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Abstract. Text line extraction is vital pre-requisite for various docu-
ment processing tasks. This paper presents a novel approach for text
line extraction which is based on Gaussian scale space and dedicated
binarization that utilize the inherent structure of smoothed text doc-
ument images. It enhances the text lines in the image using multi-
scale anisotropic second derivative of Gaussian filter bank at the average
height of the text line. It then applies a binarization, which is based on
component-tree and is tailored towards line extraction. The final stage of
the algorithm is based on an energy minimization framework for remov-
ing spurious text line and assigning connected components to lines. We
have tested our approach on various datasets written in different lan-
guages at range of image quality and received high detection rates, which
outperform state-of-the-art algorithms. Our MATLAB code is publicly
available. (http://www.cs.bgu.ac.il/~rafico/LineExtraction.zip)
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1 Introduction

Many of the document analysis algorithms, such as indexing, word retrieval
and text recognition, expect extracted text lines, as an input. Thus, text line
extraction is an essential operation in document processing and a substantial
number of related algorithms have been published. Most of these algorithms
expect binary images and some are designed to handle gray scale images.
Smearing based methods [4,10,15] apply Gaussian based filtering and bina-
rization to enhance line structure. These approaches yield good results and
became popular methods for text line extraction (ranked 1st in ICDAR 2009
and ICFHR 2010 contests [8,9], and 3rd in ICDAR 2013 contest [16]). However,
the performance of these methods depends on choosing the correct scale of the
Gaussian based filter. Most authors do not provide an algorithm for choosing
the correct scale [10,15] or choose the scale based on ad-hoc heuristics [4]. The
binarization phase also inherits the limitations of the adapted binarization algo-
rithm which is either ad-hoc binarization [15] or based on active-contours [4,10]
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which are computationally slow. Seam-based line extraction algorithm compute
an energy map, which is used to guide the progress of the seam that deter-
mine the text lines or their boundaries. The algorithm is required to deter-
mine the boundary seams of the detected text-lines, which is done using ad-hoc
heuristics [14].

In this paper we present a novel method designed to detect text lines. Our
algorithm is based on robust theoretical background, i.e., scale space theory [11]
and our binarization method is fast, and tailored towards line extraction in
documents. In an initial step our approach enhances the text lines in the image
using multi-scale anisotropic second derivative of Gaussian filter bank at the
average height of the text line. It then applies a binarization, which is based on
component-tree and utilizes the structure of smoothed text line.

In the rest of the paper we overview closely related work and background lit-
erature. We then present our algorithm and its experimental evaluation. Finally
we conclude and draw directions for future work.

2 Related Work

Text line extraction algorithms could be categorized into projection-based
methods [2], grouping methods [7,13], seam-based algorithm [14] and smearing
methods [4,10,15].

Projection-based algorithms divide the document image into vertical strips
and horizontal projections are calculated within the stripes. The resulting pro-
jections are combined in order to extract the final text lines. Bar-Yosef et al. [2]
applied an oriented local projection profiles (LPP) inside a sliding stripe. The
average skew of the current stripe is calculated and the next stripe is projected
along that skew direction. Grouping methods extract text lines by aggregating
units in a bottom-up strategy. The units may be pixel or higher level represen-
tation, such as connected components, blocks or other features such as interest
points. Rabaev et al. [13] used a sweep-line to aggregate connected components,
that correspond to characters, into text lines. A seam-carving-based approach
has been developed recently. Saabni et al. [14] used two types of seams, medial
and separating. Both types of seems propagate according to energy maps, which
are defined based on the distance transform of the gray scale image. The seams
tend to diverge when big gaps between words or holes in the document are
present.

Smearing approaches enhance line structure and then apply binarization to
extract text lines. Shi et al. [15] converted an input image into an adaptive local
connectivity map (ALCM), where the value of each pixel is defined as the cumula-
tive intensity of the pixel inside a window of a predefined size. Finally the ALCM
image is binarized to extract text line patterns. The method do not contain a
mechanism for determining the appropriate scale of the filter for degraded gray-
scale historical documents and the binarization algorithm is not tailored towards
lines extraction. A popular variant of the smearing method [4,10] is based upon
convolving the image with an anisotropic Gaussian (or a bank or Gaussians)
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followed by segmentation of text lines using active contours. Bukhari et al. [4]
suggest to choose the scales of the Gaussians by binarizing the document and
inspecting its height histogram, which is susceptible to noise in degraded docu-
ments, see Fig. 1(a). Another drawback for the level-set based active contours
methods [10] is their complex and slow computation.

Despite considerable progress over the last decade, automatic text line seg-
mentation of historical documents, as those presented in Fig. 1, remains an open
problem.

Fig. 1. Samples of the documents on which we perform our tests. (a) Genizah handwrit-
ten manuscript; (b) Pinkasim handwritten cursive manuscript; (¢) German manuscript
from Parzival dataset; (d) Latin manuscript from Saint Gall dataset.

3 Notations and Definitions

Our approach relies on scale space scheme and utilize component tree to extract
text lines. To simplify the presentation of our algorithm we briefly overview these
two topics.

3.1 Scale-Space Overview

Scale space can be intuitively thought of as a collection of smoothed versions of
the original image. Formally, given an image I : R?2 — R, its linear scale-space
representation L : R?2xR2 — R can be defined by convolution with anisotropic
Gaussian kernels of various lengths /¢, and /%, in the coordinate directions,
defined as L(z,y; s, ty) = g(z,y; s, ty) * I(x,y), where g : R% x R2 — R is an
anisotropic Gaussian defined in Eq. 1. We define a multiplication factor n as 2=,
Y
where o; is related to t; by o; = v/%;.

(2, ta ty) = _ _(%Jr%) (1)
g\T, Yslx, ly 27T\/We .
zly

We denote by 0yoL(x,y;ts,t,) the partial derivative of L with respect to x,
where L is differentiated a times. Lindeberg [11] showed that the amplitude of
spatial derivatives, Oya0ys L(x,y; ts, ty), in general decrease with scale, i.e., if an
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image is subject to scale-space smoothing, then the numerical values of spatial
derivatives computed from the smoothed data can be expected to decrease.

If two signals f and f’ are related by scale, i.e., f(z) = f/(sz), then
it is possible to normalize that spatial derivative of the scale-space such that
the normalized derivatives are equal [11]. More formally, Let the scale space
representation of f and f’ be given as L(x;t) = g(x,t) = f and L'(2';t') =
g(2',t")x f’, where the spatial variables and the scale parameters are transformed
according 2’ = sx and t’ = s%t. Then, if y-normalized function of the derivatives
is defined as 9¢ = V10, and O = V'8, then Oga L(z;t) = Ogra L' (2';t). That
is, the y-normalized function of the derivatives are scale invariant.

3.2 Component-Tree

The level sets of a map are the sets of points with level above a given threshold.
The inclusion relation enables connected components of the level sets to be
organized in a tree structure, which is called the component tree [12]. We denote
the threshold set obtained by thresholding a map with threshold ¢ by B; and
the set of connected components in B; by C;. The nodes in a component-tree
correspond to the components in C; for varying values of the threshold ¢. The
root of the tree is the member of C;_, , where ¢y, is chosen such that |Cy, . |=1.
The next level in the tree correspond to C,, +4, and in general the nodes in
the tree that belong to level ¢ correspond to C,, 1¢q, Where d is a parameter
that determines the step size for the tree. There is an edge between C; € C;
and C; € Cyyq if and only if C; C C;. The maximal threshold ¢, used in tree
construction is simply the maximal value in the map.
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Fig. 2. (i)(a) A gray-level image F and its successive threshold sets B;(F’) for t from
0 (b) to 4 (f), where d = 1; (g) The component-tree of F. (h) The same tree, enriched
by an attribute (the size of the connected component of each node), courtesy of [12].
(ii) Lines enhancement result.

min

4 Our Approach

In this paper we describe a text line segmentation approach for handwritten
documents, which is based on Gaussian scale space and component-tree traversal.
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The method starts by enhancing lines in the image, using multi-scale anisotropic
second derivative of Gaussian filter bank. The resulting image is binarized using
component-tree traversal that is tailored towards line extraction. At the final
step, spurious detected lines that do not correspond to text lines are removed.

4.1 Lines Enhancement

The pixels in an image can be regarded as two dimensional random variables.
They are generated by an unknown Probability Distribution Function (PDF),
which represents the distribution of text lines. Specifically, the PDF is continuous
and has smaller values (dark) in the text line area, while there are larger values
(bright) in the gap and marginal area [10]. Valleys on the probability map rep-
resent text lines, while peaks are the boundary between neighboring text lines.
As a result of this structure, a convolution of text line with a second derivative
of an anisotropic Gaussian, elongated along the horizontal direction generates
ridges along text lines and valleys along the gaps between text lines [5]. Making
it an appropriate filter for enhancing the lines structure in a document.

The Appropriate scale for this filter correspond to the text line height, which
varies along the text line itself, due to ascenders and descenders, and along
different text lines. We use a multi-scale filtering and detect the optimal scale
for each point using the scale-space framework [11]. We construct a scale space
representation of the images by convolving the image with the y-normalized
function of g,, from Eq. 1 with n > 1, and choosing for each pixel the strongest
response along the scale-space. The scales at which the image is convolved with
corresponds to the height range of the characters in the document. A robust
estimate of character height range in gray-scale images is obtained using the
evolution map (EM) tool introduced by Biller et al. [3]. The EM supplies details
about the height range of the characters in the document, without binarization.
For binary images the range is taken as (u,u + 0/2), where p and o are the
average and standard deviation of the heights of the connected components in
the document. Fig. 2(ii) illustrates the result of lines enhancement on a document
from Fig. 1(a).

4.2 Text Line Extraction Using Component-Tree

To extract the text lines we need to binarize the gray scale image, R, resulting
from applying the Gaussian scale space on the original image (Section 4.1). Off-
the-shelf general binarization algorithm do not take into account the properties
of the resulting image, require tuning parameters, and often introduce noise
and artifacts. Instead, we apply a binarization procedure, which is based on
component-tree scheme and geared toward the structure of R.

A connected component that represents a text line resembles a thick simple
polyline that covers the entire text line (the thickness is not uniform). Motivated
by this observation, we build a component-tree of R and for each connected
component, C; (represented by the node, node(C;), in the tree) we measure
how well C; can be represented by a simple piecewise linear approximation. Let
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us refer to this measure as F(C;). One could compute F(C;) by detecting the
skeleton of the component and measuring its linearity, but skeleton structure
is not robust and sensitive to noise. Instead, we fit a simple piecewise linear
approximation from the left end to the right end of the component and measure
quality of the fit. We chose to implement that by fitting a uniform least squares
spline of order 1 with k£ knots for the connected component, C;. The first and
last points correspond to the left and right end of the component and the k — 2
remaining points are distributed uniformly along the line connecting the two end
points, as depicted in Fig. 3(b). The fit quality is computed based on two terms:
(a) the average distance of each pixel from the spline, and (b) the difference
between the area of the component and the sum of the distances of the contour
pixels from the spline. The average distance is compared with the average letter
height to detect and refine component that include two consecutive lines. The
second term is used to detect partial merge of adjacent text lines that form a
non-convex component.

To extract the text lines we traverse the component-tree top-down and at
each node, node(C;) we measure its fitness, F/(C;), and based on that we deter-
mine whether it represents a text line or not. If C; represent a text line we output
this text line and the search along this branch is complete, otherwise we refine
the component by recursively processing the children of the node(C;). Fig. 3(a)
presents the pseudo-code of the traversal procedure.

1: Ouput = ¢.

2: Enqueue the root node v into a queue @
3: while @ is not empty do

4:  C; «— Q.dequeue()

5. if F(C;) represents a text line then
6: Ouput = Ouput | C;. e
7. else

8: Enqueue all children of C; into Q.
9:  end if
10: end while

11: return Output.

(a) (b)

Fig. 3. (a) Traversal Algorithm; (b) a synthetic blob with an approximating spline (in
red) that uses 6 knots (k=6)

4.3 Post-Processing

Our algorithm usually extracts the correct text line efficiently. However, in some
cases it includes spurious lines that do not correspond to text lines or split
a text lines into disconnected segments, as shown in Fig. 4(c). We overcome
these limitations by detecting and removing spurious text lines and connecting
segments that belong to the same text line. This stage involves minimizing an
energy function on a binarized version of the document.



Using Scale-Space Anisotropic Smoothing for Text Line Extraction 355

— A —

m— s e = e v S
[ — |
R

= _—_—,— P ::"“\

e 'l,"’”—-u-vo uﬁ -_M ”:
- = Sy AW TP T smmwmasaS T -
= >
__ — :
—— - o ' ‘
= : : /
= ] » :
(a) (b) © 5

Fig. 4. The various stages of the component tree traversal, where splines used to eval-
uate piecewise linearity are depicted in red (unsuccessful fit) or cyan (successful fit),
(a) the root of the component tree, at C_17, (b) the components at Ci3, (c) the result
before discarding spurious lines (disconnected segments are encircled in red, and some
spurious lines are encircled in blue) and (d) the final result.

Our approach relies on multi-label graph cut minimization [6] where graph
cuts are used to approximate energy minimization of arbitrary functions. Let £
be the set of lines (labels and lines are interchangeable throughout this section)
that were extracted in Section 4.2 (Fig. 4(b)) and let C be the set of connected
component in the document. The goal is to find a labeling f that assigns each
component ¢ € C a label ¢, € L, where f is consistent with the observed data,
spatial coherent and uses a minimal set of labels (i.e., lines). The energy function,
E(f) defined in Eq. 2, consists of three terms: the data cost, the smoothness
terms and the label cost. Minimizing the energy function, E(f), produces an
appropriate labeling.

=Y Dlcle)+ Y dle,d)-5(le # L)+ > he-bu(f (2)

ceC {c,c'}eEN lel

The cost term, D(c,£.), expresses the cost of assigning ¢ the label ¢, and is
defined as the Euclidean distance between the centroid of ¢ and the line rep-
resented by £.. The smoothness term determines the coherence of the labels £,
and £, with the spatial relation of the components ¢ and ¢’. That is, the closer
the components are the higher is the chance that they got assigned the same
label. Let A be the set of adjacent component pairs. We set || = 2 and define
the distance d(c, ') in Eq. 2 according to d(c,¢’) = exp(—a - de(c, ') (the spa-
tial coherence strength decays exponentially with Euclidean distance). The term
d.(c,c') is the Euclidean distance between the centroids of components ¢ and ¢/,
and the constant « is defined as (2 (de(c,c’))) ™!, where (-) denotes expectation
over all pairs of adjacent elements [5]. The term 0(¢. # £./) is Kronecker’s delta.
The label costs penalize each unique label that appears in f, where hy is the non-
negative label cost of label ¢, and d,(f) is an indicator function that is assigned
1, when the label ¢ appears in f and 0 otherwise. We define the density of a
line ¢ as the number of foreground pixels in the binarized document overlapping
with ¢, and r; as the the ratio between the density of £ and the maximal density
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in L. The label cost hy is defined as exp(—p3 - r¢), where [ is a constant we set
experimentally.

Finally, we merge broken line segments. For each segment we extract its
left and right endpoints and define the direction of a component as the vector
connecting the left endpoint to the right endpoint. Two adjacent component
are merged if (a) the direction of the vector connecting the two components
(the right of the first component to the left of the second one) falls between the
direction of the two components and (b) their vertical distance is less than the
average letter height.

5 Experimental Results and Discussions

We evaluated our text line detection on various datasets and received encour-
aging results. The test datasets include documents written by different writers
and in various languages. Hence, the presented methodology is script and writer
independent and copes nicely with noise. the datasets are ICDAR 2013 [16],
ICDAR 2009 [8], Hebrew [13], Saint Gall [7] and Parzival [1] datasets. ICDAR
2013 contains 150 pages written in English, Greek and Bangla. ICDAR 2009
contains 200 pages written in English, French, German and Greek. The Hebrew
dataset contains 58 degraded pages from Cairo Genizah collection and 6 pages
from the Pinkasim collection. The Saint Gall database contains 60 pages of a
Latin manuscript from the 9th century. The Parzival includes 47 pages of a Ger-
man manuscript from the 13th century. For Parzival we used the ground-truth
generated by [13].

The performance evaluation is based on a MatchScore [16] that computes
the maximum overlap of a text region with the ground truth region. If this
score is above a given threshold T, the text line is considered as correct (one-
to-one match, 020). Based on this MatchScore, the Detection Rate (DR), the
Recognition Accuracy (RA) and the Performance Metric (FM) are defined using
Eq. 3, where N and M are the number of text lines in the ground truth and the
number of text lines detected by the algorithm, respectively. In our experiments
we set Ty, as 95% for datasets of binary images, and 90% for datasets of gray-scale
images. For all datasets and all algorithms the performance evaluation is based
on a binarized version of the datasets. For Saint Gall and Parzival we measure
the performance by means of the Pixel-Level Hit Rate (PHR) and the FM (also
called Line Accuracy Measure) as in [1,7]. The results of the presented algorithm
are reported in Table 1, we also mention for each dataset whether it consists of
binary pages (B) or gray-scale pages (G). Throughout the experiments we have
used the 15 knots (k=15) to measure the linearity of the components, the scale
space is defined based on d =1 and n = 3.

020 020 2x DR x RA
DR == RA = 3r FM = — o (3)

Although the algorithm achieves high detection rates, it suffers some limita-
tions. For example, if salient objects in the image, such as holes and drawings,
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Table 1. Results on different datasets compared with known state-of-the-art algo-
rithms. Each dataset contains either binary (B) or gray-scale documents (G).

Our Method state-of-the-art
M | 020 DR RA M FM
ICDAR 2013 [16](B) | 2651 | 2621 | 98.94% | 98.86% | 98.90% 98.66%
ICDAR 2009 [8](B) | 4033 | 4021 | 99.67% | 99.70% | 99.69% 99.53%
Hebrew [13](G) 1257 | 1154 | 89.04% | 91.88% | 90.44% 86.10%
PHR FM PHR FM
Saint Gall [7](G) 99.08% 99.22% 98.94% | 99.03%
Parzival [1](G) 98.31% 97.88% 96.30% | 96.40%
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Fig. 5. (a)-(c) Selected result samples of the algorithm: (a) Pinkasim ; (b) Genizah ;
(c) Parzival. (d)(upper) The drawing causes the line above it to be missed; (d)(lower)
two partial lines accidentally merged together.

are in close vicinity with a text line the result of the algorithm may produce
incorrect results, as shown in Fig. 5(d).

6 Conclusions and Future Directions

In this paper, we presented a text line segmentation method for handwritten
historical documents. Our approach applies smearing at different scales using a
Gaussian scale-space, while utilizing the average height of the characters, fol-
lowed by a dedicated binarization technique that is based on component-tree
and utilize the structure of text lines. In future research we plan to upgrade
the proposed method in two directions: (1) refine the use of the evolution maps
(EM) to obtain a more reliable range of character heights in the document, and
(2) find a more robust procedure for estimating whether a segment refers to a
text line or not.
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