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Abstract. We examine whether 3D pose and face features can be used
to both learn and recognize different conversational interactions. We
believe this to be among the first work devoted to this subject and show
that this task is indeed possible with a promising degree of accuracy using
both features derived from pose and face. To extract 3D pose we use the
Kinect Sensor, and we use a combined local and global model to extract
face features from normal RGB cameras. We show that whilst both of
these features are contaminated with noises. They can still be used to
effectively train classifiers. The differences in interaction among different
scenarios in our data set are extremely subtle. Both generative and dis-
criminative methods are investigated, and a subject specific supervised
learning approach is employed to classify the testing sequences to seven
different conversational scenarios.

Keywords: Human interaction modeling · Conversantional interaction
analysis · 3D human pose · Face analysis · Randomized decision trees ·
HMM · SVM

1 Introduction

There has been some success in using features extracted from high-level infor-
mation such as body pose, e.g. automatically learning sign language to perform
classificaiton task [5]. However, assumptions about the subjects in the scenes,
such as body orientation, are routinely made to constrain the solution. A further
problem with studying social interaction is that there are often occlusion since
usually participants would face one another, meaning observations are often
incomplete. For this reason, often the interactions examined are less intimate
and can be viewed at a coarser resolution. For example Zhang et al. [21] studied
group interactions in a work meeting between multiple people, detecting events
such as presenting to the group, conducting a group discussion or note taking etc.
This is achieved by first estimating the state of each participant and then using
this information to infer the group action. Decomposing the group interaction
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into a two level process of firstly inferring what each person is doing, and then
from this deducing the group action is a common approach [1,19,21]. Probabilis-
tic models such as Hidden Markov Models (HMM) can be employed to overcome
noisy observations, both at the image level and on the person dependent action
classification level. However, for this approach to be effective there needs to be
an understanding of which motions, poses or gestures that an individual per-
forms is likely to be an important building block. Often this is dependent on the
granularity of the actions being observed.

In order to understand the high-level semantic human activity, accurate pose
estimation is generally required. To perform such as task using RGB cameras,
e.g. [8,9], remains an open challenge. In [10,11], we proposed to leverage recent
advances in technology in extracting 3D pose using a consumer sensor (Microsoft
Kinect) to examine the feasibility of recognizing human interactions between two
people using the body pose only. Rather than recognizing just key social events,
we attempt to analyze and classify different conversational interactions. In this
work, we investigate both bodily and facial pose features for recognizing the
type of conversation they are conducting. We do not examine strongly differen-
tiable interactions, such as high-tempered arguments or disputes, as in previous
research efforts studying interaction. Neither do we employ the use of actors.
Different from affect recognition, where a single observation can typically be
used to identify the affective state (e.g. smile implies happiness), there is not a
direct connection between a single observation and the type of the conversation
being performed; rather it is the sequence of observations as an interaction is
in progress and is of importance. We acknowledge that bodily and facial move-
ments are not necessarily generalizable across subjects. Here, we aim to find out
whether it is possible to generalize subject specific motion cues which can be
used to identify the topic of a conversation.

2 Data Acquisition

Data was collected using a multi-camera set-up. Each person was recorded using
a Kinect Sensor, which captured pose at 30fps. The face images were captured
using two high definition cameras operating at 25fps. The first task was to discuss
an area of current work that the participant was undertaking. The second task
was to prepare an interesting story to tell their partner, such as a holiday expe-
rience. The third task was to jointly find the answer to a problem. The fourth
task was a debate, where the participants were asked to prepare arguments for a
particular point of view on an issue we gave to them. In the fifth task they were
asked to discuss between them the issues surrounding a statement and come to
agreement whether they believe the statement is true or not. The sixth task was
to answer a subjective question, and the seventh task was to tell jokes in turn.
In total, there are about 8 hours long Kinect sequences and equal length of face
sequences. The dataset is available for download from http://csvision.swan.ac.
uk/converse.html.

http://csvision.swan.ac.uk/converse.html
http://csvision.swan.ac.uk/converse.html
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Fig. 1. Flowchart of the proposed method

3 Methodology

The proposed method first extract motion features from Kinect output and local-
ize facial fiducial points in RGB face images using a two level shape model. The
head orientation is then computed based on face localization and is treated as
part of the pose feature. The localization of face fiducial points also provides two
sets of features: shape and appearance. The shape features are derived from the
coefficients of a global shape model that is used for face localization. The appear-
ance features are obtained from the textural coefficients of two local face models
after Linear Discriminant Analysis. Hidden Markov Models (HMMs) are then
used to model the conversational interactions based on these low level features
at individual time instances. Interactions between pair of subjects are captured
using coupled HMM. A temporal generalization of both pose and face features
are also carried out to encapsulate temporal dynamics, which first produces a
visual vocabulary features and then further generalizes them to visual topics
through Latent Dirichlet Allocation analysis. Discriminative classifiers, Support
Vector Machine (SVM) and Random Forests (RF), are applied to classify inter-
actions into seven different scenarios. Moreover, we apply modulator functions to
those mid level features so that we can learn the importance of those individual
features, which is then used in the SVM classification. Fig. 1 illustrates the steps
from low level feature extraction, to unsupervised feature generalization, and to
supervised modeling and classification.
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3.1 Pose Feature Extraction

Motivated by recent work, such as [2,16,17], we extract three types of low level
features to depict the pose and motion of the upper body. These geometry fea-
tures extracted from a kinematic chain are simple but powerful for representing
human gesture and motion over time. The first set of feature measures the dis-
tance between two joints at different time intervals. The second set of feature
measures the distance between a joint and a reference plane defined using differ-
ent parts of the body. The third set of feature measures the velocity of individual
joints. These are depicted in row (b) in Fig. 1.

In this study, we use three reference planes, (1) (2) and (3) showed in row
(b) in Fig. 1. The first two reference planes, (1) and (2) are used to measure the
distance and velocity of joints on the lower arms, i.e. hands, wrists and elbows.
Both planes are located at the same spine point. One of the two planes is defined
by the vector connecting the spine and left shoulder (Fig. 1, row (b), (1)), and
the other is defined by the vector connecting the spine and right shoulder (Fig.
1, row (b), (2)). The former is used to measure the lower arm joints on the left
side and the latter is for right side. The two vectors connecting hip center from
two shoulders define the third reference plan (Fig. 1, row (b), (3)), which is used
to measure movements of lower arm joints from both arms. The overlapping in
measurement is to make sure that the 3D motion of those joints are captured
among those 2D measurement combinations.

3.2 Face Feature Extraction

The face images acquired have varied poses and sometimes contain occlusions
(e.g. glasses and hand movement). Consequently, holistic models, such as active
appearance models, [6], have been found not robust enough to track the faces
beyond a few dozens of frames. We thus integrate the local component shape
models with a global shape model [12]. We use the point distribution model [6]
to build two local shape models, which are trained using feature points from
upper and lower faces, respectively, with overlapping nostril fiducial points. The
two models hence are focusing on local deformations at eyes and mouth regions
that are important to model interactions. The overlap provides a weak constraint
between two local models. The result from local models provides a good initial-
ization for the second level global shape model. Each of the fitness function is
composed of a texture cost and a shape cost. Response scores based on Haar-like
rectangular features [20] and the GentleBoost algorithm [13] are used to evalu-
ate the texture fitness. We follow [7] to formulate a generic shape cost function,
which is applied to both local and global models. The two level fitness functions
are then optimized using the simplex algorithm.

Based on the localization results, two types of features are extracted to capture
facial dynamics: shape and appearance. For each face image there are 35 fiducial
points, many of which are for localization purposes, and are not contributing to
deformations. We hence project those localized points to the global shape model
space learned at the localization stage and retain 90% eigenvalue, which results in
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9-dimensional shape features. This dimensionality reduction is also desirable for
training classifiers. For appearance feature, we similarly project the facial texture
to a PCA texture model that is learned from the training samples used for local-
ization. Since there are significant differences between the upper part and lower
part of the face, two separate PCA models are built. Again, 90% eigenvalue is
retained, which results in 14-dimensional features for both upper part and lower
part. However, for appearance feature we also perform a Linear Discriminant Anal-
ysis [3] to minimize the individual textural characteristics in derived appearance
features. We re-project the coefficients back into the texture subspace and calcu-
late the residue, which is used as the final appearance feature. Thus, a total of 37-
dimensional features are learned for capturing facial dynamics.

3.3 Head Orientation Estimation

Currently the Kinect sensor has the ability of facial tracking and head pose esti-
mation. However, the performance and accuracy are greatly affected by the data
acquisition environment and experiment set-up, especially the imaging distance
and the participant’s pose. Hence, we perform head orientation estimation by
extending the results from face tracking. As part of facial feature extraction, we
obtain a set of five fiducial points for each face image: two external eye corners,
two mouth corners, and nose tip. We follow the work by Gee and Cipolla [14] to
estimate the head orientation from a single image using these fiducial points.

3.4 Temporal Feature Descriptors

To determine which conversational scenario directly based on short-term, primi-
tive actions is unlikely going to be successful. Instead, the temporal dynamics of
those short-term motions and primitive actions are useful in revealing the topic
of conversation. To capture such dynamics, we employ Hidden Markov Model
(HMM) which is well suited to model temporal sequential data. However, we
also attempt to generalize those face and pose features to a middle level to sum-
marize the distributions of those primitive motions in a reasonable time span,
5 seconds in our case. The common approach of appending feature vectors will
result in prohibitively long feature vectors for discriminative classifiers to train.
We thus adopt the bag of words approach to derive middle level features that
are suitable for classification of conversational interactions, each of which may
contain various amount of primitive motions.

The Latent Dirichlet Allocation (LDA) model [4] has been widely used to dis-
cover abstract “topics” from a collection of words or low level features, e.g. [18]. In
this work, we use unsupervised clustering to generate visual words across the whole
sequence and across all subjects to create a visual vocabulary. A further general-
ization to visual topics is then performed based on the distribution of visual words
in an extended time span that is often larger than typical primitive actions.

We first construct a visual vocabulary by fitting Gaussian Mixture Model to
each dimension of the low-level feature space. We consider each Gaussian com-
ponent as a visual word. Then, we further assume that those visual words are
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generated by a mixture of visual topics. To learn those visual topics, we split
the sequences into 20 seconds sections, each of which is considered as a visual
document that contains multiple visual topics. The LDA model is learned by
using Gibbs sampling inference method, [15], and applied to extract interaction
categories from low level temporal visual words. The distribution of both visual
words and visual topics are used as temporal feature descriptors for conversa-
tional interaction modeling and classification.

3.5 Modeling Using Coupled HMM

In order to explicitly model the dependence between the two subjects we use
separate HMM to represent each person and then adding an edge between the
subjects across time to build a Coupled HMM (CHMM), e.g. [19]. Row (d) in Fig.
1 depicts the CHMM used in this work. To perform classification, CHMMs are
learned for each of the seven classes, {Λ1, .., Λ7}. Given a set of T observations
ZT = {zT , zT−1, .., z1} from an unknown class we classify it to the model that
maximizes p(Λn|ZT ), where n denotes class ID. This is calculated in two stages.
Firstly the forward-backward algorithm is used to calculate p(ZT |Λn) by recur-
sively computing p(yt = j|zt−1, .., z1, Λn) =

∑m
i=1 Aijp(zt−1|yt−1 = i)p(yt−1 =

i|zt−2, .., z1, Λn), where A denotes the transition matrix, and then summing
the probabilities over all states in the final time instance, i.e. p(ZT |Λn) =∑m

i=1 p(zT |yT = i)p(yT = i|zT−1, .., z1, Λn), following which, p(Λn|ZT ) can be
calculated using Bayes’ rule assuming a flat prior across all classes.

3.6 Classification Using Discriminative Classifiers

Whilst generative models, such as HMM, is important in explaining the data,
discriminative ones tend to be more effective in classification tasks. In this work,
we also employ SVM and Random Forests to study the discriminative power of
the features, and only the middle level features are used since a concatenation
of low level features will result in a too large dimensional feature space.

3.7 Classification Using SVM Ranked Features

In order to automatically identify the influential features from high dimensional
space, we conduct feature ranking via a scheme that applies the entropy regu-
larization and particle swarm optimization (PSO) techniques to the construc-
tion of an optimal SVM model [22]. The novelty of this scheme lies in that
the model selection, feature identification and dimensionality reduction are per-
formed simultaneously in an integrated manner. During learning process the
importance of less influential attributes automatically approaches to zero, whilst
the importance of the most important attributes turns to be one. As a result,
only the most influential features remain in the final SVM model.

Specifically, given a data set {xl, yl}Np

l=1used for performing model selection
by the PSO, where yl ∈ {−1, 1} denotes the label of data xl and Np denotes
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the number of classes, the following fitness function is used to identify optimal
hyper-parameters for SVM: f = 1

Np

∑Np

k=1 (ȳk − yk)2 + λ1 (−∑n
i=1 θi log(θi)) +

λ2 (
∑n

i=1 θi) , where θi ∈ (0, 1) indicates the importance of the input variable to
the classification task, λi (> 0) are called regularization coefficients, ȳk are the
labels predicted by the SVM model. The second term, an entropy penalty, is used
to remove redundant features. Because the entropy distribution of importance
ranks would become zero (minimum) if importance values of features reach {0,
1}, during the training process the importance ranking values associated with
redundant features would be forced to approach to zero and the importance
ranks associated with influential features would move towards one. The third
term encourages feature sets that are as compact as possible.

4 Results and Discussions

All 7 tasks were completed by 8 different pairs of people in a total of 482 mins,
producing a total of 869,142 pose frames and 724,285 RGB face images. Together
with estimated head orientation, 35 low level pose features were extracted. 37 low
level face features were derived from face localization. To extract the visual words,
for each feature, a Gaussian Mixture Model with 10 components was fitted to the
low level features across different pairs. In order to extract the visual topic from the
visual word, the sequences were chopped into 20-second sections, each of which was
considered as a visual document. We learned LDA models with 25 visual topics for
pose and face separately, and each visual word was inferred and assigned with a
potential visual topic. Finally, at the scenario classification stage, each recorded
sequence is split into 5-second sections. For the discriminative classifiers, the his-
togram of visual words or topics is computed, and used as a feature vector for each
section. For the CHMM, the feature vector of every 10 frames, for the sake of com-
putational feasibility, in the section corresponds to an observation node expanded
across time. To carry out the classification, 10-fold cross validation is adopted.
Note, neighboring segments are not distributed across different folders.

The results of using CHMM are summarized as following. Using face and pose
features alone achieved 53.2% and 55.9% respectively, compared to a random

Table 1. Classification results using visual words (%)

Face&Pose
KNN RF SVM SVM-R

Describing Work 81.2 90.6 88.4 100.0

Story Telling 59.7 51.0 70.6 80.2

Problem Solving 41.4 12.8 35.1 80.7

Debate 55.3 51.6 67.7 91.8

Discussion 50.0 62.7 69.5 61.1

Subjective Question 30.8 5.2 35.8 91.7

Jokes 36.3 14.2 47.7 80.0

Average 50.7 41.2 59.3 89.1
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Table 2. Classification results using visual topics (%)

Face&Pose
KNN RF SVM SVM-R

Describing Work 63.5 91.7 76.4 100.0

Story Telling 35.1 73.2 68.3 80.2

Problem Solving 37.1 73.6 74.3 80.7

Debate 48.6 73.6 67.1 81.97

Discussion 38.4 78.7 63.5 61.11

Subjective Question 22.5 63.3 63.5 91.74

Jokes 27.5 70.3 66.3 80.0

Average 38.9 74.9 68.5 87.3

chance of around 14%. The combination of face and pose feature achieved an aver-
age of 59.6%.Whenusingvisualwords andvisual topics, theperformancedecreased
significantly. With visual words, overall accuracy of 32.0%, 33.6% and 36.4% were
produced using face, pose, face and pose, respectively. After further generalization
to visual topic, its performance reduced further to 28.3%, 30.8% and 30.7%. This
was generally expected, since the feature generalization causes an enhancement
of commonality among different scenarios, which caused HMMs modeling slightly
more common features and hence reduced their discriminative power.

Next, we tested the mid level features with discriminative classifiers, i.e.
SVM and RF, see Tables 1 and 2. The classification results are considerably
better. For example, the overall accuracy using standard SVM with face and
pose visual words achieved 59.3%, compared with a mere 36.4% achieved by
CHMM. With visual topics, the difference is even more evident: 68.5% vs. 30.7%.
The combination of pose and face features showed markable improvements over
using face or pose features alone. We also present the results using KNN. With
visual words, RF was inferior to others and SVM is clearly performed better.
With further generalized features, there are clear improvements for both RF and
SVM, but not for KNN, and RF slightly out-performed SVM.

However, using our SVM ranked features, there were substantial improvements
for all features and raised the performance close to 90%. It is evidently clear that
feature selection is important in differentiating different conversation scenarios.

Whilst the Kinect sensor permits direct estimation of 3D pose that is cur-
rently more robust and accurate than RGB camera methods, the accuracy of
the data collected still contains some noise, as does the face features used in
this work. However, despite this we have shown that good recognition of con-
versational interactions can still be achieved. The suggests that it is possible to
recognize the conversational topics based on gesture and facial dynamics.
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