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Abstract. The paper presents a thorough comparative analysis of the
feature tracking and the feature matching approaches applied to the
visual navigation. The evaluation was performed on a synthetic dataset
with perfect ground truth to assure maximum reliability of results. The
presented results include the analysis of both the feature localization
accuracy and the computational costs of different methods. Addition-
ally, the distribution of the uncertainty of the features localization was
analyzed and parametrized.

1 Introduction

Establishing point features correspondences across images in video sequence
plays an important role in the visual navigation of robots. The correspondences
can be used to estimate the transformations between the consecutive poses as in
the visual odometry (VO) systems [1][2][3] or to update the environment model
in the simultaneous localization and mapping (SLAM) [4][5][6].

The contemporary visual navigation systems use either the feature tracking
or the feature matching approach. In the first case the position of the features on
the new image is determined by finding the most probable displacement of the
features within the local neighbourhood of their last positions. This approach is
used in several visual navigation systems such as [3]. The more popular approach
is based on finding the characteristic points on the analysed images, calculating
the descriptor of their local neighbourhood and finding the pairs of the most
similar descriptors. The examples of the systems using the feature matching
paradigm include e.g. [5] and [7].

According to Fraundhofer and Scaramuzza [2] the tracking-based approach
is usually more suited for small-scale environments and frame to frame tracking.
The descriptor-based matching is generally used in larger environments where
the displacement of the camera introduces significant changes to the features’
local neighbourhood. In such cases the matching may be performed less fre-
quently to compensate for the computational cost of the descriptor calculation
and matching of the early descriptors such as SIFT [8] or SURF [9]. However, the
introduction of the FAST detector [10] and binary descriptors such as BRIEF
[11] or ORB [12] significantly changes this distinction.
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Over the years, significant attention has been paid to the evaluation of dif-
ferent point features detectors and descriptors [13]. However, no similar research
of the feature tracking algorithms has been performed. Moreover, to the extent
of the authors knowledge, no study comparing the efficiency of the tracking and
matching paradigms in the context of visual navigation is available.

This paper presents the evaluation of the feature tracking and matching
approaches to the feature localization task. Moreover, the analysis of the features’
localization uncertainty was performed. The synthetic, rendered data was used
in the experiments guaranteeing the precision of the reference camera poses,
which is especially important considering that the errors of features localization
are measured in single pixels.

2 Methods

Feature matching and feature tracking are two alternative approaches to the
problem of finding keypoint correspondences across a sequence of images. Feature
tracking starts with finding points of interest in the initial image, and tracking
them in consecutive frames by finding their correspondences using local search
methods, e.g. correlation or gradient descent. Feature tracking performs best if
the viewpoints in which the images were taken are not too far apart. Significant
apparent feature motion caused by viewpoint change is usually associated with
the deformation of the features’ neighbourhood, making tracking significantly
more prone to failure than matching.

Feature matching is based on direct keypoint-to-keypoint comparison rather
than on local search. Each keypoint is assigned a unique descriptor computed
based on the distribution of the image intensity function in the feature’s neigh-
bourhood. To match the features pairwise between consecutive images, a similar-
ity metric is computed between their descriptors and the pairs with a smallest
distance are considered to be matches. The descriptors are designed to cope
with some degree of distortion of feature neighbourhood. This makes them bet-
ter suited for finding feature correspondences whenever one has to deal with a
wide baseline.

Historically, feature tracking had the advantage of being less computationally
demanding, as the first robust detectors and descriptors were quite complicated
both to calculate and to match [8][9]. With the advent of the recently developed
binary descriptors [11][12], the barrier of computational cost being prohibitive
in real-time applications was overcome.

The experiments involving feature tracking were performed using a pyramid
variant of the widely known Kanade-Lucas-Tomasi (KLT) optical flow algorithm
first proposed in [14] and extended in [15]. Tracking was initialized using the
features detected using the FAST algorithm [10] known for its low computational
cost.

The following algorithms were used for feature detection, description and
matching: the FAST [10] feature detector paired with the binary BRIEF feature
descriptor, the multiscale, L2-norm based SIFT [8] and SURF [9] detectors and
descriptors, as well as the ORB multiscale binary detector and descriptor [12].
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3 Experiments

The experiments were performed using the data from the ICL-NUIM dataset
[16]. The dataset consists of video sequences from a synthetic environment with
perfect ground-truth poses of the camera. During the rendering process special
care has been given to simulate the artifacts usually present in the images regis-
tered by a camera. The synthetic data was used due to the required precision of
the ground truth, as even small errors in the reference camera trajectory could
corrupt the evaluation of the features localization.

The ’Living Room 0’ sequence consisting of 1510 frames was used in the
study. The most prominent 200 point features were detected on each of the first
1460 frames. Afterwards the detected features were localized on the following 50
frames.

In the case of the feature tracking approach, the points of interest were
detected using the FAST detector. The KLT tracker was used to
estimate the positions of the features on the consecutive images. Only the fea-
tures that were successfully tracked on the i-th frame were analyzed on the
i + 1-th image.

In the case of the feature matching, the features were detected and described
using one of the following algorithms: the FAST-BRIEF combination, the ORB,
the SURF and the SIFT. The descriptors of the features found on the i-th frame
were independently matched against the descriptors of the features detected on
each of the following frames, up to the i+50-th frame. The match was considered
to be successful if the ratio of the distances between the second-best match and
the best match was smaller than 0.8.

The experiments were performed on a computer with the Intel i5 processor
(2.6 GHz) and 12GB RAM. The resolution of the analyzed images was 640×480.

The precision of the point features’ localization on the analyzed frame was
evaluated in the terms of the symmetric reprojection error. Consider

[
u0 v0

]T

and
[
ui vi

]T to be the position of the feature on the initial frame and the
feature’s estimated position on the i-th frame correspondingly. If Ri and ti stand
for the reference rotation and translation between the considered poses of the
camera and M is the camera matrix. The fundamental matrix describing the
epipolar geometry can be calculated as:

F =
(
MT

)−1
Ri[ti]xM−1 (1)

where [ti]x is the matrix representation of a cross product with the vector ti.
The parameters of the epipolar lines on both images can be calculated as:

[
a0 b0 c0

]T = F
[
ui vi 1

]T (2)
[
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]T =
[
u0 v0 1

]
F (3)
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Fig. 1. Matching with FAST-BRIEF combination (top) and tracking (bottom).
Matches with reprojection error less than 2 are marked white.

Finally, the symmetric reprojection error of the analyzed feature’s localization
is defined as:

d = max

(
|a0ui + b0vi + 1|

√
a2
0 + b2

0

,
|aiu0 + biv0 + 1|

√
a2

i + b2
i

)

(4)

Figure 2 presents the comparison of the analyzed approaches in various
aspects of feature localization. Subplot (a) shows the average ratio of the fea-
tures that were successfully localized on the consecutive frames. It is clearly
visible that following the tracking approach results in the biggest number of
maintained features. It is caused mainly by the fact that the tracking is per-
formed on the frame-to-frame base and an exhaustive search of the features’
neighbourhood is performed. In the case of the descriptor matching the most
features are maintained by the FAST-BRIEF combination. The biggest number
of rejected matches is observed when using the SIFT algorithm.

Subplot (c) shows the ratio of successfully localized features for which the
reprojection error is smaller than 1 pixel. It is visible that using the KLT or SIFT
gives the best results. The combination of the FAST and the BRIEF algorithms
performs slightly worse, followed by the SURF and the ORB. The accuracy of
different methods converges as the frames distance increases. If the reprojection
error threshold is set to 2 the characteristics of all the methods but the SURF
become similar.

It is worth noting that if the threshold is set to 1, the average ratio of correctly
localized features exceeds 0.5 for the frame distance of over 20 frames. The same
ratio is maintained for over 30 frames if the error threshold is set to 2. This means
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Fig. 2. The comparison of tracking and matching approaches
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Fig. 3. Normalized histograms of the reprojection error for the KLT

that all the methods can be used for estimation of the camera displacements
within a robust estimation framework and they do not differ significantly in the
quality of the features’ localization.

The biggest difference between the analyzed methods lies in the processing
time as shown on subplot (b). In the case of the tracking approach the processing
time increases proportionally to the number of analyzed frames. It is caused
by the fact that the features are localized on every incoming frame. In the case
of the matching the processing time is approximately constant as it comprises of
the detection and description of features on only two images and their matching.

It is clearly visible that the matching using the FAST-BRIEF combination
outperforms all the other approaches. The KLT is faster than the ORB if less
than every fourth frame is analyzed. The SURF and SIFT require over 0.4[s]
to match features across two frames. Such long processing time renders the
usefulness of those two algorithms in a real-time system doubtful.

The experiments also allowed the estimation of the features’ localization
uncertainty. Figure 3 presents the concatenated, normalized histograms of the
features’ reprojection error. The values of the error were dividded into 20 reg-
ularly spaced bins between 0 and 2 pixels and the ’outliers’ bin. Feature corre-
spondences with the error bigger than 2 were considered outliers. The number of
the outliers increases with the frame distance. This also explains the increasing
average reprojection error observed in subplot (e) of Figure 2.

Currently, most of the visual navigation systems use robust estimation frame-
works (e.g. RANSAC) to find the camera movement hypothesis supported by the



On Tracking and Matching in Vision Based Navigation 467

biggest number of inliers. Therefore, only the uncertainty of those inliers needs
to be parametrized. It may also be assumed that the features localization is not
biased towards any direction. The shape of the normalized histograms suggests
that the uncertainty of the features localization on the image can be modelled
as an isotropic, additive 2D Gaussian noise. The distribution is considered to be
zero-mean and defined only by the diagonal covariance matrix:

C =
[

c 0
0 c

]
(5)

Traditionally, the values of c are set to 1. However, they depend on the frame
difference and can be estimated from the histograms. Subplot (f) of Figure 2
presents the values of the parameter c for all the considered algorithms. It is vis-
ible that the variance of the noise is the smallest if either the KLT or the SIFT
was used. The larger variance observed in the case of the other methods is prob-
ably caused by the spatial interpolation (SURF) and non-maximal suppression
(FAST and ORB).

4 Conclusions

This paper presents the comparison of the feature tracking and matching
approaches in the context of visual navigation. The performed experiments
clearly show that all the considered methods offer similar accuracy of the fea-
tures localization. Surprisingly, despite the claimed robustness of the ORB algo-
rithm w.r.t. the in-plane rotation and scale changes, it performed worse than
the FAST-BRIEF combination. This is probably caused by the interpolation of
features localization across different scales in the ORB detector.

Due to insignificant differences in the accuracy, the selection of the specific
algorithm should be based on other criteria. If the processing time is crucial,
which is the case in most visual navigation systems, the combination of the
FAST detector and BRIEF descriptor is an obvious choice.

The BRIEF and ORB algorithms outperformed the tracking mainly due to
the fact that only two frames are analyzed. However, the frame-to-frame analysis
can be advantageous. The tracking can be stopped if the number of correctly
localized features drops below an assumed threshold like in [3]. This is especially
important in the presence of motion blur or rapid changes of the scene which
can lead to an abrupt decrease in the number of correctly localized features.

Moreover, the analysis of the features’ localization uncertainty was per-
formed. The obtained results will be used in the visual SLAM system to
parametrize the observations of the point features.

The future work will focus on two tasks. Firstly, the influence of the num-
ber of localized features on the processing time and localization accuracy will
be assessed. Secondly, the performance of different feature detectors with the
KLT will be evaluated. The obtained results will be used to select the optimal
approach for point features localization in the visual SLAM system.
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