and negative information in order to create a signature-less
publish/subscribe mechanism. Quasar was tested on MySpace data and used the social
graph as an overlay graph and yielded around 95 percent delivery rate. In contrast, our
system utilizes the existing P2P overlay since in our model the overlay might be shared
my multiple applications. Since both our scheme and Quasar use Bloom filters and
random walks, in the experimental performance section we compare Postman to Quasar.
Yet, our approach utilizes these concepts only for discovery and gossip, whereas Quasar
employs them for data dissemination.

In [4], the cost of publish/subscribe on a structured overlay is reduced by reorganiz-
ing the overlay network in order to encourage nodes with similar topics subscriptions to
form direct connection to each other. Such an approach is not applicable in our model
(as described in Section 2), as we assume that the P2P overlay is shared by multiple
services and therefore cannot be modified for the needs of a specific service.

SpiderCast constructs a distribution overlay with topic connectivity and low average
node degree [5]. Such an overlay enjoys the benefit that the number of uninterested
participants in the distribution process remains small and the size of the overlay is also
kept small. SpiderCast is also capable of handling churn. The main difference between
Postman and SpiderCast is the actual problem solved by each of them. SpiderCast can
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only deliver information to online users. Users cannot retrieve publications that were
distributed when they where offline. Moreover, in SpiderCast there is no separation
between a user and a machine. E.g., if the machine of the user is online, publications
will be delivered to this machine even if the user is not there and vice versa.

Magnet focuses on reducing the distribution cost of publications using a special DHT
named Oscar [10]. In Magnet subscriptions are transformed into a key, which places
each node in the DHT such that its neighbors have similar interests. The join/leave op-
erations in Magnet are relatively expensive and therefore Magnet is not suitable for our
problem. In addition, Magnet builds and maintains a separate DHT just for the sake of
the publish/subscribe service. In contrast, we envision publish/subscribe as being only
one of many services offered by a larger system and therefore we rely on an unmodified
“standard” DHT.

Corona [15] introduces the concept of cooperative polling. In Corona, a server coor-
dinates the polling of existing RSS feeds over many peers. The coordination allows all
peers to enjoy significantly quicker RSS updates and reduces the load on the RSS server.
Corona’s polling is somewhat similar to our client/mailbox interaction. Yet, Corona
does not deal with disseminating the information to the mailboxes. It would be inter-
esting in the future to combine our dissemination strategy with Corona’s collaborative
polling mechanism.

In Cuckoo [20], a hybrid central server and peer-to-peer infrastructure is suggested
in order to reduce the load on a server using a peer to peer network. Using both a central
server and a peer-to-peer methods, they manage to greatly reduce the requirements from
the central server. This is different than our approach, which is pure P2P based.

In Pub2Sub [18], a virtual publish/subscribe network is deployed over an unstruc-
tured network. Their work shows an interesting alternative to gossiping as a delivery
mechanism and results in reduced bandwidth and storage. In addition, their mechanism
supports the usages of multiple publish/subscribe algorithms on the same network. Yet,
in Pub2Sub subscribers are assumed to be available and connected all the time. Thus,
information is disseminated immediately to all subscribers, whereas we hold events at
mailboxes for future consumption by client devices.

Publish/subscribe is also widely utilized in data centers and cloud networks. In par-
ticular, these networks utilize publish/subscribe for resource monitoring [2], binding
data centers together and synchronizing them with each other [7], maintaining a data
storage with updates [21] and many more.

6 Conclusions

In this paper, we have presented Postman, a novel publish/subscribe mechanism for
self sustained service independent P2P networks. Postman decouples between clients
and donated P2P machines by utilizing mailboxes as aggregation services for subscrip-
tions and publications. This architecture brings several advantages: As the number of
mailboxes is much smaller than the number of nodes in the system, the scale of the pub-
lish/subscribe problem is greatly reduced. Further, as mailboxes are dedicated machines
rather than client devices, their churn rate is likely to be lower than the one noticed in
end-user devices. Another benefit is that since each mailbox aggregates multiple top-
ics, the subscription patterns of mailboxes are much more uniform than the subscription
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patterns of individual clients, enabling sharing large parts of the dissemination trees and
their overheads.

Postman is designed to be on one hand highly failure and churn resilient and on
the other hand to have minimal message overheads. In order to do so, the distribution
and consistency mechanisms adjust themselves to the actual behaviour of the network.
In particular, for static networks dissemination of messages is done mainly on a span-
ning tree, as the random walks do not discover new mailboxes and are therefore never
duplicated. Further, in such networks clients rarely miss publications, or discover un-
responsive mailboxes and therefore only query a subset of their known mailboxes ev-
ery poll round. However, when the network is dynamic, random walks often discover
new mailboxes and their number increases. Further, clients often discover unresponsive
mailboxes and therefore contact all their mailboxes every round in order to ensure both
timely delivery and mailbox consistency.

We have also presented a performance study conducted on our real implementation
using both synthetic workloads as well as Twitter based traces. The results of our study
confirm the viability of Postman. They have also shown that low churn rates have no
noticeable impact on Postman, and it can even recover quickly from massive failures
and churn events.? Postman is currently implemented in Java over Kademlia [6] and is
available in open source [1].
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Abstract. Self-monitoring is a simple and effective mechanism for the
security of wireless sensor networks (WSNs), especially to cope against
compromised nodes. A node v can monitor an edge e if both end-nodes
of e are neighbors of v; i.e., e together with v forms a triangle in the
graph. Moreover, some edges need more than one monitor. Finding a
set of monitoring nodes satisfying all monitoring constraints is called
the edge-monitoring problem. The minimum edge-monitoring problem
is long known to be NP-complete. In this paper, we present a novel
silent self-stabilizing algorithm for computing a minimal edge-monitoring
set. Correctness and termination are proven for the unfair distributed
daemon.

Keywords: Edge-monitoring, Self-stabilization, Self-monitoring, Secu-
rity, Sensor networks.

1 Introduction

A sensor network is a wireless ad-hoc network with a large number of nodes that
are micro-sensors to collect and transmit environmental data autonomously. Of-
ten, the deployment of these sensor nodes is done in a random manner. Sensor
networks find many applications such as military surveillance (detection intru-
sion, weapons locations, etc.), forest fire control, industrial process control, ma-
chine health monitoring, and so on.

The power limitation in wireless sensor networks (WSN) and hostile environ-
ments in which they can be deployed are factors that make this type of networks
very vulnerable. Furthermore, the security of these networks is very important,
especially for sensitive and critical applications.

One of the most difficult threats in the security of WSN is compromised
nodes. Several attacks may use the compromised nodes to divert the proper
functioning of the networks. Considering the real challenges to design secu-
rity mechanisms against these attacks, many approaches have been proposed
based on self-protection [16,17] and local monitoring (a.k.a watchdog) technique
[1,8,10,11,14,12,13]. In sensor and ad-hoc networks, the concept of local moni-
toring was introduced by Marti et al. in [13].
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© Springer International Publishing Switzerland 2014



94 B. Neggazi et al.

The basic idea of local monitoring is assigning monitoring roles to some of
the nodes in the network. Usually, these monitors are placed somewhere in the
intersection of the communication ranges of the sending (S) and the receiving
nodes (R). Figure 1 illustrates the case where nodes M1 and M2 monitor the
communication from S to R, by analyzing the traffic that R receives from S and
forwards out to other nodes. In [13] these monitoring nodes are called watch-
dogs. They monitor nodes by listening promiscuously to the transmissions of
both nodes. When node S forwards a packet to R, the watchdog of this link ver-
ifies that node R also forwards the packet. If R does not forward the packet, then
it is misbehaving. Similar to this, monitoring nodes are able to detect any mali-
cious actions such as delaying, dropping, modifying, or even fabricated packets
[5,18]. The goal of monitoring considered in this paper is provide protection from
transient faults (mainly memory corruption) and not from malicious behavior
(i.e. Byzantine nodes). We assume that identifiers are not corrupted, e.g. they
are stored in ROM as opposed to RAM. Our algorithm only determines the set
of nodes that can monitor the edges, the actual monitoring task is a different
subject and not part of our work. In this sense we assume that nodes execute
their protocol as stated. Corruption of code, as a consequence of a fault or by a
deliberate action, is clearly beyond the scope of this paper.

Fig. 1. Local monitoring

In dense networks with randomly deployed sensors nodes the selection of a
minimal monitoring set of nodes is a challenging task, especially for large scale
WSNs using only 1-hop knowledge. Consider for example the deployment in
Figure 2. The black nodes can monitor all communication links depicted in bold.
In [5,6], Dong et al. proved that finding a minimum set of monitoring nodes is NP-
complete. The authors also propose two distributed polynomial algorithms with
provable approximation ratio. However, the algorithms assume a synchronous
model and distance-two knowledge. Moreover, their solution does not tolerate
transient faults. Furthermore, distance-two knowledge is not a realistic solution
in WSN. In this work, we assume the most general model that is asynchronous
communication with distance-one knowledge.

One original approach proposed for dealing with fault-tolerance was proposed
by Dijkstra [3], is called self-stabilization. A system is self-stabilizing if it can start
from any possible configuration and converge to a correct behavior in finite time
by itself without using any external intervention. Convergence is also guaranteed
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Fig. 2. Edge monitoring of a graph. The black nodes can monitors of the bold com-
munication links.

when the system is affected by transient faults. This makes self-stabilization an
elegant approach for non-masking fault-tolerance [4].

Hauck proposed the first self-stabilizing algorithm for the edge monitoring
problem [9]. His algorithm uses the expression model [15] and converges in O(n?)
moves under the central daemon. Using the transformer proposed by Turau in
[15], the transformed algorithm converges in O(mn?) moves under the unfair
distributed daemon.

In this paper, we improve the previous work by proposing a new algorithm
that operates under the distributed daemon without using any transformer as it
the case of Hauck’s work. Moreover, our algorithm converges in O(A?m) moves
where A is the maximum node degree in graph. Thus, in particular for networks
with low maximal node degree our algorithm converges much faster.

The rest of this paper is organized as follows: the next section defines the used
model and formally introduces the edges monitoring problem. In Section 3, we
present our new self-stabilizing algorithm for finding a minimal edge-monitoring
set. The proof of correctness is contained in Section 4 and the termination proof
in Section 5. Finally, Section 6 concludes the paper.

2 Model and Definitions

In this section, we give formal definitions for the concepts used in this work.

2.1 Edge Monitoring Problem

We consider sensor networks in which all communications are bidirectional. We
model the sensors network by a graph G = (V, E)) where sensors are represented
by nodes, defined by the set V' and their communications by edges, defined by
the set E. Let n = |V| and m = |E|. We assume each node to have a unique
identifier (¢d) within a distance two from it [2]. We denote by d(v) and N (v) the
degree and the open neighborhood of node v, respectively. Let A be the maximal
degree of a node.

Definition 1. A node v € V' can monitor an edge e = (u,w) € E, if (v, u),
(v,w) € E, i.e. the three nodes v, u,w form a triangle in G.
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Definition 2. The edges (u,w) € E where v,u, an w form a triangle in G are
called the monitored edges of v.

In some applications some edges must be monitored by more than one node
and others need no monitor at all. These situations are modeled by weighted
graphs. The weight w(e) > 0 of an edge e denotes the number of nodes required
to monitor e. The subset Ejyy = {e € E : w(e) > 0} represents the set of edges
to be monitored. In the following we assume that nodes adjacent to an edge e
are aware of w(e).

Definition 3. Let G = (V, E) be an edge-weighted graph. The minimal edge
monitoring problem consists of determining a minimal subset Viy of V' such that
for each edge e € E there are at least w(e) nodes in Vi that can monitor e.

Note that whether there exists a solution for the minimal edge monitoring
problem depends of G and w. In the following we assume that for a given weighted
graph a solution exists. In other words, for each e = (v,u) € Ej; we have
[N (v) N N(u)| > w(e). Note that we can always define a solvable instance be
setting w'(e) = min{w(e), |N(v) N N(u)|}.

2.2 Self-stabilization

A system is self-stabilizing if it can start from any possible configuration and
converges to a desired configuration in finite time by itself without using any
external intervention. Convergence is also guaranteed when the system is affected
by transient faults. This makes self-stabilization an elegant approach for non-
masking fault-tolerance [4]. The concept of self-stabilization was first introduced
by Dijkstra [3]. Every node has a set of local variables whose contents specify
the local state of the node. The union of the local states of all nodes defines the
system’s global state. Each node has only a partial view of the system. Based
on its local state and that of its neighbors, a node can decide to make a move.
Therefore, self-stabilizing algorithms are given as a set of rules of the form [If
p(v) then M], where p(v) is a predicate defined over v’s local view and M is a
move. Predicate p(v) is true when the node’s state v is locally illegitimate. In
this case, v is called an enabled.

Self-stabilizing algorithms can be designed according to different daemons
(a.k.a. schedulers). Two types of daemons are often assumed in the literature
on self-stabilizing algorithms: central and distributed daemon. At each step, the
central daemon selects exactly one enabled node to make a move. Whereas the
distributed daemon selects in each step a non-empty subset of all enabled nodes
to make their moves simultaneously. A taxonomy of existing daemons is proposed
in [7].

Daemons are also associated with the notion of fairness. A daemon can be
fair, or unfair. A daemon is fair if every node that is continuously enabled will
eventually be selected. The unfair daemon on the other hand may delay the move
of a node as long as there are other enabled nodes. Self-stabilizing algorithms are
designed for a specific daemon and cannot trivially operate under a more general
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daemon. Obviously, an algorithm designed for an unfair distributed daemon will
work with all other daemons. This paper assumes the most general daemon,
the unfair distributed daemon. As a communication model the shared variable
model is used.

3 Algorithm SEMS

This section presents the self-stabilizing algorithm SEMS for computing a min-
imal edge-monitoring set for a general graph G with edge weight function w as
introduced above. In this algorithm, each node v maintains a variable state with
range {In, Wait,Out}. This variable indicates whether v belongs to the moni-
toring set or not. A node is called a monitor if its variable state has value IN.
Thus, the edge-monitoring set D of G is defined by D = {v € V : v.state = In}.
The state Wait is an intermediate state from state In to Out required for sym-
metry breaking. It is used to inform neighbors that this node is not required to
be a monitor and can change its state to Out.

3.1 Informal Description of Algorithm SEMS

The monitors of an edge are administered by the end node with the smaller
identifier. Neighbors of v that are either monitors or potential monitors of an
edge adjacent to v are called target monitors. Thus, a node v maintains a set
of target monitors for each of its adjacent edges which it is responsible for. For
an edge (v,u), this includes all current monitors, i.e., all common neighbors of
v and u with state In or Wait. If the number of these nodes is not sufficient
(i-e., less than w(v,u)) then this set is supplemented by the smallest common
neighbors of v and u with state Out until this set has w(v,u) elements. If on
the other hand the number of these nodes exceeds w(v, u) then the set of target
monitors is empty. Thus, the edge does not need this node as a monitor. The
union of target monitors of all adjacent edges of a responsible node is called the
“target monitoring set” of the node.

Note that there is one small drawback with this notion: A node does not know
the set of neighbors for each of its neighbors. This information is necessary to
compute the target monitoring set of a node. A node can avoid this pitfall by
exposing the set of neighbors in a variable and neighbors can use this variable
for their computations. Since this variable can be corrupted by a transient fault,
the target monitoring set may be faulty for some time.

The algorithm works as follows. Nodes keep a target monitoring set as well as
the exposed set of neighbors always up-to-date. A node with state In that is not
a target monitor for any of its neighbors will change its state. In order to avoid
an oscillating behavior such a node does not immediately change its state to Out.
It first transits into state Wait. In order to transit into state Out, all neighbors
must give permission to do such transition. A node only gives this permission to
the neighbor with state Wait that has the smallest identifier among these nodes.
This is realized by a public variable containing the identifier of the neighbor that
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can be removed from its monitoring set. So, only after all neighbors give this
permission, a node may transit from state Wait to state Out. If a node with
state Wait becomes a member of the target monitoring set of a neighbor then
it transits back to state In. There is also a rule for changing the state from
Out to In. The precondition for this rule is that the node is a target monitor
of a neighbor and none of its neighbors is currently giving this node the above
discussed permission.

3.2 Formal Description of Algorithm SEMS
Algorithm SEMS uses the following variables for each node v:

— S :: contains the open neighborhood of v.

— TM :: the set of target monitors. It is a set of neighbors that are either
monitors or potential monitors of an edge adjacent to v. TM will contain
a sufficient number of nodes to satisfy the monitor demands of all adjacent
edges. Note that |[TM| < A.

— PO :: used to give permissions to change state to Out. It either contains
the smallest identifier of all neighbors in state Wait not contained in T'M
or null.

If v.PO = u (resp. u € v.TM) then we say v points at u to leave (resp. to
enter) the monitoring set.

For a set X of node identifiers and a positive integer p denote by XP the set
of the p smallest identifiers contained in X. If | X| < p then X? = X. Thus

xP — X if | X|<p
"] the p smallest elements of X otherwise.

In Algorithm SEMS a node v uses the three functions Mon(v,u), Candidate
(v,u), and TM,(v,u), defined for all neighboring nodes v,u € V. Function
Mon (v, u) returns the set of nodes that are supposingly monitoring edge (v, u).
These are neighbors of v and most likely also of u that have state In or Wait.
Formally,

Mon(v,u) = {z € N(v) Nu.S | z.state = In V z.state = Wait}

Function Candidate(v,u) returns the set of nodes that are supposingly new
candidates to monitor edge (v, u). These are neighbors of v and most likely also
of u that have state Out. Formally,

Candidate(v,u) = {z € N(v) Nuw.S | z.state = Out}

Function T'M,(v,u) uses the first two functions to compute a target set of mon-
itors for edge (v, u). It is used to keep v.T'M up-to-date. Formally,

if (|Mon(v,u)| < w(v,u) Av < u) then
TM.(v,u) = Mon(v,u) U Candidate (v, u)~ )~ IMon(vu)l,
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else
TM.(v,u) = 0

Note that TM.(v,u) = () for an edge (v,u) if v > u.
Algorithm SEMS is specified by six rules that are divided into two categories.

Rules R1 and R2 belong to the first category. They are used to update the values
of the variables TM and PO.

Algorithm SEMS: Maintaining TM, PO and S

Nodes: v is the current node

S#N(w) — S:=N(v); [R1]
TM # U TMec(v,u)V PO # min{u € N(v) | u.state = Wait\ u ¢ TM}
u€eN (v)
— TM:= | TMc(v,u);
u€eN (v)
PO := min{u € N(v) | u.state = Wait Nu ¢ TM} ; [rR2]

The remaining four rules of the second category maintain variable state.

Algorithm SEMS: Maintaining state

Nodes: v is the current node
state = Out AJu € N(v) : v € uTM AVw € N(v) : v # w.PO

— state := In; [R3]
state = In AVu € N(v) :v ¢ u.TM — state := Wait; [R4]
state = Wait A\Ju € N(v) :v € uTM  — state := In; [R5]
state = Wait A\Vu € N(v) : v =u.PO  — state := Out; [r6]

If more than one rule is enabled, we assume that the rule with the smallest
number is executed.

3.3 Example

Figure 3 shows an execution of Algorithm SEMS under the synchronous daemon
for a graph with six nodes. Two of the edges require each one monitor. In the
initial configuration, all nodes are in state Out and the values of variable S are
consistent with the neighborhood relation. Furthermore, we assume v.TM = ()
and v.PO = null for each node v.
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(a) Initial configuration (b) Nodes 2 and 5 execute R2

TM=(1} TM=(4] TM=0 T™M=(4)
Out Out Out Out

6 Out e Out
Out Out
(¢) Nodes 1 and 4 execute R3 (d) Node 2 executes R2
PO=1 TM=t4)

TM=(4) Out

Out
PO=1

(e) Node 1 executes R4 (f) Nodes 2 and 3 execute R2

PO=1
Out

Out
PO=1

(g) Node 1 executes R6 (h) Nodes 2 and 3 execute R2

Fig. 3. Example of an execution of Algorithm SEMS

4 Proof of Correctness

First, we prove that in a configuration where no node is enabled, the set D forms
a minimal edge monitoring set with respect to w.

Lemma 1. In a configuration with no enabled node, the following properties
hold for each v € V.

(a) v.S = N(v),

(b) if v.state = Wait then v € w.TM for all u € N(v),
(c) if v.state = Out then v # u.PO for all u € N(v),
(d) v.state € {In,Out}.

Proof. Properties (a) and (b) are satisfied because rules R1 and R5 are disabled.
Note that v.PO = {u € N(v) : u.state = Wait Au ¢ v.TM} since rule R2 is
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disabled for each node v € V. Thus, u.PO = null or u.PO.state = Wait. Hence,
v # u.PO since v.state = Out. This proves property (c).

Assume Property (d) is false. Among all nodes violating this property choose
a node v with a minimal identifier. Then v.state = Wait. By minimality of v, if
v & u.TM for a node v € N(v) then v = u.PO. Since rule R6 is disabled there
exists a node u € N(v) such that v # w.PO. Hence, v € u.T'M and rule R5 is
enabled. Contradiction. O

Lemma 2. In a configuration with no enabled node any edge has sufficiently
many monitors, i.e., |Mon(v,u)| = w(v,u) for each (v,u) € E.

Proof. The proof is by contradiction. Assume that there exists an edge (v, u) such
that |Mon(v,u)| < w(v,u). Without loss of generality, let v < u. By definition,
Mon(v,u) = {z € N(v) Nu.S | z.state € {In, Wait}}. Using properties (d) and
(a) of Lemma 1, we have

Mon(v,u) = {z € N(v) N N(u) | z.state = In}.

Since | Mon (v, u)| < w(v,u) the set have Candidate (v, ) (VW) ~IMon(vw)l jg not
empty (otherwise no solution would exist). Moreover, since rule R2 is disabled
for v the following holds:

0 # Candidate(v,u)* W~ I1Monwl C TAL (v, u) C 0. TM

This shows that there exists a node z € v.TM with z.state = Out. Also
z # w.PO for all w € N(z) by property (c) of Lemma 1. This yields that rule
R3 is enabled for node z. Contradiction. O

Lemma 3. In a configuration with no enabled node, the set D = {v € V |
state(v) = In} forms a minimal edge-monitoring set with respect to w.

Proof. According to Lemma 2, D is an edge-monitoring set. Thus, it is sufficient
to prove that D is minimal. Assume there exists a node v € D such that D’ =
D — {v} is an edge monitoring set of G with respect to w (see Figure 4 for an
example). So v.state = In. Then for any pair u,us € N(v) with u; < ug edge
(u1, ug) has more than w(uq, uz) monitors, i.e., |Mon(ui,us)| > w(u1,us). Thus,
TM.(u1,u2) = TM(uz,u1) = 0. Now, v € u1. TM and v € us. TM since rule
R2 is disabled for u; and ug. Let w3 € N(v) such that N(ui) N N(v) = (). Then
v € u1.TM by definition of u;.TM (note rules R1 and R2 are not enabled).
Hence, v ¢ u.TM for any u € N(v). This implies that rule R4 is enabled for v.
Contradiction. O

5 Proof of Termination

It remains to prove that Algorithm SEMS stabilizes in finite time for any starting
configuration under the distributed daemon. This will be accomplished by prov-
ing that every node makes only a finite number of moves, independently of its
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Fig. 4. Non-minimal edge-monitoring set. Monitoring nodes are depicted in bold and
the edge labels denote w. Node v is not needed as a monitor.

RI R3 RI

R2 R1

Fig. 5. State Transition Diagram of Algorithm SEMS

neighbor’s concurrent moves or daemon’s fairness assumptions. Figure 5 shows
all transitions of a node with respect to variable state that can occur during an
execution of Algorithm SEMS.

Let ¢ be a configuration of the system. Let

D, ={v eV |wv.state € {In,Wait}}.

Observe that nodes do not enter or leave the set T M if they change their state
from Wait to In or conversely.

The following lemma follows from the convention that rules with a higher
priority have precedence.

Lemma 4. Fach node executes rule R1 at most once. If a node does execute R1
then in its first move.

This lemma implies that if a node v executes rules R2 to R6 then v.5 = N(v).

A node v can change its state from In via Wait to Out because neighboring
nodes signal to v that all their edges are sufficiently monitored. This information
can be false because some neighbor u of v wrongly assumed that its neighbor
up could monitor edge (u,us2). The reason for such a wrong assumption is that
ug € u1.S but ug & N(u1). Once uy executes rule R1 node u will realize this and
u can now consider v as a target monitor and include it into u.T'M. This could
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then prompt v to change its state to In again. Now the situation is different,
all neighbors of v have executed a rule in the mean time. Because of priority of
rules then «.S = N(u) holds for all uw € N(v). If node v changes its state again
to Out with rule R6 then it is because all neighbors indicated with their variable
PO that their edges have a sufficient number of monitors without v. Since this
number never will fall again under the value given by w, node v will never move
to state In again. This behavior is formally proved in the following two lemmas.

Lemma 5. Fach node executes R6 at most twice, i.e., it changes from state
Wait to state Out at most twice.

Proof. Let ¢ be a configuration in which a node v € V has state Wait and
executes rule R6. For v to execute rule R6 again it must first change its state
back to Wait. This can only be achieved by first changing to state In with rule
R3 and then to state Wait with rule R4. Note that v = u.PO for all u € N(v)
when v executed rule R6. For v to be enabled for rule R3 it is required that
v # u.PO for all uw € N(v). Thus, all neighbors of v must have executed rule R2
before v can execute rule R3 again. A node executing rule R2 cannot be enabled
for rule R1. Thus, each neighbor u of v satisfies .S = N(u) when u executes
rule R2. Hence, those neighbors of v that are responsible for edges that v can
monitor have all finally determined that v is not required as a monitor, i.e., v
will never enter u.T'M for a neighbor u. Hence v will never change its state to
In again. a

Lemma 6. Fach node executes R3 at most three times, i.e., it changes from
state Out to state In at most three times.

Proof. A node executing rule R3 four times would execute rule R6 at least three
times. This contradicts Lemma 5. g

Lemma 7. Fach node executes R4 at most 6Ad(v) times, i.e., it changes from
state In to state Wait at most 6 Ad(v) times.

Proof. A node v with state In executes rule R4 if v is not a target monitor of
any of its neighbors, i.e., v € w.TM for all u € N(v). In order to reenter state
In at least one of v’s neighbors must declare v as a target monitor, i.e., there
must be a node u € N(v) with v € uw.T M. Note that for u to change its set of
target monitors, a neighbor of u must change its state from Out to In or from
Wait to Out or execute rule R1. According to Lemmas 4 to 6, each neighbor of
u can do this at most 6 times. Hence, node u can update uw.TM at most 6d(u)
times. This implies that node v changes its state to Wait at most 6Ad(v). 0O

Lemma 8. Fach node executes R5 at most 6Ad(v) + 1 times, i.e., it changes
from state Wait to state In at most 6Ad(v) + 1 times.

Proof. Immediate consequence of Lemma 7. O

Lemma 9. Any node v can execute R2 at most (6A% + 9)d(v) times.
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Proof. Consider a node v. The execution of rule R2 depends on the values of
v.TM and v.PO. By definition, the value of v.T'M itself depends on T'M, (v, u)
for each neighbor u of v. Mon(v,u) depends on the neighbors w of v which are
in state Wait or In. Note that node w can change its value from state Out to
Wait at most three times (Lemma 6) and from state Wait to Out at most twice
(Lemma 5). Thus, each neighbor w of v changes Mon(v,u) at most five times
and once if w.S is incorrect. So, for each of v’s neighbor u, T M, (v,u) can change
at most 6 times. Hence, we deduce that v.TM can change at most 6d(v) times
for each neighbor of v.

Next we consider variable v.PO. By definition, PO depends on the neighbors
that have state Wait. Using Lemmas 5 and 8, each neighbor u of v changes its
state from Wait to state In or Out at most 6 Ad(u) + 3 times. Thus, for each
neighbor of v, the value of v.PO can change at most d(v)(6A2 + 3) times.

In summary, v can execute rule R2 at most d(v)(6A2 + 9) times. o

Lemma 10. Algorithm SEMS terminates in O(A?m) moves under the unfair
distributed daemon.

Proof. Lemmas 4 to 9 stated upper bounds on the number of executions for each
rule on each node. In the worst case these moves all occur sequentially. This gives
the following upper bound for the total number of moves:

n+ > (64%+9)d(v) +3n+ Y 6Ad(v) + Y (6Ad(v) + 1) + 2n € O(A%*m)
veV veV veV

O
Lemmas 3 and 10 yield our main result.

Theorem 1. Algorithm SEMS is self-stabilizing algorithm for finding a minimal
edge monitoring set for a given set of monitoring requirements of a general graph.
It uses O(Alog n) memory space per node and stabilizes in O(A*m) moves under
the unfair distributed daemon.

6 Conclusion

In this paper, we presented a novel self-stabilizing algorithm to find minimal
edge-monitoring sets in general graphs. Such sets provide a valuable tool to
implement a simple and effective mechanism for building secure wireless sensor
networks. The algorithm has a lower move complexity as existing self-stabilizing
algorithm. As future work, we aim to either improve the analysis of the presented
algorithm, to come up with a more efficient algorithm or to prove that 2(A%m)
moves is a lower bound of the problem for distributed daemon.
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Abstract. In this paper, we propose a silent self-stabilizing leader election algo-
rithm for bidirectional connected identified networks of arbitrary topology. This
alg