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Preface

This is the 11th edition of the ICIAR series of annual conferences offering an
opportunity for the participants to interact and present their latest research in theory,
methodology, and applications of image analysis and recognition. ICIAR 2014, the
International Conference on Image Analysis and Recognition, was held in Vila Moura,
Portugal, October 22–24, 2014. ICIAR is organized by AIMI – Association for Image
and Machine Intelligence, a not-for-profit organization registered in Ontario, Canada.

For ICIAR 2014, we received a total of 177 full papers from 39 countries. Before
the review process all the papers were checked for similarity using a comparison
database of scholarly work. The review process was carried out by members of the
Program Committee and other reviewers. Each paper was reviewed by at least two
reviewers, and checked by the conference chairs. A total of 107 papers were finally
accepted and appear in the two volumes of this proceedings. We would like to sincerely
thank the authors for responding to our call, and we thank the reviewers for the careful
evaluation and feedback provided to the authors. It is this collective effort that resulted
in the strong conference program and high-quality proceedings.

Each year we attempt to focus on a specific topic for the keynote speeches and
conduct a panel discussion on the topic.

This year, the conference theme was focused on the topic “Sparse Representations
for Image Analysis and Recognition.” We were very pleased to include three out-
standing keynote talks on this topic: “Optimization Algorithms for Sparse Represen-
tations: Some History and Recent Developments” by Mário Figueiredo, Instituto
Superior Técnico Portugal; “Morphological Diversities in Astrophysics” by Jean-Luc
Starck, CosmoStat Laboratory, France; and “Sparse Stochastic Processes with Appli-
cation to Biomedical Imaging” by Michael Unser, Ecole Polytechnique Fédérale de
Lausanne, Switzerland. The keynote speakers also participated in the panel “Sparse
Representation for Image Analysis and Recognition: Trends and Applications.” We
would like to express our gratitude to the keynote speakers for accepting our invitation
to share their vision and recent advances in their areas of expertise, which are at the
core of the topics of the conference.

We would like to thank Khaled Hammouda, the webmaster of the conference, for
maintaining the Web pages, interacting with the authors, and preparing the
proceedings.

As all conferences, the success of ICIAR 2014 is attributed to the effort and work of
many people, including members of the Organizing Committee, staff, and volunteers.
We gratefully acknowledge their support and efforts.

We are also grateful to Springer’s editorial staff for supporting this publication in the
LNCS series. We also would like to acknowledge the professional service of Viagens
Abreu in taking care of the registration process and the special events of the
conference.



Finally, we are very pleased to welcome all the participants to ICIAR 2014. For
those who were not able to attend, we hope this publication provides a good view into
the research presented at the conference, and we look forward to meeting you at the
next ICIAR conference.

October 2014 Aurélio Campilho
Mohamed Kamel
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Path Descriptors for Geometric Graph Matching
and Registration
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Abstract. Graph and tree-like structures such as blood vessels and neu-
ronal networks are abundant in medical imaging. We present a method
to calculate path descriptors in geometrical graphs, so that the similar-
ity between paths in the graphs can be determined efficiently. We show
experimentally that our descriptors are more discriminative than exist-
ing alternatives. We further describe how to match two geometric graphs
using our path descriptors. Our main application is registering images
for which standard techniques are inefficient, because the appearance
of the images is too different, or there is not enough texture and no
uniquely identifiable keypoints to be found. We show that our approach
can register these images with better accuracy than previous methods.

1 Introduction

Blood vessels, nerve fibers or pulmonary airways are examples of biological struc-
tures that can be represented as geometrical graphs with nodes corresponding
to branching points and edges corresponding to curves connecting the branching
points (Fig. 1). We consider the problem of registering two 2D or 3D images
based on a common geometric graph structure both images contain and which
we assume to be already extracted (e.g. [1]). This approach has the potential of
being much faster than standard pixel-based image registration techniques [2]
and tolerate very different image appearances. With respect to key point regis-
tration methods [3], registering geometric graphs provides more clues.

Unlike most existing approaches, our method can in a reasonable time handle
rather general transformations and large displacements, as well as partial over-
laps. The key contribution over our previous work [4,5] is an alternative coarse
alignment step based on finding similarities between path descriptors to restrict
the set of possible correspondences and thus make the matching more efficient.

2 Related Work

Ignoring edges, the geometric graph registration becomes a point cloud matching
problem, which can be solved by RANSAC-like approaches [6,7] These methods
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 3–11, 2014.
DOI: 10.1007/978-3-319-11758-4 1
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(a) (b) (c) (d)

Fig. 1. Example registration problems with prominent geometric graph structures:
Blood vessels in brain tissue acquired using (a) two photon microscopy and (b) bright-
field optical microscopy; two-photon microscopy images of axons in the brain (c,d)

Fig. 2. Example of the representation and notation for a graph with K = 2

do not need initialization but only work for restricted class of transformations,
such as rigid or affine. On the other hand ICP-like approaches [8,9] can handle
nonlinear transformations but require a good initialization. Finally, the matching
can be viewed as a discrete optimization problem with cost functions assigned
to node or edge pairings [10–12], which is very powerful but computationally
demanding. Pruning the search space is important to increase efficiency [4,5]
and node and edge descriptors [13,14] can be used for that purpose.

3 Problem Definition

Let us have an undirected graph GA = (VA,EA) with nodes VA = {vA
1 ,

. . . ,vA
|VA|} and edges EA = {eA

1 , . . . , e
A
|EA|}. We represent each edge eA

k ∈ EA

as a cubic B-spline [15], limiting the generality of the representable shapes in
exchange to better robustness with respect to noise. In doing so, we now have a
continuous representation of each edge, which can be represented by a mapping
ξeA

k
: [0, 1] → R

D, where if eA
k = (vA

i ,v
A
j ), then ξeA

k
(0) = vA

i and ξeA
k

(1) = vA
j .

We define superedges SA of graph GA as paths of at most K consecutive
edges. Similarly to edges, we can now define a mapping ξsA

k
: [0, 1] → R

D, which
will define the path of each superedge. Superedges are needed to deal with the
case of approximative matching, where some nodes and edges are detected only
in one of the graphs. Our graph can then be represented by GA = (VA,SA), i.e.
a set of nodes and a set of superedges.
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Fig. 3. Example of sampling vectors on two curves

Let us now introduce a second graph GB = (VB ,SB), which is related to
GA by a matching MA→B = (MV,MS, T ), where MV : V → V is a mapping
between nodes and MS : S → S is a mapping between superedges. The transfor-
mation T provides us a mapping of both VA and SA to VB and SB respectively,
in R

D. The elements of MA→B are not independent. In fact, if one of them is
given, it is possible to at least approximate the remaining two. The task is there-
fore to find MA→B . We will solve this task by finding similarities between the
superedges SA and SB , using path descriptors to be defined in Section 4.

4 Path Descriptors

The geometrical transformation between images in biomedical applications can
usually be decomposed into a rigid motion plus a mildly non-linear component.
Typically, the scale is known from the acquisition parameters and we can consider
it is equal to zero, without loss of generality. Due to mechanical properties of
the tissue, the nonlinear component is small and we therefore assume that for
all x,y ∈ R

D, there is a bound εT on the relative length change, such that

1
1 + εT

d
(
x,y

) ≤ d
(
T (x), T (y)

) ≤ (1 + εT )d
(
x,y

)
, (1)

holds for a transformation T , where d(x,y) is the Euclidean distance and εT is
a deformation parameter, i.e. it is bi-Lipschitz.

We propose to use path descriptors – a vector characterizing each curve asso-
ciated with a geometric graph edge. Unlike previously suggested curve descrip-
tors [13,14,16], we have a good estimate of the change of descriptor values under
our transformation model. Let us have a sampling vector ω = (ω0, . . . , ωnω+1),
such that 0 = ω0 < ω1 < · · · < ωnω

< ωnω+1 = 1. Given a geometric path
ξsk

: [0, 1] → R
d (Section 3) of a superedge sk, we calculate its descriptor param-

eterized by ω:

hω(sk) =
nω∑

i=0

d
(
ξsk

(ωi), ξsk
(ωi+1)

)
=

nω∑

i=0

‖ξsk
(ωi+1) − ξsk

(ωi)‖. (2)

In plain words, we resample the path in nω + 2 points, pass a piecewise linear
approximation through the points and calculate the length of this approximation.
For an allowable transformation (1), we assume that

1
1 + εh

hω(sk) ≤ hω

(
T (sk)

) ≤ (1 + εh)hω(sk), (3)



6 M.A. Pinheiro and J. Kybic

for an εh close to εT . This holds as long as the transformation T is not too
far from a rigid body transformation. Given a set of sampling vectors Ω =
(ω1, . . . ,ω|Ω|), we can calculate a vector of descriptors hΩ(sk) =

(
hω1(sk), . . . ,

hω|Ω|(sk)
)
. Given a large enough size of Ω, the value of the vector hΩ(sk) will

describe the geometric disposition of the superedge in R
D.

Given two geometric graphs GA = (VA,SA) and GB = (VB ,SB), we say
that two superedges sA

k ∈ SA and sB
l ∈ SB are compatible with respect to hΩ,

if (3) holds for all ω ∈ Ω,
1

1 + εh
hΩ(sA

k ) ≤ hΩ

(
sB
l

) ≤ (1 + εh)hΩ(sA
k ), (4)

where the multiplication and comparison is done element by element.

5 Finding a Global Solution

To find a solution based on our descriptors we formalize our problem as an
integer quadratic program (IQP) [10,17]. Given the graphs GA = (VA,SA) and
GB = (VB ,SB) we define an affinity matrix W with size |VA|·|VB |×|VA|·|VB |
and elements Wik;jl = exp(−||hΩ(sA

a ) − hΩ(sB
b )||/σ2) similarly as in [10,17], if

sA
a = (vA

i ,v
A
j ) ∈ SA, sB

b = (vB
k ,v

B
l ) ∈ SB and the superedge pair (sA

a , s
B
b ) is

compatible, i.e. if eq. (4) holds. Otherwise Wik;jl = 0. If matching node vA
i with

vB
k is consistent with matching node vA

j with vB
l , Wik;jl is high and vice versa.

The matching is represented by a binary vector x∗, such that xij = 1 iff
nodes vA

i and vB
j match, maximizing the total affinity

x∗ = arg max
x

xᵀWx s.t. x ∈ [0, 1]|V
A||VB |, (5)

∀j
|U |∑

i=1

xij ≤ 1, ∀i
|V |∑

j=1

xij ≤ 1.

Furthermore, there are constraints on node positions:

∀xik,xjl �= 0,
1

1 + εT
||vA

i − vA
j || ≤ ||vB

k − vB
l || ≤ (1 + εT )||vA

i − vA
j ||. (6)

We use the Reweighted Random Walks method [17] to find an approximate
solution x̃∗ of this NP-hard problem [18]. In order to find the required binary
vector x∗, we use the Hungarian algorithm [19] to calculate the best assignment
using the weights of x̃∗. We iteratively select the best individual assignment
which does not contradict the previously selected ones and also (6).

This may give us a partial mapping MV, with only a subset of the nodes
matched. In order to complete and refine MV and also to match the paths
between nodes, we use a fine alignment algorithm described in [5]. This technique
first uses MV to predict the elastic transformation T represented by a Gaussian
process model. Given T , it then uses the Hungarian algorithm to calculate the
optimal matching MV between nodes as well as the matching between other
points on the edges, repeating until convergence.
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6 Experiments and Results

6.1 Datasets

We test our path descriptors and global matching with datasets from various
applications in medical imaging, featuring graph-like structures to be registered.
In retinal fundus imaging (see Fig. 4(a)), the registration of different frames
taken from various views helps build a single view of the retinal fundus [20].

In neuroscience, to better understand the learning of cognitive functions, images
in vivo of the axons in the brain of a mouse are acquired before and after a learning
task using 2-photon microscopy [21]. Due to the complexity and small (but crucial)
changes in the images (see Fig. 4(b)), the registration procedure helps identifying
the differences between the structures. The registration of images acquired with
different modalities such as electron and light microscopy (see Fig. 4(c)) is helpful
to have a better understanding of the neuronal network [12].

In angiography (see Fig. 4(d)), image registration helps tracking the displace-
ment of the blood vessels in the heart, during heart cycle. The registration of
images of blood vessels in the brain acquired using different imaging techniques,
such as optical and 2-photon microscopy (see Fig. 4(e)) helps find details which
are present in only one of the acquisition techniques [4].

6.2 Path Descriptors

To validate the path descriptors, we take two graphs, GA = (VA,SA) and GB =
(VB ,SB) and calculate the path descriptors hΩ for all superedges in both graphs.
For each pair of superedges sA

k ∈ SA and sB
l ∈ SB we determine if they are

compatible (eq. (4)) with respect to hΩ for different εh.
In Fig. 4, we show the ROC curves for various previously described datasets.

To obtain the ground truth, we assume a superedge sA
k is a true match of

sB
l if both their end nodes match. Apart from the proposed path descriptor,

we tested 3-D Curve Matching [16], Determining the Similarity of Deformable
Shapes [13], and Curve Matching using Fast Marching [14]. We have varied εh for
the proposed method, the deformation cost for [13,14] and the residual Euclidean
distance between the matched curves for [16]. Clearly, the proposed descriptor
obtains the best performance in all tested datasets.

6.3 Global Matching

We used the methodology described in Sec. 5 to find the match M between the
given graphs GA and GB . In Fig. 5, we depict the results of applying this final
alignment, based on the proposed path descriptors.

In Table 1, we show the average Euclidean distance between true matches
of the registered graphs and the respective processing times using different
approaches, namely CPD [9], IPFP [10] and ATS [5], with recommended param-
eters. In most cases, our proposed method presents the smallest error of all
tested methods. The average error is close to the performance of ATS, however
accomplished in a much faster time.
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(a) (b) (c)

(d) (e)

Fig. 4. ROC curve of the performance and average processing times for each of the
descriptors in (a) retinal fundus [20], (b) 2-photon microscopy of neuronal network [21],
(c) electron (top) and light (bottom) microscopy of neuronal network, (d) angiography
and (e) optical (top) and 2-photon (bottom) microscopy of brain blood vessels
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(a) (b) (c)

Fig. 5. Registration results. (a) and (b) are the original images or structures. (c) is
the obtained alignment with the proposed approach.

Table 1. Average distance between true matches of registered graphs and processing
times in seconds separated by a backslash for proposed approach and other methods.
Graphs were normalized s. t. VA,VB ∈ [−1, 1]D.

Datasets Proposed CPD[9] IPFP[10] ATS[5]

Retina (Fig. 4(a))
Axons (Fig. 4(b))
EM/LM (Fig. 4(c))
Angiography (Fig. 4(d))
Brain vessels (Fig. 4(e))

0.012 / 173.7
0.013 / 106.5
0.053 / 12.8
0.024 / 12.6
0.028 / 18.6

0.327 / 6.0
0.014 / 17.4
0.449 / 0.2
0.065 / 0.8
0.108 / 1.4

0.540 / 7.0
0.770 / 57.0
0.191 / 0.2
0.067 / 0.4
0.542 / 0.6

0.015 / 1155.8
0.087 / 4172.5
0.035 / 49.2
0.026 / 308.7
0.052 / 615.7

7 Conclusion

We presented an approach for matching geometric tree-like structures using path
descriptors. The descriptors were shown experimentally to have a better per-
formance than similar methods and the derived graph matching also performs
well. The path descriptors are fast to compute and compare, and are usable
for robust registration of large 3D images such as those coming from electron
microscopy.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant SGS12/190/OHK3/3T/13, the Czech Science
Foundation project P202/11/0111 and the Fundação para a Ciência e Tecnologia grant
SFRH/BD/77134/2011.
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Abstract. Consider a natural image that has been manipulated by
copying, transforming and pasting back fragments of the image itself.
Our goal is to detect such manipulations in the absence of any knowl-
edge about the content of the repeated fragments or the transformations
to which they might have been subject. The problem is non-trivial even
in the absence of any transformations. For example, copy/paste of a tex-
tured fragment of a background can be difficult to detect even by visual
inspection. Our approach to the problem is a two-step procedure. The
first step consists in extracting features from the image. The second step
explores the connection between image compression and complexity: a
finite-context model is used to build a complexity map of the image
features. Patterns that reappear, even in a somewhat modified form, are
encoded with fewer bits, a fact that renders the detection of the repeated
regions possible.

Keywords: Tampering detection · Finite-context models · Kolmogorov
complexity · SIFT

1 Introduction

Finding repetitions of exact or approximate unknown patterns in images
can be a difficult problem even for a human observer. This paper addresses
the problem and proposes an approach that combines feature extraction with
information-theoretic analysis.

Consider a natural image that has been manipulated by copying, transform-
ing and pasting fragments of the image itself. Our goal is to detect such manip-
ulations in the absence of any knowledge about the content of the repeated
fragments, or the transformations that they might have undergone.

We stress the fact that the repetitions are unknown. There is an important dif-
ference between known repetitions and unknown ones. Given one pattern (i.e. a
fragment of an image), it is easy to find matching patterns. However, if the
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nature of the repeating pattern is totally unknown, the problem becomes much
harder (even for exact or almost exact repeats).

The first step in our approach consists in extracting as many relevant fea-
tures from the image as possible, bearing in mind one crucial condition: the
features must be invariant to any transformations that the manipulations might
have introduced. For example, if the transformations include rescaling, then the
feature extraction step should yield scale-invariant features.

In the examples the feature extraction step is performed using SIFT, a well
known method that provides invariance with respect to a number of transforma-
tions (see [1], also [2]). However, our approach is not tied to SIFT and the feature
extraction step could in principle be performed using other appropriate tech-
niques — either SIFT variants or refinements or totally distinct approaches. The
feature extraction step is followed by an analysis step which uses information-
theoretic tools. The goal of this second step is to determine the complexity of
the features using a class of compression algorithms able to approximate the
Kolmogorov complexity of the target. The key insight is that the Kolmogorov
complexity of a repeated pattern is essentially that of the pattern itself. Repe-
titions or quasi-repetitions are associated with low-complexity data regions. To
turn this idea into practice we use finite-context models that can capture, in a
compact form, the most relevant content in the set of features.

In the absence of any transformations the problem is simpler but still non-
trivial. The feature extraction step can then be omitted, and a complexity map
of the image itself is known to lead to interesting and useful results [3,4].

2 The Method

2.1 Feature Extraction and Quantization

As stated, the features can be extracted using SIFT or other methods, provided
that they are invariant to the transformations used during the image manip-
ulations. We assume that each feature extracted from the image is associated
with an image coordinate. For example, in SIFT there are at least four natu-
ral parameters: the coordinates, the scale σ and the angle θ. It is also assumed
that each feature is a vector with fixed dimension (dimension 128 for SIFT fea-
ture vectors). At the end of this step one has a collection of features or vectors,
associated with a specific image coordinate. The ith feature will be denoted by
fi(x, y), where (x, y) denotes the associated image coordinate pair. The feature
vectors are stored as columns in a data matrix, in no particular order.

It is advisable to go through the set of features and discard those of limited
usefulness. This depends on the features and on their parameters. For example, if
one is interested in detecting small repeated unknown fragments, SIFT features
associated with smaller scales σ are probably more relevant than those associated
with larger scales. We found that SIFT features with σ greater than 5 − 6 have
a negligible impact on the results. The elements of SIFT feature vectors are
integers in the range 0-255, but in general they may be real numbers. Even in
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the case of integers, one could wish to reduce the number of amplitude levels,
for reasons that will become clear later.

We subject the elements of all non-discarded feature vectors to scalar quan-
tization. Our implementations have used Lloyd-Max quantization or the well
known K-means method. The main parameter is the number of clusters, which
determines the number of distinct intensities, the initialization policy (typically
random) and the overclustering factor (typically 1.0, meaning that no overclus-
tering is performed). In the case of K-means, we used the implementation in the
mlpack [5] C++ library.

2.2 Sorting

The quantization step yields a collection of quantized feature vectors, stored as
columns in a data matrix in no particular order. Before the complexity analysis
stage we need to convert the vectors into a single bitstream. First, we sort the
feature vectors. Then, we create the bitstream by vectorizing the sorted vectors,
i.e. by stacking the columns of the sorted data matrix. Sorting impacts the
performance significantly. We tried the following approaches:

1. Sort the features fi(x, y), i = 1, 2, . . . N by considering their coordinates
(x, y) on the image, in row-major order.

2. Idem, but use column-major order.
3. Sort the features fi(x, y), i = 1, 2, . . . N by the Euclidean (L2) distance to

the origin of (x, y).
4. Idem, using a zig-zag scan (essentially, the L1 distance to the origin of (x, y)).
5. Order the feature vectors by L2 norm.
6. Order the feature vectors by L1 norm.
7. Order the feature vectors by L∞ norm.
8. Cluster the features by proximity and sort them by cluster. Within the same

cluster, scan row-by-row.

Clustering the features by proximity leads to good results, since it tends to keep
any features that are close to each other on the image close to each other on the
sorted data matrix.

Consider an image that includes three features A, B and C, one at position
(x, y), another at (x+1, y) and a third at (x, y+1). Row-major or column-major
scans of the image are unlikely to preserve the proximity between these three
features. At least one of the three features is likely to end up in a distant column
of the sorted data matrix. By contrast, when clustering by distance,A, B and C
will be assigned to the same cluster with overwhelming probability. Sorting by
cluster creates a data matrix in which features close to each other on the image
tend to be assigned to columns that are also close to each other on the matrix.
The advantages of this will become clear later.

2.3 Finite-Context Encoding

The input to the finite-context encoders is the bitstream obtained by stacking the
columns of the sorted, quantized data matrix. A finite-context model provides
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Fig. 1. Left: the original image. Center: the manipulated image. Right: The manipu-
lated image, with the edited regions outlined.

an information measure of the number of bits required to represent the current
symbol, conditioned on the accumulated knowledge of all past symbols. We use
this information to build a complexity profile of the bitstream, in which the
bitrate at one point of the bitstream indicates how complex it is. Since any
given point in the bitstream can be mapped to a feature vector and hence to
an image point, the complexity profile can be related to the complexity of the
image itself.

The data are scanned symbol by symbol. When a pattern is found for the first
time, the encoder assigns to it a certain complexity, i.e. number of bits needed
to represent it. When the pattern is seen again, the number of bits needed will
be smaller. The complexity assigned to a pattern therefore depends on the order
by which the stream is scanned, a fact that could mask the first occurrences of
some patterns.

To remove this dependency, we scan the sorted data twice, once in the for-
ward direction and once in the backward direction. The two complexity pro-
files obtained are then combined to produce the final complexity profile, pi =
min(di, bi), where di and bi denote the profiles in the forward and backward direc-
tions. This prevents the masking of the first occurrence of a repeating pattern
(in forward scans) or the masking of its last occurrence (in backward scans).

To encode the data we use a set of competing finite-context models as
described in [6]. The probability estimates provided by each model are aver-
aged using weights updated by a recursive procedure. We used models of depth
3, 5, 8, 10 and 15. As for the parameter α, we took α = 1 for the lower order
models and α = 0.05 for the models of order 10 and 15. A description of all the
parameters and their roles can be found in [6].

3 Why Finite-Context Models

The Kolmogorov complexity [7–12] of A is denoted by K(A) and represents
the size of the smallest program that produces A and stops. K(A) is not com-
putable, and so it has to be approximated by a computable measure, such as
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Lempel-Ziv based complexity measures [13], linguistic complexity measures [14]
or compression-based complexity measures [15], which provide approximations
and hence upper bounds on the Kolmogorov complexity.

The bitstream produced by a lossless compression algorithm, together with
the appropriate decoder, enables the reconstruction of the corresponding original
data. Thus, the number of bits required for representing the decoder and the bit-
stream can be viewed as an estimate of the Kolmogorov complexity of the data.
Lossless compression methods thus provide approximations to the Kolmogorov
complexity, with better compression algorithms yielding tighter bounds.

Kolmogorov theory can be used to measure object similarity. Li et al. pro-
posed a similarity metric [16] based on an information distance [17], defined as
the length of the shortest binary program that transforms A and B into each
other, and a practical analog based on standard compressors, called the nor-
malized compression distance [16]. These ideas have been successfully applied in
astronomy, genomics, handwritten digits languages, literature, music and virol-
ogy [18], but are less used in images for one reason. According to Li et al. [16],
a compression method needs to be “normal” in order to be used as a normal-
ized compression distance. This means that compressing the concatenation of A
with itself should generate essentially the same number of bits as compressing
A alone [18]. To satisfy this requirement, the compression algorithm needs to
accumulate knowledge about the data as the compression proceeds. It has to
collect statistics, i.e., it has to create an internal model of the data.

The Lempel-Ziv algorithms create internal data models and are among the
most often used compression algorithms in compression-based complexity appli-
cations, including those reported in the imaging field [19–21]. Unfortunately,
although they are quite effective for 1D data, they do not perform as well in
the case of images or multi-dimensional data. State-of-the-art image compres-
sors, such as JPEG2000 or JPEG-LS, perform better but are not normal. They
decorrelate the data using either a transformation or a predictive method, and
assume an a priori data model that remains essentially static during compres-
sion. The decorrelating step destroys most of the data dependencies, leaving to
the entropy coding stage the mere task of encoding symbols from an (assumed)
independent source. As a result, they cannot be used for conditional complexity
estimation. These obstacles lead us to propose compression algorithms based on
finite-context models that are both normal and adequate to images [22–25].

The fact that finite-context models are normal and show good performance
on images makes them useful to build compression-based image complexity mea-
sures. We used them to find unknown (non-transformed) repeated patterns in
images [3,4] and again in the present, more challenging application.

4 Results and Discussion

Fig. 1 shows the original image and the manipulated image, formed by copying,
translating and rotating a fragment of the image and pasting it back. The regions
are not immediately obvious under visual inspection. For convenience, they are
outlined in the image on the right.



A Method to Detect Repeated Unknown Patterns in an Image 17

Fig. 2. Detected regions (squares) and SIFT features (circles). The manipulated regions
are outlined for convenience only; the input to the algorithm was the image shown in
Fig. 1 (center).

Fig. 3. The median of the complexity profile. The curve below it measures the balance
between high and low complexity values in a running histogram of the profile (see text).

Fig. 2 shows the position of the SIFT features as circles (with σ ≤ 7) and the
low-complexity regions detected (the squares). In addition to the manipulated
regions, the algorithm also marked certain other image regions as similar among
themselves. This is unavoidable, since natural images may well contain such
regions. Any reasonable algorithm designed to detect unknown repetitions or
quasi-repetitions will very likely encounter and report both artificial repetitions,
the result of introduced manipulations, and natural repetitions.

Fig. 3 shows the median value of the complexity profile, computed over seg-
ments of 128 symbols. This corresponds to the median value of the complexity
over each feature (in the case of SIFT, over 128 symbols). The curve on the bot-
tom is obtained by comparing the number of times that in each feature vector
the complexity profile assumes small values with the number of times that it
assumes large values. By small and large we mean, respectively, the bottom 4
and the top 4 bins in a 10-bin running histogram of the profile.

The quantization is necessary to reduce the number of intensity levels and
therefore the alphabet size in the context models. We found that values of about
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20 levels are adequate, but found different values (as small as 15) also useful.
The sorting step is an important one. The optimal sorting strategy depends on
the image and the location of the repetitions, but clustering the features by
proximity appears to be the best general strategy. The reason is that it tends to
keep features that are close to each other on the image close to each other on
the sorted data matrix.

To fully appreciate the impact of this, consider an exact repeat of a region
containing n features. Assume that the repeated part also contains n features,
and that they are similar to the original ones, as one would expect. Sorting by
proximity tends to keep the features of the first region together on the data
matrix, forming a set of columns adjacent to each other. The same applies for
the repetition. The bitstream will therefore present two identical segments, of
size 128n symbols each. Other sorting strategies may lead to scattered identical
pairs of segments of 128 symbols each, which are harder to detect.

Concerning the context models, we found that it is important to combine a
number of models of different lengths, and it is important to use a smaller value
of α (typically 0.05) for deeper models (say, above 10). We have obtained good
results with 3, 4 and 5 models of depths between 3 and 15. It is important to
implement the deeper models using e.g. hash tables, since a context array would
require a prohibitive amount of memory.

The computational requirements depend mainly on the number of features
and the dimension of each feature vector. An image of average complexity with
several hundred features can be processed in a few seconds (this includes the
time necessary to extract the features and quantize the data). In the example
given there were 483 features and the total computation time did not exceed a
couple of seconds, with the algorithm running on a laptop computer.

A limitation of the approach is that it is oblivious to tampering in regions
for which SIFT returns no features. This is not a limitation of SIFT, but of the
approach itself. Given any other feature extraction algorithm and a region S of
the image, if there are no features fi(x, y) with (x, y) ∈ S, we will not be able
to detect repetitions of subsets of S. This becomes more serious as the size of
the edited regions decreases, since the probability of a feature lying on a region
naturally decreases with its size. In general, however, SIFT seems appropriate
and produces a sufficiently rich feature set, for all but the smallest edits. Despite
the limitations, we feel that our approach provides an interesting solution to the
challenging problem of detecting unknown repeats in images.
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17. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M.B., Zurek, W.H.: Information dis-
tance. IEEE Trans. on Inf. Theory 44(4), 1407–1423 (1998)
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Abstract. We examine two approaches of modifying L2-based approx-
imations so that they conform to Weber’s model of perception, i.e.,
higher/lower tolerance of deviation for higher/lower intensity levels. The
first approach involves the idea of intensity-weighted L2 distances. We
arrive at a natural weighting function that is shown to conform to Weber’s
model. The resulting “Weberized L2 distance” involves a ratio of func-
tions. The importance of ratios in such distance functions leads to a
consideration of the well-known logarithmic L2 distance which is also
shown to conform to Weber’s model.

In fact, we show that the imposition of a condition of perceptual invari-
ance in greyscale space Rg ⊂ R according to Weber’s model leads to the
unique (unnormalized) measure in Rg with density function ρ(t) = 1/t.
This result implies that the logarithmic L1 distance is the most natu-
ral “Weberized” image metric. From this result, all other logarithmic Lp

distances may be viewed as generalizations.

1 Introduction

In this paper we examine some methods of modifying, or “Weberizing,” L2-based
approximations so that they conform as much as possible to Weber’s model of
perception. The term “Weberized” has been used in recent papers which have
incorporated Weber’s model into classical image processing methods, namely,
total variation (TV) restoration [5] and Mumford-Shah segmentation [6].

For a long time, it has been recognized that the well known and very com-
monly used mean squared error (MSE) and PSNR – examples of L2-based mea-
sures – perform poorly in terms of perceptual image quality [2,8]. Nevertheless,
c© Springer International Publishing Switzerland 2014
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L2-based methods are still employed to a large degree, most probably due to
their relative simplicity of computation. Other perceptually more meaningful
image quality measures are generally more difficult to optimize. The Weberized
L2 methods examined in this paper are quite straightforward to compute.

That being said, the structural similarity (SSIM) image quality measure [8,9],
which has demonstrated a superior performance in comparison with traditional
quality measures such as MSE and PSNR, already has a “Weberized” compo-
nent, namely, the luminance term, denoted as S1(x,y), which characterizes the
similarity between mean values, x̄ and ȳ, of image patches/blocks x and y,
respectively. The fact that S1(x,y) may be expressed as a function of the ratio
x/y (or y/x) accounts for its “Weberized” form.

Let us first recall Weber’s model of perception which, for simplicity of treat-
ment, will be restricted to the case of greyscale images: Given a greyscale back-
ground intensity I > 0, the minimum change in intensity ΔI perceived by the
human visual system (HVS) is related to I as follows,

ΔI

I
= C, (1)

where C is constant, or at least roughly constant over a significant range of inten-
sities I [7]. Eq. (1) suggests that the HVS will be less/more sensitive to a given
change in intensity ΔI in regions of an image at which the local image intensity
I(x) is high/low. As such, a Weberized L2 distance between two functions u and
v should tolerate greater/lesser differences over regions in which they assume
higher/lower intensity values.

The basic mathematical ingredients of our formalism are as follows:

1. The base (or pixel) space X ⊂ R on which our signals/images are sup-
ported. Here, we assume, without generality, that X = [0, 1]. For images,
X = [0, 1]2. In the case of digital images, X can be the set of pixel locations
(i, j), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

2. The greyscale range Rg = [A,B] ⊂ ( 0,∞).
3. The signal/image function space F = {u : X → Rg}. Note that from

our definition of the greyscale range Rg, u ∈ F is positive and bounded, i.e.,
0 < A ≤ u(x) ≤ B < ∞ for all x ∈ X. A consequence of this boundedness is
that F ⊂ Lp(X) for all p ≥ 1, where the Lp(X) function spaces are defined
in the usual way. For any p ≥ 1, the Lp norm can be used to define a metric
dp on F : For u, v ∈ F , dp(u, v) = ‖u − v‖p. Our primary concern is the
approximation of functions in the case p = 2, i.e., the Hilbert space, L2(X).
In this case, the distance between two functions u, v ∈ L2(X) is given by

d2(u, v) = ‖u− v‖2 =
[∫

X

[u(x) − v(x) ]2 dx
]1/2

. (2)

2 The Use of Intensity-Dependent Weighting Functions

The approximation of signals and images – and functions in general – must
involve some mesaurement of “distance,” as determined by an appropriate
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metric. In the usual L2-based methods of approximation employed in signal and
image processing, the L2 metric in Eq. (2) is used. This metric, and indeed all
other Lp- based metrics, p ≥ 1, are not adapted to Weber’s model of perception
since they involve integrations over appropriate powers of intensity differences,
|u(x) − v(x)|, with no consideration of the magnitudes of u(x) or v(x).

One way to “Weberize” this metric is to insert a weighting function in the
integrand of Eq. (2). The use of weighting functions in metrics is, of course, not a
new idea. In mathematics, they have generally been functions of the independent
variable – in this case, the spatial variable x. In image processing applications,
they have been employed for spatial weighting, for example, in foveated or region-
of-interest image processing and coding [3] or frequency weighting in perceptual
image quality assessment [10]. In our application, the weighting function should
be dependent upon one or both of the intensities of the image functions u(x)
and v(x). As such, the weighted L2 metric may be written in the generic form,

d2W (u, v) =
[∫

X

g(u(x), v(x))[u(x) − v(x)]2 dx
]1/2

, (3)

where g : Rg × Rg → R+ denotes the intensity-dependent weighting function.
This leads to an interesting set of questions regarding the properties that

must be satisfied by the weighting function g as well as the possible functional
forms that it may assume, keeping in mind two important requirements:

1. d2W (u, v) should, if possible, satisfy the mathematical properties of a metric,
2. d2W (u, v) should, in some way, conform to Weber’s model of perception.

A detailed discussion of these questions, many of which represent open problems,
is well beyond the scope of this paper.

Perhaps one of the most fundamental properites that must be satisfied in
order that Weber’s model of perception can be accommodated is that g(u, v) be
decreasing in both of its arguments. This requirement is satisfied, for example,
by the symmetric family of functions, g(u(x), v(x)) = |u(x)v(x)|−q, where q > 0.

A simplification is achieved if we consider g to be a function of only one
intensity function. Furthermore, if we assume that g(u(x), v(x)) = g(u(x)) =
u(x)−2, then the weighted L2 distance in Eq. (3) becomes

d2W (u, v) =

[∫

X

[
1 − v(x)

u(x)

]2

dx

]1/2

=: Δ(u, v). (4)

In this case, we consider the function u, which defines the weighting function g,
to be the reference function. If we then consider v to be an approximation to u,
then Δ(u, v) in Eq. (4) is the approximation error.

If we assume a weighting function of the form g(u(x), v(x)) = g(v(x)) =
v(x)−2, the weighted L2 distance in Eq. (4) becomes

d2W (u, v) =

[∫

X

[
1 − u(x)

v(x)

]2

dx

]1/2

=: Δ(v, u). (5)
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Note that in general, Δ(u, v) 	= Δ(v, u) , which implies that Δ is not a metric in
the strict mathematical sense of the term. This is the price paid for employing
weighting functions g(x) which are not symmetric in the functions u(x) and v(x).
This complication, however, is not a serious limitation because of the following
results that apply to our space F of image functions.

Theorem 1: Let u, v ∈ F , with the assumption that the greyscale range [A,B]
is bounded away from zero, i.e., A > 0. Then

1
B
d2(u, v) ≤

{
Δ(u, v)
Δ(v, u)

}
≤ 1
A
d2(u, v) , (6)

where d2 denotes the L2 metric in Eq. (2) from which it follows that
[
2 − B

A

]
Δ(u, v) ≤ Δ(v, u) ≤ B

A
Δ(u, v) . (7)

The proofs are rather straightforward and will be omitted.

A consequence of the above Theorem is that it it is sufficient to consider
only one of these two distance functions, which will be the approach adopted for
the remainder of this paper. Unless otherwise stated, the function u will be the
reference function and v an approximation to it, in which case the approximation
error will be given by Δ(u, v) in Eq. (4).

From Eq. (4), we see that for Δ(u, v) to be small, the ratio v(x)/u(x) must be
close to 1 for all x ∈ X. This already suggests that Weber’s model of perception
is being followed: Larger values of u(x) will tolerate larger deviations between
v(x) and u(x) so that the ratio v(x)/u(x) is kept within a specified distance from
1. The following simple example illustrates this.

Example 1: Consider the “flat” reference image u(x) = I, where I ∈ Rg. Now
let v(x) = I +ΔI, with ΔI > 0, be the constant approximation to u(x), where
ΔI = CI is the minimum perceived change in intensity corresponding to I,
according to Weber’s model in Eq. (1). The L2 distance between u and v is

d2(u, v) = K ·ΔI = KCI , where K =
[∫

X

dx

]1/2

. (8)

A simple computation shows that the weighted L2 distance in Eq. (4) is

Δ(u, v) = K
ΔI

I
= KC . (9)

The L2 distance in Eq. (8) increases with the intensity level I. This is expected
since ΔI increases with I. However, the weighted L2 distance in Eq. (9) remains
constant. As such, we claim that Δ(u, v) can better accommodate Weber’s model
of perception: Perturbations ΔI of image intensities I according to Eq. (1) yield
the same distance measure.
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3 Best Approximation in Terms of Δ(u, v)

Firstly, let {φk}∞
k=1 denote a set of real-valued functions that form a complete

orthonormal basis of L2(X), i.e., 〈φi, φj〉 = δij , where δij denotes the usual Kro-
necker delta. Now let u ∈ F ⊂ L2(X) denote the reference signal/image function
to be approximated. Given an N > 0, we are interested in best approximations
of the form

u ≈ uN =
N∑

k=1

ckφk . (10)

As is well known, the best L2 approximation to u, which is the minimizer of the
L2 distance ‖u − uN‖2, is yielded by the Fourier coefficients of u in the {φk}
basis, i.e.,

ck = 〈u, φk〉 =
∫

X

u(x)φk(x) dx, 1 ≤ k ≤ N . (11)

We now wish to determine the “best Weberized” approximation, i.e., the
expansion in Eq. (10) that minimizes the weighted L2 distance Δ(u, uN ). For
simplicity, we consider the squared distance Δ2(u, uN ),

Δ2(u, uN ) =
∫

X

g(x)

[

u(x) −
N∑

k=1

ckφk(x)

]2

dx =: f(c1, c2, · · · , cN ) . (12)

Here, the weighting function is g(x) = 1/u(x)2 but the algebraic expressions
presented below apply to any weighting function g(x).

Imposition of the stationarity constraints ∂f
∂ck

= 0, 1 ≤ k ≤ N , yields a linear
system of equations in the unknowns ck of the form,

Ac = b, (13)

where c = (c1, c2, · · · , cN ),

aij =
∫

X

g(x)φi(x)φj(x) dx, bj =
∫

X

g(x)u(x)φj(x) dx, 1 ≤ i, j ≤ N . (14)

Note that in the special case g(x) = 1, the matrix A = I, the n × n identity
matrix, and the solution reduces to the Fourier coefficients in Eq. (11).

Note: In the examples that follow, we shall denote the “Weberized approxima-
tion” yielded by the solution of Eq. (13) as uW

N in order to distinguish it from
the best L2 approximation, uN , yielded by the Fourier coefficients Eq. (11).

Example 2: Consider the following step function on X = [0, 1],

u(x) =
{

1, 0 ≤ x ≤ 1/2,
3, 1/2 < x ≤ 1. (15)

The following set of L2[0, 1] basis functions was used: φ1(x) = 1, φk(x) =√
2 cos(kπx), k ≥ 2 . In Figure 1 are presented plots of the best L2 and best



Some “Weberized” L2-Based Methods of Signal/Image Approximation 25

weighted/Weberized L2 approximations to u(x) using N = 5 (left) and N = 10
(right) basis functions. As expected, the Weberized L2 approximations, uW

N ,
yield a higher L2 errors than their best L2 counterparts, uN . Also as expected,
the approximations uW

N yield better approximations of u(x) than uN over [0, 0.5]
and a poorer approximations over [0.5, 1]. The Logarithmic L2 approximations
uL

N shown in the figure will be discussed in Section 5.

Fig. 1. Best L2 (uN , dotted), Weighted L2 (uW
N ) and Logarithmic L2 (uL

N ) approxi-
mations to step function in Eq. (15) using cosine basis functions. Left: N = 5. Right:
N = 20. Approximation errors:

N ‖u− uN‖2 ‖u− uW
N ‖2 ‖u− uL

N‖2

5 0.315 0.399 0.345
20 0.142 0.194 0.156

Example 3: The 512 × 512-pixel, 8 bits-per-pixel Lena image, partitioned into
nonoverlapping 32 × 32-pixel blocks, with the first N = 70 standard 2D DCT
basis functions used over each block (i.e., starting at (0, 0), then {(1, 0), (0, 1)},
etc.. In Figure 2 are shown the best L2 (left), Weberized L2 (center) and Loga-
rithmic L2 (right) approximations to the shoulder region. The rather small value
of N was chosen in order to demonstrate the significant differences as well as sim-
ilarities between the L2 and Weberized approximations in this region. The most
significant differences occur in blocks containing edges that are formed between
regions of low and high greyscale intensities, e.g., the edge defining Lena’s shoul-
der. In each case, as expected, there is a ringing effect due to the low number of
DCT basis functions employed (N = 70 out of a total of 322 = 1024 functions).
In the L2 case (left), the error due to the ringing appears to be of similar magni-
tude in both light (shoulder) and dark (background) regions. In the Weberized
L2 cases, however, the ringing error appears to be larger over the lighter region
(shoulder) than over the darker background (hair), which is consistent with the
Weberized approximation method – a kind of two-dimensional analogy to the
1D step function in Example 2 above. As expected, blocks with little greyscale
variation, e.g., the shoulder region without edges, are approximated equally well
by the three methods.
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Fig. 2. Best L2 (left), Weberized L2 (center) and Logarithmic L2 (right) approxima-
tions to Lena image using N = 70 2D DCT basis functions over 32 × 32-pixel blocks
comprising the shoulder region of Lena image

4 Logarithmic L2 Metric

Looking back at Eqs. (4) and (5) for the weighted L2 metrics Δ(u, v) and Δ(v, u),
we see that their accommodation of Weber’s model of perception comes from the
fact that their integrands involve ratios of the signals/images u and v. Indeed, a
ratio between signals/images can also be obtained if we consider their logarithms.
This, of course, is the basis of homomorphic filtering [4] and, indeed, this portion
of our paper may be viewed from such a perspective. In this study, however,
logarithms of image functions are used for the purpose of image approximation
as opposed to image enhancement.

Our choice of logarithms may appear ad hoc but can actually be justified
mathematically. Only a brief account can be presented here. As introduced in
[1], we consider a measure ν defined over the greyscale space Rg. Then define
the following intensity-weighted distance between two functions u and v:

D(u, v; ν) =
∫

Xu

ν(u(x), v(x)] dx +
∫

Xv

ν(v(x), u(x)] dx , (16)

where Xu = {x ∈ X | u(x) < v(x)} ⊂ X and Xv = {x ∈ X | u(x) ≥ v(x)} ⊂
X. This distance involves an integration of the sizes of the greyscale intervals
(u(x), v(x)] or (v(x), u(x)] over X. Note that in the special case, ν = mg, uni-
form Lebesgue measure on Rg, the distance D(u, v; ν) in Eq. (16) becomes the
L1 distance between u and v [1].

Theorem 2: The unique measure ν on Rg which accommodates Weber’s model
of perception over the greyscale space Rg ⊂ R+ is (up to a normalization con-
stant) defined by the continuous density function ρ(t) = 1

t .

Sketch of Proof: For any two greyscale intensities I1, I2 ∈ Rg,
∫ I1+ΔI1

I1

1
t
dt =

∫ I2+ΔI2

I2

1
t
dt =⇒ ν(I1, I1 +ΔI1) = ν(I2, I2 +ΔI2) , (17)
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where ΔI1 = CI1 and ΔI2 = CI2, are the minimum changes in perceived inten-
sity at backgrounds I1 and I2, respectively, according to Weber’s model in Eq.
(1). Eq. (17) is a kind of invariance result with respect to perception.

Using this measure ν, the distance between u and v in Eq. (16) becomes

D(u, v; ν) =
∫

Xu

[∫ v(x)

u(x)

1
t
dt

]

dx +
∫

Xv

[∫ u(x)

v(x)

1
t
dt

]

dx

=
∫

X

| lnu(x) − ln v(x)| dx , (18)

the logarithmic L1 distance between u and v. All other logarithmic Lp distances,
p > 1, may be viewed as generalizations of this result. This brief treatment hope-
fully shows why logarithms provide a natural representation for Weber’s model.

We now outline the mathematical formalism for a logarithmic L2-based
approximation method. First define the space of functions G composed of the
logarithms of all functions u ∈ F , i.e.,

G = {U : X → [ logA, logB ] , U(x) = log u(x), ∀x ∈ X } . (19)

Now consider the L2(X) distance between two elements U, V ∈ G,

d2(U, V ) =
[∫

X

[U(x) − V (x) ]2 dx
]2

< ∞ . (20)

Use this distance to define the following “logarithmic L2 distance” on F ,

dlog(u, v) = d2(U, V ) = d2(log u, log v) , u, v ∈ F . (21)

Since U = log u implies that u = eU for all U ∈ G, it can be shown that dlog
is a metric on F , i.e., it satisfies all of the properties of a metric, including the
triangle inequality. From Eq. (21),

dlog(u, v) =
[∫

X

[ log u(x) − log v(x) ]2 dx
]1/2

=

[∫

X

[
log

u(x)
v(x)

]2

dx

]1/2

=

[∫

X

[
log

v(x)
u(x)

]2

dx

]1/2

. (22)

The appearance of both ratios is a consequence of the symmetry of the metric.

Example 1 Revisited: The reference image u(x) = I and constant approxi-
mation v(x) = I +ΔI as before. A quick calculation yields

dlog(u, v) = log
(

1 +
ΔI

I

)
= K log(1 + C) , (23)
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where K is given in Eq. (8). As in the case of the weighted L2 metric, Δ(u, v),
the logarithmic L2 distance is independent of the intensity level I.

As an interesting side note, in the case that the Weber constant C in Eq. (1)
is small, then log(1 + C) ≈ C, so that, from Eq. (9),

dlog(u, v) ≈ KC = Δ(u, v) . (24)

Experimentally, C ≈ 0.02 [7] which justifies the above approximation.

5 Best Approximation in Terms of Logarithmic L2 Metric

We shall now use the logarithmic L2 distance to approximate a function u ∈ F .
As before, we consider, for an N > 0, an approximation uN of the form in Eq.
(10). The best approximation will minimize the squared dlog distance,

d2log(u, uN ) =
∫

X

[

log u(x) − log

(
N∑

k=1

ckφk(x)

) ]2

dx =: h(c1, · · · , cN ). (25)

Unfortunately, application of the stationarity conditions ∂h
∂ck

= 0, 1 ≤ k ≤ N ,
yields an extremely complicated set of nonlinear equations in the unknown coeffi-
cients ck. A huge simplification is accomplished if we consider the L2 approxima-
tion of the logarithmic function U(x) = log u(x). The goal is then to approximate
U ∈ G ⊂ L2(X) as follows,

U ≈ UN =
N∑

k=1

akφk . (26)

The minimization of the squared L2 distance, d22(U,UN ), is provided by the
Fourier coefficients ak of U in the φk basis, i.e.,

ak = 〈U, φk〉 =
∫

X

U(x)φk(x) dx . (27)

We bypass some technical mathematical details and simply state that the loga-
rithmic L2-based approximations to u, which we shall denote by uL

N , are
given by

uL
N (x) = exp (UN (x)) = exp

(
N∑

k=1

akφk(x)

)

. (28)

In summary, the logarithmic L2 approximation method is seen to be much
simpler than the weighted/Weberized L2 method. One finds the Fourier coef-
ficients of the logarithm U of the signal and then exponentiates to recover the
approximation uN . There is no system of equations to be solved.

Example 2 Revisited: We again consider the step function u(x) in Eq. (15)
and employ the same orthonormal cosine basis on [0, 1]. The best logarithmic
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L2 approximations, uL
N , to u(x) using N = 5 basis functions (left) and N = 10

basis functions (right) are plotted in Figure 1 along with their L2 and Weber-
ized L2 counterparts. As expected, the logarithmic L2 approximations are seen
to behave in a “Weberized” way. Note that the L2 approximation errors associ-
ated with the logarithmic approximations are significantly lower than those of
the weighted L2 method.

Example 3 Revisited: The Lena image, approximated over 32×32 pixel blocks
with N = 70 2D DCT basis functions. The approximations afforded by the Log-
arithmic L2 method are virtually identical to their Weberized L2 counterparts.
As such, they display the same kind of “Weberized ringing” over regions with
edges separating high and low greyscale intensities, with lesser ringing error over
the latter regions.
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Abstract. Ideally, we would like to have a measure of similarity between
images that did not require a feature selection and extraction step. In
theory, this can be attained using Kolmogorov complexity concepts. In
practice, because the Kolmogorov complexity of a digital object cannot
be computed, one has to rely on appropriate approximations, the most
successful being based on data compression. The application of these
ideas to images has been more difficult than to some other areas. In
this paper, we suggest a new distance and compare it with two others,
showing some of their relative advantages and disadvantages, hoping to
contribute to the advance of this promising line of research.

Keywords: Finite-context models · Kolmogorov complexity ·
Compression-based distances · Image similarity

1 Introduction

In recent years, there has been interest in image similarity measures based on
compression methods (see, for example, [1–8]). They rely on the notion of Kol-
mogorov complexity and opened a line of research that seems very promising.

Compression-based distances are tightly related to the Kolmogorov notion
of complexity, also known as algorithmic entropy [9–14]. Without losing gener-
ality, let x denote a binary string of finite length. Its Kolmogorov complexity,
K(x), is the length of the shortest binary program x∗ that computes x in a
universal Turing machine and halts [15]. Therefore, K(x) = |x∗|, the length of
x∗, and represents the minimum number of bits from which x can be computa-
tionally retrieved [16]. The conditional Kolmogorov complexity, K(x|y), denotes
the length of the shortest binary program that on input y outputs x. For y = λ
(where λ denotes the empty string) K(x|λ) = K(x).

Bennett et al. proposed an information distance [17], based on the Kol-
mogorov complexity, that minorizes in an appropriate sense every effective metric
[18]. It is defined as

E(x, y) = max{K(x|y),K(y|x)}, (1)
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and represents the length of the shortest binary program that computes x from
y and y from x. Because E(x, y) is an absolute measure, it is not appropriate
to assess similarity. Hence, a normalized version was proposed, overcoming this
limitation [18]. The normalized information distance (NID) is defined as

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} , (2)

and is a metric capable of measuring the similarity between two sequences. How-
ever, because K(x) is noncomputable, alternatives have to be devised in order
to be able to use it in practice.

One such alternative is the normalized compression distance (NCD) [18,19],
defined as

NCD(x, y) =
C(x, y) − min{C(x), C(y)}

max{C(x), C(y)} , (3)

where C(x) and C(y) represent, respectively, the number of bits of a compressed
version of x and y, and C(x, y) the number of bits of the conjoint compression
of x and y (usually, x and y are concatenated). Distances near one indicate
dissimilarity, while distances near zero indicate similarity.

Successful applications of the NCD have been reported, for example, in
genomics, virology, languages, literature, music, handwritten digits and astron-
omy [19].

To be useful for computing the normalized compression distance, the com-
pression method needs to be normal [19]. One of the most crucial conditions for
a compression method to be normal is that the compression of xx (the concate-
nation of x with x) should generate essentially the same number of bits as the
compression of x alone (i.e., the compressor should comply with the idempotency
property [19]). This characteristic holds, for example, in Lempel-Ziv based com-
pressors, making them a frequent choice [1,2,20]. However, generally speaking,
Lempel-Ziv based compressors do not perform well on images. Most of the best
performing image compression algorithms, in turn, are not normal [6].

A normal compression algorithm is able to collect knowledge of the data while
compression proceeds. It finds dependencies, gathers statistical evidence, i.e., it
creates a model of the data. Most state-of-the-art image compressors start by
decorrelating the data using a transformation (for example, the DCT or DWT
as in JPEG or JPEG2000) or a predictive step (as in JPEG-LS). This approach
destroys most of the data dependencies, leaving to the entropy encoder the task
of encoding symbols from a nearly independent source. In this case, the data
model may remain unchanged during compression. The down side is that it also
makes it unsuitable for measuring similarity.

In the normalized compression distance represented in (3), instead of the
more obvious direct substitution of K(x|y) by C(x|y), a term corresponding to
the conjoint compression of x and y, C(x, y), was preferred. The main reason
for adopting this form is that a direct substitution of K by C in (2) requires the
availability of compressors that are able to produce conditional compression, i.e.,
C(x|y) and C(y|x). However, most compressors do not have this functionality
and, therefore, the NCD avoids it by using suitable manipulations of (2) [19].
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Usually, the C(x, y) term is interpreted as the compression of the concate-
nation of x and y, but, in fact, it could adopt any other form of combination
between x and y. Concatenation is often used because it is easy to obtain, but
it is known that it may hamper the efficiency of the measure [21].

To overcome this limitation, a normalized conditional compression distance
(NCCD) was proposed, using compressors based on sets of image transformations
[22,23]. The NCCD is therefore computed using a direct substitution of K(x|y)
by C(x|y) as follows:

NCCD(x, y) =
max{C(x|y), C(y|x)}

max{C(x), C(y)} . (4)

Because we wanted to compare the NCCD with the NCD and with an additional
variant described below, using the same type of compressor in the three situations
to leave out as much as possible the effect of the compressor in the comparison,
we developed a special purpose image compressor. This compressor is able to
work as usual, allowing to calculate C(x) as well as C(xy), but is also able to
work in a conditional compression mode, in the following two modes.

In the first mode, it starts by building an internal model of y, using a combi-
nation of finite-context models of several orders (see below for more information
regarding finite-context modeling). After processing y, these models are kept
fixed. In the second phase, x is compressed using the (fixed) models of y and
another set of finite-context models that learn the statistics of x as it is pro-
cessed. Each symbol of x is encoded using a probability estimate that results
from a mixture of the probabilities produced by each of the finite-context mod-
els (those modeling y and those assigned to model x). This setup implements
the C(x|y) required in (4).

The second mode of conditional compression differs in how the internal mod-
els of the conditional encoder are built. In this case, as in C(x|y), a set of
finite-context models are loaded with the information of y. However, contrarily
to C(x|y), there is no modeling of x during encoding, i.e., x is encoded exclusively
using the statistics collected from y. In this case, we use a modified normalized
conditional compression distance (NCCD′), given by

NCCD′(x, y) =
max{C ′(x|y), C ′(y|x)}

max{|x|, |y|} , (5)

where C ′(x|y) denotes the number of bit required by the compressor to repre-
sent x using exclusively the statistics of y, and |x| denotes the uncompressed
size of x.

2 The Encoder

We have developed an encoder that implements the running modes necessary
to compute the three distances described in the previous section. It is similar
in concept to that used in [6], although much more flexible for allowing the
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Fig. 1. Context templates used by the encoder, corresponding to model orders of
2, 4 and 6

low rnd s1a s1b s1c

s2a s2b s2c s3a s3b s3c

Fig. 2. Image set used: a low complexity image, a random image, and nine images from
the ORL face database: the first three images of the first three subjects

different modes of operation. Next, we provide a brief description of the finite-
context modeling concept used, because it is the core of the encoder.

Consider that n symbols of x have already been encoded, and that we want
to represent efficiently the next symbol, xn+1. Finite-context models assign
probability estimates to the symbols of an alphabet A = {s1, s2, . . . , s|A|},
where |A| denotes the size of |A|, according to a conditioning context com-
puted over a finite and fixed number, k > 0, of the most recent past outcomes
ck,n = xn−k+1 . . . xn−1xn (order-k finite-context model) [24].

The probability estimates, P (Xn+1 = s|ck,n),∀s∈A, rely on symbol counts
that are accumulated while the image is processed, and are calculated using the
estimator

P (Xn+1 = s|ck,n) =
n

ck,n
s + α

nck,n + α|A| , (6)

where nck,n
s is the number of times that, in the past, a symbol s following ck,n

has occurred and where
nck,n =

∑

a∈A
n

ck,n
a (7)

is the total number of events that has occurred so far in association with context
ck,n. Parameter α allows balancing between the maximum likelihood estimator
and a uniform distribution: When n is large, the estimator behaves as a max-
imum likelihood estimator, whereas for small n it behaves more as a uniform
estimator.
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The encoder was implemented using finite-context models associated with
context templates as those shown in Fig. 1. For each symbol, the probability
estimate given by each of the models is combined using averaging, according to

P (Xn+1 = s) =
∑

k=2,4,6

P ′(Xn+1 = s|ck,n) w′
k,n+ (8a)

+
∑

k=2,4,6

P (Xn+1 = s|ck,n) wk,n, (8b)

where
w′

k,n ∝ w′γ
k,n−1P

′(Xn = xn|ck,n−1) (9)

and
wk,n ∝ wγ

k,n−1P (Xn = xn|ck,n−1), (10)

constrained to ∑

k=2,4,6

w′
k,n +

∑

k=2,4,6

wk,n = 1. (11)

It can be shown that these weights favor the models that have provided better
performance in the recent past of the sequence of symbols [25]. Parameter γ is
usually very close to one (we used γ = 0.99).

To compute C(x), we set w′
k,n = 0, i.e., the encoder delivers C(x|λ). When

computing C(x|y), six finite-context models are involved, three modeling y (those
are associated with weights w′

k,n) and three for modeling x (associated with
weights wk,n). Note that while encoding x in C(x|y) all weights (w′

k,n and wk,n)
are adjusted, respectively, using (9) and (10). However, whereas P (Xn+1 =
s|ck,n) evolves as new data from x is processed, P ′(Xn+1 = s|ck,n) is kept fixed.
For computing C ′(x|y), only weights w′

k,n are adapted when x is encoded, leaving
wk,n = 0.

3 Some Results and Discussion

In this section, we provide some experimental results with a set of eleven images.
We calculated the distance between every pair in this set, including the distance
from one image to itself, thus evaluating how well the idempotency property is
respected by the distance. Nine of the images used were drawn from the ORL
face database [26]: the first three images of the first three subjects. We added to
the set a random image and an image with low complexity. The complete set is
displayed in Fig. 2.

Before being processed by the encoder, the images are quantized to four
levels, using a Lloyd-Max quantizer. The aim of this operation is to limit the
size of the alphabet and hence reduce the number of conditioning contexts in
the finite-context models.

Tables 1, 2 and 3 show, respectively, the distances calculated using the NCD,
NCCD and NCCD′. Maybe the first aspect that comes to our attention is the
wider range of values of the NCCD′, compared to the other two distances. Also,
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Table 1. Values of the normalized compression distance (NCD) computed between all
images in the test set. Smaller values indicate higher similarity.

low rnd s1a s1b s1c s2a s2b s2c s3a s3b s3c

low 0.740 1.026 1.047 1.025 1.030 1.025 1.023 1.030 1.027 1.037 1.030

rnd 1.094 0.656 1.111 1.114 1.114 1.120 1.121 1.121 1.120 1.123 1.121

s1a 1.041 1.062 0.786 0.941 0.935 0.974 0.962 0.965 0.962 0.966 0.960

s1b 1.019 1.068 0.925 0.785 0.920 0.960 0.955 0.960 0.957 0.960 0.951

s1c 1.029 1.069 0.933 0.929 0.763 0.961 0.954 0.962 0.971 0.970 0.963

s2a 1.029 1.081 0.966 0.964 0.959 0.742 0.937 0.927 0.980 0.978 0.971

s2b 1.025 1.081 0.958 0.959 0.951 0.932 0.770 0.928 0.963 0.965 0.963

s2c 1.033 1.083 0.965 0.968 0.967 0.933 0.937 0.749 0.978 0.977 0.973

s3a 1.022 1.077 0.960 0.965 0.968 0.984 0.972 0.981 0.852 0.926 0.922

s3b 1.035 1.078 0.967 0.970 0.975 0.985 0.976 0.983 0.934 0.848 0.930

s3c 1.024 1.074 0.961 0.959 0.964 0.979 0.972 0.975 0.918 0.922 0.837

Table 2. Values of the normalized conditional compression distance (NCCD) computed
between all images in the test set. Smaller values indicate higher similarity.

low rnd s1a s1b s1c s2a s2b s2c s3a s3b s3c

low 0.749 1.006 1.000 1.000 0.999 0.999 0.998 0.998 0.998 1.000 0.998

rnd 1.006 0.552 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006

s1a 1.000 1.006 0.763 0.951 0.946 0.977 0.972 0.977 0.969 0.971 0.963

s1b 1.000 1.006 0.951 0.764 0.942 0.977 0.971 0.974 0.976 0.976 0.971

s1c 0.999 1.006 0.946 0.942 0.739 0.974 0.969 0.977 0.975 0.981 0.971

s2a 0.999 1.006 0.977 0.977 0.974 0.713 0.945 0.935 0.977 0.975 0.976

s2b 0.998 1.006 0.972 0.971 0.969 0.945 0.740 0.947 0.977 0.976 0.975

s2c 0.998 1.006 0.977 0.974 0.977 0.935 0.947 0.720 0.977 0.978 0.975

s3a 0.998 1.006 0.969 0.976 0.975 0.977 0.977 0.977 0.834 0.944 0.929

s3b 1.000 1.006 0.971 0.976 0.981 0.975 0.976 0.978 0.944 0.827 0.939

s3c 0.998 1.006 0.963 0.971 0.971 0.976 0.975 0.975 0.929 0.939 0.818

Table 3. Values of the modified normalized conditional compression distance (NCCD′)
computed between all images in the test set. Smaller values indicate higher similarity.

low rnd s1a s1b s1c s2a s2b s2c s3a s3b s3c

low 0.020 0.815 0.237 0.247 0.250 0.353 0.337 0.349 0.223 0.258 0.238

rnd 0.815 0.427 0.902 0.904 0.913 0.933 0.930 0.936 0.878 0.887 0.884

s1a 0.237 0.902 0.125 0.165 0.166 0.251 0.238 0.248 0.172 0.192 0.180

s1b 0.247 0.904 0.165 0.129 0.164 0.251 0.239 0.249 0.179 0.197 0.183

s1c 0.250 0.913 0.166 0.164 0.127 0.247 0.235 0.248 0.182 0.196 0.182

s2a 0.353 0.933 0.251 0.251 0.247 0.178 0.236 0.233 0.261 0.259 0.256

s2b 0.337 0.930 0.238 0.239 0.235 0.236 0.175 0.233 0.245 0.244 0.243

s2c 0.349 0.936 0.248 0.249 0.248 0.233 0.233 0.177 0.255 0.254 0.252

s3a 0.223 0.878 0.172 0.179 0.182 0.261 0.245 0.255 0.138 0.175 0.162

s3b 0.258 0.887 0.192 0.197 0.196 0.259 0.244 0.254 0.175 0.153 0.174

s3c 0.238 0.884 0.180 0.183 0.182 0.256 0.243 0.252 0.162 0.174 0.141
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contrarily to the NCD and NCCD, and in this set of images, the NCCD′ always
yields values smaller than one, as one would expect from a normalized distance.
As can be observed and as expected, the NCD is not symmetric, a character-
istic that may pose some problems, although it can be circumvented by using
NCD(x, y)/2 + NCD(y, x)/2, at the cost of increased computation (in fact, it
suffices to use C(x, y)/2 + C(y, x)/2 in (3)).

The values of NCCD′(x, x) are generally much smaller than those obtained
with the NCD or NCCD, suggesting a better compliance with the idempotency
property. Whereas the distances from the low complexity image (low) and ran-
dom image (rnd) to all others are maximal or close to maximal in the case of
the NCD and NCCD, for the NCCD′ it is only close to maximal for the ran-
dom image, remaining at a more lower (and, in our opinion, reasonable) level
in the case of the low complexity image. Regarding the distances among the
face images, all three distance measures tend to give smaller distances between
images of the same subject. However, here the NCD and NCCD seem to have
some more discriminative power than the NCCD′.

The research community is still looking for ways of putting the full poten-
tiality of the theory behind Kolmogorov complexity at the service of effective
image similarity metrics. Contrarily to other application areas, where very good
results have already been attained, images pose additional problems that have
to be solved. With this paper, we took some more steps in that direction, and
hope to have motivated others to embrace this exciting field.
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Gu, J., Kuroda, H., Kim, T. (eds.) SIP 2009. CCIS, vol. 61, pp. 106–116. Springer,
Heidelberg (2009)

5. Pinho, A.J., Ferreira, P.J.S.G.: Finding unknown repeated patterns in images. In:
Proc. of the 19th European Signal Processing Conf., EUSIPCO 2011, Barcelona,
Spain (August 2011)

6. Pinho, A.J., Ferreira, P.J.S.G.: Image similarity using the normalized compression
distance based on finite context models. In: Proc. of the IEEE ICIP 2011, Brussels,
Belgium (September 2011)

7. Cerra, D., Datcu, M.: A fast compression-based similarity measure with applica-
tions to content-based image retrieval. J. Vis. Commun. Image R. 23, 293–302
(2012)



A New Compressor for Measuring Distances among Images 37

8. Besiris, D., Zigouris, E.: Dictionary-based color image retrieval using multiset the-
ory. J. Vis. Commun. Image R. 24, 1155–1167 (2013)

9. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and
Control 7(1), 1–22 (1964)

10. Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and
Control 7(2), 224–254 (1964)

11. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.
Problems of Information Transmission 1(1), 1–7 (1965)

12. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
Journal of the ACM 13, 547–569 (1966)

13. Wallace, C.S., Boulton, D.M.: An information measure for classification. The Com-
puter Journal 11(2), 185–194 (1968)

14. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471
(1978)

15. Turing, A.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)
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Abstract. Most of the digital camera sensors are equipped with the
Colour Filter Arrays (CFAs) that split the light into the red, green, and
blue colour components. Every photodiode in the sensor is capable to
register only one of these components. The demosaicing techniques were
developed to fill the missing values, however, they distort a scene data
and introduce artefacts in images. In this work we propose a novel eval-
uation technique which judge a perceptual visibility of the demosaicing
artefacts rather than compares images based on typical mathematically-
based metrics, like MSE or PSNR. We conduct subjective experiments in
which people manually mark the visible local artefacts. Then, the detec-
tion map averaged over a number of observers and scenes is compared
with results generated by the objective image quality metrics. This pro-
cedure judges the efficiency of these automatic metrics and reveals that
the HDR-VDP-2 metric outperforms SSIM, S-CIELAB, and also MSE
in evaluation of the demosaicing artefacts.

1 Introduction

Contemporary digital cameras use the CFA (Colour Filter Array) filters to regis-
ter colours. The photodiodes in the camera sensor measure the intensity of light
but the CFA filter splits the light into three red, green, and blue colour compo-
nents. The most popular CFA pattern is the Bayer mosaic, which strengthens
the impact of the green colour by allocating twice more green filters than red
and blue ones. The demosaicing techniques were developed to fill the missing
colour channel values when converting from the Bayer mosaic to the RGB digi-
tal image. They use different strategies to find the missing information, however
in all of them, as the information is interpolated, the artefacts can occur in the
output image.

In this work we conduct a perceptual experiment to evaluate the quality of
images after demosaicing. We assess images generated using bilinear interpola-
tion (BI), Gradient-Based Interpolation (GBI) [1], and Adaptive Homogeneity-
Directed (AHD) [2] techniques. However, our main objective is not to find the
best demosaicing algorithm but rather to propose an evaluation technique, which
could be efficient and perceptual, i.e. assess visibility of the demosaicing arte-
facts in the way a human would do. Authors of the most demosaicing algorithms
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 38–45, 2014.
DOI: 10.1007/978-3-319-11758-4 5
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test the efficacy of their techniques comparing the reference undistorted image
with an image after demosaicing. This evaluation is mainly based on typical
mathematically-based metrics like Mean-Square-Error (MSE) or Peak-Signal-
to-Noise-Ratio (PSNR). However, it is know that this type of metrics should
not be used for perceptual image assessment, because the same error score is
often measured for images of distinct different appearance [3].

In this paper we evaluate whether the advanced objective image quality met-
rics (IQMs), like S-CIELAB [4], SSIM [5], and HDR-VDP-2 [6] give results com-
parable with the subjective judgement. We conduct subjective experiments in
which people manually mark the visible local artefacts [7,8]. Then, the detection
maps averaged over a number of observers and scenes are compared with the
results generated by IQMs. The results reveal which metric is the most suitable
for detection of the demosaicing artefacts.

The paper is organised in the following way. In Sect. 2 the artefacts occurring
after demosaicing are presented and discussed. Sect. 3 presents details about the
conducted experiments. Their results are analysed in Sect. 4. The paper ends
with conclusions and providing directions for further work in Sect. 5.

2 Demosaicing Artefacts

For our studies we chose three popular and representative demosaicing tech-
niques that differ in complexity and principle of operation. The bilinear interpo-
lation (BI) is one of the simplest techniques, in which missing colour values are
filled by the interpolation of the neighbouring pixels. Due to low quality, BI is
not used in practice but it is good point of reference for the evaluation of other
algorithms. Better approach is to interpolate values along the edges of objects.
To detect an edge the difference (gradient) between green colour components
in horizontal and vertical direction is calculated. The smaller difference deter-
mine the course of the edge, and hence the direction of interpolation [9]. This
edge-directed interpolation is implemeted in GBI [1]. In [2] the algorithm was
proposed, in which the vertical or horizontal direction is chosen on the basis of
local similarity between pixel values (so-called local homogeneity). This similar-
ity determines the difference of luminance and chrominance in the immediate
vicinity of the pixel. The technique is called AHD and is considered to be one
of the best demosaicing algorithms. Among others, it is used in a popular dcraw
program [10] converting images from the RAW format to the RGB image.

Demosaicing may result in visible artefacts in images. The most prominent
one seems to be the zippering effect (see Fig. 1a) caused by choosing the wrong
direction of interpolation. Similar artefact, but distorting also colours, is called
the false colour effect (see Fig. 1b). The zipper and false colours mainly occur
close to the strong edges. Accumulated false colour effect provides to the Moire
effect (see Fig. 1c). The simple demosaicing algorithms (e.g. BI) are prone to a
typical interpolation artefact - blurring (see Fig. 1d). In general, the demosaicing
artefacts occur locally, as they result from interpolation of a small area around
the pixel. The artefacts become clearly visible in the enlarged reproduction of
deteriorated images.
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a)

b)

c)

d)

Fig. 1. Reference images (left column) and distorted images generated by the BI demo-
saicing (right column). Rows from top to bottom: a) zipper effect, b) false colour effect,
c) Moire effect, d) image blur. To better depict the artefacts, the images was enlarged
using the NNI (Nearest Neighbour Interpolation) method.

3 Experimental Evaluation

In the conducted experiments we evaluate which of the MSE, S-CIELAB, SSIM,
and HDR-VDP-2 metrics is the most suitable for the perceptual assessment of
the image deterioration caused by the demosaicing techniques.

The evaluation procedure is presented in Fig. 2. The reference difference
maps are generated during the subjective experiments. The consistency of these
maps is tested using Kendall’s analysis and then averaged over a number of
observers. Next, we compare the reference maps with the maps generated by
the objective image quality metrics. The final score is expressed by the receiver-
operator characteristic (ROC) [11] showing effectiveness of individual IQMs.
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Fig. 2. The evaluation procedure

Stimuli. We used four images from the Kodak Image Suite as a stimuli. This
dataset is commonly used to evaluate demosaicing algorithms, as it includes wide
range of natural scenes, colours, and textures. The reference images were con-
verted to the Bayer mosaic by removing appropriate colour components. Then,
the demosaicing was applied for these mosaics using BI, GBI, and AHD tech-
niques. Additionally, the resulting images were twice and four times enlarged.
We preserved resolution of 768x512 pixels by choosing the most interesting areas
(containing artefacts described in Sect. 2) and removing the remaining parts
of images. To achieve the high quality of the magnification, for visualisation
purposes the bicubic interpolation technique from Adobe Photoshop CS5 was
applied (see examples in Fig. 3).

Subjective Experiment. We asked people to manually mark visible differ-
ences between the reference image and image distorted by a particular demo-
saicing technique. Observers used a custom brush-paint interface controlled by
the computer mouse. The brush size could be reduced up to per-pixel resolution.
This procedure was repeated for every scene/demosaicing pair, resulting in 36
comparisons and finally 36 binary difference maps generated per observer.

The experiment was performed in a darkened room. Images were displayed
on 24” Eizo ColorEdge CG245W monitor with native resolution of 1920 x 1200
pixels. This display is equipped with the hardware colour calibration module and
was calibrated before each experimental session to sRGB colour profile with the
maximum luminance level increased to 200 cd/m2. During the experiment, an
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Fig. 3. An example reference image taken from the LIVE database and its twice and
four times magnified versions

observer was sitting in front of the display at a distance of 65 cm (this distance
was stabilised by a chin rest).

We repeated the experiment for 14 observers (age between 20 and 26 years,
11 males and 3 females). They declared normal or corrected to normal vision
and correct colour vision. The participants were aware that the image quality is
evaluated, but they were näıve about the purpose of the experiment.

Objective Metrics. Objective Image Quality Metrics (IQM) deliver quantita-
tive assessment of the perceptual quality of images [12][13]. In general, they are
specialised in predicting the level of annoyance caused by globally present arte-
facts such as image blockiness, noise, or blur, rather than localised distortions
caused by e.g. demosaicing [12]. In our studies we chose three representative
IQMs: S-CIELAB [4], SSIM [5], and HDR-VDP-2 [6] that prove their efficacy in
perceptual comparison of images. Additionally, we evaluated the results of the
MSE metric to give a background for comparison. In particular, SSIM detects
structural changes in the image. It is sensitive to difference in the mean inten-
sity and contrast but the main factors are local correlations of pixel values.
These dependencies carry information about the structure of the objects and
reveal structural image difference between tested and reference images. HDR-
VDP-2 predicts the quality degradation expressed as a mean option score of
the human observers and visibility (detection/discrimination) of the differences
between tested and reference images. It takes into account the contrast sensitiv-
ity function measured for variable background luminance and spatial frequencies.
The sensitivity to light is modelled separately for cones and rods resulting in cor-
rect prediction for mesopic and scotopic light conditions. More complex IQMs
exist like metrics based on the machine learning techniques in which various
image feature descriptors like the SSIM index, computer vision bag-of-visual
worlds, Spearman correlation and many others are used to assess the perceptual
difference [14]. We address their application in our framework to future work.

For every metric, 36 difference maps were generated that we compare to
corresponding reference maps achieved in the subjective experiments. To avoid
any differences in the results generated by the selected objective metrics, we
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employed the original Matlab implementations of the subjective metrics provided
by their authors and available in Internet.

4 Results

Inter-observer Agreement. The subjective experimental task of marking
demosaicing artefacts seems challenging, so the variations between observers
are expected to be high. To test the inter-observer agreement, we computed
Kendall’s coefficient of agreement (τ) per pixel [15]. An example map of τ val-
ues is presented in Fig. 4 (right). We achieved the average τ equal to 0.66, which
denotes relatively high agreement. After removing pixels that was marked by less
than two observers, the τ value decreased to 0.44. This more conservative mea-
sure makes sense because in the images there are many undistorted areas that
were consistently left unmarked by most of observers, thus, they overestimate
the τ value. However, even this second score τ=0.44 is acceptable and relatively
high as compared to the values typically reported in such experiments [7,16].

Fig. 4. From left: an example reference image, the same image but with artefacts
caused by the GBI demosaicing technique (see the Moire artefacts on the fence), a map
of Kendall coefficients (brighter pixels denote higher agreement between observers)

IQMs Performance Comparison. The key question is whether any of the
IQM performs significantly better than the others in terms of detecting demo-
saicing artefacts. In our experiment, observers binary classified pixels that con-
tained artefacts. The performance of such classification can be analysed using the
receiver-operator-characteristic (ROC) [11]. ROC captures the relation between
the size of artefacts that were correctly marked by a IQM (true positives), and
the regions that do not contain artefacts but were still marked (false positives).
The metric that produces a larger area under the ROC curve (AUC) is assumed
to perform better. The overall metric performance is presented in Fig. 5. Fol-
lowing the solution adopted in [7], the plot was drawn for image regions that
were marked by 50% or more observers, i.e. we assume that 50% observers must
mark an artefact to consider it noticeable and take into account during ROC
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Fig. 5. The performance of IQMs shown as ROC plots

Table 1. AUC scores (higher value means better agreement with the reference data)

Objective metric 25% 50% 75% Average

SSIM 0.6068 0.5854 0.6385 0.6102

S-CIELAB 0.7769 0.7923 0.7983 0.7891

MSE 0.6887 0.7170 0.7069 0.7042

HDR-VDP-2 0.8462 0.8734 0.8595 0.8597

analysis. Tab. 1 summarises the AUC values also for ≥25% and ≥75% criteria.
The results are comparable showing that accuracy of the subjective experiment
does not influence the findings significantly.

As can be seen the highest score was achieved for HDR-VDP-2 and this
metric can be considered as the best analysis tool for the demosaicing artefacts.
Comparable results were achieved for much simpler S-CIELAB. Both techniques
analyse distortion on per pixel level, which reveals even small local artefacts.
Interestingly, we achieved the worst result for SSIM, which seems to be the
best metric for testing compression artefacts. Conclusion is that demosaicing
deteriorations have different characteristic which makes SSIM ineffective for such
kind of artefacts, however, further research on more images is needed to prove
this statement.

5 Conclusions and Future Work

In this work we asked people to freely mark artefacts that they see in the images
deteriorated by the demosaicing algorithms. The difference maps averaged over
observers were compared to the difference maps generated by the advanced auto-
matic image quality metrics. The results revealed that HDR-VDP-2 is the best
technique for testing the demosaicing artefacts.

In future work we plan to repeat the subjective experiment for more images
including the mosaics captured by contemporary camera sensors. The extended
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dynamic range of these sensors can be challenging for existing demosaicing tech-
niques revealing their drawbacks.
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Abstract. We propose a new local multiscale image descriptor of vari-
able size. The descriptor combines Laplacian of Gaussian values at dif-
ferent scales with a Radial Fourier Transform. This descriptor provides
a compact description of the appearance of a local neighborhood in a
manner that is robust to changes in scale and orientation. We evaluate
this descriptor by measuring repeatability and recall against 1-precision
with the Affine Covariant Features benchmark dataset and as well as
with a set of textureless images from the MIRFLICKR Retrieval Evalu-
ation dataset. Experiments reveal performance competitive to the state
of the art, while providing a more compact representation.

Keywords: Robust image description · Scale invariance · Local appear-
ance description · Compact descriptor · Variable vector length

1 Introduction

Robustness is fundamental for image description. While discriminative power has
always been an important consideration, applications have increasingly imposed
constraints on robustness, memory requirements and computation cost. In an
effort to provide a compact robust descriptor, we have explored a new visual
descriptor based on combining a Laplacian Profile with a Radial Discrete Fourier
Transform (LP-RDFT) [13]. An interesting property of the LP-RDFT is that it
has a adjustable description length, making it possible to tradeoff description
length for discriminative power. In comparison with popular descriptors, we
have found that at equivalent discrimination levels, the LP-RDFT descriptor
provides a much smaller description length. We have also found that the LP-
RDFT provides useful discrimination at even its smallest vector lengths [13].

To evaluate the utility of LP-RDFT, we compared its performance for repeata-
bility and recall against 1-precision to other descriptors chosen from the state
of the art using the Affine Covariant Features benchmark dataset and the MIR-
FLICKR Retrieval Evaluation dataset. The results show that LP-RDFT provides
effective recall and repeatability at a substantial reduction in computational cost
and memory requirements compared to other descriptors.
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 46–54, 2014.
DOI: 10.1007/978-3-319-11758-4 6
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Chapter 2 reviews the existing state of the art for local appearance description
in images. Chapter 3 describes how the proposed method combines a Laplacian of
Gaussian with radial Fourier Transform to provide a local descriptor. Chapter 4
describes experiments with robustness and discusses the results. Chapter 5 sum-
marizes our conclusions from this work.

2 Local Descriptors

Since its introduction in 1999, the Scale Invariant Feature Transform (SIFT)
descriptor [12] has remained the reference in local image description. The SIFT
descriptor uses local maxima in the Laplacian pyramid to determine a reference
scale for local appearance, and then describes local appearance at this scale
using local histograms of the orientation of image derivatives calculated within
a grid of small windows. Despite many challengers, SIFT, and its numerous
variations continues to dominate the state of the art. In [14] it is shown that
SIFT and similar descriptors performed the best. Recently, SURF [2] has been
shown to provide results that are similar to SIFT with a reduced computational
cost. A number of other local descriptors have recently been proposed, including
ORB [16], BRISK [10], FREAK [1], BRIEF [5] and NSD [4]. None-the-less, SIFT
remains the reference for image description due to its repeatability and recall.

As embedded computing and mobile computing applications for computer
vision increase in popularity, memory requirements have emerged as an impor-
tant issue. In response, many researchers have investigated the use of binary
descriptors [4,5,10,16]. As an alternative, we explore a compact descriptor with
a variable vector length that can be adapted to meet the requirements of indi-
vidual problems.

3 Creating the Proposed Descriptor

In order to create a robust multiscale descriptor, we investigated the use of
two transformations with known invariant properties: the Laplacian of Gaus-
sian Pyramid and the 2D Fourier Transform (figures 1 and 2). Both of these
transformations are known to provide useful descriptions of local appearance.
Our objective is to combine these two transformation to obtain a variable size
image descriptor that preserves their invariant properties while improving dis-
criminability.

A Gaussian pyramid is computed by convolving an image with Gaussian
low pass filters with variances taken from an exponential series, such as 2k [6].
Resampling each low pass image at a sample distance that is proportional to
the standard deviation results in a set of images of exponentially decreasing
size and identical impulse response. A Laplacian of Gaussian pyramid (or DoG
pyramid) is created by subtracting each sampled low pass image from the next
larger image in the pyramid. Each sample in the Laplacian Pyramid contains
the value of the Laplacian (2nd derivative) of the image at a particular scale
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(variance) and position. Local maxima in the Laplacian of Gaussian can be used
as keypoints for position and scale, as with the SIFT descriptor.

A Laplacian Profile (LP) is the vector of laplacian samples over an exponen-
tial set of scales at a specific image position. This vector is a co–variant with
scale [7,11]. Changes in image scale due to optical zoom or changes in distance
result in an exact translation of the Laplacian Profile in the scale direction. Local
extrema in the Laplacian profile can be used to determine the characteristic scale
for image description.

We use the Half-Octave Gaussian pyramid algorithm [6,17] to produce a
Laplacian pyramid. The scaled images are convolved with a Gaussian filter
G(x, y, 2k) for integer k and resampled with a sample distance of sk = 2(k−1)/2,
keeping impulse response identical for each level. We then construct an LP vec-
tor for p(x, y) collecting the Laplacian of Gaussian values for sample p(x, y)
from the k adjacent levels in the Laplacian pyramid. Although sampling results
in some loss of invariance, this pyramid algorithm is highly efficient for
computing LPs.

The LP can be computed at any image position. As with the Laplacian, the
LP is also invariant to rotation. The length of the LP is variable and can be
calculated on any height on the pyramid of scaled images.For example, an LP
vector of length three can be collected in a six level pyramid at levels two-three-
four and levels three-four-five. The top pyramid levels can be discarded because
they are produced with an impulse response that is larger than the original
image.

To improve the discriminative power, we use a Radial Discrete Fourier Trans-
form (RDFT) around each sample of the Laplacian profile. In [13], the neigh-
borhoods were either the 4 closest neighbors around each LP value, sampled
on the Laplacian image pyramid (easily calculated by the Gaussian pyramid),
or a disk of samples around each LP value, sampled on the Gaussian pyramid.
We extended the approach by using 8 neighbors sampled on the Gaussian pyra-
mid and calculate an 1D DFT linearly on them. This is an important extension
from [13] as it works well with local description while keeping a small descriptor
vector length. From the 8 neighbors x0,x1, ..., x7, we take 8 Fourier coefficients
X0,X1, ..., X7. We keep the absolute value (magnitude) of X0, the sign of X4

and the magnitudes of X1,X2 and X3. The absolute value of X0 and the sign of
X4 are a measure of the sum of intensities of the 8 neighbors. The magnitudes
of X1,X2 and X3 provide frequency information. X5,X6 and X7 provide similar
information and are therefore discarded. Phase coefficients may be discarded or
used to determine a characteristic orientation for the neighborhood.

In [13], an RDFT is computed around every element of an LP vector. This
parameter can also be made variable to provide additional discriminative power.
We concatenate the RDFTs to form a single description vector that is then
normalized with the L2-norm. The LP vector length, the LP elements around
where the RDFT is computed and the radius where the 8 neighbors are taken,
are all variable and can be selected according to the needs of an application.
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Fig. 1. A small neighborhood at a scale corresponds to a larger one at a lower scale.
So, a multiscale vector captures information of increasingly larger areas on the image.

Fig. 2. Left: A Laplacian of Gaussian is easily computed on the levels of a pyramid
of scaled images as a weighted difference of adjacent pixels. Center: Collecting a LP
vector on the Gaussian pyramid. Right: Collection of 8 pixels around an LP element
on a pyramid level for computing the RDFT. There is no limitation, concerning around
which or how many of the elements of an LP, that the RDFT can be computed.

4 Experiments

4.1 Textured Images

We evaluate LP-RDFT against the well established local descriptors ORB,
BRISK, FREAK, SIFT, SURF, BRIEF and the newly proposed NSD in its
two forms, the Seed of Life (SOL) and the Binary Seed of Life (BinSOL). We
use the Affine Covariant Features benchmark dataset [14] for the experiments.
The test is keypoint matching between images. The testing protocol is proposed
on the dataset web site: compare the first image in each case folder with the
rest of the images in the same case folder. The images are highly textured, and
thus result in variations in the image signal that provide rich information about
content.

The measures we use for the evaluation are repeatability [9,15] and recall
against 1 - precision [14]. Repeatability shows how good a method is at finding
correct matches. Recall against 1-precision plots show how important is the
quantity of correct matches found by a method considering the quantity of false
matches. We use the Euclidean distance for matching the descriptor vectors. For
all the descriptors except NSD, we use the OpenCV library [3]. For NSD we
use the source code provided by the authors. The parameters for the descriptors
are kept at their default values, trusting that their authors and developers have
made the best choices.
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For LP-RDFT, after some experimentation, we concluded that the best per-
formance was given by creating LP vectors of length seven (seven exploited
pyramid levels). The same experiments showed that for the computation of the
RDFT, the best choice is to collect samples at a radius of five pixels around the
LP coordinates for the highest four of the seven pyramid levels. These choices
create a descriptor vector of 27 real valued elements. The smallest descriptors
in the competing test set are the binary descriptors ORB and BRIEF with 256
binary elements (bits) stored in 32 bytes (OpenCV implementation).

For each descriptor we use the keypoint detector proposed by its authors
and developers. For LP-RDFT, we collect keypoints using DoG to compute the
Laplacian pyramid. The results of keypoint matching is shown in four figures,
numbers 3 to 6. Each figure has two pairs of graphs, each pair corresponding to
a particular case folder of the dataset. For each graph pair, one graph shows the
repeatability measure for each couple of compared images (image 1 to another
image in the same case folder, characterized by an index number) and one graph
shows the recall against 1 - precision.

As we can see from the figure 3, for the cases of increasing blur (“bikes”and
“trees”), LP-RDFT works very well compared to the state of the art, with
very competitive rates for both correct and false matches as depicted by the
repeatability and recall against 1 - precision plots. For the right pair of graphs
in figure 3 for the case folder “trees”, LP-RDFT outperforms the other meth-
ods. In both cases, LP-RDFT outperforms SIFT. The right pair of figure 6 for
the case of increasing JPEG compression (“ubc”) shows that LP-RDFT has
a very competitive performance, with high readability and few false matches.
For high values of JPEG compression, LP-RDFT outperforms all other descrip-
tors. These results show that LP-RDFT performs well when information is lost
due to bad resolution or image compression, regardless of its very small vector
length.

Figure 4, for viewpoint changes (“graf”and “wall”), shows that the proposed
method has a mediocre repeatability compared to the state of the art. It also
provides comparable amount of false matches to the other descriptors as can
be concluded by the recall against 1 - precision plots. Figure 5 for zoom and

Fig. 3. Affine Covariant Features dataset. Two left graphs: Blur (“bikes”). Two
right graphs: Blur (“trees”). Keypoint matching of image 1 to the rest.
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Fig. 4. Affine Covariant Features dataset. Two left graphs: Viewpoint (“graf”). Two
right graphs: Viewpoint (“wall”). Keypoint matching of image 1 to the rest.

Fig. 5. Affine Covariant Features dataset. Two left graphs: Zoom + rotation
(“bark”). Two right graphs: Zoom + rotation (“boat”). Keypoint matching of image
1 to the rest.

rotation changes (“bark”and “boat”), shows also lower performance than most
of the state of the art. Again LP-RDFT provides comparable number of false
matches. In figure 6, the left pair for the case of decreasing light (“leuven”),
shows that the proposed method has a lower performance compared to the state
of the art.

LP-RDFT performs very competitively to the state of the art with a very
small vector of only 27 elements, especially when the higher frequencies are lost.
The method works very well for blur and JPEG compression, which are relevant
to image scaling, but it is weaker at viewpoint changes and light variations.

4.2 Textureless Images

Textureless images are more difficult to discriminate because they exhibit fewer
visual features, smooth edges and large homogeneous areas. In order to make
a more general testing, we collected a set of images (figure 7) from the MIR-
FLICKR Retrieval Evaluation dataset [8] with these characteristics.
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Fig. 6. Affine Covariant Features dataset. Two left graphs: Light (“leuven”). Two
right graphs: JPEG compression (“ubc”). Keypoint matching of image 1 to the rest.

Fig. 7. The textureless images taken from MIRFLICKR Retrieval Evaluation dataset.

The tests include rotation of the images from 0◦ to 180◦ every 30◦ and scaling
of the images from four times bigger to four times smaller with scale factor

√
2

(figure 8). The same measures are used for evaluation. All compared descriptors
are used in the same way as before. Concerning the proposed descriptor, we use
another shorter version of LP-RDFT due to the size of the images. Also, the
radius, where we collect the samples for the RDFT, is a little bigger; six pixels
instead of five. Again, the parameters are chosen after exhaustive tests. We use
two element long LP vectors, so two exploited levels on the image pyramid, and
the Fourier information from only the highest of the two used pyramid levels.
The final vector is thus particularly small with only 7 elements!

From the plots we see that none of the methods give high performance,
with low recall and repeatability. The low recall against 1-precision measures
results from the small number of keypoints detected and used for matching.
Surprisingly, for all descriptors except LP-RDFT, the matching performance on
the same image (original image to its self) is very low. This can be explained by
the lack of meaningful signal information in this images that causes many of the
descriptor features to look alike and cause false matches. The proposed method
performs almost perfectly for matching on the original image, which shows that
it can handle low quality information. Its performance though deteriorates with
rotation and scaling. For small rotations and scale changes the repeatability of
LP-RDFT is the best among all descriptors.
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Fig. 8. Textureless images from MIRFLICKR Retrieval Evaluation dataset. Two left
graphs: Rotation tests. Two right graphs: Scaling tests.

5 Conclusions

In this work, we proposed a method of image description by combining two trans-
formations with interesting invariant properties with the goal of creating a very
compact and robust image descriptor. The resulting LP-RDFT is a multiscale
descriptor with variable vector size that can become very small if needed while
remaining discriminative enough. The experimental results on keypoint match-
ing for textured images showed that LP-RDFT works efficiently having a very
small vector length. LP-RDFT outperforms the state of the art for scale changes
and image changes relevant to scaling, like increasing blur and JPEG compres-
sion. Tests on textureless images showed that LP-RDFT beats the state of the
art for small values of rotation and scaling but its performances deteriorates for
larger values. The most important fact is that the vector size of LP-RDFT for
the textureless images tests is particularly tiny, with only 7 elements. LP-RDFT
is a proposition for very compact image description and especially suitable for
cases where a large amount of information is unnecessary and large vector sizes
can be a problem.
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Abstract. We examine the use of individual components of the Struc-
tural Similarity image quality measure as criteria for best approximation
in terms of orthogonal expansions. We also introduce a family of higher
order SSIM-like rational functions.

1 Introduction

In this paper, we wish to examine further the idea of orthogonal expansions in
R

N that are best approximations in terms of the Structural Similarity (SSIM)
image quality measure [6]. This study represents a kind of followup of the work
presented in an earlier ICIAR conference [3] in which the optimization was done
with respect to the SSIM function, S(x,y), a product of three terms, namely, (i)
luminance, (ii) constrast and (iii) structure. The luminance term, S1(x,y) is a
function only of the means of x and y and therefore cannot provide a nontrivial
approximation. Here we examine whether either of the contrast or structure
terms alone can be used as a criterion for best approximation determination and
find that the answer is negative. At least two of the three components, one of
which must be the luminance term, are necessary to provide a unique solution.

In the final section of this paper, we introduce a family of higher-order or
“generalized” SSIM functions, using a method that is analogous to the construc-
tion of the rational function S1(x,y).

2 SSIM and SSIM-Based Approximations of
Signals/Images

In what follows, we let x,y ∈ R
N denote two N -dimensional signal/image blocks

or local patches, i.e., x = (x1, x2, · · · , xN ). The SSIM measure between x and y
was defined originally as follows [6,7],

S(x,y) = S1(x,y)S2(x,y)S3(x,y)

=
[

2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

] [
2sxsy + ε2
s2x + s2y + ε2

] [
sxy + ε3
sxsy + ε3

]
, (1)
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where

x̄ =
1
N

N∑

i=1

xi, sxy =
1

N − 1

N∑

i=1

(xi − x̄)(yi − ȳ), sx =
√
sxx, etc. . (2)

The small positive constants εk are added for numerical stability and can be
adjusted to accomodate the perception of the human visual system.

The functional form of the component S1 in Eq. (1), which measures the
similarities of local patch luminances or brightness values, was originally chosen
in an effort to accomodate Weber’s law of perception [7]. The form of S2, which
measures the similarities of local patch contrasts, follows the idea of divisive
normalization [5]. In the case that ε3 = 0, the component S3, which measures
the similarities of local patch structures, is precisely the correlation C(x,y)
between x and y. We shall be taking a closer look at S2 and S3 below.

Note that −1 ≤ S(x,y) ≤ 1, and S(x,y) = 1 if and only if x = y. The
component S1(x,y) measures the similarity between the means of x and y: If
x̄ = ȳ, then S1(x,y) = 1, its maximum possible value. We shall return to this
idea in a later Section.

It is common practice to set ε2 = 2ε3, in which case the product of S2 and
S3 in Eq. (1) collapses to a single term, namely,

S2′(x,y) =
2sxy + ε2
s2x + s2y + ε2

. (3)

It was indeed this form of the SSIM, i.e., S(x,y) = S1(x,y)S2′(x,y), that was
analysed in [3]. (In that paper, S2′ was denoted as S2.) In this paper, we wish to
examine the roles of the individual terms S2 and S3, as opposed to their product.

In the discussion that follows, we consider x to be a given signal and y ∈ A
to be an approximation to x where A is an M -dimensional subset of R

N , with
M ≤ N . Of course, we shall be concerned with best approximations to x, but
not in terms of SSIM, as was done in [3]. Instead, we shall be determining best
approximations with respect to each of the SSIM components S2 and S3.

As in [3], we work with a set of (complete) orthonormal basis functions R
N ,

to be denoted as {φ0, φ1, · · · , φN−1}. We assume that only the first element has
nonzero mean: φk = 0 for 1 ≤ k ≤ N − 1. We also assume that φ0 is “flat”,
i.e., constant: φ0 = N−1/2(1, 1, · · · , 1), which accomodates the discrete cosine
transform (DCT) as well as Haar multiresolution system on R

N . (If φ0 were
not constant, then the definitions of the mean x̄ in Eq. (2) can be modified
accordingly.) The L2-based expansion of x in this basis is

x =
N−1∑

k=0

akφk, ak = 〈x, φk〉, 0 ≤ k ≤ N − 1, (4)

from which it follows that
x̄ = a0N

−1/2. (5)
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The expansions of the approximation y ∈ A to x will be denoted as follows,

y = y(c) =
N−1∑

k=0

ckφk, (6)

where the notation y(c) acknowledges the dependence of the approximation on
the coefficients ck. It also follows that

ȳ = c0N
−1/2. (7)

Note that at this point, we do not assume a relationship between a0 and c0.

For simplicity of discussion, we consider the approximation spaces A to be

AM = span{φ0, φ1, · · · , φM−1} (8)

where 0 ≤ M ≤ N − 1. The discussion which follows can easily be adapted to
conform to the situation studied in [3] in which an arbitrary subset of distinct
functions {φγ(k)}, 0 ≤ k ≤ M − 1 was chosen from the complete set of N
functions. As is well known, the best L2-based approximation of x in AM is

yM,L2 = xM :=
M−1∑

k=0

akφk, ak = 〈x, φk〉, (9)

a truncation of the exact expansion of x in Eq. (4). In terms of Eq. (6),

ck = ak, 0 ≤ k ≤ M − 1 and ck = 0, M ≤ k ≤ N − 1 . (10)

As is also well known,

yM,L2 = arg min
z∈Am

‖x− z‖2, (11)

the unique element in AM that that lies closest to x ∈ R
N .

In [3], the best SSIM-based approximation ySSIM ∈ AM to x, using the
SSIM function S(x,y) = S1(x,y)S2′(x,y), was found to be

yM,SSIM = arg max
z∈AM

S(x, z) =
M−1∑

k=0

ckφk , (12)

where c0 = a0 and
ck = αak , 1 ≤ k ≤ M − 1 . (13)

The scaling coefficient α is given by

α =
−ε2 +

√
ε22 +

(
4

N−1

∑M−1
k=1 a2

k

)
(s2x + ε2)

2
N−1

∑M−1
k=1 a2

k

. (14)
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In the special case ε2 = 0,

α =

[
N−1∑

k=1

a2
k

]1/2 [
M−1∑

k=1

a2
k

]−1/2

. (15)

When M < N , the scaling coefficient α > 1, which implies that the yM,SSIM is
a contrast enhanced version of yM,L2 .

3 Best S3/Correlation-Based Approximations

Here we consider the following problem: Given an x ∈ R
N , find, if possible, the

best S3 -based approximation to x in AM , i.e.,

yM,S3 = arg max
z∈AM

S3(x, z) . (16)

As mentioned in Section 1, in the case ε3 = 0, S3(x,y) = C(x,y), the correlation
between x and y. It is necessary to express the function S3(x,y) in terms of the
unknown coefficients ck of the expansion for y(c). The following results, which
are obtained after some simple algebra, are useful:

s2x =
1

N − 1

N−1∑

k=1

a2
k, sxy =

1
N − 1

M−1∑

k=1

akck, s2y =
1

N − 1

M−1∑

k=1

c2k . (17)

We then have that

S3(x,y(c)) =
1

N−1

∑M−1
k=1 akck + ε3

1
N−1

[∑N−1
k=1 a2

k

]1/2 [∑M−1
k=1 c2k

]1/2

+ ε3

. (18)

Note that the right side is a function of the coefficients c1, c1, · · · cM−1, but not
of c0. This is already an indication that the maximizer of S3 may not be unique.

We now look for stationary points that will be candidates for maximum
points of S3(x,y(c)). Imposition of the stationarity conditions ∂S3/∂cp = 0 for
1 ≤ p ≤ M − 1 leads to the following set of equations,

1
sxy + ε3

ap − 1
sxsy + ε3

sx
sy
cp = 0 , 1 ≤ p ≤ M − 1 . (19)

If ap = 0 for any 1 ≤ p ≤ M − 1, then cp = 0. Otherwise, we may rewrite the
above relations as

cp
ap

=
sxsy + ε3
sxy + ε3

sy
sx
, 1 ≤ p ≤ M − 1 . (20)

The RHS of each equation is independent of p, implying that

cp = αap, 1 ≤ p ≤ M − 1 , (21)
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Such a proportionality between the cp and ap was also found in [3] for the case of
best SSIM-based approximations. We now attempt to determine α by rewriting
Eq. (20) and using Eq. (21) to obtain the relation

αsx(sxy + ε3) = sy(sxsy + ε3) . (22)

Substition of the expansions in (17) followed by simplification yields

α2ε23

N−1∑

k=1

a2
k = α2ε23

M−1∑

k=1

a2
k . (23)

In the special case that M = N , Eq. (23) is an identity that is satisfied by any
α ∈ R, independent of the value of ε3. This is due to the following result, the
proof of which is very straightforward and therefore omitted.

Theorem 1: Let x ∈ R and y = ax + b1, where a, b ∈ R, a �= 0 and 1 =
(1, 1, · · · , 1) ∈ R. Then

C(x,y) =
sxy

sxsy
= sgn(a) =

{
1, a > 0,

−1, a < 0. (24)

When 2 ≤ M < N , we must consider two cases in Eq. (23):

1. ε3 = 0: Eq. (23) is satisfied for all α ∈ R. This is again a consequence of
Theorem 1 and can be confirmed by substituting Eq. (21) into Eq. (18).

2. ε3 �= 0: In order that Eq. (23) be satisfied for any sequence of Fourier coef-
ficients {ak}N−1

k=1 , it is necessary that α = 0, which implies that yM,S3 =
c0φ0 ∈ A1, i.e., the constant approximation, with c0 as yet undetermined.

The conclusion is that S3-based best approximation is possible only in the
case ε3 = 0. But even in this case, the result is not unique since α is arbitrary
(but positive). What makes matters worse is that the leading coefficient c0 of the
approximation y(c) also remains undetermined! It appears that two additional
conditions are required in order to obtain unique values of c0 and α.

Eqs. (5) and (7) imply that a unique value of c0 can be obtained by imposing
a relation between the means x̄ and ȳ. It would seem natural to impose the
following “equal means” condition,

x̄ = ȳ , (25)

which, as is well known, maximizes the component function S1(x,y) in Eq. (1).
In this case, c0 = a0, as was found in [3].

Using this result, we must still determine a unique value of the proportionality
coefficient α in Eq. (21). If we impose a condition of “equal norms,” i.e.,

‖x‖2 = ‖yM,S3‖2 , (26)
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then squaring both sides and substituting the respective expansions along with
the property in Eq. (21) and the condition c0 = a0 yields

a2
0 +

N−1∑

k=1

a2
k = c20 +

M−1∑

k=1

c2k = a2
0 + α2

M−1∑

k=1

a2
k . (27)

This result leads to the (positive) value of α in Eq. (15).
Here it is important to mention that if the “equal means” condition of (25)

is replaced by another relationship between c0 and a0, then the “equal norms”
condition of (26) yields a scaling coefficient α different from that in Eq. (15).

The results in this section lead to the following important conclusions:

1. Using only the component function S3(x,y) is insufficient to determine a
best SSIM-based approximation yM,S3 ∈ AM to x.

2. Using the components S1(x,y) and S3(x,y) is also insufficient to find a best
approximation. In the special case, ε3 = 0, however, a unique solution may
be obtained by imposing two additional conditions, e.g., equality of means,
Eq. (25), and equality of norms, Eq. (26).

4 Best S2/Contrast-Based Approximations

We now consider the following problem: Given an x ∈ R
N , find, if possible, the

best S2 -based approximation to x in AM , i.e.,

yM,S2 = arg max
z∈AM

S2(x, z) , (28)

where S2(x,y) is defined in Eq. (1). From the equations in (17) we may express
S2(x,y) in terms of the expansion coefficients ck. It is not absolutely necessary to
present this expansion here, but only to note that, as in the case of the S3(x,y)
function examined in the previous section, S2(x,y) is a function of the M − 1
coefficients c1, c1, · · · cM−1 and independent of the coefficient c0.

Imposition of the stationarity conditions ∂S2/∂cp = 0, for 1 ≤ p ≤ M − 1
leads to the following set of equations,

[
sx
sy

(s2x + s2y + ε2) − (2sxsy + ε2)
]
cp = 0, 1 ≤ p ≤ M − 1 . (29)

The most noteworthy feature of these equations is the absence of of a direct
relation between cp and ap as was seen in Eq. (19) for the S3 case. As such, the
existence of a proportionality result of the form in Eq. (21) cannot be proved.
Since all of the coefficients cp cannot, in general, be zero, it follows that the term
in the square brackets must vanish. We now examine two cases:

1. ε2 = 0: The vanishing of the term in the square brackets of Eq. (29) reduces
to the result

s2x = s2y =⇒
N−1∑

k=1

a2
k =

M−1∑

k=1

c2k . (30)
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If we now assume a proportionality between the cp and ap as in Eq. (21),
we arrive at the result for α in Eq. (15). Note that we must still impose
the equal-means condition of Eq. (25) to obtain a unique approximation
yM,S2 ∈ AM in this case.

2. ε2 �= 0: Assuming that sy �= 0, the vanishing of the term in square brackets
implies that

s3x − sxs
2
y + ε2sx − ε2sy = 0 . (31)

If we once again assume a proportionality between the cp and the ap as in
Eq. (21), a quadratic equation in α is obtained. It is convenient to rewrite it
as an equation in a scaled variable β as follows,

sxβ
2+ε2β−s3x−ε2sx = 0 , where β =

α√
N − 1

[
M−1∑

k=1

a2
k

]1/2

= sxM
α . (32)

The definition of sxM
follows from Eqs. (9) and (17). The value of α which

results from the positive solution of this quadratic equation is

α =
−ε2 +

√
ε22 + 4s2x(s2x + ε2)
2sxsxM

. (33)

In the case ε2 → 0, the result in Eq. (15) is obtained. For ε2 �= 0, however, a
comparision between this equation and Eq. (14) shows that the results are
almost the same. They do differ, however, except in the case M = N . The
reason for this difference is the appearance of the term sxy in the numerator
of the SSIM function S2′(x,y), cf. Eq. (3), as opposed to sxsy in the SSIM
function S2(x,y), cf. Eq. (1).

In summary, the S2-based best approximation method of this section is pos-
sible with a scaling condition of the form Eq. (21). As with the S3-based case,
however, the coefficient c0 is undetermined. If the equal-means condition of Eq.
(25) is employed then we obtain, as before, c0 = a0.

In this section, we have arrived at the following important conclusions:

1. Using only the component function S2(x,y) is insufficient to determine a
best SSIM-based approximation yM,S2 ∈ AM to x.

2. Using components S1(x,y) and S2(x,y) is sufficient to find a unique, best
SSIM-based approximation yM,S2 for both zero and nonzero values of the
stability constant ε2. For all M < N , however, this approximation is different
from the best SSIM-based counterpart of Eq. (12), obtained by using the
entire SSIM function S(x,y) in Eq. (1).

5 A Family of Higher-Order Rational SSIM Functions

In this section, we show how a rationalization procedure that can be used to
construct the SSIM functions S1(x,y) in Eq. (1) and S2′(x,y) in Eq. (3) may be
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used to construct higher order SSIM-like rational functions. We then consider
the use of these functions for best SSIM-based approximations and present some
preliminary results. In the discussion that follows, as before, x,y ∈ R

N .
With reference to the function S1(x,y), note that x = y implies x̄ = ȳ and

S1(x,y) = 1. But x̄ = ȳ also implies (x̄ − ȳ)2 = 0, so that

x̄2 + ȳ2 = 2x̄ȳ. (34)

Now add a “stability constant” ε1 > 0 to each side and divide to obtain

S1(x,y) =
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1
= 1 . (35)

Now define
x0 = x − x̄1, y0 = y − ȳ1, (36)

where 1 = (1, 1, · · · , 1) ∈ R
N . By construction, x0 and y0 have zero-mean.

Clearly, x = y implies that x0 = y0 which, in turn, implies that

‖x0 − y0‖n
n = 0, n = 2, 3, 4, · · · . (37)

We consider only the case that n is even, so that Eq. (37) becomes

N∑

k=1

[(xk − x̄) − (yk − ȳ)]n = 0, n = 2, 4, 6, · · · . (38)

Now use the binomial theorem and then rearrange to produce the result,

n∑

l=0

(−1)lBnl

N∑

k=1

(xk − x̄)n−l(yk − ȳ)l = 0, where Bnl =
(
n
l

)
. (39)

Dividing by N − 1, this relation becomes
n∑

l=0

(−1)lBnlsn−l,l = 0, (40)

where we have defined

sp,q =
1

N − 1

N∑

k=1

(xk − x̄)p(yk − ȳ)q, p, q ≥ 0 . (41)

Now rewrite Eq. (40) as follows,
∑

l even
Bnlsn−l,l =

∑

l odd
Bnlsn−l,l . (42)

Once again we add a “stability constant” εn ≥ 0 to both sides and divide by the
left-hand term to obtain the result,

Σn(x,y) :=
∑

l oddBnlsn−l,l + εn∑
l evenBnlsn−l,l + εn

= 1. (43)
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The rational functions Σn(x,y), n ∈ {2, 4, 6, · · · } define a set of generalized
SSIM functions between vectors x and y. When n = 2, Σ2(x,y) = S2′(x,y), the
SSIM function of Eq. (3). For n = 4, we have the function

Σ4(x,y) =
4sxxxy + 4sxyyy + ε4

sxxxx + 6sxxyy + syyyy + ε4
. (44)

At this point it is helpful to recall that the construction of the function
Σn(x,y) is based on the Ln norm in Eq. (37). The closeness of Σn(x,y) to 1 is
related to the closeness of ‖x0 − y0‖n

n to 0.

We now define the following family of associated distance functions,

Tn(x,y) := 1 − Σn(x,y)

=
∑

l evenBnlsn−l,l − ∑
l oddBnlsn−l,l∑

l evenBnlsn−l,l + εn
. (45)

From (37) and (40),

Tn(x,y) =
‖x0 − y0‖n

n∑
l evenBnlsn−l,l + εn

. (46)

If x = y, then Tn(x,y) = 0. The Tn(x,y) functions are weighted Ln distances
– to the nth power – between x0 and y0. The case n = 2 in Eq. (46) has been
examined in the past [3,4]:

T2(x,y) = 1 − S2′(x,y) =
‖x0 − y0‖2

2

sxx + syy + C2
=

‖x0 − y0‖2
2

‖x0‖2
2 + ‖y0‖2

2 + C2
. (47)

It is an example of a normalized metric [1,2].

One may now wish to consider the problem of finding best approximations,
using these rational SSIM-like functions as the objective functions: Given an
x ∈ R

N , an M < N and and n ≥ 1, find, if possible,

yM,Σ2n = arg max
z∈AM

Σ2n(x, z) = arg min
z∈AM

T2n(x, z) . (48)

The case n = 1, which corresponds to the function S2′(x,y), along with the
equal-means condition coming from the function S1(x,y), was analyzed in [2].

The cases n ≥ 2 present a major challenge, however, since we may no longer
exploit the orthogonality properties of the φk basis in the computation of the
functions sp,q in Eq. (41). At this time, only a little progress has been made on
this problem. For example, in the case n = 2, the generalized SSIM function Σ4

is a complicated rational function of the unknown expansion coefficients ck:

Σ4(c) =

∑
n,m,p,q[4anamapcq + 4ancmcpcq]Pnmpq

∑
n,m,p,q[anamapaq + 6anamcpcq + cncmcpcq]Pnmpq

, (49)
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where the summation limits are 1 ≤ m,n ≤ N − 1 and 1 ≤ p, q ≤ M − 1 and

Pnmpq =
N∑

k=1

φnkφmkφpkφqk . (50)

These coefficients are clearly basis-dependent. Moreover, Pnmpq = PP[nmpq],
where P denotes any permutation. Numerical experiments indicate that many
of these coefficients are zero.

The stationarity conditions ∂Σ4/∂cp = 0, 1 ≤ p ≤ M−1, yield an enormously
complicated set of coupled nonlinear equations in the cp. In the special case that
M = N , the solution of this system is cp = ap, as expected. When M < N , there
exist solutions of the form cp = αap, as was found in in Eq. (21). The scaling
coefficient α, however, satisfies a cubic equation in α2. The coefficients of this
equation are complicated functions of the Fourier coefficients ak and the Pnmpq.

The fact that solutions of the form cp = αap exist is interesting. They will,
however, probably turn out to be of little use since they have the same basic
form as those obtained from the S2 and S3 SSIM functions (along with S1),
which represents nothing more than another adjustment in the contrast.

In summary, we have introduced, and hopefully motivated, the idea of con-
structing higher-order rational SSIM-like functions. The method outlined above
is the most straightforward one. It may well be useful to consider other methods
which are based on higher-order statistics of images.
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2D Thinning Algorithms with Revised Endpixel
Preservation
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Abstract. Skeletons are shape descriptors that summarize the general
forms of objects. Thinning is a frequently applied technique for digital
binary pictures to extract skeleton-like shape features. Most of the exist-
ing thinning algorithms preserve endpixels that provide relevant geomet-
rical information relative to the shape of the objects. The drawback of
this approach is that it may produce numerous unwanted side branches.
In this paper we propose a novel strategy to overcome this problem. We
present a thinning strategy, where some endpixels can be deleted.

Keywords: Shape represantation · Thinning · Endpixel revision

1 Introduction

Skeletons are region-based shape descriptors that summarize the general forms of
objects. Skeletonization techniques are widely applied for shape representation,
geometric and topological analysis, pattern recognition, and computer vision
[10,11]. Thinning as an iterative object reduction is capable of producing both
2D skeleton-like shape features (i.e., topological kernels and centerlines) in a
topology preserving way [3,10,11].

In each iteration step of a thinning process, some certain boundary pixels
which do not hold relevant geometric information are deleted, and it is repeated
until stability is reached. Some thinning algorithms aim to preserve the shape of
objects by retaining so-called endpixels that provide relevant geometric informa-
tion. Unfortunately, some extremities that appear in the current object bound-
ary are endpixels and their preservation may lead to producing of numerous
unwanted side branches. As a solution Németh et al. proposed a thinning strat-
egy with iteration-level smoothing [6,7]. Furthermore, Bertrand and Aktouf [2]
also proposed some new geometric constraints called isthmuses that yield less
unwanted side branches.

In this work we propose a novel approach for revising endpixels. Moreover,
we will show that this concept can be applied in any conventional thinning
algorithms as well.

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 65–72, 2014.
DOI: 10.1007/978-3-319-11758-4 8
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2 Basic Notions and Related Results

In this section we use the fundamental concepts of digital topology as reviewed
by Kong and Rosenfeld [5].

We consider (8,4) binary pictures [5], where black pixels form 8-connected
objects, and 4-connectivity is used for white pixels. It is assumed that the pictures
to be thinned contain finitely many black pixels, hence we can store these pictures
in finite arrays.

A black pixel is called a border pixel if it is 4-adjacent to at least one white
pixel. A black pixel is said to be an interior pixel if it is not a border pixel.

A reduction can delete some black pixels (i.e., changes some black pixels to
white ones). Parallel reductions may delete a set of pixels at a time. A reduc-
tion in 2D is not topology preserving if it disconnects or completely eliminates
any black component, creates or merges white components [5]. A black pixel is
a simple pixel if its deletion is a topology preserving reduction. From various
characterizations of simple pixels, we recall the following one:

Theorem 1. [5] Black pixel p is simple in an (8, 4) picture, if p is a border pixel,
and the black pixels that are 8-adjacent to p form exactly one 8-component.

The simplicity of a pixel in (8, 4) pictures is a local property, therefore it
can be decided by investigating its 3 × 3 neighborhood. Although deletion of an
individual simple pixel is a topology preserving reduction, simultaneous deletion
of a set of simple pixels may alter the topology. Various sufficient conditions
have been proposed for topology preserving parallel reductions [4,6,9]. In this
paper we use the following one:

Theorem 2. [4] A parallel reduction operation is topology preserving for (8, 4)
pictures if all of the following conditions hold:

1. Only simple pixels are deleted.
2. For any two 4-adjacent pixels p and q that are deleted, p is simple after q is

deleted, or q is simple after the deletion of p.
3. No object contained in a 2 × 2 square is deleted completely.

3 Thinning Algorithms with Revised Endpixels

Parallel thinning algorithms are composed of successive parallel reductions [3,
11]. Endpixels are simple pixels that hold some relevant geometrical information
respect to the shape of objects [3]. The considered type of endpixels are preserved
during the entire thinning process. Let us consider a phase of a thinning process
(i.e., a parallel reduction) with deletion rule R, see Alg. 1. We assume that
deletion rule R fulfills all conditions of Theorem 2 (i.e., the reduction associated
with R is topology preserving).

Now we introduce the revised reduction strategy. According to this concept
the endpixel preservation is not determined at the moment of its detection.
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Algorithm 1. Conventional Parallel Reduction

1: Input: A // the array that stores the picture to be thinned
R // deletion rule
ε // the considered type of endpixels

2: Output: B // the array that stores the resulted picture
3: B ← A;
4: for each pixel (x, y) do
5: if A[x, y] is deletable by R and it is not an endpixel of type ε then
6: B[x, y]← WHITE;

Endpixel deletion and further restoration (i.e., turning back a white pixel to black
one) are also allowed. The general scheme of the revised reduction is sketched in
Alg. 2, where a topology preserving deletion rule R is applied. Note that in this
case we use labeled image arrays, where cells marked as BLACK, ENDPIXEL,
DELEND1, DELEND2, RESTORED, and WHITE, respectively, means object
pixels, endpixels, endpixels deleted in Step 1, endpixels deleted in Step 2, restored
pixels, and white pixels. Pixels marked BLACK, ENDPIXEL, and RESTORED
are black pixels, while the others are white.

Here we explain the three-step process of revised reduction:

Step 1 – Endpixel deletion: Those border pixels that fulfill the endpixel charac-
terization of type ε are labeled as ENDPIXEL. All endpixels of type ε that
satisfy the deletion rule R are deleted simultaneously. Deleted endpixels are
labeled as DELEND1, and preserved endpixels ε are labeled as ENDPIXEL.

Step 2 – Shrinking: Border pixels that fulfill the endpixel characterization of
type ε are labeled as ENDPIXEL. We apply a parallel reduction with deletion
rule R again. Those pixels that are deleted in this step and have a label of
ENDPIXEL are labeled as DELEND2.

Step 3 – Restoration: Let E be the set of pixels that are black or deleted
endpixels and Y be the set of black pixels in the current picture. Any pixel p
deleted in Step 2 is restorable if it is non-simple and non-isolated in (N8(p)∩
(Y ∪ E)) ∪ {p}, where N8(p) denotes the set of pixels that are 8-adjacent
to p. Each restorable endpixel changes to black pixel again and marked as a
restored pixel. It is composed of the following steps:
a) Each restorable endpixel deleted in Step 2 is restored. Each restorable

pixel p marked as DELEND2 is labeled as RESTORED.
b) Each restorable endpixel deleted in Step 1 is restored. Each restorable

pixel p marked as DELEND1 is labeled as RESTORED.

For the efficient implementation of the algorithm, we propose to store labeled
pixels in a linked list rather than in a temporary array T (see Alg. 2), similarly as
described in [8]. In order to avoid repeated scannings of the picture array, we can
use two linked lists: first we collect the border pixels to a linked list, and this list
is updated during Steps 1 and 2. The second list is a LIFO data structure which
is used for the deleted endpixels. It is necessary, since in Step 3 we try to restore
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Algorithm 2. Revised Parallel Reduction

1: Input: A // the array that stores a labeled picture
R // deletion rule
ε // the considered type of endpixels

2: Output: B // the array that stores the resulted picture
3: // — Step 1: Endpixel reduction —
4: T ← A; // T is a temporary array
5: for each pixel p = (x, y) do
6: if (A[x, y] = BLACK) and (p is an endpixel of type ε) then
7: T [x, y]← ENDPIXEL; // p is marked as an endpixel
8: if p is deletable by R in picture stored in A then
9: T [x, y]← DELEND1; // p is marked as a deleted endpixel

10: B ← T ;
11: // — Step 2: Shrinking —
12: for each pixel p = (x, y) do
13: if (B[x, y] = BLACK or B[x, y] = ENDPIXEL) and (p is deletable by R) in

picture stored in B then
14: if p is an endpixel of type ε then
15: T [x, y]← DELEND2; // p is marked as a deleted endpixel
16: else
17: T [x, y]← WHITE; // p is deleted
18: B ← T ;
19: // — Step 3(a): Restoration —
20: for each pixel p = (x, y) do
21: if (B[x, y] = DELEND2) and (p is a restorable pixel) then
22: T [x, y]← RESTORED; // p is restored
23: // — Step 3(b): Restoration —
24: for each pixel p = (x, y) do
25: if (B[x, y] = DELEND1) and (p is a restorable pixel) then
26: T [x, y]← RESTORED; // p is restored
27: B ← T ;
28: return B;

endpixels deleted in Step 2, then we continue the restoration with endpixels
deleted in Step 1. The deletable pixel configurations and endpixel configurations
can be stored in two precalculated look-up tables making the repeatable checking
more efficient. Labels in arrays also increase the efficiency.

Let us see how the revised reduction works in an example depicted in
Fig. 1. Here we present the same deletion rule and endpixel characterization
with and without the revised endpixel strategy. Revised reduction works with
any type of endpixels, but in this example we use the following characterization:
a black pixel is an endpixel if it is 8-adjacent to at most two black pixels that
are 4-adjacent to each other. Here we assume a deletion rule R that satisfies all
conditons of Theorem 2.

Now we will show that revised reduction strategy is topology preserving.
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Fig. 1. Example of conventional fully parallel thinning (left) and revised fully parallel
thinning (right). Labels “2”,“3”, and “4” indicate deleted endpixels in Step 1 (i.e.,
DELEND1), deleted endpixels in Step 2 (i.e., DELEND2), and restored endpixels (i.e.,
RESTORED), respectively. Note that label “1” (i.e., ENDPIXEL) does not appear in
this example, since each detected endpixel is deletable by the considered deletion rule
R and their labels are changes to “2” in Step 1. Here an endpixel is considered as a
black pixel being 8-adjacent to at most two 4-adjacent black pixels. The deletion rule
R fulfills each condition of Therorem 2.

Theorem 3. If the reduction with deletion rule R (see Alg. 1) is topology pre-
serving, and endpixels of type ε are simple, then Alg. 2 also specifies a topology
preserving reduction.

Proof. We will show that three steps of revised reduction strategy (i.e., endpixel
deletion, shrinking, and restoration) is topology preserving.

1. Endpixel deletion: Let us consider a set of endpixels that satisfy the con-
ditions of deletion rule R. Since deletion rule R fulfills the conditions of
Theorem 2, deletion of any set of endpixels is topology preserving.

2. Shrinking: This phase is topology preserving, since R is assumed as a topol-
ogy preserving reduction.

3. Restoration: We restore a set of deleted endpixels within two steps. The proof
of topological correctness is similar in both cases. Each deleted endpixel p
is deleted by a topology preserving deletion rule R, hence any deleted pixel
fulfills the conditions of Theorem 2. Let E be the set of detected endpixels
and Y be the set of black pixels in the current picure. A pixel p is restored
if it is non-simple and non-isolated in (N8(p) ∩ (Y ∪E)) ∪ {p} in the current
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picture. According to this condition the restored pixel p does not form any
new black component, since it can not be an isolated black pixel in (N8(p)∩
Y ) ∪ {p}. On the other hand, each restored pixel was simple and border
pixel at the moment of its deletion, hence restoration of any pixel does
not merge black components, does not fill any cavity, or split any white
component. Consequently, restoration of any restored pixel is a topology
preserving addition.

Further advantageous property of the novel strategy is that the remaining
skeletal branches are important indeed, since the environment of the restored
endpixels contains some other detected endpixels (but they are already deleted
and not restored). These properties are illustrated in Figs. 1-4.

Here we give a general scheme to convert any parallel thinning algorithm to its
revised alternative. In some thinning algorithms, the considered type of endpixel
is given explicitly [6], but usually only the deletion conditions are given and
endpixel conditions stay hidden. If the cosidered type of endpixels ε is preserved
by the given reduction as in Alg. 1, then Step 1 and Step 2 can be performed
with no changes. However, if only the deletion condition are given, then we can
express the endpixel conditions from non-deletable ones. Here we suppose that
all endpixels are simple pixels. Those pixels that are simple but non-deletable
by deletion rule R are considered as endpixels.

4 Results

Due to the lack of space here we present only three examples for applying the
revised reduction strategy, but in a website1 more results for various algorithms
are presented. We implemented the often referred topology preserving parallel
thinning algorithm proposed by Bernard and Manzanera (denoted by BM99)
[1] and its revised alternatives (denoted by R-BM99). This algorithm does not
define any endpixel characterization directly, hence the rules described at the end
of the previous section are used for conversion. Results are depicted in Figs. 2-4.

Fig. 2. Centerlines produced by BM99 (left) and R-BM99 (right) superimposed on the
400× 305 picture of an elephant

1 http://www.inf.u-szeged.hu/∼gnemeth/kutatas/revisedthinning2d/

http://www.inf.u-szeged.hu/~gnemeth/kutatas/revisedthinning2d/
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Fig. 3. Centerlines produced by BM99 (left) and R-BM99 (right) superimposed on the
470× 448 picture of a horse

Fig. 4. Centerlines produced by BM99 (left) and R-BM99 (right) superimposed on the
500× 560 picture of a hand

5 Conclusions

In this paper we propose a new strategy for thinning algorithms. Conventional
thinning algorithms are composed of iterative object reductions where a set of
pixels from the object boundary is deleted in each reduction phase. Some algo-
rithms apply endpixel preservation as a geometric constraint. Since they may not
delete the detected endpixels, some unwanted side branches can be produced.
The new thinning strategy allows us to delete endpixels. Restored endpixels hold
significant geometrical information respect to the shape, since some other endpix-
els are also detected in their neighborhood (but some of them are not restored).
Furthermore, we gave a general scheme to apply revised reduction strategy in
any conventional thinning algorithm. Thanks to the proposed strategy, thinning
algorithms become less sensitive to boundary noise.
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8. Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning
algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms.
Lecture Notes in Computational Vision and Biomechanics, vol. 2, ch. 6, pp. 165–
188. Springer (2012)

9. Ronse, C.: Minimal test patterns for connectivity preservation in parallel thin-
ning algorithms for binary digital images. Discrete Applied Mathematics 21, 67–79
(1988)

10. Siddiqi, K., Pizer, S.M. (eds.): Medial Representations - Mathematics, Algorithms,
and Applications. Series in Computational Imaging. Springer (2008)

11. Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition.
Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific
(1994)



Sparse Representation



A New Landmark-Independent Tool
for Quantifying and Characterizing

Morphologic Variation

S.M. Rolfe1(B), L.L. Cox3,4, L.G. Shapiro1,2, and T.C. Cox3,4,5

1 Departments of Electrical Engineering, University of Washington, Seattle, USA
sara.rolfe@seattlechildrens.org

2 Departments of Computer Science, University of Washington, Seattle, USA
3 Departments of Pediatrics, University of Washington, Seattle, USA

4 Seattle Children’s Research Institute, Seattle, USA
5 Department of Anatomy and Developmental Biology,

Monash University, Clayton, Australia

Abstract. This paper develops a landmark-independent, deformable-
registration-based framework that can utilize 3D surface images gener-
ated by any multidimensional imaging modality. The framework provides
compact representations of image differences that are used to assess and
compare potentially biologically relevant changes in 3D shape. The util-
ity and sensitivity of the tools developed in this work are demonstrated
using similarity retrieval of shape changes in a normal developmental
time series of chick embryos. The results motivate future use of these
tools for defining trajectories of normal growth, aiding research into con-
ditions causing disruptions to normal growth.

Keywords: Biomedical imaging · Feature extraction · Mathematical
morphology · Image representation and models

1 Introduction

Quantitative assessment of morphologic variation is complicated by the diffi-
culty of analyzing three-dimensional shape change. Traditional shape analysis
methods generally rely on the use of landmarks manually placed on an image
by an expert. These landmarks are chosen at locations that are easy to identify
across specimens, such that the relative difference in position of the landmarks
can be compared across individuals. However, the use of landmarks to analyze
shape change has several drawbacks. Placement of landmark points is tedious
and subject to variability. In addition, no shape information is provided about
regions between landmark points, which may be scientifically interesting. For
some biological structures, such as embryos, reliable identification of landmarks

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 75–83, 2014.
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can be challenging because of ill-defined boundaries between tissues and the
rapid morphological changes that occur during development.

This paper develops a landmark-independent deformable-registration-based
framework for quantifying morphologic change over a normal developmental time
series of embryonic facial development. The development of these tools will help
define and efficiently describe trajectories of normal growth and assist in under-
standing the pathogenetic mechanisms of conditions causing disruptions to nor-
mal growth. This tool is suited to the analysis of 3D images generated by any
multidimensional imaging modality.

2 Related Work

In previous work of ours, deformable registration was used to produce a dense
vector field describing the point correspondences between two images, from which
features were extracted to find regions of organized differences that were biolog-
ically relevant. These methods were validated by detecting regions of difference
on chick embryo images that were warped with known small magnitude defor-
mations in regions critical to midfacial development [9] and used to quantify and
characterize asymmetry in bilaterally paired structures [8].

Ashburner et al. [1] introduced the term deformation-based morphology to
describe a method for analyzing group differences in brain shape using deforma-
tion vector fields, which arose as a spin-off from the problem of brain registration.
Deformation morphology has also been applied to more standard morphometric
measurement applications. Olafsdottir et al. presented a computational mouse
atlas in [7] that represented the average of a group of normal, wild-type mice.
Principal Component Analysis (PCA), Independent Component Analysis (ICA)
and Sparse Principal Component Analysis (SPCA) were all applied to reduce
the data dimensionality and find the modes of the deformation that could dis-
criminate between groups.

3 Data and Preprocessing

The data set used for the experiments in this paper contains 16 optical projec-
tion tomography (OPT) images of normal chick embryos from 5 developmental
stage groups. A representative image from each developmental stage is shown in
figure 1. This is a complex data set due to natural variation within and subtlety
of facial changes between normal developmental stage groups. A method based
on geodesic active contours is used to extract a smooth, closed contour from
each image for shape analysis [9].

4 Methodology

The goal of the method presented in this work is to assess pairwise morpho-
logical differences in normal chicken embryo faces over different developmental
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Fig. 1. Examples of midface development for each developmental (Hamburger and
Hamilton [4]; HH) stage in the dataset

ages and provide a compact description of the shape change that can be used
to quantify the similarity between two growth trajectories. A deformable regis-
tration is applied to assess local differences at every point between two aligned
images. The deformable registration determines the spatial transform mapping
points from a source to homologous points on an object in a target image. The
output is a dense deformation vector field in which the vector at each point
describes the spatial transformation between the source and target images at
that point. For this application, a B-spline deformable transform using a mutual
information metric was chosen, since it is widely applicable and computationally
efficient [3].

To interpret the deformation vectors in a meaningful way, low-level features
are extracted from the vector field and mid-level feature organization is calcu-
lated. For the experiments in this work two low-level features were selected as
relevant: 1) magnitude, the deformation vector magnitude and 2) normal angle,
the cosine distance between the deformation vector and the surface normal vec-
tor. One mid-level feature, average neighborhood difference, is also used in this
application. This feature is defined as the difference between a vector field prop-
erty at a point and its average value within a radius r.

4.1 Spatiogram Framework for Representing Image Differences

Once the features are extracted, we use a spatiogram-based framework to repre-
sent the feature values and their spatial distributions. This framework provides
compact descriptions of the image differences described by the dense transfor-
mation vector field. Birchfield and Rangarajan [2] introduced the concept of
a spatiogram as a histogram modified to include spatial information. Spatial
information about the distribution of points assigned to each bin is retained by
modeling it as a Gaussian distribution. Lyons [5] extends this by allowing mul-
tiple Gaussians per bin and defines the Mixture of Gaussian (MoG) spatiogram
h(b) as:

h(b) =< nb,mb = ((αb1, μb1,Σb1), ..., (αbm, μbm, σbm)) >, (1)

where nb is the number of pixels with values assigned to the b, mb is the number
of mixtures in bin b, αbi is the weight of the ith mixture and μbi and Σbi are the
ith mixture parameters.
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The distance between two MoG spatiograms is then defined as:

ρmm(h, h′) =
|B|∑

b=1

Ψmm
b

√
nbn′

b, (2)

where the normalized spatial weighting term for bins with m mixtures is:

Ψmm
b =

m∑

i=1

αbi

m∑

j=1

αbjηbijN(μbj ;μ′
bi, 2(Σbi + Σ′

bj) (3)

and
ηbij = 2(2π)0.5|ΣbjΣ′

bi|0.25. (4)

In this formulation, the number of Gaussians, m, is required to be fixed
for the bins being compared. Spatiograms have been primarily used for tracking
color patches in video images, and for these applications a single or fixed number
of Gaussians is sufficient [5]. In our application, where the goal is a description
of more complex regions, this approach could overgeneralize the feature descrip-
tions. To allow the number of Gaussians in a bin to be assigned based on infor-
mation about the spatial distribution of the contents of that bin, a connected
components algorithm was used to estimate the number of spatially separate
distributions in a bin and initialize the number of distributions. A new variable
Mixture of Gaussians metric is now introduced that accommodates this flexibil-
ity in the number of Gaussians per bin. The one-directional distance between
two MoG spatiograms h and h′ is defined as:

dmn(h, h′) =
|B|∑

b=1

Ψmn
b

√
nbn′

b, (5)

where

Ψmn
b =

m∑

i=1

αbi max
j∈[n]

(ηbijN(μbj ;μ′
bi, 2(Σbi + Σ′

bj)), (6)

m and n are the respective numbers of distributions, [n] = [1, ..., n], and

ηbij = 2(2π)0.5|ΣbiΣ′
bj |0.25. (7)

To achieve a symmetric distance measure, the total distance between h and h′

is defined as:

ρmn(h, h′) =
(dmn(h, h′) + dmn(h′, h))

2
. (8)

This distance metric is symmetric, normalized over the mixture components,
and has a maximum value of ρ(h, h′) = 1 when h′ = h.

MoG spatiograms are used in the experiments in this paper to represent
each low-level and mid-level feature type describing the difference between two
images. High-level features of the MoG spatiogram will quantify characteristics
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of the image difference and the MoG spatiogram metric will define the similarity
between two shape change trajectories.

The MoG spatiogram distance metric allows for efficient combination of mul-
tiple feature types. Since the spatiogram distances for each feature are normal-
ized, they can be combined using the weighted mean:

ρ̂mn(h, h′) =
f∑

i=1

wiρ
mn
i (h, h′), (9)

where
f∑

i=1

wi = 1, (10)

f is the number of feature types, and ρmn
i (h, h′) is the MoG spatiogram distance

for feature type i. The weights allow for optional inclusion of prior knowledge
about the relative importance of the feature types for a specific application.
Without prior knowledge, wi is set to 1/f and the weighted mean reduces to:

ρ̂mn(h, h′) =
1
f

f∑

i=1

ρmn
i (h, h′). (11)

5 Experiments

The goal of these tools is to provide quantitative information about shape dif-
ferences which are not currently known, such as differences between normal and
abnormal growth, or differences within a developmental stage. In this paper,
these tools are demonstrated on known differences due to embryonic develop-
mental age to motivate their future use to accomplish this goal.

5.1 Retrieval of Similar Normal Growth Trajectories

Using the MoG spatiogram representation of shape difference features and new
spatiogram distance measure, similarity between two difference images can be
expressed using a single distance value. These distance values can be used to
perform similarity-based retrieval of difference images. Results are retrieved from
the database by ranking them in order of the spatiogram distance from the query.

In this experiment, difference images representing the trajectory of normal
growth between two developmental stages were used as queries to find similar
growth trajectories. It is expected that a query representing a growth trajectory
between two stages would return other growth trajectories between the same
two stages. In this experiment a representative template image was selected
for a developmental stage and the MoG spatiograms describing the pairwise
difference between the template image and each embryo in the data set were
obtained. The normal angle and magnitude features from the midface region
were used for retrieval and were weighted equally. An example of the feature
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heat maps for one such query and the top ranking results is shown in figure 2,
where the features from the top ranked results are visually similar to the query
image features, and represents a transition between the same stages as the query.
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Fig. 2. Normal angle and magnitude heat maps for a sample query and the 3 top ranked
results. The sample query and all 3 results represent growth trajectories between HH
24 and HH 26. Only the midface region is shown.

Each of the resulting difference images was used as a separate query, and
the success of each query was scored using the average normalized rank of the
relevant difference images [6]. In this case, the relevant difference images are
those representing a trajectory of growth between the same two stages as the
query. The evaluation score for a query q is defined as:

score(q) =
1

N ·Nrel

(
Nrel∑

i=1

Ri − Nrel(Nrel + 1)
2

)

(12)

where N is the number of objects in the database, Nrel is the number of database
objects that are relevant to the query object q, and Ri is the rank assigned to
the ith relevant object. The evaluation score ranges from 0 to 1, where 0 is the
best score.

The overall average evaluation score for all the queries in this experiment
was 0.049. This is very close to the ideal score of 0, validating the methods used.

5.2 Retrieval of Normal Average Growth Trajectories

To summarize the differences between developmental stages, an average growth
trajectory was defined as the average transformation of all embryos from one
developmental stage to a representative template image from a second stage.
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Representative templates were chosen over the use of average images to eliminate
concerns about the biological relevance of average images in this application
where the variation within groups is not well documented. These average growth
trajectories are helpful in providing a visual representation of the average feature
values that can be quickly and easily interpreted by researchers. In addition,
statistics about the group, such as the standard deviation of the features, can
be plotted on the image surface so any within-group variation can be visualized.
An example of the average growth trajectory feature maps and their standard
deviation maps is shown in figure 3. The average growth trajectories in figure
3 are between HH 24 and HH 26 and can be compared to individual growth
trajectories between these two stages shown in figure 2.

(a) Normal
angle average

(b) Normal
angle standard
deviation

(c) Magni-
tude average

(d) Magnitude
standard devi-
ation

Fig. 3. Average and standard deviation of growth trajectory features between HH 24
and HH 26

In addition to providing a useful visual representation, the average growth
trajectories can be used for retrieval. The second retrieval experiment demon-
strates that individual growth trajectories between two stages are more similar
to the average growth trajectory between the same two stages than to any other
average growth trajectory. To show this, an average growth trajectory was gener-
ated for every possible transition between two developmental stages in the data
set. Hold-out averages excluding the query were generated where relevant. Tran-
sitions between the largest group, stage 26, and all other groups were chosen for
the queries, since the average growth trajectories have the most statistical sig-
nificance for larger groups. The retrievals were then scored using the evaluation
score defined in equation 12. In this experiment, the relevant retrieval was the
correct average growth trajectory. The overall average evaluation score for the
retrievals in this experiment was 0.041, which is very close to the ideal value of
0 for a perfect retrieval.

6 Conclusion

The results from the retrieval experiments summarized in table 1 motivate the
use of the method developed in this paper for compactly describing and compar-
ing image differences. In the future they will be applied to image differences that
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are not well known such as those within developmental stages and those due to
abnormal growth. For example, figure 4 shows magnitude heat maps describ-
ing the difference between 1) a normal chick embryo and a perfectly symmetric
embryo of the same age in figure 4(a) and 2) a chick embryo affected by a unilat-
eral facial defect and a perfectly symmetric chick embryo of the same age in figure
4(b). The affected chick embryo has higher magnitude values that are localized to
the left side of the face, where the defect impacts normal development. In future
work, this framework will be demonstrated for the classification of affected spec-
imens, description of differences from normal growth, and retrieval of specimens
with similar defects.

Table 1. Summary of Experimental Results

Retrieval Type Average Retrieval Score

Similar growth trajectories 0.049

Relevant average growth trajectory 0.041

(a) Difference between con-
trol and symmetric images

(b) Difference between
affected and symmetric
images

Fig. 4. Magnitude heat maps for a control and a chick embryo displaying a facial cleft,
each warped to a perfectly symmetric image
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7. Ólafsdóttir, H., Darvann, T.A., Hermann, N.V., Oubel, E., Ersboll, B.K., Frangi,
A.F., Larsen, P., Perlyn, C.A., Morriss-Kay, G.M., Kreiborg, S.: Computational
mouse atlases and their application to automatic assessment of craniofacial dysmor-
phology caused by the crouzon mutation fgfr2c342y. Journal of Anatomy 211(1),
37–52 (2007)

8. Rolfe, S.M., Camci, E.D., Mercan, E., Shapiro, L.G., Cox, T.C.: A new tool for
quantifying and characterizing asymmetry in bilaterally paired structures. In: 2013
35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), pp. 2364–2367. IEEE (2013)

9. Rolfe, S.M., Shapiro, L.G., Cox, T.C., Maga, A.M., Cox, L.L.: A landmark-free
framework for the detection and description of shape differences in embryos. In:
2011 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC, pp. 5153–5156. IEEE (2011)



Low Light Image Enhancement via Sparse
Representations

Konstantina Fotiadou(B), Grigorios Tsagkatakis, and Panagiotis Tsakalides

Institute of Computer Science, Foundation for Research and Technology - Hellas
(FORTH-ICS), Department of Computer Science, University of Crete,

Heraklion, Crete, Greece
{kfot,greg,tsakalid}@ics.forth.gr

Abstract. Enhancing the quality of low light images is a critical pro-
cessing function both from an aesthetics and an information extraction
point of view. This work proposes a novel approach for enhancing images
captured under low illumination conditions based on the mathematical
framework of Sparse Representations. In our model, we utilize the sparse
representation of low light image patches in an appropriate dictionary
to approximate the corresponding day-time images. We consider two
dictionaries; a night dictionary for low light conditions and a day dictio-
nary for well illuminated conditions. To approximate the generation of
low and high illumination image pairs, we generated the day dictionary
from patches taken from well exposed images, while the night dictionary
is created by extracting appropriate features from under exposed image
patches. Experimental results suggest that the proposed scheme is able to
accurately estimate a well illuminated image given a low-illumination ver-
sion. The effectiveness of our system is evaluated by comparisons against
ground truth images while compared to other methods for image night
context enhancement, our system achieves better results both quantita-
tively as well as qualitatively.

Keywords: De-nighting · Contrast enhancement · Sparse representa-
tions

1 Introduction

Recently, the demand for the enhancement of low light images has grown tremen-
dously. Images captured during day-time exhibit higher dynamic range, bet-
ter quality and can be useful for extracting contextual information. Night-time
images on the other hand, are characterized by low intensities and usually suffer
from the existence of severe noise due to the very small signal power. The aim
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of image de-nighting techniques is to increase the contrast and the sharpness of
an image, in order to improve its visual appearance and support the extraction
of valuable information, that can be used for analysis, detection and segmen-
tation purposes. As a result, image de-nighting operators have attracted broad
interests recently, partially due to the numerous applications that require night
image enhancement including surveillance, astronomical and medical imaging.

Early approaches in the problem relied on Histogram Equalization (HE) tech-
niques [2],[3]. HE is a relatively simplistic strategy which usually introduces
multiple artifacts and leads to significant loss of image details. Authors in [4]
demonstrated a Colour Estimation Model (CEM) based on a parameter that con-
trols the range of the image colors on the RGB-scale. Dong et al. [5] proposed an
algorithm for the enhancement of low-light videos, that inverts the dark input
frames and then performs a de-hazing algorithm to improve the quality of the low
light images. Another night content enhancement technique, was proposed in [6],
where an image is separated into the reflectance and the illuminant component,
according to the retinex theory, and the enhanced image is generated from the
reconstruction of the reflectance component. Due to the challenges associated
with the separation of the two components, errors that occur during this pro-
cess lead to the introduction of artifacts in the reconstructed image. Recently, in
[8] a gradient domain technique was proposed, where the authors estimate the
mixed gradient field of the intensities from multiple night-time, along with their
correspondent day-time images.

Unlike other approaches, our method relies on a single image for the esti-
mation of the enhanced image, using a sparse signal representation technique.
Particularly, sparsity suggests that a high-frequency signal can be accurately
recovered from its corresponding low-frequency representation. Many ill-posed
and inverse problems such as image super-resolution and image denoising [1,14]
introduce the sparsity assumption in the form of a prior, that is able to distin-
guish the ground truth image content from the degradation effects. Motivated by
these approaches, this paper focuses on the problem of recovering the illuminated
and enhanced version of a given low-light image, using the sparsity constraint as
prior knowledge. We work on image patch pairs sampled from images captured
under different exposure times, which are used as proxies to day and night time
images. Furthermore, we consider two dictionaries (night and day) for our rep-
resentation. The dark, under-exposed image patches are used for the creation of
the night dictionary Dn, while the corresponding better exposed image patches
(day patches) are used for the creation of the day dictionary, Dd. The main pur-
pose of this work, is to extract the sparse representation of a night image patch
subject to Dn and directly use it for the reconstruction of corresponding day
image patch in terms of Dd. Our method can be applied for the enhancement
of generic images that were captured under poor-illumination conditions. The
evaluation of our results are accomplished using both quantitative metrics and
visual quality.

The rest of the paper is organized as follows. Section 2, provides an overview
of the Sparse Representations (SR) framework and then extensively presents
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our proposed method. Section 3, presents the results on performance of our and
state-of-the-art methods, while our conclusions are given in Section 4.

2 Image De-nighting Using Sparsity

2.1 Sparse Representations Framework

This paper focuses on the problem of recovering the well illuminated version
of a given low-intensity image. Our approach is patch-based and we assume
that image patches can be represented as linear combinations of elements from
an over-complete dictionary. Formally, given a signal y ∈ R

M extracted from
an image patch and a dictionary D, the challenge is to find a vector x ∈ R

N

satisfying the relationship: y = Dx. When the dictionary is overcomplete, i.e.
M � N , this problem admits infinite solutions. Motivated by the SR framework,
we search for a vector x that optimizes a certain sparsity measure. An initial
approach to this problem is the minimization of the general lp-norm. In this case
the minimization problem becomes:

x̂ = arg min
x

||x||p subject to ‖Dx − y‖2 ≤ ε (1)

where ||x||p = (
∑

i |xi|p)1/p and ε is a threshold on the approximation error.
When p = 0, the sparsity of the coefficient vector x, is measured by the non-zero
counting pseudo-norm, l0. Although, the l0-norm is the optimal choice for the
recovery of the sparse vector x, it leads to an NP-hard problem. Fortunately,
the theory of SR suggests that one can replace the l0-norm with the l1-norm,
leading to following optimization problem:

min ||x||1 subject to ||Dx − y||2 ≤ ε, (2)

where ||x||1 =
∑

i |xi| is the l1-norm. This linear regression of the l1-norm is
denoted as the LASSO problem [12]. Furthermore, one can add the non-negative
constraint x ≥ 0 in order to account for the additive nature of the features we
utilize in our representations.

2.2 Dictionary Model

A crucial aspect of the above reconstruction is the proper selection of the dictio-
nary D, where we seek a dictionary which can sparsify the input data. In general,
dictionaries can be analytic or trained [13]. Analytic dictionaries arise from an
existing family of transforms, such as histograms, DCT, curvelets, contourlets,
wavelets and so on. On the other hand, trained dictionaries are learned from a
collection of training data. Although this approach can offer various benefits due
to the selection of the most representative examples, it is very computationally
expensive. A variant of the later relies on the creation of the dictionary by ran-
domly selecting patches extracted from images that exhibit the same statistical
nature (training images). In our setting, we follow the latter approach, working
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with two coupled dictionaries, Dn corresponding to the night-time image patches
and Dd, for the day-time image patches. At the training phase, we utilized mul-
tiple registered pairs of day-time and their corresponding night-time images for
patch extraction. As a consequence, corresponding elements of the two dictionar-
ies encode the same part of the scheme but at different illumination conditions
and can thus serve for the estimation of the high intensity image from the low
intensity one.

Feature Selection. The features computed from the night-time image patches,
have to ensure that the sparse coefficients will have an accurate representation
in the appropriate dictionary. State-of-the-art methods use different features for
the representation of the degraded components. For instance, Raskar et al. [8]
reconstructed the final image by integrating first order gradients of the input
images, by creating a mixed gradient field. Yang et al. [1] used first and second
order gradients to represent the low-resolution images. In our representation,
for each night-time image patch, we extract the Cumulative Histograms(CH), as
features, due to their representation capabilities of varying illuminations condi-
tions. The intensity histogram of a low-illumination patch yn expresses a discrete
representation of the probability density function for the pixel intensities, and
may be expressed as:

Pyn(x,y)(v) = P (yn(x, y) = v) =
nv
N

(3)

where, where 0 ≤ v ≤ 255 and N is the total number of pixels in the image
patch. Then, the CH of each night-time patch, is measured by summing up the
histogram values from gray level 0 to V :

CHyn(x,y)) =
V∑

i=0

Pyn(x,y)(i) (4)

For the day-time dictionary Dd, we utilized normalized pixel intensities for the
reconstruction since they offer a natural approach in modeling the day-time
images.

2.3 Image Reconstruction

Given a low-light version of the scene Y, our task is to generate the corresponding
illuminated image X. According to theory of SR the enhanced image patch x can
be sparsely represented in an over-complete dictionary Dd created from day-time
patches according to:

x = Ddw, w ∈ R
K (5)

The key insight of our methods is that the sparse representations vector w can
be accurately estimated from low-illumination patches extracted from the input
image Y, by utilizing the night-time dictionary Dn. By jointly constructing the
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two dictionaries Dd and Dn, we expect to observe the same sparse represen-
tations for each patch pair of night-time and day-time images. For each low-
illumination image patch, we find a sparse representation with respect to Dn.
Then, in order to extract the illuminated image patch x we utilize the sparse
coefficients with the day-time dictionary Dd . Since the dictionary Dn is over-
complete, the equation is under-determined for the unknown coefficients w. The
equivalent l1-minimization problem is thus given by:

min ||w||1 s.t ||Dnw − y||2 ≤ ε and w ≥ 0 (6)

Given the optimal sparse coefficients w∗, the reconstructed illuminated image
patch becomes:

x = Ddw∗ (7)

In order to enforce the compatibility between adjacent patches, we process
the input image’s patches starting from the upper-left corner with a small over-
lapping factor in each direction. Due to this fact, the reconstructed image appears
with a slight blurring effect. In order to overcome this issue, we perform a back-
projection technique, motivated by Yang et al. [1]. The main idea is to project
the day-time image X0 at the solution space Y = aHX, where Y is a dark and
blurred version of the day-time image X, H is an operator matrix that repre-
sents the blurring effect, a low pass Gaussian filter in our case, and a is a small
parameter that uniformly changes the illumination of the target day-time image
X. The value of a was set manually after cross validation in order to achieve the
best possible result. This operation can be formulated as:

X∗ = arg min
X

||aHX − Y||2 + c||X − X0||2, (8)

which can be solved using by gradient descent technique.

3 Experimental Results

3.1 Algorithmic Details

To validate the proposed approach, a series of experiments was conducted using
data from a High Dynamic Range (HDR) image dataset [9]. We selected HDR
registered images in our experiments motivated by the approximation of a low
intensity night image by an image captured with a very short exposure time
and a daytime image by a well exposed one. The number of atoms for both the
day-time, Dd and night-time, Dn dictionaries was set to 550. For the creation of
the day-time dictionary, the best performance is achieved using 3x3 patch size,
with 1 overlapping factor between adjacent patches.

Our method can be applied on both gray-scale and color images. When color
images are processed, instead of processing each color channel separately, we
transform the image into the HSV color space and apply our night context
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enhancement technique to the V channel only. As a pre-processing step, we nor-
malize the dark image by dividing with the mean value of the three components
(HSV). In order to evaluate the results of the proposed scheme, we use both
quality measures and visual perception. The reconstruction quality is measured
via the Structural Similarity Image Quality Index (SSIM)[15], between the illu-
minated ground-truth image and the reconstructed image.

3.2 Evaluation of the Results

Fig. 1 serves as a motivation of our work, depicting a low light (left) and the
reconstructed well illuminated (right) image pair along with the corresponding
histograms where we observe that the histogram of the reconstructed image is a
shifted and distributed version of the original image’s histogram.

Fig. 1. Memorial dataset:(left) Input dark image along with its histogram, (right)
Reconstructed illuminated image with its histogram

We proceed by showing results from experimental scenes to validate our
approach. The proposed algorithm is compared against state-of-the-art image
de-nighting methods including the Histogram Equalization method (HE) [2],
serving as a baseline processing module,[3], the method proposed by Dong et
al. [5] for enhancement of low-light video frames, and Color Estimation Model
(CEM) [4]. Unlike our method, the other methods under consideration, do not
include a dictionary training phase. In order to achieve a fair comparison, we
perform the same pre-processing step to all methods, even it is not part of their
algorithms. Figs. 2-7, depict the reconstruction achieved by our algorithm when
applied to natural scenes and compared to the previously described methods.

In Fig. 2 one can visualize the performance of the above described methods on
the Memorial dataset. We observe that all methods enhance and illuminate the
dark test image, but our algorithm produces results closer to the ground truth
image. In terms of SSIM [15], our reconstruction achieves better similarity index
compared to the other approaches. Figs. 3 and 4, demonstrate the ability of our
algorithm to enhance the office and the office very dark datasets, without adding
noise or introducing saturation effects, compared to the other methods, which
introduce significant noise to the reconstructed image. Furthermore, in Fig. 5,
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Fig. 2. Memorial dataset:(Top left) Original Image, (Top middle) Reference Image,
(Top right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom right)
Proposed method

Fig. 3. Office dataset: (Top left) Original Image, (Top middle) Reference Image, (Top
right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom right)
Proposed method

one can notice the visible distortions caused by all three comparable state-of-
the-art methods while the proposed method enhances the UWMech image and
reveals sufficient information on the dark parts, without amplifying the noise.

Another example of our reconstruction is presented in Fig. 6. Dong’s enhance-
ment approach leads to significant loss of details (especially on the image’s back-
ground and on the baby’s face), due to the saturation of the image pixels. HE
enhancement, also leads to the introduction of artifacts, artificial colours (espe-
cially on the image’s background) and to the amplification of noise. CEM model
has provided a noticeable improvement at the image’s contrast, but the resulted
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Fig. 4. Office very dark dataset: (Top left) Original Image, (Top middle) Reference
Image, (Top right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom
right) Proposed method

Fig. 5. UWMechDept dataset: (Top left) Original Image, (Top middle) Reference
Image, (Top right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom
right) Proposed method

Fig. 6. Baby on grass dataset:(Top left) Original Image, (Top middle) Reference Image,
(Top right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom right)
Proposed method
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Fig. 7. Piano man dataset: (Top left) Original Image, (Top middle) Reference Image,
(Top right) Dong’s method, (Bottom left) HE, (Bottom middle) CEM, (Bottom right)
Proposed method

image is not close to the ground truth ones. We observe that the proposed
scheme, reveals sufficient information in the dark parts, without illuminating
the already sufficiently illuminated parts.

Finally, Fig. 7 depicts the results of the proposed reconstruction against the
compared methods, to the Piano-man dataset. We observe that both HE and
Dong’s method introduce significant saturation effects on the resulting image.
CEM’s reconstruction in this case is good and the method does not enhance any
artifacts or noise. Our method is able to reconstruct the details present in the
dark regions of the image and produces an artifact-free result, very close to the
ground truth image.

The quantitative results are presented in Table 1. We are able to confirm
that our method achieves better results in the terms of the SSIM [15] and visual
perception compared to other three state-of-the-art methods.

Table 1. Quality (SSIM [15]) measurements of the enhancement methods

Test image Memorial Office Office very dark UWMech Baby Piano

Dong’s [5] 0.5354 0.4116 0.6518 0.2922 0.2973 0.3821

HE [2] 0.5830 0.5654 0.4140 0.2182 0.3014 0.5451

CEM [4] 0.7497 0.7676 0.7314 0.4156 0.5461 0.8011

Proposed 0.8579 0.9498 0.8666 0.6212 0.6504 0.8520

4 Discussion and Future Work

This paper introduced a novel approach for the enhancement of low illumination
images. We considered a sparse signal representation approach based on the joint
creation of the low and high illumination dictionaries, sampled for appropriate
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image pairs. The proposed scheme, successfully extracts the necessary informa-
tion from an image, by illuminating the dark regions, without causing artifacts or
saturation effects. Future work includes the investigation of alternative feature
operators that could further increase the reconstruction quality.
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Abstract. Background subtraction (BS) is the art of separating mov-
ing objects from their background. The Background Modeling (BM) is
one of the main steps of the BS process. Several subspace learning (SL)
algorithms based on matrix and tensor tools have been used to perform
the BM of the scenes. However, several SL algorithms work on a batch
process increasing memory consumption when data size is very large.
Moreover, these algorithms are not suitable for streaming data when the
full size of the data is unknown. In this work, we propose an incremental
tensor subspace learning that uses only a small part of the entire data
and updates the low-rank model incrementally when new data arrive. In
addition, the multi-feature model allows us to build a robust low-rank
background model of the scene. Experimental results shows that the
proposed method achieves interesting results for background subtraction
task.

1 Introduction

The detection of moving objects is the basic low-level operations in video anal-
ysis. This basic operation (also called “background subtraction”or BS) consists
of separating the moving objects called “foreground”from the static informa-
tion called “background”. The background subtraction is a key step in many
fields of computer vision applications such as video surveillance to detect per-
sons, vehicles, animals, etc., human-computer interface, motion detection and
multimedia applications. Many BS methods have been developed over the last
few years [3,4,24,25] and the main resources can be found at the Background
Subtraction Web Site1. Typically the BS process includes the following steps:
a) background model initialization, b) background model maintenance and c)
foreground detection. The Figure 1 shows the block diagram of the background
subtraction process described here.
1 https://sites.google.com/site/backgroundsubtraction/Home
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Fig. 1. Block diagram of the background subtraction process

In this paper, we show how to initialize and maintain the background model
by an incremental and multi-feature subspace learning approach, as well our
foreground detection method. First, we start with the notation conventions and
related works. The remainder of the paper is organized as follows: Section 2
describes our incremental and multi-feature tensor subspace learning algorithm.
Section 3 present our foreground detection method. Finally, in Sections 4 and 5,
the experimental results are shown as well as conclusions.

1.1 Basic Notations

This paper follows the notation conventions in multilinear and tensor algebra as
in [10,14]. Scalars are denoted by lowercase letters, e.g., x; vectors are denoted
by lowercase boldface letters, e.g., x; matrices by uppercase boldface, e.g., X;
and tensors by calligraphic letters, e.g., X . In this paper, only real-valued data
are considered.

1.2 Related Works

In 1999, Oliver et al. [22] are the first authors to model the background by
Principal Component Analysis (PCA). Foreground detection is then achieved
by thresholding the difference between the generated background image and
the current image. PCA provides a robust model of the probability distribution
function of the background, but not of the moving objects while they do not have
a significant contribution to the model. Recent research on robust PCA [8,9] can
be used to alleviate these limitations. For example, Candes et al. [8] proposed a
convex optimization to address the robust PCA problem. The observation matrix
is assumed represented as: M = L + S where L is a low-rank matrix and S is a
matrix that can be sparse or not. This decomposition can be obtained by named
as Principal Component Pursuit (PCP), min

L,S
||L||∗+λ||S||1, s.t. M = L+S, where

λ the weighting parameter (trade-off between rank and sparsity), ||L||∗ denotes
the nuclear norm of L (i.e. the sum of singular values of L) and ||S||1 the �1
norm of the matrix S (i.e. sum of matrix elements magnitude). The background
sequence is then modeled by a low-rank subspace that can gradually change



96 A. Sobral et al.

over time, while the moving foreground objects constitute the correlated sparse
outliers.

The different previous subspace learning methods consider the image as a
vector. So, the local spatial information is almost lost. Some authors use tensor
representation to solve this problem. Wang and Ahuja [28] propose a rank-R ten-
sor approximation which can capture spatiotemporal redundancies in the tensor
entries. He et al. [12] present a tensor subspace analysis algorithm called TSA
(Tensor Subspace Analysis), which detects the intrinsic local geometrical struc-
ture of the tensor space by learning a lower dimensional tensor subspace. Wang
et al. [29] give a convergent solution for general tensor-based subspace learn-
ing. Recently, online tensor subspace learning approaches have been introduced.
Sun et al. [26] propose three tensor subspace learning methods: DTA (Dynamic
Tensor Analysis), STA (Streaming Tensor Analysis) and WTA (Window-based
Tensor Analysis). However, Li et al. [13] explains the above tensor analysis algo-
rithms cannot be applied to background modeling and object tracking directly.
To solve this problem, Li et al. [13,17,18] proposes a high-order tensor learning
algorithm called incremental rank-(R1,R2,R3) tensor based subspace learning.
This online algorithm builds a low-order tensor eigenspace model in which the
mean and the eigenbasis are updated adaptively. The authors model the back-
ground appearance images as a 3-order tensor. Next, the tensor is subdivided into
sub-tensors. Then, the proposed incremental tensor subspace learning algorithm
is applied to effectively mine statistical properties of each sub-tensor. The exper-
imental result shows that the proposed approach is robust to appearance changes
in background modeling and object tracking. The method described above only
uses the gray-scale and color information. In some situations, only the pixels
intensities may be insufficient to perform a robust foreground detection. To deal
with this situation, an incremental and multi-feature tensor subspace learning
algorithm is presented in this paper.

2 Incremental and Multi-feature Tensor Subspace
Learning

First, basic concepts of tensor algebra are introduced. Then, the proposed method
is described.

2.1 Tensor Introduction

A tensor can be considered as a multidimensional or N-way array. As in [10,
14,20], an Nth-order tensor is denoted as: X ∈ R

I1×I2×...×IN , where In(n =
1, . . . , N). Each element in this tensor is addressed by x(i1,...,in), where 1 ≤ in ≤
IN . The order of a tensor is the number of dimensions, also know as ways or
modes [14]. By unfolding a tensor along a mode, a tensor’s unfolding matrix
corresponding to this mode is obtained. This operation is also known as mode-n
matricization2. For a Nth-order tensor X , its unfolding matrices are denoted by
2 Can be regarded as a generalization of the mathematical concept of vectorization.
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Fig. 2. Block diagram of the proposed approach. In the step (a), the last N frames
from a streaming video are stored in a sliding block or tensor At. Next, a feature
extraction process is done at step (b) and the tensor At is transformed in another
tensor Tt (step (c)). In (d), an incremental higher-order singular value decomposition
(iHoSVD) is applied in the tensor Tt resulting in a low-rank tensor Lt. Finally, in the
step (e) a foreground detection method is applied for each new frame to segment the
moving objects.

X (1),X (2), . . . ,X (N). A more general review of tensor operations can be found
in Kolda and Bader [14].

2.2 Building Tensor Model

Differently from previous related works where tensor model is built directly from
the video data, i.e., each frontal slice of the tensor is a gray-scale image, in this
work our tensor model is built from the feature extraction process. First, the last
N frames from a streaming video data are stored in a tensor At ∈ R

A1×A2×A3 ,
where t represents the tensor A at time t. A1 and A2 is the frame width and
frame height respectively, and A3 is the number of stored frames (i.e. A3 = 25
in the experiments). Subsequently the tensor At is transformed into a tensor
Tt ∈ R

T1×T2×T3 after a feature extraction process, where T1 is the number of
pixels (i.e. A1 × A2), T2 the feature values’ for each frame (i.e. A3) and T3 the
number of features. In this work, 8 features are extracted: 1) red channel, 2)
green channel, 3) blue channel, 4) gray-scale, 5) local binary patterns (LBP), 6)
spatial gradients in horizontal direction, 7) spatial gradients in vertical direction,
and 8) spatial gradients magnitude. All frames’ resolution are resized to 160x120
(19200 pixels), so the dimension of our tensor model is Tt ∈ R

19200×25×8. The
steps described here are shown in Figure 2 (a), (b) and (c). The steps (d) and
(e) will be described in the next sections.

2.3 Incremental Higher-Order Singular Value Decomposition

Tensor decompositions have been widely studied and applied to many real-
world problems [10,14,20]. CANDECOMP/PARAFAC(CP)-decomposition3 and
Tucker decomposition are two widely-used low rank decompositions of
3 The CP model is a special case of the Tucker model, where the core tensor is super-

diagonal and the number of components in the factor matrices is the same [14].
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tensors4. Today, the Tucker model is better known as the Higher-order SVD
(HoSVD) from the work of Lathauwer et al. [15]. The HoSVD is a generalization
of the matrix SVD. The HoSVD of a tensor X involves the matrix SVDs of its
unfolding matrices. Let A ∈ R

m×n a matrix of full rank r = min(m,n), then
its singular value decomposition can be expressed as a sum of r rank one matri-
ces: A = UΣVT , where U ∈ R

m×m and V ∈ R
n×n are orthonormal matrices

containing the eigenvectors of AAT and ATA, respectively (i.e. right and left
singular vectors of A), and Σ = diag(σ1, . . . , σr) is a diagonal matrix with the
eigenvalues of A in descending order. However, the matrix factorization step in
SVD is computationally very expensive, especially for large matrices. Moreover,
the entire data may be not available for decomposition (i.e. streaming data when
the full size of the data is unknown). Businger (1970) [7], and Bunch and Nielsen
(1978) [6] are the first authors who have proposed to update SVD sequentially
with the arrival of more samples, i.e. appending/removing a row/column. Sub-
sequently various approaches [2,5,16,21,23] have been proposed to update the
SVD more efficiently and supporting new operations. Recently Baker et al. [1]
has provided a generic approach to performs a low-rank incremental SVD. The
algorithm is freely available in the IncPACK MATLAB package5.

In this work, we have used a modified version of the previous algorithm. The
original version supports only the updating operation. As described in Section
2.2 the tensor model Tt is updated dynamically. The last feature values are
appended (i.e. updating operation) and the old feature values are removed (i.e.
downdating operation) for each new frame. A simpler change would be to modify
the algorithm so that, instead of using a hard window, we have inserted an
exponential forgetting factor λ < 1 (λ = 1 no forgetting occurs), weighting new
columns preferentially over earlier columns. The forgetting factor is explained in
the work of Ross et al. [23].

The proposed iHoSVD is shown in Algorithm 1. It creates a low-rank ten-
sor model Lt with the dominant singular subspaces of the tensor model Tt. As
previous described in Section 2.1, T (n)

t denotes the mode-n unfolding matrix of
the tensor T at time t. r(n) and t(n) are the desired rank r and its thresholding
value of the mode-n unfolding matrix (i.e. r(1) = 1, r(2) = 8, r(3) = 2, and
t(1) = t(2) = t(3) = 0.01 in the experiments). U(n)

t−1, Σ(n)
t−1, and V(n)

t−1 denotes the
previous SVD of the mode-n unfolding matrix of the tensor T at time t− 1.

3 Foreground Detection

The foreground detection consists in segmenting all foreground pixels of the
image to obtain the foreground components for each frame. As explained in
the previous sections, a low-rank model Lt is built from the tensor model Lt

incrementally. Then, for each new frame a weighted combination of similarity
4 Please refer to Grasedyck et al. [10] for a complete review of low-rank tensor approx-

imation techniques.
5 http://www.math.fsu.edu/∼cbaker/IncPACK/

http://www.math.fsu.edu/~cbaker/IncPACK/
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Algorithm 1. Proposed iHoSVD algorithm
function incrementalHoSVD(Tt, r

(n), t(n))
St ← Tt

if t = 0 then � Performs the standard rank-r SVD
for i = 1 to n do

[U
(n)
t , Σ

(n)
t , V

(n)
t ]← SVD(T (n)

t , r(n), t(n))
end for

else � Performs the incremental rank-r SVD
for i = 1 to n do

[U
(n)
t , Σ

(n)
t , V

(n)
t ]← iSVD(T (n)

t , r(n), t(n), U
(n)
t−1, Σ

(n)
t−1, V

(n)
t−1)

end for
end if
St ← Tt×1 (U

(1)
t )T . . .×n (U

(n)
t )T � ×n denotes the n-mode tensor times matrix

return St, U
(1)
t , ..., U

(n)
t

end function

measures is performed. This process has two stages: first a similarity function is
calculated, then a weighted combination is performed. Let Fn the feature’s set
extracted from the input frame and F′

n the set of low-rank features reconstructed
from the low-rank model Lt, the similarity function S for each feature n at the
pixel (i, j) is computed as follows:

Sn(i, j) =

⎧
⎪⎨

⎪⎩

Fn(i,j)
F′

n(i,j)
if Fn(i, j) < F′

n(i, j)

1 if Fn(i, j) = F′
n(i, j)

F′
n(i,j)

Fn(i,j)
if Fn(i, j) > F′

n(i, j)

where Fn(i, j) and F′
n(i, j) are respectively the feature value of pixel (i, j) for the

feature n. Note that Sn(i, j) is between 0 and 1. Furthermore, Sn(i, j) is close
to one if Fn(i, j) and F′

n(i, j) are very similar. Next, a weighted combination of
similarity measures is computed as follows:

W(i, j) =
K∑

n=1

wnSn(i, j)

where K is the total number of features and wn the set of weights for each
feature n (w1 = w2 = w3 = w6 = w7 = w8 = 0.125, w4 = 0.225, w5 = 0.025
in the experiments). The weights are chosen empirically to maximize the true
pixels and minimize the false pixels in the foreground detection. The foreground
mask is obtained by applying the following threshold function:

F(i, j) = f(W(i, j)) =

{
1 if W(i, j) < t

0 otherwise

where t is the threshold value (t = 0.5 in the experiments). In the next section
we shows the experimental results of the proposed method.
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Table 1. Visual comparison with real videos of the BMC data set

Sequence Video “Wandering student”(frame #651)

Sequence Video “Traffic during windy day”(frame #140)

4 Experimental Results

In order to evaluate the performance of the proposed method for background
modeling and subtraction, the BMC data set proposed by Vacavant et al. [27]
is selected. We have compared our method with GRASTA algorithm proposed
by He et al. [11] and BLWS algorithm proposed by Lin and Wei [19]. Tables 1
and 2 show the quantitative and the visual results (input image, ground-truth
and foreground detection, respectively) with synthetic and real video sequences
of the BMC data set. The quantitative results in Table 2 show that the pro-
posed method outperforms the previous methods, with the highest F-measure
average and best scores over all video sequences except in 212, 312, 412 and
512. The visual results in Table 2 show the foreground detection for the frame
#300 (Street) and frame #645 (Rotary), respectively. All experiments are per-
formed on a computer running Intel Core i7-3740qm 2.7GHz processor with
16Gb of RAM. However, the proposed system requires aprox. 2min per frame
for background subtraction, which > 95% of time is used for low-rank decompo-
sition. Further research consists to improve the speed of the incremental low-rank
decomposition for real-time applications. Matlab codes and experimental results
can be found in the iHoSVD homepage6.

5 Conclusion

In this paper, an incremental and multi-feature tensor subspace learning algo-
rithm is presented. The multi-feature tensor model allows us to build a robust
low-rank model of the background scene. Experimental results shows that the
proposed method achieves interesting results for background subtraction task.
However, additional features can be added, enabling a more robust model of
the background scene. In addition, the proposed foreground detection approach
can be changed to automatically selects the best features allowing an accurate
foreground detection. Further research consists to improve the speed of the incre-
mental low-rank decomposition for real-time applications. Additional supports
for dynamic backgrounds might be interesting for real and complex scenes.
6 https://sites.google.com/site/ihosvd/

https://sites.google.com/site/ihosvd/
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Table 2. Quantitative and visual results with synthetic videos of the BMC data set

Scenes Method Recall Precision F-measure Visual Results

Street

112
IHOSVD
GRASTA [11]
BLWS [19]

0.725
0.700
0.700

0.945
0.980
0.981

0.818
0.817
0.817

212
IHOSVD
GRASTA [11]
BLWS [19]

0.692
0.787
0.786

0.845
0.847
0.847

0.761
0.816
0.816

312
IHOSVD
GRASTA [11]
BLWS [19]

0.566
0.695
0.697

0.831
0.965
0.971

0.673
0.807
0.812

412
IHOSVD
GRASTA [11]
BLWS [19]

0.637
0.787
0.785

0.838
0.843
0.848

0.723
0.814
0.815

512
IHOSVD
GRASTA [11]
BLWS [19]

0.652
0.669
0.664

0.893
0.960
0.966

0.753
0.789
0.787

Rotary

122
IHOSVD
GRASTA [11]
BLWS [19]

0.748
0.680
0.663

0.956
0.902
0.921

0.839
0.776
0.771

222
IHOSVD
GRASTA [11]
BLWS [19]

0.649
0.637
0.633

0.913
0.548
0.560

0.759
0.589
0.594

322
IHOSVD
GRASTA [11]
BLWS [19]

0.555
0.619
0.603

0.927
0.530
0.538

0.694
0.571
0.569

422
IHOSVD
GRASTA [11]
BLWS [19]

0.548
0.623
0.620

0.942
0.778
0.775

0.693
0.692
0.689

522
IHOSVD
GRASTA [11]
BLWS [19]

0.677
0.791
0.793

0.932
0.714
0.711

0.784
0.751
0.750

Average
IHOSVD
GRASTA [11]
BLWS [19]

-
-
-

-
-
-

0.749
0.618
0.742
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Abstract. In this paper, a new learning-based face super-resolution (SR) algo-
rithm is proposed considering the similarity of topology structure between low-
resolution (LR) image and high-resolution (HR) image and the sparseness of 
cells’ response in visual cortex. Firstly, we obtain coupling dictionary which are 
corresponding to LR and HR image patch pairs by applying topology ICA. 
Then, the sparse coefficients of input LR image according to LR dictionary can 
be got based on sparse representation theory. Furthermore, primary HR face 
image is reconstructed using HR dictionary. Finally, finer HR face image can 
be got by back-projection step. Experiments demonstrate the proposed approach 
can get good SR results in subjective perception and objective evaluation. 

Keywords: Face image ⋅ Super-resolution ⋅ Topology ICA ⋅ Sparse representation 

1 Introduction 

Image super-resolution (SR) is a technique that recovers a high-resolution (HR) image 
from a single or a series of input low-resolution (LR) images. With the development 
of face detection, recognition, and facial expression analysis, face image super-
resolution becomes more and more important. 

At present, the methods of SR can be broadly classified into three families: interpo-
lation-based, reconstruction-based and learning-based methods. Interpolation-based 
methods only use the information of input LR image, and tend to generate overly 
smooth images with serious blurring. Reconstruction-based methods utilize the com-
plementary information from the multiple input LR images of the same scene. The 
performance of these algorithms degrades rapidly when the magnification factor  
becomes large. To overcome these drawbacks, a learning-based SR method was pro-
posed [1]. Learning-based SR methods use the certain characteristics of training im-
ages as a prior knowledge to constrain the SR reconstruction and recover the missing 
information of LR images. Thus, better high-frequency detail can still be produced 
without increasing the number of input image samples. It is commonly referred to 
face hallucination when applying learning-based SR technique to face image. 

Face hallucination was addressed in the pioneering work of Baker et al. [2]. They 
used Gaussian and Laplacian pyramid models to reconstruct SR face images. Chang 
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[3] proposed a neighbor embedding-based SR algorithm, which used the Locally Lin-
ear Embedding (LLE) manifold learning to realize SR reconstruction. Wang et al. [4] 
proposed a face SR method based on eigentransformation, and this method used PCA 
to reconstruct SR image. Zhang et al. [5] proposed a face hallucination method in 
DCT domain. Yang et al. [6] [7] presented a kind of approach based on sparse repre-
sentation which got good SR performance. 

Given the advantages of learning-based SR methods, we propose a new learning-
based face SR approach. Considering the similarity of the topology structure between 
LR and HR image, we firstly obtain a pair of dictionaries of LR and HR image patch-
es by applying topology ICA. Secondly, the coefficients of LR image according to LR 
dictionary can be got by using sparse representation. Then we use HR dictionary to 
reconstruct primary HR face image. Finally, final HR face image can be got by back-
projection step. Experimental results show that our approach can get good super-
resolution performance in subjective perception and in objective evaluation. 

2 Theoretical Basis 

2.1 Image Super-Resolution Theory  

Generally, LR image can be obtained by blurring and down-sampling to original HR 
image, followed by addition of noise. This can be expressed in matrix form: 

 y DHx n Lx n= + = +  (1) 

Here, x  and y  are HR and LR image, respectively. D and H  represent the blur-

ring and down-sampling matrices, respectively. n is the noise. Combining D and H , 
degeneracy operator L can be defined. When n  is small, (1) can be transformed into 
the following form: 

 Lxy ≈  (2) 

Given a LR image y , the task of SR can be regarded as finding the HR image x . SR 

is an extremely ill-posed problem because of the information insufficiency. We can regu-
larize them via some constraint conditions and then estimate the optimal solution. 

2.2 Topology Independent Component Analysis 

Topology independent component analysis (TICA) [8] is the extended model of inde-
pendent component analysis (ICA). TICA is a statistical model where the observed 
data is expressed as a linear transformation of latent variables that are topography 
independent. The model of TICA can be expressed as: 

 ASX =  (3) 
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3 Face Super-Resolution Based on TICA and Sparse 
Representation Theory 

Given that the coefficients are sparse when the basis vectors extracted by TICA are 
used to represent image, this paper plans to combine TICA and the sparse representa-
tion theory to learning-based face SR. The following section includes dictionary train-
ing and SR reconstruction steps. 

3.1 Dictionary Training  

The approach is patch-based, so the training step is fit for image patches. Firstly, all 
training face image are normalized to zero-mean and unit variance. Then we random-
ly choose mm∗  image patches from LR training face images and dmdm ∗  image 
patches from the corresponding HR training face images as training samples. Here, 

d  denotes the magnification factor. Stretch these two patches to 2m -dimension 

column vector p
iy  and 2)(dm -dimension column vector p

ix  respectively by the 

way of column-priority. The mean gray value of each column is subtracted. X repre-
sents the union training samples, which is shown as follows: 
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Here, pY  represents LR training samples and pX  represents HR training samples.  

Use TICA approach to extract the topology independent components of training set 
X  and construct TICA dictionary A . The training basis vector, i.e. the atom of the 

dictionary, is marked as ja . Each atom ja  can be divided into two parts LR
ja  and 

HR
ja  according to the dimensions of p

iy and p
ix . A can be shown as follows: 
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Here, LRA  and HRA  represent the LR dictionary and HR dictionary, respectively. 

3.2 Face Super-Resolution Reconstruction  

Firstly, the input LR face image y  is preprocessed. y is normalized to zero-mean and 

unit variance. Successively obtain the overlapping image patch whose size is mm ∗  

from the upper-left corner of the image and then transform them to column vector p
iy  

by the way of column-priority. The mean gray value of each image patch is subtracted, 
only leaving the texture feature. Finally, arrange all the column vectors together to form 
the input data ],...,,[ 21

p
N

pp
p yyyY = . 
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For each input LR image patch, calculating the coefficient according to the LR dic-
tionary and get the HR image patch by replacing the LR dictionary with HR diction-
ary while the coefficient is invariant. As is known in section 2, when the image is 
represented by TICA basis, the coefficient matrix is sparse, so the calculating process 
of coefficient S  can be represented as follows: 

 
2

02
arg min LR p

s
S A S Y Sλ∗ = − +  (8) 

According to the sparse representation theory, the solving problem of norm 0L  in (8) 

can be converted to the convex optimization problem of norm 1L  under the premise 

of sparse [10]. As a result, (8) can be converted to the following form: 

 
2

12
arg min LR p

s
S A S Y Sλ∗ = − +  (9) 

In this paper, orthogonal matching pursuit (OMP) is used to solve the optimization 
problem in (9), and the sparse coefficient matrix *S  about pY  is obtained according 

to LR dictionary LRA .Then we calculate *SAX HRp =∗ where ],...,,[ 21
p
N

pp
p xxxX =∗ . The 

HR patch vectors ),...,2,1( Nixp
i =  are transformed to image patches and primary 

HR image 0x  can be reconstructed by combining the image patches. Calculate the 

mean of the overlapping area of different patches when synthesizing the patches. 
Patch-based algorithm does not consider the global model, so the patch-combined 

image often generates some unnatural phenomenon, such as ringing and jagged arti-
facts. The global model can be applied to remove unnatural problem caused by the 
patch-based step. This can be realized by simulating the degradation process of imag-
es. The process can be solved as an optimization problem as follows: 

 
2

2
arg min

x
x Lx y∗ = −  (10) 

In this paper, IBP is used as the global constraint to optimize x : 

 PdLxyxx ttt *))((1 ↑−+=+  (11) 

 

Fig. 2. The flow chart of our algorithm 
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            (a)        (b)       (c)       (d)       (e) 

Fig. 4. The SR results of different algorithms with magnification factor 2 

 

 

 

 

            (a)        (b)      (c)        (d)        (e) 

Fig. 5. The SR results of different algorithms with magnification factor 4 
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Table 1. The mean of NMSE, PSNR and MSSIM of SR results of different algorithms 

Magnification 
Factor

 

Criteria
 

Bicubic 
eigentransform

ation 
Sparse  

Representation
Our Algorithm 

Factor 2
 

NMSE 0.0033 0.0030 0.0012 0.008 

PSNR 28.167 28.889 32.476 33.159 

MSSIM 0.8819 0.8666 0.9420 0.9563 

Factor 4
 

NMSE 0.0050 0.0059 0.0030 0.0021 

PSNR 26.132 26.615 28.973 30.371 

MSSIM 0.8157 0.7876 0.8796 0.9018 

5 Conclusion 

Learning-based SR algorithms are restricted by the dependence on training dictionary. 
In this paper, TICA and sparse representation theory are applied for face 
hallucination. Considering the similarity of the topology structure between LR and 
HR image, TICA is used as a tool to obtain the coupling dictionary of LR and HR 
image patches. Then, the theory of sparse representation is applied to hallucinate the 
primary high-resolution face. Finally, the back-projection step is applied to get the 
finer high resolution face. Experimental results show that our approach can obtain 
good SR results in subjective perception and objective evaluation. 
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Abstract. Colorization based coding is a technique which compresses a
color image using the colorization method. The main issue in colorization
based coding is to extract a good RP(representative pixel) set from the
original color image from which the colored image can be reconstructed
in the decoder to a sufficient level. In this paper, we propose an itera-
tive sparse coding method for the extraction of the RP set. Observations
show that the proposed method computes simultaneously the locally
optimal RP set and the locally optimal Levin’s colorization matrix. Fur-
thermore, experimental results show that the proposed method provides
better color image reconstruction and compression rate than conven-
tional colorization based coding methods.

Keywords: Colorization · Compression · Optimization · Sparse cod-
ing · Color image

1 Introduction

Colorization is a technique which automatically colorizes a grey image with
only few color information [1][2]. Colorization based coding refers to the color
compression technique which utilizes the fact that the required number of pix-
els for colorization is small [3]-[6]. The encoder chooses a set of pixels called
RP(representative pixels) set and sends only the position information and color
values for this RP set to the decoder. In the decoder, the color information for all
the remaining pixels are restored using colorization methods. The main issue in
colorization based coding is how to extract the RP set such that the compression
rate and the quality of the restored image become good.

In [7], we proposed for the first time an optimization based RP set extrac-
tion method for colorization based coding. The method formulates the problem
of RP extraction into a sparse coding problem, and obtains the RP set via a
minimization with L0 constraint. The RP set obtained by this method is opti-
mal with respect to a specific colorization matrix constructed by the meanshift
segmentation method.
c© Springer International Publishing Switzerland 2014
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In this paper, we propose a colorization based coding method which computes
the locally optimal RP set with respect to the locally optimal Levin’s coloriza-
tion matrix. We use the term ‘local’, since the global optimality of the proposed
method is not proved. An iterative sparse coding algorithm is proposed to com-
pute the RP set. Experimental results show that the reconstructed color images
with the proposed method are good in terms of both quantitative measure and
visual perception quality.

2 Related Works

In this section, we give a brief review on the Levin’s colorization and the opti-
mization based colorization based coding.

2.1 Levin’s Colorization

In [1], Levin et al proposed a colorization method based on optimization. The
colorization process is performed by minimizing the following cost function with
respect to u:

J(u) = ‖x −Au‖2. (1)

Here, u is the solution vector, i.e., the color component vector (Cb or Cr com-
ponent vector), and x is the vector which contains the color values only at the
positions of the RP, and zeros at the other positions. The vectors u and x are
all in raster-scan order. Furthermore, A = I −W , where I is an n × n identity
matrix, n is the number of pixels in u, and W is an n×n matrix containing the
w′

rs weighting components. The w′
rs weighting components are

w′
rs =

{
0 if r ∈ Ω
wrs otherwise,

where
wrs ∝ e(y(r)−y(s))2/2σ2

r . (2)

Here, Ω denotes the set of the positions of the RP, σ2
r is a small positive value,

and wrs is the weighting component between the pixels at the r’s and the s’s
positions, where s ∈ N(r), and N(r) is the 8-neighborhood of the r’s pixel.
Furthermore, y(r) and y(s) are the luminance values at the r’s and the s’s
positions in the luminance channel, respectively. The minimizer of (1) can be
explicitly computed as

u = A−1x. (3)

The obtained vector u used together with the luminance channel produces the
colorized image.
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2.2 Colorization Based Compression Framework

Colorization based compression makes use of the fact that there exists correla-
tion between the luminance channel and the chrominance channels in the color
image. Only the luminance channel is compressed by conventional compression
standards such as the JPEG standard. Figure 1 shows the general framework of
the colorization based decoding for the case of using the Levins colorization [1]
as the colorization method. For the encoding of the chrominance channels, first,
the RP are extracted using the information of the luminance channel. These are
then encoded and sent to the decoder. In the decoder, the luminance channel
is reconstructed from the DCT coefficients, and the colorization matrix A−1 is
constructed from the reconstructed luminance channel. The colorization matrix
operates on the RP set (x) sent from the encoder to obtain the chrominance
channels (u). Thus, the color image is reconstructed.

Conventionally, the initial RP set is set as a random set, and then, redundant
RP have to be eliminated, and required RP have to be additionally extracted
by additional RP elimination/extraction methods. In [3] and [4], new pixels are
added to the initial set of RP by iterative selection based on machine learn-
ing, while in [5], the RP is selected iteratively constrained to a set of color line
segments. In [6], redundant RP are reduced and required RP are extracted iter-
atively based on the characteristics of the colorization basis.

Fig. 1. General framework of colorization based coding using the Levin’s colorization
matrix

2.3 Optimization Based Colorization Coding

In [7], we proposed an optimization based colorization coding scheme, which
computes the RP set by a minimization problem:

argmin
x

‖u0 − Cx‖2, s.t. |x|0 ≤ L. (4)

Here, C is the colorization matrix, u0 is the original color component vector,
x is the solution vector sought, i.e., the vector containing the RP set, and L is
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a positive integer that controls the number of nonzero components in x. The
minimization of (4) finds the RP set (x) which minimizes the error between the
reconstructed and the original color images, while constraining the number of
nonzero components in x to be less than L. The problem (4) can be solved by
well-known solvers such as the BP or the OMP solver.

3 Proposed Method

The motivation problem of the proposed method is to solve the following min-
imization problem with respect to both the RP set x and the colorization
matrix C:

argmin
x,C

‖u0 − Cx‖2, s.t. |x|0 ≤ L, (5)

This is different from the optimization problem in [7], where the colorization

Fig. 2. Flowchart of the proposed method

matrix C is obtained by a segmentation method. The aim is to find the optimal
RP set x with respect to the optimal colorization matrix. However, problem (5)
cannot be solved as such, since it is a two variable problem. A second try would
be an iterative two-step minimization algorithm, where (5) is solved iteratively
for x and C by iteratively fixing one of them. However, still the problem of solving
(5) for C is an ill-posed problem and needs extra constraints to be solved.

The constraint we introduce in our problem is the constraint used in the
colorization problem in [1], i.e., the constraint that the colorization matrix should
minimize the difference between the color at a certain pixel and the colors of the
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weighted average of the colors at neighboring pixels, while letting the colors of
the RP intact. In fact, the colorization matrix that satisfies this constraint can
be uniquely determined, and becomes the Levin’s colorization matrix. However,
it should be taken into account the fact that the Levin’s colorization matrix
depends on the RP set, and therefore, can be thought of as a variable depending
on the RP set.

Taken the above mentioned facts into account, we propose to iteratively solve
the following two steps:

1. Construct the colorization matrix A−1 from the RP set x.
2. Compute the RP set x by solving the following sparse coding problem:

argmin
x

‖u0 −A−1x‖2, s.t. |x|0 ≤ L (6)

3. Iterate step 1 and 2 until a convergent RP set x is obtained.

Figure 2 shows the flowchart of the proposed method. At first, a random ini-
tial RP set is chosen. In our experiments, we used a regularly distributed RP
set as the initial set. Using the initial RP set, the Levin’s colorization matrix
is constructed. Then, using this colorization matrix, we solve (6) to obtain the
optimal RP set for the current Levin’s colorization matrix. Again, the Levin’s
colorization matrix is constructed for the current optimal RP set, and thus, step
1 and 2 are iterated. The iteration terminates if the L2 difference between the
current RP set and the previous RP set is less than a pre-defined threshold
value. The RP set converges to two oscillatory states, which we believe to be
locally optimal. This is due to the fact that the proposed algorithm is a two step
algorithm. This is verified by experimental results. However, we could not prove
the optimality in this paper and leave the problem as an open problem.

After the first iteration, the RPs concentrate at some regions as can be seen
in the top left image of Fig. 5. This is due to the fact that the column vec-
tors in the Levin’s colorization matrix A−1 at the first iteration have only a
small non-zero support domain, since the initial RP set is regularly distributed.

Fig. 3. The RP xn corresponding to the colorization vector coln(A−1) with large non-
zero domain has a large effect on the color component vector u while the RP xm

corresponding to colm(A−1) with small non-zero domain has a small effect
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Fig. 4. 1. The initial small support domain results in a sparse RP distribution in
the non-red region of the ‘Pepper’ image. 2. The sparse RP distribution results in
colorization vector with large support domain. 3. The colorization vector with large
support domain results in a denser RP distribution in this region.

Fig. 5. Showing the RP sets and the colorized results along the even-number iteration
of the ‘Pepper’ image
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When the colorization matrix A−1 is constructed using this RP distribution,
the column vectors in A−1 have non-zero values only for a small region in the
image. Therefore, each RP can have an effect only on a small region of the recon-
structed color image. Figure 3 illustrates the fact that an RP corresponding to
a colorization vector with large non-zero support region has a large effect on
the reconstructed color component, while an RP corresponding to a colorization
vector with small non-zero support region has a small effect. At this condition,
the RP which are selected to minimize the L2 energy in (6) have a tendency to
concentrate in the red and/or yellow colored regions, since the red and/or yellow
colors have relatively large Cr and Cb values, and therefore, contribute much to
the L2 energy. This fact is shown in Fig. 4. However, the concentration of the
RP in the red or yellow regions result in the construction of the corresponding
colorization vectors with small support regions, while the RP in sparse regions
result in the construction of the corresponding colorization vectors with large
support regions. The bottom images in Fig. 4 show the colorization vectors in
two dimensional form corresponding to the RP in dense region and the RP in
sparse region, respectively. As can be seen, the non-zero values in the coloriza-
tion vector corresponding to the RP in the sparse region cover a large region.
This is also true for the neighboring colorization vectors. This means that the
effect of the RPs (in the sparse region) become large in the next minimization
step of (6). Therefore, at the next step, more RP are extracted from this region
and the final RP set has a less concentrated distribution as can be seen from the
bottom right image in Fig. 4.

4 Experiments

We compared the proposed scheme with the method of Cheng et al.[3], the
method of Ono et al. [6], and the JPEG standard. We used the original Y compo-
nent in each experiment. The number of RP obtained with the proposed scheme
is 200, and the size of the test image is 256 × 256. Therefore, the file size for
the color components becomes 0.78125KB (4 × 200 bytes = 0.7812KB) where
we used 2 bytes for the color components, and 2 bytes for the spatial coordi-
nates. For the methods of Cheng et al. and Ono et al., the number of RP varies
depending on the initial setting. Therefore, the comparison of the compression
performance is made in the file size.

Figure 5 shows the RP sets and the reconstructed color images after different
iterations. It can be seen that the reconstructed color image improves according
to the iteration. Figure 6 compares the reconstructed color images for different
methods and Table 1 summarizes the PSNR and SSIM values, where all the
RGB channels are taken into account in the computation of the PSNR values,
while the SSIM values are computed for the Cb and Cr channels independently.
Compared with other colorization coding methods, the proposed scheme shows
less color permeation, and therefore, has higher SSIM and PSNR values. The
proposed method shows better compression rate for the color components than
the JPEG standard, while showing visually comparable results.
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Fig. 6. Reconstructed color image of different compression methods

Fig. 7. Number of RP different from the previous even numbered iteration regarding
Fig. 5

Table 1. Summarization of the comparison of the file size (KB), PSNR, SSIM values
between the different compression methods

Image Method File Size PSNR SSIM(Cb) SSIM(Cr)

Pepper Proposed 0.78(KB) 27.603 0.952 0.958
Ono et al 0.76(KB) 22.541 0.781 0.757

Cheng et al 0.78(KB) 23.994 0.872 0.796
JPEG 2.048(KB) 26.863 0.954 0.870

Parrot Proposed 0.78(KB) 33.376 0.969 0.964
Ono et al 0.79(KB) 25.817 0.696 0.696

Cheng et al 0.78 (KB) 28.928 0.885 0.867
JPEG 2.048(KB) 34.439 0.974 0.975
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Figure 7 shows the number of RP which are different from those at the
previous odd numbered iteration. It can be seen that the number decreases,
which implies the fact that the method converges. However, the computation
cost for the proposed scheme is high due to the iteration. The computation time
for iterating 10 times was about 7.2 sec with a 3.4 GHz Intel processor running
on Windows7.

5 Conclusion

In this paper, we proposed an iterative sparse coding method for the coloriza-
tion colorization based compression application. The proposed scheme automat-
ically computes the optimal RP (representative pixel) set with respect to the
optimal Levin’s colorization matrix in the encoder. It is experimentally shown
that the reconstruction result and the compression rate is better than those of
conventional colorization based compression methods and the JPEG standard.
However, the convergence of the proposed method is theoretically not proven in
this paper and left as an open problem.
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Abstract. We proposed a new variational model for parallel Magnetic
Resonance Imaging (MRI) processing including denoising, deblurring
and super-resolution. In the context of Maximum A Posteriori (MAP)
estimation it takes into account the non-central χ (nc-χ) distribution
of the noise in parallel magnitude magnetic resonance (MR) images.
This leads to the resolution of an energy minimization problem. In this
Bayesian modelling framework the Total Generalized Variation (TGV)
is proposed as the regularization term. A primal-dual algorithm is then
implemented to solve numerically the presented model. The effectiveness
of our approach is shown through a successful comparison of its perfor-
mance to previous TGV methods for MRI denoising based on Gaussian
noise.

1 Introduction

It is well known that noise is the main limitation for image processing, subse-
quent analysis and quantitative measurements derived from Magnetic Resonance
Images. The noise modelling exercise has evolved in the last decade because of
the consolidation of parallel MRI as the standard acquisition technique in clinical
practice. Parallel imaging protocols consists of an established yet still develop-
ing family of procedures which aim to accelerate the data acquisition process
so reducing scanning times in MRI. This technology based in the NMR phased
array developed in the late 1980s [1] became predominant more recently with the
development of well known techniques such as SiMultaneous Acquisition of Spa-
tial Harmonics (SMASH) [2], SENSitivity Encoding for fast MRI (SENSE) [3]
and GeneRalized Autocalibrated Partially Parallel Aquisitions (GRAPPA) [4]
and a large list of methods proposed in the last years based in these three differ-
ent approaches (see [5] for a discussion about SMASH, SENSE and GRAPPA).

How to model the noise for the different reconstruction algorithms has been
the subject of intense research in the last years [6–8] concluding that there is no
noise model generally applicable to all the reconstructed data. Nevertheless when
c© Springer International Publishing Switzerland 2014
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the global image is reconstructed in the frequency domain before Fourier trans-
formation as in GRAPPA, the noncentral-χ (nc-χ) distribution function emerges
as a feasible likelihood function [9], even when the data are obtained from a cor-
related multiple-coil system [10]. In the case of SENSE and related algorithms
that calculate the final image in the image domain, the magnitude signal may be
considered Rician distributed but the value of the statistical parameters becomes
spatially dependent[7]. In a very recent work [11], a new method for the estima-
tion of the noise for both GRAPPA and SENSE reconstructed images has been
presented.

Some recent works in MRI denoising take into account this nc-χ distribution
of the noisy MR data using LMMSE techniques [12] and non-local methods [13],
but to the best of our knowledge no variational image processing model exists
for these images. This introduce the principal aim of our work which is to show
how a variational approach can deal with these advanced statistical models. We
present a general framework where the nc-χ distribution of the noise is considered
for different image processing problems including pure denoising, deblurring and
super-resolution. The generality of this approach allows the implementation of
different image priors based in sparse representations such as the well known
Total Variation operator and more advanced operators as the Total Generalized
Variation (TGV) recently proposed in [14].

As a proof of concept we demonstrate the effectiveness of this approach in
the case of pure denoising of GRAPPA images using the TGV prior. This oper-
ator selects discontinuous (piecewise) smooth solutions which has been recently
shown to be a feasible MRI model outperforming Total Variation (TV) based
preprocessing methods [15–17].

This paper is organized as follows: the model equations are proposed in
section 2 while the numerical implementation is detailed in section 3. Finally
some preliminary results obtained with phantom and real brain images are pre-
sented and discussed in section 4.

2 Model Equations

We briefly sketch the derivation of the proposed model. In a bayesian framework
let f ∈ L∞(Ω) be the known noisy image and u the underlying clean image. The
MAP estimate of u is given by:

û = max
u

p(u|f) ⇔ min
u

{− log p(u) − log p(f |u)} (1)

The probability p(u) is called the prior of u and acts as a regularization on what
u is likely to be. The second term p(f |u) describes the degradation process that
produces f from u. Magnitude MRI obtained from a multiple-coil acquisition
follows a nc-χ distribution given by:

p(f |u) =
f

σ2

(
f

u

)n−1

exp
(

−f2 + u2

2σ2

)
In−1

(
uf

σ2

)
(2)
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with σ being the noise standard deviation of the Gaussian noise present in the
complex acquisition channels, n the number of channels used for the acquisition
and In−1 being the (n − 1)th order modified Bessel function of the first kind.
Introducing the noise distribution in a variational formulation results:

G(Au) = −
∫

Ω

log p(f |(Au)) =

=
∫

Ω

[
− log((Au)1−n) +

(Au)2

2σ2
− log In−1

(
(Au)f
σ2

)]
dx (3)

where A is a linear operator. Notice that some constant terms have been dropped
because they do not affect to the minimization result. In the case of pure denois-
ing A is the identity. In the cases of image deblurring and image super-resolution
A describes the blurring kernel and the downsampling procedure respectively,
being the downsampling procedure often assumed to be a blurring kernel fol-
lowed by a subsampling operator. Denoting the prior term F (u) = − ∫

Ω
log p(u)

the optimal u is given by the solution of the following variational problem

min
u
F (u) + G(Au)

An introduction to this kind of general framework for image processing can
be found in the books [18,19]. The second order Total Generalized Variation
TGV2

α(u) is considered here as the regularization term, defined for (α0, α1) as:

TGV2
α(u) = sup

{∫

Ω

u div2v dx | v ∈ C2
c (Ω̄, Sd×d), ‖v‖∞ ≤ α0, ‖div v‖∞ ≤ α1

}

(4)
with C2

c (Ω̄, Sd×d) denoting the space of the twice continuously differentiable
symmetric matricial functions with compact support. Following [14], TGV2

α(u)
can also be formulated as:

TGV2
α(u) = min

u∈BGV2
α(Ω),v∈BD(Ω)

α1

∫

Ω

|∇u− v| + α0

∫

Ω

|E(v)| (5)

where E(v) = 1
2 (∇v+∇vᵀ), BGV2

α is the space of functions of bounded general-
ized variation and BD(Ω) is the space of vector fields of Bounded Deformation.
Defining F (u) = 1

λTGV2
α(u) with λ a trade-off parameter between the regular-

ization and the data fidelity, the variational problem is described by:

min
u∈BGV2

α(Ω)

TGV2
α(u)+λ

∫

Ω

[
− log((Au)1−n) +

(Au)2

2σ2
− log In−1

(
(Au)f
σ2

)]
dx

(6)
Such minimization is outlined in the next section.

3 Numerical Implementation

Given U = R
MN , V = R

2MN , we define the discrete minimization problem
associated with (6) :

min
u∈U,v∈V

λG(Au) + α1‖∇u− v‖1 + α0‖Ev‖1 (7)
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Details of the discretization of the continuous elements including the differential
operators can be found in [14]. Following [20], this problem can be reformulated
using duality arguments as the saddle-point problem:

min
u∈U,v∈V

max
p∈V,q∈W

λG(Au) + 〈∇u− v, p〉 − IP (p) +

+〈Ev, q〉 − IQ(q) (8)

where W = R
3MN , p, q are the dual variables and the convex sets associated

with these variables are given by P = {p ∈ V | ‖p‖∞ ≤ α1}, Q =
{
q ∈ W |

‖q‖∞ ≤ α0

}
. Finally the functions IP (p), IQ(q) denote the indicator functions

of the sets P and Q respectively. The primal-dual algorithm for the denoising
reads as follows:

Algorithm 1. TGV2
α nc-χ image processing

1: Set p0 = 0, q0 = 0, u0 = f, v0 = f
2: repeat

3: pk+1 =
pk + τd(∇uk − vk)

max

(
1,
‖pk + τd(∇uk − vk)‖∞

α1

)

4: qk+1 =
qk + τdEvk

max

(
1,
‖qk + τdEvk‖∞

α0

)

5: uk+1 = uk + τp(divpk − λ∂uG(Auk))
6: vk+1 = vk + τp

(
p− E∗hq

)
7: until convergence of u

with −div = (∇)∗, E∗h = (E)∗ and

∂uG(Auk) = A∗
(
Auk

σ2
−

[
In

(
(Auk)f
σ2

)
/In−1

(
ukf

σ2

)]
f

σ2

)

where In is the nth order modified Bessel function of the first kind.

4 Results and Discussion

In order to demonstrate the effectiveness of the proposed approach to deal with
the nc-χ distribution of the noise of the data we consider the implementation of
the pure denoising case. This allow a direct analysis of the performance of the
model not perturbed by other artifacts (blurring, low resolution, etc.).
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4.1 Material and Methods

For the model validation we used a Matlab toolbox (avaliable online in
http://www.mathworks.com/matlab/central/fileexchange/36893-parallel-mri-/
noisy-phantom-simulator) to generate a GRAPPA noisy phantom from 2, 4 and
8 coils for noise of σ = 5, 7, 10. The proposed model is compared with the
original TGV denoising method described in [15] where the noise is assumed
to be gaussian. Two different choices for the pair of weights (α0, α1) = (2, 1)
and (α0, α1) = (0.5, 1) where used in the experiments while the parameter λ
was optimized for the two methods in order to obtain the best Peak-Signal-to-
Noise-Ratio (PSNR) with the original phantom. In both denoising models the
best results were always obtained for the pair (α0, α1) = (0.5, 1). We also use a
real dataset of Diffusion Weighted Images (DWI) obtained from a 32-coil Verio
B173T MR Scanner Siemens with GRAPPA factor of 2 kindly provided by the
Neurinfo platform of the University of Rennes I and Inria Visages team. The
acquisition parameters were: TE/TR = 99ms/11s, matrix 128 × 128, 60 slices,
resolution 2×2×2mm/s2, space between slice 2mm. The DWI data consists on
a volume obtained with b=0/mm2 and 30 volumes with b=1000s/mm2. For the
noise estimation (σ parameter) we applied the Brummer-Aja’s method proposed
in [8] and we used the values (α0, α1) = (0.5, 1) and λ = 0.5 for the DWI denois-
ing. The Diffusion Tensor Image (DTI) was reconstructed from the original and
the denoised DWI dataset with the FSL software (http://fsl.fmrib.ox.ac.uk/fsl).

4.2 Results Analysis

The best PSNR results obtained with the two algorithms are shown in
Figure 1 for a different number of coils and noise levels. The image quality
is always higher for the nc-χ denoising and the difference between the methods
grows when the number of coils rises, suggesting the importance of modelling
the nc-χ distribution of the noise when the complexity of the multichannel sys-
tem is increased. The visual aspects of the denoising performance can be seen in

Fig. 1. Best PSNR values obtained by Gaussian (in green) and nc-χ denoising (in
red) of the artificially contaminated phantom reconstructed from 2, 4 and 8 coils and
contaminated with values of σ = 5, 7, 10. In blue the PSNR of the noisy image.

http://www.mathworks.com/matlab/central/fileexchange/36893-parallel-mri-/noisy-phantom-simulator
http://www.mathworks.com/matlab/central/fileexchange/36893-parallel-mri-/noisy-phantom-simulator
http://fsl.fmrib.ox.ac.uk/fsl
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Fig. 2. Central slice of the phantom generated with 8 coils and contaminated with
noise with parameter σ = 5 and 10. The noisy images are denoised with the proposed
method and the noise removed is shown as the absolute difference between the noisy
and the denoised images.

Figure 2. Observing the absolute difference between the noisy and the denoised
images it is clear that the noise has been removed with a minimum loss of struc-
ture details. For the test with real brain images, the DWI dataset was denoised
with the proposed method. The DTI was then reconstructed from the original
and the denoised images and scalar measurements of the tensor as the Frac-
tional Anisotropy (FA) were calculated. In Figure 3 the visual results of this
preliminary study can be observed. In the example of a pre- and post-denoised
DWI we can see that the method remove the inhomogeneities produced by noise.
How this denoising affect to the subsequent DTI reconstruction is clearly visible
in the FA examples, where in the image obtained from a denoised dataset the
structures and details are enhanced and the noise have been removed.

These results validate the proposed variational model for noisy MR images
obtained from parallel acquisition systems. As a conclusion we observe that to
consider the non-central χ distribution of the data is crucial for accurate noise
treatment. This preliminary study also shows the feasibility of using the pro-
posed framework to deal with more complex image processing task such as the
deblurring or the super-resolution of parallel MR images. Further parametric
study in undoubtedly necessary for the application in clinical routine. The con-
sideration of non-stationary distributions of the noise can also be explored and
introduced in the suggested variational model.
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(a) Central slice of
an original DWI

(b) Central slice of
the FA calculated
from denoised DWI

(c) Central slice of a
denoised DWI

(d) Central slice of
the FA calculated
from denoised DWI

Fig. 3. Examples of the original and denoised DWI sets and the FA calculated from
these two data sets
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Abstract. The corruption of hyperspectral images by noise can compro-
mise tasks such as classification, target detection and material mapping.
For this reason, many methods have been proposed to recover, as best as
possible, the uncorrupted hyperspectral data from a given noisy observa-
tion. In this paper, we propose and compare the results of four denoising
methods which differ in the way the hyperspectral data is treated: (i) as
3D data sets, (ii) as collections of frequency bands and (iii) as collections
of spectral functions. In the case of additive noise, these methods can be
easily adapted to accommodate different degradation models. Our meth-
ods and results help to address the question of how hyperspectral data
sets should be processed in order to obtain useful denoising results.

1 Introduction

In this paper we consider the problem of denoising digital hyperspectral (HS)
images obtained from remote sensing of the earth’s surface. In this case, the HS
image associated with a given surface region R is comprised of a set of reflectance
values – ratios of reflected energy vs. incident energy – of electromagnetic radi-
ation at a number of frequencies (or, equivalently, wavelengths) at each pixel
location in R. The number of frequencies depends upon the spectral resolution
of the sensor of the hyperspectral camera and may range from tens to hun-
dreds. For example, the well-known AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) satellite images [1] typically contain 224 frequencies.

Suppose that a region R of the earth’s surface is represented by an M ×
N pixel array and that associated with each pixel in the array there are P
reflectance values. The first, and most obvious, way of viewing this HS data set
is as a M ×N × P “data cube.” The correlations between neighbouring entries
of this cube give rise to two additional and complementary ways of viewing this
3D data set: (ii) as a collection of P images of region R at different frequencies
– often referred to as spectral channels or frequency/wavelength bands – and

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 131–140, 2014.
DOI: 10.1007/978-3-319-11758-4 15
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(iii) as a collection of M × N P -vectors, each of which corresponds to a given
pixel location (i, j) of R – often referred to as the spectral function or, simply,
spectrum at (i, j). These three views of the HS image will play a central theme
in this paper.

Let us very briefly recall the importance of spectral functions. Since different
materials, e.g., minerals, water, vegetation, exhibit different reflectance spectra,
the latter serve as “spectral fingerprints”. The spectrum at a pixel (i, j) makes
it possible to determine the composition/nature of material situated at that
location. This makes the study of HS images useful in a variety of applications,
including agriculture, mineralogy, geography and surveillance, the latter involv-
ing hyperspectral imaging tasks such as target detection and classification [23].
In light of the acquisition process, HS images are, as in the case of many other
images, prone to contamination by noise which can compromise the performance
of such tasks. As a result, it is desirable to develop reconstruction techniques
that recover good approximations of noise-free HS images.

Indeed, many different methods for denoising HS data have been proposed.
For example, in [18], diffusion-based filtering is adapted to HS images. The pro-
posed method consists of two diffusion processes, one confined to each band of
the HS image, and the another restricted to the spectral domain. The overall
anisotropic diffusion is basically a combination of these two processes, which are
carried out in a controlled fashion. In [19], a rather novel wavelet-based denoising
approach is proposed. This method transforms the HS data set into a spectral-
derivative domain, in which the irregularity of noise is more easily detected. The
transformed HS image is denoised using wavelet shrinkage (WS) independently
in both the spatial and spectral domains. A reconstruction is then obtained by
first computing the corresponding inverse wavelet transforms of the denoised
data followed by an integration in the spectral direction. Another method that
carries out denoising employing WS is presented in [9]. Here, principal compo-
nent analysis (PCA) is used to decorrelate the most relevant HS data from the
noise, most of which is assumed to be contained in the lowest energy components
of the transformed data. The noise is removed from these components using WS
in both spatial and spectral domains. The denoised HS data set is then retrieved
by means of the inverse PCA transform. Variational approaches are proposed in
[8,26]. In [26], a total variation (TV) model that considers the changes of noise
intensity present across the bands and pixels of an HS image is proposed. In [8],
a method that employs a TV model along with sparse representations of each
band is also introduced. More approaches can also be found in [20,21].

In this study, we wish to examine the roles of both spatial (pixel) and spectral
domains in the denoising of HS images. For example, is it preferable to focus the
denoising in one domain at the expense of the other, or should both domains
be considered? In order to shed some light on this and related questions, we
compare four different denoising approaches. The main difference between these
approaches lies in the way that the HS image is treated, using the three views
mentioned earlier, i.e., as a (i) 3D data “cube”, (ii) a set of frequency bands or
(iii) a set of spectral functions.
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In our first approach, the denoising process is performed in the spectral
domain, corresponding to (iii) above. In particular, we apply �1-norm regular-
ization [2,17,24] to the spectral functions. In the second approach, the denois-
ing process is performed in the spatial domain, corresponding to (ii) above.
As expected, any denoising technique applicable to 2D signals/images can be
employed – here, we focus our attention on the TV approach [6,22]. Our third
approach employs a formulation of vectorial TV to denoise the entire HS image
at once [5,14], corresponding to (i) above. Finally, in our fourth approach, an
HS image is viewed as a collection of both spectra and frequency bands. Our
method involves a combination of the first two approaches so that denoising is
carried out by regularization in both the spatial and spectral domains. To solve
this inverse problem we employ the Alternating Direction Method of Multipliers
(ADMM) [4]. Experimental results are then presented so that the performance
of these methods can be compared.

2 Denoising

In practice, the strengths of the denoising process across spatial and spectral
domains of an HS image should be different. Even within the spatial domain,
different features such as edges and flat regions should not be denoised with the
same intensity. In addition, it is quite common that the power of noise across
bands is not constant [3,26]. Some methods that address these possible scenarios
can be found in the literature, e.g., [19,26]. Nevertheless, in this study, for the
sake of simplicity we assume that the power of the noise is constant over the
entire HS data set, i.e., it is independent of the location and band of a given
voxel. As such, we consider the following simple degradation model,

f = u+ n, (1)

where f is the noisy observation, u is the noiseless HS data we wish to recover,
and n is additive white Gaussian noise (AWGN). In this case, f , n and u are
considered as M × N × P HS data cubes. Moreover, for the remainder of the
paper, this interpretation of HS images as 3D discrete data sets is the one that
we will consider, unless otherwise stated.

Despite that Eq. (1) may not always be a proper model for noise in HS
images, it will be seen that some of the methods presented below can be easily
adapted for different scenarios in which the noise characteristics change over
space and wavelength.

2.1 Denoising of Hyperspectral Images as a Collection of Spectra

Here we view f as a collection of P spectra. The problem is therefore split
into M × N subproblems, with the denoising being carried out in the spectral
direction on each of the P spectral functions.
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Each spectral function may be denoised with any of the available denoising
techniques that can be applied to 1D signals, e.g., wavelet shrinkage, linear fil-
tering, 1D total variation denoising, etc.. Here, however, we investigate the effec-
tiveness of �1-norm regularization, primarily because of the good performance
of methods that exploit sparse representations of signals [2,17,24].

In this approach, we solve the following sparse approximation problem inde-
pendently at each pixel (i, j),

min
cij

{
1
2
‖Dcij − sij‖2

2 + λ‖cij‖1

}
, (2)

where sij denotes the noisy spectrum, D is an appropriate transformation matrix
(e.g., frame, random matrix, etc.), and cij is the set of coefficients that is to be
recovered at the pixel location (i, j).

In the literature, many algorithms for solving (2) can be found [2,17,24],
however, we focus our attention on the special case in which the matrix D is
an orthogonal transformation (e.g., DCT, wavelet transform, Fourier matrix,
etc.). In this particular case, problem (2) can be solved by means of the soft
thresholding (ST) operator [4,24].

It is worth pointing out that this approach allows us to change the strength
of the denoising process across the spatial domain, i.e., different regularization
parameters can be used at different pixels or in different regions of the HS image.

2.2 Denoising of Hyperspectral Images as a Collection of Bands

In this approach, the denoising process takes place in the spatial domain. Each
frequency/wavelength band is treated independently and the denoising problem
is split into P independent subproblems. Here, we consider each k-th band uk

as a scalar function uk : Ω → R, where Ω ⊂ R
2 and 1 ≤ k ≤ P .

As expected, any denoising method for 2D images can be employed here,
e.g., linear filtering, non-local means denoising, total variation, non-linear filter-
ing, etc.. Nevertheless, in this study, we employed a TV denoising approach for
which a number of fast algorithms exist, e.g., [6,15,22]. As well, some TV-based
denoising methods for HS images have yielded promising results [8,26].

Our approach, a channel-by-channel TV method in the spatial domain where
each band uk is treated independently, translates to the following approximation
problem,

min
uk

{
1

2μ
‖uk − fk‖2

2 + ‖uk‖TV

}
, (3)

where ‖ · ‖TV is the total variation norm and fk is the k-th noisy band or
channel. To solve this problem numerically, we employ the method introduced
by Chambolle in [6], which has received special attention because of its excellent
performance. Here, the following definition of the isotropic TV norm is employed,

‖uk‖TV =
∫

Ω

‖Duk‖2dxdy = sup
ξk∈Ξk

{∫

Ω

uk∇ · ξk dxdy
}
, (4)
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where Ξk = {ξk : ξk ∈ C1
c (Ω,R2), ‖ξk(x)‖2 ≤ 1 ∀x ∈ Ω}, and ∇· is the diver-

gence operator. If uk ∈ C1
c (Ω,R), Duk = ∇uk in the distributional sense. This

approach is convenient since only the integrability, and not the differentiability,
of uk is required.

By using (4), Chambolle shows that the optimal solution u�
k of (3) is given

by u�
k = fk − ΠμΓk

(fk), where ΠμΓk
(fk) is the non-linear projection of fk

onto the convex set μΓk, and Γk is the closure of the set {∇ · ξk : ξk ∈
C1

c (Ω,R2), ‖ξk(x)‖2 ≤ 1 ∀x ∈ Ω}. Such projection is obtained by solving the
following minimization problem:

min
‖ξk(x)‖2≤1

{μ∇ · ξk − fk} . (5)

Thus, we have that for each band the optimal reconstruction is given by u�
k =

fk − μ∇ · ξ�
k.

This approach may easily be modified to accommodate the case in which the
power of the noise is not constant throughout the bands. In this case, one can
specify the degree of regularization to be applied to each channel independently
by means of the parameter μ.

2.3 Denoising of Hyperspectral Images as a Whole

In this case, we view a HS image as a vector-valued function u : Ω → R
P , where

Ω ⊂ R
2. To denoise it, we follow a variational approach, employing a definition

of the Vectorial TV seminorm (VTV).
Given the effectiveness of TV for denoising images – along with its appli-

cability to other image processing tasks such as inpainting, zooming, etc. –
many extensions for vector-valued functions have been proposed [5,14]. Indeed, a
practical application already exists for colour images, which are essentially low-
dimensional HS images. This approach can easily be extended to HS images,
with no required changes to the definitions presented in the literature. In par-
ticular, we use Bresson and Chan’s approach [5], which is a generalization of
Chambolle’s algorithm for vector-valued functions. Here, the authors extend the
Rudin-Osher-Fatemi model [22] as follows,

min
u

{
1

2μ
‖u− f‖2

L2(Ω;RP ) + ‖u‖V TV

}
, (6)

where f is the noisy observation. The VTV seminorm is defined as

‖u‖V TV =
∫

Ω

‖Du‖dx = sup
ξ∈Ξ

{∫

Ω

〈u,∇ · ξ〉dx
}

; (7)

where Ξ = {ξ : ξ ∈ C1
c (Ω,R2×P ), ‖ξ(x)‖2 ≤ 1 ∀x ∈ Ω}; 〈·, ·〉 is the standard

Euclidean scalar product in R
P ; and ‖Du‖2 =

∑P
k=1 ‖∇uk‖2

2 if u ∈ C1
c (Ω,RP ),

that is, the �2 norm of the TV norm of all the bands uk of the HS image u.
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Substitution of (7) into (6) yields to the following minimization problem:

min
‖ξ(x)‖2≤1

{∥
∥
∥
∥∇ · ξ − f

μ

∥
∥
∥
∥

2

L2(Ω;RP )

}

, (8)

whose solution ξ� is computed using a semi-implicit gradient descent scheme.
The solution u� of the original problem in (6) is obtained using u� = f −μ∇·ξ�.
In our case, f is the noisy HS image.

2.4 Denoising of Hyperspectral Images a Collection of Both Bands
and Spectra

In this fourth approach, we perform regularization in both the spectral and
spatial domains. This can be done in various ways, but we focus our attention
on the methods employed previously, that is, TV- and �1-norm regularization.

As expected, denoising in the spectral domain is carried out by solving an
optimization problem in which the �1 norm of a set of coefficients is used as a
regularizing term. Denoising in the spatial domain is performed using a varia-
tional approach. In other words, we consider a good reconstruction of the orig-
inal HS data u from the noisy observation f to be one with bounded variation
across bands and with spectral functions that possess sparse representations in
a certain domain. In order to find such a reconstruction, we solve the following
optimization problem,

min
c

{
1
2
‖S(c) − f‖2

2 + μ‖S(c)‖V TV + λ‖c‖1

}
, (9)

where S(·) is a synthesis operator that reconstructs the HS image from the set
of coefficients c. More specifically, at each pixel (i, j), the operator S(·) recovers
the spectrum located at that pixel location by computing Dcij , where cij is the
set of coefficients associated to such spectrum.

For solving problem (9) we employ ADMM, which is a method well suited
for convex optimization and large scale problems [4]. We first need to express
(9) in ADMM form:

min
c,u

{
1
2‖u− f‖2

2 + μ‖u‖V TV + λ‖c‖1

}
(10)

subject to S(c) − u = 0.

It is well known [4] that this new problem can be solved by forming the aug-
mented Lagrangian and minimizing with respect to the variables c and u in an
alternate fashion. Given this, we propose the following ADMM iterations for
solving (9):

cn+1 := min
c

{
1
2

∥
∥
∥
∥S(c) − f + δ(un − pn)

δ + 1

∥
∥
∥
∥

2

2

+
λ

δ + 1
‖c‖1

}

(11)

un+1 := min
u

{
δ

2μ
‖u− (S(cn+1) + pn)‖2

2 + ‖u‖V TV

}
(12)

pn+1 := pn + S(cn+1) − un+1, (13)



An Examination of Several Methods of Hyperspectral Image Denoising 137

where p is the dual variable associated to the augmented Lagrangian, (13) its
update, and δ is a penalty parameter. Problem (11) can be solved by any algo-
rithm capable of carrying out sparse reconstruction using the �1 norm as a reg-
ularizing term. Problem (12) can be addressed using any method employing the
vectorial TV norm. In particular, we have used ST to solve (11) at each pixel
and Bresson and Chan’s algorithm for problem (12).

It is important to mention that different regularization terms can be used in
problem (11) since it is solved at each pixel independently. Moreover, problem
(12) can be solved using our second approach in Section 2.2, that is, denoising
each band independently, in which case the regularization can be changed from
band to band. In other words, our fourth approach may be adapted for denoising
with different intensities across both spatial as well as spectral domains.

3 Experiments

In order to compare the performance of the four methods described above, they
were applied to noisy versions of the Indian Pines and Salinas-A HS images. The
latter is a subset of the Salinas HS image – both of them can be downloaded from
[16]. The sizes of the 3D Indian Pines and Salinas-A data sets are 145×145×220
and 83×86×224, respectively. White additive Gaussian noise was added to these
HS data (assumed to be noiseless). In all experiments, the Peak Signal-to-Noise
Ratio (PSNR) before denoising was 30.103 dB.

In the approaches where a set of optimal coefficients was to be determined,
the transformation matrix D employed was the Karhunen-Loève Transform
(KLT), which was computed for each HS image. The KLT was chosen since it
gives a very sparse representation of the HS data (as compared to DCT, wavelet
and other transforms), as well as being optimal in the �2 sense. When the KLT
is used, the mean of the HS data must be subtracted prior to processing.

As for measures of performance, we employed the Mean Square Error (MSE),
PSNR, and the Structural Similarity Index Measure (SSIM) [25]. For the latter,
we computed the SSIM between the original and recovered HS images in both
the spatial and spectral domains. For the spatial case, the SSIM is computed
between bands; whereas in the spectral case, the SSIM is computed between
spectra. An overall SSIM is obtained by simply averaging all the computed
SSIMs for both the spatial and the spectral cases. Observe that the greater
the similarity between two images, the closer their SSIM is to 1. In Table 1, a
summary of these quantitative results is shown.

According to these results, the fourth approach (ADMM) outperforms all the
other methods respect to any of the metrics of performance that were considered.
Only in the denoising results for Indian Pines, the spectral-oriented method
described in section 2.1 is as good as ADMM in the “spectral-SSIM sense”. The
latter suggests that methods that carry out regularization in both the spectral
and spatial domains may perform better than methods in which the denoising
process is not carried out in this fashion. We believe this to be the case because
the fourth approach captures best the “nature” of HS data, that is, data that is
correlated in both the spatial and spectral domains.
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For visual comparison, some results are presented in Figures 1 and 2. Figure
1 demonstrates how the methods achieve the denoising in the spatial domain.
The SSIM maps, shown in the top row of Figure 1, illustrate the similarity
between the reconstructions (denoised) and the original (noiseless) HS data for
a particular band. The brightness of these maps is an indication of the magnitude
of the local SSIM, i.e., the brighter a given location the greater the similarity
between the retrieved and the original bands at that point [25]. Figure 2 shows
the denoising yielded by different methods in the spectral domain.

Table 1. Numerical results for the different approaches. Numbers in bold identify the
best results with respect to each of the four measures of performance considered. In all
cases, the PSNR prior to denoising was 30.103 dB.

SALINAS-A

ST TV VTV ADMM

MSE 4860.8284 4944.6999 4853.3592 4218.4193

PSNR (dB) 41.5905 41.5162 41.5972 42.2061

SPATIAL SSIM 0.9812 0.9575 0.9658 0.9855

SPECTRAL SSIM 0.9977 0.9977 0.9979 0.9980

INDIAN PINES

MSE 13803.4370 15516.8153 18415.5653 13268.2362

PSNR (dB) 38.2492 37.7410 36.9972 38.3046

SPATIAL SSIM 0.9533 0.9338 0.9132 0.9556

SPECTRAL SSIM 0.9972 0.9970 0.9963 0.9972

Fig. 1. Visual results for Band No. 23 of the Indian Pines HS image. Beside the original
(noiseless) image in the lower row are shown the various reconstruction results. Beside
the noisy image in the upper row are shown the corresponding SSIM maps between
the reconstructed (denoised) images and the original image.
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Fig. 2. Denoising results for a particular spectral function of the Indian Pines HS
image. Plots in green, blue and red correspond to the original, recovered and noisy
spectra, respectively.
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Abstract. Over the last three decades, several despeckling filters have
been developed to reduce the speckle noise inherently present in ultra-
sound images without losing the diagnostic information. In this paper, a
new intensity and feature preservation evaluation metric for full speckle
reduction evaluation is proposed based contrast and feature similarities.
A comparison of the despeckling methods is done, using quality metrics
and visual interpretation of images profiles to evaluate their performance
and show the benefits each one can contribute to noise reduction and
feature preservation. To test the methods, noise-free images and sim-
ulated B-mode ultrasound images are used. This way, the despeckling
techniques can be compared using numeric metrics, taking the noise-free
image as a reference. In this study, a total of seventeen different speckle
reduction algorithms have been documented based on adaptive filtering,
diffusion filtering and wavelet filtering, with sixteen qualitative metrics
estimation.

1 Introduction

Medical ultrasound imaging is a technique that has become more widespread
than other medical imaging techniques since this technique is more accessible,
less expensive, non-invasive and non-ionizing, simpler to use and produces images
in real-time. However, B-mode ultrasound images are usually corrupted by the
speckle artifact, which introduces fictitious structures that can not be removed by
the imaging system [11,14]. Speckle noise is defined as multiplicative noise with a
granular pattern formed due to coherent processing of backscattered signals from
multiple distributed targets. Speckle degrades the quality of ultrasound images,
and thus affects diagnosis. Thus, speckle reduction has become an important
task in many applications with ultrasound imaging [13].

Removing noise from the original image is still a challenging research in image
processing and many studies have been conducted to develop specific methods
dedicated to despeckling ultrasound images [4,13,14]. With the rapid prolifera-
tion of despeckling filters, denoise evaluation has been becoming an important
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 141–149, 2014.
DOI: 10.1007/978-3-319-11758-4 16
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issue. A great deal of effort has been made in recent years to develop objective
image quality metrics that correlate with perceived quality measurement [16,17].
Test data for evaluation includes clinical and phantom images, as well as simu-
lated ultrasound which allow evaluation of filtering relative to an ideal speckle
free reference. However, objective evaluation of noise reduction on ultrasound
images is a challenging task due to the relatively low image quality.

In this study, filtered images were evaluated using several quality evalua-
tion metrics such as average difference (AD), coefficient of correlation (CoC),
gradient similarity measure (GSM), Laplacian mean square error (LMSE), max-
imum difference (MD), mean structural similarity index (MSSIM), the multiscale
extension of MSSIM (M3SIM), normalized absolute error (NAE), normalized
cross-correlation (NK), peak signal to noise ratio (PSNR), quality index based
on local variance (QILV), root mean square error (RMSE), signal to noise ratio
(SNR), structural content (SC) and universal quality index (UQI). All these
metrics are self explanatory and hence a separate explanation for each metrics
is not included due to page limitation. We also propose a new evaluation metric,
the Speckle Reduction Evaluation Measure (SREM), presented in Sect 3.

The remainder of this paper is organized as follows: Sect. 2, describes the
used despeckling filters. The proposed evaluation metric is explained in Sect.
3. In Sect. 4, we present the results and the discussion of the findings. Finally,
conclusions are drawn in Sect. 5.

2 Speckle Filtering Techniques

Speckle noise reduction has been extensively studied and many denoising algo-
rithms have been proposed. They are classified into three groups: (i) tech-
niques that are applied directly in the original image, (ii) techniques based on
anisotropic diffusion and (iii) techniques that are applied in the wavelet domain.

Adaptive filters take a moving filter window and estimate the statistical char-
acteristics of the image inside the filter region, such as the local mean and the
local variance. Spatial adaptive filters like median, Lee [10], Frost [5] and Kuan [9]
filters assume that the speckle noise is essentially a multiplicative noise. Wiener
filter [7] performs smoothing of the image based on the computation of local
image variance. Ideal Fourier and Butterworth filtering performs image enhance-
ment by applying the filter function and inverse FFT on the image [11]. Bilateral
filtering technique is a combination of a spatial and range filter, where each out-
put pixel value is a Gaussian weighted average of its neighbours in both space
and intensity range. This nonlinear combination of nearby pixel values, gives the
well-known good performance of this filter in smoothing while preserving edges.
Coup et al. [2] proposed the nonlocal means (NL-means) filter which is based
on estimating each pixel intensity from the information provided from the entire
image and hence it exploits the redundancy caused due to the presence of similar
patterns and features in the image.

Diffusion filters remove noise from an image by modifying the image via solv-
ing a partial differential equation. Speckle reducing filters based on anisotropic
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diffusion algorithms were introduced by Perona and Malik [15] (PM-AD). Unlike
conventional spatial filtering techniques, anisotropic diffusion techniques can
simultaneously reduce noise and preserve image details [15]. Due to this attrac-
tive feature, many researchers have used anisotropic diffusion techniques in
speckle noise reduction. Weickert [18] introduced the coherence enhancing diffu-
sion (CED), that allows the level of smoothing to vary directionally by a tensor
diffusion function. The edge enhanced anisotropic diffusion (EEAD) method is
also proposed, which includes anisotropic diffusion and edge enhancement. Yu
and Acton [19] first introduced partial differential equation by integrating the
Lee adaptive filter and the Perona-Malik diffusion, which they called Speckle
Reducing Anisotropic Diffusion (SRAD). SRAD provides significant improve-
ment in speckle suppression and edge preservation when compared to traditional
methods like Lee, Frost and Kuan filters.

Wavelet transform, unlike Fourier transform, shows localization in both time
and frequency and it has proved itself to be an efficient tool for noise removal
[8]. One widespread method exploited for speckle reduction is wavelet shrink-
age, including VisuShrink, SureShrink [3] and BayeShrink [1]. A wavelet-based
multiscale linear minimum mean square-error estimation (LMMSE) is proposed
in [20], where an interscale model, the wavelet coefficients with the same spatial
location across adjacent scales, was combined as a vector, to which the LMMSE
in then applied.

3 Speckle Reduction Evaluation Metric

The speckle reduction and the preservation of edges are in general divergent.
A trade-off between noise reduction and the preservation of the actual image
features and contrast has to be made in order to enhance the relevant image
content for diagnostic purposes. Best contrast is meant in the sense of decreasing
the variance in a homogeneous region while distinct regions are well defined.

We propose a new speckle reduction evaluation metric, the SREM, that is
based on the contrast and gradient similarity maps between two images. The
computation of SREM index consists of two stages. In the first stage, the contrast
similarity map is computed, and then in the second stage, we combine it with
the gradient similarity map (GSM) to encode feature information.

Consider f (i, j) as the original (noise free) image and g (i, j) as the filtered
image. The contrast similarity map (CSM) is defined as follow:

CSM (f, g) =
4μfμg · σf,g(

μ2
f + μ2

g + c1

)
·
(
σ2
f + σ2

g + c2

) (1)

where μ and σ are the mean intensity and the standard deviation of each image,
σf,g is the covariance between them, C1 and C2 are two constants to avoid
instability when μ2

f + μ2
g is very close to zero.

The gradient computation step is crucial in image processing and segmenta-
tion. Several approaches have been proposed in literature that start by convolv-
ing the image with a bank of linear filters tuned to various orientation and spatial
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frequencies [12]. These approaches were inspired by models of processing in the
early stages of the primate visual system providing a simple but biologically
plausible model.

In our approach, the image is first convolved with Gaussian oriented filter
pairs to extract the magnitude of orientation energy (OE) of edge responses
as used by Malik et al. in [12]. The filters are tuned to detect edges of different
shapes, parametrized by ρ = {ρo, ρs, ρe}, where ρo, ρs and ρe refer to orientation,
scale and elongation respectively. Given image I, the orientation energy approach
can be used to detect and localize the composite edges, and it is defined as:

OE (ρ) = (I ∗ Fe(ρ))2 + (I ∗ Fo(ρ))2 (2)

where Fe(ρ) and Fo(ρ) represent a quadrature pair of even and odd-symmetric
filters which differ in their spatial phases. The even-phase filters are the second-
order derivative and the corresponding odd-symmetric filters are their Hilbert
transforms which correspond to the first-order derivative, both smoothed with
Gaussian functions specified by ρ.

At each pixel i, we can define the dominant orientation energy (OEi (ρ)∗)
and the parameter (ρ∗

i ) as the maximum energy across scale, orientation and
elongation:

OEi (ρ)∗ = maxOE (ρ) ρ∗
i = arg maxOE (ρ) (3)

Gradient orientation energy OE (ρ) has a maximum response for contours
of shape ρ, whereas the zero-crossing of filter Fe(ρ) locate the positions of the
edges. The value OE∗ is kept at the location of i only if it is greater than or
equal to the neighbouring values. Otherwise it is replaced with a value of zero.

The gradient similarity map (GSM) between images f (i, j) and g (i, j) is
defined as follow:

GSM =
2OEf ·OEg + T1
OEf +OEg + T1

(4)

where T1 is a positive constant depending on the dynamic range of GSM values.
Having obtained the contrast similarity CSM and the gradient orientation

similarity at each location, the overall similarity between images f (i, j) and
g (i, j) can be calculated:

SREM =
∑
CSM (i, j) ·GSM (i, j)

∑
GSM (i, j)

(5)

4 Experimental Results

The performance of the proposed SREM will be evaluated and compared with
representative state-of-the-art noise reduction evaluation metrics. In this action,
the evaluation metrics are tested on seventeen despeckling filters, with simulated
ultrasound images.
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4.1 Field II Speckle Noise Images

To evaluate the denoising filters it is necessary to have reference images (without
noise or with low level of noise) used to measure the improvement in image
quality. Ideally both noisy and reference images must be obtained with the same
ecograph and under the same conditions. However, due to the highly operator
dependence of the ultrasound exams and the random variation of scattering it is
useful to use synthetic images obtained, e.g., by means of computer simulations.

We used the Field II [6] to simulate the ultrasound images. This program
assumes that the pressure field has linear propagation and is able to calculate
the pulsed and continuous pressure field for different transducers. Depending on
the number of points and transducer frequency, each image simulation can take
several hours when executed sequentially. In order to decrease the simulation
times, we have decided to parallelize its execution.

It was concluded from the code that the image lines were processed without
any data dependencies; moreover, the code was already prepared to support the
processing of the same image by several application instances, by skipping a line
if its specific result file was detected in the file system; the code was then modified
in order to accept the necessary parameters to process a line interval, instead
of the full set of lines. In this way, different line intervals could be assigned to
different CPU cores; this assignment was conducted by a set of wrapper scripts,
developed in BASH, that generated jobs submitted to the job manager of a Linux
HPC cluster; a separate queue was created for the simulations, with 5 nodes,
each one with an Intel Core i7 4770 quad-core CPU, for a total of 20 cores.

The simulated images were generated using three levels of point scatterers
randomly distributed within the field, 5 × 105, 1 × 106 and 2 × 106 points, and
transducer frequencies of 3, 5 and 7 MHz. These parameters produce different
levels of speckle noise as shown in Fig. 1.

Fig. 1. Speckle simulations with Field II. (a) Reference image. (b) Speckle with 5×105

points and 3 MHz. (c) Speckle with 106 points and 5 MHz. (d) Speckle with 2 × 106

points and 7 MHz.

4.2 Example to Demonstrate the Effectiveness of SREM

Figure 2 shows an example to demonstrate the effectiveness of SREM in evaluat-
ing the perceptible speckle reduction. Figure 2(a) is the simulated noisy image,
with 106 points and transducer frequency of 7 MHz. Figures 2(b)-(d) show three
filtered images with different despeckled levels.
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(a) (b) (c) (d)

Fig. 2. Profile extracted from the white column before and after denoising. (a) Noisy
image. (b) Kuan Filter. (c) Bilateral filter. (d) PM-AD filter.

The speckle evaluation of Fig. 2, with reference image from Fig. 1(a), are
summarized in Table 1, where a higher score mean higher image quality.

Table 1. Quality evaluation of images in Fig.2

Metric Fig. 2(a) Fig. 2(b) Fig. 2(c) Fig. 2(d)

SREM 0.129 0.456 0.679 0.760
SNR 6.938 7.257 7.277 7.386
UQI 0.025 0.046 0.068 0.090
CoC 0.458 0.587 0.623 0.644
GSM 0.928 0.964 0.972 0.972
MSSIM 0.124 0.338 0.449 0.520

From the profiles of Fig.2 and from the scores in Table 1, we can conclude
that the quality scores computed by SREM correlate with the other evaluation
metric. Even more, the SREM produces a higher variation over the different
results, only followed by UQI and MSSIM.

4.3 Overall Performance Comparison

We apply despeckling filters over the simulated images and evaluate the results
with the evaluation metrics. The average of the results obtained with each metric
is presented in Table 2. The arrow under each metric indicates the expected
measure tendency for the best despeckling filters. The Pearson linear correlation
coefficient (PCC) is also presented on the table.
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From the analysis of PCC we can see that most of the metrics have a low vari-
ation in their evaluations. The exception are the LMSE, MMSIM, UQI, QILV and
SREM. However, as LMSE quantifies only the average distortion in edge pixel
locations between each filtered image it does not evaluate the speckle reduction
inside the regions.

Table 2. Ranking of despeckling filters according to their performance computed by
SREM and state-of-the-art evaluation metrics

Filters RMSE MD AD NAE SC SNR PSNR LMSE UQI NK CoC MSSIM M3SIM QILV GSM SREM
↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

PM-AD 69.19 141.78 62.22 0.96 0.34 6.84 11.37 1.06 0.06 1.56 0.59 0.49 0.23 0.01 0.97 0.72
NL-means 72.61 152.00 65.88 1.01 0.32 6.59 10.94 1.25 0.06 1.60 0.58 0.46 0.23 0.02 0.97 0.69
Frost 70.03 148.33 62.85 0.97 0.34 6.77 11.26 1.10 0.06 1.57 0.57 0.45 0.22 0.02 0.97 0.69
Median 71.08 151.22 63.86 0.99 0.33 6.70 11.13 1.86 0.06 1.58 0.56 0.45 0.22 0.03 0.97 0.67
EEAD 69.08 162.00 61.19 0.95 0.34 6.83 11.38 20.46 0.06 1.55 0.54 0.46 0.23 0.04 0.97 0.67
Bayes 70.30 158.11 62.90 0.97 0.34 6.75 11.23 1.07 0.05 1.57 0.56 0.44 0.22 0.04 0.97 0.66
Sure 70.30 158.11 62.90 0.97 0.34 6.75 11.23 1.07 0.05 1.57 0.56 0.44 0.22 0.04 0.97 0.66
Wiener 70.05 163.78 62.54 0.97 0.34 6.76 11.26 5.54 0.05 1.57 0.55 0.42 0.21 0.06 0.97 0.62
Bilateral 70.69 151.67 63.55 0.98 0.33 6.72 11.18 3.47 0.05 1.58 0.57 0.41 0.22 0.05 0.97 0.62
Fourier 70.58 174.22 62.69 0.97 0.34 6.71 11.19 1.15 0.05 1.57 0.53 0.41 0.20 0.05 0.97 0.60
LMMSE 70.68 162.11 62.91 0.97 0.34 6.71 11.18 1.16 0.05 1.57 0.54 0.38 0.20 0.07 0.97 0.57
Butter 70.86 179.22 62.09 0.96 0.32 6.78 11.15 1.83 0.05 1.62 0.59 0.37 0.24 0.12 0.97 0.54
CED 70.55 155.78 62.92 0.97 0.34 6.72 11.20 3.28 0.04 1.57 0.54 0.32 0.19 0.06 0.96 0.44
Lee 70.35 156.44 62.75 0.97 0.34 6.73 11.22 5.44 0.04 1.57 0.54 0.33 0.20 0.09 0.96 0.44
Visu 70.74 167.00 62.93 0.98 0.34 6.70 11.17 4.30 0.04 1.57 0.53 0.30 0.19 0.08 0.96 0.41
Kuan 70.47 157.56 62.78 0.97 0.34 6.72 11.21 6.11 0.04 1.57 0.54 0.31 0.19 0.09 0.96 0.41
SRAD 74.30 176.11 66.31 1.03 0.32 6.45 10.74 15.79 0.04 1.61 0.51 0.29 0.18 0.08 0.95 0.37
Noisy 73.60 189.33 62.91 0.99 0.33 6.44 10.82 59.55 0.02 1.57 0.42 0.11 0.14 0.02 0.92 0.12
PCC 1.91 7.44 1.93 1.76 2.09 1.62 1.49 186.46 23.24 1.11 6.91 23.94 11.21 56.60 1.18 28.41

To test the effectiveness of detail preservation of the despeckling filters, we
compared the despeckled images and the profile extracted from an image column
before and after denoising, as shown in Fig. 3, for a transducer frequency of 5
MHz. From the profiles analysis, we find that almost every methods reduced
the speckle noise in homogeneous regions. The intensity variation caused by
speckle is still obvious in the images filtered by Kuan, CED and VisuShrink
filters. The visual analysis indicates that the best despeckling filters are PM-
AD, NL-means and Frost. The SRAD, Kuan and VisuShrink filters exhibit poor
performance results. This analysis correlates well with the SREM evaluation
results.

5 Conclusion

In this paper, a new evaluation metric, namely SREM, is proposed based on
contrast similarity map and edge preservation which correlates well with other
evaluation metrics. The underlying principle of SREM is that humans distin-
guish an image mainly based on its salient low-level features. The SREM uses
contrast and gradient maps to represent complementary aspects of the image
visual quality. In this study, a total of eighteen different speckle reduction algo-
rithms have been documented based on spatial filtering, diffusion filtering and
wavelet filtering, with seventeen quantitative metrics estimation.
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Noisy SRAD Kuan Visushrink

Lee CED Bilateral Wiener

Median Frost NL-means PM-AD

Fig. 3. Despeckled images and profiles extracted from the white column before and
after denoising in simulated images with 106 points and 5 MHz transducer
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Buda Bajić1(B), Joakim Lindblad1, and Nataša Sladoje1,2
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Abstract. We explore utilization of seven different potential functions
in restoration of images degraded by both noise and blur. Spectral Pro-
jected Gradient method confirms its excellent performance in terms of
speed and flexibility for optimization of complex energy functions. Results
obtained on images affected by different levels of Gaussian noise and dif-
ferent sizes of the Point Spread Functions, are presented. The Huber
potential function demonstrates outstanding performance.

1 Introduction

Images are generally degraded in various ways in the acquisition process: by
camera motion, imperfect optics, presence of noise, atmospheric turbulence, etc.
Degradation is often modelled as linear and shift invariant; it is assumed that
the original image is convolved by a spatially invariant Point Spread Function
(PSF) and corrupted by noise. If the original image is denoted u and the acquired
image v, the degradation can be expressed as

v = h ∗ u+ η, (1)

where h is the PSF, η represents noise and ∗ denotes convolution.
Image restoration methods aim at recovering the original image u from the

degraded image v. However, this inverse problem is severely ill-posed and the
solution is highly sensitive to noise in the observed image. Ringing effects and
blurred edges are undesired consequences often appearing in restored images.
A good balance between frequency recovery and noise suppression is essential
for satisfactory deconvolution. A common approach is to apply some regulariza-
tion, utilizing a priori knowledge when performing deconvolution. Regularization
should provide numerical stabilization and impose desired properties to the solu-
tion. Total variation (TV) regularization [15] is among most popular approaches,
due to its generally good performance.

Our previous studies on image denoising confirm that improved performance
of TV based regularization can be achieved if potential functions are utilized.
Potentials are designed to enhance/preserve particular image features during the
processing; preservation of sharp edges is typically targeted. Potential functions,
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 150–158, 2014.
DOI: 10.1007/978-3-319-11758-4 17
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in general being non-convex, introduce additional complexity to the optimization
problem. We have previously experienced excellent performance of the Spectral
Gradient type of optimization methods on similar tasks. These flexible methods
allow a wide class of potentials to be used in the energy function, while exhibiting
fast convergence.

In this paper we present an empirical evaluation of seven potential functions
(listed in Table 1) when used for image deblurring/deconvolution based on reg-
ularized energy minimization utilizing the Spectral Projected Gradient (SPG)
method. Image degradation includes different levels of blur (Gaussian PSF) and
additive Gaussian white noise. Tests include classic TV regularization, and by
that an implicit comparison with the large number of methods based on the
TV model. We conclude that an appropriately chosen potential function can
significantly increase the method performance at essentially no additional cost.

2 Background and Previous Work

2.1 TV Regularization and Potential Functions

Total Variation regularization is commonly used to address inverse problems
in image processing, such as image denoising, deblurring, inpainting, etc. The
approach involves minimization of an energy function which incorporates a gra-
dient based regularization term, well balanced with a data fidelity term. Ideally,
minimization of the energy function provides suppression of noise while retain-
ing true image information. One approach for improving performance of TV
regularization involves the utilization of potential functions.

Typically the energy functional of regularized deblurring is of the form

E(u) =
1
2

∫∫
|h(x, y) ∗ u(x, y) − v(x, y)|2 dx dy + α

∫∫
φ(|∇u(x, y)|) dx dy ,

(2)
where ∇ stands for gradient and | · | denotes �2 norm. The energy functional
consists of a data fidelity term, which drives the solution towards the observed
data (degraded image v), and a regularization term which utilizes the image
gradient to provide noise suppression. The balancing parameter α controls the
trade-off between the terms, i.e., the level of smoothing vs. faithful recovery of
the (possibly noisy) image detail.

The function φ is referred to as potential function. By using a potential equal
to the identity function, the regularization term reduces to classic TV regulariza-
tion. In most cases the potential function is designed s.t. small intensity changes
(assumed to be noise) are penalized, while large changes (assumed to be edges)
are preserved. A number of potentials are studied and used in image restora-
tion problems [3,4,8–12,16,17]. In [3] theoretical conditions for edge preserving
potentials are given. In [11] examples using the Huber potential for deblurring
are presented, however no explicit performance evaluation of potentials is pre-
sented. A study of effectiveness of different potentials in image denoising is given
in [9], where it is concluded that the Huber potential (φ5 in Table 1) works best
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overall, and that the Geman & McClure potential (φ2) shows best performance
in low noise settings.

2.2 Optimization

An important issue in energy based image restoration is efficient optimization
of the energy function. A variety of approaches and algorithms to minimize TV
regularized energy function are presented in the literature; a number of references
on the topic are given in [14] and some later ones can be found in [5] and [7].

Non-convexity of potentials may lead to non-convexity of the objective func-
tion (2), which makes optimization additionally challenging and excludes a
number of methods specifically designed for convex minimization. Our stud-
ies presented in [9] indicated that Spectral Gradient based optimization can be
successfully applied in denoising for a wide range of potential functions. Thus,
we herein utilize an optimization method from the same family. SPG is an effi-
cient tool for solving a constrained optimization problem minx∈Ω f(x), where Ω
is a closed convex set in IRn and f is a function which has continuous partial
derivatives on an open set that contains Ω. Weak requirements on the objec-
tive function, as well as efficiency in solving large scale problems [1], make this
optimization tool attractive for our purpose. The method is briefly outlined in
Algorithm 1. We define the projection PΩ of a vector x ∈ IRn to the feasible set
Ω = [0, 1]n as: [PΩ(x)]i = min{1,max{0, xi}}, for all i = 1, 2, . . . , n.

A scaled version of SPG is used for image deblurring in [2]. However, data
fidelity term is considered without regularization, and robustness of the solution
is achieved by early stopping. The efficiency of the SPG method in regularized
restoration of images degraded by both blur and noise is confirmed by this study.

3 Image Deconvolution by SPG Minimization of a
Regularized Energy Functional with Potentials

In the observed model (1) we assume that the spatially invariant PSF is known,
or can be estimated by point spread estimation techniques; the deblurring that
we perform here belongs to the group of linear non-blind methods. We assume
that acquired images are corrupted by additive Gaussian noise with a standard
deviation σn. We consider grey scale images and represent them as vectors with
intensity values from [0, 1]. Let the vector u = [u1, . . . , un]T of length n = r × c
represent an image u of size r × c, where image rows are sequentially concate-
nated. Minimization of (2) can be seen as a constrained optimization problem:

min
u
E(u) s.t. 0 ≤ ui ≤ 1, i = 1, 2, . . . , n . (3)

A discrete formulation of the objective function (2) is:

E(u) =
1
2

n∑

i=1

(
(Hu− v)i

)2 + α

n∑

i=1

φ (|∇(ui)|) , (4)
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Table 1. Potential functions

Potential Convex

TV [15]
φ1(s) = s yes

Geman&McClure [4]

φ2(s) =
ωs2

1 + ωs2
no

Hebert&Leahy [8]

φ3(s) = ln(1 + ωs2) no

Perona&Malik [12]

φ4(s) = 1− eωs2 no

Huber [17]

φ5(s) =

{
s2, s ≤ ω
2ωs− ω2, s > ω

yes

Tikhonov [16]
φ6(s) = s2 yes

Nikolova&Chan [10]

φ7(s)=

⎧⎪⎪⎨
⎪⎪⎩

sin(ωs2), s ≤
√

ω

2π

1, s >

√
ω

2π

no

Table 2. Algorithm 1

Spectral Projected Gradient

Choose values for parameters:
θmin, θmax, γ, σ1, σ2, tol s.t. 0<θmin<θmax,
γ ∈ (0, 1), 0 < σ1 < σ2 < 1, tol > 0.

Choose initial guess x0 ∈ Ω and θ0 = 1.
Compute xk+1 and θk+1 as follows:

dk = PΩ(xk − θk∇f(xk))− xk

xk+1 = xk + dk; δ = ∇f(xk)T dk

λk = 1
while f(xk+1) > f(xk) + γλkδ
λtemp = − 1

2
λ2

kδ/(f(xk+1)−f(xk)−λkδ)
if (λtemp ≥ σ1 ∧ λtemp ≤ σ2λk)
then λk = λtemp else λk = λk/2
xk+1 = xk + λkdk

end while
sk = xk+1 − xk

yk = ∇f(xk+1)−∇f(xk); βk = sT
k yk

if βk ≤ 0 then θk+1 = θmax

else
θk+1 = min

{
θmax,max{θmin,

st
ksk

βk
}}

Repeat until: ‖xk+1 − xk‖∞ ≤ tol.

where vector v is an observed image and Hn×n is a block circulant matrix s.t.
Hu is equal to convolution h ∗ u. ∇(ui) is the discrete image gradient at point
ui, computed as ∇(ui) = (ur − ui, ub − ui), where r and b denote indexes of the
edge neighbours to the right and below the pixel ui, respectively. The gradient
of (4) is given by ∇E(u) = [∇E(u)i]ni=1 and

∇E(u)i = (HT (Hu− v))i + αφ′ (|∇(ui)|) 2ui − ur − ub
|∇(ui)|

+αφ′ (|∇(ul)|) ui − ul
|∇(ul)| + αφ′ (|∇(ua)|) ui − ua

|∇(ua)| ,
(5)

where ua and ul denote edge neighbours above and left of the pixel ui, respec-
tively. Edges are handled using periodic boundary condition.

The gradient defined by (5) is non-differentiable at points where |∇ui| = 0.
To meet requirements of SPG, we consider a smoothed version of (4), where

|∇ui| is replaced with
√

|∇(ui)|2 + ε2 and where ε is a small positive number
(we used ε = 10−5 throughout). The use of a relaxed gradient could possibly lead
to a less accurate solution. It was observed in [9] that differences are negligible.
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Fig. 1. Used test images, all 256× 256. Intensities in [0, 255] are mapped to [0, 1].
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Fig. 2. Examples of average deblurring performance plotted for different parameter
settings. Graphs for φ1, φ2, φ5, σp = 2, and σ2

n = 0.001 are shown. Graphs for other
potentials, PSFs, and noise levels exhibit similar characteristics.

4 Evaluation

To evaluate the performance of different potentials, we utilize ten standard
images shown in Fig. 1. For every original image u∗ we construct noisy and
blurred image v by convolving it with PSF h and adding white Gaussian noise,
v = h ∗ u∗ + η. We consider Gaussian PSFs, closely resembling real PSFs in
many imaging systems. We evaluate PSFs with standard deviation σp ∈ {1, 2, 3}
and observe noise with variance σ2

n ∈ {0, 0.0001, 0.001, 0.01}. For each PSF
and noise level, we obtain one degraded image v from which we reconstruct u∗

using the seven considered potentials. Quality of reconstruction is measured with

Peak Signal-to-Noise Ratio PSNR = 10 log10

(
(max(u∗

i ))2

MSE

)
, where MSE =

1
n

n∑

i=1

(u∗
i − ūi)

2 and ū is reconstructed image.

A number of approaches for selection of regularization parameter(s) (in our case
α and ω) exist [6,13]. To ensure optimal selection of parameters we exhaustively
explore the parameter space and selected the best performing separately for each
PSF size σp and each noise level σ2

n (i.e., 3 × 4 × 7 sets of parameters). This leads
to a positive bias on our results, since we perform evaluation on the training data.
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Fig. 3. Average improvement of PSNR over ten test images for different PSFs and
different noise levels considering all seven evaluated potentials

This bias does not favour any of the potentials. Partial evaluation on separated
test and training sets, show that: (i) the bias is very limited, (ii) results are not
overly sensitive to parameter tuning. Examples of typical deblurring performance
(PSNR) for varying parameter settings are shown in Fig. 2.

Optimization is performed using SPG with settings recommended in [1]:
θmin = 10−3, θmax = 103, γ = 10−4, σ1 = 0.1, σ2 = 0.9. Algorithm is terminated
when the max-norm between two consecutive images is less than tol = 10−3.

5 Results

The improvement in PSNR between before and after performed deblurring,
ΔPSNR = PSNRout − PSNRin, for each of the seven potentials, and each of
the 3 × 4 blur and noise levels, is presented in Fig. 3. Table 3 shows ΔPSNR,
as well as number of iterations, averaged over all images and all types of degra-
dations. CPU time in seconds is approx. the number of iterations divided by 50
(Matlab, 3GHz Intel Core i7). A very clear result is that the Huber potential,
φ5, shows superior performance in all of the evaluated settings. As a second
runner-up comes TV based deblurring (φ1), clearly behind in most situations,
but providing a similar performance in the case σp = 3, σ2

n = 0.0001. On a
third place comes the non-convex Geman & McClure potential (φ2) which also
showed to perform well in denoising [9]. The G&M potential performs slightly
better than TV regularization for the case σp = 2, σ2

n = 0.0001. As opposed to
the denoising study however, at no place does it outshine the Huber potential.

Table 3. Average ΔPSNR and number of iterations for the studied potentials

Potential φ1 φ2 φ3 φ4 φ5 φ6 φ7

ΔPSNR [dB] 3.43 3.32 3.28 3.24 3.58 2.55 3.17
No. iterations 30 65 26 52 40 11 30
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Degraded image φ1(TV) φ2(G&M) φ5(Huber)

21.46 dB 23.75 dB 23.81 dB 24.18 dB

20.74 dB 22.61 dB 22.68 dB 23.27 dB

Fig. 4. First column: images degraded with PSF σp = 3 and noise with variance
σ2

n = 0.001. Columns 2–4: recovered images using best performing potentials φ1, φ2,
and φ5, respectively. PSNR is stated below each image.

(a) (b) (c) (d) (e)

Fig. 5. Illustration of improved edge preservation by Huber potential, φ5. (a) Orig-
inal image, part of Cameraman’s shoulder. (b) Deblurred image using φ1 (TV). (c)
Deblurred image using φ5. (d) Residual for φ1. (e) Residual for φ5.

Visual examples of deblurring performance of TV, G&M, and Huber poten-
tials are presented in Fig. 4. In Fig. 5 we show a zoomed-in view on the shoulder
of the Cameraman, to highlight the edge preservation performance of the Huber
potential over the commonly used TV regularization. It is apparent that the
Huber potential does a much better job in preserving the sharp edges in the
image (as also can be confirmed by looking at the residual errors in Fig. 5(d,e)).

6 Conclusions

Performed tests confirm that utilization of potential functions in regularized
image denoising and deblurring provides a straightforward way to increase qual-
ity of the restored images. We have tested seven potential functions suggested
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in the literature, utilizing optimal parameter values for each of them, empiri-
cally found in our study. Optimization of both convex and non-convex energy
functions is performed by a flexible and efficient SPG method. Our conclu-
sion is that the Huber potential performs outstandingly best, providing best
PSNR and improved edge preservation, compared to all the observed
potentials.
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Abstract. We present an algorithm to convert color images to gray
scale that ensures the separation between iso-luminance color regions and
improves the contrast in the resulting image. The algorithm calculates a
local vector in the neighborhood of a pixel with the property of being able
to separate the different colors locally. This vector is then added to the
global luminance vector resulting in a direction that includes both global
and local changes. In a region with a flat uniform color the algorithm
returns the global luminance. The more color variations there are locally
the more the luminance vector will be shifted to achieve the increased
separation and contrast.

Keywords: Color to gray · Contrast enhancing

1 Introduction

Converting color images to gray-scale is a challenging problem that has attracted
the interest of many researchers in the image processing community.

Given an image with a single uniform color, the problem of finding a gray
value that represents the amount of luminance reflected off the image surface
is well defined and can be estimated by the sensitivity of the human eye in the
different parts on the visible spectrum. From vision studies, it is known that the
cones are concentrated in the green part of the visible spectrum followed by less
concentration in the red and blue. Thus, given a three dimensional color value we
can estimate the corresponding gray luminance as a linear sum of the intensities
of each color channel with green having a greater weight than red and blue.

The problem arises, when two different neighboring colors are converted to
gray-scale using the same weights. In this case, the averaging process can lead to
identical gray values for two noticeably different colors. Different colors that have
the property of resulting in an identical gray value are known as iso-luminance
and can be typically seen in nature in the feathers of parrots. Such colors
have also attracted many artists who aim to paint colorful scenes with uniform
luminance.

A different problem which arises in color to gray scale conversion, is that it is
an averaging process by definition: A process in which the luminance is estimated
by averaging the intensities of the color channels. Like all averaging processes
the conversion of color images to gray-scale leads to a reduction in contrast.
c© Springer International Publishing Switzerland 2014
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Based on the above mentioned problems, we can divide the algorithms that
we have reviewed into two categories: In the first, we have algorithms that aim
to remedy the problem of neighboring iso-luminance colors or generally assign
different gray values to different colors and in the second we have methods that
aim to increase contrast.

In the recent algorithms of the first category, the idea is to calculate a three
dimensional gradient based on the original image, as a second step estimate a
one dimensional representation and finally, integrate the gradient to result in a
gray-scale representation.

Representing the three dimensional gradient in a one dimensional space is one
of the important questions in these algorithms. However, here we would like to
point out a problem that is shared with algorithms that aim to increase contrast-
specifically that these algorithms alter the luminance value of the color based on
its spacial location which might result in a dark gray tone as a representation
of a bright yellow. In other words, there is no control of the similarity of the
resulting gray value with the original luminance; and when such similarity is
imposed the results are less satisfying.

In this paper, we present an algorithm that combines the global luminance
transformation, i.e. representing the gray values of the image as an average sum
of the color channels, with a spatial transformation based on the level of local
variation.

We summarize the basic idea as follows: As a first step, we assume that the
global luminance vector is the best vector to project the color values onto. As
a second step, we calculate a vector that captures the local changes. The local
vector is defined as the difference between an image pixel and the average of its
neighborhood. Finally, we add the local vector to the global luminance direction
and project the color value onto the resultant vector.

If there are no local changes in color then the resultant vector will be identical
to the luminance. The more the color changes locally, the more the luminance
vector is going to be shifted in the direction that captures the local changes.

After implementing algorithm, we found that applying a power function to
the elements of the local vector greatly improves the separation between the color
regions and also the local contrast. This experimental finding might be attributed
to the fact that color differences are not linear in the camera RGB space.

The title of this paper was chosen after many years of experimenting with
photos of parrots and thinking of how an artist drawing with charcoal might
make the decision of darkening or lightening colors with the same luminance in
order to show the separation. In the results section, we include such an image
and compare the separation achieved with a number of algorithms including the
one proposed in this article.

2 Background

It is possible to divide the solution domain of color to gray transformation into
two groups. In the first we have global projection based methods. In the second
we have spatial methods.
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Global methods can further be divided into image independent and image
dependent algorithms. Image independent algorithm, such as the calculation
of luminance, assume that the transformation from color to gray is related to
the cone sensitives of the human eye. Based on that, the luminance approach is
defined as a weighted sum of the red, green and blue values of the image without
any measure of the image content. The weights assigned to the red, green and
blue channels are derived from vision studies where it is known that the eye is
more sensitive to green than red and blue.

The luminance transformation is known to reduce the contrast between color
regions [1,2]. A classical example that is used to demonstrate this property is
averaging two black and white checkerboard patterns with grey values reversed.
In this case, the features of both channels are completely obliterated.

To improve upon the performance of the image-independent averaging
methods, we can incorporate statistical information about the image’s color, or
multi-spectral, information. Principal component analysis (PCA) achieves this
by considering the color information as vectors in an n-dimensional space. The
covariance matrix of all the color values in the image, is analyzed using PCA
and the principal vector with the largest principal value is used to project the
image data onto the vector’s, one dimensional, space [3]. It has, however, been
shown that PCA shares a common problem with the global averaging techniques
[2]: Unless there is only one channel the contrast between adjacent pixels in an
image is always less than the original. This problem becomes more noticeable
when the number of channels increases [2].

Spatial methods are based on the assumption that the transformation from
color to gray-scale needs to be defined such that differences between pixels are
preserved. Bala and Eschbach [1], introduced a two step algorithm. In the first
step the luminance image is calculated based on a global projection. In the
second, the chrominance edges that are not present in the luminance are added to
the luminance. Similarly, Grundland and Dodgson [4], introduced an algorithm
that starts by transforming the image to YIQ colour space. The Y -channel is
assumed to be the luminance of the image and treated separately from the the
chrominance IQ plane. Based on the chrominance information in the IQ plane,
they calculate a single vector: The predominant chromatic change vector[4]. The
final gray-scale image is defined as a weighted sum of the luminance Y and the
projection of the 2-dimensional IQ onto the predominant vector.

Gooch et al, proposed an iterative optimization to map colors to gray main-
taining chromatic plus luminance difference as well as possible. The proposed
optimization is unconstrained, involves multiple local minima and, for the best
results, requires user input. With similar reasoning Socolinsky and Wolff [2,5],
proposed that the best gray-scale image is defined as an image which, when
differentiated, returns gradients that are, in a least square sense, as close as pos-
sible to the color image. A similar approach was used by Alsam and Drew where
they defined used the maximum value of the gradient in any color channel as an
estimation of the gray-scale gradient [6].

Alsam and Rivertz [7], presented a method to increase the local contrast
of the resultant gray-scale image by calculating local weights based on the
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variations in color. This method, however, changes the original luminance even
in uniform color regions and results in a dark yellow representation.

3 Method Description

The luminance channel of a color image is defined as a weighted sum of the color
channels.

L = νRR+ νGG+ νBB.

Here, the weights are normalized by their sum. Typical values of the weights
are νR = 0.29, νG = 0.59 and νB = 0.11 where we notice that the weight given
to the green channel is greater than that assigned to the red and blue channels
respectively.

By applying a Gauss filter to each of the color channels, we calculate a
weighted local average value at each image pixel. The differences R− R̃, G− G̃
and B − B̃ measures the amount of red green and blue in a pixel compared
to the average values in the surrounding neighborhood. This three dimensional
difference is what we refer to as the local luminance direction.

We then add the local luminance to the global vector:

μR = | R− R̃+ νR |
μG = | G− G̃+ νG |
μB = | B − B̃ + νB |

Here, we note that in regions of uniform color, i.e. with no variations, the
differences R− R̃, G− G̃ and B − B̃ are zero and the luminance vector remains
unchanged.

Based on the local vectors, we propose a spatial varying color to luminance
mapping defined as:

g =

(
Rγμα

R +Gγμα
G +Bγμα

B

μβ
R + μβ

G + μβ
B

)1/γ

,

where γ, α and β are power functions. If the powers γ, α and β are set to one the
the method becomes a linear transformation of the color values to gray-scale,
however, we have experimentally found that the values γ = 2, α = 3 and β = 2
result in the best enhancement of separation and local contrast. This aspect of
the algorithm is highlighted in the results section where we present results with
differen powers.

4 Results

We start this section, by presenting a parrot image that highlights the problems
with color to gray-scale conversion. In figure 1, we notice that the colorful wing of
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(a) The original color image of two par-
rots. Notice the colorful wing feathers of
the bird to the right.

(b) The luminance conversion of the
image where the discrimination between
the colors is lost.

Fig. 1. The original image of two parrots and its gray-scale conversion using the lumi-
nance transformation

(a) The original color image of two par-
rots. Notice the colorful wing feathers of
the bird to the right.

(b) The gray-scale conversion obtained
from the Grundland and Dodgson algo-
rithm.

(c) The gray-scale conversion obtained
by the new method of a filter size of a
100 × 100.

(d) The gray-scale conversion obtained
by the new method of a filter size of a
200 × 200.

Fig. 2. In the first row: The original image of two parrots and its gray-scale conversion
using the Grundland and Dodgson algorithm. In the second row: The conversion using
the proposed algorithm with filter sizes of 100 × 100 and 200 × 200.
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the bird to the right has three distinct colors with very similar luminance. When
the image is converted to gray-scale, using the traditional luminance conversion
we find that the color regions are not longer distinguishable. In figure 2, we
present the conversion obtained by the Grundland and Dodgson algorithm for
the same parrot image. Here, we notice that while red is distinguishable from
blue and green the latter colors are merged into a single gray tone. We also notice
that the yellow region on the chest of the bird to the left is darker in luminance
than what we perceive making the distinction between the chest and the wing
less visible.

In the second row of figure 2, we present the results achieved when using the
proposed algorithm using a filter size of 100 × 100 and 200 × 200 respectively.
Here, we notice that the distinction between the color regions as well as the local

(a) The original color portrait of a
woman.

(b) The gray-scale conversion obtained
from the luminance conversion.

(c) The gray-scale conversion obtained
by the new method of a filter size of a
10 × 10.

(d) The gray-scale conversion obtained
by the new method of a filter size of a
100 × 100.

Fig. 3. In the first row: The original color portrait of a woman and its gray-scale
conversion using the luminance channel. In the second row: The conversion using the
proposed algorithm with filter sizes of 10 × 10 and 100 × 100.
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contrast are improved. We also notice that the yellow region has good contrast
while maintaining the luminosity at a level that is similar to the tradition gray-
scale conversion. In figure 3, we present a portrait of a women. In the first row,
we present the luminance conversion of the image. In the second row, we present
the conversion obtained by the propose algorithm with filter sizes of 10×10 and
100× 100. We notice that the small filter size results in an increased contrast at
the level of fine edges while the larger filter achieves a more global increase in
contrast. We also notice that the method results in no visible artifacts and that
the conversion appears natural and smooth.

Finally, in figure 4, we present the conversion results obtained with the new
algorithm using different values for the powers. We notice that values of γ = 2,
α = 2 and β = 2 result in no visible increase of contrast while the values γ = 2,
α = 3 and β = 2 achieve a clear improvement in contrast and γ = 2, α = 4 and
β = 2 results in too much increase and subsequently visible halo artifacts.

(a) The original color image of two
women.

(b) The gray-scale conversion obtained
from the proposed algorithm with val-
ues γ = 2, α = 2 and β = 2.

(c) The gray-scale conversion obtained
from the proposed algorithm with val-
ues γ = 2, α = 2 and β = 2.

(d) The gray-scale conversion obtained
from the proposed algorithm with val-
ues γ = 2, α = 4 and β = 2.

Fig. 4. The original color of two women and its conversion to gray scale using the
proposed algorithm with variable values of the powers γ, α and β. For all the images
the filter size is fixed at 100 × 100.
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5 Conclusion

A spatial method for converting color image to gray-scale that increases local
contrast an improves the separation between adjacent iso-luminance regions is
presented. The method is based on adding a vector that separates colors locally to
the global luminance direction. If the local region is uniform the resultant vector
is identical to the luminance while large local variations result in noticeable
modifications of the original luminance.
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Abstract. We establish a general framework, along with a set of algo-
rithms, for the incorporation of the Structural Similarity (SSIM) quality
index measure as the fidelity, or “data fitting,” term in objective func-
tions for optimization problems in image processing. The motivation for
this approach is to replace the widely used Euclidean distance, known
as a poor measure of visual quality, by the SSIM, which has been recog-
nized as one of the best measures of visual closeness. Some experimental
results are also presented.

1 Introduction

Many image processing tasks, e.g., denoising, inpainting, deblurring, are usually
carried out by solving an appropriate optimization problem. In most cases, the
objective function associated with such a problem is expressed as the sum of
a fidelity term (or terms) f(x) and a regularization term (or terms) h(x). The
optimization problem then assumes the form

min
x

{f(x) + λh(x)}, (1)

where the constant λ is a regularization parameter.
The role of the fidelity term f(x) is to keep the solution to (1) close to the

observed data. A typical choice is f(x) = 1
2‖x− y‖22, where y is the (corrupted)

observation, e.g., a noisy image. The regularization term h(x) has a twofold
purpose: (i) It prevents over-fitting to the observed data and (ii) it imposes
constraints on the solution based upon prior information or assumptions. For
instance, if the optimal solution is assumed to be sparse, a typical regularization
term is h(x) = ‖x‖1 [5,11,16].

Using the squared Euclidean distance as a measure of closeness is convenient
since it is convex, differentiable, and usually mathematically tractable, not to
mention easily computed. Furthermore, widely used metrics of visual quality
such as Mean Squared Error (MSE) and Peak to Signal Noise Ratio (PSNR) are
based on this definition of closeness. Nevertheless, it has been shown that such
distortion measures are not the best choice when it comes to quantify visual
c© Springer International Publishing Switzerland 2014
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quality [17,18]. For this reason, many measures of visual quality have been pro-
posed in an attempt to model the Human Visual System (HVS). The Structural
Similarity (SSIM) image quality measure, originally proposed by Wang et al.
[18], was based upon the assumption that the HVS evolved to perceive visual
errors as changes in structural information. On the basis of subjective quality
assessments involving large databases, SSIM has been generally accepted to be
one of the best measures of visual quality/closeness.

With these comments in mind, it would seem natural to consider the SSIM as
a replacement for the widely-used squared Euclidean distance in the fidelity term
f(x) of Eq. (1), given the limitations of the latter to measure visual closeness.
Indeed, from a practical point of view, it is easy to make such a replacement since
the mathematical expression for the SSIM between x and the observed data y
is rather straightforward. One may then be tempted to simply start computing.
There is a problem, however, in that the actual mathematical framework behind
such an SSIM-based optimization, which would be important for the establish-
ment of existence and uniqueness of solutions, is more complicated due to the
fact that the SSIM is not a convex function.

Notwithstanding these obstacles, optimization problems that employ the
SSIM as a fitting term have already been addressed. For instance, in [3] the
authors find the best approximation coefficients in the SSIM sense when an
orthogonal transformation is used (e.g., Discrete Cosine Transform (DCT),
Fourier, etc.). Very briefly, a contrast-enhanced version of the best �2-based
approximation is obtained. Based on this result, Rehman et al. [13] address the
SSIM version of the image restoration problem proposed by Elad et al. in [10],
where the denoising of images is performed using sparse and redundant represen-
tations over learned dictionaries. Furthermore, in [13] the authors also introduce
a super-resolution algorithm – also based on the SSIM – to recover from a given
low resolution image its high resolution version.

Another interesting application for reconstruction and denoising was pro-
posed in [7]. Here, the authors define the statistical SSIM index (statSSIM), an
extension of the SSIM for wide-sense stationary random processes. By optimiz-
ing the statSSIM, an optimal filter in the SSIM sense is found. The non-convex
nature of the statSSIM is overcome by reformulating its maximization as a quasi-
convex optimization problem, which is solved using the bisection method [6,7].
Nevertheless, it is not mentioned that the SSIM – under certain conditions – is
a quasi-convex function (see [4]). As a result, it can be minimized using quasi-
convex programming techniques, which permits the consideration of a much
broader spectrum of SSIM-based optimization problems.

More imaging techniques based on the SSIM can also be found in [14,19]. In
these works, optimization of rate distortion, video coding and image classification
are explored using the SSIM as a measure of performance.

Note that maximizing SSIM(x, y) is equivalent to mimizing the function,

T (x, y) = 1 − SSIM(x, y) , (2)

which may be viewed as a kind of distance function or dissimilarity between x
and y, i.e., T (x, y) = 0 if and only if x = y. Many SSIM-based imaging tasks,



Unconstrained Structural Similarity-Based Optimization 169

including all of the applications mentioned above, may now be expressed in terms
of the following optimization problem,

min
x

{T (Φ(x), y) + λh(x)}, (3)

where Φ is usually a linear transformation. As such, we consider Eq. (3) to define
a general set of problems involving unconstrained SSIM-based optimization.

In this paper, we introduce a set of algorithms to solve the general problem in
(3), in the effort of providing a unified framework as opposed to developing spe-
cific methods that address particular applications, which has been the tendency
of research literature to date. In particular, we focus our attention on the case
in which h(x) is convex. Mathematical and experimental comparisons between
�2 and SSIM approaches are also provided.

Finally, in a future paper we shall address the general complementary prob-
lem of constrained SSIM-based optimization.

2 The Structural Similarity Index Measure (SSIM)

Structural similarity (SSIM) [18] provides a measure of visual closeness of two
images (or local image patches) by quantifying similarities in three fundamental
characteristics: luminance, contrast and structure. Luminances are compared in
terms of a relative change in means. Contrasts are compared in terms of relative
variance. Finally, structures are compared in terms of the correlation coefficient
between the two images. The SSIM value is computed by simply taking the
product of these changes.

In what follows, we let x, y ∈ R
n denote two n-dimensional signal/image

blocks. The SSIM between x and y is defined as [18],

SSIM(x, y) =
(

2μxμy + C1

μ2
x + μ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
σxy + C3

σxσy + C3

)
. (4)

Here, μx and μy denote the mean values of x and y, respectively, and σxy denotes
the cross correlation between x and y, from which all other definitions follow.
The small positive constants, C1, C2, C3 provide numerical stability and can be
adjusted to accommodate the HVS. Note that −1 ≤ SSIM(x, y) ≤ 1. Further-
more, SSIM(x, y) = 1 if and only if x = y. As such, x and y are considered to
be more similar the closer SSIM(x, y) is to 1.

Setting C3 = C2/2 leads to the following definition of the SSIM index found
in [18] and used in [3] and elsewhere,

SSIM(x, y) =
(

2μxμy + C1

μ2
x + μ2

y + C1

)(
2σxy + C2

σ2
x + σ2

y + C2

)
. (5)

Since the statistics of images vary greatly spatially, the SSIM(x, y) is com-
puted using a sliding window of 8 × 8 pixels. The final result, i.e., the so-called
SSIM index, is basically an average of the individual SSIM measures.
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Definition as a Normalized Metric

In the special case that x and y have equal means, i.e., μx = μy, the luminance
component of Eq. (5) is unity so that the SSIM becomes

SSIM(x, y) =
2σxy + C2

σ2
x + σ2

y + C2
. (6)

A further simplification results when x and y have zero mean, i.e., μx = μy = 0.
In this special case,

σxy =
1

n− 1

n∑

i=1

xiyi and σ2
x =

1
n− 1

n∑

i=1

x2i . (7)

Substitution of these equations into Eq. (6) yields the following simplified for-
mula for the SSIM,

SSIM(x, y) =
2xT y + C

‖x‖22 + ‖y‖22 + C
, (8)

where C = (n − 1)C2. For the remainder of this paper, we shall be working
with zero mean vectors, so that Eq. (8) will employed in all computations of the
SSIM. In this case, the corresponding distance/dissimilarity function T (x, y) in
Eq. (2) becomes

T (x, y) = 1 − SSIM(x, y) =
‖x− y‖22

‖x‖22 + ‖y‖22 + C
. (9)

Note that 0 ≤ T (x, y) ≤ 2. Furthermore, T (x, y) = 0 if and only if x = y.
As mentioned earlier, since SSIM(x, y) is a measure of similarity, T (x, y) can

be considered as a measure of dissimilarity between x and y. Eq. (9) is, in fact,
an example of a (squared) normalized metric, which has been discussed in [2,4].

3 Unconstrained SSIM-Based Optimization

In [2,4], it was shown that the function SSIM(x, y) is not convex, but locally qua-
siconvex. This implies that the unconstrained SSIM-based optimization problem
defined in Eq. (3) is, in general, not convex. This, in turn, implies that the exis-
tence of a global optimal point cannot be guaranteed. Nevertheless, algorithms
that converge to either a local or global minimum can be developed. The algo-
rithm to be used for solving (3) depends on whether the regularizing term h(x)
is differentiable or not. We consider these two cases separately below.

3.1 Differentiable h(x)

When the regularizing term is differentiable, root-finding algorithms can be
employed to find a local zero-mean solution x∗ to (3). For example, if Tikhonov
regularization is used, we have the following SSIM-based optimization problem,

min
x

{T (Dx, y) + λ‖Ax‖22}, (10)
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where D is an m × n matrix. By computing the gradient of (10), we find that
the solution x∗ must satisfy

[(SSIM(Dx∗, y)DTD + λ(‖Dx∗‖22 + ‖y‖22 + C)ATA]x∗ = DT y. (11)

If we define the following function,

f(x) = [(SSIM(Dx, y)DTD + λ(‖Dx‖22 + ‖y‖22 + C)ATA]x−DT y, (12)

then x∗ is a (zero-mean) vector in R
n such that f(x∗) = 0.

We may use the Generalized Newton Method [12] to find x∗. From Kan-
torovich’s Theorem, it is known that convergence in any open subset X of Ω,
where Ω ⊂ R

n, is guaranteed if the initial guess x0 satisfies the following condi-
tion,

K‖Jf (x0)−1‖‖Jf (x0)−1Jf (x0)‖ ≤ 1
2
. (13)

Here, Jf (·) is the Jacobian of f(·), Jf (·)−1 denotes its inverse, and K > 0 is
a constant less or equal than the Lipschitz constant of Jf (·). In fact, it can be
proved that for any open subset X ⊂ Ω, Jf (·) is Lipschitz continuous, that is,
there exists a constant L > 0 such that for any x, z ∈ X,

‖Jf (x) − Jf (z)‖F ≤ L‖x− z‖2 . (14)

Here ‖ · ‖F denotes the Frobenius norm and

L = K1‖DTD‖F + λK2‖ATA‖F , K1,K2 > 0. (15)

From this discussion, and the notation 1 = [1, 1, · · · , 1]T ∈ R
n, we propose

the following algorithm for solving the problem in Eq. (10).

Algorithm I: Generalized Newton’s Method for unconstrained SSIM-based
optimization with Tikhonov regularization

initialize Choose x = x0 according to (13);
data preprocessing ȳ = 1

n1T y, y = y − ȳ1T ;
repeat

x = x− Jf (x)−1f(x);
until stopping criterion is met (e.g., ‖x(new) − x(old)‖∞ < ε);
return x, y = y + ȳ1T .

Furthermore, this algorithm can be used for any unconstrained SSIM-based opti-
mization problem by defining f(·) and Jf (·) accordingly.

It is worthwhile to mention that it is not always possible to recover the
mean of the non-zero-mean optimal solution x�. This is because the luminance
component of the SSIM is not taken into account. Nevertheless, in some cir-
cumstances (e.g., denoising of a signal corrupted by zero-mean additive white
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Gaussian noise), the mean of y and Φ(x�) coincide. In this case, we have that
x� = x∗ + x̂, where x∗ is the zero-mean optimal solution and x̂ is a vector such
that Dx̂ = ȳ1. If Φ(·) is any m× n matrix D, it can be seen that x̂ is given by:

x̂ = ȳ(DTD)−1DT 1, (16)

provided that the inverse of DTD exists.

3.2 Non-differentiable h(x)

In this case, a different approach must be taken. Let us consider the particulary
important example h(x) = ‖x‖1, i.e., we minimize the following functional

min
x

{T (Dx, y) + λ‖x‖1}, (17)

In this case, the optimal x∗ satisfies

DTDx∗ ∈ DT y

SSIM(Dx∗, y)
− λ

(‖Dx∗‖22 + ‖y‖22 + C

2SSIM(Dx∗, y)

)
∂(‖x∗‖1), (18)

where ∂(·) is the sub-gradient operator [11].
To find x∗ we employ a coordinate descent approach [15], that is, we minimize

(17) along each component of x while the other components are fixed. From (18),
for the i-th entry of x ∈ R

n, the optimal coordinate xi is given by

xi ∈ DT
i y

SSIM(Dx, y)‖DT
i ‖22

−DT
i Dx−i − λ

( ‖Dx‖22 + ‖y‖22 + C

2SSIM(Dx, y)‖DT
i ‖22

)
∂(|xi|), (19)

where DT
i is the i-th row of the transpose of D, and x−i is the vector x whose

i-th component is set to zero.
The value of xi can be found by examining the different cases that arise in

(19). To begin with, we define

τi(xi) = λ

( ‖Dx‖22 + ‖y‖22 + C

2SSIM(Dx, y)‖DT
i ‖22

)
(20)

and

ai(xi) =
DT

i y

SSIM(Dx, y)‖DT
i ‖22

−DT
i Dx−i . (21)

Then, xi = 0 if
ai(0) ∈ τi(0)[−1, 1]. (22)

As expected, xi > 0 if ai(0) > τi(0), so that

xi = ai(xi) − τi(xi). (23)

Similarly, we obtain xi < 0 if ai(0) < −τi(0), in which case xi is given by

xi = ai(xi) + τi(xi). (24)
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Notice that when xi �= 0, we have a result of the form xi = g(xi), a non-
linear equation that may be solved using either a fixed-point iteration scheme
– provided that g±(xi) = ai(xi) ∓ τi(xi) is a contraction – or a root-finding
algorithm by defining f±(x) = xi − g±(xi). In particular, we follow a fixed-point
approach. Moreover, equations (22), (23) and (24) can be combined into the
following single operator:

Φτi(0)(ai(0)) =

⎧
⎪⎨

⎪⎩

Solve xi = ai(xi) − τi(xi), if ai(0) > τi(0),
Solve xi = ai(xi) + τi(xi), if ai(0) < −τi(0),
xi = 0, if |ai(0)| ≤ τi(0) .

(25)

Eq. (25) is an important result since it may be considered an extension of the
widely used soft-thresholding (ST) operator [8,16] for the purpose of solving the
unconstrained SSIM-based optimization problem (17).

With regard to initial conditions, experimental results show that the optimal
�2 solution of the unconstrained problem ‖Dx− y‖22 is a good initial guess, i.e.,
x0 = (DTD)−1DT y.

From the above discussion, we introduce the following algorithm to determine
the optimal x∗ for problem (17).

Algorithm II: Coordinate Descent algorithm for unconstrained SSIM-based
optimization with �1 norm regularization

initialize x = (DTD)−1DT y;
data preprocessing ȳ = 1

n1T y, y = y − ȳ1T ;
repeat

for i = 1 to n do
xi = Φτi(0)(ai(0));

end
until stopping criteria is met (e.g., ‖x(new) − x(old)‖∞ < ε);
return x, y = y + ȳ1T .

As expected, equation (16) can be used to recover the non-zero mean optimal
solution x�, provided that the means of y and Dx� are equal.

4 Experiments

Algorithms I and II can be used for many different SSIM-based applications.
In the results presented below, however, we have focussed our attention on the
performance of Algorithm II for solving problem (17) when D is an orthogonal
transformation. To measure its efficacy, we compare the solutions obtained by
the proposed method with the set of solutions of the �2 version of problem (17),
namely,

min
x

{
1
2
‖Dx− y‖22 + λ‖x‖1

}
, (26)
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which can be solved by means of the ST operator [11,16] if D is an orthogonal
matrix.

The experiments reported below were concerned with the recovery of Dis-
crete Cosine Transform (DCT) coefficients. All images were divided into non-
overlapping 8 × 8 pixel blocks, the means of which were subtracted prior to
processing. After a block has been processed, its mean is added. Although this
procedure is not required for �2 approaches, it has been performed for the sake
of a fair comparison between the two methods.

In Figure 1, the first two plots from left to right corresponds to the average
SSIM of all the reconstructions versus the �0 norm of the recovered coefficients
for the test images Lena and Mandrill. The average SSIM was computed by
combining and averaging all the computed SSIMs from all 4096 non-overlapping
blocks for both Lena and Mandrill (both test images have 512 × 512 pixels).
It can be clearly seen that the proposed algorithm outperforms the �2-based
method (ST). This is because minimization of the dissimilarity measure T (x, y)
in Eq. (2) is equivalent to maximization of SSIM(Dx, y), which produces an
enhancement in contrast [3]. This effect is demonstrated in the nature of the
recovered coefficients. Firstly, the degree of shrinking and thresholding of DCT
coefficients by our proposed method is not at strong as ST. Secondly, in some
cases, there are DCT coefficients which are thresholded (i.e., set to zero) by
the �2 approach, but kept non-zero by the SSIM-based method for the sake of
contrast. These effects are demonstrated in the third and fourth plots in Figure
1. In these two plots, the same block from the image Lena was processed, but
subjected to two different amounts of regularization.

Fig. 1. The first two plots from left to right correspond to the average SSIM versus the
�0 norm of the recovered coefficients for the test images Lena and Mandrill. In the last
two plots, a visual comparison between the original and recovered coefficients from a
particular block of the Lena image can be appreciated. Regularization is carried out so
that the two methods being compared induce the same sparseness in their recoveries.
In the two shown examples, the same block was processed but subjected to different
amounts of regularization. In particular, the �0 norm of the set of DCT coefficients
that were recovered by both the proposed method and ST is 3 for the first example
(third plot), and 15 for the second (fourth plot).
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Fig. 2. Visual results for a patch from the test image Lena. In all cases, the �0 norm of
the recovered DCT coefficients for each non-overlapping block is 13. In the upper row,
the SSIM maps between the reconstructions and the original patch are shown. Recon-
structed and original patches can be seen in the lower row. The average T (Dx, y) of all
non overlapping blocks for the proposed method is 0.8864, whereas for ST is 0.8609.

In addition, some visual results are shown in Figure 2. In this case, a sub-image
from the test imageLena was used. The original and recovered images are presented
in the bottom row. Regularization was carried out so that the sparsity induced by
each method is the same; that is, the �0 norm of the set of recovered coefficients is 13
in all cases. In the top row of the Figure are shown the SSIM maps that illustrate the
similarity between the reconstructions and the original image. The brightness of
these maps indicates the degree of similarity between corresponding image blocks
– the brighter a given point the greater the magnitude of the SSIM between the
retrieved and the original image blocks at that location [18]. It can be seen that the
performance of the proposed method and the �2 approach is very similar. However,
the proposed algorithm does perform better than ST in terms of SSIM . This can
be seen at some locations in the SSIM maps. For instance, note that the upper
left corner of the SSIM map of the proposed method is slightly brighter than the
corresponding regions of the other two SSIM maps. This is also evident at other
locations. Moreover, the enhancement of contrast is clearly seen when the pupils of
the left eyes are compared. With regard to numerical results, the average T (Dx, y)
for the �2 approach is 0.8609, whereas for the proposed method is 0.8864, which is
moderately better.

Acknowledgments. This research was supported in part by the Natural Sciences and
Engineering Research Council (NSERC).
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Abstract. In this paper we propose a three-stage algorithm to imple-
ment effective segmentation of an object’s counterparts when illumina-
tion variance is present. A color constancy algorithm and color-based
invariant parameters insensitive to a large set of different illumination
conditions are used. Then reflectance images are considered after dis-
carding the shadowing information present in the images. A color-based
segmentation algorithm using Graph Cuts is applied to the reflectance
images. Improvements in the segmentation are obtained after using these
illumination invariants.

Keywords: Color-invariants · Graph cuts · Reflectance · Intrinsic
images

1 Introduction

Humans are able to distinguish the counterparts of an object even when there
are differences in illuminations and presence of shadows in the scene. Differences
in illumination cause measurements of object colors to be biased toward the
color of the light source. Shadows make it difficult for state-of-art algorithms to
implement an efficient segmentation. However, Humans have the ability to solve
these two separate problems. They are able to distinguish between reflectance
and shadowing information and they implement color constancy: They perceive
the same color of an object despite large differences in illumination.

Segmentation is a very important prior step to implement before object recog-
nition or categorization and color provides powerful information in these tasks
[1]. However, color-based camera-obtained images are sensitive to many factors,
such us changes in the illumination, changes in the viewing directions, etc.

State-of-art segmentation techniques apply the segmentation to the image
under analysis and have to face problems due to changes in illuminants, shad-
owing and shadows, etc. Few works have been reported applying segmentation
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 179–186, 2014.
DOI: 10.1007/978-3-319-11758-4 20
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to the reflectance images, which are free of all the problems that illumination
involves.

In this work we propose a three-stages strategy to implement efficient seg-
mentation using reflectance images. First, a color constancy algorithm is applied
to the images. Secondly, intrinsic images (Reflectance and Shadowing) images
are obtained using invariant ratios and a color-retinex based algorithm. Finally,
a segmentation algorithm based on Kmeans and Graph-Cuts is applied to the
reflectance image. A ground-truth database is used to measure the accuracy and
improvement of our algorithm.

2 Implementation

2.1 Color Constancy Algorithm

Regarding to the color constancy problem, many computational algorithms have
been proposed. However, no algorithm can be considered as universal and with
the large variety of available methods is difficult to select the method that per-
forms best for a specific image. Gijsenij and Gevers [2] gets very good results
when compared to state-of-art color constancy algorithms. In their work they
use natural image statistics based on a Weibull parameterization to identify
the most important characteristics of color images. Then, based on these image
characteristics, the proper color constancy algorithm (or best combination of
algorithms) is selected for a specific image. This selection is implemented by a
MoG-classifier. The output of the classifier is the selection of the best performing
color constancy method for a certain image. In our work we have used this algo-
rithm because of its color constancy performance improvement up to 20 percent
when compared to the best-performing single algorithms.

2.2 Color Illumination Invariant Ratios

In the work by Gevers and Smeulders [1], a set of color constant color ratios
independent to viewing direction, surface orientation, illumination direction and
intensity, illumination color and interreflection is proposed. These parameters
m1x, m2x and m3x, where x denotes derivating accross the x direction, can be
computed as:

m1x =
RxG−GxR

RG
;m2x =

GxB −BxG

GB
; (1)

m3x is not considered as it can be obtained using m1x and m2x. The same
computations are implemented for the y direction. These three parameters at
each point allow us to compute the two different gradient invariant images M1
and M2 as

Mi =
√

mi2x + mi2y, i = 1, ..., 2 (2)

In [3] J. van de Weijer et al. propose a set of photometric variants and quasi-
invariants. To this end, the derivative of an image fx is projected on three direc-
tions. By removing the variance from the derivative of the image, they construct a
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complementary set of derivatives which they call quasi-invariants. Among these
invariants we have used the shadow-shading-specular quasi-invariant which is
obtained by projecting the derivative of the image on the hue direction

Hx = (fx · b̂)b̂;Hc
x = fx −Hx; (3)

where b̂ is used for the hue direction. Superscript c is used to indicate what
remains after subtraction of the variant Hx. Hc

x does not contain specular
or shadow-shading edges. As the parameters described above provide shading
invariance, the edges in the invariant images Mi and Hc

x will correspond mainly
to reflectance information, thus allowing us to create three different reflectance
edge maps.

2.3 Intrinsic Images Recovery

As in the work by R. Grosse et al. [4], we consider that our images contain only
a single direct light source and the shading at each pixel can be represented as
a scalar S(x, y). Therefore, the image decomposes as a product of shading and
reflectance:

I(x, y) = S(x, y)R(x, y) (4)

It is commonly assumed that it is unlikely that significant shading bound-
aries and reflectance edges occur at the same point. We can then recover the
reflectance intrinsic image from its derivatives with the same method used by
Weiss in [5] to find the pseudoinverse of the overconstrained system of deriva-
tives. One nice property of this technique is that the computation can be done
using the efficiently FFT. Thus, our aim is to compute a reflectance mask to be
applied to the derivatives of the image. The resulting image will be the reflectance
edge R(x, y) image that can serve us in the above algorithm to recover an image
free of shadowing information. Then, using Eq. 4 and the input image we can
compute the shadowing image S(x, y).

To compute the reflectance mask there are many algorithms. To assess the
efficiency of some of the state-of-art methods, R. Grosse et al. [4] performed an
evaluation using a ground-truth dataset for intrinsic images. The dataset is com-
posed by the decompositions in the corresponding intrinsic images (shading and
reflectance) of real objects. In the study, the combination of the Weiss’s multi-
image algorithm with the color-retinex algorithm outperforms all the described
implementations. In the color Retinex algorithm (COL-RET ), two separate
thresholds are used, one for brightness changes and one for color changes. In
the Weiss’s multi-image algorithm, multiple photographs of the same scene with
different lighting conditions are required, thus making it easier to factor out the
shading. A drawback of the Weiss algorithm is that multiple photographs of the
same scene are not usually available (strongly required by the Weiss method).
Therefore, we have not consider the implementations using Weiss’s multi-image
algorithm but just the color-retinex algorithm, which was still better than the
other ones.
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We have used the invariant ratios Mi and Hc
x described through Eqs. 2 and 3

to create the reflectance edge maps. As the parameters described provide shading
invariance, the edges in the invariant images obtained will correspond mainly to
reflectance information. Appliying independent thresholds to these ratios, values
lower than the threshold are set to ’0’, and values higher than the threshold are
set to ’1’. This way a reflectance edge map is computed using the invariant fea-
tures. As some edges can be unconnected, morphogical operations are employed
such us bridging previously unconnected pixels, binary closure opening, and the
use of a morphological structuring element. The color Retinex algorithm (COL-
RET ) described above was also use to create an alternative reflectance edge map
and for comparison purposes.

Fig. 1. Intrinsic images obtained after applying the color retinex algorithm and our
fusion between the color-retinex and the invariant edge maps. Column a), b) and c) cor-
respond to the original, ground-truth reflectance and ground-truth shadowing images
respectively. Columns d) and f) shows the reflectance and shadowing images obtained
using our fusioned algorithm. Columns e) and g) are used to show the reflectance and
shadowing images obtained using only the color-retinex algorithm.

2.4 Reflectance-Based Segmentation

For the segmentation stage to the reflectance obtained images we have imple-
mented a segmentation strategy based on kmeans and min-cut max-flow opti-
mization methods for graph-cuts [6]. In graph-cuts, the pixels of the image are
defined as the vertices of the graph. All neighboring pairs of pixels of the image
are assumed to be connected to each other with a link and these links are called
the edges. The goal in these algorithms is to find a cut or a set of edges that
separates the regions in a way that the cut has the minimum cost. To per-
form the minimization process the cost or energy function is defined. We have
implemented the segmentation algorithm using the Matlab wrapper for graph
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cuts implemented by Bagon [7]. More specifically, the segmentation consists of
two stages. First, k distinct clusters where identified using a kmeans algorithm
and the image is pre-segmented according to these regions. Then each pixel is
assigned to its cluster and the GraphCut poses smoothness constraint on this
labelling. The Matlab wrapper executes the energy minimization software [6][8]
based on the fast min-cut/max-flow algorithm developed by Boykov and Kol-
mogorov [9].

3 Experimental Results

In the approach here presented we have used 12 images belonging to the database
created by R. Grosse et al. [4] to assess the performance of our intrinsic images
extraction and segmentation algorithm. Some images belonging to the Amster-
dam Library of Object Images (ALOI) data set [10], composed by more than
48,000 images of 1,000 objects under various illumination conditions (including
changes in the illumination color temperature) were also considered.

The Color-Retinex algorithm and the thresholded invariant image param-
eters M1, M2 and Hc

x described in Eq. 2 and Eq. 3 generate four different
edge maps corresponding to reflectance information. The optimum thresholds to
compute reflectance edge maps for the M1, M2 and Hc

x invariant parame-
ters were obtained with the simulated annealing algorithm [11]. The simulated
annealing algorithm minimizes a cost function, while providing lower and upper
bounds for the parameters. For the cost function we used the local mean squared
error metric (LMSE ) as computed by Grosse [4] to assess the similarity between
the obtained reflectance and shadowing images with the ground-truth
respective ones.

We have compared this error using three different experiments. First, using
only the provided by the COL-RET algorithm edge map. Secondly, using an
edge map obtained using an OR operation between the masks obtained by M1,
M2 and Hc

x. The mask obtained this way was called invariant mask. Finally we
combined (again with an OR operation) the invariant mask and the COL-RET
edge map. The errors obtained which each of the implementations are shown in
Table 1.

Table 1. Results obtained using the edge map using the three different implementa-
tions

METHOD INVAR COL-RET INVAR+COL-RET

ERROR 0.026 0.023 0.019

Note from Table 1 that the combination of methods reduces the error around
17.3% when compared to the score obtained using separately the COL-RET
and the INVARIANTS algorithmn. Fig. 1 shows some of the images obtained
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by our method and the COL-RET implementation. Note how our implemen-
tation clearly outperformed visually the COL-RET implementation even when
the images in the figure provided similar score results.

Once the reflectance images have been obtained using the COL-RET +
INVARIANTS parameters combination, the segmentation stage as described
in Subsection 2.4 was implemented. To assess the accuracy of the segmentation
achieved we used the following computation

S =
∑

k∈K

NpkRest

NpkRgt

(5)

Fig. 2. Segmentation results obtained using the original images and the reflectance
images. Column a) corresponds to the original images. Column b) shows the regions
segmented using the original images. Column d) shows the segmentation obtained using
the reflectance images appearing in column c).
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Where, K is the number of categories considered during segmentation, NpkRgt

is the number of pixels with label k in the segmented ground-truth reflectance
image and NpkRest is the number of pixels in NpkRgt also appearing with label k in
an under-assessment segmented image (original or estimated reflectance image).
Note that we are using the ground-truth reflectance segmented images as ground-
truth for segmentation to assess our algorithm, as segmentation results on these
images were on concordance with manual segmentations. With Eq. 5 we assessed
the segmentation obtained with the original images (composed of reflectance and
shadowing components) and with the reflectance estimated images. We obtained
an averaged performance value of 89.8% for the original images and 96.7% for
the estimated reflectance images. Note that the accuracy of the segmentation
have been increased by 7%. In Fig. 2 some results are shown. Note how our
implementation (right column) is able to isolate the objects and counterparts of
the objects more accurately.

4 Conclusions

In this paper an algorithm for implementing object segmentation using
reflectance information has been described. The first stage is to adequate the
images using a color constancy algorithm to remove illuminant dependences.
The second stage involves the computation of several invariant parameters in
order to retrieve the reflectance information in the images avoiding the undesir-
able effects of shadowing and orientation variations in illumination. With these
parameters the reflectance and shadowing intrinsic images can be obtained using
reintegration algorithms. Invariant parameters combined with the color-retinex
algorithm improve state-of-art results. Once the reflectance images are available,
a graph-cut color-based segmentation algorithm is applied. Using a ground-truth
database it has been clearly shown that applying segmentation to the reflectance
components improves the segmentation results. In future implementations cate-
gorization of objects using the intrinsic images obtained together with the seg-
mentation results will be implemented considering different viewing conditions,
different databases and the presence of more objects in the same scene.
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1 Faculté des Sciences de Tunis, LIPAH, Université de Tunis El Manar,
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Abstract. Most image segmentations require control parameters set-
ting that depends on the variability of processed images characteristics.
This paper introduces a meta-learning system using stacked generaliza-
tion to adjust segmentation parameters within an object-based analy-
sis of very high resolution urban satellite images. The starting point
of our system is the construction of the knowledge database from the
concatenation of images characterization and their correct segmentation
parameters. Meta-knowledge database is then built from the integra-
tion of base-learners performance evaluated by cross-validation. It will
allow knowledge transfer to second-level learning and the generation of
the meta-classifier that will predict new image segmentation parameters.
An experimental study on a satellite image covering the urban area of
Strasbourg region enabled us to evaluate the effectiveness of the adopted
approach.

Keywords: Object-based analysis · Segmentation · Very high resolu-
tion satellite image · Meta-learning · Stacked generalization

1 Introduction

The object-based image analysis (OBIA) [1] has grown in importance with the
advent of the very high resolution (VHR) satellite imagery as pixels considered
individually no longer capture the characteristics of classified targets. The initial
step in OBIA approaches is segmentation which defines thematic image objects
by clustering adjacent pixels with similar characteristics. Inserting a segmenta-
tion step prior to classification has demonstrated its effectiveness in the case
of VHR remote sensing images [2]. Despite the various developed segmentation
techniques, no general methods have been stated to process efficiently the wide
diversity of images in real world applications. Most of these techniques require
control parameters setting that depends on the variability of processed images
characteristics. This variability is caused by weather and lighting conditions,
imaging devices, clouds, etc [3]. However, segmentation parameters selection is
problematic because the user is forced to adopt an exhausting trial-and-error
procedure to achieve an acceptable quality of segmentation. Indeed, default
c© Springer International Publishing Switzerland 2014
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parameters settings identified by algorithms designers lose effectiveness when
the conditions under which they have been designed are changed. Furthermore,
the impact and interaction of parameters are complex and can’t be modeled in
a rule-based framework [4].

Various machine learning techniques have been proposed for the adjustment
of segmentation parameters. Derivaux et al. [5] apply a genetic algorithm to
generate the elevation map of the Watershed transform and tune segmenta-
tion parameters. Bhanu et al. [3] propose connectionist reinforcement learning
techniques to adjust the four most critical parameters of Phoenix segmentation
algorithm. The selection of the most appropriate learning method to solve a
specific problem is not an easy task. In fact, according to ” No Free Lunch ”
theorems there is no algorithm better than all others on all tasks [6]. The solu-
tion specifying the optimal learning model in a given context has been defined
within the discipline of machine learning as meta-learning. It refers to the abil-
ity of a learning system to increase its effectiveness and ability to learn how
to learn through experience. It is differentiated from conventional base-learning
by the extent of its adaptation level. While the latter has a fixed bias a priori,
meta-learning selects dynamically its bias according to the context of study [7].

Although numerous learning models have been applied to the setting of seg-
mentation parameters, no meta-learning approach was proposed to solve this
problem. In this paper, our main goal is to provide the segmentation process
with the ability to adapt to image characteristics variations. A meta-learning
strategy using stacked generalization is assigned to adjust Watershed segmenta-
tion parameters according to combined predictions provided by a set of learning
algorithms. Our approach aims at achieving a better performance of image inter-
pretation than the one obtained with conventional learning. Although several
studies have been conducted in the field of image analysis with machine learn-
ing, to our knowledge, no one of them has implemented a stacking approach in
setting segmentation parameters.

In the remainder of this paper, we present in Section 2 the details of used
segmentation algorithm and related parameters. Section 3 describes the stack-
ing approach implementation. Section 4 exposes experimental results. The last
section is dedicated to findings and conclusions discussion.

2 Watershed Segmentation Parameters

Watershed segmentation presented in [8] belongs to the family of edge-based
algorithms and is considered as the main method of mathematical morphology
segmentation. The Watershed transform is a well-known segmentation method
that has been widely used and tested. It considers the image as a topographic
surface where the gradient function is used to attribute a gray level corresponding
to the height of each pixel. An immersion procedure is applied to this surface
that is flooded from its minima generating different growing catchment basins.
Watershed lines are built to avoid merging water from two different basins.

The Watershed algorithm is characterized by its tendency to generate over-
segmented images where each object of interest is represented by several regions.
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Different solutions were proposed in the literature to reduce over-segmentation.
In our study, it consists in integrating three parameters in Watershed algorithm
that will define thresholding controls for segments construction [9]:

– Gradient threshold: Once the topographic surface is created, any pixel p with
a gradient value G(p) below a certain threshold hmin is set to zero. Thus,
small variations belonging to homogeneous areas, which correspond to low
values of the gradient, are removed.

Ghmin
(p) =

{
G(p) if G(p) > hmin

0 otherwise
(1)

– Basin dynamic: A catchment basin ri will be separated from another by
a watershed line if its dynamic di is greater than a given threshold dmin.
Indeed, small dynamic basins are filled during immersion stage.

keep(ri) =
{
True if di > dmin

False otherwise
(2)

– Regions merging: This technique is based on the idea that similar related
areas should be merged. If the Euclidian distance between the spectral aver-
ages of each band b for two neighboring regions ri and rj is below a threshold
mmin, these two regions are merged.

neighbor(ri, rj) =
{
True if pi ∈ ri, pj ∈ rj | pi and pj are adjacent
False otherwise

(3)

dissimilarity(ri, rj) =

√√
√
√

B∑

b=1

(avg(ri, b) − avg(rj , b))2 (4)

merge(ri, rj) =

⎧
⎨

⎩

True if neighbor(ri, rj) = true and
dissimilarity(ri, rj) < mmin

False otherwise
(5)

Dealing with the over-segmentation effects of Watershed segmentation
requires the adjustment of parameters hmin, dmin and mmin. We propose a
stacked generalization approach to solve this problem. As part of our experi-
ment, we will define 3 classes P1, P2 and P3 representing different combinations
of parameters hmin, dmin and mmin. Each image from our test database is seg-
mented using these combinations. The best parameterization assigned to the
processed image is determined according to the evaluation of the corresponding
classification.

3 Stacking for Watershed Parameters Selection

We aim at establishing a meta-learning strategy using stacked generalization
to adjust Watershed segmentation parameters. This adaptation is performed
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according to the variability of processed satellite images features caused mainly
by environmental conditions. Our adaptive Watershed segmentation approach
set in the stacking framework is structured around the following main phases,
illustrated in Figure 1:

Fig. 1. Stacking approach for adaptive image segmentation

– Preprocessing: The objective of this step is to construct knowledge database
where each instance is the concatenation of image characteristics and its
correct segmentation parameters class.

– First level or base-learning: Base learners are applied to knowledge database
in order to infer base-classifiers. Meta-knowledge database is generated from
the integration of base-classifiers predictions into the representation of
instances original features.

– Second level or meta-learning: This step consists in applying a meta-learner
to the new meta-knowledge database to induce prediction rules of the appro-
priate segmentation class for new received cases.

3.1 Preprocessing

This phase leads to the realization of knowledge database D which is the start-
ing point of our stacking approach. First, images are characterized in order to
identify the group of images that need the same processing parameters achieving
the best segmentation results. Attig et al. [10] study the impact of four different
image descriptions on the determination of appropriate segmentation parame-
ters and confirm the relevance of texture characteristics. We determine for each
image a vector xi of four texture characteristics that are contrast, energy, homo-
geneity, and sum variance. These criteria have been selected among those defined
by Haralick [11] using a descriptive discriminant analysis.

We assign thereafter to each image its correct parameters class yi. We set
the range of testing parameters to three combinations P1, P2 and P3 of variables
hmin, dmin and mmin estimated through a manual trial-and-error procedure
operated on a sample of images selected from different areas of the original
image. Identifying a good measure for segmentation quality is a known complex
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problem since the criteria of a good segmentation are generally hard to explic-
itly define. Nevertheless, segmentation algorithm is used as a preprocessing step
within an OBIA, therefore it is natural to use the overall performance of image
interpretation to evaluate the segmentation quality. In our approach, the evalu-
ation of the segmentation performed with the three sets of parameters for each
image consists in estimating the accuracy of the classification applied to these
segmentations [5]. The OBIA used in this study is the hierarchical classification
based on a region growing approach introduced by Sellaouti et al. [12] that estab-
lishes a collaborative interaction between object segmentation and classification.

Every image is attributed the best segmentation parameters setting among
P1, P2 or P3. The classification is evaluated through quantitative comparisons
between classification result and image benchmarks using a confusion matrix.
The evaluation criteria are precision, recall and F-measure computed from this
matrix [13]. Three benchmarks of classes (road, building and vegetation) are
constructed for every image on the basis of its corresponding ground-truth. The
set of used ground-truths are extracted from a digital map of Strasbourg city1.
Figure 2 presents an example of a classified image and its related benchmarks.

Fig. 2. Classified image and related benchmarks

The construction of the knowledge database D is completed by assigning the
appropriate correct segmentation parameters yi among P1, P2 and P3 to test
images that were characterized previously with their textural properties vector
xi. It will serve as an entry point to the meta-learning system.

3.2 Stacking System

Meta-learning main focus is to learn about the learning task itself. It employs a
meta-classifier that takes as input the space of results from base-level classifiers
and generalizes over them. The main meta-learning tasks that have been con-
sidered within literature are learning to select the best learner, to dynamically
select an appropriate bias, and to combine predictions of base-level classifiers
[7]. Stacked generalization [14] is a meta-leaning scheme that aims at learning a
meta-level classifier to combine the predictions of multiple base-level classifiers.
It differs from the conventional meta-learning strategy of selecting the best clas-
sifier by exploiting the diversity in the predictions of base-level classifiers and
therefore predicting with higher accuracy at meta-level [15].
1 http://www.carto.strasbourg.eu/

http://www.carto.strasbourg.eu/
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The proposed stacking method is a two-layer structure. At the first level,
learning algorithms take as input the initial training data to generate the base-
level classifiers. The second layer takes as input the predictions of the previous
one and a meta-learner combines them to provide the final meta-classifier. One
of the advantages to use stacking is that the transfer of knowledge between levels
allows the meta-classifier to learn the base-classifiers errors.

More precisely, the input to the stacking system consists of the knowledge
database D. In the base level of learning, a set of classifiers C1, ..., Cn is generated
by using different learning algorithms L1, ..., Ln on dataset D where Ci = Li(D)
and D consists of examples ei = (xi, yi), i.e., pairs of feature vectors xi and
their parameters classes yi. To generate meta-knowledge database, a J-fold cross-
validation procedure is applied. D is randomly split into disjoint and equal parts
D1, ...,DJ . At each jth-fold, j = 1..J , the L1, ..., Ln learning algorithms are
applied to the training dataset part D−Dj inducing classifiers C1, ..., Cn which
are then applied to the test part Dj . The predictions of the base-classifiers on
each feature vector xi in Dj are concatenated with the original segmentation
parameters class to generate a new set MDj of meta-feature vectors.

By the end of the entire cross-validation procedure, the meta-knowledge
database is constituted from the union MD =

⋃
MDj , j = 1..J and used for

applying a learning algorithm LM and inferring the meta-classifier CM . Finally,
the base-learning algorithms are applied to the entire knowledge database D
inducing the final base-classifiers C1, ..., Cn to be used at the execution of the
stacking approach. In order to determine the appropriate segmentation param-
eters of a new image, the latter is first attributed the base-classifiers predictions
vector, then assigned the appropriate parameters class by the meta-classifier
CM . Algorithm 1 presents an algorithmic description of the stacking framework
dedicated to adaptive image segmentation approach.

4 Experiment and Results

The empirical evaluation of our approach is conducted on 50 VHR Quickbird
images covering the urban area of Strasbourg. A sample from used images dataset
is presented in Figure 3:

Fig. 3. A sample of test images
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The choice of learners is not restricted and considered as ” black art ” issue in
stacked generalization systems in the sense that there are no specific recommen-
dations in this regard [14]. We built our choice on the findings of Seewald [16]
which affirms that stacked generalization works better with a small number of
diversified base-learners and those of Skalak [17] who confirms the effectiveness
of decision tree as meta-learner. Learning algorithms selected for our experi-
ment are support vector machine (SVM) and discriminant analysis used as base
learners while decision tree fills the role of both base and meta-learner [18].

Algorithm 1: Stacking for adaptive image segmentation
Input: Knowledge database D, base-learners L1, ..., Ln, meta-learner LM , J ,

new image I
Output: Final prediction of segmentation parameters
Begin1

MD = ∅2

for j = 1 to J do3

MDj = ∅4

for i = 1 to n do5

Ci = Li(D −Dj)6

Predi(j) = Ci(D
j) // prediction of base-classifier i7

MDj = MDj ⋃Predi(j)8

endfor9

MD = MD
⋃

MDj
10

endfor11

// end of cross-validation procedure12

CM = LM (MD) // training of meta-classifier13

for i = 1 to n do14

Ci = Li(D) /* training of base-classifier i to entire knowledge database15

D */
endfor16

// new image execution17

xI = extract− features(I) // construct new image features vector18

for i = 1 to n do19

Predi(I) = Ci(xI) // prediction of base-classifier i20

V Pred = V Pred
⋃

Predi(I) /* construct new image meta-features21

vector */
endfor22

yI = CM (V Pred) // final prediction of segmentation parameters23

End24

Base-classifiers are inferred by running 25-fold cross-validation resulting in
the attribution of three predictions of parameters to each image. Despite cross-
validation may be computationally expensive for large J , it is generally con-
sidered reliable [19]. This database transformation by integrating information
on base-classifiers predictions allows us to switch to the second level of learn-
ing. The meta-learner LM is trained on the meta-knowledge database in order
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to induce the meta-classifier CM that will be used in predicting the appropri-
ate segmentation parameters for new images. Figure 4 illustrates the impact of
learned Watershed segmentation parameters on image interpretation result.

Fig. 4. Impact of Watershed parameters adjustment on image interpretation

Stacking approach global performance is evaluated using a cross-validation
technique in order to increase training data for the applied meta-learner and
lead therefore to more accurate predictions [15]. We use a ” leave-one-out ”
cross-validation where each instance is a fold itself to maximize meta-learner
training data. Table 1 presents segmentation parameters predictions produced
by base-classifiers and stacking system for a sample of images. The contribution
of our system is brought out when the base-classifiers predictions diverge (cases
2 and 6) or when they are all incorrect (case 7), however the stacking system is
able to predict the correct parameterization class.

Table 1. A comparison between stacking system and base-classifiers predictions

Decision
Tree

SVM Discriminant
Analysis

Stacking Correct
Class

Case 1 1 1 1 1 1

Case 2 2 3 1 3 3

Case 3 2 2 2 2 2

Case 4 3 1 1 1 1

Case 5 2 2 1 2 2

Case 6 1 2 3 1 1

Case 7 1 2 2 3 3

Case 8 1 3 3 1 1

Case 9 3 1 1 1 2

Case 10 2 1 1 2 3

The overall performance of our meta-learning approach is measured by the
percentage of correct predictions commonly used in learning problems and also
called success rate ratio [20]:
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SRR = Number of correct predictions
Number of total predictions × 100

We need to ensure that the stacking system is more efficient than base-
learning in predicting the best segmentation parameters and therefore achieves
a more efficient image analysis. In the assessment of their stacking approaches,
Fan et al. [15] compared the performance of meta-learning system to the
base-learners one applied individually. We present in Figure 5 a comparison
of stacking SRR to those of base-learners applied separately. The stacked gener-
alization, with a SRR of 64%, exceeds significantly the performance of decision
tree, SVM and discriminant analysis algorithms whose SRR reached respectively
52%, 50% and 42%.

Fig. 5. Comparison between stacking system and base-classifiers performances

The results of the experiment described above confirms the hypothesis that
meta-learning increases the efficiency of a learning task (OBIA in our case)
through knowledge transfer from the first to the second learning level.

5 Conclusions and Future Work

In this paper we have presented a meta-learning system using stacked general-
ization to adjust Watershed segmentation parameters. The empirical evaluation
of our approach is conducted on VHR satellite images covering the urban area
of Strasbourg. The results show that the performance of stacked generalization
system exceeds significantly base-learners applied individually. These findings
confirm the assumption that meta-learning increases the efficiency of OBIA task.

In future work, we plan to use base-learners that produce class probabilities
instead of class predictions. Indeed, some studies state that this type of learners
enhances the performance of stacked generalization approach [21].
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Abstract. A new multiple view geometry is addressed in this paper,
which is obtained in a dynamic environment with a dynamic scene
and moving cameras. Multiple affine cameras are considered which
move along degree-n Bezier curves. The new multiple view geometry
can represent the multiple view geometry in different dimensions. In
the experiments, we show two applications of the new multiple view
geometry: view transfer and 3D reconstruction.

Keywords: Multiple view geometry · Affine camera · Bezier curve ·
Multifocal tensor · Dynamic scene

1 Introduction

Multiple view geometry is known for the functions such as extracting the
3D shape of the scenes and describing the relationship between images taken
from multiple cameras [1,2,5,6]. In the traditional multiple view geometry, the
projection from the 3D space to 2D images has been assumed [2], which is limited
to represent the case where enough corresponding points are visible from a static
configuration of multiple cameras.

Some works for extending the multiple view geometry for more general
point-camera configurations have been made [4,7,12,13] in these years. From
stationary configurations [2,3,7] to dynamic configurations [8,10,11,13], the
multiple view geometry has been extensively developed. However, previous
multiple view geometry involving dynamic scenes are constrained from the
motion of the cameras or points moving independently along some low-order
trajectories. [11] introduced multiple view geometry with projective cameras
moving alone Bezier curves.
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In this paper we investigate the multiple view geometry with multiple affine
cameras whose trajectories are degree-n Bezier curves. Affine camera model
is an ideal camera model. Multiple view geometry with affine cameras has
simpler properties and less requirements on corresponding points than the case
of projective cameras. Meanwhile, affine cameras can be approximated with
projective cameras under some conditions [9]. The newly proposed multiple
view geometry can describe the traditional multiple view geometry in a static
environment, multiple view geometry in space-time, as well as the multiple view
geometry in N -Dimension.

In this research, points in 3D undergo arbitrary non-rigid motion and the
affine cameras move along Degree-n Bezier curve. We find that the affine
projections of non-rigid 3D motion to Degree-n Bezier curve can be represented
by a projection from (n+3)D to 2D space. We analyze the affine projection from
(n+ 3)D to 2D and deduce the degree of freedom of the extended affine camera.
(n + 3)-Dimension multiple view geometry involving several such extended
cameras and a dynamic scene is also addressed. Multilinear relationships and the
maximal linear relationship in the (n+3)D space are derived from the multifocal
point relations. The counting arguments are also executed. From the geometric
degree of freedom of extended affine cameras and the degree of freedom of the
points in (n+ 3)D and all the images, the minimum number of points required
for computing the multifocal tensors are available.

We next take n = 2, 3 as instances to introduce the dynamic multiple view
geometry in the cases of non-rigid arbitrary motion viewed from quadratic and
cubic Bezier curve motion cameras. We use affine camera model to describe
the multilinear relationship under the projection from 5D to 2D and 6D to
2D. As mentioned above, multilinear relationship among affine cameras brings
us simpler results. For example, we just need 6 and 7 points respectively to
compute multifocal tensors when n = 2, 3, which are much less than in the case
of projective cameras [11]. We show the multifocal tensors can be computed
from non-rigid object motion viewed from multiple cameras with unknown
curvilinear motion. We also show that the multilinear relationships are very
useful to generate arbitrary view images with arbitrary curvilinear motion and
reconstruct the motion in 3D space. The method was tested in real images.

2 Dynamic Multiple View Geometry

2.1 Camera Trajectory Modeled by Degree-n Bezier Curve

We in this section consider the multiple view geometry in a dynamic
environment, in which the point motion in 3D space is non-rigid and the camera
trajectory is modeled by the degree-n Bezier curve.

A Bezier curve is a parametric curve frequently used in computer graphics
and related fields. In vector graphics, Bezier curves are used to model smooth
curves. Bezier curves are also used in animation as a tool to control motion.
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Degree-n Bezier curve is defined as follows:

B =
n∑

i=0

bi,n(t)Gi, t ∈ [0, 1] (1)

where Gi is the ith control point and the polynomials bi,n(t) known as Bernstein
basis polynomials of degree n is written as:

bi,n(t) =
(
n
i

)
ti(1 − t)n−i =

(
n
i

)
ti

n−i∑

j=0

(
n− i

n− i− j

)
(−t)n−i−j

=
n−i∑

j=0

(
n
i

)(
n− i
j

)
(−1)n−i−jtn−j =

n−i∑

j=0

C(n, i, j)tn−j

Here,
(
n
i

)
= n!

i!(n−i)! , and C(n, i, j) =
(
n
i

)(
n− i
j

)
(−1)n−i−j . Suppose T

denotes time, a nonnegative integer and Ta represents the total time of the
camera motion, a positive integer. Then, the relationship among parameter t,
time T and total time Ta can be described as: t = T

Ta
. Then, Bezier curve B

which we utilize to model the trajectory of camera motion can be rewritten as
follows:

B =
n∑

i=0

bi,n(t)Gi =
n∑

i=0

Gi

n−i∑

j=0

C(n, i, j)tn−j

=
[
G0 G1 · · · Gn

]
A

⎡

⎢
⎢
⎢
⎣

tn

tn−1

...
1

⎤

⎥
⎥
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⎦

= GAE

⎡

⎢
⎢
⎢
⎣

Tn

Tn−1

...
1

⎤

⎥
⎥
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⎦

(2)

where,

G =
[
G0 G1 · · · Gn

]
,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A00 A01 A02 · · · A0n−1 A0n

A10 A11 A12 · · · A1n−1 0
A20 A21 A22 · · · 0 0

...
...

An0 0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
,

Aij = C(n, i, j), (i = 0, · · · , n, j = 0, · · · , n− i),

E = diag[
1
Tn
a

,
1

Tn−1
a

, · · · , 1].

Consider a usual affine camera which projects points in 3D to 2D images.
The motions of a point in the 3D space can be represented by homogeneous
coordinates, W(T ) = [X(T ), Y (T ), Z(T ), 1]�. The motions are projected to
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images, and can be observed as a set of points, w(T ) = [x(T ), y(T ), 1]�. Thus,
point motions are projected to the Bezier curve motion affine camera as follows:

w(T ) = Pw(W(T) − B) (3)

where Pw denotes a 3 × 4 affine camera matrix, whose third row is [0,0,0,1]. By
substituting (2) into (3), we have the following equations:

w(T ) = Pw(W(T) − GAE

⎡

⎢
⎢
⎢
⎣

Tn

Tn−1

...
1

⎤

⎥
⎥
⎥
⎦

) = Pw[I,−GAE]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

W(T )
Tn

Tn−1

...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Pa

⎡

⎢
⎢
⎢
⎢
⎢
⎣

W(T )
Tn

Tn−1

...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= Pa

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X(T )
Y (T )
Z(T )

1
Tn

Tn−1

...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Pb

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X(T )
Y (T )
Z(T )
Tn

Tn−1

...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

where Pa = P[I,−GAE] represents a 3 × (n + 5) matrix and Pb denotes
a 3 × (n + 4) matrix. The (n+4)th column of Pb is derived by merging
the 4th column and the (n+5)th column of Pa. Pb describes the projection
from [X(T ), Y (T ), Z(T ), Tn, Tn−1, · · · , T, 1]� to [x(T ), y(T ), 1]�, so Pb is also
a projection from (n+ 3)D to 2D, and its third row is [0, 0, 0, · · · , 1]. When we
have multiple affine cameras which move along Bezier curves, we find that, from
(4), the projections of 3D point motions can be described by the multilinear
relationship under the projection from (n+ 3)D to 2D. In the next section, the
geometry of such projections will be analyzed in more detail.

2.2 Affine Projection from (n + 3)D to 2D

We first consider a projection from (n + 3)D space to 2D space. Let X =
[X,Y,Z, Tn, Tn−1, · · · , 1]� be the homogeneous coordinates of a (n+ 3)D space
point projected to a point in the 2D space, whose homogeneous coordinates are
represented by x = [x1, x2, x3]�. Then, the extended affine projection from X
to x can be described as follows:

λx = PX (5)

where λ denotes equality up to a scale, and P denotes the following 3 × (n+ 4)
matrix:

P =

⎡

⎣
p11 p12 · · · p1(n+4)

p21 p22 · · · p2(n+4)

0 0 · · · 1

⎤

⎦ (6)
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From (6), we find that the extended affine camera, P, has 2 × (n+ 4) = 2n+ 8
DOF. In the next section, we consider the new multiple view geometry of the
extended affine cameras.

2.3 (n + 3)-Dimension Multiple View Geometry

Multilinear Relationships. From (5), we have the following equation for K
extended affine cameras:

⎡

⎢
⎢
⎢
⎣

P x 0 0 · · · 0
P′ 0 x′ 0 · · · 0
P′′ 0 0 x′′ · · · 0
...

...

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X
λ
λ′

λ′′
...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

0
0
0
...

⎤

⎥
⎥
⎥
⎦

(7)

where, x,x′,x′′, · · · , the projections of X in K views, are called one set of
corresponding points, and the leftmost 3K× (K+n+ 4) matrix in (7) is defined
as H. If (7) has a non-zero solution, the vector [X�, λ, λ′, λ′′, · · · ]�, the rank of
H must be at most K+n+3. Hence any (K+n+4)×(K+n+4) minors Q of H
has zero determinant, that arises the constitute multilinear relationships under
the extended projection as: det Q = 0. We can choose any K + n+ 4 rows from
H to constitute Q, but we have to take at least 2 rows from each camera for
deriving meaningful K view relationships (note, each camera has 3 rows in H).
Thus, the following inequality must hold for defining multilinear relationships
for K view geometry in the (n+ 3)D space: K+n+ 4 ≥ 2K. Thus, we find that,
the multilinear relationship for n+ 4 views is the maximal linear relationship in
the (n+ 3)D space.

Counting Arguments. We next consider the minimum number of points
required for computing the multifocal tensors. The geometric DOF S of K
extended affine cameras is as: S = (2n+8)K−(n+4)∗(n+3), since each extended
affine camera has (2n+8) DOF and theseK cameras are in a single (n+3)D affine
space whose DOF is (n+4)∗(n+3), the DOF of a (n+3)D affine transformation.
Meanwhile, if we are given M points in the (n + 3)D space, and let them be
projected to K cameras defined in (5). Then, we derive 2MK measurements
from images, while we have to compute (n+ 3)M + S components for fixing all
the geometry in the (n+ 3)D space. Thus, the following condition must hold for
computing the multifocal tensors from images: 2MK ≥ (n + 3)M + S. Then,
we have the following inequality: M ≥ S

2K−n−3 . Thus, we find that minimum
of S

2K−n−3 = n + 4 points are required to compute multifocal tensors in new
multiple view geometry.

2.4 Dynamic Configurations for Multiple View Geometry in
Dynamic Environment

In our dynamic multiple view geometry theory, it has different dynamic
configurations in different dimension space. We list several typical and
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basic examples of dynamic configurations to demonstrate this property. By
substituting degree n = 0, 1, 2, 3 into (1) respectively, we find that the camera
motions can be represented as follows:

B0 =
0∑

i=0

bi,0(t)Gi = b0,0(t)G0 = G0 (8)

B1 =
1∑

i=0

bi,1(t)Gi = (1 − t)G0 + tG1 (9)

B2 = (1 − t)2G0 + 2(1 − t)tG1 + t2G2 (10)
B3 = (1−t)3G0+3(1−t)2tG1+3(1−t)t2G2+t3G3 (11)

In the case of (8), the camera is not moving but static, that is a special case
and just coincides with the traditional multiple view geometry [2]. Therefore,
our dynamic multiple view geometry theory can also be used to describe the
case of the traditional multiple view geometry. The trajectory of camera is a line
which goes through G0 and G1, that means the cameras are translational. The
dynamic multiple view geometry defined here can represents the relationship
among several translational motion cameras [8]. As shown in (10), the camera
motion is a quadratic curve. The geometry among such curvilinear motion
cameras can also be described by the dynamic multiple view geometry.
The camera motion follows a cubic curve as shown in (11). Furthermore, even if
the cameras undergo more complex curvilinear motions, the dynamic multiple
view geometry is still competent. We will study multiple view geometry in 5D
and 6D extensively in the following sections.

3 Dynamic Multiple View Geometry in 5D Space

The dynamic multiple view geometry of multiple cameras with arbitrary Degree-
2 Bezier curve motions enables us to define multilinear relationship among image
points derived from non-rigid object motions viewed from multiple cameras with
arbitrary quadratic Bezier curve motions. From Section 2, we can see: (1) the
extended camera matrix is 3×6 who has 12 DOF. (2) the multilinear relationship
for 6 views is the maximal linear relationship in the 5D space; (3) the geometric
DOF S of K extended affine cameras is 6(2K − 5); (4) the minimum of 6 points
are required to compute multifocal tensors in 3, 4, 5, 6 views.

For three views, the sub square matrix Q is 9 × 9. From det Q = 0, we have
the following trilinear relationship under extended camera projections:

xix′jx′′kTijk = 0 (12)

where Tijk is the trifocal tensor for the extended cameras and has the following
form:

Tijk = εipqεjrsεktu det
[
ap,aq,br,bs, ct, cu

]� (13)
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(a) (b) (c) (d) (e)

Fig. 1. Multiple point motion experiment

where εipq (or its contravariant counterpart, εipq) denotes a tensor, which
represents a sign based on permutation from {i,p,q} to {1,2,3}. aw, bw and
cw denote the wth row of three camera matrices respectively. The trifocal tensor
Tijk is 3×3×3 and has 27 entries. Since all the third rows of the extended affine
camera matrices are [0,0,0,0,0,1], many zero entries arise in Tijk. As a result,
T133, T233, T313, T323, T331, T332, T333 are non-zero entries and thus we have
only 6 free parameters in Tijk except a scale ambiguity. On the other hand, (12)
provides us one linear equation on Tijk. Thus, at least 6 corresponding points
are required to compute Tijk from images linearly.

4 Dynamic Multiple View Geometry in 6D Space

We in this Section address the dynamic multiple view geometry of multiple
cameras with arbitrary cubic Bezier curvilinear motions (n = 3). From (4), we
know the extended affine camera matrix in 6D Space is 3 × 7 and has 14 DOF.
From Section 2, we also can see: (1) the multilinear relationship for 7 views
is the maximal linear relationship in the 6D space; (2) the geometric DOF S
of K extended affine cameras is 7(2K − 6); (3) the minimum of 7 points are
required to compute multifocal tensors in 4, 5, 6, 7 views. However, in the case
of dynamic multiple view geometry with projective cameras, we at least need
16, 13, 12, 12 points to compute tensors [11]. For four views, the sub square
matrix Q is 11 × 11. From det Q = 0, we have this quadrilinear relationship:
xix′jx′′kx′′′hεhvdQv

ijk = 0d. The quadrifocal tensor Qv
ijk has 81 entries and 15

non-zero entries. Then at least 7 corresponding points are required to compute
Qv

ijk from images.

5 Applications

Here we introduce two applications for dynamic multiple view geometry: view
transfer and 3D reconstruction.

5.1 View Transfer

If the constraints between corresponding points and multifocal tensors are
derived, multifocal tensors can be computed by 7 corresponding points in 4



Dynamic Multiple View Geometry with Affine Cameras 205

-10

0

10x

-10

0

10y

-4
-2
0

2

4

z

-10

0

10x

-10

0

1C

2C

3C

4C

(a) 3D configuration (b) Result of 3D reconstruction

Fig. 2. 3D reconstruction

to 7 views in 6D. Thus, when we have the image motions in N − 1 images, the
image motion in the remaining image can be calculated from N view tensor. It
realizes the view transfer from N − 1 views to the left one. Here, four cameras
(Sony DFW-VL500) are used, one of which is static (Camera 4) and three of
which (Camera 1-3) are controlled by 3-axis robots (Originalmind 3-Axis Robot)
respectively to undergo different cubic Bezier curve motions. We computed
quadrifocal tensor among these four cameras by using two moving points in
the 3D space. Experiment is shown in Figure 1. (a), (b), (c) and (d), whose
size are 320 × 240, show image motions of two points viewed from 4 camera.
The white curves represent two different image motions. The 7 white points on
the two curves in each image are corresponding points used for computing the
quadrifocal tensor. The black curves in (e) show image motions computed from
the extended quadrifocal tensor in camera 3. As we can see, the quadrifocal
tensor defined under extended projection can be derived from arbitrary multiple
point motions viewed from the 4 cameras with arbitrary curvilinear motions, and
they are practical for generating images of multiple point motions viewed from
curvilinear motion camera. The average error of the recovered image motion is
6.3 pixels.

5.2 3D Reconstruction

If image points are given, actually the extended camera matrices can be derived.
Then from (5), the coordinates of points in 3D can be obtained. We next show
the results of 3D reconstruction with dynamic multiple view geometry in 6D
whose 3D configurations shown in Figure 2(a). We assumed that camera C1 is
a static camera in this experiment and other cameras u undergo cubic Bezier
curvilinear motions. The non-rigid 3D motion is projected to four cameras. The
corresponding points with Gaussian noise of standard deviation of 1 pixel in the
four images were used to figure out the coordinates of each point in the 3D space.
The reconstructed result is shown in Figure 2(b). We can see the shape of the
3D motion is recovered properly. The ratio of the average reconstruction error
to the range of the 3D motion is 0.074.
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6 Conclusion

In this paper, we presented the multiple view geometry which unifies the
traditional multiple view geometry and the high-dimension multiple view
geometry. We modeled the camera trajectory by Degree-n Bezier curves and
made points in 3D undergo non-rigid motions. We found that the affine
projection from non-rigid 3D motion to view image with Degree-n Bezier curve
motion can be represented by a projection from (n + 3)D to 2D. Therefore,
the multilinear relationship under the projection from (n + 3)D to 2D can
be derived when 3D point motions are tracked by multiple arbitrary Degree-
n Bezier curve motion cameras. We also introduced the multiple view geometry
of multiple cameras with arbitrary degree-2 and degree-3 Bezier curve motions
and verified that the multifocal tensors are very useful to realize view transfer
and 3D reconstruction.
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Abstract. In this paper we improve image segmentation based on tex-
ture properties. The already good results achieved using learned dictio-
naries and Gaussian smoothing are improved by minimizing an energy
function that has the form of a Potts model. The proposed α-erosion
method is a greedy method that essentially relabels the pixels one by
one and is computationally very fast. It can be used in addition to, or
instead of, Gaussian smoothing to regularize the label images in super-
vised texture segmentation problems. The proposed α-erosion method
achieves excellent results on a much used set of test images: on average
we get 2.9 % wrongly classified pixels. Gaussian smoothing gives 10 %
and the best results reported earlier give 4.5 %.

1 Introduction

Image segmentation has many important applications in the image process-
ing field, mainly since it is a common step in scene interpretation, and it is
used in areas such as medical diagnostics, geophysical interpretation, industrial
automation and image indexing. For image segmentation, edges and colors are
often more important features than texture. Nevertheless, the texture property
is relevant in many image processing applications [11]. An important benchmark
application to test how well a system can utilize texture information that may
be present in an image, is to segment the image based on texture properties
alone. This is what we do here.

Texture segmentation finds a boundary map between different texture regions
of an image. This map may be given by a labeling L which assigns a label
Lp ∈ {1, 2, . . . , C} to every pixel p ∈ P of the observed image, and C is the num-
ber of candidate texture classes. A common way to label the image is to associate
a feature vector xp to every pixel in the image and then do common vector clas-
sification. This approach, however, ignores the fact that texture regions should
be piecewise constant in the labeling. Gaussian smoothing of the features before
classification will give larger segments and has been much used [13].

An alternative to Gaussian smoothing is Energy Minimization (EM) [1–3].
For each pixel (feature vector) an associated cost vector yp is calculated, element
c gives the cost (energy) for assigning class c to this pixel. The cost may be the
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 207–214, 2014.
DOI: 10.1007/978-3-319-11758-4 23
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estimated negative log probability for pixel p belonging to class c. The set of
energy images R = {R(c)}C

c=1, where pixel p in energy image c is R(c)
p = yp(c),

can now be used to calculate the data cost for a given labeling L. In addition
to the data term Ed(·) a smoothing term Es(·) is added to the energy function,
thus the problem of finding the “best” labeling can be formulated as an energy
minimization problem using

E(L,R) = Ed(L,R) + Es(L). (1)

When piecewise constant labeling is desired the Potts model is a popular choice
for the smoothing term. It can be formulated as equation (18) in [3]:

E(L,R) =
∑

p∈P
R(Lp)

p +
∑

p,q∈N
up,q · (Lp �= Lq). (2)

R
(Lp)
p is the cost (energy) associated with assigning label Lp to pixel p. N is the

set of all neighboring pixel pairs and (Lp �= Lq) is a logical expression evaluating
to 1 if the two labels are different. The factor up,q is independent of the labeling
but may depend on the pair (p, q) [3].

To minimize an energy function of the form as in Eq. 1 or Eq. 2 is in general
an NP-hard problem [3] except for some simple cases; the two label-problem can
be minimized via graph cuts [7]. One method to approximately minimize the
energy function for the several-label problem is to start with an initial labeling
and then do a sequence of moves; each move may change the labeling of some of
the pixels under consideration. Two popular moves are the α-β-swap-move where
the optimal division between the two labels in a two label region is found, and the
α-expansion-move where “not-α-pixels” may be relabeled as α [3]. The optimal
solution for each of these two moves can be found by graph-cuts-algorithms.

A crucial point for the success of EM is that the energy function Eq. 1
reflects the texture segmentation. For many test images this is often only an
approximation where the ground truth labeling Lgt gives a higher value for
the energy function than the value obtained by EM using expand-moves Lex

or swap-moves Lsw, as seen in Fig. 3. In these cases further improvement in
the segmentation can be achieved by: 1) Better observations and better fea-
tures which gives better cost vectors and energy images. This is important,
but in this work we do not investigate this part any more but simply accept a
method to make feature vectors that have worked well previously [16]. 2) Better
and more sophisticated energy function, more advanced forms are proposed in
[4,6], may improve segmentation. Both how to define a better form, and then
how to minimize the energy function, are difficult tasks which we here leave to
future work. 3) Inferior method for energy minimization, i.e. even if the method
gives higher energy than another method it may be better when it comes to seg-
mentation. This latter approach is used in this work. We propose a method that
usually does not find the minimum of the energy function, even though all the
moves it makes reduce it. The algorithm is designed such that each move tries
to reduce the number of segments in the labeled image, and in this way follows
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Fig. 1. The Frame Texture Classification Method (FTCM). Dictionary Learning (DL)
learn one dictionary with K atoms for each candidate texture. The feature vector xp is
made from a neighborhood of pixel p. Sparse Approximation (SA) uses the candidate
dictionaries and gives the energy vector yp where element c is pixel p in error image
R(c). Different labelings are made by the minimum selector, the Gaussian smoothing,
and the energy minimization (EM) methods.

a path that is intuitive in image segmentation (few segments). In addition the
proposed method is fast, up to 100 times faster than the graph-cuts-methods.

2 Frame Texture Classification Method (FTCM)

The Frame Texture Classification Method (FTCM) [14,16] is used to generate
the data term in the energy function of Eq. 1, an overview is shown in Fig. 1.
It is based on sparse representation and dictionary learning, for details on these
parts see [5,15].

FTCM generates a simple feature vector xp for each pixel p in a test image
using pixel values from its neighborhood directly. Sparse approximations of xp

are made using dictionaries learned for each of the candidate textures. An energy
vector yp is then calculated from the approximation errors,

yp(c) = R(c)
p = ‖xp −D(c)w(c)

p ‖2. (3)

where w(c)
p is the K × 1 sparse coefficient vector used when vector xp is approx-

imated by dictionary D(c). A simple segmentation scheme can be to assign class
labels for each pixel, according to the minimum selector method

Lmin
p = c if R(c)

p ≤ R(k)
p ∀ k. (4)

Segmentation can however be substantially improved by smoothing the C energy
images {R(c)}C

c=1 prior to the final labeling. A common smoothing approach has
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Fig. 2. The main flow for the erode algorithm. The input labeling L is processed
segment by segment, the unprocessed segments are kept in a queue, segQ. The smallest
segment, s from the top of the queue, is processed by relabeling the pixels one by one
in L′ and if this improves energy the labeling L is updated (bottom right box in figure).

been to use the Gaussian low-pass filter Gσ(·) where the parameter σ gives the
width of the filter. The smoothed labeling can be denoted:

LGσ
p = c if Gσ(R(c))p ≤ Gσ(R(k))p ∀ k.

3 Erode Algorithm for Energy Minimization

The energy function used here is a variant of the Potts model Eq. 2, restricted
to 4-neighborhood N4 and 8-neighborhood N8 systems:

E(L,R) =
∑

p∈P
R(Lp)

p +
λ

k4

( ∑

p,q∈N4

(Lp �= Lq) + b
∑

p,q∈(N8\N4)

(Lp �= Lq)
)
. (5)

where λ gives the weight of the smoothing term and k4 = |N4| =
∑

p,q∈N4
1.

The factor b ∈ [0, 1] gives the relative weight for corner connected pixels pairs
to side connected pixels pairs. For the data term the set of the C energy images
R = {R(c)}C

c=1 is scaled such that Ed(Lmin, R) = 0 and Ed(Lmax, R) = 1. The
labeling Lmin is defined in Eq. 4 and Lmax is defined as Lmax

p = c if R
(c)
p ≥

R
(k)
p ∀ k.

The proposed energy minimization algorithm is a greedy algorithm that
reduces the value of the objective function in each move, an overview is shown
in Fig. 2. The main idea behind the algorithm is quite simple, it is based on the
assumption that removing a small segment is more likely to reduce the value of
the objective function than to remove a larger segment. A segment is defined as
a 4-neighborhood connected component of the current labeling L. The α-erosion
method starts with the current labeling and do a sequence of α-erode-moves, as
described below. The labeling after all the α-erode-moves is denoted Ler, and an
example can be seen in Fig. 3d. The second idea is that the border between two
segments should be smooth, here we found that using an extra erode-move (or
swap-moves) on the border region worked well, doing these moves the labeling
is denoted as Ler+, an example can be seen in Fig. 3e.
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a) Test image b) Ground truth Lgt c) Gaussian filtering LG3

33 ms, error rate 21.41%
E = Ed + λEs: 0.3976 = 0.3487 + 0.0489 0.6531 = 0.3126 + 0.3405

d) α-erosion Ler e) α-erosion + border Ler+ f) α-β-swap Lsw

35 ms, error rate 4.05% 56 ms, error rate 2.61% 2255 ms, error rate 4.50%
0.4001 = 0.3425 + 0.0576 0.4001 = 0.3470 + 0.0531 0.3883 = 0.3414 + 0.0469

Fig. 3. Test image number 4 and different labeling results. The second line below each
image shows the execution time (in ms) and the error rate, the third line shows the
value of the objective function, E = Ed + λEs, here λ = 3 (and b = 0.7 in Eq. 5).
The label images are hopefully shown in color but a grayscale image will also show the
different segments even though the center segment and the bottom segment then look
quite similar to each other. The problem with corners is because the smoothing term
favors short, rather than straight, border lines.

Each erode-move considers all pixel within one label segment, s in Fig. 2. A
queue of the pixels pixQ is made, it is ordered by the effect relabeling this pixel
will have on the objective function. The pixels are now relabeled and removed
from the top of the queue, and the remaining queue is updated. In this way it
is like the surrounding segments “eat” the pixels of the segment s one pixel at
a time, we may also say that the segment is eroded. If the objective function
value actually does decrease after the whole segment is “eaten” the “meal” is
accepted, i.e. the segment is relabeled. If not the labeling is kept as it was. After
a segment is relabeled the segment queue segQ is ordered by size again, i.e.
updated. The α-erode-move is tried on all segments smaller than a given limit
in the label image.
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4 Experiments and Discussion

The training and test grayscale texture images used here are from the Outex test
suites [10] and are available from Outex web page1. The test set Contrib SS -
00000 consists of 12 test images. It has been used in several papers on texture
segmentation; some results are collected in Table 1. The test images are shown in
[8,13] and on the UiS web page2 where also more results and some Matlab files
used in this paper can be found. The UiS web page also gives more details on
how the parameters, like dictionary size N ×K, sparseness factor s, and factors
λ and b in Eq. 5 were selected, many are simply used as in earlier papers [15,16]
and some are set empirically.

The results for the fourth test image are presented in Fig. 3. The data term
was made by FTCM with dictionary size 17 × 200. Order recursive matching
pursuit (ORMP) was used for sparse approximation, and the target sparseness
factor was s = 3. Learning was done using a mini-batch variant of RLS-DLA [15]
using a forgetting factor starting at 0.996 and growing towards 1 during learning,
processing 4 million training vectors (many are reused) for each dictionary. For
each test image the sparse representations, using only the relevant dictionaries,
give the set of energy images R. In Fig. 3 the Gaussian smoothing labeling LG3

is shown as this is used as initial labeling for the erode- and swap-moves. Energy
minimization is done using α-erosion as described in Sec. 3, both the labeling
Ler and Ler+ are shown in Fig. 3. Also the labeling using only α-β-swap-moves
until convergence Lsw is shown. The labeling for α-expansion-moves Lex were
similar to Lsw and is not shown.

The results of the proposed method are compared to those reported by other
works in Table 1. Randen used filtering methods, Ojala Local Binary Pattern
(LBP) and Mäenpää Multi-Predicate (MP) LBP. Skretting used FTCM with
reconstructive dictionaries and Gaussian smoothing. Mairal used learned dis-
criminative dictionaries and EM by α-expansion-moves (D-EMex). The last line
of Table 1 shows the results for the proposed method, i.e. the α-erosion method
followed by erode-moves to straighten the border lines.

Table 2 also shows results for Gaussian smoothing, α-β-swap and α-expansion,
and erode with and without extra border region erode-moves. The results for
Gaussian smoothing are only marginally better than results of [14], average for
the test images 1 to 9 is 12.95% errors, in [14] it was 13.2%, Table 1. The small
improvement is because the 17 × 200 sized dictionaries used here are marginally
better than the ones used ten years ago, sized 25 × 100. The major improve-
ment here is due to the energy minimization (EM) used for regularization. All
EM methods do significantly better than Gaussian smoothing. The results for
the α-β-swap Lsw and α-expansion Lex, both using λ = 1.5, are comparable to
what Mairal reported for discriminative dictionaries in [9]. The proposed meth-
ods Ler and Ler+, here using λ = 2.0, are both fast and effective, as seen in
Table 2. Especially, using extra erode-moves on border regions Ler+ achieves
1 Outex web page: http://www.outex.oulu.fi/
2 UiS web page: http://www.ux.uis.no/~karlsk/tct/
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Table 1. Reported average error rates for texture classification on the set of test
images. The second column is average for images 1 to 9, and the last column is average
for all 12 test images.

Paper and method Avg. 1-9 Avg. 1-12

Randen 1999 (best) [13] 24.1 18.4
Mäenpää 2000 MP-LBP [8] 13.8 10.9
Skretting 2001 FTCM [14] 13.2 -
Ojala 2001 LBP [12] 15.2 12.4
Mairal 2008, D-EMex [9] 5.84 4.50
This paper, FTCM-EMer 3.63 2.87

Table 2. Percentage of wrongly classified pixels for the 12 test images and execution
time for different methods. Note that Ler+ use extra erode-moves on border regions,
as in Fig. 3e.

image Gaussian filter Energy minimization Execution time [s]

no. LG3 LG12 Lsw Lex Ler Ler+ LG3 Lsw Ler Ler+

1 6.08 8.15 3.31 3.38 4.34 2.00 0.038 1.037 0.026 0.072
2 15.42 10.85 2.85 2.75 3.88 3.24 0.037 2.123 0.032 0.068
3 25.33 11.41 2.56 2.56 3.47 4.01 0.038 2.961 0.033 0.063
4 21.41 9.31 4.34 4.34 5.08 2.55 0.040 1.304 0.031 0.064
5 18.20 6.57 2.47 2.47 3.86 1.26 0.040 2.000 0.028 0.058
6 33.69 21.25 10.56 10.74 7.98 6.72 0.369 26.1 0.241 0.334
7 37.09 19.99 3.80 8.49 4.20 4.14 0.355 25.7 0.238 0.317
8 34.94 16.03 12.77 12.68 6.23 4.80 0.153 11.9 0.106 0.151
9 38.57 13.02 2.07 2.02 5.61 3.90 0.155 11.5 0.107 0.160

10 2.27 0.34 0.57 0.57 0.66 0.42 0.038 0.172 0.032 0.064
11 2.44 2.04 1.09 1.09 1.50 0.61 0.034 0.278 0.031 0.060
12 12.00 1.91 3.79 3.79 5.55 0.70 0.033 0.737 0.043 0.080

Average 20.62 10.07 4.18 4.57 4.36 2.87

impressing segmentation. Using extra swap-moves on border regions, this case is
not included in Table 2, also worked very well. The execution times were 10-50
percent of Lsw, and for one case (λ = 3) the achieved average error rate was
impressing 2.74%.

5 Conclusions

The proposed α-erosion method is a greedy method that tries to minimize an
objective function based on the Potts model and can be used to regularize a
label image. It is shown that the α-erosion method achieves results close to
those achieved by methods based on the graph-cut algorithm, i.e. the α-β-swap
and α-expansion methods, but is much faster.

For a common set of test images the average segmentation error rate is even
better for the α-erosion method than for the graph cut based methods, even
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though the achieved values for the objective function are not. The best average
error rate achieved here (2.74%) is better than all earlier reported results.
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11. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. Pattern
Anal. Machine Intell. 24(7), 971–987 (2002)

12. Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture discrimination with
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Abstract. We present here a novel approach to edge detection exploiting a local 
operator. One of the advantages of such operator is that its results are augment-
ed with the edge direction without any further processing. 

Keywords: Edge detection ⋅ Local operator ⋅ Divided difference method 

1 Introduction 

Being a basic task, edge detection underlies many more complex procedures in image 
processing and computer vision, such as shape detection and description [13], object 
recognition, image compression [9], or recognition of biometric traits [15]. Many 
dedicated operators have been devised [4], whose performance is characterized by 
their robustness to distortions like contrast and illumination variations. The results can 
often be enhanced by tuning some parameters to specific situations. However, no 
edge filter fully and automatically adapts to the image at hand. We propose a new 
local operator to detect contour points. It exploits a fourth degree polynomial function 
to evaluate the neighborhood of a pixel and to assign it a score, so to highlight the 
points on a contour and discard those of an homogeneous region. We also discuss 
aspects of computational cost/time, which are addressed by ALOE (Augmented Local 
Operator for Edge Detection) to dramatically reduce the required processing time. 

2 Related Work 

Literature about edge detection is hardly summarized. Detectors can be first distin-
guished in first and second order derivative edge detectors. The operators in the first 
class use the convolution of the image with a kernel to generate a gradient image, to 
which a threshold is applied to extract contours. The operators in the second locate 
zero-crossing points, corresponding to points of minimum/maximum in the image. 
Available techniques can be further divided in: search based, and zero-crossing based. 
The former compute the intensity of a possible contour in a point-wise manner and 
select the local maxima. The latter rely on differentiation, smoothing, and labelling. 
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The differentiation step exploits a discrete approximation of differential operators. 
Among the many operators in literature under this category, Sobel is surely one of the 
most popular ones. One of its limits is related to the way it computes the gradient 
according to horizontal and vertical components, which are often not sufficient [12]. 
Some similar operators achieve better results by an extended support element (up to 
7×7) to consider more rotations. As a common limit, these methods return quite thick 
edges, possibly not suited to applications requiring one-pixel wide contours.  

Marr and Hildreth [10] proposed the Laplacian of Gaussian (LOG) operator, which 
solves that problem. It relies on the consideration that the variation of image intensity 
occurs at different levels. The limit of LOG is the use of zero-crossing, which is only 
reliable in locating well separated edges in images with a high signal-to-noise ratio 
(SNR). Another problem is the detection of false edges, while also missing true ones. 

Canny filter [2] aims to provide a solution to the edge displacement which is often 
caused by noise pre-filtering. It relies on the three criteria of good detection, good 
localization, and one response. For a 1D step edge the optimal filter can be approxi-
mated by the first derivative of a Gaussian function, while in 2D the property of sepa-
rability of the 2D Gaussian function allows to decompose it into two 1D filters (deriv-
atives along the horizontal and vertical directions). The proposal further includes a 
scheme for combining the outputs from different scales. The final algorithm is more 
sensitive to weak edges, but also less robust to spurious boundaries. 

Gaussian filtering is also the basis for multi-resolution methods, exploiting edge 
detection at different scales of the Gaussian filter. An example is the so called edge 
focusing by Bergholm [1]. All these methods share two main issues: the choice of the 
scale range to process and the fusion of the results. Many of the problems normally 
encountered with multi-resolution are overcome by wavelet-based approaches [14]. 
One of the main limits of such approaches is that wavelets are able to detect point-
singularities, therefore originating, in many cases, discontinuous edges. 

A different solution is provided by morphology based edge detectors [8], which 
however suffer for the strong dependency on the adopted Structuring Element (SE). 

Among the most recent approaches, we can mention statistical and contextual 
methods. An example of the former is proposed by Konishi et al. in [7], while an ex-
ample of methods based on context analysis is presented by Yu and Chang [16]. Both 
kinds of approaches may need a different learning phase for different kinds of images. 

3 Edge Characterization 

In Section 2 we underlined that one of the limits of existing operators is the use of the 
gradient computed on the base of horizontal and vertical components. ALOE (Aug-
mented Local Operator for Edge detection) exploits the information in the full neigh-
borhood of a pixel, in order to better evaluate the strength of a potential edge. 

Given a point P(xP,yP) in an image I, ALOE considers a set of n concentric circum-
ferences Ck centered in P and with increasing radius ρk∈R, with k=1, 2, …, n. For 
each such circumference, ALOE performs a polar clockwise visit of the pixels in I 
lying on it. The coordinates of a visited point Q(xQ,yQ) can be expressed in polar form, 



 ALOE: Augmented Local Operator for Edge Detection 217 

with respect to Ck, as Q(ρk,θQ), with θQ=atan((yQ -yP)/(xQ-xP)) in [0, 2π]. In practice, we 
do not adopt a regular angular sampling, but rather visit all points. Therefore, the 
number of pixels Nk visited on each circumference depends on the length of Ck, or, 
equivalently, on radius ρk. We indicate with supscript j the order in which points 
Q(xQ,yQ) are visited along the circumference Ck, and we insert the pixels  zj=I(xQj

,yQj
) in 

a vector vk={zj| j=1,…, Nk}. The values zj in the vector vk are grey levels in the range 
[0, 255] and can be interpreted as the discrete values sampled by a function z=f(θj). 

Once computed the function interpolating the values of the points zj, the core idea 
of ALOE is to investigate the shape such function would assume for each Ck; for in-
stance, if all points had a practically constant value, making up an homogeneous re-
gion, we would obtain a polynomial of degree 0, and vice versa. Therefore, we want 
to characterize the shape and the degree of the polynomial function which approxi-
mates the case when point P is on a step edge, as shown in Fig. 1. We can preliminari-
ly observe that, when P is on an edge, the approximating polynomial has a degree 
higher than 1 (straight line). In order to reduce the distribution of samples zj to a typi-
cal condition, we identify the position θmin=argminj(f(θj)) of the absolute minimum 
and perform a left shift of vector vk by θmin positions, which is equivalent to consider 
the function zSHIFT =f(θj -θmin). As we can observe from the bottom graphic in Fig. 1, the 
shape of the function is well approximated by a polynomial of degree 4, which  
assumes a typical “M” shape. By exploiting this feature, a possible criterion to charac-
terize edges might be to evaluate the error of approximating the distribution of sam-
ples with that polynomial; the lower the error, the higher the probability that the pixel 
lies on an edge. This gives a kind of weight for the pixel, which is computed for all 
the n different circumferences Ck to obtain a final “edge-ity” score. This operation 
must be repeated for each pixel in the image; this means to solve n polynomial ap-
proximation problems for each pixel, with the corresponding error evaluation, making 
the method extremely inefficient. 

Actually, it is possible to reduce the computational cost of the method, while main-
taining good accuracy of the result. When the distribution of points zj can be well 
approximated also by a polynomial of degree less than 4, the coefficient a4 associated 
with term θ4 tends to zero. Therefore, it would be sufficient to evaluate only the coef-
ficient a4 to assign a partial score to the pixel P pertaining to a certain circumference. 
A high value of this coefficient corresponds to a high probability for the pixel P to lie 
on an edge; otherwise, it would be considered as part of a homogeneous zone.  
Furthermore, the shift to the left of the samples zj in the vector vk, allows to possibly 
obtain the typical shape shown in Fig. 1, with three minima, interleaved by two maxi-
ma. In addition, these minima and maxima tend to be arranged in stable positions: a) 
two minima at the extremes 0 and 2π, and one at the center (π), b) two maxima at π/2 
and 3/2π. 

Relying on the above observation, it is possible to select only a subset of five sam-
ples S={zh=f(θh), θh=h⋅π/2 e h=0,…, 4} and use them to compute the approximant 
polynomial. This can reduce the complexity of the problem, as it is no longer neces-
sary to solve a regression problem, but it is sufficient to use a standard interpolation 
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Fig. 1. A point P on a step edge, with circumference Ck with radius ρk centered on it. The 
graphic on its right shows the gray levels zj of pixels Qj(ρk,θQ) on the circumference and the 
position θmin of the absolute minimum. In the lower graphic the same values have been shifted 
on the left by θmin positions and the approximating polynomial of fourth degree is shown. 

method. However, many methods such as the Lagrange one, build the interpolating 
polynomial iteratively, making the computation of coefficients still inefficient, given 
the high number of times in which this problem must be solved. A solution which is 
effective and efficient at the same time is provided by the divided difference method 
of Newton. Unlike others, this method calculates the coefficients individually, by 
creating what is called the table of divided differences. On the base of Newton meth-
od, we derive the following closed form for the coefficient a4: 
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A high value of a4 makes ALOE assign a high probability to the pixel in P to be on 

an edge. The score assigned to the pixel P from the processing performed on the cir-
cumference Ck is then given by sk = |a4|. As previously mentioned, ALOE performs 
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this processing for n different circumferences centered in P and with growing radius 
ρk∈R, with k=1, 2, …, n. It follows, that n partial scores are assigned to the point P, 
one for each circumference. The total score for P is computed as: 

( )
= +=

⋅=
n

h

n

hk
hkall sss

1 1

 (2)

This privileges points achieving a high partial score on more adjacent circumferences. 
Finally, the range of values for the result sall is compressed by an exponential func-
tion, which produces the final score s which is assigned to P:  

The value of γ in (3) is a control parameter, allowing to decide the intensity of  
detected contours. 

4 Angular Direction 

One of the basic steps in the elaboration carried out by ALOE for the calculation of 
the edge is determining the point θmin on the circumference Ck, corresponding to the 
pixel with the minimum gray level value, in order to shift to the left the values zj in 
the vector vk. This side information is such that ALOE is not only a technique for the 
contour extraction, but also a local directional operator. In this way, ALOE is able, in 
a single step, to detect both the contours and the angular directions in an image, pro-
ducing a map of the directions that can be used as a set of features in an image for 
classification purposes, in a way similar to what happens for many other operators 
developed specifically for this purpose, as for instance Local Binary Patterns (LBP) 
[11] or Local Directional Patterns (LDP) [5]. The additional advantage offered by 
ALOE in this sense is the high precision with which it is able to calculate this infor-
mation. In fact, it examines a set of Nk points on the circumference Ck, so that the 
greater the number of such points, the better the accuracy of the detection of the angu-
lar direction. Similarly to what happens for the detection of the intensity of the con-
tour points, the angular direction for each point P is associated with n estimates αk 
(k=1, …, n) of the direction. The angular direction α associated with the point P is 
given by the mean value of the αk. Fig. 2  shows an example of the result produced by 
ALOE on the popular  image Lena. 

5 Experiments 

A standard form to compare detector performance, which is quite natural to assume, is 
obtained by transforming the original image, according to the detector results, into a 
binary one, where a 1 denotes that the corresponding point was identified as an edge 
point and a 0 means the contrary. 

allses ⋅
−

= γ
1

 
(3)
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The specific characteristics of edge detection schemes, that should be taken into 
consideration for comparative purposes, include both performance issues (such as 
possible bias of orientation of detected edges, ability to detect edges in the presence of 
noise, range in scale of edge detectability, ability to detect blurred edges, ability to 
detect curved edges, and ability to extract an edge in the presence of other edges), as 
well as more computation-related issues such as computational effort. 

Despite its importance, quantitative performance evaluation is often neglected in 
most of the available literature on contour detection. As a matter of fact, while quanti-
tative evaluation is quite readily accomplished using artificial pictures as a test-bed, 
the most faithful test of an edge detector requires to measure its performance with real 
pictures. This means that an obvious ground-truth, trivially related to the way the 
image has been synthetized, is missing. The alternative to the above is to use ground 
truth (GT) data, which is widely considered as a good compromise between complete-
ly objective and completely subjective quantitative performance evaluation. 

 

 

Fig. 2. Example of the detection of angular direction of contours by ALOE on image Lena: 
black represents a π/2 angle, while white is a π angle 

ALOE is compared with Canny, Sobel and a fuzzy edge detector provided in 
MATLAB library [17]. In order to evaluate ALOE performance, we propose both a 
qualitative and a quantitative evaluation. The former is left to the reader (see Fig. 3), 
by presenting some examples of results from the different systems. For sake of space, 
we were only able to show two of the most classical ones.  

Afterwards, the same edge detectors have been tested on a synthetic dataset, which 
was built ad hoc in order to have an objective GT. The dataset is composed of 20 
images with resolution 334×426 pixels, with geometrical figures (rectangles, circles, 
triangles) with contours of different width (1, 2, 3 and 4 pixels). Examples of images 
and of results are in Figure 4. The parameters used for ALOE are n=3, ρk={0.334, 
0.667, 1.00}, γ=0.001. The average time for ALOE (C implementation) to process 
such images is about 235ms on a Genuine Intel(R) U7300 1.30 GHz with 4Gb RAM 
and 64 bit operating system. 
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Fig. 3. An example of the results produced by the different edge detectors. In the order: the 
original image, Canny, Sobel, Fuzzy and ALOE.  

 

 

Fig. 4. An example of synthetic image (a) and results produced by the detectors considered; in 
the order: (b) Canny, (c) Sobel, (d) Fuzzy, (e) ALOE. A detail of the image with the same order 
in given in (f). 

Quantitative performance have been measured using PRATT Figure of Merit 
(FoM), which measures the disagreement between the Detected Contour (DC) and 
Ground Truth (GT) and is defined as follows: 

 1max , 11 
 (4)

 
where dGT is the distance transform of GT and λ is a scale parameter. PRATT ranges 
in (0,1], being equal to 1 iff DC coincides with GT, and is non-symmetric with re-
spect to DC and GT. The parameter λ controls the sensitivity to differences between 
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GT and DC: for small values, PRATT is close to 1 only if DC is very similar to GT, 
while for large values larger differences between GT and DC can be tolerated. In 
practice, PRATT provides an overall evaluation of the quality of a given contour map, 
by taking into account false positives (i.e. undesired responses in the contour map), 
false negatives (i.e. missing contours), and shifting or deformation of a correctly de-
tected contour from its position in GT. For our experiments we set λ=0.5. The average 
values obtained for the different detectors are summarized in Table 1. 

Table 1. Average values of PRATT FoM computed over a set of 20 synthetic images for which 
a GT was derived 

Canny Sobel Fuzzy ALOE 
0.7110 0.7691 0.8330 0.8510 

 
As highlighted by Table 1, ALOE outperforms classical methods, and achieves bet-

ter performances even with respect to state of the art recent techniques, such as the 
Fuzzy edge detector introduced in [17]. From the detail in Fig.4 (f), it is possible to 
observe that Canny, and also Sobel and Fuzzy in lower measure, tend to round the 
contours of squared figures or corresponding to cross lines, while ALOE better re-
turns the original shape of the objects, even when they overlap. 

6 Conclusions 

We presented a novel approach to edge detection exploiting a local operator. ALOE 
results are augmented with the edge direction without any further processing. We use 
an approximating polynomial to estimate the belonging of a pixel to a contour. How-
ever, in order to reduce the computational cost of the method, while maintaining good 
accuracy of the result, we also propose some turnarounds based on the characteristic 
shape of relevant polynomials and the divided difference method of Newton. The 
method has been compared with both classical ones (Canny and Sobel) and with a 
recent fuzzy technique. The obtained results are very satisfying from both a subjective 
and objective point of view. 
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Abstract. This paper presents a novel two-stage unsupervised method
using Active Contour Model (ACM) and Fuzzy C-mean (FCM) for image
segmentation and object detection. In the first stage, ACM is applied to
identify the regions of interest, making it possible to subtract the back-
ground. Then, an FCM-based algorithm is used to detect the objects in
a given image. Unlike existing techniques where the number of clusters is
typically set manually, the proposed method is able to automatically esti-
mate the cluster number. Moreover, the proposed method can effectively
handle the multi-object case, even in the presence of occlusions where,
images may contain an arbitrary number of unknown objects. Experi-
mental results on several images have shown the success and effectiveness
of our method in detecting the salient objects.

Keywords: Active contour · Fuzzy c-mean · Microsoft Kinect · Depth
clue · Object detection

1 Introduction

Object detection is a challenging vision task that is an important step in numer-
ous applications, such as, scene understanding, video surveillance, image search
and medical applications. Most object detection techniques have been designed
for a specific class of objects like, pedestrians, cars and faces [7,11,15]. For exam-
ple, several approaches have been proposed for detecting moving objects in video
shots [5,12]. However, detecting different unknown objects in static images is still
an open challenge due to the complexity of images and object classes. In this
study, we explore the problem of detecting multiple salient unknown objects in
a given static image.

Image segmentation, a prerequisite for many computer vision applications,
can be used to help with object detection. Image segmentation can be defined
as the process of dividing an image into homogenous and meaningful regions
[13]. Although classical segmentation methods typically used grey-level images
only, more and more newer methods have used color images [1,4]. Generally, seg-
mentation techniques were categorized into five groups, namely threshold-based
c© Springer International Publishing Switzerland 2014
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techniques, edge-based methods, region-based methods, clustering techniques,
and matching [13]. In particular, ACM, an edge-based segmentation technique
and FCM, a clustering technique, are our main focus in this study that aim at
segmenting and detecting objects in still images. Note that both ACM and FCM
have been used in a variety of applications [10,18,19].

FCM algorithm has shown promising results in segmentation by improving
the compactness of the regions. It is a pixel clustering technique where, simi-
lar pixels should be in the same group while, the dissimilar ones are assigned
to different clusters. Although FCM algorithm benefits from simplicity of its
implementation, it has two major drawbacks. First, cluster centers should be ini-
tialized randomly when using FCM. This issue may have negative effects on the
outcome of the segmentation quality. To overcome this problem, some researchers
proposed a number of efficient initialization algorithms [3,4]. For example, the
Fuzzy Maximum Likelihood Estimation (FMLE) was used as a clustering tech-
nique for classifying data points in [3] where, FCM algorithm was applied as an
initialization first step for the FMLE algorithm. In [4], a centroid initialization
method, called ordering split, was proposed, where all n-dimensional samples
are converted to 1-dimension by getting the mean over the feature space. Then,
all samples are uniformly split into C groups and C subsets of indices that are
iteratively built. Finally, cluster centers are calculated. More details about this
method can be found in [4]. The second main issue about FCM is the number of
clusters, the C value, which should be known in advance. Several validity indices
have been proposed to determine the best number of clusters [2,3]. However,
various validity indices have yielded different cluster numbers that depend on
the genre of the specific data. The reason is that most of these proposed meth-
ods are based on statistical information, and they are typically sensitive to noisy
data, like real images, which might consist of texture and illumination.

To address the above problems, this paper proposes a new unsupervised
method for segmentation and object detection, in the challenging case of occluded
multi-object scenes. Our method makes use of the color images as well as the
depth clue, obtained using the Microsoft Kinect sensor. Because salient objects
in an image scene might be surrounded by irrelevant information, an Active
Contour Model (ACM) algorithm is first applied, as a pre-processing step, on
RGB image. The output of this step consists of a set of contours containing the
salient regions of the image. The area outside the obtained contours is the image
background, which is removed by setting its color to white. Then, the histogram
of depth information for each contour is constructed and analyzed. The number
of peaks (non-zero bins) in depth histogram indicates the C-value (i.e. cluster
number or the number of objects in the contour). Then, our FCM-based method
is employed on image blocks for each contour to identify the different salient and
occluded objects. Once there are no more contours, the results of the FCM-based
method for all contours are integrated. The total number of C-value for all con-
tours, excluding the background, indicates the number of objects in the image.

Section 2 describes the two-stage unsupervised proposed method for multi-
object detection and Section 3 presents the experimental results and discussions.
A conclusion is given at the end.
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2 The Proposed Two-Stage Unsupervised Method for
Multiple Object Detection

2.1 Background Subtraction Using Active Contour Model

Active Contour Model (ACM), an edge-based segmentation technique, has been
widely employed for extracting an object outline, and it is implemented via a
level set function by means of an energy minimization. Generally, the energy of
ACM includes an external term and an internal term. Such energy functions aim
at controlling the shape and size of the curve and make the zero-level set function
move towards objects boundaries. Traditional level-set methods go through the
expensive and complicated process of re-initialization in order to keep the level-
set function close to its main pose during the curve evolution. More recently, vari-
ational re-initialization free level set methods have been proposed [10,20]. In this
paper, we follow the ACM-based method given in [10] which is re-initialization
free and performs effectively in the presence of intensity inhomogeneity. The
energy function used in this paper is based on the following one.

ε(φ) = μRp(φ) + εg,λ,v (1)

where Rp(φ) is the internal energy function and the constant μ � 0 is considered
as the distance regularization term, for controlling the deviation of the level
set function from the signed distance function. For more details about Equa-
tion 1, the reader may consult [10]. However, in the external energy function of
above equation only gradient was used as an edge indicator. This will allow the
detection of objects with well defined gradient-based edges only. Furthermore,
because the gradient is sensitive to textured and/or noisy regions, the curve will
likely stop before reaching the object boundaries. In some cases, it may even pass
through the edges, if the gradient has small local maxima on the object edges.
To overcome this problem, image polarity was applied in the external energy
function as a stopping term in [1,8,9]. It was shown in particular that polarity
is better at detecting the object boundaries in the presence of texture. Polarity
is a local image feature that measures the extent to which gradient vectors are
oriented in some dominant direction, around a specific pixel. However, the use
of polarity has its own weakness as well. In particular, it is outperformed by
gradient in the absence of texture.

In addition to these two features, depth information can be a good clue
for detecting salient objects as the pixels of the depth image correspond to a
depth or a distance. Disparity map, obtained from two images, can be used as
a depth clue and is a good alternative feature in an ACM stopping term [14].
There are also newly available and affordable depth sensors that can be used
to obtain depth clue. However, even with such 3D sensors, it is still difficult to
clearly detect and/or differentiate objects with no depth, and also when they are
located at similar depths. To overcome the above problems, we propose a new
method to automatically select the best candidate features, to be used in the
ACM, and combine them using a semi-supervised classification method, based on
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Support Vector Machine (SVM). First, given an input image, the three features,
namely gradient (Fg), polarity (Fp) and depth (FD), are computed. Second,
unlike previous known methods, we automatically select either the gradient or
the polarity, based on our texture/noise indicator calculated over the mean of
the gradient values in the target area. Then, the histogram of depth on the
initial contour is extracted and analyzed. If the number of peaks (non-zero bin) is
greater than 1, it means that depth information is available and can be combined
with another feature (i.e. either gradient or polarity) to be used as a stopping
function in the ACM. If more than one feature is selected as a stopping term,
they should be combined using SVM. The gradient (Fg), polarity (Fp) and depth
(FD) values are between 0 and 1, and such values are very close to 0 on edge
and 1 on non-edge areas.

Every pixel should be classified either to 0 (edge) or 1 (Non-edge) classes.
Since SVM is a supervised method, some training samples (i.e. pixels are samples
in our case) should be provided to train it. However, in practice, class labels
for pixels of real images are not available. To overcome this, we have used the
target image itself as our training samples. The two ideal vectors, namely truly
edge with values being 0 (i.e. [0,..,0]) and truly non-edge with values being 1
(i.e. [1,..,1]) are defined. The size of these two vectors depends on the subset
of features used. For example, the size is set to 2 if only Fg and FD are used.
First, for every pixel the Euclidean distances between its feature vector and the
ideal vectors are calculated. Then, these scores of distances are sorted, and only N
pixels, the closest ones to the ideal vectors, are kept as training sets, to represent
edges and non-edge. Note that the training samples for both classes are equal
to N, which can be determined through experiments. Once the training samples
are obtained, the classifier can be trained and applied on the testing set. The
output of applying our ACM-based method is a set of final contours containing
regions of interest in the image. This allows us to remove the background and
any irrelevant information. Hence, the process of salient object detection can be
accomplished in a more effective manner.

2.2 Salient Object Identification Using FCM

This section describes the process of salient object detection, and how the num-
ber of salient objects, or clusters, in a given image is calculated.

Determining Cluster Number. In the previous section, ACM as a pre-
processing stage, yielded a set of final contours. However, when objects are
occluded by each other, a single contour may contain more than one object.
Because objects might have similar colors and could be difficult to separate
using classical methods [6,17,19], we have used depth information to explore
the content of each final contour, and to help obtain the number of clusters.
Both the color and depth images were obtained with the affordable Microsoft
Kinect sensor. Note that such depth, even if it is not very accurate, it is ben-
eficial for the clustering method, as it provides approximate distances between
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(a) (b)

(c) (d) (e)

(f) (g) (h)
Fig. 1. The Process of Determining the Cluster Number. (a)Color image (b)Final
Contours of ACM (c)Depth of Contour 1 (d)Depth of Contour 2 (e)Depth of Contour
3 (f)Histogram of Contour 1 (g)Histogram of Contour 2 (h)Histogram of Contour 3.

objects and the sensor. In particular, depth histograms, well-known graphical
tools for frequency distribution, were successfully experimented in [16] for the
detection of the hand contour. In this paper, we have used depth histograms to
determine the number of potential objects within the given contour. Figure 1
depicts how the number of objects (clusters) in each contour is extracted from
the three final contours of the ACM’s result. Each contour is given a label while
the background (the area out of the final contours) is removed by setting its color
to white. Then, the histogram of depth information for each contour, including
the background is constructed. The analysis of each histogram, i.e., the number
of peaks or non-zero bins, gives us a good indication of the number of available
objects in that contour. The number of peaks in a histogram is also considered
the number of clusters or C-value in the Fuzzy C-mean. So, a C-value is always
greater or equal to two when there is at least one object in the scene. In the min-
imum case, one peak belongs to the background and the other peak corresponds
to the contour of a single object. For example, as Figure 1 shows, the number of
peaks for the middle contour is three, suggesting that two objects are available
inside this contour. Note that the highest peak corresponds to the background
(white color) in the histogram of each contour.
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Object Detection. Once the cluster number for each contour is found, FCM
can be used to explore the possible occlusions. Color (we have used the CIE-
L*a*b* color space), texture and depth are the three features used in our FCM.
Energy and homogeneity are two texture features computed from the co-
occurrence matrix. Co-occurrence matrix determines the frequency of a pixel
with grey value i occurs adjacent to a pixel with grey value j in a specific
orientation. We compute the co-occurrence matrix for four orientations θ ∈
{0, 45, 90, 135} and one distance value D ∈ {1}. Then the average of energy
and homogeneity are calculated over the number of orientations and distances.
The other feature we can use is the depth obtained from Microsoft Kinect. So, the
feature space is six-dimensional, including color (L, a, b), texture (Energy, Homo-
geneity) and depth. Because pixel clustering is computationally costly, especially
for today high resolution images, we have followed the approach in [18], where
block-wise clustering was used. In particular, the image is divided into several
blocks, where the block size should cover approximately 17% of the maximum
number of pixels in the height and width of the image. Then the average of all
features values for each block is calculated. Finally, FCM is applied to cluster
the blocks instead of pixels. The occluded objects are hence identified by their
corresponding contours. This process is done for all contours, and the different
FCM results are combined to identify the number of objects in the whole image.

3 Experimental Results

The proposed method has been tested on five real images with a 640 × 480
resolution. Microsoft Kinect was used to obtain both RGB and depth images.
However, since the depth image is not registered to its corresponding RGB image,
a function from OpenNI was applied to approximately register the depth image
with its corresponding RGB image. In the first stage, our ACM-based method
was applied on the images with the goal of subtracting the background. Some
parameters like λ, μ, v , and Δt (time step) should be set for implementing the
ACM. These parameters were set to λ = 5, μ = 0.04 and Δt = 5, and they were
kept constant throughout all our experiments. The initial contour is set globally,
and it goes through the 430 iterations during the curve evolution. We set the
threshold in this stage, and the final contours with the number of pixels less
than this threshold are ignored. In the second stage, our FCM-based algorithm
was employed on each contour to identify the objects and handle occlusions. To
improve the efficiency, images were divided into blocks, and FCM is applied on
blocks rather than pixels. The block size was set to 8, considering the resolution
of our images. Figure 2 indicates the effectiveness and success of our proposed
method in detecting the multiple salient objects in the image. The first column in
Fig 2 depicts the RGB images while the middle and third columns are the results
of our ACM-based and FCM-based algorithms, respectively. As Fig 2 suggests,
our ACM-based algorithm is able to effectively extract the regions of interests
from the images. However, it was not able to handle occlusions correctly. Hence,
our FCM-based algorithm was applied on each contour to remedy this situation.
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(a) Image 1 (b) Final Contours of ACM (c) Final Result of FCM

(d) Image 2 (e) Final Contours of ACM (f) Final Result of FCM

(g) Image 3 (h) Final Contours of ACM (i) Final Result of FCM

(j) Image 4 (k) Final Contours of ACM (l) Final Result of FCM

(m) Image 5 (n) Final Contours of ACM (o) Final Result of FCM

Fig. 2. Results of Applying the Proposed Method
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(a) Image 1 (b) PC=2 (c) SC=2

(d) Image 2 (e) PC=3 (f) SC=3

(g) Image 3 (h) PC=2 (i) SC=5

(j) Image 4 (k) PC=3 (l) SC=4

(m) Image 5 (n) PC=4 (o) SC=4

Fig. 3. Results of Method [3] using SC and PC Validity Indices
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As discussed earlier, the depth histogram of each contour is taken into account
to determine the C-value for the FCM algorithm. Finally, the results after this
second stage, for all contours, are combined to detect and extract all salient
objects in a given still image.

We have also tested the method in [3] and compared it to our proposed
method. Two validity indices, namely SC (compactness and separation) [3] and
PC (Partition Coefficient) [2], are used to validate the cluster number, i.e., the
number of objects in the image. However, as Fig 3 shows, such validity indices
may get different values for the same image due to texture and outliers. For
example, Image 3 in Fig 3 shows that 2 is the best cluster number using PC
validity index while SC method suggests 5 as the best cluster number for image
3. Moreover, since the background is not subtracted, objects cannot be prop-
erly detected and separated from each other. Overall, our proposed method has
outperformed [3] and was able to effectively and accurately detect all objects in
a given image. The use of the depth information in the clustering process was
very helpful to accurately obtain the cluster number for the FCM algorithm. In
particular, objects which are occluded by each other are properly detected using
our method.

4 Conclusion

This paper presented a novel method that can accurately detect multiple occlud-
ing objects in a given still image. Unlike existing techniques, the proposed
method automatically selects the best feature(s), among the gradient, polarity,
and depth depending on the input image, to be used in the stopping function in
the ACM-based algorithm. In addition to the RGB image, the proposed method
takes advantage of depth information to estimate the C-value to be used with
an FCM algorithm. We have successfully experimented our method on several
images, captured with Microsoft Kinect, where we had multiple occluded and
non-occluded objects. In all our experiments, the numbers of salient objects in
the images were correctly estimated and properly detected. Our experimental
results clearly show that our method outperforms some existing techniques that
used validity indices for specifying the best cluster number. However, in the
extremely rare case where objects have the same color, texture and depth, they
may not be discriminated from each other. In this situation, spatial informa-
tion and pixel continuity could be taken into account to overcome this problem.
Another limitation is that Microsoft Kinect is unable to properly function in
outdoor setups. In our future work, we will test the same method using stereo-
images where pixel disparities will be used as a depth clue instead of sensor
calculated depth.
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Abstract. We examine whether 3D pose and face features can be used
to both learn and recognize different conversational interactions. We
believe this to be among the first work devoted to this subject and show
that this task is indeed possible with a promising degree of accuracy using
both features derived from pose and face. To extract 3D pose we use the
Kinect Sensor, and we use a combined local and global model to extract
face features from normal RGB cameras. We show that whilst both of
these features are contaminated with noises. They can still be used to
effectively train classifiers. The differences in interaction among different
scenarios in our data set are extremely subtle. Both generative and dis-
criminative methods are investigated, and a subject specific supervised
learning approach is employed to classify the testing sequences to seven
different conversational scenarios.

Keywords: Human interaction modeling · Conversantional interaction
analysis · 3D human pose · Face analysis · Randomized decision trees ·
HMM · SVM

1 Introduction

There has been some success in using features extracted from high-level infor-
mation such as body pose, e.g. automatically learning sign language to perform
classificaiton task [5]. However, assumptions about the subjects in the scenes,
such as body orientation, are routinely made to constrain the solution. A further
problem with studying social interaction is that there are often occlusion since
usually participants would face one another, meaning observations are often
incomplete. For this reason, often the interactions examined are less intimate
and can be viewed at a coarser resolution. For example Zhang et al. [21] studied
group interactions in a work meeting between multiple people, detecting events
such as presenting to the group, conducting a group discussion or note taking etc.
This is achieved by first estimating the state of each participant and then using
this information to infer the group action. Decomposing the group interaction

c© Springer International Publishing Switzerland 2014
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into a two level process of firstly inferring what each person is doing, and then
from this deducing the group action is a common approach [1,19,21]. Probabilis-
tic models such as Hidden Markov Models (HMM) can be employed to overcome
noisy observations, both at the image level and on the person dependent action
classification level. However, for this approach to be effective there needs to be
an understanding of which motions, poses or gestures that an individual per-
forms is likely to be an important building block. Often this is dependent on the
granularity of the actions being observed.

In order to understand the high-level semantic human activity, accurate pose
estimation is generally required. To perform such as task using RGB cameras,
e.g. [8,9], remains an open challenge. In [10,11], we proposed to leverage recent
advances in technology in extracting 3D pose using a consumer sensor (Microsoft
Kinect) to examine the feasibility of recognizing human interactions between two
people using the body pose only. Rather than recognizing just key social events,
we attempt to analyze and classify different conversational interactions. In this
work, we investigate both bodily and facial pose features for recognizing the
type of conversation they are conducting. We do not examine strongly differen-
tiable interactions, such as high-tempered arguments or disputes, as in previous
research efforts studying interaction. Neither do we employ the use of actors.
Different from affect recognition, where a single observation can typically be
used to identify the affective state (e.g. smile implies happiness), there is not a
direct connection between a single observation and the type of the conversation
being performed; rather it is the sequence of observations as an interaction is
in progress and is of importance. We acknowledge that bodily and facial move-
ments are not necessarily generalizable across subjects. Here, we aim to find out
whether it is possible to generalize subject specific motion cues which can be
used to identify the topic of a conversation.

2 Data Acquisition

Data was collected using a multi-camera set-up. Each person was recorded using
a Kinect Sensor, which captured pose at 30fps. The face images were captured
using two high definition cameras operating at 25fps. The first task was to discuss
an area of current work that the participant was undertaking. The second task
was to prepare an interesting story to tell their partner, such as a holiday expe-
rience. The third task was to jointly find the answer to a problem. The fourth
task was a debate, where the participants were asked to prepare arguments for a
particular point of view on an issue we gave to them. In the fifth task they were
asked to discuss between them the issues surrounding a statement and come to
agreement whether they believe the statement is true or not. The sixth task was
to answer a subjective question, and the seventh task was to tell jokes in turn.
In total, there are about 8 hours long Kinect sequences and equal length of face
sequences. The dataset is available for download from http://csvision.swan.ac.
uk/converse.html.

http://csvision.swan.ac.uk/converse.html
http://csvision.swan.ac.uk/converse.html
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Fig. 1. Flowchart of the proposed method

3 Methodology

The proposed method first extract motion features from Kinect output and local-
ize facial fiducial points in RGB face images using a two level shape model. The
head orientation is then computed based on face localization and is treated as
part of the pose feature. The localization of face fiducial points also provides two
sets of features: shape and appearance. The shape features are derived from the
coefficients of a global shape model that is used for face localization. The appear-
ance features are obtained from the textural coefficients of two local face models
after Linear Discriminant Analysis. Hidden Markov Models (HMMs) are then
used to model the conversational interactions based on these low level features
at individual time instances. Interactions between pair of subjects are captured
using coupled HMM. A temporal generalization of both pose and face features
are also carried out to encapsulate temporal dynamics, which first produces a
visual vocabulary features and then further generalizes them to visual topics
through Latent Dirichlet Allocation analysis. Discriminative classifiers, Support
Vector Machine (SVM) and Random Forests (RF), are applied to classify inter-
actions into seven different scenarios. Moreover, we apply modulator functions to
those mid level features so that we can learn the importance of those individual
features, which is then used in the SVM classification. Fig. 1 illustrates the steps
from low level feature extraction, to unsupervised feature generalization, and to
supervised modeling and classification.
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3.1 Pose Feature Extraction

Motivated by recent work, such as [2,16,17], we extract three types of low level
features to depict the pose and motion of the upper body. These geometry fea-
tures extracted from a kinematic chain are simple but powerful for representing
human gesture and motion over time. The first set of feature measures the dis-
tance between two joints at different time intervals. The second set of feature
measures the distance between a joint and a reference plane defined using differ-
ent parts of the body. The third set of feature measures the velocity of individual
joints. These are depicted in row (b) in Fig. 1.

In this study, we use three reference planes, (1) (2) and (3) showed in row
(b) in Fig. 1. The first two reference planes, (1) and (2) are used to measure the
distance and velocity of joints on the lower arms, i.e. hands, wrists and elbows.
Both planes are located at the same spine point. One of the two planes is defined
by the vector connecting the spine and left shoulder (Fig. 1, row (b), (1)), and
the other is defined by the vector connecting the spine and right shoulder (Fig.
1, row (b), (2)). The former is used to measure the lower arm joints on the left
side and the latter is for right side. The two vectors connecting hip center from
two shoulders define the third reference plan (Fig. 1, row (b), (3)), which is used
to measure movements of lower arm joints from both arms. The overlapping in
measurement is to make sure that the 3D motion of those joints are captured
among those 2D measurement combinations.

3.2 Face Feature Extraction

The face images acquired have varied poses and sometimes contain occlusions
(e.g. glasses and hand movement). Consequently, holistic models, such as active
appearance models, [6], have been found not robust enough to track the faces
beyond a few dozens of frames. We thus integrate the local component shape
models with a global shape model [12]. We use the point distribution model [6]
to build two local shape models, which are trained using feature points from
upper and lower faces, respectively, with overlapping nostril fiducial points. The
two models hence are focusing on local deformations at eyes and mouth regions
that are important to model interactions. The overlap provides a weak constraint
between two local models. The result from local models provides a good initial-
ization for the second level global shape model. Each of the fitness function is
composed of a texture cost and a shape cost. Response scores based on Haar-like
rectangular features [20] and the GentleBoost algorithm [13] are used to evalu-
ate the texture fitness. We follow [7] to formulate a generic shape cost function,
which is applied to both local and global models. The two level fitness functions
are then optimized using the simplex algorithm.

Based on the localization results, two types of features are extracted to capture
facial dynamics: shape and appearance. For each face image there are 35 fiducial
points, many of which are for localization purposes, and are not contributing to
deformations. We hence project those localized points to the global shape model
space learned at the localization stage and retain 90% eigenvalue, which results in
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9-dimensional shape features. This dimensionality reduction is also desirable for
training classifiers. For appearance feature, we similarly project the facial texture
to a PCA texture model that is learned from the training samples used for local-
ization. Since there are significant differences between the upper part and lower
part of the face, two separate PCA models are built. Again, 90% eigenvalue is
retained, which results in 14-dimensional features for both upper part and lower
part. However, for appearance feature we also perform a Linear Discriminant Anal-
ysis [3] to minimize the individual textural characteristics in derived appearance
features. We re-project the coefficients back into the texture subspace and calcu-
late the residue, which is used as the final appearance feature. Thus, a total of 37-
dimensional features are learned for capturing facial dynamics.

3.3 Head Orientation Estimation

Currently the Kinect sensor has the ability of facial tracking and head pose esti-
mation. However, the performance and accuracy are greatly affected by the data
acquisition environment and experiment set-up, especially the imaging distance
and the participant’s pose. Hence, we perform head orientation estimation by
extending the results from face tracking. As part of facial feature extraction, we
obtain a set of five fiducial points for each face image: two external eye corners,
two mouth corners, and nose tip. We follow the work by Gee and Cipolla [14] to
estimate the head orientation from a single image using these fiducial points.

3.4 Temporal Feature Descriptors

To determine which conversational scenario directly based on short-term, primi-
tive actions is unlikely going to be successful. Instead, the temporal dynamics of
those short-term motions and primitive actions are useful in revealing the topic
of conversation. To capture such dynamics, we employ Hidden Markov Model
(HMM) which is well suited to model temporal sequential data. However, we
also attempt to generalize those face and pose features to a middle level to sum-
marize the distributions of those primitive motions in a reasonable time span,
5 seconds in our case. The common approach of appending feature vectors will
result in prohibitively long feature vectors for discriminative classifiers to train.
We thus adopt the bag of words approach to derive middle level features that
are suitable for classification of conversational interactions, each of which may
contain various amount of primitive motions.

The Latent Dirichlet Allocation (LDA) model [4] has been widely used to dis-
cover abstract “topics” from a collection of words or low level features, e.g. [18]. In
this work, we use unsupervised clustering to generate visual words across the whole
sequence and across all subjects to create a visual vocabulary. A further general-
ization to visual topics is then performed based on the distribution of visual words
in an extended time span that is often larger than typical primitive actions.

We first construct a visual vocabulary by fitting Gaussian Mixture Model to
each dimension of the low-level feature space. We consider each Gaussian com-
ponent as a visual word. Then, we further assume that those visual words are
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generated by a mixture of visual topics. To learn those visual topics, we split
the sequences into 20 seconds sections, each of which is considered as a visual
document that contains multiple visual topics. The LDA model is learned by
using Gibbs sampling inference method, [15], and applied to extract interaction
categories from low level temporal visual words. The distribution of both visual
words and visual topics are used as temporal feature descriptors for conversa-
tional interaction modeling and classification.

3.5 Modeling Using Coupled HMM

In order to explicitly model the dependence between the two subjects we use
separate HMM to represent each person and then adding an edge between the
subjects across time to build a Coupled HMM (CHMM), e.g. [19]. Row (d) in Fig.
1 depicts the CHMM used in this work. To perform classification, CHMMs are
learned for each of the seven classes, {Λ1, .., Λ7}. Given a set of T observations
ZT = {zT , zT−1, .., z1} from an unknown class we classify it to the model that
maximizes p(Λn|ZT ), where n denotes class ID. This is calculated in two stages.
Firstly the forward-backward algorithm is used to calculate p(ZT |Λn) by recur-
sively computing p(yt = j|zt−1, .., z1, Λn) =

∑m
i=1 Aijp(zt−1|yt−1 = i)p(yt−1 =

i|zt−2, .., z1, Λn), where A denotes the transition matrix, and then summing
the probabilities over all states in the final time instance, i.e. p(ZT |Λn) =∑m

i=1 p(zT |yT = i)p(yT = i|zT−1, .., z1, Λn), following which, p(Λn|ZT ) can be
calculated using Bayes’ rule assuming a flat prior across all classes.

3.6 Classification Using Discriminative Classifiers

Whilst generative models, such as HMM, is important in explaining the data,
discriminative ones tend to be more effective in classification tasks. In this work,
we also employ SVM and Random Forests to study the discriminative power of
the features, and only the middle level features are used since a concatenation
of low level features will result in a too large dimensional feature space.

3.7 Classification Using SVM Ranked Features

In order to automatically identify the influential features from high dimensional
space, we conduct feature ranking via a scheme that applies the entropy regu-
larization and particle swarm optimization (PSO) techniques to the construc-
tion of an optimal SVM model [22]. The novelty of this scheme lies in that
the model selection, feature identification and dimensionality reduction are per-
formed simultaneously in an integrated manner. During learning process the
importance of less influential attributes automatically approaches to zero, whilst
the importance of the most important attributes turns to be one. As a result,
only the most influential features remain in the final SVM model.

Specifically, given a data set {xl, yl}Np

l=1used for performing model selection
by the PSO, where yl ∈ {−1, 1} denotes the label of data xl and Np denotes
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the number of classes, the following fitness function is used to identify optimal
hyper-parameters for SVM: f = 1

Np

∑Np

k=1 (ȳk − yk)2 + λ1 (−∑n
i=1 θi log(θi)) +

λ2 (
∑n

i=1 θi) , where θi ∈ (0, 1) indicates the importance of the input variable to
the classification task, λi (> 0) are called regularization coefficients, ȳk are the
labels predicted by the SVM model. The second term, an entropy penalty, is used
to remove redundant features. Because the entropy distribution of importance
ranks would become zero (minimum) if importance values of features reach {0,
1}, during the training process the importance ranking values associated with
redundant features would be forced to approach to zero and the importance
ranks associated with influential features would move towards one. The third
term encourages feature sets that are as compact as possible.

4 Results and Discussions

All 7 tasks were completed by 8 different pairs of people in a total of 482 mins,
producing a total of 869,142 pose frames and 724,285 RGB face images. Together
with estimated head orientation, 35 low level pose features were extracted. 37 low
level face features were derived from face localization. To extract the visual words,
for each feature, a Gaussian Mixture Model with 10 components was fitted to the
low level features across different pairs. In order to extract the visual topic from the
visual word, the sequences were chopped into 20-second sections, each of which was
considered as a visual document. We learned LDA models with 25 visual topics for
pose and face separately, and each visual word was inferred and assigned with a
potential visual topic. Finally, at the scenario classification stage, each recorded
sequence is split into 5-second sections. For the discriminative classifiers, the his-
togram of visual words or topics is computed, and used as a feature vector for each
section. For the CHMM, the feature vector of every 10 frames, for the sake of com-
putational feasibility, in the section corresponds to an observation node expanded
across time. To carry out the classification, 10-fold cross validation is adopted.
Note, neighboring segments are not distributed across different folders.

The results of using CHMM are summarized as following. Using face and pose
features alone achieved 53.2% and 55.9% respectively, compared to a random

Table 1. Classification results using visual words (%)

Face&Pose
KNN RF SVM SVM-R

Describing Work 81.2 90.6 88.4 100.0

Story Telling 59.7 51.0 70.6 80.2

Problem Solving 41.4 12.8 35.1 80.7

Debate 55.3 51.6 67.7 91.8

Discussion 50.0 62.7 69.5 61.1

Subjective Question 30.8 5.2 35.8 91.7

Jokes 36.3 14.2 47.7 80.0

Average 50.7 41.2 59.3 89.1



244 J. Deng et al.

Table 2. Classification results using visual topics (%)

Face&Pose
KNN RF SVM SVM-R

Describing Work 63.5 91.7 76.4 100.0

Story Telling 35.1 73.2 68.3 80.2

Problem Solving 37.1 73.6 74.3 80.7

Debate 48.6 73.6 67.1 81.97

Discussion 38.4 78.7 63.5 61.11

Subjective Question 22.5 63.3 63.5 91.74

Jokes 27.5 70.3 66.3 80.0

Average 38.9 74.9 68.5 87.3

chance of around 14%. The combination of face and pose feature achieved an aver-
age of 59.6%. When using visual words and visual topics, the performance decreased
significantly. With visual words, overall accuracy of 32.0%, 33.6% and 36.4% were
produced using face, pose, face and pose, respectively. After further generalization
to visual topic, its performance reduced further to 28.3%, 30.8% and 30.7%. This
was generally expected, since the feature generalization causes an enhancement
of commonality among different scenarios, which caused HMMs modeling slightly
more common features and hence reduced their discriminative power.

Next, we tested the mid level features with discriminative classifiers, i.e.
SVM and RF, see Tables 1 and 2. The classification results are considerably
better. For example, the overall accuracy using standard SVM with face and
pose visual words achieved 59.3%, compared with a mere 36.4% achieved by
CHMM. With visual topics, the difference is even more evident: 68.5% vs. 30.7%.
The combination of pose and face features showed markable improvements over
using face or pose features alone. We also present the results using KNN. With
visual words, RF was inferior to others and SVM is clearly performed better.
With further generalized features, there are clear improvements for both RF and
SVM, but not for KNN, and RF slightly out-performed SVM.

However, using our SVM ranked features, there were substantial improvements
for all features and raised the performance close to 90%. It is evidently clear that
feature selection is important in differentiating different conversation scenarios.

Whilst the Kinect sensor permits direct estimation of 3D pose that is cur-
rently more robust and accurate than RGB camera methods, the accuracy of
the data collected still contains some noise, as does the face features used in
this work. However, despite this we have shown that good recognition of con-
versational interactions can still be achieved. The suggests that it is possible to
recognize the conversational topics based on gesture and facial dynamics.
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Abstract. In this work, we use SVM binary classifiers coupled with a binary 
classifier architecture, an unbalanced decision tree, for handwritten digit recog-
nition. According to input variables, two classifiers were trained and tested. 
One using digit characteristics and the other using the whole image as input var-
iables. Developed recently, the unbalanced decision tree architecture provides a 
simple structure for a multiclass classifier using binary classifiers. In this work, 
using the whole image as input, 100% handwritten digit recognition accuracy 
was obtained in the MNIST database. These are the best results published in the 
literature for the MNIST database.  

Keywords: Handwritten digit recognition ⋅ MNIST database ⋅ Support vector 

machine ⋅ Unbalanced decision tree ⋅ Binary classifiers 

1 Introduction 

In recent decades, character recognition technology has been driven by the increasing 
demand of converting an enormous amount of printed or handwritten information to a 
digital format [1]. This conversion from paper to computer in the past required human 
operators who processed billions of checks, mail correspondence, etc. This process 
was time consuming and error prone, motivating the development of optical character 
recognition (OCR), a technique for reading data and recognizing one character after 
another. OCR is an important pattern recognition technique. There are vast amounts 
of historical, technical and economic documents only in a printed form. An OCR 
system drastically reduces cost of digitalizing them. There are some successful  
techniques for OCR implementation applied in digitalization of handwritten and  
mechanical printed texts, and musical scores.  

Character recognition is a very difficult problem, due to the great variability in 
writing styles, in other words, wide interclass variability: the same character can be 
written in different sizes and orientation angles.      

As shown if Fig. 1, an OCR system is comprised of certain steps: image acquisition 
– a color, gray level or binary image is acquired; pre-processing – image processing 
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techniques are applied to improve image quality; layout analysis – the text structure is 
understood to facilitate text interpretation; word segmentation in characters; classifi-
cation – pattern recognition is employed for character recognition and post-processing 
– gather the recognized characters to obtain the original words (opposite for word 
segmentation).  

In this work we focused attention only on the classification step of digit recogni-
tion. Table 1 provides details about some digit recognition studies published in the 
literature. The columns of this table include: database, input data, classifier used and 
results.    

Concerning input characteristics, the studies can be divided into two main groups: 
the first group consists of studies using digit extracted characteristics as input data 
[5,6,9,10,11] and the second one consists of studies using the whole image as input 
data [2,3,4,7,8].   

Concerning the databases used, the studies shown in Table 1 can be divided into 
four groups: MNIST database, proprietary databases, CENPARMI database and 
NIST-SD19 database. 

For performance comparison between different studies it is necessary that a com-
mon database be used for all them. In this work the MNIST handwritten digits data-
base is adopted as the common database [12]. This database is suited for training and 
testing digit recognition algorithms and consists of 60,000 training patterns and 
10,000 testing patterns. The patterns were obtained from 250 different authors. One 
digit is centralized in a gray level figure with 20x20 pixel size. This database presents 
two advantages: the digits need not be pre-processed and it is extensively used in the 
literature, enabling a performance comparison between different algorithms.       

Consulting the web site of MNIST database, it can be verified that a total of 68 
classifiers have been used for digit recognition [12]. The most used are: SVM, MLP 
and neural networks using convolutional algorithms.   

In general, neural classifiers perform better than other classifiers. Convolutional 
algorithms have the best classifier performance. The best results for the accuracy in 
the classification step using convolutional algorithms, 99.73%, were obtained by 
Ciseran et al. [4]. In this study, the authors expanded the training and testing database, 
including elastic distortions.  Deng [13] concluded that the use of distortion to ex-
pand the database is necessary to obtain high accuracy in digit classification. Studies 
that do not use distortion obtained low accuracy rates, varying between 99.47% and 
99.65%.     

Concerning the MNIST database and Table 1, it should also be noted that classifi-
ers that use a whole image as input characteristics perform better than those that use 
digit characteristics as input.  

Although impressive results for digit recognition using the MNIST database have 
been reported in the literature, this work focuses on improving state-of-the-art digit 
recognition, investigating the use of SVM. 

In the literature, using SVM, the best results for digit recognition in the MNIST  
database, an accuracy of 99.44%, was obtained by Decoste and Scholkpf [2].  
The authors employed a multiclass SVM classifier associated with the support  
virtual-vectors technique.  
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In this work, we intend to use SVM binary classifiers associated with a multiclass 
binary architecture, the unbalanced decision tree. According to input variables, two 
classifiers were trained and tested. One of them used digit characteristics and the oth-
er used the whole image as input variables.   

 

 

Fig. 1. Block diagram of an optical character recognition system 

Table 1. A brief review of digit recognition 

Reference Database Input data Classifier Results (accuracy)

[2] MNIST Database Whole image SVM 99.44%

[3] MNIST Database Whole image
Combination of 
Convolutional 

Neural Networks 
99.73%

[4] MNIST Database Whole image
Combination of 
Convolutional 

Neural Networks 
99.77%

[5]
Proprietary 
Database

Fourier Descriptors 
+ Border Transition 

Technique
MLP 96%

[6]
Proprietary 
Database

Fourier Descriptors
MLP + Models 

Previously Defined 
90%

[7] MNIST Database Whole image Perceptron 99.37% 

[8]
Proprietary 
Database

Whole image MLP 90%

[9] Not cited Hough Transform
MLP + Dempster-

Shafer Theory 
Not cited

[10]
NIST-SD19 
Database

 Kirsch Masks and 
Elliptic Fourier 

Descriptors 

Combination of 
SVM Classifiers

98.55%

[11]
CENPARMI  

Database
Directional 
Distances 

Modular Neural 
Networks 

97.30%
 

2 Methods 

2.1 Multiclass Binary Architectures 

In both items 2.2 and 2.3, which address, respectively, the use SVM classifiers for 
digit recognition using digit characteristics and the whole image as input data, unbal-
anced decision trees, a type of multiclass binary architecture, is employed for digit 
recognition. So, in this item, we briefly review the different architectures of binary 
classifiers and, particularly, unbalanced decision trees. 

According to Hassan and Demper [14], there are four different multiclass architec-
tures using binary classifiers: one-against-rest, one-against-one, acyclic direct graph - 
ADG and unbalanced decision tree - UDT. Fig. 2 shows these architectures for a  
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special case of four classes. In each one of these architectures, the output is the  
selection of only one class.  

To distinguish between m classes, the architecture one-against-rest requires the 
training of m classifiers. Each classifier  is trained for recognizing class i.  re-
turns a 1 if a given sample belongs to class i and 0 if a given samples does not belong 
to class i. It is only necessary to train m classifiers. When the training set is highly 
unbalanced, the performance of this architecture can be seriously affected.  For a 
sample classification, m classifiers are used. 

The one-against-one architecture uses the major voting rule. One sample is defined 
as belonging to class i if there are more votes for this class than for the others. A total 
of 1 /2 binary classifiers are constructed, one for each different class pair. 
These classifiers are evaluated in parallel. Each classifier  is trained using only 
samples of classes i and j. If a sample x is recognized by classifier  as belonging to 
class i, a vote is assigned to class i. Otherwise, if it is recognized as belonging to class 
j, a vote is assigned to class j. After the sample is classified by all classifiers, the class 
that received more votes is considered the one to which the sample belongs. For a 
sample classification, 1 /2  classifiers are used.   

A set of binary classifiers can also be structured as an ADG. For this architecture, 1 /2 binary classifiers are also necessary. In the architecture shown in Fig. 2, 
it can be observed that if the output of a classifier  is class i, in the following node 
the class j is no longer considered a possible output class. This is why only 1  
classifiers are used for a pattern classification. Differing from the one-against-one 
architecture, only m-1 classifiers are evaluated to obtain a sample classification.   

UDT was proposed by Ramanan et al. [15]. In each node, a decision is made re-
garding the type one-against-rest. Comparing with the architecture one-against-rest 
previously presented, this architecture uses only m-1 classifiers. A sample classifica-
tion begins in the node located on the top of the tree, using the classifier . If the 
sample does not belong to class i, the decision process follows with the next right 
classifier of the tree. The classification process finishes when the sample is recog-
nized as belonging to class n, by classifier . As noted in Fig. 2, the lowest node of 
the tree decides only between two classes. According to Hassan & Damper [14], UDT 
follows a knockout strategy that, in the worst case, for a sample classification,  
requires 1   classifiers. For a sample classification, on average, 1 /2 
classifiers are used.  Table 2 summarizes the main information of the four multiclass 
binary architectures. As shown, the UDT classifiers require a smaller number of clas-
sifiers both for training and classification.  This is why in this paper we used SVM 
binary classifiers with a UDT multiclass architecture for digit recognition.   

2.2 Digit Recognition Using Multiclass Binary Architecture with SVM Binary 
Classifiers and Digit Characteristics as Input Data 

The block diagram of Fig. 3 shows a block diagram of the pattern recognition system 
used for digit recognition, using digit characteristics as inputs.   
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Fig. 2. Multiclass binary architectures: (a) one against rest; (b) one against one, (c) acyclic 
direct graph, (d) unbalanced decision tree 

Table 2. Summary binary classifier architectures 

Architecture
Number of 
classifiers

Classifiers used for a 
sample classification

one-versus-rest m m

one-versus-one (m*(m-1))/2 (m*(m-1))/2

acyclic direct graph (m*(m-1))/2 m-1

unbalanced  decision 
tree

m-1 (m-1)/2 *
 

           * Average value 

 

 

Fig. 3. Block diagram of a digit recognition system using multiclass binary architecture with 
SVM binary classifiers and digit characteristics as input data 

Digit Characteristic Extraction.  A set of 28 characteristics was used: twenty pa-
rameters corresponding to Fourier descriptors and eight parameters associated with 
border transition technique.  

The twenty Fourier descriptors selected were the low frequency ones. The higher 
frequencies coefficients were discarded because they have insignificant values.  

The border transition technique divides the digit image into four quadrants. For 
each quadrant, it calculates the transitions of pixel values from 0 to 1. In other words, 
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a summation of the first order gradient in vertical and horizontal directions is done, 
totaling 8 parameters. In this work this complementary technique was used associated 
with Fourier descriptors, because the latter is invariant with rotation and displace-
ment, impairing the distinction between ´6´and ´9´.         
 
Characteristic Selection. Not all the 20 Fourier descriptors were used for classifica-
tion. To select the best Fourier descriptors the scalar characteristic selection was used 
[16]. This is an “ad-hoc” technique that incorporates correlation information com-
bined with criteria tailored for scalar characteristics. The procedure is divided into 
three parts. The first part is devoted to selecting only the first characteristic. The se-
cond part is devoted to selecting the second characteristic and the third part is used to 
select the other characteristics. In the first part, a class separability measure is selected 
and its value is computed for all the available characteristics. These values are ranked 
in descending order and the characteristic with higher value is chosen. In this paper, 
for this first part, a Fisher´s Discriminant Ratio (FDR) was used.   

According to Theodoridis and Koutroumbas [16], FDR is sometimes used to quan-
tify the separability capabilities of individual characteristics in a two-class problem, 
as is the case in this paper (pixels belong to bacillus or to background). FDR is de-
fined as: 

   (1) 

Where µ1 and σ12 represent the mean value and standard deviation, respectively, of a 
characteristic in class ω1; µ2 and σ22  represent the mean value and standard devia-
tion, respectively, of the same characteristic in class ω2. 

In the second and third parts, two other separability class measures are used: the 
divergence separability measure and the cross-correlation coefficient. The divergence 
measure between two classes ωi and ωj, for a given characteristic with mean value and 
standard deviation µi and σi2 and µj and σj2, respectively, is defined as: 
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To define the cross-correlation coefficient between two characteristics, let xnk,  
n =1,2,….N and k=1,2,….m, be the kth  characteristic of the nth pattern. The cross-
correlation coefficient between any two characteristics is defined as [11]:  
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where α1 and α2 are weighting factors that determine the relative importance given to 
the two terms inside the brackets.  

The third part selects , k=3,...l, which 
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With this technique, sets with the best 18, 17, 16, 15, 14, 13, 12 ,11, 10 and 9 Fourier 
descriptors were selected.  

SVM Classifiers. Support vector machines (SVM) can be defined as binary learning 
machines used to separate data belonging to two classes using a hyperplane that  
maximizes the separation margin [17].    

According to Theodoridis and Koutroumbas [16], for separable classes, the param-
eters of the hyperplane that maximize the margin are calculated through the determi-
nation of weight vector w and polarization w0, such that expression (6) is minimized 
and the Karush-Kuhn-Tucker (KKT) conditions are satisfied. 

 2||||
2

1
)( ww ≡J  (6) 

For nonseparable classes, the same parameters can be calculated minimizing ex-
pression (7), where new variables ξi, known as slack variables, are introduced. The 
goal now is to make the margin as large as possible but at the same time to keep the 
number of points with ξ > 0 as small as possible [16]. 
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Parameter C in expression (7) is a constant positive that controls the tradeoff be-
tween the slack variable penalty and the margin. The value of the C parameter used in 
this work was 0.5.   

SVMs use kernels to map the characteristic vector into a high dimensional space to 
exploit the nonlinear power of this tool. In this work, radial base function kernels 
were used, as shown in expression (8).   

0,)||||exp(
2 >−− γγ dzx                             (8) 

3 Results 

For SVM binary classifiers with an UDT architecture and digit characteristics as input 
data, the best results were obtained using the set of the best nine Fourier descriptors 
selected with the scalar selection technique, with the eight parameters obtained with a 
border transition technique, totaling 16 input variables for the SVM classifier. The 
nine best Fourier descriptors were the ones corresponding to the nine lower frequen-
cies. For pattern classification, nine SVM binary classifiers were used with a UDT 
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architecture, as shown in Fig. 4. Fig. 5 shows the confusion matrix obtained with the 
ORL test set. With the ORL training set, the accuracy was 85.27%. Table 3 shows the 
accuracy obtained for the ten digit classification.    

 
 

 

Fig. 4. UDT architecture used with SVM classifiers , …  

 

 

Fig. 5. Confusion matrix for multiclass binary architecture with SVM binary classifiers and 
digit characteristics as input data 

For digit recognition using multiclass binary architecture with SVM binary classi-
fiers and the whole image as input data, the number of inputs of each SVM classifier 
used in the UDT architecture (shown if Fig. 4) was 400, which corresponds to the 
pixels of an image with 20x20 pixels. Fig. 6 shows the confusion matrix obtained 
with the ORL test set. As shown in Fig. 6 no classification error occurred. So the ob-
tained accuracy with the ORL test set was 100%. With the ORL training set, the accu-
racy was also 100%. 

For SVM binary classifiers with an UDT architecture and digit characteristics as 
input data, the training time was 25h, while the answer time is about 1s. For SVM 
binary classifiers with an UDT architecture and the whole image as input data, the 
training time was 6h, while the answer time is less than 1s. 

 
 



254 A.M. Gil et al. 

Table 3. Accuracy obtained 
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Abstract. Driver distraction and fatigue are considered the main cause
of most car accidents today. This paper compares the performance of
Random Forest and a number of other well-known classifiers for driver
distraction detection and recognition problems. A non-intrusive system,
which consists of hardware components for capturing the driver’s driving
sessions on a car simulator, using infrared and Kinect cameras, combined
with a software component for monitoring some visual behaviors that
reflect a driver’s level of distraction, was used in this work.

In this system, five visual cues were calculated: arm position, eye
closure, eye gaze, facial expressions, and orientation. These cues were
then fed into a classifier, such as AdaBoost, Hidden Markov Models,
Random Forest, Support Vector Machine, Conditional Random Field, or
Neural Network, in order to detect and recognize the type of distraction.
The use of various cues resulted in a more robust and accurate detection
and classification of distraction, than using only one. The system was
tested with various sequences recorded from different users. Experimental
results were very promising, and show the superiority of the Random
Forest classifier compared to the other classifiers.

1 Introduction

Many efforts have been made recently to ensure the driver safety and to decrease
car accidents. According to [12], around 80% to 90% of accidents involving fatali-
ties or injuries are mainly related to the driver’s absence of alertness. Specifically,
the driver’s alertness is affected by distraction and fatigue. In order to detect
whether the driver is distracted or fatigued, many car manufacturing companies
have started to embed audio-visual sensors in intelligent vehicle systems. These
sensors are either intrusive or non-intrusive, and the non-intrusive systems are
much more appealing to drivers for their naturalness.

This paper studies the classification performance of various well-known classi-
fiers in a non-intrusive computer vision system for monitoring drivers distraction.
This system started by capturing the driver sessions while driving a car simula-
tor, followed by a feature extraction module, which consisted of five sub-modules:
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 256–265, 2014.
DOI: 10.1007/978-3-319-11758-4 28
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analyzing eye gaze and closure, arm position, facial expressions, and facial orien-
tation. Finally, the extracted features were merged together and classified using
a number of well-known classifiers, such as AdaBoost, Hidden Markov Models,
Random Forest, Support Vector Machine, Conditional Random Field, and Neu-
ral Network. Experimental results from six subjects were promising for both
detection and recognition problems (82.9% accuracy for the type of distraction
and 90% for distraction detection).

The rest of the paper is organized as follows: Section 2 discusses related work,
then the system used is described in Section 3. Section 4 depicts the experiments
and results. Conclusions and future work are presented in Section 5.

2 Related Work

Typically, the main causes of driver inattention are distraction and fatigue. How-
ever, according to the study in [7], the main contributor for 10% to 25% of vehicle
accidents is distraction, which is our main focus in this work. According to [1],
distraction can be classified into three main categories:

– Visual: The driver takes his eyes off the road for some reason, such as reading
or watching a video.

– Manual: The driver takes his hands off the wheel for some reason, such as
text messaging, eating, using a navigation system, or adjusting the radio.

– Cognitive: The driver’s mind is taken away from driving. This can happen
when talking on the phone, text messaging, or simply thinking.

Generally, systems for detecting driver distraction are non-intrusive (i.e., do
not require attaching cumbersome devices to the driver). These systems detect
distraction based on driver’s behavior using camera(s), driving or car behavior
using sensors that measure steering, braking, lane keeping, etc. or both.

A wide range of sensors and classifiers have been utilized in the literature for
capturing and detecting driver distraction. In [6], Neural Network, with a back
propagation algorithm and 80 nodes in the hidden layer, was used to detect
distraction using eye closure only. Murphy-Chutorian et al. [9] used Support
Vector Machine with Localized Gradient Orientation histograms to estimate
the orientation of the driver’s head. Earlier in [11], driver visual attention was
modeled with three independent Finite State Machines, in order to monitor both
eye and head movements.

Recently, Butakov et al. [4] suggested using a Gaussian Mixture Model to
analyze the driver or vehicle response in the vehicle following case to create
a normal behavior model, which can then be used to detect distraction if the
driving behavior deviates from the saved model. In [13], two subsets of features
were extracted. The first one included accelerator pedal position and steering
wheel position, while the second subset included both of these elements, as well
as the Collision Avoidance Systems (CAS) sensors (lane boundaries and upcom-
ing road curvatures). This data was then classified using Random forest (with
75 trees). The results revealed that adding the CAS sensors features increased
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the accuracy considerably. However, depending only on driving behavior can be
misleading, as it can be affected by external factors such as driver experience,
road type, weather, and outdoor lighting.

A more promising way for modeling driver distraction is to combine infor-
mation from both the driver and driving behaviors. Liang et al. [8] extracted
the driver’s eye movements as well as driving performance data, such as lane
position, steering wheel angle, and steering error calculated from steering wheel
angle, to capture distraction. This data was then classified using Support Vector
Machine. A distraction detection system which infers visual driver information
about head position, head pose, and eye pose, as well as car information using
a lane-keeping module, was presented in [10]. No training was included in this
system, however.

Almost none of the works in the literature have aimed to detect the type
of distraction created by the driver, and have instead focused only on recog-
nizing whether the driver is distracted or not. Determining the type of driver
distraction provides higher level information which can be used for a number
of applications related to intelligent transportation systems. The applications
can be implemented in smart cars to provide statistics on the driver’s behavior,
which could increase the help the vehicle can provide to keep the driver safe.

3 Methodology

The non-intrusive system used in this study consisted mainly of three phases: (1)
the data acquisition phase, during which the driving sessions were recorded, (2)
the feature extraction phase, during which certain features that reflect distrac-
tion were extracted, and (3) the classification phase, during which a classification
model was learned using the extracted features.

3.1 Data Acquisition

In this phase, the driving sessions from six drivers of different ethnic back-
grounds, genders, ages, and with or without glasses, were recorded. Driving ses-
sions were captured using infrared (IR) and Kinect cameras mounted in front of
the driver while he or she drove a car simulator. Each driver was first introduced
to the car driving simulator, during which time they were asked to drive for a
few minutes in order to familiarize themselves with the simulator. Then, during
the driving sessions, instructions for each of the different actions were displayed
on the screen. Four driving sessions were recorded for each subject. Each session
lasted for around ten minutes. The actions involved in the experiments were a
phone call, a text message, drinking, object distraction, and normal driving. For
each driver, normal driving represented around 40% to 50% of each sequence,
while the remaining were distraction actions. Each of the distraction actions
represented between 10% to 20% of the each sequence. An image of the driving
simulator is shown in Fig.1.
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Fig. 1. Driving simulator used in the experiments

3.2 Feature Extraction

The feature extraction module consisted of five main sub-modules:

– Arm Position. After segmenting the body from the background by com-
bining the output from the Kinect segmentation with the output from the
background removal, the arm position was represented using the segmented
depth map acquired using Kinect. Since Kinect records drivers with a frontal
view, their right arm is therefore on the right side of their body. Based on
this, the features were extracted based on foreground contours. First, the
marching squares algorithm was applied to the binary foreground image,
which outputs an ordered list of contour pixels. Then, the left section of the
contour was removed (since the right arm was the one used for the distrac-
tion actions). The remaining “half” contour was then divided into twenty
successive segments. Using the depth map, each pixel of the contour was
associated with a 3D point, such that each segment of the contour corre-
sponded with a 3D point cloud. For each point cloud, a principal component
analysis was applied, and the eigenvector of the main principal component
was kept.
However, using only the right contour from the frontal view was not enough,
as some actions, such as texting, cannot be detected from the frontal view.
In order to overcome this problem, the aforementioned approach was applied
to the profile view as well, resulting in a 120 feature vector. This vector was
then fed into a 1-vs-all AdaBoost to create a model which was used to classify
the rest of the data. The output of the classifier was a feature vector of size
4, which represented the estimated position among four possible states: arm
up, arm down, arm right, and arm forward, as depicted in Fig.2.

– Facial Orientation. First, the face was extracted using the face tracking
algorithm provided by Kinect SDK [2]. Then, based on the coordinates of
the face 3D vertices, the face tracking provided a feature vector of size 3,
which represented the head orientation angles, namely the pitch, roll, and
yaw angles, whose values were between -180 and 180 degrees.
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Fig. 2. An example of (a) frontal view and its (b) associated profile view, as well
as their forward, right, up and down arm positions and associated features in (c)-
(f) respectively. In (c)-(f) the red dots represent projections of a point clouds’ local
orientations from the frontal view, while blue dots are from the profile view.

– Facial Expressions. The face tracking algorithm provided by Kinect SDK
was also used to provide four animation units (AUs). AUs were expressed as
coefficients, and represented how strongly distorted features of the face were.
The four AUs extracted were the ones related to the mouth only, such as
upper lip raiser (AU10), jaw lowerer (AU26/27), lip stretcher (AU20), and
lip corner depressor (AU13/15).

– Eye Gaze. First, the eye position was extracted using the SDK face track-
ing algorithm. Then, an efficient iris detection method based on cost func-
tion maximization and spatio-temporal considerations was applied. The cost
function was the result of two main filters: circular Hough transform and
circular Gabor filter. The cost function was also inspired by the filter intro-
duced by [8], and depends on the high intensity difference between the iris
and its neighborhood. Finally, the iris center was estimated as the summa-
tion of the three normalized filter responses. Then, an approximate gaze
estimation was carried out by calculating the position of the iris relative to
the eyes’ corners. The output of this module was a feature vector of size 4.

– Eye Closure. In order to determine whether the eye was opened or closed,
a database of opened and closed eyes was constructed. In turn, this database
constructed an SVM model with Radial Basis Function (RBF) kernel, which
was used afterward to classify the data. The output of this module was the
decision for each eye: open(1), closed(0), or something else(-1).

3.3 Classification

Both sequential and non-sequential classifiers were deployed in this work. The
non-sequential classifiers used were the Support Vector Machine (SVM), the
Random Forest (RF) and the AdaBoost (Adaptive Boosting). The strength of
the SVM mainly depends on the selection of the kernel, as well as its parameters.
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In this work, the best value for C was selected by searching with the exponentially
growing sequences of C, e.g., Cε{10−2, 5−1, ......, 53, 102}. A C-SVM was deployed
for its efficiency, and after experiments with the different kernels, the Radial
Basis Function kernel was chosen for producing the best results. Random Forest
is an ensemble of many decision trees, and its strength relies on combining diverse
classifiers. In this work, several values for the number of trees were experimented
and the size 75 was chosen. Whereas the number of features used to train each
tree was set to

√
M (where M is the total number of features), as proposed by

Breiman [3]. For the Adaboost, a simple real 1-vs-all AdaBoost initialized with
a decision tree of depth four and 300 iterations, was used.

Sequential classifiers which predict sequences of labels for sequences of input
samples, such as Hidden Markov Model (HMM), Conditional Random Field
(CRF) and Neural Networks (NNs) were also experimented with. For the HMM,
a different Markov model was trained for each class, and the Viterbi algorithm
was used to decide which state each sample belongs to. The best value for the
number of hidden states is chosen experimentally. For the CRF, the CRF++
library 1 was utilized in this work. Since this library does not handle continu-
ous features, the features were quantized using a simple quantization method.
Finally, the nonlinear property of the NNs allows them to solve some complex
problems more accurately than linear methods. Recurrent NNs, with Levenberg-
Marquardt training function and hidden layer of size 10 neurons, were chosen in
this work, since they have proved their superiority to feedforward networks in
modeling time series data with lower errors [5]. However, Recurrent NNs are not
suitable for large datasets, so we had to randomly sample the dataset to reduce
its size.

4 Experiments and Results

As explained earlier, data was collected from sessions recorded for six subjects.
The features from the five different aforementioned sub-modules were combined
to form a feature vector of length 17 (i.e. 4 + 3 + 4 + 4 +2). Then, a median
filter with a sliding window of size 100 was used to temporarily smooth this
feature vector. Also, the standard deviation within the hundred-sample window
was computed. The resulting feature vector of length 34 is then classified.

Due to the randomness of the RF and the random sampling used in the NN,
the experiments involving the RF and NN were repeated for 5 runs. Then the
accuracy average of the runs, as well as the standard deviation, were calculated.
Both classification recognition (five classes) and detection (two classes) were
computed. The performance measures used to evaluate the system and com-
pare between the different classifiers were accuracy, specificity, precision, recall,
f-measure, g-means, and prediction time/sample in msec.

1 The used library is available at http://crfpp.googlecode.com/svn/trunk/doc/index.
html

http://crfpp.googlecode.com/svn/trunk/doc/index.html
http://crfpp.googlecode.com/svn/trunk/doc/index.html
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4.1 Driver Distraction Recognition

Driver distraction was recognized using AdaBoost, RF, CRF, HMM and Recur-
rent NN classifiers. The evaluation protocol was leave-one-subject-out, wherein
each classifier was trained using all sessions except that of the driver to be eval-
uated, and tested using all sessions involving this driver. A comparison between
the performance of the different classifiers for the distraction recognition prob-
lem per subject is shown in Table 1. The first six rows show the accuracy for
each of the six subjects, while the next rows show the overall performance.

Table 1. A per subject comparison between the different classifiers for the distraction
recognition problem

CRF HMM AdaBoost RF NN

1 68.53 75.98 90.38 88.36±1.59 48.23±14.59

2 73.07 89.29 89.16 89.23±0.13 73.61±2.96

3 66.08 86.6 82.21 81.17±1.03 68.57±3.77

4 70.68 81.41 82.75 76.09±1.55 72.94±8.78

5 73.49 81.78 79.67 81.92±0.94 74.69±2.36

6 53.55 62.01 73.64 78.81±0.87 72.26±2.32

Accuracy 67.57 79.5 82.97 82.78±0.07 68.38±3.02

Specificity 71.97 84.62 87.26 86.81±0.16 71.61±2.49

Precision 37.47 37.47 43.54 42.26±0.43 19.38±4.62

Recall 59.13 68.34 72.81 71.59±1.25 50.49±11.68

F measure 32.21 48.4 54.49 53.15±0.65 28±6.54

G-means 65.22 76.04 79.71 78.83±0.67 59.85±7.57

Prediction Time 0.6 0.03 0.6 0.05 0.03

The classifiers’ performance for each subject varied significantly. However, the
RF was very close to the AdaBoost in producing the highest overall accuracy,
besides being computationally efficient. On the other hand, the CRF and NN
proved to be inappropriate for this task, producing the worst performance.

Another test was performed to provide more insight into how well each class
was recognized. Table 2 provides a few classification metrics for each class, based
on the average of the driver’s performance. It is clear from the results that actions
such as phone call and normal driving were successfully recognized. The low
results for drinking were produced due to two main reasons. First, the action
was sometimes very fast (the driver held the cup for few moments before putting
it away). Second, there was a large variance between the different subjects, in
performing this action. The worst performance was for object distraction, prob-
ably because this action required neither huge visual nor cognitive attention.
It was often misclassified as normal driving or text messaging, which made it
harder to be recognized. Fortunately, object distraction and drinking were the
least dangerous among the distraction actions, making the misclassification in
these cases less critical.
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Fig.3 displays a frame-by-frame classification for a given sequence. The blue
lines represent the ground truth, while the red lines represent the estimated
classes. In this example, phone call and text message were almost accurately
detected, drinking produced some false positives, and object distraction was often
considered text message.

Table 2. A per class comparison between the different classifiers for the distraction
recognition problem

Action CRF HMM AdaBoost RF NN

Phone Call precision 63.96 81.04 90.98 81.44±1.88 70.52±6.95
recall 64.02 68.34 72.81 72.22±1.19 50.49±11.68

f-measure 63.99 74.15 80.89 76.53±0.64 58.52±9.8

Text Message precision 61.55 79.08 79.52 75.94±0.76 40.16±6.61
recall 40.94 74.96 76.05 79.31±1.4 39.64±7.46

f-measure 49.17 76.96 77.74 77.58±1.01 39.81±6.75

Drinking precision 4.39 47.21 68.21 67.94±1.58 21.94±4.39
recall 1.6 91.89 68.67 79±1.84 40.1±5.95

f-measure 2.35 62.37 68.44 73.04±1.22 28.25±4.89

Object Distraction precision 17.94 54.42 58.24 53.34±4.06 23.23±5.05
recall 6.6 21.89 27.4 27.86±2.11 27.72±5.41

f-measure 9.65 31.22 37.27 36.56±2.4 25.22±5.08

Normal Driving precision 90.12 90.62 88.32 90.32±0.25 94.01±0.82
recall 88.4 92.76 97.54 95.41±0.5 84±3.49

f-measure 89.25 91.67 92.7 92.79±0.33 88.69±1.73

4.2 Driver Distraction Detection

The distraction detection was also classified using the aforementioned classifiers,
in addition to the SVM. The evaluation protocol is leave-one-subject-out also. In
this case, all the distraction classes were merged into a single class and compared
to the normal driving class. A comparison between the performance of the dif-
ferent classifiers for the distraction detection problem per subject is depicted in
Table 3. The first six rows show the accuracy for each of the six subjects, while
the next rows show the overall performance. The results show the superiority
of the RF to the other classifiers in producing the best overall accuracy in a
reasonable time. It can also be deduced that decreasing the number of classes
enhances the performance of classifiers such as CRF and NN significantly, as for
this task, they produce results much closer to the other classifiers.

5 Conclusions and Future Work

A comparison between the performance of Random Forest and other well-known
classifiers was investigated for evaluating a visual-based distraction detection
and recognition system. The system was based on five modules for extracting
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Fig. 3. Results of action recognition for a given sequence using RF. Ground truth (red)
and estimated actions (blue) are displayed for each frame (x-axis).

Table 3. A per subject comparison between the different classifiers for the distraction
detection problem

CRF HMM AdaBoost RF SVM NN

1 84.46 82.32 89.81 89.69±0.16 87.47 86.07±1.58

2 82.48 93.46 92.22 92.39±0.72 90.1 87.6±1.22

3 84.24 93.72 93.39 92.25±0.2 89.15 88.49±1.37

4 72.97 88 87.8 90.08±0.85 91.63 87.25±2.93

5 82.53 89.13 87.37 87.3±0.43 89.85 90.66±0.73

6 80.99 82.26 82.84 88.35±3.46 83.09 89.84±5.9

Average 82.55 88.15 88.9 90.47±0.28 88.54 88.32±1.65

Specificity 86.95 87.38 94.28 94±0.38 93.51 94.07±1.22

Precision 74.95 79.59 88.39 88.7±0.64 86.39 87.38±2.34

Recall 74.18 93.53 82.66 85.12±0.27 78.28 77.83±1.31

F measure 74.56 86 85.43 86.87±0.21 82.14 82.32±1.55

G-means 80.31 90.4 88.28 89.58±0.1 85.56 85.56±1.08

Prediction Time 0.63 0.04 0.13 0.08 0.01 0.014

data: arm position, face orientation, facial expression, eye gaze, and eye closure.
A real dataset was collected from six subjects using IR and Kinect cameras,
while the subjects drove a simulator and performed different distraction actions.
The classifiers employed included AdaBoost, HMM, RF, SVM, CRF, and NN,
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and the results for detecting and recognizing the drivers distraction show the
superiority of the RF for the two tasks in real-time.

This work can be extended by increasing the dataset, adding more subjects
to create a more generalized system and more reliable results. Another exten-
sion would be increasing the number of sensors, such as ones that measure the
pressure on the steering wheel.
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Abstract. In standard supervised learning, the problem of learning
from imbalanced data has been addressed to improve the performance of
learning algorithms in the presence of underrepresented data. However,
in Multiple-Instance Learning (MIL), where the imbalance problem is
more complex, there is little discussion about it. Motivated by the need
of further studies, we discuss the multiple-instance imbalance problem
and propose a method to improve the representation of the positive class.
Our approach looks for the target concept in positive bags and tries to
strength it using an oversampling technique while removes the border-
line (ambiguous) instances in positive and negative bags. We evaluate
our method on several standard MIL benchmarking data sets in order to
show its ability to get an enhanced representation of the positive class.

Keywords: Multiple-instance learning · Class imbalance learning ·
Oversampling · Undersampling

1 Introduction

Multiple-instance learning (MIL) is a relatively new learning paradigm that was
firstly introduced by Dietterich et al. [1]. In MIL, a single example (a bag) is
represented by multiple feature vectors (instances) which very often correspond
to the characterization of segments in images; e.g. multiple objects in the same
scene such as trees, a mountain, the sky, sand and the sea [2]. Each bag in
the training set has an associated class label, but labels of individual instances
are unknown. By the standard multiple-instance assumption, a bag is labeled
positive if at least one of its instances is positive; otherwise, the bag is labeled
negative. It means that not all instances in a positive bag are necessarily relevant
and, consequently, it may contain negative instances causing ambiguity inside
the bag. Some of the existing MIL frameworks, which are briefly summarized in
the subsequent paragraph, require that all positive instances are grouped in a
compact cluster in the feature space.

The early work in MIL is axis-parallel concept [1], whose basic idea is to find
an Axis-Parallel Rectangle (APR) in the feature space to represent the target
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 266–273, 2014.
DOI: 10.1007/978-3-319-11758-4 29
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concept. In [3], a MIL framework, named Diversity Density (DD), was proposed.
It aims to find the most positive point in the input space with the maximum
diversity density. A few years later, Zhang & Goldman proposed the EM-DD
algorithm [4], which combined the Expectation Maximization (EM) approach
with the DD algorithm to speed up the optimization process of the later. In [5],
Wang & Zuker put forward the Citation-kNN algorithm which adapts the k-NN
algorithm for MIL problems. Andrews et al. [6] proposed two methods based
on Support Vector Machines (SVM): mi-SVM for instance-level classification
and MI-SVM for bag-level classification. A different approach is followed by
Gärtner et al. in [7] where the statistics of the bags are used to construct a MIL
kernel and, then, a standard SVM is applied. Another approach is followed by
MILES [8] and MILIS [9] which embed each bag into a feature space, based on
a representative set of instances selected from the training bags and, afterwards,
learn a classifier in this feature space. Some boosting approaches for MIL have
been developed, like MIL-Boost proposed [10] which uses the gradient boosting
framework to train a boosting MIL classifier.

Several methods have been proposed to tackle the problem of class imbal-
ance learning in single-instance data [11]. However, in MIL, most of the existing
methods do not directly consider the problem of imbalanced data sets, which
decreases the performance typically achievable by most MIL algorithms. Based
on it, we discuss the multiple-instance imbalance problem and propose a method
to improve the prediction of the positive class. Our method uses density estima-
tion of the negative population to find the most positive and the most negative
instances on positive bags. They are used to oversample positive instances in
positive bags and undersample negative instances in the borderline of both, pos-
itive and negative bags. The method, therefore, makes sense particularly for
cases when there are few positive examples as well as a number of ambiguous
negative ones.

The structure of this paper is as follows: Section 2 presents and discusses the
problem of multiple-instance imbalanced data sets and its related work on MIL.
In Section 3, the proposed method is described. Section 4 reports and discusses
the experiments. Finally, Section 5 presents the conclusion and future work.

2 The Class Imbalance Problem in MIL

In standard supervised learning, a data set that exhibits significant and unequal
distributions between its classes is considered imbalanced [11]. However, in MIL,
the problem of imbalanced data sets is more complex because the imbalance can
occur at both levels: instances and bags [12,13], see Fig. 1.

Amores [2] has pointed out that there are three different paradigms for MIL.
The first one, named Instance-Space (IS) paradigm, in which the discriminative
learning process occurs at the instance-level; the second one, the Bag-Space
(BS) paradigm, where each bag is treated has a whole entity, and the learning
process discriminates between entire bags; and finally, the Embedded-Space (ES)
paradigm, where each bag is mapped to a single feature vector that summarizes
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Fig. 1. The imbalance multiple-instance problem at: (a) instance-level, (b) bag-level
and (c) both, instance- and bag-level [13]

the relevant information about the whole bag, so a classifier is learned in the
new embedded space.

When a MIL data set is imbalanced either at instance-level or at bag-level,
the learned margin would be biased by the majority class (typically, the negative
one). In the IS paradigm, since a discriminative instance-level classifier is trained
to separate instances in positive bags from those in negative ones, the bias in the
learned margin can be explained in the same way like in the imbalance problem
for single-instance classifiers [11] because the true positive instances (responsible
for the positive label of a positive a bag) are underrepresented in the training
set. In BS and ES paradigms, where the discriminative process occurs at bag-
level, decision boundaries could be biased too, due the poor representation of
the true positive instances. Both types of imbalance in multiple-instance data
sets may generate a decision boundary that weakly describes positive bags in
comparison with the negative ones, because the true positive instances are often
underrepresented, as shown in Fig. 1.

The problem of class imbalance has been widely addressed for single-instance
data, tackling it with methods at data and algorithm levels. Data-level methods
include a variety of re-sampling techniques in order to provide a balanced dis-
tribution of the data sets, SMOTE [14] is an example. Algorithm-level methods
address class imbalance by modifying their training mechanism with the goal
of getting a better accuracy on the minority class, like one-class learning [15]
and cost-sensitive learning [16]. In addition, ensemble learning approaches, such
as SMOTE-Boost [17], have become another alternative to handle imbalanced
data.

On the contrary, in MIL there is little discussion about the imbalance prob-
lem. Wang et al. consider it in [13] and [12] and propose two approaches at
bag- and instance-level. In the former, they introduce cost items into the weight
updating strategy of AdaBoost; for the latter they use an oversampling tech-
nique based on SMOTE over instances and bags of the minority class. Indirectly,
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other MIL approaches have considered the imbalance problem at instance-level
trying to identify the target concept in the positive bags and then represent
the positive bag based on it; these approaches indirectly perform an informative
undersampling on positive bags, MILES [8] is a well-known example of them. It
embeds each bag into a feature space based on a representative set of instances
(undersampling) selected from the training bags, similar to MILIS [9].

In contrast to the above-mentioned approaches, we try to find the true
positive instances on positive bags. Based on kernel density estimation, we over-
sample them to reinforce the target concept, meanwhile we perform an under-
sampling in the borderline instances in order to reduce their ambiguity.

Now we introduce some of the notations used in the subsequent section.
Let B = {(B+

1 , y1), . . . , (B+
P , yP ), (B−

P+1, yP+1), . . . , (B−
P+Q, yP+Q)} denotes the

training set consisting of P positive and Q negative bags, yi ∈ {−1,+1} is
the label for the bag and Bi = {xi1, . . . , xini

} is a collection of ni instances,
where each instance xij ∈ R

d. Different bags may have different cardinalities,
hence ni may vary for different i’s. For the sake of convenience, we line up
all the instances in every negative bag together, and re-index them as B− =
{xi | i = 1, 2, . . . , r−}; where r− =

∑Q
i=1

∣
∣B−

i

∣
∣ is the total number of instances

within negative training bags.

3 Improving Representation of the Positive Class

If we exploit the MIL assumption, we can effectively model the distribution of
the negative population, by using Kernel Density Estimation (KDE) [18], and
use it to find the true positive instances and the borderline instances in order
to oversample the former and undersample the latter. If instances {xi} ∈ B−

are i.i.d. data drawn from an unknown density p(x|B−), it can be estimated by
KDE according to:

p̂
(
x|B−)

=
1

r− hd

r−
∑

i=1

k

(
x− xi

h

)
(1)

where h is a tunable smoothing parameter, and k(· ) is the kernel of the
estimator. We adopt the typical choice of using a Gaussian kernel.

The density estimation p̂ (x|B−) obtained from the training set gives us a
quantitative measure of the degree of negativity for each instance; the farther
x is away from B−, the higher is the probability that x is positive given B−.
Accordingly, we can define the target concept of a positive bag as the most pos-
itive instance in the bag, that is, the instance that is farthest from the negative
instance model. Similarly, we determine that the most negative instances in pos-
itive bags are likely to be borderline instances. Once they are identified, we can
oversample the most positive instances and undersample the borderline ones.
Figure 2 summarizes our method.
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(
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Delete xij based on its k-NN

Fig. 2. Block diagram for the proposed method. Left-hand column: oversampling phase;
right-hand: undersampling phase.

3.1 Oversampling Instances in Positive Bags

Since the responsible for the positive label in a positive bag is the true positive
instance, we can use Eq. (1) to find it. We define a true positive instance set as
T+ =

{
B+

i

}
, where every instance B+

i is the most likely one to be positive in
the positive bag Bi for i = 1, 2, . . . , P . Thus, B+

i can be defined as:

B+
i = arg min

j=1,...,ni

p̂(xij |B−) (2)

Now, we can use SMOTE [14] to oversample the positive bags based on T+.
With SMOTE we create synthetic instances; specifically, consider the k-nearest
neighbors for each instance B+

i in T+ and, then, randomly select one of them
denoted hereafter as B̂+

i . SMOTE generates a new synthetic instance along the
line between B+

i and B̂+
i according to: B+

i new = B+
i + α(B̂+

i − B+
i ) with α ∈

[0, 1] at random. Finally, every synthetic instance should be added to its corre-
sponding bag.

Different positive bags may have different (and unknown) numbers of true
positive instances. The first application of Eq. (2) finds the most positive instance
in the bag. By removing that instance and applying Eq. (2) again, the second
most positive instance is found, and so on. For our experiments we empirically
noticed that two positive instances from each positive bag is enough for enhanc-
ing the representation of the target concept for most MIL-based tasks.

3.2 Undersampling Instances in Positive Bags

MIL algorithms are prone to be affected by the negative instances in the positive
bags due to the ambiguity that these instances produce. An approach to reduce
this ambiguity is undersampling false positive instances, which are very likely
those with the highest values of p̂(x|B−). The set of false positive candidates is
created according to the most negative instances in positive bags: T− = {B−

i },
where B−

i is the most negative instance in the positive bag Bi with i = 1, . . . , P
and
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B−
i = arg max

j=1,...,ni

p̂(xij |B−) (3)

After that, for every B−
i in T− its k-nearest neighbors from the whole training

set are found. If m1 is the number of k-nearest neighbors for the instance B−
i that

belong to negative bags, m2 is the number of k-nearest neighbors that belong to
positive bags and m1 ≥ m2, then we decide to remove B−

i due to consider it as
a false positive instance.

3.3 Undersampling Instances in Negative Bags

Finally, borderline instances in negative bags are removed. An instance is consid-
ered a borderline instance in a negative bag if it is surrounded by instances from
the positive bags. Therefore, an instance xi ∈ B− is removed from its negative
bag if m1 ≤ m2, where m1 and m2 have the same meaning as above.

4 Experiments

We use five standard MIL benchmark data sets to evaluate our method. Table
1 shows their details.

Table 1. Details of standard MIL benchmark data sets

Dataset Size Attributes
Positive
Bags

Negative
Bags

Positive
Instances

Negative
Instances

Elephant 1391 230 100 100 762 629
Fox 1320 230 100 100 647 673
Tiger 1120 230 100 100 544 676
Musk1 476 166 47 45 207 269
Musk2 6598 166 39 63 1017 5581
Mutagenesis1 10486 7 125 63 7790 2696
Mutagenesis2 2132 7 13 29 660 1472
Bird (Brown Creeper) 10232 38 197 351 4759 5473
Bird (Winter Wren) 10232 38 109 439 1824 8408

As suggested in [11], we chose the F-measure F = (1+β2)·Recall·Precision

β2·Recall+Precision and
the AUC (Area Under ROC Curve) to evaluate the performance. In the first one,
we used the customary option of setting β to 1. For both measures, the larger
the better.

Tables 2 and 3 present the experimental results of the MIL algorithms over
the data sets described above. For each MIL algorithm there are two columns,
the first one corresponds to the performance obtained for the MIL algorithm
in the original (Org) data set and the second one corresponds to the performance
obtained for the algorithm in the balanced (Blc) data set with the proposed
method. We repeated the experimental process 5 times with different randomly
selected training and test sets using 10-fold cross-validation.
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Table 2. Results for AUC. Best results are highlighted in boldface.

Dataset/Algorithm
APR MIL-Boost Citation-kNN mi-SVM MILES

Org Blc Org Blc Org Blc Org Blc Org Blc

Elephant 0,75 0,83 0,89 0,96 0,90 0,95 0,91 0,98 0,90 0,94
Fox 0,57 0,64 0,62 0,82 0,64 0,75 0,68 0,84 0,72 0,82
Tiger 0,56 0,66 0,87 0,93 0,83 0,88 0,88 0,97 0,87 0,95
Musk1 0,77 0,79 0,64 0,75 0,93 0,93 0,94 0,98 0,94 0,98
Musk2 0,80 0,82 0,71 0,71 0,86 0,90 0,92 0,96 0,95 0,98
Mutagenesis1 0,50 0,50 0,86 0,85 0,84 0,82 0,66 0,74 0,84 0,84
Mutagenesis2 0,47 0,47 0,65 0,69 0,63 0,63 0,70 0,80 0,47 0,64
Bird(Brown Creeper) 0,54 0,57 0,95 0,99 0,76 0,81 0,87 0,99 0,89 0,98
Bird (Winter Wren) 0,60 0,61 0,99 1,00 0,94 0,98 0,92 0,97 0,86 0,90

Table 3. Results for F-Measure. Best results are highlighted in boldface.

Dataset/Algorithm
APR MIL-Boost Citation-kNN mi-SVM MILES

Org Blc Org Blc Org Blc Org Blc Org Blc

Elephant 0,68 0,78 0,80 0,90 0,76 0,83 0,53 0,61 0,83 0,94
Fox 0,44 0,55 0,50 0,64 0,53 0,62 0,43 0,40 0,60 0,75
Tiger 0,44 0,57 0,77 0,83 0,76 0,81 0,58 0,61 0,82 0,94
Musk1 0,63 0,68 0,41 0,44 0,72 0,68 0,78 0,84 0,86 0,94
Musk2 0,68 0,72 0,65 0,68 0,71 0,72 0,62 0,62 0,88 0,91
Mutagenesis1 0,01 0,00 0,19 0,24 0,74 0,72 0,00 0,00 0,79 0,78
Mutagenesis2 0,02 0,02 0,22 0,16 0,30 0,30 0,45 0,51 0,05 0,43
Bird (Brown Creeper) 0,16 0,22 0,87 0,93 0,66 0,71 0,29 0,42 0,85 1,00
Bird (Winter Wren) 0,21 0,23 0,95 0,98 0,86 0,99 0,73 0,66 0,88 0,95

Notice that our approach outperforms the state-of-the-art MIL algorithms
in most cases. The improvement is due to our method gives a possible solution
to the problem in how removing the borderline instances and how detecting the
true positive instances in positive bags in order to reinforce them.

5 Conclusion and Future Research

Despite the class imbalance problem is inherent in many MIL problems, there
is very little related discussion about it. Most of the existing methods do not
directly consider the problem of multiple-instance imbalanced data sets, which
decreases the performance achieved by most algorithms. We proposed a method
for MIL which considers the problem of multiple-instance imbalance at instance-
level. Our method exploits the information in negative bags to identify the true
positive instances and the borderline ones. Based on true positive instances, an
oversampling is applied trying to reinforce the target concept in positive bags,
while the borderline instances are undersampled in order to reduce the ambiguity
between positive and negative bags. Experiments showed that the classification
performance of our method is at least comparable with the state-of-the-art MIL
methods in diverse applications. Moreover, our method can be used for either
instance- or bag-level classification.
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Continuations of this work could take several directions. First, other over/
undersampling methods, aimed at improving the performance, must be evalu-
ated and compared with our proposal. Second, in this work we only tackled the
problem of imbalance at instance-level; however, solutions for the imbalance at
bag-level are required. Lastly, the influence of free parameters such as the density
kernel and the number of nearest neighbors must be studied.
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Abstract. This paper deals with automatic feature learning using a
generative model called Restricted Boltzmann Machine (RBM) for the
problem of gender recognition in face images. The RBM is presented
together with some practical learning tricks to improve the learning
capabilities and speedup the training process. The performance of the
features obtained is compared against several linear methods using the
same dataset and the same evaluation protocol. The results show a clas-
sification accuracy improvement compared with classical linear projec-
tion methods. Moreover, in order to increase even more the classification
accuracy, we have run some experiments where an SVM is fed with the
non-linear mapping obtained by the RBM in a tandem configuration.

Keywords: Representation learning · RBM · Gender classification

1 Introduction

Gender recognition of face images is an important task in computer vision as
many applications depend on the correct gender assessment. Examples of appli-
cations of gender recognition include visual surveillance, marketing, intelligent
user interfaces, demographic studies, etc.

There exist many approaches in the literature that deal with the problem of
gender recognition [18]. In most cases, the first stage of gender recognition is to
extract a set of handcrafted features, such as Haar [13], LBP [16], IDP [17], that
are fed into a suitable classifier. The problem of this paradigm is that it is based
on the expertise of the researcher to find the best feature set for a given problem.
For this reason, representation learning emerged as a promising research field.
The main goal of representation learning is to automatically convert data into
a form that makes it easier to extract useful information when building classi-
fiers [1]. The success of representation learning will be the key to board complex
problems in the future.

c© Springer International Publishing Switzerland 2014
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Classical methods for representation learning are usually focused on dimen-
sionality reduction techniques that preserve the representation capability (prin-
cipal component analysis (PCA), independent component analysis (ICA), etc).
When class information is available, these techniques focuses on obtaining dis-
criminative features (discriminant analysis) as well as a reduction of dimension-
ality. All these methods have been widely used because of their simplicity and
effectiveness [3].

In this paper, we propose the use of a powerful generative graphical model
called Restricted Boltzmann Machine (RBM) for feature learning. Recently,
RBMs have become very popular for its success in an impressive variety of appli-
cations [7] [15] [5]. RBMs model non-linear statistical dependencies of observed
variables by introducing binary latent variables. Although the idea of extract-
ing independent features is common to other algorithms (such as PCA), the
main contribution of RBMs is that their non linear nature is able to find more
complex relations between input variables. Also, another important difference
is that the number of learned features will be much greater than in the case of
PCA or LDA.

To our knowledge, this is the first paper that analyzes the performance of
RBMs applied to gender recognition. Moreover, we will discuss some practical
issues that illustrate how to train the RBM model in a practical application.

The remainder of the paper is organized as follows. Section 2 describes the
RBM model and the main notation used throughout the paper. In section 3 and
4 we describe the dataset used and the set of experiments carried out. The final
section draws the conclusions and directions for future research.

2 Restricted Boltzmann Machine

2.1 Generative Models

A Restricted Boltzmann Machine (RBM) is a stochastic generative model that
can learn probability distributions over its inputs. This generative model can
be implemented as a neural network with two layers (“visible” and “hidden” ).
Every RBM is characterized by an energy model function that assigns low energy
values to high probability samples. The standard type of RBM uses binary visible
and hidden units. The problem of using binary visible units is that they are not
appropriate for real-valued data, such as pixel intensities in images. To deal with
this situation, a new model called Gaussian RBM (GRBM) [12] is defined. The
energy function of this model is defined by:

EGRBM (v,h) =
∑

i∈vis

(vi − ai)
2

2σ2
i

−
∑

j∈hid

bjhj −
∑

i,j

vi

σi
hjwij (1)

where vi denotes the real-valued activity of visible unit i, σi is its corresponding
standard deviation and hj is the binary state of the hidden unit j. The param-
eters of the model are the biases ai,bj and the weights wij that connect visible
and hidden units.



276 J. Mansanet et al.

A nice property of the GRBMs model is that the hidden units are mutually
independent given the visible units and vice versa. Therefore, the conditional
distribution over the hidden units can be factorized given the visible units:

p(hj = 1|v) =
1

1 + exp(−∑
i wij

vi

σi
− bj)

(2)

Likewise, the conditional distribution over the visible units given the hidden
units also factorizes:

p(vi|h) = N (vi|μi, σ
2
i ) (3)

where μi = ai + σ2
i

∑
j wijhj . The previous equation is important because it

shows explicitly the Gaussian nature of the visible units.
During the training process, the parameters of the model are adjusted, so

that the log-likelihood of the training data is maximized using stochastic gradient
descent. It is important to note that the log-likelihood definition does not depend
on the labels of samples, so the training process is completely unsupervised.

The derivative of the log probability with respect to the weights leads to a
very simple weight update rule:

Δwij = ε
(〈vihj〉data − 〈vihj〉model

)
(4)

where ε is a learning rate and the angle brackets are used to denote expectations
under the distribution specified by the subscript that follows. A simplified version
of the same learning rule is used for the biases. It is important to mention that
to accelerate the learning process it is essential to approximate the unbiased
samples of 〈vihj〉model using the Contrastive Divergence algorithm (CD) [10].

Although the GRBM is a powerful model, it is possible to improve its perfor-
mance and speed up the learning procedure [11]. One common trick to increase
the speed of learning is to use the momentum method that takes into account the
update rule from the previous state,i.e. Δw(t−1)

ij . Weight-decay is another trick
that usually improves generalization to new data by reducing the overfitting to
the training set. The simplest form of weight-decay, called L2, adds an extra term
to the standard gradient cost that penalizes large weights. Finally, encouraging
sparse hidden activities it is important to easily interpret the function of each
hidden unit. Also, discriminative performance is sometimes improved by using
features that are only rarely active [14]. This trick can be achieved by adding a
penalty term that fixes a ”sparsity target”, which is the desirable probability of
being active. In the results section, we will show the effect of these tricks on the
classification performance.

3 Dataset

Although there are several works on gender recognition of human face images
[3] [8], there is no standard database or protocol for experimentation in this task.
Labeled Faces in the Wild (LFW) [6] was compiled to aid the study of uncon-
strained face recognition. The dataset contains faces that show a large range of
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original

PCA (64 comp)

RBM (100 hid)

RBM (2000 hid)

Fig. 1. Original images and reconstructions for different models

variation typically encountered in everyday life, exhibiting natural variability in
factors such as pose, lighting, race, accessories, occlusions, and background. The
problem of LFW is that number of males is much higher than the number of
females, with some individuals appearing more than once.

In many datasets, the images are not annotated with gender information.
Therefore researchers had to manually label the ground truth using visual inspec-
tion, either by themselves or with the help of others. Also, it is very important
to take special care that any person does not appear in both training and test
sets, to prevent the classifier to learn the identity instead of the gender.

As a conclusion, no large, publicly available dataset specifically designed for
the problem of face gender recognition has been established. For our experiments
we have taken a set of 1892 images (946 males and 946 females) from many
public face databases (FERET, BANCA, FRGC, AR . . . ) using the first frontal
view from each subject only. The images were converted to gray-scale, cropped
to a size of 32 × 40 and histogram equalized. For aditional details about the
composition of the dataset the reader is encourage to check [18].

4 Experiments

We have carried out three different sets of experiments. First we have run exper-
iments in order to assess the gender classification performance of GRBM w.r.t.
the number of hidden units and the application of sparsity and regularization
terms. Second, we have compared these results with those from [18], where dif-
ferent linear methods are applied to the same dataset and the same evaluation
protocol. Finally, in order to increase even more the classification accuracy we
have ran some experiments where an SVM is fed with the non-linear mapping
obtained by the GRBM in a tandem configuration.

In general, in all the experiments the GRBMs were trained using the CD−1
algorithm for 100 epochs using the training set, without the class-labels infor-
mation. The weights of the GRBMs were initialized with small random values
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Fig. 2. Examples of features learned by the GRBM model using 2000 hidden units

sampled from a normal distribution with zero mean and standard deviation
of 0.05. The learning rate value was set to 0.001 for both weights and biases.
Optionally, in some experiments, we have applied a sparsity target in the binary
hidden units and a weight decay term on the weights, as it is explained in 2. The
sparsity target was fixed to 0.01 and the L2 regularization was used as a weight
decay term.

4.1 Gaussian RBM

In order to evaluate the behaviour of the GRBM we have run experiments varying
the number of hidden units from 100 to 2000. Note that the GRBM can be
seen as an unsupervised technique that leads to a non-linear mapping of the
original representation space. Figure 2 shows a few examples of the type of
features learned by the GRBM model using 2000 hidden units. These features
correspond to the weight vectors (wj) associated with the hidden units. Note
that these features might not be orthogonal as in the case of PCA. Moreover a
sigmoid function is applied to the result of the projection v ·wj obtaining a non-
linear mapping of v. Another important difference w.r.t. PCA projection is that
the GRBM features are more spatially localized so that each feature explains a
part of the input sample.

To visually asses the quality of the non-linear mapping obtained by the
GRBM, Figure 1 shows a few examples and the corresponding reconstructions
using PCA and GRBM with different number of hidden units. It can be seen
that the quality of the reconstruction using PCA is very good using only 64
principal components. In the case of GRBMs each hidden unit carries exactly
one bit of information due to the saturation produced by the sigmoid function,
for this reason the number of hidden units required to capture the input infor-
mation must be much higher than in the case of PCA. Another interesting result
is that the information about the gender (and identity) is lost in some cases for
low number of hidden units. This fact explains the poor results obtained for the
GRBM when the number of hidden units is too low.

A quantitative assessment of the performance of the GRBM for gender clas-
sification is carried out by means of adding a discriminative layer (a linear clas-
sifier) after the output of the GRBM. This is a standard procedure using GRBM
for classification. This discriminative layer is trained using supervised data.
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Table 1. Face gender recognition results varying the number of hidden units in the
GRBM

Error rate (%)

Regularization Number of hidden units

100 500 1000 2000

None 14.3 ± 2.3 11.3 ± 1.2 10.6 ±1.4 10.1 ± 1.1

sparsity +L2 reg 14.2 ± 2.7 11.1 ± 2.1 10.2 ± 1.4 10.3 ± 1.0

However it is important to note that the non-linear projection is learned from
unsupervised data, normally easier to obtain and leading to very large training
sets, while for the discriminative layer we can use smaller datasets, even different.
Table 1 shows the gender classification results of the GRBM w.r.t the number
of hidden units and the application of sparsity and regularization. Normally this
sparsity and regularization are used to improve the results but for the 2000
hidden units the best results is obtained without sparsity and regularization.

4.2 GRBM as a Non-linear Projection Technique

In this section, we aim at comparing the classification performance of the GRBM
model versus other projection methods. For the other projection methods, a k-
NN classifier was used in order to provide a classification. In each case, the
corresponding algorithm parameters were properly adjusted, and only the best
result obtained is shown for each algorithm.

We propose to compare the GRBM’s performance with the following well-
known linear mappings: Supervised Locality Preserving Projections (SLPP) [9],
Locality Sensitive Discriminant Analysis (LSDA) [4] and Non-parametric Dis-
criminant Analysis (NDA) [2].

Essentially, we want to test whether the non-linear mapping of the GRBM
model, together with a plain (linear) discriminative layer, provides any benefit
in front of a linear projection mapping and a non-linear classifier (k-NN). Table
2 shows the results of GRBM using 2000 hidden units. In general the linear tech-
niques tend to work bad handling the original high dimensional space (except
PCA), making these techniques inadequate for high-dimensional problems. Note
that in [18] these linear techniques worked better using a previous PCA. However
the GRBM, despite of being a non-linear mapping, is able to manage adequately
the original high dimensionality representation and to obtain an adequate map-
ping, from the discriminative point of view.

4.3 Tandem Classification: GRBM + SVM

In this section we aim at increasing the classification performance of the GRBM-
based representation and compare with the state-of-the-art results in the same
dataset with the same evaluation protocol. After the unsupervised pre-train, we
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Table 2. Face gender recognition results for different projection techniques

Technique PCA LSDA SLPP NDA GRBM

Error rate(%) 17.7 ± 2.0 35.7 ± 2.6 34.0 ± 2.9 29.6 ± 2.3 10.1 ± 1.1

get a new representation of each sample in the data set, given by its hidden unit
outputs after the sigmoid function. This new feature vector (and its label) is
used as an input to feed an SVM with a Radial Basis Function (RBF) kernel.
To set the best parameters of the SVM a grid search over the parameters was
performed using a five-fold cross validation set in each subset.

Table 3 shows a comparison where different number of hidden units has been
tested and the GRBM results are compared with the LDPP algorithm [18], and
with the tandem PCA+SVM as well.

Table 3. Face gender recognition results using SVM

Technique Error rate(%)

LDPP 8.5 ± 1.3

PCA+SVM 10.4 ± 1.6

GRBM+SVM
100 units 11.6 ± 1.9
100 units + L2 + sparse 11.5 ± 1.9

500 units 8.6 ± 1.5
500 units + L2 + sparse 8.9 ± 1.4

1000 units 8.4 ± 1.6
1000 units + L2 + sparse 7.9 ± 1.6

2000 units 8.2 ± 1.9
2000 units + L2 + sparse 7.8 ± 1.7

The best results are obtained using a GRBM with 2000 hidden units, better
than the LDPP algorithm. Note that in this case, the SVM classification accuracy
is higher when the GRBM is trained using sparsity and regularization. Moreover
it is important to note the good performance of PCA+SVM, but still worse that
the LDPP algorithm.

5 Conclusions

This paper presents a new scheme to perform gender classification using a Gaus-
sian Restricted Boltzmann Machine as a non-linear feature extractor method.
First of all we have carried out a comparison of the GRBM classification per-
formance varying some parameters of the model: number of hidden units, using
a sparsity criterion on hidden units and using weight decay with L2 regulariza-
tion. We have evaluated the performance of the GRBM as a non-linear projection
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method jointly with a linear classifier. The results show an important improve-
ment compared with a classical linear projection mapping methods (PCA, LSDA,
SLPP, NDA) followed by a non-linear classifier (k-NN). Finally, in order to
increase even more the classification accuracy, we have run some experiments
where an SVM is fed with the non-linear mapping obtained by the GRBM in
a tandem configuration. This model outperforms the best gender classification
performance published with this database.

Future research will be focused on the use of deep architectures based on
stacking RBMs as a pre-train for the entire network. Usually these deep models
are able to yield more abstract (and useful) representations.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. IEEE Trans. on PAMI 35(8), 1798–1828 (2013)
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xavierfrazao@gmail.com, lfbaa@ubi.pt

http://www.ubi.pt

Abstract. We introduce DropAll, a generalization of DropOut [1] and
DropConnect [2], for regularization of fully-connected layers within con-
volutional neural networks. Applying these methods amounts to sub-
sampling a neural network by dropping units. Training with DropOut, a
randomly selected subset of activations are dropped, when training with
DropConnect we drop a randomly subsets of weights. With DropAll we
can perform both methods. We show the validity of our proposal by
improving the classification error of networks trained with DropOut and
DropConnect, on a common image classification dataset. To improve the
classification, we also used a new method for combining networks, which
was proposed in [3].

1 Introduction

Convolutional neural networks (CNNs) are hierarchical neural networks whose
convolutional layers alternate with subsampling layers, reminiscent of simple
and complex cells in the primary visual cortex [4]. Although these networks
are efficient when performing classification, they have the disadvantage of being
computationally heavy, which makes their training slow and cumbersome.

With the emergence of parallel programming and taking advantage of the
processing power of Graphics Processing Units (GPUs), training these networks
takes significantly less time, making it possible to train large networks [5,6]
and also making it possible to train multiple networks for the same problem
and combine their results [1,2], an approach that can significantly increase the
classification accuracy.

Besides the training time, the major problem of these networks is the overfit-
ting. Overfitting still remains a challenge to overcome when it comes to training
extremely large neural networks or working in domains which offer very small
amounts of data. Many regularization methods have been proposed to prevent
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this problem. These methods combined with large datasets have made it pos-
sible to apply large neural networks for solving machine learning problems in
several domains. Two new approachs have been recently proposed: DropOut [1]
and DropConnect [2], which is a generalization of the previous. When training
with DropOut, a randomly selected subset of activations is droped. With Drop-
Connect, we randomly drop the weights. Both techniques are only possible for
fully connected layers.

In this paper, we propose a generalization of both methods named DropAll.
With this approach we were able to train a network with DropOut, DropConnect
or both and taking advantage of each method.

2 Convolutional Neural Networks

A classical convolutional network is composed of alternating layers of convolution
and pooling. The purpose of the first convolutional layer is to extract patterns
found within local regions of the input images. This is done by convolving filters
over the input image, computing the inner product of the filter at every location
in the image and outputting the result as feature maps c. A non-linear function
f() is then applied to each feature map c : a = f(c). The resulting activations a
are passed to the pooling/subsampling layers. These layers aggregate the infor-
mation within a set of small local regions, {Rj}nj=1, producing a pooled feature
map s of smaller size as output.

Representing the aggregation function as pool(), then for each feature map
c, we have: sj = pool(f(ci)) ∀i ∈ Rj .

The two common choices to perform pool() are average and max-pooling.
The first takes the arithmetic mean of the elements in each pooling region, while
max-pooling selects the largest element of the pooling region.

A range of functions f() can be used as a non-linearity – tanh, logistic,
softmax and relu are the most common choices.

In a convolutional network model, the convolutional layers, which take the
pooled maps as input, can thus extract features that are increasingly invariant
to local transformations of the input image.

The last layer is always a fully connected layer with one output unit per class
in the recognition task. The activation function softmax, is the most common
choice for the last layer such that each neuron output can be interpreted as the
probability of a particular input image belonging to that class.

3 Related Work

3.1 Ensembles of CNNs

Model combination improves the performance of machine learning models. Aver-
aging the predictions of several models is most helpful when the individual mod-
els are different from each other, in other words, to make them different they
must have different hyperparameters or be trained on different data.
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Fig. 1. The output probabilities are averaged to make the final prediction

The standard model architecture to combine networks can be seen in figure 1.
Given some input pattern, the output probabilities from all CNN are averaged
before making a prediction. For output i, the average output Si is given by:

Si =
1
n

n∑

j=1

rj(i) (1)

where rj(i) is the output i of network j for a given input patern.
We recently proposed a new approach to combining neural networks called

Weighted Convolutional Neural Network Ensemble (WCNNE)[3] that presented
better results than doing just the simple average of the predictions. This method
consists in applying a different weight for each network. Networks that had a
lower classification error in the validation set, will have a larger weight when
combining the results. The model architecture can be seen in figure 2. Given
some input pattern, the output probabilities from all CNNs are multiplied by a
weight before the prediction:

Si =
n∑

j=1

Wjrj(i) (2)

The weights Wk is choosen by rank and are based on the order of accuracy
in the validation set. This means that the weights are fixed, independently on
the value of the error:

Wk =
R(Ak)

∑n
i=1 R(Ai)

(3)

where R() is a function that gives the position of the network based on the
validation accuracy sorted in increasing order. For example, the network with
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Fig. 2. The output probabilities are weighted based on the accuracy of the network
evalueted on the validation set

largest accuracy will have an R() value of n, the network with the second largest
accuracy an R() value of n− 1 and so on until the network with lowest accuracy
gets an R() = 1.

This method has the particularity of not looking only at the value of the val-
idation error, but also for the network positions in terms of the ranked error list.
Even though the difference in error between the two networks might be minimal,
the weight value remains fixed, attributing a significantly greater importance to
the network that achieved better results in the validation set.

3.2 Regularization

Two approachs for regularizing CNNs have been recently proposed, DropOut
[1] and DropConnect [2]. Applying DropOut and DropConnect amounts to sub-
sampling a neural network by dropping units. Since each of these processes acts
differently as a way to control overfitting, the combination of several of these
networks can bring gains, as will be shown below.

DropOut is applied to the outputs of a fully connected layer where each
element of an output layer is kept with probability p, otherwise being set to 0
with probability (1 − p). If we further assume a neural activation function with
a(0) = 0, such as tanh and relu, the output of a layer can be written as:

r = m ∗ a(Wv) (4)

where m is a binary mask vector of size d with each element j coming indepen-
dently from a Bernoulli distribution mj ∼ Bernoulli(p), W is a matrix with
weights of a fully-connected layer and v are the fully-connected layer inputs [2].
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Fig. 3. The left figure is an example of DropOut. Right figure is an example of Drop-
Connect

Fig. 4. Example of DropAll model

DropConnect is similar to DropOut, but applied to the weights W . The
connections are choosen randomly during the training. For a DropConnect layer,
the output is given as:

r = a((M ∗ W )v) (5)

where M is weight binary mask, and Mij ∼ Bernoulli(p). Each element of the
mask M is drawn independently for each example during training [2]. Figure 3
illustrates the differences between the two methods.

4 DropAll

DropAll is a generalization of DropOut [1] and DropConnect [2], for regularizing
fully-connected layers within neural deep networks. In the previous section we
saw that DropOut is described by equation 4 and DropConnect is described by
equation 5. For a DropAll layer, the output is given as:

r = m ∗ a((M ∗ W )v) (6)

The DropAll model is presented graphically in figure 4. This approach has
the particularity of being easily adaptable to one of the previous methods. In
these two methods, we had only one variable where we choose the percentage of
drops, with DropAll we have 2 variables. One variable controls the drop rate of
the activation while the other variable controls the drop rate of the weight. If we
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Table 1. CIFAR-10 average classification error in percentage and standard deviation
using 4 types of networks and 2 types of combiners, using 64 feature maps

Model DropAll DropConnect DropOut NoDrop

5 networks 11.20 ± 0.10 11.18 ± 0.15 11.28 ± 0.17 10.92 ± 0.15

WCNNE 10.01 9.81 10.31 10.03

Simple Average 10.03 9.84 10.48 10.06

set one of these variables to one, the drop rate value will be zero and we obtain
either DropOut or DropConnect.

In both methods the value of the drop rate used is usually 0.5, however if we
train with DropAll with 0.5 in both rates, network discards a lot of information,
which is reflected in the results. To solve this problem, the drop rate must be
smaller for both variables. When testing the network with different drop rates,
we concluded that 0.25 is a good compromise.

In the following section we compare DropAll with DropConnect, DropAll and
NoDrop (trained network without dropping units). All of these methods used
in conjunction, provide a greater randomness when tested and combining the
results from different networks trained by these techniques significantly improves
the classification rates.

5 Experiments

Our experiments use a fast GPU based convolutional network library called
Cuda-convnet [7] in conjunction with Li’s code [2] that allows training networks
with DropOut, Dropconnet and DropAll. We use a NVIDIA TESLA C2075 GPU
to run the experiments. For each dataset we train five networks with DropAll,
DropConnect, DropOut and NoDrop (five of each).

Once the networks are trained we save the mean and standard deviation of the
classification errors produced individually by each network and the classification
error produced by these networks when combined with our proposed method [3]
and simple average. These results are shown in Tables 1-3. We used the CIFAR-
10 dataset [8] to evaluate our approach.

5.1 CIFAR-10

The CIFAR-10 dataset [8] consists of 32 x 32 color images drawn from 10 classes
split into 50 000 train and 10 000 test images.

Before feeding these images to our network, we subtract the per-pixel mean
computed over the training set from each image as was done in [2]. The images
are cropped to 24x24 with horizontal flips.

We use two feature extractors to perform the experiment. The first, consists
in 2 convolutional layers, with 64 feature maps in each layer, 2 maxpooling
layers, 2 locally connected layers, a fully connected layer which has 128 relu
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Table 2. CIFAR-10 average classification error in percentage and standard deviation
using 4 types of networks and 2 types of combiners, using, using 128 feature maps

Model DropAll DropConnect DropOut NoDrop

5 networks 10.67 ± 0.11 10.53 ± 0.14 10.53 ± 0.13 10.53 ± 0.17

WCNNE 9.57 9.68 9.55 9.61

Simple Average 9.62 9.81 9.71 9.64

Table 3. CIFAR-10 average classification error combining our 12 best networks using
2 types of combiners, using 128 feature maps. Previous state-of-the-art using the same
architecture is 9.32% [2]. Current state-of-the art of CIFAR-10 is 8.81% [9].

Model WCNNE Simple Average

12 networks 9.09 9.22

units on which NoDrop, DropOut, DropConnect or DropAll are applied and
a output layer with softmax units. We train for three stages of epochs, 500-
100-100 with an initial learning rate of 0.001, that its reduced by factor 10
between each stage. We chose this fixed number of epochs because it is when
the validation error stops improving. Training a network takes around 4 hours.
The second feature extractor is similar but with 128 feature maps in each layer
and the number of epochs is smaller, 350-100-50. Training a network with 128
maps takes around 20 hours. In these experiments we compared the results using
our approach (WCNNE) [3] for combining networks and simple average, both
described in this paper.

The first experiment used a feature extractor with 64 feature maps (summa-
rized in Table 1) and combined networks that were trained with DropAll, Drop-
Connect, DropOut and NoDrop. NoDrop individually obtained better results
and networks with DropOut were the ones with the worst individual results. By
combining the nets, DropConnect achieved better results.

The second experiment used a feature extractor with 128 feature maps (sum-
marized in Table 2), we also combine networks that were trained with DropAll,
DropConnect, DropOut and NoDrop. DropOut individually achieved better
results, and networks trained with DropAll were the ones with worst result.
By combining the nets, DropOut achieved better results.

In addition we join all models and combine our 12 best networks with low-
est validation error, and the results were significantly better (see Table 3). All
of these methods used in conjunction provide a greater randomness and sig-
nificantly improve the classification rate. If we combine our 12 best networks
without DropAll networks the error is slightly worse, 9.12%.
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6 Conclusions

In this paper, we propose a new method named DropAll that is a generalization
of two well-known methods for regularization of convolutional neural networks,
used to avoid overfitting. These problem still remains a challenge to overcome
when it comes to training extremely large neural networks or working in domains
which offer very small amounts of data.

DropAll by itself, did not increase performance when we evaluate a network,
however, the flexibility of this method makes it possible to train a network using
the potential of DropOut and DropConnect. In general, networks trained with
these forms of regularization benefit from an increase randomness, which is a
plus when we wish to combine the results of multiple networks. As shown, the
combination of all methods significantly improves the classification rate of the
problem used in the experiments section to validate our proposal.
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2 Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal
lmas@ua.pt

3 Instituto de Telecomunicações, Universidade da Beira Interior, Covilhã, Portugal
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Abstract. In this work we explore the idea that, in the presence of a
small training set of images, it could be beneficial to use that set itself to
obtain a transformed training set (by performing a random rotation on
each sample), train a source network using the transformed data, then
retrain the source network using the original data. Applying this transfer
learning technique to three different types of character data, we achieve
average relative improvements between 6 % and 16 % in the classification
test error. Furthermore, we show that it is possible to achieve relative
improvements between 8 % and 42 % in cases where the amount of origi-
nal training samples is very limited (30 samples per class), by introducing
not just one rotation but several random rotations per sample.

Keywords: Transfer learning · Deep learning · Stacked auto-encoders

1 Introduction

Deep architectures, such as neural networks with two or more hidden layers,
are a class of networks that comprise several levels of non-linear operations,
each expressed in terms of parameters that can be learned [1]. Until 2006,
attempts to train deep architectures generally resulted in poorer performance
but a breakthrough took place with the introduction by Hinton et al. [7] of
the deep belief network, whose hidden layers are initially treated as restricted
Boltzmann machines (RBMs) and pre-trained, one at a time, in an unsuper-
vised greedy approach. This pre-training procedure was soon generalised to rely
on machines easier to train than RBMs, such as auto-encoders [8].
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The goal of transfer learning (TL) is to reuse knowledge associated with a
source problem to improve the learning required by a target problem [9]. The
source and target problems may be, for example, classification tasks that differ
as to the data distributions, or that involve different sets of classes. A common
approach to TL is that of transferring representations that were learned from
one problem to another problem.

In this paper we investigate if, in the presence of a small training set, it
is possible to use that set itself to obtain a transformed training set (by per-
forming for example a random rotation on each sample), train a source network
using the transformed data, then retrain that network using the original data,
to achieve lower classification errors than would be possible by using only the
original data. We explore this idea using three types of character image data.
We achieved significant improvements in the classification error by fully training
a source network using slightly rotated versions of the original training samples,
then fine-tuning that network again using the original samples. For very small
amounts of training data, it was possible to further improve performance by
introducing more than one rotation per sample.

Deep architectures have been used recently in TL settings, as discussed in
reviews by Bengio et al. [2, Sec. 2.4] and Deng and Yu [5, Ch. 11]. For example,
Glorot et al. [6] pre-trained stacked denoising auto-encoders using unlabelled
data from multiple domains, thus learning a generic representation that could be
used to train SVMs for sentiment classification on a specific domain. This differs
from our work, as the target network was not obtained by fully retraining a source
network and no data transformations (in fact no image data) were involved. In
the field of character recognition, Ciresan et al. [4] trained convolutional neural
networks (CNNs) on either digits or Chinese characters and retrained them to
recognise uppercase Latin letters. Again, no data transformations were involved.

Affine and elastic transformations have been used extensively to increase the
amount data available to train neural networks, as in the work of Ciresan et al.
[3] with very large (but shallow) multi-layer perceptrons trained through paral-
lelisation. Simard et al. [10] suggest the use of distorted data as good practice in
the supervised training of CNNs. These two works did not involve networks pre-
trained without supervision, or transfer learning. More generally, existing work
with deep architectures does not address the use of transformed image data as
a means to obtain an artificial problem from which knowledge can be gathered
and transferred to the original problem, to improve performance.

2 Stacked Auto-Encoders

The auto-encoder (AE) is a simple network that tries to produce at its output
what is presented at the input. The basic AE is in fact a simple neural network
with one hidden layer and one output layer, subject to two restrictions: the
number of output neurons is equal to the number of inputs; and the weight
matrix of the output layer is the transposed of the weight matrix of the hidden
layer (that is, the weights are clamped). The values of the hidden layer neurons



292 T. Amaral et al.

are called the encoding, whereas the values of the output neurons are called the
decoding. Unsupervised learning of the weights and biases of AEs can be achieved
by gradient descent, based on a training set of input vectors.

Consider a network designed for classification, with a layer of inputs, two or
more hidden layers, and a softmax output layer with as many units as classes.
The hidden layers of such a network can be pre-trained one at a time in an
unsupervised way. Each hidden layer is “unfolded” to form an AE. Once that
AE has learned to reconstruct its own input, its output layer is no longer needed
and its hidden layer becomes the input to the next hidden layer of the network.
The next hidden layer is in turn pre-trained as an individual AE and the process
is repeated until there are no more hidden layers. A deep network pre-trained in
this fashion is termed a stacked auto-encoder (SAE).

The goal of unsupervised pre-training is to bring the network’s hidden weights
and biases to a region of the parameter space that constitutes a better starting
point than random initialisation, for a subsequent supervised training stage. In
this context, the supervised training stage is usually called fine-tuning and can
be achieved by conventional gradient descent, based on a training set of input
vectors paired with class labels. The output layer weights are randomly initialised
and learned only in the fine-tuning stage.

3 Transfer Learning Based Approach

We used a TL approach where the involved problems differed only in terms of
the data distribution. Let Xds.ori be an original design set containing nds.ori
data samples. We assume that each data sample contains not only an input
vector (representing for example an image) but also the corresponding class
label, and the design set contains both training and validation data. Let Xds.tra

be a design set containing nds.ori transformed data samples, obtained by doing
a transformation (such as a random rotation, in the case of image data) on each
data sample from Xds.ori. Let Xts.ori be a test set containing nts.ori original data
samples.

Given Xds.tra, Xds.ori and Xts.ori, we can use TL to design and test a clas-
sifier, by applying Algorithm 1. Specifically, in steps 2 and 3 the initialised
network is trained (first without supervision, then with supervision) to clas-
sify transformed data and, in step 4, the resulting network is retrained (with
supervision) to classify original data. The idea is to transfer knowledge from an
artificially created source problem to the original target problem. Algorithm 1
can be trivially modified by omitting step 3, so that the source network is only
pre-trained, instead pre-trained and fine-tuned.

We compared the performance of classifiers obtained via the TL approach
described above with the performance of classifiers obtained via the baseline (BL)
method defined in Algorithm 2. In this BL approach, a classifier is pre-trained
and fine-tuned in a conventional way, using data from a single distribution, then
tested on original data. When design set Xds is the original design set Xds.ori, the
last two steps of the BL approach perform the same operations as the last two
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Algorithm 1. Transfer Learning approach
Given design sets Xds.tra and Xds.ori, and test set Xts.ori,

1. Randomly initialise a classifier network;
2. Pre-train the network using Xds.tra (ignoring labels);
3. Fine-tune the network using Xds.tra;
4. Fine-tune the network using Xds.ori;
5. Test the network using Xts.ori, obtaining classification error ε.

Algorithm 2. Baseline approach
Given design set Xds and test set Xts.ori,

1. Randomly initialise a classifier network;
2. Pre-train the network using Xds (ignoring labels);
3. Fine-tune the network using Xds;
4. Test the network using Xts.ori, obtaining classification error ε.

steps of the TL approach: fine-tuning and testing using only original data. This
yields a test error that can be directly compared with the test error obtained
with TL. Alternatively, when Xds is a transformed design set Xds.tra, the BL
approach is equivalent to TL without step 4: pre-training and fine-tuning using
transformed data and testing directly on original data, without retraining on
original data. As seen later in Section 5, this helped us to determine whether
TL was really beneficial, or if simply transforming design data was enough to
improve performance on original test data.

4 Data and Hyper-Parameters

The data used in this work consisted of grey-level images of handwritten digits,
typewritten (synthesised) digits, and lowercase letters, all containing 28×28=784
pixels. For each data type, we prepared a test set Xts.ori containing nts.ori orig-
inal samples and a design set Xds.ori.full containing nds.ori.full original samples.
We use the subscript full because, in practice, only randomly picked subsets of
Xds.ori.full were used in the experiments. Table 1 shows the numbers of samples
available from each data type, as well as the number of classes involved, c. All
data originated from the MNIST-basic set prepared by the LISA lab1 and the
Chars74K set prepared by Microsoft Research India2.

All the deep networks we used had an architecture with two hidden layers
composed of 100 units each and an output layer appropriate to the number
of classes being considered. Using an additional hidden layer did not have a
significant effect on the observed validation errors.
1 See http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/

MnistVariations.
2 See http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/
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Table 1. Numbers of design and test samples available from each data type

Data type c nds.ori.full nts.ori

Handwritten digits 10 3000 50000
Typewritten digits 10 3000 7160
Typewritten letters 26 7800 18616

Algorithm 3. Experimental procedure
Given Xds.ori.full, Xds.tra and an integer k ≥ 1,

For each data type (handwritten digits, typewritten digits, and typewritten letters),

1. For each nds.ori such that nds.ori
c
∈[30, 60, 90, 120, 150],

(a) Obtain Xds.ori by randomly picking nds.ori samples from Xds.ori.full;
(b) Obtain Xds.tra by creating k random rotations of each sample from Xds.ori;
(c) Run baseline approach using Xds.ori and Xts.ori;
(d) Run baseline approach using Xds.tra and Xts.ori;
(e) Run transfer learning approach using Xds.tra, Xds.ori and Xts.ori.

Hidden layers were pre-trained via online gradient descent, the cross-entropy
cost function and a learning rate of 0.001, for a minimum of 15 epochs and
then until the relative improvement in the validation error fell below 1%. Whole
networks were fine-tuned via online gradient descent, the cross-entropy cost func-
tion and a learning rate of 0.1, until the validation error did not decrease for 50
epochs. These hyper-parameter values did not result from a thorough selection
procedure, but we believe they yielded validation errors that were sufficiently
low to enable the comparisons done in this work.

Our code was based on an implementation of SAEs originally developed
by Hugo Larochelle3. All experiments ran on an Intel Core i7-950 and enough
physical memory to prevent swapping. A pool of five parallel processes was used.

5 Experiments and Results

We followed the procedure shown in Algorithm 3. In step 1a, two thirds of the
randomly picked nds.ori design samples are assigned to training and one third
is assigned to validation. The transformed Xds.tra obtained in step 1b contains
k×nds.ori samples, since it is generated by creating k distinct randomly rotated
versions of each sample from the original design set. In practice, actually two vari-
ants of Xds.tra were obtained in this step: Xds.tra.030, by doing random rotations
in the interval [−30◦, 30◦]; and Xds.tra.180, by using the interval [−180◦, 180◦]
instead. In addition, in step 1e two variants of TL are tried: one using Xds.tra

only for pre-training (this is later denoted as PT); the other using Xds.tra for
both pre-training and fine-tuning (denoted as PT+FT).

3 See http://www.dmi.usherb.ca/∼larocheh/mlpython/.

http://www.dmi.usherb.ca/~larocheh/mlpython/
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5.1 Using a Single Rotation (k=1)

In a first series of experiments we set k to 1 in Algorithm 3. The experimental
procedure was repeated 20 times. At each repetition, a new random number
generator seed was used to pick nds.ori design samples in step 1a, to rotate
samples in step 1b, and to initialise the networks trained in steps 1c, 1d and 1e.

Table 2 shows the average classification error ε obtained using Xts.ori, for the
three data types and for different numbers nds.ori/c of design samples per class.
For each data type and value of nds.ori/c, the lowest mean error is underlined.
The p-value for the Student’s t-test is also reported in square brackets, to help
assess if the errors obtained in that experiment were significantly lower than
those obtained with the BL approach using Xds.ori.

Table 2. Percent average classification test error ε (standard deviation) [p-value]
obtained for different data types, approaches, design sets, and numbers nds.ori/c of
design samples per class

D
a
ta Approach and design sets nds.ori/c

30 60 90 120 150

H
a
n

d
w

ri
tt

en
d

ig
it

s BL Xds.ori 27.2 (02.4) 16.3 (01.6) 12.8 (01.0) 11.1 (00.7) 10.3 (00.6)
BL Xds.tra.030 33.5 (02.5) [¡0.01] 18.3 (01.3) [¡0.01] 13.9 (00.6) [¡0.01] 12.4 (00.5) [¡0.01] 11.2 (00.5) [¡0.01]
BL Xds.tra.180 66.0 (04.7) [¡0.01] 57.5 (03.3) [¡0.01] 45.9 (03.6) [¡0.01] 39.3 (02.4) [¡0.01] 36.0 (02.2) [¡0.01]
TL Xds.ori after Xds.tra.030 PT 31.5 (03.4) [¡0.01] 16.4 (01.4) [¡0.40] 12.5 (00.7) [¡0.15] 11.1 (00.5) [¡0.47] 10.2 (00.5) [¡0.33]
TL Xds.ori after Xds.tra.180 PT 32.8 (03.8) [¡0.01] 19.2 (01.4) [¡0.01] 12.8 (00.7) [¡0.45] 11.0 (00.4) [¡0.45] 10.4 (00.6) [¡0.34]
TL Xds.ori after Xds.tra.030 PT+FT 22.7 (02.0) [¡0.01] 13.5 (00.9) [¡0.01] 10.8 (00.5) [¡0.01] 09.9 (00.5) [¡0.01] 09.1 (00.4) [¡0.01]
TL Xds.ori after Xds.tra.180 PT+FT 27.9 (02.4) [¡0.20] 17.2 (01.2) [¡0.02] 12.6 (00.6) [¡0.19] 11.0 (00.4) [¡0.33] 10.1 (00.5) [¡0.11]

T
y
p

ew
ri

tt
en

d
ig

it
s BL Xds.ori 12.4 (01.5) 08.6 (00.7) 07.1 (00.4) 06.1 (00.3) 05.5 (00.4)

BL Xds.tra.030 18.4 (02.9) [¡0.01] 09.9 (00.8) [¡0.01] 07.8 (00.6) [¡0.01] 07.0 (00.4) [¡0.01] 06.4 (00.4) [¡0.01]
BL Xds.tra.180 55.7 (06.0) [¡0.01] 36.3 (07.1) [¡0.01] 27.6 (03.6) [¡0.01] 23.5 (02.9) [¡0.01] 21.3 (02.5) [¡0.01]
TL Xds.ori after Xds.tra.030 PT 14.1 (01.4) [¡0.01] 08.8 (00.7) [¡0.17] 07.1 (00.6) [¡0.47] 06.1 (00.4) [¡0.44] 05.3 (00.4) [¡0.04]
TL Xds.ori after Xds.tra.180 PT 15.8 (01.7) [¡0.01] 09.2 (00.9) [¡0.02] 06.9 (00.4) [¡0.13] 06.1 (00.5) [¡0.47] 05.6 (00.5) [¡0.37]
TL Xds.ori after Xds.tra.030 PT+FT 11.0 (01.0) [¡0.01] 07.4 (00.4) [¡0.01] 05.9 (00.6) [¡0.01] 05.3 (00.4) [¡0.01] 04.8 (00.3) [¡0.01]
TL Xds.ori after Xds.tra.180 PT+FT 14.8 (01.4) [¡0.01] 09.2 (00.7) [¡0.01] 07.1 (00.4) [¡0.48] 06.2 (00.4) [¡0.08] 05.6 (00.4) [¡0.32]

T
y
p

ew
ri

tt
en

le
tt

er
s BL Xds.ori 21.6 (00.7) 16.4 (00.7) 14.6 (00.4) 13.4 (00.3) 12.8 (00.3)

BL Xds.tra.030 26.4 (01.4) [¡0.01] 19.7 (00.6) [¡0.01] 17.6 (00.4) [¡0.01] 16.2 (00.4) [¡0.01] 15.7 (00.4) [¡0.01]
BL Xds.tra.180 63.7 (04.1) [¡0.01] 50.5 (03.2) [¡0.01] 46.6 (02.1) [¡0.01] 43.2 (02.1) [¡0.01] 41.1 (01.9) [¡0.01]
TL Xds.ori after Xds.tra.030 PT 22.2 (01.1) [¡0.03] 16.2 (00.7) [¡0.19] 14.2 (00.4) [¡0.01] 13.1 (00.4) [¡0.01] 12.3 (00.3) [¡0.01]
TL Xds.ori after Xds.tra.180 PT 20.9 (00.9) [¡0.01] 15.7 (00.6) [¡0.01] 13.8 (00.3) [¡0.01] 12.7 (00.3) [¡0.01] 12.1 (00.4) [¡0.01]
TL Xds.ori after Xds.tra.030 PT+FT 19.4 (01.1) [¡0.01] 15.3 (00.6) [¡0.01] 13.6 (00.5) [¡0.01] 12.5 (00.3) [¡0.01] 11.9 (00.4) [¡0.01]
TL Xds.ori after Xds.tra.180 PT+FT 21.4 (01.9) [¡0.36] 16.0 (00.5) [¡0.01] 14.1 (00.3) [¡0.01] 13.1 (00.2) [¡0.01] 12.5 (00.3) [¡0.01]

As shown, for each data type, the BL approach was tried not only with
Xds.ori, but also with Xds.tra.030 and Xds.tra.180. The obtained results show that
training a model with transformed data and directly testing it on original data
invariably led to worse results than training and testing with original data.

For all data types, the results obtained with TL when transformed design
data were used for both pre-training and fine-tuning (PT+FT) were gener-
ally better than the results obtained when transformed data were used only
for pre-training (PT).

The average test error ε obtained with the BL approach and with TL when
using transformed data for PT+FT is plotted in Fig. 1, for handwritten digits
and typewritten letters. Training times were found to increase linearly with the
amount of design data. Partial and total average training times are reported in
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Fig. 1. Average classification test error ε obtained with the BL and TL approaches,
for each data type, for different numbers nds.ori/c of original design samples per class.
Left: handwritten digits; right: typewritten letters.

Table 3, for the case of nds.ori/c=150 samples per class. Times are shown for
the BL approach and for TL, when slightly rotated data (Xds.tra.030) were used
both to pre-train and to fine-tune (PT+FT). The table rows corresponding to
k=5 and k=10 will be addressed later.

Table 3. Average time in seconds (standard deviation) needed to pre-train and fine-
tune source and target models, for different data types, approaches, and values of k

Data type Approach an design sets k Source Target Total
PT FT PT FT

Handwritten BL Xds.ori 097 (15) 053 (014) 0150 (0019)
digits TL Xds.ori after Xds.tra.030 PT+FT 1 0083 (10) 0064 (0012) 102 (032) 0248 (0038)

TL Xds.ori after Xds.tra.030 PT+FT 5 0302 (48) 0438 (0172) 084 (020) 0824 (0170)
TL Xds.ori after Xds.tra.030 PT+FT 10 0514 (58) 0770 (0473) 098 (018) 1382 (0491)

Typewritten BL Xds.ori 112 (12) 063 (026) 0175 (0028)
digits TL Xds.ori after Xds.tra.030 PT+FT 1 0088 (13) 0067 (0025) 097 (015) 0252 (0036)

TL Xds.ori after Xds.tra.030 PT+FT 5 0334 (51) 0420 (0229) 101 (022) 0855 (0245)
TL Xds.ori after Xds.tra.030 PT+FT 10 0581 (64) 0662 (0356) 124 (045) 1367 (0369)

Typewritten BL Xds.ori 260 (29) 197 (068) 0457 (0079)
letters TL Xds.ori after Xds.tra.030 PT+FT 1 0212 (24) 0217 (0084) 402 (165) 0832 (0193)

TL Xds.ori after Xds.tra.030 PT+FT 5 0786 (57) 1664 (0520) 352 (146) 2801 (0507)
TL Xds.ori after Xds.tra.030 PT+FT 10 1359 (94) 3558 (1288) 327 (123) 5243 (1274)

The results show that, for all data types and for all numbers of design sam-
ples per class, TL based on variant Xds.tra.030 of the transformed data led to
significantly lower errors than the BL approach. This improved accuracy had a
price in terms of time needed to design the classifiers: total training times needed
by TL were 50% to 100% longer than those needed by the BL approach. This
was not surprising, as TL involves unsupervised and supervised training stages
that yield a first classifier (steps 2 and 3 in Algorithm 1) followed by a supervised
training stage that yields a second classifier (step 4), whereas the BL approach
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involves the unsupervised and supervised training of a single classifier (steps 2
and 3 in Algorithm 2).

For all data types and for all amounts of design samples per class, variant
Xds.tra.030 of the transformed data used for PT+FT always led to better results
than variant Xds.tra.180, as illustrated in Fig. 1. This indicates that it was better
to restrict the random rotation of original images to a small range than to allow
it to assume any value.

Fig. 2 (left) shows the average relative improvement in the test error (Δεr)
obtained over 20 repetitions when TL was applied instead of the BL approach, in
experiments that used slightly rotated design data to pre-train and fine-tune the
source classifier. The relative improvement was computed as Δεr=(εBL−εTL)/
εBL, where εBL and εTL are the test errors yielded by the BL approach and TL,
respectively. For all data types, the observed improvements in the average error
were roughly constant across the different numbers of original design samples
per class.

Fig. 2. Average relative improvement in the classification test error Δεr yielded by
TL (using slightly rotated design data for pre-training and fine-tuning), for different
data types, for different amounts nds.ori/c of original design samples per class. Left:
for k=1. Right: for k=5.

5.2 Using Several Rotations (k > 1)

In a second series of experiments, we used transformed design data obtained by
creating several rotated versions of each original design sample, by using first
k=5 and then k=10 in Algorithm 3. Steps 1c and 1d were skipped, because
now we were not concerned with comparing the TL and BL approaches. Rather
we wanted to compare TL results obtained using k > 1 with the TL results
previously obtained using k=1. In addition, when applying TL, we considered
only cases where the transformed design data were obtained via small rota-
tions (Xds.tra.030) and used both to pre-train and to fine-tune the source model
(PT+FT).

The experimental procedure was repeated 20 times for each value of k. The
obtained results are shown in Table 4, together with results for k=1 reproduced
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from Table 2. For each data type and value of nds.ori/c, the two p-values shown
for k=5 and k=10 were computed in relation to the results obtained with k=1.
Some of the results shown in Table 4 are also plotted in Fig. 3.

Table 4. Percent average classification test error ε (standard deviation) [p-value]
obtained for different data types, approaches, design sets, and numbers nds.ori/c of
design samples per class

D
a
ta Approach and design sets k nds.ori/c

30 60 90 120 150

H
.

d
ig

it
s TL Xds.ori after Xds.tra.030 PT+FT 1 22.7 (02.0) 13.5 (00.9) 10.8 (00.5) 09.9 (00.5) 09.1 (00.4)

TL Xds.ori after Xds.tra.030 PT+FT 5 15.6 (01.4) [¡0.01] 11.4 (00.8) [¡0.01] 09.4 (00.6) [¡0.01] 08.5 (00.5) [¡0.01] 08.0 (00.4) [¡0.01]
TL Xds.ori after Xds.tra.030 PT+FT 10 15.2 (02.0) [¡0.01] 10.9 (00.5) [¡0.01] 09.2 (00.5) [¡0.01] 08.6 (00.5) [¡0.01] 08.0 (00.4) [¡0.01]

T
.

d
ig

it
s TL Xds.ori after Xds.tra.030 PT+FT 1 11.0 (01.0) 07.4 (00.4) 05.9 (00.6) 05.3 (00.4) 04.8 (00.3)

TL Xds.ori after Xds.tra.030 PT+FT 5 08.8 (00.7) [¡0.01] 06.7 (00.6) [¡0.01] 05.7 (00.5) [=0.07] 05.1 (00.5) [=0.12] 04.7 (00.2) [=0.08]
TL Xds.ori after Xds.tra.030 PT+FT 10 08.9 (00.7) [¡0.01] 06.8 (00.5) [¡0.01] 06.0 (00.7) [=0.43] 05.3 (00.5) [=0.49] 04.8 (00.4) [=0.45]

T
.

le
tt

er
s TL Xds.ori after Xds.tra.030 PT+FT 1 19.4 (01.1) 15.3 (00.6) 13.6 (00.5) 12.5 (00.3) 11.9 (00.4)

TL Xds.ori after Xds.tra.030 PT+FT 5 17.8 (00.7) [¡0.01] 15.0 (00.5) [=0.06] 13.7 (00.4) [=0.33] 12.9 (00.2) [¡0.01] 12.4 (00.3) [¡0.01]
TL Xds.ori after Xds.tra.030 PT+FT 10 18.0 (00.7) [¡0.01] 15.1 (00.5) [=0.22] 14.0 (00.4) [=0.01] 13.6 (00.4) [¡0.01] 13.1 (00.3) [¡0.01]

Fig. 3. Average classification test error ε obtained with TL, for different values of k,
for each data type, for different numbers nds.ori/c of original design samples per class.
Left: handwritten digits; right: typewritten letters.

For all data types, when only 30 original design samples per class were used,
the errors yielded by TL were significantly lower when the transformed design
set was formed by several rotations of each original sample (k=5 or k=10) than
when the transformed set was obtained via a single rotation (k=1). In the case
of typewritten digits, this benefit persisted for 60 samples per class and, in the
case of handwritten digits, it was visible for any number of samples per class.

For handwritten and typewritten digit data, regardless of the amount of
design data per class, the performances obtained with k=10 and k=5 were
not distinguishable. With typewritten letters, for more than 90 samples per
class, the errors obtained with k=10 were actually higher than those obtained
with k=5.
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The effects discussed above can also be observed in Fig. 2 (right), which plots
the improvements that the average TL errors shown in Table 4 for k=5 achieved
in relation to the average BL errors shown in Table 2.

Average training times observed for nds.ori/c=150 are included in Table 3.
The benefits obtained by using k=5 rotations per original design sample had a
clear cost in terms of total training times, which were about three times longer
than the times observed when k=1.

6 Conclusions and Future Directions

In this work we explored the idea that, in the presence of a small design set of
image data, it could be beneficial to use that same set to obtain a transformed
design set (by performing a random rotation on each original sample), train a
source network using the transformed data, then retrain that network using the
original data. For the three data types involved in our experiments, networks
designed via this TL approach yielded significantly lower errors than networks
trained using only original (non-rotated) data. Relative improvements between
6% and 16% were observed in the average errors, at the expense of training times
50% to 100% longer.

In general, pre-training and fine-tuning a source network led to better results
than just pre-training it. Restricting the rotations performed on the original
design samples to a small range led to better results than freely rotating the
samples. It would be interesting to study in finer detail the relationship between
performance and the range of allowed rotation, and also try transformations
other than rotation.

For small amounts of original design data, it was possible to further improve
performance by including in the transformed data more than one randomly
rotated version of each original sample. With k=5 rotations per original sample,
relative improvements between 8% and 42% were observed in the average test
error. This implied training times about three times longer than those associated
with a single rotation.
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Abstract. Automatic traffic sign recognition is a difficult task, as it
is necessary to distinguish between a very high number of classes with
low inter-class variability. The state-of-the-art methods report very high
accuracy rates but just a few classes are covered and several training
samples are required. For the sake of the development of an asset man-
agement system, these approaches are out of reach. Furthermore, in this
context, minimizing user’s effort is more important than achieving max-
imal classification accuracy. In this paper, we propose a catalogue-based
traffic sign classifier which doesn’t require real training samples for model
building and promotes minimal user’s workload involving the catalogue’s
semantic structure in the error propagation. Experimental results reveal
that user’s workload was reduced by 20 % while accuracy was improved
by 2 %.

Keywords: Traffic sign recognition · Discriminative local regions · Dis-
tance transform · Traffic sign asset management · User centered machine
learning

1 Introduction

Automatic traffic sign recognition using image processing has been an active
topic of research since the earliest steps of Computer Vision, given the high
industrial interest on the development of driver’s assistance technologies and
the need to diminish road maintenance costs.

In this context, several different image processing algorithms have been pro-
posed for both traffic sign detection and recognition, which, although reporting
good accuracy rates, are confined to a relatively small number of classes and
demand fair amounts of training data for model building.

A road asset management system is basically a program allowing the con-
struction of an inventory of traffic signs along a given itinerary. Several aspects
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hinder the success of developing automatic approaches to solve this task, namely,
the huge number of different existent signs and the difficulty to obtain represen-
tative training data.

Given these constraints, human operators remain the most reliable and most
used source when it comes to traffic sign asset management, having to frequently
revise or validate the results of automatic systems and indicate multiple, inter-
acting labels. Ensuring a minimal classification rate is, therefore, less important
than minimising the user’s workload. That is, uniquely identifying a given sign is
less important than minimising the user’s effort to fix possible incorrect results.

In this paper, we propose a semi-automatic traffic sign recognition system
for road asset management focusing on user’s effort minimisation.

2 Related Work

Different methods have been proposed in the literature to automatically detect
and recognise traffic signs [1–5]. Commonly, the detection and recognition steps
are sequentially integrated but rather independent from each other.

Considering the detection task, both colour-based [2] and shape-based [4,6]
algorithms have been developed. Colour-based algorithms are more straightfor-
ward and take advantage of the fact that colour is the most salient feature of
traffic signs.

Some authors argue, however, that colour segmentation is not reliable given
its sensitivity to several factors (target distance, illumination, etc.) and prefer
to detect traffic signs by their well-defined shape (squares, triangles, circles) [1].

Addressing the recognition task, both pixel-based and feature-based methods
have been reported [1,3,5]. Pixel-based algorithms use variations of template
matching and feature-based techniques use machine learning algorithms over
different features (colour, shape, motion information and statistical properties).

Most available studies consider simplified settings: limited subsets of traf-
fic signs or impose rather simple restrictions on the experimental setting by
considering just a single semantic category or signs from structurally different
categories [1].

State of the art methods on traffic sign classification are mainly based on
machine learning techniques which although providing high accuracy, as much
as 99.15%, are dependent on a high number of training examples [5]. These
are out of reach for catalogue-based traffic sign asset management, as it is not
possible to gather a representative training dataset for the different traffic signs.
To overcome this difficulty, we adapted the approach proposed by Ruta et. al.
[1] using a Distance Transform algorithm for sign classification using template
images.

3 System Outline

Generally, a traffic sign recognition system involves the following steps: 1) traffic
sign detection; 2) discretisation of the identified regions of interest; 3) classifica-
tion of the instances obtained in 2).
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In this paper, we are interested in proposing a new classification method (step
3) and we assume, therefore, that traffic sign detection has been done exactly
(manual segmentation) in order to avoid the propagation of segmentation errors
to misclassification.

3.1 Colour Initialisation

Using the full colour spectrum to recognise traffic signs is both inefficient and
unnecessary as traffic signs contain just up to four distinctive colours per cate-
gory [1]. Thus, obtaining a discrete image representation is advantageous.

Prior to processing, input RGB images are converted into indexed images
using a clustering algorithm (K-means) in a two stage cascade over the (H,S)
channel space. This colour space was chosen, as it is generally understood as
robust against illumination changes and as it reproduces human visual experi-
ence.

3.2 Template Matching

Consider two indexed, size normalized images, I and J , divided into small, reg-
ularly spaced, non-overlapping m × m blocks, rk. Comparing images I and J
means comparing their subregions rk using a distance transform ψ(I, J) [1]. The
dissimilarity between I and J in region rk is drk

= m−2
∑m2

t=1 ψ(I, J).
For each discrete colour, the weighted dissimilarity between I and J is

given by

d̂S,W (I, J) =
∑|S|

k=1 wkdrk
(I, J)

∑|S|
k=1 wk

,

where S is the set of regions rk considered and W is a weight vector codifying
the importance of each region rk.

Ruta et al. argue that using all regions rk uniformly is inadequate for traffic
sign recognition and they proposed a discriminative region selection procedure
using template images (cf. Algorithm 1).

Algorithm 1. Discriminative Region Selection

1 Input: Sign category C = {Tj : j = 1, . . . , N}, target template index i,
2 region pool R = {rk|k = 1, . . . ,M}, dissimilarity threshold tD

3 initialise an array of region weights W = {wk|wk = 0, k = 1, . . . ,M}
4 for each template Tj ∈ C, j �= i do
5 sort R by decreasing dissimilarity drj

(Ti, Tj)

6 Si,j = [ ],Wi,j = [ ], Di,j = 0

7 for ( l = 1; l < M and Di,j < tD; l = l + 1 ) do

8 set weight of the new region to: wl
j = dr

(l)
j (Ti, Tj)

2

9 add region r
(l)
j to Si,j and weight w

(l)
j to Wi,j

10 update Di,j : Di,j = Di,j + dr
(l)
j (Ti, Tj)

11 for each region rk ∈ Si,j do

12 update region weight: wk = wk + w
(t)
j

13 Output: ordered sets Si = {rk|wk > 0} and Wi = {wk|wk > 0}
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Algorithm 1 depends on the definition of an appropriate threshold tD to limit
admissible dissimilarities Di,j . As the number of categories increases, both the
value of tD and the number of regions rk used become larger.

The best model is found by maximising the following objective function
O(θi) =

∑
j �=i d̂Si

(Ti, Tj), where θi = (S,W )i.

3.3 User’s Effort Minimisation

Some efforts have been made within the active learning framework to reduce
user’s effort by means of sorting the classification output. Cullota et al. pro-
posed a framework to reduce the user’s effort in labelling tasks within struc-
tured prediction problems, where it is necessary to identify multiple, sometimes
interacting labels for data [7].

Catalogue-based traffic sign asset management is a structured prediction task
as it is not only necessary to identify the different signs but also their category,
type and subgroup according to varying national regulations (cf. Figs. 1 and 2).

Fig. 1. GUI integrating the proposed
algorithm
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Fig. 2. Traffic sign catalogue tree derived
from the GUI

In this context, we developed a novel approach based on Ruta’s work that
embodies user’s effort in the training process, trying to increase the discriminabil-
ity of those pairs of classes that require higher amount of user intervention. In
real life problems, these classes are semantically different.

This can be achieved in general learning tasks by considering different error
propagation according to user’s effort when correcting possible mistakes. In our
case, we adapted the weight region definition (line 12, Alg. 1) to wk = wk +
2uid(j,i) · w(t)

j , measuring user’s effort by means of the following function:
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uid(a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 , a = b

1 +
| a.index − b.index |

| a.siblings | , a.parent = b.parent

uid(a.parent, b.parent) , | b.siblings | = 1
1 + uid(a.parent, b.parent) , otherwise

The proposed user interface distance measures the user’s effort to correct a
wrongly labelled prediction a to its real label b by considering two different types
of actions on the graphic user interface (cf. Fig. 1), namely clicks and partial
scrolling, and the cost of changing states in the catalogue-driven action-tree (cf.
Fig. 2).

If the classification algorithm’s output is correct, the user workload is 0. Oth-
erwise, if the output is not correct but semantically approximate, i.e., both the
candidate and the real traffic signs have the same category, type and subgroup
(same parent in the action-tree), the user’s effort consists in one click and a
partial scrolling. Furthermore, in the particular case when b has no siblings, the
workload is defined in terms of its parent in the action-tree (cf. Fig. 2) . In all
other cases, the user effort consists in iteratively summing up the costs of each
necessary correction.

In this case, uid ’s contribution to the region weight definition was set as
exponential but it could be changed to perceive finest characteristics of the
underlying workload function.

3.4 Classification

Let C = {Ti|i = 1, . . . , N} be the set of traffic signs. Given a new image I,
classifying it means identifying the template Ti which maximises the posterior
probability

p(Ti|I, θi) =
p(I|Ti, θi) p(Ti)

∑N
k=1 p(I|Tk, θk) p(Tk)

4 Experimental Study

Two different datasets have been used in the development of the present system.
For model building, a dataset of traffic sign pictograms (artificial images) directly
extracted from the Portuguese catalogue was considered [8].

Models were generated considering a total of 394 different traffic signs orga-
nized in 5 categories, 14 types and 2 subgroups according to official portuguese
catalogue specifications [8].

For model testing, a dataset of 633 real images of a total of 30 different traffic
signs was considered. This dataset is consistent with the catalogue previously
referred and it was built in the scope of the project SARA (cf. acknowledge-
ments). Traffic sign images were collected using a frontal camera in a moving
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vehicle at varying distances and angles and with different illumination condi-
tions. Images are from urban scenarios and highways.

Figure 3 illustrates template and real images of some of the traffic signs
present in the considered datasets.

Fig. 3. Dataset overview: template and real images

Original traffic sign images were compared with catalogue images (templates)
after image normalization using the 1-versus-all scheme [1]. In order to avoid the
propagation of segmentation errors to the classification accuracy, these images
have been manually segmented.

To evaluate the results of the proposed system against the base model of Ruta
et. al., we have used the following indicators: accuracy, workload and average
workload. Accuracy was calculated considering the mean average error. Work-
load was defined as the sum of the user interface distance values of all classi-
fication results. Finally, average workload was defined as the sum of the user
interface distance when wrong classification results were obtained. The results
of the experimental study carried out are presented in Table 1 and in Fig. 4.

Table 1. Method Evaluation: Summary

Region
Method Accuracy Workload

Gain Average Gain
Size (%) Workload (%)

1 × 1
Base 82.62 209.29 – 1.90 –

Proposed 84.67 167.09 20.16 1.72 9.47

2 × 2
Base 81.99 211.71 – 1.85 –

Proposed 84.04 173.21 18.18 1.71 7.65

4 × 4
Base 82.14 207.42 – 1.83 –

Proposed 83.41 177.34 14.50 1.68 7.98

8 × 8
Base 82.30 189.05 – 1.68 –

Proposed 82.93 178.73 5.46 1.65 1.95

16 × 16
Base 79.62 229.77 – 1.78 –

Proposed 79.62 217.49 5.34 1.68 5.34

32 × 32
Base 78.83 264.72 – 1.97 –

Proposed 78.83 259.61 1.93 1.93 2.03

The proposed method successfully reduced user’s workload for all region sizes
considered. Additionally, classification results were improved for smaller region
sizes and maintained for bigger region sizes.
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The average workload was consistently improved in all variations of the region
size used. The most significant performance gains were observed for smaller
region sizes (higher number of regions). This result was expected given the fact
that, as region size increases, a smaller number of regions is used by the classi-
fication algorithm which necessarily leads to decreasing discriminative power.

On the other hand, our empirical observation suggests that considering the
finest possible resolution (1 × 1) does not qualitatively improve results.

Fig. 4 shows the minimum workload needed to correct all misclassifications
when the user has access to the K highest probable results determined by the
classifier, considering 2 × 2 region size.

Fig. 4. Workload (left) and accuracy (right) as function of the number of proposed
candidates (K)

The proposed model scored better than the base model in terms of both
minimum necessary workload and accuracy. Furthermore, the best candidates
tend to be among the first suggested classes, given that the accuracy increment
is higher for lower values of K. Also, these candidates are easier to correct in
case of misclassification (cf. Fig. 4).

5 Conclusions

The proposed system successfully decreased user’s workload in all variations of
the experimental setting, achieving better or equivalent accuracy rates as the
base model. In the best case, the classification accuracy was improved by 2%
and the user’s workload was reduced by 20%. The reported improvement was
achieved thanks to an effective reduction of user’s workload rather than a better
classification accuracy as pointed out by the average workload when mistaken
(cf. Table 1).

Our work can be thought of an extension of that of Ruta et al., as a far
greater number of different traffic signs was considered. Ruta et al. highlight as
an important advantage of their method, the fact that the algorithm can classify
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several traffic signs using just a small number of regions. This holds for the
number of different signs used by them in the training procedure (below 50). In
our work, we considered around 400 classes and, in practice, it was not possible
to keep the threshold to the number of regions (cf. line 7, Alg. 1), as more regions
are needed for discrimination.

The improvement to the base model was found to be less significant as the
region size increases (lower number of regions used), as classification aspects
become dominant.

In the future, we would like to extend this work by improving the uid function
within the active learning framework considering user’s feedback to set differen-
tiate action-tree costs.

Acknowledgments. This work is financed by the ERDF - European Regional Devel-
opment Fund through the COMPETE Programme (operational programme for com-
petitiveness) and by National Funds through the FCT - Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) within project
� FCOMP-01-0124-FEDER-037281 � and within post-doctoral grant SFRH/BPD/
85225/2012.

References

1. Ruta, A., Li, Y., Liu, X.: Real-time traffic sign recognition from video by class-
specific discriminative features. Pattern Recogn. 43(1), 416–430 (2010)

2. Broggi, A., Cerri, P., Medici, P., Porta, P., Ghisio, G.: Real time road signs recog-
nition. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 981–986 (June 2007)

3. Bahlmann, C., Zhu, Y., Ramesh, V., Pellkofer, M., Koehler, T.: A system for traffic
sign detection, tracking, and recognition using color, shape, and motion information.
In: Proceedings of the Intelligent Vehicles Symposium, pp. 255–260. IEEE (June
2005)

4. Moutarde, F., Bargeton, A., Herbin, A., Chanussot, L.: Modular traffic sign recog-
nition applied to on-vehicle real-time visual detection of american and european
speed limit signs. CoRR (2009)

5. Ciresan, D., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks
for traffic sign classification. In: The 2011 International Joint Conference on Neural
Networks (IJCNN), pp. 1918–1921. IEEE (2011)

6. Moutarde, F., Bargeton, A., Herbin, A., Chanussot, L.: Robust on-vehicle real-time
visual detection of american and european speed limit signs, with a modular traffic
signs recognition system. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 1122–
1126 (June 2007)

7. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks.
In: Veloso, M.M., Kambhampati, S. (eds.), pp. 746–751. AAAI Press/The MIT Press
(2005)

8. Diário da Républica:
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Abstract. Prototype learning is widely used in character recognition field. Un-
fortunately, current learning algorithms require intensive computation burden 
for large category applications, such as Japanese/Chinese character recognition. 
To resolve this challenge, a principled parallel method is proposed on GPUs in-
stead of CPUs. We have implemented the method in mini-batch manner as well 
as stochastic gradient descent (SGD) manner. Our evaluations on a Chinese 
character database show that our method posses a high scalability while pre-
serving its performance precision. Up to 194X speedup can be achieved in the 
case of mini-batch. Even to the more difficult SGD occasion, a more than 30-
fold speedup is observed. 

Keywords: Prototype learning ⋅ Learning vector quantization ⋅ Chinese charac-

ter recognition ⋅ Parallel reduction ⋅ GPU computing ⋅ CUDA 

1 Introduction 

Learning vector quantization (LVQ) is an elegant prototype learning algorithm for 
large category classification in both its small storage requirement and high throughput 
recognition. Previous studies show that prototype learning can yield a state-of-the-art 
performance both on digit recognition and Japanese/Chinese recognition when a  
discriminative learning criteria is used [1]. LVQ is also extremely useful to pick  
up a limited candidate classes for further process. For example, a LVQ classifier is 
employed to reduce the high training demanding of PL-MQDF [2]. Perhaps most 
significantly, with the emergence of mobile applications, LVQ models are especially 
well-suited to character input demand [3] in embedded devices, such as smartphones, 
tablets. 

To discriminatively learn a robust LVQ model, there is a daunting computing com-
plexity. It may take several days using conventional implementation on a single CPU 
core. As for discriminative learning, it is extremely true that more data win. Some 
works attempt to collect more training samples or synthesize artificial ones. Using 
orders of magnitude more training samples, steady improvements are reported in recent 
studies [4, 5]. Therefore, there is a great need to scale up those learning algorithms. 

Recent works had shown that GPUs were outstanding accelerators for many  
pattern recognition tasks. Raina et al [6] studied sparse coding on GPUs. Their  
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implementation of sparse coding led to 5~15-fold speedup. There was couple of 
groups studying big multilayer neural networks using GPUs. Ciresan et al made it 
possible to train a deep MLP of best performance with the help of GPUs [7]. More 
recently, Zhou et al [5] proposed a GPU-based discriminative training method for 
Chinese character recognition. Their mini-batch implementation yielded a speedup of 
15 times.  

This paper presents a GPU-intensive parallel method which can scale prototype 
learning up remarkably. Unlike to previous works, our method schedules almost all 
computation workloads onto the GPU device, requiring little CPU coordination. Our 
method is benchmarked on Chinese character recognition and a high scalability is 
obtained.  

The remainder of the paper is organized as follows. The next section provides 
some preliminaries relating to LVQ. Then Sect. 3 presents the principled parallel 
framework which gives GPUs the main role in workload computation. Implementa-
tion of the framework is unfolded further in Sect. 4. Each step of the method is re-
fined and we focus on the tiling and reduction strategy. To benchmark the method, we 
conduct experiments on the Chinese character recognition task in Sect. 5. Finally, the 
last section summarizes the paper. 

2 Preliminaries 

Assuming a C-class classification task, prototype learning is to generate a set of proto-
type vectors Θ = {mi, i=1, 2,…,C}. Here we just allocate single prototype to each class 
for simplicity and extending to multiple prototypes is straightforward. 

For learning the prototypes, a collection of training samples is used as teachers. 
Let’s denote the training samples as {(xn,yn), n=1,2,…,N }, where yn is the class label 
of xn. In practice, the objective is to minimize the empirical loss on training set: 
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where (.)φ  is the loss function on a scoring ( , )f x Θ . 

We take generalized learning vector quantization (GLVQ) [8] to illustrate the under-
lying discriminative thinking. Firstly, we define an error measure for x:  

 
( )      ,c r

c r

d d
f

d d

−=
+

x
  (2) 

where dc and dr are the distances of x from genuine class ωc and rival class ωr, respec-
tively. Then the loss function can be approximated by the sigmoid function: 
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where ξ is used to tune the smoothness of the sigmoid function. 
If a squared Euclidean distance is used, we can obtain the following learning rule 

for ωc and ωr  depending on x: 
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We thus arrive at GLVQ learning algorithm in Algorithm I. 

Algorithm I. GLVQ Learing Algorithm (Sequencial Version) 

Input: training set{xn,yn}n=1,…,N, initial prototypes{mi}i=1,…,C 

Output: {mi}i=1,…,C 

1: while not convergent do 

2: for each {xn,yn}  

3: find out (mc,dc) and (mr,dr) through compute-then-compare distances 

4: compute error measure f(x) using Equation (2) 

5: derive loss function φ(x) using Equation (3) 

6: update mc,mr using Equation (4) 

7: end for 

8: end while 

9: return {mi}i=1,…,C 

3 Principle 

Algorithm I repeatedly executes the following workloads: pick one sample, compute 
the distances from the sample to all prototypes, find out the genuine pair and rival 
pair, compute loss function and gradient, and finally update the prototype vectors. 
Inherently, it is a sequential process. To port it to parallel architectures, we extend 
SGD as a mini-batch (size of mb) gradient descent and rearrange the process as in 
Algorithm II. Each main step can be parallelized. 
 

Algorithm II. GLVQ Learing Algorithm (Parallel Framework) 

Input: training set{xn,yn}n=1,…,N, initial prototypes{mi}i=1,…,C 

Output: {mi}i=1,…,C 

1: while not convergent do 

2: for each mini-batch 1 1
T {( , ), ..., ( , )}

M Mi i i i iy y= x x  

3: compute all distances as a matrix in parallel 

4: find out genuine/rival pair in parallel 

5: derive loss function in parallel 

6: update prototypes in parallel 

7: end for 

8: end while 

9: return {mi}i=1,…,C 
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To successfully exploit GPUs, we need to match two best practices. Firstly, 
memory transfers between CPU and the GPU’s global memory need to be minimized. 
For pattern recognition applications, we can achieve this by storing all prototypes 
permanently in GPU global memory during learning. Training samples usually cannot 
all be stored in global memory, but they should be transferred only occasionally into 
global memory in as large chunks as possible. With both parameters and training data 
in GPU global memory, the updates can be computed without any memory transfer 
operations. 

A second practice is that the learning should be implemented to fit the two level hi-
erarchies of blocks and threads, in such a way that shared memory can be used where 
possible, and global memory accesses can be coalesced. Often, blocks can exploit data 
parallelism, while threads can exploit more fine-grained parallelism because they have 
access to very fast shared memory and can be synchronized. Further, the graphics 
hardware can hide memory latencies for blocks waiting on global memory accesses by 
scheduling a ready-to-run block in that time. To fully use such latency hiding, it is 
beneficial to use a large number of independently executing blocks.  

In light of above GPU programming practices, we develop an intense GPU solu-
tion as shown in Fig. 1. Seen from the figure, the prototype vectors only transfer to 
and from GPU global memory once at the beginning and ending of the whole process, 
respectively. If there is too big training set to accommodate at global memory, the 
selected mini-batch samples should be transferred to GPU at the start of that sweep. 
Otherwise, we can just copy all of them to the global memory, without multiple trans-
fer requests. Overall, there is few workload that done by CPU, except controlling 
execution flow. 

 

 

Fig. 1. Heterogeneous computing model for prototype learning 

4 Implementation 

We implemented the principled method on CUDA programming architecture. We 
invoke three CUDA kernel functions during one sweep of training. Lines 3~6 in  
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Algorithm II are executed as separate kernel functions except that line 4 and 5 are 
combined into a single kernel. Among those kernels, the first two are most time con-
suming. We investigate two different algorithms to distance computing in subsection 
4.1 and 4.2 respectively. Similarly, in subsection 4.3 and 4.4, we present parallel re-
duction and compare-and-exchange strategy to compute the minimum distance and 
associated prototype index. In the last subsection, we provide our implementation solu-
tion to parallel parameter updating. For brevity, we just assign one prototype to each 
class. However, more prototypes can be implemented with ease.  

4.1 Distance Computing: Parallel Reduction 

Reduction delivers a O(1) result over O(K) input elements. It can be used to execute a 
binary associative operation ⊕ in parallel. The standard reduction algorithm can be 
found in [9]. Herein we apply it to compute the squared Euclidean distance between 
two vectors. During distance computing, operator ⊕ can be defined as: 

ai⊕bi ≡ (ai-bi)
2 

Fig. 2 shows a reduction structure using 16 threads (one element per thread). In the 
first round, the upper half elements operate ⊕ onto the lower half elements with 8 
operations. The second round requires 4 operations. Assuming K is power of 2, the 
squared distance of two K-dimension vectors can be derived in log2(K)+1 rounds. 

 

 

Fig. 2. Reduction of 16 elements 

Initially, we let each block compute one squared distance, loading one sample vec-
tor and one prototype vector from global memory. Thus we need (C, mb) thread 
blocks to compute a distance matrix of mb*C distances. Some of the practical issues 
should be considered carefully.  

On the one hand, the feature dimensionality of samples (we denote it as dim, say 
160) may be different than power of 2. We can set the block size as the largest power 
of 2 that below its dimensionality and contribution from any threads above that power 
of 2 is accumulated through one round of ⊕ operation before continuing on log-step 
reduction. On the other hand, we shall maximize data reuse via shared memory. In-
stead of computing one distance, each block is in charge of TILE_LEN distances from 
one sample to TILE_LEN prototypes. 
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4.2 Distance Computing: Tiling Sum 

Unlike to subsection 4.1, we can let each thread compute a distance independently. 
Under this thinking, each thread first fetches 2*dim values from global memory and 
then performs a serial reduction. There is inefficient global memory traffic. A tiling 
idea is presented to matrix-matrix multiplication in [10] to reduce the heavy traffic of 
the global memory. Such idea is also adapted to solve our computation of squared 
distance. 

Since our target is to compute mb*C distances, we use a TILE_LEN*TILE_LEN 
tile to cover this distance matrix. The tile dimensions equal those of the block and can 
be accommodated in shared memory. Then we divide the prototype matrix and sam-
ple matrix into tiles. The squared distance calculations performed by each thread are 
now divided into (dim+TILE_LEN -1)/TILE_LEN phases. The partial distances are 
iteratively accumulated to arrive at the final distance. Some of the key process is illus-
trated in Fig. 3. The global memory traffic can be reduced to 1/TILE_LEN in this way. 

 

 

Fig. 3. Caculation of squared distances via tiling idea 

4.3 Minima Searching: Parallel Reduction 

Given C distances from sample (xn,yn), our task is to retrieve the genuine (dc,ωc) and 
rival (dr,ωr). These pairs are needed to derive a new mc and mr. We develop a parallel 
reduction to search the minimal distance and the associated class index. Since dr is the 
minimal distance other than dc, we use a trick to avoid conditional code: first retrieve 
the dc through yn, and then write back a very large value to that position. If using mul-
tiple prototypes per class instead, we can execute another pass of reduction to retrieve 
the closest prototype from genuine class in advance. 

We invoke a kernel of mb blocks each of which is of 1024 (or 512) threads.  
All threads in a block collaborate to perform a minima reduction in shared memory. 
Again, the value of C may be not a power of 2 and similar trick is used as in  
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subsection 4.4.1. Moreover, C may be much larger than block size. This issue can be 
solved by iteratively considering those elements block-size away before continuing 
log-step minima reduction. 

4.4 Minima Searching: Compare-and-Exchange 

We can also simply invoke mb threads for minima searching. If mb is large than the 
theoretical limitation of block dimension, more blocks can be automatically dispatched. 
Each thread computes the needed (dc,ωc) and (dr,ωr) pairs via iterative compare-and-
exchange operation.  

It is a most straightforward way to port serial searching algorithms. It will take a 
thread O(C) steps to arrive at the output. Therefore, this is a thread-intensive strategy. 
Once mb is relatively small, it may certainly underutilize GPU resources. 

4.5 Parameter Updating 

In SGD updating mode (mb=1), two prototype vectors are involved in the updating 
process. We invoke dim threads and within each thread, one element of the vector 
evolves following Equation (4). When mb>1, each thread will run mb times iteratively; 
contribution from one sample is considered within each iteration. 

5 Experiments 

Experiments are conducted on the Chinese character recognition task to evaluate the 
proposed method. We firstly describe the database used for our benchmarks. Then we 
show the correctness of our implementation in subsection 5.2. Timing of key kernel 
executions is presented and compared in subsection 5.3. In the last subsection, we 
evaluate the overall scalability of our method.  

The CPU implementation is run on a Xeon X3440 sever with a 2.53 GHZ clock rate, 
while the GPU we used is GTX 680 which is a consumer-level card. During the 
benchmarks, we consider both single prototype per class and eight prototypes per class. 
The parameter TILE-LEN is set to 16 empirically. 

5.1 Database Description 

A large handwritten Chinese character database is used to verify the efficacy of our 
method. We select the most popular two subsets similar to [2], those are CASIA-
HWDB1.0 (DB1.0) and CASIA-HWDB1.1 (DB1.1) [11]. There are 3,755 classes 
(GB1 character set) and each class has about 570 training instances. We have 
2,144,749 training samples and 533,675 test samples. The Chinese characters of each 
set are preprinted in six different orders to balance the writing quality variation of each 
writer through the writing process. 
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Each character sample is mapped to a 512 gradient feature space initially. Then 
LDA is employed to reduce the feature dimensionality from 512 to 160. Thus, the 
variable dim is set to 160 in this paper. 

5.2 Performance Evaluation 

We run the CPU implementation and the proposed GPU implementation back to back. 
Both of them sweep over the training set 40 times. At each sweep, we collect their 
recognition error rate on training set (fitting error) and that on test set (test error). We 
also use different mini-batch size. Their learning process and corresponding perfor-
mance are depicted in Fig. 4(a) and (b), respectively. Seen from these figures, there are 
invisible performance differences between the CPU implementation and the GPU  
implementation. 
 

 
(a)                                               (b) 

Fig. 4. Learning process comparison between CPU and GPU: (a) single prototype/class;  
(b) eight prototypes/class 

5.3 Algorithmic Evaluation 

Distance computation and minima searching tasks are two most compute-intensive 
workloads in Algorithm I. We first evaluate the efficiency of distance computation. 
Both parallel reduction and tiling sum can be used. We consider different mini-batch 
size mb in {20, 21, …, 213}. The results are plotted in Fig. 5(a) and (b) with one pass of 
learning on training data. It shows that parallel reduction has a consistent execution 
time while tiling sum has high throughput when mb is larger or equal than TILE-LEN.  

Then we inspect the efficiency of minima searching task. Similarly, we evaluate 
both parallel reduction and compare-and-exchange solutions and their results with one 
sweep of learning are shown in Fig. 6(a) and Fig. 6(b). From the figures, parallel re-
duction demonstrates a remarkable scalability in any mini-batch scales. Seen from the 
subfigures, even when mb is large, the compare-and-exchange strategy is running 
slower greatly. Moreover, more prototypes per class are used, slower the compare-and-
exchange strategy is. It also reveals that small overhead will result from too large mb. 
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(a)                                                   (b) 

Fig. 5. Distance computation comparison between parallel reduction and tiling sum: (a) single 
prototype/class; (b) eight prototypes/class 

 

  
(a)                                                     (b) 

Fig. 6. Minima searching comparison between parallel reduction and compare-and-exchange: 
(a) single prototype/class; (b) eight prototypes/class 

5.4 Speedup Benchmarks 

Combining all together, we can develop an intensive-GPU implementation that can adap-
tively invoke kernels depending on their problem scale. As for one sweep of learning on 
single CPU core, it consumes 4,332 seconds (with single prototype/class) or 32,843 se-
conds (with eight prototypes/class). Thus to derive a robust LVQ model using 40 sweeps 
of learning, it takes days to weeks.  When ported to GTX 680 using our proposed meth-
od, we can achieve up to 184-fold (with single prototype/class) or 194-fold (with eight 
prototypes/class) acceleration than CPU implementation as shown in Fig. 7. 

As we known, SGD (mb = 20) is more difficult to accelerate since it presents limited 
workloads. Our scheme adopts parallel reduction algorithms in both distance computa-
tion and minima searching when SGD is used. Thus, we can greatly exploit the fine-
grained parallelism. As a result, our method successfully accelerates the SGD more 
than 30 times. 
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Fig. 7. Prototype learning speedup (with both single prototype/class and eight prototypes/class) 

6 Conclusions 

In this paper, we motivate to resolve the intensive learning challenges inherently in 
prototype learning using GPUs and a GPU programming architecture. We present an 
intensive-GPU parallel method after rearranging current prototype learning algorithm. 
Our method schedules almost all computation workloads onto the GPU device, re-
quiring little CPU coordination. To maximize the utilization of the GPU resources, 
our implementation adaptively exploits tiling pattern and parallel reduction algorithm. 
Benchmarks are conducted on Chinese character recognition. Experimental results 
show that our method has a high scalability. Up to 194-fold acceleration is observed 
in mini-batch mode. Even to stochastic gradient descent, there are 30X+ speedups. 
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Abstract. One-Class Classifier (OCC) has been widely used for its ability to 
learn without counterexamples. Its main advantage for multi-class is offering an 
open system and therefore allows easily extending new classes without retrain-
ing OCCs. Generally, pattern recognition systems designed by a single source 
of information suffer from limitations such as the lack of uniqueness and non-
universality. Thus, combining information from multiple sources becomes a 
mode for designing pattern recognition systems. Usually, fixed rules such as 
average, product, minimum and maximum are the standard used combiners for 
OCC ensembles. However, fixed combiners cannot be useful to treat some dif-
ficult cases. Hence, we propose in this paper a combination scheme of  
OCCs based on the use of fuzzy integral (FI) operators. Experimental results 
conducted on different types of OCC and two different handwritten datasets 
prove the superiority of FI against fixed combiners for an open multi-class clas-
sification based on OCC ensemble. 

1 Introduction 

One Class classifiers (OCCs) are classifiers with spatial assumptions, which allow 
them to learn restricted domains in a multi-dimensional pattern space, using only a set 
of the target class [1]. Hence, the OCC has been successfully employed in many ap-
plications such as image retrieval [2], automated document retrieval and classification 
[3] and combining different biometric traits [4]. 

Nowadays, extended multi-class implementation to new classes is strongly re-
quired for instance, in biometric identification. However, that needs to retrain the 
system again on all classes. Recently, OCC has been successfully used to achieve 
extensible multi-class implementations [5], [6], [7]. Indeed, extending the classifier to 
new classes does not require retraining the used OCCs for a second time. Besides, the 
OCC offers less computational cost in terms. 

Generally, pattern recognition systems designed by a single source of information 
suffer from limitations such as the lack of uniqueness and non-universality to the 
problem at hand. Thus, Multiple Classifiers System (MCS) combine information from 
multiple sources by taking advantage of individual classifiers and avoiding their 



 Fuzzy Integral Combination of One-Class Classifiers Designed 321 

weakness, resulting in the improvement of classification accuracy. Indeed, the bene-
fits of multiple classifiers based on different information sources for the same prob-
lem have been judged in various fields of pattern recognition, including handwritten 
recognition [8], speech verification [9], and other [10]. 

Recently, it has been demonstrated that combining classifier can also be effective 
for OCCs. Therefore, OCC ensemble has been explored to deal with a variety of ap-
plications such as image retrieval [11] and other recognition applications. Conse-
quently, we can distinguish between OCC ensemble for solving one class problems 
[11], multi-class implementation [5], [6], [7], [12] and ensemble of multi-class im-
plementations [13], [14], [15], which represents our interest. 

Furthermore, fixed rules such as average, product, minimum and maximum are the 
standard used combiners for OCC ensembles [6], [13], [14]. However, fixed combin-
ers cannot be useful to treat some difficult cases. Fixed rules are optimal for special 
cases for which the combined systems are similar in terms of performance and com-
petence. 

However, classifiers designed by different information sources are different from 
each other, because the members of the ensemble are built on diverse feature spaces 
[16]. Therefore, trained combiners are more suitable since the behavior of the ensem-
ble members is learned during the training phase. Thus, the final decision is made by 
taking into account the competence of each member. Indeed, Abbas et al. (2013) [15] 
used the Dezert-Smarandache Theory (DSmT) to achieve one class support vector 
machine (OC-SVM) ensemble trained on different feature sets of handwritten digit 
recognition. The DSmT shows its superiority in term of performance versus the sum 
rule. However, the proposed scheme violence the best advantage of using OCCs as 
multi-class system which is the extension to new classes and therefore, achieves 
closed system. Indeed, adding new classes require updating all parameters and retrain 
the combination model. 

Fuzzy Integral (FI) and the associated fuzzy measures [16] initially introduced by 
Sugeno are reported to give excellent results for classifier aggregating. The ability of 
the fuzzy integral to enhance the results produced by multiple information sources has 
been researched in various application areas of pattern recognition [8], [9]. 

In order to achieve an open and powerful MCS we propose a combination scheme 
based on the use of fuzzy integral operators for combining OCCs. Hence, we study in 
this paper the ability of fuzzy integral operators against fixed rules for achieving MCS 
that is dedicated to solve the multi-class classification problem. Results are carried out 
on different types of OCC and two different handwritten datasets, leading to have a 
larger view on the usefulness of FI to the addressed problem.  

The remaining of this paper is organized as follows. Section 2 reports an overview 
of fuzzy measure and fuzzy integral operators. Section 3 describes the formalization 
of the proposed MCS based on OCC ensemble. Section 4 presents experimental re-
sults conducted on various types of OCC and two different handwritten datasets in 
order to prove the effective use of the proposed combination scheme. Finally, the 
conclusion and future work are provided in the last section. 
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2 Overview of Fuzzy Integral Combiners 

Fuzzy integrals are non-linear combiners defined with respect to fuzzy measures. 
Therefore, the main advantage of FI is its ability to combine the objective evidences 
denoted by  issued from a set of information sources , … ,  by taking 
into account subjective evaluation of their competence expressed by the -fuzzy 
measure. In table 1, we briefly present the definition of the fuzzy measures and fuzzy 
integral operators including Sugeno, Choquet and Weighted Averaging (OWA) op-
erators [17], [18].  

Table 1. Definition of fuzzy measure and fuzzy integral operators  

Function Definition 

Fuzzy mesure 
A g z g , 

, 2  

Sugeno ,  

Choquet ∑ , 0. 

OWA-AND 
1

 

OWA-OR  ∑ , ,  
 

For the OWA-AND new evidences  are used by Sugeno integral termed 
. In addition, we propose in this paper to calculate by these new evidences the 

Choquet integral termed  via applying its defined equation. On the other hand,                  
OWA-OR is applied via using new decision function as it is defined in                            
Table 1. Moreover, both operators need parameters α and β to be tuned in the unit 
interval, which may lead to achieve better results than the Sugeno and Choquet opera-
tors [18]. Thus, we define five different operators for FI aggregating: Sugeno , 
Choquet , S-OWA-AND , C-OWA-AND  and OWA-OR  

3 Fuzzy Integral Combiners for MCS Based on OCC Ensemble 

The MCS as it is depicted in figure 1 is composed of  classes and  different infor-
mation sources. Therefore, each class is represented by a single OCC ensemble which 
is composed of L OCCs trained on different information sources, their normalized 
outputs are aggregated through a FI operator. Finally, the class label of the test pattern 
is assigned to the single OCC ensemble that achieves the maximum prediction. 

Let , 1, . .  as the set of  single OCC ensembles and denoting    the 

output value of the  which is trained on the  information source of the  
class. 
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...
  ...

    ...
   .  .   .      .  .   .      .  .   .    .  .   .    .  .   .    .  .   .  

  ...  (1) 

 
The combination of OCCs requires the normalization of outputs for each classifier 

for performing correctly the combination. In this way, a straightforward approach 
consists to transform the classifier outputs into posteriori probabilities.   

Thus, we propose to use the softmax normalization method [20] for its simplicity and 
effectiveness to map the outputs in the range [0, 1]. For each test pattern , the softmax 
function assigns a posteriori probability /  for each output  as follows: /   ∑    (2) 

Such that, 0 / 1 and  ∑ / 1. 
It has been noticed that the successful key of the FI is the density measures, which 

represent the importance of each information source. Generally, a density measure 
represents the competence of the ensemble member measured by its achieved perfor-
mance. However, this value must be normalized in order to obey the same proprieties 
of the posteriori probability. Denoting by  the performance of the  achieved in 

the training step, the density measure  is determined as follows: 

 

 

Fig. 1. Proposed scheme of MCS based on FI combination of OCC ensemble 
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∑  (3) 

 
Such that, 0 1 and  ∑ 1 
After getting the densities, we calculate the fuzzy measures  , for 1  

and 1  through applying equations its defined equation in table 1. 
Denoting by  the class label of a test pattern  and one of the defined FI opera-

tors ( , , ,  or ), the aggregation of posteriori probabilities of the 
different information sources and their corresponding fuzzy measures to be combined 
is defined as:  1   ⁄ , , 1  (4) 

 
 is one of the defined FI operator. 

4 Experimental Results 

4.1 Datasets Description and Feature Generation 

In order to validate the proposed architecture, two handwritten datasets are used, 
which are Arabic handwritten words and handwritten digits, respectively. Both da-
tasets and their feature generations are presented in the following section.    

4.1.1 Arabic Handwritten Word 
For an effective evaluation of the MCS, the well known IFN/ENIT database [21] is 
used. It contains more than 26400 images of Tunisian town names. Words are written 
by 411 scripts using different writing tools. In our experiment, we collect 30 classes 
of interest grouping names with the largest appearance frequencies. We select ran-
domly for each class 25 samples for training the classifier and we let the remaining 
samples for the evaluation step.  

For a suitable feature generation, the Curvelet transform [22] is used, since, it of-
fers enhanced directional capacity to characterize edges and singularities along curves 
that compose handwritten Arabic word.  

Recently, the curvelet transform has been successfully used for offline handwritten 
signature retrieval, where the feature vector is generated using the energy and the 
standard deviation of the curvelet coefficient [23]. In our case, we explore the energy 
of the curvelet coefficient computed from the handwritten word image. In order to 
maintain the local information, we apply the curvelet transform on different section of 
the word image grid. Finally, the feature vector is achieved through the concatenation 
of all computed wedge energies for the defined image sections. 

In order to perform the combination, different information sources should be creat-
ed [24]. For this reason, we use two different ways for decomposing an image into 
variety of sections (before applying the curvelet transform), which are equal space 
and equal masse grids with same size 2×8, respectively.  
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4.1.2 Handwritten Digit 
Experiments are conducted on the well-known US Postal Service (USPS) [25] hand-
writing recognition task. This dataset contains normalized grey-level handwritten 
digit images of 10  numeral classes, extracted from US postal envelopes. Feature 
extraction methods are the same as Arabic handwritten word with grid size of 2×2 for 
both equal space and mass, respectively. Both datasets are summarized in Table 2. 

Table 2. Datasets Used for Evaluating the Proposed MCS 

Dataset # Classes # Features # Training samples # Testing samples 
Word 30 736 750 1929 
Digit 10 192 7287 2007 

4.2 MCS Design and Evaluation 

The aim of this work is to show the superiority of fuzzy integral operators against 
fixed combiners for achieving the MCS. Hence, both of which will be examined un-
der the same experimental protocol and therefore, we shall not be overly concerned 
with the absolute value of the accuracy. 

In order to make a larger view on the usefulness of the proposed architecture, re-
sults are carried out on different types of OCC (One Class Support Vector Machine 
(OC-SVM) [26], K-means, Principal Component Analysis (PCA), one Nearest 
Neighbor (1-NN), K-center [1]). Therefore, different systems are built according to 
the used type of OCC. 

The MCS is composed of two OCCs for each class, which differs from feature ex-
traction method. Hence, they are trained separately on specific information source for 
each. However, each classifier has its own parameters which must be carefully tuned. 
Hence, the classifiers are trained with different parameter values and then the optimal 
values are selected when the best performance of the training dataset is achieved. 

After having trained the classifiers, the combination model is performed by means 
of the FI operators, however, it requires parameters to be fixed. According to equation 
3 the density of each class is calculated via the classifier performance. Hence, the 
leave-one out and two-fold cross validations are performed separately on each class 
using training dataset for generating the performances and therefore, the densities for 
Arabic word and digit, respectively. When using the OR and AND operators two 
parameters (α and β) should be fixed. In this paper, we propose a dynamic find of the 
optimal parameters. More precisely, we compute for each test sample the class label 
using different parameter values ranging between 0 and 1 with step of 0.1. Finally, the 
last decision is obtained by majority voting of the generated labels.               

4.3 Results and Discussion 

Results for the individual classifiers and their combination with different aggregating 
rules conducted on both Arabic word and digit datasets are reported in Tables 3 and 4, 
respectively. Firstly, when comparing the individual classifiers, we can note that  
OC-SVM and PCA are the most suitable for both applications. For instance, the OC-
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SVM provides the highest results for digit dataset regarding both information sources. 
Secondly, we can also note that combining information sources allows improving the 
recognition rates than the single source for all classifiers and both datasets. Besides, 
when observing carefully the obtained results, we can note that the FI combiners offer 
an improved recognition rate whatever the selected application and the type of classifier. 
Therefore, FI combiners are more suitable than fixed ones for OCCs combination. 

Table 3. Classification accuracy (%) of individual classifiers and MCS with different 
combination rules for Arabic word recognition 

 SVM PCA K-means K-center 1NN 
Source 1 80.82 87.14 77.44 66.87 73.82 
Source 2 72.99 82.68 74.85 59.82 73.61 
Average 82.06 87.81 83.92 73.56 84.08 

Prod 85.07 87.97 84.03 73.35 84.34 
Min 81.80 86.93 79.00 67.85 80.16 
Max 80.87 83.46 76.77 68.74 80.41 

FI-Sugeno 81.80 82.68 79.00 67.70 80.66 
FI-Choquet 88.08 89.42 80.97 69.72 81.02 

FI-OR 82.32 86.00 84.65 74.75 84.96 
FI-AND-S 84.50 87.30 83.72 72.31 82.58 
FI-AND-C 83.67 89.78 84.08 73.56 84.29 

Table 4. Classification accuracy (%) of individual classifiers and MCS with different 
combination rules for digit recognition 

 SVM PCA K-means K-center 1NN 
Source 1 93.32 92.02 89.08 81.96 89.20 
Source 2 91.38 89.08 85.15 68.01 85.71 
Average 94.57 93.67 90.58 82.16 89.33 

Prod 94.57 93.77 90.18 81.81 89.33 
Min 93.47 93.12 88.44 79.32 89.18 
Max 93.67 93.22 90.08 80.11 89.38 

FI-Sugeno 93.22 93.72 88.44 77.72 92.97 
FI-Choquet 94.22 93.47 89.13 80.71 89.28 

FI-OR 94.67 93.77 90.28 82.16 93.62 
FI-AND-S 94.62 93.72 89.78 81.06 93.62 
FI-AND-C 94.57 93.92 90.68 82.41 89.28 

5 Conclusion and Future Work 

We studied in this paper the potential of FI operators, for combining ensemble of 
OCCs designed by different information sources for an open multi-class pattern clas-
sification. 
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Experimental results carried out on different types of OCC and two different 
handwritten datasets, prove the superiority of FI against fixed combiners, whatever 
the selected type of classifier or application. Besides, OWA operators appeared to be 
the most suitable and powerful from FI aggregators. Thus, this study suggests keeping 
fuzzy integral operators high on the list of options when achieving OCC ensembles.    

It is clearly that, developing combination schemes for OCC ensemble still await a 
proper attention. Hence, the extension of this work consists of developing robust 
combination schemes for multiple OCC ensembles. 
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Abstract. This paper presents the design and implementation of a posture clas-
sification method. A new feature extraction strategy according to curvelet trans-
form is provided for identifying the posture in images. First of all, human body 
is segmented. For this purpose, a background subtraction technique is applied. 
Then, a curvelet transform is used for extracting features from the posture im-
age. To address the rotation invariance problem, five ratios are evaluated from 
the human body and they are also included in the set of features. Finally the 
human body postures are classified through support vector machines (SVM). 
Experimental results are obtained on the “Fall Detection” dataset. For evalua-
tion, different state of the art statistical measures have been considered such as 
overall accuracy, the kappa coefficient, the F-measure coefficient, and the area 
under ROC curve (AUC) value. All of these evaluation measures demonstrate 
that the proposed approach provides a significant recognition rate. 

Keywords: Human body postures ⋅ Classification ⋅ Support vector machines ⋅ 
Curvelet transform ⋅ Statistical performance ⋅ Evaluation measures 

1 Introduction 

With the rapid development of image processing technology, the posture identifica-
tion is gaining interest for a wide range of applications, such as in the field of video 
monitoring, human-computer interaction, etc. Recently, the human gesture interpreta-
tion technology has made large progress. There exist many applications in the litera-
ture; one can cite for example human gesture identification [1], sign language recog-
nition [2], and human motion interpretation and classification [3]. However, in prac-
tice there are a series of problems which influence the accuracy of classification, like 
complicated backgrounds, illumination conditions, changes of the posture, and pres-
ence of shadows, etc. This paper focuses on classification of four main body postures, 
including standing, bending, sitting, and lying postures. Several studies on this topic 
have been proposed in the literature [1-4]. Li et al. [4] used a multiscale morphologi-
cal method to recognize human postures. Wang et al. [5] proposed an algorithm based 
on an unsupervised clustering approach for posture recognition. Sullivan et al. [6] 
used exemplar frames to achieve human action tracking. This latter method was based 
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on a learning strategy that was not very effective because the recognition rate is 
strongly depended on the degree of similarity between exemplar frames and classified 
frames. A method for the tracking and recognition of moving postures using neural 
networks and active contours is proposed in [7]. Truncated singular value decomposi-
tion coefficients and height-width ratio of human body are used as posture features in 
[8]. However height-width ratio is not discriminant in several cases, especially be-
tween sitting and bending postures, due to the degree of similarity between the two 
postures for different positions. Vertical and horizontal projection histograms 
(VHPHs) are also involved to describe the body postures [9]. On the other hand, 
VHPH shifting and calibration phases are required to avoid a distortion of the extract-
ed histograms [7]. Other body posture features can be extracted from VHPHs [10]. 
Juang and Chang [7] applied discrete Fourier transform (DFT) on VHPHs of human 
body. Chenet.al. used Radon transform as feature for gait recognition [3]. However, 
the features used in most of these studies are strongly dependent on the body  
silhouette size and position. The silhouette size changes as the distance from people to 
camera varies. A scaling operation using the distance factor is needed, requiring an a 
priori camera calibration [10]. 

In this work we apply a recently introduced transform for feature extraction that is 
the curvelet transform. This transform is known to be translation, scaling and rotation 
invariant. However, the rotation invariance is rather a drawback for posture recogni-
tion. In order to overcome this inconvenient, other features are extracted from the 
human body and added to the feature vector to account for angular information. These 
complementary features are obtained by considering five partial occupancy areas of 
the body obtained by a partitioning centered on the gravity center, as illustrated by 
Fig.2. These features are then defined as the five ratios of partial occupancy areas 
over the whole body area. An SVM classifier is trained on the extracted feature vec-
tors, and used to recognize the human body postures. 

Furthermore, we have investigated several evaluation measures based on different 
values of the classifier parameter. Considered measures are the overall accuracy, the 
Kappa coefficient, the F-measure coefficients and the ROC curve area.  

The remaining of this paper is organized as follows. Section II deals the image 
processing steps that include segmentation and image quality enhancement. Section 
III describes in detail the curvelet transform for feature extraction phase. Section IV 
presents the classification approach. Section V presents the evaluation measures. Sec-
tion VI covers the experimental results (dataset, experiments, obtained results and 
interpretation). And finally, a conclusion and future work discussion are given. 

2 Human Body Segmentation Method 

The segmentation consists in extracting the body silhouette from image sequence. 
This latter is a very essential initial step for many vision-based applications. And it 
remains a challenging task to achieve automatic and robust action recognition in cases 
where no prior information is available on background, lighting changes, environment 
constraints, .etc. Many methods [11] assume that the background does not vary and 
hence can be captured prior to any other processing. In this paper, we use background 
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subtraction technique based on sequential kernel density approximation SKDA [12], 
because it operates efficiently even in cases of multiple component models. 

An example of the background subtraction technique is shown in Fig.1. The back-
ground and the input images correspond to the first and the second column respective-
ly, while third and last columns illustrate the background subtraction result by SKDA 
method, respectively before and after morphological processing. 

 

 

 

 

 

 

 

 

 

Fig. 1. Results of background subtraction algorithm 

The morphological processing is applied to eliminate remaining small area noise 
components. The considered operator performs erosion and dilation with a 3 by 3 
structuring element. 

3 Human Body Feature Extraction 

Feature extraction is a crucial task for the classification of human postures. The ex-
tracted features have a direct impact on the recognition performances. In this section, 
we give more details on how one could extract feature vectors in order to better char-
acterize the human postures. 

The curvelet transforms are multi-resolution transforms, introduced by Candes and 
Donoho [13] in 1999. These can detect boundaries better than wavelet transform, and 
permit extraction of useful features that are generally missed with other transforms. 
Directionality and anisotropy are the important characteristics of curvelet transforms. 
Directionality is tied to the associated basis functions, as defined for many directions, 
while there are only three directions considered in wavelet transform. Another moti-
vation for using curvelet transforms is related to the fact that singularities are often 
joined by edges or contours in images. Curvelet transforms capture structural infor-
mation of an image based on multiple radial directions in the frequency domain. 
Curvelets are proven to be particularly effective for detecting image activity along 
curves instead of radial directions, what is appropriate for human images [13]. 

As already mentioned, curvelet transforms are rotation invariant. This invariance 
leads to confusion between certain postures such as sitting and standing. To overcome 
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this rotation issue, we propose adding a complementary feature set, which is based on 
a simple human body partitioning. These features should be discriminative enough to 
obtain interesting classification rates, and not too complex in order to permit a fast 
processing. 

 
 

 

 
 
 
 
 
 
 

Fig. 2. Human body area partitioning 

The foreground silhouette is divided into five areas using a partitioning centered at 
the body gravity center as shown in Fig.2. These areas should generally correspond to 
the head, arms and legs in the standing posture. Given the whole body area A, and the 
partial areas {Ai, i=1...5}, the ratios of partial areas to the total area are defined, as: 

                                 (1) 

These ratios are added to curvelet features to constitute the whole feature vector to 
be used in the classification process. 

4 Posture Classification Using SVM 

The classification process consists of two steps: (i) training the system using image 
posture samples, and (ii) classify a given image posture in the feature space via the 
trained classifier model. Several types of classifiers have been deployed by the human 
posture and gesture interpretation community [2, 3]. In this work, we have selected an 
SVM classifier due to its high generalization performance.  It is well known that 
SVM classifier can be adapted to behave as a nonlinear classifier through the use of 
nonlinear kernels. The SVM were initially designed to solve binary classification. 
Their training consists of finding the optimal separating hyperplane between two clas-
ses. Specifically, let (Pn, yn) ϵ RM× {±1} be a set of training patterns so that M is data 
dimension, {n=1,..Nc}, Nc is the number of samples in the class C. The training  
process selects the function f:RM→{±1}  which maximizes the margin between the 
two classes. Then, data are classified according to the signal of the decision function 
so that: 

 f(P) = sign ∑ ,                        (2) 
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The optimal hyperplane corresponds to f(x) =0 while b is a bias. SV is the number of 
support vectors, and {αi} are Lagrange multipliers. The kernel k(.,.) is any mathemati-
cal function, respecting Mercer’s conditions [14]. Commonly, the Radial Basis Func-
tion (RBF) kernel provides the best performances for pattern recognition applications. 
For two samples P1 and P, this kernel is expressed as:  ,  ,                           (3) ,                               (4) 

Where, σ is user-defined. 
For solving multi-class problems, two multi-class implementations of SVM are 

widely used. The One-Against-All (OAA) approach, which is the earliest one, per-
forms N binary SVMs to solve a problem with N classes. The second approach that 
can be used is the One-Against-One (OAO) which employs N×(N-1)/2 SVMs each of 
which is designed to separate two classes. 

In this study, we have implemented the SVM based on the OAA approach based 
on the RBF kernel. To estimate the optimal SVM classifier, we used different kernel 
parameters γ and cost parameters C: γ= [ 2 , 2 , 2 , … , 2 ] and C= 
[2 , 2 , 2 , … , 2 ]. The pair of (C, γ) that achieves the best results is selected. 
SVM classification output represents the decision values of each posture for each 
class. The LIBSVM package [15] is used.  

5 Evaluation Measures 

5.1 Overall Accuracy 

This measure is computed from the confusion matrix represented by the mean of the 
diagonal cells. The confusion matrix is derived from a comparison of reference pos-
tures with the classified postures [16]. It is expressed as: 

accuracy = 
tnfnfptp

tntp

+++
+                          (5) 

where tp is for true positives, tn for true negatives, fp for false positive, and fn ac-
counts for false negatives.To obtain an unbiased global accuracy, we have conducted 
a 3-fold cross-validation procedure. 

5.2 Kappa Coefficient 

Another measure which can be extracted from a confusion matrix is the Kappa coeffi-
cient. It is a statistical measure of inter-raters agreement [16]. This measure is more 
robust than the accuracy measure since it subtracts the agreement occurring by 
chance. This coefficient is expressed as: 

 Kappa = 
)(1

)()(

eP

ePaP

−
−  (6) 
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where P(a) is the probability of relative observed agreement among raters, and P (e) is 
the probability of by chance agreement. The range of the kappa coefficient is [-1, 1]. 

5.3 F-Measure 

The F-measure coefficient is another performance index that is derived in the field of 
information retrieval. The F-measure combines the two ratios known as recall and 
precision [16]. It is expressed as follows: 

F = (1+ 2β )
rp

rp

+×
××

)( 2β
                                 (8) 

Where                                 p =
fptp

tp

+
                                 (9) 

 r   =
fntp

tp

+
                                 (10) 

The precision, recall, and F-measure vary from 0 to 1. The F-measure reaches its 
best value at 1 whenever p and r are simultaneously equal to 1. The parameter β is 
positive and represents the weight assigned to the two different types of errors. In our 
evaluation, the value of β is set to 1. 

5.4 ROC Curve 

ROC curve plots the true positives (sensitivity) versus false positives (1−specificity) 
for a classifier system when the discrimination threshold is modified. In ROC coordi-
nate system, X axis is marked by false positives (1−specificity), and Y axis is marked 
by true positives (sensitivity) [16].The area under curve (AUC) associated to the ROC 
evaluation method is proportional to the objective model performance. Since, a ran-
dom method depicts the first bisector; it has an AUC value equal to 0.5. Efficient 
classifier’s areas should have an AUC value larger than 0.5. It is well known that the 
higher is the AUC value, the more efficient is the classifier. 

6 Experimental Results 

6.1 Dataset and Experiments 

Our experimental data are extracted from “fall detection dataset” [10]. This dataset 
contains 191 Video sequences. The frame rate is 25 frames/s and the resolution is 320 
× 240 pixels. The videos are recorded from different environments and contain varia-
ble illumination as well as shadows and reflections that can be detected as moving 
objects [15]. We manually denoted the ground truth of data samples for 4 classes. To 
evaluate the proposed method, we have selected 4000 images. The selected images 
should contain one of the four postures previously defined. These images were then 
split into training and testing sets for a 3-fold cross-validation procedure. 
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Furthermore, we have iteratively tested different SVM parameter settings (The  
parameters for RBF kernel: “Cost” C and “Sigma” σ). The pair that has produced a 
higher accuracy has been selected. 

We have also presented a comparative task between two posture classifications. In 
the first one, only curvelet transforms have been used as posture features, and in the 
second classification the five ratios have been also included in the feature vector. 

6.2 Results and Interpretation 

For the proposed classification method, a confusion matrix is computed (see Table I), 
along with the overall accuracy, F-measure and the Kappa coefficient. The overall 
accuracy, the Kappa coefficient, and the F-measure achieved by posture classification 
are 92.97%, 0908 and 0.9091, respectively. It is clear from these results that the pro-
posed classification enables robust recognition in very challenging situations.  

Table 1. Human body posture classification results 

 
Reference data 

Standing Lying Bending Sitting 

C
la

ss
if

ie
d 

da
ta

 

Standing 96.17 0 1.24 2.82 

Lying 0 100 0.86 0 

Bending 2.89 0 89.79 3.98 

Sitting 0.92 0 8.11 93.13 

Overall Accuracy =  94.77% ; Kappa Coefficient = 0.908 ; F-measure=0.9091 

 
It is also apparent (from Table I) that the bending class remains a challenge for the 

proposed approaches where it is characterized by the lowest classification accuracy 
(89.79%). In fact, the bending class is slightly confused with the sitting class as often 
as 8.11% of cases. This confusion is due to: (i) the degree of similarity between the 
two classes, and (ii) segmentation errors generally induced by the presence of  
shadows; and partial occlusions or confusion of human body parts with environment 
objects. In fact, it is well-established that the segmentation task conducted in many 
different areas is always error prone. 

On the contrary, the standing class is correctly classified in the most of cases,  
and the Lying class is perfectly accurate with 100% of its reference images; this  
result is explained by the incorporation of the curvelet features in the classification 
process. 

The ROC curves corresponding to the posture classification using only curvelet 
transforms as features, and posture classification when the five ratios are added in the 
set of posture features are illustrated in Fig. 3; their AUC values are equal to 0.895 
and 0.9109, respectively. One can clearly notice that the posture classification using 
the additional five area ratios is more accurate. 
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Fig. 3. The ROC obtained for proposed method 

7 Conclusion 

We have presented an automatic classification of human body postures based on 
curvelet transform and body area ratios, and using the SVM as classifier. This classi-
fication is evaluated using various complementary statistical measures. The experi-
ments conducted via these metrics have on the one hand revealed the advantage of the 
use of curvelet transforms as body features, due to their scale and translation invari-
ance, and on the other hand, it has been shown that adding five area ratios solves the 
rotation invariance problem. 

We believe that the proposed work provides a tool for researchers and practitioners 
that perform human posture classification. Possible improvements of the classification 
approach through combining classifiers are under evaluation. 
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Abstract. Usage of computer-readable visual codes became common in
our everyday life at industrial environments and private use. The read-
ing process of visual codes consists of two steps: localization and data
decoding. Unsupervised localization is desirable at industrial setups and
for visually impaired people. This paper examines localization efficiency
of cascade classifiers using Haar-like features, Local Binary Patterns and
Histograms of Oriented Gradients, trained for the finder patterns of QR
codes and for the whole code region as well, and proposes improvements
in post-processing.

Keywords: QR code · Object detection · Cascade classifier · HAAR ·
LBP · HOG

1 Introduction

QR code is a common type of visual code format that is used at various industrial
setups and private projects as well. Its structure is well-defined and makes auto-
matic reading available by computers and embedded systems. In the last couple
of years, image acquisition techniques and computer hardware have improved
significantly, that made automatic reading of QR codes available. State of the
art algorithms do not require human assistance and assumptions on code orien-
tation, position and coverage rate in the image [1] any longer. However, image
quality and acquisition techniques vary considerably and each application has
its own requirements for speed and accuracy, making the task more complex.

The recognition process consists of two steps: localization and decoding. The
literature already has a wide selection of papers proposing algorithms for efficient
QR code localization [2–4], however, each has its own strengths and weaknesses.
For example, while those methods are proven to be accurate, morphological
operations, convolutions, corner detection can be a bottleneck for processing
performance.

Belussi et al. [4] built an algorithm around the Viola-Jones framework [5],
which proved that, even though the framework was originally designed for face
detection, it is also suitable for QR code localization, even on low resolutions.

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 338–345, 2014.
DOI: 10.1007/978-3-319-11758-4 37
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The authors used a cascade of weak classifiers, trained on the finder patterns
(FIP) of the QR code. In the next section, their original idea is extended and
examined, and results are discussed. We propose alternatives of both choosing
the feature type of classifiers and their training target.

2 Localization Using Cascade Classifier Training

Using boosted cascade of weak classifiers is a common approach in general clas-
sification problems. A single classifier can be trained quickly, however, it will
have low classification power, and thus it is considered weak. To overcome this
issue, weak classifiers are chained, so the first classifier gets the original input,
and each consecutive one has its input from the output of the preceeding one. If
all classifiers have a high hit rate (typically from 0.990 − 0.999) and a moderate
false positive rate (around 0.5), the overall hit rate of the cascade is the product
of the hit rates of all weak classifiers, and false positive rate is calculated in a
similar manner. Using this approach, it is possible to train classifiers with high
overall classification power, but without the need of complex features.

2.1 Features for Object Recognition

In image processing, Viola and Jones [5] introduced the use of Haar-like features
as the core of these weak classifiers. There are three sets of features, edge-type,
line-type and center-type, and each set has its 45-degree rotated extension, pro-
posed by Lienhart et al. [6].

Each classifier has one or more features, defined by shape, scale and ori-
entation within the image region of interest. The classification process is the
evaluation of these weak classifiers assembled in a cascade way, using a sliding
window. The process is repeated on more than one scales, so a trained cascade
can be used to detect objects of equal and larger size than they were present
in the training database. Recurrences of a detected object are often filtered by
grouping the overlapping results of different scales. Furthermore, we used Gentle
AdaBoost in order to increase accuracy.

Instead of Haar-like features, Local Binary Patterns (LBP) and Histograms of
Oriented Gradients (HOG) can also be used for the feature evaluation. A paper
on bar code localization [7] proposes partitioning of the image, and reading each
block in a circular pattern. A 1D feature vector is formed this way, which makes
a feature of bar code presence within the block. This concept is analogous to
LBP [8], with the main difference of not using the center point for making the
feature.

HOG descriptors were first introduced in pedestrian detection [9], however,
it is often used in areas of computer vision where LBP, SIFT or shape context is
applicable. There are some special cases [10] where LBP and HOG can be used
together with improved overall accuracy, too.
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2.2 Localization Based on FIPs and Whole Object

A classifier based on a Haar-like feature set is already discussed in the literature
[4], and will serve as a reference method to our further experiments. The basic
idea of QR code localization is the quick localization of possible FIPs in the image
with high hit rate, then aggregation of the FIP candidates to FIP triplets of a
possible QR code. FIP candidate localization is based on the cascade of boosted
weak classifiers using Haar-like features, while the decision on a FIP candidate
to be kept or dropped is decided by a geometrical constraint on distances and
angles with respect to other probable FIPs.

While Haar-like feature based classifiers are the state of the art in face detec-
tion, the training process is more difficult on FIPs. A face has more, empirically
observable, strong features. In order to increase the strong features of the object
intended to detect, we propose training of a classifier for the whole code area.
Even though QR codes have high variability on the data region, they contain
data density patterns, a fourth, smaller FIP that can be perfectly covered with
the center-type Haar-feature, furthermore, they contain the three discussed FIPs
at the corners of the ROI (Fig. 1(b)).

LBP and HOG based classifiers also can be trained both to FIPs and whole
code areas, and since they are also considered fast and accurate general purpose
object detectors, evaluation of their performance on code localization is highly
motivated. Furthermore, LBP can be more suitable than Haar classifiers, since
it is not restricted to a pre-selected set of patterns, while HOG can also be
efficient due to the strict visual structure and limited number of distinct gradient
directions of the QR code.

(a) (b)

Fig. 1. (a): FIP with two instances of a Haar-like feature. The feature fits for both
the inner and outer black regions in all directions, however, this is the only feature
that perfectly fits to the FIP. (b): Examples of Haar-like features fitting on a QR code,
using FIPs and data density pattern.

2.3 Classifier Training

The default weak classifier parameter values for true positive rate (TPR, recall)
and false positive rate (FPR) are 0.995 and 0.5, respectively, which means 99.5 %
of the positive samples are classified correctly at each stage. We have set the
number of stages to 10, according to the experiments of [4]. For the first four
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stages, using only one feature was sufficient to reach the TPR and FNR defined
above, while in later stages, more features were required, from 9 up to 15. The
training did not contain a priori information about which features to prefer,
they were chosen empirically as it is implemented in the OpenCV library. We
trained a total number of six classifiers, based on Haar-like features, LBP and
HOG, both for FIPs and full code objects. For the FIPs, feature symmetry is
also recommended to speed up the training process, while usage of the rotated
features of Lienhart et al. is not very useful, since these classifiers are not flexible
enough to detect QR codes of any orientation. However, this issue can be solved
by training two classifiers, for codes with orientation of 0◦ and 45◦, respectively.
We used a 32 × 32 sample size, which is larger than the one of the reference
method, since training to the whole code object requires finer sample resolution.
We decided on the cascade topology for the classifier instead of a tree, since it
showed higher overall hit rate in [4], and left required hit rate and false positive
rate at the default values for each stage, with a total number of 10 stages.
We trained our classifiers on a synthetic database consisting of 10 000 images.
Images of the database are artificially generated QR codes, each containing a
permutation of all lower– and uppercase letters and numerals, rendered with
perspective distortion on to images not having QR codes. During the selection
of the applied transformation matrices, we used such that shift the FIP not more
than one FIP width, which property is needed for the assumption of maximum
expected distortion at the postprocessing step of the FIP-based classification.
However, this limit is large enough to render FIP-based classifiers unreliable.
After that, Gaussian smoothing and noise have been gradually added to the
images. The σ of the smoothing Gaussian kernel fell into the [0,3] range. For
adding noise, a random image (In) was generated with intensities ranging from
[-127, 127] following normal distribution. This image was added gradually to the
original 8-bit image (Io) as I = αIn +(1−α)Io, with α ranging [0,0.5]. The noise
was added to the image using saturation arithmetic, i.e. values falling beyond
the [0,255] range were clamped to the appropriate extreme intensities.

2.4 Postprocessing

For the classifiers trained to FIPs, post-processing is needed to reduce the
amount of false detections. Belussi et al. proposes searching through the set
of FIP candidates for triplets that can form QR code, using geometrical con-
straints. Since real-life images of QR codes also suffer perspective distortion, it
is obligatory to give tolerance values for positive triplet response. We had to
make assumptions on the geometry of the expected codes with respect to the
distance of FIPs and the angle they enclose. In our case, 62 bytes of information
are embedded into each QR code, which results in 33:7 as Code:FIP width ratio
(Fig. 2(a)).

To the synthetic image set, we added perspective distortions that were capa-
ble of shifting the FIPs of the QR code by one FIP width at most. Let a be
the FIP width and b the distance of the outer edges of two FIPs. For a code
with no distortion, a + b is the distance of the two other FIPs to the upper
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left FIP of the code, and their enclosed angle is 90◦ looking from the upper left
(Fig. 2(a)). A QR code having a distortion that warps the FIP center inward
by a (Fig. 2(b)), can be detected by letting Td = c/(a + b) tolerance to FIP
distance, where c =

√
a2 + b2. Calculating with (a+ b) : a = 33 : 7, the formula

gives 0.7788 for Td, which shows that letting 22.12 % of tolerance to the expected
code size can detect codes up to the discussed distortion. The expected enclosing
angle is 90 ± 20.22◦, calculated by Ta = tan−1(a/b)/90, which is a 22.47 % of
tolerance. The other case of distortion (Fig. 2(c)) can be calculated in a similar
manner, and results in Td = 0.7707 and Ta = 0.1331. According to these results,
the post-processing step of triplet formation has to have a tolerance set to 23 %
for FIP candidate distance and also for enclosing angle in order to not to lose
any successfully localized QR codes during that step. Since detected FIPs are
of different sizes, it would be possible to add a new constraint to the triplet
formation defined as a tolerance factor for FIP size differences among triplets.
However, due to the perspective distortions, it is not possible to narrow down
results by FIP size variability, it only causes decreased hit rate. Furthermore,
even with those relatively small degrees of distortion, necessary tolerances for
distance and angle are high enough to compromise the filtering power of the
triplet formation rule.

(a) (b) (c)

Fig. 2. Example for deciding on triplet formation tolerance. From the top left corner
of a perfect QR code, the other two FIPs are enclosing 90 degrees and distance of FIP
centers is a + b (a); Considering two scenarios of distortion where FIPs are shifted
inwards (b) and outwards (c) with a, distances and angle tolerances for acceptance can
be calculated using basic geometry.

While classifiers trained to the whole code area need no post-processing,
FIP-trained ones require the formation of a distance matrix for all FIP can-
didate pairs, and a direction matrix that stores the angle of the line segment
defined by all FIP pairs. After that, reading through n FIP candidates still takes
O(n3) time, which is a bottleneck since a FIP-trained classifier can produce high
amount of FIP candidates (Fig. 3).

3 Evaluation and Results

The classifiers have been trained using OpenCV on the discussed training
database. Training time for Haar features took cca. 15 hours on a Core 2 Duo
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(a) (b)

Fig. 3. Example QR code and result of a Haar classifier trained on FIPs. Original
image (a); feature image (b) with numerous FIP candidates (gray square), and marked
candidates (white circle) that have passed post-processing. Circles close to each other
means that a FIP candidate is participating in formation of more than one probable
QR code.

3.00 GHz CPU, while LBP training took about 1.5 hours, and HOG-training
was the fastest, taking only about 30 minutes. Processing of test images with
the trained classifiers has no significant difference respecting detection time, and
each one is fast enough for real-time application. Detection time mostly depends
on the scaling parameter in multi-scale detection. The default scaling factor is
1.1 in OpenCV, in which case detection takes cca. 100–200 ms for 512 × 512 px
images on an Intel Core 2 Duo 3.00GHz CPU.

Table 1 shows performance measures of the examined cascade classifiers.
HAAR–FIP, as stated by authors of [4], has a hit rate above 90 %, and represents
a good solution for FIP-training. However, all FIP-based classifiers have poor
precision compared to the ones trained for full code region, and they can cause
serious overhead for the next, decoding step of the QR code recognition process.
Classifiers based on LBP and HOG do not reach the hit rate of the one with
Haar features. HOG–FIP shows a noticeably higher precision than its siblings,
but still cannot be considered as an effective classifier according to its hit rate.
Performance measures are made by a 90 % minimum required overlap of detected
bounding box to the ground truth for a true positive.

Table 1. Test results of the proposed cascade classifiers based on Haar-like features,
LBP and HOG, both trained for finder patterns (–FIP) and whole code objects(–FULL)

Precision Hit rate F-measure

HAAR-FIP [4] 0.1535 ± 0.0920 0.9436 ± 0.0753 0.2640 ± 0.1125
LBP-FIP 0.1686 ± 0.0530 0.7356 ± 0.1112 0.2743 ± 0.0773
HOG-FIP 0.4753 ± 0.2466 0.7885 ± 0.1960 0.5931 ± 0.1947

HAAR-FULL 0.4208 ± 0.2404 0.9995 ± 0.1092 0.5923 ± 0.1050
LBP-FULL 0.9050 ± 0.1312 0.9999 ± 0.0857 0.9501 ± 0.0721
HOG-FULL 0.5390 ± 0.2549 0.9975 ± 0.1001 0.6999 ± 0.1221
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For classifiers with the whole code object as their target, results are much
more spectacular. Both HAAR–FULL, LBP–FULL and HOG–FULL show out-
standing hit rate and acceptable precision. The LBP–FULL classifier was able
to detect all codes of the test database with a very low amount of false positives,
having an F-measure over 0.95.

Table 2 shows results of the trained classifiers for the public database of Sörös
et al. [11]. HAAR–FULL, LBP–FULL and HOG–FULL are the same classifiers
like in Table 1, they are trained only in our training database and were evaluated
with no modifications. The last three classifiers, HAAR–SOROS, LBP–SOROS
and HOG–SOROS are classifiers using full code object, trained on their database
which consists of about 100 arbitrarily acquired images taken with iPhone cam-
era. The main difference between the two databases besides one being synthetic
and the other real, is the higher variability in size and orientation of QR codes for
the latter. As expected, each classifier has noticeably lower hit rate, since they
were trained using another database with different constraints, however, results
still prove that cascade classifiers are a reasonable approach for the selected task,
even when they are evaluated on a significantly different test set.

We also experimented with training cascade classifiers on the Sörös data set,
however, training had only 85 samples as input and 21 for evaluation, which
is too few for making strong statements in a machine learning context. HAAR–
SOROS and HOG–SOROS had no false positives at all, but they were also unable
to detect all instances. LBP could be trained well for the database with respect
to hit rate, but probably due to the low count of training samples, shows poor
precision.

Table 2. Classifier performances for the database of Sörös et al. [11]. The ones ending
with –FULL are the same classifiers trained on our synthetic database, while –SOROS
classifiers are trained on their public database.

Precision Hit rate F-measure

HAAR-FULL 0.2366 ± 0.2325 0.9060 ± 0.2192 0.3752 ± 0.1285
LBP-FULL 0.3663 ± 0.3265 0.7607 ± 0.1847 0.4944 ± 0.1430
HOG-FULL 0.7817 ± 0.2842 0.9487 ± 0.2871 0.8571 ± 0.2141

HAAR-SOROS 0.9999 ± 0.4220 0.7619 ± 0.2587 0.8649 ± 0.2937
LBP-SOROS 0.3684 ± 0.2082 0.9999 ± 0.1640 0.5385 ± 0.0973
HOG-SOROS 0.9999 ± 0.2127 0.9524 ± 0.1063 0.9756 ± 0.1347

In conclusion, the most efficient classifier disposes of the following parame-
ters: LBP of 32 × 32 sample size used for feature extraction in cascade topology,
boosted by Gentle AdaBoost, and a 10 stage learning phase with 0.995 hit rate
and 0.5 false alarm rate, with no splits or tree structure. In cases where ori-
entation variability is high for the expected codes, we recommend training two
separate LBP–FULL classifiers with two training sample databases, with sample
orientations around 0◦ and 45◦, respectively.
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4 Concluding Remarks

QR codes became common for the past few years and their wide use made
automatic reading desirable. We presented various cascade classifiers based on
different features and training target, and studied their performance and capabil-
ity for QR code localization. Our approach can be used in real-time applications
with high hit rate and a moderate false positive rate that depends mainly on
training parameters that can be tuned for the requirements of each end-user
application, from postal services to smartphone camera software.
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7. Bodnár, P., Nyúl, L.G.: A novel method for barcode localization in image domain.
In: Kamel, M., Campilho, A. (Eds.) ICIAR 2013. LNCS, vol. 7950, pp. 189–196.
Springer, Heidelberg (2013)

8. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture
measures with classification based on kullback discrimination of distributions. In:
Proceedings of the 12th IAPR International Conference on Pattern Recognition,
Conference A: Computer Vision and Image Processing, vol. 1, pp. 582–585 (1994)

9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
CVPR 2005, vol. 1 pp. 886–893 (2005)

10. Wang, X., Han, T., Yan, S.: An HOG-LBP human detector with partial occlusion
handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp.
32–39 (2009)

11. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for
smartphones. In: Proceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia, MUM 2013, pp. 11:1–11:8. ACM, New York (2013)



Document Image Analysis



Using Scale-Space Anisotropic Smoothing for
Text Line Extraction in Historical Documents

Rafi Cohen1(B), Itshak Dinstein2, Jihad El-Sana1, and Klara Kedem1

1 Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
{rafico,el-sana,klara}@cs.bgu.ac.il

2 Department of Electrical and Computer Engineering,
Ben-Gurion University, Beer-Sheva, Israel

dinstein@ee.bgu.ac.il

Abstract. Text line extraction is vital pre-requisite for various docu-
ment processing tasks. This paper presents a novel approach for text
line extraction which is based on Gaussian scale space and dedicated
binarization that utilize the inherent structure of smoothed text doc-
ument images. It enhances the text lines in the image using multi-
scale anisotropic second derivative of Gaussian filter bank at the average
height of the text line. It then applies a binarization, which is based on
component-tree and is tailored towards line extraction. The final stage of
the algorithm is based on an energy minimization framework for remov-
ing spurious text line and assigning connected components to lines. We
have tested our approach on various datasets written in different lan-
guages at range of image quality and received high detection rates, which
outperform state-of-the-art algorithms. Our MATLAB code is publicly
available. (http://www.cs.bgu.ac.il/∼rafico/LineExtraction.zip)

Keywords: Historical document processing · Text lines extraction

1 Introduction

Many of the document analysis algorithms, such as indexing, word retrieval
and text recognition, expect extracted text lines, as an input. Thus, text line
extraction is an essential operation in document processing and a substantial
number of related algorithms have been published. Most of these algorithms
expect binary images and some are designed to handle gray scale images.

Smearing based methods [4,10,15] apply Gaussian based filtering and bina-
rization to enhance line structure. These approaches yield good results and
became popular methods for text line extraction (ranked 1st in ICDAR 2009
and ICFHR 2010 contests [8,9], and 3rd in ICDAR 2013 contest [16]). However,
the performance of these methods depends on choosing the correct scale of the
Gaussian based filter. Most authors do not provide an algorithm for choosing
the correct scale [10,15] or choose the scale based on ad-hoc heuristics [4]. The
binarization phase also inherits the limitations of the adapted binarization algo-
rithm which is either ad-hoc binarization [15] or based on active-contours [4,10]
c© Springer International Publishing Switzerland 2014
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which are computationally slow. Seam-based line extraction algorithm compute
an energy map, which is used to guide the progress of the seam that deter-
mine the text lines or their boundaries. The algorithm is required to deter-
mine the boundary seams of the detected text-lines, which is done using ad-hoc
heuristics [14].

In this paper we present a novel method designed to detect text lines. Our
algorithm is based on robust theoretical background, i.e., scale space theory [11]
and our binarization method is fast, and tailored towards line extraction in
documents. In an initial step our approach enhances the text lines in the image
using multi-scale anisotropic second derivative of Gaussian filter bank at the
average height of the text line. It then applies a binarization, which is based on
component-tree and utilizes the structure of smoothed text line.

In the rest of the paper we overview closely related work and background lit-
erature. We then present our algorithm and its experimental evaluation. Finally
we conclude and draw directions for future work.

2 Related Work

Text line extraction algorithms could be categorized into projection-based
methods [2], grouping methods [7,13], seam-based algorithm [14] and smearing
methods [4,10,15].

Projection-based algorithms divide the document image into vertical strips
and horizontal projections are calculated within the stripes. The resulting pro-
jections are combined in order to extract the final text lines. Bar-Yosef et al. [2]
applied an oriented local projection profiles (LPP) inside a sliding stripe. The
average skew of the current stripe is calculated and the next stripe is projected
along that skew direction. Grouping methods extract text lines by aggregating
units in a bottom-up strategy. The units may be pixel or higher level represen-
tation, such as connected components, blocks or other features such as interest
points. Rabaev et al. [13] used a sweep-line to aggregate connected components,
that correspond to characters, into text lines. A seam-carving-based approach
has been developed recently. Saabni et al. [14] used two types of seams, medial
and separating. Both types of seems propagate according to energy maps, which
are defined based on the distance transform of the gray scale image. The seams
tend to diverge when big gaps between words or holes in the document are
present.

Smearing approaches enhance line structure and then apply binarization to
extract text lines. Shi et al. [15] converted an input image into an adaptive local
connectivity map (ALCM), where the value of each pixel is defined as the cumula-
tive intensity of the pixel inside a window of a predefined size. Finally the ALCM
image is binarized to extract text line patterns. The method do not contain a
mechanism for determining the appropriate scale of the filter for degraded gray-
scale historical documents and the binarization algorithm is not tailored towards
lines extraction. A popular variant of the smearing method [4,10] is based upon
convolving the image with an anisotropic Gaussian (or a bank or Gaussians)
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followed by segmentation of text lines using active contours. Bukhari et al. [4]
suggest to choose the scales of the Gaussians by binarizing the document and
inspecting its height histogram, which is susceptible to noise in degraded docu-
ments, see Fig. 1(a). Another drawback for the level-set based active contours
methods [10] is their complex and slow computation.

Despite considerable progress over the last decade, automatic text line seg-
mentation of historical documents, as those presented in Fig. 1, remains an open
problem.

(a) (b) (c) (d)

Fig. 1. Samples of the documents on which we perform our tests. (a) Genizah handwrit-
ten manuscript; (b) Pinkasim handwritten cursive manuscript; (c) German manuscript
from Parzival dataset; (d) Latin manuscript from Saint Gall dataset.

3 Notations and Definitions

Our approach relies on scale space scheme and utilize component tree to extract
text lines. To simplify the presentation of our algorithm we briefly overview these
two topics.

3.1 Scale-Space Overview

Scale space can be intuitively thought of as a collection of smoothed versions of
the original image. Formally, given an image I : R2 → R, its linear scale-space
representation L : R2×R2

+ → R can be defined by convolution with anisotropic
Gaussian kernels of various lengths

√
tx and

√
ty in the coordinate directions,

defined as L(x, y; tx, ty) = g(x, y; tx, ty) ∗ I(x, y), where g : R2 ×R2
+ → R is an

anisotropic Gaussian defined in Eq. 1. We define a multiplication factor η as σx

σy
,

where σi is related to ti by σi =
√
ti.

g(x, y; tx, ty) =
1

2π
√
txty

e
−
(

x2
2tx

+ y2

2ty

)

. (1)

We denote by ∂xαL(x, y; tx, ty) the partial derivative of L with respect to x,
where L is differentiated α times. Lindeberg [11] showed that the amplitude of
spatial derivatives, ∂xα∂yβL(x, y; tx, ty), in general decrease with scale, i.e., if an
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image is subject to scale-space smoothing, then the numerical values of spatial
derivatives computed from the smoothed data can be expected to decrease.

If two signals f and f ′ are related by scale, i.e., f(x) = f ′(sx), then
it is possible to normalize that spatial derivative of the scale-space such that
the normalized derivatives are equal [11]. More formally, Let the scale space
representation of f and f ′ be given as L(x; t) = g(x, t) ∗ f and L′(x′; t′) =
g(x′, t′)∗f ′, where the spatial variables and the scale parameters are transformed
according x′ = sx and t′ = s2t. Then, if γ-normalized function of the derivatives
is defined as ∂ξ =

√
t∂x and ∂′

ξ =
√
t′∂x′ then ∂ξαL(x; t) = ∂ξ′αL′(x′; t′). That

is, the γ-normalized function of the derivatives are scale invariant.

3.2 Component-Tree

The level sets of a map are the sets of points with level above a given threshold.
The inclusion relation enables connected components of the level sets to be
organized in a tree structure, which is called the component tree [12]. We denote
the threshold set obtained by thresholding a map with threshold t by Bt and
the set of connected components in Bt by Ct. The nodes in a component-tree
correspond to the components in Ct for varying values of the threshold t. The
root of the tree is the member of Ctmin , where tmin is chosen such that |Ctmin |=1.
The next level in the tree correspond to Ctmin+d, and in general the nodes in
the tree that belong to level � correspond to Ctmin+�d, where d is a parameter
that determines the step size for the tree. There is an edge between Ci ∈ Ct

and Cj ∈ Ct+1 if and only if Cj ⊆ Ci. The maximal threshold tmax used in tree
construction is simply the maximal value in the map.

(i) (ii)

Fig. 2. (i)(a) A gray-level image F and its successive threshold sets Bt(F ) for t from
0 (b) to 4 (f), where d = 1; (g) The component-tree of F. (h) The same tree, enriched
by an attribute (the size of the connected component of each node), courtesy of [12].
(ii) Lines enhancement result.

4 Our Approach

In this paper we describe a text line segmentation approach for handwritten
documents, which is based on Gaussian scale space and component-tree traversal.
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The method starts by enhancing lines in the image, using multi-scale anisotropic
second derivative of Gaussian filter bank. The resulting image is binarized using
component-tree traversal that is tailored towards line extraction. At the final
step, spurious detected lines that do not correspond to text lines are removed.

4.1 Lines Enhancement

The pixels in an image can be regarded as two dimensional random variables.
They are generated by an unknown Probability Distribution Function (PDF),
which represents the distribution of text lines. Specifically, the PDF is continuous
and has smaller values (dark) in the text line area, while there are larger values
(bright) in the gap and marginal area [10]. Valleys on the probability map rep-
resent text lines, while peaks are the boundary between neighboring text lines.
As a result of this structure, a convolution of text line with a second derivative
of an anisotropic Gaussian, elongated along the horizontal direction generates
ridges along text lines and valleys along the gaps between text lines [5]. Making
it an appropriate filter for enhancing the lines structure in a document.

The Appropriate scale for this filter correspond to the text line height, which
varies along the text line itself, due to ascenders and descenders, and along
different text lines. We use a multi-scale filtering and detect the optimal scale
for each point using the scale-space framework [11]. We construct a scale space
representation of the images by convolving the image with the γ-normalized
function of gxx from Eq. 1 with η > 1, and choosing for each pixel the strongest
response along the scale-space. The scales at which the image is convolved with
corresponds to the height range of the characters in the document. A robust
estimate of character height range in gray-scale images is obtained using the
evolution map (EM) tool introduced by Biller et al. [3]. The EM supplies details
about the height range of the characters in the document, without binarization.
For binary images the range is taken as (μ, μ + σ/2), where μ and σ are the
average and standard deviation of the heights of the connected components in
the document. Fig. 2(ii) illustrates the result of lines enhancement on a document
from Fig. 1(a).

4.2 Text Line Extraction Using Component-Tree

To extract the text lines we need to binarize the gray scale image, R, resulting
from applying the Gaussian scale space on the original image (Section 4.1). Off-
the-shelf general binarization algorithm do not take into account the properties
of the resulting image, require tuning parameters, and often introduce noise
and artifacts. Instead, we apply a binarization procedure, which is based on
component-tree scheme and geared toward the structure of R.

A connected component that represents a text line resembles a thick simple
polyline that covers the entire text line (the thickness is not uniform). Motivated
by this observation, we build a component-tree of R and for each connected
component, Ci (represented by the node, node(Ci), in the tree) we measure
how well Ci can be represented by a simple piecewise linear approximation. Let
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us refer to this measure as F (Ci). One could compute F (Ci) by detecting the
skeleton of the component and measuring its linearity, but skeleton structure
is not robust and sensitive to noise. Instead, we fit a simple piecewise linear
approximation from the left end to the right end of the component and measure
quality of the fit. We chose to implement that by fitting a uniform least squares
spline of order 1 with k knots for the connected component, Ci. The first and
last points correspond to the left and right end of the component and the k − 2
remaining points are distributed uniformly along the line connecting the two end
points, as depicted in Fig. 3(b). The fit quality is computed based on two terms:
(a) the average distance of each pixel from the spline, and (b) the difference
between the area of the component and the sum of the distances of the contour
pixels from the spline. The average distance is compared with the average letter
height to detect and refine component that include two consecutive lines. The
second term is used to detect partial merge of adjacent text lines that form a
non-convex component.

To extract the text lines we traverse the component-tree top-down and at
each node, node(Ci) we measure its fitness, F (Ci), and based on that we deter-
mine whether it represents a text line or not. If Ci represent a text line we output
this text line and the search along this branch is complete, otherwise we refine
the component by recursively processing the children of the node(Ci). Fig. 3(a)
presents the pseudo-code of the traversal procedure.

1: Ouput = φ.
2: Enqueue the root node v into a queue Q
3: while Q is not empty do
4: Ci ← Q.dequeue()
5: if F (Ci) represents a text line then
6: Ouput = Ouput

⋃
Ci.

7: else
8: Enqueue all children of Ci into Q.
9: end if

10: end while
11: return Output.

(a) (b)

Fig. 3. (a) Traversal Algorithm; (b) a synthetic blob with an approximating spline (in
red) that uses 6 knots (k=6)

4.3 Post-Processing

Our algorithm usually extracts the correct text line efficiently. However, in some
cases it includes spurious lines that do not correspond to text lines or split
a text lines into disconnected segments, as shown in Fig. 4(c). We overcome
these limitations by detecting and removing spurious text lines and connecting
segments that belong to the same text line. This stage involves minimizing an
energy function on a binarized version of the document.
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(a) (b) (c) (d)

Fig. 4. The various stages of the component tree traversal, where splines used to eval-
uate piecewise linearity are depicted in red (unsuccessful fit) or cyan (successful fit),
(a) the root of the component tree, at C−17, (b) the components at C13, (c) the result
before discarding spurious lines (disconnected segments are encircled in red, and some
spurious lines are encircled in blue) and (d) the final result.

Our approach relies on multi-label graph cut minimization [6] where graph
cuts are used to approximate energy minimization of arbitrary functions. Let L
be the set of lines (labels and lines are interchangeable throughout this section)
that were extracted in Section 4.2 (Fig. 4(b)) and let C be the set of connected
component in the document. The goal is to find a labeling f that assigns each
component c ∈ C a label �c ∈ L, where f is consistent with the observed data,
spatial coherent and uses a minimal set of labels (i.e., lines). The energy function,
E(f) defined in Eq. 2, consists of three terms: the data cost, the smoothness
terms and the label cost. Minimizing the energy function, E(f), produces an
appropriate labeling.

E(f) =
∑

c∈C
D(c, �c) +

∑

{c,c′}∈N
d(c, c′) · δ(�c �= �c′) +

∑

�∈L
h� · δ�(f) (2)

The cost term, D(c, �c), expresses the cost of assigning c the label �c and is
defined as the Euclidean distance between the centroid of c and the line rep-
resented by �c. The smoothness term determines the coherence of the labels �c
and �c′ with the spatial relation of the components c and c′. That is, the closer
the components are the higher is the chance that they got assigned the same
label. Let N be the set of adjacent component pairs. We set |N | = 2 and define
the distance d(c, c′) in Eq. 2 according to d(c, c′) = exp(−α · de(c, c′)) (the spa-
tial coherence strength decays exponentially with Euclidean distance). The term
de(c, c′) is the Euclidean distance between the centroids of components c and c′,
and the constant α is defined as (2 〈de(c, c′)〉)−1, where 〈·〉 denotes expectation
over all pairs of adjacent elements [5]. The term δ(�c �= �c′) is Kronecker’s delta.
The label costs penalize each unique label that appears in f , where h� is the non-
negative label cost of label �, and δ�(f) is an indicator function that is assigned
1, when the label � appears in f and 0 otherwise. We define the density of a
line � as the number of foreground pixels in the binarized document overlapping
with �, and r� as the the ratio between the density of � and the maximal density
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in L. The label cost h� is defined as exp(−β · r�), where β is a constant we set
experimentally.

Finally, we merge broken line segments. For each segment we extract its
left and right endpoints and define the direction of a component as the vector
connecting the left endpoint to the right endpoint. Two adjacent component
are merged if (a) the direction of the vector connecting the two components
(the right of the first component to the left of the second one) falls between the
direction of the two components and (b) their vertical distance is less than the
average letter height.

5 Experimental Results and Discussions

We evaluated our text line detection on various datasets and received encour-
aging results. The test datasets include documents written by different writers
and in various languages. Hence, the presented methodology is script and writer
independent and copes nicely with noise. the datasets are ICDAR 2013 [16],
ICDAR 2009 [8], Hebrew [13], Saint Gall [7] and Parzival [1] datasets. ICDAR
2013 contains 150 pages written in English, Greek and Bangla. ICDAR 2009
contains 200 pages written in English, French, German and Greek. The Hebrew
dataset contains 58 degraded pages from Cairo Genizah collection and 6 pages
from the Pinkasim collection. The Saint Gall database contains 60 pages of a
Latin manuscript from the 9th century. The Parzival includes 47 pages of a Ger-
man manuscript from the 13th century. For Parzival we used the ground-truth
generated by [13].

The performance evaluation is based on a MatchScore [16] that computes
the maximum overlap of a text region with the ground truth region. If this
score is above a given threshold Tα, the text line is considered as correct (one-
to-one match, o2o). Based on this MatchScore, the Detection Rate (DR), the
Recognition Accuracy (RA) and the Performance Metric (FM) are defined using
Eq. 3, where N and M are the number of text lines in the ground truth and the
number of text lines detected by the algorithm, respectively. In our experiments
we set Tα as 95% for datasets of binary images, and 90% for datasets of gray-scale
images. For all datasets and all algorithms the performance evaluation is based
on a binarized version of the datasets. For Saint Gall and Parzival we measure
the performance by means of the Pixel-Level Hit Rate (PHR) and the FM (also
called Line Accuracy Measure) as in [1,7]. The results of the presented algorithm
are reported in Table 1, we also mention for each dataset whether it consists of
binary pages (B) or gray-scale pages (G). Throughout the experiments we have
used the 15 knots (k=15) to measure the linearity of the components, the scale
space is defined based on d = 1 and η = 3.

DR =
o2o
N

,RA =
o2o
M

,FM =
2 ×DR×RA

DR+RA
(3)

Although the algorithm achieves high detection rates, it suffers some limita-
tions. For example, if salient objects in the image, such as holes and drawings,
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Table 1. Results on different datasets compared with known state-of-the-art algo-
rithms. Each dataset contains either binary (B) or gray-scale documents (G).

Our Method state-of-the-art

M o2o DR RA FM FM

ICDAR 2013 [16](B) 2651 2621 98.94% 98.86% 98.90% 98.66%

ICDAR 2009 [8](B) 4033 4021 99.67% 99.70% 99.69% 99.53%

Hebrew [13](G) 1257 1154 89.04% 91.88% 90.44% 86.10%

PHR FM PHR FM

Saint Gall [7](G) 99.08% 99.22% 98.94% 99.03%

Parzival [1](G) 98.31% 97.88% 96.30% 96.40%

(a) (b) (c) (d)

Fig. 5. (a)-(c) Selected result samples of the algorithm: (a) Pinkasim ; (b) Genizah ;
(c) Parzival. (d)(upper) The drawing causes the line above it to be missed; (d)(lower)
two partial lines accidentally merged together.

are in close vicinity with a text line the result of the algorithm may produce
incorrect results, as shown in Fig. 5(d).

6 Conclusions and Future Directions

In this paper, we presented a text line segmentation method for handwritten
historical documents. Our approach applies smearing at different scales using a
Gaussian scale-space, while utilizing the average height of the characters, fol-
lowed by a dedicated binarization technique that is based on component-tree
and utilize the structure of text lines. In future research we plan to upgrade
the proposed method in two directions: (1) refine the use of the evolution maps
(EM) to obtain a more reliable range of character heights in the document, and
(2) find a more robust procedure for estimating whether a segment refers to a
text line or not.
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Abstract. In today’s multi-script scenario, documents contain page,
paragraph, line and up to word level intermixing of different scripts. We
need a script recognition approach that can perform well even at the low-
est semantically-valid level of words so as to serve as a generic solution.
The present paper proposes a combination of Histogram of Oriented Gra-
dients (HoG) and Local Binary Patterns (LBP), extracted over words,
to capture the unique and discriminative structural formations of differ-
ent scripts. Tested over MILE printed-word data set, this concatenated
feature descriptor yields a state-of-the-art average recognition accuracy
of 97.4 % over a set of 11 Indian scripts.

In an end-to-end document recognition system it is correct to assume
a skew correction unit prior to script identification. Depending on the
amount of skew, the skew correction unit can either yield a correctly
aligned document or an inverted one. For script identification in such
scenarios, we introduce novel modifications over existing HoG and LBP
features to propose - Inversion Invariant HoG (II-HoG) and Inversion
Invariant LBP (II-LBP) in order to achieve text inversion invariance.
Once the script is recognized, script-specific HoG and LBP feature
combination can be used to find the text alignment i.e. 0◦ or 180◦ for
correction. For the MILE database, first-level inversion-invariant script-
identification accuracy for 11 script-set is 95.8 % (1 % gain over the
existing best) while the second-level script-specific orientation-detection
accuracy is averaged at 97.7 %.

1 Introduction

In today’s multi-lingual and multi-script setting, script identification has become
a necessity for document analysis. A single document commonly contains two or
even three distinct scripts. In the Indian context, this bi-script and tri-script
scenario is well presented by Pati and Ramakrishnan [1]. State local script
and Roman, with Devanagari as an extra addition, are common combinations.
Research works have also dealt with script pairs such as Farsi and Latin [2], Han
and Roman [3], and Persian and Roman [4].

If a character-recognition engine were to work for even two scripts together,
number of classes would be prohibitively large, not to mention the inefficiency in
terms of performance. Thus, it becomes important to identify a priori the script
c© Springer International Publishing Switzerland 2014
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from the known set and accordingly send the text for character-recognition. Also,
pre-processing tasks like morphological de-noising, text-line/word/character seg-
mentation tend to show script-biased behavior. With knowledge of the script,
pre-processing modules tailored to the script can be called for an improved
performance.

Script recognition has matured from its primitive role as a pre-cursor to
document recognition. It is now also being used for document retrieval based
on script similarity [5]. Particularly in this context, multi-script identification
becomes relevant. The recognition unit should be equipped to identify more
than 2 or 3 different scripts at a time.

Having discussed the need for bi-script, tri-script as well as multi-script recog-
nition, we must identify the level at which the approach should function. In [6],
the authors handle multi-script printed documents but assume page level script
uniformity. The work in [7–11] again assumes text-block or line-level script uni-
formity. Only the methods presented in [1–3,12] perform script identification at
word or character level, but none of these tackle possible text-skew or inversion.
Basically, these methods work for a fixed script-set and/or assume particular
level of script uniformity (block, line or page level) and thus lack generality.

Our present work aims to address this very lacuna. The novelty of our work
is fourfold - (a) our script identification approaches work successfully even for
the lowest semantically-valid level of words, (b) given an adequate database our
approaches can be easily extended to any given script set, (c) our novel set of
inversion invariant features - II-HoG and II-LBP is capable of identifying the
script despite text inversion, and finally (d) we propose a complete module to
identify the script, even for inverted text, and then find its orientation i.e. 0◦ or
180◦ for correction before further processing.

For a comparative experimental analysis, we test our approaches on word-
level MILE database for 11 Indian scripts [1]. Using our gradient plus texture
feature combination (HoG and LBP), the 11-script recognition accuracy of 97.4%
is the new state-of-the-art. For inversion-invariant script identification, our novel
feature combination of II-HoG & II-LBP achieves an accuracy of 95.8% (1%
accuracy gain over the existing best).

The complete paper is organized as follows: Section 2 discusses the related
works and existing approaches, Section 3 and 4 present the proposed approaches,
Section 5 provides the experimental results and analysis, and Section 6 concludes
the work.

2 Related Works and Existing Approaches

The task of script identification has been attempted at different levels – text
block, text line, word and even at the component level.

Script identification at text block level is a commonly used idea. In [7], bi-
dimensional empirical mode decomposition (BEMD) is followed by extraction
of local binary patterns (LBPs) to identify between English, French, Chinese,
Japanese, Russian and Korean scripts using 128x128 sized text blocks. In [11],
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wavelet energy based histogram moments are used with an SVM classifier to
identify between 6 different scripts – Arabic, Chinese, English, Hindi, Thai and
Korean. In [13], the authors extract texture features from co-occurrence his-
tograms of wavelet decomposed images and use KNN classifier for block level
recognition of 8 different Indian scripts.

In [8–10], the works propose script recognition at line level with the help of
handcrafted structural and statistical features. Ghosh and Chaudhuri [8] intro-
duce the idea of inversion-invariant script identification followed by script-specific
orientation detection. However, their approach assumes line level script unifor-
mity and employs a hierarchical classification setup that is customized for the
given script set. Aithal et al. [9] use line level horizontal-projection profile and
its statistical details to distinguish between Hindi, Kannada and English text
in Trilingual documents. Gopakumar et al. [10] mark out horizontals, verticals,
right diagonals and left diagonals in a given text line and carry out zone-based
gradient analysis for identifying between 4 South Indian scripts of Kannada,
Tamil, Telugu, Malayalam and English, and Hindi.

Word level approach adopted by Das et al. [12] shows the same hand-made
feature and rule-based threshold trend, to distinguish between Telugu, Hindi
and English. Huanfeng and Doermann [14] extract texture features using Gabor
filter and apply them to a variety of bilingual dictionaries for word level script
identification. Following suit, Pati and Ramakrishnan [1] employ a combination
of Gabor filters to identify 11 Indian scripts, experimenting with both Nearest-
neighbour and SVM classifier.

Another popular set of techniques makes use of component level script iden-
tification, with majority-vote based extension to word, line and page level script
identification. In [2,3,5,6], the authors employ component level features and
use SVM/KNN for classification. Khoddami and Behrad [2] present rotation
and scale-invariant Curvature Scale Space features for identification of Farsi and
Latin scripts. Chanda et al. [5] draw out a comparison between two distinct
features – rotation-invariant Zernike moments and rotation-variant gradient fea-
tures, to achieve the task of identifying amongst 11 Indian scripts. Wang et al.
[6] make use of Downgraded Pixel Density features from skeletonized character
for script identification. Pal et al. [3] use directional code based histograms for
character level identification of Japanese, Korean, Chinese and Roman scripts.

To build a generic script recognition system we propose word-level implemen-
tation. Also, a close observation of the above approaches reveals one common
idea. It is, the ability and hence wide use of texture and/or gradient features to
successfully distinguish between different scripts. Building on this, we present a
combination of both gradient and texture features for script identification. The
first approach proposes concatenation of HoG and LBP descriptors for script
recognition. The second approach introduces a novel modification in the form of
Inversion-Invariant HoG and LBP (II-HoG and II-LBP) features and uses them
for text-inversion invariant script identification.
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Fig. 1. Structural highlights of 11 different Indian scripts

Fig. 2. Evaluation of Local Binary Pattern around a given pixel

3 Proposed Approach I - HoG and LBP

3.1 Histogram of Oriented Gradients (HoG)

For a task like script identification, important discriminative information lies in
the relative proportion of different gradients. As shown in Figure 1(Top to Bot-
tom/ Left to Right: Bangla(BE), Devanagari(HI), Roman(EN), Gujarati(GU),
Kannada(KA), Malayalam(MA), Odiya(OD), Gurumukhi(PU), Tamil(TA), Tel-
ugu(TE) and Urdu (UR)), due to a necessary word headline (shirorekha) for
Devanagari, Bangla and Gurumukhi, horizontal lines (or 0◦ gradients) are domi-
nant in these scripts. It may depend on the font but as a general observation, the
character-level joints become less curved and increasingly sharp from Devana-
gari to Gurumukhi to Bengali. Kannada script frequently shows a horizontal line
with an upward curl, while Telugu has a highly common tick mark. Highlights
of Oriya, Tamil and Malayalam are an inverted U-shape, vertical lines, and right
& left bracket shapes respectively. Urdu is very different from any other Indian
script. Majority of the lines have slope of 0◦ or other angles in the upper-half
of 1st quadrant. These and many other unique structural properties of different
scripts, as elaborated in [1], motivate the use of gradient proportions for script
identification.

We employ histogram of oriented gradients [15] for script recognition at word
level. The position of gradients within the text unit is not important, and HoG
is applied at the complete word level without considering any overlapping sub-
blocks. Angles lie in the range of 0◦-180◦ and are divided into 36 bins based on
the empirically evaluated bin spread of 5◦.
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3.2 Local Binary Patterns (LBP)

Local binary patterns capture image texture present as gray level variations in
the immediate neighborhood of each image pixel. Figure 2 shows the compu-
tation of local binary pattern around a particular pixel in an image. For an
LBP-based image texture analysis [16], the count of each binary pattern value
is summed up over the image to yield the LBP histogram. For a 3x3 window
analysis, the 256 distinct binary pattern values yield a feature descriptor of the
same length.

3.3 HoG and LBP Based Classification

The feature vectors extracted above are concatenated to yield the final feature
descriptor for the word image. Total length of the descriptor adds up to 292 (36
HoG features and 256 LBP features). The features are independently normal-
ized using the classical L1-norm [17]. This normalization makes the feature-set
size independent. Change in font size may change the absolute count of gradi-
ents/texture but their relative proportion remains the same.

We use SVM [18] for the task of multi-class classification. In order to handle
non-linear class boundaries, SVM uses radial basis function kernel. The approach
works highly accurately on the word level MILE database. With minimal train-
ing, it yields state-of the-art results. However, these features are not invariant
to text inversion.

4 Proposed Approach II - Inversion Invariant HoG
(II-HoG) and Inversion Invariant LBP (II-LBP)

For an end-to-end printed document analysis system it would be correct to
assume a skew-correction unit prior to the script identification module. Without
the knowledge of script, the skew-correction module can make alignment errors.
For acute angle skews, the skew-corrected text is properly aligned. However, for
obtuse angle skews, the text may get inverted during de-skewing. To handle this
scenario, we propose a system flow as presented in Figure 3.

Fig. 3. Proposed system flow

4.1 Skew Correction Unit

We experimented with the skew-correction module of Leptonica library based
on the work by Bloomberg et al [19] . Skew-corrected outputs for 2 different
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(Bangla) text orientations, as shown in Figure 4, confirm the idea behind the
proposed flow. Text block with an acute skew of 20◦ ( Figure 4a) gets cor-
rectly aligned after de-skewing, while the text block with an obtuse skew of 150◦

(Figure 4b) gets inverted.
We introduce inversion-tolerant modifications over HoG and LBP features

for recognition of script despite text inversion. For a given text segment, despite
the orientation the output feature vector is the same. Thus, inversion, if present,
is ignored and the task becomes one of plain script discrimination.

(a) Skew corrected output for a text block
rotated by - (clockwise) 20◦ is correctly
aligned

(b) Skew corrected output for a text
block rotated by (anti-clockwise)150◦ is
inverted

Fig. 4

4.2 Inversion Invariant HoG (II-HoG)

When the text is inverted, gradients in the 0◦-90◦ range shift to the 90◦-180◦

range and vice-versa. Inversion invariance can be achieved by either preventing
this shift or staying independent of this shift. We have attempted to achieve
invariance by staying independent. This is done by mapping all the gradients
into the first quadrant i.e. 0◦-90◦ range.

Gradient at a pixel is calculated as:

θ = arctan(dy/dx),

where dy is the vertical gradient and dx is the horizontal gradient at a given
pixel point.

Following equation ensures that the gradients stay between 0◦-90◦:
if (dx < 0)
dx = dx ×−1 &

if (dy < 0)
dy = dy ×−1
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Thus, dx and dy values stay positive and as a result angles lie in the 0◦-90◦

range. To keep the bin spread as 5◦ the number of bins is reduced to 18.

4.3 Inversion Invariant LBP (II-LBP)

For invariance to text inversion, we introduce a novel set of LBP features i.e
II-LBP. Its evaluation is as shown in Figure 5. Re-assignment of weights makes
the decimal-equivalent inversion tolerant. As is illustrated in Figure 5, the dec-
imal value of the binary pattern for a given pixel remains the same despite the
inversion of the pixel’s neighborhood. Also, the 256 LBP values get reduced to
a count of 31.

Fig. 5. Inversion Invariance - Evaluation of II-LBP

4.4 II-HoG and II-LBP

Final feature vector is a concatenation of the two features described above. Both
the techniques are invariant to text inversion and so is their combination. The
complete feature vector has a reduced length of 50 (31 II-LBP features and 19
II-HoG features). These features are learnt using a multi-class SVM based on
radial basis function kernel.

5 Experimental Results and Analysis

For a comparative analysis, we tested our approaches on the printed-word MILE
Database compiled by Pati and Ramakrishnan [1]. This database contains 20,000
printed word binary samples for 11 different Indian scripts (BE, HI, EN, GU,
KA, MA, OD, PU, TA, TE, and UR). For suitability to texture as well as
gradient analysis, we smoothen the binary images using a 3x3 averaging filter.
For most practical purposes, we divide the database into 2,000 training samples
and 18,000 testing samples respectively.
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Table 1.
(a) 11-script test accuracy
with increasing number of
training samples

No. of
Training
Samples

Test
Accuracy
(in %)

300 94.4

600 95.8

1000 96.6

2000 97.4

(b) Tri-script recognition
accuracies evaluated using
HoG & LBP feature set

Local
Script

(with EN
& HI)

Test
Accuracy
(in %)

BE 99.1

GU 99.2

KA 99.2

MA 98.3

OD 99.1

PU 97

TA 98.4

TE 99.3

UR 99.5

μ 98.8

(c) Script-specific orientation
detection accuracies using
HoG and LBP combination

Script Test Accuracy
(in %)

BE 99.3

HI 99.7

EN 95.4

GU 96.5

KA 98

MA 97.7

OD 98.3

PU 99.1

TA 95.6

TE 96.6

UR 98.4

μ 97.7

5.1 HoG and LBP Based Classification

For 11-script classification task, SVM classifier is trained on increasing number
of training samples from 300 to 2,000. The test results on 18,000 sample-set are
as compiled in Table 1a. For just 600 training samples (<1/11th of the training
samples assumed in [1]), the test accuracy becomes the new state-of-the-art with
a gain of 1%.

Fig. 6. Recognition accuracies for the 55 bi-script scenarios evaluated using HoG &
LBP feature set

Using the same 600 training samples and 18,000 test samples, the accuracy
results for 55 bi-script scenarios are as shown in Figure 6. In [1], the three lowest
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bi-script recognition results (by their best configuration of Gabor features and
SVM classifier) are for Telugu-Kannada(91%), Urdu-Gurumukhi(93.7%), and
Gurumukhi-Hindi(94.2%) script pairs. These are bettered by 4.1%, 6% and 2%
respectively. The average accuracy over the 55 bi-script scenarios is 99%, a gain
of 0.6%.

For the 10 tri-script scenarios of Roman and Devanagari with 10 different
local scripts, the recognition accuracies are presented in Table 1b. Our approach
yields a total accuracy gain of ˜5.1% .

5.2 II-HoG and II-LBP Based Classification

As the feature vector length for inversion-invariant descriptor is only 50, we could
experiment with an increased number of training samples. Thus, we trained the
approach on a set of 6,000 word images and tested it on 14,000 word images,
both containing a mix of inverted and non-inverted samples. An 11-script test
accuracy of 95.8% is achieved. Along with tolerance to text inversion, the feature
set shows an average accuracy gain of 1% (against [1]) over 11 different Indian
scripts. Given the high performance of this feature descriptor for the 11-script set
and its similarity to HoG and LBP features, we are confident of top recognition
results for the bi-script as well as the tri-script scenarios.

The next level script-specific orientation detection is performed by HoG and
LBP combination. Test accuracy figures are shown in Table 1c. For each script,
two classes are considered. One for non-inverted text and other for inverted text.
600 word samples are used for training and 18,000 word samples for testing. The
average orientation detection accuracy over 11 scripts is 97.7%.

6 Conclusion

The present work uses a combination of gradient (HoG) and texture (LBP)
features to yield state-of-the-art recognition accuracies over 11 Indian scripts. It
also introduces novel modifications to HoG and LBP features that makes them
tolerant to image inversion. These inversion-invariant features (II-HoG and II-
LBP) are combined together and used for script recognition in cases where the
text may be inverted. They yield high recognition results, surpassing the existing
best by approx. 1%. Both the proposed approaches perform at the word level
and can quickly adapt to any new script given sufficient data samples. Thus, our
approach is generic and can easily be integrated into various practical document
recognition systems for an improved performance.
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Abstract. We present a segmentation-free method to retrieve keywords
from degraded historical documents. The proposed method works directly
on the gray scale representation and does not require any pre-processing
to enhance document images. The document images are subdivided into
overlapping patches of varying sizes, where each patch is described by
the bag-of-visual-words descriptor. The obtained patch descriptors are
hashed into several hash tables using kernelized locality-sensitive hashing
scheme for efficient retrieval. In such a scheme the search for a keyword
is reduced to a small fraction of the patches from the appropriate entries
in the hash tables. Since we need to capture the handwriting variations
and the availability of historical documents is limited, we synthesize a
small number of samples from the given query to improve the results of
the retrieval process.

We have tested our approach on historical document images in Hebrew
from the Cairo Genizah collection, and obtained impressive results.

Keywords: Historical document processing · Keyword retrieval ·
Segmentation-free · Bag-of-visual-words · Kernelized locality-sensitive
hashing

1 Introduction

An ongoing considerable effort for digitizing historical manuscripts have pro-
duced huge datasets. Since the documents are represented as images, it is essen-
tial to provide a search and retrieve engine that simplify and accelerate accessing
and processing the manuscripts. Current Optical Character Recognition (OCR)
systems perform badly when applied to degraded historical documents, which
leaves keyword spotting technique as a practical alternative [15]. In keyword
spotting, the retrieval is performed on the image domain, and the aim is to
locate regions in the image that are similar to the keyword query image.

The majority of word spotting approaches require the input to be segmented,
at least to the text line level [6,10,13,15–17]. However, in addition to the phys-
ical degradations, many handwritten documents exhibit varying line slopes and
c© Springer International Publishing Switzerland 2014
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touching characters. Segmentation of such documents often results in united or
split words, and loss of ascenders and descenders. This in turn influences the
results of the subsequent search algorithms. We believe that the results of key-
word retrieval can be improved by employing segmentation-free approach.

In this paper we present a segmentation-free scheme to efficiently retrieve
keywords in gray scale historical documents. The scheme integrates bag-of-
visual-words representation (BoVW) [4] with kernelized locality-sensitive hash-
ing (KLSH) [11] and does not require any pre-processing image enhancement.
While the BoVW with KLSH have been used for object retrieval in computer
vision domain [11], this is the first time such scheme is applied for segmentation-
free text retrieval in document images.

In an off-line stage each document image is (logically) subdivided into over-
lapping patches of several sizes. The patches are described by a BoVW model,
and the obtained descriptors are hashed into several hash tables. The kernelized
locality-sensitive hash functions ensure, with high probability, that descriptors
of visually similar patches are placed into the same entry. Thus, we pre-compute
the hash entries for all the patches in our input images.

To search for a given query keyword, we generate its BoVW descriptor and
obtain the hash indices of the generated descriptor in each of the hash tables. The
data items from the corresponding entries are retrieved as candidates and are
searched to obtain the best matches. The search is fast due to the fact that the
subset of candidate patches is relatively small. Since the availability of historical
documents is limited and we need to capture the handwriting variations, we
synthesize a small number of samples from the given query to improve the results
of the retrieval process.

The presented scheme was tested on a set of Hebrew historical documents
from the Cairo Genizah collection1, which are highly degraded. Given that our
input images are not binarized, slant corrected or segmented, the results we get
are very impressive.

2 Related Work

Gatos and Pratikakis [7] presented a segmentation free word spotting approach
that applies binarization and skew correction, and then computes block-based
image descriptors for template matching. Rusinol et al. [18] introduced a patch-
based framework, where each document is split into a set of equal size overlap-
ping patches, and is represented by a feature-by-patch matrix. The patches are
described using bag-of-visual-words model over the extracted SIFT descriptors.
The feature-by-patch matrix is further refined by applying a latent semantic
indexing technique. Dovgalecs et al. [5] also utilized patch-based framework.
First, they evaluate a distance between the features of the query and each
patch. Then, the best results are filtered using longest weighted profile algorithm.
1 The Cairo Genizah (http://www.genizah.org/) is one of the largest collections of

Hebrew medieval manuscripts in the world. It contains a huge amount of documents
written between the 9th and 19th centuries AD.

http://www.genizah.org/
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Almazán et al. [1] represented documents with a grid of HOG descriptors, which
are compressed with Product Quantization in order to save the memory space.
Exemplar SVM is used to learn a better representation of the keyword queries,
and the regions most similar to the query are located using sliding window.

Keyword retrieval usually deals with searching a large number of items. To
make large-scale search efficient, commonly an approximate nearest-neighbor
(ANN) search technique is applied. However, most of the ANN algorithms suffer
from the curse of dimensionality. Indyk and Motwani [8] presented a locality-
sensitive hashing (LSH) technique to implement an efficient NN search on a large
collection of high dimensional items. The main idea of LSH is to use several hash
functions (with their corresponding hash tables) that hash similar items to the
same entry with high probability. The same hash functions are used to calculate
entry indices for a query, and only the items from these entries are further
searched. Kumar et al. [12] incorporated LSH for spotting words in a collection
of printed documents. The preprocessed documents are segmented into words,
which are represented by a combination of scalar, profile and structural features.
A Discrete Fourier Transform is applied to feature vectors and the obtained final
descriptors are hashed into the hash tables. Saabni and Bronstein [19] describe
the segmented word parts by multi angular descriptors. They use the boost-
map algorithm for embedding the feature space with the DTW measurement
to a Euclidean space. This embedding allows subsequent use of LSH for finding
k-nearest neighbors of a query image. Then, the candidate images are compared
to the query using the DTW distance.

3 The Methodology

The schematic overview of the presented method is depicted in Fig. 1. For our
input images we pre-compute a data structure of hash tables, where document
patches are stored according to their descriptors. Given a query keyword q, initial
candidates similar to q are retrieved from the data structure and are further
processed to obtain the final results. To capture the handwriting variations and
overcome the problem of limited available samples, we synthesize a small number
of various instances from the given query to improve the retrieval process.

3.1 Extracting the Patch Descriptors

The presented method begins with calculating dense SIFT descriptors on a regu-
lar grid of 5 pixels imposed over the image, similar to [5,18]. At each grid vertex
three descriptors, which correspond to three spatial sizes, are calculated. These
sizes are chosen with respect to the font dimensions, which are automatically
approximated using the technique developed in our lab [3]. Descriptors with low
magnitude are ignored, as such descriptors usually correspond to non-text areas.
Once the descriptors are calculated, they are quantized into n clusters using the
k-means algorithm.
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Query image 

Extract BoVW descriptor 

Calculate hash indices in 
each of the hash tables 

Retrieve and rank 
relevant patches 

Output best results 

Document images 

Calculate dense SIFT 
descriptors; build a 

dictionary of visual words  

Divide the documents into 
overlapping patches 

Extract BoVW descriptor of 
each patch 

Hash the patch descriptors 
into each one of the hash 

tables 

Hash tables 

On-line Off-line 

Fig. 1. The overview of the on-line and off-line stages of the presented scheme

Next, we subdivide each document into overlapping patches, sampled every
p pixels in x and y directions. Previous approaches adopted equal size patches
[5,18]. We chose to extract patches of several widths at each location, to take
into account different word lengths. Each patch is represented by the bag-of-
visual-words descriptors [4].

Let D = {w1, w2, . . . , wn} be a dictionary of visual words. The BoVW rep-
resentation is a vector v = (v1, v2, . . . , vn), where vi is the occurrence rate of
wi in the patch. Traditional BoVW representation does not take into account
spatial distribution of visual words, and to overcome this limitation we impose
2 × 2 grid over the patch, resulting in 4 equal cells. The BoVWs of each cell
are calculated and concatenated to generate the patch descriptor. This is similar
to spatial pyramid matching technique presented by Lazebnik et al. [14], except
that we use the highest pyramid level only.

3.2 Constructing the Data Structure

The aim of the data structure is to support fast search operations over a huge
number of high dimensional descriptors. To accelerate the search, we use the
LSH technique [8], which approximates k-nearest neighbors search on large col-
lections of high dimensional datasets. LSH consists of l hash tables T1, T2, ..., Tl

and l hash functions f1, f2, ..., fl. Each hash function projects the objects onto
randomly chosen low-dimensional Hamming space. The hash functions are con-
structed in such a way that the probability of the two objects to be hashed to the
same entry is strictly decreasing with the distance between them. As the total
number of entries may be large, to save memory space the non-empty entries
are compressed using standard hashing; i.e., there are two levels of hashing: the
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locality-sensitive hash functions in the first level and standard hash functions
in the second level. The main assumption of the LSH is that the data objects
come from Euclidean space and the distance function is Euclidean distance. In
our situation we are dealing with BoVW descriptors, which are histograms, and
the χ2 distance is an appropriate measure for comparing two histograms 2. Kulis
and Grauman [11] presented kernelized locality-sensitive hashing for k-nearest
neighbors searches over arbitrary kernel functions. Similar to standard LSH, the
hash functions are constructed using random projections, but the projections
are calculated using the kernel function and the sparse set of examples from the
collection itself. We use the KLSH with χ2-kernel, Kχ2 , as formulated in Eq. 1,
where V1 and V2 are two feature vectors and d is their dimension. Finally, the
extracted patch descriptors are hashed to each of the hash tables. We actually
store pointers to the descriptors and not the descriptors themselves.

Kχ2(V1, V2) = exp

(
1
2

d∑

i=1

(V1(i) − V2(i))2

V1(i) + V2(i)

)

(1)

3.3 The Retrieval Process

To retrieve patches similar to a query image we obtain the descriptor of the query
(in the same manner as described in Section 3.1), calculate the hash indices for
the hash tables, and retrieve the items from the corresponding entries. The
retrieved items are ranked according to their χ2 distance from the query. Since
there are overlapping patches, from each set of patches overlapping more than
20% we pick only the patch with the smallest χ2 distance from the query, and
discard the rest. Finally, the top results are returned to the user.

Handwritten text is characterized by variations in size, slant, noise, etc. In
our previous research [16] we showed that employing multiple models for a
query can improve retrieval results. However, it is not always possible to get suf-
ficient number of samples for a given pattern in historical documents. Therefore,
we synthesize additional samples from the original query by applying limited
resizing, slant change, dilation, erosion, and adding noise (the noise is generated
according to the degradation model [9]). After generating additional samples of
the query, we proceed as is described above, except that we calculate indices for
all the samples of the query in each hash table. We define the distance between
a patch and the samples to be the average χ2 distance between the patch and
each of the samples.

4 Experiments and Results

The proposed method was tested on 12 document images from the Cairo Genizah
collection, examples of which are presented in Fig. 2. The pages exhibit a variety
of degradations, such as smeared characters, bleed through, and stains.
2 Let H1 and H2 be two histograms with b bins. The χ2 distance is defined to be:

χ2(H1, H2) = 1
2

∑b
i=1

(H1(i)−H2(i))
2

H1(i)+H2(i)
.
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Fig. 2. Samples of the document pages on which we performed our tests

To build the dictionary, we used one of the pages and have experimented
with dictionary sizes varying from 100 to 2000. The dictionary of sizes 400−500
performed best on our document set. The patches were extracted every 25 pixels,
and at each sample point we extracted patches of four sizes: 100 × 75, 135 × 75,
170× 75 and 205× 75 pixels (see Fig. 3a). The patches that did not contain any
visual word were automatically detected and discarded. The total number of the
extracted patches from all the 12 pages in our document set was 161952.

(a) (b) (c)

Fig. 3. (a) Examples of sampled patches; (b) The queries and corresponding retrieved
results. The topmost image in each column is the query word; (c) The synthetically
created images of two Hebrew words. The original image is the leftmost image in each
group. The synthetic samples are created by re-sizing, adding noise, slant, dilating and
eroding the original query.

The ground truth for the documents was manually built using the web-based
system developed in our lab [2]. We randomly chose 50 queries, and the presented
results were averaged over all the queries. The performance was evaluated in
terms of Mean Average Precision (MAP). A retrieved patch is considered true
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(a) (b)

Fig. 4. (a) The performance of KLSH with varying number of hash functions and
one sample per query. Percentage of the inspected patches versus the number of hash
functions used. As we see, less than 5% of the patches from the database are inspected,
even using 40 hash functions.

positive if it overlaps more than 50% with the bounding box of the relevant word
in the document.

In the first set of experiments we analyzed how the number of hash func-
tion influences the retrieval results, when one sample per query is used. For
this experiment, we varied the hash functions number from 5 to 40, and the
corresponding MAPs are presented in Fig. 4a. The best being 0.6 for 40 hash
functions. For comparison, the MAP of linear searches, which search over all
patches, is 0.6818. As can be noted, the performance of the KLSH gets close to
the results of linear search as the number of hash function increases. In contrast,
the percentage of the inspected patches is less than 5% of the entire database,
even when using 40 hash functions, as depicted in Fig. 4b. Due to the small
fraction of inspected patches, our method (with 40 hash functions) is 10 times
faster then the linear search. For comparison, we have downloaded the code pro-
vided by Almazán et al. [1] and used the same evaluation protocol. The results
of [1] with the best configuration tuned for our documents is 0.5508. For the
time being we do not compare run-time as our code still runs on Matlab and is
not optimized.

Fig. 3b illustrates some retrieval results for four queries, using 30 hash func-
tions and one query sample. The query is the topmost image in each column. As
seen, the obtained results are promising for documents that have not undergone
any image enhancement. Sometimes false positive words are retrieved (see the
last two words in the leftmost column in Fig. 3b).

In the second set of experiments, we synthesized additional samples for each
query and checked the influence of the number of samples on the performance.
Fig. 3c illustrates examples of synthetic samples for two Hebrew words. The
image on the left in each example is the original image, and to right of the
original are its synthetically created samples. We ran experiments with 5, 10, 15
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(a) (b)

Fig. 5. (a) The performance results using 5, 10, 15 and 20 samples per query; (b)
Percentage of the inspected patches for varying number of samples

and 20 samples. Fig. 5a illustrates the corresponding MAPs for varying number
of hash functions. We can observe a significant improvement in precision rate
from 5 samples (in comparison to using one sample). On the other hand, we
do not observe further improvement when we increase the number of samples
above 10. This might indicate that it is enough to use 10 samples. In addition,
we noticed that using small number of samples per query can compensate for the
need for a large number of hash tables. For example, the results with 10 samples
and 10 hash tables even slightly better than the results with one sample and 40
hash functions. Finally, Fig. 5b illustrates the influence of the number of samples
on the number of the inspected patches. As seen, the fraction of the inspected
patches grows rapidly with the number of samples. However, it seems that 10
samples per query and 20 hash function give the reasonable trade-off between
the accuracy and the number of searched patches, which is still less than 15% of
the database.

5 Conclusions and Future Work

In this paper we presented a segmentation-free approach to spot keywords in
degraded handwritten historical documents. The method does not require
binarization or any other image enhancement. We integrate the BoVW rep-
resentation with kernalized locality-sensitive hashing to create the input data
structure of hash tables and descriptors for the patches of varying size in docu-
ment images. We showed that, almost without compromising accuracy, we search
less that 5% of the patches even when 40 hash functions are used. Furthermore,
we demonstrated that additional synthetically generated samples of the query
improve the retrieval results and reduce the need for a large number of hash
functions. We found that 20 hash functions suffice when we use 10 samples of
the query. While our experiments focus on Hebrew handwritten historical doc-
uments, the scheme is general and can be applied to historical documents in
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other languages. At future research we plan to inspect the influence of spatial
pyramid co-occurrence [20] incorporated into BoVW and to perform tests on
public document collections of handwritten historical documents.
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Abstract. In this paper, two new techniques to correct the OCR errors
are proposed, recurrent neural networks with Long-Short Term Memory
(LSTM), and Weighted Finite State Transducers (WFSTs) with context-
dependent confusion rules. Both methods are applied on OCR results of
Latin, and Urdu Script. Especially Urdu script is very challenging to
OCR. For building an error model using context-dependent confusion
rules, the OCR confusions which appear in the recognition outputs are
translated into edit operations using Levenshtein edit distance algorithm.
The new LSTM model avoids the calculations that occur in search-
ing the language model and it also makes the language model eligible
to correct unseen incorrect words. Our generic approaches are language
independent. The proposed supervised LSTM model is compared with
the context-dependent error model and state-of-the-art single rule-based
methods. The evaluation on Latin script shows the error rate of LSTM
is 0.48 %, error model is 0.68 % and the rule-based model is 1.0 %. The
evaluation shows that the accuracy of LSTM model on the Urdu testset
is 1.58 %, while the accuracy of the error model is 3.8 % and OCR recog-
nition results is 6.9 % for Urdu testset. LSTM showed best performance
on both Latin and Urdu script. As such, experiments show that LSTM
performs very well in language techniques, especially, post-processing.

1 Introduction

Handwritten and printed text recognition research focuses more and more on
challenging scripts and bad quality images, as these are difficult recognition
tasks. Language modeling techniques are required to improve the recognition
results. Dictionaries are built with finite vocabularies. However, a language
model should be capable of efficiently creating infinite dictionary corrections.
Therefore, a fast and accurate technique with a capability of predicting unknown
tokens is needed. For language modeling in speech recognition [9], a general algo-
rithm based on classical and new weighted automata algorithms is issued for
computing exactly the edit distance between two string distributions given by
two weighted automata. Another statistical language model technique is based

c© Springer International Publishing Switzerland 2014
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on n-grams [10]. These are widely used and considered as the state of the art for
several application, such as, speech recognition, machine translation, and OCR.
However, n-grams are not good enough to correct the unseen/unknown tokens
even after a lot of efforts [10]. Another method of finding the correct form of
a word, is to search through all dictionary entries to find the best candidate
corrections. Such a method would be time consuming inefficient, and not eligi-
ble for unknown word forms. Error model is widely used in various applications
such as spell-checkers and handwriting recognition. Hassan et al. [6] proposed an
error model to aid the language model in a spell-checker to correct misspelling
errors. They provided several suggestions using single rule-based error model.
The error model consists of two-tape finite state automaton mapping of any
string of the error model alphabet to at least one string of the language model
alphabet. Llobet et al. [8] proposed a similar error model using OCR to improve
the recognition results of handwritten Spanish in scanned forms. LSTM is used
for normalizing historical orthography for OCR historical documents in Al Azawi
et al. [1]. Frinken et al. [4] trained LSTM on word features, i.e. start-of-sentence
and end-of-sentence tag.

1.1 Contributions

Building and evaluating a post-processing system for OCR corrections using
two different language models: error model transducers in form of WFST and
Character-Level alignment in LSTM is discussed.

C1 For WFST, an error model is built using context-dependent confusion rules.
It is based on the confusion matrix that the OCR produces and is dependent
on the context of the strings (OCR results). It was tested by implementing
a finite state transducer from the Levenshtein edit distance relations. The
context is a new idea instead of single character rules. This helps to fit the
confusion rule in the proper string where it belongs and brings the string to
the corrections. The language model can be as simple as a list of finite words
compiled into finite state transducers. The frequencies of a token or rule in
the corpus are converted to weights in the finite state transducer. In the
error model approach, if multiple rules are applicable at the same position
within a word, the rule that is ranked higher is applied.

C2 For the LSTM based approach, powerful LSTM networks were trained to
learn corrections by themselves. LSTM is specifically designed to overcome
limitations of RNN. LSTM has the ability to remember the target association
between irrelevant input and target events even for very long time lags [5]. A
new Character-Level alignment was proposed to normalize the strings length
before the training of LSTM, as describe in Section 4.1. Both approaches are
language independent. The experiments used Latin and Urdu script. The
recognition and proposed approaches results examples of Urdu Nastaleeq
are shown in Fig. 4. The improvement our methods brings over a correction
algorithm using only the edit distance was evaluated. All approaches were
implemented in C++, and Python under Linux. The experiment results show
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that our proposed LSTM model has better performance than the error model
on the unknown data which were unseen during the training.

The paper is organized as follows. Section 2 describes the state-of-the-art single
rule-based model. In Section 3 and 4, our new proposed context-dependent error
model and LSTM networks are described. Section 5 contains the experimental
results. Finally, Section 6 presents the conclusions.

2 Single Character Rules-Based Approach

The single character rules are extracted using Levenshtein edit distance algo-
rithm [6]. The rules represent the primitive operations: insertions, deletion and
substitution. These rules are used for constructing the transducers. Each tran-
sition in the transducer holds single rules. Insertion rule is used as ε → f .

3 Context-Dependent Error Model Approach

In this section, extracting the context-dependent rules and constructing the error
model transducer using those rules are described and the language model and
alignment technique are explained.

3.1 Context-Dependent Confusion Rules Extraction

The purpose of an error model is to act as a filter to revert the mistakes of
the recognition outputs. The error model typically provides a small selection
of the best matches for the language model this means that when define the
corrections, it is also necessary to specify their likelihood in order to rank the
correction suggestions. The error model is built using the Levenshtein edit dis-
tance algorithm [7]. The misrecognition is assumed to be a number of operations
applied to characters of a string: deletion, insertion and substitution with the
neighbor characters on the leftmost and rightmost sides. We can also control the
size of the context involved in the rule, as shown in Fig. 1. For example, the
misrecognized word Defnition which needs the rules fεn → fin to be fixed.
The misrecognized word efect requires the rule fεe → ffe, as shown in Fig 1.
The error model is a transducer and is constructed by aligning the misrecognized
word of the OCR output with their corresponding ground truth. By using the
outputs of the alignment, the OCR confusions are extracted in form of rules to
be used in the error model with respect to their context in both misrecognized
and ground truth wordforms.

3.2 Constructing Error Model Using Weighted Finite State
Transducers (WFSTs)

The error model transducer is constructed using the extracted context-dependent
rules in Section 3.1. The error model transducer is a weighted finite state trans-
ducer that maps the misrecognized words into correct strings. Each of these
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Fig. 1. Shows the context-dependent
rules which are required to fix the mis-
recognized words and their correspon-
dence correct words. ε corresponds to
insert a character in this position

Fig. 2. Sample of the Latin context-
dependent Confusion rules in error model
transducer

Fig. 3. Sample of the Urdu
context-dependent confusion rules
in error model transducer

Fig. 4. Sample Result of LSTM and Rule-
based models with the correspondence
OCR and Ground Truth

context-dependent rules can be assigned a probability. The probability is derived
from the confusion matrix of the OCR classifier. The context-dependent rules
consist of two parts, the left part is the OCR confusions and the right part is the
corresponding ground truth. The rules are translated into a WFST, where the
left part represents the input label of the transducer and the right part of the rule
represents the output label. Therefore, the error model transducer is able to map
the OCR error by matching the output label of the OCR transducer with the
input label of the error model. The output label of the error model is matched
to the corresponding input label of the dictionary and maps the OCR error to
it’s correspondence correction. Part of the constructed error model transducer
for Urdu is shown in Fig. 3 and Fig. 2 for English. The open-source OpenFST
library [3] was used which has achieved a competitive performance for building
and applying WFSTs [2].

3.3 Alignment Technique

The standard WFSTs framework to include estimated probability were used.
The formula for converting the frequencies f of a token or rule in the corpus to
a weight in the finite state error transducer is Ws = -log (fs / C), where C is
the size of the corpus. Three transducers were aligned. First, the OCR outputs
were aligned with the error model to generate composed Levenshtein transducer
with OCR confusions of OCR output. The alignment technique is described
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Table 1. The Table shows the error rate of our LSTM model and Context-Dependent
EM compare to the original OCR recognition results and Single Rules-Based model. We
trained the LSTM 100 times and report the mean of the error rate from different train-
ing models. The Rule-Based is skipped from Urdu dataset because of low performance
amongst other approaches

Dataset OCR Rule-Based Context-Dependent LSTM

English Testset 1.14% 1.0% 0.68% 0.48%

Urdu Testset 6.9% - 3.8% 1.58%

in [2]. It contains all the possible and appropriate candidate corrections of the
misrecognized tokens and provides the suggestions to the language model to
decide which token is the best candidate correction. Both the OCR output and
the error model are represented in finite state transducers. After aligning the
input with the error model transducer, the results of WFST are aligned with
the dictionary to filter out words that do not exist in the language. The aligned
WFST has many paths depending on the compositions with the correspondence
rules in the error model. The best path with lowest cost is chosen from the second
composition.

4 Character-Level Alignment and LSTM Neural
Networks Approach

A new technique based on LSTM recurrent neural networks is proposed to solve
the problem OCR corrections. Very little attention has been paid to it. Leven-
shtein edit distance technique is applied to align the training pairs. The align-
ment technique of two strings finds the similarities and differences between them
and can be interpreted as point mutations. If they share common characters and
mismatches, or gaps when it is insertion or deletion mutations introduced in one
or both lineages in the time since they diverged from one another.

4.1 Character-Epsilon Alignment

In this section, a preprocessing method to allow insertion, deletion, and sub-
stitution operations in the wordforms is described. The Levenshtein alignment
technique [7] is used to align two strings A and B and find an optimal alignment
given a better score. To compute an alignment that actually gives this score,
you start from the bottom right cell, and compare the value with the possible
sources (Match, Substitution, Insertion, and Deletion) to see where it came from.
If Delete, then Ai is aligned with a gap, and if Insert, then Bj is aligned with a
gap. Otherwise Ai and Bj are aligned. In this technique, epsilon is inserted after
each character of the misrecognized wordform, then we apply alignment using
the Levenshtein edit distance between the misrecognized and groundtruth word-
forms to obtain the optimal aligned character pairs. For example, eεfεeεcεtε.
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4.2 String Encoding and Feature Extraction

For encoding a string, we use a sequence of vectors where each vector has a
length corresponding to the size of the character set. Each character in the
string is mapped to its code point which is used in the binary feature represen-
tation. Misrecognized wordforms along with their transcriptions are fed to the
network, which perform the forward propagation step first. Alignment of output
with associated transcriptions is done in the next step and then finally backward
propagation step was performed. Recurrent Neural Networks have been applied
to many of the pattern recognition tasks and showed promising results. LSTM is
like a computer memory cell providing three multiplicative gates namely input,
output, and forget gate in order to simulate write, read, and reset operations.
LSTM can be used to remember contexts over a long period of time. In order to
be aware of the context in both directions a variant name BLSTM is introduced
by [5]. Furthermore, a CTC layer has been introduced to overcome the limitation
of data pre-segmentation. After each epoch, training and validation errors were
computed and the best results were saved. When there was no significant change
in validation errors for a pre-set number of epochs, the training was stopped.
There are two parameters, which need to be tuned; namely number of hidden
states and the learning rate.

5 Experimental Results

Our methods are language independent. To show that, we evaluate our
approaches on two very different scripts. One is Latin script (English) and the
second is Urdu Nastaleeq (Arabic).

5.1 OCR and Materials

Two datasets of recognized script have been used for our experiments, the first
is based on English script and the second is based on Urdu. The English script
dataset is extracted from the Ocred collected work which is freely avaibale from
the web1. The Urdu script dataset is the UPTI (Urdu Printed Text Images)-
dataset [11], which contains synthetic scanned image data. Various degradation
techniques were applied to increase the size of dataset. In the recognition phase,
two parameters namely the number of hidden states 100 and learning rate 0.0001
were evaluated for their respective effect on the recognition accuracies. Parame-
ter selection was done for a case where the ligature shape variations (191 classes)
were considered.

5.2 Experimental Setup and Results

In the experiments, the datasets are divided into training and testing sets as
described in [11]. We used the OCR’s output with their corresponding ground
1 https://code.google.com/p/ocropus/

https://code.google.com/p/ocropus/
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truth to build the LSTM and the error model. For the Urdu datasets (UPTI),
we used 60,177 entries for training purposes and 8,376 entries for testing pur-
poses. For training the LSTM model, the misrecognized word forms with their
corresponding groundtruth wordforms were used as recognition target. The train-
ing pairs were prepared using alignment technique as described in Section 4.1
which is considered a pre-processing step. The context-dependent EM has 830
extracted context-dependent rules to build the error model. The rules are used to
build the error model using WFST. The language model (LM) can be as simple
as a list of finite words compiled into probabilistic finite state transducers. The
words were extracted with their frequencies from text corpus from UPTI and
English datasets. The standard WFSTs framework to include probability esti-
mates for constructing a unigram model is used. The error rate is measured using
edit distance to find the number of the edit operation on character level. The
evaluation shows an effective performance of our LSTM model on the UPTI test-
set with 1.58% error rate, while error model has 3.8% and the original error rate
of the OCR recognition results is 6.9%. Fig. 4 shows samples of the results of
LSTM and rule-based models on both datasets. In the experiments using English
script, 6,000 wordforms with their corresponding ground truth wordforms were
used. In testing, 3,917 wordforms and their corresponding wordforms were tested
in UTF-8 encoded text format were used as ground truth to evaluate the gener-
ated wordforms by the proposed approaches. Table 1 shows the evaluation of the
approaches using the whole testset. The unknown wordforms is subset from test-
set. The evaluation shows an effective performance of the LSTM on the testset
0.48% error rate. The context-dependent EM approach has 162 rules. It performs
on the on the whole testset with 0.68%. The rule-based approach has 237 rules
and performs 1.0%. Result examples of the approaches, correcting misrecognized
word “rnethod” to “method” and “artifcial” to “artificial”. The configuration of
the network and the number of weights mapping between and within layers is
shown in [5]. Training of the network proceeds by choosing text input lines ran-
domly from the training set, performing a forward propagation step through
the LSTM and output networks, then performing forward-backward alignment
of the output with the ground-truth, and finally performing backward propaga-
tion. We trained LSTM networks with hidden-states of different sizes 40, 60, 80,
100, 120, 140 and 160. The optimal error rates are obtained when the size of the
hidden-states is in a range between 100 - 160 and it takes 782 - 1097 minutes for
training respectively. When the size of the hidden-states is in a range between
40 - 80, it takes 251 - 594 minutes for training respectively. The time increases
linearly with an increase in the number of the hidden-states. After the model
has been trained, the predictions are very fast. The most appropriate number of
hidden-states determined keeping learning rate constant at 0.0001.

6 Discussions

In this paper, two new methods to build a language model to correct OCR
errors are proposed, one based on WFST, the other based on LSTM. The exper-
imental results show that the proposed methods achieve improvements of the
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OCR results when being compared to single rule-based models. The LSTM
based method yields the best performance. There are several indications that the
LSTM-based approach generalizes much better to unseen samples than WFST
and other approaches proposed in the literature. The Wordlist approach, for
example, is unable to process unseen samples. The rule-based approach might
not be able to cover all the misrecognized variants when the OCR does recog-
nition errors which did not appear during training. In summary, most existing
approaches just pass unseen samples keeping them unchanged. Both our meth-
ods process all tokens in the testset. The LSTM model is able to predict all
different misrecognized variants accurately and significantly better than WFST.
Our approaches have no limitation on the word length and the number of errors
that occur in the words. The approach is completely language independent, and
can be used with any language that has a dictionary and text data to build a
language model.

References

1. Al-Azawi, M., Afzal, M.Z., Breuel, T.M.: Normalizing historical orthography for
OCR historical documents using LSTM. In: Proc. of the 2nd International Work-
shop on Historical Document Imaging and Processing, HIP 2013, pp. 80–85. ACM,
New York (2013)

2. Al-Azawi, M.I.A., Liwicki, M., Breuel, T.M.: WFST-based ground truth alignment
for difficult historical documents with text modification and layout variations. In:
DRR Proc. SPIE (2013)

3. Allauzen, C., Riley, M.D., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: a general
and efficient weighted finite-state transducer library. In: Holub, J., Ždárek, J. (eds.)
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Abstract. In this paper, we address the issue of discerning handwrit-
ing from machine-printed text in real documents (This work is funded
by the PiXL project, supported by the “Fonds national pour la
Société Numérique” of the French State. http://valconum.fr/index.php/
les-projets/pixl). We present a reliable method based on a novel set of
features belonging to two different categories, linearity and regularity,
invariant to translation and scaling. Specifically, a novel linearity measure
derived from the histogram of straight line segment lengths is introduced.
The resulting framework is independent of the document layout and
supports any latin language used. Its performances are assessed on real
documents dataset comprising heterogeneous administrative images.
Experimental results demonstrate its accuracy, allowing up to 90 %
recognition rate.

1 Introduction

In many real world documents the reader or the user, annotating the already
printed text, wants to add manually some information or to emphasize some
parts of the document with a drawn mark. The resulting document can then
be seen as a two-layer document : the first layer being the native document
and the second one being made of the added information. Automatic processing
of the two different layers does not however belong to the same frameworks.
In particular, an optical character recognition system (OCR) is heavily depen-
dent on the nature of the data to be processed : OCR for printed text recog-
nition is different from that for handwriting recognition. The prior distinction
between the two layers is then a key issue to automate the selection of the
appropriate OCR.

Several works have been done in this context[2,3], where in a classical way,
four steps are involved to solve the problem : preprocessing, page segmentation,
feature extraction and classification.

We present here a reliable approach based on novel features. The outline
of this paper is as follows. Section 2 introduces the general framework of the
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proposed method and details its different steps. Section 3 focuses on the proposed
features. The performances of the resulting framework for real administrative
documents separation are quantitatively assessed in Section 4. Conclusions and
perspectives are given in Section 5.

2 Handwritten and Printed Text Separation Framework

We propose a unified pixel-wise labeling approach for handwritten and printed
text separation, involving especially multiple descriptors categories which may
be associated with multiple classifiers. Three elements are characterizing our
proposal : (i) observation scale step, based on elementary textual entities selec-
tion. Pixels of each entity will be assigned a unique label; (ii) representation
space step which is deriving descriptors characterizing each textual entity; and
(iii) decision step which is the labeling of each entity and its pixels.

Observation scale definition. An observation scale is handled as stable tex-
tual entities zones. specificaly, aggregating neighboring connected components
(CC ) by promoting the horizontal direction, we can reach groups of letters, words
or even lines. This is handled using a horizontal RLSA algorithm [4], where dis-
tance between characters belonging to the same textual entity is controlled by a
RLSA parameter, denoted hereafter by R. Textual entity areas increase with R:
larger values of R owing to lines whereas smaller values lead to smaller textual
entities, the smallest one being the CC.

Representation space. Several features highlighting the difference between
handwritten and typed text were used in the literature [3,5,6]. In this work, we
propose to combine multiple features in order to discriminate handwriting from
printed text. Two descriptors categories are selected to this end : linearity and
regularity and are detailed in Section 3.

Decision. Upon completion of this step, a unique label should be assigned
to each text entity. In this work, we confine ourselves to two possible labels :
handwriting and printed text. To handle labeling, we opt for a two-step straight-
forward technique, based on decision rules. In the first step, accurate decision
rules allowing a first labeling are learned during a training phase. Possible clas-
sification errors are further corrected by means of a regularization process. We
adopt here the technique of textual entity re-grouping proposed in [1]. It uses
spatial proximity to smooth separation results. For each entity, k nearest neigh-
bours (kNN) are found and its label is compared to the kNN ones. If more than
50 % of kNN share the same label, current textual entity is assigned this label.
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3 Proposed Features for Handwritten and Printed Text
Separation

3.1 Linearity

Using linearity features is motivated by the fact that printed text looks more
linear as it contains more straight-line segments compared to more rounded
writing in handwritten text.

Problem statement and related works. The need to look for straight line
segments in an image is a very common problem occuring in several applications
and leading to various works[7–9]. The most representative works in general doc-
ument analysis context are based on a global vision of the image. They perform
a study of the general orientation in the writing rather than a study of the
presence of oriented segments. The linear property in a straight line is however
local.

In this work, we propose to extract real straight lines in order to study their
properties rather than to have a statistical observation of the locally computed
directions. In fact, our aim is not to extract precise straight line segments but to
define a measure based on these segments in order to quantify the property of the
writing associated with the presence or not of significant straight line segments.
This measure is a relative quantification computed relying on the histograms of
straight line segment lengths.

Histogram of straight line segment lengths. The linearity feeling given
when observing a document comes from the presence of straight line segments.
In an alphabet such as the latin alphabet, the straight line segments are included
in the models used during the writing learning phase. The lengths of these seg-
ments are of different sizes, the largest size can be associated with ascenders
and descenders, whereas the straight line segments of letters such as m or n are
smaller. The remaining part of writing is made of curves within the letters or
belonging to ligatures. In order to extract straight lines and to minimize the
number of parameters to be fixed in the method, we have chosen to process
similarly the straight parts and the curved parts of the writing. Curved parts
are then approximated by small segments generating a new length among the
straight line segment lengths histogram of the document, denoted shortly by
SLH. Depending on the text content and on the writer, the modes can be more
or less visible and the number of clusters can increase according to the specific
style of the writer and to its habits. Then, we will not consider a decomposition
of the histogram using a GMM that needs to fix/approximate the number of
gaussians but rather qualify the histogram using a measure.

Proposed linearity measure. The aim of the proposed linearity measure is
to highlight the presence of well marked modes in the SLH. When the lengths
are varying too much and due to letter shape nature, the reader do not get the
feeling of a linear writing. Value evolution between two consecutive bins is more
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important when modes are significant. This motivated us to base the linearity
measure, Lm, on a formula with general expression as :

Lm(HT ) =
L∑

l=1

ωlΔl (1)

where HT denotes the SLH relative to the considered text entity T 1, Δl des-
ignates the evolution involved by the length l and L is the largest value in the
distribution. The relative difference is considered :

Δl =
HT (l + 1) −HT (l)

HT (l)
· 1[0,+∞[(HT (l + 1) −HT (l)) =

dl
HT (l)

· 1[0,+∞[(dl)

where 1 denoting the indicator function2. To robustly account for the number
of straight line segments variability, the linearity measure should be normal-
ized. Weights have then been built as a length normalized against a number of
segments :

ωl =
l

L∑

m=1

HT (m)

·HT (l) (2)

Substituting (2) in (1), the linearity measure then rewrites as :

Lm(HT ) =

L∑

l=1

l · dl · 1[0,+∞[(dl)

L∑

l=1

HT (l)

(3)

Let us focus now on the straight line segment computation technique. To
minimize dependency on the writing tool and to avoid creating lines related to
the stroke thickness, we have chosen to consider a polygonal approximation of
contour segments. Polygonal approximation is done using the algorithm pro-
posed in [10]. The latter requires a user defined parameter P that controls the
accuracy of the approximation. Larger values of P induce fewer but longer seg-
ments than when using smaller values. Obviously, increasing P is done at the
cost of character shape degradation.

Relying on (3), it is expected that Lm values for typed text are larger
than those computed over handwritten text. Inspecting a typical polygoniza-
tion approximation of a handwritten text compared to its printed counterpart
(Figure 1 (b)) reveals as expected for printed text a more regular approximation
with the expected benefit of overall less segments length variability; and mostly
longer segments. These observations are corroborated by the visual inspection of
the corresponding SLH (Figure 1 (c), (d)). Machine-printed SLH shows irreg-
ularities at the tail of the distribution, leading to larger values of Lm.
1 In order to build a measure for a general application setting, T could be the whole

text document or any finer observation scale such as CC, word or text line.
2 Note that we only consider the evolution when it is positive.
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Fig. 1. Influence of text style on SLH shape and amplitude

Fig. 2. Impact of axial symmetry on printed text compared to handwritten text

RLSA blocks Lower profiles

Fig. 3. Regularity of machine printed text vs. handwritten text of Figure 2

(a) P = 1 (b) P = 5

Fig. 4. Impact of increasing the value of P on polygonal approximation

Axial symmetry. We here introduce a transform that could enhance the linear
property of printed text without having influence on handwritten text. Symmetry
with respect to the perpendicular direction at end of a segment can do it. In
printed text, most straight line segments are ending on the baseline. This has
motivated us to define an axial symmetry. The axis is derived from the lower
profile (see Section 3.2) as the horizontal axis containing the great majority
of black pixels. In case of typed text, this axis coincides with the baseline. As
shown on Figure 2, resulting symmetric image in case of non italic printed text
enhances straight line segments whose lengths appear to be multiplied. This
yields a multiplication of the SLH maximum length. This property is not verified
in handwriting whose axial symmetric image bears a major difference from its
printed counterpart due to the fact that handwritten straight parts, especially
ascenders and descenders, are often not strictly vertical.
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3.2 Regularity

In this section, we intend to study the regularity of the text. Regularity is tackled
here as the uniformity of ascenders and descenders height. Printed text is then more
likely to be regular than handwriting. This section presents a simple approach for
text regularity evaluation. Starting from a binary textual entity image, we compute
respectively upper and lower profiles. Upper profile is calculated as follows : for
each column of the image, we retain the distance between the bounding box and
its first (black) pixel. Inferior profile is defined along the same lines, whereas here
we are seeking for the distance between the last black pixel and the upper part of
the bounding box. Upper and lower profiles are normalized between 0 and 1. To
emphasize the regularity gap between handwritten and typed text, we compute
profiles over RLSA continuous black blocks rather than native text.

An example of lower profile computation is shown on Figure 3. As expected,
profiles derived from printed text seem less dispersed. To quantify regularity, we
propose then to compute the variance of each profile. higher variance values are
associated with handwriting.

4 Experimental Results

4.1 Dataset and Performance Criteria

The proposed framework has been tested on an administrative dataset belonging
to a real world industrial challenge. Images can be of various structures (forms,
tables) or without any particular structure. We have used 40 images for training
decision rules as well as different parameters, and 32 different images for test.

Separation results are systematically compared to a ground truth dataset
built from a manual labeling of pixels. The efficacy of the proposed technique
is then assessed along three well-defined performance criteria, precision, recall
(recognition rate) and error rate, defined at the pixel level for each class ck (ck
being handwriting or machine-printed).

4.2 Decision Rules and Method Parameters

Four different decision rules, two for each descriptor category, are presented in
Table 1. As mentioned earlier, if polygonal approximation parameter P gets
larger (P = 5 compared to P = 1), straight line segments get much longer in
handwriting than in printed documents (Figure 4). This induces a population
shift in the SLH with consequently a higher maximum length of the SLH and
a higher linearity measure value. Relying on these assumptions, we get the C1

decision rule. The three remaining decision rules can be readily deduced from
the related descriptor definition in previous sections.

Method parameters values are learned during the training stage. RLSA
parameter, R, was tuned experimentally by searching for a satisfying trade-
off between separation accuracy and running time. Experiments showed that
R = 60, allowing pseudo-word selection, is an appropriate choice. As for the reg-
ularization kNN process, we use a k-d tree for efficient nearest neighbors search.
In practice, setting k = 4 yielded satisfying results.
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Table 1. Decision rules

Linearity
Lm for (P = 5) > TL1 · Lm for (P = 1) (C1)
Text axial symmetry SLH.length < TL2 · original text SLH.length (C2)

Regularity
Lower profile variance > TR1 (C3)
Upper profile variance > TR2 (C4)

Handwriting if C1 AND C2 AND (C3 OR C4)

4.3 Method Validation

An objective quantitative assessment of handwritten and machine-printed sep-
aration results (see Figure 5 for visual inspection) is summarized in Table 2.
We also compared on the same dataset and with a similar validation protocol,
our results with those obtained using Belaid et al. [1] method (Table 3). We
gained 1% in recognition rate, but we can notice we used only 4 characteristics
compared with 137.

Fig. 5. Handwritten and printed text separation results

Table 2. Evaluation of the proposed method. The statistics are evaluated on the
measures computed for each document.

Precision (%) Recall (%) Error rate (%)
Min Max Avg Min Max Avg Min Max Avg

Typewritten 59,93 100 95,41 42,08 100 92,85 0,0 57,92 7,14
Handwritten 0,0 100 79,60 0,0 100 80,02 0,0 100 19,98
Global 69,89 99,99 90,22 69,54 99,98 90,15 0,02 30,46 9,85

Table 3. Comparison with Belaid et al. [1] work

Proposed method Belaid et al. method [1]

Text entity Pseudo-word Pseudo-word
Descriptors 4 137
Classifiers Decision rules SVM
Regularization kNN kNN
Database Industrial dataset Industrial dataset
Recognition rate (%) 90,15 89,05
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5 Conclusion

We have presented a method for handwritten and typed text separation involving
novel linearity and regularity features. Specifically, we have derived a measure
quantifying the linear aspect a written text may have. In the proposed approach,
we do not refer to the orientation of the writing to evaluate the dominance of
a specific direction, we are more interested in the length of the straight line
segments and their regularity. This theoretical framework encompasses various
possible observation scales, the smallest one being the CC whereas the biggest
one is the text line. Tests carried at the pseudo-word level demonstrate the accu-
racy of the proposed method allowing up to 90% of recognition rate. Future work
is directed towards separating touching mixtures of printed and handwritten text
relying on pixel-wise features.
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Abstract. A fast dot/dash line detection method suitable for large scale binary 
document images is proposed. The method works by reducing the number of 
scanned pixels used for the detection process. In the new method, pixels in ver-
tical image layers with only a constant spacing are scanned. By using this tech-
nique, the computational time can be reduced because some of the uninteresting 
objects in the image can easily be omitted in the scanning stage. The new meth-
od is faster than the conventional method not only due to its scanning method 
but it also due to the simple process used for detecting dot/dash lines. A 
dot/dash line is detected by selecting a small defined image domain from the 
large scale image. We evaluated the new method against conventional methods 
on appropriate document images and found an improved processing time with-
out any significant loss of line detection ability.  

Keywords: Parallel layer scanning ⋅ Large scale image ⋅ Processing time reduc-
tion ⋅ Dot/dash line detection ⋅ Local image domain analysis 

1 Introduction 

Document image processing is a key research area in computer vision, and many 
studies can be found in the literature concerning document scanning, document struc-
ture comprehension, document computerization, and related topics [1]–[14]. Line 
detection is one of the main stages in document structure comprehension and analysis, 
as well as in character recognition. In this paper, images of documents in Japanese 
and English without figures are considered. Part of a target document image is illus-
trated in Fig. 1. It consists of characters, solid lines, dot/dash lines, and very few other 
objects, such as ellipses. Document images should be generated at a sufficiently high 
resolution to allow analyzing the information effectively; however, considerable time 
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is needed to process the large scale images that can result from a high resolution. In 
this paper, an image of at least 2480 × 3508 pixels is defined as a large scale image. 
Dozens of minutes are required to process such images. Therefore, it is important to 
find ways of effectively reducing the time to process large scale document images. 
Here, processing time reduction is achieved in the image scanning stage, as well as at 
the object detection stage.  

Raster scanning is a major part of digital image processing. In raster scanning, all 
pixels in the image are scanned, starting from the top-left point. However, for large 
scale images, significant computational time is needed to detect desired objects when 
all pixels are scanned. We propose that limiting the pixels to scan to those necessary 
for processing will produce a less time-consuming object detection method for large 
scale binary images. In this study, pixels on vertical and horizontal layers with a con-
stant spacing are scanned. This scanning approach will be called parallel layer scan-
ning (PLS). Fig. 1 illustrates parallel vertical layer scanning (PVLS). Parallel horizon-
tal layer scanning (PHLS) can be similarly defined by using horizontal layers. When 
there is a particular object detection target, some irrelevant objects can easily be 
skipped during PLS and, as a result, processing time can be reduced.  

In this paper, the problem of detecting dot/dash lines in binary document images is 
considered. Objects, such as characters and lines in the document image, are assumed 
to be composed of black pixels and the background is assumed to be composed of 
white pixels. If a black pixel is found while scanning, the dot/dash line detection pro-
cess is started by selecting a surrounding image domain ID  of that pixel. Then, a 
dot/dash line model is developed from a limited area of the original image and, as a 
result, the processing time can be further reduced. 

Many studies can be found in the literature regarding the line detection problem. 
Most of the detection methods are based on the Hough transform (HT), which is de-
scribed in the next section, and are very time consuming. We propose a new and fast-
er dot/dash line detection algorithm that does not depend on voting approaches as the 
HT does. The new algorithm uses the PLS and local ID analysis approach mentioned 
above. In tests with appropriate large scale document images, the new method showed 
a dot/dash line detection rate that was similar to that of the conventional method while 
reducing the occurrence of false positives. Furthermore, the new method required 
significantly less processing time.  

This paper consists of five sections. Section 2 describes conventional line detection 
approaches. Section 3 details the new method, which is based on PLS and local ID 
processing. Section 4 describes the results of testing large scale document images and 
discusses possible applications of the proposed method. Finally, Section 5 concludes 
the paper and introduces some topics for future works. 

2 Related Work 

Line detection is one of the main stages in analyzing document images. Most studies 
of this interesting problem have approached the problem by using the HT 
[18][19][20]. The advantage of the HT is that it offers the ability to detect both solid 
and dot/dash lines simultaneously. However, the HT is a voting-based method, and 
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due to the voting process it is expensive in both time and memory. Therefore, it is 
inefficient to use the HT for line detection in large scale images.  

Some studies do not depend on the HT [15][17][23][24]. Leferve et al. [17] studied 
solid-line detection for scene modeling. Their objective is to detect horizontal and 
vertical lines in binary images. In their method, pixels are analyzed by creating an 
appropriate accumulator on a per-block basis to extract candidates for line segments. 
Kawanaka et al. [15] have conducted solid-line detection using connected component 
analysis: a connected component longer than a pre-defined threshold is detected as a 
line. These methods, however, do not work for detecting dot/dash lines because 
dot/dashes are not connected.    

Adachi et al. [21] have proposed a fast method to find curved dot/dash lines in 
graphs. In that approach, dot/dash lines are detected by tracking the connected com-
ponents. This method is effective for detecting dot/dash lines in a graph since a 
dot/dash line in a graph is isolated and no other objects are near the line. However, in 
the case of document images, many other components, such as characters, are likely 
to exist around the line; therefore, it is difficult to conduct effective connected com-
ponent tracking in document images.  

We overcome the above mentioned weaknesses of conventional approaches by 
scanning the image with PLS and analyzing an ID selected from the entire image. 

3 Dot/Dash Line Detection 

This section presents the proposed dot/dash line detection algorithm in detail. 

3.1 Proposed Algorithm 

Step 1: The document image is binarized by using discriminant analysis, as in the 
Otsu binarization method [22]. The LPP method [15] is then used for tilt correction. 

Step 2: Either PVLS or PHLS is chosen for scanning. Image scanning using PVLS is 
illustrated in Fig. 1, where the scanned areas are indicated in red.  

Step 3: Whenever a black pixel of an object is found while scanning, the same label is 
set to all black pixels of that object. However, labeling is automatically stopped when 
the number of labels exceeds a target threshold k (that is, when ( ) ), and the 
process moves to Step 9. If the threshold is not exceeded, the process moves to Step 4. 

Step 4: The circumscribing rectangle of a labeled object ) is calculated. The as-
pect of   determines the next step: 
  (i) When  pixels, the process moves to Step 9.  
  (ii) When  pixels, the process moves to Step 5.  

Step 5: The center of   is calculated, and a rectangular local ID is defined 
with  as its center. The size of the ID is . The definition of an ID is 
illustrated in Fig. 1, and the enlarged ID is illustrated in Fig. 2. Then, the number of 
connected components ) having fewer than  pixels inside the ID are found. 
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M1 M2 M3 M4 M5

α1 α2 α3 α4

If 5, then we assume that part of a dot/dash line exists inside the ID, and the 
process moves to Step 6. Otherwise, process moves to Step 9. 

Step 6: The middle points M , 1  5  of  are calculated, and then the 4 
angles α , 1  4) between each pair of consecutive middle points are also cal-
culated, as illustrated in Fig. 3. If the angles are approximately equal, then the process 
moves to Step 7. Otherwise, the process moves to Step 9. 

Step 7: The average  and  coordinates of  ,  are determined from Equa-
tions 1 and 2, respectively. The average value of α   is determined from  
Equation 3. The dot/dash line general equation can then be determined according to 
Equation 4. The process moves to Step 8. ∑                                      (1) 
 ∑                                      (2) 
 ∑                                      (3) 
 tan                              (4)   
 
Step 8: All connected components having fewer than  pixels satisfying the de-
rived general equation are classified as a dot/dash line.  

Step 9: The process moves to Step 3, and the next i, j  pixel is scanned. 

In this algorithm, the processing time can effectively be reduced at the image scan-
ning stage as well as at the dot/dash line detection stage. We evaluate the algorithm 
on appropriate large scale document images in the next section. 
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4 Experiment 

4.1 Experimental Setup 

Experiments were conducted using 40 large scale document images of size 24803508 pixels and a resolution of 300dps. We evaluated both the performance of the 
method according to dot/dash line detection rate and processing time. Furthermore, 
the results were compared with the performance of a conventional HT method on the 
same document images. In the experiments, dot/dash line detection was conducted 
and then detected lines were deleted by converting them to white pixels to clarify the 
results. 

All of the experiments were conducted using a computer with an Intel® Core™ i7-
2600 3.4 GHz CPU. 

4.2 Experimental Results 

Figures 4, 5, 6, 7, and 8 illustrate the dot/dash line detection results from the new 
method. These images are extracted from the large scale images to show the dot/dash 
line detection results clearly. Figures 4, 5, and 6 are extracted from Japanese docu-
ment images, and Figs. 7 and 8 are extracted from English document images. In each 
figure, the upper image is the original image, and the lower image is the result after 
deleting detected dot/dash lines. Table 1 shows that the new method has almost the 
same dot/dash line detection rate as the conventional HT method. Furthermore, the 
new method has fewer false positives because it detects only dots and dashes. The HT 
approach sometimes detects character lines as dot/dash lines, which results in a higher 
false positive rate.    

Table 2 shows the average time for processing 40 large scale images. The HT ap-
proach takes more than 10 minutes for processing; in contrast, the new method takes 
only a few seconds.  

Overall, the experiments show that the new method can reduce both false positives 
and processing time while keeping the detection rate almost the same as that of the 
conventional method. 

Table 1. Detection Rate Comparison 

Method Number 
of 
dot/dash 
lines 

Detected 
lines 

Detection 
rate 

False  
positive 
rate 

Proposed  
 

300 291 97% 0% 

HT 300 297 99% 8% 
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The new approach is able to handle scanning noise in all but a very few cases. If 
there are five noise dots inside a defined ID at Step 5 of the algorithm and those are 
smaller than  pixels, then there is a small possibility that they will be classified 
as a dot/dash line since our method proposes a line model when five dots or dashes 
are almost on a line. However, it is not easy for noise to fulfill the necessary condi-
tions. We conducted experiments to evaluate dot/dash line detection in several noisy 
images and found that noise was not detected as dot/dashes. 

4.3 Application 

This new method has been applied in the development of a job-opening database at 
Mie University, Japan. In this database, students can search for desired company in-
formation by entering keywords that are matched against keywords extracted from 
job-opening document images. The images of the job announcements are stored in the 
database after an analysis of the document structure, which is determined by detecting 
lines on the sheets. The new method is used to detect dot/dash lines. 

5 Conclusions 

In this paper, we have introduced a fast object detection approach for use on large 
scale document images. Here, a dot/dash lines are considered as a target object to be 
detected. In the proposed method, the image is scanned on parallel vertical or horizon-
tal layers, and dot/dash line detection is conducted by analyzing only a local ID se-
lected from the image. Experiments were conducted to evaluate the new method using 
appropriate large scale images. The new method had almost the same dot/dash line 
detection rate as a well-known conventional method. Furthermore, the new method is 
much faster. 
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Abstract. In this article, we propose an original hybrid CRF-HMM
system for handwriting recognition. The main idea is to benefit from both
the CRF discriminative ability and the HMM modeling ability. The CRF
stage is devoted to the discrimination of low level frame representations,
while the HMM performs a lexicon-driven word recognition. Low level
frame representations are defined using n-gram codebooks and HOG
descriptors. The system is trained and tested on the public handwritten
word database RIMES.

1 Introduction

Handwriting Recognition (HWR) is a difficult problem due to the high vari-
ability of the data. Currently, the most widely used probabilistic models for
handwriting modeling are Hidden Markov Model (HMM) [12]. Multiple training
frameworks have been proposed to train these generative models. The original
generative framework relies on a Maximum Likelihood (ML) criterion [10], but
it has been shown that a discriminative framework based on a Maximum Mutual
Information (MMI) criterion [2] could lead to some improvement. Regardless of
the criterion, HMM rely on strong observation independence assumptions and
they perform poorly on high dimensional observations.

Conditional Random Fields (CRF) [16] became more and more popular mod-
els during the last decade for sequence modeling because they are discriminative
models and they do not rely on the same restrictive assumptions. The origi-
nal CRF framework [16] was proposed to process symbolic data in the field of
automatic language processing [6]. A major drawback concerning CRF is there
inability to process numerical data, they only process discrete values. When fac-
ing numerical data, they are generally introduced at a second stage of the model
in order to model the dependency between classes, while raw numerical data
are analyzed through a classification stage such as Artificial Neural Networks
(ANN) for example in the field of Automatic Speech Recognition (ASR) [8,18].

Despite their ability to deal with symbolic data, CRF models are limited
to label the observation sequence, i.e. to provide a label to each frame of the
sequence. As a consequence, the CRF is not able to integrate high level knowledge

c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 403–410, 2014.
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through the integration of lexicons and/or language models, as it is whith HMMs.
A second limitation of CRF, as opposed to HMMs, is the requirement of having
groundtruthed data at frame level in order to train the models, thus preventing
using embedded training afforded within the HMM framework.

In this paper, we propose a hybrid model that takes advantage of both gen-
erative and discriminative models in order to tackle Off-Line omni-writer hand-
writing recognition. The paper is organized as follows: first a review of the related
works is given in section 2, then we present the hybrid model devoted to hand-
writing modeling in section 3. Experimental setup and results reported using the
RIMES database [5] are presented in section 4.

2 Related Work

In the early nineties, hybrid architectures have been proposed to combine the
advantages of both discriminative and generative models. They were initially
designed for ASR by combining ANN (mostly Multi Layer Perceptron) with
HMM [15]. Such hybrid models have also been proposed for HWR [1].

In general, these models use the ANN discriminative stage to analyse and
classify local observations at frame level, whereas the HMM generative stage is
devoted to the integration of higher level information such as lexicon, language
models, . . . More precisely, the Gaussian Mixture Models (GMM) of the HMM
stage are substituted for local posteriors computed by the ANN stage.

Recently, the Bilateral Long Short Term Memory (BLSTM) neural networks
combined with a Connectionist Temporal Classification (CTC) stage [4] has
proven to be a powerful alternative hybrid structure for sequence classifica-
tion. Such a structure combines an efficient low level frame modeling stage with
the ability to model long time dependencies, with a discriminative classification
stage made of a simple logistic classifier. This structure has proven to perform
extremely well for ASR and HWR [3].

CRFk [7] were originally formulated for language processing tasks, due to
their interesting theoretical properties they have also been applied in fields in
which the ability to process numerical data is important. Hence, in order to
process this data the CRF model has been adapted to be applied to applications
fields such as Gesture Recognition (GR) [9] or ASR [11].

In the field of HWR, some attempts have been reported on using CRF models.
In [14], the authors introduce a CRF model to perform character sequences
recognition. However, this method is applied on an already segmented character
sequence consequently the segmentation is not modeled by the CRF stage. In
order to perform both segmentation and recognition of characters [17] introduced
a non linear HCRF model that consists in a Deep Neural Network (DNN) and a
CRF. The deep structure improves the discrimination at the low level while the
HCRF allows high level modeling.

Most of the previous works of the literature that have developed hybrid mod-
els introduce a discriminative stage that deals with the low level input observable
raw data. Neural Networks such as MLP, BLSTM or DNN are suitable models
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that provide higher level informative features (e.g class conditional probabilities)
to the second stage of the hybrid architecture. This second stage is most of the
time devoted to the contextual analysis of the hypothesis given by the first stage.
It is generally based on a generative model that can introduce constraints such
as lexicons and/or language models. In most cases, HMMs are implemented,
but dynamic programming stages, such as CTC, have proved to be a possible
alternative architecture.

HCRF have the specificity to be discriminative at both low and high level
stages. But they are limited to the task of sequence labelling they have been
trained for. Moreover, they cannot embed higher level information such as lexicon
or language model at decoding time.

The following section presents the proposed hybrid model.

3 A CRF-HMM Hybrid Approach

3.1 Overview of the Proposed Approach

The proposed CRF / HMM architecture has been chosen in order to take advan-
tage of both generative and discriminative frameworks. As described on Figure
1, the CRF stage performs the discrimination of the low level frame representa-
tion. It extracts the local posterior probabilities of every character at every time
using a forward-backward inference :

p(st = qk|O(n)) =
αt(j)βt(j)

∑N
i=1 αt(i)βt(i)

(1)

The forward αt(j) and backward variable βt(j) are defined as :

αt(j) = P (O1O2...Ot, qt = Si|λ) (2)

i.e the probability of the partial observation sequence, O1O2...Ot and state
Si at time t, given the model λ.

The backward variable βt(j) is defined as :

βt(j) = P (Ot+1Ot+2...OT |qt = Si, λ) (3)

i.e the probability of the partial observation sequence Ot+1Ot+2...OT , given
the state Si and the model λ.

In order to use the discriminative and highly contextual information of the
CRF, the GMM of the HMM stage are substituted for these local posteriors, as
it is traditionally the case for hybrid Neuro-HMM structures. Doing this, we can
use the HMM generative stage to analyze the information in context with the
possibility to introduce lexical and language constraints.

As CRFs are not able to cope well with numerical data, we propose an
unsupervised classification stage based on k-means devoted to the discretization
of the numerical Histograms of Oriented Gradient (HOG) feature vector (for
further details see section 3.3 and 4.1).
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Fig. 1. Hybrid structure CRF/HMM : Detail of every step of the whole hybrid structure
from feature extraction to word recognition for the word et

3.2 CRF-HMM Training

In order to train our hybrid CRF/HMM structure, we have to train both CRF
stage and the transition probabilities of the HMM stage. An important issue
when training a discriminative model, such as CRF, is that it requires a labelled
training set at the frame level, whereas the groundtruth of handwriting databases
is generally given at the word level. In order to get this frame level segmentation,
we need to use first a standard HMM model trained on the same learning dataset,
and used in a forced Viterbi alignment mode of the frame data on the word
character sequence groundtruth. Following this frame labelling stage, the CRF
is trained using Stochastic Gradient Descent (SGD). The convergence and the
overfit of the training is controlled on a validation dataset during training. The
HMM parameters (the conditional transition probabilities) are also computed
on the labelled dataset.

3.3 N-gram Data Representation

CRF have been originally proposed to deal with high dimensional discrete sym-
bolic features (words) for automatic language processing tasks. Therefore, HCRF
have been introduced to deal with real valued raw data, in a way similar to neural
networks or deep neural networks can do. Deep architectures have the ability to
learn high level features from the raw numerical data an unsupervised training,
whereas HCRFs introduce a fixed number of hidden states that act as sequen-
tially structured features optimized during training.

The drawback of these architectures is their very long training time and their
sensitivity to the initial conditions, which make them difficult to optimize with
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standard computational resources. The use of GPU is recommended to learn the
model under a reasonable time.

Taking advantage of the ability of CRFs to deal with very large discrete
features (several thousands in the case of language processing), which can even
be extended to n-gram features as a result we use n-gram feature codebooks. In a
way similar to the pre-training stage of a DNN, feature codebooks are trained in
an unsupervised manner, so as to minimize the mean square error of the training
set, using k-means, or LindeBuzoGray clustering for example.

This stage provides a high dimensional symbolic feature codebook represen-
tation of the data (see Fig. 2). In the experiments described below, we explore
the use of uni-gram, bi-gram and tri-gram feature codebooks.

4 Experiments

4.1 Discretization of Frame Level Numerical Features

An initial 70 continuous feature set has been designed, based on Histograms
of Oriented Gradient (HOG) [13] extracted from each frame using a 8-pixels
width sliding window. It is composed of 64 HOG features (8 directions from the
frame divided into 2 columns × 4 rows), and 6 high level information features:
the position of the vertical and horizontal centroids, the position of the highest
and lowest black pixels in the frame, the distance between them, and the num-
ber of black pixels in the frame. This continuous representation is fed to the
unsupervised clustering stage allowing the definition of a discrete codebook. In
our experiments, we explore the use of uni-gram, bi-gram and tri-gram code-
books extracted respectively from 1, 2 and 3 consecutive frames. Using KMeans
clustering, three different codebooks are generated, providing three discrete rep-
resentation levels of the input numerical data (see Fig. 2). After a validation
step, 1000, 2000 and 5000 clusters has been determined to be the optimal size
for 1, 2 and 3 consecutive frames.

Finally, the CRF is fed with uni-gram, bi-gram and tri-gram codebooks in
context:
– The unigram representation is composed of 9 cluster numbers (symbols): the

current symbol and its 4 previous and next neighbours (I)
– The bigram representation is composed of 3 cluster numbers (symbols) com-

puted from frames [t, t+ 1] and frames [t− 1, t] (II)
– The trigram representation is composed of 1 cluster numbers (symbols) com-

puted from frames [t− 1, t, t+ 1] (III)
We evaluated the following configurations: (I), (I+II) and (I+II+III)
(see Table 1).

4.2 Results and Discussion

The CRF training converged in 80 iterations of 135s each (average value). We
carried out the experiments on the public RIMES 2009 database of isolated
words [5]. The participants were given about 43000 words snippets to train their
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system, and a validation database of more than 7000 words to test them. The
unknown test dataset is composed of 7464 snippets. The system is evaluated on
this test dataset with a lexicon of 1600 entries. The results of our experiment
are summarized in Table 1. We provide the frame error rate (FER) in Top 1,
and the word error rate (WER) in Top 1, Top 2, Top 3 and Top 5 of the whole
system.

Table 1. Results on Rimes database

Features FER Top 1 WER Top 1 WER Top 2 WER Top3 WER Top5

HMM (standard HOG) 88.6 % 36 % 32 % 30 % 25 %

CRF-HMM (I) 53.8 % 38 % 33 % 29 % 21 %

CRF-HMM (I+II) 52.5 % 34 % 29% 25 % 18 %

CRF-HMM (I+II+III) 51.2 % 31 % 29% 23 % 18 %

BLSTM-HMM [4] 33.93 12.19% x x x

It can be seen that the multi-scale feature set improves the performance of
our system at frame and word level. We observe an enhancement of 1.6% at
frame level and 6% at word level between the set of features without multi-
scaling information (I) and the set of features adding the bi-grams and tri-grams
information. Figure 3 presents an example showing the ability of the model to
perform a frame level recognition, and to retrieve the correct character alignment
(shown in red) thanks to the HMM lexicon-driven decoding. Our best system
achieves 69% word recognition (Top 1) which is under the best performance
reported on this database. However, these are promising results if we look at
the potential improvements of the method. From our point of view, one of the
main limitation of the system is that the CRF is trained on a frame-labelled
dataset obtained from an initial Viterbi forced-alignment using an initial trained
HMM. This means that the CRF is trained to recognize characters, but not to

Fig. 2. Feature Extraction : Detail of every step during the feature extraction from the
initial image to the final feature vector with multi-scale information of the word et
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segment them. Some improvements are expected by introducing a lexicon-based
training procedure of the proposed hybrid architecture. As a result, recognition
and segmentation could be trained in conjunction. In addition, such scheme
would allow to avoid training an initial HMM.

Fig. 3. Posteriors probabilities given by the CRF on the word ”vos” and the alignment
provide by the HMM

In order to avoid similar wrong recognition events, we have to keep working on
our features, try to find a better representation of our data. A major uncertainty
we are faced with, is that we do not know if the segmentation performed by the
HMM is suitable for the CRF. This is why we intend to design a system in which
the CRF could impact the labelling processing of each frame during the learning
stage.In order to achieve this we could introduce a joint training of the whole
system CRF/HMM. After training the CRF a first time, the HMM produces
a new alignment on the learning database using the CRF outputs. This new
labelled database is used to retrain a new CRF. This two step learning method
is repeated until the system stops improving the word recognition rate. By using
this training method, the CRF outputs impact the global result of the system,
and are not a simple byproduct of it, therefore improving the recognition of the
CRF/HMM system.

Last but not least, in our CRF training the criterion is based on frame recog-
nition rate, they are not trained to perform word recognition directly. To infer
this information we have to add the word level information of the HMM stage
in the training criterion of the standard CRF.

5 Conclusion and Future Work

In this paper, we have proposed a hybrid CRF/HMM model to perform off-line
omni-writer handwriting recognition. We showed the architecture has promising
performance even if the recognition rate is still below the best performance of
the literature obtained on the same database.

Further improvements are expected by introducing embedded training of the
hybrid model allowing joint training of the CRF and the HMM stage to perform
both segmentation and character recognition, bypassing the need of an initial
labelling.

Another expected improvement lies in the optimization of the HMM structure
including character duration.



410 G. Bideault et al.

References

1. Bengio, Y., LeCun, Y., LeRec, Y.: Ann/hmm hybrid for on-line handwriting recog-
nition. Neural Computation 7(6), 1289–1303 (1995)

2. Gauvain, J., Lee, C.-H.: Maximum a posteriori estimation for multivariate gaussian
mixture observations of markov chains. In: Speech and Audio Processing, pp. 291–
298 (April 1994)

3. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.:
A novel connectionist system for unconstrained handwriting recognition. PAMI,
855–868 (May 2009)

4. Graves, A., Fernández, S., Liwicki, M., Bunke, H., Schmidhuber, J.: Unconstrained
online handwriting recognition with recurrent neural networks. In: NIPS (Decem-
ber 2007)

5. Grosicki, E., El Abed, H.: Icdar 2009 handwriting recognition competition. In:
ICDAR (2009)

6. Gunawardana, A., Mahajan, M., Acero, A., Platt, J.C.: Hidden conditionnal ran-
dom fields for phone classification. In: InterSpeech (2005)

7. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. In: ICML (June 2001)

8. Mohamed, A.-R., Dong, Y., Deng, L.: Investigation of full-sequence training of
deep belief networks for speech recognition. In: InterSpeech (2010)

9. Morency, L.-P., Quattoni, A., Darrell, T.: Latten-dynamic discriminative models
for continuous gesture recognition. In: CVPR (2007)

10. Nefian, A.V., Hayes III, M.H.: Maximum likelihood training of the embedded hmm
for face detection and recognition. Image Processing 1, 33–36 (2000)

11. Quattoni, A., Collins, M., Darrel, T.: Conditional random fields for object recog-
nition. In: NIPS (December 2005)

12. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2) (February 1989)

13. Rodriguez, J.A., Perronin, F.: Local gradient histogram features for word spotting
in unconstrained handwritten documents. In: ICFHR (2008)

14. Shetty, S., Srinivasan, H.: Handwritten word recognition using conditional random
fields. In: ICDAR, pp. 1098–1102 (September 2007)

15. Stephenson, T.A., Bourlard, H., Bengio, S., Morris, A.C.: Automatic speech recog-
nition using dynamic bayesian networks with both acoustic and articulatory vari-
ables. In: ICSLP, vol. 2, pp. 951–954 (October 2000)

16. Sutton, C., McCallum, A.: Introduction to conditional random fields for relational
learning. In: Introduction to Statistical Relational Learning, pp. 94–126 (2006)

17. Vinel, A., Do, T.M.T., Artieres, T.: Joint optimization of hidden conditional ran-
dom fields and non linear feature extraction. In: ICDAR, pp. 513–517 (September
2011)

18. Zweig, G., Nguyen, P.: A segmental crf approach to large vocabulary continuous
speech recognition. In: Automatic Speech Recognition & Understanding, pp. 152–
157 (December 2009)



Image and Video Retrieval



Exploring the Impact of Inter-query Variability
on the Performance of Retrieval Systems

Francesco Brughi1(B), Debora Gil1, Llorenç Badiella2, Eva Jove Casabella3,
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Abstract. This paper introduces a framework for evaluating the per-
formance of information retrieval systems. Current evaluation metrics
provide an average score that does not consider performance variability
across the query set. In this manner, conclusions lack of any statistical
significance, yielding poor inference to cases outside the query set and
possibly unfair comparisons. We propose to apply statistical methods
in order to obtain a more informative measure for problems in which
different query classes can be identified. In this context, we assess the
performance variability on two levels: overall variability across the whole
query set and specific query class-related variability. To this end, we esti-
mate confidence bands for precision-recall curves, and we apply ANOVA
in order to assess the significance of the performance across different
query classes.

1 Introduction

An effective performance measure is of essential importance in the development
of new learning algorithms. In the case of content-based image retrieval (CBIR),
the standard evaluation protocol consists of defining an image query set, comput-
ing a performance score for each single query, and finally aggregating - usually
averaging - them to obtain a global score. Whereas this is a very compact way to
represent and compare algorithm performances, it might not be fully informative
since the single global score does not take into account performance variability.
In order to estimate if there are significant differences in evaluation scores, a
usual practice is to compute confidence intervals for the achieved score. In the
context of classification problems, the usage of bootstrapping has been advo-
cated [1]. The application of this technique to precision-recall (PR) curves and
receiver operating characteristic (ROC) curve is discussed in [2] and [3], respec-
tively. Bootstrapping basically consists in repeatedly taking random samples,
with replacement, from the data points (images from the test sets, in our case).
c© Springer International Publishing Switzerland 2014
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Fig. 1. Examples of four different motive classes

From each sample, a curve will be generated. Alternatively, cross-validation can
be used to repeatedly split the dataset into a training and a test set. This pro-
duces a curve for each split. Once multiple curves are obtained from the data,
several methods exist in order to generate confidence bands for each curve [4].
The variability caught by this approach is entirely associated to the search space,
as it depends on the test dataset images. In the context of CBIR, aside from the
variability associated to the whole search space [2], there are specific variability
factors associated to each query. As a matter of fact, this variability is lost when
averaging the individual query scores in order to obtain an overall measure (such
as mean average precision).

Variability is particularly critical in the case of a very heterogeneous set of
queries, given that the algorithm performances is prone to vary significantly
across the query set. This is the case, for instance, of artistic motive retrieval
from ancient Greek pottery digital repositories [5], [6]. In this context, we have
a set of queries divided into several classes (some examples in Figure 1) which,
as discussed in [5], show high inter-class variability. The exploratory study pre-
sented in [5] also showed that the method that best performs on a certain query
class, might not be as effective on the others. In this context, evaluating a sys-
tem with an overall score which aggregates the individual query results does not
provide enough information to select the best solution. Since the interest is to
assess the robustness of the tested methods, this motivates to produce an evalu-
ation metrics capable to capture the method average performance as well as its
variability when applied to different query classes. In this direction, besides the
context of image processing, a large amount of work has been published in the
field of test diagnostics concerning the estimation of test scores - such as the area
under the receiver operating characteristic curve (AUC) - and their variability
when comparing different scores. Both non-parametric [7], [8] and parametric
approach, based on normality assumption [9], have been proposed in the liter-
ature. A common concern is the impossibility of these methods to analyse the
sources of variability and the factors influencing the performance of a system.

This paper presents a statistical framework that allows us to evaluate and
compare different CBIR methods, in terms of the factors that most influence
their performances. Our evaluation scheme is focused on studying the perfor-
mance variability associated to the different classes of query as well as allowing
for a class-wise comparison. Our comparison framework has been applied to 2
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standard methods and experiments show the influence of the query type in their
performances.

2 Assessment of Inter-query Variability

The common evaluation protocol for CBIR, inherited from information retrieval
[10], is based on the notions of relevant and non-relevant retrieved images for
a certain query. Given a test set and a set of query images, for each query a
CBIR system is asked to output a number of ranked list of the test set images,
according to a relevance measure of the images to the query. The quality of
the ranked lists is evaluated based on whether the first k retrieved images are
actually relevant or not for the given query. Whereas in binary classification
problems true positive rate (TPr) and false positive rate (FPr) are commonly
used, the standard evaluation metrics in CBIR are precision and recall (also
known as sensitivity) since they better deal with unbalanced class distributions,
which are typical in retrieval tasks [11]. Precision p(k) and recall r(k) for the
first k elements of the output ranked list are defined as

p(k) = R(k)/k and r(k) = R(k)/Nrel, (1)

where R(k) is the number of relevant documents contained in the top k ranked
elements and Nrel is the total number of relevant documents contained in the
test set. Precision measures how many of the retrieved documents are actually
relevant for the query, whereas recall estimates how many of the relevant docu-
ments have been retrieved. The plot given by precision and recall values obtained
for each query, called precision-recall (PR) curve, is commonly used to visually
assess the CBIR systems. For each query, the area under the PR curve, known as
average precision (AP), is the usual evaluation score of the single query retrieval,
and it is given by AP = 1

2

∑N
k=2[p(k) + p(k − 1)][r(k) − r(k − 1)]. The overall

system performance score is then computed by averaging the AP values obtained
for each query. This score is known as mean average precision (mAP), and it
is normally used to compare the performances of different algorithms, given a
query set and a test set.

As pointed out in Section 1, mAP comparisons might yield unfair results and
cannot detect the sources of error and variability in performance. The PR curves
and the corresponding APs will be used in the following for our study on CBIR
system evaluation. As introduced in Section 1, we are interested in estimating
the performance variability within query sets (or subsets such as classes) in order
to achieve a more informative evaluation of a retrieval system. Quantifying the
variability of the performance for different queries within a set can be useful to
assess the method robustness for that set. Such variability can be obtained by
exploring the differences on PR curves and APs across a given set. Variability of
PR curves will be assessed by computing confidence bands for curves sampled
over a given population group. Confidence bands will be computed using vertical
averaging (VA) [4]. VA consists of stacking precision values from the different
samples that correspond to the same recall values. Therefore, the precision has to
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be expressed directly as a function of the recall. This can be done by obtaining
k from (1) as k(r) = R−1(rNrel). It must be noted that R is monotonically
increasing within its domain, which guarantees the existence of its inverse R−1.
By substitution, we find p(r) = rNrel/R

−1(rNrel). In practice, p(r) is only
defined for a discrete set of recall values within [0, 1], which vary across different
queries. Therefore, we linearly interpolated the function in [0, 1] and we sampled
the recall with step 1/(NP − 1), where NP is the number of quantiles. For each
sampled quantile, the average defining the confidence band is computed from a
given a set of NQ query images, thus, NQ PR curves, as follows. Let pq

j = pq(rj)
be our precision observations for the j-th quantile, j = 1, . . . , NP , and the q-th
query image, q = 1, . . . , NQ. If μpj

, σpj
are, respectively, the unbiased sample

“vertical” mean and variance for the j-th quantile, then the interval for μpj
at

confidence level 1 − α is:
[
μpj

− t
NQ−1

α/2

σpj√
NQ

, μpj
+ t

NQ−1

α/2

σpj√
NQ

]
, (2)

where t
NQ−1

α/2 is the value of a t-Student distribution with NQ − 1 degrees of
freedom. Joining the confidence intervals computed for all the NP quantiles, we
obtain the confidence band of the overall curve.

Confidence bands already provide visual assessment for significance differ-
ence in performance for 2 CBIR systems. In order to numerically check whether
a method performance significantly differs across query classes, we will use anal-
ysis of variance (ANOVA) [12]. ANOVA is a statistical tool used to test data
when it consists of a quantitative response variable and one or more categorical
explanatory variables (or factors). In its simplest form, it allows to check the
hypothesis that all the groups (corresponding to the different factors) have the
same population mean. In our case, we want to study the different performances
between different query classes as well as between different methods. Therefore
our factors will be all possible method-query class pairs, whereas an intuitive
choice for the response variable is constituted by the AP. We will denote by
NC the number of query classes, and by nc the number of images belonging to
the c-th query class, being c = 1, . . . , NC . Assuming that we want to compare
2 methods, A and B, our factors are defined as Xc,m, where m is either A or
B. The response variable, i. e. the AP score for the q-th query and the method
m, will be represented by Y c,m. This way, for each ANOVA group - defined
by the factor Xc,m and the response variable Y c,m - we have nc observations
{Ŷ c,m

q : q ∈ Cc}, being Cc the set of all subscripts q that belong to the c-th class.
Then, we can express the ANOVA null hypothesis as

H0 : μY 1,A = . . . = μY NC,A = μY 1,B = . . . = μY NC,B , (3)

which states that the precision observations obtained for the NC query classes
and the 2 different methods come from distributions with the same mean.

The ANOVA outcome indicates whether it is possible to reject the null
hypothesis or not. Yet, what we are interested to know is, for instance, which is
the best performing method-class combination, or whether there is a significant
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difference between two specific performances. We can answer these questions by
applying pairwise comparison to the ANOVA outcome. In particular, we have
used Tukey’s honestly significant difference test (HSD) [13], which compares the
difference between each pair of factors with appropriate adjusting for multiple
testing. HSD is similar to a t-test, except that it takes into account the fact
that when there are multiple comparisons being made, the probability of mak-
ing a type I error increases [13]. Given a pair of factors, after estimating their
1 − α confidence intervals, the test considers them significantly different if their
intervals are disjoint, and not significantly different otherwise.

3 Experimental Set-Up

The goal of these experiments is to assess the impact of variability in performance
evaluation of retrieval systems using the methods described in Section 2. We
have chosen the well known Oxford 5k dataset1, which contains 5062 images of
building “landmarks” from different viewpoints. A landmark is intended to be
a particular of a building. The landmarks are divided into 11 classes. Ground
truth is provided as follows. For each class, 5 images are annotated as queries.
The remaining images are annotated as: good if the landmark is clearly visible,
ok if more than the 25% of the landmark is clearly visible or junk if less than
the 25% of the landmark is visible or distortions are present, absent when the
landmark does not appear. Given that the number of images for the different
classes is highly variable (considering together good and ok, it ranges from 7 to
220), we selected a subset with balanced number of elements per class, since we
do not want the dataset imbalance to affect our statistical analysis. Our subset
of the Oxford 5k was created as follows. We picked the 5 classes that have the
highest numbers of elements (Fig. 2), among the good and ok annotated images.
Using the minimum of these numbers, we randomly sampled each class, without
replacement, until obtaining 5 subclasses with the same number of images. Then,
we added 300 distractor images, randomly sampled among the ones labelled as
absent for the picked 5 classes. Our final balanced dataset consists of 475 images.

In order to carry out our experiments, we implemented two CBIR systems
that have been evaluated on the dataset obtained as previously described: a
feature-level matching system and a local feature-based bag-of-words pipeline.
Both systems rely on SIFT [14] for local feature extraction, which has been
extensively used in literature for retrieving images of the same objects from
different viewpoints [15], [16], [17]. For the sake of compactness, from now on we
will refer to the first method as SIFT and to second method as BOW.

Following [14], our SIFT system matches features according to minimum
Euclidean distance. Moreover, a query feature is matched to a dataset feature
only if their distance - multiplied by a threshold - is less than the distance
between the query and all the other database features. The obtained matching
are then refined by checking for spatial consistency using RANSAC [18]. The
implementation of our BOW system follows the works of [15] and [16]. We tried
1 http://www.robots.ox.ac.uk/∼vgg/data/oxbuildings/.

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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all souls christ church radcliffe camera hertford magdalen

Fig. 2. Examples from the 5 query classes we chose to build our dataset

different vocabulary sizes and we found that 50 was the best performer, thus
it has been used for the presented experiments. Moreover, 3% most and least
frequent visual words are clipped from the vocabulary and not used for image
representation and we applied the commonly used tf-idf weighting [15].

For each method, PR confidence bands were computed using all query classes
and NP = 10 quantiles, according to (2). ANOVA was computed for the APs
obtained for each query class and method, resulting in 5×2 = 10 ANOVA groups,
with 5 samples each. All statistics were computed at a significance α = 0.05.

4 Results and Discussion

Computing the traditional AP scores for the two methods under test, we obtain a
value of 0.25 for SIFT and 0.30 for BOW. This would suggest that BOW globally
outperforms SIFT on this test set. However, the confidence bands obtained for
the PR curves of the two methods (Fig. 3(a)) show that, in both cases, the
performances are notably variable and the bands consistently overlap. Therefore,
we cannot find statistical evidence of the difference between the performances,
and even though the AP score is favourable to BOW, it does not necessarily
imply that this method is to be preferred for every query class.

Further evidences are brought by the ANOVA multiple comparison exper-
iment, whose outcome is illustrated in Figure 3(b). The figure represents the
confidence intervals for the different method-query class factors. As a general
comment, SIFT seems more stable showing a slightly smaller variance across the
query set. Considering differences across queries, the test does not find a signifi-
cant difference between the methods for 4 out of 5 classes. The intervals for the
classes all souls and christ church are completely overlapped so it is not possible
to make considerations in favour of either one or the other method. Concerning
magdalen class, we cannot observe a significantly best performance, from a sta-
tistical point of view, even if SIFT seem to be slightly preferable. Visually, this
class does not particularly differ from all souls and christ church, sharing with
them many local recurring patterns. We suspect that spatial consistency played
an important role in discriminating this class from the others, and it determined
the success of SIFT method. On the other hand, BOW is significantly better
in dealing with hertford class, which is the best case for both methods. This
class collects images of a building whose structure is sensibly different from the
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Fig. 3. Results from the performed experiments

buildings of other classes. So, we might argue that the presence of very distin-
guishable features made the task easier for the algorithms, especially favouring
the generalization properties of the BOW approach. This consideration can be
extended to the radcliffe camera class. Even though the test outcome has no sta-
tistical significance we can practically observe an important difference between
the estimated mean values.

5 Conclusion

In this paper we present a study of a new evaluation framework for a better
understanding of the performance scores in image retrieval. This is particularly
useful when different query classes can be found in the dataset, such as in the
case of the Oxford 5k dataset, or in Greek pottery datasets. We proposed the
usage of statistical tools in order to estimate the performance variability, both
overall and with respect to the different query classes. This variability, usually
neglected by the traditional performance metrics (e. g. mAP score), can reflect
the method robustness and allows for a more informed comparison between
methods, especially when the query set is particularly heterogeneous.

A main concern for the proposed approach is the number of samples (indi-
viduals) for each ANOVA factor, which, being as low as in the current case, it
drops ANOVA discriminative power. This implies that less difference might be
detected, even though it was possible to observe important differences between
the performances for some query classes. This validates our variability study
and encourages searching for alternative statistical tools. In particular we plan
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to apply mixed model with random effects [19] to increase the discriminative
power. Such models are more flexible than ANOVA and allow to to identify
explanatory variables for complex designs.

Acknowledgments. Work supported by Spanish projects TIN2012-33116 and
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Abstract. The following problem is considered: Given a name or phrase spec-
ifying an object, collect images and videos from the internet possibly depicting
the object using a textual query on their name or annotation. A visual model
from the images is built and used to rank the videos by relevance to the object of
interest. Shot relevance is defined as the duration of the visibility of the object of
interest. The model is based on local image features. The relevant shot detection
builds on wide baseline stereo matching. The method is tested on 10 text phrases
corresponding to 10 landmarks. The pool of 100 videos collected querying You-
Tube with includes seven relevant videos for each landmark. The implementation
runs faster than real-time at 208 frames per second. Averaged over the set of
landmarks, at recall 0.95 the method has mean precision of 0.65, and the mean
Average Precision (mAP) of 0.92.

Keywords: Video re-ranking ·Object detection ·Wide-baseline stereo matching

1 Introduction

In this paper we address an application of acquiring videos containing a user specified
object. The user provides a text identification of the object of interest, possibly also an
image – for example from a Wikipedia page. The text description is used to query some
external image and video sharing sites. From the relevant images of additional views of
the object, a visual model is built. The model is then used to efficiently identify shots in
videos depicting the object of interest and consequently to re-rank the videos.

An example of the use of our solution is the following: During a holiday trip in Paris
we took a set of images from the Notre Dame cathedral from different points of view,
then we may want to search on YouTube videos related to the same landmark, in order
to learn more about it or getting tour guide videos with information about surrounding
venues. It would be annoying to check manually the retrieved videos for finding the
shots where the landmark appears in case it does so.

In the proposed method, we are not interested in indexing a fixed corpus of videos,
but we relay on text based search capabilities provided by, for example, You Tube.
Through the text search, possibly relevant, but likely noisy, a short-list of videos is
obtained. An efficient visual content based matching is applied to verify and re-rank the
initial short-list. The paper focuses on the object model building from a set of images
and on efficient online detection of the object in videos. The method is summarized in
Fig. 1.
c© Springer International Publishing Switzerland 2014

A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 421–430, 2014.
DOI: 10.1007/978-3-319-11758-4 46



422 J. Aldana-Iuit et al.

Fig. 1. The workflow of relevant shot detection. The part below the dashed red line is automatic
and the focus of the paper, the text-based search has been done manually.

The applicability of the proposed system ranges from individual user searches for
relevant videos to systematic augmentation of Wikipedia (or similar) pages with rele-
vant video documents.

Relevant work. Visual content based searching of videos and large image collection has
become very popular with Video Google [16] by Sivic and Zisserman. In this work, as
well as in other image retrieval publications [6,11,14], it is assumed that the video or
image collection is going to be sought repeatedly for different query objects. Therefore
an offline stage of indexing of the videos or image collection takes place. On the con-
trary, we assume that each video is unlikely to be needed multiple times. In fact, most
of the videos will never be accessed, and therefore we leave the initial retrieval of the
short list on text search facilities of the video sharing site, YouTube in our experiments.

The concept of matching multiple views of a single object to obtain a visual model
with stable local features has been used in a number of applications. In query expan-
sion [4], a generative model of the object is built from a small number of geometrically
consistent retrieved result images. In [17], the database features are reduced by match-
ing the images within the dataset, resulting in more compact representation without
hurting the search performance.

Text-based search works as mechanism for collecting input data, likewise [1]. In
video analysis, features that are repeatedly detected over a number of consecutive frames
are reliable [15] and are kept for further computation.
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2 The Method

The paper focuses on two aspects of the problem: the object model building and efficient
online detection of the object in videos.

The object model is built from a set of pre-filtered, but still possibly contaminated,
images of an object of interest. We take such a collection of images as an input and
call it the pool of images. To pre-filter the images obtained from image sharing site
by a text query, user provided images or Wikipedia images are used. All images are
used jointly to build a representation of the object based on local features. Detailed
description follows in Sec. 2.1.

Another input to our method is a short-list of videos, retrieved by a text query to
You Tube. Videos from the short-list are represented as sequences of shots, each shot is
represented by its key frames. A relevance of a key-frame to the object is given by the
number of geometrically consistent image features found after a wide-baseline stereo
matching to the object model. The videos are finally ranked w.r.t. the number of relevant
frames. Detailed description of the object detection is given in Sec. 2.3.

2.1 Object Model

In this section, the process of the object model construction is described. The model is
a collection of local affine covariant image features localized in an image coordinate
frame. Rather than using a single image to obtain the model, we use a small set of
images (sets of 7 images were used in our experiments). Using multiple images provides
richer description, as some parts of the object may not be well represented in a single
image due to noise, (self-)occlusion, etc.

Local features. Local affine covariant features are extracted in images from the pool of
images, using Hessian Affine detector [10]. The image features are described with the
SIFT [8] descriptor.

Model coordinate system. We identify the model coordinate system with one of the
images. The Iconoid shift [18] is applied to select the reference image, which is used to
define the coordinate system of the model. The Iconoid shift is seeded from each image
in turn and the image selected as a mode the most often is selected as the reference
image. Unrelated images are filtered out from the pool of images preserving the top K
images from the mode support scored by the Homography Overlap Distance (HOD)
defined in [18] only. We used K = 7 in our experiments. Fig. 2 (a) shows three pools
of images, the green rectangles indicates the reference images.

Features from other images are back-projected to the model based on image-to-
image homography robustly estimated [3] between the images and the reference image.

Feature selection. In the local feature matching state, the descriptors of the features are
compared. Pairs of features (one feature from each image) with similar descriptors are
considered as tentative correspondences. It has been suggested in [8] that a distance
between descriptor of the same surface patch in different images also depends on the
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(a) (b)

Fig. 2. (a) Three examples of set of images used for building the object models, each set is known
as the Pool of images. (b) Local features found in multiple images in the image pool, called salient
features. The color scale indicates the number of images where the feature were recognized, and
the ellipses indicate the shape of the feature.

appearance of the patch itself, therefore it is better to use the ratio of the distance to the
nearest and the second nearest descriptor in the other image.

Since our model is a collection of back-projected features from multiple images,
one physical patch can be represented by a number of descriptors. If the distance ratio
approach [8] is adopted, the distance ratio can be close to 1 even for a good tentative
correspondence, because the first and second nearest descriptor may belong to two dif-
ferent instances of the same physical scene patch. We compare two approaches avoiding
this phenomenon.

The first approach is based on a recent idea from [12], called 1st Geometrical
Inconsistent strategy. Some detectors, especially those using synthetic image warping
to improve feature detection, have multiple detections of very similar features. To avoid
dropping correct tentative correspondences, authors of [12] suggest to compute the dis-
tance ratio to the nearest descriptor that comes from feature that is sufficiently far away
(i.e. geometrically inconsistent) from the tentatively corresponding one.

The second approach tries to reduce the number of features in the model by joint
clustering in the SIFT and image domain. For each feature back-projected into the
model, 130D SIFT-XY descriptor is created by concatenating the SIFT descriptor with
the feature coordinates (multiplied by a normalizing constant). The features are clus-
tered by applying DBSCAN [5] algorithm to the SIFT-XY descriptors. In order to drop
randomly detected features that are not repeatable, features from singleton clusters are
dropped. An average feature (in SIFT and XY) is kept in the model for each of the fea-
ture clusters. The average model features for different landmarks are shown in Fig. 2 (b).
A similar approach for computing mid-level features is proposed in [7]. The full algo-
rithm to compute the set of salient features is summarized in Alg. 1.

2.2 Video Representation

The set of videos collected from the text retrieval are represented by a subset of
keyframes (Intra-coded frames or I-frames) concerning the CODEC. Local affine covari-
ant features are detected and described on every selected key-frame. This stage avoids
the wide-baseline stereo matching over all frames of the video, rather than that, we
match the object model against up to 1% of the total number of frames. For shot bound-
ary detection, we apply a simple detector [2], that thresholds the sum of pixel-wise
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Algorithm 1. Salient features
Require: Pool of images (P ), reference image (Iref )
Ensure: Set of salient features (SF)

N ← |P |
// Detect and describe image features
for i = 1 to N do

fi ← hessian affine detection(pi)
di ← SIFT description(fi)

end for
D = {d1, ..., dN}
// Features in images of the pool without the reference
C ← D \ {dref }
ci ∈ C, i = 1, ..., N − 1
// Set of reprojected features (RF)
RF← {fref}
for j = 1 to N − 1 do

Hj ← wbs match(dref , cj)
RF← {RF ∪ reproject features(Hj , cj)}

end for
CL← DBSCAN clustering(RF)
// Salient features are described by average SIFT
SF← average SIFT(CL, RF)
return SF

absolute differences. To reduce the number of selected key-frames, we drop key-frames
close to the shot boundary, as these are typically corrupted by the shot transition.

2.3 Object Detection in Video Frames

A shot is regarded as relevant if the object or landmark appears on at least one of its
selected frames. The object recognition is addressed as a Wide-Baseline Stereo Match-
ing problem, as proposed in e.g. [9]. To efficiently detect the nearest neighbor SIFT
descriptors, approximate nearest neighbor search is used [13]. Global geometric model
and supporting tentative correspondences are robustly estimated using LO-RANSAC
[3]. The geometric model of homography or affine transformation are compared.

The relevance of the video the object model is given by the number of relevant
frames that appear in the video.

3 The Dataset

The relevant shot detection algorithm was applied to a dataset of images and videos col-
lected from 10 different queries: Petra city in Jordan, Notre Dame cathedral in France,
Taj Mahal palace in India, The Mona Lisa painting in France, The Merida’s Monu-
mento a la Patria in Mexico, Christ The Redeemer in Brazil, the Coca-Cola logo, the
Lola perfume container, Starbucks logo and Virgin Mary painting.
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The image pools contain 7 images (top 7 images in the mode support ranked by the
HOD) per query object with a fixed width of 640 pixels and keeping the aspect ratio.
All images were stored in JPEG format. The number of local affine covariant features
detected on the images are presented on Tab. 1.

The video set contains 100 videos downloaded from You Tube. Every object of
interest has 10 videos, 7 of them actually depict the object and 3 of them works as
confusers (videos were retrieved by querying You-Tube with the same text search but
the object never appears on scene).

The videos have an average duration of 3 minutes, the frame rate is fixed 25 fps, the
size of the frames is 640x480 pixels. All videos are stored with the codec H.264, which
inserts a keyframe (Intra-coded picture) every 60 frames. Notice that only keyframes
are processed.

4 Experiments

4.1 Object Model Construction

The effectiveness of the object representation is tested in the experiments comparing
the results using 2 types of representation. The first one is called Union which is the set
of reprojected features on the reference image with no filtering stage. The second one
is the set of salient features (described in Sec. 2.1) and it is called Salient.

Tab. 1 contains the number of features in the two object representations and the
reference image itself. The average size of the salient representation is 3% of the whole
features detected on the pool of images (union) and 18% of the features detected on
the reference image. The significant reduction in the cardinality of the feature sets is
reflected in memory allocation and the complexity of matching task. The average time
for building a salient model is 4.1 sec. for a single image pool. Construction time of
Union models (1.27 sec) is obtained subtracting the mean-shift clustering step. The
percentages of processing time for each step of the model computation are shown in
Fig. 5.

4.2 Comparison of Different Approaches

In this section we compare different combination of choices of model construction
(Union vs. Salient), tentative correspondence establishment (2NN vs. 1GI) and global
geometry model type used in RANSAC (homography vs. affine transformation).

For this task, one video per landmark (6 videos) were annotated manually fixing the
subsampling factor s = 50 (0.5fps). The Fig. 4.2 (a) shows the recall/precision curves
obtained from 6 different method combinations. A number of observation can be made
from the plot: (1) better matching results are obtained with more restrictive affine trans-
formation than with full planar homography model; (2) the union representation of the
object is slightly more accurate than the salient representation; (3) the 1GI brings almost
no advantage for the salient model since similar features have been locally unified in
the clustering step.

Two single-frame examples of the matching results with the object model are shown
in Fig. 4. Figure 4 (a) corresponds to a frame with the object of interest, the system
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Table 1. The number of features in the object representations is shown: Ref. image column for
features on the reference images, Union column for features detected in the whole pool of images
and Salient column for selected features only. In addition, Kendall tau rank correlation coeffi-
cients between the ground truth video ranked list and both retrieved ranked lists, regarding the
Text search list and the Re-ranked list by relevance assessment, are shown as Ranking Quality.
Best ranked lists are highlighted with bold font.

Query object
Number of features Ranking Quality

Ref. image Union Salient Text Search Re-ranked

Taj Mahal 1368 11363 585 0.78 0.47
Petra city 3484 28109 1002 0.60 0.78

Notre Dame 5981 30611 2962 0.56 0.60
Monumento Patria 2764 14758 739 0.47 0.60

Mona Lisa 2303 17243 2449 0.47 0.73
Christ Reedemer 3771 10965 477 0.51 0.69

Coca Cola 834 8466 315 0.51 0.51
Starbucks 1408 12345 1017 0.33 0.56

Virgin Mary 6594 66675 5589 0.69 0.73
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Fig. 3. (a) Recall/Precision curves on training data for the “Union of feature sets” and “the set of
salient features”. The mean processing time per frame is shown in the legend. (b) Recall/Precision
curves for the “Salient, AF, 1GI” method applied to the 10 landmarks.

found 39 correct feature matches with an inlier ratio of 40%. The Fig. 4 (b) shows the
result of matching a frame without the object, the system found 6 inliers with a ratio of
11%, even though all matches are actually incorrect. The number of inliers of matched
features is significantly higher when the object is present in the frame.

The best performance concerns to the Union model, AF geometric model for
RANSAC and 1GI as matching strategy. The later configuration has the second short-
est mean processing time per frame. The fastest results comes from the Salient model,
AF and 2NN, the counter part is a 8% lower precision. The mean processing time per
frame in this configuration is 83.1 sec, see Fig. 5 for percentages of time per processing
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(a) (b)

Fig. 4. Matching of the object model against a frame containing the object (a) and a frame where
the object does not appear (b)

stage. The processing time for 1GI and 2NN are not significantly different because of
the previous SIFT-XY filtering that suppresses multiple instances of the same feature
which hurts the 2NN matching strategy.

For verification, an additional set of experiments were performed with the parameter
setting: AF and 1GI and the Union features representation. Based on the recall/precision
curve for the training stage, we fixed the detection threshold to 6 inliers which corre-
sponds to a recall of 0.96 and precision of 0.93. The relevant frames are detected with
an average recall of 0.88 and average precision of 0.94 over 20 prelabeled videos. The
mean processing time per frame is 0.49 secs. The precision and recall fall 0.05 and 0.02,
respectively, from training to testing stage. In application such as determining whether
the object is present in the video sequence is enough to tune the system for a high
(> 95%) recall even that the precision is lower than 30% − 20%, since with only one
frame detected correctly, the whole video would be classified as positive.

Relevance-Shot and Re-ranking

In the shot-level detection, salient models and video representation are used for ranking
the list of retrieved videos. For the experiments with short-lists of 10 videos and 30%
of confusers for each landmark, we obtained for recall 1, a precision of 1. Then, we
propose to measure the improvement of the re-ranking method over the text search
ranked lists by means of the Kendall tau rank correlation coefficients wrt the ground
truth of video ranked list by relevant content. The re-ranking method improved the
quality of the retrieved ranked lists in 90% of the landmarks (see Table 1).

A set of more challenging experiments were done over all landmarks with short-
list of 60 videos and 88% of confusers. The performance of the algorithm on precision
and recall is shown in the graphs of Fig. 4.2 (b). Querying the salient model at recall
0.95, the average precision is 0.67 and the mean Average-Precision (mAP) is 0.92. For
the Union model, at recall 0.95, the average precision is 0.64 and the mAP is 0.9. In
our experiments, the landmark Christ, The redeemer (Cristo Redentor in Portuguese)
gets the lowest performance because the image features depends in the light conditions
since the statue has the same color everywhere so the shape of the features is strongly
dependent of shadows and shadings. Besides, most of the related videos capture the
object under extreme point of view (from helicopter) hard to recognize even for the
human eye.

The frame selection (video subsampling) is performed in 454.5 fps, and the percent-
age of time spent in each step of this task is shown in Fig. 5.
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Once the object representation is built and the videos are subsampled, the relevance
shot detection is done on 208 fps (faster than real-time). The matching task for build-
ing the model is the most expensive stage in time and computation resources but it is
independent on the length of the short-list and frame selection, moreover the geometric
relationship between views (pool of images) are computed during the Iconoid shifting
for finding the reference image.

Fig. 5. The fraction of the time spent in the main steps of the relevance-shot detection (in %):
building the object representation (top), the frame selection (middle) and the detection task
(bottom)

5 Conclusions

In the paper, we have considered the following problem. Given a set of images that
includes images of an object of interest and possibly outliers and a pool of videos, re-
rank the videos by relevance to the object of interest. Further, the videos are augmented
with a list of shots depicting the object of interest. The proposed approach first builds
a visual model of the object of interest based on local image features. The relevant
shot detection builds on wide baseline stereo matching. Shot relevance is defined as the
recording time spent capturing the object of interest reflected in the number of frames
depicting it. A number of algorithmic options have been experimentally evaluated. The
experiments were carried out on a set of 100 videos collected querying You-Tube with
10 different text phrases.

The best performing method builds the model as a union of features from all exam-
ple images and constructed the tentative correspondences using the 1st geometrically
inconsistent rule. Averaged over the 10 landmarks, mAP is 0.92 querying the object
model based on salient features that turns out to outperforms the union model by 2% on
mAP. The implementation runs faster than real-time at 208 fps.
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Abstract. The delineation of impact craters is performed with a novel
algorithm working in polar coordinates. The intensity transitions are
determined along radial lines intersecting the center of the crater (Edge
Map) being the optimal path, which corresponds to the minimization
of an energy functional, computed by Dynamic Programming. The app-
roach is tested on 8 HiRISE scenes on Mars, achieving a performance of
95 % of correct delineations.

Keywords: Crater rim · Edge map · Dynamic Programming · Mars

1 Introduction

The detection of impact craters on remotely sensed images from planetary sur-
faces is being done with an increasing number of automated approaches. A consis-
tent evolution is observed in the last decade [1–9] with significant improvements
that permit their use in the creation of crater catalogues [10–12]. Neverthe-
less, all these detections are represented in a simplified manner: each crater is
described by a dimension (average diameter) and a location (coordinates of its
centre), that is, by a perfect circular shape. The assimitries and irregularities
of contours are thus not taken into account. Although these features are not
fundamental for establishing surface chronologies [13], their availability at large
scale is crucial to a better understanding of the resurfacing history and of the
past climates on Mars [14]. The automated delineation of impact craters has
only been done so far on two approaches: one based on a judicious sequence to
find and link the crater edges in polar coordinates [15], the other based on the
watershed transform and other mathematical morphology operators [16]. The
initial results achieved a very good degree of success, but faced some difficulties
when the datasets were enlarged, being not able to estimate a contour in a large
amount of the samples and being too sensitive to local textural variations. Since
there was an evident degradation of the performance in the most difficult exam-
ples, there still exists enough space for improvements. Therefore, we propose a
novel algorithm to overcome those difficulties which is built into two main steps:
edge enhancement in polar coordinates and crater delineation.
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 433–440, 2014.
DOI: 10.1007/978-3-319-11758-4 47
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2 Algorithm

2.1 Overview

We assume that, to estimate the crater boundary contour, we know the location
and radius of each crater. Even though we know this information in advance,
crater delineation is a chalenging task since crater images often present low
contrast between the crater rim and surrounding terrains making the detection
of the rim very subtle.

The first step of the algorithm relies on intensity variation and tries to detect
the intensity changes associated with the crater rim, while the second step tries
to link the edges using geometric information.

Unfortunately, simple edge detection and linking approaches fail in this kind
of images. Edge detection algorithms provide unreliable edges most of them
associated to the terrain irregularities. To circumvent this difficulty, this paper
defines a continuous edge map, e(x) ∈ [0, 1], which measures the amount of
directional intensity variation in the vicinity of each point x. A value e(x) = 0 is
assigned to a pixel x if there is strong intensity variation in the vicinity of x in
a direction orthogonal to the crater contour. On the contrary, a value e(x) = 1
is assigned if the image is constant in such direction. In the second step, we
compute a closed contour, x(s), that minimizes an energy functional

E =
∫
e(x(s))ds+ Eint(x) , (1)

similar to the one used in the snake algorithm [17,18]; Eint(x) denotes the inter-
nal energy which measures deviations of the crater contour, x(s), with respect
to a circle and s denotes the arc length parameter of the curve.

It should be stressed that both operations become simpler and more effective
if the image is converted from Cartesian to polar coordinates. This conversion
is performed according to the procedure presented in [15].

2.2 Edge Map

We wish to define an edge map in polar coordinates e(r, θ). This map should
assign a low value to points which are likely to be edges and high values to points
which are not. We will assume that edges are associated to intensity transitions
along radial lines intersecting the crater center, c (θ constant).

The radial gradient is defined as

g(r, θ) = |P (r, θ) ∗ h(r)| , (2)

where |.| is the absolute value, P (r, θ) is the input image in polar coordinates
(r, θ), ∗ denotes the convolution operation along the columns of P and h(r) is
the impulse response of a highpass filter, defined by h(r) = −u(r−T ) + 2u(r) −
u(r+T ) where u(r) is the unit step function. This convolution can be computed
extremely fast if we compute the integral image along the columns of P [20].
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After computing the gradient, the edge map is obtained using the logistic
function

ε(r, θ) =
2

1 + esg(r,θ)
, (3)

which is often used to map the gradient intensity g ∈ [0,+∞[ into an edge
confidence ε ∈ [0, 1[; s is a scale parameter. Since we have a good estimation of
the radius of the crater, R, we will restrict r to an interval [rmin, rmax] centered
on R.

Fig. 1 shows the conversion from Cartesian to polar coordinates, assuming
that rmin = 0.8R, rmax = 1.2R, and the corresponding edge map (right). The
first and last rows of the edge map are padded with high intensity values since
the highpass filtering results are unreliable.

Fig. 1. Image transformation: original image and sampling points (left), polar image
(centre) and edge map (right)

2.3 Crater Delineation

The second step concerns crater delineation. We will assume that the edge map,
ε, has M lines and N columns. The crater boundary is characterized by a
sequence of row indices r = (r1, r2, . . . , rN ) such that rt ∈ {1, . . . ,M}. These
indices represent the crater radius for each direction. If the crater boundary was
a circle centered at c, then the index sequence would be constant. In practice,
the radius rt changes slowly and must obey the boundary condition r1 = rN = k
(k unknown), since it represents a closed contour. Fig. 2 shows the edge map
and the estimated countour in polar and Cartesian coordinates.

The contour sequence, r, is chosen to minimize an energy functional

E(r) = ε(1, r1 = k) +
N∑

p=2

ε(p, rp) + c(rp−1, rp) , (4)

where ε(p, rp) is the edge map and c(rp−1, rp) denotes the cost associated to
the transition from rp−1 to rp. For the moment, we assume that r1 is known
(r1 = k). In addition, we also assume that |rp − rp−1| ≤ 1 to enforce smooth
transitions and the transition cost is defined by
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Fig. 2. Contour delineation: original image (left), edgemap and optimal contour (cen-
tre) and transformed contour (right)

c(rp−1, rp) =

⎧
⎨

⎩

0 if |rp − rp−1| = 0
α if |rp − rp−1| = 1
+∞ otherwise

. (5)

The minimization of E(r) under the constraint r1 = rN = k can be solved by
Dynamic Programming [21,22]. Dynamic Programming minimizes E(r) in two
steps. The first step computes the optimal costs to go from column 1 and line k
to column t and line j, Et(j),

Et(j) = min
r2,...,rt:rt=j

[

ε(1, r1 = k) +
t∑

p=2

ε(p, rp) + c(rp−1, rp)

]

. (6)

The optimal costs are computed by a forward recursion

Et(j) = ε(t, j) + min
i

[Et−1(i) + c(i, j)] . (7)

Since we want to retrieve the optimal path, it is important to store which
value of i minimizes [Et−1(i) + c(i, j)] in (7). This information can be stored
using a set of a pointers

ψt(j) = arg min
i

[Et−1(i) + c(i, j)] . (8)

After computing the optimal costs Et(j), t = 1, . . . , N, j = 1, . . . ,M , we know
what is the minimum energy associated to an optimal path r∗

1 , . . . , r
∗
N ending

in r∗
N = k. The optimal path r∗ = (r∗

1 , r
∗
2 , . . . , r

∗
N ) such that r∗

N = k, can be
obtained by backtracking

r∗
t−1 = ψt(r∗

t ) t = N, . . . , 2 . (9)

The Dynamic Programming algorithm under the restriction r1 = rN = k is
summarized in Table 1. It provides the optimal path assuming that we know the
boundary conditions k. Since the optimal k is unknown we repeat this procedure
for all possible values of k ∈ {1, . . . ,M} and choose the one which minimizes the
energy.
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Table 1. Dynamic Programming algorithm with boundary conditions r1 = rN = k

Forward recursion: computation of the optimal energies

E1(j) =

{
ε(1, k) if j = k
+∞ otherwise

Et(j) = ε(t, j) + min
i

[Et−1(i) + c(i, j)] , t = 2, . . . , N

ψt(j) = arg min
i

[Et−1(i) + c(i, j)] , t = 2, . . . , N

Backward recursion: computation of the optimal contour

r∗
N = k

r∗
t−1 = ψt(r

∗
t ) t = N, . . . , 2 .

3 Experimental Results

We tested the algorithm on the highest resolution images presently available from
the surface of Mars, that is, those captured by the HiRISE camera onboard the
Mars Reconnaisance Orbiter in the two commonly provided resolutions, 0.25
and 0.50 m/pixel, in a map projected product. Thus, we selected regions in both
hemispheres, with noticeable differences in the amount of craters, also exhibit-
ing a wide variety of erosions rates, from pristine craters (with sharp rims) to
degraded structures (with irregular, faint or missing parts of the rim), and also
some examples with craters hardly noticeable. The testing datasets are consti-
tuted by 8 HiRISE images and a total of 805 craters depicted from them. The
following parameters were heuristically chosen: N = 61, M = 360, T = 6 and
α = 0.02.

We evaluate the performance of the algorithm through the comparison of
the delineated contour with a manually created contour (ground-truth contour)
for each and every crater of the dataset. Each crater was manually delineated,
also estimating a contour in regions where the crater rim was absent, that is,
creating always one single closed contour for each impact structure. The distor-
tion between those pairs of contours was measured by the percentage of correct
points (cp), small errors (se) and gross errors (ge), as defined in [15,16].

Each crater of the 8 images was individually analysed and a closed contour
estimated by the current algorithm (’Dynamic Programming’) and by one of the
previous approaches (’Morphologic’) [16]. In many pratical applications, like in
this crater delineation problem, small errors are acceptable, so we focus mainly
our attention on gross errors (those whose distance between contours is superior
to 0.05 of the crater diameter).

The average performances obtained by both methods are shown in Table 2.
The Dynamic Programming algorithm performs very well and leads to an overall
error of only 5% of incorrect delineations. In comparison, the ’Morphologic’
algorithm obtained a lower performance with an overall error of 10.5%.
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Table 2. Average performances (%) of automated crater delineation (cp-correct points,
ge-gross errors, se-small errors)

Dataset Craters Dyn. Prog. Morphologic
(#) cp se ge cp se ge

8 images 805 60.1 34.9 5.0 45.8 43.7 10.5

Fig. 3. Successful crater delineation examples (the white scale bars correspond to 50m)
[image credits: NASA/JPL/University of Arizona]

The images of positive and negative examples, provided respectively in Fig. 3
and Fig. 4, are also a comprehensive illustration of the performances achieved
by the algorithm. The proposed algorithm manages to delineate very difficult
examples with high texture and missing rims. The number of failures is small
and usually associated to strong geometric deformations of the crater rim in
which the circular shape can no longer be assumed. These cases are very rare.
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Fig. 4. Incorrect crater delineation examples (the white scale bars correspond to 50m)
[image credits: NASA/JPL/University of Arizona]

4 Conclusions

In this study we presented a novel algorithm to delineate the boundary of impact
craters previously detected on the surface of Mars. The proposed algorithm
achieves very high performances (average error of 5%) in a diversified dataset of
805 craters and clearly outperformed the best available algorithm.

We consider that the exploitation of the a priori knowledge about the prob-
lem, like the circular geometry and image intensity patterns of the craters, and its
integration into an optimization procedure, are the key features for the robust-
ness and high success achieved by this novel algorithm. In particular, the geom-
etry of the craters permits to adequately define a region of interest around its
rim and hugely constrain the space of search for edges of interest. Moreover, the
improved detection of the crater edges synthesized on the Edge Map and the
detection of the optimal path (the crater contour) with the Dynamic Program-
ming algorithm are also strong points. Finally, converting and processing the
crater images into polar coordinates also greatly simplifies the processing and
turns it into an additional advantage of the approach.
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References

1. Michael, G.: Coordinate registration by automated crater recognition. Planetary
and Space Science 51, 563–568 (2003)

2. Bue, B.D., Stepinski, T.F.: Machine detection of Martian impact craters from
digital topography data. IEEE Trans. Geoscience & Remote Sensing 45, 265–274
(2007)

3. Bandeira, L.P.C., Saraiva, J., Pina, P.: Development of a methodology for auto-
mated crater detection on planetary images. In: Mart́ı, J., Bened́ı, J.M., Mendonça,
A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 193–200. Springer, Hei-
delberg (2007)

4. Bandeira, L., Saraiva, J., Pina, P.: Impact crater recognition on Mars based on
a probability volume created by template matching. IEEE Trans. Geoscience &
Remote Sensing 45, 4008–4015 (2007)



440 J.S. Marques and P. Pina

5. Martins, R., Pina, P., Marques, J.S., Silveira, M.: Crater detection by a boosting
approach. IEEE Geoscience and Remote Sensing Letters 6, 127–131 (2009)

6. Urbach, E.R., Stepinski, T.F.: Automatic detection of sub-km craters in high res-
olution planetary images. Planetary and Space Science 57, 880–887 (2009)

7. Bandeira, L., Ding, W., Stepinski, T.F.: Detection of sub-kilometer craters in high
resolution planetary images using shape and texture features. Advances in Space
Research 49, 64–74 (2012)

8. Vijayan, S., Vani, K., Sanjeevi, S.: Crater detection, classification and contextual
information extraction in lunar images using a novel algorithm. Icarus 226, 798–
815 (2013)

9. Jin, S., Zhang, T.: Automatic detection of impact craters on Mars using a modified
adaboosting method. Planetary and Space Science (in press, 2014)
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Abstract. A system for generating information for an urban inventory
by analysing remotely sensed or ground based sensed images is described.
The urban inventory contains information about all land parcels in an
urban area and the information is stored in a GIS database. The analysis
system uses the semi-hierarchical multiresolution MCV image labeling
algorithm and ensemble SVM classifiers to detect building footprints,
trees and other urban land cover classes. The system has high accuracy
for building footprint and tree detection on the data on which it has been
tested.

1 Introduction

Urban form assessment through the automatic processing of remotely sensed
data has wide application in areas such as cartography, urban planning, mili-
tary intelligence, disaster (e.g. flood or bushfire) management and environmental
modelling. Despite the value of this information, automated extraction of reli-
able urban form remains an extremely challenging field of research. Urban form
assessment involves the determination of building footprints, identification of
features such as trees, roads parks and so on. It may also involve 3-D building
reconstruction and building material determination.

The ability to determine building footprints requires the ability to distin-
guish building objects from non-building objects such as trees, natural ground
and artificial ground. The problem is a special case of the general problem of
land cover classification. Data for such problems can be in the form of multispec-
tral images obtained by satellite, aerial photography images, light detection and
ranging (lidar) images, synthetic aperture radar (SAR) images or a combination
of two or more of these. Lidar images can be in the form of point clouds derived
from the processing of single laser echoes (first echo or last echo), multiple echoes
(ME) images or full waveform (FW) images.

There are at least four general approaches to building detection. These are
the pixel-based approach, the structural approach, the object-based approach
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 441–449, 2014.
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and the stochastic geometry approach. In the pixel-based approach features are
extracted for each pixel in a remotely sensed image or a collection of georefer-
enced multisource remote sensing data and the feature vector is classified by a
classifier such as an artificial neural network (ANN), a support vector machine
(SVM) or a decision tree classifier (e.g. see[1]). In the stochastic geometry app-
roach stochastic processes are used to generate geometric elements (e.g. see [2]).
In the commonly used structural approach building elements are generated in
a bottom up fashion from line, corner and other elements (e.g. see [3]). In the
object-based approach the image is first partitioned (segmented) into regions
comprising objects or parts of objects and then the regions are classified and
analysed [4,5].

Applications of urban form assessment are aligned with areas of strategic
national importance such as improved infrastructure planning and failure pre-
diction, understanding trends in urban design with relevance to energy efficiency
and carbon footprints, and estimation of bushfire vulnerability in peri-urban
environments. A major research area is the analysis of risk exposure and develop-
ing implementable adaptation options for responding to extreme weather events
such as bushfires, inundation, wind gusts and heat waves as well as less severe but
more frequent events that impact people in their built environments. Informa-
tion about urban form including building footprint, 3-D building model, building
material and pervious/impervious surface distinction is very important for such
analysis.

We have developed a system for the automatic generation of an urban inven-
tory. The Urban Inventory project has the goal of populating a GIS database
with information about houses or other buildings in a region such as build-
ing footprint, nearby trees, nearby roads, pervious/impervious surface classifica-
tion and other useful properties. The Urban Inventory database has information
about each parcel of land obtained from local government. It also has a number
of images of each house or building such as 3 Google Street View images and
3 Google Earth images. The principal goal of the Urban Inventory project is
to process these images using computer vision techniques to obtain information
about the buildings.

We have pursued an object-based approach utilizing an effective image label-
ing algorithm called MCV.

2 MCV (Markov Concurrent Vision)

Computer vision systems typically operate in a number of stages or modules,
these being, image segmentation, image classification, image analysis and high-
level systems such as rule-based systems. Mashford [6,7] proposed that the first
two of these stages can be carried out concurrently and MCV has some aspects
of this concurrency. MCV is a method for image segmentation or, more generally,
image labeling.

Image segmentation is the process of partitioning an image up into a number
of regions corresponding to physical objects or other significant or meaningful
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Fig. 1. Google Street View image

components. An intermediate step towards this goal is to partition an image into
regions over which the image is homogeneous or at least locally homogeneous. To
carry this out we must have a precise definition of what we mean by homogeneous
and locally homogeneous. Intuitively, a region of an image is homogeneous if
properties of a pixel at any point in the region are the same as or similar to
properties of a pixel at any other point. Such properties may be pixel values
or features computed from a neighbourhood of the pixel under consideration. A
region is locally homogeneous if nearby pixels have similar properties.

MCV produces more than a simple segmentation partition, it produces a
sequence of partitions. It is a semi-hierarchical algorithm commencing with a
partition made up of single pixel regions. Regions are partially merged at any
level of the process if they have a common boundary point such that the image
over a certain window centred on that point is homogeneous according to a
Markov random field (MRF) criterion [8]. An image over a region can be declared
to be homogeneous if its probability of formation by the MRF stochastic process
is sufficiently large. This condition can be recast in terms of the condition that
a certain energy value associated with the image over the region is less than
a certain Markovian threshold. If a Gaussian MRF is used and multiresolution
image pyramids are used to relate the image evaluation at different levels then
the evaluation of a region for homogeneity can be effected by a hard-wired neural
network. MCV in this form is a fully automatic and unsupervised algorithm with



444 J. Mashford et al.

Fig. 2. Result of MCV algorithm applied to image of Figure 1 (objects identified)

only two adjustable parameters or functions, Markov threshold and number of
levels [9].

Let X = {1, . . . ,m} × {1, . . . , n} be the image lattice. Let V be the set of
values taken by pixels. Then an image can be considered to be a map ω : X → V .
For greyscale images V = {0, . . . , d − 1} for some d ≥ 2 (e.g. d = 256), while
for color images V = {(v1, v2, v3) : 0 ≤ v1, v2, v3 ≤ d − 1} for some d ≥ 2 is the
set of RGB triples. More generally, V may be a set of vectors of multispectral
components or feature vectors.

Define a point x ∈ X to be a boundary point of a region R ⊂ X if

(x+W0) ∩R �= ∅ and (x+W0)\R �= ∅, (1)

where W0 ⊂ Z2 is the fundamental neighbourhood of the origin e.g. the usual
9-neighbourhood. The MCV algorithm is a semi-hierarchical algorithm which
operates iteratively at a number of levels from level = 1 to level = N . In general,
one needs to specify

1. a sequence W1 ⊂ W2 ⊂ . . . ⊂ WN ⊂ Z2 of evaluation windows
2. a sequence Ψ1 ⊂ Ψ2 ⊂ . . .ΨN ⊂ Z2 of merge windows
3. evaluation functions Ei : Ω(R) → {0, 1} for all i = 1, . . . , N and R ⊂ Wi

4. a permutation π of X e.g. raster scan

The MCV algorithm generates a sequence of partitions of X as follows.
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Fig. 3. Google Earth image

1. initialize Π = {{x} : x ∈ X}
2. for i = 1, . . . N

for j = 1 . . .mn
(a) if π(j) is a boundary pixel evaluate ω in the window (π(j) +Wi) ∩X
(b) if it is homogeneous then compute the region M1(x,Π) and the collec-

tions of regions M2(x,Π) and M3(x,Π) and update Π according to
Π := {M1(x,Π)} ∪M2(x,Π) ∪M3(x,Π),

where

M1(x,Π) = ∪{R ∩ (x+ Ψ) : R ∈ Π, R ∩ (x+W0) �= ∅}, (2)
M2(x,Π) = {R ∈ Π : R ∩ (x+W0) = ∅}, (3)
M3(x,Π) = {R\M1(x,Π) : R ∈ Π, R ∩ (x+W0) �= ∅}. (4)

In the MCV algorithm sub-images ω : R → V are evaluated for homogeneity
by computing the probability p(ω) that the image was generated by a given
Markov random field (MRF) model (e.g. a Gaussian MRF). Thus in the current
implementation

p(ω) =
1

Z(T )
exp(−U(ω)/T ), (5)

U(ω) =
∑

x∈R

d(ω(x),
∑

y∈Gx

θx(y)ω(y))2, (6)
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Fig. 4. Result of MCV algorithm applied to image of Figure 3

d(u, v) =
b∑

i=1

((vi − ui)2)
1
2 , (7)

where {Gx : x ∈ X} is the neighbourhood system, {θx : x ∈ X} is the neural
weight system, b is the number of bands i.e. V = Rb and Z(T ) is a normalising
factor.

MCV will be extensively compared with other methods (state of the art)
and the results will be presented in a forthcoming paper. MCV has been tested
on images from the Berkeley segmentation database with some good results
and some poor results. The Berkeley segmentation databas is tailored to favour
algorithms based on edge detection so it may not be a fair comparison. It is
to be expected that extensions of MCV utilising MRFs other than GMRF and
involving true concurrency will perform better, even on the biased Berkely seg-
mentation database. MCV has also been tested on street scenes (Bourke Street,
Melbourne, Australia) with good results.

3 Ensemble SVM Learning for Blob Classification

At each level of the MCV algorithm the image is partitioned up into a num-
ber of blobs. Blob classification is effected by a form of ensemble learning. A
literature survey relating to methods of ensemble learning will be presented in
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Table 1. Performance of the ensemble classifier for different thresholds

Threshold True positives False Positives False Negatives True Negatives

0.05 99.75 0.25 39.01 60.99

0.1 99.75 0.25 39.01 60.99

0.15 98.48 1.52 16.34 83.66

0.2 98.48 1.52 16.34 83.66

0.25 98.48 1.52 14.46 85.54

0.3 94.67 5.33 5.05 94.95

0.35 94.67 5.33 5.05 94.95

0.4 88.07 11.93 1.81 98.19

0.45 80.46 19.54 1.36 98.64

0.5 80.20 19.80 1.13 98.87

0.55 56.85 43.15 0.15 99.85

0.6 56.85 43.15 0.15 99.85

0.65 38.58 61.42 0.00 100.00

0.7 26.14 73.86 0.00 100.0

a forthcoming journal paper. The blobs merge (and sometimes break up) as the
algorithm proceeds. It is observed that at some level a blob represents well an
object such as a rooftop (for Google Earth images) or a tree (for Google Street
View images) but then at a higher level it might merge with another object (e.g.
a rooftop might merge with a nearby tree, or a tree might merge with the verti-
cal face of a house) or a shadow. Also using different Markov thresholds results
in different sequences of partitions. There seems to be an optimal level and/or
threshold for any given object.

In a fully concurent system the blob classification would occur in concert with
the iterative image labeling process. However, in our present implementation,
we carry out blob classification in a post factum fashion in which all the blobs
associated with various levels and Markov thresholds of the MCV algorithm are
saved to the GIS database and the blobs in the database are then processed
using an ensemble of support vector machines (SVMs). Each of the SVMs acts
on a feature vector derived from each blob input to it. The features computed
for a blob which are then fed into various SVMs are

1. multiscale blob boundary curvature features
2. Hough features
3. Gabor features
4. blob area, perimeter
5. color features
6. features relating to location of blob within associated land parcel

Each SVM outputs a probability [10] and a total score of the ensemble clas-
sifier is computed by taking the weighted sum of the outputs of the various
dedicated SVMs weighted by their training accuracies over a number of itera-
tions of a bootstrap aggregation (bagging) procedure [11].
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4 Results

One can declare a blob to be classified as a building if its total score as output
by the ensemble classifier exceeds some threshold. Different thresholds result
in different performance accuracies with a trade off between overall accuracy,
false positives and false negatives as is shown in Table 1. This table describes
performance of the system on a large collection of images obtained from Google
earth images of Parramatta, Sydney, Australia.

There is a tradeoff between false positives and false negatives. Excellent
results seem to be achieved with a threshold of 0.3. The results would be dif-
ferent with different SVM design (e.g. non-RBF kernel) and different ensemble
learning algorithm (e.g. non-bagging).

5 Conclusion

The results of this work will have wide application in urban sustainability and
adaptive capacity research with high definition 4-D urban forms (time series
of building footprint, height and material information). Subsequent work may
involve further development of rule-based approaches. Other AI techniques such
as fuzzy logic or Bayesian reasoning may be useful for the purpose of data fusion
which is necessary to integrate all the information which is available about each
house or other building in a region. Thus, for example, computer vision tech-
niques can be applied to different images of a house resulting in different sym-
bolic high-level descriptions. Data fusion can be used to combine these high-level
descriptions into one overall description which may be probabilistic or fuzzy,
e.g. statements may have associated certainty factors. Alternatively, data fusion
can be applied at a lower level of the vision system, e.g. at the level of image
classification.

Acknowledgments. The authors thank Stewart Burn and Xiaoming Wang for sup-
porting this work. The work was funded by the then CSIRO Water for a Health Country
and Climate Adaptation Flagships.
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Abstract. We develop a sequential image mosaicing approach for aerial
images of pseudo-planar scenes which is based on the estimation of cam-
era pose from images. We use Extended Kalman Filter (EKF) to update
the camera pose and scene parameters with every new image which
improves the global consistency of the mosaic. Proposed approach is
tested on aerial images where visually appealing results are obtained
and residuals are quantified.

1 Introduction

Image mosaicing is the process of combining sets of images captured from a scene
and creating a large composite image which provides a better understanding of
the scene than the separate images. It can be beneficial for many different areas
such as personal, medical and remote sensing applications.

It is possible to create panoramas of natural scenes [3] with the images cap-
tured from an inexpensive camera. For medical applications, satisfying results
are obtained for mosaicing of tissues [18], retinal images [7]. Image mosaicing
also come into use in microscopic [6] and fingerprint [8] imaging. For remote
sensing applications, it is used in aerial [13] and underwater [15] applications.

Different methods are proposed for mosaicing applications. One method is
to approach the problem using graph theory tools. For example, Kang et al. use
optimal paths in a graph to improve global consistency where graph represent
the image connections [12]. Elibol et al. use Minimum Spanning Tree (MST)
algorithm to infer structure of the mosaic [10]. Another possible strategy is to
attack the problem by using a filtering framework. Using Simultaneous Local-
ization and Mapping (SLAM) to create image mosaics is proposed by Civera et
al. [9] for pure-rotational camera. They propose an EKF based SLAM approach
for real time operation. Another EKF based approach is proposed by Caballero
et al. [5] for aerial localization and image mosaicing. In their work, homograpy
parameters are stored in the state vector and updated by EKF when loops are
detected in the mosaic.

In this paper, we develop a new EKF based image mosaicing algorithm for
aerial images captured from pseudo-planar scenes. Proposed method uses EKF
to update the camera pose and scene normal parameters, and it is computation-
ally more efficient than similar methods in the literature. It uses camera pose
c© Springer International Publishing Switzerland 2014
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parameters of all the images and a two parameter plane model for the scene
instead of using homographies in the estimation.

The paper organization is as follows: Image mosaicing is outlined in Section 2.
Proposed algorithm is presented in Section 3. Experimental results are provided
in Section 4. Finally the paper is concluded with some remarks in Section 5.

2 Image Mosaicing

Image mosaicing involves merging the images captured from different camera
poses after they are properly transformed. When the scene is assumed to be pla-
nar, coordinates of the scene points in different cameras can be mapped to each
other by 3 × 3 homogeneous transformations. For cameras observing a common
scene area, we can estimate the relative motion between two cameras by utilizing
a homography estimation with the distinctive feature matches between images.
For two images of different scene areas, homography can be calculated by com-
bining homographies of the pairwise images linking these images to each other.
However, small registration errors between pairwise images tend to accumulate
over time. As a result, when images are aligned on a common reference frame
by using this method, misregistrations occur at loop-closing regions because of
the drift since local estimations are performed. It can be beneficial to use a tool
which considers the global consistency of the mosaic during the estimations. For
planar scene mosaicing, an EKF based approach is proposed by Caballero et al.
[5] where EKF is used to propagate the feature errors through the mosaic by
using the misregistrations at the loop closing regions of the mosaic to enhance
global consistency.

In the next section, we propose a new algorithm where camera rotation and
scaled translations extracted from the pairwise homographies are used in the
estimation. We also include plane normal parameters of the dominant scene in
the estimation. Extraction of these parameters from a pairwise homography is
detailed in [14].

3 Proposed Approach

We use classical EKF loop to update the mosaic with every new image. In the
state vector of the EKF, global rotation and translation parameters for every
image and parameters of the dominant plane in the scene with respect to the
first camera frame are concatenated. Rotations are parameterized by Euler angles
(Ei =

[
φi θi ψi

]
for image i) which are defined as:

Ri = i
1R =

⎡

⎣
cosψi − sinψi 0
sinψi cosψi 0

0 0 1

⎤

⎦

⎡

⎣
cos θi 0 sin θi

0 1 0
− sin θi 0 cos θi

⎤

⎦

⎡

⎣
1 0 0
0 cosφi − sinφi

0 sinφi cosφi

⎤

⎦ (1)

Plane normal vector is parameterized by a two parameter model (α, β) which is
given as:

n = 1n =
[
sinα sinβ, sinα cosβ, cosα

]ᵀ (2)



452 A. Yildirim and M. Unel

For instance, after image Ii is included into the estimation, the state vector is
given as:

x =
(
α, β, Eᵀ

2 , t
ᵀ
2 , E

ᵀ
3 , t

ᵀ
3 , . . . E

ᵀ
i , t

ᵀ
i

)ᵀ (3)

where ti denotes the translation of the first camera frame in the ith camera
frame. Our algorithm can be summarized as follows:

1. When a new image is captured, homography estimation is performed between
new and the previous image(Hij for new image i and previous image j.
Relative rotation

(
i
jR
)

and scaled translation
(
itij
)

are extracted from this
homography and used to initialize new state vector variables (Ei, ti).

2. Previous images intersecting with the new image are detected geometrically
by using Separating Axis Theorem (SAT) and pairwise homography estima-
tion is performed between the new and each of the previous images which
are used as the measurements of the EKF.

3. State vector is updated by the update equations of the filter.

3.1 Prediction

When a new image is captured, its pairwise homography estimation is performed
with the previous image. Relative camera pose is extracted as i

jR and itij from
this homography (Hij). Since we know the pose of the previous camera frame
and relative pose between the new and previous camera, new camera pose can be
obtained. To find the covariances of the new parameters (Ei and ti), we calculate
the Jacobian of these parameters with respect to the state vector and relative
pose parameters between images (Eij and itij). Jacobian can be given as:

J =
∂
[
Ei ti

]

∂
[
xold Eij

itij
] (4)

where Eij is the Euler angle parameters obtained from i
jR. New covariance

matrix can be calculated as:

Pk =
[
I 0
J

] [
Pk,old 0

0 Cij

] [
I 0
J

]ᵀ
(5)

where Cij denotes the covariance matrix of the relative camera pose
[
Eij

itij
]
.

In this work, this covariance matrix is assumed to be a multiple of the identity
matrix, i.e λI.

3.2 Measurement

New images are initialized by using its pairwise homography with the previous
image. However, it is possible that new images also have common scene features
with some of the other images in the mosaic. We can get better estimates of
parameters by using all the previous images which have common features with
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the new image. As a result, during the measurement step, we propose to update
the initialized estimates by using all the previous images which have common
image features with the new image. This provides a better global consistency to
our algorithm since we consider all the available data in the mosaic. To obtain the
the previous images which have common features with the new image efficiently,
we propose to use the Separating Axis Theorem (SAT).

Separating Axis Theorem. This theorem is used in computer graphics appli-
cations to detect collisions between objects [16]. Theorem simply states that if
there exist a line for which the intervals of projection of the two objects onto
that line do not intersect, we can conclude that the objects are separated. Since
our images becomes 2D quadrilaterals when aligned to the mosaic and we know
the rough alignment of the new image on the mosaic from the initialization
procedure, we can detect which of the previous images intersect with the new
image by this theorem. After all the intersecting images are detected, feature
matching procedure is employed between the new image and the intersecting
previous images to estimate the pairwise homographies between these images.
These homographies are used to create measurements.

Measurement Function and Its Covariance. We first normalize the homo-
graphies to get a unique representation of estimations since an arbitrary multiple
of a homography represent the same transformation. This is done by dividing
the homographies to its Frobenius norm. Covariance matrices of the homogra-
phies are also required for estimation. However, these matrices are not invertible
because of the redundant nature of the homography which cause problems dur-
ing the inversion of the innovation covariance. As a result, we propose to perform
a linear transformation on hij to construct measurements for which covariance
matrix is invertible. We choose the measurements as:

zij = Aijhij (6)

where Aij is a 8 × 9 matrix whose rows are orthogonal to hij and each other.
To obtain the covariance matrix for the measurement Hij , we use the procedure
explained in [11]. Estimation is performed using the following steps:

1. Jacobian of the feature matches (Ji) are calculated with respect to the mea-
surement parameters ( ∂x′

∂zij
) and J matrix is formed as the vertical concate-

nation of these individual Jacobians.
2. Covariance matrix of the measurement is given as:

Σzij
=
(
JᵀΣ−1

x′ J
)−1

(7)

where Σx′ is a block diagonal matrix whose diagonal elements are the covari-
ance matrices of the feature coordinates. We take this matrix as identity.
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3.3 Update

Measurements are used to update our state variable estimates (xk) obtained from
the image initialization step. Assume that there are n measurements obtained
from the pairwise homographies. We construct a measurement vector (z) by
concatenating all of the individual measurements. Covariance matrix of this
measurement vector(Rz) is given with a block diagonal matrix where diagonal
elements are the individual covariance matrices of the measurements. Predicted
homographies are transformed by the same transformation matrices previously
obtained for pairwise homographies. Update equations for the Kalman filter are
given as:

Sk = ZkPkZ
ᵀ
k +Rz (8)

Kk = PkZ
ᵀ
kS

−1
k (9)

xk+1 = xk +Kk (z − ẑ) (10)

where Zk is the jacobian of the measurement function with respect to the state
variables calculated at x = xk.

4 Results

We implemented our algorithm on ‘Cadastre in Switzerland’ [1] and ’Gravel
Quarry’[2] datasets. After the EKF estimations were completed, homographies
between the images were calculated from the camera poses and the images were
warped on a reference plane. We used SIFT features during our experiments. 58
sequential images were used for ‘Cadastre in Switzerland’ and 125 images were
used for ’Gravel Quarry’ dateset. Because of the seams caused by the illumination
differences and small misregistrations in the mosaic, results were blended by
using multi-band blending [4].

Image mosaic obtained from Cadastre is shown in Fig. 1. Since images are
captured from an aerial vehicle which follows loopy trajectories, many loop clos-
ings appear during the estimations. Because of the EKF, it is expected that
errors at these loop closings will be propagated through the mosaic. As a result,
we expect a short tailed distribution cumulated around a mean value for the
x-axis ant y-axis components of the residual vectors. Probability density func-
tions (pdf) of the components of the residual vectors for Cadastre sequence are
given in Fig. 2. It can be inferred from the figure that error is roughly cumulated
around the zero mean for both components of the residual vectors and distri-
butions have relatively short tales when it is considered that images are size
of 1152 × 864. For comparison purposes, we also implemented a bundle adjust-
ment algorithm [17] for the same image sequence. This was done by minimizing
the sum-of-squares of the feature projection errors between matching images
via Levenberg-Marquard algorithm where homographies of all the images are
computed. As a quantitative evaluation of the error, root mean square (RMS)
values of the feature projection errors calculated from 110257 feature matches
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Fig. 1. Mosaic image of the Cadastre

are given in Table 1. Since image sizes (1152×864) are very large when compared
to RMS values in the Table, visual differences between these two methods are
almost negligible. Mosaic result for ‘Gravel Quarry’ is given in Figure 3. Bundle

Table 1. RMS values for Cadastre

Case Total Matches RMS(pix)

Proposed Algorithm 110257 8.8500
Bundle Adjustment 110257 2.4414

adjustment results are also obtained for this dataset. RMS values of the residual
error in the mosaic are given in the Table 2. Again because of the large image
sizes (1152 × 864), differences between the RMS values for both methods imply
negligible visual seams.

Table 2. RMS values for Gravel Quarry

Case Total Matches RMS(pix)

Proposed Algorithm 564900 8.1588
Bundle Adjustment 564900 4.9318
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Fig. 2. PDFs for X and Y components of the residual vectors for Cadastre

Fig. 3. Mosaic image of the ‘Gravel Quarry’ dataset

5 Conclusions

We have now presented a new image mosaicing algorithm which works sequen-
tially and is capable of creating image mosaics of pseudo-planar scenes. Extended
Kalman Filter (EKF) has been used to update the camera pose and scene nor-
mal parameters with the new images that improves the global consistency of the
mosaic. Results are both visually and numerically promising. More experimental
work has to be done to see further potential of the proposed method.
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Abstract. Image forgery detection problem is challenging and important for 
many years. One of the most frequently used type of forgery is copying and 
pasting content within the same image or copy-move. Copy-move forgery  
detection has become one of the most actively researched topics in blind image 
forensics. We propose a novel plain copy-move detection algorithm using struc-
tural pattern and two-dimensional Rabin-Karp rolling hash. The novelty of pro-
posed method is zero false negative error and high execution speed for large 
images. We also present the results of quality and speed investigations of the 
proposed algorithm, which depend on structural pattern construction type. 

Keywords: Forgery ⋅ Copy-move detection ⋅ Structural pattern ⋅ Rabin-Karp 
rolling hash 

1 Introduction 

A digital image is an important way to present visual information. Images are used for 
research, commercial and military purposes. Regardless of the field of use of digital 
images the end user must be sure that the data they contain is original and hasn’t been 
changed. When we speak about original image, we mean that its data wasn’t changed 
to improve quality, to preprocess for specific applied algorithms, to compress data, 
etc. These changes do not harm the end user, so their detection is not very significant. 
But it is much more important to detect changes that hide or replace information, 
stored in an image. 

The first papers on developing algorithms for forgery or image tampering detection 
appeared in 2004-2005 [1, 2]. There have been analyzed several types of forgeries: 
resampling, copy-move, splicing, etc. The most frequently used type of image tamper-
ing is copying image fragment from one place and pasting it in another place of the 
same image (copy-move forgery). Thus between copying and pasting the fragment it 
can be geometrically transformed (scaling + rotation). Otherwise pasting is made after 
simple region translation (the so-called plain copy-move). 

Actually researchers have achieved certain results in developing algorithms for 
transformed [3, 4, 5] and plain copy-move detection [6, 7] in the sense of tampering 
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detection quality criteria. These algorithms can be divided into two main groups: 
block-based [3, 4] and keypoint-based [5], which were analyzed in [8]. Experimental 
results showed that none of the existing plain copy-move detection algorithms [8] 
guarantees zero false negative error. It is caused by the standard of constructing copy-
move detection algorithms [8], which proposes dividing image into overlapping 
blocks and calculating one or more features for each block. Furthermore this approach 
does not allow to use sliding window technique, because of high computational com-
plexity – this is another reason for non zero false negative error. In addition there is a 
problem of non zero false positive error, which appears due to significant deviation of 
the analyzed image size from copy-move region size [8]. 

In this paper we propose a new plain copy-move detection algorithm with the  
following key features: 

─ guarantee of zero false negative error; 
─ high execution speed (provides real-time image analysis) and low computational 

complexity; 

─ mean value of false positive error is %10 5− . 

The proposed algorithm is based on several key points. First, we use sliding win-
dow approach instead of dividing image into non-overlapping blocks during analysis. 
It helps to analyze all possible image fragments. Second, we use a special structural 
pattern, which consists of several rectangular fragments. For all these fragments  
within a pattern we calculate values (characteristics) of a specific hash function. We 
propose a two-dimensional generalization of Rabin-Karp rolling hash algorithm for 
calculating these characteristics. We have also developed a recursive algorithm  
for hash value calculation. This is the key to reduce computational complexity and  
to provide an ability to use the proposed algorithm for large image analysis  
( 50005000×  pixels and more) in real-time mode. 

2 Structural Pattern 

Let ( )nmf ,  be an analyzed image. Under a structural pattern we mean a finite 

quadruply connected set of coordinates ( ) ( ){ }nm,,,0,0 h . 

Let us consider a special structural pattern ( )ba,,Λℵ  defined as follows: 

 ( )
( )

( )nmbaba
nm

,,,,,
,

Π≡Λℵ
Λ∈

h  (1) 

where the set of coordinates ( )nmba ,,,Π  is defined as 

 ( )
( ) ( ) ( )

( ) ( )














−+−+−+

−++
≡Π

1,1,,,1

,1,,,1,,,

,,,

bnamnam

bnmnmnm

nmba

h

h

h

. 
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Parameter Λ  defines pattern’s structure. Let us say, that there are duplicates by a 
pattern ( )ba,,Λℵ , if there are at least 2 pairs of coordinates ( )nm ′′,  and ( )nm ′′′′ , , 

which satisfy the following equalities: 

 
( ) ( )
( ) ( ).,,,

,,,

banm

nnmmfnnmmf

Λℵ∈∀
+′′+′′=+′+′

 

Searching a duplicate by a pattern ( )ba,,Λℵ  is a task of determination for each 

image sample ( )nm, , which defines the upper left point of an image fragment with a 

form defined by a pattern ( )ba,,Λℵ , a unique number ( ) N∈nmt , , which characteriz-

es an image fragment in the following way: 

 ( )



>

−
≡

numbertypecopy-move

movecopyno
nmt

  ,0

,0   
, . 

We will also use a simplified form of a structural pattern further – an analysis win-
dow of size ba × , which corresponds to the structural pattern ( ){ }( )ba,,0,0ℵ  use. 

It should be noted that structural pattern representation may not be unique. This 
ambiguity is the basis for experiments presented in Section 5. 

Let us consider a hash function T  of an image fragment with a form defined by a 
pattern ( )ba,,Λℵ . This function converts intensity values of an image fragment to an 

integer nonnegative value in the range [ ]1,0 −L . 

3 Two-Dimensional Rabin-Karp Rolling Hash 

3.1 Proposed Hash Function 

Let there be given a structural pattern ( ){ }( )ba,,0,0ℵ  and an image f , where 

( ) [ ]12,0, −∈ qnmf . Then a hash value for an image fragment will be calculated as a 

2D generalization of Rabin-Karp rolling hash: 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) .21,1...21,1

2,1...21,...

...21,2,,,

02

1

)2(8)1(

⋅−+−+++⋅+−++

+⋅−+++⋅−++

+⋅++⋅≡

−

−−

−−

bnamfnamf

namfbnmf

nmfnmffnmH

bq

bqbabq

ababq

 (2) 

It is quite difficult to store such values in internal memory of a workstation because 
of the following problems: 

─ absence of standard numeric types for operating with large numbers; 
─ no possibility to allocate memory to store hash table of required size (hash table 

use will be described further). 
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To solve these problems we propose the following solution. According to Chinese 
remainder theorem (CRT) R modular representations of (2) can be defined in the  
following way: 

 ( ) ( ) rr bfnmHfnmH mod,,,, ≡ , (3) 

where rb  are coprime numbers. Moreover a system of R functions (3) guarantees one-

to-one correspondence of an analyzed image fragment to a hash value. This fact al-

lows to use any of remainders (3) as a hash value. We will take 12 −>> q
rb  further. 

3.2 Recursive Algorithm for Hash Value Calculation 

Let us consider a standard form of function ( )fnmH r ,, : 

 ( )
( )( )

( )( )
( )

r

r

rr
abq

r

rr
abq

r

r b

bbnamf

bbbnmf

bbbnmf

fnmH mod

mod1,1...

...modmod2mod1,

modmod2mod,

,, )2(

)1(



















−+−++
+⋅++

+⋅

≡ −

−

. (4) 

Let us also consider the following simplifications to calculate the value of  
expression (4): 

• ( ) ( )nmfbnmf r ,mod, =  due to assumptions, that ( ) [ ]12,0, −∈ qnmf  and 

12 −>> q
rb ; 

• [ ]1,1,mod2 −∈= bibp r
qii

r  can be calculated once before image analysis (no 

need to calculate these values for every sliding window position); 
• rbmod  calculation for every summand can be discarded, because the computable 

sum will not exceed a bit grid dimension (let us consider, that 1231 −=rb , then 

the order of (4) equals 3122qab ⋅ , so the value of (4) can be stored in LONG  

numeric type if 242<ab ). 

In consideration of these simplifications, expression (4) is changed to the  
following: 

 ( )
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( )
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r b
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+
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It is convenient to use 1231
0 −=b . For 0, >ibi  we suggest to take prime numbers 

less than 0b . 
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Hash value (2) can be calculated recursive for a structural pattern ( ){ }( )b,1,0,0ℵ  

both for initial and modular representations as following: 

( ) ( ) ( )( ) ( ).1,,2,1,2,, )1( −++−−= − bnmfnmffnmHfnmH bqq  

For a 2D structural pattern the recursive algorithm will be as following (for rows 
and columns correspondingly): 

( ) ( )

( ) ( ) ( ) ( )( )

( )

( ) ( ) ( ) ( ) ( ) ( ).,2,2,,2,,1
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Multiplication by powers of “2” are computed effectively using register shift oper-
ations. This simplification reduces hash value calculation time. 

4 Plain Copy-Move Detection Algorithm 

The proposed algorithm involves sequential analysis of all possible positions of image 
fragments ( )nmba ,,,Π  using sliding window approach. It means that for every posi-

tion ( )nm,  a hash value is calculated using pixels ( ) ( ) ( )nmbanm
nmf

,,,,
, Π∈′′

′′ . This hash 

value is used: 

─ to update hash table ( )tHt  (hash table contains absolute frequencies of hash values t); 

─ to update an image of potential duplicate types ( )nmT , . 

It is obvious, that as the structural pattern ( )ba,,Λℵ  consists of several rectangular 

patterns ( )nmba ,,,Π , analyzed image fragment in ( )nm ′′,  position will be a duplicate 

only if all of the fragments ( ) ( ) Λ∈+′+′Π nmnnmmba ,,,,,  are duplicates. As a result, 

the decision rule for duplicate type detection using selected structural pattern looks like 

 ( ) ( ) ( )( )
( )




+′′
≤+′+′Λ∈∃

≡′′
else.  ,1,

;1,,,0
,

nmT

nnmmTHnm
nmt  

It can be noticed that due to the ambiguity of constructing a representation (1)  
for a particular structural pattern ( )ba,,Λℵ  the proposed algorithm is ambiguously 

determined. For this reason there are examined several issues in Section 5, which are 
related to the construction of optimal (in the sense of the quality value) representation 
(1) for a particular structural pattern. 
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Fig. 2. Relationship of K from the pattern’s size ba ×  for window size 1111 ×  

 

Fig. 3. Relationship of K from the pattern’s size ba ×  for window size 1818 ×  

It can be seen, that the number of collisions increases exponentially while the inter-
section part of ( ) ( ) Λ∈Π nmnmba ,,,,,  decreases. So the optimal structural pattern’s 

size is from 88 ×  to 1010 × . It can be noted that the number of collisions decreases 

with the power of set Λ  increase. 

The result obtained for a sliding window with size 1919 × , 4=Λ  is shown in 

Figure 4. 
 

 

Fig. 4. Relationship of K from the pattern’s size ba ×  for window size 1919 ×  

Figure 4 shows a slight decrease of collisions by reducing the size of a structural 
pattern. In comparison with results shown in Figures 2 and 3, in this case (structural 
pattern size ba ×  is greater than 1010 × ) the number of collisions can be considered 

constant. When the power of set Λ  increases, the number of collisions tends to 0. 

According to the experimental results, the following conclusions can be made: 

─ the best value of a structural pattern’s size is greater than 88 × ; 

─ the power of set Λ  should not be less than 6 (9 recommended); 
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─ the value of intersection part in a structural pattern doesn’t have a reasonable effect 
on the processing result, if 2 previous objectives are gained. 

6 Conclusion 

In this paper, we proposed a new structural pattern based algorithm for plain copy-
move detection with zero false negative error. The proposed algorithm is fully auto-
matic and allows to perform image analysis in real time due to low computational 
complexity. We determined optimal parameters of a structural pattern, which is used 
to achieve minimum false positive error. The proposed algorithm is also shown its 
effectiveness during analysis of high resolution satellite images received at the remote 
sensing data receiving station of Samara State Aerospace University. 
 
Acknowledgements. This work was supported by the Russian Foundation for Basic 
Research (RFBR) grant №12-07-00021-a and by the Ministry of education and  
science of the Russian Federation in the framework of the implementation of the  
Program of increasing the competitiveness of SSAU among the world’s leading  
scientific and educational centers for 2013-2020 years. 

References 

1. Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. 
LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004) 

2. Fridrich, J., Soukal, D., Lukas, J.: Detection of copy–move forgery in digital images. In: 
Proceedings of Digital Forensic Research Workshop, pp. 55–61 (2003) 

3. Mahdian, B., Saic, S.: Detection of copy-move forgery using a method based on blur  
moment invariants. Forensic Science International 171(2), 180–189 (2007) 

4. Zhang, J., Feng, Z., Su, Y.: A new approach for detecting copy-move forgery in digital  
images. In: Proceedings of the International Conference on Communication Systems,  
pp. 362–366 (2008) 

5. Dybala, B., Jennings, B., Letscher, D.: Detecting filtered cloning in digital images.  
In: Proceedings of the Workshop on Multimedia and Security, pp. 43–50 (2007) 

6. Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images  
using SIFT algorithm. In: Proceedings of the Pacific-Asia Workshop on Computational  
Intelligence and Industrial Application, pp. 272–276 (2008) 

7. Pan, X., Lyu, S.: Region duplication detection using image feature matching. IEEE  
Transactions on Information Forensics and Security 5(4), 857–867 (2010) 

8. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular 
copy-move forgery detection approaches. IEEE Transactions on Information Forensics and 
Security 7(6), 1841–1854 (2012) 

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms (1990) 



Automatic Annotation of an Ultrasound Corpus
for Studying Tongue Movement

Samuel Silva(B) and António Teixeira

DETI/IEETA, University of Aveiro, 3810–193 Aveiro, Portugal
{sss,ajst}@ua.pt

Abstract. Silent speech interfaces can work as an alternative way of
interaction in situations where the acoustic speech signal is absent (e.g.,
speech impairments) or is not suited for the current context (e.g., envi-
ronmental noise). The goal is to use external data to infer/improve speech
recognition. Surface electromyography (sEMG) is one of the modalities
used to gather such data, but its applicability still needs to be further
explored involving methods to provide reference data about the phenom-
ena under study. A notable example concerns exploring sEMG to detect
tongue movements. To that purpose, along with the acquisition of the
sEMG, a modality that allows observing the tongue, such as ultrasound
imaging, must also be synchronously acquired. In these experiments,
manual annotation of the tongue movement in the ultrasound sequences,
to allow the systematic analysis of the sEMG signals, is mostly infeasi-
ble. This is mainly due to the size of the data involved and the need
to maintain uniform annotation criteria. Therefore, to address this task,
we present an automatic method for tongue movement detection and
annotation in ultrasound sequences. Preliminary evaluation comparing
the obtained results with 72 manual annotations shows good agreement.

1 Introduction

Silent speech interfaces [1] can be an alternative way of interaction in situa-
tions where users are unable to use speech, whether due to speech impairments
(e.g., as a result of a laryngectomy) or due to environmental noise or privacy
concerns. In these contexts, external data might be used to infer about the
speech contents or even improve speech recognition. Surface electromyography
(sEMG) is one of the modalities used to gather such data, but its applicability
still needs to be further studied as evidenced, for example, by the lack of infor-
mation regarding how it can be used to detect tongue movements. To gather
additional insight over this matter, experimental studies must be conducted col-
lecting both sEMG and tongue movement data. The technology used for tongue
movement assessment, which will provide grounds for the analysis, should ful-
fil some requirements: a) provide data at a high enough sample rate to allow
observation of the movement; b) do not generate electromagnetic fields/noise
c© Springer International Publishing Switzerland 2014
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that affect sEMG collection; and c) allow simultaneous (synchronous) acquisi-
tion of other modalities used to assess related aspects such as lip movement.
Approaches using asynchronous acquisition of different modalities are possible,
followed by offline synchronization, but require a greater effort to ensure proper
matching between the multiple modalities [2]. Considering these requirements,
modalities such as real-time MRI [7] and electromagnetic midsagittal articulog-
raphy (EMMA) [4], that could provide tongue movement data, are not suitable.
One alternative that matches the requirements, and has been widely used to
study the movements of the tongue [5], is ultrasound imaging.

The rationale is to acquire synchronized sEMG and ultrasound (US), anno-
tate tongue movements using the latter, and then perform an exploratory anal-
ysis over the sEMG signals. The manual annotation of large sets of ultrasound
sequences of the tongue is a tiresome task that entails visual inspection of the
video, frame-by-frame, and an identification of the instants for tongue movement
start and stop. This is prone to some degree of subjectivity (regarding when to
set the start and stop of the movement) and to some variation of the criteria (due
to noisy frames) used by the human annotator along the sequences. The vari-
ability resulting from these aspects might, to some extent, influence subsequent
analysis and, therefore, the use of uniform criteria is desirable.

To tackle the tongue movement annotation task from US sequences, part of
a multimodal dataset [2] used to explore the applicability of sEMG to tongue
movement detection, a method is proposed that performs automatic detection
and annotation of tongue movements. The direction of the movement is also
provided for the movement events occurring during relevant segments. A pre-
liminary comparison of the annotations provided by the presented method with
manual annotations of multiple sequences was performed, yielding a good match
between both sets of annotations.

The remainder of this article is organized as follows: section 2 briefly presents
the setup used for data acquisition; section 3 describes the methods used for
tongue movement annotation in US video sequences; section 4 presents a pre-
liminary evaluation comparing manual and automatic tongue movement anno-
tations; finally, section 5 presents some conclusions and ideas for further work.

2 Ultrasound Data Acquisition

The experimental setup includes the acquisition of data for multiple modalities
(sEMG, 3D video, ultrasonic Doppler). For the sake of simplicity, since it has no
influence on the described methods, only the ultrasound setup and acquisition are
described. Additional details regarding the different aspects of the multimodal
setup can be found in [2].

2.1 Corpus

The main purpose was to record sequences that included several tongue position
transitions. Since it was also important to favour tongue movements over move-
ments of the lips and jaw, the corpus was also defined having that in mind. The
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selected sequences include transitions between vowels, in the form of /V1V2V1/
(e.g., [iui], [eoe]), and consonants ([k, l, L, t, s]) in different /vCv/ contexts (e.g.,
[aka, itu, eLe]). To ensure a clear distinction of the tongue position transitions,
the speakers were asked to sustain each vowel sound for around one second. For
example [iui] was uttered “iiiiiiiiiiuuuuuuuuuiiiiiiiii”.

2.2 Ultrasound Acquisition

The ultrasound setup comprises: a Mindray DP6900 ultrasound system with a
65EC10EA transducer; an Expresscard|54 Video capture card, to capture the
ultrasound video; a microphone, connected to a Roland UA-25 soundcard; and a
SyncBrightUp unit, which allows synchronization between the audio and ultra-
sound video, recorded at 30 frames per second. To ensure that the relative posi-
tion of the ultrasound probe towards the head is kept during acquisition, a stabi-
lization headset is used [5], securing the ultrasound probe below the participant’s
chin (figure 1).

At the start of each recording the SyncBrightUp unit inserts several trig-
ger pulses in the audio and white squares in the corresponding video frames.
The synchronization between the audio and video is tuned after acquisition,
using Articulate Assist Advanced (www.articulateinstruments.com), by check-
ing proper alignment between corresponding trigger pulses and video frames.

The audio signal is shared between the US setup and the remaining acquired
modalities and thus serves to ensure synchronization throughout the dataset.
Therefore, by having the audio signal as a time reference, when performing the
annotations, ensures their synchronization with the remaining data.

Fig. 1. To the left, ultrasound acquisition setup: a) ultrasound equipment; b) ultra-
sound probe; c) Audio-video synchronization unit; d) laptop, running Articulate Assist
software, showing the prompts; e) external soundcard for sound recording; f) micro-
phone. To the right, the head stabilization headset with the ultrasound probe attached
below the speaker’s chin.

At this stage, three volunteer European Portuguese male speakers, aged 29-
33, have already participated in the experiment. Each participant was given an
explanation regarding the ultrasound setup and its different components and
informed that the session could be interrupted at any time on his/her request.

www.articulateinstruments.com
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The probe stabilization headset was placed on the participant’s head and
adjusted to a comfortable fit with the help of an assistant. The probe was
mounted next, while the ultrasound output was monitored, to ensure that that
probe position yielded acceptable images.

For each stimuli in the corpus, the participant was presented with a prompt
and asked to repeat it twice, per recording. The full corpus was repeated three
times in random orders, for each speaker, resulting in 81 recordings per partici-
pant. Since, for each recording, four transitions between phonemes are expected
(not including tongue movements at the beginning and end of each prompt), at
least around 1000 tongue movement segments need to be annotated (3 partici-
pants × 81 recordings × 4 movements).

3 Methods

The following sections describe the most important steps of the method proposed
for automatic annotation of tongue movement in US image sequences.

3.1 Audio Segment Identification

The audio recordings, even within each recording session, have varying durations
and different noise and speech levels resulting from changes in the participant’s
position towards the microphone. Each recorded sequence comprised two repe-
titions of a prompt (e.g., “iiiuuuiii <pause> iiiuuuiii”).

The first processing step is the identification of the audio segments corre-
sponding to each repetition as this provides the segments of interest on which to
focus for tongue movement analysis. After filtering the audio signal, to remove
frequency components above 2 kHz, the Hilbert transform [3] is used to extract
its envelope, E(i). Envelope analysis is performed to find the start and stop
times for each repetition. The threshold level, LTh, determined empirically,
to distinguish between speaker utterances and silence, is obtained by LTh =
1.4 × min(E(i)), i ∈ [0.15 × N, 0.85 × N ], where N is the total duration of E(i),
and basically targets the silence between repetitions.

In order to cope with utterances including plosives (e.g., [aka]), resulting
in no sound being produced, which might be mistaken by the silence between
repetitions, a minimum duration for each repetition is considered.

3.2 Tongue Movement Detection

Given the noisy nature of the US image sequences (figure 2), pre-processing is
applied to reduce noise. Since it is important to preserve the edge corresponding
to the tongue, anisotropic diffusion is used [8]. Due to the fact that the images
resulting from US acquisition show regions with no relevance, above and below
the tongue, a region-of-interest is selected, discarding them.

One possible approach could be tongue segmentation [6], but the complexity
associated with the task (image noise, incomplete tongue edges, etc.) precluded
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Fig. 2. Selected ultrasound frames along the transition from [i] to [u] in sequence [iui]

its use, at least for these first stages of exploratory studies. In alternative, a much
more direct approach is used. The tongue movement is inferred by computing
the pixelwise inter-frame difference, D(i) =

∑Nx

x=1

∑Ny

y=1 |Fi(x, y) − Fi−1(x, y)|,
where Nx and Ny are the number of pixels in each image dimension, and Fi(x, y)
is the value for pixel in position (x, y) in frame i. When the tongue moves, the
inter-frame difference is higher, originating local maxima in D(i). The inter-
frame difference curve, D(i), is then masked using the detected segments of
interest (repetitions), and the two highest peaks are determined for each repeti-
tion, analysing the signal and its first derivative. The interval corresponding to
movement, around each peak, is determined considering the second derivative
zero-crossings. Figure 3 depicts an example of the distance curve used to detect
tongue movements and identified movement segments for the sequence recorded
for prompt [iEi].

After identifying the movements within each repetition, the remaining seg-
ments of the sequence are considered to identify additional tongue movements.
These are mostly limited to those appearing at the beginning and end of each
repetition, as depicted in figure 3.

The detection of these movements is important to provide further data for
exploratory analysis of different sEMG channels. For example, these annotations
can be used to discard the corresponding sEMG segments while training a “no
tongue movement” classifier.

3.3 Tongue Movement Annotation

Besides identifying the segments presenting tongue movement, it is also possible
to add annotations to provide extra data regarding each movement. Two differ-
ent situations are considered: the movements corresponding to the transitions
between phones and the remaining tongue movements. For the latter, at this
moment, the annotation only comprises the interval for which movement was
detected. For the former, based on the tongue movement segments identified
within each repetition, each of the tongue movements is associated with the cor-
responding transition. For the sequences only including vowel sounds, e.g., [EOE],
the identified movements correspond to the transition between vowels: E to O and
O to E. For the sequences including a consonant, e.g. [aka], the two movement
segments correspond to the vowel-consonant transition ([a] to [k]) and to the
consonant-vowel transition ([k] to [a]).
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Fig. 3. Data generated for sequence [iEi], uttered by speaker JF: identification of each
repetition; the inter-frame difference curve; the automatic annotations of tongue move-
ments, within and outside the repetitions; and the corresponding movement direction,
where possible

By annotating the tongue movements, with the corresponding inter-phone
transitions, it is possible to perform selections of the data based on the charac-
teristics of the movements. For example, all occurring transitions can be grouped
according to the direction of movement: front-back (e.g., [i] to [u]) or back-front
(e.g., [o] to [e]). Figure 3 shows an example of annotation depicting these two
types of movements: -1 for backward movement (from [i] to [E]) and 1 for for-
ward movement (from [E] to [i]). Other possible annotations could distinguish
variations in tongue height (e.g., [O] to [E]).

4 Evaluation

To assess the performance of the proposed method, an evaluation comparing the
automatic tongue movement annotations with annotations performed manually,
by an observer, has been carried out.

4.1 Methods

The first six sequences recorded for each speaker, including different vowels and
consonants (and not including sequences used during development), were man-
ually annotated to identify segments where the tongue was moving, yielding a
total of 72 tongue movement segments. This annotation was performed in Artic-
ulate Assistant Advanced by analysing the captured image frames and consider-
ing only the tongue movements during the relevant speaker utterances, i.e., the
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transitions between phones. These same sequences were also processed using the
proposed automatic annotation method.

To compare the annotations, resulting from the manual and automatic meth-
ods, two measures were used: the Dice coefficient, to provide a measure of sim-
ilarity between the two intervals, D = 2|X∩Y |

|X|+|Y | ; and the overlap coefficient,

Ov(X,Y ) = |X∩Y |
min(|X|,|Y |) . For both, X and Y denote the two intervals being

compared.
For each pair of corresponding manual and automatic annotations, the dif-

ference between starting times and between ending times was also computed,
always subtracting the manual times from the automatic times. This means
that a positive difference, in the starting time, corresponds to a late start for
the automatic annotation, and a negative difference, between the ending times,
corresponds to an early stop for the automatic annotation.

4.2 Results

Table 1 shows the overall results obtained for the evaluation and box plots of
the different measures. Notice that the overlap is close to 0.95 (where 1.0 means
one interval is a subset of the other), the Dice coefficient is high, and the start
and stop displacements show that the automatic annotation is mostly contained
within the interval defined by the manual annotation (i.e., positive start dis-
placement, negative stop displacement). The box plots depict additional detail
for each of the measures. Regarding start and stop displacements, for example,
they clearly show a prevalence of positive start displacements and negative stop
displacements. Notice that the sequences have a framerate of 30 frames/s, yield-
ing an inter-frame time of 33 ms which is similar to the median displacements
observed towards the manual annotations. In practice, this means a variation of
one frame in the manual annotation which is, given the subjective nature of the
criteria used, quite good.

Table 1. Overall values obtained by comparing manual tongue movement annotations
with corresponding automatic annotations obtained using the proposed method

Dice Overlap Displacement (s)
start stop

Mean 0.7358 0.9315 0.0146 0.0007
Median 0.7705 0.9991 0.0338 -0.0218



476 S. Silva and A. Teixeira

5 Conclusions

This article presents an automatic method for tongue movement annotation in
US image sequences. It identifies the time ranges for which the tongue is moving,
in each sequence, and allows further categorization of the movements (e.g., direc-
tion) for those corresponding to the transitions between sounds. Comparison of
the obtained results with a set of manual annotations was performed yielding
good results.

The annotations generated using the proposed method are being used to
assess the applicability of a set of five sEMG sensors to the detection of tongue
movement and its direction.

The proposed method can still be further improved to support the US+sEMG
studies. For example, methods should be explored to detect tongue movement
direction directly from the image sequences to make it more versatile.

Due to its computational weight, the amount of data involved (also consider-
ing that this is part of a multimodal set), and the possibility to perform parallel
processing of different sequences, the proposed method would profit from an
implementation in a cloud computing scenario.
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Abstract. In this paper we propose a novel method for detecting fires
in both indoor and outdoor environments. The videos acquired by tra-
ditional surveillance cameras are analyzed and different typologies of
information, respectively based on color and movement, are combined
into a multi expert system in order to increase the overall reliability of
the approach, making it possible its usage in real applications. The pro-
posed algorithm has been tested on a very large dataset acquired in real
environments and downloaded on the web. The obtained results confirm
a consistent reduction in the number of false positive detected by the
system, without paying in terms of accuracy.

Keywords: Fire detection · Multi expert system

1 Introduction

In the last years a wide attention has been devoted to the prevention of fires,
which can generate smoke pollution, release greenhouse gases, as well as unin-
tentionally degrade ecosystems. A prompt detection and then an immediate
intervention could be very important in order to save the environment or, at
least, to reduce the damages caused by the fire.

A solution to this problem can be found by analyzing visual data acquired by
surveillance cameras, and in the last years several solutions have been proposed
[3][11]. For instance, in [2] a color based approach has been used: fire pixels are
recognized by an advanced background subtraction technique and a statistical
RGB color model. In [10] such strategy is improved by a multi resolution two-
dimensional wavelet analysis, which evaluates energy variation to detect the
motion of flames, and a disorder feature to decrease the number of false positive
events. Wavelet transform has been also used in [13] for detecting the flame
flicker. However, the main limitation in this kind of approach is related to the
frame rate: in fact, for evaluating the flicker, the acquisition device should work
at least at 20 fps, and then also the algorithm for detecting events on line should
work at the same frame rate. Furthermore, a common limitation lies in the fact
that RGB color makes the proposed methods sensitive to changes in brightness
c© Springer International Publishing Switzerland 2014
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and then can cause a high number of false positive, due to the presence of
shadows or to different red colors.

In [14] both fire and smoke are detected by color evaluation: in particular,
HSI and RGB color spaces have been used for detecting respectively fire and
smoke. A similar approach has been used in [9], where flicker detection is per-
formed by using a cumulative time derivative matrix of luminance and fire color
detection through RGB and HSV thresholding. In [1] the limitation or RGB
based approach is overcome by using YUV statistical color model to separate
the luminance from the chrominance more effectively than RGB, then reducing
the number of false positive detected by the system (from 66% [2] to 31%).

Although the promising performance in terms of accuracy of the state of the
art approaches, two main limitations can be highlighted: on one side, the number
of false positive is still too high for using such methods in real applications
[1][2][13]. On the other side, the reduction in the number of false positive is
often paid in terms of computational cost, so making critical their usage on
embedded platforms or on general purposes systems combined with other video
analysis applications [10][14].

In order to face the above mentioned problems, we propose a novel method
able to properly combine different typologies of information, respectively related
to color and motion. Color decision is evaluated in the YUV space: although
providing an high accuracy, the color evaluation is not robust with respect to
other red objects moving in a scene. On the other hand, motion decision is based
on a SIFT tracker: the rationale is that a set of given keypoints in a moving
object (such as a person or a vehicle) follows the same direction, while in the
fire their movement is much more disordered. The results are finally combined
by a multi expert system: the main advantage deriving from this choice lies in
the fact that the decision systems (color and motion based) consider different
but complementary aspects of the same decision problem, and their combination
provides better performance if compared with any single system.

2 Proposed Method

An overview of the proposed approach is presented in Figure 1: the pixels cor-
responding to moving objects are extracted (Foreground Mask Extraction and
Background Updating) by using the detection algorithm that we recently pro-
posed in [5]. The main novelty lies in the fact that two different kind of infor-
mation, respectively based on the color (Color Threshold) and on the movement
(Connected Component Filter and Disorder Evaluation), are properly combined
by a multi expert system (MES classifier), so significantly increase the overall
reliability of the system.

2.1 Color Evaluation

The proposed algorithm is based on the YUV color space, which separates the
luminance from the chrominance and is less sensitive to changes in brightness
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Fig. 1. Overview of the proposed approach: once extracted the foreground mask, a
multi expert system is used to combine information respectively based on color and
motion

than the RGB color space. In particular, the four rules based on the statistical
color model proposed in [1] have been exploited. The first two rules r1 and r2 are
based on the consideration that in flame pixels the Red channel value is greater
than the Green channel value, as well as the Green channel value is greater than
Blue channel value. Such consideration, transformed in the YUV color space,
becomes for the generic pixel (x,y) of the image:

r1 : Y (x, y) > U(x, y); r2 : V (x, y) > U(x, y) (1)

The third rule r3 can be obtained by considering that the flames’ brightness
is higher than other areas of the frame. This consideration suggests that a fire
pixel has the Y and V components higher than the average Y and V value in
the frame, while the U component lower than the average U value in the frame:

r3 :Y (x, y) >
1
N

∗
N∑

k=1

Y (xk, yk), (2)

U(x, y) <
1
N

∗
N∑

k=1

U(xk, yk), V (x, y) >
1
N

∗
N∑

k=1

V (xk, yk)

Moreover, the previous consideration allows to conclude that there is a con-
siderable difference between U and V components of the fire pixels. Then, the
fourth rule can be defined as: r4 : |V (x, y) − U(x, y)| ≥ τ , being τ = 40 as
suggested in [1]. The main novelty with respect to [1] lies in combination of the
above mentioned rules; in particular, the reliability ψc is computed by a weighted
combination of such rules:

ψc =
γ1 ∗ r1 + γ2 ∗ r2 + γ3 ∗ r3 + γ4 ∗ r4

γ1 + γ2 + γ3 + γ4
, (3)

In our experiments, (γ1, γ2, γ3, γ4) have been set to (1, 1, 1, 1) for equally weigh
the considered contributions.

2.2 Movement Evaluation

In sterile environments, the color could be sufficient alone to correctly recog-
nize fire events without generating too many false alarms. On the other side,
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this consideration is not completely true in common video surveillance environ-
ments, where several false alarms could be generated: think, as an example, to
a person with a red shirt walking in a street, which could be detected as fire
by a traditional color-based approaches. The introduction of a motion based
information is then fundamental to recover these kinds of situations.

A 

B 

C 

D 

E 

F 

Dictionary D 

Descriptors Extraction  
and Matching Descriptors Evaluation 

Ma Mb 

Ha 

Hb 
Reliability 

ψc
a: 0.06 

ψc
a: 0.72 

A B C D E F 

Fig. 2. Motion evaluation: for each box, the descriptors’ matching Ma and Mb, asso-
ciated respectively to the boxes a and b, are evaluated according to the dictionary D
previously defined. The occurrences of the angles Ha and Hb are computed and the
reliability ψa

c and ψb
c is obtained: 0.06 for a and 0.72 for b.

At the light of the above considerations, in this paper we propose to repre-
sent the motion as a high level feature vector. The main idea is that the most
discriminant feature able to distinguish a common moving object (a person or
a vehicle) from the fire is related to the shape variation: in fact, the shape of
an object varies in a very slow way while the fire changes it instantaneously. It
means that tracking and analyzing the movement of some keypoints could help
to distinguish the fire from other moving objects.

An overview of the proposed approach is shown in Figure 2: the keypoints
extracted in two consecutive frames are evaluated according to a dictionary
previously defined and the occurrences of angles associated to the movement are
properly evaluated.

In particular, an approach based on Scale Invariant Feature Transform (SIFT)
[7] has been used: the set of corners Ct = {c1t , ..., c|Ct|

t }, being |Ct| the cardinality
of the set, are extracted from the foreground mask at time instant t by using
the Shi-Tomasi corner detection algorithm [12], an enhanced version of tradi-
tional Harris corner detector which proved its effectiveness in several application
domains. Each corner is then represented by measuring the local image gradi-
ents in the region around it, so obtaining the set of corresponding feature vectors
Vt = {v1t , ..., v|Vt|

t }, being |Vt| = |Ct|.
Given the feature vectors Vt and Vt−1 the 1:1 matching M(Vt, Vt−1) is

performed inside each box by minimizing the distance, so that the generic
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matching mj is given by: mj = argmin distance(va
t , v

b
t−1), a = {1, ..., |Vt|}, b =

{1, ..., |Vt−1|}. Note that the maximum size of M depends on the dimensionality
of the descriptors and then can be computed as follows: |M | ≤ min(|vt|, |vt−1|).

For each matching mj , the angle φj associated to the movement is evalu-

ated: φj = arctan
(

mj |y
mj |x

)
, being mj |x and mj |y the horizontal and the vertical

component of mj , respectively. φj is then quantized according to a dictionary D
manually defined by uniformly partitioned the round into a fixed number of |D|
sectors: D =

{
dk ∈

]
k 2π

|D| , (k + 1) 2π
|D|

]}
. |D| has been experimental set in this

paper to 6. In particular, φj is associated to the sector sj it belongs to, among
the |D| available: sj = dk|φj ∈ dk.

For each box, the angles φ = {φ1, ..., φ|M |} are computed and its high level
representation is built by evaluating the occurrences of angles. The obtained
vector H = {h1, ..., h|D|} can be computed as follows: hi =

∑|M |
m=1 δ(sm, i),

j = 1, ..., k, being δ(·) the Kronecker delta.
Finally, the reliability ψm associated to the object is evaluated as: ψm =

1 − max(H)/
∑|H|

k=1 hk. It means that, as shown in Figure 2, the corner points
associated to people (box a) move approximatively in the same direction, and
the high level representation is polarized toward one or just a few angles (angle
B in the example). On the other side, the angles extracted by movement’s fire
are much more spread, so implying that the reliability is higher (0.72 against
0.06 in the example).

2.3 Multi Expert Evaluation

The information obtained by evaluating color and movement are finally combined
in an intelligent way by using a Multi Expert System (MES). In particular, the
classification reliability ψ is evaluated by a weighted voting rule which combines
ψc and ψm: ψ = (αc ∗ ψc + αm ∗ ψm)/(αc + αm).

The weights αc and αm are dynamically evaluated during the training step,
depending on the overall reliability of the single expert module. In particular,
given the misclassification matrix C(k) computed by the expert module ek on
the training step, such values can be determined by evaluating the probability
that the pattern x under test, belonging to the class i, is assigned to the right
class by the expert module ek, being k = {c,m} [6]:

αk = P (x ∈ i|ek(x) = i) = C
(k)
ii /

M∑

i=1

C
(k)
ij , (4)

being M the number of classes (two in the proposed approach, fire and non fire)
and C(ij) the value of the misclassification matrix in the position (i, j).

Finally, the decision is taken according to a threshold β: if ψ ≥ β for at least
one box, then a fire event is detected and an alert is sent to the human operator.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. A few images extracted from the videos used for testing the method: (a) fire1,
(b) fire4, (c) fire6, (d) fire13, (e) fire14, (f) fire15, (g) fire17, (h) fire21

3 Experimental Results

Although several methods have been recently proposed, no standard datasets for
benchmarking purposes have been made available up to now. For this reason, in
order to test the proposed method we collected 28 videos in indoor and outdoor
conditions, resulting in 53.808 frames to be evaluated. The videos have been
both acquired in real environments and downloaded from the web [4]. More
information are reported in [8], while some visual examples are shown in Figure
3. The dataset can be partitioned into two main folders: the first 13 videos
contains fires and the last 15 videos does not contain fire but instead smoke,
clouds or simply moving objects. Such composition allows us to stress the system
and then to test it in several real conditions. It is worth pointing out that each
video stresses a particular situation: Figures 3c and 3f, for instance, show several
red objects, whose color is very similar to the one of the fire; a similar situation
happens in Figure 3e, due to the reflection introduced by the window; finally,
several objects (persons, smoke or clouds) move inside the scene, as shown in
Figures 3a and 3g.

The dataset has been partitioned in order to fix the parameters: in particular,
20% of it has been used to validate the system for the multi expert evaluation
while the remaining 80% has been used to test it.

The results achieved by the proposed approach on the test set are reported
in Table 4: on the left the ROC curve is obtained by varying the β param-
eter while on the right the misclassification matrix is reported by optimizing
the performance on the training set (β = 0.7). In order to further confirm the
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effectiveness of the proposed approach, compared with state of the art ones, a
deep comparison has been performed.

The results are summarized in Figure 1. We can note that in general YUV
based approach strongly outperforms RGB based ones, both in terms of accuracy
and false positive. This consideration confirms our choice to exploit a YUV based
strategy for the evaluation of the color. Furthermore, the results obtained by the
proposed MES based on YUV and movement evaluation (accuracy = 92.59%
and false positive = 6.67%) outperforms the other considered approaches, so
confirming the effectiveness of the proposed methodology.

Finally, we also evaluate the computational cost of the proposed approach.
In particular, we used a traditional computer, equipped with an Intel dual core
processor T7300 and with a RAM of 4GB. The proposed method is able to work,
on average by considering 1CIF videos, with a frame rate of 70 frame per seconds
over the above mentioned platform, so making it especially suited for low-cost
real applications.

Predicted Class
Fire No Fire

GT
Fire 91.67% 8.33%

No Fire 6.67% 93.33%

Fig. 4. Results obtained by the proposed system in terms of ROC Curve, on the left,
and misclassification matrix, on the right, computed with β = 0.70

Table 1. Comparison of the proposed approach with state of the art methodologies

Accuracy False Positive

Color
RGB [2] 48.15 % 93.33 %
YUV [1] 88.89 % 20.00 %

Combination
RGB + Movement 66.67 % 60.00 %

Proposed (YUV + Movement) 92.59 % 6.67 %

4 Conclusions

In this paper we proposed a method for detecting fires in both indoor and outdoor
environments. The main advantage of the proposed approach lies in the fact
that the chosen combination significantly reduces the number of false positive
detected by the system. Furthermore, the introduction of a similar application
on existing video surveillance systems only slightly improves their cost: in fact,
on one side, no additional cameras needs to be installed and the existing ones
can be still used, since the proposed method does not require an ad hoc setup.
On the other side, the obtained performance, both in terms of accuracy and
computational cost, confirms its applicability in real applications.
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Abstract. This paper presents an automatic method for visual grading,
designed to solve the industrial problem of evaluation of seed lots. The
sample is thrown in bulk onto a tray placed in a chamber for acquiring
color image. An image processing method had been developed to separate
and characterize each seed. The approach adopted for the segmentation
step is based on the use of marked point processes and active contour,
leading to tackle the problem by a technique of energy minimization.

1 Introduction

In agriculture, the global grain harvest reached several billion tons each year.
Seed producers exchange their crops at a price determined by the quality of
their production. This assessment, called grading, is performed for each set on
a representative sample. The difficulty of this assessment is to fully characterize
the sample. To do so, it is necessary to qualify each of its elements. Historically,
this has been performed manually by an operator. This method is exposed to
various problems and the results can vary from one operator to another.

Alpha MOS company [2] develops systems for quality control of food prod-
ucts. It proposes a visual sensory system to provide an alternative to human
evaluation. The assessment should be simple to implement and at least as fast
as the human evaluation.

Fig. 1. Image of wheat seeds in bulk Fig. 2. Acquisition system

c© Springer International Publishing Switzerland 2014
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The seed samples are presented in bulk, without any arrangement, but they
are spread over a tray in such way that there is no overlapping between the
objects to avoid occlusion (Figure 1).

The evaluation by the instrument is composed of three steps. The first step is
the acquisition: the operator places the samples on the tray in the instrument
and takes an image. Then the detection step consists in finding each object in
the image, to finally classify them in different quality classes regarding several
criteria (shape, color, spot) during the classification step.

The quality of the sample can then be deduced from the result of the clas-
sification. The detection step is the main difficulty. It is necessary to develop a
segmentation method to isolate each object under the following constraints:
– the number of seeds is unknown ( an approximative estimation can be done);
– the objects have quite generical geometric and chromatic features;
– they are randomly placed, without arrangement and with no overlapping.

In Section 2, a state of the art around the visual grading problem is presented.
Section 3 describes the data acquisition system. The notion of marked point
processes is introduced in Section 4. The segmentation steps are detailed in
Section 5. Numerical results are presented in Section 6.

2 State of the Art

Several studies have been conducted on the cereal seeds grading. Augustin et
al. [1] focused on the quality control of grain of rice, regarding different criteria
of shape and color. From these criteria, a classification method based on neu-
ral network is used to qualify each grain. This approach gives good results for
the classification of complete, broken and colors defect rice grain. However this
method is applied on images with separated grain. The segmentation issue is
then simplified by an operator or a mechanical system (vibrating bowl or slot)
to separate the grain in front of the camera.

Other studies have been conducted on the cereal segmentation topic, mainly
on wheat and rice. Yao et al. [12] and Faessel et al. [8] focused on detection and
separation of rice grain. They both address the problem by working on a binary
image obtained by a threshold to separate the objects from the background. Yao
et al. [12] then work on the contours and search the concaves angles to connect
them two at a time in order to detect objects boundaries. Faessel et al. [8] used
a mathematical morphology method on the binary image: a skeleton operation
on the background. The open lines of the skeleton, without ending, are then
combined under some constraints to obtain the objects boundaries. These two
methods give good results on image of touching grain with low density of objects.
The computation times are short, but these methods are not adapted for images
with heaps and high density of seeds.
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3 Acquisition System

The acquisitions are made in a cabin (Figure 2) which integrates a camera and a
lighting system. This cabin offers stable and reproducible acquisition condition,
independently from the external lighting.

Some improvements have been made on the existing system available at
Alpha MOS. The lighting system and the camera have been replaced by new
material to improve the quality and the stability of the color image acquisition.
The lighting source retained is composed of white LEDs. These LEDs have a
continuous spectrum in the visible range and were chosen for their stability over
time in term of luminous intensity. As LEDs are punctual sources, a diffuser is
placed downstream to ensure the lighting homogeneity in the acquisition area.
The image acquisition is performed at a distance of 400 mm from the object plan
by a CMOS mono sensor color camera of 5 megapixel with a 5 mm lens. The
chosen camera was a Basler acA2500-14gc. It offers a resolution on the object
plan around 6 pixels per millimeter, which is important for our application as
the objects have a size of only few millimeters. The image acquisitions presented
in this paper were obtained with this system.

4 Marked Point Processes

The notion of marked point processes has widely been used to represent stochas-
tic phenomena such as waiting queue. More recently, this approach was used to
extract objects in image processing with for example, the detection of roads [9]
or to count trees [11] on satellite and aerial images.

4.1 Introduction to the Marked Point Processes

Figure 1 presents an example of seeds. The chosen approach to modelize and
extract the seeds is based on the marked point processes. Indeed, the seeds can
be represented by a generical simple shape and there is no arrangement between
them, they are randomly disposed. These objects are defined by their positions
and their geometric attributes or marks. Let χ be the space of objects such as
χ = P ×M , with P the space of the position and M the space of the geometric
attributes describing the object. A configuration of objects from χ, noted x, is
a non-arranged list of objects: x = {x1, . . . , xn}, n ∈ N, xi ∈ χ, i = 1, . . . , n.

The objects to detect can be approximated by an ellipse characterized by its
marks, for example its orientation, its minor axis and its major axis (Figure 3).

For each object xi of the configuration x, an energy U(xi) composed of two
terms is associated. The first term is a data term noted Ud(xi), which represents
the likelihood of the marked point process regarding the data (the image in our
case). This term is defined by the data of the object itself. The second term is an a
priori term, noted Up(xi), which imposes condition on the overall configuration.

In the context of object detection inside an image, the aim is to find the most
likely object configuration. This research is based on the two energies terms that
are defined in the next section.
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Fig. 3. Position and
marks of an ellipse

(a) continuous (b) discretised

Fig. 4. Object xi and its crown F(xi) (a), and their
equivalent disretized (b)

4.2 Energy U(x)

The energy associated to an object xi, noted U(xi), is the sum of the data term
Ud(xi) and a priori term Up(xi). The energy for the configuration x is then:

U(x) = Ud(x) + γUp(x)

with γ a weight coefficient which is determined empiricaly.
The term Ud(x) takes into account the image data for each object of x. It is

computed by using the Bhattacharyya distance, noted dB , defined in [6]:

dB(xi,F(xi)) =
(μ1 − μ2)2

4
√
σ2
1 + σ2

2

− 1
2

log
(

2σ1σ2
σ2
1 + σ2

2

)

with an object xi ∈ χ and F(xi) the object crown (Figure 4), (μ1, σ1) and
(μ2, σ2) respectively the means and the variances of the radiometric values of
the object and its crown.

The computation of this distance provides a criterion that highlights area
with important contrast between the object and its crown. It also takes into
account the homogeneity of the area. Finally, the term Ud(x) is defined as follows:

Ud(x) =
∑

xi∈x

Ud(xi) =
∑

xi∈x

Q(dB(xi,F(xi)))

with Q(dB) ∈ [-1,1] a quality function which favorizes or penalizes the objects
considering a given threshold d0:

Q(dB) = (1 − dB

d0
) if dB < d0, Q(dB) = exp

(
−dB − d0

100

)
− 1 if dB ≥ d0.

The objects having an important contrast with their crown (db ¿ d0) are then
favorized and their associated data energy is negative.

The Up(x) term gives information on the a priori knowledge on the target
configuration, like the interactions between the objects. In the context of seed
segmentation, Up(x) is a repulsive term that penalizes the objects overlapping.
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For each object xi ∈ χ, Up(xi) is the sum of repulsive strengths emitted by the
objects in interaction with xi, that are in overlapping with xi. These repulsive
strengths are computed by counting the number of pixels that belong to the
object xi and to its neighbouring objects noted V(xi):

Up(x) =
∑

xi∈x

Up(xi) with Up(xi) =
∑

xj∈V(xi)

A(xi ∩ xj)

and A(xi ∩ xj) the common area of xi and xj objects.

5 Segmentation

The presented segmentation method is inspired by the multiple Birth-and-Death
algorithm described by Descombes et al. in [7]. This approach involved the
marked point processes in an optimization framework. But we adapt this app-
roach to treat our segmentation topic by adding a detection step between the
birth step and the death step. The difference with the approach of Descombes
et al. is that we do not consider the optimization on the entire configuration but
on specific objects. We use this Birth-and-Death dynamic as a sampler, the opti-
mization part is realized by an active contour method detailed later. First, the
initialization of the method is presented, then the different steps of the method
are described.

5.1 Initialization

Birth map. The first initialization step consists of computing an image that
is named birth map. This image has the same size as the input image and it
associates to every position p a probability B(p) that there is an object centered
at this position.

This image is computed in two steps. The first step consists in a binarization
of the input image to separate the objects from the background, pixels of the
background are set to zero and the probability associated is null. The second
step is the computation of the Euclidean distance to the contours.

Fig. 5. From left to right : input image and birth map corresponding
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Fig. 6. Example of three orientation maps

Orientation maps. The orientation maps are a set of images that associate to
every position different probabilities on the possible orientations of an object
in this point. To obtain them, mean filters which have a geometrical shape and
different orientations are used on the binary image. The geometrical shape is the
mean of the possible shapes which approximate the seeds.

For example, the ellipse had been chosen in the case of rice seeds. Figure 6
presents three orientation maps obtained from the input image in Figure 5.

5.2 Active Contour

The objects created in the context of the marked point processes have only
simple shapes like ellipses with a limited range of axes sizes. The computational
time is the main reason. But to accurately detect every object in the image, we
need to obtain the most precise boundaries.

As the objects to detect have a generical shape, we decided to use the method
based on an active contour with a geometric shape prior proposed by Bresson
et al. [3]. This method follows the well-known energy functionnal model of Chen
et al. [5] where the shape prior of Leventon et al. [10] is integrated. Finally, to
improve the robustness of the method, Bresson et al. add a region-based energy
term based on the Mumford-Shah functionnal (Vese and Chan [4]). This method
is then based on three complementary terms dedicated to shape, boundary and
region inside the contour.

5.3 Birth-and-Death Dynamic

The method adapted for the Birth-and-Death algorithm is composed of three
steps that are done iteratively. We added a detection step to the original app-
roach in order to detect the object boundary with more accuracy, but also to
be able to segment the heaps progressively from their boundaries to their cores.

Birth step. The first step consists of objects birth and is illustrated on Figure 7.
For each point p of the input image, if there is not already an object at this
position, the birth probability δB(p) is computed from the birth map, with δ



Automatic Method for Visual Grading of Seed Food Products 491

Fig. 7. Birth step

a regularization coefficient that handles the approximative number of objects.
If an object xi is created, its axes are randomly chosen and its orientation is
obtained from the set of orientation maps. For a given number of angles, the set
of orientation maps provides the probability that an object has this angle. Then
the data energy Up(xi) of the object xi is computed and the object is placed in
the configuration x by sorting them regarding their data energy. Once all the
image is scanned, the algorithm goes to the next step.

Detection step. The aim of the detection step is to validate the objects of the
configuration x. Figure 8 described this step. For each object xi of the configura-
tion taking by their data energy classement order, their data energy is compared
to a threshold. If their energy is inferior to this threshold, they may be correctly
placed. Then the active contour approach detailed previously is use to validate
this hypothesis on one hand, and to get an accurate boundary if the object is
correct on the other hand. The result of the active contour is analyzed to deter-
mine different criteria like area or roundness. From these criteria the object is
then validated or not. If the object is validated, the object is removed from the
configuration x, the birth map is updated by affecting the probability to create
an object in this area at zero. The input image is also updated by turning the
pixels values of the correct object to zero, so the heaps can be progressively
processed from their boundaries to their cores. If the object is not correct, we
only remove it from the configuration x.

Death step. The death step consists of cleaning the configuration x and is illus-
trated on Figure 9. If some object have been validated during the detection step
of the current iteration, we compute the new data term of all the objects from
the updated input image. We then compute the a priori energy and the death
probability of each object in the configuration:
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Fig. 8. Detection step

Fig. 9. Death step

D(xp) =
δaϕ(xp)

1 + δaϕ(xp)
x

with aϕ(xp) = exp (−ϕU(xp)). The object is then remove from the configuration
with the probability D(xp).

6 Numerical Results

Figure 10 illustrates the behaviour of the detection step in the cases of bad
starting contour (a) and a good one (b). The first leads to a final contour with a
shape distant from an ellipse and is rejected. The second leads to a final contour
with a shape similar to an ellipse and is accepted.

Figure 11 and Figure 12 presents the final segmentation. The green color rep-
resents the contours. For the greater part, rice seeds and oats are well detected.
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(a) Bad start (b) Rejection (c) Good start (d) Acceptance

Fig. 10. Behaviour of detection step

(a) Overall.

(b) Details.
Fig. 11. Final segmentation on rice
sample

(a) Overall.

(b) Details.
Fig. 12. Final segmentation on oats
sample

Some improvements could be made. Further development is under consideration
especially in the algorithm parameters selection. This selection could be made
thanks to an automatic learning on separated seed.

7 Conclusion

This paper proposes an approach to perform the visual quality control of cereal
seeds samples. This operation called visual grading can be treated in three
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steps: acquisition, segmentation and classification. An acquisition system of color
images has been created to collect the data. A new segmentation approach
has been developed, based on the marked point processes. The Birth-an-Death
dynamic has been modified to integrate a new detection step based on an active
contour with a shape prior term. The results on rice seeds are promising.

Experiments with higher density and with other type of seeds (barley, pea,
wheat) are in progress. Other tests like comparison with human operator and
reproductibility on the same sample in different configurations are also underway.

In the future, some algorithm parameters will be automatically learnt on sim-
ple images with a representation sample of separated seeds. The shape parame-
ters would be extracted from statistics on the binarized image. The integration
of a 3D data acquisition system like stereovision with two cameras is under con-
sideration. Despite the hardware cost, such data might be useful in particular to
enrich the birth map but also to provide criteria for the classification stage.
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Abstract. Good health is a key element in pig welfare and steady weight gain is 
considered an indicator of good health and productivity. Therefore, continuous 
weight monitoring is an essential method to ensure pigs are in good health. The 
purpose of this work was to investigate feasibility of an automated method to 
estimate weight of pigs by using image processing. 

The weight estimation process developed as follows: First, to localize pigs in 
the image, an ellipse fitting algorithm was employed. Second, the area the pig 
was occupying in the ellipse was calculated. Finally, the weight of pigs was es-
timated using dynamic modelling. This method can replace the regular weight 
measurements in farms that require repeated handling and thereby causing 
stress to the pigs. 

Overall, video imaging of fattening pigs appeared promising for real-time 
weight and growth monitoring. In this study the weight could be estimated with 
an accuracy of 97.5% (± 0.82 kg). This result is significant since the existing 
automated tools currently have a maximum accuracy of 95% (± 2 kg) in practi-
cal setups and 97 % (± 1 kg) in walk-through systems (when pigs are forced to 
pass a corridor one by one) on average. 

Keywords: Top-view body area ⋅ Pig weight estimation ⋅ Automated Image 
Processing ⋅ Transfer function modelling ⋅ Ellipse fitting 

1 Introduction 

At present, there are over 60 billion animals slaughtered yearly for food production 
[1]. While today’s systems entail efficient use of land and labor, the increased number 
of animals per farm has resulted in new welfare problems because time is too limited 
to provide individual animal care [2]. Nowadays technologies are available that even 
monitor animals automatically at 24 hours a day. Research reported by [3] identified 
over 90 potential applications for image analysis in pig production. Of these, estima-
tion of pig weight was identified as a primary application for the development of  
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image analysis techniques for use in livestock production. Accurate monitoring of 
weight gain performance and the use of weight data to make effective management 
decisions is also crucial for efficient pork production. 

Automatic monitoring of animals based on video analysis is a novel approach, 
which has been proven useful to farm managers [3]. Weight measurement is an im-
portant variable in farm management that nonetheless suffers from a number of draw-
backs when performed manually since this is labor intensive and stressful for both 
animals and workers. Machine vision-based weighing of pigs is a non-intrusive, fast 
and accurate approach, which could deal with above issues during the weighing  
process [4]. 

Recently, visual image analysis (VIA) has been proposed as a method for real-time 
and continuous monitoring of pig weight gain performance, thereby allowing quicker 
detection of problems and more effective management decisions [5]. The VIA tech-
nique uses aerial-view images of animals provided by cameras to determine body 
surface dimensions and may be used for real-time monitoring of pig weight. Camera 
technology can be used to determine the area of the aerial view of a pig’s body. Using 
information on the relationship between area and Body Weight (BW), VIA systems 
have been developed and have been found to be accurate enough to estimate live BW 
within 5% [6], but to date, this technology has required that pigs were separated from 
a group to be measured. 

Other researchers previously investigated different approaches to estimate weight 
of pigs using image analysis. Brandl and Jørgensen [7] used spline functions to ex-
press the relationship between the body area of the pig measured by image analysis 
and the live weight of the pig. Marchant, et. al. [5] developed automated algorithms 
that could find the plan view outline of pigs in a normal housing situation, measure 
major body components and predict the weight of the group of pigs at 34 kg with 
standard errors of 7.3% while using manual weighing to calibrate the system. 
Schofield, et. al. [8] developed prototype imaging systems to record the weight-
related areas of pigs by fitting linear regression coefficients. Craig and Schinkel [9] 
proposed a mixed effects model1 to estimate pig weight. Wang, et. al. [4] developed 
an image-based walk-through system for pig live weight approximation. They em-
ployed artificial neural network technique to correlate physical features extracted 
from the walk-through images to pig live weight in order to improve the accuracy of 
live weight approximation and could estimate pig weight with an average relative 
error of 3%. 

Some suggest that BW and top-view body area have a linear relationship [8] and 
use a single linear regression equation to estimate the live BW of animals from the 
body area based on the interpretation of individual images. Schofield, et. al. [8] sug-
gested that different breeds may require different algorithms for BW prediction. Also 
Fisher, et. al. [11] suggested a need for unique algorithms for specific breeds or lines 
of pigs. More recently, researchers have been highlighting the benefits of mixed  

                                                           
1  Mixed-effects models, like many other types of statistical models, describe a relationship 

between a response variable and the covariates that have been measured or observed along 
with the response. For further information reader is referred to 10. Pinheiro J, Bates D. 
Mixed Effects Models in S and S-Plus: Springer; 2000. 
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2.4 Weight Estimation Using the TF Model 

The objective of the next step was to quantify the dynamics of body area (A) and to 
relate it to the golden standard BW. A single-input, single-output (SISO) TF model 
was used. The model structure used could be described by equation 1 [16]. 
 

   (1) 

In the above equation BW(t) is the body weight, t represents the discrete-time in-
stants for weight estimation and measurement; A(t) represents the input of the model, 
namely Body Area; nti is the number of time delays between each input i and their 
first effects on the output; a(z-1) is the nominator polynomial and equals 1

; bi(z
-1) is the denominator polynomials linked with the inputs i 

and is equal to  ; aj, bi are the model parameters 
to be estimated; z-1 is the backward shift operator, defined as z-1.y(k) = y(k-1); na, nb 
are the orders of the respective polynomials. 

The model parameters were estimated using a refined instrumental variable ap-
proach with the Captain toolbox in Matlab [16]. In order to build the model, different 
combinations for na, nb and ntT were calculated. More specifically, in the SISO model 
which has only one input, na ranged from 1 to 3, nb from 1 up to 3 and ntT from 0 to 2. 
Therefore, to identify the best fitting TF model parameters of a total of 48 (4x4x3) 
possible models were calculated. The resulting models were evaluated by the 
coefficient of determination  [17] and an identification procedure was used to se-
lect the most appropriate model order based on the minimization of the Young 
Identification Criterion (YIC) explained by Young and Lees [17]. The smaller the 
variance of the model residuals in relation to the variance of the measured output, the 
more negative this term becomes. 

Weight measurements in the development experiment were used to design the 
model. The developed model was then used to estimate the BW in a validation exper-
iment, which was methodologically identical. 

Finally, results of TF modelling were compared against a linear regression model 
[8] and a non-linear mixed effects model [12]. 

3 Results 

When applying the modelling approach to the data of the whole experiment (240 
measurements) the YIC criterion selected models which were predominantly second 
order (equation 2) and without delay, stable (YIC = -7.294) and with the highest RT 
(0.975). The optimal model structure was described by na=2, nb = 1 and ntT= 0 based 
on parameters demonstrated in equation 1.  .. .    (2) 

Where: a1 = -0.0768 (±0.0061), a2 = 0.9609 (±0.0093); b1= 0.289 (±0.0014); b0 = 0 
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weight of the pigs can be estimated with a deviation of 2.5% in a weight range of 23 
to 45 kg. 

The results obtained using TF model were compared with previous work on this 
topic, namely linear regression models [8] and mixed effects (non-linear) models [12]. 
Table 1 compares the results of these three methods applied to the group level data of 
the validation experiment while data of the first experiment were used to develop the 
models. 

Table 1. Comparison of results of applying “Linear regression”, “Mixed effects (non-linear)” 
and TF models to body area data in group level 

Model Data points R2 SE3 (%) SE (kg) 
Linear regression 240 0.871 10.04 4.52 
Mixed effects (non-linear) 240 0.943 5.95 2.68 
TF 240 0.975 1.82 0.82 

 
The data presented in table 1 indicate that the TF model yields a higher R2 and a 

lower SE, which means this method can estimate BW with a higher accuracy and 
reliability. 

In terms of practical application of this method, problems should be solved as a 
number of pitfalls have been identified for this study. The first pitfall was that there 
were occasions where certain pigs stood on their back feet and therefore presented a 
reduced area for image capturing and analysis. These cases were automatically ex-
cluded by thresholding the minimum body area. Another pitfall was in illumination 
conditions, which are also important for segmentation of the images. A dim illumina-
tion could make pig segmentation against dark backgrounds more difficult. In the 
experiments of this work, it was found that a range of light intensity of 40 to 150 lux 
would be optimal. 

5 Conclusion 

A technique has been introduced that offers fully automated weight estimation of 
pigs. The results show that by measuring of top view body area and adapting a TF 
model, it is possible to estimate BW with an accuracy of 97.5% (± 0.82 kg) on group 
level overcoming competing linear and non-linear modelling methods. In conclusion, 
application of the introduced method can bring important profits for livestock enter-
prises since continuous information on daily weight would allow producers to opti-
mize nutritional management practices, predict and control shipping weights, and 
potentially assist in monitoring herd health. 
 
Acknowledgements. This project was funded by Agentschap voor Innovatie door 
Wetenschap en Technologie (IWT). (project number: 080530/LBO) 

                                                           
3 Standard Error. 
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Abstract. Fragile watermarking is one of the most effective approaches
to insure the integrity of digital images. In this paper, an efficient self-
recovery and tamper localization scheme using fragile watermarking is
proposed. The proposed method generates 12-bit tamper detection data
and 20-bit self-recovery data for each 4× 4 block. The generated tam-
per detection and self-recovery features are encrypted by utilizing user
secrete key. A random block mapping scheme is used to embed the
encrypted block features into its mapping block. The proposed two-level
tamper detection creates high capacity for tamper detection data which
improves the security and tamper localization. The performance of the
proposed scheme and its robustness against famous security attacks is
analyzed. The experimental results demonstrate the high efficiency of the
proposed scheme in terms of tamper detection rate, tamper localization
and self-recovery. This method is robust against security attacks such as
collage attack and constant average attack.

Keywords: Tamper detection · Tamper localization · Self-recovery ·
Fragile watermarking · Image security

1 Introduction

The integrity and authenticity of the digital images can be assured by utiliz-
ing the tamper detection algorithms that use watermarking techniques . Fragile
watermarking is one of the most effective methods to be used for tamper detec-
tion and tamper localization [1]. In recent years, various fragile watermarking
schemes for tamper detection and self-recovery have been proposed [2–7]. Gen-
erally, the digital images that are watermarked by these schemes are partitioned
into non-overlapping blocks of pixels. The generated watermark feature for tam-
per detection and recovery is embedded into blocks with different locations which
c© Springer International Publishing Switzerland 2014
A. Campilho and M. Kamel (Eds.): ICIAR 2014, Part I, LNCS 8814, pp. 504–513, 2014.
DOI: 10.1007/978-3-319-11758-4 55
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makes them robust against certain malaciouse attacks. However, these tamper
detection and self-recovery methods struggle with a few more problems.

1. Lack of tamper localization precision
Tamper detection schemes with self-recovery capability embed the generated
watermark information into blocks with different locations. Therefore, if a
mapping block that contains watermark information of a different block is
destroyed, two blocks will be detected as tampered. To address this issue,
Lin et al. [2] proposed a hierarchical tamper detection algorithm with self-
recovery capability. The tamper detection data generated by Lin’s algorithm
is embedded as watermark payload into the same block and self-recovery data
is embedded into a different block. The embedding procedure proposed by
Lin has been adopted by several researchers [2,3,5–9].

2. Insufficient embedding capacity
Because of the insufficient embedding capacity, certain constant informa-
tion such as average intensity of the block or certain features of discrete
cosine transform (DCT) coefficients are used by the fragile tamper detec-
tion schemes. These methods [2,3,8,9] are incapable of detecting tampering
attacks that do not modify their designated feature. The dual watermarking
algorithm proposed by Lee and Lin [3] suffer from this problem. Their pro-
posed algorithm offers a second chance of recovery survival, but in contrast
any modification that alters bits in 5 MSB (most significant bit) or higher
positions cannot be detected by their algorithm.

3. Lack of security for embedding procedure
The blockwise dependency ensures the robustness of self-recovery algorithm
[6–8,10] against common security attacks such as vector quantization (VQ)
[11]and collage attack [12]. However, these schemes are vulnerable against
tampering attacks which use the same block mapping scheme to locate the
generated watermark data. Several tamper detection algorithms suffer from
lack of sufficient security measurement such as secret key for encrypting in
the embedding procedure.

To resolve the tamper localization and security problems that are mentioned
above, this paper proposes an efficient tamper detection and self-recovery algo-
rithm based on fragile watermarking with following characteristics:

1. Generate 12-bit tamper detection based on block binary feature and 20-bit
average intensity for self-recovery.

2. Generate encrypted block-mapping algorithm based on security key and
encrypt the inserted information of each block 4×4 pixels.

3. Apply a second-level of tamper detection by generating new 20-bit tamper
detection keys, which are embedded in different block to eliminate security
attacks, such as a VQ counterfeiting and collage attack.

The remainder of this paper is organized as follows. In section 2, the pro-
posed fragile watermarking for tamper detection and self-recovery is described.
Section 3 presents the performance analysis and experimental results. The paper’s
conclusions are presented in section 4.
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2 The Proposed Algorithm

The proposed fragile tamper detection and self-recovery scheme is explained
in three phases : watermark generation and embedding, tamper detection and
localization, self-recovery.

2.1 Watermarking Scheme

The proposed watermarking scheme is encrypted by using a user secret key. For
digital images which have more than one color space such as RGB images, all
color channels (red, green and blue) are watermarked by the proposed algorithm.
The proposed watermarking procedure consists of the following steps:

Step 1. Preprocessing.The original image O is divided into M 4×4 blocks Fi,
and Fi is divided to four 2×2 blocks Gi. The two least significant bit of
each pixel is converted to zero.

Step 2. Tamper Bit Generation. Each 4×4 block Fi is decomposed as Fi =
R+

i ||C+
i , where R+

i is the addition result of pixels in each row, and C+
i

is the addition result of pixels in each column of 4×4 blocks, and || is
bitwise concatenation. As following equations illustrate, the 12bitTDK
is the tamper detection key for each block of 4×4 pixels.

12bitTDK = 8bit(Aavg)||4bit(Fn) (1)

Ki = mod(R+
i , 2) + mod(C+

i , 2), i = (1, ..., 4) (2)

4bit(Fn) =

⎧
⎨

⎩

1 if mod(CO(Kn, 1), 2) = 0, (n = 1, ..., 4)

0 if mod(CO(Kn, 1), 2) = 1, (n = 1, ..., 4)
(3)

8bit(Aavg) = mod(AvFn
/2j−1, 2), j = (1, ..., 8) (4)

where Ki is the total binary summation of each row pixel addition
R+

i with column pixel addition C+
i for the same i value. Moreover, for

each 4×4 block , four R+
i and four C+

i value are generated, and as i
in equation 2 illustrated, four value of Ki are generated for each 4×4
block. The CO(Kn, 1) in equation 3 presents the total number of 1’s
in binary form of Kn(n = 1, ..., 4). As illustrated in equation 3, four
Fn(n = 1, ..., 4) value is generated for each 4×4 block. However, if the
value of CO(Kn, 1) is even, Fn will be set to 1, otherwise, Fn will be set
to 0. AvFn

in equation 4 present the average intensity of 4×4 blocks,
and 8bit(Aavg) is the 8-bit binary form of average intensity.

Step 3. Self-recovery Bit Generation. The self-recovery data generated by the
proposed scheme, is 20-bit key RCK, which consists of the five most
significant bits (5MSB) of each average intensity of 2×2 blocks Gi.(20bit
(RCK) = G1

i ||G2
i ||G3

i ||G4
i )
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Step 4. Encryption. The 32-bit watermark data which is decomposed as
32Wtbit = 12bit(TDK)||20bit(RCK), is encrypted with the following
equation,

E(Wtbit) = 32Wtbit ⊕ Ks (5)
where Ks is user secret key and ⊕ is the exclusive or (XOR). The user
key Ks will be obtained by user in the beginning of each watermark-
ing and tamper detection procedure. However, as equation 5 illustrated,
the generated 32-bit watermark data 32Wtbit for each 4×4 block will be
encrypted by user key Ks which is only known to user. The optimiza-
tion conducted in this step secures the proposed scheme against famous
security attacks such as four-scanning attack.

Step 5. Embedding and Block-mapping. The generated 12bit(TDK) is embed-
ded into the least significant bit of each pixel inside 4× 4 block Fi.
However, as Fig.1 demonstrates, the 20bit(RCK) is embedded into first
and second least significant bit of a random selected mapping block.
Fig.1 shows that the proposed block-mapping algorithm selects a ran-
dom block with the most distanced location from the original block.

Fig. 1. Embedding and block-mapping algorithm

2.2 Tamper Detection and Localization Algorithm

The proposed tamper detection and tamper localization algorithm locates the
manipulated regions of the watermarked image Wti, (i = 1, ..., n), and marks the
suspicious block as either valid vi = 1 or invalid vi = 0 . However, the optimiza-
tion proposed in this section creates a blockwise dependency which secures the
proposed scheme against tamper attack such as the collage attack. The details
of the proposed tamper detection method are explained as follows.
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Step 1. Block partitioning. The same procedure as Step 1 in Section 2.1 will be
conducted.

Step 2. Retrieve watermark. Extract the 12bit(TDK) from each 4×4 block Fi

and 20bit(RCK) from mapping blocks. The mapping block location is
determined with the same procedure presented in Step 5 of Section 2.1.

Step 3. Tamper detection. In this step, the 12-bit tamper detection data TDKn

and 20-bit self-recovery RCKn is reconstructed with the same procedure
presented in Steps 1 and 2 of Section 2.1. The extracted detection key
TDK and new generated key TDKn are compared as:

vi1 =

⎧
⎨

⎩

1 if 12bit(TDK) = 12bit(TDKn)

0 if 12bit(TDK) �= 12bit(TDKn)
(6)

where the new generated self-recovery information RCKn will be used
for tamper detection purpose and the tampered blocks will be marked as
tamper vi1 = 0. Moreover, the following expressions secure the proposed
scheme against malicious attack such as collage tampering.

vi2 =

⎧
⎨

⎩

1 if vi1 = 1 and 20bit(RCK) = 20bit(RCKn)

0 if vi1 = 1 and 20bit(RCK) �= 20bit(RCKn)
(7)

Step 4. Tamper localization. The 4×4 blocks Fi with vi1 = 0 or vi2 = 0 will be
presented as tampered regions.

2.3 Recovery Algorithm

The proposed tamper localization scheme distinguishes the tampered blocks by
marking them as valid or invalid. However, to identify the blocks that need to be
recovered, the array NR

i , i = (1, .., N) is generated by the following expression:

NR
i =

⎧
⎨

⎩

1 if vi1 = 1 & vi2 = 1

0 if vi1 = 0 & vi2 = 0
(8)

The 20-bit self-recovery features RCKn
i is extracted from its mapping block

by Step 2 of Section 2.2. The 20-bit RCKn
i consist of four 5-bit values which are

extracted from 5MSB of the average intensity of the 2×2 blocks Gn
i . Moreover,

if NR
i = 1 the tampered block FR

i will be recovered by substituting the extracted
self-recovery information RCKn

i with the destroyed pixels in FR
i . Since the pro-

posed self-recovery information is constructed based on 2×2 blocks, the quality
of the recovered image will be improved after self-recovery procedure.

3 Experimental Results

To evaluate the performance of the proposed tamper detection and self-recovery
algorithm, two distinct measurements are introduced in this section. Generally,
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different quality measurements such as signal to noise ratio (SNR), peak signal
to noise ratio (PSNR), Mean square error (MSE) and Watson distance (WD) will
be used to evaluate the quality of watermarked image and self-recovery scheme.
In this paper MSE and PSNR are used as follows :

MSE =
1
mn

m−1∑

j=0

n−1∑

j=0

[I(i, j) − K(i, j)]2, (9)

PSNR = 10.Log10(
b

MSE
), (10)

where b is the square of the maximum value of the signal, and m × n denotes
the dimensions of the monochrome image of I and K. In this paper, i.e., image
intensity is of 8 bits format, so b= 2552. The second performance measurement
which is used for evaluation, is tamper detection rate Tdt.

Tdt = (1 − (FPr + FNr)/(1 + P )) × 100 (11)

where FPr is false positive rate and FNr is false negative rate and P is the
number of regions which have been manipulated.

3.1 Malicious Tampering Attacks

To evaluate the security robustness of the proposed scheme, several malicious
attacks such as collage attack, constant-average attack(CAA) [13] and VQ attack
are examined. In addition, several general tampering such as deletion attack and
drawing attack are also examined. Fig. 2 shows the visual experimental results
of the proposed scheme against several malicious tampering attacks. The Blond,
Color Lena, Pirate and Barbara images with size of 512 × 512 are selected.
The Magazine and Soldier images with size of 512 × 512 and 400 × 290 are
collected from [14]. All test images in this experiment are watermarked with the
same secret key. Thus, it is assumed that the attacker has knowledge about the
contents of the secret key and proposed scheme structure.

As seen in Fig.2a,the watermarked Blond, color Lena and Pirate images gen-
erated by the proposed watermarking algorithm, 2e and 2i, has the PSNR of
43.21, 43.87 and 43.70 dB, respectively. Fig.2b is the tampered image with tam-
per ratio less than 20 %. As shown in Fig. 2d, the recovered image produced
by the proposed algorithm, has the PSNR of 38.42 dB. Fig. 2f, represents three
type of distinct tampering attacks:(1) Square deletion and rectangle deletion,
(2) VQ tampering attack: copy woman and nightstand lamp from watermarked
room image and place it on different spatial locations inside Lena image. The
room image has been watermarked by the proposed scheme with the same secret
key used for watermarked Lena image, and (3) Writing tampering: some letters
”UTM” with red color is placed in Lena image. The tamper ratio for the multi
region tampering attack in 2f is more than 30 %. Fig.2k is the collage tampered
Pirate image, in which more than 40% of the watermarked Barbara image is
copied and pasted into watermarked Pirate. Moreover, in this attack, the spatial
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 2. Malicious Tampering Attacks. (a) Watermarked Blond ,(b) General tamper-
ing, (c) Tampered located, (d) Recovered image (PSNR= 38.42 dB), (e) Watermarked
Color Lena(PSNR= 43.87 dB), (f) Multi Tampering , (g), Tampered located, (h) Recov-
ered image (PSNR= 34.22 dB),(i) watermarked pirate, (j) Collage attack , (k) Attack
detected ,(l) Recovered image (PSNR= 33.44 dB),(m) Watermarked magazine, (n) Col-
lage attack 50 % , (o) 50 % CA attack detected ,(p) Recovered image ,(q) Watermarked
soldiers, (r) CAA and VQ attack , (s) Attack detected ,(t) Recovered image
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locations of the copied watermarked Barbara image is preserved in the water-
marked pirate image.

As illustrated in Fig. 2c, 2g and 2k, the proposed tamper detection algo-
rithm accurately located all the tampered regions, the black color regions are
the authentic part of the tested images. The proposed tamper detection algo-
rithm is very efficient in indicating the tampered and original 4 × 4 blocks. As
shown in , Fig. 2d, 2h and 2l, the self-recovery scheme completely recovered all
the tampered regions. The recovered Blond,Lena and pirate images, have the
PSNR of 38.42, 34.22 and 33.44 dB, respectively. As Fig.2m, 2n, 2o and 2p
demonstrated, the 50 % CA attack is completely detected and recovered. Differ-
ent pixels of block 4 × 4 in Fig.2r are modified with CAA attack and multiple
regions of the images are replaced with VQ attack. As 2s and 2t illustrated, all
the tampered areas are completely detected and recovered. As the experimental
results demonstrate in Fig. 2, the proposed scheme is able to efficiently locate
and recover different types of tampering such as general tampering, VQ attack,
Collage Attack and multi region tampering attack with a satisfying PSNR val-
ues. However, the proposed self-recovery algorithm is efficient in recovering the
tampered region because of the selected recovery block size, which is 2×2 pixels.

3.2 Performance Analysis and Evaluations

In this section, the performance of the proposed tamper detection and self-
recovery scheme is analyzed. Fig. 3 shows the PSNR and Fpr value of the recov-
ered images by the proposed scheme, for different tamper ratios. As seen in
Fig. 3a , the PSNR of the recovered image for tampering attack with tamper
ratio less than 10 % is fairly high. However, Fig.3a shows that the proposed self-
recovery algorithm achieve the satisfying PSNR value of 31.00 dB for tamper
ratio of 50 %.

(a) (b)

Fig. 3. Performance Analysis.(a)Recovered image PSNR (b) FPr values



512 S. Dadkhah et al.

Fig. 3b shows that the false positive rate of the proposed algorithm is slightly
increased with increase of tamper ratio. However, with the increase of FPr,
tamper detection rate Tdt will be degraded. It can be seen from Fig. 3b, that
the FPr of the proposed tamper detection algorithm is always less than 0.1
for different tamper ratios, and the FPr of the different images are almost the
same. The similarity of the false positive rate value for different images shows
that, the images with different complexity does not have any degrading effect
on the performance of the proposed tamper localization scheme. Moreover, after
examining several digital images, the value of FPr for different tamper ratio
remained less than 0.1, and the value of false negative rate FNr is very low. The
tamper detection rate Tdt of the proposed scheme, which is obtained by equation
11, is higher than 99 % for general tampering attacks.

Table 1 presents the performance comparison of the proposed tamper detec-
tion and self-recovery algorithm against different malicious attacks such as col-
lage attack. The 512×512 Lena image is used for performance analyses in Table 1.
Table 1 shows the good recovery quality of Lee’ s algorithm [3] for tamper ratio
higher than 30 %, but his algorithm is not robust against any of malicious
attacks. Patra [5] and Tong’s [6] scheme generate PSNR lower than 31.00 dB for
recovered image and their algorithms are not robust against all the malicious
attacks mentioned in Table 1. However, as Table 1 demonstrates, the proposed
method outperform other algorithms in security robustness and self-recovery.

Table 1. Performance Comparison of Self-recovery and Security robustness

Methods
Watermark
PSNR (dB)

Recovered 30% tamper
PSNR (dB)

Collage attack VQ CAA

Lee [3] 40.68 36.39 No No No

Patra [5] 43.94 31.41 Yes Yes No

Tong [6] 40.73 27.30 No Yes Yes

Proposed 43.87 37.23 Yes Yes Yes

4 Conclusions

In this paper, an efficient tamper detection and self-recovery scheme using fragile
watermarking is proposed. The proposed tamper detection scheme generates 12-
bit tamper detection based on block binary feature and 20-bit average intensity
for self-recovery. The proposed tamper localization algorithm accurately locates
the tampered blocks of size 4×4 pixels and the self-recovery scheme recovers the
four blocks of size 2×2 pixels within the tampered block. The proposed ran-
dom block-mapping algorithm creates robustness against security attacks such
as collage attack CAA and VQ attack. However, the performance analysis and
experimental results clearly demonstrate the efficiency of the proposed scheme
in terms of tamper localization, security robustness and recovery quality. Future
research include utilizing block-neighboring characteristic to recover the tam-
pered blocks whose recovery information is destroyed.
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